
6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 1/9

Pid Eins
レナート
لينارت

Google+ systemd PulseAudio Avahi Repositories Imprint

POSTED ON MO 18 JULI 2011

systemd for Administrators, Part IX

Here's the ninth installment of my ongoing series on systemd for Administrators:

http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://0pointer.de/blog/projects/three-levels-of-off.html
http://pulseaudio.org/
http://0pointer.de/blog/projects/changing-roots
http://avahi.org/
http://0pointer.net/blog
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://0pointer.de/blog/projects/the-new-configuration-files.html
http://0pointer.net/blog/projects/on-etc-sysinit.html
http://git.0pointer.net/
http://0pointer.de/blog/projects/systemd-for-admins-4.html
http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.net/blog
http://0pointer.de/blog/projects/blame-game.html
http://0pointer.net/imprint

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 2/9

On /etc/sysconfig and /etc/default

So, here's a bit of an opinion piece on the /etc/sysconfig/ and /etc/default
directories that exist on the various distributions in one form or another, and why I
believe their use should be faded out. Like everything I say on this blog what
follows is just my personal opinion, and not the gospel and has nothing to do with
the position of the Fedora project or my employer. The topic of /etc/sysconfig
has been coming up in discussions over and over again. I hope with this blog story
I can explain a bit what we as systemd upstream think about these files.

A few lines about the historical context: I wasn't around when /etc/sysconfig was
introduced -- suffice to say it has been around on Red Hat and SUSE distributions
since a long long time. Eventually /etc/default was introduced on Debian with very
similar semantics. Many other distributions know a directory with similar
semantics too, most of them call it either one or the other way. In fact, even other
Unix-OSes sported a directory like this. (Such as SCO. If you are interested in the
details, I am sure a Unix greybeard of your trust can fill in what I am leaving vague
here.) So, even though a directory like this has been known widely on Linuxes and
Unixes, it never has been standardized, neither in POSIX nor in LSB/FHS. These
directories very much are something where distributions distuingish themselves
from each other.

The semantics of /etc/default and /etc/sysconfig are very losely defined
only. What almost all files stored in these directories have in common though is
that they are sourcable shell scripts which primarily consist of environment
variable assignments. Most of the files in these directories are sourced by the SysV
init scripts of the same name. The Debian Policy Manual (9.3.2) and the Fedora
Packaging Guidelines suggest this use of the directories, however both

http://www.debian.org/doc/debian-policy/ch-opersys.html#s-sysvinit
http://fedoraproject.org/wiki/Packaging:SysVInitScript
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 3/9

distributions also have files in them that do not follow this scheme, i.e. that do not
have a matching SysV init script -- or not even are shell scripts at all.

Why have these files been introduced? On SysV systems services are started via
init scripts in /etc/rc.d/init.d (or a similar directory). /etc/ is (these days)
considered the place where system configuration is stored. Originally these init
scripts were subject to customization by the administrator. But as they grew and
become complex most distributions no longer considered them true configuration
files, but more just a special kind of programs. To make customization easy and
guarantee a safe upgrade path the customizable bits hence have been moved to
separate configuration files, which the init scripts then source.

Let's have a quick look what kind of configuration you can do with these files.
Here's a short incomprehensive list of various things that can be configured via
environment settings in these source files I found browsing through the directories
on a Fedora and a Debian machine:

Additional command line parameters for the daemon binaries
Locale settings for a daemon
Shutdown time-out for a daemon
Shutdown mode for a daemon
System configuration like system locale, time zone information, console
keyboard
Redundant system configuration, like whether the RTC is in local timezone
Firewall configuration data, not in shell format (!)
CPU affinity for a daemon
Settings unrelated to boot, for example including information how to install a
new kernel package, how to configure nspluginwrap or whether to do library

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 4/9

prelinking
Whether a specific service should be started or not
Networking configuration
Which kernel modules to statically load
Whether to halt or power-off on shutdown
Access modes for device nodes (!)
A description string for the SysV service (!)
The user/group ID, umask to run specific daemons as
Resource limits to set for a specific daemon
OOM adjustment to set for a specific daemon

Now, let's go where the beef is: what's wrong with /etc/sysconfig (resp.
/etc/default)? Why might it make sense to fade out use of these files in a
systemd world?

For the majority of these files the reason for having them simply does not
exist anymore: systemd unit files are not programs like SysV init scripts were.
Unit files are simple, declarative descriptions, that usually do not consist of
more than 6 lines or so. They can easily be generated, parsed without a
Bourne interpreter and understood by the reader. Also, they are very easy to
modify: just copy them from /lib/systemd/system to
/etc/systemd/system and edit them there, where they will not be
modified by the package manager. The need to separate code and
configuration that was the original reason to introduce these files does not
exist anymore, as systemd unit files do not include code. These files hence
now are a solution looking for a problem that no longer exists.
They are inherently distribution-specific. With systemd we hope to encourage
standardization between distributions. Part of this is that we want that unit

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 5/9

files are supplied with upstream, and not just added by the packager -- how it
has usually been done in the SysV world. Since the location of the directory
and the available variables in the files is very different on each distribution,
supporting /etc/sysconfig files in upstream unit files is not feasible.
Configuration stored in these files works against de-balkanization of the
Linux platform.
Many settings are fully redundant in a systemd world. For example, various
services support configuration of the process credentials like the user/group
ID, resource limits, CPU affinity or the OOM adjustment settings. However,
these settings are supported only by some SysV init scripts, and often have
different names if supported in multiple of them. OTOH in systemd, all these
settings are available equally and uniformly for all services, with the same
configuration option in unit files.
Unit files know a large number of easy-to-use process context settings, that
are more comprehensive than what most /etc/sysconfig files offer.
A number of these settings are entirely questionnabe. For example, the
aforementiond configuration option for the user/group ID a service runs as is
primarily something the distributor has to take care of. There is little to win
for administrators to change these settings, and only the distributor has the
broad overview to make sure that UID/GID and name collisions do not
happen.
The file format is not ideal. Since the files are usually sourced as shell scripts,
parse errors are very hard to decypher and are not logged along the other
configuration problems of the services. Generally, unknown variable
assignments simply have no effect but this is not warned about. This makes
these files harder to debug than necessary.
Configuration files sources from shell scripts are subject to the execution
parameters of the interpreter, and it has many: settings like IFS or LANG tend

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 6/9

to modify drastically how shell scripts are parsed and understood. This makes
them fragile.
Interpretation of these files is slow, since it requires spawning of a shell,
which adds at least one process for each service to be spawned at boot.
Often, files in /etc/sysconfig are used to "fake" configuration files for
daemons which do not support configuration files natively. This is done by
glueing together command line arguments from these variable assignments
that are then passed to the daemon. In general proper, native configuration
files in these daemons are the much prettier solution however. Command line
options like "-k", "-a" or "-f" are not self-explanatory and have a very cryptic
syntax. Moreover the same switches in many daemons have (due to the
limited vocabulary) often very much contradicting effects. (On one daemon ‐
f might cause the daemon to daemonize, while on another one this option
turns exactly this behaviour off.) Command lines generally cannot include
sensible comments which most configuration files however can.
A number of configuration settings in /etc/sysconfig are entirely
redundant: for example, on many distributions it can be controlled via
/etc/sysconfig files whether the RTC is in UTC or local time. Such an
option already exists however in the 3rd line of the /etc/adjtime (which is
known on all distributions). Adding a second, redundant, distribution-specific
option overriding this is hence needless and complicates things for no
benefit.
Many of the configuration settings in /etc/sysconfig allow disabling
services. By this they basically become a second level of enabling/disabling
over what the init system already offers: when a service is enabled with
systemctl enable or chkconfig on these settings override this, and turn
the daemon of even though the init system was configured to start it. This of
course is very confusing to the user/administrator, and brings virtually no

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 7/9

benefit.
For options like the configuration of static kernel modules to load: there are
nowadays usually much better ways to load kernel modules at boot. For
example, most modules may now be autoloaded by udev when the right
hardware is found. This goes very far, and even includes ACPI and other high-
level technologies. One of the very few exceptions where we currently do not
do kernel module autoloading is CPU feature and model based autoloading
which however will be supported soon too. And even if your specific module
cannot be auto-loaded there's usually a better way to statically load it, for
example by sticking it in /etc/load‐modules.d so that the administrator
can check a standardized place for all statically loaded modules.
Last but not least, /etc already is intended to be the place for system
configuration ("Host-specific system configuration" according to FHS). A
subdirectory beneath it called sysconfig to place system configuration in is
hence entirely redundant, already on the language level.

What to use instead? Here are a few recommendations of what to do with these
files in the long run in a systemd world:

Just drop them without replacement. If they are fully redundant (like the
local/UTC RTC setting) this is should be a relatively easy way out (well,
ignoring the need for compatibility). If systemd natively supports an
equivalent option in the unit files there is no need to duplicate these settings
in sysconfig files. For a list of execution options you may set for a service
check out the respective man pages: systemd.exec(5) and systemd.service(5).
If your setting simply adds another layer where a service can be disabled,
remove it to keep things simple. There's no need to have multiple ways to
disable a service.

http://0pointer.de/public/systemd-man/systemd.service.html
http://0pointer.de/public/systemd-man/systemd.exec.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 8/9

Find a better place for them. For configuration of the system locale or system
timezone we hope to gently push distributions into the right direction, for
more details see previous episode of this series.
Turn these settings into native settings of the daemon. If necessary add
support for reading native configuration files to the daemon. Thankfully, most
of the stuff we run on Linux is Free Software, so this can relatively easily be
done.

Of course, there's one very good reason for supporting these files for a bit longer:
compatibility for upgrades. But that's is really the only one I could come up with.
It's reason enough to keep compatibility for a while, but I think it is a good idea to
phase out usage of these files at least in new packages.

If compatibility is important, then systemd will still allow you to read these
configuration files even if you otherwise use native systemd unit files. If your
sysconfig file only knows simple options EnvironmentFile=‐
/etc/sysconfig/foobar (See systemd.exec(5) for more information about this
option.) may be used to import the settings into the environment and use them to
put together command lines. If you need a programming language to make sense
of these settings, then use a programming language like shell. For example, place
an short shell script in /usr/lib/<your package>/ which reads these files for
compatibility, and then exec's the actual daemon binary. Then spawn this script
instead of the actual daemon binary with ExecStart= in the unit file.

And this is all for now. Thank you very much for your interest.

Category: projects

http://0pointer.de/blog/projects/the-new-configuration-files.html
http://0pointer.net/blog/category/projects.html
http://0pointer.de/public/systemd-man/systemd.exec.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

6/5/2015 systemd for Administrators, Part IX

http://0pointer.de/blog/projects/onetcsysinit.html 9/9

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

http://getpelican.com/
https://github.com/giulivo/pelican-svbhack
http://0pointer.net/blog/

