
28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 1/9

Pid Eins
レナート
لينارت

Google+ systemd PulseAudio Avahi Repositories Imprint

POSTED ON FR 01 OKTOBER 2010

systemd for Administrators, Part III

Here's the third installment of my ongoing series about systemd for administrators.

http://git.0pointer.net/
http://0pointer.net/imprint
http://0pointer.net/blog
http://www.freedesktop.org/wiki/Software/systemd/
http://avahi.org/
http://pulseaudio.org/
https://plus.google.com/+LennartPoetteringTheOneAndOnly
http://0pointer.de/blog/projects/systemd-for-admins-2.html
http://0pointer.net/blog/projects/systemd-for-admins-3.html
http://0pointer.de/blog/projects/systemd-for-admins-1.html
http://0pointer.net/blog

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 2/9

How Do I Convert A SysV Init Script Into A systemd Service File?

Traditionally, Unix and Linux services (daemons) are started via SysV init scripts.
These are Bourne Shell scripts, usually residing in a directory such as
/etc/rc.d/init.d/ which when called with one of a few standardized
arguments (verbs) such as start, stop or restart controls, i.e. starts, stops or
restarts the service in question. For starts this usually involves invoking the
daemon binary, which then forks a background process (more precisely
daemonizes). Shell scripts tend to be slow, needlessly hard to read, very verbose
and fragile. Although they are immensly flexible (after all, they are just code) some
things are very hard to do properly with shell scripts, such as ordering parallized
execution, correctly supervising processes or just configuring execution contexts
in all detail. systemd provides compatibility with these shell scripts, but due to the
shortcomings pointed out it is recommended to install native systemd service files
for all daemons installed. Also, in contrast to SysV init scripts which have to be
adjusted to the distribution systemd service files are compatible with any kind of
distribution running systemd (which become more and more these days...). What
follows is a terse guide how to take a SysV init script and translate it into a native
systemd service file. Ideally, upstream projects should ship and install systemd
service files in their tarballs. If you have successfully converted a SysV script
according to the guidelines it might hence be a good idea to submit the file as
patch to upstream. How to prepare a patch like that will be discussed in a later
installment, suffice to say at this point that the daemon(7) manual page shipping
with systemd contains a lot of useful information regarding this.

So, let's jump right in. As an example we'll convert the init script of the ABRT
daemon into a systemd service file. ABRT is a standard component of every Fedora
install, and is an acronym for Automatic Bug Reporting Tool, which pretty much

http://0pointer.de/public/abrtd
http://0pointer.de/public/systemd-man/daemon.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 3/9

describes what it does, i.e. it is a service for collecting crash dumps. Its SysV script
I have uploaded here.

The first step when converting such a script is to read it (surprise surprise!) and
distill the useful information from the usually pretty long script. In almost all cases
the script consists of mostly boilerplate code that is identical or at least very
similar in all init scripts, and usually copied and pasted from one to the other. So,
let's extract the interesting information from the script linked above:

A description string for the service is "Daemon to detect crashing apps". As it
turns out, the header comments include a redundant number of description
strings, some of them describing less the actual service but the init script to
start it. systemd services include a description too, and it should describe the
service and not the service file.

The LSB header[1] contains dependency information. systemd due to its
design around socket-based activation usually needs no (or very little)
manually configured dependencies. (For details regarding socket activation
see the original announcement blog post.) In this case the dependency on
$syslog (which encodes that abrtd requires a syslog daemon), is the only
valuable information. While the header lists another dependency
($local_fs) this one is redundant with systemd as normal system services
are always started with all local file systems available.
The LSB header suggests that this service should be started in runlevels 3
(multi-user) and 5 (graphical).
The daemon binary is /usr/sbin/abrtd

And that's already it. The entire remaining content of this 115-line shell script is
simply boilerplate or otherwise redundant code: code that deals with

http://0pointer.de/public/abrtd
http://0pointer.de/blog/projects/systemd.html

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 4/9

synchronizing and serializing startup (i.e. the code regarding lock files) or that
outputs status messages (i.e. the code calling echo), or simply parsing of the verbs
(i.e. the big case block).

From the information extracted above we can now write our systemd service file:

[Unit]
Description=Daemon to detect crashing apps
After=syslog.target

[Service]
ExecStart=/usr/sbin/abrtd
Type=forking

[Install]
WantedBy=multi-user.target

A little explanation of the contents of this file: The [Unit] section contains
generic information about the service. systemd not only manages system services,
but also devices, mount points, timer, and other components of the system. The
generic term for all these objects in systemd is a unit, and the [Unit] section
encodes information about it that might be applicable not only to services but also
in to the other unit types systemd maintains. In this case we set the following unit
settings: we set the description string and configure that the daemon shall be

started after Syslog[2], similar to what is encoded in the LSB header of the original
init script. For this Syslog dependency we create a dependency of type After= on
a systemd unit syslog.target. The latter is a special target unit in systemd and
is the standardized name to pull in a syslog implementation. For more information
about these standardized names see the systemd.special(7). Note that a
dependency of type After= only encodes the suggested ordering, but does not
actually cause syslog to be started when abrtd is -- and this is exactly what we

http://0pointer.de/public/systemd-man/systemd.special.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 5/9

want, since abrtd actually works fine even without syslog being around. However,
if both are started (and usually they are) then the order in which they are is
controlled with this dependency.

The next section is [Service] which encodes information about the service itself.
It contains all those settings that apply only to services, and not the other kinds of
units systemd maintains (mount points, devices, timers, ...). Two settings are used
here: ExecStart= takes the path to the binary to execute when the service shall
be started up. And with Type= we configure how the service notifies the init
system that it finished starting up. Since traditional Unix daemons do this by
returning to the parent process after having forked off and initialized the
background daemon we set the type to forking here. That tells systemd to wait
until the start-up binary returns and then consider the processes still running
afterwards the daemon processes.

The final section is [Install]. It encodes information about how the suggested
installation should look like, i.e. under which circumstances and by which triggers
the service shall be started. In this case we simply say that this service shall be
started when the multi‐user.target unit is activated. This is a special unit (see

above) that basically takes the role of the classic SysV Runlevel 3[3]. The setting
WantedBy= has little effect on the daemon during runtime. It is only read by the
systemctl enable command, which is the recommended way to enable a service
in systemd. This command will simply ensure that our little service gets
automatically activated as soon as multi‐user.target is requested, which it is

on all normal boots[4].

And that's it. Now we already have a minimal working systemd service file. To test
it we copy it to /etc/systemd/system/abrtd.service and invoke systemctl

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 6/9

daemon‐reload. This will make systemd take notice of it, and now we can start
the service with it: systemctl start abrtd.service. We can verify the status
via systemctl status abrtd.service. And we can stop it again via
systemctl stop abrtd.service. Finally, we can enable it, so that it is
activated by default on future boots with systemctl enable abrtd.service.

The service file above, while sufficient and basically a 1:1 translation (feature- and
otherwise) of the SysV init script still has room for improvement. Here it is a little
bit updated:

[Unit]
Description=ABRT Automated Bug Reporting Tool
After=syslog.target

[Service]
Type=dbus
BusName=com.redhat.abrt
ExecStart=/usr/sbin/abrtd -d -s

[Install]
WantedBy=multi-user.target

So, what did we change? Two things: we improved the description string a bit.
More importantly however, we changed the type of the service to dbus and
configured the D-Bus bus name of the service. Why did we do this? As mentioned
classic SysV services daemonize after startup, which usually involves double
forking and detaching from any terminal. While this is useful and necessary when
daemons are invoked via a script, this is unnecessary (and slow) as well as
counterproductive when a proper process babysitter such as systemd is used. The
reason for that is that the forked off daemon process usually has little relation to
the original process started by systemd (after all the daemonizing scheme's whole
idea is to remove this relation), and hence it is difficult for systemd to figure out

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 7/9

after the fork is finished which process belonging to the service is actually the
main process and which processes might just be auxiliary. But that information is
crucial to implement advanced babysitting, i.e. supervising the process, automatic
respawning on abnormal termination, collectig crash and exit code information
and suchlike. In order to make it easier for systemd to figure out the main process
of the daemon we changed the service type to dbus. The semantics of this service
type are appropriate for all services that take a name on the D-Bus system bus as

last step of their initialization[5]. ABRT is one of those. With this setting systemd
will spawn the ABRT process, which will no longer fork (this is configured via the ‐
d ‐s switches to the daemon), and systemd will consider the service fully started
up as soon as com.redhat.abrt appears on the bus. This way the process
spawned by systemd is the main process of the daemon, systemd has a reliable
way to figure out when the daemon is fully started up and systemd can easily
supervise it.

And that's all there is to it. We have a simple systemd service file now that
encodes in 10 lines more information than the original SysV init script encoded in
115. And even now there's a lot of room left for further improvement utilizing
more features systemd offers. For example, we could set Restart=restart‐
always to tell systemd to automatically restart this service when it dies. Or, we
could use OOMScoreAdjust=‐500 to ask the kernel to please leave this process
around when the OOM killer wreaks havoc. Or, we could use
CPUSchedulingPolicy=idle to ensure that abrtd processes crash dumps in
background only, always allowing the kernel to give preference to whatever else
might be running and needing CPU time.

For more information about the configuration options mentioned here, see the
respective man pages systemd.unit(5), systemd.service(5), systemd.exec(5). Or,

http://0pointer.de/public/systemd-man/systemd.service.html
http://0pointer.de/public/systemd-man/systemd.unit.html
http://0pointer.de/public/systemd-man/systemd.exec.html
luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 8/9

browse all of systemd's man pages.

Of course, not all SysV scripts are as easy to convert as this one. But gladly, as it
turns out the vast majority actually are.

That's it for today, come back soon for the next installment in our series.

Footnotes

[1] The LSB header of init scripts is a convention of including meta data about the service in

comment blocks at the top of SysV init scripts and is defined by the Linux Standard Base. This was

intended to standardize init scripts between distributions. While most distributions have adopted

this scheme, the handling of the headers varies greatly between the distributions, and in fact still

makes it necessary to adjust init scripts for every distribution. As such the LSB spec never kept the

promise it made.

[2] Strictly speaking, this dependency does not even have to be encoded here, as it is redundant in

a system where the Syslog daemon is socket activatable. Modern syslog systems (for example

rsyslog v5) have been patched upstream to be socket-activatable. If such a init system is used

configuration of the After=syslog.target dependency is redundant and implicit. However, to

maintain compatibility with syslog services that have not been updated we include this

dependency here.

[3] At least how it used to be defined on Fedora.

[4] Note that in systemd the graphical bootup (graphical.target, taking the role of SysV

runlevel 5) is an implicit superset of the console-only bootup (multi‐user.target, i.e. like

runlevel 3). That means hooking a service into the latter will also hook it into the former.

http://refspecs.freestandards.org/LSB_3.1.1/LSB-Core-generic/LSB-Core-generic/initscrcomconv.html
http://0pointer.de/public/systemd-man/
luskin
Evidenziato

luskin
Evidenziato

28/4/2015 systemd for Administrators, Part III

http://0pointer.de/blog/projects/systemdforadmins3.html 9/9

[5] Actually the majority of services of the default Fedora install now take a name on the bus after

startup.

Category: projects

← BACK TO INDEX

© Lennart Poettering. Built using Pelican. Theme by Giulio Fidente on github. .

http://getpelican.com/
https://github.com/giulivo/pelican-svbhack
http://0pointer.net/blog/
http://0pointer.net/blog/category/projects.html

