
5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 1/10

Pid Eins
レナート
لينارت

Google+ systemd PulseAudio Avahi Repositories Imprint

POSTED ON DI 12 APRIL 2011

systemd for Administrators, Part VII

Here's yet another installment of my ongoing series on systemd for Administrators:

http://0pointer.net/blog
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://pulseaudio.org/
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.de/blog/projects/changing-roots
http://avahi.org/
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://git.0pointer.net/
http://0pointer.net/imprint
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/three-levels-of-off.html
http://0pointer.net/blog
http://0pointer.de/blog/projects/systemd-for-admins-4.html
http://0pointer.net/blog/projects/blame-game.html

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 2/10

The Blame Game

Fedora 15[1] is the first Fedora release to sport systemd. Our primary goal for F15
was to get everything integrated and working well. One focus for Fedora 16 will be
to further polish and speed up what we have in the distribution now. To prepare
for this cycle we have implemented a few tools (which are already available in
F15), which can help us pinpoint where exactly the biggest problems in our boot-
up remain. With this blog story I hope to shed some light on how to figure out
what to blame for your slow boot-up, and what to do about it. We want to allow
you to put the blame where the blame belongs: on the system component
responsible.

The first utility is a very simple one: systemd will automatically write a log
message with the time it needed to syslog/kmsg when it finished booting up.

systemd[1]: Startup finished in 2s 65ms 924us (kernel) + 2s 828ms 195us (initrd) + 11s 900ms 471us (userspace) = 16s 794ms 590us.

And here's how you read this: 2s have been spent for kernel initialization, until the
time where the initial RAM disk (initrd, i.e. dracut) was started. A bit less than 3s
have then been spent in the initrd. Finally, a bit less than 12s have been spent
after the actual system init daemon (systemd) has been invoked by the initrd to
bring up userspace. Summing this up the time that passed since the boot loader
jumped into the kernel code until systemd was finished doing everything it needed
to do at boot was a bit less than 17s. This number is nice and simple to understand
-- and also easy to misunderstand: it does not include the time that is spent
initializing your GNOME session, as that is outside of the scope of the init system.
Also, in many cases this is just where systemd finished doing everything it needed

http://www.freedesktop.org/wiki/Software/systemd
luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 3/10

to do. Very likely some daemons are still busy doing whatever they need to do to
finish startup when this time is elapsed. Hence: while the time logged here is a
good indication on the general boot speed, it is not the time the user might feel
the boot actually takes.

Also, it is a pretty superficial value: it gives no insight which system component
systemd was waiting for all the time. To break this up, we introduced the tool
systemd‐analyze blame:

$ systemd-analyze blame
 6207ms udev-settle.service
 5228ms cryptsetup@luks\x2d9899b85d\x2df790\x2d4d2a\x2da650\x2d8b7d2fb92cc3.service
 735ms NetworkManager.service
 642ms avahi-daemon.service
 600ms abrtd.service
 517ms rtkit-daemon.service
 478ms fedora-storage-init.service
 396ms dbus.service
 390ms rpcidmapd.service
 346ms systemd-tmpfiles-setup.service
 322ms fedora-sysinit-unhack.service
 316ms cups.service
 310ms console-kit-log-system-start.service
 309ms libvirtd.service
 303ms rpcbind.service
 298ms ksmtuned.service
 288ms lvm2-monitor.service
 281ms rpcgssd.service
 277ms sshd.service
 276ms livesys.service
 267ms iscsid.service
 236ms mdmonitor.service
 234ms nfslock.service
 223ms ksm.service
 218ms mcelog.service
...

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 4/10

This tool lists which systemd unit needed how much time to finish initialization at
boot, the worst offenders listed first. What we can see here is that on this boot two
services required more than 1s of boot time: udev‐settle.service and
cryptsetup@luks\x2d9899b85d\x2df790\x2d4d2a\x2da650\x2d8b7d2fb92cc3.service.
This tool's output is easily misunderstood as well, it does not shed any light on
why the services in question actually need this much time, it just determines that
they did. Also note that the times listed here might be spent "in parallel", i.e. two
services might be initializing at the same time and thus the time spent to initialize
them both is much less than the sum of both individual times combined.

Let's have a closer look at the worst offender on this boot: a service by the name
of udev‐settle.service. So why does it take that much time to initialize, and
what can we do about it? This service actually does very little: it just waits for the
device probing being done by udev to finish and then exits. Device probing can be
slow. In this instance for example, the reason for the device probing to take more
than 6s is the 3G modem built into the machine, which when not having an
inserted SIM card takes this long to respond to software probe requests. The
software probing is part of the logic that makes ModemManager work and enables
NetworkManager to offer easy 3G setup. An obvious reflex might now be to blame
ModemManager for having such a slow prober. But that's actually ill-directed:
hardware probing quite frequently is this slow, and in the case of ModemManager
it's a simple fact that the 3G hardware takes this long. It is an essential
requirement for a proper hardware probing solution that individual probers can
take this much time to finish probing. The actual culprit is something else: the fact
that we actually wait for the probing, in other words: that udev‐settle.service
is part of our boot process.

So, why is udev‐settle.service part of our boot process? Well, it actually

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 5/10

doesn't need to be. It is pulled in by the storage setup logic of Fedora: to be
precise, by the LVM, RAID and Multipath setup script. These storage services have
not been implemented in the way hardware detection and probing work today:
they expect to be initialized at a point in time where "all devices have been
probed", so that they can simply iterate through the list of available disks and do
their work on it. However, on modern machinery this is not how things actually
work: hardware can come and hardware can go all the time, during boot and
during runtime. For some technologies it is not even possible to know when the
device enumeration is complete (example: USB, or iSCSI), thus waiting for all
storage devices to show up and be probed must necessarily include a fixed delay
when it is assumed that all devices that can show up have shown up, and got
probed. In this case all this shows very negatively in the boot time: the storage
scripts force us to delay bootup until all potential devices have shown up and all
devices that did got probed -- and all that even though we don't actually need
most devices for anything. In particular since this machine actually does not make

use of LVM, RAID or Multipath![2]

Knowing what we know now we can go and disable udev‐settle.service for
the next boots: since neither LVM, RAID nor Multipath is used we can mask the
services in question and thus speed up our boot a little:

ln -s /dev/null /etc/systemd/system/udev-settle.service
ln -s /dev/null /etc/systemd/system/fedora-wait-storage.service
ln -s /dev/null /etc/systemd/system/fedora-storage-init.service
systemctl daemon-reload

After restarting we can measure that the boot is now about 1s faster. Why just 1s?
Well, the second worst offender is cryptsetup here: the machine in question has an
encrypted /home directory. For testing purposes I have stored the passphrase in a

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 6/10

file on disk, so that the boot-up is not delayed because I as the user am a slow
typer. The cryptsetup tool unfortunately still takes more han 5s to set up the

encrypted partition. Being lazy instead of trying to fix cryptsetup[3] we'll just tape

over it here [4]: systemd will normally wait for all file systems not marked with the
noauto option in /etc/fstab to show up, to be fscked and to be mounted before
proceeding bootup and starting the usual system services. In the case of /home
(unlike for example /var) we know that it is needed only very late (i.e. when the
user actually logs in). An easy fix is hence to make the mount point available
already during boot, but not actually wait until cryptsetup, fsck and mount finished
running for it. You ask how we can make a mount point available before actually
mounting the file system behind it? Well, systemd possesses magic powers, in
form of the comment=systemd.automount mount option in /etc/fstab. If you
specify it, systemd will create an automount point at /home and when at the time
of the first access to the file system it still isn't backed by a proper file system
systemd will wait for the device, fsck and mount it.

And here's the result with this change to /etc/fstab made:

systemd[1]: Startup finished in 2s 47ms 112us (kernel) + 2s 663ms 942us (initrd) + 5s 540ms 522us (userspace) = 10s 251ms 576us.

Nice! With a few fixes we took almost 7s off our boot-time. And these two changes
are only fixes for the two most superficial problems. With a bit of love and detail
work there's a lot of additional room for improvements. In fact, on a different
machine, a more than two year old X300 laptop (which even back then wasn't the
fastest machine on earth) and a bit of decrufting we have boot times of around 4s
(total) now, with a resonably complete GNOME system. And there's still a lot of
room in it.

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 7/10

systemd‐analyze blame is a nice and simple tool for tracking down slow
services. However, it suffers by a big problem: it does not visualize how the
parallel execution of the services actually diminishes the price one pays for slow
starting services. For that we have prepared systemd‐analyize plot for you.
Use it like this:

$ systemd-analyze plot > plot.svg
$ eog plot.svg

It creates pretty graphs, showing the time services spent to start up in relation to
the other services. It currently doesn't visualize explicitly which services wait for
which ones, but with a bit of guess work this is easily seen nonetheless.

To see the effect of our two little optimizations here are two graphs generated
with systemd‐analyze plot, the first before and the other after our change:

http://0pointer.de/public/blame.svg
http://0pointer.de/public/blame2.svg
luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 8/10

(For the sake of completeness, here are the two complete outputs of systemd‐
analyze blame for these two boots: before and after.)

The well-informed reader probably wonders how this relates to Michael Meeks'
bootchart. This plot and bootchart do show similar graphs, that is true. Bootchart is
by far the more powerful tool. It plots in all detail what is happening during the
boot, how much CPU and IO is used. systemd‐analyze plot shows more high-
level data: which service took how much time to initialize, and what needed to
wait for it. If you use them both together you'll have a wonderful toolset to figure
out why your boot is not as fast as it could be.

Now, before you now take these tools and start filing bugs against the worst boot-
up time offenders on your system: think twice. These tools give you raw data, don't
misread it. As my optimization example above hopefully shows, the blame for the
slow bootup was not actually with udev‐settle.service, and not with the
ModemManager prober run by it either. It is with the subsystem that pulled this
service in in the first place. And that's where the problem needs to be fixed. So,
file the bugs at the right places. Put the blame where the blame belongs.

As mentioned, these three utilities are available on your Fedora 15 system out-of-
the-box.

And here's what to take home from this little blog story:

systemd‐analyze is a wonderful tool and systemd comes with profiling
built in.
Don't misread the data these tools generate!
With two simple changes you might be able to speed up your system by 7s!
Fix your software if it can't handle dynamic hardware properly!

http://0pointer.de/public/blame.txt
https://github.com/mmeeks/bootchart
http://0pointer.de/public/blame2.txt

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 9/10

The Fedora default of installing the OS on an enterprise-level storage
managing system might be something to rethink.

And that's all for now. Thank you for your interest.

Footnotes

[1] Also known as the greatest Free Software OS release ever.

[2] The right fix here is to improve the services in question to actively listen to hotplug events via

libudev or similar and act on the devices showing up as they show up, so that we can continue with

the bootup the instant everything we really need to go on has shown up. To get a quick bootup we

should wait for what we actually need to proceed, not for everything. Also note that the storage

services are not the only services which do not cope well with modern dynamic hardware, and

assume that the device list is static and stays unchanged. For example, in this example the reason

the initrd is actually as slow as it is is mostly due to the fact that Plymouth expects to be executed

when all video devices have shown up and have been probed. For an unknown reason (at least

unknown to me) loading the video kernel modules for my Intel graphics cards takes multiple

seconds, and hence the entire boot is delayed unnecessarily. (Here too I'd not put the blame on the

probing but on the fact that we wait for it to complete before going on.)

[3] Well, to be precise, I actually did try to get this fixed. Most of the delay of crypsetup stems from

the -- in my eyes -- unnecessarily high default values for ‐‐iter‐time in cryptsetup. I tried to

convince our cryptsetup maintainers that 100ms as a default here are not really less secure than 1s,

but well, I failed.

[4] Of course, it's usually not our style to just tape over problems instead of fixing them, but this is

such a nice occasion to show off yet another cool systemd feature...

5/5/2015 systemd for Administrators, Part VII

http://0pointer.de/blog/projects/blamegame.html 10/10

Category: projects

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

http://0pointer.net/blog/
https://github.com/giulivo/pelican-svbhack
http://0pointer.net/blog/category/projects.html
http://getpelican.com/

