
28/4/2015 systemd for Administrators, Part IV

http://0pointer.de/blog/projects/systemd­for­admins­4.html 1/4

Pid Eins
レナート 
لينارت

Google+  systemd  PulseAudio  Avahi  Repositories  Imprint

POSTED ON FR 19 NOVEMBER 2010

systemd for Administrators, Part IV

Here's the fourth installment of my ongoing series about systemd for

http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://0pointer.net/imprint
http://git.0pointer.net/
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://www.freedesktop.org/wiki/Software/systemd/
http://0pointer.net/blog/projects/systemd-for-admins-4.html
http://pulseaudio.org/
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://avahi.org/
http://0pointer.net/blog
http://0pointer.net/blog


28/4/2015 systemd for Administrators, Part IV

http://0pointer.de/blog/projects/systemd­for­admins­4.html 2/4

administrators.

Killing Services

Killing a system daemon is easy, right? Or is it?

Sure, as long as your daemon persists only of a single process this might actually
be somewhat true. You type killall rsyslogd and the syslog daemon is gone.
However it is a bit dirty to do it like that given that this will kill all processes
which happen to be called like this, including those an unlucky user might have
named that way by accident. A slightly more correct version would be to read the
.pid file, i.e. kill `cat /var/run/syslogd.pid`. That already gets us much
further, but still, is this really what we want?

More often than not it actually isn't. Consider a service like Apache, or crond, or
atd, which as part of their usual operation spawn child processes. Arbitrary, user
configurable child processes, such as cron or at jobs, or CGI scripts, even full
application servers. If you kill the main apache/crond/atd process this might or
might not pull down the child processes too, and it's up to those processes
whether they want to stay around or go down as well. Basically that means that
terminating Apache might very well cause its CGI scripts to stay around,
reassigned to be children of init, and difficult to track down.

systemd to the rescue: With systemctl kill you can easily send a signal to all
processes of a service. Example:

# systemctl kill crond.service

This will ensure that SIGTERM is delivered to all processes of the crond service,

http://0pointer.de/blog/projects/systemd-for-admins-3.html
http://www.freedesktop.org/wiki/Software/systemd
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato



28/4/2015 systemd for Administrators, Part IV

http://0pointer.de/blog/projects/systemd­for­admins­4.html 3/4

not just the main process. Of course, you can also send a different signal if you
wish. For example, if you are bad-ass you might want to go for SIGKILL right-away:

# systemctl kill -s SIGKILL crond.service

And there you go, the service will be brutally slaughtered in its entirety, regardless
how many times it forked, whether it tried to escape supervision by double forking
or fork bombing.

Sometimes all you need is to send a specific signal to the main process of a
service, maybe because you want to trigger a reload via SIGHUP. Instead of going
via the PID file, here's an easier way to do this:

# systemctl kill -s HUP --kill-who=main crond.service

So again, what is so new and fancy about killing services in systemd? Well, for the
first time on Linux we can actually properly do that. Previous solutions were
always depending on the daemons to actually cooperate to bring down everything
they spawned if they themselves terminate. However, usually if you want to use
SIGTERM or SIGKILL you are doing that because they actually do not cooperate
properly with you.

How does this relate to systemctl stop? kill goes directly and sends a signal
to every process in the group, however stop goes through the official configured
way to shut down a service, i.e. invokes the stop command configured with
ExecStop= in the service file. Usually stop should be sufficient. kill is the
tougher version, for cases where you either don't want the official shutdown
command of a service to run, or when the service is hosed and hung in other ways.



28/4/2015 systemd for Administrators, Part IV

http://0pointer.de/blog/projects/systemd­for­admins­4.html 4/4

(It's up to you BTW to specify signal names with or without the SIG prefix on the -s
switch. Both works.)

It's a bit surprising that we have come so far on Linux without even being able to
properly kill services. systemd for the first time enables you to do this properly.

Category: projects

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

http://0pointer.net/blog/
http://getpelican.com/
http://0pointer.net/blog/category/projects.html
https://github.com/giulivo/pelican-svbhack

