
7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 1/7

Pid Eins
レナート
لينارت

Google+ systemd PulseAudio Avahi Repositories Imprint

POSTED ON MO 26 SEPTEMBER 2011

systemd for Administrators, Part X

Here's the tenth installment of my ongoing series on systemd for Administrators:

http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.net/imprint
http://0pointer.de/blog/projects/three-levels-of-off.html
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://0pointer.net/blog
http://avahi.org/
http://0pointer.de/blog/projects/changing-roots
http://0pointer.de/blog/projects/the-new-configuration-files.html
http://git.0pointer.net/
http://0pointer.net/blog/projects/instances.html
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/blame-game.html
http://pulseaudio.org/
http://0pointer.de/blog/projects/on-etc-sysinit.html
http://0pointer.net/blog
http://0pointer.de/blog/projects/systemd-for-admins-4.html

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 2/7

Instantiated Services

Most services on Linux/Unix are singleton services: there's usually only one
instance of Syslog, Postfix, or Apache running on a specific system at the same
time. On the other hand some select services may run in multiple instances on the
same host. For example, an Internet service like the Dovecot IMAP service could
run in multiple instances on different IP ports or different local IP addresses. A
more common example that exists on all installations is getty, the mini service
that runs once for each TTY and presents a login prompt on it. On most systems
this service is instantiated once for each of the first six virtual consoles tty1 to
tty6. On some servers depending on administrator configuration or boot-time
parameters an additional getty is instantiated for a serial or virtualizer console.
Another common instantiated service in the systemd world is fsck, the file system
checker that is instantiated once for each block device that needs to be checked.
Finally, in systemd socket activated per-connection services (think classic inetd!)
are also implemented via instantiated services: a new instance is created for each
incoming connection. In this installment I hope to explain a bit how systemd
implements instantiated services and how to take advantage of them as an
administrator.

If you followed the previous episodes of this series you are probably aware that
services in systemd are named according to the pattern foobar.service, where
foobar is an identification string for the service, and .service simply a fixed
suffix that is identical for all service units. The definition files for these services
are searched for in /etc/systemd/system and /lib/systemd/system (and
possibly other directories) under this name. For instantiated services this pattern is
extended a bit: the service name becomes foobar@quux.service where foobar
is the common service identifier, and quux the instance identifier. Example:

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 3/7

serial‐getty@ttyS2.service is the serial getty service instantiated for ttyS2.

Service instances can be created dynamically as needed. Without further
configuration you may easily start a new getty on a serial port simply by invoking a
systemctl start command for the new instance:

systemctl start serial-getty@ttyUSB0.service

If a command like the above is run systemd will first look for a unit configuration
file by the exact name you requested. If this service file is not found (and usually it
isn't if you use instantiated services like this) then the instance id is removed from
the name and a unit configuration file by the resulting template name searched. In
other words, in the above example, if the precise serial‐
getty@ttyUSB0.service unit file cannot be found, serial‐getty@.service is
loaded instead. This unit template file will hence be common for all instances of
this service. For the serial getty we ship a template unit file in systemd
(/lib/systemd/system/serial‐getty@.service) that looks something like
this:

[Unit]
Description=Serial Getty on %I
BindTo=dev-%i.device
After=dev-%i.device systemd-user-sessions.service

[Service]
ExecStart=-/sbin/agetty -s %I 115200,38400,9600
Restart=always
RestartSec=0

(Note that the unit template file we actually ship along with systemd for the serial
gettys is a bit longer. If you are interested, have a look at the actual file which
includes additional directives for compatibility with SysV, to clear the screen and

http://cgit.freedesktop.org/systemd/plain/units/serial-getty@.service.m4

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 4/7

remove previous users from the TTY device. To keep things simple I have
shortened the unit file to the relevant lines here.)

This file looks mostly like any other unit file, with one distinction: the specifiers %I
and %i are used at multiple locations. At unit load time %I and %i are replaced by
systemd with the instance identifier of the service. In our example above, if a
service is instantiated as serial‐getty@ttyUSB0.service the specifiers %I and
%i will be replaced by ttyUSB0. If you introspect the instanciated unit with
systemctl status serial‐getty@ttyUSB0.service you will see these
replacements having taken place:

$ systemctl status serial-getty@ttyUSB0.service
serial-getty@ttyUSB0.service - Getty on ttyUSB0
 Loaded: loaded (/lib/systemd/system/serial-getty@.service; static)
 Active: active (running) since Mon, 26 Sep 2011 04:20:44 +0200; 2s ago
 Main PID: 5443 (agetty)
 CGroup: name=systemd:/system/getty@.service/ttyUSB0
 └ 5443 /sbin/agetty -s ttyUSB0 115200,38400,9600

And that is already the core idea of instantiated services in systemd. As you can
see systemd provides a very simple templating system, which can be used to
dynamically instantiate services as needed. To make effective use of this, a few
more notes:

You may instantiate these services on-the-fly in .wants/ symbolic links in the file
system. For example, to make sure the serial getty on ttyUSB0 is started
automatically at every boot, create a symlink like this:

ln -s /lib/systemd/system/serial-getty@.service /etc/systemd/system/getty.target.wants/serial-getty@

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 5/7

systemd will instantiate the symlinked unit file with the instance name specified in
the symlink name.

You cannot instantiate a unit template without specifying an instance identifier. In
other words systemctl start serial‐getty@.service will necessarily fail
since the instance name was left unspecified.

Sometimes it is useful to opt-out of the generic template for one specific instance.
For these cases make use of the fact that systemd always searches first for the full
instance file name before falling back to the template file name: make sure to
place a unit file under the fully instantiated name in /etc/systemd/system and
it will override the generic templated version for this specific instance.

The unit file shown above uses %i at some places and %I at others. You may
wonder what the difference between these specifiers are. %i is replaced by the
exact characters of the instance identifier. For %I on the other hand the instance
identifier is first passed through a simple unescaping algorithm. In the case of a
simple instance identifier like ttyUSB0 there is no effective difference. However, if
the device name includes one or more slashes ("/") this cannot be part of a unit
name (or Unix file name). Before such a device name can be used as instance
identifier it needs to be escaped so that "/" becomes "-" and most other special
characters (including "-") are replaced by "\xAB" where AB is the ASCII code of the

character in hexadecimal notation[1]. Example: to refer to a USB serial port by its
bus path we want to use a port name like serial/by‐path/pci‐0000:00:1d.0‐
usb‐0:1.4:1.1‐port0. The escaped version of this name is serial‐
by\x2dpath‐pci\x2d0000:00:1d.0\x2dusb\x2d0:1.4:1.1\x2dport0. %I
will then refer to former, %i to the latter. Effectively this means %i is useful
wherever it is necessary to refer to other units, for example to express additional

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 6/7

dependencies. On the other hand %I is useful for usage in command lines, or
inclusion in pretty description strings. Let's check how this looks with the above
unit file:

systemctl start 'serial-getty@serial-by\x2dpath-pci\x2d0000:00:1d.0\x2dusb\x2d0:1.4:1.1\x2dport0.service'
systemctl status 'serial-getty@serial-by\x2dpath-pci\x2d0000:00:1d.0\x2dusb\x2d0:1.4:1.1\x2dport0.service'
serial-getty@serial-by\x2dpath-pci\x2d0000:00:1d.0\x2dusb\x2d0:1.4:1.1\x2dport0.service - Serial Getty on serial/by-path/pci-0000:00:1d.0-usb-0:1.4:1.1-port0
 Loaded: loaded (/lib/systemd/system/serial-getty@.service; static)
 Active: active (running) since Mon, 26 Sep 2011 05:08:52 +0200; 1s ago
 Main PID: 5788 (agetty)
 CGroup: name=systemd:/system/serial-getty@.service/serial-by\x2dpath-pci\x2d0000:00:1d.0\x2dusb\x2d0:1.4:1.1\x2dport0
 └ 5788 /sbin/agetty -s serial/by-path/pci-0000:00:1d.0-usb-0:1.4:1.1-port0 115200 38400 9600

As we can see the while the instance identifier is the escaped string the command
line and the description string actually use the unescaped version, as expected.

(Side note: there are more specifiers available than just %i and %I, and many of
them are actually available in all unit files, not just templates for service instances.
For more details see the man page which includes a full list and terse
explanations.)

And at this point this shall be all for now. Stay tuned for a follow-up article on
how instantiated services are used for inetd-style socket activation.

Footnotes

[1] Yupp, this escaping algorithm doesn't really result in particularly pretty escaped strings, but

then again, most escaping algorithms don't help readability. The algorithm we used here is inspired

by what udev does in a similar case, with one change. In the end, we had to pick something. If

you'll plan to comment on the escaping algorithm please also mention where you live so that I can

come around and paint your bike shed yellow with blue stripes. Thanks!

http://0pointer.de/public/systemd-man/systemd.unit.html

7/5/2015 systemd for Administrators, Part X

http://0pointer.de/blog/projects/instances.html 7/7

Category: projects

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

http://0pointer.net/blog/category/projects.html
http://getpelican.com/
http://0pointer.net/blog/
https://github.com/giulivo/pelican-svbhack

