
5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 1/10

Pid Eins
レナート
لينارت

Google+ systemd PulseAudio Avahi Repositories Imprint

POSTED ON FR 08 APRIL 2011

systemd for Administrators, Part VI

Here's another installment of my ongoing series on systemd for Administrators:

http://0pointer.net/blog
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://avahi.org/
http://pulseaudio.org/
http://0pointer.de/blog/projects/three-levels-of-off.html
http://0pointer.de/blog/projects/systemd-for-admins-4.html
http://git.0pointer.net/
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.net/blog
http://0pointer.net/imprint
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.net/blog/projects/changing-roots.html

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 2/10

Changing Roots

As administrator or developer sooner or later you'll ecounter chroot()
environments. The chroot() system call simply shifts what a process and all its
children consider the root directory /, thus limiting what the process can see of the
file hierarchy to a subtree of it. Primarily chroot() environments have two uses:

1. For security purposes: In this use a specific isolated daemon is chroot()ed into
a private subdirectory, so that when exploited the attacker can see only the
subdirectory instead of the full OS hierarchy: he is trapped inside the chroot()
jail.

2. To set up and control a debugging, testing, building, installation or recovery
image of an OS: For this a whole guest operating system hierarchy is
mounted or bootstraped into a subdirectory of the host OS, and then a shell
(or some other application) is started inside it, with this subdirectory turned
into its /. To the shell it appears as if it was running inside a system that can
differ greatly from the host OS. For example, it might run a different
distribution or even a different architecture (Example: host x86_64, guest
i386). The full hierarchy of the host OS it cannot see.

On a classic System-V-based operating system it is relatively easy to use chroot()
environments. For example, to start a specific daemon for test or other reasons
inside a chroot()-based guest OS tree, mount /proc, /sys and a few other API file
systems into the tree, and then use chroot(1) to enter the chroot, and finally run
the SysV init script via /sbin/service from inside the chroot.

On a systemd-based OS things are not that easy anymore. One of the big
advantages of systemd is that all daemons are guaranteed to be invoked in a

http://linux.die.net/man/1/chroot
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 3/10

completely clean and independent context which is in no way related to the
context of the user asking for the service to be started. While in sysvinit-based
systems a large part of the execution context (like resource limits, environment
variables and suchlike) is inherited from the user shell invoking the init skript, in
systemd the user just notifies the init daemon, and the init daemon will then fork
off the daemon in a sane, well-defined and pristine execution context and no
inheritance of the user context parameters takes place. While this is a formidable
feature it actually breaks traditional approaches to invoke a service inside a
chroot() environment: since the actual daemon is always spawned off PID 1 and
thus inherits the chroot() settings from it, it is irrelevant whether the client which
asked for the daemon to start is chroot()ed or not. On top of that, since systemd
actually places its local communications sockets in /run/systemd a process in a
chroot() environment will not even be able to talk to the init system (which
however is probably a good thing, and the daring can work around this of course
by making use of bind mounts.)

This of course opens the question how to use chroot()s properly in a systemd
environment. And here's what we came up with for you, which hopefully answers
this question thoroughly and comprehensively:

Let's cover the first usecase first: locking a daemon into a chroot() jail for security
purposes. To begin with, chroot() as a security tool is actually quite dubious, since
chroot() is not a one-way street. It is relatively easy to escape a chroot()
environment, as even the man page points out. Only in combination with a few
other techniques it can be made somewhat secure. Due to that it usually requires
specific support in the applications to chroot() themselves in a tamper-proof way.
On top of that it usually requires a deep understanding of the chroot()ed service to
set up the chroot() environment properly, for example to know which directories to

http://linux.die.net/man/2/chroot
luskin
Evidenziato

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 4/10

bind mount from the host tree, in order to make available all communication
channels in the chroot() the service actually needs. Putting this together,
chroot()ing software for security purposes is almost always done best in the C code
of the daemon itself. The developer knows best (or at least should know best) how
to properly secure down the chroot(), and what the minimal set of files, file
systems and directories is the daemon will need inside the chroot(). These days a
number of daemons are capable of doing this, unfortunately however of those
running by default on a normal Fedora installation only two are doing this: Avahi
and RealtimeKit. Both apparently written by the same really smart dude. Chapeau!
;-) (Verify this easily by running ls ‐l /proc/*/root on your system.)

That all said, systemd of course does offer you a way to chroot() specific daemons
and manage them like any other with the usual tools. This is supported via the
RootDirectory= option in systemd service files. Here's an example:

[Unit]
Description=A chroot()ed Service

[Service]
RootDirectory=/srv/chroot/foobar
ExecStartPre=/usr/local/bin/setup-foobar-chroot.sh
ExecStart=/usr/bin/foobard
RootDirectoryStartOnly=yes

In this example, RootDirectory= configures where to chroot() to before invoking
the daemon binary specified with ExecStart=. Note that the path specified in
ExecStart= needs to refer to the binary inside the chroot(), it is not a path to the
binary in the host tree (i.e. in this example the binary executed is seen as
/srv/chroot/foobar/usr/bin/foobard from the host OS). Before the daemon
is started a shell script setup‐foobar‐chroot.sh is invoked, whose purpose it is
to set up the chroot environment as necessary, i.e. mount /proc and similar file

http://avahi.org/
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 5/10

systems into it, depending on what the service might need. With the
RootDirectoryStartOnly= switch we ensure that only the daemon as specified
in ExecStart= is chrooted, but not the ExecStartPre= script which needs to
have access to the full OS hierarchy so that it can bind mount directories from
there. (For more information on these switches see the respective man pages.) If
you place a unit file like this in /etc/systemd/system/foobar.service you
can start your chroot()ed service by typing systemctl start foobar.service.
You may then introspect it with systemctl status foobar.service. It is
accessible to the administrator like any other service, the fact that it is chroot()ed
does -- unlike on SysV -- not alter how your monitoring and control tools interact
with it.

Newer Linux kernels support file system namespaces. These are similar to
chroot() but a lot more powerful, and they do not suffer by the same security
problems as chroot(). systemd exposes a subset of what you can do with file
system namespaces right in the unit files themselves. Often these are a useful and
simpler alternative to setting up full chroot() environment in a subdirectory. With
the switches ReadOnlyDirectories= and InaccessibleDirectories= you
may setup a file system namespace jail for your service. Initially, it will be identical
to your host OS' file system namespace. By listing directories in these directives
you may then mark certain directories or mount points of the host OS as read-only
or even completely inaccessible to the daemon. Example:

[Unit]
Description=A Service With No Access to /home

[Service]
ExecStart=/usr/bin/foobard
InaccessibleDirectories=/home

http://0pointer.de/public/systemd-man/systemd.service.html
http://0pointer.de/public/systemd-man/systemd.exec.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 6/10

This service will have access to the entire file system tree of the host OS with one
exception: /home will not be visible to it, thus protecting the user's data from
potential exploiters. (See the man page for details on these options.)

File system namespaces are in fact a better replacement for chroot()s in many
many ways. Eventually Avahi and RealtimeKit should probably be updated to make
use of namespaces replacing chroot()s.

So much about the security usecase. Now, let's look at the other use case: setting
up and controlling OS images for debugging, testing, building, installing or
recovering.

chroot() environments are relatively simple things: they only virtualize the file
system hierarchy. By chroot()ing into a subdirectory a process still has complete
access to all system calls, can kill all processes and shares about everything else
with the host it is running on. To run an OS (or a small part of an OS) inside a
chroot() is hence a dangerous affair: the isolation between host and guest is
limited to the file system, everything else can be freely accessed from inside the
chroot(). For example, if you upgrade a distribution inside a chroot(), and the
package scripts send a SIGTERM to PID 1 to trigger a reexecution of the init
system, this will actually take place in the host OS! On top of that, SysV shared
memory, abstract namespace sockets and other IPC primitives are shared between
host and guest. While a completely secure isolation for testing, debugging,
building, installing or recovering an OS is probably not necessary, a basic isolation
to avoid accidental modifications of the host OS from inside the chroot()
environment is desirable: you never know what code package scripts execute
which might interfere with the host OS.

To deal with chroot() setups for this use systemd offers you a couple of features:

http://0pointer.de/public/systemd-man/systemd.exec.html
luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 7/10

First of all, systemctl detects when it is run in a chroot. If so, most of its
operations will become NOPs, with the exception of systemctl enable and
systemctl disable. If a package installation script hence calls these two
commands, services will be enabled in the guest OS. However, should a package
installation script include a command like systemctl restart as part of the
package upgrade process this will have no effect at all when run in a chroot()
environment.

More importantly however systemd comes out-of-the-box with the systemd-
nspawn tool which acts as chroot(1) on steroids: it makes use of file system and
PID namespaces to boot a simple lightweight container on a file system tree. It can
be used almost like chroot(1), except that the isolation from the host OS is much
more complete, a lot more secure and even easier to use. In fact, systemd‐
nspawn is capable of booting a complete systemd or sysvinit OS in container with
a single command. Since it virtualizes PIDs, the init system in the container can act
as PID 1 and thus do its job as normal. In contrast to chroot(1) this tool will
implicitly mount /proc, /sys for you.

Here's an example how in three commands you can boot a Debian OS on your
Fedora machine inside an nspawn container:

yum install debootstrap
debootstrap --arch=amd64 unstable debian-tree/
systemd-nspawn -D debian-tree/

This will bootstrap the OS directory tree and then simply invoke a shell in it. If you
want to boot a full system in the container, use a command like this:

systemd-nspawn -D debian-tree/ /sbin/init

http://0pointer.de/public/systemd-man/systemd-nspawn.html
luskin
Evidenziato

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 8/10

And after a quick bootup you should have a shell prompt, inside a complete OS,
booted in your container. The container will not be able to see any of the
processes outside of it. It will share the network configuration, but not be able to
modify it. (Expect a couple of EPERMs during boot for that, which however should
not be fatal). Directories like /sys and /proc/sys are available in the container,
but mounted read-only in order to avoid that the container can modify kernel or
hardware configuration. Note however that this protects the host OS only from
accidental changes of its parameters. A process in the container can manually
remount the file systems read-writeable and then change whatever it wants to
change.

So, what's so great about systemd‐nspawn again?

1. It's really easy to use. No need to manually mount /proc and /sys into your
chroot() environment. The tool will do it for you and the kernel automatically
cleans it up when the container terminates.

2. The isolation is much more complete, protecting the host OS from accidental
changes from inside the container.

3. It's so good that you can actually boot a full OS in the container, not just a
single lonesome shell.

4. It's actually tiny and installed everywhere where systemd is installed. No
complicated installation or setup.

systemd itself has been modified to work very well in such a container. For
example, when shutting down and detecting that it is run in a container, it just
calls exit(), instead of reboot() as last step.

Note that systemd‐nspawn is not a full container solution. If you need that LXC is
the better choice for you. It uses the same underlying kernel technology but offers

http://lxc.sourceforge.net/

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 9/10

a lot more, including network virtualization. If you so will, systemd‐nspawn is the
GNOME 3 of container solutions: slick and trivially easy to use -- but with few
configuration options. LXC OTOH is more like KDE: more configuration options
than lines of code. I wrote systemd‐nspawn specifically to cover testing,
debugging, building, installing, recovering. That's what you should use it for and
what it is really good at, and where it is a much much nicer alternative to
chroot(1).

So, let's get this finished, this was already long enough. Here's what to take home
from this little blog story:

1. Secure chroot()s are best done natively in the C sources of your program.
2. ReadOnlyDirectories=, InaccessibleDirectories= might be suitable

alternatives to a full chroot() environment.
3. RootDirectory= is your friend if you want to chroot() a specific service.
4. systemd‐nspawn is made of awesome.
5. chroot()s are lame, file system namespaces are totally l33t.

All of this is readily available on your Fedora 15 system.

And that's it for today. See you again for the next installment.

Category: projects

← BACK TO INDEX

http://0pointer.net/blog/
http://0pointer.net/blog/category/projects.html

5/5/2015 systemd for Administrators, Part VI

http://0pointer.de/blog/projects/changingroots.html 10/10

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

https://github.com/giulivo/pelican-svbhack
http://getpelican.com/

