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To all who share my dream, and are working to help make it happen …

… the dream of a world where your work, your colleagues, and your opportunities 
in life are not dictated by where you live or how far you commute. Where the 
old-fashioned office of the nineteenth and twentieth centuries has passed into 

history, along with its soul-destroying bums-on-seats culture and Dilbertian work
practices. A world inclusive of those who cannot work in a standard office. A world

inclusive of those who reject car-dependence, but embrace a full and active life. 
A world inclusive of those who seek to fit study and learning into a busy life, yet
have no accessible library, let alone university. Of those who are housebound …

Our information infrastructure is poised to liberate us all. We who develop 
with Apache are playing a small but exciting part in that. This work is 

dedicated to all of us!
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Foreword

Nick’s book is something that we’ve long been waiting for. The “Eagle Book,” which
came out in 1999, was a great book, but it focused primarily on mod_perl. Thus
it was a rather different thing from this book.

And this book comes along at just the right time. With web applications needing
more and more scalability, we’re all looking for ways for our code to run faster, use
fewer resources, have tighter integration with the webserver, and just plain be more
robust.

It used to be sufficient to write Perl CGI programs to run even large websites, but
over the years most of us have moved to mod_perl, PHP, Ruby on Rails, and other
development tools that allow us to build bigger, faster, cheaper. Those of us looking
for that next thing, wondering if it might be best to write our applications as an
Apache module, tend to get frustrated with the lack of decent documentation and
examples.

For the most part, when you ask on IRC for documentation of how to write an
Apache module, the answers include looking at the code of some existing module,
or looking at API documentation that was, at best, somewhat elderly and, for the
most part, intended for Apache 1.3.

When Nick told me that he was going to write this book, I made sure to sign up
for the first copy. I knew that Nick was the right person for the job because of his
prolific module authoring and his numerous helpful tutorials.

For those of us who learn best by example and experimentation, this book is ideal—
it provides many of the former and it encourages the latter. So make sure that you
have your favorite editor and compiler ready as you dive in, as you’ll encounter
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example code almost right away and will want to try it out. And don’t be afraid to
experiment.

You’ve picked the right book. This is sure to become the de facto standard docu-
ment about how to write an Apache module.

—Rich Bowen
September 2006
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Preface

Introduction
The Apache Web Server (commonly known as “Apache”) is, by most measures, the
leading server on the Web today. For ten years it has been the unrivaled and unchal-
lenged market leader, with approximately 70 percent of all websites running Apache.
It is backed by a vibrant and active development community that operates under
the umbrella of the Apache Software Foundation (ASF), and it is supported by a
wide range of people and organizations, ranging from giants such as IBM down to
individual consultants.

The key characteristics of Apache are its openness and diversity. The source code is
completely open: Not only the current version, but also past versions and experi-
mental development versions can be downloaded by anyone from apache.org. The
development process is also open, with the exception of a few matters dealing with
project management. Apache’s diversity is a reflection of its user and developer com-
munities: It is equally at home in an ultra-high-volume site that receives tens of
thousands of hits per second, a complex and highly dynamic web application, a
bridge to a separate application server, or a simple homepage host. The inclusion of
developers from such diverse roles helps ensure that Apache continues to serve all
of these widely differing environments successfully.

Yet that doesn’t mean Apache follows a one-size-fits-all approach. Its highly modu-
lar architecture is built on a small core, which enables every user to tailor it to meet
his or her own specific needs. Apache serves equally well as a stand-alone webserver
or a component in some other system. Most importantly, it is a highly flexible and
extensible applications platform.



Audience and Readership
This book is intended for software developers who are working with the Apache
Web Server. It is the first such book published since March 1999, and the first and
(to date) only developer book that is relevant to Apache 2.

The book’s primary purpose is to serve as an in-depth textbook for module devel-
opers working with Apache. The narrative and examples deal with development in
C, and a working knowledge of C is assumed. However, the Apache architecture
and API are shared by major scripting environments such as mod_perl and
mod_python, as well as C. With the exception of Chapter 3 (on the Apache
Portable Runtime), much of this book should also be relevant to developers work-
ing with scripting languages at any level more advanced than standard CGI.

The current Apache release—version 2.2—is the primary focus of this book.
Version 2.2.0 was released in December 2005 and, given Apache’s development
cycle, is likely to remain current for some time (the previous stable version 2.0 was
released in April 2002). This book is also very relevant to developers who are still
working with version 2.0 (the architecture and API are substantially the same across
all 2.x versions), and is expected to remain valid for the foreseeable future.

Organization and Scope
This book comprises twelve chapters and three appendixes.

The first chapter is a nontechnical overview that sets the scene and introduces the
social, cultural, and legal background of Apache. It is followed by an extended tech-
nical introduction and overview that is spread over the next three chapters. Chapter
2 is a technical overview of the Apache architecture and API. Chapter 3 introduces
the Apache Portable Runtime (APR), a semi-autonomous library that is used
throughout Apache and relieves the programmer of many of the traditional burdens
of C programming. Chapter 4 discusses general programming techniques appro-
priate to working with Apache, to ensure that your modules work well across dif-
ferent platforms and environments, remain secure, and don’t present difficulties to
systems administrators.

The central part of the book moves from the general to the specific. Chapters 5–8
present detailed discussions of various aspects of the core function of a webserver—
namely, processing HTTP requests. A number of real-life modules are developed in
these chapters. Chapter 5 starts with a “Hello World” example and takes you to the
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point where you can duplicate the function of a CGI or PHP script as a module.
Chapter 6 describes the request processing cycle and working with HTTP meta-
data. Chapter 7 goes into more detail about identifying users and handling access
control. Chapter 8 presents the filter chain and techniques for transforming incom-
ing and outgoing data; it includes a thorough theoretical exposition and several
examples. Chapter 9 completes the core topics by describing how to work with con-
figuration data.

Chapters 10 and 11 present more advanced topics that are nevertheless essential
reading for serious application developers. Chapter 10 looks at the mechanics of
how the API works, and describes how a module can extend it or introduce an
entirely new API or service for other modules. Chapter 11 presents the DBD frame-
work for SQL database applications. Chapter 12 briefly discusses troubleshooting
and debugging techniques.

The appendixes include Apache legal documents reproduced from the Web. They
are extremely relevant to the book but were not written by the author. Appendix A
is the Apache License. Appendix B includes the Contributor License Agreements,
which cover issues related to intellectual property. Finally, the authoritative
Hypertext Transfer Protocol (HTTP/1.1) standard (RFC 2616) is reproduced in
full in Appendix C as reference documentation for developers of web applications. 

What the Book Does Not Cover
This book is firmly focused on applications development, so it has very little to say
about systems programming for or with Apache. In particular, if your goal is to port
Apache to a hitherto-unsupported platform, the book offers no more than a pointer
to the areas of code you’ll need to work on.

Apart from that, there is one important omission: The book limits itself to con-
sidering Apache as a server for HTTP (and HTTPS), the protocol of the Web.
Although the server can be used to support other protocols, and implementations
already exist for FTP, SMTP, and echo, this book has nothing to say on the sub-
ject. Nevertheless, if you are looking to implement or work with another protocol,
the overview and the discussion of HTTP protocol handling should help you get
oriented.



Sources
Some of the modules used as examples are written especially for this book or simi-
lar instructional materials:

• Chapter 5: mod_helloworld

• Chapter 6: mod_choices (derived from a non-open-source module)

• Chapter 7: mod_authnz_day

• Chapter 8: mod_txt (written originally for www.apachetutor.org)

These modules can be downloaded from www.apachetutor.org.

All of the more substantial modules are taken from real-life sources. Except where
otherwise indicated and referenced by URL, all modules are taken from either the
Apache standard distribution (httpd.apache.org) or the author’s company’s site
(apache.webthing.com). Please note that the use of any source code in this book
does not imply a license to copy it other than for purely personal use. Please refer
to the license terms in the original sources of each module.
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1.1 A Brief History of the Apache Web Server

1.1.1 Apache 1
The Apache Web Server was originally created in 1995. It was based on and derived
from the earlier NCSA server, written by the National Center for Supercomputing
Applications (which also developed the Mosaic browser, predecessor to most of
today’s browsers, with a direct line to Netscape and Mozilla, and considerable influ-
ence over others, including MSIE). The first production server under the Apache
name was version 1.0.0, released in December 1995.

As a webserver, Apache was an immediate success. By April 1996, it had overtaken
the NCSA server as the most widely used webserver on the Internet, a position it has
occupied ever since. But it wasn’t a general-purpose applications platform: The native
API was fairly limiting, and the return on development effort for programmers was

1

1

Applications Development
with Apache



unattractive compared to some of the alternatives available as higher-level program-
ming layers. Nevertheless, some useful application modules—most notably, the
extraordinary mod_rewrite—were developed.

The first applications development framework to make a major splash was Perl,
under both CGI and mod_perl. The main programming book and most applica-
tion developers concentrated on Perl, because mod_perl presented the first really
useful and easy-to-use API. The Java Servlet API and numerous other scripting lan-
guages, including the current market leader PHP, soon followed.

The last major new release of the original Apache server was version 1.3, which was
introduced in June 1998. Apache 1.3 has continued in maintenance mode and remains
popular today, although new development work has long since moved to Apache 2.

1.1.2 Apache 2
Recognizing the limitations of Apache’s original, hackish architecture, the Apache
developers began a major new codebase in 2000, leading to the first production release
of Apache 2.0 in April 2002. Salient features of Apache 2 include the following:

• The native API is much improved and the APR library is a separate entity. This
helps programmers overcome most of the drawbacks of C programming—in
particular, the problems of cross-platform programming and resource manage-
ment. Working with Apache 2, C programmers can expect levels of productiv-
ity more commonly associated with higher-level and scripting languages.

• A new extension architecture enables development of a whole new class of
applications, as well as far cleaner implementations of existing modules and
applications. This book will discuss in detail how to take advantage of this
extension architecture.

• A new core architecture makes Apache 2 a truly cross-platform server. The
operating system layer has itself become a module (the MPM), enabling it to
be separately tuned for each operating system. Whereas Apache 1 was a UNIX
application that was ported with many limitations to other platforms, Apache 2
is truly cross-platform and is not tied to UNIX features, some of which perform
poorly on, for example, Windows or Netware. The introduction of threaded
MPMs also improves scalability on UNIX in many applications.
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The downside of Apache 2 is that the API is not backward compatible with
Apache 1, so many third-party modules and applications have been slow to upgrade
to version 2.

Apache 2.2 was released as a stable version in December 2005 and features further
major enhancements. It preserves (and extends) the Apache 2.0 API, so that mod-
ules and applications written for Apache 2.0 will work with Apache 2.2. Notable
improvements in version 2.2 include scalability and applications architecture.
Where Apache 2.0 offered the foundations of a powerful applications platform,
Apache 2.2 has added walls and a roof.

1.2 The Apache Software Foundation
The Apache Software Foundation (ASF) provides organizational, legal, and finan-
cial support for a broad range of open-source software projects. The ASF provides
an established framework for intellectual property and financial contributions that
simultaneously limits contributors’ potential legal exposure. Through a collabora-
tive and meritocratic development process, Apache projects deliver enterprise-grade,
freely available software products that attract large communities of users. The prag-
matic Apache License makes it easy for all users—whether commercial enterprises
or individuals—to deploy Apache products.

Formerly known as the Apache Group, the ASF has been incorporated as a mem-
bership-based, not-for-profit corporation to ensure that the Apache projects con-
tinue to exist beyond the participation of individual volunteers. Individuals who
have demonstrated a commitment to collaborative open-source software develop-
ment, through sustained participation and contributions within the ASF’s projects,
are eligible for membership in the ASF. An individual is awarded membership after
nomination and approval by a majority of the existing ASF members. Thus the ASF
is governed by the community it most directly serves—the people collaborating
within its projects.

The ASF members periodically elect a Board of Directors to manage the
Foundation’s organizational affairs, as accorded by the ASF bylaws. The Board, in
turn, appoints officers who oversee the day-to-day operations of the ASF. A num-
ber of public records of the ASF’s operations are made available to the community.

1.2 The Apache Software Foundation 3



1.2.1 Meritocracy
Unlike many other software development efforts conducted under an open-source
license, the Apache Web Server was not initiated by a single developer (for exam-
ple, like the Linux Kernel or the Perl/Python languages), but rather started as a
diverse group of people who shared common interests and got to know one another
by exchanging information, fixes, and suggestions.

As the group started to develop its own version of the software, moving away from
the NCSA version, more people were attracted to the effort. They started to help
out, first by sending little patches, or suggestions, or replying to e-mail on the mail
list, and later by making more important contributions. 

When the group felt that a person had “earned” the right to be part of the devel-
opment community, its members granted the individual direct access to the code
repository. This approach both expanded the group and increased its ability to
develop the Apache program and maintain it more effectively. 

We call this basic principle meritocracy—literally, “government of merit.” The mer-
itocracy process scaled very well without creating friction. Unlike in other situations
where power is a scarce and conservative resource, in the Apache group newcomers
were seen as volunteers who wanted to help, rather than as people who wanted to
steal a position.

At the same time, because there is no pressure to recruit more members, Apache is
not scrabbling for scarce talent in a competitive environment. Instead, it can afford
to restrict itself to people with a proven track record of contributions and a positive
attitude. And because it is a virtual community, it is worldwide and not constrained
by geography.

1.2.2 Roles 
The meritocracy supports a variety of roles.

User

A user is someone who uses the software. Users contribute to the Apache projects
by providing feedback to developers in the form of bug reports and feature
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suggestions. Users may also participate in the Apache community by helping other
users on mailing lists and user support forums.

Developer

A developer is a user who contributes to a project by submitting code or documen-
tation. Developers take extra steps to participate in a project, are active on the devel-
oper mailing list, participate in discussions, and provide patches, documentation,
suggestions, and criticism. Developers are also known as contributors.

Committer

A committer is a developer who was given write access to the code repository and
has a signed Contributor License Agreement (CLA) on file. All committers have an
apache.org mail address. Not needing to depend on other people for the patches,
these individuals actually make short-term decisions for the project, subject to over-
sight from the Project Management Committee (PMC).

PMC Member

A PMC member is a developer or a committer who was elected to the PMC on a
merit basis, in recognition of his or her role in the evolution of the project and
demonstration of commitment. PMC members have write access to the code repos-
itory, an apache.org mail address, the right to vote on community-related deci-
sions, and the right to propose an active user for committer status. The PMC as a
whole is the entity that controls the project.

ASF Member

An ASF member is a person who was nominated by current ASF members and
elected due to merit based on his or her role in the evolution and progress of the
ASF. Members care for the ASF itself. This concern is usually demonstrated through
the roots of project-related and cross-project activities. Legally, a member is a
“shareholder” of the Foundation, one of the owners. ASF members have the right
to elect the Board of Directors, to stand as a candidate for the Board election, to
propose a committer for membership, and to participate in a wide range of other
roles within the ASF.

1.2 The Apache Software Foundation 5



1.2.3 Philosophy
While there is not an official list, certain principles have been cited as the core
beliefs of philosophy behind the ASF. These principles are sometimes referred to as
“The Apache Way”:

• Collaborative software development

• Commercial-friendly standard license

• Consistently high-quality software

• Respectful, honest, technical-based interaction

• Faithful implementation of standards

• Security as a mandatory feature

1.3 The Apache Development Process
Apache development is both a top-down and a bottom-up process. From the top
come Big Ideas: major new features or capabilities that involve significant rework-
ing or new components, and may take many months or even years to pass from
inception to maturity. From the bottom come small patches, to deal with bugs or
add features that are simple to support within the current software.

Somewhere between these extremes is the typical module: a self-contained plug-in
implementing new features of interest to its author and often others. A module may
implement core webserver functionality, a general-purpose service, a small but vital
function, or a single-purpose application. A module that is of sufficiently general
interest may, if offered, be incorporated into the core Apache distribution. However,
that inclusion will not happen if the module adds external dependencies such as
third-party libraries, or if any concerns arise regarding the module’s licensing or
intellectual property issues. Such modules may be distributed independently by
their developers or by third parties, such as a company supporting Apache or the
packagers of a Linux distribution.
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1.3.1 The Apache Codebase
Like any other software project, Apache maintains a codebase. This codebase is
divided into projects; those relevant to the webserver are httpd (which includes
code, documentation, and build files) and apr.

1.3.1.1 Subversion

All Apache code is kept in a repository at http://svn.apache.org/. The code is
managed by Subversion (SVN),1 a modern revision-control system suitable for
large-scale multi-developer projects. This is a relatively recent (2004) change from
an older but broadly similar system, CVS.

Read access to the entire repository is public, but write access is limited to commit-
ters. Read access includes the ability to view any point in the development history of
Apache, including reviewing any single or cumulative change, brief explanations 
of reasons for changes (e.g., bugs fixed, new capabilities, internal improvements), the
date of the change, and the person responsible for making the change.

1.3.1.2 Branches: Trunk, Development, and Stable

The code repository contains a trunk and several different branches. The default
version of any file is the trunk of the repository. In Apache, this version represents
work in progress. It is, by definition, untested, and it generally includes experi-
mental code in at least some areas.

The current stable branch is Apache httpd 2.2, which is found in /branches/2.2.x/.
Also maintained (albeit minimally) are the older 2.0 and 1.3 branches, although nei-
ther is the subject of much developer effort.

New branches may also be created on an ad hoc basis for experimental code. For
example, a substantial reworking of parts of the core code took place while
Apache 2.2 was in beta testing, to support asynchronous I/O. This code was ini-
tially too experimental to develop in the trunk, so the developers involved in this
work created a new development branch. The new codebase has subsequently sta-
bilized and been merged into the trunk, and should eventually be included in the
next stable release (version 2.4).

1.3 The Apache Development Process 7
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1.3.1.3 Review and Consensus

The Apache developers operate under different development policies for stable and
development code:

• Stable code is always Review-Then-Commit (RTC). That means any code
going into a branch marked as stable—even the most trivial patch—must have
been through a proper review process.

• Development code is Commit-Then-Review (CTR). That means code can be
added, changed, or removed by a committer acting unilaterally, and reviewed
in place by other developers (of course, SVN makes it easy to reverse a change
where necessary). Nevertheless, major changes should be reviewed before com-
mitting, or worked on in a separate development branch.

1.3.1.4 Backports

New code is first added to the trunk. If a developer wants this code to become part
of a stable branch (typically a minor enhancement or bug fix), it is proposed for
backporting. The mechanism for this is a file called STATUS, which contains a list
of current issues including votes for backport.

To qualify for backporting, any change must collect at least three positive votes
from committers. A positive vote means that the voter has reviewed the change and
is satisfied with it, so three such votes is a fairly good indicator that the change is
sound. Even simple bug fixes are subject to this rule, which means that noncritical
bugs can sometimes take a frustratingly long time to fix while awaiting attention
from enough committers. Having collected three positive votes and no veto, a
change may be added to a stable branch.

A committer who reviews a change and is not happy with it may note his or her
reservations about it, or even veto the change. The rules require that a veto must be
accompanied by an explanation and/or an alternative proposal for accomplishing the
objectives of the change. A vetoed change may be either dropped or revised to deal
with the objections and submitted for a new vote. A veto or a non-veto reservation
will typically be resolved by discussion of the relevant issues in the developer forums.

1.3.1.5 Releases

From time to time, a new release of Apache is made available. Releases of the current
stable codebase (versions 2.2.x at the time of this book’s writing) give users the
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advantages of the most recent improvements and bug fixes. Such releases will be
marked as the best available version and recommended to users. A release is usually
prompted by developers thinking that enough minor changes have accumulated to
warrant a new version, but may also be hurried if a security problem comes to the
developers’ attention. A developer will volunteer to be release manager to deal with the
administrative issues and create the release, while others will concentrate on applying
any approved and pending updates in the STATUS file for the stable codebase.

Current policy is that even-numbered branches are stable, while odd-numbered
branches are intended for development. (This policy represents a change from earlier
versions: Apache 1.3 is stable, but early 2.0 releases were not.) Thus 2.0.x (since April
2002) and 2.2.x releases are stable, while 2.1.x releases were intended for alpha testing
and later beta testing for Apache 2.2. Version 2.1 was approximately 10 months in
alpha testing and 3 months in beta testing before its final release as stable version 2.2.

A released version should build, install, and run cleanly on any supported platform.
For stable releases, meeting these criteria is a must; for development releases, it is
also the intention, though it is less critical. To ensure that the release satisfies these
conditions, the release manager first creates a build for the release from the appro-
priate SVN branch, and then announces it to the Apache developers and testers.
This allows enough time for many developers and testers to install and run the build
version on a wide range of different hardware, operating systems, and applications
before it is announced to the general public. If a serious problem arises in this test-
ing, the build is not released.

All releases are PGP-signed by the release manager responsible. Public keys for
many Apache developers, including all release managers, are available at
http://www.apache.org/dist/httpd/KEYS.

1.3.2 Development Forums
The primary development forum for the Apache Web Server is the mailing list
dev@httpd.apache.org. All technical matters of Apache development are dis-
cussed there. A similar development list, dev@apr.apache.org, serves APR devel-
opment. These forums are 100% open and public, and all discussions are archived
in several places (referenced at the end of this chapter).

Another popular development forum is Internet Relay Chat (IRC). The Apache
developer channels are #httpd-dev and #apr on irc.freenode.net. These ven-
ues are also fully public and open.

1.3 The Apache Development Process 9
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The Apache Bugzilla at http://issues.apache.org/ is a searchable database of
bug reports, enhancement requests, and patches, both current and historical. This
database is also fully open and public. Note that because it is fully open, it contains
a significant proportion of bogus reports (some of which cannot be closed and are
shown as “reopened”) and nebulous reports that cannot be verified. It also contains
a number of reports marked PatchAvailable that are deliberately left open, where
it is felt that a patch might be useful for some users but is not appropriate for inclu-
sion in the standard Apache distribution.

The full and accurate archive of all code additions and changes is the Subversion
repository at http://svn.apache.org/. This repository is updated in real time as
code is changed. Read access is fully open and public, but write access is limited to
authorized committers. Noteworthy files in Subversion include STATUS, which
contains current discussions and votes, and CHANGES, which provides the executive
summary of changes to a stable/release branch.

1.3.3 Developers
It is important to Apache that the diversity of its users be reflected in its development
community. There is no question of an Apache project becoming dominated by any
one company or group of companies. Some developers (including this author) work
either as freelance consultants or for very small companies. Other developers come
from the larger vendors such as IBM, Red Hat, and Novell; from the big users such
as Google, Yahoo!, and Ask Jeeves; and from universities and other noncommercial
organizations. Whereas the majority of developers are employed by companies, the
independents outnumber any single corporate contingent.

Perhaps more importantly, the developers reflect the wide range of roles that Apache
fulfills. Those who are running it on ultra-busy sites such as CNN or HEAnet need
to sustain loads of tens of thousands of concurrent users on a 24/7 basis, so they
care about performance, scalability, and stability. Application sites, such as this
author’s Site Valet, are concerned with extending Apache beyond its original web-
server role and using it as an application server. E-commerce sites are concerned
with both security and reliability issues. Hosting companies need to support widely
differing users and delegate control while maintaining security and stability. Having
active developers from such a wide range of backgrounds ensures that Apache works
well in all of these environments.
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Finally, we are by no means an exclusive “hacker” community. Although software
development and maintenance is the biggest single activity carried out by Apache
developers, some members have risen to the top of the Apache hierarchy without
writing a single line of C code! Support, documentation, and organizational roles
are as highly valued as programming.

1.3.4 Participation
Participation in any of the Apache forums is open to anyone with a contribution to
make. There are many ways to contribute, and all are highly valued:

• Coding. Patches for issues brought up in Bugzilla are very welcome.
Contributions to current subjects of debate found on the developer lists, or
highlighted in STATUS, are always welcome. The programmer looking for
something to do is also invited to search the codebase in SVN for TODO or
FIXME notes. Patches are most welcome when they can be applied cleanly
(diff -u or svn -diff format) and are clearly motivated and explained.
Patches can be posted to the developer list or to Bugzilla.

• Documentation. The documentation is held in SVN. All original documents
are in an XML format that is a subset of DocBook. New documentation or
improvements (patches) to existing documentation are always welcome.

• Translation. The documentation is provided in a number of languages, but
not all pages are available in all languages. Neither are the translations always
up to date with the originals. If you have the language skills, look for missing
or outdated pages in your language, and fix them!

• Testing. Build and test code on your platform, particularly if you use an unusual
platform. Build it with unusual environments and toolkits: Does it build and
install cleanly? Stress-test it in all your most unusual tasks. If it fails, or if you
find unexpected changes from an earlier version, try and diagnose what’s going
on. Report any bugs you find to the developer mailing list or Bugzilla. Try to
ensure that whatever you describe is clear and reproducible behavior.

• Build. Maintaining the Apache build and installation setup is an important
task, but one for which (at the time of this book’s writing) we are not well
equipped. Even the most widely used GNU autoconf-based installation for
UNIX/Linux family platforms would benefit from an overhaul.
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1.4 Apache and Intellectual Property
All Apache projects are copyrighted by the ASF and licensed under the Apache
License. At the same time, the ASF and PMC take strong measures to ensure that
no third-party intellectual property is used in Apache code without legally binding,
written permission to distribute it under the Apache License. Note that while
Apache holds the copyright for the entirety of a project, parts of a project may
remain copyrighted by individual contributors and be licensed under ASF terms.

1.4.1 The Apache License
The Apache License (found in Appendix A) is a free software license, in the tradi-
tion of the older BSD and MIT software licenses, but with an important additional
clause appropriate to our times. It satisfies all accepted definitions of free and open-
source software.

Given that the language of free software may be confusing to some readers, let’s
pause to clarify some important points. Please note that this is just basic back-
ground information, and is certainly not legal advice for users in any particular
country.

Free Speech, Not Free Beer

Free beer is nice. Free speech is important!

When we talk of software freedom, we are using the word in the sense of free
speech. The key freedom in software is the freedom for every user to do whatever it
takes to meet his or her own needs (or, of course, to hire someone to do that).
Making the source code available is a necessary part of freedom.

Cost is not relevant to software freedom. Apache is available at a wide range of 
costs, from a no-cost download, to a package bundled in, for example, a commer-
cial Linux distribution, to a fully paid product backed by a commercial support
organization.

Not Public Domain

Like most other free software, Apache is not in the public domain. It is copyrighted
by the ASF and subject to a license. The difference between this status and “tradi-
tional” commercial software licenses is that the Apache License is a great deal more
friendly and less restrictive.
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Not Shareware, Nagware, or Adware

Shareware and its modern variants are concepts alien to free software. They are
commonly (though not always) associated with low-quality, amateur products, and
today they are more likely to be driven by marketing than by engineering. 

Not GPL

The oldest and best-known (but also much-misrepresented) free software license is
the GNU General Public License (GPL), written and owned by the Free Software
Foundation (FSF). The GPL introduced a concept known as copyleft. The basic prin-
ciple can be summarized as follows: “We are granting you these freedoms, and you
can’t take them away from anyone else.” This policy is sometimes seen as business
unfriendly, because copyleft software cannot be incorporated willy-nilly into non-
free products.2 The Apache License is explicitly business friendly; it is not copyleft.

In fact, the Apache License is not even compatible with the GPL.3 That is, each
license includes provisions that are incompatible with the other license: GPL soft-
ware cannot be distributed on ASF terms because copyleft is a restriction incom-
patible with ASF policy. ASF-licensed software cannot be distributed on GPL
terms. Here’s what the FSF has to say on the subject:

This is a free software license but it is incompatible with the GPL. The
Apache Software License is incompatible with the GPL because it has a
specific requirement that is not in the GPL: it has certain patent termi-
nation cases that the GPL does not require. (We don’t think those patent
termination cases are inherently a bad idea, but nonetheless they are
incompatible with the GNU GPL.4)

Note that none of these issues is a problem for end users or for third parties such as
module developers or distributors. Linux (GPL) vendors routinely include Apache
in their products, and many Apache modules are GPL licensed. It’s no problem for
the Linux distributors to comply with both licenses, or for the module developers
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2. This is a much-misunderstood topic. The GPL is a great deal less restrictive than it is often portrayed in
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to apply their own choice of license to their work. Even the famously purist and
legally meticulous Debian distribution5 distributes GPL modules with Apache.

Where the incompatibility in licenses may pose a problem is in the interface with
GPL software. Consider its implications for MySQL,6 an SQL database package
licensed under the GPL. To comply with the GPL requirements of MySQL, the
Apache/APR driver7 for MySQL is also GPL licensed and, therefore, cannot be dis-
tributed within Apache by the ASF. Instead, it is available as a separate download
from the author’s site or as a separate package from a third party. This is relevant to
users who compile Apache themselves, but those users who install Apache from
packages need never concern themselves with the details.

Patents and the Anti-Piracy Clause

The greatest danger to technology developers today comes from patents. This is par-
ticularly true in the United States, where the patent system was seen for many years
as an instrument of economic imperialism: Let’s grant thousands of patents to
“our” companies, then enforce those patents worldwide through the World Trade
Organization (WTO) treaties to gain a global competitive advantage. Consequently,
the U.S. Patent Office has issued huge numbers of patents while making no attempt
at effective scrutiny or quality control. Many of these patents are in the hands of peo-
ple who have no interest in technology, but rather seek to extort money from legiti-
mate businesses.

This is, in a very real sense, today’s piracy. In the past, rulers of a country, province,
or city would assert a claim over “their” seas, charge a substantial levy on foreign
shipping to pass through their territory, and license privateers to enforce their prop-
erty rights and seize any unlicensed ship passing through. Similarly, today’s patent
holders seek to charge levies to legitimate business, and use lawyers to enforce their
property. In fact, the situation today is arguably worse than in the olden days, in
that there are hugely more patents than there ever were nautical pirates, and there
are no longer any safe shipping lanes.

One unusual restriction in the Apache License deals with this issue as far as possi-
ble. Acceptance of the Apache License requires the licensee not to assert any patent
rights it may claim against the ASF or Apache users. 
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To the best of my knowledge, Apache has remained clear of intellectual property
lawsuits. This contrasts with the situation faced by Linux in the SCO lawsuits
(although it appears likely that Linux will be vindicated8), and more strongly with
the situation involving Microsoft, whose end users have paid substantial damages to
third parties over patent infringements in Microsoft software.9,10

1.4.2 Third-Party Intellectual Property
Apache’s intellectual property is protected by copyright and the license. Of course,
it is also critically important that Apache doesn’t violate anyone else’s intellectual
property. That means that all significant contributions to Apache must be properly
donated:

• Before a developer can become a committer, he or she must sign a Contributor
License Agreement (CLA) that gives the ASF all necessary rights to use that
developer’s contributions and to license them to third parties on ASF terms.
The CLA also binds a contributor to ensure that contributions which are not
their own original work are signed over to the ASF before including them in
Apache. The full CLA appears in Appendix B.

• When a developer is not his or her own master (e.g., an employee whose
employer may have rights over his or her work), a Corporate CLA signed by
an authorized officer of the employer (e.g., CTO or IT Director) is also
required. The full CCLA also appears in Appendix B.

• All relevant CLAs and CCLAs must be on file with the ASF before an indi-
vidual can be granted commit access. These agreements serve to ensure that
committers and their employers cannot prevent the ASF or Apache users mak-
ing use of their contributed work.
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by Softvault against Yahoo!, Microsoft, Napster, Creative Labs, Dell, Gateway, Iriver, Samsung, Toshiba,
Digital Networks, Palm, Audiovox, Sandisk, and Thomson (http://www.theinquirer.net/
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Responsibility

In the first instance, it is the responsibility of each committer to ensure that his or
her contributions don’t violate third-party intellectual property. 

The overall responsibility lies with the PMC, which will query any contribution
that raises doubts—in particular, major new contributions.

Audit

If despite all due care, problems with third-party intellectual property should arise,
Apache has a full audit trail managed by Subversion. Thus, in the worst case, any
problematic code can be identified and removed.

1.5 Further Reading

1.5.1 Interactive Online Forums

Public Mailing Lists

The Apache Module Developers list modules-dev@httpd.apache.org is an
appropriate place for discussion of any module development issues. This list
moved from apache-modules@covalent.net in September 2006, so check the
archives of both lists.

The official developers list for the Apache Web Server is dev@httpd.apache.org.
You are welcome to participate, but please stay on topic.

The official developers list for the Apache Portable Runtime is dev@apr.apache.org.
You are welcome to participate, but please stay on topic.

The Apache users list users@httpd.apache.org is an appropriate forum for gen-
eral discussion and user support questions.

Usenet

The comp.infosystems.www.servers.[unix|windows|mac|misc] newsgroups
are appropriate for general discussion and questions about Apache on the respective
platforms.
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Online Chat

There are several channels relevant to Apache on irc://irc.freenode.net:

#apache—general support/unofficial helpdesk channel. Ask meaningful questions
and wait for an answer. But do your homework first. In particular, look in the error
log! Pay attention to fajita, the #apache ’bot; many of the regulars work by prompt-
ing her to answer your questions and/or post URLs to the relevant documentation
pages.

#apache-modules—the channel for module development. It is likely to be appro-
priate for readers of this book.

#apr—the semi-official APR channel, including automated live notification of all
changes to the APR repository.

#httpd-dev—the semi-official channel for webserver development, including
automated live notification of all changes to the repository, including documenta-
tion and the website.

#asfinfra—the Apache infrastructure channel.

1.5.2 Conferences
The ASF organizes ApacheCon conferences devoted to ASF projects. These confer-
ences bring together many of the developers (who know each other well from the
online forums but may never otherwise meet face-to-face). Users may come just to
learn, but some also bring new insights to the developers. A busy program of tuto-
rials and talks by both developers and users is complemented by both organized and
informal social events.

1.5.3 Websites

Official and Semi-official Apache Sites

http://www.apache.org/—Apache Software Foundation

http://httpd.apache.org/—Apache Web Server

http://apr.apache.org/—APR home site

http://svn.apache.org/—Apache code repository and complete history
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http://issues.apache.org/—Bugs and issues database

http://modules.apache.org/—Apache modules register

http://asylum.zones.apache.org/modules/—Updated modules register
(work in progress)

http://mail-archives.apache.org/—Mailing list archives

http://people.apache.org/—Pages of individual Apache committers

http://apachecon.com/—ApacheCon conference

http://perl.apache.org/—mod_perl (Apache API in Perl)

http://www.modpython.org/—mod_python (Apache API in Python)

http://tcl.apache.org/—TCL language in Apache

http://httpd.apache.org/cli/—mod_aspdotnet (Microsoft’s asp dot net)

Third-Party Extensions

http://apache.webthing.com/—More than 20 modules by the author of this book

http://www.outoforder.cc/—12 featured modules and other relevant work

http://www.php.net/—PHP language

http://www.rubyonrails.org/—Ruby on Rails

Developer Documentation

http://docx.webperf.org/—API reference

http://www.apachetutor.org/dev/—Developer tutorial site created and main-
tained by the author of this book

http://dev.ariel-networks.com/apr/apr-tutorial/html/apr-tutorial.html—
A useful tutorial for APR, decoupling it from its role in the webserver

http://www.apache-modules.com/—Companion site to an Apache modules
book that was never completed
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Other Tutorials, News, and Articles

http://www.onlamp.com/pub/q/all_apache_articles—A wide range of
articles

http://www.apachelounge.com/—News site together with Windows binary
downloads (often available before the “official” ones)

http://marc.theaimsgroup.com/—Mailing list archives

1.6 Summary
This chapter examined the social, historical, and legal background of Apache and
its culture. Specifically, Chapter 1 considered the following topics:

• The historical context of Apache httpd

• The Apache Software Foundation and its culture

• The Apache developers, processes, and resources for development and support,
including how to participate

• Apache’s approach to intellectual property, including the Apache License and
the safeguards against misuse of third-party intellectual property

Chapter 1 was decidedly nontechnical. In contrast, the remainder of the book is all
about programming with Apache, starting with a comprehensive overview, and
moving to hands-on treatment of module and application development.
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Apache runs as a permanent background task: a daemon (UNIX) or service
(Windows). Start-up is a slow and expensive operation, so for an operational server,
it is usual for Apache to start at system boot and remain permanently up. Early ver-
sions of Apache had documented support for an inetd mode (run from a generic
superserver for every incoming request), but this mode was never appropriate for
operational use.

2.1 Overview
The Apache HTTP Server comprises a relatively small core, together with a num-
ber of modules (Figure 2-1). Modules may be compiled statically into the server or,
more commonly, held in a /modules/ or /libexec/ directory and loaded dynam-
ically at runtime. In addition, the server relies on the Apache Portable Runtime
(APR) libraries, which provide a cross-platform operating system layer and utilities,
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so that modules don’t have to rely on non-portable operating system calls. A spe-
cial-purpose module, the Multi-Processing Module (MPM), serves to optimize
Apache for the underlying operating system. The MPM should normally be the
only module to access the operating system other than through the APR.

2.2 Two-Phase Operation
Apache operation proceeds in two phases: start-up and operational. System start-up
takes place as root, and includes parsing the configuration file(s), loading modules,
and initializing system resources such as log files, shared memory segments, and data-
base connections. For normal operation, Apache relinquishes its system privileges
and runs as an unprivileged user before accepting and processing connections from
clients over the network. This basic security measure helps to prevent a simple bug
in Apache (or a module or script) from becoming a devastating system vulnerability,
like those exploited by malware such as “Code Red” and “Nimda” in MS IIS. 

This two-stage operation has some implications for applications architecture. First,
anything that requires system privileges must be run at system start-up. Second, it is
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good practice to run as much initialization as possible at start-up, so as to minimize
the processing required to service each request. Conversely, because so many slow
and expensive operations are concentrated in system start-up, it would be hugely
inefficient to try to run Apache from a generic server such as inetd or tcpserver.

One non-intuitive quirk of the architecture is that the configuration code is, in fact,
executed twice at start-up (although not at restart). The first time through checks
that the configuration is valid (at least to the point that Apache can successfully
start); the second pass is “live” and leads into the operational phase. Most modules
can ignore this behavior (standard use of APR pools ensures that it doesn’t cause a
resource leak), but it may have implications for some modules. For example, a mod-
ule that dynamically loads new code at start-up may want to do so just once and,
therefore, must use a technique such as setting and checking a static flag to ensure
that critical initialization takes place just once.

2.2.1 Start-up Phase
The purpose of Apache’s start-up phase is to read the configuration, load modules
and libraries, and initialize required resources. Each module may have its own
resources, and has the opportunity to initialize those resources. At start-up, Apache
runs as a single-process, single-thread program and has full system privileges.

2.2.1.1 Configuration

Apache’s main configuration file is normally called httpd.conf. However, this
nomenclature is just a convention, and third-party Apache distributions such as
those provided as .rpm or .deb packages may use a different naming scheme. In
addition, httpd.conf may be a single file, or it may be distributed over several files
using the Include directive to include different configuration files. Some distribu-
tions have highly intricate configurations. For example, Debian GNU/Linux ships
an Apache configuration that relies heavily on familiarity with Debian, rather than
with Apache. It is not the purpose of this book to discuss the merits of different lay-
outs, so we’ll simply call this configuration file httpd.conf.

The httpd.conf configuration file is a plain text file and is parsed line-by-line at
server start-up. The contents of httpd.conf comprise directives, containers, and
comments. Blank lines and leading whitespace are also allowed, but will be ignored.
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Directives

Most of the contents of httpd.conf are directives. A directive may have zero or
more arguments, separated by whitespace. Each directive determines its own syntax,
so different directives may permit different numbers of arguments, and different
argument types (e.g., string, numeric, enumerated, Boolean on/off, or filename). Each
directive is implemented by some module or the core, as described in Chapter 9.

For example:

LoadModule foo_module modules/mod_foo.so

This directive is implemented by mod_so and tells it to load a module. The first
argument is the module name (string, alphanumeric). The second argument is a
filename, which may be absolute or relative to the server root.

DocumentRoot /usr/local/apache/htdocs

This directive is implemented by the core, and sets the directory that is the root of
the main document tree visible from the Web.

SetEnv hello ”Hello, World!” 

This directive is implemented by mod_env and sets an environment variable. Note
that because the second argument contains a space, we must surround it with quo-
tation marks.

Choices On

This directive is implemented by mod_choices (Chapter 6) and activates that
module’s options.

Containers

A container is a special form of directive, characterized by a syntax that superficially
resembles markup, using angle brackets. Containers differ semantically from other
directives in that they comprise a start and an end on separate lines, and they affect
directives falling between the start and the end of the container. For example, the
<VirtualHost> container is implemented by the core and defines a virtual host:

<VirtualHost 10.31.2.139>
ServerName www.example.com
DocumentRoot /usr/www/example
ServerAdmin webmaster@example.com
CustomLog /var/log/www/example.log

</VirtualHost>
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The container provides a context for the directives within it. In this case, the direc-
tives apply to requests to www.example.com, but not to requests to any other
names this server responds to. Containers can be nested unless a module explicitly
prevents it. Directives, including containers, may be context sensitive, so they are
valid only in some specified type of context.

Comments

Any line whose first character is a hash is read as a comment.

# This line is a comment

A hash within a directive doesn’t in general make a comment, unless the module
implementing the directive explicitly supports it.

If a module is not loaded, directives that it implements are not recognized, and
Apache will stop with a syntax error when it encounters them. Therefore mod_so
must be statically linked to load other modules. This is pretty much essential when-
ever you’re developing new modules, as without LoadModule you’d have to rebuild
the entire server every time you change your module!

2.2.2 Operational Phase
At the end of the start-up phase, control passes to the Multi-Processing Module (see
Section 2.3). The MPM is responsible for managing Apache’s operation at a systems
level. It typically does so by maintaining a pool of worker processes and/or threads,
as appropriate to the operating system and other applicable constraints (such as
optimization for a particular usage scenario). The original process remains as “mas-
ter,” maintaining a pool of worker children. These workers are responsible for serv-
icing incoming connections, while the parent process deals with creating new
children, removing surplus ones as necessary, and communicating signals such as
“shut down” or “restart.”

Because of the MPM architecture, it is not possible to describe the operational
phase in definite terms. Whereas the standard MPMs use worker children in some
manner, they are not constrained to work in only one way. Thus another MPM
could, in principle, implement an entirely different server architecture at the sys-
tem level.
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2.2.3 Shutdown
There is no shutdown phase as such. Instead, anything that needs be done on shut-
down is registered as a cleanup, as described in Chapter 3. When Apache stops, all
registered cleanups are run.

2.3 Multi-Processing Modules
At the end of the start-up phase, after the configuration has been read, overall con-
trol of Apache passes to a Multi-Processing Module. The MPM provides the inter-
face between the running Apache server and the underlying operating system. Its
primary role is to optimize Apache for each platform, while ensuring the server runs
efficiently and securely.

As indicated by the name, the MPM is itself a module. But the MPM is uniquely
a systems-level module (so developing an MPM falls outside the scope of a book on
applications development). Also uniquely, every Apache instance must contain
exactly one MPM, which is selected at build-time.

2.3.1 Why MPMs?
The old NCSA server, and Apache 1, grew up in a UNIX environment. It was a
multiprocess server, where each client would be serviced by one server instance. If
there were more concurrent clients than server processes, Apache would fork addi-
tional server processes to deal with them. Under normal operation, Apache would
maintain a pool of available server processes to deal with incoming requests.

Whereas this scheme works well on UNIX-family1 systems, it is an inefficient solu-
tion on platforms such as Windows, where forking a process is an expensive opera-
tion. So making Apache truly cross-platform required another solution. The
approach adopted for Apache 2 is to turn the core processing into a pluggable mod-
ule, the MPM, which can be optimized for different environments. The MPM
architecture also allows different Apache models to coexist even within a single
operating system, thus providing users with options for different usages.
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In practice, only UNIX-family operating systems offer a useful2 choice: Other sup-
ported platforms (Windows, Netware, OS/2, BeOS) have a single MPM optimized
for each platform. UNIX has two production-quality MPMs (Prefork and Worker)
available as standard, a third (Event) that is thought to be stable for non-SSL uses
in Apache 2.2, and several experimental options unsuitable for production use.
Third-party MPMs are also available.

2.3.2 The UNIX-Family MPMs

• The Prefork MPM is a nonthreaded model essentially similar to Apache 1.x.
It is a safe option in all cases, and for servers running non-thread-safe software
such as PHP, it is the only safe option. For some applications, including many
of those popular with Apache 1.3 (e.g., simple static pages, CGI scripts), this
MPM may be as good as anything.3

• The Worker MPM is a threaded model, whose advantages include lower
memory usage (important on busy servers) and much greater scalability than
that provided by Prefork in certain types of applications. We will discuss some
of these cases later when we introduce SQL database support and mod_dbd.

• Both of the stable MPMs suffer from a limitation that affects very busy servers.
Whereas HTTP Keepalive is necessary to reduce TCP connection and net-
work overhead, it ties up a server process or thread while the keepalive is active.
As a consequence, a very busy server may run out of available threads. The
Event MPM is a new model that deals with this problem by decoupling the
server thread from the connection. Cases where the Event MPM may prove
most useful are servers with extremely high hit rates but for which the server
processing is fast, so that the number of available threads is a critical resource
limitation. A busy server with the Worker MPM may sustain tens of thousands
of hits per second (as happens, for example, with popular news outlets at peak
times), but the Event MPM might help to handle high loads more easily. Note
that the Event MPM will not work with secure HTTP (HTTPS).
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• There are also several experimental MPMs for UNIX that are not, at the time
of this book’s writing, under active development; they may or may not ever be
completed. The Perchild MPM promised a much-requested feature: It runs
servers for different virtual hosts under different user IDs. Several alternatives
offer similar features, including the third-party Metux4 and Peruser5 MPMs,
and (for Linux only) mod_ruid.6 For running external programs, other options
include fastcgi/mod_fcgid7 and suexec (CGI). The author does not have
personal knowledge of these third-party solutions and so cannot make recom-
mendations about them.

2.3.3 Working with MPMs and Operating Systems
The one-sentence summary: MPMs are invisible to applications and should be ignored!

Applications developed for Apache should normally be MPM-agnostic. Given that
MPM internals are not part of the API, this is basically straightforward, provided
programmers observe basic rules of good practice (namely, write thread-safe, cross-
process-safe, reentrant code), as briefly discussed in Chapter 4. This issue is closely
related to the broader question of developing platform-independent code. Indeed,
it is sometimes useful to regard the MPM, rather than the operating system, as the
applications platform.

Sometimes an application is naturally better suited to some MPMs than others. For
example, database-driven or load-balancing applications benefit substantially from
connection pooling (discussed later in this book) and therefore from a threaded
MPM. In contrast, forking a child process (the original CGI implementation or
mod_ext_filter) creates greater overhead in a threaded program and, therefore,
works best with the Prefork MPM. Nevertheless, an application should work even
when used with a suboptimal MPM, unless there are compelling reasons to limit it.

If you wish to run Apache on an operating system that is not yet supported, the
main task is to add support for your target platform to the APR, which provides the
operating system layer. A custom MPM may or may not be necessary, but is likely
to deliver better performance than an existing one. From the point of view of
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Apache, this is a systems programming task, and hence it falls outside the scope of
an applications development book.

2.4 Basic Concepts and Structures
To work with Apache as a development platform, we need an overview of the basic
units of webserver operation and the core objects that represent them within Apache.
The most important are the server, the TCP connection, and the HTTP request. A
fourth basic Apache object, the process, is a unit of the operating system rather than
the application architecture. Each of these basic units is represented by a core data
structure defined in the header file httpd.h and, like other core objects we encounter
in applications development, is completely independent of the MPM in use.

Before describing these core data structures, we need to introduce some further con-
cepts used throughout Apache and closely tied to the architecture:

• APR pools (apr_pool_t) are the core of resource management in Apache.
Whenever a resource is allocated dynamically, a cleanup is registered with a
pool, ensuring that system resources are freed when they are no longer
required. Pools tie resources to the lifetime of one of the core objects. We will
describe pools in depth in Chapter 3.

• Configuration records are used by each module to tie its own data to one of
the core objects. The core data structures include configuration vectors
(ap_conf_vector_t), with each module having its own entry in the vector.
They are used in two ways: to set and retrieve permanent configuration data,
and to store temporary data associated with a transient object. They are often
essential to avoid use of unsafe static or global data in a module, as discussed
in Chapters 4 and 9.

Having introduced pools and configuration records, we are now ready to look at the
Apache core objects. In order of importance to most modules, they are

• request_rec

• server_rec

• conn_rec

• process_rec

The first two are by far the most commonly encountered in application development.
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2.4.1 request_rec
A request_rec object is created whenever Apache accepts an HTTP request from
a client, and is destroyed as soon as Apache finishes processing the request. The
request_rec object is passed to every handler implemented by any module in the
course of processing a request (as discussed in Chapters 5 and 6). It holds all of the
internal data relevant to processing an HTTP request. It also includes a number of
fields used internally to maintain state and client information by Apache:

• A request pool, for management of objects having the lifetime of the request.
It is used to manage resources allocated while processing the request.

• A vector of configuration records for static request configuration (per-direc-
tory data specified in httpd.conf or .htaccess).

• A vector of configuration records for transient data used in processing.

• Tables of HTTP input, output, and error headers.

• A table of Apache environment variables (the environment as seen in scripting
extensions such as SSI, CGI, mod_rewrite, and PHP), and a similar “notes”
table for request data that should not be seen by scripts.

• Pointers to all other relevant objects, including the connection, the server, and
any related request objects.

• Pointers to the input and output filter chains (discussed in Chapter 8).

• The URI requested, and the internal parsed representation of it, including the
handler (see Chapter 5) and filesystem mapping (see Chapter 6).

Here is the full definition, from httpd.h:
/** A structure that represents the current request */
struct request_rec {

/** The pool associated with the request */
apr_pool_t *pool;
/** The connection to the client */
conn_rec *connection;
/** The virtual host for this request */
server_rec *server;

/** Pointer to the redirected request if this is an external redirect */
request_rec *next;
/** Pointer to the previous request if this is an internal redirect */
request_rec *prev;
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/** Pointer to the main request if this is a sub-request
* (see http_request.h) */
request_rec *main;

/* Info about the request itself... we begin with stuff that only
* protocol.c should ever touch...
*/
/** First line of request */
char *the_request;
/** HTTP/0.9, "simple” request (e.g., GET /foo\n w/no headers) */
int assbackwards;
/** A proxy request (calculated during post_read_request/translate_name)
*  possible values PROXYREQ_NONE, PROXYREQ_PROXY, PROXYREQ_REVERSE,
*                  PROXYREQ_RESPONSE
*/
int proxyreq;
/** HEAD request, as opposed to GET */
int header_only;
/** Protocol string, as given to us, or HTTP/0.9 */
char *protocol;
/** Protocol version number of protocol; 1.1 = 1001 */
int proto_num;
/** Host, as set by full URI or Host: */
const char *hostname;

/** Time when the request started */
apr_time_t request_time;

/** Status line, if set by script */
const char *status_line;
/** Status line */
int status;

/* Request method, two ways; also, protocol, etc. Outside of protocol.c,
* look, but don’t touch.
*/

/** Request method (e.g., GET, HEAD, POST, etc.) */
const char *method;
/** M_GET, M_POST, etc. */
int method_number;

/**
*  ‘allowed’ is a bit-vector of the allowed methods.
*
*  A handler must ensure that the request method is one that
*  it is capable of handling.  Generally modules should DECLINE
*  any request methods they do not handle.  Prior to aborting the
*  handler like this, the handler should set r->allowed to the list
*  of methods that it is willing to handle. This bitvector is used
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*  to construct the "Allow:" header required for OPTIONS requests,
*  and HTTP_METHOD_NOT_ALLOWED and HTTP_NOT_IMPLEMENTED status codes.
*
*  Since the default_handler deals with OPTIONS, all modules can
*  usually decline to deal with OPTIONS.  TRACE is always allowed;
*  modules don’t need to set it explicitly.
*
*  Since the default_handler will always handle a GET, a
*  module which does *not* implement GET should probably return
*  HTTP_METHOD_NOT_ALLOWED.  Unfortunately this means that a Script GET
*  handler can’t be installed by mod_actions.
*/
apr_int64_t allowed;
/** Array of extension methods */
apr_array_header_t *allowed_xmethods;
/** List of allowed methods */
ap_method_list_t *allowed_methods;

/** byte count in stream is for body */
apr_off_t sent_bodyct;
/** body byte count, for easy access */
apr_off_t bytes_sent;
/** Last modified time of the requested resource */
apr_time_t mtime;

/* HTTP/1.1 connection-level features */

/**Sending chunked transfer-coding */
int chunked;
/** The Range: header */
const char *range;
/** The "real" content length */
apr_off_t clength;

/** Remaining bytes left to read from the request body */
apr_off_t remaining;
/** Number of bytes that have been read  from the request body */
apr_off_t read_length;
/** Method for reading the request body
* (e.g., REQUEST_CHUNKED_ERROR, REQUEST_NO_BODY,
*  REQUEST_CHUNKED_DECHUNK, etc.) */
int read_body;
/** reading chunked transfer-coding */
int read_chunked;
/** is client waiting for a 100 response? */
unsigned expecting_100;

/* MIME header environments, in and out.  Also, an array containing
* environment variables to be passed to subprocesses, so people can
* write modules to add to that environment.
*
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* The difference between headers_out and err_headers_out is that the
* latter are printed even on error, and persist across internal redirects
* (so the headers printed for ErrorDocument handlers will have them).
*
* The ‘notes’ apr_table_t is for notes from one module to another, with no
* other set purpose in mind...
*/

/** MIME header environment from the request */
apr_table_t *headers_in;
/** MIME header environment for the response */
apr_table_t *headers_out;
/** MIME header environment for the response, printed even on errors and
* persist across internal redirects */
apr_table_t *err_headers_out;
/** Array of environment variables to be used for subprocesses */
apr_table_t *subprocess_env;
/** Notes from one module to another */
apr_table_t *notes;

/* content_type, handler, content_encoding, and all content_languages
* MUST be lowercased strings.  They may be pointers to static strings;
* they should not be modified in place.
*/
/** The content-type for the current request */
const char *content_type;   /* Break these out -- we dispatch on ‘em */
/** The handler string that we use to call a handler function */
const char *handler;        /* What we *really* dispatch on */

/** How to encode the data */
const char *content_encoding;
/** Array of strings representing the content languages */
apr_array_header_t *content_languages;

/** variant list validator (if negotiated) */
char *vlist_validator;

/** If an authentication check was made, this gets set to the user name. */
char *user;
/** If an authentication check was made, this gets set to the auth type. */
char *ap_auth_type;

/** This response cannot be cached */
int no_cache;
/** There is no local copy of this response */
int no_local_copy;

/* What object is being requested (either directly, or via include
* or content-negotiation mapping).
*/
/** The URI without any parsing performed */
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char *unparsed_uri;
/** The path portion of the URI */
char *uri;
/** The filename on disk corresponding to this response */
char *filename;
/** The true filename, we canonicalize r->filename if these don’t match */
char *canonical_filename;
/** The PATH_INFO extracted from this request */
char *path_info;
/** The QUERY_ARGS extracted from this request */
char *args;
/**  finfo.protection (st_mode) set to zero if no such file */
apr_finfo_t finfo;
/** A struct containing the components of URI */
apr_uri_t parsed_uri;

/**
* Flag for the handler to accept or reject path_info on
* the current request.  All modules should respect the
* AP_REQ_ACCEPT_PATH_INFO and AP_REQ_REJECT_PATH_INFO
* values, while AP_REQ_DEFAULT_PATH_INFO indicates they
* may follow existing conventions.  This is set to the
* user’s preference upon HOOK_VERY_FIRST of the fixups.
*/
int used_path_info;

/* Various other config info which may change with .htaccess files.
* These are config vectors, with one void* pointer for each module
* (the thing pointed to being the module’s business).
*/

/** Options set in config files, etc. */
struct ap_conf_vector_t *per_dir_config;
/** Notes on *this* request */
struct ap_conf_vector_t *request_config;

/**
* A linked list of the .htaccess configuration directives
* accessed by this request.
* N.B.: always add to the head of the list, _never_ to the end.
* That way, a sub-request’s list can (temporarily) point to a parent’s list
*/
const struct htaccess_result *htaccess;

/** A list of output filters to be used for this request */
struct ap_filter_t *output_filters;
/** A list of input filters to be used for this request */
struct ap_filter_t *input_filters;

/** A list of protocol level output filters to be used for this
*  request */
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struct ap_filter_t *proto_output_filters;
/** A list of protocol level input filters to be used for this
*  request */
struct ap_filter_t *proto_input_filters;

/** A flag to determine if the eos bucket has been sent yet */
int eos_sent;

/* Things placed at the end of the record to avoid breaking binary
* compatibility.  It would be nice to remember to reorder the entire
* record to improve 64-bit alignment the next time we need to break
* binary compatibility for some other reason.
*/
};

2.4.2 server_rec
The server_rec defines a logical webserver. If virtual hosts are in use,8 each vir-
tual host has its own server_rec, defining it independently of the other hosts. The
server_rec is created at server start-up, and it never dies unless the entire httpd
is shut down. The server_rec does not have its own pool; instead, server resources
need to be allocated from the process pool, which is shared by all servers. It does
have a configuration vector as well as server resources including the server name and
definition, resources and limits, and logging information.

The server_rec is the second most important structure to programmers, after the
request_rec. It will feature prominently throughout our discussion of module
programming.

Here is the full definition, from httpd.h:
/** A structure to store information for each virtual server */
struct server_rec {

/** The process this server is running in */
process_rec *process;
/** The next server in the list */
server_rec *next;

/** The name of the server */
const char *defn_name;
/** The line of the config file that the server was defined on */
unsigned defn_line_number;
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/* Contact information */

/** The admin’s contact information */
char *server_admin;
/** The server hostname */
char *server_hostname;
/** for redirects, etc. */
apr_port_t port;

/* Log files -- note that transfer log is now in the modules... */

/** The name of the error log */
char *error_fname;
/** A file descriptor that references the error log */
apr_file_t *error_log;
/** The log level for this server */
int loglevel;

/* Module-specific configuration for server, and defaults... */

/** true if this is the virtual server */
int is_virtual;
/** Config vector containing pointers to modules' per-server config
*  structures. */
struct ap_conf_vector_t *module_config;
/** MIME type info, etc., before we start checking per-directory info */
struct ap_conf_vector_t *lookup_defaults;

/* Transaction handling */

/** I haven't got a clue */
server_addr_rec *addrs;
/** Timeout, as an apr interval, before we give up */
apr_interval_time_t timeout;
/** The apr interval we will wait for another request */
apr_interval_time_t keep_alive_timeout;
/** Maximum requests per connection */
int keep_alive_max;
/** Use persistent connections? */
int keep_alive;

/** Pathname for ServerPath */
const char *path;
/** Length of path */
int pathlen;

/** Normal names for ServerAlias servers */
apr_array_header_t *names;
/** Wildcarded names for ServerAlias servers */
apr_array_header_t *wild_names;
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/** limit on size of the HTTP request line    */
int limit_req_line;
/** limit on size of any request header field */
int limit_req_fieldsize;
/** limit on number of request header fields  */
int limit_req_fields;

};

2.4.3 conn_rec
The conn_rec object is Apache’s internal representation of a TCP connection. It is
created when Apache accepts a connection from a client, and later it is destroyed
when the connection is closed. The usual reason for a connection to be made is to
serve one or more HTTP requests, so one or more request_rec structures will be
instantiated from each conn_rec. Most applications will focus on the request and
ignore the conn_rec, but protocol modules and connection-level filters will need to
use the conn_rec, and modules may sometimes use it in tasks such as optimizing
the use of resources over the lifetime of an HTTP Keepalive (persistent connection).

The conn_rec has no configuration information, but has a configuration vector for
transient data associated with a connection as well as a pool for connection
resources. It also has connection input and output filter chains, plus data describ-
ing the TCP connection.

It is important to distinguish clearly between the request and the connection—the
former is always a subcomponent of the latter. Apache cleanly represents each as a
separate object, with one important exception, which we will deal with in discussing
connection filters in Chapter 8.

Here is the full definition from httpd.h:
/** Structure to store things which are per connection */
struct conn_rec {

/** Pool associated with this connection */
apr_pool_t *pool;
/** Physical vhost this conn came in on */
server_rec *base_server;
/** used by http_vhost.c */
void *vhost_lookup_data;

/* Information about the connection itself */
/** local address */
apr_sockaddr_t *local_addr;
/** remote address */
apr_sockaddr_t *remote_addr;
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/** Client's IP address */
char *remote_ip;
/** Client's DNS name, if known.  NULL if DNS hasn't been checked;
*  "" if it has and no address was found.  N.B.: Only access this through
* get_remote_host() */
char *remote_host;
/** Only ever set if doing rfc1413 lookups.  N.B.: Only access this through
*  get_remote_logname() */
char *remote_logname;

/** Are we still talking? */
unsigned aborted:1;

/** Are we going to keep the connection alive for another request?
* @see ap_conn_keepalive_e */
ap_conn_keepalive_e keepalive;

/** Have we done double-reverse DNS? -1 yes/failure, 0 not yet,
*  1 yes/success */
signed int double_reverse:2;

/** How many times have we used it? */
int keepalives;
/** server IP address */
char *local_ip;
/** used for ap_get_server_name when UseCanonicalName is set to DNS
*  (ignores setting of HostnameLookups) */
char *local_host;

/** ID of this connection; unique at any point in time */
long id;
/** Config vector containing pointers to connections per-server
*  config structures */
struct ap_conf_vector_t *conn_config;
/** Notes on *this* connection: send note from one module to
*  another. Must remain valid for all requests on this conn. */
apr_table_t *notes;
/** A list of input filters to be used for this connection */
struct ap_filter_t *input_filters;
/** A list of output filters to be used for this connection */
struct ap_filter_t *output_filters;
/** Handle to scoreboard information for this connection */
void *sbh;
/** The bucket allocator to use for all bucket/brigade creations */
struct apr_bucket_alloc_t *bucket_alloc;
/** The current state of this connection */
conn_state_t *cs;
/** Is there data pending in the input filters? */
int data_in_input_filters;

};
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2.4.4 process_rec
Unlike the other core objects discussed earlier, the process_rec is an operating
system object rather than a web architecture object. The only time applications
need concern themselves with it is when they are working with resources having the
lifetime of the server, when the process pool serves all of the server_rec objects
(and is accessed from a server_rec as s->process->pool). The definition
appears in httpd.h, but is not reproduced here.

2.5 Other Key API Components
The header file httpd.h that defines these core structures is but one of many API
header files that the applications developer will need to use. These fall into several
loosely bounded categories that can be identified by naming conventions:

• ap_ header files generally define low-level API elements and are usually
(though not always) accessed indirectly by inclusion in other headers.

• http_ header files define most of the key APIs likely to be of interest to appli-
cation developers. They are also exposed in scripting languages through mod-
ules such as mod_perl and mod_python.

• util_ header files define API elements at a higher level than ap_, but are
rarely used directly by application modules. Two exceptions to that rule are
util_script.h and util_filter.h, which define scripting and filtering
APIs, respectively, and are commonly accessed by modules.

• mod_ header files define APIs implemented by modules that are optional.
Using these APIs may create dependencies. Best practice is discussed in
Chapter 10.

• apr_ header files define the APR APIs. The APR libraries are external but
essential to the webserver, and the APR is required (directly or indirectly) by
any nontrivial module. The APR is discussed in Chapter 3.

• Other header files generally define system-level APIs only.

• Third-party APIs may follow similar conventions (e.g., a mod_ header file) or
adopt their own.
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As noted earlier, the primary APIs for application modules are the http_* header files.

• http_config.h—Defines the configuration API, including the configura-
tion data structures, the configuration vectors, any associated accessors, and,
in particular, the main APIs presented in Chapter 9. It also defines the mod-
ule data structure itself and associated accessors, and the handler (content gen-
erator) hook. It is required by most modules.

• http_connection.h—Defines the (small) TCP connection API, including
connection-level hooks. Most modules will access the connection through the
conn_rec object, so this API is seldom required by application modules.

• http_core.h—Defines miscellaneous APIs exported by the Apache core,
such as accessor functions for the request_rec object. It includes APIs
exported for particular modules, such as to support mod_perl’s configuration
sections. This header file is rarely required by application modules.

• http_log.h—Defines the error logging API and piped logs. Modules will
need it for the error reporting functions and associated macros.

• http_main.h—Defines APIs for server start-up. It is unlikely to be of inter-
est to modules.

• http_protocol.h—Contains high-level functional APIs for performing a
number of important operations, including all normal I/O to the client, and
for dealing with aspects of the HTTP protocol such as generating the correct
response headers. It also exports request processing hooks that fall outside the
scope of http_request. Many modules will require this header file—for
example, content generators (unless you use only the lower-level APIs) and
authentication modules.

• http_request.h—Defines the main APIs discussed in Chapter 6. It exports
most of the request processing hooks, and the subrequest and internal redirect
APIs. It is required by some, but not all, modules.

• http_vhost.h—Contains APIs for managing virtual hosts. It is rarely needed
by modules except those concerned with virtual host configuration.

• httpd.h—Contains Apache’s core API, which is required by (probably) all
modules. It defines a lot of system constants, some of them derived from local
build parameters, and various APIs such as HTTP status codes and methods.
Most importantly, it defines the core objects mentioned earlier in this chapter.
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Other important API headers we will encounter include the following files:

• util_filter.h—The filter API, required by all filter modules (Chapter 8)

• ap_provider.h—The provider API (Chapter 10)

• mod_dbd.h—The DBD framework (Chapters 10 and 11)

Other API headers likely to be of interest to application developers include the fol-
lowing files:

• util_ldap.h—The LDAP API

• util_script.h—A scripting environment that originally supported CGI,
but is also used by other modules that use CGI environment variables (e.g.,
mod_rewrite, mod_perl, mod_php) or that generate responses using CGI
rules (e.g., mod_asis)

2.6 Apache Configuration Basics
Apache configuration is mostly determined at start-up, when the server reads
httpd.conf (and any included files). Configuration data, including resources
derived from them by a module (e.g., by opening a file), are stored on each mod-
ule’s configuration records.

Each module has two configuration records, either or both of which may be null
(unused):

• The per-server configuration is stored directly on the server_rec, so there is
one instance per virtual host. The scope of per-server directives is controlled
by <VirtualHost> containers in httpd.conf, but other containers such as
<Location>, <Directory>, and <Files> will be ignored.

• The per-directory configuration is stored indirectly and is available to modules
via the request_rec object in the course of processing a request. It is the
opposite of per-server configuration: Its scope is defined by containers such as
<Location>, <Directory>, and <Files>.

To implement a configuration directive, a module must supply a function that will
recognize the directive and set a field in one of the configuration records at system
start-up time. After start-up, the configuration is set and should not be changed. In
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particular, the configuration records should generally be treated as read-only while
processing requests (or connections). Changing configuration data during request
processing violates thread safety (requiring use of programming techniques such as
locking) and runs a high risk of introducing other bugs due to the increased com-
plexity. Apache provides a separate configuration record on each conn_rec and
request_rec for transient data.

Chapter 9 describes working with configuration records and data.

2.7 Request Processing in Apache
Most, though by no means all, modules are concerned with some aspect of pro-
cessing an HTTP request. But there is rarely, if ever, a reason for a module to con-
cern itself with every aspect of HTTP—that is the business of the httpd. The
advantage of a modular approach is that a module can easily focus on a particular
task but ignore aspects of HTTP that are not relevant to it.

2.7.1 Content Generation
The simplest possible formulation of a webserver is a program that listens for
HTTP requests and returns a response when it receives one (Figure 2-2). In
Apache, this job is fundamentally the business of a content generator, the core of
the webserver.
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Exactly one content generator must be run for every HTTP request. Any module
may register content generators, normally by defining a function referenced by a
handler that can be configured using the SetHandler or AddHandler directives in
httpd.conf. The default generator, which is used when no specific generator is
defined by any module, simply returns a file, mapped directly from the request to
the filesystem. Modules that implement content generators are sometimes known
as “content generator” or “handler” modules.

2.7.2 Request Processing Phases
In principle, a content generator can handle all the functions of a webserver. For
example, a CGI program gets the request and produces the response, and it can take
full control of what happens between them. Like other webservers, Apache splits the
request into different phases. For example, it checks whether the user is authorized
to do something before the content generator does that thing.

Several request phases precede the content generator (Figure 2-3). These serve to
examine and perhaps manipulate the request headers, and to determine what to do
with the request. For example:

• The request URL will be matched against the configuration, to determine
which content generator should be used.

• The request URL will normally be mapped to the filesystem. The mapping
may be to a static file, a CGI script, or whatever else the content generator
may use.

• If content negotiation is enabled, mod_negotiation will find the version of
the resource that best matches the browser’s preference. For example, the
Apache manual pages are served in the language requested by the browser.

• Access and authentication modules will enforce the server’s access rules, and
determine whether the user is permitted what has been requested.

• mod_alias or mod_rewrite may change the effective URL in the request.

There is also a request logging phase, which comes after the content generator has
sent a reply to the browser.
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2.7.2.1 Nonstandard Request Processing

Request processing may sometimes be diverted from the standard processing axis
described here, for a variety of reasons:

• A module may divert processing into a new request or error document at any
point before the response has been sent (Chapter 6).

• A module may define additional phases and enable other modules to hook
their own processing in (Chapter 10).

• There is a quick_handler hook that bypasses normal processing, used by
mod_cache (not discussed in this book).

2.7.3 Processing Hooks
The mechanism by which a module can influence or take charge of some aspect of
processing in Apache is through a sequence of hooks. The usual hooks for process-
ing a request in Apache 2.0 are described next.

post_read_request—This is the first hook available to modules in normal
request processing. It is available to modules that need to hook very early into pro-
cessing a request.

translate_name—Apache maps the request URL to the filesystem. A module can
insert a hook here to substitute its own logic—for example, mod_alias.

map_to_storage—Since the URL has been mapped to the filesystem, we are now
in a position to apply per-directory configuration (<Directory> and <Files>

sections and their variants, including any relevant .htaccess files if enabled). This
hook enables Apache to determine the configuration options that apply to this
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request. It applies normal configuration directives for all active modules, so few mod-
ules should ever need to apply hooks here. The only standard module to do so is
mod_proxy.

header_parser—This hook inspects the request headers. It is rarely used, as mod-
ules can perform that task at any point in the request processing, and they usually
do so within the context of another hook. mod_setenvif is a standard module that
uses a header_parser to set internal environment variables according to the
request headers.

access_checker—Apache checks whether access to the requested resource is per-
mitted according to the server configuration (httpd.conf). A module can add to
or replace Apache’s standard logic, which implements the Allow/Deny From direc-
tives in mod_access (httpd 1.x and 2.0) or mod_authz_host (httpd 2.2).

check_user_id—If any authentication method is in use, Apache will apply the
relevant authentication and set the username field r->user. A module may imple-
ment an authentication method with this hook.

auth_checker—This hook checks whether the requested operation is permitted
to the authenticated user.

type_checker—This hook applies rules related to the MIME type (where appli-
cable) of the requested resource, and determines the content handler to use (if not
already set). Standard modules implementing this hook include mod_negotiation
(selection of a resource based on HTTP content negotiation) and mod_mime (set-
ting the MIME type and handler information according to standard configuration
directives and conventions such as filename “extensions”).

fixups—This general-purpose hook enables modules to run any necessary pro-
cessing after the preceding hooks but before the content generator. Like
post_read_request, it is something of a catch-all, and is one of the most com-
monly used hooks.

handler—This is the content generator hook. It is responsible for sending an
appropriate response to the client. If there are input data, the handler is also respon-
sible for reading them. Unlike the other hooks, where zero or many functions may
be involved in processing a request, every request is processed by exactly one handler.

log_transaction—This hook logs the transaction after the response has been
returned to the client. A module may modify or replace Apache’s standard logging.
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A module may hook its own handlers into any of these processing phases. The mod-
ule provides a callback function and hooks it in, and Apache calls the function dur-
ing the appropriate processing phase. Modules that concern themselves with the
phases before content generation are sometimes known as metadata modules; they
are described in detail in Chapter 6. Modules that deal with logging are known as
logging modules. In addition to using the standard hooks, modules may define fur-
ther processing hooks, as described in Chapter 10.

2.7.4 The Data Axis and Filters
What we have described so far is essentially similar to the architecture of every gen-
eral-purpose webserver. There are, of course, differences in the details, but the
request processing (metadata → generator → logger) phases are common.

The major innovation in Apache 2, which transforms it from a “mere” webserver
(like Apache 1.3 and others) into a powerful applications platform, is the filter
chain. The filter chain can be represented as a data axis, orthogonal to the request-
processing axis (Figure 2-4). The request data may be processed by input filters
before reaching the content generator, and the response may be processed by out-
put filters before being sent to the client. Filters enable a far cleaner and more effi-
cient implementation of data processing than was possible in the past, as well as
separating content generation from its transformation and aggregation.

2.7.4.1 Handler or Filter?

Many applications can be implemented as either a handler or a filter. Sometimes it
may be clear that one of these solutions is appropriate and the other would be non-
sensical, but between these extremes lies a gray area. How does one decide whether
to write a handler or a filter?

When making this decision, there are several questions to consider:

• Feasibility: Can it be made to work in both cases? If not, there’s an instant
decision.

• Utility: Is the functionality it provides more useful in one case than the other?
Filters are often far more useful than handlers, because they can be reused with
different content generators and chained both with generators and other fil-
ters. But every request has to be processed by some handler, even if it does
nothing!
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• Complexity: Is one version substantially more complex than the other? Will it
take more time and effort to develop, and/or run more slowly? Filter modules
are usually more complex than the equivalent handler, because a handler is in
full control of its data and can read or write at will, whereas a filter has to
implement a callback that may be called several times with partial data, which
it must treat as unstructured chunks. We will discuss this issue in detail in
Chapter 8.

For example, Apache 1.3 users can do an XSLT transformation by building it into
handlers, such as CGI or PHP. Alternatively, they can use an XSLT module, but this
is very slow and cumbersome (this author tried an XSLT module for Apache 1.3,
but found it many hundreds of times slower than running XSLT in a CGI script
operating on temporary files). Running XSLT in a handler works, but loses modu-
larity and reusability. Any nontrivial application that needs it has to reinvent that
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wheel, using whatever libraries are available for the programming or scripting lan-
guage used and often resorting to ugly hacks such as temporary files.

Apache 2, by contrast, allows us to run XSLT in a filter. Content handlers requir-
ing XSLT can simply output the XML as is, and leave the transformation to
Apache. The first XSLT module for Apache 2, written by Phillip Dunkel and
released while Apache 2.0 was still in beta testing, was initially incomplete, but
already worked far better than XSLT in Apache 1.3. It is now further improved, and
is one of a choice of XSLT modules. This book’s author developed another XSLT
module.

More generally, if a module has both data inputs and outputs, and if it may be used
in more than one application, then it is a strong candidate for implementation as a
filter.

2.7.4.2 Content Generator Examples

• The default handler sends a file from the local disk under the DocumentRoot.
Although a filter could do that, there’s nothing to be gained.

• CGI, the generic API for server-side programming, is a handler. Because CGI
scripts expect the central position in the webserver architecture, it has to be a
handler. However, a somewhat similar framework for external filters is also
provided by mod_ext_filter.

• The Apache proxy is a handler that fetches contents from a back-end server.

• Any form-processing application will normally be implemented as a handler—
particularly those that accept POST data, or other operations that can alter the
state of the server itself. Likewise, applications that generate a report from any
back end are usually implemented as handlers. However, when the handler is
based on HTML or XML pages with embedded programming elements, it can
usefully be implemented as a filter.

2.7.4.3 Filter Examples

• mod_include implements server-side includes, a simple scripting language
embedded in pages. It is implemented as a filter, so it can post-process content
from any content generator, as discussed earlier with reference to XSLT.
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• mod_ssl implements secure transport as a connection-level filter, thereby
enabling all normal processing in the server to work with unencrypted data.
This represents a major advance over Apache 1.x, where secure transport was
complex and required a lot of work to combine it with other applications.

• Markup parsing modules are used to post-process and transform XML or
HTML in more sophisticated ways, from simple link rewriting9 through XSLT
and Xinclude processing,10 to a complete API for markup filtering,11 to a secu-
rity filter that blocks attempts to attack vulnerable applications such as PHP
scripts.12 Examples will be introduced in Chapter 8.

• Image processing can take place in a filter. This author developed a custom
proxy for a developer of mobile phone browsers. Because the browser tells the
proxy its capabilities, images can be reduced to fit within the screen space and,
where appropriate, translated to gray scale, thereby reducing the volume of
data sent and accelerating browsing over slow connections.

• Form-processing modules need to decode data sent from a web browser. Input
filter modules, such as mod_form and mod_upload,13 spare applications from
reinventing that wheel.

• Data compression and decompression are implemented in mod_deflate.
The filter architecture allows this module to be much simpler than mod_gzip
(an Apache 1.3 compression module) and to dispense with any use of tem-
porary files.

2.7.5 Order of Processing
Before moving on to discuss how a module hooks itself into any of the stages of 
processing a request/data, we should pause to clear up a matter that often causes
confusion—namely, the order of processing.
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The request processing axis is straightforward, with phases happening strictly in
order. But confusion arises in the data axis. For maximum efficiency, this axis is
pipelined, so the content generator and filters do not run in a deterministic order.
For example, you cannot in general set something in an input filter and expect it to
apply in the generator or output filters.

The order of processing centers on the content generator, which is responsible for
pulling data from the input filter stack and pushing data onto the output filters
(where applicable, in both cases). When a generator or filter needs to set something
affecting the request as a whole, it must do so before passing any data down the chain
(generator and output filters) or before returning data to the caller (input filters).

2.7.6 Processing Hooks
Now that we have an overview of request processing in Apache, we can show how
a module hooks into it to play a part.

The Apache module structure declares several (optional) data and function mem-
bers:
module AP_MODULE_DECLARE_DATA my_module = {

STANDARD20_MODULE_STUFF,  /* macro to ensure version consistency */
my_dir_conf,              /* create per-directory configuration record */
my_dir_merge,             /* merge per-directory configuration records */
my_server_conf,           /* create per-server configuration record */
my_server_merge,          /* merge per-server configuration records */
my_cmds,                  /* configuration directives */
my_hooks                  /* register modules functions with the core */

};

The configuration directives are presented as an array; the remaining module entries
are functions. The relevant function for the module to create request processing
hooks is the final member: 
static void my_hooks(apr_pool_t *pool) {

/* create request processing hooks as required */
}

Which hooks we need to create here depend on which part or parts of the request
our module is interested in. For example, a module that implements a content gen-
erator (handler) will need a handler hook, looking something like this: 

ap_hook_handler(my_handler, NULL, NULL, APR_HOOK_MIDDLE) ;
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Now my_handler will be called when a request reaches the content generation
phase. Hooks for other request phases are similar.

The following prototype applies to a handler for any of these phases:
static int my_handler(request_rec *r) {

/* do something with the request */
}

Details and implementation of this prototype are discussed in Chapters 5 and 6.

2.8 Summary
This basic introduction to the Apache platform and architecture sets the scene for
the following chapters. We have now looked at the following aspects of Apache:

• The Apache architecture, and its relationship to the operating system

• The roles of the principal components: MPMs, APR, and modules

• The separation of tasks into initialization and operation

• The fundamental Apache objects and (briefly) the API header files

• Configuration basics

• The request processing cycle

• The data axis and filter architecture

Nothing in this general overview is specific to C programming, so Chapter 2
should be equally relevant to scripting languages. Together with the next two chap-
ters (on the APR and programming techniques, respectively), it provides the essen-
tial basis for understanding the core information and advanced topics covered in
Chapters 5–11. In those chapters, the concepts introduced here are examined 
in more detail, and demonstrated in the context of developing real applications.
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The Apache Portable Runtime (APR) and Utilities (APR-UTILS or APU) are a pair
of libraries used by the Apache httpd, but autonomously developed and main-
tained within the ASF. Although many core developers are involved in both httpd
(the webserver) and APR, the projects are separate. These libraries provide core
functions that are not specific to webserving but are also useful in more general
applications.

Apart from the webserver, the best-known APR application is Subversion, a revision
and change control management system. Another is Site Valet, a suite of software
for QA and accessibility audit on the Web; Site Valet was developed by this book’s
author.

This chapter discusses the APR as it applies to Apache modules. It does not go into
subjects such as application initialization, which are necessary but are handled
internally by the Apache core code. For developers working outside the webserver
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context, this usage is documented clearly within APR itself, and it is covered in 
the tutorial at http://dev.ariel-networks.com/apr/apr-tutorial/html/
apr-tutorial.html.

3.1 APR
The main purpose of APR is to provide a portable, platform-independent layer for
applications. Functions such as filesystem access, network programming, process
and thread management, and shared memory are supported in a low-level, cross-
platform library. Apache modules that use exclusively APR instead of native system
functions are portable across platforms and can expect to compile cleanly—or at
worst with a trivial amount of tidying up—on all platforms supported by Apache.

Each APR module comprises an application programming interface (API) shared
between all platforms, together with implementations of the functions defined in
the API. The implementations are often wholly or partly platform-specific,
although this issue is of no concern to applications.

At the core of APR is Apache’s resource management (pools), which are discussed in
more detail later in this chapter. Table 3-1 provides a full list of the APR modules.

TABLE 3-1
APR Modules

Name Purpose 

apr_allocator Used internally for memory allocation 

apr_atomic Atomic operations 

apr_dso Dynamic loading of code (.so/.dll)

apr_env Reading/setting environment variables

apr_errno Defines error conditions and macros

apr_file_info Properties of filesystem objects and paths

apr_file_io Filesystem I/O

apr_fnmatch Filesystem pattern matching

apr_general Initialization/termination; useful macros
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Name Purpose 

apr_getopt Command arguments

apr_global_mutex Global locking routines

apr_hash Hash tables

apr_inherit File handle inheritance helpers

apr_lib Odds and ends

apr_mmap Memory mapping

apr_network_io Network I/O (sockets)

apr_poll Poll routines

apr_pools Resource management

apr_portable APR to native mapping conversion

apr_proc_mutex Process locking routines

apr_random Random numbers

apr_ring Ring data struct and macros

apr_shm Shared memory

apr_signal Signal handling

apr_strings String operations

apr_support Internal support function

apr_tables Table and array functions

apr_thread_cond Thread conditions

apr_thread_mutex Thread mutex routines

apr_thread_proc Threads and process functions

apr_thread_rwlock Reader/writer locking routines

apr_time Time/date functions

apr_user User and group ID services

apr_version APR version

apr_want Standard header support
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3.2 APR-UTIL
APR-UTIL (also known as APU) is a second library in the APR project. It provides
a small set of utilities, based on the APR and with a unified programming interface.
APU doesn’t have separate per-platform modules, but it does adopt a similar
approach to some other commonly used resources, such as databases.

Table 3-2 provides a complete list of APU modules.

TABLE 3-2
APU Modules

Name Purpose

apr_anylock Transparent any lock flavor wrapper

apr_base64 Base-64 encoding

apr_buckets Buckets/bucket brigades

apr_date Date string parsing

apr_dbd Common API for SQL databases

apr_dbm Common API for DBM databases

apr_hooks Hook implementation macros

apr_ldap LDAP authentication APIs

apr_ldap_init LDAP initialization APIs used mainly when initializing
secure connections to the LDAP server

apr_ldap_option APIs for setting LDAP options

apr_ldap_url APIs for parsing and handling the LDAP URL

apr_md4 MD4 encoding

apr_md5 MD5 encoding

apr_optional Optional functions

apr_optional_hooks Optional hooks

apr_queue Thread-safe FIFO queues

apr_reslist Pooled resources

apr_rmm Relocatable managed memory
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Name Purpose

apr_sdbm SDBM library

apr_sha1 SHA1 encoding

apr_strmatch String pattern matching

apr_uri URI parsing/construction

apr_uuid User identification

apr_xlate Charset conversion (I18N)

apr_xml XML parsing

3.3 Basic Conventions
APR and APR-UTIL adopt a number of conventions that give them a homogenous
API and make them easy to work with.

3.3.1 Reference Manual: API Documentation and Doxygen
All of APR/APU is very well documented at the code level. Every public function
and data type is documented in the header file that defines it, in doxygen1-friendly
format. The header files themselves, or the doxygen-generated documentation, pro-
vide a full API reference for programmers. If you have doxygen installed, you can
generate your own copy of the APR reference manual from the source code with the
command make dox.

3.3.2 Namespacing
All APR/APU public interfaces are prefixed with the string “apr_” (data types and
functions) or “APR_” (macros). This defines APR’s “reserved” namespace.

Within the APR namespace, most of the APR and APU modules use secondary
namespacing. This convention is often based on the name of the module in ques-
tion. For example, all functions in module apr_dbd are prefixed with the string
“apr_dbd_”. Sometimes an obviously descriptive secondary namespace is used. For

3.3 Basic Conventions 57

1. http://www.doxygen.org/

http://www.doxygen.org/


example, socket operations in module apr_network_io are prefixed with
“apr_socket_”.

3.3.3 Declaration Macros
Public functions in APR/APU are declared using macros such as APR_DECLARE,
APU_DECLARE, and APR_DECLARE_NONSTD. For example:

APR_DECLARE(apr_status_t) apr_initialize(void);

On most platforms, this is a null declaration and expands to

apr_status_t apr_initialize(void);

On platforms such as Windows with Visual C++, which require their own non-
standard keywords such as _dllexport to enable other modules to use a function,
these macros will expand to the required keywords.

3.3.4 apr_status_t and Return Values
A convention widely adopted in APR/APU is that functions return a status value
indicating success or an error code to the caller. The type is apr_status_t, which
takes integer values defined in apr_errno.h. Thus the usual prototype for an APR
function is

APR_DECLARE(apr_status_t) apr_do_something(...function args...);

Return values should routinely be tested, and error handling (recovery or graceful
failure) should be implemented. The return value APR_SUCCESS indicates success,
and we can commonly handle errors using constructs such as

apr_status_t rv;
...
rv = apr_do_something(... args ...);
if (rv != APR_SUCCESS) {

/* log an error */
return rv;

}

Sometimes we may do more. For example, if do_something was a nonblocking I/O
operation and returned APR_EAGAIN, we will probably want to retry the operation.

Some functions return a string value (char* or const char*), a void*, or void.
These functions are assumed to have no failure conditions or to return a null
pointer on failure as appropriate.
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3.3.5 Conditional Compilation
By their very nature, a number of features of APR may not be supported on every
platform. For example, prior to version 5.x, FreeBSD had no native thread imple-
mentation considered suitable for Apache; hence threads were not supported in
APR (unless the relevant options were set manually for compilation).

To enable applications to work around this issue, APR provides APR_HAS_* macros
for such features. When an application is concerned with such a feature, it should
use conditional compilation based on these macros. For example, a module per-
forming an operation that could lead to a race condition in a multithreaded envi-
ronment might want to use something like this:
#if APR_HAS_THREADS

rv = apr_thread_mutex_lock(mutex);
if (rv != APR_SUCCESS) {

/* Log an error */
/* Abandon critical operation */

}
#endif

/* ... Execute critical section of code here ... */

#if APR_HAS_THREAD
apr_thread_mutex_unlock(mutex);

#endif

3.4 Resource Management: APR Pools
The APR pools are a fundamental building block that lie at the heart of APR and
Apache; they serve as the basis for all resource management. The pools allocate
memory, either directly (in a malloc-like manner) or indirectly (e.g., in string
manipulation), and, crucially, ensure that memory is freed at the appropriate time.
But they extend much further, to ensure that other resources such as files or mutexes
can be allocated and will always be properly cleaned up. They can even deal with
resources managed opaquely by third-party libraries.

NOTE It is common practice in Apache to assume that pool
memory allocation never fails.  The rationale for this assumption
is that if the allocation does fail, then the system is not recover-
able, and any error handling will fail, too.
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3.4.1 The Problem of Resource Management
Every programmer knows that when you allocate a resource, you must ensure that
it is released again when you’ve finished with it. For example:

char* buf = malloc(n) ;
... check buf is non null ...
... do something with buf ...
free(buf) ;

or
FILE* f = fopen(path, "r") ;
... check f is non null ...
... read from f ....
fclose(f) ;

Clearly, failure to free buf or to close f is a bug. In the context of a long-lasting pro-
gram such as Apache, it would have serious consequences, up to and including
bringing the entire system down. Obviously, it is important to get resource man-
agement right.

In trivial cases, this is straightforward. In a more complex case with multiple error
paths, in which even the scope of a resource is uncertain at the time it is allocated,
ensuring that cleanup takes place in every execution path is much more challeng-
ing. In such circumstances, we need a better way to manage resources.

Constructor/Destructor Model

One method of resource management is exemplified by the C++ concept of objects
having a constructor and a destructor. Many C++ programmers make the destruc-
tor responsible for cleanup of all resources allocated by the object. This approach
works well provided all dynamic resources are clearly made the responsibility of an
object. But, as with the simple C approach, it requires a good deal of care and atten-
tion to detail—for example, where resources are conditionally allocated or shared
between many different objects—and it is vulnerable to programming bugs.

Garbage Collection Model

A high-level method of resource management, typified by Lisp and Java, is garbage
collection. This approach has the advantage of taking the problem away from the
programmer and transferring it to the language itself, thereby completely removing
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the danger of crippling programming errors. The drawback is that garbage collec-
tion incurs a substantial overhead even where it isn’t necessary, and it deprives the
programmer of useful levels of control, such as the ability to control the lifetime of
a resource. It also requires that all program components—including third-party
libraries—be built on the same system, which is clearly not possible in an open sys-
tem written in C.

3.4.2 APR Pools
The APR pools provide an alternative model for resource management. Like
garbage collection, they liberate the programmer from the complexities of dealing
with cleanups in all possible cases. In addition, they offer several other advantages,
including full control over the lifetime of resources and the ability to manage het-
erogeneous resources.

The basic concept goes like this: Whenever you allocate a resource that requires
cleanup, you register it with a pool. The pool then takes responsibility for the
cleanup, which will happen when the pool itself is cleaned. In this way, the prob-
lem is reduced to one of allocating and cleaning up a single resource: the pool itself.
Given that the Apache pools are managed by the server itself, the complexity is,
therefore, removed from applications programming. All the programmer has to do
is select the appropriate pool for the required lifetime of a resource.

Basic Memory Management

The most basic application of pools is for memory management. Instead of
mytype* myvar = malloc(sizeof(mytype)) ;
/* make sure it gets freed later in every possible execution path */

we use

mytype* myvar = apr_palloc(pool, sizeof(mytype)) ;

The pool automatically takes responsibility for freeing this resource, regardless of
what may happen in the meantime. A secondary benefit is that pool allocation is
faster than malloc on most platforms!

Basic memory management takes many forms in APR and Apache, where memory
is allocated within another function. Examples include string-manipulation func-
tions and logging, where we gain the immediate benefit of being able to use
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constructs such as the APR version of sprintf() without having to know the size
of a string in advance:

char* result = apr_psprintf(pool, fmt, ...) ;

APR also provides higher-level abstractions of pool memory—for example, in the
buckets used to pass data down the filter chain.

Generalized Memory Management

APR provides built-in functions for managing memory, as well as a few other basic
resources such as files, sockets, and mutexes. However, programmers are not
required to use these functions and resources. An alternative is to use native alloca-
tion functions and explicitly register a cleanup with the pool:

mytype* myvar = malloc(sizeof(mytype)) ;
apr_pool_cleanup_register(pool, myvar, free,

apr_pool_cleanup_null) ;

or
FILE* f = fopen(filename, "r") ;
apr_pool_cleanup_register(pool, f, fclose, apr_pool_cleanup_null) ;

This code delegates responsibility for cleanup to the pool, so that no further action
from the programmer is required. However, native functions may be less portable
than the APR equivalents from apr_pools and apr_file_io, respectively, and
malloc on most systems will be slower than using the pool.

This method of memory management generalizes to resources opaque to Apache
and APR. For example, to open a MySQL database connection and ensure it is
closed after use, you would write the following code:

MYSQL* sql = NULL ;
sql = mysql_init(sql) ;
if ( sql == NULL ) { log error and return failure ; }
apr_pool_cleanup_register(pool, sql, mysql_close,

apr_pool_cleanup_null) ;

sql = mysql_real_connect(sql, host, user, pass,
dbname, port, sock, 0) ;

if ( sql == NULL ) { log error and return failure ; }

Note that apr_dbd (which is discussed in Chapter 11) provides an altogether bet-
ter method for managing database connections.
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As a second example, consider XML processing:
xmlDocPtr doc = xmlReadFile(filename);
apr_pool_cleanup_register(pool, doc, xmlFreeDoc,

apr_pool_cleanup_null) ;

/* Now we do things with doc, which may allocate further memory
* managed by the XML library but will be cleaned by xmlFreeDoc
*/

Integrating C++ destructor-cleanup code provides yet another example. Suppose 
we have

class myclass {
public:

virtual ~myclass() { do cleanup ; }
// ....

} ;

We define a C wrapper:

void myclassCleanup(void* ptr) { delete (myclass*)ptr ; }

We then register this wrapper with the pool when we allocate myclass:
myclass* myobj = new myclass(...) ;
apr_pool_cleanup_register(pool, (void*)myobj, myclassCleanup,

apr_pool_cleanup_null) ;

// Now we've hooked our existing resource management from C++
// into Apache and never need to delete myobj;
// pool cleanup will do the job for us

Implicit and Explicit Cleanup

Suppose we want to free our resource explicitly before the end of the request—for
example, because we’re doing something memory intensive but have objects we can
free. We may want to do everything according to normal scoping rules and just use
pool-based cleanup as a fallback to deal with error paths. However, because we reg-
istered the cleanup, it will run regardless of our intentions. In the worst-case sce-
nario, it could possibly lead to a double-free and a segfault.

Another pool function, apr_pool_cleanup_kill, is provided to deal with this
situation. When we run the explicit cleanup, we unregister the cleanup from the
pool. Of course, we can be a little more clever about how we go about this task.
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Here’s the outline of a C++ class that manages itself based on a pool, regardless of
whether it is explicitly deleted:

class poolclass {
private:
apr_pool_t* pool ;

public:
poolclass(apr_pool_t* p) : pool(p) {

apr_pool_cleanup_register(pool, (void*)this,
myclassCleanup, apr_pool_cleanup_null) ;

}
virtual ~poolclass() {

apr_pool_cleanup_kill(pool, (void*)this, myclassCleanup) ;
}

} ;

If you use C++ with Apache (or APR), you can derive any class from poolclass.
Most APR functions do something equivalent to this, conducting register and kill
operations whenever resources are allocated or cleaned up.

In simple C, we would use the following generic form:
/* Allocate something */
my_type* my_res = my_res_alloc(args) ;
/* Handle errors */
if (my_res == NULL) {

/* Log error and bail out */
}
/* Ensure it won't leak by registering a cleanup */
apr_pool_cleanup_register(pool, my_res,

my_res_free, apr_pool_cleanup_null) ;

/* ... Now use it as required ... */

/* OK, we're done with it, and we'd like to release it ASAP */
rv = my_res_free(my_res) ;
/* Since we freed it, we want to kill the cleanup */
apr_pool_cleanup_kill(pool, my_res, my_res_free) ;
/* Now handle errors and continue */
if (rv != APR_SUCCESS) { /* or whatever test may be appropriate */

/* ... Log error and bail out or attempt recovery ... */
}

We can also streamline this form by running the cleanup and unregistering it with
the pool using a single function:

apr_pool_cleanup_run(pool, my_res, my_res_free) ;
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3.4.3 Resource Lifetime
When we allocate resources by using a pool, we automatically ensure that they get
cleaned up at some point. But when? We need to make sure the cleanup happens at
the right time—that is, neither while the resource is still in use, nor long after the
resource is no longer required.

Apache Pools

Fortunately, Apache makes this process quite easy, by providing different pools for
different types of resource. These pools are associated with relevant structures of the
httpd, and they have the lifetime of the corresponding struct. Four general-purpose
pools are always available in Apache:

• The request pool, with the lifetime of an HTTP request

• The process pool, with the lifetime of a server process

• The connection pool, with the lifetime of a TCP connection

• The configuration pool

The first three, which are associated with the relevant Apache structs, are accessed
as request->pool, connection->pool, and process->pool, respectively. The
fourth, process->pconf, is also associated with the process, but differs from the
process pool in that it is cleared whenever Apache rereads its configuration.

The process pool is suitable for long-lived resources, such as those that are initial-
ized at server start-up. The request pool is suitable for transient resources used to
process a single request.

The connection pool has the lifetime of a connection, which normally consists of
one or more requests. This pool is useful for transient resources that cannot be asso-
ciated with a request—most notably, in a connection-level filter, where the
request_rec structure is undefined, or in a non-HTTP protocol handler.

In addition to these standard pools, special-purpose pools may be created for other
purposes, such as configuration and logging, or may be created privately by mod-
ules for their own use.
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Using Pools in Apache: Processing a Request

All request-processing hooks take the form
int my_func(request_rec* r) {
/* implement the request processing hook here */

}

This hook puts the request pool r->pool at our disposal. As discussed earlier, the
request pool is appropriate for the vast majority of operations involved in process-
ing a request. We pass it to Apache and APR functions that need a pool argument
as well as our own.

The process pool is available as r->server->process->pool for operations that
need to allocate long-lived resources—for example, caching a resource that should
be computed once and subsequently reused in other requests. However, this process
is a little more complex, and it is generally preferable to derive a subpool from the
process pool, as discussed in Chapters 4 and 10.

The connection pool is r->connection->pool.

Using Pools in Apache: Initialization and Configuration

The internal workings of Apache’s initialization are complex. As far as modules are
concerned, however, the initialization can normally be treated as a simple proce-
dure: Just set up a configuration, and everything is permanent. Apache makes that
easy, because most of the relevant hooks have prototypes that pass the relevant pool
as their first argument.

Configuration Handlers
static const char* my_cfg(cmd_parms* cmd, void* cfg, /* args */ )

Use the configuration pool, cmd->pool, to give a configuration the lifetime of the
directive.

Pre-configuration and Post-configuration Hooks

These hooks are unusual in having several pools passed:
static int my_pre_config(apr_pool_t* pool,

apr_pool_t* plog, apr_pool_t* ptemp)

For most purposes, just use the first pool argument. ptemp is suitable for resources
used during configuration, but will be destroyed before Apache goes into operational
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mode. plog remains active for the lifetime of the server, but is cleaned up each time
the configuration is read.

Child init
static void my_child_init(apr_pool_t* pool, server_rec* s).

The child pool is the first argument.

Monitor
static int my_monitor(apr_pool_t* pool)

The monitor is a special case: It runs in the parent process and is not tied to any
time-limited structure. For this reason, resources allocated in a monitor function
should be explicitly freed. If necessary, a monitor may create and free its own sub-
pool and manage it as discussed in Chapter 4. Few applications will need to use the
monitor hook.

Using Pools in Apache: Other Cases

Most Apache modules involve the initialization and request processing we have
already discussed. There are two other cases to deal with, however: connection func-
tions and filter functions.

Connection Functions

The pre_connection and process_connection connection-level hooks pass a
conn_rec object as their first argument; they are directly analogous to request func-
tions as far as pool resources are concerned. The create_connection connection-
initialization hook passes the pool as its first argument. Any module implementing
this hook takes responsibility for setting up the connection.

Filter Functions

Filter functions receive an ap_filter_t as their first argument. This object
ambiguously contains both a request_rec and a conn_rec as members, regard-
less of whether it is a request-level or a connection-level filter. Content filters should
normally use the request pool. Connection-level filters will get a junk pointer in 
f->r (the request doesn’t exist outside the protocol layer; see Chapter 8) and must
use the connection pool. Be careful: This can be a trap for the unwary.
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3.4.4 Limitations of Pools
So far, we have seen the advantages of using pools for resource management.
Naturally, there are also some limitations:

• Managing resources that have a lifetime that doesn’t correspond to any of
Apache’s main objects requires more work. This issue is discussed further in
Chapter 4.

• Allocating resources from a pool is not thread safe. This is rarely an issue,
because most pool allocation by modules when Apache is running on a mul-
tithreaded basis uses a pool owned by an object (HTTP request or TCP con-
nection) that is thread private at the time of use. Chapter 4 discusses some
cases where thread safety is an issue.

• APR pools never return memory to the operating system until they are
destroyed (they do, of course, reuse memory, so pool-based applications don’t
grow indefinitely). Thus it may sometimes make sense to use malloc rather
than pools when allocating very large blocks of memory. Conversely, using
malloc in your code may affect binary compatibility. On Windows, it may
prevent your code from being linked with a binary compiled using a different
version of Visual C++, due to incompatibilities in the runtime libraries.

3.5 Selected APR Topics 
APR provides a direct alternative to functions that are familiar and almost certain
to be available on your system without any need for APR. Nevertheless, there are
good reasons to use the APR versions of these functions:

• APR functions are platform independent and provide for better portability.

• APR functions get the benefit of APR’s pool-based resource management 
for free.

We won’t go into detail here. For more information, see the excellent documenta-
tion in the header files.
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3.5.1 Strings and Formats
The apr_strings module provides APR implementations of

• Common string functions: comparisons, substring matches, copying, and 
concatenation

• stdio-like functions: sprintf and family, including vformatters

• Parsing, including thread-safe strtok

• Conversion to and from other data types (e.g., atoi)

APR string handling is based on pools. This scheme brings with it a substantial sim-
plification, as we very rarely need to worry about the size of a buffer. For example,
to concatenate an arbitrary number of strings, we can use

result = apr_pstrcat(pool, str1, str2, str3, ..., NULL);

without the need to compute the length of result and allocate a buffer in advance.
Similarly,

result = apr_psprintf(pool, fmt, ...) ;

requires altogether less tedious housekeeping than
length = [compute length here] ;
buf = malloc(length) ;
sprintf(buf, fmt, ...) ;

There is no regular expression support in APR (although there is in Apache), but
the apr_strmatch module provides fast string matching that deals with the issues
of case-insensitive (as well as case-sensitive) searches and non-null-terminated
strings.

3.5.2 Internationalization
The apr_xlate module provides conversion between different character sets.

At the time of this book’s writing, apr_xlate on the Windows platform relies on
a third APR library, apr_iconv, because Windows lacks (or lacked) native inter-
nationalization support. This dependency is expected to be removed in the future.
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3.5.3 Time and Date
The apr_time module provides a microsecond timer and clock. Because APR
works in microseconds, its fundamental data type apr_time_t is a 64-bit integer
and is not interchangeable with time_t. Macros provided for conversion include
the following:
/** @return apr_time_t as a second */
#define apr_time_sec(time) ((time) / APR_USEC_PER_SEC)

/** @return a second as an apr_time_t */
#define apr_time_from_sec(sec) ((apr_time_t)(sec) * APR_USEC_PER_SEC)

Other data types include time intervals and a “struct tm” -like type apr_time_exp_t.
APR time functions include

• Time now

• Any time as Greenwich Mean Time (GMT), local time, or a selected time zone

• Time arithmetic

• Sleep

• Time formatted as a ctime or RFC822 string

The apr_date module provides additional functions for parsing commonly used
time and date formats.

3.5.4 Data Structs
Apache provides four data struct modules:

• apr_table provides tables and arrays.

• apr_hash provides hash tables.

• apr_queue provides first in, first out (FIFO) queues.

• apr_ring provides a ring struct, which is also the basis for APR bucket
brigades.

3.5.4.1 Arrays

APR arrays are provided by the apr_array_header_t type, and can hold either
objects or pointers. The array data type also serves as a stack. An array has a default
size that is set when the array is created. Although it works most efficiently when it

70 Chapter 3 • The Apache Portable Runtime



remains within that size, the array can grow as required. The most common opera-
tions supported are append (push) and iteration:

/* Allocate an array of type my_type */
apr_array_header_t* arr = apr_array_make(pool, sz, sizeof(my_type));

/* Allocate an uninitialized element on the array*/
my_type* newelt = apr_array_push(arr) ;

/* Now fill in the values of elt */
newelt->foo = abc ;
newelt->bar = "foo" ;

/* Pop the last-in element */
my_type* oldelt = apr_array_pop(arr) ;

/* Iterate over all elements */
for (i = 0; i < arr->nelts; i++) {

/* A C++ reference is the clearest way to show this */
my_type& elt = arr->elts[i] ;

}

Other array operations include the pop stack operation, copying (shallow copy),
lazy copy, concatenation, append, and conversion to a string value (the latter is
obviously meaningful only when the contents of the array are string values).

3.5.4.2 Tables

The apr_table_t is an intuitive, higher-level data type built on the array for stor-
ing key/value pairs. It supports adding elements (several variants), deleting elements
(not efficient), lookup, iteration, and clearing an entire table. It also supports merge
and overlay operations, and merging or elimination of duplicate entries.

Table keys are always case insensitive (in contrast to the keys in APR hash tables).
/* Allocate a new table */
apr_table_t* table = apr_table_make(pool, sz) ;

/* Set a key/value pair */
apr_table_setn(table, key, val) ;

Variants on apr_table_set include apr_table_setn, apr_table_add,
apr_table_addn, apr_table_merge, and apr_table_mergen:

• apr_table_setn sets a value, overwriting any existing value for the key.

• apr_table_addn adds a new value, leaving duplicate keys if there was an
existing value for the key.
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• apr_table_mergen adds a new value, merging it with any existing value for
the key.

• apr_table_set copies the data as they are entered in the table;
apr_table_setn doesn’t (and is therefore more efficient when the values are
persistent or allocated on the same pool as the table). The same applies to the
other functions.

/* Retrieve an entry */
val = apr_table_get(table, key) ;

/* Iterate over the table (see Chapter 5) */
apr_table_do(func, rec, table, NULL) ;

/* Clear the table */
apr_table_clear(table) ;

/* Merge tables */
newtable = apr_table_overlay(pool, table1, table2) ;

/* Prune duplicate entries */
apr_table_compress(table, flags) ;

The high-level API and the availability of functions such as apr_table_merge and
apr_table_overlap provide the ideal foundations for manipulation of HTTP
headers and environment variables in Apache.

3.5.4.3 Hash Tables

apr_hash_t also stores key/value pairs, but is a lower-level data type than
apr_table_t. It has two advantages:

1. Keys and values can be of any data type (and, unlike with tables, are case
sensitive).

2. Hash tables scale more efficiently as the number of elements grows.

Unlike the array and table, the hash table has no initial size. The most commonly
used operations are insertion and lookup. Other operations supported include iter-
ation, copy, overlay, and merge.

apr_hash_t* hash = apr_hash_make(pool) ;

/* key and value are pointers to arbitrary data types */
apr_hash_set(hash, key, sizeof(*key), value) ;
value = apr_hash_get(hash, key, sizeof(*key)) ;
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There is one special case we commonly encounter: where the key is a character
string. To ensure the proper string comparison semantics are used, we should use
the macro APR_HASH_KEY_STRING in place of the size argument.

3.5.4.4 Queues

The apr_queue_t is a thread-safe, FIFO bounded queue. It is available only in
threaded APR builds, and it enables multiple threads to cooperate in handling jobs.
A queue has a fixed capacity, as set in apr_queue_create. The main queue oper-
ations are blocking and nonblocking push and pop.

3.5.4.5 Rings

APR_RING is not, in fact, a data type, but rather a collection of macros somewhat like
a C++ template; these macros implement cyclic, doubly linked lists. The main ring
example in Apache is the bucket brigade, which we’ll introduce in Section 3.5.5 and
discuss at length in Chapter 8. The bucket is an element in the ring, while the
brigade is the ring structure itself. The following declarations implement the ring
structure:
struct apr_bucket {

/** Links to the rest of the brigade */
APR_RING_ENTRY(apr_bucket) link;
/** and, of course, the bucket's data fields */

};

/** A list of buckets */
struct apr_bucket_brigade {

/** The pool to associate the brigade with.  The data is not allocated out
*  of the pool, but a cleanup is registered with this pool.  If the
*  brigade is destroyed by some mechanism other than pool destruction,
*  the destroying function is responsible for killing the cleanup.
*/
apr_pool_t *p;
/** The buckets in the brigade are on this list. */
/*
* The apr_bucket_list structure doesn't actually need a name tag
* because it has no existence independent of the struct apr_bucket_brigade.
* The ring macros are designed so that you can leave the name tag
* argument empty in this situation, but apparently the Windows compiler
* doesn't like that.
*/
APR_RING_HEAD(apr_bucket_list, apr_bucket) list;
/** The freelist from which this bucket was allocated */
apr_bucket_alloc_t *bucket_alloc;

};
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3.5.5 Buckets and Brigades
Here’s a one-sentence, buzzword-laden overview: Bucket brigades represent a com-
plex data stream that can be passed through a layered I/O system without unneces-
sary copying. 

Buckets and brigades form the basis of Apache’s data handling, I/O, and filter chain
(which are really three ways of saying the same thing). Use and manipulation of
these is fundamental to filter modules, as is discussed in detail in Chapter 8.

A bucket brigade is a doubly linked list (ring) of buckets, so we aren’t limited to
inserting elements at the front and removing them at the end. Buckets are passed
around only as members of a brigade, although singleton buckets can occur for
short periods of time.

Buckets are data stores of various types. They can refer to data in memory, or part
of a file or mmap area, or the output of a process, among other things. Buckets also
have some type-dependent accessor functions: 

The read function returns the address and size of the data in the bucket. If the
data isn’t in memory, then it is read in and the bucket changes type so that it
can refer to the new location of the data. If all of the data cannot fit in the
bucket, then a new bucket is inserted into the brigade to hold the rest of it.

The split function divides the data in a bucket into two regions. After a split,
the original bucket refers to the first part of the data and a new bucket inserted
into the brigade after the original bucket refers to the second part of the data.
Reference counts are maintained as necessary.

The setaside function ensures that the data in the bucket has an adequate life-
time. For example, sometimes it is convenient to create a bucket referring 
to data on the stack in the expectation that it will be consumed (e.g., output to
the network) before the stack is unwound. If that expectation turns out not 
to be valid, the setaside function is called to move the data somewhere safer.

The copy function makes a duplicate of the bucket structure as long as it’s pos-
sible to have multiple references to a single copy of the data itself. Not all
bucket types can be copied.

The destroy function maintains the reference counts on the resources used by
a bucket and frees them if necessary.
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NOTE All of these functions have wrapper macros
[apr_bucket_read(), apr_bucket_destroy(), and so on]. The
wrapper macros should be used rather than using the function
pointers directly.

To write a bucket brigade, we first turn the data into an iovec, so that we don’t
write too little data at one time. If we really want good performance, then we need
to compact the buckets before we convert the data to an iovec, or possibly while
we are converting to an iovec.

The following bucket types are supported natively in APR:

• File—bucket contents are a file. Commonly used when serving a static file.

• Pipe—bucket contents are a pipe (filesystem FIFO).

• Socket—bucket contents are a socket. Most commonly used by the network
filters.

• Heap—bucket contents are heap memory. Used for stdio-like buffered I/O.

• Mmap—bucket contents are an mmapped file.

• Immortal—bucket contents are memory, which is guaranteed to be valid for
at least the lifetime of the bucket.

• Pool—bucket contents are allocated on a pool.

• Transient—bucket contents may go out of scope and disappear.

• Flush (metadata)—the brigade’s contents should be flushed before continuing.
In Apache, that means passing whatever data is available to the next filter in
the chain.

• EOS (metadata)—end of data.

Other types may also be implemented—indeed, additional metadata types are used
internally in Apache. This author has implemented bucket types for SQL queries
(using apr_dbd) and for script fragments; both of these types execute and convert
data to another bucket type when read. A third-party library implementing a wide
range of bucket types is serf.2

2. http://svn.webdav.org/repos/projects/serf/trunk

3.5 Selected APR Topics 75

http://svn.webdav.org/repos/projects/serf/trunk


3.5.6 Filesystem
APR modules related to filesystems include the following:

• apr_file_io provides standard file operations: open/close, stdio-style
read/write operations, locking, and create/delete/copy/rename/chmod. This
module supports ordinary files, temporary files, directories, and pipes.

• apr_file_info provides filesystem information (stat), directory manipula-
tion functions (e.g., open, close, read), file path manipulation, and relative
path resolution.

• apr_fnmatch provides pattern matching for the filesystem, to support wild-
card operations.

• apr_mmap mmaps a file.

We will see examples of these modules in later chapters.

A third-party extension is apvfs,3 a library that implements a common, APR-based
front end to a wide range of different (virtual) filesystems such as standard files,
APR buckets, archives IPC, and databases.

3.5.7 Network
APR provides two modules related to networks:

• apr_network_io is a socket layer supporting IPv4, IPv6, and the TCP, UDP,
and SCTP protocols. It supports a number of features subject to underlying
operating system support, and will emulate them where not available. These
features include send file, accept filters, and multicast.

• apr_poll provides functions for polling a socket (or other descriptor).

3.5.8 Encoding and Cryptography
APR does not provide a cryptographic library, and Apache’s mod_ssl relies on the
external OpenSSL package for implementation of transport-level security. APR
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does support a number of data encoding and hashing techniques in its
apr_base64, apr_md4, apr_md5, and apr_sha1 modules.

3.5.9 URI Handling
The apr_uri module defines a struct for URIs/URLs, and provides parsing and
unparsing functions:
/**
* A structure to encompass all of the fields in a URI
*/
struct apr_uri_t {

/** Scheme ("http"/"ftp"/...) */
char *scheme;
/** Combined [user[:password]\@]host[:port] */
char *hostinfo;
/** User name, as in http://user:passwd\@host:port/ */
char *user;
/** Password, as in http://user:passwd\@host:port/ */
char *password;
/** Hostname from URI (or from Host: header) */
char *hostname;
/** Port string (integer representation is in "port") */
char *port_str;
/** The request path (or "/" if only scheme://host was given) */
char *path;
/** Everything after a '?' in the path, if present */
char *query;
/** Trailing "#fragment" string, if present */
char *fragment;

/** Structure returned from gethostbyname() */
struct hostent *hostent;

/** The port number, numeric, valid only if port_str != NULL */
apr_port_t port;

/** Has the structure been initialized? */
unsigned is_initialized:1;

/** Has the DNS been looked up yet? */
unsigned dns_looked_up:1;
/** Has the DNS been resolved yet? */
unsigned dns_resolved:1;

};

The main functions provided are apr_uri_parse and apr_uri_unparse, which
convert between a string and the apr_uri struct.
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3.5.10 Processes and Threads

• apr_thread_proc provides process and thread management functions: cre-
ation, parent–child relationships including environment propagation, pipes,
rendezvous, and wait.

• apr_signal provides basic signal handling.

• apr_global_mutex provides global locks that protect the calling thread both-
from other threads and processes.

Processes

• apr_proc_mutex provides locks for the calling process against other
processes.

• apr_shm provides shared memory segments.

Threads

• apr_thread_mutex and apr_thread_rwlock provide thread locks/mutexes.

• apr_thread_cond provides thread conditions for synchronization of differ-
ent threads in a process.

Modules should be able to run in a multiprocess and/or multithreaded environ-
ment. Although they will rarely need to create a new thread, they may need to use
mutexes, shared memory, or other techniques to share resources and avoid race con-
ditions. Techniques for working with threads and processes in Apache are discussed
in Chapter 4.

3.5.11 Resource Pooling
The apr_reslist module manages a pool of persistent resources.

A database is a fundamental component of many web applications. Unfortunately,
connecting to it incurs an overhead that affects traditional application architectures
such as CGI and the environment commonly known as LAMP (Linux, Apache,
MySQL, [Perl|PHP|Python]). Using apr_reslist (APR’s resource pooling mod-
ule) with Apache 2’s threaded MPMs, we can achieve significant improvements in

78 Chapter 3 • The Apache Portable Runtime



performance and scalability in applications using “expensive” resources such as data-
bases, or back-end connections when proxying an application server.

Chapter 11 presents the DBD framework, which is one of the main applications of
connection pooling.

3.5.12 API Extensions
The following modules serve to enable new APIs:

• apr_hooks provides Apache’s hooks, a mechanism for exporting an API where
an extension (module) can insert its own processing

• apr_optional_hooks provides optional hooks, enabling different modules
to use each other’s APIs when both are present without creating a dependency.

• apr_optional provides optional functions, so that a module can use func-
tions exported by another module without creating a dependency. 

These extensions are discussed in depth in Chapter 10.

3.6 Databases in APR/Apache
Readers of a certain age will recollect a time in the 1980s when every application
for the PC came bundled with hundreds of different printer drivers on ever-grow-
ing piles of floppy disks. Eventually, the operating system implemented the sensible
solution: a unified printing API, so that each printer had a single driver, and each
application had a single print function that works with any driver.

The history of database support in Apache echoes this evolutionary path. At first,
Apache had no database support, so every module needing it had to implement it.
Apache 1.3 offered separate, yet virtually identical modules for authentication with
NDBM and Berkeley DB, and a whole slew of different (third-party) authentica-
tion modules for popular SQL databases such as MySQL. Similarly, every scripting
language—such as Perl, PHP and Python—had its own database management.

In time for the release of Apache 2.0, the apr_dbm module was developed to pro-
vide a unified interface for the DBM (simple key/value lookup) class of databases.
Most recently, the apr_dbd module has been introduced, providing an analogous
API for SQL databases. Just as with the printer drivers, the APR database classes
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eliminate the need for duplication and, as such, are the preferred means of database
support for new applications in APR and Apache.

3.6.1 DBMs and apr_dbm
DBMs have been with us since the early days of computing, when the need for fast
keyed lookups was recognized. The original DBM is a UNIX-based library and file
format for fast, highly scalable, keyed access to data. It was followed (in order) by
NDBM (“new DBM”), GDBM (“GNU DBM”), and the Berkeley DB. This last is
by far the most advanced, and the only DBM under active development today.
Nevertheless, all of the DBMs from NDBM onward provide the same core func-
tionality used by most programs, including Apache. A minimal-implementation
SDBM is also bundled with APR, and is available to applications along with the
other DBMs.

Although NDBM is now old—like the city named New Town (“Neapolis”) by the
Greeks in about 600 B.C. and still called Naples today—it remains the baseline
DBM. NDBM was used by early Apache modules such as the Apache 1.x versions
of mod_auth_dbm and mod_rewrite. Both GDBM and Berkeley DB provide
NDBM emulations, and Linux distributions ship with one or other of those emu-
lations in place of the “real” NDBM, which is excluded for licensing reasons.
Unfortunately, the various file formats are totally incompatible, and there are sub-
tle differences in behavior concerning database locking. These issues led a steady
stream of Linux users to report problems with DBMs in Apache 1.x.

Apache 2 replaces direct access to a DBM with a unified wrapper layer, apr_dbm.
There can be one or more underlying databases; this determination is made at build
time, either through a configuration option or by being detected automatically by
the build scripts (the default behavior). The database to be used by an application
may be passed as a parameter whenever a DBM is opened, so it is under direct pro-
grammer control (or administrator control, if the database is configurable) and can
be trivially switched if that ever becomes necessary. Alternatively, for cases like
authentication that are known to work well with any DBM, it can use a system
default. Apache has to support only a single DBM interface, so, for example, a sin-
gle DBM authentication module serves regardless of the underlying DBM used.

The apr_dbm layer, which is similar to the DBM APIs, is documented in
apr_dbm.h. When programming with it, one should not assume any locking,
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although update operations are safe if the DBM is either GDBM or the original
NDBM. Using a mutex for critical updates makes it safe in all cases.

The DBM functions supported in APR are basically the same as those common to
all of the DBMs—namely, an API essentially equivalent to NDBM, GDBM, and
early versions of Berkeley DB. Advanced capabilities of recent Berkeley DB ver-
sions, such as transactions, are not supported, so applications requiring them have
to access DB directly.

Example

The function fetch_dbm_value in mod_authn_dbm looks up a value in a DBM
database.
static apr_status_t fetch_dbm_value(const char *dbmtype,

const char *dbmfile,
const char *user, char **value,
apr_pool_t *pool)

{
apr_dbm_t *f;
apr_datum_t key, val;
apr_status_t rv;

rv = apr_dbm_open_ex(&f, dbmtype, dbmfile, APR_DBM_READONLY,
APR_OS_DEFAULT, pool);

if (rv != APR_SUCCESS) {
return rv;

}

key.dptr = (char*)user;
#ifndef NETSCAPE_DBM_COMPAT

key.dsize = strlen(key.dptr);
#else

key.dsize = strlen(key.dptr) + 1;
#endif

*value = NULL;

if (apr_dbm_fetch(f, key, &val) == APR_SUCCESS && val.dptr) {
*value = apr_pstrmemdup(pool, val.dptr, val.dsize);

}

apr_dbm_close(f);

return rv;
}
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3.6.2 SQL Databases and apr_dbd

NOTE The apr_dbd module is not available in APR0.x and,
therefore, Apache 2.0. It requires APR 1.2 or higher, or the 
current version of CVS.

SQL is the standard for nontrivial database applications, and many such databases
are regularly used with Apache in web applications. The most popular option is 
the lightweight open-source MySQL, but it is merely one choice among many
possibilities.

SQL databases are altogether bigger and more complex than DBMs, and are not in
general interchangeable, except where applications are explicitly designed to be
portable (or in a limited range of simple tasks). Nevertheless, a unified API for SQL
applications brings benefits analogous to the printer drivers.

The apr_dbd module is a unified API for using SQL databases in Apache and other
APR applications. The concept is similar to Perl’s DBI/DBD framework or libdbi
for C, but apr_dbd differs from these in that APR pools are used for resource 
management. As a consequence, it is much easier to work with apr_dbd in APR
applications.

The apr_dbd module is also unusual within APR in terms of its approach. Whereas
the apr_dbd API is compiled into libaprutil, the drivers for individual databases
may be dynamically loaded at runtime. Thus, when you install a new database pack-
age, you can install an APR driver for it without having to recompile the whole of
APR or APR-UTIL.

At the time of this writing, apr_dbd supports the MySQL, PostgreSQL, SQLite,
and Oracle databases. Drivers for other databases will likely be contributed in due
course.

The MySQL Driver

Apache views MySQL as a special case. Because it is licensed under the GNU
General Public License (GPL), a driver for MySQL must also be distributed under
the GPL (or not at all). This requirement is incompatible with Apache licensing
policy, because it would impose additional restrictions on Apache users.
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The author has dealt with this issue by making a MySQL driver available separately4

and licensing it under the GPL. Users requiring this driver should download it into
the apr_dbd directory or folder and build it there. If MySQL is installed in a stan-
dard location, it should then be automatically detected and built by the standard
APR-UTIL configuration process.

Usage

Apache modules should normally use apr_dbd through the provider module
mod_dbd.

3.7 Summary
This chapter presented a brief overview of the APR and APR-UTIL (APU), focus-
ing on those modules most likely to be of interest to developers of Apache applica-
tions. Many of the topics introduced here are discussed in more depth in later
chapters where they become relevant—indeed essential—to the techniques pre-
sented there.

Specifically, this chapter identified the principal roles of APR:

• A platform-independent operating system layer

• A solution to resource management issues

• A utilities and class library

We took a detailed look at the following topics:

• APR conventions and style

• APR pools and resource management in Apache

• The APR database classes

• The principal APR types

We also engaged in a brief tour of other APR modules. 
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An appreciation of the APR is fundamental to all C programming in Apache, and
the remainder of this book will use it extensively. For further reading on the APR,
you can refer to the excellent API documentation generated automatically from the
header files (available for browsing at apr.apache.org) and to INOUE Seiichiro’s
tutorial.5
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Before we start actually developing modules, we need to discuss matters of good
practice for safe, efficient, and portable programming. There are a number of
“gotchas” for the unwary, including thread safety and resource sharing between
processes, that arise from the behavior of different MPMs. Some of the techniques
in this chapter may be considered advanced, and the code examples will be easier to
follow after reading some further relevant background in the following chapters,
particularly Chapters 5, 6, and 9.

4.1 Apache Coding Conventions
A number of coding conventions apply within the Apache source code to ensure
consistency and facilitate readability and review. These conventions are, of course,
purely optional for third-party code, and examples used in this book may not always
follow them.

4
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4.1.1 Lines

• Lines of code should not exceed 80 characters, including any leading white-
space. Where necessary, continuation lines are used.

• Continuation lines are indented to align with the first term in a continued
expression or the first entry in a continued list.

• Separators (commas) appear in a continued line, but other binary operators
appear in the continuation.

• No whitespace appears before the final semicolon.

• Whitespace is used within lines where appropriate and not prohibited.

static my_return_type *my_long_func_name(int arg1, foo *arg2,
void **arg3)

if ((this != that) && (((x << 8) > y) || something_else++)
&& (error_code == 0)) {

/* ... */
}

4.1.2 Functions

• Functions are always declared with ANSI-C style arguments.

• No whitespace is used before or after the brackets around the argument list.

• Arguments are separated by a comma and a single space.

• The function’s opening and closing braces occupy their own lines, flush left.

static int my_func(int x, my_type *y)
{

/* function code here */
}

4.1.3 Blocks

• Blocks are indented by four spaces from their surrounding blocks. Tabs are not
permitted.

• Braces are always used, even where optional. Opening braces appear at the end
of the line introducing a block. Closing braces appear in a line of their own,
aligned with the code outside the block.
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/* surrounding code */
status = do_something(args);
/* a block */
if (status != success) {

/* handle an error condition */
report_error(status);

}

4.1.4 Flow Control

• Flow control elements follow blocking rules.

• case statements are not indented in a switch, but their code is indented.

if (foo == bar) {
/* do this */

}
else {

/* do that */
}

switch (xyz) {
case X:

/* code for X */
case Y:

/* code for Y */
case Z:

/* code for Z */
}

4.1.5 Declarations

• Declarations may include variable initialization where appropriate.

• Pointers are declared with the asterisk attached to the variable name, not to 
the type.

int x = 0;
const char *p;
my_type *my_var = apr_palloc(pool, sizeof(my_type));

4.1.6 Comments

• Comments always use C /* ... */ style.

• Multiline comments have a * aligned at the start of each line, including the
closing line of the comment.
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• Comments are aligned with the block they are in.

/* A multiline comment
* uses continuation lines like this
*/

4.2 Managing Module Data
When you first start programming, you learn about the scope of data. Typically (in
C and most other lexically scoped languages), a variable declared within a function
or block remains in scope until the end of the function or block, but thereafter is
undefined. Variables may also have global scope and remain defined throughout the
program. Of course, in terms of simple C programming, variables in Apache follow
these rules.

4.2.1 Configuration Vectors
Apache modules are based on callbacks. C does not provide a mechanism to share
data over two or more separate callback functions, other than global scope, which is,
of course, not appropriate in a multithreaded environment. Apache provides an alter-
native means of managing data: the configuration vector (ap_conf_vector_t). The
primary purpose of such vectors is, as the name suggests, to hold configuration data.
They also serve a more general purpose.

4.2.2 Lifetime Scopes
The Apache architecture naturally defines a different kind of scope for data—
namely, the core objects of process, server, connection, and request. Most data are
naturally associated with one of these objects (or some subobject such as a filter).
The Apache configuration vectors together with APR pools provide a natural frame-
work for module data to be tied to an appropriate object. This deals nicely with two
problems:

1. Using an appropriate configuration vector deals with the scoping issue,
making data available wherever they are required.

2. Using an appropriate pool deals with the lifetime of resources, ensuring that
they are properly cleaned up after use.

These techniques gives us three simple and useful associations: Variables and data
can be associated with the server, the connection, or the request objects.
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4.2.2.1 Configuration Data

Configuration data (Chapter 9) are set at server start-up, but can be accessed 
later by looking them up on the configuration vectors from request_rec or
server_rec:
svr_cfg* my_svr_cfg =

ap_get_module_config(server->module_config, &my_module);
dir_cfg* my_dir_cfg =

ap_get_module_config(request->per_dir_config, &my_module);

When the server is running, configuration data should be treated as strictly read-
only. Any changes will affect not only the current request, but also any other
requests running concurrently or later in the same process.

4.2.2.2 Request Data

Apart from the configuration, the most common nontrivial case we have to deal
with is where data need to be created in the course of processing a request, but
scoped over more than one hook. Apache provides a pool and a configuration vec-
tor that are explicitly intended to enable modules to give variables the scope and
lifetime of a request:
static int my_early_hook(request_rec* r) {
req_cfg* my_req ;
...
my_req = apr_palloc(r->pool, sizeof(req_cfg)) ;
ap_set_module_config(r->request_config, &my_module, my_req);
/* Set the data fields of my_req as required */

}

static int my_later_hook(request_rec* r) {
req_cfg* my_req = ap_get_module_config(r->request_config, &my_module);
/* Now we have all the data and we can do what we want with it */

}

And if we have a hook where the req_cfg may or may not be already set:
static int my_other_hook(request_rec* r) {
req_cfg* my_req;
...
my_req = ap_get_module_config(r->request_config, &my_module);
if (my_req == NULL) {
/* It hasn't been set yet */
my_req = apr_palloc(r->pool, sizeof(req_cfg)) ;
ap_set_module_config(r->request_config, &my_module, my_req);
/* Set the data fields of my_req as required */

}
/* Now we have my_req, whether or not it was already set */

}
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The lesson here is to get into the habit of using the request configuration vector
whenever we have data that need to be scoped over more than one hook. The con-
figuration struct itself is, of course, completely defined by the module, and it con-
tains exactly what the module needs it to contain. If the module is complex and has
multiple different hooks, each of which needs to set variables for later use, the dif-
ferent data should be combined in the configuration vector—for example, by giv-
ing each function its own substructure.

Note the standard use of the request pool to allocate the request configuration vec-
tor. The request configuration vector, therefore, will be freed at the end of the
request, which is exactly what we want. Any data members that involve dynamic
resource allocation should similarly use the request pool or register a cleanup on it,
as discussed in Chapter 3 and illustrated in examples throughout this book. The
request pool and request configuration solve the problem of resource management
in request processing.

4.2.2.3 Connection Data

The connection is the other transient core object in Apache. It, too, presents a pool
and a configuration vector for management of connection data. Use of the connec-
tion configuration and pool is exactly analogous to their use with the request.

4.2.2.4 Persistent Data

A more complex case arises where a module needs to manage persistent but non-
constant data. Such data may be held on the server_rec object (separate from any
configuration data fields), or even given global scope. In either case, thread-safety
becomes an issue, and we need to use a mutex for any critical operations. We usu-
ally also need to define a pool for our module, as we should normally only use the
process pool at server startup. The mutex and the pool will have the same scope and
lifetime as the variable data. We’ll discuss this in detail below.

4.3 Communicating Between Modules
Modules can communicate and interact in various ways. Chapter 10 presents a
range of advanced methods for exporting an API and providing a service. For sim-
pler needs, the request_rec object provides some straightforward methods we
should look at first.
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r->subprocess_env

r->subprocess_env is an apr_table that has the lifetime of a request and is
shared by all modules. It was originally Apache’s internal representation of the CGI
environment; as such, it would be set whenever CGI or SSI was in use. It has sub-
sequently acquired a much wider range of uses—in advanced configuration such as
mod_rewrite and mod_filter, and in all the embedded scripting languages.

Any module can set values in the subprocess_env. Two, in particular, are note-
worthy: mod_env and mod_setenvif are configuration modules whose purpose is
to enable system administrators to determine environment variables.

In addition to the standard CGI/scripting environment, modules can define their
own variables to enable another module or a system administrator to control some
aspect of module behavior. Examples in the core distribution include mod_deflate
responding to environment variables such as no-gzip and force-gzip to override
default behavior, and even the core HTTP protocol module responding to
nokeepalive. These environment variables are commonly determined using the
Browsermatch directive, which is implemented by mod_setenvif.

Finally, mod_rewrite’s E flag sets an environment variable in a RewriteRule.
Modules can take advantage of this capability by using an environment variable to
determine aspects of behavior. This gives system administrators access to the full
power of mod_rewrite to configure the system dynamically.

r->notes

r->notes is another apr_table_t having the lifetime of a request. Its purpose is
explicitly to enable modules to leave notes for each other. Unlike subprocess_env,
it serves no other purpose. We’ll see an example of its use in Chapter 6, where we
use r->notes to set an error message that can be displayed in an error page
returned to a user.

r->headers_in

r->headers_in holds the request headers; it is available to all modules. A module
may “fake” request headers by manipulating them. For example: 

• mod_headers reads “faked” headers set in the Apache configuration, and sets
them in this internal table.
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• mod_auth_cookie1 sets a faked Authorization header from a cookie, so that
Apache can authenticate the user using standard HTTP basic authentication.

r->headers_out

r->headers_out holds the response headers. Since these response headers describe
exactly what Apache is returning to the client, modules should set them whenever
they do something that affects the protocol. They are converted from the
apr_table_t to simple text in the HTTP protocol core output filter.

r->err_headers_out

r->err_headers_out also holds response headers. However, whereas 
r->headers_out is discarded if request processing is diverted into an internal redi-
rect or error document (Chapter 6), r->err_headers_out is preserved. As a con-
sequence, it is suitable for tasks such as setting headers when redirecting a client.

4.4 Thread-Safe Programming Issues
For the most part, thread safety in Apache is the same as in any other software
environment:

• Don’t use global or static data (except for constants). Global data may be set
during configuration or in a pre-configuration or post-configuration hook,
but should not be modified thereafter. In almost all nontrivial situations, you
should use the configuration vectors in preference to global variables.

• Don’t call functions that are not themselves thread-safe and reentrant.

• If you ever need to violate either of the preceding guidelines, use a mutex to
do so in a critical section, and prevent concurrent modifications by multiple
threads.

One more rule applies in Apache: Don’t change values of configuration data. Treat
configuration variables with the same respect as you treat global variables. Stated in
general terms, apply the same principles of thread safety in Apache as you would 
in any other environment.
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Now let’s formulate these rules for Apache in terms of dos rather than don’ts:

1. When processing a request, use the fields of the request_rec—in partic-
ular, the request pool and the request configuration vector. Treat everything
else as read-only.

2. When processing a connection, use the fields of the conn_rec—in partic-
ular, the connection pool and the connection configuration vector. Treat
everything else as read-only.

3. Use configuration functions or functions hooked to post_config to
initialize constant module data, including values determined by the
configuration.

4. Use module-private resources to manage data that outlive a request or 
connection yet cannot be treated as constant. Use a child_init hook to
initialize such resources.

The last rule is the only one that requires us to do anything nontrivial. Let’s take a
closer look at it.

4.5 Managing Persistent Data
When we discussed data scoping with pools and configuration vectors earlier, we
deferred our discussion of managing persistent data. Chapter 10 presents one
important example: mod_dbd managing a pool of database connections. But in that
case, all of the hard work is delegated to apr_reslist. How do we deal with this
situation more generally? Let’s consider a typical case where we’re managing a
dynamic cache in a hash table. We must deal with two issues in this scenario: pro-
viding thread safety and avoiding memory or other resource leaks.

4.5.1 Thread Safety
The crucial step is to use a child_init hook to set up the dynamic resource:
typedef struct {

/* Server configuration as applicable */
int foo;
const char* bar;
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/* A persistent but variable resource */
apr_pool_t *pool;

#if APR_HAS_THREADS
apr_thread_mutex_t *mutex;

#endif
apr_hash_t *cache;

} my_svr_cfg;

static void my_child_init(apr_pool_t *pchild, server_rec *s)
{

apr_status_t rv;

/* Get the config vector.  It already contains the configured
* values of foo and bar, but the other fields are unset.
*/
my_svr_cfg* svr =

ap_get_module_config(s->module_config, &my_module);

/* Derive our own pool from pchild */
rv = apr_pool_create(&svr->pool, pchild);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, pchild,
"Failed to create subpool for my_module");

return;
}

/* Set up a thread mutex for when we need to manipulate the cache */
#if APR_HAS_THREADS

rv = apr_thread_mutex_create(&svr->mutex,
APR_THREAD_MUTEX_DEFAULT, pchild);

if (rv != APR_SUCCESS) {
ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, pchild,

"Failed to create mutex for my_module");
return;

}
#endif

/* Finally, create the cache itself (and prime it if applicable) */
svr->cache = apr_hash_make(svr->pool);

}

The MPM code calls the child_init hook, after forking the child process but
before entering operational mode and (in a threaded MPM) before creating threads.
The pchild pool is created by the MPM as a process-wide subpool of the process
pool itself (s->process->pool).

Now, when we want to add to the cache later, we are equipped to do so safely:
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static int some_hook(request_rec *r)
{

/* Get the server config vector.  This now serves two purposes:
* it contains the configuration data foo and bar, and it holds the
* dynamic part.
*/
my_svr_cfg *svr =

ap_get_module_config(s->module_config, &my_module);
const char *key;
my_data_t *val;

key = compute_my_key(r);  /* set key from somewhere */

/* Look up key in the cache */
val = apr_hash_get(svr->cache, key, APR_HASH_KEY_STRING);

if (val == NULL) {
#if APR_HAS_THREADS

/* If it isn't cached, we need to compute it and save it to
* the cache.  That's a critical section, so we need the mutex.
*/
rv = apr_thread_mutex_lock(svr->mutex);
if (rv != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"Failed to acquire thread mutex");

return HTTP_SERVICE_UNAVAILABLE;
}

/* In case of a race condition between cache lookup and
* obtaining the lock, perform the lookup again.
* Not a performance problem unless this happens a lot.
*/
val = apr_hash_get(svr->cache, key, APR_HASH_KEY_STRING);

if (val == NULL) {
/* OK, we really do need to compute it */
val = compute_my_val(r, svr);  /* do whatever it takes */
apr_hash_set(svr->cache, key, APR_HASH_KEY_STRING, val);

}
#else

/* No threads = no risk of a race condition.  Just set it. */
val = compute_my_val(r, svr);  /* do whatever it takes */
apr_hash_set(svr->cache, key, APR_HASH_KEY_STRING, val);

#endif
}

#if APR_HAS_THREADS
rv = apr_thread_mutex_unlock(svr->mutex);
if (rv != APR_SUCCESS) {

/* Something is seriously wrong.  We need to log it,
* but it doesn't -– of itself -– invalidate this request.
*/
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ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"Failed to release thread mutex");

}
#endif

/* Now we have val, do whatever else this hook is doing */
...
return OK;

}

If we want to change an existing value, we similarly need to use the mutex to pro-
tect our critical code.

4.5.2 Memory/Resource Management
As we saw in Chapter 3, APR pools provide a full and elegant solution to most
resource management problems in Apache. Persistent resources are an exception,
however, because they bring up a new problem: Are we leaking memory (or any
other resource)? In the preceding code, if cache entries are ever deleted, the APR
pool mechanism for managing resources fails us, because the pool lives on. This
becomes a bug, which a server administrator will have to work around by limiting
MaxRequestsPerChild to prevent an indefinite leak.

Several approaches are available to deal with this problem.

Garbage Collection

Instead of terminating the entire child, it is more efficient overall just to terminate
our own resource from time to time and reclaim any possibly leaked resources. We
can do so by tearing down the pool we’ve been using and starting anew. We’ll need
to make provision for this in our child_init function. In summary:

1. Add pchild to the my_svr_cfg struct.

2. Add a counter or a timeout to the my_svr_cfg struct.

3. Now we can clear garbage by winding up the module’s pool, creating a new
pool from pchild, and starting again. This activity must, of course, take
place in a critical section, which is why the mutex needs to outlive the pool.

Let’s take a look at a function to add garbage collection to our hash example. We
call this function whenever an operation might leak, and we maintain a counter so
that it does the real work only when it’s got a decent amount of real work to do. Of
course, any operation that might leak will be happening under mutex anyway.
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static apr_status_t do_garbage(my_server_cfg *svr)
{

/* Call this only while we hold the mutex within some hook */

apr_hash_index_t *index;
const void *key;
apr_ssize_t klen;
my_val_type *val;
apr_pool_t *newpool;
apr_hash_t *newcache;
apr_status_t rv;

if (svr->count++ < svr->max_count) {
return APR_SUCCESS;

}
/* Creating the new pool is actually a very slow leak on pchild */
/* We can avoid this by creating and using a spare pool in place
* of pchild (inefficient but doesn't leak) or, more simply, by
* creating and destroying top-level pools.
*/
rv = apr_pool_create(&newpool, svr->pchild);
if (rv != APR_SUCCESS) {

return rv ; /* We should also log an error message here */
}

/* Copy current cache entries */
newcache = apr_hash_make(newpool);

/* Deep-copy current entries in our cache */
for (index = apr_hash_first(NULL, svr->cache); index != NULL;

index = apr_hash_next(svr->cache)) {
apr_hash_this(svr->cache, &key, &klen, &val);

/* Now we need to deep-copy key and val.
* Of course, we also need an application-specific
* deep_copy function.
*/
apr_hash_set(newcache, apr_pstrdup(newpool, key), klen,

deep_copy(newpool, val));
}

/* Clean up the old pool. Delete the old hash together
* with any hitherto-leaked stuff.
*/
apr_pool_destroy(svr->pool);

/* Reset our data fields */
svr->pool = newpool;
svr->cache = newcache;
svr->count = 0;

/* All done successfully */
return APR_SUCCESS;

}
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Sometimes we can get away with much less. For example, if we have a hash of
objects that time out, and re-creating them is not too expensive, we could dispense
with copying anything at all. Then the preceding code reduces to the much simpler
function shown here:
/* As in the more complex case, this maybe-garbage-collect
* must always happen under thread mutex
*/
static apr_status_t do_garbage(my_server_cfg *svr)
{

if (svr->count++ >= svr->max_count) {
/* Just clean up everything, including the hash and its contents
* along with whatever may have leaked.
*/

apr_pool_clear(svr->pool);

/* Re-initialize the cache and counter */
svr->cache = apr_hash_new(svr->pool);
svr->count = 0;

}

/* All done successfully */
return APR_SUCCESS;

}

This is the “clean” alternative to leaking and using MaxRequestsPerChild as a
workaround.

Use of Subpools

A variant on the garbage collection scheme is to use a subpool for every hash entry.
With this approach, we can delete the subpool and reclaim resources whenever the
entry itself is deleted. Because the subpools themselves incur overhead, this strategy
is most likely to be appropriate when the number of resources is modest, but their
size and complexity is such that they dominate relative to the overhead associated
with the pools themselves.

Given that the subpools are allocated from the main pool, they are themselves a
resource that needs to be managed and a potential source of memory leaks.
Subpools offer a partial solution to the problem, but should be used in conjunc-
tion with one of the other solutions—for example, clearing and reusing the
subpools.
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Reuse of Resources

When the objects we are managing are of fixed size, we can manage the memory
ourselves within the module:

• We can allocate an array of objects, together with an indexing array of free/in-
use flags.

• When we need an object, we can claim it from the array. When we’ve finished
with it, we can mark it as “free.”

We can use this strategy with variable-sized objects by using subpools and manag-
ing the subpools themselves as the fixed-sized objects in the array. When we finish
with an object, we run apr_pool_clear, but keep the pool itself for reuse.

Use of a Reslist

The apr_reslist serves to manage a pool of resources for reuse, providing a fully
managed solution for us. It is most appropriate where the resources themselves carry
a high cost. mod_dbd (see Chapter 10) is a usage example. For a case like our cache
example, we could either use a reslist of subpools or manage blocks of memory and
thereby avoid any dynamic allocation.

4.6 Cross-Platform Programming Issues
Provided we use the APR, cross-platform programming is basically straightforward.
The problem, in this case, is equivalent to that seen with cross-MPM programming:

For example:

• The apr_file_io, apr_file_info, and apr_fnmatch modules provide a
platform-independent filesystem layer.

• The apr_time module deals with timing issues.

• The apr_user module provides a platform-independent implementation of
system users and groups.

• The apr_*_mutex modules provide cross-platform locks.

The lesson here: Avoid nonportable system calls and use these APR modules 
wherever they exist.
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4.6.1 Example: Creating a Temporary File
Working on a UNIX or UNIX-like platform, we can create a temporary file, avoid-
ing the widely deprecated tmpfile() system call:
FILE *create_tmpfile_BAD(apr_pool_t *pool)
{

FILE *ret ;
char *template = apr_pstrdup(pool, "/tmp/my-module.XXXXXX");
int fd = mkstemp(template);

if (fd == -1) {
apr_log_perror(....);
return NULL;

}

ret = fdopen(fd, "rw");
if (ret == NULL) {

apr_log_perror(....);
close(fd);
return NULL;

}
apr_pool_cleanup_register(pool, ret, (void*)fclose,

apr_pool_cleanup_null);
return ret;

}

This code is fully correct and complete. We’ve created a temporary file using the
standard secure mechanism, handled errors, and registered a cleanup to tie our tem-
porary file to the lifetime of the pool. But it may not be fully portable:

1. The /tmp/ directory is only valid in a UNIX or UNIX-like filesystem.

2. fdopen relies on POSIX.

3. The FILE* type, while valid across platforms, may support different and
nonportable operations on some platforms.

Here’s an APR-based version guaranteed to be portable across all supported platforms:
apr_file_t* create_tmpfile_GOOD(apr_pool_t *pool)
{

apr_file_t *ret = NULL;
const char *tempdir;
char *template;
apr_status_t rv;

rv = apr_temp_dir_get(&tempdir, pool);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_ERR, rv, pool, "No temp dir!");
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return NULL;
}

rv = apr_filepath_merge(&template, tempdir, "my-module.XXXXXX",
APR_FILEPATH_NATIVE, pool);

if (rv != APR_SUCCESS) {
ap_log_perror(APLOG_MARK, APLOG_ERR, rv, pool,

"File path error!");
return NULL;

}

rv = apr_file_mktemp(&ret, template, 0, pool);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_ERR, rv, pool,
"Failed to open tempfile!");

return NULL;
}

return ret;
}

A second reason for using APR functions here is to avoid binary compatibility
issues, which may potentially arise when the module is compiled in a different envi-
ronment to Apache/APR. For example, different versions of Microsoft’s Visual C++
reportedly generate binary-compatible code if and only if the module avoids a wide
range of native system calls, which it can do by delegating the system layer to APR.

4.7 Cross-MPM Programming Issues
As already hinted at, the MPM is really the platform for Apache. Because the APR
deals with native platform issues such as the filesystem, the remaining MPM issues
are the difficult ones. Principally, we have to deal with the consequences of running
single or multiple processes, and implementing single or multiple threads within a
process. This is not an “either/or” situation, however: Apache may also run with
both multiple processes and multiple threads per process.

We’ve already discussed thread safety in Apache. The other major issue we need to
deal with is coordinating between different processes. This coordination is generally
expensive, and the types of interprocess interactions we can implement within the
context of the standard Apache architecture are limited. Fortunately, such coordi-
nation is rarely necessary: While few modules need to concern themselves proac-
tively with thread safety or resource management, fewer still need to concern
themselves with interprocess issues.
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There are two basic requirements you commonly have to consider:

• Global locks

• Shared memory

The APR provides Apache with support for both of these requirements.

4.7.1 Process and Global Locks
We’ve seen how using an APR thread mutex protects a critical section of code man-
aging a server-based resource shared between threads. But APR provides two fur-
ther mutexes: the process mutex apr_proc_mutex and the global mutex
apr_global_mutex. When a module updates a globally shared resource (other
than one with its own protection, such as an SQL database, or another server we
are merely proxying), we need to use the latter mutex to protect critical sections of
code. A case in which such a need often arises is when we are creating or updating
files on the server.

The APR global mutex is more complex and more expensive than the thread mutex.
The complexity lies in the initial setup of the mutex. First, it must be created in the
parent process in the post_config phase. Second, each child has to attach to it in
the child_init phase:
static int my_post_config(apr_pool_t *pool, apr_pool_t *plog,

apr_pool_t *ptemp, server_rec *s)
{

/* Several types of locks are supported; see apr_global_mutex.h
* APR_LOCK_DEFAULT selects a lock type considered appropriate
* for the platform we are running on.
*/
apr_status_t rc;
my_svr_cfg *cfg =

ap_get_module_config(s->module_config, &my_module);

rc = apr_global_mutex_create(&cfg->mutex, cfg->mutex_name,
APR_LOCK_DEFAULT, pool) ;

if (rc != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_CRIT, rc, s,

"Parent could not create mutex %s", cfg->mutex_name);
return rc;

}
#ifdef AP_NEED_SET_MUTEX_PERMS

rc = unixd_set_global_mutex_perms(cfg->mutex);
if (rc != APR_SUCCESS) {

ap_log_error(APLOG_MARK, APLOG_CRIT, rc, cfg,
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"Parent could not set permissions on global mutex:"
" check User and Group directives");

return rc;
}

#endif
apr_pool_cleanup_register(pool, cfg->mutex,

(void*)apr_global_mutex_destroy, apr_pool_cleanup_null) ;
return OK ;

}

static void my_child_init(apr_pool_t *pool, server_rec *s)
{

my_svr_cfg *cfg
= ap_get_module_config(s->module_config, &my_module) ;

apr_global_mutex_child_init(&cfg->mutex, cfg->mutex_name, pool) ;
}

static void my_hooks(apr_pool_t *pool)
{

ap_hook_child_init(my_child_init, NULL, NULL, APR_HOOK_MIDDLE);
ap_hook_post_config(my_post_config, NULL, NULL, APR_HOOK_MIDDLE) ;
ap_hook_handler(my_handler, NULL, NULL, APR_HOOK_MIDDLE) ;

}

Now we’ve shown the two stages of global mutex creation and hooked an additional
function: the content generator my_handler. A content generator is the most likely
place in Apache to need a global mutex. Having set up our mutex in the server initial-
ization, we can use it in the same manner as our thread mutex in any of our handlers:
static int my_handler(request_rec *r)
{

/* Handler that edits some file on the server */
apr_status_t rv;
my_svr_cfg *cfg;

cfg = ap_get_module_config(r->server->module_config, &my_module);

/* Acquire the mutex */
rv = apr_global_mutex_lock(cfg->mutex);
if (rv != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"my_module: failed to acquire mutex!");

return HTTP_INTERNAL_SERVER_ERROR;
}
/* Register a cleanup, so we don't risk holding the lock
* forever if something bad happens to this request
*/
apr_pool_cleanup_register(r->pool, cfg->mutex,

(void*)apr_global_mutex_unlock,
apr_pool_cleanup_null);
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/* Now perform our file ops while we have the global lock */

/* If everything went OK, we can release the lock right now.
* It may be worthwhile if there's much more processing yet to come
* before this request is finished.
*/
rv = apr_global_mutex_unlock(cfg->mutex);
if ( rv != APR_SUCCESS ) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"my_module: failed to release mutex!");

}
apr_pool_cleanup_kill(r->pool, cfg->mutex, apr_global_mutex_unlock);

/* Further processing that doesn't require the mutex */

return OK;
}

4.7.2 Shared Memory
Many applications designers identify a shared resource as a requirement.
Sometimes—as in the example case of editing a file—the shared resource has an
independent existence. In other cases, the resource is internal to the webserver, as in
a situation involving shared memory.

Consider, for example, the cache we examined earlier in this chapter. If our data are
worth caching, presumably it’s more expensive to compute them than to maintain
a cache. So wouldn’t it be better to share the cache over all processes, rather than
duplicate it for every process?

The answer to this question is commonly “no.” Shared memory is computationally
expensive and too inflexible for the task of maintaining such a cache without incur-
ring much more work. At the most fundamental level, there is no mechanism for
memory allocation, and C pointers cannot meaningfully be shared. For all these
reasons, you may want to avoid shared memory in your design.

Of course, sometimes you really do need shared memory. As usual, APR provides
support for it.

Shared Memory: apr_shm

The APR shared memory module apr_shm serves well to share fixed-size data such
as simple variables or structs comprising data members but no pointers.
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Pointers in Shared Memory: apr_rmm

As mentioned earlier, pointers in apr_shm shared memory are meaningless, because
the address space they point to is not shared. It is possible to implement pointers in
shared memory by using another APR module, apr_rmm, to manage a block of
memory allocated by apr_shm. As an example, mod_ldap uses this combination to
manage a shared cache with dynamic allocation:
apr_status_t util_ldap_cache_init(apr_pool_t *pool, util_ldap_state_t *st)
{
#if APR_HAS_SHARED_MEMORY

apr_status_t result;
apr_size_t size;

if (st->cache_file) {
/* Remove any existing shm segment with this name. */
apr_shm_remove(st->cache_file, st->pool);

}

size = APR_ALIGN_DEFAULT(st->cache_bytes);

result = apr_shm_create(&st->cache_shm, size,
st->cache_file, st->pool);

if (result != APR_SUCCESS) {
return result;

}

/* Determine the usable size of the shm segment */
size = apr_shm_size_get(st->cache_shm);

/* This will create an rmm "handler" to get into the shared memory area */
result = apr_rmm_init(&st->cache_rmm, NULL,

apr_shm_baseaddr_get(st->cache_shm), size,
st->pool);

if (result != APR_SUCCESS) {
return result;

}

#endif
/* OMITTED FOR BREVITY */
/* Register a cleanup on the pool to run apr_rmm_destroy
* and apr_shm_destroy when apache exits.
*/

/* More initialization for ldap */

return APR_SUCCESS;
}
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Now mod_ldap can use the apr_rmm functions (including versions of malloc,
calloc, realloc, and free) and obtain pointers in shared memory. However, we
are still working with a fixed-sized block, and our apr_rmm operations will be sub-
stantially slower than normal apr_pool allocation.

Fully Generic Shared Memory

If we wish to implement other APR and Apache data types in shared memory, we
might want to implement an APR pool based on our apr_rmm functions. This is
not possible in the APR as it stands, but such a strategy could, in principle, be made
to work with modest modifications based on an alternative apr_allocator that
uses the apr_rmm memory block and functions. Unfortunately, handling errors and
managing pool lifetime are unlikely to be straightforward operations with this
approach.

Persistent/Unlimited Shared Resources: apr_dbm and apr_memcache

DBM files are keyed lookup databases, typically based on hashing and fast lookup.
They are (usually) held on the filesystem, so they can be used to share arbitrary data
between processes. These databases, which represent an alternative to apr_shm/
apr_rmm, are better suited to management of larger shared resources or resources
whose sizes cannot be set in the Apache configuration. They are also persistent,
meaning that they will survive a restart of Apache.

The apr_memcache module is functionally similar (though by no means identical)
to apr_dbm, but uses a (possibly remote) memcached2 server instead of the local
filesystem.

4.8 Secure Programming Issues

Warning

This section is not intended to serve as a general discussion of web and application
security, nor even of programming modules for security-related tasks. Full coverage
of these issues is beyond the scope of this book. Instead, we offer general good-
practice tips and describe a few specific issues concerning programming for a
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sometimes-hostile environment. For further reading, two books this author has
reviewed and can recommend are Ryan C. Barnett’s Preventing Web Attacks with
Apache and Ivan Ristic’s Apache Security.3

If you are responsible for running a server and are uncertain of the security of
applications running on it, you should probably also consider deploying the 
web application firewall module mod_security.4 However, matters of server
administration fall outside the scope of this book.

4.8.1 The Precautionary Principle: Trust Nothing

Validate Inputs Proactively

Perl provides a superb aid to application security: taint checking. Taint checking
causes external inputs to be treated as untrusted, so Perl will prevent them from
being used in an unsafe operation. For example, you can print tainted data out to a
browser, but you cannot use them in any exec or filesystem operation, as the tainted
data might enable malicious input to compromise the system. Before you can use any
input data in a potentially unsafe operation, it must first be untainted. That means
proactively matching inputs to patterns—such as regular expressions—that deter-
mine exactly which inputs the application permits, and rejecting anything that
doesn’t match the specified patterns.

For example, an input representing a filename might be matched to a regular
expression [\w-_]{1-16}\.\w{3}. That matching criterion is, of course, far more
restrictive than is necessary under any modern filesystem. But this tougher standard
is not a critical issue: It just means that the application is a little more restrictive, in
an unimportant area, than is strictly necessary. More importantly, it prevents an
attacker from using a carefully crafted filename to compromise system security—for
example, reading “../../../../../etc/passwd” or executing a command with
“do_something_bad|” [in Perl, the | turns open() into popen()].

Although no equivalent enforcement mechanism is available in C, the same prin-
ciples apply whenever an Apache module uses input data, whether from request
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headers, request entities (bodies), or any other source. Decide exactly what form
the input data can take. Err on the side of caution where necessary. Check every
input for conformance to allowed patterns. Refuse the request, typically by return-
ing HTTP status 400 (bad request) if anything fails to match. To keep the input
process reasonably user-friendly in case a legitimate user makes an honest mistake,
you may want to construct an explanatory error page; of course, you can also del-
egate that task to system administrators by advising them to use an appropriate
ErrorDocument.

Use Inputs Safely

An important principle of security is not to rely on a single method of enforcement.
No matter how carefully validated your inputs, it’s worth using any means at your
disposal to ensure they cannot be abused.

For example, consider authentication by SQL lookup with a statement like

statement = "SELECT password FROM authn WHERE user = '%s'"

together with a user value coming from the client.

If our module used something like
stmt = apr_psprintf(pool, statement, user);
apr_dbd_select(driver, pool, handle, &res, stmt, 0);

it would expose us to attacks such as an intruder adding himself to our database

user = "evil'; INSERT INTO authn VALUES (evil, password_for_evil);'"

or simply wiping the database in a similar manner.

In this case, the solution is obvious: Prepare the original statement, and pass the
username as a parameter, so that the database treats the input as a string literal,
eliminating this risk. In general, apply the same principle wherever possible: Ensure
that inputs can never be treated as commands, only as data.

Apart from dbd, we must apply similar precautionary principles to logging, print-
ing to the client, and—above all—system calls.

Don’t Cut Corners!

Sloppy programming creates fertile ground for would-be security exploits. Ensure
that your code is free of such vulnerabilities:
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• Check the error status of all system calls and APR calls. Don’t just ignore a
return code. If there’s no simple way to recover, abort request processing 
and return HTTP_INTERNAL_SERVER_ERROR to divert the request to an
ErrorDocument. An internal error has occurred, and it’s far better to admit
that a problem exists than to cover it up and risk something far worse
happening.

• Avoid buffer overflows. Never write to an already-allocated buffer without first
checking that the data being written fit within the buffer.

Don’t Be Afraid of Errors!

Sometimes you may be unsure what to do, as when dealing with an unexpected
event in a complex situation. Your module should handle all events that you antic-
ipate, but should also deal with events that seem unlikely or even impossible when
the module is first written (maybe your impossible event will become possible in a
future update). If it is not reasonable to think through every eventuality, just bail
out with an error. With this approach, you’ve got a limitation, but you’ve also closed
a potential security hole. Log an error message to help identify and fix it, should
that ever become necessary.

4.8.2 Denial of Service: Limit the Damage
A denial of service (DoS) occurs when your server becomes too overloaded to man-
age its normal functions. Of course, it’s very easy to initiate a DoS yourself: From
the pure fork bomb to the elusive memory leak, programming bugs or deliberate
misuse can bring a server to its knees. Unfortunately, it’s almost as easy to initiate
a DoS from a third-party server over the Internet. Causes can range from a targeted
malicious attack to something perfectly innocent like the “slashdot effect,” in
which a site is suddenly inundated with higher levels of legitimate traffic than the
server and network can handle. The worst form of attack is the distributed denial
of service (DDoS), which occurs when an attacker has access to thousands of dif-
ferent machines around the world5 and cobbles all of them together to mount a
brute force attack.

5. Usually Windows machines where a virus enables the attacker to take control on demand.
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The primary responsibility for protecting against DoS lies with system administra-
tors, who may choose to deploy explicit DoS protection such as special-purpose
modules. Modules for Apache include the following:

• mod_evasive6 (formerly mod_dosevasive) is a sophisticated module that
limits the amount of traffic per client IP the server will accept.

• mod_cband7 is a general-purpose module that shapes traffic and manages
bandwidth and numbers of connections.

• mod_load_average8 is a simple module that avoids taking on heavy process-
ing tasks when the server is already heavily loaded. Apache will return HTTP
status 503 (the server is too busy) when processing the request normally would
demand more of the system’s resources.

• mod_robots9 is a very simple module that denies access to badly behaved
robots. It can also be used against spambots identifiable by user-agent.

For normal modules—those whose primary purpose isn’t concerned with protect-
ing the server—there is little you can or should do to protect them against DoS
attacks. The main issue is to limit your module’s total resource consumption:

• Manage expensive resources using apr_reslist or a similar means, so that
the system administrator can set limits on the number of concurrent users.

• Use timeouts on client I/O, including network-level filters.

• Stream all I/O. If that is not possible, ensure that a system administrator can
set limits on I/O size. Note that this approach may directly conflict with the
use of mod_security to protect vulnerable applications such as PHP, because
some uses of mod_security prevent I/O streaming.

• If your module supports large/long transactions (e.g., streaming media),
reclaim memory and other resources regularly. This may mean using local
pools and clearing them regularly and/or performing explicit cleaning of
brigades in the filter chain.
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4.8.3 Help the Operating System to Help You
It is up to system administrators to set up Apache securely, including using the pro-
tections provided by operating systems. The role of the application developer is to
make as few demands as possible on the operating system that would be incompat-
ible with security measures.

Privileges

Assume that Apache has no system privileges, such as a shell or ownership of any
files or directories. If your module requires anything, it inevitably compromises best
practices with regard to security.

Avoid requiring the identity or privileges of any system user, especially root. If your
module absolutely must do something that requires root privileges,10 it should run
the privileged operations in a separate, ultra-simple, single-purpose process, so that
Apache httpd doesn’t have to be given privileges. The same guideline applies, albeit
a little less strongly, to other users. CGI with suexec11 is a good sandbox for appli-
cations requiring medium-level privileges.

Networking

Work with a firewall. If your module needs to perform its own network I/O, make
sure that the system administrator can fix the ports and IP addresses used (subject to
the constraints of your application), so that the firewall can be kept simple and tight.

Protect yourself from broken or malicious input from your own network I/O just
as you would with incoming HTTP requests.

Filesystem

Use the precautionary principle in accessing the filesystem. Let the system admin-
istrator define (in httpd.conf) areas of the filesystem you will access, and never
stray outside those areas.

Flags to enforce this restriction are available in the apr_filepath calls. For example,
the following function from mod_include prevents SSI inclusion of unauthorized
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and possibly sensitive files. First we resolve the filename passed, rejecting anything
that takes us out of the permitted area of the filesystem (e.g., paths such as
“../../../../etc/passwd”). Then we perform a subrequest lookup (see
Chapter 6) to check that the file really is available to Apache (and that it is found
where we expect it to be), before allowing it to be served. If find_file returns a
nonzero value, the directive accessing the file will fail.
static int find_file(request_rec *r, const char *directive,

const char *tag, char *tag_val, apr_finfo_t *finfo)
{

char *to_send = tag_val;
request_rec *rr = NULL;
int ret=0;
char *error_fmt = NULL;
apr_status_t rv = APR_SUCCESS;

if (!strcmp(tag, "file")) {
char *newpath;

/* Be safe; only files in this directory or below allowed */
rv = apr_filepath_merge(&newpath, NULL, tag_val,

APR_FILEPATH_NOTABOVEROOT |
APR_FILEPATH_SECUREROOTTEST |
APR_FILEPATH_NOTABSOLUTE, r->pool);

if (rv != APR_SUCCESS) {
error_fmt = "unable to access file \"%s\" "

"in parsed file %s";
}
else {

/* Note: it is OK to pass NULL for the "next filter" because
we never attempt to "run" this subrequest */

rr = ap_sub_req_lookup_file(newpath, r, NULL);

if (rr->status == HTTP_OK && rr->finfo.filetype != 0) {
to_send = rr->filename;
if ((rv = apr_stat(finfo, to_send,

APR_FINFO_GPROT | APR_FINFO_MIN, rr->pool))
!= APR_SUCCESS && rv != APR_INCOMPLETE) {

error_fmt = "unable to get information about \"%s\""
" in parsed file %s";

}
}
else {

error_fmt = "unable to look up information about \"%s\" "
"in parsed file %s";

}
}
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if (error_fmt) {
ret = -1;
ap_log_rerror(APLOG_MARK, APLOG_ERR,

rv, r, error_fmt, to_send, r->filename);
}

if (rr) ap_destroy_sub_req(rr);

return ret;
}
/* remainder of function irrelevant */

}

write and exec

The most serious exploits to have hit Apache servers in real life have involved sav-
ing an executable file to /tmp, and running it. It is not Apache itself, but rather
applications (running under PHP) that give rise to this problem. Apache cannot
prevent buggy applications from running, but you can and should protect against
such serious consequences. The best advice to system administrators is to use filesys-
tem security:

• Use file permissions and ownership to limit the Apache user’s write access to
designated areas.

• Ensure that those designated areas are on a device mounted with a noexec
flag, so that the operating system prevents execution of a malicious file.

The role of the application developer here is, as usual, to avoid doing anything that
could cause problems with this security. For example, do not write data anywhere
that’s not specified by the system administrator and that might therefore be incon-
venient or impossible to have mounted with noexec.

chroot

Avoid doing anything that would prevent a system administrator from running
Apache chroot. In other words, avoid making any assumptions about how the
filesystem will look from Apache’s perspective.

Running chroot is a relatively complex task for a system administrator, but has lit-
tle relevance to most developers. Try this trick instead: Set up a minimal Apache
installation to run in a chrooted test environment, and then add your module to
the test server. If anything breaks, trace what caused the problem and try to fix it.
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4.9 External Dependencies and Libraries

4.9.1 Third-Part Libraries 
Administrators of many systems, including Apache, sometimes insist that more
modules mean more complexity, and hence more trouble. Of course, more modules
always mean a greater risk of bugs, simply because there’s more code. The real prob-
lem, however, is the possibility that two modules will be mutually incompatible and
cause each other to fail. This should never happen!

Third-party libraries are fertile ground for this kind of trouble, because two or more
modules may access a library in mutually incompatible ways. Following some basic
rules of good practice can help ensure that your module doesn’t become the cuckoo
in the nest that causes Apache to fail when it is used together with other modules
from different sources.

4.9.2 Library Good Practice
Libraries, like modules, should always follow some basic rules of good practice. The
most basic rule states that library functions should always return control to the
caller in an orderly and properly documented manner. In particular, exit() is not
an acceptable way to handle errors.

Unfortunately, some libraries—particularly older ones that may have been intended
only for command line programs—may violate this principle. Examples are com-
mon in graphics libraries such as libjpeg.12 Changing the library may pose a prob-
lem, but the conflict can be worked around by using setjmp/longjmp:
typedef struct {

jmp_buf jmp;
request_rec *r;

} my_ctx;

We need to set libjpeg to use longjmp rather than exit() when it encounters a
fatal error:
static void jpeg_error_exit(j_common_ptr cinfo)
{

my_ctx *ctx = (my_ctx*)cinfo->client_data;
(*cinfo->err->output_message) (cinfo);
longjmp(ctx->jmp, 1);

}
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We also need to register a function to generate error messages from the library:
static void jpeg_output_message(j_common_ptr cinfo)
{

char buffer[JMSG_LENGTH_MAX];
my_ctx *ctx = (my_ctx*)cinfo->client_data ;

(*cinfo->err->format_message) (cinfo, buffer);

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, ctx->r,
"JPEG Error: %s", buffer);

}

Now we need our handler to set up its own error handler with libjpeg:
static int my_jpeg_handler(request_rec* r)
{

struct jpeg_compress_struct *cinfo;
my_ctx *ctx;

struct jpeg_error_mgr *errptr
= apr_palloc(r->pool, sizeof(jpeg_error_mgr));

errptr->output_message = jpeg_output_message;
errptr->error_exit = jpeg_error_exit;

/* Register handler with libjpeg */
jpeg_std_error(errptr);

/* Create a jpeg context and register a cleanup on the pool
* (cleanup function omitted for brevity) 
*/
ctx = apr_palloc(r->pool, sizeof(my_ctx));
cinfo = apr_palloc(r->pool, sizeof(struct jpeg_compress_struct));
ctx->r = r;
jpeg_create_compress(cinfo);
cinfo->client_data = ctx;
cinfo->err = errptr;
apr_pool_cleanup_register(f->r->pool, cinfo,

(apr_status_t(*)(void*))cjpeg_cleanup,
apr_pool_cleanup_null);

/* Set up other fields of cinfo (omitted) */

/* Handle fatal errors from libjpeg */
if (setjmp(ctx->jmp)) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"Fatal Error in libjpeg");

return HTTP_INTERNAL_SERVER_ERROR ;
}
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/* Now do our processing with libjpeg, including (of course)
* always checking for nonfatal errors.
* Fatal errors are now handled by longjmp setting the clock back
* to our setjmp, so we'll log an error and return 500.
*/

}

C++ throw/catch is superficially a more elegant solution that accomplishes the
same thing, but in this author’s experience it doesn’t work so well in Apache. Your
mileage may vary.

Thread Safety

When using third-party libraries, the module developer is responsible for ascer-
taining whether the libraries are thread safe. If they are not, then your module will
need to use a thread mutex for every library call (which may be prohibitively
expensive). Alternatively, you can document the module as not being thread safe,
and limit its use to the Prefork MPM. The best-known example that uses the lat-
ter approach is PHP.

Some libraries—for example, the MySQL client library libmysqlclient—come
as more than one version: a “standard” version that is not thread safe, and an alter-
native that is fully thread safe and reentrant. When using such a library, you should
ensure your users always select the thread-safe version.

Initialization and Termination

Some libraries may require per-process initialization and termination. These tasks
can be handled in various places in Apache, including the module hooks function.
Unfortunately, the double start-up followed by forking of children makes this strat-
egy complex and sometimes unsuitable. A library that is initialized before configu-
ration will first be initialized, then terminated, then initialized a second time, after
which child processes will be forked. If that behavior is acceptable with your library,
then it’s a convenient way to handle initialization, because it makes the library avail-
able to the configuration functions.

Naturally, you will also need to register any termination function on the pool. If the
library has a function whose signature is not compatible with a pool cleanup, you’ll
need to write a wrapper for it. Here’s a typical outline for initialization:
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static void register_hooks(apr_pool_t *pool)
{

my_lib_init() ;
apr_pool_cleanup_register(pool, NULL, my_lib_terminate,

apr_pool_cleanup_null);
/* and of course register whatever this module exports */

}

When the start-stop-restart-fork process will cause trouble, the safest place to han-
dle library initialization may be a function hooked to child_init. In this case, ini-
tialization happens after the fork but before entering operational mode. As with the
other strategy, you’ll need to call library initialization and register the termination
function, this time on the child pool. If any configuration functions require the
library, however, you may need to do something more complex, such as saving the
configuration data “raw” in the configuration phase and then running any neces-
sary library functions on the raw input data after initializing the library in the
child_init phase.

Caution!

Bear in mind that your module may not be the only one to use the library. For most
libraries, running initialization and global cleanup more than once does not pose a
problem, so your module need not concern itself with this issue. If running either
initialization or cleanup more than once will complicate life for the library, your
module needs to be sensitive to whether another module is independently doing 
the same thing. One potential solution to this problem is to write a separate mini-
module that specifically ensures that library functions are run exactly once.

Future Apache releases may provide a more elegant solution to this dilemma.

Library State Changes

If a library has global variables, any use of them is not thread safe.

A similar, more general issue arises when a library allows an application to change
its state with global scope—for example, by registering callback functions for library
events. This possibility is actually more than just a thread-safety issue, as it affects
even the nonthreaded Prefork MPM.

To see how this problem arises, let’s consider a real-life example. The XML (and
HTML) parsing library libxml2 allows an application to register handlers for parse
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errors. If your module uses such handlers, they should always be registered in the
context of a parser that is owned by your module. However, mod_php skimped on
this requirement and registered the handlers globally.13

Now, when another module uses libxml2 in processing a request and encounters
a parse error, the registered error handler is called. But that is PHP’s handler!
Because it wasn’t a PHP request, there is no PHP context, and Apache will crash
(segfault). PHP has become a cuckoo in the nest, and other modules had to take
extra trouble to work around the bug if using the XML parser in a manner that
might generate XML parse errors.

4.9.3 Building Modules with Libraries
When your module relies on a third-party library, it needs that library at runtime.
You can provide the library by any of three means:

1. Link the library when building the module.

2. Use LoadFile to load the library into Apache.

3. Open the library from within your module code, using apr_dso.

If you are contemplating the third option, you are probably doing something
unusual and have a good reason for making this choice. Options 1 and 2, by con-
trast, are largely interchangeable. Consider a module mod_foo that relies on an
external library libfoo. Here’s how it might look. These details are from an up-to-
date Linux system, but the same principles apply on other platforms:
(1) apxs -c -lfoo mod_foo.c
ldd .libs/mod_foo.so

linux-gate.so.1 =>  (0xffffe000)
libfoo.so => /usr/lib/libfoo.so (0xb7fc9000)
libc.so.6 => /lib/libc.so.6 (0xb7e22000)
/lib/ld-linux.so.2 (0x80000000)

versus
(2) apxs -c mod_foo.c
ldd .libs/mod_foo.so

linux-gate.so.1 =>  (0xffffe000)
libc.so.6 => /lib/libc.so.6 (0xb7ec2000)
/lib/ld-linux.so.2 (0x80000000)

118 Chapter 4 • Programming Techniques and Caveats

13. http://marc.theaimsgroup.com/?1=php-dev&m=108258335530060&w=2

http://marc.theaimsgroup.com/?1=php-dev&m=108258335530060&w=2


In example 1, the library is linked directly into the module. This approach is super-
ficially simpler for end users: A single LoadModule directive suffices to load the
module (we can even insert the directive within the build procedure, using the -a
option to apxs). Some developers prefer this strategy, for this reason.

In example 2, the single LoadModule is no longer sufficient. Apache will try to load
mod_foo, but will encounter unresolved symbols (from libfoo) and refuse to start.
In this case, we need an additional LoadFile directive:
LoadFile      /usr/lib/libfoo.so
LoadModule    foo_module    modules/mod_foo.so

Although superficially more complicated, this second approach has a number of
advantages, which are discussed next.

Flexibility

If a module is built on one computer but intended to run on another computer
(e.g., a developer supplying binaries to a client), the linked library may be in a dif-
ferent place in the filesystem on the target computer. This becomes a headache for
the system administrator to sort out, particularly when the libraries are controlled
by a package manager. When the developer uses LoadFile, the filesystem layout is
immaterial; all that matters is that libfoo is available somewhere on the system.

Side Effects (Stealth Libraries)

When a module links a third-party library, that library is imported into Apache
with the module. This approach may have side effects for other modules that use
the library, causing the library to load or fail according to the ordering of the
LoadModule directives. Such behavior is, in this author’s opinion, a clear violation
of the principles of modularity. In some cases, it can also cause a module to load
apparently successfully only to fail later, generating errors that are far more chal-
lenging to trace than an undefined symbol at start-up.

Versioning

When two or more modules link to a library, there is a risk of them linking to dif-
ferent versions of it. Even if the versions are fully binary compatible, this possibil-
ity causes major trouble: The overloading of the symbol table may lead to
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inexplicable, hard-to-trace segfaults. When a system administrator complains that
supporting modules leads to trouble, this behavior is very likely to be the culprit.

In summary, it is recommended that you try to avoid linking any libraries into
modules, and rely on LoadFile instead. If the setup is complex, shipping a con-
figuration example with the module may be worthwhile. This tactic preserves mod-
ularity, leaves the system administrator in control, and makes conflicts and other
serious problems both far less likely to happen and hugely easier to trace.

NOTE Expert opinion is not unanimous on this subject, and
even the core Apache distribution diverges from the principles of
good practice suggested here. Your mileage may vary.

4.10 Modules Written and Compiled in Other Languages
Although all module examples in this book are written in C, it’s entirely possible to
write modules in other languages:

1. Any language that can be compiled to relocatable object code with C link-
age can be used on exactly the same basis as C, with the C API. For exam-
ple, C++, modern versions of FORTRAN, Modula 2/3, and a raft of
obsolete languages can be used in this manner.

2. Scripting languages such as Perl, PHP, Python, Ruby, and Tcl are supported
by their respective language modules, which expose the Apache API to sup-
port module programming. Perl’s implementation of the API is probably
the most complete of these options.

3. Any language can be supported as an external programming—for example,
with CGI or a proxied back end such as Java’s JSP and servlet APIs.

Only the first of these possibilities falls within the scope of this discussion. How do
we compile and link a module written against the C API, given that apxs is fully
compatible only with C?

This question is actually a platform-specific issue. On Windows, there is no apxs,
and you can import a C++ module into VC++ exactly as you would a C module 
(I cannot speak for other languages on Windows). In our discussion here, we’ll deal
with UNIX-family platforms, where apxs is the usual build tool.
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Building and loading are simple:

1. Export the C-compatible module symbol from your code, as you would in
any module.

2. Compile the module for position-independent code and with Apache and
APR include paths.

3. Link it as a shared object.

4. Copy it to your Apache modules directory.

5. Load it in httpd.conf.

For example, with gcc’s options for C++, this process could be written as follows
(don’t forget to declare the module symbol with extern "C" to ensure C linkage):
$ c++ -g -O2 -Wall -fPIC -I/usr/local/apache/include mod_foo.cpp
$ c++ -shared -o mod_foo.so mod_foo.o
# cp mod_foo.so /usr/local/apache/modules/

If our module uses any of the API features implemented as macros, it will need a
C-compatible preprocessor, which may not be compatible with the language. Two
workarounds are possible in this case: expand the macros explicitly, or use C stubs.

Expanded Macros

When our use of macros is sufficiently simple, we may just expand the macros
within our module code. Configuration directives (covered in Chapter 9) are easy
to expand, for instance. An example is mod_validator, in which

AP_INIT_TAKE2("ValidatorDefault",
(const char*(*)())ValidatorDefault, NULL, OR_ALL,

"Default parser; default allowed parsers" ) ,

becomes
{ "ValidatorDefault",

(const char*(*)(cmd_parms*, void*))ValidatorDefault,
__null, (1|2|4|8|16), TAKE2,
"Default parser; default allowed parsers" } ,

when expanded to work with a C++ compiler without a C99 preprocessor. (This
step was required in Apache 2.2.0, but should no longer be necessary in future ver-
sions, as the C99 requirement shouldn’t have affected C++ source.) 
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C Stubs

For complex macros, such as those that implement optional functions or hooks
(covered in Chapter 10), we can again expand them inline. Sometimes, however, it
may be more convenient to implement the macros in a C stubs file and then to link
that file with our non-C module. Let’s say we have a module written in language x,
compiled with xcompile:
$ xcompile -xoptions mod_foo.x
$ cc -c -fPIC -g -O2 -I/usr/local/apache/include foo_stubs.c
$ cc -shared -o mod_foo.so mod_foo.o foo_stubs.o
# cp mod_foo.so /usr/local/apache/modules/

4.11 Summary
In this chapter, we discussed a number of important topics related to good practice
and safe programming:

• The Apache httpd project’s code style guidelines

• Management of transient and persistent module data, with regard to scope and
lifetime

• Basic methods for communicating between modules

• Thread-safe and cross-process programming techniques

• Programming for security, and supporting the server administrator

• Working with third-party libraries and with languages other than C

We are now ready to move on to the more practically oriented section of the book
and to develop real modules.
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In principle, one can do anything with the Common Gateway Interface (CGI).1

But the range of problems for which CGI provides a good solution is much smaller!

The same is true of a content generator in Apache. It lies at the heart of processing
a request and of building a web application. Indeed, it can be extended to do any-
thing that the underlying system permits the webserver to do. The content genera-
tor is the most basic kind of module in Apache.

All of the major traditional applications normally work as content 
generators. For example, CGI, PHP, and application servers proxied by Apache are
content generators.

5
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5.1 The HelloWorld Module
In this chapter, we will develop a simple content generator. The customary
HelloWorld example demonstrates the basic concepts of module programming,
including the complete module structure, and use of the handler callback and
request_rec.

By the end of the chapter, we will have extended our HelloWorld module to report
the full details of the request and response headers, the environment variables, and
any data posted to the server, and we will be equipped to write content generator
modules in situations where we might otherwise have used a CGI script or compa-
rable extension.

5.1.1 The Module Skeleton
Every Apache module works by exporting a module data structure. In general, an
Apache 2.x module takes the following form:
module AP_MODULE_DECLARE_DATA some_module = {

STANDARD20_MODULE_STUFF,
some_dir_cfg,     /* create per-directory config struct */
some_dir_merge,   /* merge per-directory config struct */
some_svr_cfg,     /* create per-host config struct */
some_svr_merge,   /* merge per-host config struct */
some_cmds,        /* configuration directives for this module */
some_hooks        /* register module's hooks/etc. with the core */

};

The STANDARD20_MODULE_STUFF macro expands to provide version information
that ensures the compiled module will load into a server build only when it is fully
binary compatible, together with the filename and reserved fields. Most of the
remaining fields are concerned with module configuration; they will be discussed
in detail in Chapter 9. For the purposes of our HelloWorld module, we need only
the hooks:
module AP_MODULE_DECLARE_DATA helloworld_module = {

STANDARD20_MODULE_STUFF,
NULL,
NULL,
NULL,
NULL,
NULL,
helloworld_hooks

};
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Having declared the module structure, we now need to instantiate the hooks func-
tion. Apache will run this function at server start-up. Its purpose is to register our
module’s processing functions with the server core, so that our module’s functions
will subsequently be invoked whenever they are appropriate. In the case of
HelloWorld, we just need to register a simple content generator, or handler,2 which
is one of many kinds of functions we can insert here.
static void helloworld_hooks(apr_pool_t *pool)
{

ap_hook_handler(helloworld_handler, NULL, NULL, APR_HOOK_MIDDLE);
}

Finally, we need to implement helloworld_handler. This is a callback function
that will be called by Apache at the appropriate point in processing an HTTP
request. It may choose to handle or ignore a request. If it handles a request, the
function is responsible for sending a valid HTTP response to the client and for
ensuring that any data coming from the client are read (or discarded). This is very
similar to the responsibilities of a CGI script—or, indeed, the responsibilities of the
webserver as a whole.

Here’s our simplest handler:
static int helloworld_handler(request_rec *r)
{

if (!r->handler || (strcmp(r->handler, "helloworld") != 0)) {
return DECLINED;

}
if (r->method_number != M_GET) {

return HTTP_METHOD_NOT_ALLOWED;
}
ap_set_content_type(r, "text/html;charset=ascii");
ap_rputs("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n",

r);
ap_rputs("<html><head><title>Apache HelloWorld " 

"Module</title></head>", r);
ap_rputs("<body><h1>Hello World!</h1>", r);
ap_rputs("<p>This is the Apache HelloWorld module!</p>", r);
ap_rputs("</body></html>", r);
return OK;

}
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This callback function starts with a couple of basic sanity checks. First, we check 
r->handler to determine whether the request is for us. If the request is not for 
us, we ignore it by returning DECLINED. Apache will then pass control to the next
handler.

Second, we want to support only the HTTP GET and HEAD methods. We check for
those cases and, if appropriate, return an HTTP error code indicating that the
method is not allowed. Returning an error code here will cause Apache to return an
error page to the client. Note that the HTTP standard (see Appendix C) defines
HEAD as being identical to GET except for the response body, which is omitted in
HEAD. Both methods are included in Apache’s M_GET, and content generator func-
tions should treat them as identical.

The order in which these checks are performed is important. If we reversed them,
our module might cause Apache to return an error page in cases such as POST
requests intended for another handler, such as a CGI script that accepts them.

Once we are satisfied that the request is acceptable and is meant for this handler, we
generate the actual response—in this case, a trivial HTML page. Having done so,
we return OK to tell Apache that we have dealt with this request and that it should
not call any other handler.

5.1.2 Return Values
Even this trivial handler has three possible return values. In general, handlers pro-
vided by modules can return

• OK, to indicate that the handler has fully and successfully dealt with the
request. No further processing is necessary.

• DECLINED, to indicate that the handler takes no interest in the request and
declines to process it. Apache will then try the next handler. The default handler,
which simply returns a file from the local disk (or an error page if that fails),
never returns DECLINED, so requests are always handled by some function.

• An HTTP status code, to indicate an error. The handler has taken responsi-
bility for the request, but was unable or unwilling to complete it.

An HTTP status code diverts the entire processing chain within Apache. Normal
processing of the request is aborted, and Apache sets up an internal redirect to an
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error document, which may either be one of Apache’s predefined defaults or be a
document or handler specified by the ErrorDocument directive in the server con-
figuration. Note that this diversion works only if Apache hasn’t already started to
send the response down the wire to the client—this can be an important design
consideration in handling errors. To ensure correct behavior, any such diversion
must take place before writing any data (the first ap_rputs statements in our case).

Where possible, it is good practice to deal with errors earlier in the request process-
ing cycle. This consideration is discussed further in Chapter 6.

5.1.3 The Handler Field
Having to check r->handler may seem counterintuitive, but this step is generally
necessary in all content generators. Apache will call all content generators registered
by any module until one of them returns either OK or an HTTP status code. Thus
it’s up to each module to check r->handler, which tells the module whether it
should process the request.

This scheme is made necessary by the implementation of Apache’s hooks, which are
designed to enable any number of functions (or nothing) to run on a hook. The
content generator is unique among Apache’s hooks in that exactly one content gen-
erator function must take responsibility for every request. Other hooks that share
the implementation have different semantics, as we will see in Chapters 6 and 10.

5.1.4 The Complete Module
Putting it all together and adding the required headers, we have a complete
mod_helloworld.c source file:

/* The simplest HelloWorld module */

#include <httpd.h>
#include <http_protocol.h>
#include <http_config.h>

static int helloworld_handler(request_rec *r)
{

if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED;

}
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if (r->method_number != M_GET) {
return HTTP_METHOD_NOT_ALLOWED;

}
ap_set_content_type(r, "text/html;charset=ascii");
ap_rputs("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n",

r);
ap_rputs("<html><head><title>Apache HelloWorld "

"Module</title></head>", r);
ap_rputs("<body><h1>Hello World!</h1>", r);
ap_rputs("<p>This is the Apache HelloWorld module!</p>", r);
ap_rputs("</body></html>", r);
return OK;

}
static void helloworld_hooks(apr_pool_t *pool)
{

ap_hook_handler(helloworld_handler, NULL, NULL, APR_HOOK_MIDDLE);
}
module AP_MODULE_DECLARE_DATA helloworld_module = {

STANDARD20_MODULE_STUFF,
NULL,
NULL,
NULL,
NULL,
NULL,
helloworld_hooks

} ;

And that’s all we need! Now we can build the module and insert it into Apache. We
use the apxs utility, which is bundled with Apache and serves to ensure the com-
pilation flags and paths are correct:

Compile the module

$ apxs -c mod_helloworld.c

and (working as root) install it:

# apxs -i mod_helloworld.la

Now configure it as a handler in httpd.conf:
LoadModule    helloworld_module    modules/mod_helloworld.so
<Location /helloworld>

SetHandler helloworld
</Location>

This code causes any request to /helloworld on our server to invoke this module
as its handler.
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Note that the helloworld_hooks and helloworld_handler functions are both
declared as static. This practice is typical—though not quite universal—in
Apache modules. In general, only the module symbol is exported, and everything
else remains private to the module itself. As a consequence, it is good practice to
declare all functions as static. Exceptions may arise when a module exports a serv-
ice or API for other modules, as discussed in Chapter 10. Another case arises when
a module is implemented in multiple source files and needs some symbols to be
common to those files. A naming convention should be adopted in such cases, to
avoid symbol space pollution.

5.1.5 Using the request_rec Object
As we have just seen, the single argument to our handler function is the
request_rec object. The same argument is used for all hooks involved in request
processing.

The request_rec object is a large data structure that represents an HTTP request
and provides access to all data involved in processing a request. It is also an argu-
ment to many lower-level API calls. For example, in helloworld_handler, it
serves as an argument to ap_set_content_type and as an I/O descriptor-like
argument to ap_rputs.

Let’s look at another example. Suppose we want to serve a file from the local filesys-
tem instead of a fixed HTML page. To do so, we would use the r->filename argu-
ment to identify the file. But we can also use file stat information to optimize the
process of sending the file. Instead of reading the file and sending its contents with
ap_rwrite, we can send the file itself, allowing APR to take advantage of available
system optimizations:
static int helloworld_handler(request_rec *r)
{

apr_file_t *fd;
apr_size_t sz;
apr_status_t rv;

/* "Is it for us?" checks omitted for brevity */

/* It's an error if r->filename and finfo haven't been set for us.
* We could omit this check if we make certain assumptions concerning
* use of our module, but if 'normal' processing is prevented by
* some other module, then r->filename might be null, and we don't
* want to risk a segfault!
*/
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if (r->filename == NULL) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"Incomplete request_rec!") ;
return HTTP_INTERNAL_SERVER_ERROR ;

}

ap_set_content_type(r, "text/html;charset=ascii");

/* Now we can usefully set some additional headers from file info
* (1) Content-Length
* (2) Last-Modified
*/
ap_set_content_length(r, r->finfo.size);
if (r->finfo.mtime) {

char *datestring = apr_palloc(r->pool, APR_RFC822_DATE_LEN);
apr_rfc822_date(datestring, r->finfo.mtime);
apr_table_setn(r->headers_out, "Last-Modified", datestring);

}

rv = apr_file_open(&fd, r->filename,
APR_READ|APR_SHARELOCK|APR_SENDFILE_ENABLED,
APR_OS_DEFAULT, r->pool);

if (rv != APR_SUCCESS) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"can't open %s", r->filename);
return HTTP_NOT_FOUND ;

}
ap_send_fd(fd, r, 0, r->finfo.size, &sz);

/* file_close here is purely optional. If we omit it, APR will close
* the file for us when r is destroyed, because apr_file_open 
* registered a close on r->pool.
*/
apr_file_close(fd);
return OK;

}

5.2 The Request, the Response, and the Environment
Setting aside this little diversion into the filesystem, what else can a HelloWorld
module usefully do?

Well, the module can report general information, in the manner of programs such
as the printenv CGI script that comes bundled with Apache. Three of the most
commonly used (and useful) sets of information in Apache modules are the request
headers, the response headers, and the internal environment variables. Let’s update
the original HelloWorld module to print them in the response page.
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Each of these sets of information is held in an APR table that is part of the
request_rec object. We can iterate over the tables to print the full contents using
apr_table_do and a callback. We’ll use HTML tables to represent these Apache
tables.

First, here’s a callback to print a table entry as an HTML row. Of course, we need
to escape the data for HTML:
static int printitem(void *rec, const char *key, const char *value)
{

/* rec is a user data pointer.  We'll pass the request_rec in it. */
request_rec *r = rec;
ap_rprintf(r, "<tr><th scope=\"row\">%s</th><td>%s</td></tr>\n",

ap_escape_html(r->pool, key),
ap_escape_html(r->pool, value));

/* Zero would stop iterating; any other return value continues */
return 1;

}

Second, we provide a function that uses the callback to print an entire table:
static void printtable(request_rec *r, apr_table_t *t,

const char *caption, const char *keyhead,
const char *valhead)

{
/* Print a table header */
ap_rprintf(r, "<table><caption>%s</caption><thead>"

"<tr><th scope=\"col\">%s</th><th scope=\"col\">%s"
"</th></tr></thead><tbody>", caption, keyhead, valhead);

/* Print the data: apr_table_do iterates over entries with
* our callback
*/
apr_table_do(printitem, r, t, NULL);

/* Finish the table */
ap_rputs("</tbody></table>\n", r);

}

Now we can wrap this functionality in our HelloWorld handler:
static int helloworld_handler(request_rec *r)
{

if (!r->handler || (strcmp(r->handler, "helloworld") != 0)) {
return DECLINED ;

}
if (r->method_number != M_GET) {

return HTTP_METHOD_NOT_ALLOWED;
}
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ap_set_content_type(r, "text/html;charset=ascii");
ap_rputs("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"

"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><h1>Hello World!</h1>"
"<p>This is the Apache HelloWorld module!</p>", r);

/* Print the tables */
printtable(r, r->headers_in, "Request Headers", "Header", "Value");
printtable(r, r->headers_out, "Response Headers", "Header", "Value");
printtable(r, r->subprocess_env, "Environment", "Variable", "Value");

ap_rputs("</body></html>", r);
return OK;

}

5.2.1 Module I/O
Our HelloWorld module generates output using a stdio-like family of functions:
ap_rputc, ap_rputs, ap_rwrite, ap_rvputs, ap_vrprintf, ap_rprintf, and
ap_rflush. We have also seen the “send file” call ap_send_file. This simple,
high-level API was inherited originally from earlier Apache versions, and it remains
suitable for many content generators. It is defined in http_protocol.h.

Since the introduction of the filter chain, the underlying mechanism for generating
output has been based on buckets and brigades, as discussed in Chapters 3 and 8.
Filter modules employ different mechanisms for generating output, and these are
also available to—and sometimes appropriate for—a content handler.

There are two fundamentally different ways to process or generate output in a filter:

• Direct manipulation of bucket and brigades

• Use of another stdio-like API (which is a better option than the ap_r* API,
as backward compatibility isn’t an issue)

We will describe these mechanisms in detail in Chapter 8. For now, we will look at
the basic mechanics of using the filter-oriented I/O in a content generator.

There are three steps to using filter I/O for output:

1. Create a bucket brigade.

2. Populate the brigade with the data we are writing.

3. Pass the brigade to the first output filter on the stack (r->output_filters).
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These steps can be repeated as many times as needed, either by creating a new
brigade or by reusing a single brigade. If a response is large and/or slow to gener-
ate, we may want to pass it down the filter chain in smaller chunks. The response
can then be passed through the filters and to the client in chunks, giving us an effi-
cient pipeline and avoiding the overhead of buffering the entire response. Working
properly with the pipeline whenever possible is an extremely useful goal for filter
modules.

For our HelloWorld module, all we need to do is to create the brigade and then
replace the ap_r* family calls with the alternative stdio-like API defined in
util_filter.h: ap_fflush, ap_fwrite, ap_fputs, ap_fputc, ap_fputstrs,
and ap_fprintf. These calls have a slightly different prototype: Instead of passing
request_rec as a file descriptor, we have to pass both the destination filter we are
writing to and the bucket brigade. We’ll see examples of this scheme in Chapter 8.

5.2.1.1 Output

Here is our first trivial HelloWorld handler using filter-oriented output. This
lower-level API is a little more complex than the simple stdio-like buffered I/O,
and it may sometimes enable optimizations of the module (though in this instance,
any difference will be negligible). We can also take advantage of slightly finer con-
trol by explicitly processing output errors.
static int helloworld_handler(request_rec *r)
{

static const char *const helloworld =
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"
"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><h1>Hello World!</h1>"
"<p>This is the Apache HelloWorld module!</p>"
"</body></html>";

apr_status_t rv;
apr_bucket_brigade *bb;
apr_bucket *b;
if (!r->handler || strcmp(r->handler, "helloworld")) {

return DECLINED;
}
if (r->method_number != M_GET) {

return HTTP_METHOD_NOT_ALLOWED;
}
bb = apr_brigade_create(r->pool, r->connection->bucket_alloc);
ap_set_content_type(r, "text/html;charset=ascii");
/* We could instead use the stdio-like filter API calls like
* ap_fputs(r->filters_out, bb, helloworld);
* which is basically the same as using ap_rputs and family.
*
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* Alternatively, we can wrap our output in a bucket, append an 
* EOS, and pass it down the filter chain.
*/
b = apr_bucket_immortal_create(helloworld, strlen(helloworld),

bb->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(bb, b);
APR_BRIGADE_INSERT_TAIL(bb,

apr_bucket_eos_create(bb->bucket_alloc));
rv = ap_pass_brigade(r->filters_out, bb);
if (rv != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r, "Output Error");
return HTTP_INTERNAL_SERVER_ERROR;

}
return OK;

}

5.2.1.2 Input

Module input is slightly different. Once again, we have at our disposal a legacy
method inherited from Apache 1.x, but it is now treated as deprecated by most
developers (although the method is still supported). In most cases, we would prefer
to use the input filter chain directly in new code:

1. Create a bucket brigade.

2. Pull data into the brigade from the first input filter (r->input_filters).

3. Read the data in our buckets, and use it.

Both input methods are commonly found in existing modules, including modules
for Apache 2.x. Let’s introduce each in turn into our HelloWorld module. We’ll
update the module to support POSTs and count the number of bytes POSTed (note
that this operation will usually—but not always—be available in a Content-Length
request header). We won’t decode or display the actual data; although we could do
so, this task is usually best handled by an input filter (or by a library such as
libapreq). The functions we use here are documented in http_protocol.h:

#define BUFLEN 8192
static int check_postdata_old_method(request_rec *r)
{

char buf[BUFLEN];
size_t bytes, count = 0;

/* Decide how to treat input */
if (ap_setup_client_block(r, REQUEST_CHUNKED_DECHUNK) != OK) {
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ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r, "Bad request body!");
ap_rputs("<p>Bad request body.</p>\n", r);
return HTTP_BAD_REQUEST;

}
if (ap_should_client_block(r)) {

for (bytes = ap_get_client_block(r, buf, BUFLEN); bytes > 0;
bytes = ap_get_client_block(r, buf, BUFLEN)) {
count += bytes;

}
ap_rprintf(r, "<p>Got %d bytes of request body data.</p>\n",

count);
} else {

ap_rputs("<p>No request body.</p>\n", r);
}
return OK;

}

static int helloworld_handler(request_rec *r)
{

if (!r->handler || strcmp(r->handler, "helloworld")) {
return DECLINED;

}

/* We could be just slightly sloppy and drop this altogether,
* but it's good practice to reject anything that's not explicitly
* allowed. It cuts off *potential* exploits for someone trying
* to compromise the server.
*/
if ((r->method_number != M_GET) && (r->method_number != M_POST)) {

return HTTP_METHOD_NOT_ALLOWED;
}
ap_set_content_type(r, "text/html;charset=ascii");
ap_rputs("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"

"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><h1>Hello World!</h1>"

"<p>This is the Apache HelloWorld module!</p>", r);

/* Print the tables */
printtable(r, r->headers_in, "Request Headers", "Header", "Value");
printtable(r, r->headers_out, "Response Headers", "Header", "Value");
printtable(r, r->subprocess_env, "Environment", "Variable", "Value");

/* Ignore the return value -– it's too late to bail out now
* even if there's an error
*/
check_postdata_old_method(r);

ap_rputs("</body></html>", r);
return OK ;

}
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Here, finally, is check_postdata using the preferred method of direct access to the
input filters, using functions documented in util_filter.h.

We create a brigade and then loop until EOS, filling the brigade from the input fil-
ters. We will see this technique again in Chapter 8.
static int check_postdata_new_method(request_rec *r)
{

apr_status_t status;
int end = 0;
apr_size_t bytes, count = 0;
const char *buf;
apr_bucket *b;
apr_bucket_brigade *bb;

/* Check whether there's any input to read.  A client can tell
* us that fact by using Content-Length or Transfer-Encoding.
*/
int has_input = 0;
const char *hdr = apr_table_get(r->headers_in, "Content-Length");
if (hdr) {

has_input = 1;
}
hdr = apr_table_get(r->headers_in, "Transfer-Encoding");
if (hdr) {

if (strcasecmp(hdr, "chunked") == 0) {
has_input = 1;

}
else {

ap_rprintf(r, "<p>Unsupported Transfer Encoding: %s</p>",
ap_escape_html(r->pool, hdr));

return OK; /* we allow this, but just refuse to handle it */
}

}
if (!has_input) {

ap_rputs("<p>No request body.</p>\n", r);
return OK;

}

/* OK, we have some input data. Now read and count it. */
/* Create a brigade to put the data into. */
bb = apr_brigade_create(r->pool, r->connection->bucket_alloc);
/* Loop until we get an EOS on the input */
do {

/* Read a chunk of input into bb */
status = ap_get_brigade(r->input_filters, bb, AP_MODE_READBYTES,

APR_BLOCK_READ, BUFLEN);
if ( status == APR_SUCCESS ) {
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/* Loop over the contents of bb */
for (b = APR_BRIGADE_FIRST(bb);

b != APR_BRIGADE_SENTINEL(bb);
b = APR_BUCKET_NEXT(b) ) {
/* Check for EOS */

if (APR_BUCKET_IS_EOS(b)) {
end = 1;
break;

}
/* Ignore other metadata */

else if (APR_BUCKET_IS_METADATA(b)) {
continue;
}

/* To get the actual length, we need to read the data */
bytes = BUFLEN;

status = apr_bucket_read(b, &buf, &bytes, 
APR_BLOCK_READ);

count += bytes;
}

}
/* Discard data we're finished with */
apr_brigade_cleanup(bb);

} while (!end && (status == APR_SUCCESS));

if (status == APR_SUCCESS) {
ap_rprintf(r, "<p>Got %d bytes of request body data.</p>\n",

count);
return OK;

}
else {

ap_rputs("<p>Error reading request body.</p>", r);
return OK; /* Just send the above message and ignore the data */

}
}

5.2.1.3 I/O Errors

What happens when we get an I/O error?

Filters (covered in Chapter 8) indicate an error to us by returning an APR error
code; they may also set r->status. Our handler can detect such an event, as in the
preceding examples, by checking the return values from ap_pass_brigade and
ap_get_brigade. Normal behavior is to stop processing and return an appropri-
ate HTTP error code. This behavior causes Apache to send an error document (dis-
cussed in Chapter 6) to the client. We should also log an error message, thereby
helping the systems administrator diagnose the problem.
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But what if the error was that the client connection was terminated? It’s a waste of
time trying to send an error document to a client that’s gone away. We can detect
this disconnection by checking r->connection->aborted, as demonstrated in
the default handler found at the end of this chapter.

5.2.2 Reading Form Data
We now have the basis for reading input data. But the data are useful only if we
know what to do with them. The most common form of data we need to handle
on the Web is data sent to us by a web browser submitting an HTML form. Such
data follow one of two standard formats supported by general-purpose browsers and
controlled by the enctype attribute to the <form> element in HTML:

• application/x-www-form-urlencoded (normal web forms submitted
either by POST or GET)

• multipart/form-data (Netscape’s multipart format for file upload forms)

Historically, decoding form data in either of these formats is the responsibility of
applications. For example, any CGI library or scripting module contains code for
handling this task. Apache itself doesn’t include this capability as standard, but it is
provided by third-party modules such as mod_form and mod_upload.

Parsing Form Data

The format for standard form data (application/x-www-form-urlencoded) is
a series of key/value pairs, separated by ampersands (“&”). Any character may be
escaped using a %nn sequence, where nn is the hex representation of a byte, and
some characters must be escaped. Parsing the data is complicated by the fact that
keys are not always unique; for example, an HTML <select multiple> element
may submit several values for a key.

The natural structure representing these data is a table of bags. This structure can be
represented in Apache as an apr_hash_t* (hash table) of apr_array_header_t*
(array) values. We can parse input data into this representation as follows:
/* Parse form data from a string. The input string is NOT preserved. */
static apr_hash_t *parse_form_from_string(request_rec *r, char *args)
{

apr_hash_t *form;
apr_array_header_t *values;
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char *pair;
char *eq;
const char *delim = "&";
char *last;
char **ptr;

if (args == NULL) {
return NULL;

}

form = apr_hash_make(r->pool);

/* Split the input on '&' */
for (pair = apr_strtok(args, delim, &last); pair != NULL;

pair = apr_strtok(NULL, delim, &last)) {
for (eq = pair; *eq; ++eq) {

if (*eq == '+') {
*eq = ' ';

}
}
/* split into Key / Value and unescape it */
eq = strchr(pair, '=');

if (eq) {
*eq++ = '\0';

ap_unescape_url(pair);
ap_unescape_url(eq);
}
else {

eq = "";
ap_unescape_url(pair);
}

/* Store key/value pair in our form hash. Given that there
* may be many values for the same key, we store values
* in an array (which we'll have to create the first
* time we encounter the key in question).
*/
values = apr_hash_get(form, pair, APR_HASH_KEY_STRING);
if (values == NULL) {

values = apr_array_make(r->pool, 1, sizeof(const char*));
apr_hash_set(form, pair, APR_HASH_KEY_STRING, values);

}
ptr = apr_array_push(values);
*ptr = apr_pstrdup(r->pool, eq);

}
return form;

}
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This scheme is based on parsing the entire input data from a single input buffer. It
works well where the total size of a form submission is reasonably small, as is gen-
erally the case with normal web forms. We should guard against denial of service
(DoS) attacks by limiting the size of inputs accepted this way (the maximum size of
data to accept being specified by a server administrator). Alternative methods
involving streamed parsing may be appropriate for larger forms, particularly those
involving file upload that could involve megabytes or even gigabytes of data. The
mod_upload3 module provides a parser that is better suited to large uploads.

We can use the function we just defined to parse data submitted by GET:
static apr_hash_t* parse_form_from_GET(request_rec *r)
{

return parse_form_from_string(r, r->args);
}

Parsing data submitted by POST is more work, because we have to read the data:

/* Get POSTed data. Assume we have already checked that the
* content type is application/x-www-form-urlencoded.
* Assume *form is null on entry.
*/
static int parse_form_from_POST(request_rec *r, apr_hash_t **form)
{

int bytes, eos;
apr_size_t count;
apr_status_t rv;
apr_bucket_brigade *bb;
apr_bucket_brigade *bbin;
char *buf;
apr_bucket *b;
const char *clen = apr_table_get(r->headers_in, "Content-Length");
if (clen != NULL) {

bytes = strtol(clen, NULL, 0);
if (bytes >= MAX_SIZE) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"Request too big (%d bytes; limit %d)",
bytes, MAX_SIZE);

return HTTP_REQUEST_ENTITY_TOO_LARGE;
}

}
else {

bytes = MAX_SIZE;
}
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bb = apr_brigade_create(r->pool, r->connection->bucket_alloc);
bbin = apr_brigade_create(r->pool, r->connection->bucket_alloc);
count = 0;

do {
rv = ap_get_brigade(r->input_filters, bbin, AP_MODE_READBYTES,

APR_BLOCK_READ, bytes);
if (rv != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"failed to read form input");

return HTTP_INTERNAL_SERVER_ERROR;
}
for (b = APR_BRIGADE_FIRST(bbin);

b != APR_BRIGADE_SENTINEL(bbin);
b = APR_BUCKET_NEXT(b) ) {
if (APR_BUCKET_IS_EOS(b)) {

eos = 1;
}
if (!APR_BUCKET_IS_METADATA(b)) {

if (b->length != (apr_size_t)(-1)) {
count += b->length;
if (count > MAX_SIZE) {

/* This is more data than we accept, so we're 
* going to kill the request. But we have to
* mop it up first.

*/
apr_bucket_delete(b);

}
}

}
if (count <= MAX_SIZE) {

APR_BUCKET_REMOVE(b);
APR_BRIGADE_INSERT_TAIL(bb, b);

}
}

} while (!eos);

/* OK, done with the data. Kill the request if we got too much data. */
if (count > MAX_SIZE) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"Request too big (%d bytes; limit %s)",
bytes, MAX_SIZE);

return HTTP_REQUEST_ENTITY_TOO_LARGE;
}

/* We've got all the data. Now put it in a buffer and parse it. */
buf = apr_palloc(r->pool, count+1);
rv = apr_brigade_flatten(bb, buf, &count);
if (rv != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,
"Error (flatten) reading form data");

return HTTP_INTERNAL_SERVER_ERROR;
}
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buf[count] = '\0';
*form = parse_form_from_string(r, buf);

return OK;
}

At this point, we have laid the groundwork to ensure easy access to form data, and
we can provide some accessor functions. mod_form performs a similar function, but
uses techniques we haven’t encountered yet to offer a cleaner API wherein the han-
dler module need not concern itself with the hash.

The following example shows a function that returns all values for a key as a
comma-separated string, a representation that will be familiar to users of scripting
environments such as Perl (with CGI.pm) or PHP. Other high-level accessors are
now similarly straightforward to write.
char *form_value(apr_pool_t *pool, apr_hash_t *form, const char *key)
{

apr_array_header_t *v_arr = apr_hash_get(form, key, 
APR_HASH_KEY_STRING);

/* Caveat: this is ambiguous because values may contain commas */
return apr_array_pstrcat(pool, v_arr, ',');

}

Combining these functions, we can update our HelloWorld handler to display
form data. We’ll assume that the form data consist of ASCII input, and substitute
question marks for any non-ASCII characters:
static int helloworld_handler(request_rec *r)
{

apr_hash_t *formdata = NULL;
int rv = OK;

if (!r->handler || (strcmp(r->handler, "helloworld") != 0)) {
return DECLINED;

}

/* We could be just slightly sloppy and drop this altogether,
* but it's good practice to reject anything that's not explicitly
* allowed. It cuts off *potential* exploits for someone trying
* to compromise the server.
*/
if ((r->method_number != M_GET) && (r->method_number != M_POST)) {

return HTTP_METHOD_NOT_ALLOWED;
}
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ap_set_content_type(r, "text/html;charset=ascii");
ap_rputs("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"

"<html><head><title>Apache HelloWorld Module</title></head>"
"<body><h1>Hello World!</h1>"
"<p>This is the Apache HelloWorld module!</p>", r);

/* Print the tables */
printtable(r, r->headers_in, "Request Headers", "Header", "Value");
printtable(r, r->headers_out, "Response Headers", "Header", "Value");
printtable(r, r->subprocess_env, "Environment", "Variable", "Value");

/* Display the form data */
if (r->method_number == M_GET) {

formdata = parse_form_from_GET(r);
}
else if (r->method_number == M_POST) {

const char* ctype = apr_table_get(r->headers_in, "Content-Type");
if (ctype && (strcasecmp(ctype,

"application/x-www-form-urlencoded")
== 0)) {

rv = parse_form_from_POST(r, &formdata);
}

}

if (rv != OK) {
ap_rputs("<p>Error reading form data!</p>", r);

}
else if (formdata == NULL) {

ap_rputs("<p>No form data found.</p>", r);
}
else {

/* Parsed the form successfully, so we have data to display */
apr_array_header_t *arr;
char *key;
apr_ssize_t klen;
apr_hash_index_t *index;
char *val;
char *p;

ap_rprintf(r, "<h2>Form data supplied by method %s</h2>\n<dl>",
r->method) ;

for (index = apr_hash_first(r->pool, formdata); index != NULL;
index = apr_hash_next(index)) {

apr_hash_this(index, (void**)&key, &klen, (void**)&arr);
ap_rprintf(r, "<dt>%s</dt>\n",ap_escape_html(r->pool, key));
for (val = apr_array_pop(arr); val != NULL;
val = apr_array_pop(arr)) {
for (p = val; *p != '\0'; ++p) {

if (!isascii(*p)) {
*p = '?';
}
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}
ap_rprintf(r, "<dd>%s</dd>\n",

ap_escape_html(r->pool, val));
}

}
ap_rputs("</dl>", r) ;

}
ap_rputs("</body></html>", r) ;
return OK ;

}

5.3 The Default Handler
So far, we’ve presented simple variants on a simple handler, and highlighted the
tools required to develop a content handler equivalent to a normal CGI or PHP
script. To conclude this chapter, we’ll present Apache’s default handler. Although it
serves a file from the server’s filesystem, this handler differs from our earlier func-
tions in that it does quite a lot more housekeeping, illustrating more of the core
API. Apache’s default handler is more advanced than the handlers shown in the pre-
vious examples, and you may prefer to skip it on a first reading.
static int default_handler(request_rec *r)
{

conn_rec *c = r->connection;
apr_bucket_brigade *bb;
apr_bucket *e;
core_dir_config *d;
int errstatus;
apr_file_t *fd = NULL;
apr_status_t status;

int bld_content_md5;

ap_get_module_config retrieves the module’s configuration (Chapter 9):
d = (core_dir_config *)ap_get_module_config(r->per_dir_config,

&core_module);

We can compute an MD5 hash if our system is configured to do so, but only if
there isn’t a filter that will transform the contents and invalidate our hash.

bld_content_md5 = (d->content_md5 & 1)
&& r->output_filters->frec->ftype != AP_FTYPE_RESOURCE;
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Because this is the handler of last resort, we can’t just return DECLINED if we don’t
want the request.

ap_allow_standard_methods(r, MERGE_ALLOW,
M_GET, M_OPTIONS, M_POST, -1);

This next check performs housekeeping tasks. It’s not really necessary, because
Apache will perform these tasks for us if unused input remains when it destroys the
request.

/* If filters intend to consume the request body, they must
* register an InputFilter to slurp the contents of the POST
* data from the POST input stream.  It no longer exists when
* the output filters are invoked by the default handler.
*/
if ((errstatus = ap_discard_request_body(r)) != OK) {

return errstatus;
}

if (r->method_number == M_GET || r->method_number == M_POST) {
if (r->finfo.filetype == 0) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"File does not exist: %s", r->filename);

return HTTP_NOT_FOUND;
}

This handler serves only normal files; Apache handles directories differently. If a
request for a directory reaches this handler, it’s a configuration error.

/* Don't try to serve a directory. Some OSs do weird things 
* with raw I/O on a directory.
*/
if (r->finfo.filetype == APR_DIR) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"Attempt to serve directory: %s", r->filename);

return HTTP_NOT_FOUND;
}

Deal with any extra junk on the end of the request URI.
if ((r->used_path_info != AP_REQ_ACCEPT_PATH_INFO) &&

r->path_info && *r->path_info)
{

/* default to reject */
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"File does not exist: %s",
apr_pstrcat(r->pool, r->filename,
r->path_info, NULL));

return HTTP_NOT_FOUND;
}
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/* We understood the (non-GET) method, but it might not be
legal for this particular resource. Check whether the 
'deliver_script' flag is set. If so, then go ahead
and deliver the file because
it isn't really content (only GET normally returns content).

Note: The only possible non-GET method
at this point is POST. In the future, we should enable
script delivery for all methods.  */

if (r->method_number != M_GET) {
core_request_config *req_cfg;

req_cfg = ap_get_module_config(r->request_config, 
&core_module);

if (!req_cfg->deliver_script) {
/* The flag hasn't been set for this request. Punt. */
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"This resource does not accept the %s method.",
r->method);

return HTTP_METHOD_NOT_ALLOWED;
}

}

if ((status = apr_file_open(&fd, r->filename,APR_READ|APR_BINARY
#if APR_HAS_SENDFILE

| ((d->enable_sendfile == ENABLE_SENDFILE_OFF)
? 0 : APR_SENDFILE_ENABLED)

#endif
, 0, r->pool)) != APR_SUCCESS) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, status, r,
"file permissions deny server access: %s", r->filename);

return HTTP_FORBIDDEN;
}

Now we set a few more standard headers:
ap_update_mtime(r, r->finfo.mtime);
ap_set_last_modified(r);
ap_set_etag(r);
apr_table_setn(r->headers_out, "Accept-Ranges", "bytes");
ap_set_content_length(r, r->finfo.size);

bb = apr_brigade_create(r->pool, c->bucket_alloc);

ap_meets_conditions carries out some useful checks, cross-referencing the file
information to the request headers to determine whether we really need to send the
file or just to confirm the validity of a client’s cached copy. In exceptional circum-
stances, it may determine that our file is useless to the client and should be
discarded.
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if ((errstatus = ap_meets_conditions(r)) != OK) {
apr_file_close(fd);
r->status = errstatus;

}
else {

if (bld_content_md5) {
apr_table_setn(r->headers_out, "Content-MD5",

ap_md5digest(r->pool, fd));
}

/* For platforms where the size of the file may be larger
* than can be stored in a single bucket (where the
* length field is an apr_size_t), split it into several
* buckets */
if (sizeof(apr_off_t) > sizeof(apr_size_t)

&& r->finfo.size > AP_MAX_SENDFILE) {
apr_off_t fsize = r->finfo.size;
e = apr_bucket_file_create(fd, 0, AP_MAX_SENDFILE,

r->pool, c->bucket_alloc);
while (fsize > AP_MAX_SENDFILE) {

apr_bucket *ce;
apr_bucket_copy(e, &ce);
APR_BRIGADE_INSERT_TAIL(bb, ce);
e->start += AP_MAX_SENDFILE;
fsize -= AP_MAX_SENDFILE;

}
e->length = (apr_size_t)fsize;

/* Resize just the last bucket */
}
else {

e = apr_bucket_file_create(fd, 0,
(apr_size_t)r->finfo.size,

r->pool, c->bucket_alloc);
}

#if APR_HAS_MMAP
if (d->enable_mmap == ENABLE_MMAP_OFF) {

(void)apr_bucket_file_enable_mmap(e, 0);
}

#endif
APR_BRIGADE_INSERT_TAIL(bb, e);

}

e = apr_bucket_eos_create(c->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(bb, e);

status = ap_pass_brigade(r->output_filters, bb);
if (status == APR_SUCCESS

|| r->status != HTTP_OK
|| c->aborted) {
return OK;

}
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else {
/* No way to know what type of error occurred */
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, status, r,

"default_handler: ap_pass_brigade returned %i",
status);

return HTTP_INTERNAL_SERVER_ERROR;
}

}
else {              /* unusual method (not GET or POST) */

if (r->method_number == M_INVALID) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"Invalid method in request %s", r->the_request);
return HTTP_NOT_IMPLEMENTED;

}

Another API call supports the OPTIONS method:
if (r->method_number == M_OPTIONS) {

return ap_send_http_options(r);
}
return HTTP_METHOD_NOT_ALLOWED;

}
}

5.4 Summary
This chapter dealt with content generators and related topics:

• It introduced the Apache module structure.

• It showed how a module can register a handler function with the core.

• It described the basic handler API.

• It described the role of content generator modules and developed a simple
module.

• It showed how a content generator works with the request_rec object to
obtain information such as headers and environment variables, to perform
I/O, and to access form data.

• It demonstrated basic error handling.

• It described basic housekeeping commonly encountered in modules.

• It introduced Apache’s default handler, demonstrating slightly more advanced
techniques to serve static files efficiently and with proper attention to the
HTTP protocol.
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At this point, you should be able to write an application as a module or rewrite a
CGI script as a module. While we have introduced the overall structural skeleton of
a module, our coverage has been punctuated with several blanks. The remaining
parts of the module structure are concerned with configuration; they will be dis-
cussed in Chapter 9. The meaning of hooks and their registration are covered in
Chapter 10. Next, Chapters 6, 7, and 8 complete our discussion of request handling
fundamentals by introducing the request processing cycle, access and authentica-
tion, and the filter chain.
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Before returning contents to the client, Apache needs to examine the HTTP request
with reference to the server configuration. Much of the Apache standard code is
concerned with this task, and sometimes we may need to write a new module to
support different behavior. Such modules work by hooking into the early parts of
request processing, before any content generator is invoked, and sometimes by
diverting or aborting the entire request.

In this chapter, we will first review the metadata sent to the server in an HTTP
request. We will then see how the standard modules in Apache deal with this in han-
dling a request. Finally, we will develop a new module.

6
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Note that there is no universally agreed-upon nomenclature here. Modules directly
relevant to this chapter are classified into various categories in the Apache distribution:

• Mappers (modules that map from a request URL to the internal structure of
the server and/or the filesystem)

• Metadata (modules that explicitly manipulate HTTP headers and/or Apache’s
internal state)

• AAA (access, authentication, and authorization modules—the most popular
class of metadata modules; discussed in detail in Chapter 7)

This chapter deals with general issues concerning the request processing cycle and
metadata handling. Of course, many modules with a different primary purpose
(e.g., handlers) may include metadata hooks alongside other functions.

A great deal of folklore has arisen concerning certain uses of metadata and request
handling—for example, methods for presenting different types of content to differ-
ent visitors. At worst, adhering to these myths can lead to broken reimplementa-
tions of standard features (reinventing the wheel, but the new one isn’t round)!
Professional developers as well as hobbyists may be guilty of this. This chapter warns
you about some of the more common misconceptions.

6.1 HTTP
To discuss HTTP request processing, we first need to understand some basics about
the Hypertext Transfer Protocol (HTTP). 

6.1.1 The HTTP Protocol
HTTP is one member of a broad family of networking protocols for passing mes-
sages, whose roots go back to the early days of the Internet. The oldest of these pro-
tocols still in general use today is SMTP, the e-mail standard known as RFC822 
that dates from 1983. The protocol of the Web is HTTP, which is specified in
RFC1945 (HTTP 1.0) and RFC2616 (HTTP/1.1, the current protocol version—
see Appendix C). These protocols share some common overall characteristics,
designed for the exchange of messages.
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Envelopes, Cover Notes, Letters, and Enclosures

Before the Internet, we had other means of communicating over a distance. For
those communication strategies to work, we needed two things:

• The contents of the communication: the letter, telegram, fax, or telephone
conversation. 

• The addressing information: the envelope, phone number, or fax number and
cover sheet. This information ensures that the contents can be correctly sent
to the intended recipient.

When the Internet messaging protocols were designed, a similar approach was
adopted. A modern Internet message comprises an envelope, cover note, and mes-
sage contents. The contents may be a single letter, a letter with enclosures, or empty.

Metadata Versus Data

When applying the letter metaphor to the Internet, we speak of data and metadata
(information about the data). That is, a letter is data, or the contents of a message;
the envelope and cover sheet are metadata, or information about the message.

HTTP metadata can be quite extensive. We will encounter examples of it in this
chapter, though we will not present a detailed or thorough overview of it here. The
authoritative specification dealing with HTTP metadata is RFC2616, which is
included in this book as Appendix C.

Request and Response

One important characteristic of the RFC822 family of Internet protocols, includ-
ing all versions of HTTP, is that all messages are two-way. In other words, every
transaction includes both a request sent from the client to the server, and a response
sent from the server to the client. A complete message comprising metadata and
(optionally) data passes each way.

6.1.2 Anatomy of an HTTP Request
The first thing Apache must do upon receiving a request is to check the cover sheet
(metadata) and decide how to deal with the request. The server configuration,
together with HTTP rules, will determine how it proceeds.
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In HTTP, we must deal with two sets of request metadata:

1. The request line (envelope)

2. The request headers (cover sheet)

The request line is a single line that specifies the request method and the resource
requested. The request headers provide supplementary metadata that may be of rel-
evance to the server in generating a response or in carrying out secondary tasks such
as logging and analyzing usage patterns.

Let’s consider a hypothetical request:
GET /index.html HTTP/1.1
Accept: text/html,application/xhtml+xml;q=0.9
Accept-Encoding: gzip
Accept-Language: en
Authorization: Basic DWB/2xgwF9e9
Cookie: prefs=laid-back
Host: www.example.com
If-Modified-Since: Sun Apr 24 11:12:15 GMT 2005
User-Agent: The Universal Proxy (Mozilla 7.2; Compatible)
X-foo: bar;wibble

NOTE The Host: header is available in both HTTP/1.0 and 1.1.
The fact that it’s (technically) optional in HTTP/1.0 is a red 
herring: Support has been almost universal in both HTTP/1.0
and 1.1 clients since 1995.

The first line indicates a GET request for /index.html on the server. 
Combined with the Host header, it identifies the requested resource as 
http://www.example.com/index.html (which is necessary if and only if the
server is running more than one virtual host on the IP address and port that 
the request came on).

The remaining headers, all of which are optional, illustrate the kind of metadata
Apache may wish to deal with. No single module is likely to be concerned with all of
the request headers, but many modules are concerned with at least some of these tasks:

• Mapping /index.html to the filesystem or to a custom handler from the
server configuration for www.example.com.

• Selecting a response acceptable to the browser based on the various Accept-*
headers.
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• Checking whether the user is permitted to access the resource requested
(Authorization header).

• Checking whether, from the information supplied, the client already has an
up-to-date copy in cache (If-Modified-Since). If so, we just confirm that
with a “304 Not Modified” response and save the bandwidth of returning the
entire response body.

• Identifying private application data passed between this server and this partic-
ular client (Cookie and X-anything headers).

• Logging data (User-Agent).

To deal effectively with all these issues, Apache implements several request process-
ing phases before content generation. Modules can hook into any of these phases to
adjust, or take full control of, different aspects of request processing, just as our
HelloWorld module hooked a content generator in Chapter 5.

6.2 Request Processing in Apache
We have already introduced the request processing cycle. A module can hook into
this cycle in the following ways:

• post_read_request—General-purpose hook that runs immediately on cre-
ating the request_rec object.

• translate_name—Map the request URL to the filesystem.

• map_to_storage—Apply per-directory configuration.

• header_parser—Check the HTTP request headers. Another general-purpose
hook after the configuration is fully available but before more specific phases begin.

• access_checker—Check whether access is permitted to the remote host.

• check_user_id—Authenticate the remote user (where applicable).

• auth_checker—Check whether the remote user is authorized to perform the
attempted operation.

• type_checker—Apply configuration rules that determine the handler and
response headers.

• fixups—General-purpose hook at the end of request preparation but before
the handler is called.
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• insert_filter—Insert content filters.

• handler—Handle the request and generate a response.

• logger—Log the transaction.

These can also be grouped into phases:

• The post_read_request phase marks the transition from the protocol to the
request processing. The request_rec object is valid, but many of its fields are
not yet set.

• The phases from translate_name to fixups are collectively known as the
request preparation phase.

• The insert_filter and handler hooks represent the handler (content gen-
erator) phase.

• The logger is the final phase, being called after the request has run.

The request preparation phase can be further subdivided:

• translate_name and map_to_storage resolve the request to the filesystem
and/or logical URL space defined for the server. The per-directory configura-
tion doesn’t exist at this point.

• header_parser is the first hook where the per-directory configuration is
available and enables early processing that relies on it.

• access_checker, check_user_id, and auth_checker are the security
phase; they determine whether the user is permitted to carry out the attempted
operation.

• type_checker and fixups are the last part of the request and occur before
the content generator is run.

Let’s consider in more detail how the standard modules in Apache deal with our
request.

6.2.1 Mapping to the Filesystem
The first task we identified was to map /index.html to the filesystem. By
default, the Apache core will handle this task by appending the request in the 
path to the DocumentRoot (a configuration setting) at the end of the
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translate_name phase. Thus, if /var/www/example.com/htdocs is our
DocumentRoot for www.example.com, then the default is to map that location
to a file /var/www/example.com/htdocs/index.html. A second default han-
dler, at the end of map_to_storage, cross-references the file to <Directory>
and <Files> configuration and, if .htaccess files are enabled, merges them
into the configuration.

WARNING Don’t confuse URLs with filesystem paths. Although
they may correspond (and do, by default, in Apache), this is
never more than a matter of convention.

Use <Directory> and <Files> with your filesystem paths to
configure them for local contents. Use <Location> with URLs
for virtual or nonlocal contents.

A standard module that can change the default behavior is mod_alias. The Alias
configuration directive is used to specify a different mapping to the filesystem for
selected request paths. Alias uses a translate_name hook that replaces the default
action of appending the request URL path to the document root. Subsequent pro-
cessing, including the default map_to_storage handler, remains unchanged.

Here’s the translate_name hook from mod_alias:
static int translate_alias_redir(request_rec *r)
{

ap_conf_vector_t *sconf = r->server->module_config;
alias_server_conf *serverconf = ap_get_module_config(sconf,

&alias_module);
char *ret;
int status;

if (r->uri[0] != '/' && r->uri[0] != '\0') {
return DECLINED;

}

if ((ret = try_alias_list(r, serverconf->redirects, 1, &status))
!= NULL) {

if (ap_is_HTTP_REDIRECT(status)) {
/* Include QUERY_STRING if any */
if (r->args) {

ret = apr_pstrcat(r->pool, ret, "?", r->args, NULL);
}
apr_table_setn(r->headers_out, "Location", ret);

}
return status;

}
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if ((ret = try_alias_list(r, serverconf->aliases, 0, &status))
!= NULL) {

r->filename = ret;
return OK;

}

return DECLINED;
}

This code calls the function try_alias_list twice: first to apply the Redirect
directive and then to apply the Alias directive. If a directive matches,
try_alias_list will return the redirected URL or pathname. An Alias directive
will then simply set r->filename, whereas a Redirect directive will divert request
processing into a separate processing path, using the error document mechanism
described in Section 6.3.1.

6.2.2 Content Negotiation
Our second task was to select a response that will be acceptable to the browser,
according to the Accept-* headers sent.
Accept: text/html, 

application/xhtml+xml
Accept-Encoding: gzip
Accept-Language: en

These conditions may be ignored, and will be if we use default processing without
multiviews. This task may also be handled in other ways. For example, for dynamic
contents, gzip encoding is determined by an output filter (mod_deflate), rather
than by a metadata handler. Likewise, an XSLT output filter could deal with selec-
tion of content types. But a regular case we should consider (not least because it’s a
wheel that’s been reinvented badly by many organizations that should know better)
is standard content negotiation, in which Apache selects an appropriate static file
from several available options.

NOTE Take the time to read about content negotiation in 
the HTTP specification (Appendix C) and look at Apache’s
mod_negotiation module. This extra effort could save you and
your clients or employers the embarrassment of a broken rein-
vention—some bad blunders are distressingly widespread!
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Examples

Wrong: Sniff a user’s hostname or IP address, look up a country
based on that information, and serve the language you think
someone in that country would like.

Right: Serve the language selected by the user in the browser
preferences and supplied to the server in Accept-Language.

Wrong: Serve different contents to users by inferring client 
capabilities from a User-Agent string.

Right: Infer what a browser is capable of rendering from an
Accept: header.  But take care: Some browsers may lie. MS
Internet Explorer (MSIE) is the main culprit. For example, it claims
to accept all compressed contents and works fine with compressed
HTML, yet chokes on other formats when they are compressed.

The module of interest here is mod_negotiation, which is typically used for the
following purposes:

• For multilingual sites, to select a language specified in the user’s browser
preferences

• For sites supporting different devices (e.g., desktop PCs versus WAP devices),
to select between HTML and XML variants, or between SVG and bitmap
images.

The simplest use of mod_negotiation is just to create a choice of resources. For
example, if we supply the files

index.html.en (English)

index.html.fr (French)

index.html.de (German)

index.html.it (Italian)

together with appropriate AddLanguage directives and MultiViews, then
mod_negotiation will select one of the preceding files according to the Accept-
Language header sent by the browser (and configured by the user in a preferences
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menu, or as supplied to the user localized by an ISP or other network administra-
tor). mod_negotiation uses a type_checker handler to map index.html to one
of the available variants. When a variant is chosen, it overwrites the request state
with one that is identical except in that a new file has been selected.

Don’t forget to set the Vary response header when your module serves negotiated
contents, so that caches know there may be other variants better suited to another
client requesting the same URL!

6.2.3 Security
The third task was to check that the user is authorized to access the resource. The
access, authentication, and authorization phases of request processing check the
client’s credentials (if any) supplied in the request headers, together with the client’s
IP address, against any policies for the requested resource defined in httpd.conf
or an applicable .htaccess file. This phase, which is a traditional favorite with
module developers, will be discussed in detail in Chapter 7.

6.2.4 Caching
The fourth task was to check when the resource was last modified, so we don’t have
to resend the data if they are older than the version the client has cached, as indi-
cated in the If-Modified-Since header. This is one of several HTTP headers
concerned with caching and efficiency. By default, caching is dealt with only in the
handler/content generator phase. Nevertheless, a module that is not concerned
with the possible effects of another module’s fixups operation could check this
earlier.

6.2.5 Private Metadata
The fifth task was to deal with application-specific data, including cookies and any
private HTTP extensions (X-anything headers). This task is entirely application-
specific and cannot be generalized. Applications should always be sure to imple-
ment fallback behavior for clients that don’t supply a cookie or a private header. A
major blunder sometimes seen on websites is to redirect any client without a cookie
to a page that sets one and then send the client into an infinite loop.
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6.2.6 Logging
The final task is to log the request. Logging a request is the only appropriate use for a
User-Agent string. One of the most common errors on the Web today is to attempt
to infer client characteristics or capabilities from a User-Agent string. This behavior
is wrong for many reasons. First, many browsers spoof their User-Agent strings to
avoid being excluded from MSIE-only sites (ironically, MSIE still uses the Mozilla
keyword, which is itself a spoof introduced originally to keep MSIE users from being
excluded from Netscape-enhanced sites in the mid-1990s). Second, it fails to account
for caching, including the likelihood that a single cache may serve many different user
agents. Third, and most importantly, it is at best a poor reinvention of HTTP content
negotiation, based on the preferences and capabilities stated in the Accept-* headers.

6.3 Diverting a Request: The Internal Redirect
The request processing cycle may be diverted at any point using a mechanism
known as an internal redirect. An internal redirect replaces the current request with
a new request for the new (redirected) resource.

The internal redirect mechanism emulates HTTP redirection (such as an HTTP 302
response), but without requiring an additional request from the browser. This behav-
ior mirrors the distinction made through the dual nature of the CGI Location header:

Location: http://www.example.com/foo/

This causes Apache to send an HTTP redirection to the browser, including the
HTTP Location header.

By contrast, a relative URL—which is illegal in HTTP—is allowed in CGI:

Location: /foo/

This generates an internal redirect, without involving the browser.

A module can divert request processing using one of the two internal redirection
functions defined in http_request.h:

void ap_internal_redirect(const char *new_uri, request_rec *r)

This is the canonical internal redirection function, and the mechanism to use
if you have no strong reason to make another choice. This function creates a
new request object for the new URL, and then runs the new request as if
new_uri had been requested in the first place.
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void ap_internal_fast_redirect(request_rec *new_req, request_rec *r)

This function clones an existing request structure new_req into the running
request r, so it can be used to set up a new request and simulate passing con-
trol to it. This mechanism is sometimes used to promote a subrequest (as dis-
cussed later in this chapter) to a main request.

Internal redirection can occur anywhere in the request processing cycle, provided
that no data have been returned to the client as yet. The most common form of
internal redirection is the error document, as described in Section 6.3.1.

Note that Apache’s normal processing, including—where appropriate—functions
implemented by your modules, will run within an internal redirect. Bear in mind
that the configuration applied is that of the redirected URL, not the original URL.
Your handlers can determine whether they are running in an internal redirect by
examining the r->prev field. Normally, its value will be NULL; in an internal redi-
rect, however, it contains the original request_rec from before the redirection. An
internal redirection will also have an environment variable REDIRECT_STATUS set
to the status code of the original request at the time of redirection.
static int my_func(request_rec* r) {
...
/* Are we in an internal redirect? */
request_rec *original = r->prev ;
if (original != NULL) {
/* We're in an internal redirect from "original" */

}
else {
/* It's a normal request */

}
...

}

6.3.1 Error Documents
In Chapter 5, we mentioned that if our handler returned an HTTP status code (or,
indeed, any value other than OK or DECLINED), this would divert the entire request
processing into an error path. Any function implementing an earlier hook in the
request cycle may likewise return an HTTP status code. At that point, Apache sets up
an internal redirection to the error document for the HTTP status code in question.

An error document is, by default, a predefined document that presents the user with
a brief explanation of the error. A server administrator can change this document
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by using the ErrorDocument directive. Because an error document is treated inter-
nally as a different request, it can be served by any handler (such as a CGI or PHP
script). To avoid going into an error loop, this functionality is not recursive: An
error document will not divert the path to another error document by returning an
HTTP status code itself. If that happens, it generates a predefined server error.

A special case involves error documents for HTTP 3xx status codes. These codes
are not errors, but rather redirections and similar messages. Thus, in addition to an
internal redirection, they generate an HTTP redirection. This operation is straight-
forward and perfectly normal, as illustrated by our earlier example in which
mod_alias handles the Redirect directive.

6.3.2 Dealing with Malformed and Malicious Requests
A fundamental principle of security on the Web is always to exercise caution in what
you accept from any unknown source. That includes HTTP requests coming from
anywhere on the Web. Most of these requests will be legitimate, being generated by
human-driven browsers, spiders such as Googlebot, proxy cache agents, QA tools
such as Site Valet, and so on. Unfortunately, a significant number of HTTP requests
represent attempts to exploit security vulnerabilities. Traces of some rather old IIS
worms (e.g., Nimda, Code Red) are routinely seen in Apache logs, in which auto-
mated attacks attempt to use IIS bugs to take control of Windows servers. Although
Apache has not suffered a comparable attack, it is every module developer’s business
to keep Apache clean! The basic rule is to determine which inputs, or pattern of
inputs, an application will accept, and then to reject any request that fails to match
an acceptable pattern.

Apache offers a ready-made solution that allows any module to deal with bad
requests: Simply abort by returning HTTP status code 400 (Bad Request) or, where
applicable, a more specific HTTP 4xx status code, as soon as you encounter the bad
inputs. Don’t even try to deal with the bad request directly—that way complexity
and security vulnerabilities lie.

6.4 Gathering Information: Subrequests
A second form of diversion from normal request processing is the subrequest. A
subrequest is a diversion to a new request. Unlike with internal redirection, how-
ever, processing returns to the original request after the subrequest completes.
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Subrequests constituted an important tool in Apache 1.x, where they could be used
to improvise a primitive form of filtering in which a module sets up a handler to
run another handler in a subrequest, and intercepts incoming and/or outgoing data.
In Apache 2.x, this kind of hack is no longer necessary. The main role of the sub-
request now is to run a fast partial request, to gather information: “What would
happen if we ran this request?” For example, mod_autoindex runs a subrequest to
each file in a directory, producing a list of only those files that are accessible to the
server. Of course, at the system level, we could achieve the same goal with a simple
stat, but running a subrequest means that we can also ascertain whether the server
configuration permits access.

The subrequest API in Apache 2 comprises four methods to create a subrequest
from a request

• ap_sub_req_lookup_uri

• ap_sub_req_lookup_file

• ap_sub_req_lookup_dirent

• ap_sub_req_method_uri

together with a method to run it

• ap_run_sub_req

and a method to dispose of it when done

• ap_destroy_sub_req

When we create a subrequest using one of the first four methods, Apache goes
through the request preparation phase (up to the fixups hook). This may be suf-
ficient if the purpose of the subrequest is to gather information on “What would
happen if we request this URL?” Running a subrequest is optional.

Destroying the subrequest can be a more complex issue. It is always required,
whether or not the request was run. Modules can either run ap_destroy_sub_req
explicitly or leave it to the pool cleanup when the parent request is destroyed. Take
care when destroying a subrequest, as anything allocated on the subrequest’s pool
will die along with it!
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Like the internal redirect and the error document, a subrequest will invoke func-
tions from all modules hooked into the processing cycle, as appropriate. Your func-
tions can tell when they are invoked in a subrequest by looking at the r->main field
of the request_rec; its value is normally NULL, but in the context of a subrequest
it holds the parent request_rec.
static int my_func(request_rec* r) {
...
/* Are we in a subrequest? */
request_rec *parent = r->main ;
if (parent != NULL) {
/* It's the parent, and we're in a subrequest */

}
else {
/* It's a normal request */

}
...

}

6.4.1 Example
The mod_include module demonstrates both forms of subrequests. The SSI 
<!—#include virtual="..."--> directive is implemented by a full subrequest
to the included resource, whereas other directives such as <!--#fsize ...-->
and <!--#flastmod ...--> use only a lookup to find information about the
resource (metadata), without actually serving the resource to the client.

Here’s the relevant subrequest code for processing <!--#include virtual...-->
and <!--#include file ...--> directives in mod_include:
/*
* <!--#include virtual|file="..." [virtual|file="..."] ... -->
*/
static apr_status_t handle_include(include_ctx_t *ctx, ap_filter_t *f,

apr_bucket_brigade *bb)
{

request_rec *r = f->r;

/* Housekeeping DELETED FOR BREVITY */

while (1) {
char *tag     = NULL;
char *tag_val = NULL;
request_rec *rr = NULL;
char *error_fmt = NULL;
char *parsed_string;
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ap_ssi_get_tag_and_value(ctx, &tag, &tag_val,SSI_VALUE_DECODED);
if (!tag || !tag_val) {

break;
}
if (strcmp(tag, "virtual") && strcmp(tag, "file")) {

ap_log_rerror(APLOG_MARK, APLOG_ERR,0,r,"unknown parameter "
"\"%s\" to tag include in %s", tag, r->filename);

SSI_CREATE_ERROR_BUCKET(ctx, f, bb);
break;

}

parsed_string = ap_ssi_parse_string(ctx, tag_val, NULL, 0,
SSI_EXPAND_DROP_NAME);

if (tag[0] == 'f') {
char *newpath;
apr_status_t rv;

/* Be safe; only files in this directory or below allowed */
rv = apr_filepath_merge(&newpath, NULL, parsed_string,

APR_FILEPATH_NOTABOVEROOT |
APR_FILEPATH_SECUREROOTTEST |
APR_FILEPATH_NOTABSOLUTE, ctx->dpool);

if (rv != APR_SUCCESS) {
error_fmt = "unable to include file %s in parsed file %s";

}

The next two else clauses create the subrequest: the first for <!--#include
file-->, and the second for <!--#include virtual-->.

else {
rr = ap_sub_req_lookup_file(newpath, r, f->next);

}
}
else {

rr = ap_sub_req_lookup_uri(parsed_string, r, f->next);
}

At this point, the subrequest has not been run, but the lookup alone takes us
through the process of constructing the subrequest and running it, up to and
including the fixups phase. As a consequence, we know quite a lot about the sub-
request: We know if it has failed or been denied (except for the case in which an
error in its content generator causes it to fail), and we’ve got the file information
we’d need for <!--#fsize--> or <!--#flastmod-->. But the subrequest has not
(yet) touched the data, only the metadata.
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if (!error_fmt && rr->status != HTTP_OK) {
error_fmt = "unable to include \"%s\" in parsed file %s";

}

if (!error_fmt && (ctx->flags & SSI_FLAG_NO_EXEC) &&
rr->content_type && strncmp(rr->content_type, "text/", 5)) {

error_fmt = "unable to include potential exec \"%s\" in " 
"parsed file %s";

}

/* See the kludge in includes_filter for why.
* Basically, it puts a bread crumb in here, then looks
* for the crumb later to see if it's been here.
*/
if (rr) {

ap_set_module_config(rr->request_config, &include_module,r);
}

The second phase of the subrequest processing is to run the content generator. The
subrequest’s output will then be sent to the client. Other SSI directives such as 
<!--#flastmod--> and <!--#fsize> omit this step.

if (!error_fmt && ap_run_sub_req(rr)) {
error_fmt = "unable to include \"%s\" in parsed file %s";

}

if (error_fmt) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r, error_fmt,

tag_val, r->filename);
SSI_CREATE_ERROR_BUCKET(ctx, f, bb);

}

/* Do *not* destroy the subrequest here; it may have allocated
* variables in this r->subprocess_env in the subrequest's
* r->pool, so that pool must survive as long as this request.
* Yes, this is a memory leak. */

The comment is noting that at this point, we would normally call
ap_destroy_sub_req. The memory leak isn’t really important, because it lasts
only until the main request is itself destroyed.

if (error_fmt) {
break;

}
}

return APR_SUCCESS;
}
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6.5 Developing a Module
So far, we have breezed through a brief overview of the earlier phases of request pro-
cessing. In the remainder of this chapter, we will develop a real example module.

6.5.1 Selecting Different Variants of a Document
The author’s Site Valet product includes a facility through which users can publish
reports to the server. These reports are part of a QA/audit process. As such, they are
important but will be accessed infrequently, so system performance is not a major
issue with the report generation process.

Reports are generated and stored on the server in an XML format used within Site
Valet. Not surprisingly, the reports need to be accessible in other formats: HTML
for web browsers and human readers, and EARL (RDF) for the Semantic Web. This
reformatting is accomplished by applying an XSLT transformation on the fly when
a document is served to anyone other than the Valet tools. The XSLT transforma-
tion is performed by mod_transform, which is a prerequisite for this module.

The problem we have to address here is, in a sense, the opposite of content negoti-
ation. Instead of selecting one of many static resources according to the request
headers, we must respond to the user’s explicit request for a different URL.

Put explicitly, if an XML report is stored at {DOCUMENT_ROOT}/reports/example,
then we need to map requested URLs as follows:

http://server/reports/example → XML (unchanged)

http://server/reports/example.html → HTML

http://server/reports/example.rdf → EARL

For additional flexibility, our module enables users to define other formats by intro-
ducing their own XSLT stylesheets. Let’s call this module mod_choices.

The core of mod_choices is a type_checker hook. To set the scene for it, we need
to define the relevant data structs. First, we define the module configuration:

typedef struct choices_cfg {
int choices ;             /* Flag to turn this module on/off */
apr_hash_t* transforms ;  /* Table of "extensions" known to

* this server
*/

} choices_cfg ;
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Second, we note that each “extension” is a record describing how to handle itself:
typedef struct choices_transform {
const char* ctype ;   /* Content-Type for this extension */
const char* xslt ;    /* Name of XSLT stylesheet for

* this extension.
*/

} choices_transform ;

To implement .html and .rdf as described above, we will set up entries in the
transforms table. The configuration will look something like this:
Alias reports /var/www/reports
<Directory /var/www/reports/>

# set "choices" in choices_cfg
Choices On

# Set up choices_transform entries for HTML and RDF (EARL)
ChoicesTransform html text/html;charset=utf-8 transforms/html.xslt
ChoicesTransform rdf application/rdf+xml transforms/earl.xslt

</Directory>

Now we can present the main function:
static int choices_select(request_rec* r) {

/* First, look up our module configuration */
choices_cfg* cfg =
ap_get_module_config(r->per_dir_config, &choices_module) ;

if ( ! cfg->choices ) {
/* This request has nothing to do with this module */
return DECLINED ;

}

if ( r->method_number != M_GET ) {
/* Other methods are allowed, but this hook isn't interested */
return DECLINED ;

}

if ( ! r->filename ) {
/* This can't happen; but if it does (e.g., a buggy third-party
* module has messed up our request), a server error is better
* than a server crash when we dereference a null pointer :-)
*/
return HTTP_INTERNAL_SERVER_ERROR ;

}

/* Our request has been mapped to the filesystem, but it may not
* match anything that's really there.  We can stat it to find out.
*/
if ( apr_stat(&r->finfo, r->filename, APR_FINFO_SIZE, r->pool)
== APR_SUCCESS ) {
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/* The request maps directly to a file.  We don't need to
* do anything except serve it as XML.
*/
ap_set_content_type(r, "application/xml;charset=utf-8") ;

} else {
/* The request doesn't map to a file. We need to check whether we
* can map to a file by stripping the "extension" off.
*
* First, we split the filename.
*/
char* ext = strrchr(r->filename, '.') ;
if ( ext ) {
*ext++ = 0 ;

} else {
/* No such file and not a name we can parse as an extension */
return HTTP_NOT_FOUND ;    /* (1) */

}
/* Now we can see whether we have a file we can map */
if ( apr_stat(&r->finfo, r->filename, APR_FINFO_SIZE, r->pool)
== APR_SUCCESS ) {
/* OK, it's there.  Now check whether it's an extension we know. */
choices_transform* fmt = apr_hash_get(cfg->transforms, ext,

APR_HASH_KEY_STRING) ;
if ( fmt ) {
/* OK, we have a transform for this extension.
* We set request properties accordingly.
*/

ap_set_content_type(r, fmt->ctype) ;

/* this function is exported by mod_transform, and selects
* an XSLT transform to run for this request
*/
mod_transform_set_XSLT(r, fmt->name) ;

/* Finally, we insert mod_transform in the output chain.
* The filter name is also exported by mod_transform.
*/
ap_add_output_filter(XSLT_FILTER_NAME, NULL, r, r->connection) ;

} else {
/* We don't know this extension, so we can't serve it.
* If this was a negotiated resource, we'd return NOT_ACCEPTABLE
* (HTTP 406) here.  Since it isn't, we return NOT_FOUND.
*/

return HTTP_NOT_FOUND ;    /* (2) */
}

} else {
/* apr_stat failed -- there's no underlying file to serve */
return HTTP_NOT_FOUND ;    /* (3) */

}
}
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/* OK, we've finished configuring this request */
return OK ;

}

All we need to do now is to hook in the handler, together with its configuration.
We’ll show the remainder of the module here for completeness, but defer an
explanation of it to Chapter 9, where we describe module configuration. We use
APR_HOOK_FIRST to hook this handler in ahead of standard type checkers such
as mod_mime.
static void choices_hooks(apr_pool_t* pool) {
ap_hook_type_checker(choices_select, NULL, NULL, APR_HOOK_FIRST) ;

}
module AP_MODULE_DECLARE_DATA choices_module = {

STANDARD20_MODULE_STUFF,
choices_cr_cfg ,
NULL ,
NULL ,
NULL ,
choices_cmds ,
choices_hooks

} ;

static void* choices_cr_cfg(apr_pool_t* pool, char* x) {
choices_cfg* ret = apr_pcalloc(pool, sizeof(choices_cfg)) ;
ret->transforms = apr_hash_make(pool) ;
return ret ;

}
static const char* choices_transform_set(cmd_parms* cmd, void* cfg,

const char* ext, const char* ctype, const char* xslt) {
apr_hash_t* transforms = ((choices_cfg*)cfg)->transforms ;
choices_transform* t
= apr_palloc(cmd->pool, sizeof(choices_transform));

t->ctype = ctype ;
t->xslt = xslt ;
apr_hash_set(transforms, ext, APR_HASH_KEY_STRING, t);
return NULL;

}
static const command_rec choices_cmds[] = {
AP_INIT_FLAG("Choices", ap_set_flag_slot,
(void*)APR_OFFSETOF(choices_cfg, choices), ACCESS_CONF,
"Enable document variant selection by extension"),

AP_INIT_TAKE3("ChoicesTransform", choices_transform_set, NULL,
ACCESS_CONF, "Define content-type and XSLT for an extension"),

{NULL}
} ;

6.5 Developing a Module 171



6.5.2 Error Handling and Reusability
The preceding module is adequate for our application. Anyone using this code will
be accessing a URL generated by the application, so how we deal with failure to find
a resource is unimportant. Of course, if we want to generalize our module a little,
we could make a few changes. There’s no problem with reusing it as is; it’s just that
the module is specific to a single project, so it is not very likely to be used on a more
widespread basis.

There are three points at which we return an HTTP status of 404 (Not Found),
thereby diverting processing into an error document. Points 1 and 3 indicate cases
in which we fail to find any resource. Point 2 indicates the case in which we find
the file but don’t know what to do with the extension.

Now, mod_choices implements one scheme for dealing with variants on a
resource; mod_negotiation implements another scheme; and another third-party
module might provide an altogether different mapping. At points 1 and 3, we could
return DECLINED instead of HTTP_NOT_FOUND to enable those modules to work
alongside mod_choices.1 At point 3, we would also need to restore r->filename
to its original value first! If we do that, we can let Apache apply several different
schemes until it finds one that works (or gives up).

We could do the same at point 2, but this failure is probably due to a server con-
figuration that doesn’t quite meet the client’s expectations. As an example, suppose
that the client requested

http://server/reports/example.html

but the ChoicesTransform line for html is missing from httpd.conf. In this sce-
nario, a better option is to return HTTP_MULTIPLE_CHOICES, which will divert us
into an error document. To be useful, our error document should tell the client
which options are available, so we’ll have to write our own handler for it, too. This
handler needs the mod_choices configuration, so it’ll be easiest to implement it in
the same module.
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Here’s a minimal implementation:
static int choices_errordoc(request_rec* r) {

/* This is an error handler we can use if we return
* HTTP_MULTIPLE_CHOICES instead of HTTP_NOT_FOUND at (2) above
*/
choices_cfg* cfg ;
const char* ext ;
apr_ssize_t len ;
choices_transform* rec ;
apr_hash_index_t* ht ;
char* p;

/* Ignore the request if we're not in an internal redirect */
if ( ! r->prev || ! r->prev->uri ) {
return DECLINED ;

}

/* Insist on being configured before we do anything */
if ( strcmp(r->handler, "choices-errordoc") != 0 ) {
return DECLINED ;

}

cfg = ap_get_module_config(r->prev->per_dir_config, &choices_module);

ap_set_content_type(r, "text/html;charset=ascii") ;

/* Now we can print an error page, listing the 'base' (XML)
* document and other available variants.
*
* The base name is in r->prev->uri.
* We just need to strip off the extensions.
*/
p = strrchr(r->prev->uri, '.') ;
if (p != NULL)
*p = '\0' ;

ap_rprintf(r, "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\">\n"
"<html><head><title>No such format</title></head>"
"<body><h1>Format not supported</h1>"
"<p>mod_choices on this server is not configured to support "
"the requested document format.  Available options are:</p>"
"<table><thead><tr>"
"<th scope=\"col\">Document Type</th>"
"<th scope=\"col\">URL</th>"
"</tr></thead><tbody>"
"<tr><td>application/xml</td>"
"<td><a href=\"%s\" type=\"application/xml\">%s</a></td></tr>",
r->prev->uri, r->prev->uri) ;
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/* We saw how to iterate over a table in Chapter 5.
* For a hash table, we use a more traditional loop,
* based on a hash index ht and the function apr_hash_this.
*/
for (ht = apr_hash_first(r->pool, cfg->transforms);

ht; ht = apr_hash_next(ht)) {
apr_hash_this(ht, (const void**)&ext, &len, (void**)&rec) ;
ap_rprintf(r, "<tr><td>%s</td>"

"<td><a href=\"%s.%s\" type=\"%s\">%s.%s</a></td></tr>\n",
rec->ctype, r->prev->uri, ext, rec->ctype, r->prev->uri, ext) ;

}
ap_rputs("</tbody></table></body></html>" , r) ;
return OK ;

}

Now we just need to add this function to our hooks:
static void choices_hooks(apr_pool_t* pool) {
ap_hook_type_checker(choices_select, NULL, NULL, APR_HOOK_FIRST) ;
ap_hook_handler(choices_errordoc, NULL, NULL, APR_HOOK_MIDDLE) ;

}

Finally, we configure it:
Alias reports /var/www/reports
<Directory /var/www/reports/>

# set "choices" in choices_cfg
Choices On

# Set up choices_transform entries for HTML and RDF (EARL)
ChoicesTransform html text/html;charset=utf-8 transforms/html.xsl
ChoicesTransform rdf application/rdf+xml transforms/earl.xsl

# Set up ErrorDoc handling for Multiple Choices
ErrorDocument 300    /reports/error300
<Files    error300>

SetHandler  choices-errordoc
Choices     Off

</Files>
</Directory>

6.6 Summary
This chapter presented an overview of the HTTP request processing cycle in Apache,
covering both the standard processing path and diversions from it. As with content
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generators, the primary building blocks for metadata modules are callback functions
attached to Apache’s hooks. Specifically, we examined the following topics:

• The anatomy of an HTTP request

• Mapping the request to the server

• Handling HTTP request headers (metadata), including content negotiation

• The roles of the request processing phases, and hooking into them

• Diverting the request from the normal cycle

• Processing errors

Apache’s hooks are explained in detail in Chapter 10, and configuration is addressed
more fully in Chapter 9. Next, Chapter 7 offers a detailed look at the security phase
of request processing.
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In terms of the main flow of this book, the Apache access, authentication, and
authorization (AAA) framework falls broadly within the scope of metadata modules
(Chapter 6). However, it has historically been an extremely popular area for mod-
ule developers. Furthermore, it has changed significantly in Apache 2.1/2.2 com-
pared to earlier versions. Given that this is the most substantial change since the
original framework inherited from the NCSA HTTPD in 1995, it is of sufficient
interest to merit its own chapter.

7.1 Security
Before we dig into the details of the security phase in Apache’s request processing, we
should perhaps take a broader look at the issue of security. Since a comprehensive
discussion of security belongs in a book for system administrators—which this is
not—we’ll be very brief, but we should at least set the scene for what this chapter
does and does not cover.
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This chapter deals specifically with determining who is permitted to access a
resource or perform an operation over the Web, including the concept of login. It
discusses different methods of dealing with this issue, and widely different levels of
security.

This chapter explicitly does not deal with other important aspects of web security,
including these issues:

• Transport-layer security. Support for strong data encryption between the client
and the server is provided by mod_ssl or mod_gnutls.1

• Operating system security. It is the business of the systems administrator to
ensure the operating system offers the best possible protection against a bug in
Apache—or any other program—becoming a backdoor to the system. This is
an area in which UNIX-family operating systems in the hands of a competent
administrator still offer major advantages over Windows.

• Safe programming techniques (see Chapter 4).

• Protection of vulnerable applications, particularly PHP. This is the main sub-
ject of a third-party module, mod_security.2

• People and processes. High security in the system is wasted when sensitive
information such as passwords is revealed in an insecure medium such as an
unencrypted email message, fax, or telephone conversation. Likewise, a pass-
word written down on paper or kept on a computer or in an organizer is only
as secure as what it’s written on. Similarly, if an attacker can physically access
a machine via someone else’s session, or trick someone into doing it for them,
all your web security is in vain.

7.1.1 Authentication: Levels of Security
HTTP offers two levels of security for web authentication.

7.1.1.1 Basic

HTTP basic authentication is a simple, low-security method. The username:
password combination is base-64 encoded and passed over the Web. It is secure to
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the extent that the tokens passed are obscure and unmemorable to human readers,
and will appear as gibberish to a non-computer-person such as the boss. But these
tokens are trivial for a programmer to decode using, for example, Apache’s
apr_base64, and they can be reused verbatim to impersonate a user.

7.1.1.2 Digest

Digest authentication uses MD5 one-way encryption to protect passwords. This is
cryptographically secure: A password cannot be reconstructed from an MD5 token,
at least not without considerable resources. It is also secure against replay attacks,
because passwords passed from the client to the server are constructed using a pri-
vate token that is regenerated every few minutes. The downside (which is mostly
historical and of little relevance today) is that digest authentication is harder to work
with and carries a higher system overhead than basic authentication; also, browser
support is not universal.

These methods of authentication can be supplemented by other measures, such as
limited sessions with expiry times enforced by the server.

7.1.1.3 Authentication Dialog

Both basic and digest authentication are associated with authentication dialog pop-
up boxes presented by browsers when challenged (Figure 7-1). These dialogs are
firmly outside the scope of a site designer. 
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Sometimes we may wish to avoid this dialog-based scheme and implement alterna-
tive authentication methods. We’ll look at alternatives later in the chapter, but bear
in mind that it is not possible to reproduce the level of cryptographic security of
digest authentication, except by relying on nonstandard (and inevitably far less well-
supported) client capabilities or by resorting to SSL/client certificates.

7.1.2 Login on the Web
The term login is sometimes used interchangeably with the term authentication on
the Web. Strictly speaking, this is a misnomer: Login implies a session, but HTTP
is a stateless protocol and so doesn’t support sessions. Session management can be
built on top of HTTP, but this requires that a session token is passed not just once
at login time, but with every request. There is no way to avoid this duplication of
effort.

We’ll avoid confusing authentication as such with login, but at the end of the chap-
ter we’ll discuss session management under the title of login.

7.2 An Overview of AAA
The basic premise of access control and authentication is that we may wish to per-
mit certain operations to some users, but deny them to others. Determining who
a user is and whether that entity is permitted the current operation is the business
of these aaa modules. Apache provides a number of standard modules for this pur-
pose in the modules/aaa directory, and a wide range of third-party modules are
also available. The number of third-party modules is likely to be reduced in Apache
2.2 compared to earlier versions, because the new AAA framework reduces the
amount of duplication of very similar functionality required between the various
modules.

Access control was originally determined in two ways:

• Host-based control permits or denies access based on the IP address from
which the request originates (REMOTE_HOST or REMOTE_ADDR).

• User-based control identifies users by login/password (REMOTE_USER).
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These two fundamental control methods still lie at the heart of Apache AAA, but
the scope of the tasks has been greatly broadened. In particular, user-based control
has been generalized to concepts such as sessions managed by a cookie or URL hash.

There are three request processing hooks concerned with access control:

• ap_hook_access_checker

• ap_hook_check_user_id

• ap_hook_auth_checker

These hooks are, respectively, responsible for three tasks:

• Determine whether the remote host is permitted access

• Determine who the remote user is, and verify the password

• Determine whether the now-identified remote user is permitted access

This underlying structure is common to all Apache versions to date, and reflects the
forms of configuration available to AAA modules

Host Access
Order Deny, Allow
Deny from all
Allow from 192.168.1.11

Specifying an Authentication Protocol
AuthType Basic
AuthName "My Server"

Identifying the User
AuthUserFile /etc/apache/users

Determining Whether the Remote User Has Access
AuthGroupFile /etc/apache/groups
Require group example

Determining Whether to Require Both or Just One of Host and User
Satisfy Any
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7.3 AAA in Apache 1.x and 2.0
Apache has traditionally supported two basic forms of access control:

1. Access by IP address is determined by mod_access.

2. Access by identified user is determined by mod_auth, or any of numerous
equivalents from the standard mod_auth_dbm to a wide range of third-party
options. These modules are responsible for both the check_user_id and
auth_checker phases.

mod_access is configured using the Order, Allow, and Deny directives, which
specify allowed or disallowed IP addresses. mod_auth is controlled primarily by the
Require directive, which specifies users or groups permitted access. The two mod-
ules are linked by the Satisfy directive, which determines whether a request needs
to satisfy both forms of access control or whether either one alone is sufficient.

In this framework, mod_access works cleanly and well, but the mod_auth family
is less well specified. The basic problem with authentication is that each module has
to perform several distinct tasks that would be better factored out into common
functions.

HTTP distinguishes between basic and digest authentication by specifying dif-
ferent methods of encoding the user identification data. An authentication mod-
ule has to decode the data according to the encoding used. This has left us 
with mod_auth_digest as separate from mod_auth, and other modules such as
mod_auth_dbm not supporting digest authentication at all because it doesn’t
reimplement that code.

A module has first to identify the user using one of the above schemes or its own
method (which could be something completely different, such as a cookie or a
directory service) and then to determine whether the user is authorized for the
attempted operation. That’s two separate functions—indeed, two separate request
processing hooks—in a single module.

7.4 AAA in Apache 2.1/2.2
Access, authentication, and authorization in Apache 2.1/2.2 have been refactored
into a four-part process, as shown in Figure 7-2.
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7.4.1 Host-Based Access Control
mod_access has been renamed to mod_authz_host (“host-based authorization”),
but is otherwise not substantially changed. It is the only standard module to use the
access_checker hook. Other modules implementing access control based on net-
work or hardware information, such as a module implementing ARP lookup and
permitting access by MAC address, would also use this hook.

7.4.2 Authentication: check_user_id
Authentication is the process of reading a token from the client, and converting it
from the external representation sent over the wire to Apache’s internal representa-
tion—in particular, setting the user field of the request_rec object. For exam-
ple, mod_auth_basic implements HTTP basic authentication by extracting a
username/password pair from a base-64-encoded token sent from the client. The
process of verifying a password is now handled by a separate authorization (authn)
module. The advantage of this approach is that it decouples password lookup from
protocol support. Now, for example, mod_authn_dbd has only to look up pass-
words in an SQL database, and it automatically supports both basic and digest
authentication.
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Two standard modules implement the check_user_id hook. These are known as
auth modules:

• mod_auth_basic implements HTTP basic authentication.

• mod_auth_digest implements HTTP digest authentication.

These two modules deal with implementing their respective HTTP protocols, as
before, but differ from earlier versions in that they delegate the password lookup.

7.4.3 Password Lookup
Authentication (authn) modules are helpers for the auth (user-checking) modules.
The authn API is an ap_provider, as introduced in Chapter 10. The standard
Apache distribution includes the following authn modules:

• mod_authn_alias—support complex configuration options by delegating to
other providers

• mod_authn_anon—permit arbitrary user-supplied passwords or variants such
as anon-ftp style e-mail addresses

• mod_authn_dbd—look up passwords in an SQL database

• mod_authn_dbm—look up passwords in a DBM database

• mod_authn_default—a fallback to reject users if no other authn module
deals with them

• mod_authn_file—look up passwords in a flat file (the old htpasswd/htdigest)

• mod_authnz_ldap—look up passwords in an LDAP directory

7.4.4 Authorization
Authorization (authz) is the decision of whether the user is authorized to carry 
out the attempted operation. The old mod_access module has become
mod_authz_host, as it makes that decision based on the client host and
Allow/Deny From directives. User-based authorization uses the auth_checker
hook and grants or denies access based on the username, as set in the authentica-
tion phase.
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Standard authorization modules are listed here.

• mod_authz_dbd—look up the user’s groups in an SQL database ("Require
dbd-group") and provide hooks for login/logout

• mod_authz_dbm—look up the user’s groups in a DBM database

• mod_authz_default—a fallback to reject users if no other authz module
takes any decision

• mod_authnz_ldap—look up the user’s groups in an LDAP directory

• mod_authz_owner—authorization based on the system user and group of a
resource requested

• mod_authz_user—implements “Require valid-user” (allow anyone
authenticated), as well as “Require user” and “Require group” (list of 
permitted users or groups, respectively)

7.5 AAA Logic
The logic of the security phase in the Apache core is shown here, in pseudocode form:

If (Satisfy Any) {
run access_checker
if (allowed by access checker) {

ALLOW access; skip check_user_id and auth_checker hooks
} else {

if (configured for authentication) {
run check_user_id
if (user id is valid) {

run auth_checker; outcome is ALLOW or DENY
} else {

DENY access
}

}
}

} else { /* Satisfy ALL is the default */
run access_checker
if (allowed by access checker) {

if (configured for authentication) {
run check_user_id
if (user id is valid) {

run auth_checker; outcome is ALLOW or DENY
} else {

DENY access
}

}
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} else {
DENY access; skip check_user_id and auth_checker hooks

}
}

This scheme is, of course, simplified, in that any hook can divert the processing into
an internal error if a hook fails or if authentication is misconfigured. Nevertheless,
the fundamental logic is sound: Host-based access control always runs, but user-
based control may be skipped according to the configuration. At this level, the logic
is unchanged in Apache 2.2 from earlier versions.

7.5.1 Authentication and Require
One bit of logic needs further explanation. What does it mean to be “configured for
authentication”?

This is entirely predicated on the Require directive. If there is any Require
directive in scope in httpd.conf or an applicable .htaccess, then some
authentication is required. Require alone is not sufficient to configure authenti-
cation, but it is the arbiter of whether authentication is required. Require is
implemented by the server core, which exports API methods for modules to use.
The function that determines whether we are configured for authentication is
ap_some_auth_required.

7.5.2 Denying Access
Apache uses three HTTP response codes to deny access in this phase:

• 401 (Unauthorized)

• 403 (Forbidden)

• 407 (Proxy Authentication Required)

Response code 403 is an unconditional denial of access: There is nothing the client
can do to get in. This response is what will be returned when mod_access (now
mod_authz_host) denies access based on a Deny From directive.

Response codes 401 and 407 tell the client that access was denied, but would be
allowed if the client had sent the appropriate credentials (typically a username and
password). The HTTP protocol requires that a 401 or 407 request must include an
authentication challenge, which tells the client the authentication protocol to use.
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This challenge, in turn, causes the client to display a username/password dialog
when that client is a browser. Here is a typical response:

HTTP/1.1 401 Authorization Required
Date: Fri, 23 Dec 2005 20:01:34 GMT
Server: Apache/2.2.0 (Unix)
WWW-Authenticate: Basic realm="Demo server"
Accept-Ranges: bytes
Content-Length: 113
Connection: close
Content-Type: text/html; charset=ISO-8859-1

The crucial header here is the challenge WWW-Authenticate. It invites the browser
to try again, using HTTP basic authentication. The realm is displayed by most
browsers in a login dialog box, which varies a little between browsers but is basically
the same.

A 407 response replaces WWW-Authenticate with Proxy-Authenticate, but is
otherwise exactly the same.

7.5.3 Authentication Methods
The authentication method is part of the client/server communication protocol and
is, therefore, constrained to be a method supported by browsers. On the Web, that
means we have two options: Basic and digest authentication are implemented by
mod_auth_basic and mod_auth_digest, respectively. Although we could imple-
ment a different method in Apache, it won’t be useful (except perhaps within a spe-
cialist private network) because it will generate an authentication challenge that
browsers won’t understand and respond to.

If we are determined to implement a different “login” scheme, we can either “fake”
HTTP basic authentication or avoid it altogether, provided we avoid sending a 401
or 407 response to the client.

7.6 Writing AAA Modules
Let’s look at a nonstandard authentication task. Suppose we wish to develop a mod-
ule that permits anonymous access on selected days specified by a server administra-
tor, while requiring normal username/passwords to access the system on other days.
Setting aside other possible implementations of this scheme, let’s develop it using the
authn/authz framework, which will integrate fully with standard authenticated
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access. Our goal is to create an authentication dialog appropriate for all users, so that
users having normal username/password credentials can freely use either those data
or anonymous access (using the name of the day as the username) on open days.
We’ll use the common convention for weekdays, and accept but ignore anything
beyond the first three characters.

The pivotal control is the Require directive. We’ll need a new keyword for our
method. Let’s use “day”. Thus our configuration takes the following form:

Require day saturday sunday

7.6.1 A Basic Authentication Provider
Because we’re integrating the new framework with normal authentication, we need
to piggyback onto either basic or digest authentication. That means we want an
authn provider to “verify” a “password” for the day. We’ll allow a server administra-
tor to configure the system to ignore passwords altogether or require today’s date as
a password. This approach is simpler than the normal authn function of looking up
a password for the user.
static authn_status authn_check_day(request_rec *r, const char* user,

const char* password)
{

int y, m, d;
apr_time_exp_t today;
const char* const wdays[7] =

{ "sun", "mon", "tue", "wed", "thu", "fri", "sat" };
authnz_day_rec *cfg = ap_get_module_config(r->per_dir_config,

&authnz_day_module);

/* Get today's date, in local time.  If this fails, it's a server error. */
if (apr_time_exp_lt(&today, apr_time_now()) != APR_SUCCESS) {

return AUTH_GENERAL_ERROR;
}

/* Check the username is today */
/* If not, disclaim any interest in this request and leave it
* to normal authentication or fallback.
*/
if ((strlen(user) < 3) || strncasecmp(user, wdays[today.tm_wday], 3)) {

return AUTH_USER_NOT_FOUND;
}

/* Unless we're configured to ignore password, check this */
if (!cfg->nopassword) {

/* Read password, and reject anything not in 2005-11-03 format */
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if (sscanf(password, "%d-%d-%d", &y, &m, &d) != 3) {
return AUTH_DENIED;

}

/* Check the password is today */
if ((y != (today.tm_year+1900))

|| (m != (today.tm_mon+1))
|| (d != today.tm_mday)) {
return AUTH_DENIED;

}

}
/* If we got more than three letters, reduce it.  This doesn't affect
* authentication, but avoids arbitrary and possibly spurious entries
* in the log file.  For example, if we allow day-access on Mondays
* and also have a registered user "Monica," we *accept* "Monica" as
* an alias for Monday because we're looking at only three letters,
* but we don't want Monica appearing in the logs when it's really
* an anonymous user.
*
* For this reason, we want this provider to run *after* other authn
* providers, so that when it's the real Monica her password is
* checked for normal login before we allow anonymous access.
*/
if (strlen(r->user) > 3) {

r->user[3] = ‘\0';
}

/* Before returning, we'll set a flag to indicate that this is
* an anonymous user.  The value is immaterial; it's just nonzero.
*/
ap_set_module_config(r->request_config, &authnz_day_module, r);

/* OK, we're happy. */
return AUTH_GRANTED;

}

This function needs to be wrapped in an ap_provider:
static const authn_provider authn_day_provider =
{

&authn_check_day,
NULL

};

We register this in our module’s register_hooks function:
static void register_hooks(apr_pool_t *p)
{

ap_register_provider(p, AUTHN_PROVIDER_GROUP, "day", "0",
&authn_day_provider);

.... ;
}
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This provider will work with the standard mod_auth_basic module to implement
the check_user_id hook and set r->user. We’ll leave digest authentication for
the time being.

7.6.2 An Authorization Function
mod_auth_basic, together with the authn provider developed in Section 7.6.1,
will set the day’s name as r->user and mark a “password” as accepted. But it won’t
check whether the day is, in fact, one for which access is permitted. To perform this
task, we’ll need an authorization (authz) handler. This is what actually implements
our “Require day” directive:
static int authz_day(request_rec *r)
{

authnz_day_rec *cfg = ap_get_module_config(r->per_dir_config,
&authnz_day_module);

char *day = r->user;
int m = r->method_number;
const apr_array_header_t *reqs_arr = ap_requires(r);
require_line *reqs = reqs_arr ? (require_line *) reqs_arr->elts : NULL;
char *w;
const char *t;
int i;
int have_day = 0;

/* Check flag: Is this an anonymous user authenticated by our provider?
* If not, we're irrelevant.  Note that a ‘normal' authz handler should
* NOT make this kind of decision; it should work with any authn provider.
*/
if (ap_get_module_config(r->request_config, &authnz_day_module) == NULL) {

return DECLINED;
}

/* Require the first three letters; ignore any more */
if (strlen(day) < 3) {

return DECLINED;
}

/* Logic dictates this should be unnecessary: If there are no applicable
* Requires, we won't be called.  But it's better to fail than crash in the
* event of a bug elsewhere.
*/
if (!reqs_arr) {

return DECLINED;
}
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/* Go through applicable Require directives */
for (i = 0; i < reqs_arr->nelts; ++i) {

/* Ignore this Require if it's in a <Limit> section
* that excludes this method
*/
if (!(reqs[i].method_mask & (AP_METHOD_BIT << m))) {

continue;
}

/* Ignore if it's not a "Require day ..." */
t = reqs[i].requirement;
w = ap_getword_white(r->pool, &t);
if (strcasecmp(w, "day")) {

continue;
}

/* OK, we have a "Require day" to satisfy */
have_day = 1;

/* Loop over allowed days and match to today */
while (*t) {

w = ap_getword_white(r->pool, &t);
if ((strlen(w) >= 3) && !strncasecmp(w, day, 3)) {

/* Yep, anonymous access is allowed today */
return OK;

}
}

}

/* If there weren't any "Require day" directives, we're irrelevant */
if (!have_day) {

return DECLINED;
}

/* OK, our decision is final and binding */
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"Anonymous usage closed on %s", day);

/* ap_note_auth_failure causes Apache to add an authentication challenge
* to the response headers, as required by HTTP
*/
ap_note_auth_failure(r);
return HTTP_UNAUTHORIZED;

}

We need to register this handler as an auth_checker. We also need to be careful
here: We want to go before mod_authz_user, so that a “Require valid-user”
directive doesn’t just automatically pass us. We do so by explicitly declaring that
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mod_authz_user comes after us, whenever both modules are active. When put
together with our authn provider, our register hooks function becomes
static void register_hooks(apr_pool_t *p)
{

static const char *const aszSucc[] = { "mod_authz_user.c", NULL };

ap_hook_auth_checker(authz_day, NULL, aszSucc, APR_HOOK_MIDDLE);

ap_register_provider(p, AUTHN_PROVIDER_GROUP, "day", "0",
&authn_day_provider);

}

The configuration of this module is extremely simple; all we have to manage is the
administrator choice of whether to require the date as the password. The remainder
of the module is trivial:
typedef struct {

int nopassword;
} authnz_day_rec;

static void *authnz_day_cr_conf(apr_pool_t *pool, char *x)
{

return apr_pcalloc(pool, sizeof(authnz_day_rec));
}

static const command_rec authnz_day_cmds[] = {
AP_INIT_FLAG("AuthnDayIgnorePassword", ap_set_flag_slot,

(void *)APR_OFFSETOF(authnz_day_rec, nopassword), OR_AUTHCFG,
"Set ‘On' to ignore password; ‘Off' (default) to require "
"current date in 2005-11-03 format as a password."),

{NULL}
};

module AP_MODULE_DECLARE_DATA authnz_day_module = {
STANDARD20_MODULE_STUFF,
authnz_day_cr_conf,          /* dir config creator */
NULL,                        /* dir merger --- default is to override */
NULL,                        /* server config */
NULL,                        /* merge server config */
authnz_day_cmds,             /* commands */
register_hooks               /* register hooks */

}

Note that our module could (and normally would) have been two separate mod-
ules, as is the usual practice with the standard authentication and authorization
modules. Of course, then we would have had to use a different mechanism for our
authn provider to set a flag for the authz handler, or we would have had to imple-
ment an alternative logic.
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7.6.3 Configuration
The configuration of our little module itself is trivial. But the point of it was to inte-
grate our scheme with standard authentication. So how does that work?

First, let’s configure for day-based anonymous authentication alone:
AuthType Basic
AuthName "Weekend Access"
AuthnBasicProvider day
Require day saturday sunday

Now suppose we have a large number of users having standard username/password
access seven days a week, with their passwords being held in a DBM database. We
want to combine this access method with our scheme allowing anonymous day-
based authentication at weekends. This process is almost as simple, but raises some
subtleties:
AuthType Basic
AuthName "My Server"
AuthBasicProvider dbm day
Require day saturday sunday
Require valid-user

Only one AuthName appears in the challenge, so for our normal users it would be
misleading to call it “Weekend Access.” We can, of course, call it anything we like—
ideally something that describes the service being accessed.

The first interesting line here is AuthBasicProvider. This line can list multiple
providers, which will run in order. We put dbm ahead of day, so our provider doesn’t
risk catching normal users (as noted in the comments).

The second point is the two Require lines. Their order is immaterial, as our
authorization handler (rather than anything in the core) specifies the order in which
these schemes run. Our handler runs first and deals with anonymous users, but
passes any other users through to the module that implements the other Require
directive.

7.6.4 Basic and Digest Authentication Providers
In the preceding example, we were able to fake basic authentication. This is a rea-
sonably tried-and-tested approach: For example, cookie authentication modules
and mod_auth_anon have used similar techniques since the 1990s. Digest authen-
tication is more complex, and can be faked only if we know the actual password sent
by the client.
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Recall our authentication provider from mod_authn_day:
static const authn_provider authn_day_provider =
{

&authn_check_day,
NULL

};

This is an instance of struct authn_provider, defined in mod_auth.h:
typedef struct {

/* For HTTP Basic Authentication
* Given a username and password, expected to return AUTH_GRANTED
* if we can validate this user/password combination.
*/
authn_status (*check_password)(request_rec *r, const char *user,

const char *password);

/* For HTTP Digest Authentication
* Given a user and realm, expected to return AUTH_USER_FOUND if we
* can find a md5 hash of ‘user:realm:password'
*/
authn_status (*get_realm_hash)(request_rec *r, const char *user,

const char *realm, char **rethash);
} authn_provider;

Whereas the first function check_password serves to verify a supplied password for
the username, the second serves only to look up an MD5 hash and return it for
mod_auth_digest to process. This approach works well when we are performing
a simple lookup, and we can even fake it for mod_authnz_day (provided we drop
the option of ignoring the password altogether). Of course, we can’t just look up a
password, because it’s one-way encrypted and we can’t extract it.
static authn_status authn_digest_day(request_rec *r, const char* user,

const char* realm, char** hash)
{

int y, m, d;
apr_time_exp_t today;
const char* unencoded;
const char* const wdays[7]
= { "sun", "mon", "tue", "wed", "thu", "fri", "sat" };
authnz_day_rec *cfg = ap_get_module_config(r->per_dir_config,

&authnz_day_module);

/* Get today's date, in local time.  If this fails, it's a server error. */
if (apr_time_exp_lt(&today, apr_time_now()) != APR_SUCCESS) {

return AUTH_GENERAL_ERROR;
}

194 Chapter 7 • AAA: Access, Authentication, and Authorization



/* Check the username is today – needs an exact match this time */
/* If not, disclaim any interest in this request */
if (strcmp(user, wdays[today.tm_wday])) {

return AUTH_USER_NOT_FOUND;
}

/* Allocate a buffer for the hash */
*hash = apr_palloc(r->pool, APR_MD5_DIGESTSIZE);

/* Now compute the MD5 hash of user:realm:password,
* which in our scheme of things is day:realm:date
*/
unencoded = apr_psprintf(r->pool, "%s:%s:%4.4d-%2.2d-%2.2d", 

wdays[today.tm_wday], realm, today.tm_year+1900,
today.tm_mon+1, today.tm_mday);

if (apr_md5(*hash, unencoded, strlen(unencoded)) != APR_SUCCESS) {
return AUTH_GENERAL_ERROR;

}

/* Set a note that it's an anonymous user */
ap_set_module_config(r->request_config, &authnz_day_module, r);

/* OK, we're happy.  Note this isn't GRANTED as it was with basic
* authentication, because we only ‘looked up', not verified, the hash.
*/
return AUTH_USER_FOUND;

}

Of course, this manufactured example is not typical. The usual function of an authn
provider is to look up a password or hash from an authentication source such as a
password file or directory, and most authorization providers implement group
lookup for a user. Readers interested in examples of this functionality should look at
the Apache source in /modules/aaa/ (this author recommends mod_authn_dbd
and mod_authz_dbd, which he wrote, or mod_authn_file and mod_authz_user,
which are the direct successors to the mod_auth of older Apache versions).

7.7 Implementing a Custom Login Scheme
The authentication dialog presented to the user by a typical browser is strongly
reminiscent of logging in. However, this is an illusion: Login implies a session, but
authentication doesn’t give us one. In particular, there is no logout or relogin,
unless we build it ourselves. Because HTTP is stateless, we cannot simply log a
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client out by unsetting or expiring a cookie or application-level token; a user can
easily forge that data to access the system after logout. Neither should we just
expire sessions on the server and invalidate a client’s credentials. Although this
approach secures the server, it is deeply unfriendly and confusing to deny access
that the user legitimately believes to be authorized. We need to manage sessions
twice over: once on the server, once on the client. The general Apache framework
presented earlier in this chapter supports neither of those concepts, so we need to
implement it ourselves.

7.7.1 Session Management with SQL
Although the general framework doesn’t support sessions and login, one module
that does support it is mod_authz_dbd, when used in conjunction with
mod_authn_dbd for password lookup. The basis for this is that the users table in
the authentication database should contain an additional “logged in” field, which is
updated whenever a user logs in or out. Then mod_authn_dbd can use a query of
the form

SELECT password FROM users WHERE username = %s AND login = 1

to allow access only when the user is logged in. 

mod_authz_dbd supports this scheme by implementing custom Require variants,
Require dbd-login
Require dbd-logout

which cause it to execute SQL queries of the form
UPDATE users SET login = 1 WHERE username = %s
UPDATE users SET login = 0 WHERE username = %s

respectively.

This provides us with a basis for session management, but we’re not there yet.
Because authentication precedes authorization, the user is authenticated when the
query runs, and the scheme basically works. However, for precisely the same reason,
it’s not secure. If a user has logged out but the browser still has the credentials, then
hitting the login URL (e.g., by unwinding a browser history stack and using force-
refresh) will automatically log the user in again!
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If login is to be secure, we need an alternative method to check the user’s creden-
tials. For example, we could use an HTML form for login, with a handler in the
content generator phase checking a one-time token (to prevent replay) together
with the username and password entered before setting the login flag in the data-
base. This can be coupled with setting the ErrorDocument for 401 responses to the
login form.

The other part of the task is managing the client session. For this purpose,
mod_authnz_dbd exports an optional hook that is run whenever a user success-
fully logs in or out (i.e., executes dbd-login or dbd-logout), as described in
Chapter 10. This hook can be used to perform client-side session management
such as setting and unsetting a login cookie.

7.7.2 Working Without Browser Authentication Dialogs
Sometimes we may wish to avoid browser built-in authentication dialogs altogether.
Since the dialog is automatically triggered by an HTTP 401 or 407 response, we
must avoid sending these codes to the client. It is no longer sufficient even to send
a login form as ErrorDocument. Instead, we must either (a) present the unauthen-
ticated user with a login form immediately, or (b) redirect the unauthenticated user
to a login form with an HTTP 302 response.

In either case, we should embed the URL that the user originally tried into the chal-
lenge response, so that we can send the user back to the original resource after 
successful authentication.

The handler for the login form is then responsible for verifying the credentials
entered, setting the client’s credentials and (if a session is required) server-side ses-
sion information, and redirecting the user back to the resource that was originally
requested.

Once we have set the client-side credentials, we need to note that they are not in a
standard HTTP form (only the authentication dialog can give us that). To use the
token, we need to check for it ahead of the authentication phase, and set up “faked”
basic authentication from it. The header_parser hook is the appropriate place for
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this operation. Let’s see an example implementing it with a login cookie. The basic
logic is
If (Basic authentication required) {

if (No standard basic authentication present) {
Look for an authentication cookie
if ( cookie found ) {

set Authorization header from it
(this works because we run before the authentication phase)

} else {
redirect user to a login form

}
}

}

static int cookie_authn(request_rec *r)
{

login_cfg *cfg = ap_get_module_config(r->per_dir_config, &login_module);
const char *authhdr;
const char *cookies;
const char *cookie = NULL;
apr_size_t len;
const char *location;
const char *authtype;

/* If no authentication is wanted, it's none of our business */
if (!ap_some_auth_required(r)) {

return DECLINED;
}

/* If the scheme is not basic authentication, it's none of our business */
authtype = ap_auth_type(r);
if (!authtype || strcasecmp(authtype, "Basic")) {

return DECLINED;        /* authn not wanted at all */
}

/* If there's already an Authorization header, we're not needed */
authhdr = apr_table_get(r->headers_in, "Authorization");
if (authhdr != NULL) {

return DECLINED;    /* normal basic authn */
}

/* Parse the cookies for an authentication token */
cookies = apr_table_get(r->headers_in, "Cookie");
if (cookies) {

cookie = [ parse details omitted for brevity ]
}

if (cookie && *cookie) {
/* Fake basic authentication credentials in this request */
authhdr = apr_pstrcat(r->pool, "Basic ", cookie, NULL);
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apr_table_setn(r->headers_in, "Authorization", authhdr);
return OK;

} else if (cfg->login_form) {
/* No credentials at all; redirect to login form */
location = apr_pstrcat(r->pool, cfg->login_form, "?dest=",

login_redirect(r), NULL);
apr_table_setn(r->err_headers_out, "Location", location);
return HTTP_MOVED_TEMPORARILY;

}
/* No credentials and no login page.  Oh dear.
* Unless some other module rides to the rescue, we'll never get in.
*/
ap_log_rerror(APLOG_MARK, APLOG_WARNING, 0, r,

"Client has no login credentials and server has no login page.");
return DECLINED;

}

CAUTION When using cookies for authentication (or anything
else), take care to deal with users who have cookies disabled,
either in the browser or in other privacy/security software (which
the end user may not even be aware of). A surprisingly common,
but serious, error is to send such users into a loop that sets a
cookie, then on receiving a request without the cookie, redirects
the user back to the set-cookie handler, and repeats ad infinitem.
For general-purpose Web use, you should provide a cookie-free
alternative. Failing that, send the cookie-free user to a page that
explains why the user can’t log in and what he or she may be able
to do about it.

7.8 Summary
This chapter introduced the Apache 2.2 AAA framework and demonstrated the
basics of writing authn and authz modules. The following topics were covered:

• The access, authentication, and authorization phases

• HTTP basic and digest authentication

• A historical perspective

• The Apache 2.2 architecture, which is based on four tasks and enables mix-
and-match and multiple schemes running alongside each other
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• HTTP challenge and client authentication dialog

• Writing AAA modules: password lookup (authn) providers for basic and digest
authentication, and an authorization (authz) handler

• Session management and client login emulation, and working with HTTP’s
limitations

Now that you’ve seen this trivial case, you are equipped to read and understand the
more complex authn/authz modules in the Apache distribution (/modules/aaa/)
and to write your own. However, in view of the more modular framework, it is
likely that fewer new authentication modules should be required for Apache 2.2
than for earlier versions. For example, the existence of the DBD authentication
modules mod_authn_dbd/mod_authz_dbd obsoletes all existing modules for
authenticating against an SQL database such as MySQL, PostgreSQL, or Oracle.
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In terms of application development, the most important innovation in Apache 2
is the filter architecture and the ability to chain multiple different data processing
operations at will. In this chapter, we will take a detailed look at the filter chain and
develop several illustrative filter modules.

Before going into details, let’s review a few basics. In Chapter 2, we saw that filters
operate on a “data” axis, orthogonal to the processing axis familiar from Apache 1
and other webservers (Figure 8-1). But this is not the whole story. Strictly speaking,
it is really accurate only for content filters—that is, for those filters that operate on
the body of an HTTP request or response. If your application is not concerned
directly with processing HTTP requests, you may need to use filters that are not so
clearly associated with the content generator.

Let’s take a closer look at the filter chain. Filters are classified in two ways, as
described in the following sections.

8
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8.1 Input and Output Filters
Filters that process request data coming from a client are known as input fil-
ters. Filters that process response data as it is sent out to the client are known as
output filters.

We will deal with the APIs for input and output filters in detail in this chapter.

8.2 Content, Protocol, and Connection Filters
Each filter chain (input and output) passes through predefined stages. Thus the
same filter architecture can be used for different kinds of operation. In brief, from
the content generator to the client, we have the following classes of filters:

• Content filters, which process document contents within a request. These are
the filters most commonly relevant to applications programming.

• Protocol filters, which deal with details of the protocol but treat the contents 
as opaque. These filters are concerned with translating between HTTP data (as
defined in RFC2616) and Apache’s internal representation in the request_rec
and associated structures.
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• Connection filters, which process a TCP connection without reference to
HTTP (either the protocol or contents). These filters are concerned with
interfacing Apache with the network; they operate entirely outside the scope
of HTTP or of any request_rec.

Although these filters have very different functions, moving from an applications
level in the inner layers to a system level farther out, the API is the same through-
out. There is just one important difference: The inner filters, working on HTTP,
have a valid request_rec object, whereas connection-level filters have none. All
filters have a conn_rec for the TCP connection.

In more detail, the output chain comprises the following stages in an enumeration
in util_filter.h (the input chain is an exact mirror image of this sequence, and
uses the same definitions):

• AP_FTYPE_RESOURCE is for content filters. These filters are the first to see con-
tent as it is produced by the content generator, and they serve to examine,
modify, or even completely rewrite it. This is the most common form of appli-
cation filter, and encompasses markup processing (such as SSI or XML filter-
ing), image processing, or content assembly/aggregation. Resource filters may
completely change the nature of the contents. For example, an XSLT filter
might change the contents from XML to HTML or PDF.

• AP_FTYPE_CONTENT_SET is a second stage of content filtering. It is intended
for operations concerned with packaging the contents, such as mod_deflate
(which applies gzip compression). 

Filters of type RESOURCE or CONTENT_SET operate on an HTTP response entity—
that is, the body contents being returned to the client. The HTTP headers don’t
pass through these filters. The headers can be accessed in exactly the same way as in
a content generator, via the headers tables in the request_rec.

• AP_FTYPE_PROTOCOL is the third layer of filtering. The normal function
here is to insert the HTTP headers ahead of the data emerging from the con-
tent filters. This is dealt with by a core filter HTTP_HEADER (function
ap_http_header_filter), so applications can normally ignore it. Apache
also handles HTTP byte ranges1 using a protocol filter.

1. Appendix C; section 19.2.
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• AP_FTYPE_TRANSCODE is for transport-level packaging. Apache implements
HTTP chunking2 (where applicable) at this level.

• AP_FTYPE_CONNECTION filters operate on connections, at the TCP level
(HTTP requests no longer exist). Apache (mod_ssl) uses it for SSL encoding.
Another application is throttling and bandwidth control.

• AP_FTYPE_NETWORK, the final layer, deals with the connection to the client
itself. This layer is normally dealt with by Apache’s CORE output filter (func-
tion ap_core_output_filter).

The examples presented in detail in this chapter are all content filters, of types
AP_FTYPE_RESOURCE and AP_FTYPE_CONTENT_SET. The essential principles of
writing a filter are no different for other filters, with a few exceptions.

Protocol

Protocol filters are responsible for converting the input data from a byte stream to
an HTTP request, and the output data back again. The input protocol filter popu-
lates r->headers_in, while the output protocol filter converts r->headers_out
to a byte stream.

Headers and Entities

Filters of types AP_FTYPE_RESOURCE and AP_FTYPE_CONTENT_SET only see an
HTTP request or response entity (body). The request and response headers may be
accessed through the r->headers_in and r->headers_out tables, respectively.

CAUTION r->headers_out will be converted to a set of
response headers the first time the output HTTP protocol 
filter is invoked. Any changes made later will have no effect!

By contrast, filters outside the protocol layer will not have 
r->headers_in and headers_out, but just a stream of bytes
or lines. In fact, they won’t have a request_rec at all, just an
undefined pointer in f->r.
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Metadata Buckets

Inner filters will rarely see metadata buckets (except for EOS) and can commonly
ignore them, although technically, flush buckets should be flushed immediately,
and ignoring them may make a filter unsuitable for streaming media. Outer filters
should respect all metadata buckets.

8.3 Anatomy of a Filter

8.3.1 Callback Function
The heart of a filter module is a callback function. How it is called differs between
input and output filters:

• The input filter chain runs whenever the handler requests data from the client.
Apache will call the callback function to request (pull) a chunk of data from
it. Our filter must, in turn, pull a chunk of data from the next filter in the
chain, process it, and return the requested data to the caller.

• The output filter chain runs whenever the handler sends a chunk of data to
the client. This may be triggered explicitly by the handler (with
ap_pass_brigade), or implicitly when a handler using the stdio-like APIs
has filled a default (8K) buffer. Our filter should process the data, and send
(push) a chunk to the next filter in the chain.

Apart from the callback, there is an optional initialization function. Also, filter
modules may independently use other parts of the Apache API where necessary.

8.3.2 Pipelining
The basic principle of pipelining is that we should not have to wait for one stage of
processing to complete before starting on the next stage (Figure 8-2). In the context
of a webserver, where I/O commonly takes far more time than processing a request,
this is an important performance issue.

In the Apache 2.x filter architecture, we don’t have just the three stages to process-
ing data—every filter is itself a stage. Thus there is still more to be gained by
pipelining. As far as possible, we want to run the filters in parallel. To run filters on
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large documents without introducing scalability problems, we must avoid having to
load an entire document into memory at once. Apache’s filters, therefore, work on
chunks of data rather than entire documents, and any general-purpose filter must
deal with that behavior. Filters should always endeavor to cooperate with this
pipelining. Ideally, a filter should always process a chunk of data and pass it on
before the callback returns. Sometimes this is not possible, and a filter needs to
buffer data over more than one call. For example, running an XSLT transform
requires that the entire document be parsed into an in-memory structure, so an
XSLT filter can’t avoid breaking the pipeline.

Pipelining can be an important consideration when designing a module. If you are
planning to use an external library, it’s worth reviewing how well it will work with
the pipeline. In the case of an input filter, that’s usually straightforward: It can just
pull in more data from the pipeline on demand. For an output filter, however, you
need to look for an API that can accept arbitrary chunks of data. This author has
written a number of XML- and HTML-parsing filters, and working with the
Apache pipeline has a profound effect on the choice of a parser. Among markup
processing libraries, expat and libxml2 have parseChunk APIs and work well with
Apache, but Tidy, OpenSP, and Xerces-C have no such APIs, and so cannot be
used without breaking the pipeline.
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8.4 The Filter API and Objects
As discussed in Section 8.3.2, the filter callback function differs between input and
output filters. Let’s deal with each case in turn.

8.4.1 Output Filters
The callback prototype for output filters is
apr_status_t my_output_filter_func(ap_filter_t* f,

apr_bucket_brigade* bb)

Here f is the filter object, and bb is a bucket brigade containing an arbitrary chunk
(zero or more bytes) of data in APR buckets. The filter function should process the
data in bb, and then pass the processed data to the next filter in the chain, f->next.
We will see how to do this when we develop filter examples later in this chapter.

8.4.2 Input Filters
The input filter callback is a little more complex:
apr_status_t my_input_filter_func(

ap_filter_t* f,
apr_bucket_brigade* bb,
ap_input_mode_t mode,
apr_read_type_e block,
apr_off_t readbytes

The first two arguments are the same as the output filter arguments, although the
usage differs. This is a pull API, and our function is responsible for fetching a chunk
of data from the next filter in the input chain, putting that data into the bucket
brigade, and returning to the caller. Let’s look at the other arguments.

mode is one of an enumeration:
typedef enum {

/** The filter should return at most readbytes data. */
AP_MODE_READBYTES,
/** The filter should return at most one line of CRLF data.
*  (If a potential line is too long or no CRLF is found, the
*   filter may return partial data).
*/
AP_MODE_GETLINE,
/** The filter should implicitly eat any CRLF pairs that it sees. */
AP_MODE_EATCRLF,
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/** The filter read should be treated as speculative and any returned
*  data should be stored for later retrieval in another mode. */
AP_MODE_SPECULATIVE,
/** The filter read should be exhaustive and read until it cannot
*  read any more.
*  Use this mode with extreme caution.
*/
AP_MODE_EXHAUSTIVE,
/** The filter should initialize the connection if needed,
*  NNTP or FTP over SSL for example.
*/
AP_MODE_INIT

} ap_input_mode_t;

Clearly, not all of these modes are relevant to every filter. A filter that cannot sup-
port the mode it is called with is inappropriate, and may indicate a misconfigura-
tion. It should normally remove itself from the filter chain and log a warning
message for the administrator. A filter may often call the next filter using the same
mode that it was called with, but this behavior is not always appropriate and a fil-
ter is free to do otherwise.

The block argument takes the value APR_BLOCK_READ or APR_NONBLOCK_READ.
It determines whether the filter should block if data are not immediately available.
Where set, readbytes is an indication of the (maximum) number of bytes the fil-
ter should return to its caller.

8.5 Filter Objects
The filter object (like others discussed in this chapter) is defined in util_filter.h.
/**
* The representation of a filter chain. Each request has a list
* of these structures, which are called in turn to filter the data. 
* Subrequests get an exact copy of the main request's filter chain.
*/
struct ap_filter_t {

/** The internal representation of this filter.  This includes
*  the filter's name, type, and the actual function pointer.
*/
ap_filter_rec_t *frec;

/** A place to store any data associated with the current filter */
void *ctx;

/** The next filter in the chain */
ap_filter_t *next;
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/** The request_rec associated with the current filter.  If a subrequest
*  adds filters, then the subrequest is the request associated with the
*  filter.
*/
request_rec *r;

/** The conn_rec associated with the current filter.  This is analogous
*to the request_rec, except that it is used for connection filters.
*/
conn_rec *c;

};

The fields that most filter modules will use here are ctx, to store application data
for the filter between calls, and request_rec, to access all the normal request data.
(In the case of connection-level filters, there is no valid request_rec field, and the
conn_rec serves a similar purpose.) The next field will be used to push data to the
next filter in the output chain or to pull data from the next filter in the input chain.

The frec field can normally be treated as opaque by applications, but is necessary
to our understanding of filter internals. Here it is:
/**
* This structure is used for recording information about the
* registered filters. It associates a name with the filter's callback
* and filter type.
*
* At the moment, these are simply linked in a chain, so a ->next pointer
* is available.
*
* It is used for any filter that can be inserted in the filter chain.
* This may be either an httpd-2.0 filter or a mod_filter harness.
* In the latter case, it contains provider and protocol information.
* In the former case, the new fields (from providers) are ignored.
*/
struct ap_filter_rec_t {

/** The registered name for this filter */
const char *name;

/** The function to call when this filter is invoked. */
ap_filter_func filter_func;

/** The function to call before the handlers are invoked. Notice
* that this function is called only for filters participating in
* the HTTP protocol. Filters for other protocols are to be
* initialized by the protocols themselves.
*/
ap_init_filter_func filter_init_func;
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/** The type of filter, either AP_FTYPE_CONTENT or AP_FTYPE_CONNECTION.
* An AP_FTYPE_CONTENT filter modifies the data based on information
* found in the content. An AP_FTYPE_CONNECTION filter modifies the
* data based on the type of connection.
*/
ap_filter_type ftype;

/** The next filter_rec in the list */
struct ap_filter_rec_t *next;

/** Providers for this filter */
ap_filter_provider_t *providers;

/** Trace level for this filter */
int debug;

/** Protocol flags for this filter */
unsigned int proto_flags;

};

The name is just an identifier for the filter configuration, which will be discussed
in Chapter 9. The filter_func is the main callback we’ve already introduced, and
the filter_init_func is a seldom-used initialization function that is called when
the filter is inserted and before the first data are available.

The final three fields were introduced with the smart filtering architecture in
Apache 2.2, as described in Section 8.7.

8.6 Filter I/O
Data passes through the filter chain on the bucket brigade. There are several strate-
gies for dealing with the data in a filter:

• If the filter merely looks at the data but doesn’t change anything, it can pass
the brigade on as is.

• If the filter makes changes but preserve content length (e.g., a case filter for
ASCII text), it can replace bytes in place.

• A filter that passes through most of the data intact but makes some changes
can edit the data by direct bucket manipulation.

• A filter that completely transforms the data will often need to replace the
data completely, by creating an entirely new brigade and populating it. It 
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can do so either directly or by using stdio-like functions. Two families 
of stdio-like functions are available: APR provides apr_brigade_puts/
apr_brigade_write/etc., while util_filter provides ap_fwrite/
ap_fputs/ap_fprintf/etc.

Management of I/O lies at the heart of filtering. It will be demonstrated at length
when we develop example filters later in this chapter. 

The key concepts in managing data are the bucket and the brigade. We have already
encountered them in Chapter 3 and elsewhere. In this chapter, our examples will
explore them in depth.

8.7 Smart Filtering in Apache 2.2
The original Apache 2.0 filter architecture presents problems when used with
unknown content—whether in a proxy or with a local handler that generates dif-
ferent content types to order. The basic difficulty derives from the Apache configu-
ration. Content filters need to be applied conditionally. For example, we don’t want
to pass images through an HTML filter. Apache 2.0 provides four generic configu-
ration directives for filters: 

• SetOutputFilter: Unconditionally insert a filter. 

• AddOutputFilter, RemoveOutputFilter: Insert or remove a filter based on
“extension.” 

• AddOutputFilterByType: Insert a filter based on content type. This direc-
tive is implemented in the ap_set_content_type function, and has complex
side effects.

In the case of a proxy, extensions are meaningless, as we cannot know what con-
ventions an origin server might adopt. Likewise, when the server generates content
dynamically—or filters it dynamically with, for example, XSLT—it can be difficult
or even impossible to configure the filter chain using the preceding directives.
Instead, we have to resort to the unsatisfactory hack of inserting a filter uncondi-
tionally, checking the response headers from the proxy, and then having the filter
remove itself where appropriate. Examples of filters that follow this approach
include mod_deflate, mod_xmlns, mod_accessibility, and mod_proxy_html.
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8.7.1 Preprocessing and Postprocessing
As with an origin server, it may be necessary to preprocess data before the data go
through the main content-transforming filter and/or to postprocess the data after-
ward. For example, when dealing with gzipped content, we need to uncompress it
for processing and then recompress the processed data. Similarly, in an image-
processing filter, we need to decode the original image format and re-encode the
processed data.

This may involve more than one phase. For example, when filtering text, we may
need both to uncompress gzipped data and to transcode the character set before the
main filter.

Potentially, then, we have a large multiplicity of filters: transformation filters,
together with preprocessing and postprocessing for different content types and
encodings (see Figures 8-3 and 8-4). To repeat the hack of each filter being inserted
and determining whether to run or remove itself in such a setup goes beyond sim-
ple inelegance and into the absurd. An alternative architecture is required.
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8.7.2 mod_filter
The solution to this problem is implemented in Apache 2.2 in mod_filter. This
module works by introducing indirection into the filter chain. Instead of inserting
filters in the chain, we insert a filter harness, which in turn dispatches conditionally
to a filter provider. Any content filter may be used as a provider to mod_filter; no
change to existing filter modules is required (although it may be possible to simplify
them). There can be multiple providers for one filter, but no more than one
provider will run for any single request.

A filter chain comprises any number of instances of the filter harness, each of which
may have any number of providers. A special case is that of a single provider with
unconditional dispatch—this is equivalent to inserting the provider filter directly
into the chain.

mod_filter is implemented only for output filters: The configuration problems it
deals with are not relevant to the input chain. And although it can be applied any-
where in the output filter chain, it is really relevant only to content (application) fil-
ters. Neither the old nor the new filter configuration directives are generally used
for the outer filters. For example, SSL (both input and output) is activated by
mod_ssl’s own configuration directives instead.

8.7.3 Filter Self-configuration
In addition to using the standard filter configuration provided by the core and
mod_filter, a filter may be self-configuring.

The insert_filter Hook

A hook for inserting filters is provided in the content-handling phase of request pro-
cessing, immediately before the content generator. mod_filter uses this hook to
insert the filter harness for dynamically configured filters, but the same hook may
also be used by other modules. Here is mod_filter’s hook, which inserts all entries
in the filter chain (as configured by the FilterChain directive) in order:
static void filter_insert(request_rec *r)
{

mod_filter_chain *p;
ap_filter_rec_t *filter;
mod_filter_cfg *cfg = ap_get_module_config(r->per_dir_config,

&filter_module);
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int ranges = 1;
mod_filter_ctx *ctx = apr_pcalloc(r->pool, sizeof(mod_filter_ctx));
ap_set_module_config(r->request_config, &filter_module, ctx);

for (p = cfg->chain; p; p = p->next) {
filter = apr_hash_get(cfg->live_filters,

p->fname, APR_HASH_KEY_STRING);
ap_add_output_filter_handle(filter, NULL, r, r->connection);

if (ranges && (filter->proto_flags
& (AP_FILTER_PROTO_NO_BYTERANGE

| AP_FILTER_PROTO_CHANGE_LENGTH))) {
ctx->range = apr_table_get(r->headers_in, "Range");
apr_table_unset(r->headers_in, "Range");
ranges = 0;

}
}
return;

}

It is hooked in as follows:
static void filter_hooks(apr_pool_t *pool)
{

ap_hook_insert_filter(filter_insert, NULL, NULL, APR_HOOK_MIDDLE);
}

When other modules may use this hook, they should consider carefully where their
filter should be inserted into the chain. They can explicitly run their filter_insert
before or after mod_filter, to determine their position in the chain.

Configuration Using Environment Variables and Notes

Another strategy available to filters is to examine the request details themselves to
determine whether to run or uninsert themselves. This approach was widely used in
Apache 2.0 before mod_filter became available, and it may still be required when
the configuration is more complex than can be delegated to mod_filter.

An example is the compression filter in mod_deflate. Since it is older than
mod_filter, this module provides explicitly for control by environment variables
(which could be set either in httpd.conf with SetEnv or similar or by another
module). However, mod_deflate also provides some more complex logic that is
better handled internally than in httpd.conf. Relevant code from mod_deflate.c
is provided here:
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/* Only work on main request/no subrequests */
if (!ap_is_initial_req(r)) {

ap_remove_output_filter(f);
return ap_pass_brigade(f->next, bb);

}

/* Some browsers might have problems, so set no-gzip
* (with browsermatch) for them
*/
if (apr_table_get(r->subprocess_env, "no-gzip")) {

ap_remove_output_filter(f);
return ap_pass_brigade(f->next, bb);

}
/* Let's see what our current Content-Encoding is.
* If it's already encoded, don't compress again.
* (We could, but let's not.)
*/
encoding = apr_table_get(r->headers_out, "Content-Encoding");
/* CHOPPED for brevity */
/* Even if we don't accept this request based on it not having
* the Accept-Encoding, we need to note that we were looking
* for this header and downstream proxies should be aware of
* that.
*/
apr_table_mergen(r->headers_out, "Vary", "Accept-Encoding");

/* force-gzip will just force it out regardless of whether the browser
* can actually do anything with it.
*/
if (!apr_table_get(r->subprocess_env, "force-gzip")) {

/* DELETED FOR BREVITY 
* Remove the filter if the browser doesn't accept gzip */

}
/* For a 304 or 204 response there is no entity included in
* the response and hence nothing to deflate. */
if (r->status == HTTP_NOT_MODIFIED

|| r->status == HTTP_NO_CONTENT) {
ap_remove_output_filter(f);
return ap_pass_brigade(f->next, bb);

}
/* if we pass all those checks, we will compress it */

8.7.4 Protocol Handling
In Apache 2.0, each filter is responsible for ensuring that whatever changes it
makes are correctly represented in the HTTP response headers, and that it does
not run when it would make an illegal change. This requirement imposes a burden
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on filter authors to reimplement some common functionality in every filter. For
example:

• Many filters will change the content, invalidating existing content tags, check-
sums, hashes, and lengths.

• Filters that require an entire, unbroken response in input need to ensure that
they don’t get byte ranges from a back end.

• Filters that transform output in a proxy need to ensure that they don’t violate
a Cache-Control: no-transform header from the back end.

• Filters may make responses uncacheable.

mod_filter aims to offer generic handling of these details of filter implementa-
tion, reducing the complexity required of content filter modules. At the same time,
mod_filter should not interfere with a filter that wants to handle all aspects of the
protocol. By default (i.e., in the absence of any explicit instructions), mod_filter
will leave the headers untouched.

Thus you as a filter developer have two options. If you handle all protocol consid-
erations within your filter, then it will work with any Apache 2.x. However, if 
you are not concerned with backward compatibility, you can dispense with this
approach and leave protocol handling to mod_filter. If you take advantage of this
opportunity, please note that (at the time of this book’s writing) mod_filter’s pro-
tocol handling is considered experimental: You should be prepared to verify that it
works correctly with your module.

The API for filter protocol handling is simple. The protocol is defined in a bit
field (unsigned int), which is passed as an argument when the filter is registered
(in function ap_register_output_filter_protocol) or later in function
ap_filter_protocol.

The following bit fields are currently supported:

• AP_FILTER_PROTO_CHANGE: filter changes the contents (thereby invalidating
content-based metadata such as checksums)

• AP_FILTER_PROTO_CHANGE_LENGTH: filter changes the length of the contents

• AP_FILTER_PROTO_NO_BYTERANGE: filter requires complete input and cannot
work on byte ranges

216 Chapter 8 • Filter Modules



• AP_FILTER_PROTO_NO_PROXY: filter cannot run in a proxy (e.g., it makes
changes that would violate mandatory HTTP requirements in a proxy)

• AP_FILTER_PROTO_NO_CACHE: filter output is non-cacheable, even if the
input was cacheable

• AP_FILTER_PROTO_TRANSFORM: filter is incompatible with Cache-Control:
no-transform

8.8 Example: Filtering Text by Direct Manipulation of
Buckets
Our first example is a simple filter that manipulates buckets directly. It passes data
straight through, but transforms it by manipulating pointers.

The purpose of this module is to display plain text files as HTML, prettified and
having a site header and footer. So what the module has to do is this:

• Add a header at the top

• Add a footer at the bottom

• Escape the text as required by HTML

The header and footer are files specified by the system administrator who is respon-
sible for the site.

8.8.1 Bucket Functions
First we introduce two functions to deal with the data insertions: one for the files
and one for the simple entity replacements.

Creating a file bucket requires an open file handle and a byte range within the file.
Since we’re transmitting the entire file, we just stat its size to set the byte range.
We open the file with a shared lock and with sendfile enabled for maximum
performance. 
static apr_bucket* txt_file_bucket(request_rec* r, const char* fname) {
apr_file_t* file = NULL ;
apr_finfo_t finfo ;
if ( apr_stat(&finfo, fname, APR_FINFO_SIZE, r->pool)

!= APR_SUCCESS ) {
return NULL ;

}
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if ( apr_file_open(&file, fname,
APR_READ|APR_SHARELOCK|APR_SENDFILE_ENABLED,
APR_OS_DEFAULT, r->pool ) != APR_SUCCESS ) {

return NULL ;
}
if (file == NULL) {
return NULL ;

}
return apr_bucket_file_create(file, 0, finfo.size, r->pool,

r->connection->bucket_alloc) ;
}

Creating the simple text replacements, we can just make a bucket of a string. By
making the strings static, we avoid having to worry about their lifetime.
static apr_bucket* txt_esc(char c, apr_bucket_alloc_t* alloc) {
static const char* lt = "&lt;" ;
static const char* gt = "&gt;" ;
static const char* amp = "&amp;" ;
static const char* quot = "&quot;" ;
switch (c) {
case '<': return apr_bucket_immortal_create(lt, 4, alloc) ;
case '>': return apr_bucket_immortal_create(gt, 4, alloc) ;
case '&': return apr_bucket_immortal_create(amp, 5, alloc) ;
case '"': return apr_bucket_immortal_create(quot, 6, alloc) ;
default: return NULL ;      /* shut compilers up */

}
}

8.8.2 The Filter
The main filter itself is largely straightforward, albeit with a number of interesting
and unexpected points to consider. Since this function is a little longer than the util-
ity functions given earlier, we’ll comment it inline instead.

The txt_cfg struct used here is the module’s configuration; it contains just the file-
names for the header and footer. Given that this may be used concurrently by many
threads, we access it on a read-only basis and use a second, private, txt_ctxt object
to maintain our own state.
typedef struct txt_cfg {
const char* head ;
const char* foot ;

} txt_cfg ;
typedef struct txt_ctxt {
int state ;
const char* head ;
const char* foot ;

} txt_ctxt ;
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static int txt_filter(ap_filter_t* f, apr_bucket_brigade* bb) {
apr_bucket* b ;
txt_ctxt* ctxt = f->ctx ;

The filter context f->ctx is used to hold module variables over multiple calls to a
filter. It is common practice to initialize it on the first call to the filter function,
which is detected by checking for a NULL value (which our function then sets, as in
this example). We could also initialize f->ctx in a filter initialization function, but
that’s rare in real filters.
if ( ctxt == NULL ) {
txt_cfg* cfg = ap_get_module_config(f->r->per_dir_config, 

&txt_module);
ctxt = f->ctx = apr_pcalloc(f->r->pool, sizeof(txt_ctxt)) ;
ctxt->head = cfg->head ;
ctxt->foot = cfg->foot ;

}

The main loop here iterates over the incoming data in a manner common among
filter functions:
for ( b = APR_BRIGADE_FIRST(bb);

b != APR_BRIGADE_SENTINEL(bb);
b = APR_BUCKET_NEXT(b) ) {

const char* buf ;
size_t bytes ;

As in any filter, we need to check for EOS. When we encounter it, we insert the
footer in front of it. We shouldn’t get more than one EOS, but just in case we do
we’ll note having inserted the footer. That means we’re being error-tolerant.

if ( APR_BUCKET_IS_EOS(b) ) {
/* End of input file - insert footer if any */
if ( ctxt->foot && ! (ctxt->state & TXT_FOOT ) ) {
ctxt->state |= TXT_FOOT ;
APR_BUCKET_INSERT_BEFORE(b, txt_file_bucket(f->r, ctxt->foot));

}

We can ignore other metadata buckets. If we get a flush bucket, it should be the last
in our brigade, so we’ll automatically exit the loop and pass it down the chain,
thereby handling it correctly. If it’s not the last bucket, then any damage we could
have done by ignoring it has already been done by whatever sent us the brigade.

} else if ( APR_BUCKET_IS_METADATA(b) ) {
/* Ignore it, but don't try to read data from it */

}
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The main case is a bucket containing data. We can get it as a simple buffer, whose
size is specified in bytes:

} else if ( apr_bucket_read(b, &buf, &bytes, APR_BLOCK_READ)
== APR_SUCCESS ) {

/* We have a bucket full of text.  Just escape it
* where necessary.
*/
size_t count = 0 ;
const char* p = buf ;

Now we can search for characters that need replacing, and replace them:
while ( count < bytes ) {
size_t sz = strcspn(p, "<>&\"") ;
count += sz ;

Here comes the tricky bit—replacing a single character inline:
if ( count < bytes ) {

/* Split off buffer at the character */
apr_bucket_split(b, sz) ;

/* Skip over the before-buffer (where nothing changes) */
b = APR_BUCKET_NEXT(b) ;

/* insert the replacement for the character */
APR_BUCKET_INSERT_BEFORE(b, txt_esc(p[sz],

f->r->connection->bucket_alloc)) ;

/* Split off the char we just replaced */
apr_bucket_split(b, 1) ;

/* ... and remove it */
APR_BUCKET_REMOVE(b) ;

/* Move cursor on to what remains, so it stays
* in sequence with the main loop.
*/
b = APR_BUCKET_NEXT(b) ;

/* Finally, increment our counters */
count += 1 ;
p += sz + 1 ;

}
}

}
}

Now we insert the header if it hasn’t already been inserted. 
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Be aware of the following points:

1. This insertion has to come after the main loop, to avoid the header itself
getting parsed and HTML-escaped.

2. This approach works because we can insert a bucket anywhere in the
brigade. In this case, we put it at the head.

3. As with the footer, we save the state to avoid inserting the header more than
once.

if ( ctxt->head && ! (ctxt->state & TXT_HEAD ) ) {
ctxt->state |= TXT_HEAD ;
APR_BRIGADE_INSERT_HEAD(bb, txt_file_bucket(f->r, ctxt->head));

}

Note that we created a new bucket every time we replaced a character. Couldn’t we
have prepared four buckets in advance—one for each of the characters to be
escaped—and then reused those buckets whenever we encounter the character? 

The problem here is that each bucket is linked to its neighbors. Thus, if we reuse
the same bucket, we lose the links, so that the brigade now jumps over any data
between the two instances of it. Hence we do need a new bucket every time, which
means this technique becomes inefficient when a high proportion of input data has
to be changed.

Now we’ve finished manipulating data, we just pass it down the filter chain:
return ap_pass_brigade(f->next, bb) ;

}

mod_txt was written one idle afternoon, after someone had asked on IRC whether
such a module existed. It seemed such an obvious thing to do, and it is a great exam-
ple to use here. Working with buckets and brigades is one of the most challenging
parts of the Apache API, and it needs such a simple demonstrator module!

8.9 Complex Parsing
The parsing in the filter we just looked at is essentially trivial, in that each byte is
treated as independent of its neighbors. A more complex task is to parse data where
a pattern we want to match may span more than one bucket, or even more than one
call to the filter function. Even a simple search-and-replace filter that matches words
will need to save some context between calls, so as to avoid missing words that are
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split up. As an aside, this is a nontrivial task in general: Witness the number of spam
messages that get past spam filters by breaking up words that might otherwise trig-
ger their detection.

The simplest way to deal with this task is to collect the entire document body into
memory. Unfortunately, this strategy is inefficient: It breaks Apache’s pipelining
architecture, and it scales very badly as document size grows. We should avoid it
wherever possible.

A module that faces exactly this task is mod_line_edit,3 a filter that provides text
search-and-replace based on string or regular expression matching. This module
works by rearranging its input into complete lines of text before editing it (the defi-
nition of a “line” is somewhat flexible, but it defaults to parsing normal lines of text).
Let’s look at this module for an example of more advanced bucket manipulation. For
the purposes of this discussion, we’ll present a simplified version that supports only
the UNIX-family “\n” line-end character. The guiding principle of this filter is that
it manipulates buckets and brigades at will (pointers are cheap), but moves or copies
data only where unavoidable. This demonstrates some new techniques:

• Creating new bucket brigades for our own purposes

• Saving data between calls to the filter

• Flattening data into a contiguous buffer

Using this approach, we will need to rearrange any lines spanning more than one
bucket, and save any partial lines between calls to the filter. 

/* Filter to ensure we have no mid-line breaks that might be in the
* middle of a search string causing us to miss it! At the same
* time, we split into lines to avoid pattern matching over big
* chunks of memory.
*/

/* We're parsing into lines, so let's have a brigade to put them in */
apr_bucket_brigade* bbline

= apr_brigade_create(f->r->pool, f->c->bucket_alloc) ;
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/* We're saving any incomplete lines for the next call, so we
* store them on the filter context f->ctx.
* We use a brigade ctx->bbsave so we don't have to touch the data.
*/
line_edit_ctx* ctx = f->ctx ;
if (ctx == NULL) {
ctx = f->ctx = apr_palloc(f->r->pool, sizeof(line_edit_ctx)) ;
ctx->bbsave = apr_brigade_create(f->r->pool, f->c->bucket_alloc) ;

}

/* Now the main loop over the input data */
b = APR_BRIGADE_FIRST(bb) ;

/* The end-of-loop condition is the same as last time */
while ( b != APR_BRIGADE_SENTINEL(bb) ) {
if ( !APR_BUCKET_IS_METADATA(b) ) {
if ( apr_bucket_read(b, &buf, &bytes, APR_BLOCK_READ)
== APR_SUCCESS ) {
while ( bytes > 0 ) {   /* parse loop */

/* See if there's a line end in the bucket (simplified)! */
le = memchr(buf, '\n', bytes) ;
if (le != NULL) {

/* There is a line end.  Extract what's before it. */
offs = ((unsigned int)le-(unsigned int)buf)/sizeof(char)+1;
apr_bucket_split(b, offs) ;

/* Increment pointers for when we iterate the parse loop */
bytes -= offs ;
buf += offs ;
b1 = APR_BUCKET_NEXT(b) ;

/* Remove the line-ended bucket */
APR_BUCKET_REMOVE(b);

/* Is there any previous unterminated content? */
if ( !APR_BRIGADE_EMPTY(ctx->bbsave) ) {

/* Append this to any content waiting for a line end */
APR_BRIGADE_INSERT_TAIL(ctx->bbsave, b) ;

/* Assemble a complete line from the bits */
rv = apr_brigade_pflatten(ctx->bbsave, &fbuf,

&fbytes, f->r->pool) ;

/* Make b a new bucket of the flattened stuff */
b = apr_bucket_pool_create(fbuf, fbytes, f->r->pool,

f->r->connection->bucket_alloc) ;
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/* bbsave has been consumed, so clear it */
apr_brigade_cleanup(ctx->bbsave) ;

}

/* b now contains exactly one line */
/* Insert it into the lines brigade, and move the pointer */
APR_BRIGADE_INSERT_TAIL(bbline, b);
b = b1 ;

} else {
/* No line end found.  Remember the dangling content. */
APR_BUCKET_REMOVE(b);
APR_BRIGADE_INSERT_TAIL(ctx->bbsave, b);
bytes = 0 ;

}
} /* Parse loop: while bytes > 0 */

} else {
/* Bucket read failed -- oops!  Let's remove it. */
APR_BUCKET_REMOVE(b);

}

/* This else means it's a metadata bucket.  The only metadata
* we care about is EOS.
*/
} else if ( APR_BUCKET_IS_EOS(b) ) {
/* If there's data to pass, send it in one bucket */
if ( !APR_BRIGADE_EMPTY(ctx->bbsave) ) {
rv = apr_brigade_pflatten(ctx->bbsave, &fbuf,

&fbytes, f->r->pool) ;
b1 = apr_bucket_pool_create(fbuf, fbytes, f->r->pool,

f->r->connection->bucket_alloc) ;
APR_BRIGADE_INSERT_TAIL(bbline, b1);

}
apr_brigade_cleanup(ctx->bbsave) ;
/* Start again rather than segfault if a buggy
* filter in front of us sent a bogus EOS
*/
f->ctx = NULL ;

/* Move the EOS to the new brigade */
APR_BUCKET_REMOVE(b);
APR_BRIGADE_INSERT_TAIL(bbline, b);

} else {  /* neither data nor EOS */
/* Chop flush or unknown metadata bucket types */
apr_bucket_delete(b);

}
/* Reset pointer to what's left (since we're not in a for loop) */
b = APR_BRIGADE_FIRST(bb) ;

}
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/* Now we have a bunch of complete lines in bbline.
* If we saw an EOS, we also have that
* and a possibly unterminated last line.
*/

/* We can either process them here, or pass them to another filter
* that requires its input to be in complete lines.
*/

/* Now pass it down the chain */
rv = ap_pass_brigade(f->next, bbline) ;

/* If we have leftover data, don't risk it going out of scope */
for ( b = APR_BRIGADE_FIRST(ctx->bbsave) ;

b != APR_BRIGADE_SENTINEL(ctx->bbsave) ;
b = APR_BUCKET_NEXT(b)) {

apr_bucket_setaside(b, f->r->pool) ;
}

return rv ;
}

8.10 Filtering Through an Existing Parser
An alternative to parsing data ourselves is to feed it to an existing parser, typically
from a third-party library. This author’s various markup-aware modules, including
his most popular module, mod_proxy_html, work like this: The filter just reads
each bucket and passes it to the library. This scheme works well because the library
itself supports processing data in arbitrary chunks, so we don’t have to worry about
troublesome breaks in the input data disrupting the parse. Here’s an example from
mod_xmlns, which uses the expat library to parse XML. The core filter here is very
simple, so we’ll give it in full:
static int xmlns_filter(ap_filter_t* f, apr_bucket_brigade* bb) {
apr_bucket* b ;
const char* buf = 0 ;
apr_size_t bytes = 0 ;

xmlns_ctx* ctxt = (xmlns_ctx*)f->ctx ;
if ( ! ctxt ) {
xmlns_filter_init(f) ;

}
if ( ctxt = (xmlns_ctx*)f->ctx , ! ctxt )
return ap_pass_brigade(f->next, bb) ;
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for ( b = APR_BRIGADE_FIRST(bb) ;
b != APR_BRIGADE_SENTINEL(bb) ;
b = APR_BUCKET_NEXT(b) ) {

if ( APR_BUCKET_IS_EOS(b) ) {
if ( XML_Parse(ctxt->parser, buf, 0, 1) != XML_STATUS_OK ) {
enum XML_Error err = XML_GetErrorCode(ctxt->parser) ;
const XML_LChar* msg = XML_ErrorString(err) ;
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, f->r,
"Endparse Error %d: %s", err, msg) ;

}
APR_BRIGADE_INSERT_TAIL(ctxt->public->bb,
apr_bucket_eos_create(ctxt->public->bb->bucket_alloc) ) ;
ap_pass_brigade(ctxt->public->f->next, ctxt->public->bb) ;

} else if ( APR_BUCKET_IS_FLUSH(b) ) {
APR_BRIGADE_INSERT_TAIL(ctxt->public->bb,
apr_bucket_flush_create(ctxt->public->bb->bucket_alloc) ) ;

} else if ( apr_bucket_read(b, &buf, &bytes, APR_BLOCK_READ)
== APR_SUCCESS ) {

if ( XML_Parse(ctxt->parser, buf, bytes, 0) != XML_STATUS_OK ) {
enum XML_Error err = XML_GetErrorCode(ctxt->parser) ;
const XML_LChar* msg = XML_ErrorString(err) ;
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, f->r,
"Parse Error %d: %s", err, msg) ;

}
} else {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, f->r,

"Error in bucket read") ;
}

}
return APR_SUCCESS ;

}

This code takes the form of the now-familiar loop over input buckets, retrieving
the bucket data (where applicable) into a buffer, and making a special case of EOS.
But instead of parsing the data ourselves, we feed it to expat’s chunk-parsing func-
tion XML_Parse. And we don’t pass anything at all to the next brigade! So how
does that work?

When we use the XML parser here, we basically lose the input data altogether. Our
module must set up handlers with the library, but these receive XML events such as
startElement, endElement, characters, cdata, and comment, rather than our
input data. The filter has no option except to generate a new output stream from
scratch. Of course, the expat library has no notion of Apache concepts such as buck-
ets, brigades, requests, or filters, so whatever we do has to be done from scratch.
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In this case, we could create a new bucket brigade and populate it with new buck-
ets for each XML event.4 But this is not an attractive option, for several reasons:

• Most markup events—for example, elements and attributes—involve generat-
ing just a few bytes of output per event. Creating new buckets for every few
bytes becomes inefficient.

• We have no natural point at which to pass a brigade to the next filter. Either we
have to break streaming or we have to do extra work to manage this ourselves.

• Creating buckets is an unduly awkward way to perform simple I/O.

This final reason alone could be considered compelling!

8.11 stdio-Like Filter I/O
Fortunately, the filter API provides an alternative, stdio-like way to write data and
pass it down the chain. We still need to create a bucket brigade for output, but all
we need to do with it is to pass it to the stdio-like calls, along with the filter we’re
writing to, in the manner of a file descriptor. The stdio-like functions are defined
in util_filter.h:

ap_fflush(f, bb)
ap_fwrite(f, bb, buf, nbytes)
ap_fputs(f, bb, str)
ap_fputc(f, bb, c)
ap_fputstrs(f, bb, ...)    /* a NULL-terminated list of strings */
ap_fprintf(f, bb, fmt, ...)

Internally, the first time you use any of these calls, Apache creates a heap bucket
(normally of size 8K) and writes your data to it. Subsequent writes append to the
heap while sufficient space is available. When the heap space is exhausted, a second
bucket of type transient is appended containing the data over and above the size of
the heap bucket, and the two are flushed down the chain. This approach is the same
as that followed by the ap_rwrite/etc. stdio-like API, and is the reason for the
8K default stream buffer size seen by many applications.
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How does mod_xmlns use stdio-like I/O? Because it’s a SAX2 filter, it has to gen-
erate all output from the SAX2 event callbacks. Let’s look at the essentials of some
of these callbacks. Our examples use two #define statements, which define the
next filter in the chain and our output bucket brigade, respectively:
#define F ((xmlns_ctx*)ctx)->public->f->next
#define BB ((xmlns_ctx*)ctx)->public->bb

The simplest callback is the default callback—an expat callback that gets any data
not passed to any other callback. Since we’re registering callbacks for everything we
need to process, anything passed to the default callback goes straight to the output:
static void xdefault(void* ctx, const XML_Char* buf, int len) {
ap_fwrite(F, BB, buf, len) ; 

}

The most complex handler is that for the startElement event. We’ll quote it in
full to show use of the API to simplify a lot of small, fiddly writes:
static void xstartElement(void* ctx, const XML_Char* name,

const XML_Char** atts) {
parsedname name3 ;               /* namespace, prefix, name */
xmlns_active* ns ;

xmlns_parsename(name, &name3) ;  /* parse the name expat gave us */

The next section is the heart of the module. mod_xmlns exports an API for other
modules to register handlers for namespace events, of which the most important is
startElement. So lookup_ns will return a non-null value if and only if another
module has registered a handler for the namespace and it is marked as active.
/* If a handler for this namespace is active, we dispatch to it */
ns = lookup_ns((xmlns_ctx*)ctx, &name3) ;
if ( ns && ns->handler->StartElement ) {
if ( ns->handler->StartElement((xmlns_public*)CTX->public, &name3,

(const xmlns_attr_t*)atts) != DECLINED )
return  ;

}

The remainder of this function is just default behavior that reconstructs the ele-
ment as is when no handler has handled it. It serves to demonstrate filter stdio-
style output.
/* Default: either no handler or it returned 0 to ask us to
* produce default output
*/
ap_fputc(F, BB, '<') ;
if ( name3.nparts == 3 ) {  /* it's prefix:element */
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ap_fwrite(F, BB, name3.prefix, name3.prefixlen) ;
ap_fputc(F, BB, ':') ;

}
ap_fwrite(F, BB, name3.elt, name3.eltlen) ;

/* If there are any xmlns:foo="url" decls here, print them */
if ( ns && ns->newns ) {
if ( name3.nparts == 3 ) {
ap_fputs(F, BB, " xmlns:") ;
ap_fwrite(F, BB, name3.prefix, name3.prefixlen) ;
ap_fputs(F, BB, "=\"") ;
ap_fwrite(F, BB, name3.ns, name3.nslen) ;
ap_fputc(F, BB, '"') ;

} else if ( name3.nparts == 2 ) {
ap_fputs(F, BB, " xmlns=\"") ;
ap_fwrite(F, BB, name3.ns, name3.nslen) ;
ap_fputc(F, BB, '"') ;

}
ns->newns = 0 ;

}

/* Now output any attributes */
if ( atts ) {
const XML_Char** a ;
for ( a = atts ; *a ; a += 2 ) {
parsedname a3 ;
xmlns_parsename(*a, &a3) ;
switch ( a3.nparts ) {
case 1:    /* simple name="value" */
ap_fputstrs(F, BB, " ", a[0], "=\"", a[1], "\"", NULL) ;
break ;

case 2:    /* namespace-uri:name="value" */
ap_fputc(F, BB, ' ') ;
ap_fwrite(F, BB, a3.ns, a3.nslen) ;
ap_fputc(F, BB, ':') ;
ap_fwrite(F, BB, a3.elt, a3.eltlen) ;
ap_fputstrs(F, BB, "=\"", a[1], "\"", NULL) ;
break ;

case 3:    /* prefix:name="value" */
ap_fputc(F, BB, ' ') ;
ap_fwrite(F, BB, a3.prefix, a3.prefixlen) ;
ap_fputc(F, BB, ':') ;
ap_fwrite(F, BB, a3.elt, a3.eltlen) ;
ap_fputstrs(F, BB, "=\"", a[1], "\"", NULL) ;
break ;

}
}

}
ap_fputc(F, BB, '>') ;

}

8.11 stdio-Like Filter I/O 229



The advantage that this API offers here is clear. We have lots of writes of just a few
bytes, so direct manipulation of buckets would be insanely complex to write, not
to mention inefficient. Classic buffered I/O is the ideal solution. And we lose
nothing, because there simply isn’t an input stream we could pass through without
copying data.

Warning

Mixing stdio-like I/O with direct bucket manipulation in the same filter is not
advisable. The buffering in the stdio-like API will cause the data to reach the next
filter in an unexpected order, and it could cause data to be flushed at the wrong
time. You would have to take great care to flush everything explicitly before switch-
ing modes, and you effectively get the worst of both worlds. Hence, although the
function xdefault could explicitly create a new bucket (of type transient) to con-
tain its data, it doesn’t.

8.12 Input Filters and the Pull API
The input filter API differs from the output filter API we discussed earlier in sev-
eral ways. As with the output filter, the heart of the input filter is a callback func-
tion, but the role of this function is different. Whereas the output filter accepts a
chunk of data, processes it, and passes it to the next filter, the input filter requests
data from the next filter in the chain, processes the data, and returns it to the caller.
The basic form of an input filter can be demonstrated with a trivial, do-nothing
filter:
int do_nothing_input_filter(ap_filter_t *f, apr_bucket_brigade *bb,

ap_input_mode_t mode, apr_read_type_e block,
apr_off_t readbytes) {

int rv;
rv = ap_get_brigade(f->next, bb, mode, block, readbytes);
return rv;

}

We’ve already introduced the filter arguments. The first two are the same as for an
output filter. The others will often be irrelevant to any particular filter, but are han-
dled by Apache’s core input filter and may be of use elsewhere.
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8.12.1 Mode
ap_input_mode_t mode

Most filters will not want to support all input modes. For example, mod_deflate’s
input filter, which serves to uncompress input that arrives compressed at the server,
is entirely inappropriate to line-mode data. The correct behavior for an input filter
called in an inappropriate mode is either to pass the data straight through or to
remove itself from the chain:

/* Just get out of the way of things we don't want. */
if (mode != AP_MODE_READBYTES) {

return ap_get_brigade(f->next, bb, mode, block, readbytes);
}

As a rule of thumb, a content filter will normally be called with AP_MODE_READ-
BYTES. A connection filter will be called with AP_MODE_GETLINE until the HTTP
headers are consumed by the protocol handler, and AP_MODE_READBYTES there-
after. But this behavior may vary, and cannot be relied on: Another filter or (more
commonly) a content generator may use a different mode—hence the simple check
in mod_deflate. MPMs may also use different input modes.

A module that supports multiple modes and modifies the data will typically need
to use a switch statement or similar construct.

8.12.2 Block
apr_read_type_e block

Blocking versus nonblocking reads are only relevant to bucket types such as sockets
where blocking is an issue. A filter should normally honor the block request and use
the same value to retrieve data from the next filter. With due caution, however, it
may override the request.

8.12.3 readbytes
apr_off_t readbytes

This is relevant to mode AP_MODE_READBYTES. A filter should not return more data
than readbytes. In practice, it is sometimes treated as advisory: It is honored by
the core input filter, but content filters sometimes ignore it. It may serve to opti-
mize throughput of data by selecting a block size such as the widely used 8K default.
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A filter to which readbytes may be highly relevant is mod_deflate, where the
output data returned to the caller will often be many times greater than the input
data from the next filter. mod_deflate deals with this issue by keeping a bucket
brigade proc_bb in its filter context, and using the following logic:

/* All the 'main business' of this filter happens only
* if ctx->proc_bb was empty on entry
*/
if (APR_BRIGADE_EMPTY(ctx->proc_bb)) {

rv = ap_get_brigade(f->next, ctx->bb, mode, block, readbytes);

/* Now inflate the data we just read into ctx->bb,
* and put the inflated data into ctx->proc_bb
*/

}

/* At the end of the filter function, we partition ctx->proc_bb
* so it has at most readbytes bytes of data, which we then
* move to the caller's brigade bb.  We then save any remainder.
*/
if (!APR_BRIGADE_EMPTY(ctx->proc_bb)) {

apr_bucket_brigade *newbb;

/* May return APR_INCOMPLETE, which is fine by us */
apr_brigade_partition(ctx->proc_bb, readbytes, &bkt);

newbb = apr_brigade_split(ctx->proc_bb, bkt);
APR_BRIGADE_CONCAT(bb, ctx->proc_bb);
APR_BRIGADE_CONCAT(ctx->proc_bb, newbb);

}

8.12.4 Input Filter Example
To conclude this chapter, let’s present the mod_deflate input filter we’ve drawn on
for the preceding illustrations, with additional comments inserted where appropri-
ate. The filter has been slightly reduced by replacing some of the detail relevant to
zlib (the compression library used), but not to Apache, with comments.
/* This is the deflate input filter (inflates) */
static apr_status_t deflate_in_filter(ap_filter_t *f,

apr_bucket_brigade *bb,
ap_input_mode_t mode,
apr_read_type_e block,
apr_off_t readbytes)

{
apr_bucket *bkt;
request_rec *r = f->r;
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deflate_ctx *ctx = f->ctx;
int zRC;
apr_status_t rv;
deflate_filter_config *c;

/* Just get out of the way of things we don't want */
if (mode != AP_MODE_READBYTES) {

return ap_get_brigade(f->next, bb, mode, block, readbytes);
}

c = ap_get_module_config(r->server->module_config, &deflate_module);

if (!ctx) {
int found = 0;
char *token, deflate_hdr[10];
const char *encoding;
apr_size_t len;

/* Only work on main request/no subrequests */
if (!ap_is_initial_req(r)) {

ap_remove_input_filter(f);
return ap_get_brigade(f->next, bb, mode, block, readbytes);

}

/* Let's see what our current Content-Encoding is */
encoding = apr_table_get(r->headers_in, "Content-Encoding");
if (encoding) {

const char *tmp = encoding;

token = ap_get_token(r->pool, &tmp, 0);
while (token && token[0]) {

if (!strcasecmp(token, "gzip")) {
found = 1;
break;

}
/* Otherwise, skip token */
tmp++;
token = ap_get_token(r->pool, &tmp, 0);

}
}
/* It wasn't gzipped anyway, so there's nothing to do */
if (found == 0) {

ap_remove_input_filter(f);
return ap_get_brigade(f->next, bb, mode, block, readbytes);

}

/* Set up filter ctx */
f->ctx = ctx = apr_pcalloc(f->r->pool, sizeof(*ctx));
ctx->bb = apr_brigade_create(r->pool, f->c->bucket_alloc);
ctx->proc_bb = apr_brigade_create(r->pool, f->c->bucket_alloc);
ctx->buffer = apr_palloc(r->pool, c->bufferSize);
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/* DELETED –- get 10 bytes from upstream and check the gzip header */

/* Initialize deflate output buffer */
ctx->stream.next_out = ctx->buffer;
ctx->stream.avail_out = c->bufferSize;

apr_brigade_cleanup(ctx->bb);
}

/* Main business happens if we don't already have data */
if (APR_BRIGADE_EMPTY(ctx->proc_bb)) {

rv = ap_get_brigade(f->next, ctx->bb, mode, block, readbytes);

if (rv != APR_SUCCESS) {
/* What about APR_EAGAIN errors? */
inflateEnd(&ctx->stream);
return rv;

}

for (bkt = APR_BRIGADE_FIRST(ctx->bb);
bkt != APR_BRIGADE_SENTINEL(ctx->bb);
bkt = APR_BUCKET_NEXT(bkt))

{
const char *data;
apr_size_t len;

/* If we actually see the EOS, that means we screwed up! */
if (APR_BUCKET_IS_EOS(bkt)) {

inflateEnd(&ctx->stream);
return APR_EGENERAL;

}

if (APR_BUCKET_IS_FLUSH(bkt)) {
apr_bucket *tmp_heap;
zRC = inflate(&(ctx->stream), Z_SYNC_FLUSH);
if (zRC != Z_OK) {

inflateEnd(&ctx->stream);
return APR_EGENERAL;

}

ctx->stream.next_out = ctx->buffer;
len = c->bufferSize - ctx->stream.avail_out;

ctx->crc = crc32(ctx->crc, (const Bytef *)ctx->buffer, 
len);

tmp_heap = apr_bucket_heap_create((char *)ctx->buffer, 
len, NULL, f->c->bucket_alloc);

APR_BRIGADE_INSERT_TAIL(ctx->proc_bb, tmp_heap);
ctx->stream.avail_out = c->bufferSize;
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/* Move everything to the returning brigade. */
/* Could cause us to return more than readbytes. */

APR_BUCKET_REMOVE(bkt);
APR_BRIGADE_CONCAT(bb, ctx->bb);
break;

}

/* Read */
apr_bucket_read(bkt, &data, &len, APR_BLOCK_READ);

/* Pass through zlib inflate */
/* DELETED for brevity.
* Inserts uncompressed data into ctx->proc_bb,
* and inserts an EOS bucket when it hits the end
* of the compressed input data stream
*/

}
apr_brigade_cleanup(ctx->bb);

}
/* If we are about to return nothing for a 'blocking' read and 
* we have some data in our zlib buffer, flush it out so we can
* return something.
*/
if (block == APR_BLOCK_READ &&

APR_BRIGADE_EMPTY(ctx->proc_bb) &&
ctx->stream.avail_out < c->bufferSize) {

/* DELETED for brevity */
}
if (!APR_BRIGADE_EMPTY(ctx->proc_bb)) {

apr_bucket_brigade *newbb;

/* May return APR_INCOMPLETE, which is fine by us */
apr_brigade_partition(ctx->proc_bb, readbytes, &bkt);

newbb = apr_brigade_split(ctx->proc_bb, bkt);
APR_BRIGADE_CONCAT(bb, ctx->proc_bb);
APR_BRIGADE_CONCAT(ctx->proc_bb, newbb);

}
return APR_SUCCESS;

}

8.13 Summary
Filters are one of the most powerful and useful innovations in Apache 2, and are the
single biggest architectural change that helps transform Apache from a mere web-
server to a powerful applications platform. Programming filters is not straightforward,
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but is essential to applications development with Apache. Note that there is a sec-
tion on filter debugging in Chapter 12.

This chapter discussed the following topics:

• The data axis and filter chain

• Input and output filters

• Content, protocol and connection filters, with examples

• The filter APIs: principal objects and callbacks

• The importance of pipelining in filters

• Techniques for working with streamed data in the output chain push API

• Managing I/O in a filter

• Smart filtering, mod_filter, and self-configuration

• Filters and the HTTP protocol

• Working with buckets and brigades, including an example

• Filtering through a parser, and using a stdio-like buffer

• Input filtering: the pull API, with an example

This chapter completes the discussion of processing HTTP requests we started in
Chapter 5. We are now ready to move on to the deferred discussion of Apache con-
figuration in Chapter 9.
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Most modules need to offer system administrators and users some means of config-
uring and controlling them. In some cases, this may even be the primary purpose of
a module.

System administrators configure Apache using httpd.conf, while end users have
more limited control through .htaccess files. Modules give control to both par-
ties by implementing configuration directives that can be used in these files.

This chapter discusses how to implement configuration directives in a module and
how to work with directives implemented by other modules.

9.1 Configuration Basics
From the system administrator’s point of view, several kinds of directives exist. These
can be broadly classified according to their scope and validity in the configuration

9

237

Configuration for Modules



files. In other words, some directives are valid for the server as a whole, whereas oth-
ers apply within a scope such as <VirtualHost> or <Directory>.

Conflicting directives may override each other on the basis of order and specificity.
For example, where there is a conflict, a directive in a .htaccess file overrides one
set in the same scope in httpd.conf (provided the system administrator has
enabled .htaccess). In most cases, this applies recursively, although this is con-
trolled by individual modules whose behavior may differ.

Apache supports the following standard contexts:

Main Configuration

Directives appearing in httpd.conf but not inside any container, apply globally,
except where overridden. This context is appropriate for setting system defaults
such as MIME types, and for once-only setup such as loading modules. Most direc-
tives can be used here.

Virtual Host

Each virtual host has its (virtual) server-wide configuration set within a
<VirtualHost> container. Most directives that are valid in the main configuration
are also valid in a virtual host, and vice versa.

Directory

The <Directory>, <Files> and <Location> containers define a hierarchy within
which configuration can be set and overridden at any level. This is the most usual
form of configuration, and is orthogonal to the virtual hosts. In the interests of
brevity, we’ll refer to this configuration collectively as the directory hierarchy.

.htaccess

.htaccess files are an extension of the directory hierarchy that enables users to set
directives for themselves, subject to permissions (the AllowOverride directive) set
up by the server administrator. The .htaccess files also differ from normal con-
figuration in that, when enabled, they are reread by Apache for every request. This
scheme serves two purposes: Users don’t have to bug the administrator to restart the
server, and it avoids potential security issues of processing user inputs while Apache
has root privilege. Setting AllowOverride to enable .htaccess files is always a
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compromise: It imposes a significant performance overhead and loses the security
enjoyed by a tightly controlled configuration, but it empowers users who are not
permitted to manipulate httpd.conf.

Additionally, modules may themselves implement their own containers. For exam-
ple, mod_proxy implements <Proxy>, and mod_perl implements <Perl>.

9.2 Configuration Data Structs
As noted in Section 9.1, there are two orthogonal hierarchies of configuration direc-
tives: (virtual) hosts and directories. Internally, this dual hierarchy is based on hav-
ing two different data structs: the per-server configuration and the per-directory
configuration. In fact, every module has its own pointers for implementing each of
these structs, although either or both can be unused (NULL), and it is unusual for a
module to use both of them.

The per-server configuration is kept on the server_rec, of which there is one 
for each virtual host, created at server start-up. The per-directory configuration is
exposed to modules via the request_rec and may be computed using the merge
function for every request.

The configuration structs are instances of configuration vectors, as seen in
Chapter 4. Those discussed in this chapter are used for configuration that is initial-
ized at server start-up and should be accessed as read-only thereafter.

9.3 Managing a Module Configuration

9.3.1 Module Configuration
No less than five out of the six (usable) elements of the Apache module struct are
concerned with configuration:
module my_module = {
STANDARD20_MODULE_STUFF,
my_create_dir_conf,           /* Create config rec for directory */
my_merge_dir_conf,            /* Merge config rec for directory */
my_create_svr_conf,           /* Create config rec for host */
my_merge_svr_conf,            /* Merge config rec for host */
my_cmds,                      /* Configuration directives */
my_hooks

} ;
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It is up to each module whether and how to define each configuration struct.
Whenever a struct is defined, the module must implement an appropriate create
function to allocate and (usually) initialize it:
typedef struct {
... ;

} my_svr_cfg ;

static void* my_create_svr_conf(apr_pool_t* pool, server_rec* s) {
my_svr_cfg* svr = apr_pcalloc(pool, sizeof(my_svr_cfg));
/* Set up the default values for fields of svr */
return svr ;

}

typedef struct {
... ;

} my_dir_cfg ;

static void* my_create_dir_conf(apr_pool_t* pool, char* x) {
my_dir_cfg* dir = apr_pcalloc(pool, sizeof(my_dir_cfg));
/* Set up the default values for fields of dir */
return dir ;

}

At this point, just allocating and returning a struct of the right size is often suffi-
cient: Apache uses the return value. Now these values can be accessed at any time a
server_rec or request_rec, respectively, is available:
my_svr_cfg* svr

= ap_get_module_config(server->module_config, &my_module) ;
my_dir_cfg* dir

= ap_get_module_config(request->per_dir_config, &my_module) ;

9.3.2 Server and Directory Configuration
So why does Apache have two separate configurations, how are they related, and
which should your module use?

Most directives work in the directory hierarchy—for example, all the directives
from our mod_choices and mod_txt modules in Chapters 6 and 8 do so. This
approach offers the greatest flexibility to system administrators who want to con-
trol the configuration and to deploy different configurations in different areas of
their server, with <Directory>, <Files>, <Location>, and pattern-matching
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versions such as <DirectoryMatch>, and, subject to AllowOverride settings,
.htaccess. When in doubt, implementing a directive in the directory configu-
ration is unlikely to be wrong!

The server hierarchy is simpler. There is no nesting, and only two levels are avail-
able: top level or inside a <VirtualHost>. This approach is appropriate in the fol-
lowing cases:

• Any configuration that needs to be accessed outside the scope of processing a
request—for example, in a post_config or child_init hook

• Directives explicitly concerned with virtual host configuration

• Situations where the directory hierarchy is meaningless or irrelevant, such as
in a forward proxy configuration

• Managing a persistent resource such as a database connection pool or a cache

Gotcha!

There is a subtle “gotcha” with directory configuration. When a directive is allowed
to appear at the top level in httpd.conf (i.e., outside any <Directory>/etc. con-
tainer), it is also syntactically valid inside a <VirtualHost>. But the <VirtualHost>
container has no meaning in the directory hierarchy. Thus setting per-directory
configuration in a virtual host requires a <Directory> or similar container, in
addition to the <VirtualHost>. That’s why, for example, most access and authen-
tication control directives are disallowed at the top level.

Configuration directives on the server hierarchy can, and should, address this issue
simply by making themselves syntactically invalid in a <Directory> context.

On a related theme, it is important not to confuse the two hierarchies. The
ProxyPassReverse directive in early releases of Apache 2.0 mod_proxy offers a
cautionary lesson. ProxyPassReverse directives were valid in a <Location> con-
text, but were held in the per-server configuration. As a consequence, if multiple
ProxyPassReverse directives appeared in different <Location> contexts, they
would overwrite each other and only the last one would work.
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9.4 Implementing Configuration Directives
The my_cmds field of the module struct mentioned earlier is a null-terminated array
containing the commands implemented by the module. Normally, these commands
are defined using macros defined in http_config.h. For example:
static const command_rec my_cmds[] = {
AP_INIT_TAKE1("MyFirstDirective", my_first_cmd_func, my_ptr, OR_ALL,

"This is My First Directive"),
/* More directives as applicable */
{ NULL }

} ;

AP_INIT_TAKE1 is one of many such macros, all having the same prototype (more
on that later). It has the following arguments:

1. Directive name

2. Function implementing the directive

3. Data pointer (often NULL)

4. Context in which this directive is allowed

5. A brief help message for the directive

9.4.1 Configuration Functions
An essential component of every directive is the function implementing it.
Normally, the function serves to set some data field(s) in one of the configuration
structs. The function prototype for AP_INIT_TAKE1 is the same, regardless of
whether we’re setting per-server or per-directory configuration:

const char* my_first_cmd_func(cmd_parms* cmd, void* cfg,
const char* arg)

cmd is a cmd_parms_struct comprising a number of fields used internally by
Apache and available to modules. The following fields are most likely to be of inter-
est in command functions:

• void* info—contains my_ptr from the command declaration

• apr_pool_t* pool—pool for permanent resource allocation

• apr_pool_t* temp_pool—pool for temporary resource allocation

• server_rec* server—the server_rec
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Other fields are more commonly accessed through accessor functions on the rare
occasions when a command function needs to be context sensitive. Here is the full
declaration:
/**
* This structure is passed to a command that is being invoked,
* to carry a large variety of miscellaneous data that is all of
* use to *somebody*...
*/
struct cmd_parms_struct {

/** Argument to command from cmd_table */
void *info;
/** Which allow-override bits are set */
int override;
/** Which methods are <Limit>ed */
apr_int64_t limited;
/** Methods that are limited */
apr_array_header_t *limited_xmethods;
/** Methods that are xlimited */
ap_method_list_t *xlimited;

/** Config file structure */
ap_configfile_t *config_file;
/** The directive specifying this command */
ap_directive_t *directive;

/** Pool to allocate new storage in */
apr_pool_t *pool;
/** Pool for scratch memory; persists during configuration, but
*  wiped before the first request is served...  */
apr_pool_t *temp_pool;
/** Server_rec being configured for */
server_rec *server;
/** If configuring for a directory, pathname of that directory.
*  NOPE! That's what it meant previous to the existence of <Files>,
* <Location>, and regex matching.  Now the only usefulness that can
* be derived from this field is whether a command is being called
* in a server context (path == NULL) or being called in a dir
* context (path != NULL).
*/
char *path;
/** Configuration command */
const command_rec *cmd;

/** per_dir_config vector passed to handle_command */
struct ap_conf_vector_t *context;
/** Directive with syntax error */
const ap_directive_t *err_directive;

/** Which allow-override-opts bits are set */
int override_opts;

};
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cfg is the directory configuration rec, and arg is an argument to the directive set
in the configuration file we are processing. Because we specified AP_INIT_TAKE1,
there is exactly one argument. Thus, if we are setting per-directory configuration,
we just cast the cfg argument. If we are setting per-server configuration, we need
to retrieve this argument from the server_rec object in cmd_parms instead.

9.4.2 Example
We can now look at a simple example. Our mod_txt in Chapter 8 needs a user-
defined header and footer, each of which is a separate file. Let’s go ahead and imple-
ment the configuration for it. We would like to be able to specify different headers
and footers at will, so that a user can apply different looks-and-feels to different areas
of a site. Thus we need to implement these directives in the directory hierarchy.
typedef struct txt_cfg {
const char* header ;
const char* footer ;

} txt_cfg;

static const command_rec txt_cmds[] = {
AP_INIT_TAKE1("TextHeader", txt_set_header, NULL, OR_ALL,

"Header for prettified text files"),
AP_INIT_TAKE1("TextFooter", txt_set_footer, NULL, OR_ALL,

"Footer for prettified text files"),
{ NULL }

} ;

Now we need to implement the functions to set the header and footer. Just for the
moment, we’ll simply set them and ignore checking that they’re really files, they’re
accessible to the server, and displaying them in a webpage won’t be a security risk.
static const char* txt_set_header(cmd_parms* cmd, void* cfg,

const char* val) {
((txt_cfg*)cfg)->header = val ;
return NULL ;

}
static const char* txt_set_footer(cmd_parms* cmd, void* cfg,

const char* val) {
((txt_cfg*)cfg)->footer = val ;
return NULL ;

}

9.4.3 User Data in Configuration Functions
In the preceding example, we implemented two essentially identical functions to set
different fields of the configuration. We can consolidate these functions into a single
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function by passing it a context variable in cmd->info. Apache (APR) provides a
handy macro for passing a pointer to individual fields of a configuration struct, so
we can just set its contents:
static const command_rec txt_cmds[] = {
AP_INIT_TAKE1("TextHeader", txt_set_var,
(void*)APR_OFFSETOF(txt_cfg, header),
OR_ALL, "Header for prettified text files"),

AP_INIT_TAKE1("TextFooter", txt_set_var,
(void*)APR_OFFSETOF(txt_cfg, footer),
OR_ALL, "Footer for prettified text files"),

{ NULL }
} ;
static const char* txt_set_var(cmd_parms* cmd, void* cfg,

const char* val)
{
int offset = (int)(long)cmd->info;
*(const char **)((char *)cfg + offset) = val;
return NULL ;

}

9.4.4 Prepackaged Configuration Functions
In general, we write our own function to implement a directive. This step is not
always necessary, however. When a directive simply sets a field in the directory con-
figuration, we can use one of the prepackaged functions to set a field, based on the
type of the field to be set: ap_set_string_slot, ap_set_string_slot_lower,
ap_set_int_slot, ap_set_flag_slot, or ap_set_file_slot.

Our earlier function txt_set_var is, in fact, an exact copy of ap_set_string_slot.
Since the fields we are setting are actually filenames, we should instead use
ap_set_file_slot. This means that the user can specify either absolute or rela-
tive pathnames for the file, and Apache will resolve them correctly according to the
underlying filesystem and server root. So we can reduce our mod_txt configuration
to the following code:

static const command_rec txt_cmds[] = {
AP_INIT_TAKE1("TextHeader", ap_set_file_slot,
(void*)APR_OFFSETOF(txt_cfg, header),
OR_ALL, "Header for prettified text files"),

AP_INIT_TAKE1("TextFooter", ap_set_file_slot,
(void*)APR_OFFSETOF(txt_cfg, footer),
OR_ALL, "Footer for prettified text files"),

{ NULL }
} ;
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We’ve improved our configuration without writing any configuration functions at all!

These functions are provided for directives in the directory hierarchy. There are no
equivalent functions for implementing configuration directives in the server hierar-
chy, so we always have to write our own.

9.4.5 Scope of Configuration
The preceding example used OR_ALL to say that TxtHeader/TxtFooter can be
used anywhere in httpd.conf or in any .htaccess file (provided htaccess is
enabled on the server). We could instead have used any of these options:

• RSRC_CONF: httpd.conf at top level or in a VirtualHost context. All direc-
tives using server configuration should use this option, as other contexts are
meaningless for a server configuration.

• ACCESS_CONF: httpd.conf in a directory context. This option is appropriate
to per-directory configuration directives for a server administrator only. It is
often combined (using OR) with RSRC_CONF to allow its use anywhere within
httpd.conf, giving rise to the “gotcha” mentioned earlier related to directives
appearing in ambiguous contexts.

• OR_LIMIT, OR_OPTIONS, OR_FILEINFO, OR_AUTHCFG, OR_INDEXES: extend
ACCESS_CONF to allow use of the directive in .htaccess, where permitted
by the AllowOverride setting.

An additional value, EXEC_ON_READ, can be ORed with any of the preceding
options to take control of parsing httpd.conf into a module. We can use this to
implement containers in configuration, as described in Section 9.7.

9.4.6 Configuration Function Types
The preceding example used the AP_INIT_TAKE1 macro, which defines a function
having a single string argument. This is one of several such macros defined in
http_config.h:

• AP_INIT_NO_ARGS—no arguments

• AP_INIT_FLAG—a single On/Off argument

• AP_INIT_TAKE1—a single string, file or numeric argument
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• AP_INIT_TAKE2, AP_INIT_TAKE3—two/three arguments

• AP_INIT_TAKE12, and so on—directives taking variable numbers of argu-
ments

• AP_INIT_ITERATE—function will be called repeatedly with each of an
unspecified number of arguments

• AP_INIT_ITERATE2—function will be called repeatedly with two arguments

• AP_INIT_RAW_ARGS—function will be called with arguments unprocessed

Let’s look at some examples. We’ve already seen a TAKE1 case. The other
AP_INIT_TAKE* functions are similar but have different numbers of arguments
(those with variable numbers of arguments simply work by passing NULL values
where no argument was specified in the configuration).

AP_INIT_FLAG

In the directory hierarchy, this function can generally be dealt with using
ap_set_flag_slot. For example, in our mod_choices module from Chapter 6,
we need to implement the directive Choices On|Off. Recall that we have a per-
directory configuration record:
typedef struct choices_cfg {
int choices ;               /* Flag to turn this module on/off */
apr_hash_t* transforms ;    /* Table of "extensions" known to

* this server
*/

} choices_cfg ;

All we need to implement the directive is
AP_INIT_FLAG("Choices", ap_set_flag_slot,

(void*)APR_OFFSETOF(choices_cfg, choices), ACCESS_CONF,
"Enable document variant selection by extension" )

In the server hierarchy, you would have to supply a function to set the configura-
tion value, as in an AP_INIT_TAKE1.

AP_INIT_ITERATE

The function is called once for each argument, so it is suitable for directives with
variable arguments, all of which have the same semantics.
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There are several examples in mod_proxy, where you can supply a list of addresses
or ports to which a proxy is or isn’t allowed to connect. For example:

AllowConnect 21 80 443 8000 8080

This is declared as iterating over the arguments:
AP_INIT_ITERATE("AllowCONNECT", set_allowed_ports, NULL, RSRC_CONF,
"A list of ports which CONNECT may connect to")

Here’s the function: It’s very simple because it has to deal with only one argument
at a time. Note that this function is also an example of a directive in the server 
hierarchy, where we have to look up the server_rec object from the cmd_parms
supplied.
/*
* Set the ports CONNECT can use
*/
static const char *

set_allowed_ports(cmd_parms *parms, void *dummy, const char *arg)
{

server_rec *s = parms->server;
proxy_server_conf *conf =

ap_get_module_config(s->module_config, &proxy_module);
int *New;

if (!apr_isdigit(arg[0]))
return "AllowCONNECT: port number must be numeric";

New = apr_array_push(conf->allowed_connect_ports);
*New = atoi(arg);
return NULL;

}

AP_INIT_ITERATE2

This is similar to AP_INIT_ITERATE. It is a two-argument form that takes the 
first argument from the configuration every time, while iterating over the remain-
ing arguments.

An example is mod_proxy_html (version 3). The primary purpose of this output
filter is to rewrite HTML links into a reverse proxy’s address space. Thus the mod-
ule needs to know which markup attributes are links and may, therefore, need to be
rewritten.

Originally, mod_proxy_html supported HTML4 and XHTML1, with knowledge
of the markup taken directly from the authoritative DTDs (published by the World
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Wide Web Consortium) and embedded in the module. As its popularity grew
beyond those able to adapt it themselves, a frequently requested feature was to sup-
port proprietary extensions to HTML. Version 3 accommodates this request by
removing the knowledge of HTML from the module and delegating it to the con-
figuration. A configuration directive ProxyHTMLLinks reads the specification to
find out which attributes need to be processed.

A configuration excerpt is bundled with mod_proxy_html and duplicates the
knowledge that was hard-coded into earlier versions:

ProxyHTMLLinks a href
ProxyHTMLLinks img src longdesc usemap
ProxyHTMLLinks form action
ProxyHTMLLinks link href
ProxyHTMLLinks script src for
ProxyHTMLLinks base href
ProxyHTMLLinks area href
ProxyHTMLLinks input src usemap
ProxyHTMLLinks frame src longdesc
ProxyHTMLLinks iframe src longdesc
ProxyHTMLLinks object classid codebase data usemap
ProxyHTMLLinks q cite
ProxyHTMLLinks blockquote cite
ProxyHTMLLinks ins cite
ProxyHTMLLinks del cite
ProxyHTMLLinks head profile
ProxyHTMLLinks body background
ProxyHTMLLinks applet codebase

The arguments to ProxyHTMLLinks consist of an HTML element followed by a
variable number of attributes. We implement this using an ITERATE2 function:
static const char* set_links(cmd_parms* cmd, void* CFG,

const char* elt, const char* att) {
apr_hash_t* elts = ((my_conf*)CFG)->links ;
apr_array_header_t* attrs = apr_hash_get(elts, elt,

APR_HASH_KEY_STRING) ;
tattr* attr ;

if (!attrs) {
attrs = apr_array_make(cmd->pool, 2, sizeof(tattr)) ;
apr_hash_set(elts, elt, APR_HASH_KEY_STRING, attrs) ;

}
attr = apr_array_push(attrs) ;
attr->val = att ;
return NULL ;

}
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The underlying representation of HTML links used here is an APR hash table of
elements, each having an APR array of attributes to be processed. The function
first looks up the hash entry for the element (first argument), creates one if none
is found, and then appends the attribute (second argument) to the attributes array.

AP_INIT_RAW_ARGS

Raw arguments are needed where a directive’s syntax is highly variable and needs to
be fully parsed in the configuration function. Such functions by their nature are
often long and complex. Instead of giving a real-life example here, we’ll show how
to reimplement the previously mentioned set_links function using raw argu-
ments. The key to this approach is a utility function ap_getword_conf, which
deals with the complexities of parsing arguments that may include whitespace,
escape characters, and quotes.
static const char* set_links_raw_args(cmd_parms* cmd, void* CFG,

const char* args)
{
const char* attname;
apr_hash_t* elts = ((my_conf*)CFG)->links ;

/* The first argument is the element name */
const char* elt = ap_getword_conf(cmd->pool, &args) ;

/* Create an array of attributes for the element */
apr_array_header_t* attrs

= apr_array_make(cmd->pool, 2, sizeof(tattr)) ;
apr_hash_set(elts, elt, APR_HASH_KEY_STRING, attrs) ;

/* Now there could be any number of further arguments,
* so we handle them in a loop.  We push each argument
* onto the attributes array.
*/
for (attname = ap_getword_conf(cmd->pool, &args);

attname != NULL;
attname = ap_getword_conf(cmd->pool, &args)) {
tattr* attr = apr_array_push(attrs) ;
attr->val = attname ;

}
return NULL;

}

9.5 The Configuration Hierarchy
The next topic we need to deal with is managing the configuration hierarchy: how
directives set at different levels interact with each other. This is the purpose of the
merge functions in the module struct.
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A merge function is called whenever directives appear in more than one container
in httpd.conf. It resolves conflicts between directives in the various containers
that may be applicable.

Normal behavior in the directory hierarchy meets the following criteria:

1. Any applicable <Directory> or <Location> overrides a configuration
that isn’t in any container.

2. A .htaccess file (if enabled) overrides httpd.conf for the same directory.

3. A directory’s configuration overrides a parent directory’s configuration.

4. Any applicable <Location> overrides <Files>, which overrides
<Directory> and .htaccess.

5. The <Location> and <Files> containers override each other based not on
specificity, but rather on the order in which they appear in httpd.conf.

6. Where configuration values are not explicitly set, they are inherited rather
than overridden.

7. These relationships may be influenced by a module such as mod_alias
hooking a relevant function before the map_to_storage phase.

NOTE It is strongly recommended that <Directory> and
<Location> containers should never have an overlapping scope:
That way confusion lies! But that’s an issue for system adminis-
trators to manage.

Normal behavior in the server hierarchy is simpler: We just need to merge
<VirtualHost> containers with the top-level configuration.

Consider the following example:
typedef struct {
int a , b , c ;

} my_dir_cfg;

with directives to set a, b, and c, and used with the configuration
DocumentRoot /var/www/
<Directory> /var/www/somewhere/>

SetMyB    456
</Directory>
<Directory /var/www/somewhere/else/again/>

SetMyC    789
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</Directory>
<Directory /var/www/>

SetMyA    123
SetMyC    321

</Directory>

We normally want a request to /somewhere/else/again/ to have the following
behavior:

1. At the top level, a is set to 123 and c is set to 321; b is unset.

2. The first merge sets b to 456. Because a and c are not set (overridden) at
this level, the previous values are inherited in the merge.

3. There are no configuration directives at /var/www/somewhere/else/, so
this level simply inherits from the parent without any need for a merge.

4. The second merge sets the value of c by overriding the previous setting, while
inheriting the previous values of a and b. Now we have a = 123, b = 456,
and c = 789.

If we use <Location> instead of <Directory>, then the precedence changes, and
the last <Location> overrides the earlier ones despite being less specific.

Because only the module itself knows the semantics of its own configuration directives,
only the module itself can actually implement this behavior. This task is the business
of a merge_config function, which Apache will call whenever directives applicable to
the module appear in more than one container. If no such function is provided by the
module, configuration cannot be inherited. Thus, in the preceding example, c is set to
789 at /var/www/somewhere/else/again/ but a and b are unset.

The merge function follows this generic form:
static void* my_merge_dir_conf(apr_pool_t* pool, void* BASE, void* ADD) {

my_dir_cfg* base = BASE ;
my_dir_cfg* add = ADD ;
my_dir_cfg* conf = apr_palloc(pool, sizeof(my_dir_cfg)) ;

/* UNSET is defined to something that won't be used --
* e.g., -1 if all our integers are positive.  We initialize
* everything to UNSET in our create_conf function.
*/
conf->a = ( add->a == UNSET ) ? base->a : add->a ;
conf->b = ( add->b == UNSET ) ? base->b : add->b ;
conf->c = ( add->c == UNSET ) ? base->c : add->c ;
return conf ;

}
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Often we may need to do something a little more complex—for example, merge non-
trivial structures, or deal with cases where there is no meaningful UNSET value to test.
When merging structures that involve pointers, take care when modifying the origi-
nals: It’s safer to make a copy unless you’re using a standard APR data type and its
merge functions. You’ll have to make this decision for each case based on its merits.

The next example demonstrates the potential pitfalls in merging structures.
Consider a module that supports an unlimited number of some kind of rule in its
configuration, and uses a linked list in the configuration struct to represent them:
typedef struct myrule {
void* next;  /* Another myrule*, void to avoid circular declaration */
/* data fields */

} myrule;
typedef struct {
myrule* rules;
/* other configuration data fields */

} my_conf;

The configuration function for setting a myrule is simple enough: We append the
new rule at the end of the list, to ensure the rules are applied in the same order as
they appear in httpd.conf:
static const char* set_myrule( [args] ) {
my_conf* cfg = (my_conf*)CFG ;
myrule* newrules = apr_palloc(cmd->pool, sizeof(myrule) ) ;
...
if ( cfg->rules != NULL ) {
for ( ptr = cfg->rules ; ptr->next != NULL; ptr = ptr->next
ptr->next = newrules ;

} else
cfg->rules = newrules ;

/* And, of course, set the data fields of newrules */
}

When we perform the merge, we want the add rules to take precedence, so we put
them first. But there’s a pitfall awaiting us if we try to merge using pointers with-
out copying:
static void* BAD_merge(apr_pool_t* pool, void* BASE, void* ADD) {
my_conf* base = (my_conf*) BASE ;
my_conf* add = (my_conf*) ADD ;
my_conf* conf = apr_palloc(pool, sizeof(my_conf)) ;

if (add->rules && base->rules) {
/* Append base to add */
for (ptr = conf->rules = add->rules; ptr->next; ptr = ptr->next)

;
ptr->next = base->rules;
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} else {
conf->rules = add->rules ? add->rules : base->rules ;

}
/* Deal with other fields as appropriate */

}

This code fails in the general case, because when we appended the base list to conf,
we actually modified the add list itself. Add a nontrivial configuration into the mix,
and we could easily end up appending add to itself, leading to a circular list and
causing Apache to spin as soon as it applies the rules in processing a request with
the merged list.

To avoid this risk, our merge function needs to copy the entire list:
static void* GOOD_merge(apr_pool_t* pool, void* BASE, void* ADD) {
my_conf* base = (my_conf*) BASE ;
my_conf* add = (my_conf*) ADD ;
my_conf* conf = apr_palloc(pool, sizeof(my_conf)) ;

if (add->rules && base->rules ) {
myrule* a ;
conf->rules = NULL ;
for ( a = base->rules ; a ; a = a->next ) {
myrule* save = conf->rules ;
conf->rules = apr_pmemdup(pool, a, sizeof(myrule)) ;
conf->rules->next = save ;

}
for ( a = add->rules ; a ; a = a->next ) {
myrule* save = conf->rules ;
conf->rules = apr_pmemdup(pool, a, sizeof(myrule)) ;
conf->rules->next = save ;

}
} else {
conf->rules = add->rules ? add->rules : base->rules ;

}
/* Deal with the other fields as appropriate */

}

Note that we could have simplified this example by using appropriate APR types.
In this case, we could have used the APR array type apr_array_header_t in place
of our linked list, and we could have then used apr_array_append in our merge
function:
static void* ARRAY_merge(apr_pool_t* pool, void* BASE, void* ADD) {
my_conf* base = (my_conf*) BASE ;
my_conf* add = (my_conf*) ADD ;
my_conf* conf = apr_palloc(pool, sizeof(my_conf)) ;
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/* With an APR data type we can delegate all the real work to APR */
conf->rules = apr_array_append(pool, base->rules, add->rules);
/* etc */

}

9.6 Context in Configuration Functions
For most purposes, the configuration we’ve introduced here offers ample control.
Configuration directives don’t care where they appear so long as they are syntacti-
cally correct and follow the rules of the appropriate hierarchy (directory or server).
Apache itself will manage the hierarchy, and all the module should do is provide a
merge function. But occasionally a directive might care where it appears. For exam-
ple, if it concerns support for a virtual filesystem, it might want to know if it’s
within the filesystem in question. And what is the effect of a directive appearing in
a context such as <Limit> that is not part of either hierarchy?

9.6.1 Context Checking
If a configuration function needs to know its context, the information is available
in the cmd_parms struct. The most useful way to access this information, however,
is through the function ap_check_cmd_context from http_config.h. It pro-
vides us with the promised workaround for directory-hierarchy directives appearing
misleadingly in a <VirtualHost> container: We can permit our directive to appear
at the top level with RSRC_CONF or OR_ALL, yet generate a syntax error if our direc-
tive appears in a <VirtualHost>:
static const char* my_conf(cmd_parms* cmd, void* cfg, ...) {
const char* errmsg;
errmsg = ap_check_cmd_context(cmd, NOT_IN_VIRTUALHOST);
if (errmsg != NULL) {
return errmsg;

}
/* OK, not in a <VirtualHost>; go ahead and process the directive */
return NULL;

}

NOT_IN_VIRTUALHOST is one of several macros we can test in this manner. Others
include NOT_IN_LIMIT, NOT_IN_DIRECTORY, NOT_IN_LOCATION, NOT_IN_FILES,
NOT_IN_DIR_LOC_FILE, and GLOBAL_ONLY. These macros can be used with a log-
ical OR, and ap_check_cmd_context will return NULL if and only if the condi-
tions are satisfied.
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9.6.2 Method and <Limit>

CAUTION <Limit> is traditionally associated with authen-
tication and access control. After an example was published, 
it became cargo-cult knowledge, and even today some sources
imply that it is an integral part of authentication. In fact, <Limit>
is rarely useful in a regular webserver and, in the context of secu-
rity, it can be dangerous. Examples of good <Limit> usage can
be found in DAV and Subversion.

The <Limit> and <LimitExcept> containers provide a context in which directives
may or may not apply, depending on the HTTP method used. Unlike with the
standard hierarchy containers, this usage is not automatic, but rather requires coop-
eration from modules.

Configuration functions can find out if they are in a <Limit> section by checking
the “limited” field of the cmd_parms: It is set to –1 when not in a <Limit> or
<LimitExcept>, or to a bit field of <Limit>ed method numbers. You might wish
to use this approach when a directive is applicable only to certain methods, to gen-
erate a syntax error if the directive is <Limit>ed to inappropriate methods:
/* Example: Directive that is meaningless except in a POST or PUT */
if ( cmd->limited != -1) {  /* We're happy if not in <Limit> at all. */
/* When in <Limit>, insist that at least one of POST/PUT applies. */
mask = (AP_METHOD_BIT<<M_POST) | (AP_METHOD_BIT<<M_PUT) ;
if ( !(cmd->limited & mask) ) {

return "Directive is relevant only in POST or PUT context" ;
}

}

Alternatively, a directive may unconditionally refuse to work in a <Limit> by using
ap_check_command_context with NOT_IN_LIMIT.

Modules more commonly want to know whether they are <Limit>ed later, when
processing a request. At this point, there is an actual request, and hence a method
to check against the <Limit>.

The most common example of a directive that works with <Limit> is Require. It
is implemented by the core, and accessed by authorization modules (Chapter 7).
First, the configuration function records any <Limit>:
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static const char *require(cmd_parms *cmd, void *c_, const char *arg)
{
require_line *r;
core_dir_config *c = c_;

if (!c->ap_requires) {
c->ap_requires = apr_array_make(cmd->pool, 2, sizeof(require_line));

}

r = (require_line *)apr_array_push(c->ap_requires);
r->requirement = apr_pstrdup(cmd->pool, arg);
r->method_mask = cmd->limited;

return NULL;
}

Second, the authorization handlers check the request method against the limit mask
of the Require directive:
static int some_authz_handler(request_rec* r) {
const apr_array_header_t *reqs_arr = ap_requires(r);
require_line *reqs = (require_line *)reqs_arr->elts;
loop over reqs {

if (!(reqs[n].method_mask & (AP_METHOD_BIT << r->method_number))) {
/* We're in a <Limit> that excludes this Require directive,
* so we'll just ignore it
*/
continue;

}
/* If we reach here, this Require applies to this request method */

}
/* etc. */

}

9.7 Custom Configuration Containers
So far, we have discussed the standard configuration containers that define the two
hierarchies. But an httpd.conf may contain other sections as well:

<Limit> ... </Limit>

<IfDefine> ... </IfDefine>

<Proxy> ... </Proxy>

<Perl> .... </Perl>

9.7 Custom Configuration Containers 257



In terms of its implementation, a container is simply an extended form of a 
directive. We can process its entire contents with AP_INIT_RAW_ARGS, setting the
EXEC_ON_READ flag to indicate that we will do something other than just passively
consume the line.

The simplest example of a container is <Comment>, from mod_comment:1

<Comment>
Anything here is commented out. This can be useful when hacking
configurations, to comment out whole chunks rather than just line-by-
line.

</Comment>

This container is implemented as a directive <Comment. Note that the directive here
includes the opening angle bracket, but not the closing one: This is because argu-
ments to a container directive will precede the closing bracket.
static const command_rec comment_cmds[] =
{
AP_INIT_RAW_ARGS("<Comment", start_comment, NULL,

EXEC_ON_READ | OR_ALL, "Container for comments"),
{NULL}

};

Now, of course, the start_comment function applies to the opening <Comment.
But instead of consuming a single line, it takes over processing the input, returning
control to the caller only when it reaches the closing </Comment>.
static const char *start_comment(cmd_parms *cmd, void *dummy,

const char *arg)
{

const char *endp;

/* Complain if the <Comment> directive is not well formed */
endp = ap_strrchr_c(arg, ‘>');
if (endp == NULL) {

return apr_pstrcat(cmd->pool, cmd->cmd->name,
"> directive missing closing ‘>'", NULL);

}
*(ap_directive_t **)dummy = NULL;

/* Now ignore everything until </Comment> */
return ap_soak_end_container(cmd, "<Comment");

}
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A particularly interesting example of a container is <Macro>, from mod_macro.2

It introduces macros into Apache configuration. A complementary Use directive
instantiates the macro with arguments matching the <Macro> template. For
example, if we have lots of virtual hosts with similar configurations, we could save
ourselves from a lot of repetition by making the basic virtual host skeleton into 
a macro.

First, we define vhost as a macro:
<Macro vhost $host $dir $admin>
<VirtualHost 192.168.23.90>
ServerName $host
DocumentRoot $dir
ServerAdmin $admin

<Directory $dir>
Order allow,deny
Allow from all

</Directory>

</VirtualHost>
</Macro>

Next, we use it to declare virtual hosts using just a single line per host:
Use vhost www.example.com /usr/www/example.com webmaster@example.com
Use vhost www.example.org /usr/www/example.org webmaster@example.org

To implement this, mod_macro defines a macro_t type:
typedef struct {
char * name;        /* case-insensitive name of the macro */
apr_array_header_t * arguments; /* of char* */
apr_array_header_t * contents;
char * location;            /* of the macro definition */

} macro_t;

The handler for <Macro creates and populates a macro_t structure, while Use acti-
vates the macro’s contents with the arguments supplied. The module is too complex
to include here in detail (and to do so would also require its license to be reproduced
in full), so we’ll just look at it in outline form.
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The function implementing the <Macro> container is macro_section. The func-
tion implementing the Use directive is use_macro. Both functions are declared as
AP_INIT_RAW_ARGS with EXEC_ON_READ.
static const char *macro_section(cmd_parms * cmd,

void * dummy,
const char * arg)

{
/* Check that the <Macro ...> line is well formed
* (same check as mod_comment)
*/

/* The macro name is the first argument */
name = ap_getword_conf(cmd->temp_pool, &arg);

/* Check that we don't already have a macro of the same name */

/* Allocate the macro_t struct and set the macro name */

/* Read the remainder of the line into the macro's arguments
* using ap_getword_conf as in the RAW_ARGS example above
*/

/* Run sanity checks on arguments (no duplicate names, etc.) */

/* Read lines until </Macro> into the macro contents,
* discarding blank lines and comments, using ap_cfg_getline
*/
while (!ap_cfg_getline(line, MAX_STRING_LEN, config_file)) {

/* Run a range of checks on line */
/* Store line in macro's contents */

}

/* Run sanity checks on macro contents */

return NULL;
}
static const char *use_macro(cmd_parms * cmd,

void * dummy,
const char * arg)

{
/* The macro name is the first argument */

/* Retrieve the macro_t record for this name */

/* Check for recursion */

/* Read the argument values from the remainder of the line */

/* Check that the number of arguments matches the macro prototype */
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/* Process macro contents by copying line-by-line into
* a new array and substituting argument values for variables
*/

/* Incorporate the contents into a custom context, and pass
* it to ap_pcfg_open_custom to consume the contents as if
* it were read directly from httpd.conf
*/

return NULL;
}

The prototype for ap_pcfg_open_custom is
AP_DECLARE(ap_configfile_t *) ap_pcfg_open_custom(apr_pool_t *p,

const char *descr,
void *param,
int(*getc_func)(void*),
void *(*gets_func) (void *buf, size_t bufsiz, void *param),
int(*close_func)(void *param));

The preparation for it is omitted here for the sake of brevity, but is based on pass-
ing the contents in the param argument, and supplying functions to read from
those contents.

9.8 Alternative Configuration Methods
Whereas single-line directives and (occasionally) containers serve well for most
modules, sometimes we may want to use more complex forms of configuration, or
read the configuration from a standard format such as SQL or XML that may be
well suited to a particular module’s requirements. A simple way to take advantage
of different formats is to use a configuration directive that takes the name of a con-
figuration file as an argument. The configuration function then reads the file.
Variants on this approach include querying a database or running an XPath query
on an XML module-configuration file.

Modules can also rely on variables in the Apache core for configuration. For example:

• Content generators check the r->handler field to determine whether to
accept a request (as we saw in Chapter 5), so we never need to implement our
own directive for this purpose.

• mod_deflate reads environment variables such as nogzip to determine
whether to compress a document when the compression filter is active. This
approach delegates configuration to modules that set environment variables,
and enables configuration using directives such as BrowserMatch.
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9.9 Summary
Configuration is a basic topic, and one that is essential to nearly every module and
application. Apache’s configuration is largely straightforward once you appreciate
how the hierarchies work and how they relate to one another. Implementing the con-
figuration directives for your modules is usually simple. Although this holds some
subtleties (such as <Limit> sections), these exist largely to maintain backward com-
patibility among the standard modules, and can usually be ignored by applications.

Specific topics we have looked at in this chapter include the following:

• The directory and server configurations

• Configuration data structs

• The command_rec, and defining and implementing commands

• Configuration macros and function prototypes

• Custom and prepackaged configuration functions

• The configuration hierarchy and merge functions

• Context, scope, limitations, and availability of configuration records

• Configuration containers

This chapter complements the discussion of HTTP request processing in
Chapters 5–8, and concludes our presentation of core topics. In the next chapters,
we move on to more advanced topics that may be of interest to many, but not all,
applications developers: providing a new API or service for other modules, and
working with an SQL database.
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One of the major innovations in Apache 2 is the flexible and extensible API, which
brings a hugely enhanced level of modularity and an applications architecture that
is limited only by the developer’s imagination. We have encountered Apache’s hooks
in earlier chapters, but we haven’t yet seen the full power they offer us, nor the other
mechanisms for extending not merely the program, but also the API.

In this chapter, we will demonstrate a number of ways to extend the Apache API:

• Implementing new API functions

• Taking a closer look at hooks

• Implementing new hooks

• The provider API

• Providing a service

10
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You should familiarize yourself with these techniques, as selecting an appropriate
extension framework may mean the difference between an ill-fitting and hard-to-
maintain application architecture and one that is elegant, maintainable, and extensible.

10.1 Implementing New Functions in Apache

10.1.1 Exporting Functions
Any module can export a function for use by other modules. At its simplest, it need
only provide a header file that defines exported functions. Other modules can then
#include the relevant header file and use the functions.

We saw an example of this in Chapter 6, where our mod_choices used functions
exported by the XSLT filter module mod_transform to select a stylesheet:

mod_transform_set_XSLT(r, fmt->name);

To support this, all mod_transform has to do is export the relevant functions in a
header file mod_transform.h:
AP_DECLARE(void) mod_transform_set_XSLT(request_rec* r,

const char* name) ;
AP_DECLARE(void) mod_transform_XSLTDoc(request_rec* r, xmlDocPtr doc) ;

In this instance, mod_choices depends explicitly on mod_transform, so this sim-
ple approach is sufficient. It does, however, introduce one support issue:
mod_choices cannot be loaded before mod_transform in httpd.conf. To do so
would cause a fatal error, because the symbol mod_transform_set_XSLT is unre-
solved when mod_choices tries to load.

In other cases, this approach can be more of a problem. Let’s look at a couple of
examples:

• mod_include requires a CGI module (mod_cgi or mod_cgid) if it is to
process <!--#exec cgi=...--> directives. But these directives are rarely
used, and mod_include can do everything else it needs without CGI. Thus it
is undesirable for mod_include to require CGI support.

• mod_publisher can work with form inputs provided that mod_form has
parsed them into an appropriate apr_table. However, most users of
mod_publisher leave the task of working with form inputs to the content
generator. As a consequence, we should be able to run mod_publisher with-
out having to install mod_form.
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• mod_authnz_ldap depends on mod_ldap for basic LDAP functions. Earlier
versions of Apache required mod_ldap to be loaded before other LDAP mod-
ules. In Apache 2.2, LDAP modules can be loaded in any order.

10.1.2 Optional Functions
APR provides a solution to this dilemma: Optional functions can be exported by one
module and imported by another without creating a dependency. To see how this
process works, let’s consider the simple example of mod_form, a module whose pur-
pose is to parse data from an HTML form (application/x-www-form-urlencoded)
into an apr_table.

mod_form provides two functions to other modules:

• form_data returns the table of all key/value pairs parsed.

• form_value returns the value of a given key in the table.

mod_form could, of course, export these functions the simple way:
AP_DECLARE(apr_table_t*) form_data(request_rec* r) ;
AP_DECLARE(const char*) form_value(request_rec* r, const char* key) ;

Unfortunately, that creates a dependency we prefer to avoid. Instead, mod_form
exports them as optional functions, using the following declarations:
#include <apr_optional.h>
APR_DECLARE_OPTIONAL_FN(apr_table_t*, form_data, (request_rec*) ) ;
APR_DECLARE_OPTIONAL_FN(const char*, form_value,

(request_rec*, const char*) ) ;

Implementing the Functions

Implementing these functions requires two things in mod_form itself. First, it needs
the functions, which are straightforward and can be declared as static:
static apr_table_t* form_data(request_rec* r) {
form_ctx* ctx = ap_get_module_config(r->request_config, &form_module);
return ctx ? ctx->vars : NULL ;

}
static const char* form_value(request_rec* r, const char* arg) {
form_ctx* ctx = ap_get_module_config(r->request_config, &form_module);
if ( ! ctx || ! ctx->vars )
return NULL ;

return apr_table_get(ctx->vars, arg) ;
}
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Here, ctx->vars is the table into which mod_form has parsed any available
form data.

Second, mod_form needs to export the functions as optional functions by register-
ing them in the form_hooks callback (where, of course, the module’s own callbacks
are also registered):
static void form_hooks(apr_pool_t* pool) {
ap_hook_fixups(form_fixups, NULL, NULL, APR_HOOK_MIDDLE) ;
ap_register_input_filter("form-vars", form_filter, NULL,

AP_FTYPE_RESOURCE) ;
APR_REGISTER_OPTIONAL_FN(form_data) ;
APR_REGISTER_OPTIONAL_FN(form_value) ;

}

Using the Functions

Now, a client module such as mod_sql or mod_publisher, having #included
mod_form.h, just needs to retrieve the optional function. Both modules just
retrieve the data to their own tables, during per-request initialization:
typedef struct my_ctxt {
....
apr_table_t* form_vars;
....

};

static int my_init_function(ap_filter_t* f) {
apr_table_t* (*form_vars)(request_rec*) ;
my_ctxt* ctx = f->ctx = apr_pcalloc(f->r->pool, sizeof(my_ctxt)) ;
....
form_vars = APR_RETRIEVE_OPTIONAL_FN(form_data);
if (form_vars != NULL) {
/* The function returns the table of data, so in future we can just
* look things up as we would with request headers or subprocess env
*/
ctx->form_vars = form_vars(f->r) ;

}
....
return OK;

}

In this case, if mod_form isn’t available, the client modules will still work, albeit
without the capability of accessing data from form inputs.
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10.2 Hooks and Optional Hooks
In the preceding chapters, we discussed the Apache processing hooks. In Apache
1.x, this would have been the whole story: A fixed sequence of hooks was hard-
wired into the server.

Likewise, Apache 2 has a de facto “standard” sequence of hooks that are available in
a default installation, and that reflect the older architecture. However, hooks in
Apache 2 serve a more general purpose. Any module can extend the API by pro-
viding additional hooks or optional hooks, extending an invitation to other mod-
ules to provide their own behavior at this point. For example, mod_proxy provides
hooks into the request it is making to the back-end server, and mod_dav provides
optional hooks for implementing additional HTTP methods. Both modules are
characterized by being extensible—that is, you can plug in more modules. In fact,
they depend on additional modules implementing the hooks provided. They are
extending the API by providing these additional hooks.

10.2.1 A Closer Look at Hooks
Before we look at implementing a new hook, let’s take a closer look at the kind of
hooks we’ve seen already. Recall these examples from Chapters 5 and 6:

ap_hook_handler(helloworld_handler, NULL, NULL, APR_HOOK_MIDDLE);
ap_hook_type_checker(choices_select, NULL, NULL, APR_HOOK_FIRST);

Both of these hooks appear in a register_hooks function, which is run at server
start-up. The respective modules are registering their own functions to play some
part in Apache’s behavior. But what exactly does that mean? 

A hook is simply a point in Apache’s processing where a module can insert its own
function to implement new behavior. Any module can extend the API by provid-
ing additional hooks or optional hooks, thereby extending an invitation to other
modules to provide their own behavior at this point. The calling code implements
one of the following logics:

• Run all functions registered on this hook in order.

• Run functions registered on this hook until one returns any value other than
DECLINED.

• Run all functions until and unless one returns an error (that is, anything other
than OK or DECLINED).
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Implementing a hook is done by means of macros defined in apr_hooks.h,
apr_optional_hooks.h, and ap_config.h. The three logics, respectively, are
associated with

• AP_IMPLEMENT_EXTERNAL_HOOK_VOID

• AP_IMPLEMENT_EXTERNAL_HOOK_RUN_FIRST

• AP_IMPLEMENT_EXTERNAL_HOOK_RUN_ALL

(or their APR versions when working outside the context of httpd).

For reasons we’ll discuss later in this chapter, a module outside the Apache core
should normally implement any hooks as optional hooks. Only one standard macro
is defined for optional hooks, but any of the previously mentioned functions can
also be treated as an optional hook by client modules.

When a module implements a hook (though not an optional hook), it exports a
hook function such as ap_hook_handler or ap_hook_translate_name. As we
saw in Chapter 6, a sequence of them appear in the request processing cycle. The
core also implements other standard hooks. 

Initialization at Server Start-up

• test_config—hook into configuration testing

• optional_fn_retrieve—run before anything else after all modules are
loaded

• pre_config—run before processing configuration directives

• post_config—run after processing configuration directives

• open_logs—run when Apache opens its log files

• pre_mpm—run ahead of the MPM launching worker processes and/or threads

• child_init—run after an httpd child has forked, but before it becomes
multithreaded or starts to accept connections

Hooks into the Core Exported by mpm_common

• monitor—polled in the parent process

• fatal_exception—run when Apache crashes
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There are also hooks into connection creation and processing, request creation,
and protocol handling. In addition, a number of hooks are exported not by the
core, but rather by the standard modules. The latter functions are implemented as
optional hooks.

10.2.2 Order of Execution
Returning to the hooks in our earlier modules, we had

ap_hook_handler(helloworld_handler, NULL, NULL, APR_HOOK_MIDDLE);
ap_hook_type_checker(choices_select, NULL, NULL, APR_HOOK_FIRST);

In each case, the first argument is the function we are hooking in to Apache. The
other three arguments are concerned with the order of execution when multiple
modules have inserted functions on the same hook.

The final argument is an expression indicating where the function should run. For the
majority of modules, it really doesn’t matter whether their functions run before or
after others on the same hook; such modules should use APR_HOOK_MIDDLE. Other
modules may need to run a function either before or after “all other” functions on the
same hook have run; these modules can use APR_HOOK_FIRST or APR_HOOK_LAST.
The values APR_HOOK_REALLY_FIRST and APR_HOOK_REALLY_LAST are also avail-
able, although they are seldom appropriate and may give unexpected behavior. For
example, a REALLY_LAST function may never run if it follows an Apache standard
function that never returns DECLINED.

The two NULL values are the predecessors and successors of our function, and they
offer fine control. Instead of expressing a general desire to run before or after other
(unspecified) modules, they offer the opportunity to name other modules explicitly.
They are appropriate for closely related modules whose functions, if both modules
are present, must run in a particular order. These arguments take the form of a
NULL-terminated list of modules that must run before or after ours.

An example arises in the authorization modules, where several modules require
mod_authz_owner (if present) to run before their own hooks. Here’s how
mod_authz_groupfile declares it:
static void register_hooks(apr_pool_t *p)
{

static const char * const aszPre[]={ "mod_authz_owner.c", NULL };
ap_hook_auth_checker(check_user_access, aszPre,

NULL, APR_HOOK_MIDDLE);
}
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10.2.3 Optional Hooks Example: mod_authz_dbd
mod_authz_dbd is, in part, a standard authorization (authz) module, implement-
ing group access by means of SQL queries (i.e., checking an SQL database for
whether a user is a member of a group). In addition to this standard function, it
implements login and logout functions that work by setting a flag in the database
to indicate whether the user is currently logged in.

Although mod_authz_dbd manages the server state, it doesn’t care about the client.
Nevertheless, a server that implements login/logout may also wish to manage the
client state—for example, by setting a cookie or other session token. Ideally, the
client session should be tied to the server session, so the two always remain in agree-
ment. mod_authz_dbd supports this approach by exporting an optional hook. A
module managing a client session can use this hook to implement its client-side
login and logout exactly when the server successfully performs these functions.

Exporting an Optional Hook

mod_authz_dbd exports the hook by declaring it in a header file and implement-
ing it in the C file. This is made very simple by the macros from apr_hooks.h and
apr_optional_hooks.h.

First, here is the declaration in mod_authz_dbd.h:
APR_DECLARE_EXTERNAL_HOOK(authz_dbd, AP, int, client_login,

(request_rec *r, int code, const char *action))

This declares an external hook called client_login, with arguments consisting of
the preprocessor namespace AP (implemented by Apache) and the C namespace
authz_dbd. The template for a client_login function is also determined by the
arguments:

int func(request_rec*, int, const char*)

The implementation in mod_authz_dbd.c is almost as simple. A macro expands
to implement a function authz_dbd_run_client_login:
APR_IMPLEMENT_OPTIONAL_HOOK_RUN_ALL(authz_dbd, AP, int, client_login,

(request_rec *r, int code, const char *action),
(r, code, action), OK, DECLINED)

Finally, there is a call to run the functions registered for the hook in the function
implementing server-side login/logout:
static int authz_dbd_login(request_rec *r, authz_dbd_cfg *cfg,

const char *action)
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{
/* code omitted -- perform database login/logout */
if (successful) {

authz_dbd_run_client_login(r, code, action);
}
return code ;

}

That’s all! Now a module implementing client sessions can hook a function straight
into authz_dbd_login:
static int client_cookie(request_rec *r, int code, const char *action) {

if (strcmp(action, "login") == 0) {
/* Set authentication token in client session cookie */

}
else if (strcmp(action, "logout") == 0) {
/* Clear session cookie */

}
return OK;

}
static void register_hooks(apr_pool_t *pool) {

APR_OPTIONAL_HOOK(authz_dbd, client_login, client_cookie,
NULL, NULL, APR_HOOK_MIDDLE);

}

Now our client_cookie function runs whenever someone successfully logs in or
out through mod_authz_dbd.

We could have implemented this function as a non-optional hook, by replacing the macro
APR_IMPLEMENT_OPTIONAL_HOOK_RUN_ALLwith APR_IMPLEMENT_EXTERNAL_HOOK_RUN_ALL

from apr_hooks.h. Then a client function could use the familiar form of declaration:
static void register_hooks(apr_pool_t *pool) {

authz_dbd_hook_client_session(client_cookie,
NULL, NULL, APR_HOOK_MIDDLE);

}

The drawback is that this approach would cause a fatal link error if the client ses-
sion module is loaded before mod_authz_dbd. Hence we follow the general advice
to use optional hooks in non-core modules.

NOTE This has nothing to do with security, for which only the
server protection matters. The session is managed from both the
server side and the client side for the convenience of legitimate
users accessing the system as designed.
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10.3 The Provider API
The ap_provider API provides yet another means for modules to extend the
Apache API in a manner slightly reminiscent of exporting a Java interface or C++
virtual base class. A module exporting a new API defines an interface and leaves it
to others to implement providers for the interface. A provider is typically imple-
mented in another module, and it instantiates the interface with its own behavior.

The provider API is most useful when we need to support several distinct behaviors
in a particular situation, and it works well when the available options will be con-
trolled directly by a server administrator in httpd.conf. It ensures that new mod-
ules can add new behaviors without affecting existing code or users.

Within the Apache core distribution, the main example demonstrating the
ap_provider API is the authentication framework (others occur in mod_proxy and
mod_cache). Authentication in Apache 2.2 comprises several well-defined tasks (see
Chapter 7). One of those tasks is looking up a username/password to verify the cre-
dentials presented. This lookup can be done in many ways, so we need an API for mod-
ules to implement it. This functionality is implemented by exporting a provider API.
Each lookup module works by registering its own implementation of the provider.

Two standard modules export the API:

• mod_auth_basic implements HTTP basic authentication.

• mod_auth_digest implements HTTP digest authentication.

The standard lookup modules that implement providers include the following:

• mod_authn_file looks up a username/password in a classic htpasswd file.

• mod_authn_dbm looks it up in a DBM database (with apr_dbm).

• mod_authn_dbd looks it up in an SQL database (with apr_dbd).

• mod_authn_ldap looks it up in an LDAP directory.

• mod_authn_anon allows anonymous authentication, by substituting simple
rules for any lookup.

These lookup modules can be used with either of the modules exporting the API.

A slightly more complex example is the XML namespace framework. It is based on
an output filter that parses XML on the fly using a SAX2 parser, and it enables
modules to process different XML namespaces in the markup. This offers a modular
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and far faster alternative to XSLT filtering for a range of applications involving post-
processing of XML, as well as options for embedded processing and scripting.

At the time of writing, two modules export the namespace framework:

• mod_xmlns is a minimal implementation.

• mod_publisher implements the namespace framework in the context of an
extremely feature-rich, general-purpose rewriting module for both HTML
and XML.

Namespace modules will work with either of those modules.

To illustrate the provider API, let’s look at the XML namespace API (Figure 10-1).
The module providing the namespace filter is a SAX2 parser; current implementa-
tions are mod_publisher and mod_xmlns. Let’s look at mod_xmlns, whose sole
function is to provide the namespace API. In Figure 10-1, we show XHTML, anno-
tations, SQL queries, and Dublincore metadata, each of which is implemented by
a separate module. The key part of the API is for mod_xmlns to enable these mod-
ules to register themselves and take charge of processing selected markup.
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The key configuration directive provided by mod_xmlns is

XMLNSUseNamespace namespace-uri [action] [version]

A namespace module works by registering a provider for namespace-uri with the
server. XMLNSUseNamespace then activates the provider as a handler for XML ele-
ments in the namespace. For example,

XMLNSUseNamespace http://www.w3.org/1999/xhtml On 1.0

activates handler version 1.0 of provider http://www.w3.org/1999/xhtml
(which ensures that XHTML is Appendix C–compliant and can be served to real-
life Web browsers as HTML). Other events may be handled by another handler. 
For example, if the source document also provides metadata as RDF (such as
mod_choices), any Dublincore1 metadata elements can be served to HTML
browsers as <META> elements with

XMLNSUseNamespace http://purl.org/dc/elements/1.1/ On xhtml

which registers a handler for the Dublincore namespace.

10.3.1 Implementation
Unlike the API extensions we have looked at so far, the provider API works solely
on a global lookup table. It doesn’t need to export any function declarations, and in
principle it might not need a header file at all, although in practice it is likely to
export a declaration of the provider structure it implements.

In the case of mod_xmlns, the provider implements a configuration directive, so the
API is exported from a configuration handler function:
static const command_rec xmlns_cmds[] = {
AP_INIT_TAKE123("XMLNSUseNamespace", use_namespace, NULL, OR_ALL, NULL) ,
....

}
static const char* use_namespace(cmd_parms* cmd, void* cfg,

const char* uri, const char* action, const char* version) {
xmlns_rec* rec;
void* handler = ap_lookup_provider("xmlns", uri, version) ;
if ( !handler ) {

return "Can't use namespace: not loaded or incompatible version" ;
}
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/* Code omitted here, including checking the namespace is compiled
* to the same version of the API as us and won't just segfault
*/

rec = apr_hash_get(((xmlns_cfg*)cfg)->namespaces,
uri,APR_HASH_KEY_STRING) ;

if ( ! rec ) {
rec = apr_palloc(cmd->pool, sizeof(xmlns_rec) ) ;
rec->handler = handler ;
apr_hash_set(((xmlns_cfg*)cfg)->namespaces, uri,

APR_HASH_KEY_STRING, rec) ;
}
rec->onoff = onoff ;
return NULL;

}

The key to the API is ap_lookup_provider. If a module implementing a provider
for the requested URI and version is loaded, it will be configured as active for XML
events in the URI’s namespace according to the value of onoff. The parser will then
dispatch every XML event in the namespace to the registered provider when a doc-
ument is parsed.

10.3.2 Implementing a Provider
The handler in the preceding example is treated as void*, but, of course, it is
known to mod_xmlns. It is actually a struct, defined in the header file xmlns.h
(which is common to both mod_publisher and mod_xmlns):
typedef struct xmlns {
/* Version helps ensure we don't load a provider that's compiled to
* an API version that isn't binary-compatible with the version of
* mod_xmlns/mod_publisher in use
*/
int version;

/* SAX2 Events */
int (*StartElement) ( xmlns_public*, const parsedname*,

const xmlns_attr_t*) ;
int (*EndElement) ( xmlns_public*, const parsedname*) ;
void (*StartNamespace) ( xmlns_public*,

const xml_char_t*, const xml_char_t* ) ;
void (*EndNamespace) ( xmlns_public*, const xml_char_t* ) ;

/* Allow a comment handler. Many people put a function in
* comments, and mod_xmlns will dispatch to this comment handler if
* this prefix is non-null and the start of the comment matches it. 
*/
const char* comment_prefix ;
int (*CommentHandler) (xmlns_public*, const xml_char_t*) ;
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/* We may want to set up custom handlers for characters and
* cdata.  These are kept on a stack, with the innermost namespace
* in control.
*/
int (*CharactersHandler)(xmlns_public*, const xml_char_t*, int len) ;
int (*CdataHandler)(xmlns_public*, const xml_char_t*, int len) ;

} xmlns ;

A provider module works by implementing one or more xmlns structures, and reg-
istering them as providers for xmlns. An example is mod_xhtml, which registers
three providers for two namespaces:
/* Process XHTML to ensure Appendix C compliance, and at the same
* time process server-side include (SSI) directives.
* This duplicates the function of mod_includes, but means we
* can run both the SSI and Appendix C tasks in a single parse.
*/
static xmlns xmlns_xhtml_ssi = {
XMLNS_VERSION ,        /* Version of xmlns.h */
xhtml_start ,         /* StartElement */
xhtml_end ,           /* EndElement   */
ssi_init ,            /* StartNSDecl  */
ssi_term ,            /* EndNSDecl    */
"#" ,                 /* Comment identifier */
ssi_comment ,         /* Comment handler */
NULL, NULL            /* Characters and CDATA */

} ;

/* SSI maps trivially to an XML namespace. For no additional effort, we can
implement it that way, and give content developers the choice of which form 
to use.
*/
static xmlns xmlns_ssi = {
XMLNS_VERSION ,        /* Version of xmlns.h */
ssi_start ,           /* StartElement */
ssi_end ,             /* EndElement   */
ssi_init ,            /* StartNSDecl  */
ssi_term ,            /* EndNSDecl    */
NULL ,                /* Comment identifier */
NULL ,                /* Comment handler */
NULL, NULL            /* Characters and CDATA */

} ;

/* XHTML Appendix C only; no SSI support */
static xmlns xmlns_xhtml10 = {
XMLNS_VERSION ,        /* Version of xmlns.h */
xhtml_start ,         /* StartElement */
xhtml_end ,           /* EndElement   */
NULL ,                /* StartNSDecl  */
NULL ,                /* EndNSDecl    */
NULL ,                /* Comment identifier */
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NULL ,                /* Comment handler */
NULL, NULL            /* Characters and CDATA */

} ;

static void xhtml_hooks(apr_pool_t* pool) {

/* Register the bare provider for XHTML as version "1.0" */
/* XHTML10 is #defined as "http://www.w3.org/1999/xhtml" */
ap_register_provider(pool, "xmlns", XHTML10 , "1.0", &xmlns_xhtml10) ;

/* Register provider for XHTML with SSI support as version "ssi" */
ap_register_provider(pool, "xmlns", XHTML10 ,

"ssi", &xmlns_xhtml_ssi) ;

/* Register a provider for a separate SSI namespace */
ap_register_provider(pool, "xmlns", SSI , "ssi", &xmlns_ssi) ;

}

As we can see, the xmlns struct is closer to the module struct itself than to the single-
purpose optional function or hook. In general, the provider API is well suited to sup-
porting new classes of applications, in which implementing a provider will be the sole
or main purpose of a new module. Similarly, within the standard Apache 2.2 distri-
bution, each of the mod_authn_* modules implements a provider for authentication.

10.4 Providing a Service
The final way to extend Apache for the benefit of other modules is to provide a
general-purpose service. This doesn’t offer a separate means of extending the API, but
rather represents an optional extension of the Apache core implemented in a module.
In fact, most of Apache’s core functions are implemented by a number of standard
modules, so we could simply describe this approach as extending the Apache core.

10.4.1 Example: mod_dbd
A prime example is mod_dbd, which is Apache’s provider for the database frame-
work (Chapter 11). The purpose of mod_dbd is to provide a service to modules
needing an SQL back end. It improves the efficiency and scalability of Apache +
SQL architectures over classic LAMP in two important ways:

• It provides a dynamic pool of connections that can be shared across threads in
an efficient manner.

• It provides connections that can be shared by different modules using a database,
including authentication, scripting languages such as PHP and Perl, and logging.
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mod_dbd exports a simple API that hides the complexities of managing the con-
nections, including the pool itself and the alternative single persistent connection
when running on a nonthreaded platform. The core of mod_dbd is an apr_reslist,
the APR structure for managing a dynamic pool of resources. The reslist is the
key to the service provided by mod_dbd.

To implement a reslist service, mod_dbd must

• Provide a constructor and a destructor function for the reslist.

• Call apr_reslist_create to set up the reslist.

• Provide accessor functions to acquire a resource from the reslist, and then
return it or mark it as invalid.

• Ensure apr_reslist_destroy is called at process shutdown to clean up.

Caution

This discussion is focused on the apr_reslist. However, mod_dbd also needs to
work when the APR has been built without threads, such that apr_reslist is not
available. The actual mod_dbd code uses constructs like
#if APR_HAS_THREADS
.... reslist-based code ...
#else
.... implement a single persistent connection ...
#endif

in many places. We’ll ignore these cases for the sake of brevity.

10.4.2 Implementing the reslist
First. let’s consider the constructor and destructor. These functions are callbacks for
apr_reslist, which determines their function signatures:
/* An apr_reslist_constructor for SQL connections.
* Also use this for opening in non-reslist modes, since it gives
* us all the error handling in one place.
*/
static apr_status_t dbd_construct(void **db, void *params,

apr_pool_t *pool)
{

svr_cfg *svr = (svr_cfg*) params;
ap_dbd_t *rec = apr_pcalloc(pool, sizeof(ap_dbd_t));
apr_status_t rv;
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/* This pool allows dbd_close to destroy the prepared statements */
rv = apr_pool_create(&rec->pool, pool);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, pool,
"DBD: Failed to create memory pool");

return rv;
}

/* The driver is loaded at config time, so get_driver just
* checks a hash, and the error checking is unnecessary.
* We keep it in case this situation changes in future.
*/

rv = apr_dbd_get_driver(rec->pool, svr->name, &rec->driver);
switch (rv) {
case APR_ENOTIMPL:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: driver for %s not available", svr->name);

return rv;
case APR_EDSOOPEN:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: can't find driver for %s", svr->name);

return rv;
case APR_ESYMNOTFOUND:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: driver for %s is invalid or corrupted", svr->name);

return rv;
default:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: mod_dbd not compatible with apr in get_driver");

return rv;
case APR_SUCCESS:

break;
}

/* Open the database. This could very easily fail (e.g., if the
* back end is down or unreachable), so we have to handle it.
*/
rv = apr_dbd_open(rec->driver, rec->pool, svr->params,&rec->handle);
switch (rv) {
case APR_EGENERAL:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: Can't connect to %s", svr->name);

return rv;
default:

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, rec->pool,
"DBD: mod_dbd not compatible with apr in open");

return rv;
case APR_SUCCESS:

break;
}
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/* This is what we're setting for the reslist */
*db = rec;

/* Initialize prepared statements from httpd.conf with the back end */
rv = dbd_prepared_init(rec->pool, svr, rec);

return rv;
}

dbd_destruct is a wrapper having the signature required by the reslist,
whereas dbd_close can be passed to apr_pool_cleanup functions.
static apr_status_t dbd_close(void *CONN)
{

ap_dbd_t *conn = CONN;
apr_status_t rv = apr_dbd_close(conn->driver, conn->handle);
apr_pool_destroy(conn->pool);
return rv;

}
static apr_status_t dbd_destruct(void *sql, void *params,

apr_pool_t *pool)
{

return dbd_close(sql);
}

Now that we have our callbacks, let’s look at the function that creates the reslist.
Note that svr->dbpool here is an apr_reslist_t*.
static apr_status_t dbd_setup(apr_pool_t *pool, svr_cfg *svr)
{

apr_status_t rv;

/* Create a pool just for the reslist from a process-lifetime pool;
* that pool (s->process->pool in the dbd_setup_lock case,
* whatever was passed to ap_run_child_init in the dbd_setup_init
* case) will be shared with other threads doing other non-mod_dbd
* things, so we can't use it for the reslist directly.
*/
rv = apr_pool_create(&svr->pool, pool);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, pool,
"DBD: Failed to create reslist memory pool");

return rv;
}

rv = apr_reslist_create(&svr->dbpool, svr->nmin, svr->nkeep,
svr->nmax, apr_time_from_sec(svr->exptime),

dbd_construct, dbd_destruct, svr, svr->pool);
if (rv == APR_SUCCESS) {
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apr_pool_cleanup_register(svr->pool, svr->dbpool,
(void*)apr_reslist_destroy,
apr_pool_cleanup_null);

}
else {

ap_log_perror(APLOG_MARK, APLOG_CRIT, rv, svr->pool,
"DBD: failed to initialize");

apr_pool_destroy(svr->pool);
svr->pool = NULL;

}

return rv;
}

This function in itself is not thread safe: It sets a field in the server configuration,
which is common to all threads. The appropriate hook for it in the Apache archi-
tecture is child_init, which runs after an Apache child process is created but
before it creates its own pool of threads or (crucially) accepts asynchronous incom-
ing connections. This order of operations should be normal practice for modules
using a reslist.

In the case of mod_dbd, there’s an additional complication: The dbd_setup func-
tion may fail. We want it to recover smoothly if the database is down when Apache
is started, but becomes available later. Specifically, if the database access fails, we
want to try again each time a client module asks for a connection, until we find that
the database is up:

if (!svr->dbpool) {
if (dbd_setup(pool, s) != APR_SUCCESS) {

return NULL;
}

}

But now we’re working in a thread, so we need to acquire a thread mutex before
running dbd_setup.

At this point, we have the core of our service: a reslist managing the objects we’re
interested in. The remainder of the module consists of two components:

• Client API: the functions we export for other modules

• Configuration functions for a systems administrator to manage the resource

For the purposes of our discussion here, the most important consideration is the API.
It comprises five functions: ap_dbd_open, ap_dbd_close, ap_dbd_acquire,
ap_dbd_cacquire, and ap_dbd_prepare. We’ll explore usage of these functions in
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Chapter 11. For now, we’re just interested in implementing them. Here are the basic
open and close functions:
DBD_DECLARE_NONSTD(ap_dbd_t*)

ap_dbd_open(apr_pool_t *pool, server_rec *s)
{

ap_dbd_t *arec;
void *rec = NULL;
svr_cfg *svr = ap_get_module_config(s->module_config, &dbd_module);
apr_status_t rv = APR_SUCCESS;
const char *errmsg;

if (!svr->persist) {
/* Return a once-only connection */
rv = dbd_construct(&rec, svr, s->process->pool);
arec = rec;
return (rv == APR_SUCCESS) ? arec : NULL;

}

If the database is down when we try to connect at server start-up, svr->dbpool will
be NULL. We try to make this connection again now. If successful, this request takes
the overhead of connecting to the database, but subsequent requests are spared it.

if (!svr->dbpool) {
if (dbd_setup_lock(pool, s) != APR_SUCCESS) {

return NULL;
}

}

The core of this function is the acquisition of a resource from the reslist.
Normally, we will just get an ap_dbd_t* from the pool, but apr_reslist may
call our constructor internally if sufficient connections are not available in the pool.

rv = apr_reslist_acquire(svr->dbpool, &rec);
if (rv != APR_SUCCESS) {

ap_log_perror(APLOG_MARK, APLOG_ERR, rv, pool,
"Failed to acquire DBD connection from pool!");

return NULL;
}

We also check that the connection is valid, provided the driver supports this ability.
If a database connection has been lost, we mark it as invalid, so apr_reslist can
destroy it and remove it from the pool.

arec = rec;
rv = apr_dbd_check_conn(arec->driver, pool, arec->handle);
if ((rv != APR_SUCCESS) && (rv != APR_ENOTIMPL)) {

errmsg = apr_dbd_error(arec->driver, arec->handle, rv);
if (!errmsg) {

errmsg = "(unknown)";
}
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ap_log_perror(APLOG_MARK, APLOG_ERR, rv, pool,
"DBD[%s] Error: %s", svr->name, errmsg );

apr_reslist_invalidate(svr->dbpool, rec);
return NULL;

}
return arec;

}

The corresponding close function is simple:
DBD_DECLARE_NONSTD(void) ap_dbd_close(server_rec *s, ap_dbd_t *sql)
{

svr_cfg *svr = ap_get_module_config(s->module_config, &dbd_module);
if (!svr->persist) {

dbd_close((void*) sql);
}
else {

apr_reslist_release(svr->dbpool, sql);
}

}

To make this functionality work in the context of a request, we want a slightly
higher-level API. A module should be able to acquire a resource from the pool with-
out having to worry about when to close it or whether this or another module also
uses the same resource earlier or later in the same request. For this reason, we pro-
vide a wrapper function that performs the following tasks:

• Registers a cleanup to run when the request is destroyed
(apr_pool_cleanup_register).

• Reserves the connection to the request, and keeps it for the duration of the
request. When we open a connection, we store it with ap_set_module_config,
so each subsequent call to ap_dbd_acquire need merely retrieve the stored
pointer.

This requires an auxiliary struct and a cleanup function that can be passed to
apr_pool_cleanup_register:
typedef struct {

ap_dbd_t *conn;
apr_reslist_t *dbpool;

} dbd_pool_rec;
static apr_status_t dbd_release(void *REQ)
{

dbd_pool_rec *req = REQ;
apr_reslist_release(req->dbpool, req->conn);
return APR_SUCCESS;

}
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DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_acquire(request_rec *r)
{

svr_cfg *svr;
dbd_pool_rec *req

= ap_get_module_config(r->request_config, &dbd_module);
if (!req) {

req = apr_palloc(r->pool, sizeof(dbd_pool_rec));
req->conn = ap_dbd_open(r->pool, r->server);
if (req->conn) {

svr = ap_get_module_config(r->server->module_config, 
&dbd_module);

ap_set_module_config(r->request_config, &dbd_module, req);
if (svr->persist) {

req->dbpool = svr->dbpool;
apr_pool_cleanup_register(r->pool, req, dbd_release,

apr_pool_cleanup_null);
}
else {

apr_pool_cleanup_register(r->pool, req->conn, dbd_close,
apr_pool_cleanup_null);

}
}

}
return req->conn;

}

At this point, we have written a set of core functions accessing DBD through a
reslist, along with some accessor functions. Together, these functions provide 
a service for modules of many kinds, as described in Chapter 11. Our final task is
to export the API in mod_dbd.h. But before doing so, let’s take a look at those
declarations.

10.5 Cross-Platform API Builds
All of the preceding examples, as well as many provided elsewhere in this book, use
a range of macros in declaring their public/API functions. For example:

AP_DECLARE(void) mod_transform_set_XSLT(request_rec* r,
const char* name);

DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_acquire(request_rec *r);
module AP_MODULE_DECLARE_DATA helloworld_module;

Why aren’t these standard C declarations?
void mod_transform_set_XSLT(request_rec* r, const char* name);
ap_dbd_t *ap_dbd_acquire(request_rec *r);
module helloworld_module;
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The answer lies in Apache’s cross-platform support, and specifically in its support
for Windows. Whereas most target platforms (e.g., UNIX, Linux, MacOS, BeOS,
OS2, Netware) support standard C and use build options to determine the linkage
of the compiled and linked module, Microsoft’s Visual C++ uniquely requires some
of its build options to be hard-coded into the source. Thus, although it is possible
to write modules for any platform using standard C, C++, or any other language
with C linkage, those modules cannot be linked on Windows to an executable (dll)
that will load as an Apache module. Of course, if we insert the proprietary keywords
required by VC++, that’s a syntax error in any standard C compiler. 

10.5.1 Using Preprocessor Directives
Apache and APR work around this problem by using preprocessor directives. These
directives follow a standard form, and any module that exports functions may have
to define a new set. Here are the declarations from mod_dbd.h:
/* Create a set of DBD_DECLARE(type), DBD_DECLARE_NONSTD(type), and
* DBD_DECLARE_DATA with appropriate export and import tags for the
* platform
*/
#if !defined(WIN32)
#define DBD_DECLARE(type)           type
#define DBD_DECLARE_NONSTD(type)    type
#define DBD_DECLARE_DATA
#elif defined(DBD_DECLARE_STATIC)
#define DBD_DECLARE(type)           type __stdcall
#define DBD_DECLARE_NONSTD(type)    type
#define DBD_DECLARE_DATA
#elif defined(DBD_DECLARE_EXPORT)
#define DBD_DECLARE(type)           __declspec(dllexport) type __stdcall
#define DBD_DECLARE_NONSTD(type)    __declspec(dllexport) type
#define DBD_DECLARE_DATA            __declspec(dllexport)
#else
#define DBD_DECLARE(type)           __declspec(dllimport) type __stdcall
#define DBD_DECLARE_NONSTD(type)    __declspec(dllimport) type
#define DBD_DECLARE_DATA            __declspec(dllimport)
#endif

When building on non-Windows platforms, we can simply ignore these macros, as
the preprocessor will remove them (or—usually easiest—leave it all to apxs, which
ensures that you have the right build options for your platform). On Windows, the
build may want some preprocessor macros defined. So, for a Windows build of
mod_dbd, we define DBD_DECLARE_EXPORT to export API symbols from mod_dbd.
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We do not define AP_DECLARE_EXPORT or any other such symbols, so API func-
tions from the core, from APR, or from any other module are declared as imports.

Here’s what some of the declarations look like in the headers included in mod_dbd.

Before the Preprocessor
/* an exported symbol */
DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_acquire(request_rec*);

/* an imported symbol */
APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size);

After the Preprocessor (Standard C)
/* an exported symbol */
ap_dbd_t* ap_dbd_acquire(request_rec*);

/* an imported symbol */
void * apr_palloc(apr_pool_t *p, apr_size_t size);

After the Preprocessor (Windows)
/* an exported symbol */
__declspec(dllexport) ap_dbd_t* ap_dbd_acquire(request_rec*);

/* an imported symbol */
__declspec(dllimport) __stdcall void *

apr_palloc(apr_pool_t *p, apr_size_t size);

10.5.2 Declaring the Module API
Now that we have dealt with the API macros, we can specify in full the API for our
service module mod_dbd:
#ifndef DBD_H
#define DBD_H

/* Create a set of DBD_DECLARE(type), DBD_DECLARE_NONSTD(type), and
* DBD_DECLARE_DATA with appropriate export and import tags for the 
* platform
*/
#if !defined(WIN32)
#define DBD_DECLARE(type)           type
#define DBD_DECLARE_NONSTD(type)    type
#define DBD_DECLARE_DATA
#elif defined(DBD_DECLARE_STATIC)
#define DBD_DECLARE(type)           type __stdcall
#define DBD_DECLARE_NONSTD(type)    type
#define DBD_DECLARE_DATA
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#elif defined(DBD_DECLARE_EXPORT)
#define DBD_DECLARE(type)           __declspec(dllexport) type __stdcall
#define DBD_DECLARE_NONSTD(type)    __declspec(dllexport) type
#define DBD_DECLARE_DATA            __declspec(dllexport)
#else
#define DBD_DECLARE(type)           __declspec(dllimport) type __stdcall
#define DBD_DECLARE_NONSTD(type)    __declspec(dllimport) type
#define DBD_DECLARE_DATA            __declspec(dllimport)
#endif
#include <httpd.h>
#include <apr_optional.h>
#include <apr_hash.h>

typedef struct {
apr_dbd_t *handle;
const apr_dbd_driver_t *driver;
apr_hash_t *prepared;
apr_pool_t *pool;

} ap_dbd_t;

/* Export functions to access the database */

/* Acquire a connection that MUST be explicitly closed.
* Returns NULL on error.
*/
DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_open(apr_pool_t*, server_rec*);

/* Release a connection acquired with ap_dbd_open */
DBD_DECLARE_NONSTD(void) ap_dbd_close(server_rec*, ap_dbd_t*);

/* Acquire a connection that will have the lifetime of a request
* and MUST NOT be explicitly closed.  Return NULL on error.
* This is the preferred function for most applications.
*/
DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_acquire(request_rec*);

/* Acquire a connection that will have the lifetime of a connection
* and MUST NOT be explicitly closed.  Return NULL on error.
* This is the preferred function for most applications.
*/
DBD_DECLARE_NONSTD(ap_dbd_t*) ap_dbd_cacquire(conn_rec*);

/* Prepare a statement for use by a client module during
* the server start-up/configuration phase. Can't be called
* after the server has created its children (use apr_dbd_*).
*/
DBD_DECLARE_NONSTD(void) ap_dbd_prepare(server_rec*, const char*,

const char*);

/* Also export them as optional functions for modules that prefer it */
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_open,

(apr_pool_t*, server_rec*));
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APR_DECLARE_OPTIONAL_FN(void, ap_dbd_close, (server_rec*, ap_dbd_t*));
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_acquire, (request_rec*));
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_cacquire, (conn_rec*));
APR_DECLARE_OPTIONAL_FN(void, ap_dbd_prepare,

(server_rec*, const char*, const char*));

APR_DECLARE_EXTERNAL_HOOK(dbd, DBD, int, construct, (ap_dbd_t *handle))

#endif

10.6 Summary
This chapter dealt with several advanced topics:

• Exporting functions from a module

• Optional functions

• A detailed look at hooks

• Optional hooks

• The provider API: exporting an interface

• Providing a service

• Cross-platform builds and declaration macros

Even if these issues are not obviously relevant to your current needs, it is worth
familiarizing yourself with these basic techniques. The discussions in Chapter 10 are
complemented by some of the techniques covered in Chapter 4, and mod_dbd is an
important part of the database infrastructure discussed next, in Chapter 11.
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Many web applications involve an SQL database back end. The classic architecture
for this is LAMP: Linux, Apache, MySQL, and Perl, Python, or PHP. LAMP has
been in widespread use for a full decade, and in terms of its fundamental architec-
ture has remained essentially unchanged since mod_perl introduced the persistent
database connection in 1996. In addition to LAMP and other applications, data-
bases are used in a number of stand-alone applications, such as authentication, log-
ging, and dynamic configuration.

This chapter describes the Apache database framework, by exploring the following
topics:

• The need for a new framework

• The DBD architecture

• The apr_dbd API (database operations)

11
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• The ap_dbd API (database connection management)

• Applications (i.e., using DBD in your modules)

• Writing a DBD driver to support a back-end database

11.1 The Need for a New Framework

11.1.1 Apache 1.x/2.0 Versus Apache 2.2
With Apache 1.x and 2.0, modules requiring an SQL back end had to take respon-
sibility for managing it themselves. Apart from reinventing the wheel, this approach
can be very inefficient, for example, when each of several modules maintains its own
connection. An analogy can be drawn to MS-DOS in the late 1980s, when every
software application was supplied on a huge pile of floppy disks comprising mostly
different drivers for every possible printer. This situation was eventually resolved
when the operating system provided a single printing API to which both applica-
tions and printer drivers were expected to conform, thereby relieving application
developers of an unnecessary burden.

Another reason for updating the original LAMP architecture was to improve the scal-
ability of database applications. LAMP itself improved on the simplest CGI model
by providing a persistent database connection, which is ideal for the Apache 1.x
architecture (and the nonthreaded Prefork MPM in Apache 2). But the threaded
MPMs in Apache 2 enable an altogether more efficient and scalable architecture,
based on connection pooling.

Apache 2.2 and later provide the ap_dbd API for managing database connections
(including optimized strategies for threaded and nonthreaded MPMs), while
APR 1.2 and later provide the apr_dbd API for interacting with the database. New
modules should use these APIs for all SQL database operations. Existing applica-
tions should be upgraded to use them where feasible, either transparently or as a 
recommended option to their users.

11.1.2 Connection Pooling
There is a fundamental mismatch between the (connectionless and stateless) HTTP
protocol and the connection-oriented architecture of most, if not all, databases.
This can easily lead to inefficiency in web-database applications.
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11.1.2.1 The Simple CGI Model

The simplest form of dynamic web application is exemplified by CGI, in which a
script external to the webserver takes responsibility for processing a request. If the
script needs to use a database, it has to open and log into the database server, do its
work, and then close the connection when it’s finished. Creating a new connection
for every request imposes a heavy overhead, and it makes CGI unsuitable for any
but low-volume database applications.1

11.1.2.2 The Classic LAMP Model

The LAMP architecture deals with this problem by opening a persistent database
connection and reusing it over many requests. In this way, it avoids the overhead of
opening a new connection for every request. Unfortunately, this scheme brings its
own problem: The overhead incurred by holding a large number of database con-
nections open seriously limits the scalability of this architecture. This situation is
made worse by the fact that every server process has to maintain its connection even
when serving requests that make no use of the database, since such requests repre-
sent the vast majority of requests at most sites (even when pages are database-driven,
contents such as images and stylesheets are usually static).

11.1.2.3 Taking Advantage of Apache 2

With Apache 2 and threaded MPMs, a range of altogether more efficient and scalable
options become possible. Starting from what we already have, we can list our options:

• Classic CGI: one connection per request

• Classic LAMP: one persistent connection per thread

• Alternative LAMP: one persistent connection per process, with a mechanism
for a thread to take and lock it for the duration of a request

• Connection pooling: more than one connection per process, but fewer than
one per thread, with a mechanism for a thread to take and lock a connection
from the pool

• Dynamic connection pooling: a variable-size connection pool, which will grow
or shrink according to actual database traffic levels
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Looking at these options in order, we can see the advantages and drawbacks of each
one. We have already dealt with the first two possibilities. The third dispenses with
the LAMP overhead at the cost of preventing parallel accesses to the back end. It
may be an efficient solution in some cases, but it clearly presents its own problems
when servicing concurrent requests.

The fourth and fifth options present an optimal solution whose scalability is lim-
ited only by the available hardware and operating system. The ratio of back-end
connections to threads can reflect the proportion of the total traffic that requires the
back end. Put in simple terms, if one in every five requests to the webserver requires
the database, then a pool might have one connection per five threads. The optimal
solution to managing back-end connections is a dynamic pool whose size is driven
by actual demand rather than best-guess configuration.

11.2 The DBD Architecture
Figure 11-1 shows the four-layer DBD architecture in Apache. At the top, applica-
tion modules implement functionality requiring use of the database. mod_dbd man-
ages the database connections on behalf of modules, and apr_dbd provides an API
for common SQL/database operations. Finally, drivers provide implementations of
the API based on various SQL database packages, using the functions provided by
the respective databases’ client libraries.

Drivers are available at the time of writing for PostgreSQL 7+, MySQL 4.1+,
SQLite 2/3, and Oracle 8+. If your application wants to use a database for which
no apr_dbd driver is yet available, you are strongly urged to write a driver for your
back end, so that other DBD applications will have the option to reuse it. We
describe how to write a driver at the end of this chapter.

11.3 The apr_dbd API
apr_dbd is a simple unified API for accessing SQL databases, in the tradition of
Perl’s DBI/DBD. The nearest C equivalent, libdbi,2 has sometimes been used for
Apache modules, but is not an ideal fit for working with Apache; it is also licensed
on terms that would make it problematic for the ASF to distribute. apr_dbd is, by
design, integrated with Apache and APR, and it is built on key APR structures. In
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particular, all resource management in apr_dbd is based on APR pools, making it
easy to use safely in Apache.

apr_dbd is a small API that supplies only a limited number of core functions likely
to be of general interest. Modules that need to perform functions not supported
have several options:

• Extend the apr_dbd API. If you think your extensions are of general interest,
you might consider proposing them for inclusion in a future release of the
standard API.

• Use apr_dbd_native() to obtain a “native” database handle. This gives you
the full API of the underlying database, albeit at the expense of portability.
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• Implement functions as SQL statements.

• Implement functions in an embedded language provided by the database.

The API defines six data types, which are used as opaque pointers in applications:

• apr_dbd_driver_t—a driver

• apr_dbd_t—a database handle

• apr_dbd_prepared_t—an SQL-prepared statement

• apr_dbd_results_t—a results set from a select statement

• apr_dbd_row_t—a row from a results set

• apr_dbd_transaction_t—an SQL transaction

Instantiation of the types is the responsibility of driver modules, and is different for
each driver. 

The anatomy of a typical apr_dbd application is, in outline form:

1. Initialize (apr_dbd_init).

2. Get a driver handle (apr_dbd_get_driver).

3. Open a database connection (apr_dbd_open).

4. Perform database operations (query, select, and so on).

5. Close the connection (apr_dbd_close).

When writing an application module, we delegate initialization and the manage-
ment of drivers and connections to mod_dbd. All the application needs to deal
with is the required database operations and (optionally) preparing statements in
advance.

11.3.1 Database Operations
The database operations fall into several categories:

• Preparing SQL statements

• SQL statements that don’t return a results set
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• SQL statements that do return a results set

• Operations on a results set

• SQL transactions

• Miscellaneous operations (escape strings, handle errors)

Let’s look at each of these in turn.

11.3.1.1 SQL Statements, Format Strings, Data Types, and Labels

apr_dbd uses the word Query to describe a database query (such as SQL INSERT
or UPDATE) that doesn’t return a results set, and Select for a query such as SELECT
that returns results. There are three variants of each Query and Select:

• apr_dbd_query and apr_dbd_select execute an SQL statement supplied
verbatim.

• apr_dbd_pquery and apr_dbd_pselect execute a prepared statement with
arguments supplied in an argc/argv form.

• apr_dbd_pvquery and apr_dbd_pvselect execute a prepared statement
with arguments supplied as a NULL-terminated varargs list.

Different database drivers support different statement formats. Consider, for exam-
ple, a simple statement to look up a password for a user. The statement, though triv-
ial, differs for different drivers:

• MySQL: SELECT password FROM users WHERE username = ?

• PostgreSQL: SELECT password FROM users WHERE username = $1

• Oracle: SELECT password FROM users WHERE username = :user

apr_dbd_prepare supports a unified format for all drivers:

• apr_dbd: SELECT password FROM users WHERE username = %s

This is based on stdio-like format string syntax, so an integer variable is %d, a float-
ing-point number is %f, and a large object is %L. At present, there is no consistency
between different drivers in what they support beyond the basic %s. Drivers may
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also support a “%123s” format, to indicate that a field in the database is of (maxi-
mum) size 123 and so cannot accommodate a larger value.

A prepared statement in any driver may be assigned a label in apr_dbd_prepare.
This parameter is optional (it may be NULL) and may materially affect how the
statement is prepared. Applications must follow two rules to use this technique
efficiently:

• When preparing a statement for regular reuse (e.g., at server start-up), assign
it a label.

• When preparing a statement for one-off use (e.g., during processing of a con-
nection or request), do not assign it a label.

When assigning statements in a module, you should take care to ensure that all
labels are globally unique for the connection. Recommended practice is to use a
namespace associated with your module, together with a counter. For example:
static const char *make_label(apr_pool_t *pool)
{

/* We normally use a label only when preparing statements at
* server start-up.  If we use this function later, we'll need
* to make it thread safe.
*/
static unsigned int counter = 0;
return apr_psprintf(pool, "my_module_%d", ++counter);

}

11.3.1.2 Results Sets (Cursors)

Each successful select operation will create a results set, corresponding to an SQL
cursor. Queries may run synchronously and permit random access to any row by
number, or they may run asynchronously and permit only sequential access to
rows. Asynchronous operation is generally faster (especially for larger queries) with
drivers that support it. This determination is made by a random argument to the
apr_dbd_select-family functions. Applications expecting unspecified or large
results sets should set this parameter to 0 (sequential access only), as this approach
may be significantly faster and more efficient. For example, the PostgreSQL driver
uses asynchronous operation when random access is not required.

There is no explicit apr_dbd function to clear or destroy a cursor, but it is impor-
tant that you do one of the following:
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• In sequential access mode, you must loop through all results until
apr_dbd_get_row returns -1, indicating the end of the results.

• In random access mode, accessing an invalid row number with
apr_dbd_get_row will clear the cursor.

11.3.1.3 Transactions

Transactions in apr_dbd correspond closely to SQL transactions. Transaction behav-
ior depends on transaction mode, which is either APR_DBD_TRANSACTION_COMMIT
(the default) or APR_DBD_TRANSACTION_ROLLBACK; either of these modes can
be ORed with APR_DBD_TRANSACTION_IGNORE_ERRORS. Transactions follow
these rules:

• When not in a transaction, all database operations are treated as in auto-
commit-on-success mode.

• The transaction maintains a success-or-error state. If any database operation
generates an error, the transaction is put into an error state.

• When the transaction is in an error state, no further database operations are
performed while the transaction is in effect, and attempted operations will
immediately return with an error. APR_DBD_TRANSACTION_IGNORE_ERRORS
can be used to override this behavior.

• When a transaction is ended, it will either COMMIT or ROLLBACK. If the trans-
action is in an error state or if APR_DBD_TRANSACTION_ROLLBACK is set, it
will ROLLBACK; otherwise, it will COMMIT. Within a transaction, nothing is
committed or rolled back (unless you execute an SQL COMMIT or ROLLBACK
using apr_dbd_query).

A limitation of the current implementation is that you cannot reliably have more
than one concurrent transaction open on a single database connection (although
some drivers may support this behavior). This constraint is not a problem in most
modules, but it does mean that modules should follow some simple guidelines:

• When a module implements more than one hook involving database access,
do not leave a transaction open between hooks.

• Filters execute effectively in parallel, so you should not use transactions except
within a single call.
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If you need to violate these rules, you’ll have to open a private connection for your
module with ap_dbd_open. Otherwise, this tactic is generally worth avoiding, as it
is inefficient for a request to use more than one database connection.

11.3.2 API Functions
The full apr_dbd API is defined in apr_dbd.h. Note that some functions return
an int instead of apr_status_t. Unless otherwise indicated, these functions
return zero to indicate success or an error number from the underlying database on
error. These error numbers can be used with apr_dbd_error to return a printable
error message from the underlying database.

APU_DECLARE(apr_status_t) apr_dbd_init(apr_pool_t *pool);

Once-only initialization. Use the pool to register cleanups for shutdown.

APU_DECLARE(apr_status_t) apr_dbd_get_driver(apr_pool_t *pool,
const char *name, const apr_dbd_driver_t **driver);

Get a driver by name.

APU_DECLARE(apr_status_t) apr_dbd_open(const apr_dbd_driver_t *driver,
apr_pool_t *ptmp, const char *params, apr_dbd_t **handle);

Open a connection to a back end. ptmp is a working pool, and params is
a driver-dependent connection string. Returns a connection in handle.

APU_DECLARE(apr_status_t) apr_dbd_close(const apr_dbd_driver_t *driver,

apr_dbd_t *handle);

Close a back-end connection.

APU_DECLARE(const char*) apr_dbd_name(const apr_dbd_driver_t *driver);

Get the name of a driver.

APU_DECLARE(void*) apr_dbd_native_handle(const apr_dbd_driver_t *driver,
apr_dbd_t *handle);

Return a native database handle of the underlying database.
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APU_DECLARE(int) apr_dbd_check_conn(const apr_dbd_driver_t *driver,
apr_pool_t *pool, apr_dbd_t *handle);

Check the status of a database connection. This function may attempt to
reconnect if an error is encountered; it may also return APR_ENOTIMPL.

APU_DECLARE(int) apr_dbd_set_dbname(const apr_dbd_driver_t *driver,
apr_pool_t *pool, apr_dbd_t *handle, const char *name);

Select a database name. This may be a no-op if it is not supported.

APU_DECLARE(int) apr_dbd_transaction_start(
const apr_dbd_driver_t *driver, apr_pool_t *pool,
apr_dbd_t *handle, apr_dbd_transaction_t **trans);

Start a transaction if supported. This may be a no-op. If a non-null *trans
argument is supplied, it will be reused.

APU_DECLARE(int) apr_dbd_transaction_end(const apr_dbd_driver_t *driver,
apr_pool_t *pool,
apr_dbd_transaction_t *trans);

End a transaction, executing a COMMIT if all is well, or a ROLLBACK if there’s an
error or if the transaction mode is rollback.

APU_DECLARE(int) apr_dbd_transaction_mode_get(
const apr_dbd_driver_t *driver, apr_dbd_transaction_t *trans);

Return the transaction mode.

APU_DECLARE(int) apr_dbd_transaction_mode_set(
const apr_dbd_driver_t *driver,

apr_dbd_transaction_t *trans, int mode);

Set the transaction mode (commit/rollback; ignore or abort on error). Returns
the transaction mode we just set.

APU_DECLARE(int) apr_dbd_query(const apr_dbd_driver_t *driver, 
apr_dbd_t *handle, int *nrows, const char *statement);

Execute an SQL query statement that doesn’t return a results set, passed as
a literal string. Sets *nrows to the number of rows affected.
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APU_DECLARE(int) apr_dbd_select(const apr_dbd_driver_t *driver,
apr_pool_t *pool, apr_dbd_t *handle, apr_dbd_results_t **res,
const char *statement, int random);

Execute an SQL query that returns a results set in *res. The query is a literal
string statement. If random is zero, the query may run asynchronously and
all results must be accessed in a for-next loop; if it is nonzero, the query runs
synchronously and results can be accessed by row number.

APU_DECLARE(int) apr_dbd_num_cols(const apr_dbd_driver_t *driver,
apr_dbd_results_t *res);

Return the number of columns in a results set.

APU_DECLARE(int) apr_dbd_num_tuples(const apr_dbd_driver_t *driver,
apr_dbd_results_t *res);

Return the number of rows in a results set, or -1 if the query was
asynchronous.

APU_DECLARE(int) apr_dbd_get_row(const apr_dbd_driver_t *driver,
apr_pool_t *pool, apr_dbd_results_t *res,
apr_dbd_row_t **row, int rownum);

Get a row from a results set. If the query was synchronous, it gets row rownum;
otherwise, rownum is ignored. If the query was asynchronous or if rownum is
-1, it gets the next row. The function returns 0 on success, -1 for rownum out
of range or end-of-data, or an error. It automatically deletes the results set
when -1 is returned.

APU_DECLARE(const char*) apr_dbd_get_entry(
const apr_dbd_driver_t *driver, apr_dbd_row_t *row, int col);

Return an entry from a row.

APU_DECLARE(const char*) apr_dbd_get_name(
const apr_dbd_driver_t *driver,

apr_dbd_results_t *res, int col);

Return the name of a column in the results set.
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APU_DECLARE(const char*) apr_dbd_error(const apr_dbd_driver_t *driver,
apr_dbd_t *handle, int errnum);

Get the current error message (if any). errnum is an error code from the oper-
ation that returned an error, but it may be ignored by the driver.

APU_DECLARE(const char*) apr_dbd_escape(const apr_dbd_driver_t *driver,
apr_pool_t *pool, const char *string, apr_dbd_t *handle);

Escape a string so it is safe for query/select. The returned string is allocated
from pool.

APU_DECLARE(int) apr_dbd_prepare(const apr_dbd_driver_t *driver, 
apr_pool_t *pool, apr_dbd_t *handle, const char *query,
const char *label, apr_dbd_prepared_t **statement);

Prepare a statement, allocated from pool and returned in statement. If
label is non-null, supply a label for it.

APU_DECLARE(int) apr_dbd_pquery(const apr_dbd_driver_t *driver, 
apr_pool_t *pool, apr_dbd_t *handle, int *nrows,
apr_dbd_prepared_t *statement, int nargs, const char **args);

Like apr_dbd_query, but executes a prepared query, with arguments supplied
using the argc/argv convention.

APU_DECLARE(int) apr_dbd_pselect(const apr_dbd_driver_t *driver, 
apr_pool_t *pool, apr_dbd_t *handle, apr_dbd_results_t **res,
apr_dbd_prepared_t *statement, int random,
int nargs, const char **args);

Like apr_dbd_select, but executes a prepared query, with arguments sup-
plied using the argc/argv convention.

APU_DECLARE(int) apr_dbd_pvquery(const apr_dbd_driver_t *driver, 
apr_pool_t *pool, apr_dbd_t *handle, int *nrows,
apr_dbd_prepared_t *statement, ...);

Like apr_dbd_pquery, but uses arguments supplied in a varargs list.

APU_DECLARE(int) apr_dbd_pvselect(const apr_dbd_driver_t *driver, 
apr_pool_t *pool, apr_dbd_t *handle, apr_dbd_results_t **res,
apr_dbd_prepared_t *statement, int random, ...);

Like apr_dbd_pselect, but uses arguments supplied in a varargs list.
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11.4 The ap_dbd API
Whereas apr_dbd provides an API for SQL operations, ap_dbd is exported by
mod_dbd (Chapter 10) and manages database connections on behalf of a module.
Its work includes management of a dynamic pool of persistent database connections
(or of a single persistent connection, in the case of a nonthreaded platform), so that
application modules never need concern themselves with connection management.

The ap_dbd API provides one data type and five functions.
typedef struct {

apr_dbd_t *handle;
const apr_dbd_driver_t *driver;
apr_hash_t *prepared;

} ap_dbd_t;

The ap_dbd_t object comprises a driver handle, a database handle, and a hash table
of prepared statements indexed by label. These are available for use in apr_dbd
operations.

The functions are shown here:
/* Acquire a connection that MUST be explicitly closed.
* Returns NULL on error.
*/
ap_dbd_t* ap_dbd_open(apr_pool_t*, server_rec*);

/* Release a connection acquired with ap_dbd_open */
void ap_dbd_close(server_rec*, ap_dbd_t*);

/* Acquire a connection that will have the lifetime of a request
* and MUST NOT be explicitly closed. Return NULL on error.
* This is the preferred function for most applications.
*/
ap_dbd_t* ap_dbd_acquire(request_rec*);

/* Acquire a connection that will have the lifetime of a connection
* and MUST NOT be explicitly closed. Return NULL on error.
*/
ap_dbd_t* ap_dbd_cacquire(conn_rec*);

/* Prepare a statement for use by a client module during
* the server start-up/configuration phase. The const char*
* args are the Statement and a Label. Can't be called
* after the server has created its children (use apr_dbd_*).
*/
void ap_dbd_prepare(server_rec*, const char*, const char*);
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Given that most modules concern themselves with processing an HTTP request 
or, more rarely, a TCP connection, they should normally use ap_dbd_acquire or
ap_dbd_cacquire. These functions can be used any number of times within the
processing of a request or connection, and are guaranteed to return the same con-
nection handle every time they are called within the lifetime of the request. For
example, a database authentication module, a content generator, and a database log-
ging module will all share a single connection, making for efficient use of resources.
This scheme is strongly recommended for most modules.

By contrast, ap_dbd_open obtains a different database connection in every call.
Modules using ap_dbd_open will be those needing a connection with a lifetime
incompatible with the acquire/cacquire functions, and those whose use of
apr_dbd_transactions is incompatible with the guidelines given previously.

Finally, ap_dbd_prepare is intended only for the configuration phase; it will not
work if used later.

11.5 An Example Application Module: mod_authn_dbd
The DBD framework evolved in public for two years before the release of Apache
2.2 made it a standard component. As a consequence, a number of applications
have been developed using precursors to the current DBD framework. These
include this author’s mod_sql, a module implementing a namespace for SQL in
XML using the xmlns filter framework,3 so that queries can be embedded in XML
and executed in a filter. Let’s use DBD authentication as a simple example here.4

mod_authn_dbd is an authentication module. As described in Chapter 7, its pur-
pose is to verify a password supplied by a user. The module implements an
ap_provider comprising two functions to retrieve an encrypted password from an
SQL database: one for a user (HTTP basic authentication) and one for a user+realm
(digest authentication). In the interest of brevity, we’ll confine our discussion to one
of these functions.
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Authentication is a task that involves frequent repetition of a small number of SQL
queries that can be specified in the server configuration, so preparing the statements
at start-up time offers obvious benefits in this case. We will do so by exposing the
SQL queries as configuration directives, and then using ap_dbd_prepare from our
handler for those directives. First, here are our directives:
static const command_rec authn_dbd_cmds[] =
{

AP_INIT_TAKE1("AuthDBDUserPWQuery", authn_dbd_prepare,
(void *)APR_OFFSETOF(authn_dbd_conf, user), ACCESS_CONF,
"Query used to fetch password for user"),

AP_INIT_TAKE1("AuthDBDUserRealmQuery", authn_dbd_prepare,
(void *)APR_OFFSETOF(authn_dbd_conf, realm), ACCESS_CONF,
"Query used to fetch password for user+realm"),

{NULL}
};

They will typically take the following form:

AuthDBDUserPWQuery "SELECT password FROM authn WHERE username = %s"

To prepare that SQL statement for frequent reuse, our configuration function uses
ap_dbd_prepare as an optional function:
static ap_dbd_t *(*authn_dbd_acquire_fn)(request_rec*) = NULL;
static void (*authn_dbd_prepare_fn)

(server_rec*, const char*, const char*) = NULL;

...

static const char *authn_dbd_prepare(cmd_parms *cmd, void *cfg,
const char *query)

{
static unsigned int label_num = 0;
char *label;

if (authn_dbd_prepare_fn == NULL) {
/* Retrieve the optional functions once only */
authn_dbd_prepare_fn = APR_RETRIEVE_OPTIONAL_FN(ap_dbd_prepare);
if (authn_dbd_prepare_fn == NULL) {

return "You must load mod_dbd to enable AuthDBD functions";
}
authn_dbd_acquire_fn = APR_RETRIEVE_OPTIONAL_FN(ap_dbd_acquire);

}

/* Create a label we can access it by */
label = apr_psprintf(cmd->pool, "authn_dbd_%d", ++label_num);
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/* Prepare it */
authn_dbd_prepare_fn(cmd->server, query, label);

/* Save the label here for our own use */
return ap_set_string_slot(cmd, cfg, label);

}

When we need to authenticate a user, we will execute one of the queries we just pre-
pared. Here’s the function to look up a user’s password in the database:
static authn_status authn_dbd_password(request_rec *r, const char *user,

const char *password)
{

apr_status_t rv;
const char *dbd_password = NULL;
char *colon_pw;
apr_dbd_prepared_t *statement;
apr_dbd_results_t *res = NULL;
apr_dbd_row_t *row = NULL;

authn_dbd_conf *conf = ap_get_module_config(r->per_dir_config,
&authn_dbd_module);

/* Get a database handle from mod_dbd */
ap_dbd_t *dbd = authn_dbd_acquire_fn(r);
if (dbd == NULL) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"Error looking up %s in database", user);

return AUTH_GENERAL_ERROR;
}
/* conf->user is the label we saved when we prepared the statement */
if (conf->user == NULL) {

ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,
"No DBD Authn configured!");

return AUTH_GENERAL_ERROR;
}

statement = apr_hash_get(dbd->prepared, conf->user,
APR_HASH_KEY_STRING);

if (statement == NULL) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"No DBD Authn configured!");
return AUTH_GENERAL_ERROR;

}

/* Execute a pvselect with sequential access to results */
if (apr_dbd_pvselect(dbd->driver, r->pool, dbd->handle, &res, 

statement, 0, user, NULL) != 0) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, 0, r,

"Error looking up %s in database", user);
return AUTH_GENERAL_ERROR;

}
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/* Loop over all rows (we expect there to be only one, but
* that's irrelevant)
*/
for (rv = apr_dbd_get_row(dbd->driver, r->pool, res, &row, -1);

rv != -1;
rv = apr_dbd_get_row(dbd->driver, r->pool, res, &row, -1)) {

if (rv != 0) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,

"Error looking up %s in database", user);
return AUTH_GENERAL_ERROR;

}
if (dbd_password == NULL) {

dbd_password = apr_dbd_get_entry(dbd->driver, row, 0);
}
/* We can't break out here or res won't get cleaned up
* and we'll leave a dangling cursor in the database
*/

}

if (!dbd_password) {
return AUTH_USER_NOT_FOUND;

}

rv = apr_password_validate(password, dbd_password);

if (rv != APR_SUCCESS) {
return AUTH_DENIED;

}
return AUTH_GRANTED;

}

11.6 Developing a New DBD Driver
Sometimes you may wish to use Apache with a particular database that isn’t currently
supported by the DBD framework. The recommended way to do so is to add sup-
port for your database to Apache/APR by writing a new driver. This approach offers
several benefits over simply managing the database from within your own module:

• Architecture: You get the benefit of mod_dbd’s connection strategies optimized
for performance and scalability on both threaded and nonthreaded platforms.

• Reusability: By writing an apr_dbd driver, you make support for your chosen
back end available to other modules, including your own, those distributed
with Apache itself, and third-party modules.

• Scrutiny: If you write a new driver and contribute it to the ASF (subject to any
relevant intellectual property concerns), your work will be seen by other pro-
grammers, and it may be extended and improved.
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Let’s look at the anatomy of a driver. Third-party authors to date have most often
taken the PostgreSQL driver as a reference implementation. We’ll take the MySQL
driver5 as a case study to explain the elements of a driver.

11.6.1 The apr_dbd_internal.h Header File
As we saw earlier, applications access the apr_dbd API by including apr_dbd.h.
Besides the public API, drivers need additional declarations in an extended API 
private to the apr_dbd subsystem. It is exposed in a private header file
apr_dbd_internal.h (which, in turn, includes apr_dbd.h). This serves two pur-
poses over and above the public API:

• It defines the apr_dbd_driver_t struct, which every driver implements.

• It exports a thread mutex for the apr_dbd system.

The apr_dbd_driver_t object is a struct comprising a name together with a num-
ber of functions corresponding to the apr_dbd API. The role of a driver is to export
an apr_dbd_driver_t object, along with implementations of the functions.
Partial implementations may be adequate for some purposes, so some functions
may do nothing except return APR_ENOTIMPL.

11.6.2 Exporting a Driver
Given that the purpose of our driver is to export an apr_dbd_driver_t object,
let’s start by doing exactly that. Here’s the declaration from the MySQL driver:
APU_DECLARE_DATA const apr_dbd_driver_t apr_dbd_mysql_driver = {

"mysql",
dbd_mysql_init,
dbd_mysql_native,
dbd_mysql_open,
dbd_mysql_check_conn,
dbd_mysql_close,
dbd_mysql_select_db,
dbd_mysql_transaction,
dbd_mysql_end_transaction,
dbd_mysql_query,
dbd_mysql_select,
dbd_mysql_num_cols,
dbd_mysql_num_tuples,
dbd_mysql_get_row,
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dbd_mysql_get_entry,
dbd_mysql_error,
dbd_mysql_escape,
dbd_mysql_prepare,
dbd_mysql_pvquery,
dbd_mysql_pvselect,
dbd_mysql_pquery,
dbd_mysql_pselect,
dbd_mysql_get_name,
dbd_mysql_transaction_mode_get,
dbd_mysql_transaction_mode_set

};

To complete the driver, all that remains is to implement each of these apr_dbd func-
tions using the MySQL client API. To do so, we need to implement the apr_dbd
data types. Apart from the driver (which is defined by apr_dbd_internal.h), these
data types are private to the driver module itself, and will differ between drivers. Here
are the definitions we use for MySQL (these are probably the simplest of any driver):
struct apr_dbd_prepared_t {

MYSQL_STMT* stmt;
};
struct apr_dbd_transaction_t {

int mode;
int errnum;
apr_dbd_t *handle;

};
struct apr_dbd_t {

MYSQL* conn ;
apr_dbd_transaction_t* trans ;

};
struct apr_dbd_results_t {

int random;
MYSQL_RES *res;
MYSQL_STMT *statement;
MYSQL_BIND *bind;

};
struct apr_dbd_row_t {

MYSQL_ROW row;
apr_dbd_results_t *res;

};

In summary, and setting aside housekeeping, we’re mapping the apr_dbd API to
MySQL:

• The handle object apr_dbd_t is a MYSQL handle.

• The apr_dbd prepared statement is a MYSQL_STMT.

• The apr_dbd results and row objects map to multiple MySQL objects.
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11.6.3 The Driver Functions
To complete our driver, let’s describe the functions.

init

dbd_mysql_init is called once only, when the driver is initialized. MySQL
requires us to initialize it with my_init to ensure the client library will be thread
safe and reentrant, and to call another function on exit:
static void dbd_mysql_init(apr_pool_t *pool)
{

my_init();
apr_pool_cleanup_register(pool, NULL, (void*)mysql_thread_end, 

apr_pool_cleanup_null);
}

native

dbd_mysql_native returns a native handle for applications wanting functionality
beyond the scope of the apr_dbd API:
static void *dbd_mysql_native(apr_dbd_t *handle)
{

return handle->conn;
}

open

dbd_mysql_open opens a new connection to a back-end database. Because the API
constrains the parameters to be passed in a single string argument, this function has
to be parsed to extract the arguments to the native function mysql_real_connect.
This parsing may be reused in other drivers—for example, the Oracle driver copied
this code.
static apr_dbd_t *dbd_mysql_open(apr_pool_t *pool, const char *params)
{

static const char *const delims = " \r\n\t;|,";
const char *ptr;
int i;
const char *key;
size_t klen;
const char *value;
size_t vlen;
struct {

const char *field;
const char *value;
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} fields[] = {
{"host", NULL},
{"user", NULL},
{"pass", NULL},
{"dbname", NULL},
{"port", NULL},
{"sock", NULL},
{NULL, NULL}

};
unsigned int port = 0;
apr_dbd_t *sql = apr_pcalloc(pool, sizeof(apr_dbd_t));
sql->conn = mysql_init(sql->conn);
if ( sql->conn == NULL ) {

return NULL;
}
for (ptr = strchr(params, ‘='); ptr; ptr = strchr(ptr, ‘=')) {

for (key = ptr-1; isspace(*key); --key); /* strip whitespace */
klen = 0;
while (isalpha(*key)) {

/* Don't parse past the start of the string */
if (key == params) {

--key;
++klen;
break;

}
--key;
++klen;

}
++key;
for (value = ptr+1; isspace(*value); ++value);
vlen = strcspn(value, delims);
for (i=0; fields[i].field != NULL; ++i) {

if (!strncasecmp(fields[i].field, key, klen)) {
fields[i].value = apr_pstrndup(pool, value, vlen);
break;

}
}
ptr = value+vlen;

}
if (fields[4].value != NULL) {

port = atoi(fields[4].value);
}
sql->conn = mysql_real_connect(sql->conn,

fields[0].value, /* host */
fields[1].value, /* user */
fields[2].value, /* pass */
fields[3].value, /* dbname */
port,
fields[5].value, /* sock */
0);

return sql;
}
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check_conn

This function checks that a connection is still good. If the back end doesn’t support
such an operation, it may return APR_ENOTIMPL.
static apr_status_t dbd_mysql_check_conn(apr_pool_t *pool,

apr_dbd_t *handle)
{

/* mysql_ping checks a connection, and also attempts to
* reestablish it if it was stale
*/
return mysql_ping(handle->conn) ? APR_EGENERAL : APR_SUCCESS;

}

close

This function closes a back-end connection.
static apr_status_t dbd_mysql_close(apr_dbd_t *handle)
{

mysql_close(handle->conn);
return APR_SUCCESS;

}

select_db

This optional function selects a different database.
static int dbd_mysql_select_db(apr_pool_t *pool, apr_dbd_t* handle,

const char* name)
{

return mysql_select_db(handle->conn, name);
}

transaction_start

This function starts an SQL transaction. We do so using the C API, but could also
have implemented it by executing an SQL statement.
static int dbd_mysql_transaction(apr_pool_t *pool, apr_dbd_t *handle,

apr_dbd_transaction_t **trans)
{

/* Don't try recursive transactions here */
if (handle->trans) {

dbd_mysql_end_transaction(handle->trans) ;
}
if (!*trans) {

*trans = apr_pcalloc(pool, sizeof(apr_dbd_transaction_t));
}
(*trans)->errnum = mysql_autocommit(handle->conn, 0);
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(*trans)->handle = handle;
(*trans)->mode = APR_DBD_TRANSACTION_COMMIT;
handle->trans = *trans;
return (*trans)->errnum;

}

transaction_end

This function ends a transaction, issuing a COMMIT if the transaction has executed
successfully, or a ROLLBACK if an error occurred or if the mode was rollback.
static int dbd_mysql_end_transaction(apr_dbd_transaction_t *trans)
{

int ret = -1;
if (trans) {

if (trans->errnum || TXN_DO_ROLLBACK(trans)) {
trans->errnum = 0;
ret = mysql_rollback(trans->handle->conn);

}
else {

ret = mysql_commit(trans->handle->conn);
}

}
ret |= mysql_autocommit(trans->handle->conn, 1);
return ret;

}

transaction_mode_get

This function returns the current transaction mode.
static int dbd_mysql_transaction_mode_get(apr_dbd_transaction_t *trans)
{

if (!trans)
return APR_DBD_TRANSACTION_COMMIT;

return trans->mode;
}

transaction_mode_set

This function sets the transaction mode.
static int dbd_mysql_transaction_mode_set(apr_dbd_transaction_t *trans,

int mode)
{

if (!trans)
return APR_DBD_TRANSACTION_COMMIT;

return trans->mode = (mode & TXN_MODE_BITS);
}
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query

This function executes a one-off SQL query supplied as a simple string.
static int dbd_mysql_query(apr_dbd_t *sql, int *nrows, const char *query)
{

int ret;
if (sql->trans && sql->trans->errnum) {

return sql->trans->errnum;
}
ret = mysql_query(sql->conn, query);
if (ret != 0) {

ret = mysql_errno(sql->conn);
}
*nrows = mysql_affected_rows(sql->conn);
if (TXN_NOTICE_ERRORS(sql->trans)) {

sql->trans->errnum = ret;
}
return ret;

}

select

This function executes a one-off query that returns a results set. The last argument
seek determines whether random access to results (i.e., get a row by row number)
is required, or whether we will simply process results sequentially. This decision
determines whether our driver uses mysql_store_result or the more efficient
mysql_use_result.
static int dbd_mysql_select(apr_pool_t *pool, apr_dbd_t *sql,

apr_dbd_results_t **results,
const char *query, int seek)

{
int sz;
int ret;
if (sql->trans && sql->trans->errnum) {

return sql->trans->errnum;
}
ret = mysql_query(sql->conn, query);
if (!ret) {

if (sz = mysql_field_count(sql->conn), sz > 0) {
if (!*results) {

*results = apr_palloc(pool, sizeof(apr_dbd_results_t));
}
(*results)->random = seek;
(*results)->statement = NULL;
if (seek) {

(*results)->res = mysql_store_result(sql->conn);
}
else {

11.6 Developing a New DBD Driver 313



(*results)->res = mysql_use_result(sql->conn);
}
apr_pool_cleanup_register(pool, (*results)->res,

(void*)mysql_free_result,
apr_pool_cleanup_null);

}
}
if (TXN_NOTICE_ERRORS(sql->trans)) {

sql->trans->errnum = ret;
}
return ret;

}

num_cols

This function returns the number of columns in a results set.
static int dbd_mysql_num_cols(apr_dbd_results_t *res)
{

if (res->statement) {
return mysql_stmt_field_count(res->statement);

}
else {

return mysql_num_fields(res->res);
}

}

num_tuples

This function returns the number of rows in a results set. If random access is not
available (so that rows are accessed sequentially in a loop), it returns -1.
static int dbd_mysql_num_tuples(apr_dbd_results_t *res)
{

if (res->random) {
if (res->statement) {

return (int) mysql_stmt_num_rows(res->statement);
}
else {

return (int) mysql_num_rows(res->res);
}

}
else {

return -1;
}

}
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get_row

This function retrieves a row from a results set. If random access is available, we can
select a row by number; otherwise, we simply get the next row.

A return value of -1 indicates end-of-data, and any other nonzero return value
indicates an error. Drivers must clear the results set when this happens, to avoid a
resource leak.
static int dbd_mysql_get_row(apr_pool_t *pool, apr_dbd_results_t *res,

apr_dbd_row_t **row, int rownum)
{

MYSQL_ROW r;
int ret = 0;

if (res->statement) {
if (res->random) {

if (rownum >= 0) {
mysql_stmt_data_seek(res->statement,

(my_ulonglong)rownum);
}

}
ret = mysql_stmt_fetch(res->statement);

}
else {

if (res->random) {
if (rownum >= 0) {

mysql_data_seek(res->res, (my_ulonglong) rownum);
}

}
r = mysql_fetch_row(res->res);
if (r == NULL) {

ret = 1;
}

}
if (ret == 0) {

if (!*row) {
*row = apr_palloc(pool, sizeof(apr_dbd_row_t));

}
(*row)->row = r;
(*row)->res = res;

}
else {

mysql_free_result(res->res);
apr_pool_cleanup_kill(pool, res->res, (void*)mysql_free_result);
ret = -1;

}
return ret;

}
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get_entry

This function returns a value from the row, as a string.
static const char *dbd_mysql_get_entry(const apr_dbd_row_t *row, int n)
{

MYSQL_BIND *bind;
if (row->res->statement) {

bind = &row->res->bind[n];
if (mysql_stmt_fetch_column(row->res->statement, bind, n, 0)

!= 0) {
return NULL;

}
if (*bind->is_null) {

return NULL;
}
else {

return bind->buffer;
}

}
else {

return row->row[n];
}
return NULL;

}

get_name

This function gets the name of a column in the results set.
static const char *dbd_mysql_get_name(const apr_dbd_results_t *res,

int n)
{

if ((n < 0) || (n >= mysql_num_fields(res->res))) {
return NULL;

}

return mysql_fetch_fields(res->res)[n].name;
}

error

In the event of a database error, this function returns a human-readable error
message.
static const char *dbd_mysql_error(apr_dbd_t *sql, int n)
{

return mysql_error(sql->conn);
}
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escape

This function escapes any characters in a string that would be unsafe or ambiguous
to store as is in the database or to use in a query.
static const char *dbd_mysql_escape(apr_pool_t *pool, const char *arg,

apr_dbd_t *sql)
{

unsigned long len = strlen(arg);
char *ret = apr_palloc(pool, 2*len + 1);
mysql_real_escape_string(sql->conn, ret, arg, len);
return ret;

}

prepare

This function prepares an SQL statement. As discussed earlier, it supports %s for-
mat for arguments to a statement as well as the native ? form. This driver (cur-
rently) makes no attempt to support different data types, and it makes no use of
the label argument.
static int dbd_mysql_prepare(apr_pool_t *pool, apr_dbd_t *sql,

const char *query, const char *label,
apr_dbd_prepared_t **statement)

{
/* Translate from apr_dbd to native query format */
char *myquery = apr_pstrdup(pool, query);
char *p = myquery;
const char *q;
for (q = query; *q; ++q) {

if (q[0] == ‘%') {
if (isalpha(q[1])) {

*p++ = ‘?';
++q;

}
else if (q[1] == ‘%') {

/* reduce %% to % */
*p++ = *q++;

}
else {

*p++ = *q;
}

}
else {

*p++ = *q;
}

}
*p = 0;
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if (!*statement) {
*statement = apr_palloc(pool, sizeof(apr_dbd_prepared_t));

}
(*statement)->stmt = mysql_stmt_init(sql->conn);
apr_pool_cleanup_register(pool, *statement, (void*)mysql_stmt_close,

apr_pool_cleanup_null);
return mysql_stmt_prepare((*statement)->stmt, myquery,

strlen(myquery));
}

pvquery and pquery

These functions execute a prepared statement using arguments supplied either as
argc/argv (pquery) or varargs (pvquery). The latter form may support differ-
ent data types (the Oracle driver does), but in this case we support only strings.
These two functions are almost identical, so we’ll just reproduce one of them here.
static int dbd_mysql_pvquery(apr_pool_t *pool, apr_dbd_t *sql,

int *nrows, apr_dbd_prepared_t *statement,
va_list args)

{
MYSQL_BIND *bind;
char *arg;
int ret;
int nargs = 0;
int i;
my_bool is_null = FALSE;

if (sql->trans && sql->trans->errnum) {
return sql->trans->errnum;

}
nargs = mysql_stmt_param_count(statement->stmt);

bind = apr_palloc(pool, nargs*sizeof(MYSQL_BIND));
for (i=0; i < nargs; ++i) {

arg = va_arg(args, char*);
bind[i].buffer_type = MYSQL_TYPE_VAR_STRING;
bind[i].buffer = arg;
bind[i].buffer_length = strlen(arg);
bind[i].length = &bind[i].buffer_length;
bind[i].is_null = &is_null;
bind[i].is_unsigned = 0;

}

ret = mysql_stmt_bind_param(statement->stmt, bind);
if (ret != 0) {

*nrows = 0;
}
else {
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ret = mysql_stmt_execute(statement->stmt);
*nrows = mysql_stmt_affected_rows(statement->stmt);

}
if (TXN_NOTICE_ERRORS(sql->trans)) {

sql->trans->errnum = ret;
}
return ret;

}

pselect and pvselect

These functions execute a prepared statement that returns a results set. As is the case
with pquery/pvquery, they are essentially identical. In this driver, unlike the sim-
ple select function, no distinction is made between random and sequential access
in the MySQL client library. Thus all we do with the random argument is save it
for the benefit of the num_tuples and get_row functions.
static int dbd_mysql_pvselect(apr_pool_t *pool, apr_dbd_t *sql,

apr_dbd_results_t **res,
apr_dbd_prepared_t *statement, int random,
va_list args)

{
int i;
int nfields;
char *arg;
my_bool is_null = FALSE;
my_bool *is_nullr;
int ret;
const int FIELDSIZE = 255;
unsigned long *length;
char **data;
int nargs;
MYSQL_BIND *bind;

if (sql->trans && sql->trans->errnum) {
return sql->trans->errnum;

}

nargs = mysql_stmt_param_count(statement->stmt);
bind = apr_palloc(pool, nargs*sizeof(MYSQL_BIND));

for (i=0; i < nargs; ++i) {
arg = va_arg(args, char*);
bind[i].buffer_type = MYSQL_TYPE_VAR_STRING;
bind[i].buffer = arg;
bind[i].buffer_length = strlen(arg);
bind[i].length = &bind[i].buffer_length;
bind[i].is_null = &is_null;
bind[i].is_unsigned = 0;

}
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ret = mysql_stmt_bind_param(statement->stmt, bind);
if (ret == 0) {

ret = mysql_stmt_execute(statement->stmt);
if (!ret) {

if (!*res) {
*res = apr_pcalloc(pool, sizeof(apr_dbd_results_t));
if (!*res) {

while (!mysql_stmt_fetch(statement->stmt));
return -1;

}
}
(*res)->random = random;
(*res)->statement = statement->stmt;
(*res)->res = mysql_stmt_result_metadata(statement->stmt);
apr_pool_cleanup_register(pool, (*res)->res,

(void*)mysql_free_result, apr_pool_cleanup_null);
nfields = mysql_num_fields((*res)->res);
if (!(*res)->bind) {

(*res)->bind = apr_palloc(pool,
nfields*sizeof(MYSQL_BIND));

length = apr_pcalloc(pool,
nfields*sizeof(unsigned long));

data = apr_palloc(pool, nfields*sizeof(char*));
is_nullr = apr_pcalloc(pool, nfields*sizeof(my_bool));
length = apr_pcalloc(pool, nfields);
for ( i = 0; i < nfields; ++i ) {

(*res)->bind[i].buffer_type = MYSQL_TYPE_VAR_STRING;
(*res)->bind[i].buffer_length = FIELDSIZE;
(*res)->bind[i].length = &length[i];
data[i] = apr_palloc(pool, FIELDSIZE*sizeof(char));
(*res)->bind[i].buffer = data[i];
(*res)->bind[i].is_null = is_nullr+i;

}
}
ret = mysql_stmt_bind_result(statement->stmt, (*res)->bind);
if (!ret) {

ret = mysql_stmt_store_result(statement->stmt);
}

}
}
if (TXN_NOTICE_ERRORS(sql->trans)) {

sql->trans->errnum = ret;
}
return ret;

}

11.7 Summary
The DBD API is one of the most recent innovations in Apache, having first
appeared in Apache 2.2. It represents probably the most important fundamental
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advance in architecture for database applications since mod_perl introduced (what
is now known as) LAMP in the mid-1990s. In this chapter we looked at the fol-
lowing topics:

• The need for a new framework

• The DBD architecture: a common API, plus connection pooling

• The apr_dbd API (database objects and operations)

• The ap_dbd API (database connection management)

• An example of using DBD in a module

• Writing a DBD driver to support a back-end database

It is anticipated that the DBD framework will support a new generation of web-
database applications, including both C modules and LAMP applications running
under the scripting modules. Programmers working in scripting languages should
see the database objects and apr_dbd methods exposed in their language. In a case
such as Perl, which has its own mature DBI/DBD framework, apr_dbd will be 
presented as a DBD provider instance such as DBD::APR. However, the details of
scripting implementations are the business of the developers of the scripting mod-
ules and, therefore, are outside the scope of this book.
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In the preceding chapters, we have looked at the Apache platform and architecture,
the API and APR, and important aspects of developing applications with Apache. Of
course, knowing the application and the platform is just part of the development
process. Before we have a working module, we have to debug it!

For those modules whose installation, configuration, and usage are (or may be) not
straightforward, we have a second debugging problem to consider: What can we
provide to help system administrators using our module? Even a one-off module
that will never be seen outside the IT department that wrote it may need to deal
with changes to the system and network the module is working in, and hence
require reconfiguration, so debugging is not something we can just ignore.

12
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12.1 Logging for Debugging
The first technique to consider—and in some ways the most important—is to gen-
erate diagnostic and debugging information from within the code itself. Apache
offers a well-established logging mechanism for this purpose: the error log. We’ve
used the error log in our examples throughout this book, but let’s take a closer look
at it now.

TIP Whenever you encounter a problem running Apache, with
or without your own applications, always look first in the error
log for information!

12.1.1 The Error Log
The error log is normally a file, possibly accessed through a piped logger that deals
with log rotation, and specified by the system administrator in the Apache config-
uration. Modules can and should write messages to the error log whenever they
have to report diagnostic information concerning an error. Of course, like system
logs, the error log serves a wider purpose, including debugging.

The API for the error log, which is defined in http_log.h, provides four variants
of a printf-like logging function for normal usage by modules. These variants
serve different originating contexts: request, connection, server, or anywhere we
have a pool.
AP_DECLARE(void) ap_log_error(const char *file, int line, int level,

apr_status_t status, const server_rec *s,
const char *fmt, ...)
__attribute__((format(printf,6,7)));

AP_DECLARE(void) ap_log_perror(const char *file, int line, int level,
apr_status_t status, apr_pool_t *p,
const char *fmt, ...)
__attribute__((format(printf,6,7)));

AP_DECLARE(void) ap_log_rerror(const char *file, int line, int level,
apr_status_t status, const request_rec *r,
const char *fmt, ...)

__attribute__((format(printf,6,7)));
AP_DECLARE(void) ap_log_cerror(const char *file, int line, int level,

apr_status_t status, const conn_rec *c,
const char *fmt, ...)

__attribute__((format(printf,6,7)));
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The normal practice is to use macros for the first three arguments. In fact, the sin-
gle macro APLOG_MARK gives us both of the first two arguments, so the logger can
report the location where the message arose:

#define APLOG_MARK   __FILE__,__LINE__

The level argument is a classic log level based on syslog. From high to low prior-
ity (though ascending numeric order), log level values are
#define APLOG_EMERG    LOG_EMERG   /* system is unusable */
#define APLOG_ALERT    LOG_ALERT   /* action must be taken immediately*/
#define APLOG_CRIT     LOG_CRIT    /* critical conditions */
#define APLOG_ERR      LOG_ERR     /* error conditions */
#define APLOG_WARNING  LOG_WARNING /* warning conditions */
#define APLOG_NOTICE   LOG_NOTICE  /* normal but significant condition */
#define APLOG_INFO     LOG_INFO    /* informational */
#define APLOG_DEBUG    LOG_DEBUG   /* debug-level messages */

System administrators can determine which messages will be logged by using the
LogLevel configuration directive. Only messages having priority at least that of the
LogLevel configured will be logged; other messages will be discarded. The default
log level is warning.

Some additional flags can be ORed with these log level values, the most interesting
of which is APLOG_TOCLIENT. It is valid only in ap_log_rerror, and causes the
logger to set an entry in the request notes. Thus a handler can retrieve an error mes-
sage using

errmsg = apr_table_get(r->notes, "error-notes");

and report the exact error message back to the browser. (Note that errmsg must be
escaped if it appears in an HTML or XML response.)

The behavior of LogLevel is not consistent across the four logging calls, because it
is set in the server configuration hierarchy. As a consequence, configured LogLevel
values are valid only when the relevant server_rec is available. That is, of course,
always the case with ap_log_error and ap_log_rerror. It is not true for
ap_log_cerror in the presence of name virtual hosts in the configuration (mak-
ing it unusable in general), nor ever for ap_log_perror.

The fourth argument to the logging functions is an APR error code. For messages
that are not reporting an error returned by an APR/APU function, use an argument
of 0,and it will be duly ignored. The fifth argument is a descriptor object: the server,
pool, connection, or request.
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The remaining arguments are those of printf: a C format string, followed by argu-
ments whose number and types depend on the format string.

The following example demonstrates one way to handle the possible failure to open
a file. It is typical of the error logging we’ve been using throughout this book, and
could appear anywhere in request processing:

rv = apr_file_open(&file, r->filename, APR_FOPEN_READ|APR_SHARELOCK,
APR_FPROT_OS_DEFAULT, r->pool) ;

if (rv != APR_SUCCESS) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r,

"Failed to open file %s", r->filename) ;
return HTTP_FILE_NOT_FOUND;
}

12.1.2 Debugging
Now that we’ve seen the Apache error log, it’s pretty easy to see how we can use it
for debugging. We can add logging statements to generate a trace of program exe-
cution through critical parts of our module, as well as the values of relevant data and
expressions. Where debug output might be relevant to end users, we can even leave
debug output with level APLOG_DEBUG permanently in place, so that system admin-
istrators can generate it at will. We can also enclose some of our debug statements
in #ifdef DEBUG or similar constructs.

Debugging Assistance for System Administrators

Where module configuration may be nontrivial, we can and should use error log-
ging to generate information that might help system administrators to debug their
setups. The appropriate level for events that are perfectly normal but useful for the
user to know is usually APLOG_INFO.

At the extreme end of complexity, mod_rewrite implements its own log, which
remains entirely separate from the standard error log. A more typical example is
mod_proxy_html,1 an output filter that supports markup-aware rewriting of cer-
tain strings, specifically URLs, in HTML pages. Rule sets for markup rewriting can
be quite complex, particularly when extended mode is enabled so that URLs
embedded in Javascript and CSS stylesheets are also rewritten. mod_proxy_html
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provides system administrators with the option of reporting every match-and-
replace encountered with statements like

while ( ! ap_regexec(m->from.r, ctx->buf+offs,
nmatch, pmatch, 0) ) {

match = pmatch[0].rm_so ;
s_from = pmatch[0].rm_eo - match ;
subs = ap_pregsub(ctx->f->r->pool, m->to, ctx->buf+offs,

nmatch, pmatch) ;
s_to = strlen(subs) ;
len = strlen(ctx->buf) ;
offs += match ;
if ( verbose ) {
const char* f = apr_pstrndup(ctx->f->r->pool,

ctx->buf + offs , s_from ) ;
ap_log_rerror(APLOG_MARK, APLOG_INFO, 0, ctx->f->r,

"C/RX: match at %s, substituting %s", f, subs) ;
}

/* Substitution code deleted for brevity */

offs += s_to ;
}

The logging at log level APLOG_INFO here shows a regular expression match-and-
replacement encountered in a CDATA section (C/RX) of the markup. The user can
infer from this exactly how his or her current rule set is performing. Note that the
use of the verbose variable means it needs both mod_proxy_html running in ver-
bose mode and LogLevel set to Info (or Debug) to generate this output.

12.2 Running Apache Under a Debugger
The debugger is the regular workhorse of the programmer in many fields, and
Apache is certainly one of them. Apache is written in ANSI C, which is well sup-
ported across platforms and environments. The fact that Apache has no GUI helps
simplify the job, as nothing competes with the debugger for your attention. On the
negative side, you must deal with Apache’s complex start-up, with multiple
processes and threads, and with the dynamic loading of modules and libraries.

What you can do with Apache in a debugger will, of course, vary across different
debuggers and environments. For the purposes of this discussion, we’ll look at the
most widely available and widely used debugger, gdb. There’s no uniquely correct
way to run Apache under gdb; the discussion here simply covers how this author
normally uses it.
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When we run Apache under a debugger, we are running it as a real system user,
with a login account and a shell. That means important elements of normal Apache
security are disabled, so we should always ensure that the debug machine is pro-
tected from the outside world—for example, by a firewall. This consideration is
particularly important if, against all standard security advice and practice, we debug
as root.

Another consequence of running as a different user is that errors arising from trou-
ble with system privileges will differ from normal use, particularly if our operational
environment includes strong security such as chroot. Errors arising from this cause
will occur in the course of APR system calls, so we’ll see them in the error log rather
than the debugger.

To run Apache under gdb, we use the -X option to prevent Apache from detaching
itself, forking children, and going into daemon mode. Here’s a typical start-up,
using the Worker MPM on Linux:
$ gdb bin/httpd
GNU gdb 6.4
Copyright 2005 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...Using host libthread_db library
"/lib/libthread_db.so.1".

(gdb) r -X
Starting program: /usr/local/apache2/bin/httpd -X
[Thread debugging using libthread_db enabled]
[New Thread 16384 (LWP 14117)]
[New Thread 32769 (LWP 14122)]
[New Thread 16386 (LWP 14123)]
[New Thread 32771 (LWP 14124)]
... and many more threads

Now Apache is in operational mode, and is blocked while waiting for incoming
connections. All modules are loaded, and the configuration is active. If we leave it
there, the webserver is basically up and running and will service incoming requests.
We can interrupt it with Ctrl-C to return to the debugger:
Program received signal SIGINT, Interrupt.
[Switching to Thread 16384 (LWP 14117)]
0xb717612b in sigsuspend () from /lib/libc.so.6
(gdb)
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Because all modules are loaded, we can now set breakpoints on any functions in
which we are interested. Those locations could be something generic, such as
ap_process_request (the core function from which the request processing hooks
are called), or they could be functions from our own module. Depending on the
gdb version and build, we may need to use the shared command to load symbols
from dynamically loaded modules. After setting breakpoints (and anything else
appropriate) in the debugger, we continue program execution, which returns
Apache to a state of waiting for connections:
(gdb) b my_handler
Breakpoint 1 at 0xb6ddfd5e: file my_module.c, line 252.
(gdb) c
Continuing.

Now you can use an HTTP client such as a browser to request a URL from your
server, selecting a URL designed to test the execution path of interest. Lynx is often
a good choice for this purpose: It doesn’t (by default) time out a request, so we can
spend as long as we need in the debugger yet still complete a request.

[in another terminal window]
$ lynx -dump -source http://127.0.0.1/path/to/test/my-handler

Now the server will hit our breakpoint in gdb:
[Switching to Thread 32771 (LWP 14124)]

Breakpoint 1, my_handler (r=0x81e3570) at my_module.c:252
252         int rv = 0;
(gdb)

Now we are where we need to be. We can debug at will: step through the program,
examine variables and the stack, and so forth. Go ahead and debug!

12.2.1 Server Start-up and Debugging
Functions in the server start-up phase (configuration, pre-configuration, post-
configuration, and child_init) are a little more elusive from the debugger’s per-
spective. To run a function under the debugger, we need to set the breakpoint
before the function is called. But we cannot set the breakpoint before the module
is loaded, unless the debugger supports provisional breakpoints (as recent versions
of gdb do).

12.2 Running Apache Under a Debugger 329



A workaround in this situation is to set a breakpoint on a core function near the
function we are interested in. The traceback for a command handler function usu-
ally takes the following form:
(gdb) bt
#0  foo_cmd (cmd=0xbffff100, cfg=0x0, val=0xbffff100 "foobar") at mod_foo.c:70
#1  0x08075315 in invoke_cmd (cmd=0xb6cf6020, parms=0xbffff100, mconfig=0x0,

args=0x812d7ae "") at config.c:735
#2  0x08075f8a in ap_walk_config_sub (current=0x812d788, parms=0xbffff100,

section_vector=0x80dd600) at config.c:1141
#3  0x08076023 in ap_walk_config (current=0x812d788, parms=0xbffff100,

section_vector=0x80dd600) at config.c:1174
#4  0x08076da6 in ap_process_config_tree (s=0xb6cf6020, conftree=0x0,

p=0x80aae28, ptemp=0x0) at config.c:1743
#5  0x080620d2 in main (argc=2, argv=0xbffff214) at main.c:616

In principle, the nearest we can come to the function of interest is a breakpoint on
invoke_cmd. However, that function is called a huge number of times for a typical
configuration, so it’s not particularly useful for our purposes here. Another option
is to walk through ap_walk_config.

Alternatively, we can break on load_module (from mod_so) and set breakpoints on
our module’s functions as soon as the module is loaded. This approach works best
if we load the module being debugged ahead of other modules, so we don’t have to
step through a lot of other modules loading before we reach ours.

Here is the standard traceback for load_module:
(gdb) bt
#0  load_module (cmd=0xbfffef90, dummy=0x80deb20,

modname=0x80deb10 "foo_module", filename=0x80deb20 "modules/mod_foo.so")
at mod_so.c:158

#1  0x08075425 in invoke_cmd (cmd=0x8099f00, parms=0xbfffef90,
mconfig=0xbfffee20, args=0x80e1f28 "") at config.c:778

#2  0x0807654a in execute_now (cmd_line=0x80deab0 "LoadModule",
args=0x80e1f0b "foo_module modules/mod_foo.so", parms=0xbfffef90,
p=0x80aae28, ptemp=0x80daee8, sub_tree=0xbfffee20, parent=0x0)
at config.c:1419

#3  0x08075cef in ap_build_config_sub (p=0x80aae28, temp_pool=0x80daee8,
l=0x8099f00 "$\235\t\b\220B\b\b", parms=0xbfffef90, current=0xbfffee64,
curr_parent=0xbfffee68, conftree=0x80a0ab4) at config.c:990

#4  0x080760e8 in ap_build_config (parms=0xbfffef90, p=0x80aae28,
temp_pool=0x80daee8, conftree=0x80a0ab4) at config.c:1202

#5  0x080769b0 in process_resource_config_nofnmatch (s=0x80b06c8,
fname=0x80dd9c8 "/usr/local/apache/conf/httpd.conf", conftree=0x80a0ab4,
p=0x80aae28, ptemp=0x80daee8, depth=0) at config.c:1612

#6  0x08076a85 in ap_process_resource_config (s=0x80b06c8,
fname=0x80dd9c8 "/usr/local/apache/conf/httpd.conf", conftree=0x80a0ab4,
p=0x80aae28, ptemp=0x80daee8) at config.c:1644
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#7  0x080774c2 in ap_read_config (process=0x80deb20, ptemp=0x80daee8,
filename=0x8090b6f "conf/httpd.conf", conftree=0x80a0ab4) at config.c:2002

#8  0x08062085 in main (argc=2, argv=0xbffff214) at main.c:605

12.2.2 Debugging and MPMs
Occasionally, we may have to debug a problem that affects some MPMs but not
others, which constrains the choice of MPM for debugging. In most cases, however,
the issues we are using the debugger to investigate are no different between differ-
ent MPMs, so we are free to select an MPM that works best with our debugger.
There is no one “best” MPM for all cases, so you may want to try out a variety of
choices if you have a lot of debugging to do. In any case, there are a few differences
worth bearing in mind.

The main choice is whether to use a threaded or a nonthreaded MPM. Running the
Prefork MPM (nonthreaded) with the -X flag means we are running on a single-
process, single-thread basis, so we can process only one request at a time. This pre-
cludes some operations, such as debugging Apache running as a proxy and using the
server as its own origin server. With the Worker MPM or other multithreaded
MPM, the proxy will run in one thread, and another thread will serve as the origin
server. However, if we have any breakpoints or watchpoints that apply to both proxy
and origin requests, gdb will switch contexts between the threads, so it benefits
from a front end that separates the threads into different displays.

12.2.3 Tracing a Crash
From a debugging point of view, two kinds of crashes exist: those that we can reli-
ably reproduce and those that occur apparently at random. The former are well
suited to identifying with gdb:
$ gdb bin/httpd
(gdb) r -X

Now use a browser to submit a request that generates the crash. Because Apache is
running under the debugger, it will hand control back to us:
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 32771 (LWP 10084)]
0x08063b93 in ap_strcmp_match (str=0x8108ec0 "test", expected=0x0)

at util.c:179
179             if ((!str[x]) && (expected[y] != ‘*'))
(gdb)
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At this point, we can use the debugger to get information about the crash, includ-
ing getting and stepping through a traceback, and displaying variables on the stack.
Sometimes this investigation suffices to identify the problem. For example, if the
error was one of dereferencing a null or junk pointer, we can identify it, determine
where it originates in the calling stack, and focus on that function. At worst, know-
ing when and where the system crashed will enable us to set a breakpoint some-
where before it in the code we are debugging; we can then examine the data and
step through to the crash.

Our example crashed in a string-matching function, where a null pointer is being
dereferenced. We’ve reduced the problem to figuring out why it’s getting passed a
null pointer:
(gdb) up
#1  0xb6cfd782 in test_filter_init (f=0x81e86e8, b=0x81e1540)

at mod_test_filter.c:141
141       if (!ap_strcmp_match(str, cfg->basestr)) {
(gdb) p cfg->basestr
$1 = 0x0
(gdb)

That’s pretty clear: We’re using a NULL string that should have been initialized. A
suitable fix would be to ensure that this string always has a valid default value.

12.2.4 Debugging a Core Dump
If we have an intermittent crash we cannot figure out and that cannot be repro-
duced in the debugger, we may need to debug a core dump. To get a core dump,
apply the CoredumpDirectory directive in httpd.conf to somewhere the server
has permission to write, and ensure the operating system doesn’t prevent core
dumps (e.g., through ulimit). Because the core dump directory must be writable
by Apache, you should secure it. In particular, you should mount it with noexec if
the server is exposed to untrusted traffic from the Web. Mounting this directory on
a separate partition is good practice for a second reason: It shields you from the dan-
ger of a disk filled with core dumps adversely affecting the server.

Once you have a core dump, you can load it with gdb. This gives us a full traceback
of the program at the point where it crashed, and it may reveal data such as bad
pointers or buffer overflows that are likely to be implicated in the crash.
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Note that a threaded MPM will generate a separate traceback for each thread. If you
just ask gdb for a traceback, you’ll probably get a trace headed by

__read_nocancel ()
ap_mpm_pod_check()

That’s an inactive thread waiting for input—it has nothing to do with the crash!
You need to find the guilty thread:

(gdb) thread apply all bt 5

This traceback provides five lines of backtrace for each thread. You can now find
which thread got killed and attach to it:
(gdb) thread <number>
(gdb) bt

12.3 Special-Purpose Hooks and Modules
A few modules exist specifically to enable a developer or administrator to obtain
information on the state of Apache and to prevent bad things happening. These
modules include mod_info, mod_status, mod_backtrace, mod_whatkilledus,
mod_backdoor, mod_watchdog, and mod_diagnostics. Some of them will reveal
server information via HTTP. This information has potential security implications,
so the modules should be configured to allow access only to authorized users, typi-
cally using the Order, Allow, and Deny directives.

12.3.1 Standard Modules
The standard Apache distribution includes two introspection modules: mod_info
and mod_status.

12.3.1.1 mod_info

mod_info provides information on Apache’s configuration and modules, or subsets
thereof. The basic information displayed by default is the configuration tree, com-
prising a complete list of active modules, the configuration directives that apply to
them, and the hooks they are attached to. This response can be filtered to reduce
information overload.

12.3 Special-Purpose Hooks and Modules 333



12.3.1.2 mod_status

mod_status provides information on server activity and performance. It returns an
HTML page that gives the current server statistics in an easily readable form. If nec-
essary, this page can be made to automatically refresh (given a compatible browser).
Another page gives a simple machine-readable list of the current server state.

The following details are available:

• The number of workers serving requests

• The number of idle workers

• The status of each worker, the number of requests that worker has performed,
and the total number of bytes served by the worker

• The total number of accesses and byte counts served

• The time when the server was started/restarted and the time for which it has
been running 

• The average number of requests per second, the average number of bytes
served per second, and the average number of bytes per request

• The current percentage of the CPU used by each worker and in total by Apache

• The current hosts and requests being processed

12.3.1.3 The Scoreboard

The information mod_status presents consists of a shared memory segment called
the scoreboard. It is created at server start-up and can hold an entry for each active
process and worker, according to the MPM in use and its configuration. Each
worker is responsible for maintaining its own information in the scoreboard.

The scoreboard is defined in scoreboard.h:
typedef struct {

global_score *global;
process_score *parent;
worker_score **servers;
lb_score     *balancers;

} scoreboard;

The global_score entry contains primarily information from the MPM. It deter-
mines the number of process and worker scores and balancers required through the
server_limit, thread_limit, and lb_limit fields.
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The process_score entry is a vector comprising one entry for each child process
and having space for the maximum number of children allowed in the configuration.
It includes the PID of the process, plus a flag that indicates whether the process is
terminating.

The worker_score entry contains useful status/debugging information. In gen-
eral, it is an array of arrays; that is, there is an array for each child process, which in
turn contains an array for each worker thread. The actual size depends on the MPM
and configuration. For example, the Prefork MPM will have a maximum of one
worker per process, while threaded MPMs may be configured to have only one
process. In all cases, the array must be big enough to hold entries for the configured
maximum numbers of processes and workers.

The definition of worker_score is
struct worker_score {

int thread_num;
#if APR_HAS_THREADS

apr_os_thread_t tid;
#endif

/* With some MPMs (e.g., Worker), a worker_score can represent
* a thread in a terminating process that is no longer
* represented by the corresponding process_score. These MPMs
* should set pid and generation fields in the worker_score.
*/
pid_t pid;
ap_generation_t generation;
unsigned char status;
unsigned long access_count;
apr_off_t     bytes_served;
unsigned long my_access_count;
apr_off_t     my_bytes_served;
apr_off_t     conn_bytes;
unsigned short conn_count;
apr_time_t start_time;
apr_time_t stop_time;

#ifdef HAVE_TIMES
struct tms times;

#endif
apr_time_t last_used;
char client[32];          /* Keep ‘em small... */
char request[64];         /* We just want an idea... */
char vhost[32];           /* Which virtual host is being accessed? */

};

Finally, the lb_scores are owned by the proxy balancer and are relevant only when
that balancer is in use. These entries are unlikely to be relevant to debugging.
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12.3.2 Fatal Exception Modules
The fatal exception hook (ap_hook_fatal_exception) in Apache enables mod-
ules to hook a function into a server crash. Two modules that use this ability to
provide information on a crash are mod_backtrace and mod_whatkilledus,
both of which are available from Jeff Trawick’s page at apache.org.2 The fatal
exception hook is a compile-time option in Apache. To use it, you will need the
–enable-exception-hook configuration option to Apache 2.0.49 or later.

12.3.2.1 mod_backtrace

mod_backtrace is an experimental module for Apache httpd 2.x that collects back-
traces when a child process crashes. Currently, it is implemented only on Linux and
FreeBSD, but other platforms could be supported in the future. You should verify
that it works reasonably well on your system before putting it in production.

mod_backtrace implements a fatal exception hook that will be called when a child
process crashes. In the exception hook, it uses system library routines to obtain
information about the call stack, and then it writes the call stack to a log file or the
webserver error log. The backtrace is a crucial piece of information when you need
to determine which failing software component caused the crash. Note that the back-
trace written by mod_backtrace may not offer as much information as a debugger
can display from a core dump.

12.3.2.2 mod_whatkilledus

mod_whatkilledus is an experimental module for Apache httpd 2.x that tracks
the current request and logs a report of the active request when a child process
crashes. The information logged includes the complete HTTP request, which you
can use to reproduce a request that triggered a crash in your test environment. You
should verify that this module works reasonably on your system before putting it in
production.

mod_whatkilledus is called during request processing to save information about
the current request. It also implements a fatal exception hook that will be called
when a child process crashes.
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12.3.3 Modules to Deal with Abnormal Running

12.3.3.1 mod_backdoor

mod_backdoor is another module from Jeff Trawick’s page. Its main purpose is to
provide a relatively fail-safe way to send requests to the webserver when overall there
are serious webserver problems. mod_backdoor represents a kind of “Plan B” when
something is wrong with the webserver but a request for mod_status or any test
request is not being processed.

Perhaps all of your webserver threads are blocked while waiting for an application
server to respond? Sneak in through the back door, get a mod_status report, and
see if that is the case. (Check the URLs and look for W as the state.)

Perhaps something very fundamental, such as an accept mutex, has broken, and all
of your webserver threads are idle with no work to do? Sneak in through the back
door, get a mod_status report, and see if that could be the case. (Check for a
diminishing number of active connections.)

mod_backdoor also supports a simple module/core server debugging environment
alongside the processes and threads created by the normal MPM. If you send a
request through the back door, there is no question which process/thread will han-
dle it, because mod_backdoor has only one, and you can have your debugger wait-
ing. Also, because the mod_backdoor daemon process is not threaded, any
problems your platform experiences while debugging threaded processes will no
longer be a problem. And if this system is being actively accessed, controlling the
mod_backdoor daemon process with a debugger won’t affect threads in the real
MPM processes.

12.3.3.2 The Monitor Hook

The monitor hook ap_hook_monitor enables a module to hook a function into
the Apache parent (root) process, so that it can run regularly in a loop. This hook
can be used to watch the scoreboard for workers that could be in trouble (e.g., a
worker stuck in any busy state) and to take action such as logging a diagnostic mes-
sage, alerting an external agent, or even killing the worker. At the time of writing,
no open-source module implements this functionality.

Monitor functions are called every 10 seconds, so functions that are required less
frequently should maintain a counter or timer. Because the parent is a single
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nonthreaded process, it is important that monitor functions have a small footprint.
For example, a function that could block would be serious trouble.

When using the monitor hook, you should be aware that the pool is never destroyed,
so any usage of it is likely to create a memory leak. Modules that need to make regular
use of a pool should create a subpool and perform garbage collection from time to time.

On the positive side, monitor functions do not have to be concerned with thread-
ing issues. They can also use static or global variables where other modules must use
the configuration vectors.

12.4 Filter Debugging
Filter debugging involves all the same processes as any other debugging: tracing 
program execution, watching variables, and so forth. But sometimes we encounter
bugs where the code simply “doesn’t work” or “takes a long, long time,” yet it doesn’t
crash or manifest any other obvious problem.

Fortunately, we have a higher-level debugging tool at our disposal in such cases. The
purpose of a filter is to manipulate streamed data, and we can watch this data stream
as it passes down the chain. Specifically, we can readily check the progression of
buckets and brigades through our filters and identify any anomalies. At best, this
effort leads us directly to the bug; in other cases, it simply tells us where to look with
the debugger.

12.4.1 mod_diagnostics
mod_diagnostics3 is a debugging and diagnostic tool for filter modules. It can be
inserted anywhere in the Apache filter chain—input or output—and logs traffic
(buckets and brigades) passing through. It is a purely passive watcher, meaning that
it will never modify the data or metadata passing through the filter.

For the output filter chain, mod_filter provides a similar function. It is slightly
less flexible, in that it will only watch data coming into a filter, and will automati-
cally be removed (along with the filter) when processing an HTTP error.

To understand working with mod_diagnostics, we’ll look at two examples from
the author’s own experience.
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12.4.1.1 Example: Strange Delays and Broken Connections in Some Browsers

As part of an update to mod_xml, a new bug was introduced. It was not immedi-
ately obvious, but in some browsers the request would hang and then time out. The
effect was observed only when using the XSLT output filter with Xalan-C, and it
happened only with HTTP/1.1 browsers, not with HTTP/1.0. Furthermore, click-
ing “Cancel” before the timeout in an HTTP/1.1 browser would cause the page to
display correctly!

We can reproduce this problem with a tiny, static XML file and XSLT stylesheet,
and a version of mod_transform hacked to introduce the same bug:

test.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="test.xsl"?>
<!-- We're not debugging XML or XSLT, so there's no reason to do

anything interesting here
-->
<html>
<title>A title for the page</title>
<body>
<h1>A heading</h1>
<p>Some text</p>
<insertion />
</body>
</html>

test.xsl
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html" doctype-public="-//W3C//DTD HTML 4.01//EN"/>
<xsl:template match="*">
<xsl:choose>
<xsl:when test="node() != ‘insertion'">
<xsl:copy>
<xsl:apply-templates select="@*|*|text()"/>
</xsl:copy>
</xsl:when>
<xsl:otherwise>
<p>This paragraph is inserted by the stylesheet!</p>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>
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Inserting mod_diagnostics before and after the offending filter, the bug becomes
immediately obvious. We configure our trivial documents with diagnostic filters
before and after the transform operation:
<Files test.xml>

SetOutputFilter o-resource-1;bad-xslt;o-resource-2
</Files>

Here’s the error log as it processes the request:
[Tue Jan 10 22:10:49 2006] [notice] o-resource-1
[Tue Jan 10 22:10:49 2006] [notice]   o-resource-1 FILE: 312 bytes
[Tue Jan 10 22:10:49 2006] [notice]   o-resource-1 EOS: 0 bytes
[Tue Jan 10 22:10:49 2006] [notice] o-resource-2
[Tue Jan 10 22:10:49 2006] [notice]   o-resource-2 HEAP: 206 bytes

From our configuration, o-resource-1 is the diagnostic filter before our XSLT,
while o-resource-2 comes after it. The first entry of each filter represents a
brigade, while the indented entries with more detail report a bucket within the
brigade. Because the document is tiny both before and after the transform, it goes
into a single brigade, and we see the crucial error: The EOS bucket is missing after
the transform. It worked with an HTTP/1.0 browser because Apache was follow-
ing the default behavior of closing the connection in HTTP/1.0, so all that really
mattered was that the data had been sent. In HTTP/1.1, the connection is kept
open by default, so the response isn’t flushed until the EOS or until the browser
closes the connection.

Having made this diagnosis, the fix is now trivial.

12.4.1.2 Example: Obscure Bug in a Third-Party Library

A user of mod_proxy_html reported serious performance problems when parsing
an 8MB HTML file. When he profiled the problem, he discovered that the entire
processing time derived from the final call to htmlParseChunk in libxml2.

The author of this book investigated this report by inserting mod_diagnostics
before and after mod_proxy_html, and running it with the largest HTML docu-
ment I had available (a MySQL manual, about 2.6MB). I was able to confirm that
nothing was passed down the chain until the final call: Thus, not only was the mod-
ule slow, but it had also broken Apache pipelining.

To refine the diagnosis, I added a flush in each call to the filter in mod_proxy_html.
Now mod_diagnostics showed a small amount of data (less than 1K) coming

340 Chapter 12 • Module Debugging



through during the first call to the filter, but nothing else until the end. Further
investigation revealed that the data stopped coming when the first HTML comment
was encountered in the source.

At this point, I ran the module under gdb, looking for the comment handling. I
found that it was failing to find the end of the comment. The problem was resolved
only in the last call to htmlParseChunk, which didn’t go through the buggy code.
When I disabled the buggy code, I found that it was now working correctly, with
approximately the same amount of input and output data in each call to the
mod_proxy_html filter—so pipelining was now fixed. My correspondent reported
total processing time for his 8MB file was reduced from 30 minutes to 9 seconds
(on late-1990s hardware).

The bug was reported to the libxml team, who fixed it in libxml2.5.10.

12.5 Summary
This chapter examined a number of techniques for debugging modules in Apache.
It did not venture into high-level or application-oriented areas such as test plans or
test suites, but rather focused on low-level debugging techniques that complement
the programming subjects discussed elsewhere in this book.

Specifically, we looked at the following topics:

• The logging API

• Logging to support system administrators

• Logging for debugging purposes

• Running Apache interactively under a debugger

• Tracing the causes of a crash: core dumps and special-purpose modules

• Introspection

• Filter debugging with mod_diagnostics
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Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND
DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribu-
tion as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
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purposes of this definition, “control” means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or otherwise,
or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii)
beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions
granted by this License.

“Source” form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configura-
tion files.

“Object” form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annota-
tions, elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the inter-
faces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, “submitted” means any
form of electronic, verbal, or written communication sent to the Licensor or its rep-
resentatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by,
or on behalf of, the Licensor for the purpose of discussing and improving the Work,
but excluding communication that is conspicuously marked or otherwise desig-
nated in writing by the copyright owner as “Not a Contribution.”
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“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor that
are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If
You institute patent litigation against any entity (including a cross-claim or coun-
terclaim in a lawsuit) alleging that the Work or a Contribution incorporated within
the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the
date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy
of this License; and

(b) You must cause any modified files to carry prominent notices stating that
You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You dis-
tribute, all copyright, patent, trademark, and attribution notices from the Source
form of the Work, excluding those notices that do not pertain to any part of the
Derivative Works; and
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(d) If the Work includes a “NOTICE” text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of the attri-
bution notices contained within such NOTICE file, excluding those notices that do
not pertain to any part of the Derivative Works, in at least one of the following
places: within a NOTICE text file distributed as part of the Derivative Works;
within the Source form or documentation, if provided along with the Derivative
Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for infor-
mational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distri-
bution of Your modifications, or for any such Derivative Works as a whole, pro-
vided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any addi-
tional terms or conditions. Notwithstanding the above, nothing herein shall super-
sede or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproduc-
ing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writ-
ing, Licensor provides the Work (and each Contributor provides its
Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CON-
DITIONS OF ANY KIND, either express or implied, including, without limita-
tion, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
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solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has been
advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consis-
tent with this License. However, in accepting such obligations, You may act only on
Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets “[ ]” replaced with your own identifying infor-
mation. (Don’t include the brackets!) The text should be enclosed in the appropri-
ate comment syntax for the file format. We also recommend that a file or class name
and description of purpose be included on the same “printed page” as the copyright
notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License.
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You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
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There are two standard Contributor License Agreements. The Individual CLA is
signed by every committer. The Corporate CLA is signed by companies or other
institutions contributing to Apache, or having rights over an individual contributor’s
work as (for example) the contributor’s employer or client.

Individual CLA
The Apache Software Foundation

Individual Contributor License Agreement (“Agreement”) V2.0
http://www.apache.org/licenses/

Thank you for your interest in The Apache Software Foundation (the
“Foundation”). In order to clarify the intellectual property license granted with
Contributions from any person or entity, the Foundation must have a Contributor
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License Agreement (“CLA”) on file that has been signed by each Contributor, indi-
cating agreement to the license terms below. This license is for your protection as a
Contributor as well as the protection of the Foundation and its users; it does not
change your rights to use your own Contributions for any other purpose. If you
have not already done so, please complete and send an original signed Agreement
to The Apache Software Foundation, 1901 Munsey Drive, Forest Hill, MD 21050-
2747, U.S.A. If necessary, you may send it by facsimile to the Foundation at +1-
410-803-2258. Please read this document carefully before signing and keep a copy
for your records.

Full name: __________________________ E-Mail: __________________

Mailing Address: ______________________ Telephone: __________________

____________________________________ Facsimile: __________________

____________________________________ Country: __________________

You accept and agree to the following terms and conditions for Your present and
future Contributions submitted to the Foundation. In return, the Foundation shall
not use Your Contributions in a way that is contrary to the public benefit or incon-
sistent with its nonprofit status and bylaws in effect at the time of the Contribution.
Except for the license granted herein to the Foundation and recipients of software
distributed by the Foundation, You reserve all right, title, and interest in and to
Your Contributions.

1. Definitions.

“You” (or “Your”) shall mean the copyright owner or legal entity authorized by the
copyright owner that is making this Agreement with the Foundation. For legal enti-
ties, the entity making a Contribution and all other entities that control, are con-
trolled by, or are under common control with that entity are considered to be a
single Contributor. For the purposes of this definition, “control” means (i) the
power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more
of the outstanding shares, or (iii) beneficial ownership of such entity.

“Contribution” shall mean any original work of authorship, including any modifi-
cations or additions to an existing work, that is intentionally submitted by You to
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the Foundation for inclusion in, or documentation of, any of the products owned
or managed by the Foundation (the “Work”). For the purposes of this definition,
“submitted” means any form of electronic, verbal, or written communication sent
to the Foundation or its representatives, including but not limited to communica-
tion on electronic mailing lists, source code control systems, and issue tracking sys-
tems that are managed by, or on behalf of, the Foundation for the purpose of
discussing and improving the Work, but excluding communication that is conspic-
uously marked or otherwise designated in writing by You as “Not a Contribution.”

2. Grant of Copyright License. Subject to the terms and conditions of this
Agreement, You hereby grant to the Foundation and to recipients of software dis-
tributed by the Foundation a perpetual, worldwide, non-exclusive, no-charge, roy-
alty-free, irrevocable copyright license to reproduce, prepare derivative works of,
publicly display, publicly perform, sublicense, and distribute Your Contributions
and such derivative works.

3. Grant of Patent License. Subject to the terms and conditions of this Agreement,
You hereby grant to the Foundation and to recipients of software distributed by the
Foundation a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevo-
cable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only
to those patent claims licensable by You that are necessarily infringed by Your
Contribution(s) alone or by combination of Your Contribution(s) with the Work to
which such Contribution(s) was submitted. If any entity institutes patent litigation
against You or any other entity (including a cross-claim or counterclaim in a law-
suit) alleging that your Contribution, or the Work to which you have contributed,
constitutes direct or contributory patent infringement, then any patent licenses
granted to that entity under this Agreement for that Contribution or Work shall
terminate as of the date such litigation is filed.

4. You represent that you are legally entitled to grant the above license. If your
employer(s) has rights to intellectual property that you create that includes your
Contributions, you represent that you have received permission to make
Contributions on behalf of that employer, that your employer has waived such
rights for your Contributions to the Foundation, or that your employer has exe-
cuted a separate Corporate CLA with the Foundation.

5. You represent that each of Your Contributions is Your original creation (see sec-
tion 7 for submissions on behalf of others). You represent that Your Contribution
submissions include complete details of any third-party license or other restriction
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(including, but not limited to, related patents and trademarks) of which you are
personally aware and which are associated with any part of Your Contributions.

6. You are not expected to provide support for Your Contributions, except to the
extent You desire to provide support. You may provide support for free, for a fee, or
not at all. Unless required by applicable law or agreed to in writing, You provide
Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

7. Should You wish to submit work that is not Your original creation, You may sub-
mit it to the Foundation separately from any Contribution, identifying the com-
plete details of its source and of any license or other restriction (including, but not
limited to, related patents, trademarks, and license agreements) of which you are
personally aware, and conspicuously marking the work as “Submitted on behalf of
a third-party: [named here]”.

8. You agree to notify the Foundation of any facts or circumstances of which you
become aware that would make these representations inaccurate in any respect.

Please sign: __________________________________ Date: _______________
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Corporate CLA
The Apache Software Foundation

Software Grant and Corporate Contributor License Agreement (“Agreement”)
http://www.apache.org/licenses/

(v r190612)

Thank you for your interest in The Apache Software Foundation (the
“Foundation”). In order to clarify the intellectual property license granted with
Contributions from any person or entity, the Foundation must have a Contributor
License Agreement (CLA) on file that has been signed by each Contributor, indi-
cating agreement to the license terms below. This license is for your protection as a
Contributor as well as the protection of the Foundation and its users; it does not
change your rights to use your own Contributions for any other purpose.

This version of the Agreement allows an entity (the “Corporation”) to submit
Contributions to the Foundation, to authorize Contributions submitted by its des-
ignated employees to the Foundation, and to grant copyright and patent licenses
thereto.

If you have not already done so, please complete and send an original signed
Agreement to The Apache Software Foundation, 1901 Munsey Drive, Forest Hill,
MD 21050-2747, U.S.A. If necessary, you may send it by facsimile to the
Foundation at +1-410-803-2258. Please read this document carefully before sign-
ing and keep a copy for your records.

Corporation name: ______________________________________________

Corporation address: ______________________________________________

______________________________________________

______________________________________________

Point of Contact: ______________________________________________

E-Mail: ______________________________________________

Telephone:  _____________________ Fax: ____________________
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You accept and agree to the following terms and conditions for Your present and
future Contributions submitted to the Foundation. In return, the Foundation shall
not use Your Contributions in a way that is contrary to the public benefit or incon-
sistent with its nonprofit status and bylaws in effect at the time of the Contribution.
Except for the license granted herein to the Foundation and recipients of software
distributed by the Foundation, You reserve all right, title, and interest in and to
Your Contributions.

1. Definitions.

“You” (or “Your”) shall mean the copyright owner or legal entity authorized by the
copyright owner that is making this Agreement with the Foundation. For legal enti-
ties, the entity making a Contribution and all other entities that control, are con-
trolled by, or are under common control with that entity are considered to be a
single Contributor. For the purposes of this definition, “control” means (i) the
power, direct or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more
of the outstanding shares, or (iii) beneficial ownership of such entity.

“Contribution” shall mean the code, documentation, or other original works of
authorship expressly identified in Schedule B, as well as any original work of
authorship, including any modifications or additions to an existing work, that is
intentionally submitted by You to the Foundation for inclusion in, or documenta-
tion of, any of the products owned or managed by the Foundation (the “Work”).
For the purposes of this definition, “submitted” means any form of electronic, ver-
bal, or written communication sent to the Foundation or its representatives, includ-
ing but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the
Foundation for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by
You as “Not a Contribution.”

2. Grant of Copyright License. Subject to the terms and conditions of this
Agreement, You hereby grant to the Foundation and to recipients of software dis-
tributed by the Foundation a perpetual, worldwide, non-exclusive, no-charge, roy-
alty-free, irrevocable copyright license to reproduce, prepare derivative works of,
publicly display, publicly perform, sublicense, and distribute Your Contributions
and such derivative works.
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3. Grant of Patent License. Subject to the terms and conditions of this Agreement,
You hereby grant to the Foundation and to recipients of software distributed by the
Foundation a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevo-
cable (except as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such license applies only
to those patent claims licensable by You that are necessarily infringed by Your
Contribution(s) alone or by combination of Your Contribution(s) with the Work to
which such Contribution(s) were submitted. If any entity institutes patent litigation
against You or any other entity (including a cross-claim or counterclaim in a law-
suit) alleging that your Contribution, or the Work to which you have contributed,
constitutes direct or contributory patent infringement, then any patent licenses
granted to that entity under this Agreement for that Contribution or Work shall
terminate as of the date such litigation is filed.

4. You represent that You are legally entitled to grant the above license. You repre-
sent further that each employee of the Corporation designated on Schedule A below
(or in a subsequent written modification to that Schedule) is authorized to submit
Contributions on behalf of the Corporation.

5. You represent that each of Your Contributions is Your original creation (see sec-
tion 7 for submissions on behalf of others).

6. You are not expected to provide support for Your Contributions, except to the
extent You desire to provide support. You may provide support for free, for a fee, or
not at all. Unless required by applicable law or agreed to in writing, You provide
Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.

7. Should You wish to submit work that is not Your original creation, You may sub-
mit it to the Foundation separately from any Contribution, identifying the com-
plete details of its source and of any license or other restriction (including, but not
limited to, related patents, trademarks, and license agreements) of which you are
personally aware, and conspicuously marking the work as “Submitted on behalf of
a third-party: [named here]”.

Contributor License Agreements 355



8. It is your responsibility to notify the Foundation when any change is required to
the list of designated employees authorized to submit Contributions on behalf of
the Corporation, or to the Corporation’s Point of Contact with the Foundation.

Please sign: ____________________________ Date: __________________

Title: ______________________________________________________

Corporation: ______________________________________________________

Schedule A

[Initial list of designated employees. N.B.: authorization is not tied to par-
ticular Contributions.]

Schedule B

[Identification of optional concurrent software grant. Would be left blank
or omitted if there is no concurrent software grant.]
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Abstract
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for dis-
tributed, collaborative, hypermedia information systems. It is a generic, stateless,
protocol which can be used for many tasks beyond its use for hypertext, such as
name servers and distributed object management systems, through extension of its
request methods, error codes, and headers [47]. A feature of HTTP is the typing
and negotiation of data representation, allowing systems to be built independently
of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since
1990. This specification defines the protocol referred to as “HTTP/1.1” and is an
update to RFC 2068 [33].

1 Introduction

1.1 Purpose
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for dis-
tributed, collaborative, hypermedia information systems. HTTP has been in use by
the World-Wide Web global information initiative since 1990. The first version of
HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer across
the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved the protocol by
allowing messages to be in the format of MIME-like messages, containing meta-
information about the data transferred and modifiers on the request/response seman-
tics. However, HTTP/1.0 does not sufficiently take into consideration the effects of
hierarchical proxies, caching, the need for persistent connections, or virtual hosts. In
addition, the proliferation of incompletely implemented applications calling them-
selves “HTTP/1.0” has necessitated a protocol version change in order for two com-
municating applications to determine each other’s true capabilities.

This specification defines the protocol referred to as “HTTP/1.1.” This protocol
includes more stringent requirements than HTTP/1.0 in order to ensure reliable
implementation of its features.
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Practical information systems require more functionality than simple retrieval,
including search, front-end update, and annotation. HTTP allows an open-ended
set of methods and headers that indicate the purpose of a request [47]. It builds on
the discipline of reference provided by the Uniform Resource Identifier (URI) [3],
as a location (URL) [4] or name (URN) [20], for indicating the resource to which
a method is to be applied. Messages are passed in a format similar to that used 
by Internet mail [9] as defined by the Multipurpose Internet Mail Extensions
(MIME) [7].

HTTP is also used as a generic protocol for communication between user agents
and proxies/gateways to other Internet systems, including those supported by the
SMTP [16], NNTP [13], FTP [18], Gopher [2], and WAIS [10] protocols. In this
way, HTTP allows basic hypermedia access to resources available from diverse
applications.

1.2 Requirements
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL
NOT,” “SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and
“OPTIONAL” in this document are to be interpreted as described in RFC 2119 [34].

An implementation is not compliant if it fails to satisfy one or more of the MUST
or REQUIRED level requirements for the protocols it implements. An implemen-
tation that satisfies all the MUST or REQUIRED level and all the SHOULD level
requirements for its protocols is said to be “unconditionally compliant”; one that
satisfies all the MUST level requirements but not all the SHOULD level require-
ments for its protocols is said to be “conditionally compliant.”

1.3 Terminology
This specification uses a number of terms to refer to the roles played by participants
in, and objects of, the HTTP communication.

connection

A transport layer virtual circuit established between two programs for the purpose
of communication.
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message

The basic unit of HTTP communication, consisting of a structured sequence of
octets matching the syntax defined in section 4 and transmitted via the connection.

request

An HTTP request message, as defined in section 5.

response

An HTTP response message, as defined in section 6.

resource

A network data object or service that can be identified by a URI, as defined in sec-
tion 3.2. Resources may be available in multiple representations (e.g., multiple lan-
guages, data formats, size, and resolutions) or vary in other ways.

entity

The information transferred as the payload of a request or response. An entity con-
sists of metainformation in the form of entity-header fields and content in the form
of an entity-body, as described in section 7.

representation

An entity included with a response that is subject to content negotiation, as
described in section 12. There may exist multiple representations associated with a
particular response status.

content negotiation

The mechanism for selecting the appropriate representation when servicing a
request, as described in section 12. The representation of entities in any response
can be negotiated (including error responses).

variant

A resource may have one, or more than one, representation(s) associated with it at
any given instant. Each of these representations is termed a “variant.” Use of the
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term “variant” does not necessarily imply that the resource is subject to content
negotiation.

client

A program that establishes connections for the purpose of sending requests.

user agent

The client which initiates a request. These are often browsers, editors, spiders (web-
traversing robots), or other end user tools.

server

An application program that accepts connections in order to service requests by
sending back responses. Any given program may be capable of being both a client
and a server; our use of these terms refers only to the role being performed by the
program for a particular connection, rather than to the program’s capabilities in
general. Likewise, any server may act as an origin server, proxy, gateway, or tunnel,
switching behavior based on the nature of each request.

origin server

The server on which a given resource resides or is to be created.

proxy

An intermediary program which acts as both a server and a client for the purpose
of making requests on behalf of other clients. Requests are serviced internally or by
passing them on, with possible translation, to other servers. A proxy MUST imple-
ment both the client and server requirements of this specification. A “transparent
proxy” is a proxy that does not modify the request or response beyond what is
required for proxy authentication and identification. A “non-transparent proxy” is
a proxy that modifies the request or response in order to provide some added serv-
ice to the user agent, such as group annotation services, media type transformation,
protocol reduction, or anonymity filtering. Except where either transparent or non-
transparent behavior is explicitly stated, the HTTP proxy requirements apply to
both types of proxies.
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gateway

A server which acts as an intermediary for some other server. Unlike a proxy, a gate-
way receives requests as if it were the origin server for the requested resource; the
requesting client may not be aware that it is communicating with a gateway.

tunnel

An intermediary program which is acting as a blind relay between two connections.
Once active, a tunnel is not considered a party to the HTTP communication,
though the tunnel may have been initiated by an HTTP request. The tunnel ceases
to exist when both ends of the relayed connections are closed.

cache

A program’s local store of response messages and the subsystem that controls its
message storage, retrieval, and deletion. A cache stores cacheable responses in order
to reduce the response time and network bandwidth consumption on future, equiv-
alent requests. Any client or server may include a cache, though a cache cannot be
used by a server that is acting as a tunnel.

cacheable

A response is cacheable if a cache is allowed to store a copy of the response message
for use in answering subsequent requests. The rules for determining the cacheabil-
ity of HTTP responses are defined in section 13. Even if a resource is cacheable,
there may be additional constraints on whether a cache can use the cached copy for
a particular request.

first-hand

A response is first-hand if it comes directly and without unnecessary delay from the
origin server, perhaps via one or more proxies. A response is also first-hand if its
validity has just been checked directly with the origin server.

explicit expiration time

The time at which the origin server intends that an entity should no longer be
returned by a cache without further validation.
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heuristic expiration time

An expiration time assigned by a cache when no explicit expiration time is
available.

age

The age of a response is the time since it was sent by, or successfully validated with,
the origin server.

freshness lifetime

The length of time between the generation of a response and its expiration time.

fresh

A response is fresh if its age has not yet exceeded its freshness lifetime.

stale

A response is stale if its age has passed its freshness lifetime.

semantically transparent

A cache behaves in a “semantically transparent” manner, with respect to a particu-
lar response, when its use affects neither the requesting client nor the origin server,
except to improve performance. When a cache is semantically transparent, the client
receives exactly the same response (except for hop-by-hop headers) that it would
have received had its request been handled directly by the origin server.

validator

A protocol element (e.g., an entity tag or a Last-Modified time) that is used to find
out whether a cache entry is an equivalent copy of an entity.

upstream/downstream

Upstream and downstream describe the flow of a message: all messages flow from
upstream to downstream.
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inbound/outbound

Inbound and outbound refer to the request and response paths for messages:
“inbound” means “traveling toward the origin server,” and “outbound” means “trav-
eling toward the user agent.”

1.4 Overall Operation
The HTTP protocol is a request/response protocol. A client sends a request to the
server in the form of a request method, URI, and protocol version, followed by a
MIME-like message containing request modifiers, client information, and possible
body content over a connection with a server. The server responds with a status line,
including the message’s protocol version and a success or error code, followed by 
a MIME-like message containing server information, entity metainformation, and
possible entity-body content. The relationship between HTTP and MIME is
described in appendix 19.4.

Most HTTP communication is initiated by a user agent and consists of a request to
be applied to a resource on some origin server. In the simplest case, this may be
accomplished via a single connection (v) between the user agent (UA) and the ori-
gin server (O).

request chain ------------------------>

UA -------------------v------------------- O

<----------------------- response chain

A more complicated situation occurs when one or more intermediaries are present
in the request/response chain. There are three common forms of intermediary:
proxy, gateway, and tunnel. A proxy is a forwarding agent, receiving requests for a
URI in its absolute form, rewriting all or part of the message, and forwarding the
reformatted request toward the server identified by the URI. A gateway is a receiv-
ing agent, acting as a layer above some other server(s) and, if necessary, translating
the requests to the underlying server’s protocol. A tunnel acts as a relay point between
two connections without changing the messages; tunnels are used when the com-
munication needs to pass through an intermediary (such as a firewall) even when
the intermediary cannot understand the contents of the messages.

request chain -------------------------------------->

UA -----v----- A -----v----- B -----v----- C -----v----- O

<------------------------------------- response chain
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The figure above shows three intermediaries (A, B, and C) between the user agent
and origin server. A request or response message that travels the whole chain will
pass through four separate connections. This distinction is important because some
HTTP communication options may apply only to the connection with the nearest,
non-tunnel neighbor, only to the end-points of the chain, or to all connections
along the chain. Although the diagram is linear, each participant may be engaged in
multiple, simultaneous communications. For example, B may be receiving requests
from many clients other than A, and/or forwarding requests to servers other than
C, at the same time that it is handling A’s request.

Any party to the communication which is not acting as a tunnel may employ 
an internal cache for handling requests. The effect of a cache is that the
request/response chain is shortened if one of the participants along the chain has
a cached response applicable to that request. The following illustrates the resulting
chain if B has a cached copy of an earlier response from O (via C) for a request
which has not been cached by UA or A.

request chain ---------->

UA -----v----- A -----v----- B - - - - - - C - - - - - - O

<--------- response chain

Not all responses are usefully cacheable, and some requests may contain modifiers
which place special requirements on cache behavior. HTTP requirements for cache
behavior and cacheable responses are defined in section 13.

In fact, there are a wide variety of architectures and configurations of caches and
proxies currently being experimented with or deployed across the World Wide Web.
These systems include national hierarchies of proxy caches to save transoceanic
bandwidth, systems that broadcast or multicast cache entries, organizations that dis-
tribute subsets of cached data via CD-ROM, and so on. HTTP systems are used in
corporate intranets over high-bandwidth links, and for access via PDAs with low-
power radio links and intermittent connectivity. The goal of HTTP/1.1 is to sup-
port the wide diversity of configurations already deployed while introducing
protocol constructs that meet the needs of those who build web applications that
require high reliability and, failing that, at least reliable indications of failure.

HTTP communication usually takes place over TCP/IP connections. The default
port is TCP 80 [19], but other ports can be used. This does not preclude HTTP
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from being implemented on top of any other protocol on the Internet, or on other
networks. HTTP only presumes a reliable transport; any protocol that provides
such guarantees can be used; the mapping of the HTTP/1.1 request and response
structures onto the transport data units of the protocol in question is outside the
scope of this specification.

In HTTP/1.0, most implementations used a new connection for each request/
response exchange. In HTTP/1.1, a connection may be used for one or more
request/response exchanges, although connections may be closed for a variety of
reasons (see section 8.1).

2 Notational Conventions and Generic Grammar

2.1 Augmented BNF
All of the mechanisms specified in this document are described in both prose and
an augmented Backus-Naur Form (BNF) similar to that used by RFC 822 [9].
Implementers will need to be familiar with the notation in order to understand this
specification. The augmented BNF includes the following constructs:

name = definition

The name of a rule is simply the name itself (without any enclosing “<” and “>”)
and is separated from its definition by the equal “=” character. White space is only
significant in that indentation of continuation lines is used to indicate a rule defi-
nition that spans more than one line. Certain basic rules are in uppercase, such as
SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within defini-
tions whenever their presence will facilitate discerning the use of rule names.

“literal”

Quotation marks surround literal text. Unless stated otherwise, the text is case-
insensitive.

rule1 | rule2

Elements separated by a bar (“|”) are alternatives, e.g., “yes | no” will accept yes
or no.
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(rule1 rule2)

Elements enclosed in parentheses are treated as a single element. Thus, “(elem 
(foo | bar) elem)” allows the token sequences “elem foo elem” and “elem bar elem.”

*rule

The character “*” preceding an element indicates repetition. The full form is
“<n>*<m>element” indicating at least <n> and at most <m> occurrences of element.
Default values are 0 and infinity so that “*(element)” allows any number, including
zero; “1*element” requires at least one; and “1*2element” allows one or two.

[rule]

Square brackets enclose optional elements; “[foo bar]” is equivalent to 
“*1(foo bar).”

N rule

Specific repetition: “<n>(element)” is equivalent to “<n>*<n>(element)”; that is,
exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit number, and
3ALPHA is a string of three alphabetic characters.

#rule

A construct “#” is defined, similar to “*”, for defining lists of elements. The full
form is “<n>#<m>element” indicating at least <n> and at most <m> elements, each
separated by one or more commas (“,”) and OPTIONAL linear white space (LWS).
This makes the usual form of lists very easy; a rule such as

( *LWS element *( *LWS "," *LWS element ))

can be shown as

1#element

Wherever this construct is used, null elements are allowed, but do not contribute to
the count of elements present. That is, “(element), , (element) ” is permitted, but
counts as only two elements. Therefore, where at least one element is required, at
least one non-null element MUST be present. Default values are 0 and infinity so
that “#element” allows any number, including zero; “1#element” requires at least
one; and “1#2element” allows one or two.
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; comment

A semi-colon, set off some distance to the right of rule text, starts a comment that
continues to the end of line. This is a simple way of including useful notes in par-
allel with the specifications.

implied *LWS

The grammar described by this specification is word-based. Except where noted
otherwise, linear white space (LWS) can be included between any two adjacent
words (token or quoted-string), and between adjacent words and separators, with-
out changing the interpretation of a field. At least one delimiter (LWS and/or sep-
arators) MUST exist between any two tokens (for the definition of “token” below),
since they would otherwise be interpreted as a single token.

2.2 Basic Rules
The following rules are used throughout this specification to describe basic parsing
constructs. The US-ASCII coded character set is defined by ANSI X3.4-1986 [21].

OCTET    = <any 8-bit sequence of data>
CHAR     = <any US-ASCII character (octets 0 - 127)>
UPALPHA  = <any US-ASCII uppercase letter "A".."Z">
LOALPHA  = <any US-ASCII lowercase letter "a".."z">
ALPHA    = UPALPHA | LOALPHA
DIGIT    = <any US-ASCII digit "0".."9">
CTL      = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>
CR       = <US-ASCII CR, carriage return (13)>
LF       = <US-ASCII LF, linefeed (10)>
SP       = <US-ASCII SP, space (32)>
HT       = <US-ASCII HT, horizontal-tab (9)>
<">      = <US-ASCII double-quote mark (34)>

HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all protocol
elements except the entity-body (see appendix 19.3 for tolerant applications). The
end-of-line marker within an entity-body is defined by its associated media type, as
described in section 3.7.

CRLF     = CR LF

HTTP/1.1 header field values can be folded onto multiple lines if the continuation
line begins with a space or horizontal tab. All linear white space, including folding,
has the same semantics as SP. A recipient MAY replace any linear white space with
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a single SP before interpreting the field value or forwarding the message down-
stream.

LWS      = [CRLF] 1*( SP | HT )

The TEXT rule is only used for descriptive field contents and values that are not
intended to be interpreted by the message parser. Words of *TEXT MAY contain
characters from character sets other than ISO-8859-1 [22] only when encoded
according to the rules of RFC 2047[14].

TEXT      = <any OCTET except CTLs, but including LWS>

A CRLF is allowed in the definition of TEXT only as part of a header field contin-
uation. It is expected that the folding LWS will be replaced with a single SP before
interpretation of the TEXT value.

Hexadecimal numeric characters are used in several protocol elements.

HEX      = "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" | 
"f" | DIGIT

Many HTTP/1.1 header field values consist of words separated by LWS or special
characters. These special characters MUST be in a quoted string to be used within
a parameter value (as defined in section 3.6).

token     = 1*<any CHAR except CTLs or separators>
separators   = "(" | ")" | "<" | ">" | "@" | "," | ";" | ":"

| "\" | <"> | "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

Comments can be included in some HTTP header fields by surrounding the com-
ment text with parentheses. Comments are only allowed in fields containing
“comment” as part of their field value definition. In all other fields, parentheses are
considered part of the field value.

comment    = "(" *( ctext | quoted-pair | comment ) ")"
ctext      = <any TEXT excluding "(" and ")">

A string of text is parsed as a single word if it is quoted using double-quote marks.
quoted-string = ( <"> *(qdtext | quoted-pair ) <"> )
qdtext        = <any TEXT except <">>

The backslash character (“\”) MAY be used as a single-character quoting mechanism
only within quoted-string and comment constructs.

quoted-pair  = "\" CHAR
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3 Protocol Parameters

3.1 HTTP Version
HTTP uses a “<major>.<minor>” numbering scheme to indicate versions of the
protocol. The protocol versioning policy is intended to allow the sender to indicate
the format of a message and its capacity for understanding further HTTP commu-
nication, rather than the features obtained via that communication. No change is
made to the version number for the addition of message components which do not
affect communication behavior or which only add to extensible field values. The
<minor> number is incremented when the changes made to the protocol add fea-
tures which do not change the general message parsing algorithm, but which may
add to the message semantics and imply additional capabilities of the sender. The
<major> number is incremented when the format of a message within the protocol
is changed. See RFC 2145 [36] for a fuller explanation.

The version of an HTTP message is indicated by an HTTP-Version field in the first
line of the message.

HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT

Note that the major and minor numbers MUST be treated as separate integers and
that each MAY be incremented higher than a single digit. Thus, HTTP/2.4 is a
lower version than HTTP/2.13, which in turn is lower than HTTP/12.3. Leading
zeros MUST be ignored by recipients and MUST NOT be sent.

An application that sends a request or response message that includes HTTP-
Version of “HTTP/1.1” MUST be at least conditionally compliant with this 
specification. Applications that are at least conditionally compliant with this speci-
fication SHOULD use an HTTP-Version of “HTTP/1.1” in their messages, and
MUST do so for any message that is not compatible with HTTP/1.0. For more
details on when to send specific HTTP-Version values, see RFC 2145 [36].

The HTTP version of an application is the highest HTTP version for which the
application is at least conditionally compliant.

Proxy and gateway applications need to be careful when forwarding messages in
protocol versions different from that of the application. Since the protocol version
indicates the protocol capability of the sender, a proxy/gateway MUST NOT send
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a message with a version indicator which is greater than its actual version. If a
higher version request is received, the proxy/gateway MUST either downgrade the
request version, or respond with an error, or switch to tunnel behavior.

Due to interoperability problems with HTTP/1.0 proxies discovered since the
publication of RFC 2068 [33], caching proxies MUST, gateways MAY, and tun-
nels MUST NOT upgrade the request to the highest version they support. The
proxy/gateway’s response to that request MUST be in the same major version as
the request.

Note: Converting between versions of HTTP may involve modification of
header fields required or forbidden by the versions involved.

3.2 Uniform Resource Identifiers
URIs have been known by many names: WWW addresses, Universal Document
Identifiers, Universal Resource Identifiers [3], and finally the combination of
Uniform Resource Locators (URL) [4] and Names (URN) [20]. As far as HTTP is
concerned, Uniform Resource Identifiers are simply formatted strings which iden-
tify—via name, location, or any other characteristic—a resource.

3.2.1 General Syntax

URIs in HTTP can be represented in absolute form or relative to some known base
URI [11], depending upon the context of their use. The two forms are differenti-
ated by the fact that absolute URIs always begin with a scheme name followed by a
colon. For definitive information on URL syntax and semantics, see “Uniform
Resource Identifiers (URI): Generic Syntax and Semantics,” RFC 2396 [42] (which
replaces RFCs 1738 [4] and RFC 1808 [11]). This specification adopts the defini-
tions of “URI-reference,” “absoluteURI,” “relativeURI,” “port,” “host,””abs_path,”
“rel_path,” and “authority” from that specification.

The HTTP protocol does not place any a priori limit on the length of a URI.
Servers MUST be able to handle the URI of any resource they serve, and SHOULD
be able to handle URIs of unbounded length if they provide GET-based forms that
could generate such URIs. A server SHOULD return 414 (Request-URI Too Long)
status if a URI is longer than the server can handle (see section 10.4.15).
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Note: Servers ought to be cautious about depending on URI lengths above
255 bytes, because some older client or proxy implementations might not
properly support these lengths.

3.2.2 http URL

The “http” scheme is used to locate network resources via the HTTP protocol. This
section defines the scheme-specific syntax and semantics for http URLs.

http_URL = "http:" "//" host [ ":" port ] [ abs_path [ "?" query ]]

If the port is empty or not given, port 80 is assumed. The semantics are that the
identified resource is located at the server listening for TCP connections on that
port of that host, and the Request-URI for the resource is abs_path (section 5.1.2).
The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC
1900 [24]). If the abs_path is not present in the URL, it MUST be given as “/”
when used as a Request-URI for a resource (section 5.1.2). If a proxy receives a host
name which is not a fully qualified domain name, it MAY add its domain to the
host name it received. If a proxy receives a fully qualified domain name, the proxy
MUST NOT change the host name.

3.2.3 URI Comparison

When comparing two URIs to decide if they match or not, a client SHOULD 
use a case-sensitive octet-by-octet comparison of the entire URIs, with these
exceptions:

• A port that is empty or not given is equivalent to the default port for that URI-
reference;

• Comparisons of host names MUST be case-insensitive;

• Comparisons of scheme names MUST be case-insensitive;

• An empty abs_path is equivalent to an abs_path of “/”.

Characters other than those in the “reserved” and “unsafe” sets (see RFC 2396 [42])
are equivalent to their ““%” HEX HEX” encoding.

For example, the following three URIs are equivalent:
http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html
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3.3 Date/Time Formats

3.3.1 Full Date

HTTP applications have historically allowed three different formats for the repre-
sentation of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT  ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994        ; ANSI C's asctime() format

The first format is preferred as an Internet standard and represents a fixed-length
subset of that defined by RFC 1123 [8] (an update to RFC 822 [9]). The second
format is in common use, but is based on the obsolete RFC 850 [12] date format
and lacks a four-digit year. HTTP/1.1 clients and servers that parse the date value
MUST accept all three formats (for compatibility with HTTP/1.0), though they
MUST only generate the RFC 1123 format for representing HTTP-date values in
header fields. See section 19.3 for further information.

Note: Recipients of date values are encouraged to be robust in accepting date val-
ues that may have been sent by non-HTTP applications, as is sometimes the case
when retrieving or posting messages via proxies/gateways to SMTP or NNTP.

All HTTP date/time stamps MUST be represented in Greenwich Mean Time
(GMT), without exception. For the purposes of HTTP, GMT is exactly equal to
UTC (Coordinated Universal Time). This is indicated in the first two formats by
the inclusion of “GMT” as the three-letter abbreviation for time zone, and MUST
be assumed when reading the asctime format. HTTP-date is case-sensitive and
MUST NOT include additional LWS beyond that specifically included as SP in the
grammar.

HTTP-date  = rfc1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT
date1    = 2DIGIT SP month SP 4DIGIT

; day month year (e.g., 02 Jun 1982)
date2    = 2DIGIT "-" month "-" 2DIGIT

; day-month-year (e.g., 02-Jun-82)
date3    = month SP ( 2DIGIT | ( SP 1DIGIT ))

; month day (e.g., Jun 2)
time     = 2DIGIT ":" 2DIGIT ":" 2DIGIT

; 00:00:00 - 23:59:59
wkday    = "Mon" | "Tue" | "Wed"

| "Thu" | "Fri" | "Sat" | "Sun"
weekday   = "Monday" | "Tuesday" | "Wednesday"

| "Thursday" | "Friday" | "Saturday" | "Sunday"
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month    = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"

Note: HTTP requirements for the date/time stamp format apply only to their
usage within the protocol stream. Clients and servers are not required to use
these formats for user presentation, request logging, etc.

3.3.2 Delta Seconds

Some HTTP header fields allow a time value to be specified as an integer number
of seconds, represented in decimal, after the time that the message was received.

delta-seconds = 1*DIGIT

3.4 Character Sets
HTTP uses the same definition of the term “character set” as that described for
MIME: The term “character set” is used in this document to refer to a method used
with one or more tables to convert a sequence of octets into a sequence of charac-
ters. Note that unconditional conversion in the other direction is not required, in
that not all characters may be available in a given character set and a character set
may provide more than one sequence of octets to represent a particular character.
This definition is intended to allow various kinds of character encoding, from sim-
ple single-table mappings such as US-ASCII to complex table switching methods
such as those that use ISO-2022’s techniques. However, the definition associated
with a MIME character set name MUST fully specify the mapping to be performed
from octets to characters. In particular, use of external profiling information to
determine the exact mapping is not permitted.

Note: This use of the term “character set” is more commonly referred to as a
“character encoding.” However, since HTTP and MIME share the same reg-
istry, it is important that the terminology also be shared.

HTTP character sets are identified by case-insensitive tokens. The complete set of
tokens is defined by the IANA Character Set registry [19].

charset = token

Although HTTP allows an arbitrary token to be used as a charset value, any token
that has a predefined value within the IANA Character Set registry [19] MUST rep-
resent the character set defined by that registry. Applications SHOULD limit their
use of character sets to those defined by the IANA registry.
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Implementers should be aware of IETF character set requirements [38] [41].

3.4.1 Missing Charset

Some HTTP/1.0 software has interpreted a Content-Type header without charset
parameter incorrectly to mean “recipient should guess.” Senders wishing to defeat
this behavior MAY include a charset parameter even when the charset is ISO-8859-
1 and SHOULD do so when it is known that it will not confuse the recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with an explicit
charset parameter. HTTP/1.1 recipients MUST respect the charset label provided
by the sender; and those user agents that have a provision to “guess” a charset
MUST use the charset from the content-type field if they support that charset,
rather than the recipient’s preference, when initially displaying a document. See
section 3.7.1.

3.5 Content Codings
Content coding values indicate an encoding transformation that has been or can be
applied to an entity. Content codings are primarily used to allow a document to 
be compressed or otherwise usefully transformed without losing the identity of its
underlying media type and without loss of information. Frequently, the entity is
stored in coded form, transmitted directly, and only decoded by the recipient.

content-coding = token

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding val-
ues in the Accept-Encoding (section 14.3) and Content-Encoding (section 14.11)
header fields. Although the value describes the content-coding, what is more impor-
tant is that it indicates what decoding mechanism will be required to remove the
encoding.

The Internet Assigned Numbers Authority (IANA) acts as a registry for content-
coding value tokens. Initially, the registry contains the following tokens:

gzip

An encoding format produced by the file compression program “gzip” (GNU zip)
as described in RFC 1952 [25]. This format is a Lempel-Ziv coding (LZ77) with a
32 bit CRC.
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compress

The encoding format produced by the common UNIX file compression program
“compress.” This format is an adaptive Lempel-Ziv-Welch coding (LZW). Use of
program names for the identification of encoding formats is not desirable and is dis-
couraged for future encodings. Their use here is representative of historical practice,
not good design. For compatibility with previous implementations of HTTP, appli-
cations SHOULD consider “x-gzip” and “x-compress” to be equivalent to “gzip”
and “compress,” respectively.

deflate

The “zlib” format defined in RFC 1950 [31] in combination with the “deflate”
compression mechanism described in RFC 1951 [29].

identity

The default (identity) encoding; the use of no transformation whatsoever. This con-
tent-coding is used only in the Accept-Encoding header, and SHOULD NOT be
used in the Content-Encoding header.

New content-coding value tokens SHOULD be registered; to allow interoperabil-
ity between clients and servers, specifications of the content coding algorithms
needed to implement a new value SHOULD be publicly available and adequate for
independent implementation, and conform to the purpose of content coding
defined in this section.

3.6 Transfer Codings
Transfer-coding values are used to indicate an encoding transformation that has
been, can be, or may need to be applied to an entity-body in order to ensure “safe
transport” through the network. This differs from a content-coding in that the
transfer-coding is a property of the message, not of the original entity.

transfer-coding     = "chunked" | transfer-extension
transfer-extension  = token *( ";" parameter )

Parameters are in the form of attribute/value pairs.
parameter        = attribute "=" value
attribute        = token
value            = token | quoted-string
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All transfer-coding values are case-insensitive. HTTP/1.1 uses transfer-coding val-
ues in the TE header field (section 14.39) and in the Transfer-Encoding header field
(section 14.41).

Whenever a transfer-coding is applied to a message-body, the set of transfer-codings
MUST include “chunked,” unless the message is terminated by closing the con-
nection. When the “chunked” transfer-coding is used, it MUST be the last trans-
fer-coding applied to the message-body. The “chunked” transfer-coding MUST
NOT be applied more than once to a message-body. These rules allow the recipient
to determine the transfer-length of the message (section 4.4).

Transfer-codings are analogous to the Content-Transfer-Encoding values of MIME
[7], which were designed to enable safe transport of binary data over a 7-bit trans-
port service. However, safe transport has a different focus for an 8-bit-clean transfer
protocol. In HTTP, the only unsafe characteristic of message-bodies is the difficulty
in determining the exact body length (section 7.2.2), or the desire to encrypt data
over a shared transport.

The Internet Assigned Numbers Authority (IANA) acts as a registry for transfer-
coding value tokens. Initially, the registry contains the following tokens: “chunked”
(section 3.6.1), “identity” (section 3.6.2), “gzip” (section 3.5), “compress” (section
3.5), and “deflate” (section 3.5).

New transfer-coding value tokens SHOULD be registered in the same way as new
content-coding value tokens (section 3.5). 

A server which receives an entity-body with a transfer-coding it does not understand
SHOULD return 501 (Unimplemented), and close the connection. A server
MUST NOT send transfer-codings to an HTTP/1.0 client.

3.6.1 Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to transfer it as a
series of chunks, each with its own size indicator, followed by an OPTIONAL
trailer containing entity-header fields. This allows dynamically produced content to
be transferred along with the information necessary for the recipient to verify that
it has received the full message.

Chunked-Body  = *chunk
last-chunk
trailer
CRLF
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chunk     = chunk-size [ chunk-extension ] CRLF
chunk-data CRLF

chunk-size   = 1*HEX
last-chunk   = 1*("0") [ chunk-extension ] CRLF
chunk-extension= *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
chunk-ext-name = token
chunk-ext-val = token | quoted-string
chunk-data   = chunk-size(OCTET)
trailer    = *(entity-header CRLF)

The chunk-size field is a string of hex digits indicating the size of the chunk. The
chunked encoding is ended by any chunk whose size is zero, followed by the trailer,
which is terminated by an empty line.

The trailer allows the sender to include additional HTTP header fields at the end
of the message. The Trailer header field can be used to indicate which header fields
are included in a trailer (see section 14.40).

A server using chunked transfer-coding in a response MUST NOT use the trailer
for any header fields unless at least one of the following is true:

(a) The request included a TE header field that indicates “trailers” is acceptable
in the transfer-coding of the response, as described in section 14.39; or,

(b) The server is the origin server for the response, the trailer fields consist
entirely of optional metadata, and the recipient could use the message (in a
manner acceptable to the origin server) without receiving this metadata. In
other words, the origin server is willing to accept the possibility that the
trailer fields might be silently discarded along the path to the client.

This requirement prevents an interoperability failure when the message is being
received by an HTTP/1.1 (or later) proxy and forwarded to an HTTP/1.0 recipi-
ent. It avoids a situation where compliance with the protocol would have necessi-
tated a possibly infinite buffer on the proxy.

An example process for decoding a Chunked-Body is presented in appendix 19.4.6.

All HTTP/1.1 applications MUST be able to receive and decode the “chunked”
transfer-coding, and MUST ignore chunk-extension extensions they do not
understand.
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3.7 Media Types
HTTP uses Internet Media Types [17] in the Content-Type (section 14.17) and
Accept (section 14.1) header fields in order to provide open and extensible data typ-
ing and type negotiation.
media-type = type "/" subtype *( ";" parameter )
type = token
subtype = token

Parameters MAY follow the type/subtype in the form of attribute/value pairs (as
defined in section 3.6).

The type, subtype, and parameter attribute names are case-insensitive. Parameter
values might or might not be case-sensitive, depending on the semantics of the
parameter name. Linear white space (LWS) MUST NOT be used between the type
and subtype, nor between an attribute and its value. The presence or absence of a
parameter might be significant to the processing of a media-type, depending on its
definition within the media type registry.

Note that some older HTTP applications do not recognize media type parameters.
When sending data to older HTTP applications, implementations SHOULD only
use media type parameters when they are required by that type/subtype definition.

Media-type values are registered with the Internet Assigned Number Authority
(IANA [19]). The media type registration process is outlined in RFC 1590 [17].
Use of nonregistered media types is discouraged.

3.7.1 Canonicalization and Text Defaults

Internet media types are registered with a canonical form. An entity-body trans-
ferred via HTTP messages MUST be represented in the appropriate canonical form
prior to its transmission except for “text” types, as defined in the next paragraph.

When in canonical form, media subtypes of the “text” type use CRLF as the text
line break. HTTP relaxes this requirement and allows the transport of text media
with plain CR or LF alone representing a line break when it is done consistently for
an entire entity-body. HTTP applications MUST accept CRLF, bare CR, and bare
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LF as being representative of a line break in text media received via HTTP. In addi-
tion, if the text is represented in a character set that does not use octets 13 and
10 for CR and LF respectively, as is the case for some multi-byte character sets,
HTTP allows the use of whatever octet sequences are defined by that character set
to represent the equivalent of CR and LF for line breaks. This flexibility regarding
line breaks applies only to text media in the entity-body; a bare CR or LF MUST
NOT be substituted for CRLF within any of the HTTP control structures (such as
header fields and multipart boundaries).

If an entity-body is encoded with a content-coding, the underlying data MUST be
in a form defined above prior to being encoded.

The “charset” parameter is used with some media types to define the character set
(section 3.4) of the data. When no explicit charset parameter is provided by the
sender, media subtypes of the “text” type are defined to have a default charset value
of “ISO-8859-1” when received via HTTP. Data in character sets other than 
“ISO-8859-1” or its subsets MUST be labeled with an appropriate charset value.
See section 3.4.1 for compatibility problems.

3.7.2 Multipart Types

MIME provides for a number of “multipart” types—encapsulations of one or more
entities within a single message-body. All multipart types share a common syntax,
as defined in section 5.1.1 of RFC 2046 [40], and MUST include a boundary
parameter as part of the media type value. The message body is itself a protocol ele-
ment and MUST therefore use only CRLF to represent line breaks between body-
parts. Unlike in RFC 2046, the epilogue of any multipart message MUST be
empty; HTTP applications MUST NOT transmit the epilogue (even if the origi-
nal multipart contains an epilogue). These restrictions exist in order to preserve the
self-delimiting nature of a multipart message-body, wherein the “end” of the mes-
sage-body is indicated by the ending multipart boundary.

In general, HTTP treats a multipart message-body no differently than any other
media type: strictly as payload. The one exception is the “multipart/byteranges” type
(appendix 19.2) when it appears in a 206 (Partial Content) response, which will be
interpreted by some HTTP caching mechanisms as described in sections 13.5.4 and
14.16. In all other cases, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type. The MIME
header fields within each body-part of a multipart message-body do not have any sig-
nificance to HTTP beyond that defined by their MIME semantics.
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In general, an HTTP user agent SHOULD follow the same or similar behavior as
a MIME user agent would upon receipt of a multipart type. If an application
receives an unrecognized multipart subtype, the application MUST treat it as being
equivalent to “multipart/mixed.”

Note: The “multipart/form-data” type has been specifically defined for carrying
form data suitable for processing via the POST request method, as described in
RFC 1867 [15].

3.8 Product Tokens
Product tokens are used to allow communicating applications to identify themselves
by software name and version. Most fields using product tokens also allow sub-
products which form a significant part of the application to be listed, separated by
white space. By convention, the products are listed in order of their significance for
identifying the application.

product     = token ["/" product-version]
product-version = token

Examples:
User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Server: Apache/0.8.4

Product tokens SHOULD be short and to the point. They MUST NOT be used
for advertising or other non-essential information. Although any token character
MAY appear in a product-version, this token SHOULD only be used for a version
identifier (i.e., successive versions of the same product SHOULD only differ in the
product-version portion of the product value).

3.9 Quality Values
HTTP content negotiation (section 12) uses short “floating point” numbers to indi-
cate the relative importance (“weight”) of various negotiable parameters. A weight is
normalized to a real number in the range 0 through 1, where 0 is the minimum and
1 the maximum value. If a parameter has a quality value of 0, then content with this
parameter is “not acceptable” for the client. HTTP/1.1 applications MUST NOT
generate more than three digits after the decimal point. User configuration of these
values SHOULD also be limited in this fashion.

qvalue     = ( “0” [ “.” 0*3DIGIT ] )

| ( “1” [ “.” 0*3(“0”) ] )
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“Quality values” is a misnomer, since these values merely represent relative degra-
dation in desired quality.

3.10 Language Tags
A language tag identifies a natural language spoken, written, or otherwise conveyed
by human beings for communication of information to other human beings.
Computer languages are explicitly excluded. HTTP uses language tags within the
Accept-Language and Content-Language fields.

The syntax and registry of HTTP language tags is the same as that defined by RFC
1766 [1]. In summary, a language tag is composed of 1 or more parts: A primary
language tag and a possibly empty series of subtags:

language-tag = primary-tag *( "-" subtag )
primary-tag  = 1*8ALPHA
subtag    = 1*8ALPHA

White space is not allowed within the tag and all tags are case-insensitive. The name
space of language tags is administered by the IANA. Example tags include

en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag is an ISO-639 language abbreviation and any two-
letter initial subtag is an ISO-3166 country code. (The last three tags above are not
registered tags; all but the last are examples of tags which could be registered in
future.)

3.11 Entity Tags
Entity tags are used for comparing two or more entities from the same requested
resource. HTTP/1.1 uses entity tags in the ETag (section 14.19), If-Match (section
14.24), If-None-Match (section 14.26), and If-Range (section 14.27) header fields.
The definition of how they are used and compared as cache validators is in section
13.3.3. An entity tag consists of an opaque quoted string, possibly prefixed by a
weakness indicator.

entity-tag = [ weak ] opaque-tag
weak    = "W/"
opaque-tag = quoted-string

A “strong entity tag” MAY be shared by two entities of a resource only if they are
equivalent by octet equality.
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A “weak entity tag,” indicated by the “W/” prefix, MAY be shared by two entities
of a resource only if the entities are equivalent and could be substituted for each
other with no significant change in semantics. A weak entity tag can only be used
for weak comparison.

An entity tag MUST be unique across all versions of all entities associated with a
particular resource. A given entity tag value MAY be used for entities obtained by
requests on different URIs. The use of the same entity tag value in conjunction with
entities obtained by requests on different URIs does not imply the equivalence of
those entities.

3.12 Range Units
HTTP/1.1 allows a client to request that only part (a range of ) the response entity
be included within the response. HTTP/1.1 uses range units in the Range (sec-
tion 14.35) and Content-Range (section 14.16) header fields. An entity can be
broken down into subranges according to various structural units.

range-unit    = bytes-unit | other-range-unit
bytes-unit    = "bytes"
other-range-unit = token

The only range unit defined by HTTP/1.1 is “bytes.” HTTP/1.1 implementations
MAY ignore ranges specified using other units.

HTTP/1.1 has been designed to allow implementations of applications that do not
depend on knowledge of ranges.

4 HTTP Message

4.1 Message Types
HTTP messages consist of requests from client to server and responses from server
to client.

HTTP-message  = Request | Response   ; HTTP/1.1 messages

Request (section 5) and Response (section 6) messages use the generic message for-
mat of RFC 822 [9] for transferring entities (the payload of the message). Both
types of message consist of a start-line, zero or more header fields (also known as
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“headers”), an empty line (i.e., a line with nothing preceding the CRLF) indicating
the end of the header fields, and possibly a message-body.

generic-message = start-line
*(message-header CRLF)
CRLF
[ message-body ]

start-line   = Request-Line | Status-Line

In the interest of robustness, servers SHOULD ignore any empty line(s) received
where a Request-Line is expected. In other words, if the server is reading the pro-
tocol stream at the beginning of a message and receives a CRLF first, it should
ignore the CRLF.

Certain buggy HTTP/1.0 client implementations generate extra CRLFs after a
POST request. To restate what is explicitly forbidden by the BNF, an HTTP/1.1
client MUST NOT preface or follow a request with an extra CRLF.

4.2 Message Headers
HTTP header fields, which include general-header (section 4.5), request-header
(section 5.3), response-header (section 6.2), and entity-header (section 7.1) fields,
follow the same generic format as that given in Section 3.1 of RFC 822 [9]. Each
header field consists of a name followed by a colon (“:”) and the field value. Field
names are case-insensitive. The field value MAY be preceded by any amount of
LWS, though a single SP is preferred. Header fields can be extended over multiple
lines by preceding each extra line with at least one SP or HT. Applications ought to
follow “common form,” where one is known or indicated, when generating HTTP
constructs, since there might exist some implementations that fail to accept any-
thing beyond the common forms.

message-header = field-name ":" [ field-value ]
field-name   = token
field-value  = *( field-content | LWS )
field-content = <the OCTETs making up the field-value and 

consisting of either *TEXT or combinations of 
token, separators, and quoted-string>

The field-content does not include any leading or trailing LWS: linear white space
occurring before the first non-whitespace character of the field-value or after the last
non-whitespace character of the field-value. Such leading or trailing LWS MAY be
removed without changing the semantics of the field value. Any LWS that occurs
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between field-content MAY be replaced with a single SP before interpreting the
field value or forwarding the message downstream.

The order in which header fields with differing field names are received is not sig-
nificant. However, it is “good practice” to send general-header fields first, followed
by request-header or response-header fields, and end with the entity-header fields.

Multiple message-header fields with the same field-name MAY be present in a mes-
sage if and only if the entire field-value for that header field is defined as a comma-
separated list [i.e., #(values)]. It MUST be possible to combine the multiple header
fields into one “field-name: field-value” pair, without changing the semantics of
the message, by appending each subsequent field-value to the first, each separated
by a comma. The order in which header fields with the same field-name are
received is therefore significant to the interpretation of the combined field value,
and thus a proxy MUST NOT change the order of these field values when a mes-
sage is forwarded.

4.3 Message Body
The message-body (if any) of an HTTP message is used to carry the entity-body
associated with the request or response. The message-body differs from the entity-
body only when a transfer-coding has been applied, as indicated by the Transfer-
Encoding header field (section 14.41).

message-body = entity-body
| <entity-body encoded as per Transfer-Encoding>

Transfer-Encoding MUST be used to indicate any transfer-codings applied by an
application to ensure safe and proper transfer of the message. Transfer-Encoding is
a property of the message, not of the entity, and thus MAY be added or removed by
any application along the request/response chain. (However, section 3.6 places
restrictions on when certain transfer-codings may be used.)

The rules for when a message-body is allowed in a message differ for requests and
responses.

The presence of a message-body in a request is signaled by the inclusion of a
Content-Length or Transfer-Encoding header field in the request’s message-headers.
A message-body MUST NOT be included in a request if the specification of the
request method (section 5.1.1) does not allow sending an entity-body in requests.
A server SHOULD read and forward a message-body on any request; if the request
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method does not include defined semantics for an entity-body, then the message-
body SHOULD be ignored when handling the request.

For response messages, whether or not a message-body is included with a message
is dependent on both the request method and the response status code (section
6.1.1). All responses to the HEAD request method MUST NOT include a mes-
sage-body, even though the presence of entity-header fields might lead one to
believe they do. All 1xx (informational), 204 (no content), and 304 (not modified)
responses MUST NOT include a message-body. All other responses do include a
message-body, although it MAY be of zero length.

4.4 Message Length
The transfer-length of a message is the length of the message-body as it appears in
the message; that is, after any transfer-codings have been applied. When a message-
body is included with a message, the transfer-length of that body is determined by
one of the following (in order of precedence):

1. Any response message which “MUST NOT” include a message-body (such
as the 1xx, 204, and 304 responses and any response to a HEAD request) is
always terminated by the first empty line after the header fields, regardless
of the entity-header fields present in the message.

2. If a Transfer-Encoding header field (section 14.41) is present and has any
value other than “identity,” then the transfer-length is defined by use of the
“chunked” transfer-coding (section 3.6), unless the message is terminated by
closing the connection.

3. If a Content-Length header field (section 14.13) is present, its decimal value
in OCTETs represents both the entity-length and the transfer-length. The
Content-Length header field MUST NOT be sent if these two lengths are
different (i.e., if a Transfer-Encoding header field is present). If a message is
received with both a Transfer-Encoding header field and a Content-Length
header field, the latter MUST be ignored.

4. If the message uses the media type “multipart/byteranges,” and the Transfer-
length is not otherwise specified, then this self-limiting media type defines
the transfer-length. This media type MUST NOT be used unless the sender
knows that the recipient can parse it; the presence in a request of a Range
header with multiple byte-range specifiers from a 1.1 client implies that the
client can parse multipart/byteranges responses.
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A range header might be forwarded by a 1.0 proxy that does not understand
multipart/byteranges; in this case the server MUST delimit the message
using methods defined in item 1, 3, or 5 of this section.

5. By the server closing the connection. (Closing the connection cannot be
used to indicate the end of a request body, since that would leave no possi-
bility for the server to send back a response.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a
message-body MUST include a valid Content-Length header field unless the server
is known to be HTTP/1.1 compliant. If a request contains a message-body and a
Content-Length is not given, the server SHOULD respond with 400 (bad request)
if it cannot determine the length of the message, or with 411 (length required) if it
wishes to insist on receiving a valid Content-Length.

All HTTP/1.1 applications that receive entities MUST accept the “chunked”
transfer-coding (section 3.6), thus allowing this mechanism to be used for messages
when the message length cannot be determined in advance.

Messages MUST NOT include both a Content-Length header field and a non-
identity transfer-coding. If the message does include a non-identity transfer-coding,
the Content-Length MUST be ignored.

When a Content-Length is given in a message where a message-body is allowed, its
field value MUST exactly match the number of OCTETs in the message-body.
HTTP/1.1 user agents MUST notify the user when an invalid length is received
and detected.

4.5 General Header Fields
There are a few header fields which have general applicability for both request and
response messages, but which do not apply to the entity being transferred. These
header fields apply only to the message being transmitted.

general-header = Cache-Control      ; Section 14.9
| Connection                 ; Section 14.10
| Date                       ; Section 14.18
| Pragma                     ; Section 14.32
| Trailer                    ; Section 14.40
| Transfer-Encoding          ; Section 14.41
| Upgrade                    ; Section 14.42
| Via                        ; Section 14.45
| Warning                    ; Section 14.46
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General-header field names can be extended reliably only in combination with a
change in the protocol version. However, new or experimental header fields may be
given the semantics of general-header fields if all parties in the communication rec-
ognize them to be general-header fields. Unrecognized header fields are treated as
entity-header fields.

5 Request
A request message from a client to a server includes, within the first line of that mes-
sage, the method to be applied to the resource, the identifier of the resource, and
the protocol version in use.

Request    = Request-Line           ; Section 5.1
*(( general-header          ; Section 4.5
| request-header           ; Section 5.3
| entity-header ) CRLF)    ; Section 7.1

CRLF
[ message-body ]            ; Section 4.3

5.1 Request-Line
The Request-Line begins with a method token, followed by the Request-URI and
the protocol version, and ending with CRLF. The elements are separated by SP
characters. No CR or LF is allowed except in the final CRLF sequence.

Request-Line  = Method SP Request-URI SP HTTP-Version CRLF

5.1.1 Method

The Method token indicates the method to be performed on the resource identi-
fied by the Request-URI. The method is case-sensitive.

Method     = "OPTIONS"              ; Section 9.2
| "GET"                      ; Section 9.3
| "HEAD"                     ; Section 9.4
| "POST"                     ; Section 9.5
| "PUT"                      ; Section 9.6
| "DELETE"                   ; Section 9.7
| "TRACE"                    ; Section 9.8
| "CONNECT"                  ; Section 9.9
| extension-method

extension-method = token

The list of methods allowed by a resource can be specified in an Allow header field
(section 14.7). The return code of the response always notifies the client whether a
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method is currently allowed on a resource, since the set of allowed methods can
change dynamically. An origin server SHOULD return the status code 405 (Method
Not Allowed) if the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is unrecognized or
not implemented by the origin server. The methods GET and HEAD MUST be
supported by all general-purpose servers. All other methods are OPTIONAL; how-
ever, if the above methods are implemented, they MUST be implemented with the
same semantics as those specified in section 9.

5.1.2 Request-URI

The Request-URI is a Uniform Resource Identifier (section 3.2) and identifies the
resource upon which to apply the request.

Request-URI  = "*" | absoluteURI | abs_path | authority

The four options for Request-URI are dependent on the nature of the request. The
asterisk “*” means that the request does not apply to a particular resource, but to
the server itself, and is only allowed when the method used does not necessarily
apply to a resource. One example would be

OPTIONS * HTTP/1.1

The absoluteURI form is REQUIRED when the request is being made to a proxy.
The proxy is requested to forward the request or service it from a valid cache, and
return the response. Note that the proxy MAY forward the request on to another
proxy or directly to the server specified by the absoluteURI. In order to avoid
request loops, a proxy MUST be able to recognize all of its server names, including
any aliases, local variations, and the numeric IP address. An example Request-Line
would be

GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1

To allow for transition to absoluteURIs in all requests in future versions of HTTP,
all HTTP/1.1 servers MUST accept the absoluteURI form in requests, even though
HTTP/1.1 clients will only generate them in requests to proxies.

The authority form is only used by the CONNECT method (section 9.9).

The most common form of Request-URI is that used to identify a resource on an
origin server or gateway. In this case the absolute path of the URI MUST be trans-
mitted (see section 3.2.1, abs_path) as the Request-URI, and the network location
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of the URI (authority) MUST be transmitted in a Host header field. For example,
a client wishing to retrieve the resource above directly from the origin server would
create a TCP connection to port 80 of the host “www.w3.org” and send the lines

GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org

followed by the remainder of the Request. Note that the absolute path cannot 
be empty; if none is present in the original URI, it MUST be given as “/” (the
server root).

The Request-URI is transmitted in the format specified in section 3.2.1. If the
Request-URI is encoded using the “% HEX HEX” encoding [42], the origin server
MUST decode the Request-URI in order to properly interpret the request. Servers
SHOULD respond to invalid Request-URIs with an appropriate status code.

A transparent proxy MUST NOT rewrite the “abs_path” part of the received
Request-URI when forwarding it to the next inbound server, except as noted above
to replace a null abs_path with “/”.

Note: The “no rewrite” rule prevents the proxy from changing the meaning of
the request when the origin server is improperly using a nonreserved URI
character for a reserved purpose. Implementers should be aware that some pre-
HTTP/1.1 proxies have been known to rewrite the Request-URI.

5.2 The Resource Identified by a Request
The exact resource identified by an Internet request is determined by examining
both the Request-URI and the Host header field.

An origin server that does not allow resources to differ by the requested host MAY
ignore the Host header field value when determining the resource identified by an
HTTP/1.1 request. (But see section 19.6.1.1 for other requirements on Host sup-
port in HTTP/1.1.)

An origin server that does differentiate resources based on the host requested (some-
times referred to as virtual hosts or vanity host names) MUST use the following
rules for determining the requested resource on an HTTP/1.1 request:

1. If Request-URI is an absoluteURI, the host is part of the Request-URI. Any
Host header field value in the request MUST be ignored.
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2. If the Request-URI is not an absoluteURI, and the request includes a Host
header field, the host is determined by the Host header field value.

3. If the host as determined by rule 1 or 2 is not a valid host on the server, the
response MUST be a 400 (Bad Request) error message.

Recipients of an HTTP/1.0 request that lacks a Host header field MAY attempt to
use heuristics (e.g., examination of the URI path for something unique to a partic-
ular host) in order to determine what exact resource is being requested.

5.3 Request Header Fields
The request-header fields allow the client to pass additional information about the
request, and about the client itself, to the server. These fields act as request modi-
fiers, with semantics equivalent to the parameters on a programming language
method invocation.

request-header = Accept          ; Section 14.1
| Accept-Charset          ; Section 14.2
| Accept-Encoding         ; Section 14.3
| Accept-Language         ; Section 14.4
| Authorization           ; Section 14.8
| Expect                  ; Section 14.20
| From                    ; Section 14.22
| Host                    ; Section 14.23
| If-Match                ; Section 14.24
| If-Modified-Since       ; Section 14.25
| If-None-Match           ; Section 14.26
| If-Range                ; Section 14.27
| If-Unmodified-Since     ; Section 14.28
| Max-Forwards            ; Section 14.31
| Proxy-Authorization     ; Section 14.34
| Range                   ; Section 14.35
| Referer                 ; Section 14.36
| TE                      ; Section 14.39
| User-Agent              ; Section 14.43

Request-header field names can be extended reliably only in combination with a
change in the protocol version. However, new or experimental header fields MAY
be given the semantics of request-header fields if all parties in the communication
recognize them to be request-header fields. Unrecognized header fields are treated
as entity-header fields.
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6 Response
After receiving and interpreting a request message, a server responds with an HTTP
response message.

Response   = Status-Line        ; Section 6.1
*(( general-header      ; Section 4.5
| response-header       ; Section 6.2
| entity-header ) CRLF) ; Section 7.1
CRLF
[ message-body ]        ; Section 7.2

6.1 Status-Line
The first line of a Response message is the Status-Line, consisting of the protocol
version followed by a numeric status code and its associated textual phrase, with
each element separated by SP characters. No CR or LF is allowed except in the final
CRLF sequence.

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

6.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to under-
stand and satisfy the request. These codes are fully defined in section 10. The
Reason-Phrase is intended to give a short textual description of the Status-Code.
The Status-Code is intended for use by automata and the Reason-Phrase is intended
for the human user. The client is not required to examine or display the Reason-
Phrase.

The first digit of the Status-Code defines the class of response. The last two digits
do not have any categorization role. There are 5 values for the first digit:

1xx: Informational—Request received, continuing process

2xx: Success—The action was successfully received, understood, and accepted

3xx: Redirection—Further action must be taken in order to complete the
request

4xx: Client Error—The request contains bad syntax or cannot be fulfilled

5xx: Server Error—The server failed to fulfill an apparently valid request
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The individual values of the numeric status codes defined for HTTP/1.1, and an
example set of corresponding Reason-Phrases, are presented below. The reason
phrases listed here are only recommendations—they MAY be replaced by local
equivalents without affecting the protocol.

Status-Code  =
"100" ; Section 10.1.1: Continue

| "101" ; Section 10.1.2: Switching Protocols
| "200" ; Section 10.2.1: OK
| "201" ; Section 10.2.2: Created
| "202" ; Section 10.2.3: Accepted
| "203" ; Section 10.2.4: Non-Authoritative Information
| "204" ; Section 10.2.5: No Content
| "205" ; Section 10.2.6: Reset Content
| "206" ; Section 10.2.7: Partial Content
| "300" ; Section 10.3.1: Multiple Choices
| "301" ; Section 10.3.2: Moved Permanently
| "302" ; Section 10.3.3: Found
| "303" ; Section 10.3.4: See Other
| "304" ; Section 10.3.5: Not Modified
| "305" ; Section 10.3.6: Use Proxy
| "307" ; Section 10.3.8: Temporary Redirect
| "400" ; Section 10.4.1: Bad Request
| "401" ; Section 10.4.2: Unauthorized
| "402" ; Section 10.4.3: Payment Required
| "403" ; Section 10.4.4: Forbidden
| "404" ; Section 10.4.5: Not Found
| "405" ; Section 10.4.6: Method Not Allowed
| "406" ; Section 10.4.7: Not Acceptable
| "407" ; Section 10.4.8: Proxy Authentication Required
| "408" ; Section 10.4.9: Request Time-out
| "409" ; Section 10.4.10: Conflict
| "410" ; Section 10.4.11: Gone
| "411" ; Section 10.4.12: Length Required
| "412" ; Section 10.4.13: Precondition Failed
| "413" ; Section 10.4.14: Request Entity Too Large
| "414" ; Section 10.4.15: Request-URI Too Large
| "415" ; Section 10.4.16: Unsupported Media Type
| "416" ; Section 10.4.17: Requested range not satisfiable
| "417" ; Section 10.4.18: Expectation Failed
| "500" ; Section 10.5.1: Internal Server Error
| "501" ; Section 10.5.2: Not Implemented
| "502" ; Section 10.5.3: Bad Gateway
| "503" ; Section 10.5.4: Service Unavailable
| "504" ; Section 10.5.5: Gateway Time-out
| "505" ; Section 10.5.6: HTTP Version not supported
| extension-code

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excluding CR, LF>
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HTTP status codes are extensible. HTTP applications are not required to understand
the meaning of all registered status codes, though such understanding is obviously
desirable. However, applications MUST understand the class of any status code, as
indicated by the first digit, and treat any unrecognized response as being equivalent to
the x00 status code of that class, with the exception that an unrecognized response
MUST NOT be cached. For example, if an unrecognized status code of 431 is received
by the client, it can safely assume that there was something wrong with its request and
treat the response as if it had received a 400 status code. In such cases, user agents
SHOULD present to the user the entity returned with the response, since that entity
is likely to include human-readable information which will explain the unusual status.

6.2 Response Header Fields
The response-header fields allow the server to pass additional information about the
response which cannot be placed in the Status-Line. These header fields give infor-
mation about the server and about further access to the resource identified by the
Request-URI.

response-header = Accept-Ranges      ; Section 14.5
| Age                        ; Section 14.6
| ETag                       ; Section 14.19
| Location                   ; Section 14.30
| Proxy-Authenticate         ; Section 14.33
| Retry-After                ; Section 14.37
| Server                     ; Section 14.38
| Vary                       ; Section 14.44

| WWW-Authenticate           ; Section 14.47

Response-header field names can be extended reliably only in combination with a
change in the protocol version. However, new or experimental header fields MAY
be given the semantics of response-header fields if all parties in the communication
recognize them to be response-header fields. Unrecognized header fields are treated
as entity-header fields.

7 Entity
Request and Response messages MAY transfer an entity if not otherwise restricted by
the request method or response status code. An entity consists of entity-header fields
and an entity-body, although some responses will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server,
depending on who sends and who receives the entity.
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7.1 Entity Header Fields
Entity-header fields define metainformation about the entity-body or, if no body is
present, about the resource identified by the request. Some of this metainformation
is OPTIONAL; some might be REQUIRED by portions of this specification.

entity-header = Allow          ; Section 14.7
| Content-Encoding      ; Section 14.11
| Content-Language      ; Section 14.12
| Content-Length        ; Section 14.13
| Content-Location      ; Section 14.14
| Content-MD5           ; Section 14.15
| Content-Range         ; Section 14.16
| Content-Type          ; Section 14.17
| Expires               ; Section 14.21
| Last-Modified         ; Section 14.29
| extension-header

extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be
defined without changing the protocol, but these fields cannot be assumed to 
be recognizable by the recipient. Unrecognized header fields SHOULD be ignored
by the recipient and MUST be forwarded by transparent proxies.

7.2  Entity Body
The entity-body (if any) sent with an HTTP request or response is in a format and
encoding defined by the entity-header fields.

entity-body  = *OCTET

An entity-body is only present in a message when a message-body is present, as
described in section 4.3. The entity-body is obtained from the message-body by
decoding any Transfer-Encoding that might have been applied to ensure safe and
proper transfer of the message.

7.2.1 Type

When an entity-body is included with a message, the data type of that body is deter-
mined via the header fields Content-Type and Content-Encoding. These define a
two-layer, ordered encoding model:

entity-body := Content-Encoding( Content-Type( data ) )

Content-Type specifies the media type of the underlying data.
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Content-Encoding may be used to indicate any additional content-codings applied
to the data, usually for the purpose of data compression, that are a property of the
requested resource. There is no default encoding.

Any HTTP/1.1 message containing an entity-body SHOULD include a Content-
Type header field defining the media type of that body. If and only if the media type
is not given by a Content-Type field, the recipient MAY attempt to guess the media
type via inspection of its content and/or the name extension(s) of the URI used to
identify the resource. If the media type remains unknown, the recipient SHOULD
treat it as type “application/octet-stream.”

7.2.2 Entity Length

The entity-length of a message is the length of the message-body before any
transfer-codings have been applied. Section 4.4 defines how the transfer-length of a
message-body is determined.

8 Connections

8.1 Persistent Connections

8.1.1 Purpose

Prior to persistent connections, a separate TCP connection was established to fetch
each URL, increasing the load on HTTP servers and causing congestion on the
Internet. The use of inline images and other associated data often require a client to
make multiple requests of the same server in a short amount of time. Analysis of
these performance problems and results from a prototype implementation are avail-
able [26] [30]. Implementation experience and measurements of actual HTTP/1.1
(RFC 2068) implementations show good results [39]. Alternatives have also been
explored—for example, T/TCP [27].

Persistent HTTP connections have a number of advantages:

• By opening and closing fewer TCP connections, CPU time is saved in routers
and hosts (clients, servers, proxies, gateways, tunnels, or caches), and memory
used for TCP protocol control blocks can be saved in hosts.

• HTTP requests and responses can be pipelined on a connection. Pipelining
allows a client to make multiple requests without waiting for each response,
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allowing a single TCP connection to be used much more efficiently, with much
lower elapsed time.

• Network congestion is reduced by reducing the number of packets caused by
TCP opens, and by allowing TCP sufficient time to determine the congestion
state of the network.

• Latency on subsequent requests is reduced since there is no time spent in
TCP’s connection opening handshake.

• HTTP can evolve more gracefully, since errors can be reported without the
penalty of closing the TCP connection. Clients using future versions of HTTP
might optimistically try a new feature, but if communicating with an older
server, retry with old semantics after an error is reported.

HTTP implementations SHOULD implement persistent connections.

8.1.2 Overall Operation

A significant difference between HTTP/1.1 and earlier versions of HTTP is that
persistent connections are the default behavior of any HTTP connection. That is,
unless otherwise indicated, the client SHOULD assume that the server will main-
tain a persistent connection, even after error responses from the server.

Persistent connections provide a mechanism by which a client and a server can sig-
nal the close of a TCP connection. This signaling takes place using the Connection
header field (section 14.10). Once a close has been signaled, the client MUST NOT
send any more requests on that connection.

8.1.2.1 Negotiation

An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to maintain a
persistent connection unless a Connection header including the connection-token
“close” was sent in the request. If the server chooses to close the connection imme-
diately after sending the response, it SHOULD send a Connection header includ-
ing the connection-token close.

An HTTP/1.1 client MAY expect a connection to remain open, but would decide
to keep it open based on whether the response from a server contains a Connection
header with the connection-token close. In case the client does not want to main-
tain a connection for more than that request, it SHOULD send a Connection
header including the connection-token close.
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If either the client or the server sends the close token in the Connection header, that
request becomes the last one for the connection.

Clients and servers SHOULD NOT assume that a persistent connection is main-
tained for HTTP versions less than 1.1 unless it is explicitly signaled. See section
19.6.2 for more information on backward compatibility with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection MUST have a self-
defined message length (i.e., one not defined by closure of the connection), as
described in section 4.4.

8.1.2.2 Pipelining

A client that supports persistent connections MAY “pipeline” its requests (i.e., send
multiple requests without waiting for each response). A server MUST send its
responses to those requests in the same order that the requests were received.

Clients which assume persistent connections and pipeline immediately after con-
nection establishment SHOULD be prepared to retry their connection if the first
pipelined attempt fails. If a client does such a retry, it MUST NOT pipeline before
it knows the connection is persistent. Clients MUST also be prepared to resend
their requests if the server closes the connection before sending all of the corre-
sponding responses.

Clients SHOULD NOT pipeline requests using non-idempotent methods or non-
idempotent sequences of methods (see section 9.1.2). Otherwise, a premature ter-
mination of the transport connection could lead to indeterminate results. A client
wishing to send a non-idempotent request SHOULD wait to send that request
until it has received the response status for the previous request.

8.1.3 Proxy Servers

It is especially important that proxies correctly implement the properties of the
Connection header field as specified in section 14.10.

The proxy server MUST signal persistent connections separately with its clients and
the origin servers (or other proxy servers) that it connects to. Each persistent con-
nection applies to only one transport link.

A proxy server MUST NOT establish a HTTP/1.1 persistent connection with an
HTTP/1.0 client (but see RFC 2068 [33] for information and discussion of the
problems with the Keep-Alive header implemented by many HTTP/1.0 clients).
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8.1.4 Practical Considerations

Servers will usually have some time-out value beyond which they will no longer
maintain an inactive connection. Proxy servers might make this a higher value since
it is likely that the client will be making more connections through the same server.
The use of persistent connections places no requirements on the length (or exis-
tence) of this time-out for either the client or the server.

When a client or server wishes to time-out it SHOULD issue a graceful close on
the transport connection. Clients and servers SHOULD both constantly watch for
the other side of the transport close, and respond to it as appropriate. If a client or
server does not detect the other side’s close promptly it could cause unnecessary
resource drain on the network.

A client, server, or proxy MAY close the transport connection at any time. For
example, a client might have started to send a new request at the same time that the
server has decided to close the “idle” connection. From the server’s point of view,
the connection is being closed while it was idle, but from the client’s point of view,
a request is in progress.

This means that clients, servers, and proxies MUST be able to recover from asyn-
chronous close events. Client software SHOULD reopen the transport connection
and retransmit the aborted sequence of requests without user interaction so long as
the request sequence is idempotent (see section 9.1.2). Non-idempotent methods
or sequences MUST NOT be automatically retried, although user agents MAY
offer a human operator the choice of retrying the request(s). Confirmation by user
agent software with semantic understanding of the application MAY substitute for
user confirmation. The automatic retry SHOULD NOT be repeated if the second
sequence of requests fails.

Servers SHOULD always respond to at least one request per connection, if at all
possible. Servers SHOULD NOT close a connection in the middle of transmitting
a response, unless a network or client failure is suspected.

Clients that use persistent connections SHOULD limit the number of simultane-
ous connections that they maintain to a given server. A single-user client SHOULD
NOT maintain more than 2 connections with any server or proxy. A proxy
SHOULD use up to 2*N connections to another server or proxy, where N is the
number of simultaneously active users. These guidelines are intended to improve
HTTP response times and avoid congestion.
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8.2 Message Transmission Requirements

8.2.1 Persistent Connections and Flow Control

HTTP/1.1 servers SHOULD maintain persistent connections and use TCP’s flow
control mechanisms to resolve temporary overloads, rather than terminating con-
nections with the expectation that clients will retry. The latter technique can exac-
erbate network congestion.

8.2.2 Monitoring Connections for Error Status Messages

An HTTP/1.1 (or later) client sending a message-body SHOULD monitor the
network connection for an error status while it is transmitting the request. If the
client sees an error status, it SHOULD immediately cease transmitting the body.
If the body is being sent using a “chunked” encoding (section 3.6), a zero-length
chunk and empty trailer MAY be used to prematurely mark the end of the mes-
sage. If the body was preceded by a Content-Length header, the client MUST close
the connection.

8.2.3 Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status (see section 10.1.1) is to allow a client
that is sending a request message with a request body to determine if the origin
server is willing to accept the request (based on the request headers) before the client
sends the request body. In some cases, it might either be inappropriate or highly
inefficient for the client to send the body if the server will reject the message with-
out looking at the body.

Requirements for HTTP/1.1 clients:

• If a client will wait for a 100 (Continue) response before sending the request
body, it MUST send an Expect request-header field (section 14.20) with the
“100-continue” expectation.

• A client MUST NOT send an Expect request-header field (section 14.20) with
the “100-continue” expectation if it does not intend to send a request body.

Because of the presence of older implementations, the protocol allows ambiguous
situations in which a client may send “Expect: 100-continue” without receiving
either a 417 (Expectation Failed) status or a 100 (Continue) status. Therefore, when
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a client sends this header field to an origin server (possibly via a proxy) from which
it has never seen a 100 (Continue) status, the client SHOULD NOT wait for an
indefinite period before sending the request body.

Requirements for HTTP/1.1 origin servers:

• Upon receiving a request which includes an Expect request-header field with
the “100-continue” expectation, an origin server MUST either respond with
100 (Continue) status and continue to read from the input stream, or respond
with a final status code. The origin server MUST NOT wait for the request
body before sending the 100 (Continue) response. If it responds with a final
status code, it MAY close the transport connection or it MAY continue to read
and discard the rest of the request. It MUST NOT perform the requested
method if it returns a final status code.

• An origin server SHOULD NOT send a 100 (Continue) response if the
request message does not include an Expect request-header field with the
“100-continue” expectation, and MUST NOT send a 100 (Continue)
response if such a request comes from an HTTP/1.0 (or earlier) client. There
is an exception to this rule: For compatibility with RFC 2068, a server MAY
send a 100 (Continue) status in response to an HTTP/1.1 PUT or POST
request that does not include an Expect request-header field with the “100-
continue” expectation. This exception, the purpose of which is to minimize
any client processing delays associated with an undeclared wait for 100
(Continue) status, applies only to HTTP/1.1 requests, and not to requests
with any other HTTP-version value.

• An origin server MAY omit a 100 (Continue) response if it has already
received some or all of the request body for the corresponding request.

• An origin server that sends a 100 (Continue) response MUST ultimately send
a final status code, once the request body is received and processed, unless it
terminates the transport connection prematurely.

• If an origin server receives a request that does not include an Expect request-
header field with the “100-continue” expectation, the request includes a request
body, and the server responds with a final status code before reading the entire
request body from the transport connection, then the server SHOULD NOT
close the transport connection until it has read the entire request, or until the
client closes the connection. Otherwise, the client might not reliably receive the
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response message. However, this requirement is not be construed as preventing
a server from defending itself against denial of service attacks, or from badly
broken client implementations.

Requirements for HTTP/1.1 proxies:

• If a proxy receives a request that includes an Expect request-header field with
the “100-continue” expectation, and the proxy either knows that the next-hop
server complies with HTTP/1.1 or higher, or does not know the HTTP ver-
sion of the next-hop server, it MUST forward the request, including the
Expect header field.

• If the proxy knows that the version of the next-hop server is HTTP/1.0 or
lower, it MUST NOT forward the request, and it MUST respond with a 417
(Expectation Failed) status.

• Proxies SHOULD maintain a cache recording the HTTP version numbers
received from recently referenced next-hop servers.

• A proxy MUST NOT forward a 100 (Continue) response if the request message
was received from an HTTP/1.0 (or earlier) client and did not include an Expect
request-header field with the “100-continue” expectation. This requirement
overrides the general rule for forwarding of 1xx responses (see section 10.1).

8.2.4 Client Behavior if Server Prematurely Closes Connection

If an HTTP/1.1 client sends a request which includes a request body, but which
does not include an Expect request-header field with the “100-continue” expecta-
tion, and if the client is not directly connected to an HTTP/1.1 origin server, and
if the client sees the connection close before receiving any status from the server, the
client SHOULD retry the request. If the client does retry this request, it MAY use
the following “binary exponential backoff” algorithm to be assured of obtaining a
reliable response:

1. Initiate a new connection to the server.

2. Transmit the request-headers.

3. Initialize a variable R to the estimated round-trip time to the server (e.g.,
based on the time it took to establish the connection), or to a constant value
of 5 seconds if the round-trip time is not available.
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4. Compute T = R * (2**N), where N is the number of previous retries of this
request.

5. Wait either for an error response from the server, or for T seconds
(whichever comes first).

6. If no error response is received, after T seconds transmit the body of the
request.

7. If client sees that the connection is closed prematurely, repeat from step 1
until the request is accepted, an error response is received, or the user
becomes impatient and terminates the retry process.

If at any point an error status is received, the client

• SHOULD NOT continue and

• SHOULD close the connection if it has not completed sending the request
message.

9 Method Definitions
The set of common methods for HTTP/1.1 is defined below. Although this set can
be expanded, additional methods cannot be assumed to share the same semantics
for separately extended clients and servers.

The Host request-header field (section 14.23) MUST accompany all HTTP/1.1
requests.

9.1 Safe and Idempotent Methods

9.1.1 Safe Methods

Implementers should be aware that the software represents the user in their inter-
actions over the Internet, and should be careful to allow the user to be aware of any
actions they might take which may have an unexpected significance to themselves
or others.

In particular, the convention has been established that the GET and HEAD meth-
ods SHOULD NOT have the significance of taking an action other than retrieval.
These methods ought to be considered “safe.” This allows user agents to represent
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other methods, such as POST, PUT and DELETE, in a special way, so that the user
is made aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side effects as
a result of performing a GET request; in fact, some dynamic resources consider that
a feature. The important distinction here is that the user did not request the side
effects, so therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

Methods can also have the property of “idempotence” in that (aside from error or
expiration issues) the side effects of N > 0 identical requests are the same as for a
single request. The methods GET, HEAD, PUT, and DELETE share this property.
Also, the methods OPTIONS and TRACE SHOULD NOT have side effects, and
so are inherently idempotent.

However, it is possible that a sequence of several requests is non-idempotent, even
if all of the methods executed in that sequence are idempotent. (A sequence is idem-
potent if a single execution of the entire sequence always yields a result that is not
changed by a reexecution of all, or part, of that sequence.) For example, a sequence
is non-idempotent if its result depends on a value that is later modified in the same
sequence.

A sequence that never has side effects is idempotent, by definition (provided that
no concurrent operations are being executed on the same set of resources).

9.2 OPTIONS
The OPTIONS method represents a request for information about the communi-
cation options available on the request/response chain identified by the Request-
URI. This method allows the client to determine the options and/or requirements
associated with a resource, or the capabilities of a server, without implying a
resource action or initiating a resource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (as indicated by the presence of
Content-Length or Transfer-Encoding), then the media type MUST be indicated
by a Content-Type field. Although this specification does not define any use for
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such a body, future extensions to HTTP might use the OPTIONS body to make
more detailed queries on the server. A server that does not support such an exten-
sion MAY discard the request body.

If the Request-URI is an asterisk (“*”), the OPTIONS request is intended to apply
to the server in general rather than to a specific resource. Since a server’s communi-
cation options typically depend on the resource, the “*” request is only useful as a
“ping” or “no-op” type of method; it does nothing beyond allowing the client to test
the capabilities of the server. For example, this can be used to test a proxy for
HTTP/1.1 compliance (or lack thereof ).

If the Request-URI is not an asterisk, the OPTIONS request applies only to the
options that are available when communicating with that resource.

A 200 response SHOULD include any header fields that indicate optional features
implemented by the server and applicable to that resource (e.g., Allow), possibly
including extensions not defined by this specification. The response body, if any,
SHOULD also include information about the communication options. The format
for such a body is not defined by this specification, but might be defined by future
extensions to HTTP. Content negotiation MAY be used to select the appropriate
response format. If no response body is included, the response MUST include a
Content-Length field with a field-value of “0”.

The Max-Forwards request-header field MAY be used to target a specific proxy in
the request chain. When a proxy receives an OPTIONS request on an absoluteURI
for which request forwarding is permitted, the proxy MUST check for a Max-
Forwards field. If the Max-Forwards field-value is zero (“0”), the proxy MUST
NOT forward the message; instead, the proxy SHOULD respond with its own
communication options. If the Max-Forwards field-value is an integer greater than
zero, the proxy MUST decrement the field-value when it forwards the request. If
no Max-Forwards field is present in the request, then the forwarded request MUST
NOT include a Max-Forwards field.

9.3 GET
The GET method means retrieve whatever information (in the form of an entity)
is identified by the Request-URI. If the Request-URI refers to a data-producing
process, it is the produced data which shall be returned as the entity in the response
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and not the source text of the process, unless that text happens to be the output of
the process.

The semantics of the GET method change to a “conditional GET” if the request
message includes an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-
Match, or If-Range header field. A conditional GET method requests that the
entity be transferred only under the circumstances described by the conditional
header field(s). The conditional GET method is intended to reduce unnecessary
network usage by allowing cached entities to be refreshed without requiring multi-
ple requests or transferring data already held by the client.

The semantics of the GET method change to a “partial GET” if the request mes-
sage includes a Range header field. A partial GET requests that only part of the
entity be transferred, as described in section 14.35. The partial GET method is
intended to reduce unnecessary network usage by allowing partially retrieved enti-
ties to be completed without transferring data already held by the client.

The response to a GET request is cacheable if and only if it meets the requirements
for HTTP caching described in section 13.

See section 15.1.3 for security considerations when used for forms.

9.4 HEAD
The HEAD method is identical to GET except that the server MUST NOT return
a message-body in the response. The metainformation contained in the HTTP
headers in response to a HEAD request SHOULD be identical to the information
sent in response to a GET request. This method can be used for obtaining metain-
formation about the entity implied by the request without transferring the entity-
body itself. This method is often used for testing hypertext links for validity,
accessibility, and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the informa-
tion contained in the response MAY be used to update a previously cached entity
from that resource. If the new field values indicate that the cached entity differs
from the current entity (as would be indicated by a change in Content-Length,
Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache
entry as stale.
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9.5 POST
The POST method is used to request that the origin server accept the entity
enclosed in the request as a new subordinate of the resource identified by the
Request-URI in the Request-Line. POST is designed to allow a uniform method to
cover the following functions:

• Annotation of existing resources;

• Posting a message to a bulletin board, newsgroup, mailing list, or similar group
of articles;

• Providing a block of data, such as the result of submitting a form, to a data-
handling process;

• Extending a database through an append operation.

The actual function performed by the POST method is determined by the server
and is usually dependent on the Request-URI. The posted entity is subordinate to
that URI in the same way that a file is subordinate to a directory containing it, a
news article is subordinate to a newsgroup to which it is posted, or a record is sub-
ordinate to a database.

The action performed by the POST method might not result in a resource that can
be identified by a URI. In this case, either 200 (OK) or 204 (No Content) is the
appropriate response status, depending on whether or not the response includes an
entity that describes the result.

If a resource has been created on the origin server, the response SHOULD be 201
(Created) and contain an entity which describes the status of the request and refers
to the new resource, and a Location header (see section 14.30).

Responses to this method are not cacheable, unless the response includes appropri-
ate Cache-Control or Expires header fields. However, the 303 (See Other) response
can be used to direct the user agent to retrieve a cacheable resource.

POST requests MUST obey the message transmission requirements set out in sec-
tion 8.2.

See section 15.1.3 for security considerations.
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9.6 PUT
The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the
enclosed entity SHOULD be considered as a modified version of the one residing
on the origin server. If the Request-URI does not point to an existing resource, and
that URI is capable of being defined as a new resource by the requesting user agent,
the origin server can create the resource with that URI. If a new resource is created,
the origin server MUST inform the user agent via the 201 (Created) response. If an
existing resource is modified, either the 200 (OK) or 204 (No Content) response
code SHOULD be sent to indicate successful completion of the request. If the
resource could not be created or modified with the Request-URI, an appropriate
error response SHOULD be given that reflects the nature of the problem. The
recipient of the entity MUST NOT ignore any Content-* (e.g., Content-Range)
headers that it does not understand or implement and MUST return a 501 (Not
Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies one or more
currently cached entities, those entries SHOULD be treated as stale. Responses to
this method are not cacheable.

The fundamental difference between the POST and PUT requests is reflected in the
different meaning of the Request-URI. The URI in a POST request identifies 
the resource that will handle the enclosed entity. That resource might be a data-
accepting process, a gateway to some other protocol, or a separate entity that accepts
annotations. In contrast, the URI in a PUT request identifies the entity enclosed
with the request—the user agent knows what URI is intended and the server
MUST NOT attempt to apply the request to some other resource. If the server
desires that the request be applied to a different URI, it MUST send a 301 (Moved
Permanently) response; the user agent MAY then make its own decision regarding
whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For example, an arti-
cle might have a URI for identifying “the current version” which is separate from
the URI identifying each particular version. In this case, a PUT request on a gen-
eral URI might result in several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an origin server.
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PUT requests MUST obey the message transmission requirements set out in sec-
tion 8.2.

Unless otherwise specified for a particular entity-header, the entity-headers in the
PUT request SHOULD be applied to the resource created or modified by the PUT.

9.7 DELETE
The DELETE method requests that the origin server delete the resource identified
by the Request-URI. This method MAY be overridden by human intervention (or
other means) on the origin server. The client cannot be guaranteed that the opera-
tion has been carried out, even if the status code returned from the origin server
indicates that the action has been completed successfully. However, the server
SHOULD NOT indicate success unless, at the time the response is given, it intends
to delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity
describing the status, 202 (Accepted) if the action has not yet been enacted, or 204
(No Content) if the action has been enacted but the response does not include an
entity.

If the request passes through a cache and the Request-URI identifies one or more
currently cached entities, those entries SHOULD be treated as stale. Responses to
this method are not cacheable.

9.8 TRACE
The TRACE method is used to invoke a remote, application-layer loopback of the
request message. The final recipient of the request SHOULD reflect the message
received back to the client as the entity-body of a 200 (OK) response. The final
recipient is either the origin server or the first proxy or gateway to receive a Max-
Forwards value of zero (0) in the request (see section 14.31). A TRACE request
MUST NOT include an entity.

TRACE allows the client to see what is being received at the other end of the
request chain and use that data for testing or diagnostic information. The value of
the Via header field (section 14.45) is of particular interest, since it acts as a trace
of the request chain. Use of the Max-Forwards header field allows the client to limit
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the length of the request chain, which is useful for testing a chain of proxies
forwarding messages in an infinite loop. 

If the request is valid, the response SHOULD contain the entire request message in
the entity-body, with a Content-Type of “message/http.” Responses to this method
MUST NOT be cached.

9.9 CONNECT
This specification reserves the method name CONNECT for use with a proxy that
can dynamically switch to being a tunnel (e.g., SSL tunneling [44]).

10 Status Code Definitions
Each Status-Code is described below, including a description of which method(s) it
can follow and any metainformation required in the response.

10.1 Informational 1xx
This class of status code indicates a provisional response, consisting only of the
Status-Line and optional headers, and is terminated by an empty line. There are no
required headers for this class of status code. Since HTTP/1.0 did not define any
1xx status codes, servers MUST NOT send a 1xx response to an HTTP/1.0 client
except under experimental conditions.

A client MUST be prepared to accept one or more 1xx status responses prior to a
regular response, even if the client does not expect a 100 (Continue) status message.
Unexpected 1xx status responses MAY be ignored by a user agent.

Proxies MUST forward 1xx responses, unless the connection between the proxy and
its client has been closed, or unless the proxy itself requested the generation of the
1xx response. [For example, if a proxy adds an “Expect: 100-continue” field when
it forwards a request, then it need not forward the corresponding 100 (Continue)
response(s).]

10.1.1 100 Continue

The client SHOULD continue with its request. This interim response is used to
inform the client that the initial part of the request has been received and has not yet
been rejected by the server. The client SHOULD continue by sending the remain-
der of the request or, if the request has already been completed, ignore this response.
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The server MUST send a final response after the request has been completed. See
section 8.2.3 for detailed discussion of the use and handling of this status code.

10.1.2 101 Switching Protocols

The server understands and is willing to comply with the client’s request, via the
Upgrade message header field (section 14.42), for a change in the application pro-
tocol being used on this connection. The server will switch protocols to those
defined by the response’s Upgrade header field immediately after the empty line
which terminates the 101 response.

The protocol SHOULD be switched only when it is advantageous to do so. For
example, switching to a newer version of HTTP is advantageous over older versions,
and switching to a real-time, synchronous protocol might be advantageous when
delivering resources that use such features.

10.2 Successful 2xx
This class of status code indicates that the client’s request was successfully received,
understood, and accepted.

10.2.1 200 OK

The request has succeeded. The information returned with the response is depend-
ent on the method used in the request, for example:

• GET: an entity corresponding to the requested resource is sent in the response;

• HEAD: the entity-header fields corresponding to the requested resource are
sent in the response without any message-body;

• POST: an entity describing or containing the result of the action;

• TRACE: an entity containing the request message as received by the end server.

10.2.2 201 Created

The request has been fulfilled and resulted in a new resource being created. The
newly created resource can be referenced by the URI(s) returned in the entity of the
response, with the most specific URI for the resource given by a Location header
field. The response SHOULD include an entity containing a list of resource char-
acteristics and location(s) from which the user or user agent can choose the one
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most appropriate. The entity format is specified by the media type given in the
Content-Type header field. The origin server MUST create the resource before
returning the 201 status code. If the action cannot be carried out immediately, the
server SHOULD respond with 202 (Accepted) response instead.

A 201 response MAY contain an ETag response header field indicating the current
value of the entity tag for the requested variant just created, see section 14.19.

10.2.3 202 Accepted

The request has been accepted for processing, but the processing has not been com-
pleted. The request might or might not eventually be acted upon, as it might be dis-
allowed when processing actually takes place. There is no facility for resending a
status code from an asynchronous operation such as this.

The 202 response is intentionally noncommittal. Its purpose is to allow a server to
accept a request for some other process (perhaps a batch-oriented process that is
only run once per day) without requiring that the user agent’s connection to the
server persist until the process is completed. The entity returned with this response
SHOULD include an indication of the request’s current status and either a pointer
to a status monitor or some estimate of when the user can expect the request to be
fulfilled.

10.2.4 203 Non-authoritative Information

The returned metainformation in the entity-header is not the definitive set as
available from the origin server, but is gathered from a local or a third-party copy.
The set presented MAY be a subset or superset of the original version. For exam-
ple, including local annotation information about the resource might result in a
superset of the metainformation known by the origin server. Use of this response
code is not required and is only appropriate when the response would otherwise be
200 (OK).

10.2.5 204 No Content

The server has fulfilled the request but does not need to return an entity-body, and
might want to return updated metainformation. The response MAY include new or
updated metainformation in the form of entity-headers, which if present SHOULD
be associated with the requested variant.
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If the client is a user agent, it SHOULD NOT change its document view from that
which caused the request to be sent. This response is primarily intended to allow
input for actions to take place without causing a change to the user agent’s active
document view, although any new or updated metainformation SHOULD be
applied to the document currently in the user agent’s active view.

The 204 response MUST NOT include a message-body, and thus is always termi-
nated by the first empty line after the header fields.

10.2.6 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset the docu-
ment view which caused the request to be sent. This response is primarily intended
to allow input for actions to take place via user input, followed by a clearing of the
form in which the input is given so that the user can easily initiate another input
action. The response MUST NOT include an entity.

10.2.7 206 Partial Content

The server has fulfilled the partial GET request for the resource. The request
MUST have included a Range header field (section 14.35) indicating the desired
range, and MAY have included an If-Range header field (section 14.27) to make the
request conditional.

The response MUST include the following header fields:

• Either a Content-Range header field (section 14.16) indicating the range
included with this response, or a multipart/byteranges Content-Type includ-
ing Content-Range fields for each part. If a Content-Length header field is
present in the response, its value MUST match the actual number of OCTETs
transmitted in the message-body.

• Date.

• ETag and/or Content-Location, if the header would have been sent in a 200
response to the same request.

• Expires, Cache-Control, and/or Vary, if the field-value might differ from that
sent in any previous response for the same variant.
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If the 206 response is the result of an If-Range request that used a strong cache val-
idator (see section 13.3.3), the response SHOULD NOT include other entity-
headers. If the response is the result of an If-Range request that used a weak
validator, the response MUST NOT include other entity-headers; this prevents
inconsistencies between cached entity-bodies and updated headers. Otherwise, the
response MUST include all of the entity-headers that would have been returned
with a 200 (OK) response to the same request.

A cache MUST NOT combine a 206 response with other previously cached con-
tent if the ETag or Last-Modified headers do not match exactly; see section 13.5.4.

A cache that does not support the Range and Content-Range headers MUST NOT
cache 206 (Partial) responses.

10.3 Redirection 3xx
This class of status code indicates that further action needs to be taken by the user
agent in order to fulfill the request. The action required MAY be carried out by the
user agent without interaction with the user if and only if the method used in 
the second request is GET or HEAD. A client SHOULD detect infinite redirection
loops, since such loops generate network traffic for each redirection.

Note: Previous versions of this specification recommended a maximum of five
redirections. Content developers should be aware that there might be clients
that implement such a fixed limitation.

10.3.1 300 Multiple Choices

The requested resource corresponds to any one of a set of representations, each with
its own specific location, and agent-driven negotiation information (section 12) is
being provided so that the user (or user agent) can select a preferred representation
and redirect its request to that location.

Unless it was a HEAD request, the response SHOULD include an entity contain-
ing a list of resource characteristics and location(s) from which the user or user
agent can choose the one most appropriate. The entity format is specified by the
media type given in the Content-Type header field. Depending upon the format
and the capabilities of the user agent, selection of the most appropriate choice MAY
be performed automatically. However, this specification does not define any stan-
dard for such automatic selection.
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If the server has a preferred choice of representation, it SHOULD include the spe-
cific URI for that representation in the Location field; user agents MAY use the
Location field value for automatic redirection. This response is cacheable unless
indicated otherwise.

10.3.2 301 Moved Permanently

The requested resource has been assigned a new permanent URI and any future ref-
erences to this resource SHOULD use one of the returned URIs. Clients with link
editing capabilities ought to automatically relink references to the Request-URI to
one or more of the new references returned by the server, where possible. This
response is cacheable unless indicated otherwise.

The new permanent URI SHOULD be given by the Location field in the response.
Unless the request method was HEAD, the entity of the response SHOULD con-
tain a short hypertext note with a hyperlink to the new URI(s).

If the 301 status code is received in response to a request other than GET or
HEAD, the user agent MUST NOT automatically redirect the request unless it can
be confirmed by the user, since this might change the conditions under which the
request was issued.

Note: When automatically redirecting a POST request after receiving a 301
status code, some existing HTTP/1.0 user agents will erroneously change it
into a GET request.

10.3.3 302 Found

The requested resource resides temporarily under a different URI. Since the redi-
rection might be altered on occasion, the client SHOULD continue to use the
Request-URI for future requests. This response is only cacheable if indicated by a
Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the response.
Unless the request method was HEAD, the entity of the response SHOULD con-
tain a short hypertext note with a hyperlink to the new URI(s).

If the 302 status code is received in response to a request other than GET or
HEAD, the user agent MUST NOT automatically redirect the request unless it can

Hypertext Transfer Protocol: HTTP/1.1 415



be confirmed by the user, since this might change the conditions under which the
request was issued.

Note: RFC 1945 and RFC 2068 specify that the client is not allowed to
change the method on the redirected request. However, most existing user
agent implementations treat 302 as if it were a 303 response, performing a
GET on the Location field-value regardless of the original request method.
The status codes 303 and 307 have been added for servers that wish to make
unambiguously clear which kind of reaction is expected of the client.

10.3.4 303 See Other

The response to the request can be found under a different URI and SHOULD be
retrieved using a GET method on that resource. This method exists primarily to
allow the output of a POST-activated script to redirect the user agent to a selected
resource. The new URI is not a substitute reference for the originally requested
resource. The 303 response MUST NOT be cached, but the response to the second
(redirected) request might be cacheable.

The different URI SHOULD be given by the Location field in the response. Unless
the request method was HEAD, the entity of the response SHOULD contain a
short hypertext note with a hyperlink to the new URI(s).

Note: Many pre-HTTP/1.1 user agents do not understand the 303 status.
When interoperability with such clients is a concern, the 302 status code may
be used instead, since most user agents react to a 302 response as described
here for 303.

10.3.5 304 Not Modified

If the client has performed a conditional GET request and access is allowed, but the
document has not been modified, the server SHOULD respond with this status
code. The 304 response MUST NOT contain a message-body, and thus is always
terminated by the first empty line after the header fields.

The response MUST include the following header fields:

• Date, unless its omission is required by section 14.18.1

If a clockless origin server obeys these rules, and proxies and clients add their own
Date to any response received without one (as already specified by [RFC 2068], sec-
tion 14.19), caches will operate correctly.
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• ETag and/or Content-Location, if the header would have been sent in a 200
response to the same request

• Expires, Cache-Control, and/or Vary, if the field-value might differ from that
sent in any previous response for the same variant

If the conditional GET used a strong cache validator (see section 13.3.3), the
response SHOULD NOT include other entity-headers. Otherwise (i.e., the con-
ditional GET used a weak validator), the response MUST NOT include other
entity-headers; this prevents inconsistencies between cached entity-bodies and
updated headers.

If a 304 response indicates an entity not currently cached, then the cache MUST
disregard the response and repeat the request without the conditional.

If a cache uses a received 304 response to update a cache entry, the cache MUST
update the entry to reflect any new field values given in the response.

10.3.6 305 Use Proxy

The requested resource MUST be accessed through the proxy given by the Location
field. The Location field gives the URI of the proxy. The recipient is expected to
repeat this single request via the proxy. 305 responses MUST only be generated by
origin servers.

Note: RFC 2068 was not clear that 305 was intended to redirect a single
request, and to be generated by origin servers only. Not observing these limi-
tations has significant security consequences.

10.3.7 306 (Unused)

The 306 status code was used in a previous version of the specification, but is no
longer used, and the code is reserved.

10.3.8 307 Temporary Redirect

The requested resource resides temporarily under a different URI. Since the redi-
rection MAY be altered on occasion, the client SHOULD continue to use the
Request-URI for future requests. This response is only cacheable if indicated by a
Cache-Control or Expires header field.
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The temporary URI SHOULD be given by the Location field in the response.
Unless the request method was HEAD, the entity of the response SHOULD con-
tain a short hypertext note with a hyperlink to the new URI(s) , since many pre-
HTTP/1.1 user agents do not understand the 307 status. Therefore, the note
SHOULD contain the information necessary for a user to repeat the original request
on the new URI.

If the 307 status code is received in response to a request other than GET or
HEAD, the user agent MUST NOT automatically redirect the request unless it can
be confirmed by the user, since this might change the conditions under which the
request was issued.

10.4 Client Error 4xx
The 4xx class of status code is intended for cases in which the client seems to have
erred. Except when responding to a HEAD request, the server SHOULD include
an entity containing an explanation of the error situation, and whether it is a tem-
porary or permanent condition. These status codes are applicable to any request
method. User agents SHOULD display any included entity to the user.

If the client is sending data, a server implementation using TCP SHOULD be care-
ful to ensure that the client acknowledges receipt of the packet(s) containing the
response, before the server closes the input connection. If the client continues send-
ing data to the server after the close, the server’s TCP stack will send a reset packet
to the client, which may erase the client’s unacknowledged input buffers before they
can be read and interpreted by the HTTP application.

10.4.1 400 Bad Request

The request could not be understood by the server due to malformed syntax. The
client SHOULD NOT repeat the request without modifications.

10.4.2 401 Unauthorized

The request requires user authentication. The response MUST include a WWW-
Authenticate header field (section 14.47) containing a challenge applicable to the
requested resource. The client MAY repeat the request with a suitable Authorization
header field (section 14.8). If the request already included Authorization creden-
tials, then the 401 response indicates that authorization has been refused for those
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credentials. If the 401 response contains the same challenge as the prior response,
and the user agent has already attempted authentication at least once, then the user
SHOULD be presented the entity that was given in the response, since that entity
might include relevant diagnostic information. HTTP access authentication is
explained in “HTTP Authentication: Basic and Digest Access Authentication” [43].

10.4.3 402 Payment Required

This code is reserved for future use.

10.4.4 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will 
not help and the request SHOULD NOT be repeated. If the request method was not
HEAD and the server wishes to make public why the request has not been fulfilled,
it SHOULD describe the reason for the refusal in the entity. If the server does not
wish to make this information available to the client, the status code 404 (Not
Found) can be used instead.

10.4.5 404 Not Found

The server has not found anything matching the Request-URI. No indication is
given of whether the condition is temporary or permanent. The 410 (Gone) status
code SHOULD be used if the server knows, through some internally configurable
mechanism, that an old resource is permanently unavailable and has no forwarding
address. This status code is commonly used when the server does not wish to reveal
exactly why the request has been refused, or when no other response is applicable.

10.4.6 405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource identified
by the Request-URI. The response MUST include an Allow header containing a list
of valid methods for the requested resource.

10.4.7 406 Not Acceptable

The resource identified by the request is only capable of generating response enti-
ties which have content characteristics not acceptable according to the accept head-
ers sent in the request.
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Unless it was a HEAD request, the response SHOULD include an entity contain-
ing a list of available entity characteristics and location(s) from which the user or
user agent can choose the one most appropriate. The entity format is specified by
the media type given in the Content-Type header field. Depending upon the for-
mat and the capabilities of the user agent, selection of the most appropriate choice
MAY be performed automatically. However, this specification does not define any
standard for such automatic selection.

Note: HTTP/1.1 servers are allowed to return responses which are not accept-
able according to the accept headers sent in the request. In some cases, this
may even be preferable to sending a 406 response. User agents are encouraged
to inspect the headers of an incoming response to determine if it is acceptable.

If the response could be unacceptable, a user agent SHOULD temporarily stop
receipt of more data and query the user for a decision on further actions.

10.4.8 407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the client must first
authenticate itself with the proxy. The proxy MUST return a Proxy-Authenticate
header field (section 14.33) containing a challenge applicable to the proxy for the
requested resource. The client MAY repeat the request with a suitable Proxy-
Authorization header field (section 14.34). HTTP access authentication is explained
in “HTTP Authentication: Basic and Digest Access Authentication” [43].

10.4.9 408 Request Timeout

The client did not produce a request within the time that the server was prepared
to wait. The client MAY repeat the request without modifications at any later time.

10.4.10 409 Conflict

The request could not be completed due to a conflict with the current state of the
resource. This code is only allowed in situations where it is expected that the user
might be able to resolve the conflict and resubmit the request. The response body
SHOULD include enough information for the user to recognize the source of the
conflict. Ideally, the response entity would include enough information for the user
or user agent to fix the problem; however, that might not be possible and is not
required.
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Conflicts are most likely to occur in response to a PUT request. For example, if ver-
sioning were being used and the entity being PUT included changes to a resource
which conflict with those made by an earlier (third-party) request, the server might
use the 409 response to indicate that it can’t complete the request. In this case, the
response entity would likely contain a list of the differences between the two ver-
sions in a format defined by the response Content-Type.

10.4.11 410 Gone

The requested resource is no longer available at the server and no forwarding
address is known. This condition is expected to be considered permanent. Clients
with link editing capabilities SHOULD delete references to the Request-URI after
user approval. If the server does not know, or has no facility to determine, whether
or not the condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web maintenance by
notifying the recipient that the resource is intentionally unavailable and that the
server owners desire that remote links to that resource be removed. Such an event is
common for limited-time, promotional services and for resources belonging to indi-
viduals no longer working at the server’s site. It is not necessary to mark all perma-
nently unavailable resources as “gone” or to keep the mark for any length of time—
that is left to the discretion of the server owner.

10.4.12 411 Length Required

The server refuses to accept the request without a defined Content-Length. The
client MAY repeat the request if it adds a valid Content-Length header field con-
taining the length of the message-body in the request message.

10.4.13 412 Precondition Failed

The precondition given in one or more of the request-header fields evaluated to
false when it was tested on the server. This response code allows the client to place
preconditions on the current resource metainformation (header field data) and thus
prevent the requested method from being applied to a resource other than the one
intended.
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10.4.14 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than
the server is willing or able to process. The server MAY close the connection to pre-
vent the client from continuing the request.

If the condition is temporary, the server SHOULD include a Retry-After header
field to indicate that it is temporary and after what time the client MAY try again.

10.4.15 414 Request-URI Too Long

The server is refusing to service the request because the Request-URI is longer than
the server is willing to interpret. This rare condition is only likely to occur when a
client has improperly converted a POST request to a GET request with long query
information, when the client has descended into a URI “black hole” of redirection
(e.g., a redirected URI prefix that points to a suffix of itself ), or when the server is
under attack by a client attempting to exploit security holes present in some servers
using fixed-length buffers for reading or manipulating the Request-URI.

10.4.16 415 Unsupported Media Type

The server is refusing to service the request because the entity of the request is in a
format not supported by the requested resource for the requested method.

10.4.17 416 Requested Range Not Satisfiable

A server SHOULD return a response with this status code if a request included a
Range request-header field (section 14.35), and none of the range-specifier values
in this field overlap the current extent of the selected resource, and the request did
not include an If-Range request-header field. (For byte ranges, this means that the
first-byte-pos of all of the byte-range-spec values were greater than the current
length of the selected resource.)

When this status code is returned for a byte-range request, the response SHOULD
include a Content-Range entity-header field specifying the current length of the
selected resource (see section 14.16). This response MUST NOT use the multipart/
byteranges content-type.
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10.4.18 417 Expectation Failed

The expectation given in an Expect request-header field (see section 14.20) could
not be met by this server, or, if the server is a proxy, the server has unambiguous evi-
dence that the request could not be met by the next-hop server.

10.5 Server Error 5xx
Response status codes beginning with the digit “5” indicate cases in which the
server is aware that it has erred or is incapable of performing the request. Except
when responding to a HEAD request, the server SHOULD include an entity con-
taining an explanation of the error situation, and whether it is a temporary or per-
manent condition. User agents SHOULD display any included entity to the user.
These response codes are applicable to any request method.

10.5.1 500 Internal Server Error

The server encountered an unexpected condition which prevented it from fulfilling
the request.

10.5.2 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is
the appropriate response when the server does not recognize the request method
and is not capable of supporting it for any resource.

10.5.3 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the
upstream server it accessed in attempting to fulfill the request.

10.5.4 503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading
or maintenance of the server. The implication is that this is a temporary condition
which will be alleviated after some delay. If known, the length of the delay MAY be
indicated in a Retry-After header. If no Retry-After is given, the client SHOULD
handle the response as it would for a 500 response.
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Note: The existence of the 503 status code does not imply that a server must
use it when becoming overloaded. Some servers may wish to simply refuse the
connection.

10.5.5 504 Gateway Timeout

The server, while acting as a gateway or proxy, did not receive a timely response
from the upstream server specified by the URI (e.g., HTTP, FTP, LDAP) or some
other auxiliary server (e.g., DNS) it needed to access in attempting to complete the
request.

Note to implementers: Some deployed proxies are known to return 400 or
500 when DNS lookups time out.

10.5.6 505 HTTP Version Not Supported

The server does not support, or refuses to support, the HTTP protocol version that
was used in the request message. The server is indicating that it is unable or unwill-
ing to complete the request using the same major version as the client, as described
in section 3.1, other than with this error message. The response SHOULD contain
an entity describing why that version is not supported and what other protocols are
supported by that server.

11 Access Authentication
HTTP provides several OPTIONAL challenge-response authentication mechanisms
which can be used by a server to challenge a client request and by a client to provide
authentication information. The general framework for access authentication, and
the specification of “basic” and “digest” authentication, are specified in “HTTP
Authentication: Basic and Digest Access Authentication” [43]. This specification
adopts the definitions of “challenge” and “credentials” from that specification.

12 Content Negotiation
Most HTTP responses include an entity which contains information for interpre-
tation by a human user. Naturally, it is desirable to supply the user with the “best
available” entity corresponding to the request. Unfortunately for servers and caches,
not all users have the same preferences for what is “best,” and not all user agents
are equally capable of rendering all entity types. For that reason, HTTP has
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provisions for several mechanisms for “content negotiation”—the process of select-
ing the best representation for a given response when there are multiple represen-
tations available.

Note: This is not called “format negotiation” because the alternate representa-
tions may be of the same media type, but use different capabilities of that type,
be in different languages, etc. Any response containing an entity-body MAY
be subject to negotiation, including error responses.

There are two kinds of content negotiation which are possible in HTTP: server-
driven and agent-driven negotiation. These two kinds of negotiation are orthogonal
and thus may be used separately or in combination. One method of combination,
referred to as transparent negotiation, occurs when a cache uses the agent-driven
negotiation information provided by the origin server in order to provide server-
driven negotiation for subsequent requests.

12.1 Server-Driven Negotiation
If the selection of the best representation for a response is made by an algorithm
located at the server, it is called server-driven negotiation. Selection is based on the
available representations of the response (the dimensions over which it can vary; e.g.
language, content-coding, etc.) and the contents of particular header fields in the
request message or on other information pertaining to the request (such as the net-
work address of the client).

Server-driven negotiation is advantageous when the algorithm for selecting from
among the available representations is difficult to describe to the user agent, or
when the server desires to send its “best guess” to the client along with the first
response (hoping to avoid the round-trip delay of a subsequent request if the “best
guess” is good enough for the user). In order to improve the server’s guess, the user
agent MAY include request header fields (Accept, Accept-Language, Accept-
Encoding, etc.) which describe its preferences for such a response.

Server-driven negotiation has disadvantages:

1. It is impossible for the server to accurately determine what might be “best”
for any given user, since that would require complete knowledge of both the
capabilities of the user agent and the intended use for the response (e.g.,
does the user want to view it on screen or print it on paper?).
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2. Having the user agent describe its capabilities in every request can be both
very inefficient (given that only a small percentage of responses have multi-
ple representations) and a potential violation of the user’s privacy.

3. It complicates the implementation of an origin server and the algorithms for
generating responses to a request.

4. It may limit a public cache’s ability to use the same response for multiple
user’s requests.

HTTP/1.1 includes the following request-header fields for enabling server-driven
negotiation through description of user agent capabilities and user preferences:
Accept (section 14.1), Accept-Charset (section 14.2), Accept-Encoding (section
14.3), Accept-Language (section 14.4), and User-Agent (section 14.43). However,
an origin server is not limited to these dimensions and MAY vary the response based
on any aspect of the request, including information outside the request-header
fields or within extension header fields not defined by this specification.

The Vary header field can be used to express the parameters the server uses to select
a representation that is subject to server-driven negotiation. See section 13.6 for use
of the Vary header field by caches and section 14.44 for use of the Vary header field
by servers.

12.2 Agent-Driven Negotiation
With agent-driven negotiation, selection of the best representation for a response is
performed by the user agent after receiving an initial response from the origin
server. Selection is based on a list of the available representations of the response
included within the header fields or entity-body of the initial response, with each
representation identified by its own URI. Selection from among the representations
may be performed automatically (if the user agent is capable of doing so) or man-
ually by the user selecting from a generated (possibly hypertext) menu.

Agent-driven negotiation is advantageous when the response would vary over com-
monly used dimensions (such as type, language, or encoding), when the origin
server is unable to determine a user agent’s capabilities from examining the request,
and generally when public caches are used to distribute server load and reduce net-
work usage.
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Agent-driven negotiation suffers from the disadvantage of needing a second request
to obtain the best alternate representation. This second request is only efficient
when caching is used. In addition, this specification does not define any mechanism
for supporting automatic selection, though it also does not prevent any such mech-
anism from being developed as an extension and used within HTTP/1.1.

HTTP/1.1 defines the 300 (Multiple Choices) and 406 (Not Acceptable) status
codes for enabling agent-driven negotiation when the server is unwilling or unable
to provide a varying response using server-driven negotiation.

12.3 Transparent Negotiation
Transparent negotiation is a combination of both server-driven and agent-driven
negotiation. When a cache is supplied with a form of the list of available represen-
tations of the response (as in agent-driven negotiation) and the dimensions of vari-
ance are completely understood by the cache, then the cache becomes capable of
performing server-driven negotiation on behalf of the origin server for subsequent
requests on that resource.

Transparent negotiation has the advantage of distributing the negotiation work that
would otherwise be required of the origin server and also removing the second
request delay of agent-driven negotiation when the cache is able to correctly guess
the right response.

This specification does not define any mechanism for transparent negotiation,
though it also does not prevent any such mechanism from being developed as an
extension that could be used within HTTP/1.1.

13 Caching in HTTP
HTTP is typically used for distributed information systems, where performance can
be improved by the use of response caches. The HTTP/1.1 protocol includes a
number of elements intended to make caching work as well as possible. Because
these elements are inextricable from other aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching design of HTTP
separately from the detailed descriptions of methods, headers, response codes, etc.
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Caching would be useless if it did not significantly improve performance. The goal
of caching in HTTP/1.1 is to eliminate the need to send requests in many cases,
and to eliminate the need to send full responses in many other cases. The former
reduces the number of network round-trips required for many operations; we use
an “expiration” mechanism for this purpose (see section 13.2). The latter reduces
network bandwidth requirements; we use a “validation” mechanism for this purpose
(see section 13.3).

Requirements for performance, availability, and disconnected operation require us
to be able to relax the goal of semantic transparency. The HTTP/1.1 protocol allows
origin servers, caches, and clients to explicitly reduce transparency when necessary.
However, because non-transparent operation may confuse non-expert users, and
might be incompatible with certain server applications (such as those for ordering
merchandise), the protocol requires that transparency be relaxed

• Only by an explicit protocol-level request when relaxed by client or origin
server

• Only with an explicit warning to the end user when relaxed by cache or client

Therefore, the HTTP/1.1 protocol provides these important elements:

1. Protocol features that provide full semantic transparency when this is
required by all parties.

2. Protocol features that allow an origin server or user agent to explicitly
request and control non-transparent operation.

3. Protocol features that allow a cache to attach warnings to responses that do
not preserve the requested approximation of semantic transparency.

A basic principle is that it must be possible for the clients to detect any potential
relaxation of semantic transparency.

Note: The server, cache, or client implementer might be faced with design
decisions not explicitly discussed in this specification. If a decision might affect
semantic transparency, the implementer ought to err on the side of maintain-
ing transparency unless a careful and complete analysis shows significant ben-
efits in breaking transparency.
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13.1.1 Cache Correctness

A correct cache MUST respond to a request with the most up-to-date response held
by the cache that is appropriate to the request (see sections 13.2.5, 13.2.6, and
13.12) which meets one of the following conditions:

1. It has been checked for equivalence with what the origin server would have
returned by revalidating the response with the origin server (section 13.3).

2. It is “fresh enough” (see section 13.2). In the default case, this means it
meets the least restrictive freshness requirement of the client, origin server,
and cache (see section 14.9); if the origin server so specifies, it is the fresh-
ness requirement of the origin server alone.

3. If a stored response is not “fresh enough” by the most restrictive freshness
requirement of both the client and the origin server, in carefully considered
circumstances the cache MAY still return the response with the appropriate
Warning header (see section 13.1.5 and 14.46), unless such a response is pro-
hibited (e.g., by a “no-store” cache-directive or “no-cache” cache-request-
directive; see section 14.9).

4. It is an appropriate 304 (Not Modified), 305 (Proxy Redirect), or error (4xx
or 5xx) response message.

If the cache can not communicate with the origin server, then a correct cache
SHOULD respond as above if the response can be correctly served from the cache;
if not, it MUST return an error or warning indicating that there was a communi-
cation failure.

If a cache receives a response (either an entire response or a 304 (Not Modified)
response) that it would normally forward to the requesting client, and the received
response is no longer fresh, the cache SHOULD forward it to the requesting client
without adding a new Warning (but without removing any existing Warning head-
ers). A cache SHOULD NOT attempt to revalidate a response simply because that
response became stale in transit; this might lead to an infinite loop. A user agent
that receives a stale response without a Warning MAY display a warning indication
to the user.
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13.1.2 Warnings

Whenever a cache returns a response that is neither first-hand nor “fresh enough”
(in the sense of condition 2 in section 13.1.1), it MUST attach a warning to that
effect, using a Warning general-header. The Warning header and the currently
defined warnings are described in section 14.46. The warning allows clients to take
appropriate action.

Warnings MAY be used for other purposes, both cache-related and otherwise. The
use of a warning, rather than an error status code, distinguishes these responses from
true failures.

Warnings are assigned three-digit warn-codes. The first digit indicates whether the
Warning MUST or MUST NOT be deleted from a stored cache entry after a suc-
cessful revalidation:

• 1xx: Warnings that describe the freshness or revalidation status of the response,
and so MUST be deleted after a successful revalidation. 1xx warn-codes MAY
be generated by a cache only when validating a cached entry. It MUST NOT
be generated by clients.

• 2xx: Warnings that describe some aspect of the entity body or entity head-
ers that is not rectified by a revalidation (for example, a lossy compression of
the entity bodies) and which MUST NOT be deleted after a successful
revalidation.

See section 14.46 for the definitions of the codes themselves.

HTTP/1.0 caches will cache all Warnings in responses, without deleting the ones
in the first category. Warnings in responses that are passed to HTTP/1.0 caches
carry an extra warning-date field, which prevents a future HTTP/1.1 recipient from
believing an erroneously cached Warning.

Warnings also carry a warning text. The text MAY be in any appropriate natural lan-
guage (perhaps based on the client’s Accept headers) and include an OPTIONAL
indication of what character set is used.

Multiple warnings MAY be attached to a response (either by the origin server or by
a cache), including multiple warnings with the same code number. For example, a
server might provide the same warning with texts in both English and Basque.
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When multiple warnings are attached to a response, it might not be practical or rea-
sonable to display all of them to the user. This version of HTTP does not specify
strict priority rules for deciding which warnings to display and in what order, but
does suggest some heuristics.

13.1.3 Cache-Control Mechanisms

The basic cache mechanisms in HTTP/1.1 (server-specified expiration times and
validators) are implicit directives to caches. In some cases, a server or client might
need to provide explicit directives to the HTTP caches. We use the Cache-Control
header for this purpose.

The Cache-Control header allows a client or server to transmit a variety of direc-
tives in either requests or responses. These directives typically override the default
caching algorithms. As a general rule, if there is any apparent conflict between
header values, the most restrictive interpretation is applied (that is, the one that is
most likely to preserve semantic transparency). However, in some cases, cache-
control directives are explicitly specified as weakening the approximation of seman-
tic transparency (for example, “max-stale” or “public”).

The cache-control directives are described in detail in section 14.9.

13.1.4 Explicit User Agent Warnings

Many user agents make it possible for users to override the basic caching mecha-
nisms. For example, the user agent might allow the user to specify that cached enti-
ties (even explicitly stale ones) are never validated, or the user agent might
habitually add “Cache-Control: max-stale=3600” to every request. The user agent
SHOULD NOT default to either non-transparent behavior, or behavior that results
in abnormally ineffective caching, but MAY be explicitly configured to do so by an
explicit action of the user.

If the user has overridden the basic caching mechanisms, the user agent SHOULD
explicitly indicate to the user whenever this results in the display of information that
might not meet the server’s transparency requirements (in particular, if the dis-
played entity is known to be stale). Since the protocol normally allows the user
agent to determine if responses are stale or not, this indication need only be dis-
played when this actually happens. The indication need not be a dialog box; it could
be an icon (for example, a picture of a rotting fish) or some other indicator.
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If the user has overridden the caching mechanisms in a way that would abnormally
reduce the effectiveness of caches, the user agent SHOULD continually indicate
this state to the user (for example, by a display of a picture of currency in flames)
so that the user does not inadvertently consume excess resources or suffer from
excessive latency.

13.1.5 Exceptions to the Rules and Warnings

In some cases, the operator of a cache MAY choose to configure it to return stale
responses even when not requested by clients. This decision ought not be made
lightly, but may be necessary for reasons of availability or performance, especially
when the cache is poorly connected to the origin server. Whenever a cache returns
a stale response, it MUST mark it as such (using a Warning header), enabling the
client software to alert the user that there might be a potential problem.

It also allows the user agent to take steps to obtain a first-hand or fresh response.
For this reason, a cache SHOULD NOT return a stale response if the client explic-
itly requests a first-hand or fresh one, unless it is impossible to comply with this
request for technical or policy reasons.

13.1.6 Client-Controlled Behavior

While the origin server (and to a lesser extent, intermediate caches, by their contri-
bution to the age of a response) is the primary source of expiration information, in
some cases the client might need to control a cache’s decision about whether to
return a cached response without validating it. Clients do this using several direc-
tives of the Cache-Control header.

A client’s request MAY specify the maximum age it is willing to accept of an unval-
idated response; specifying a value of zero forces the cache(s) to revalidate all
responses. A client MAY also specify the minimum time remaining before a response
expires. Both of these options increase constraints on the behavior of caches, and so
cannot further relax the cache’s approximation of semantic transparency.

A client MAY also specify that it will accept stale responses, up to some maximum
amount of staleness. This loosens the constraints on the caches, and so might vio-
late the origin server’s specified constraints on semantic transparency, but might be
necessary to support disconnected operation, or high availability in the face of poor
connectivity.
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13.2 Expiration Model

13.2.1 Server-Specified Expiration

HTTP caching works best when caches can entirely avoid making requests to the
origin server. The primary mechanism for avoiding requests is for an origin server
to provide an explicit expiration time in the future, indicating that a response MAY
be used to satisfy subsequent requests. In other words, a cache can return a fresh
response without first contacting the server.

Our expectation is that servers will assign future explicit expiration times to
responses in the belief that the entity is not likely to change, in a semantically sig-
nificant way, before the expiration time is reached. This normally preserves seman-
tic transparency, as long as the server’s expiration times are carefully chosen.

The expiration mechanism applies only to responses taken from a cache and not to
first-hand responses forwarded immediately to the requesting client.

If an origin server wishes to force a semantically transparent cache to validate every
request, it MAY assign an explicit expiration time in the past. This means that the
response is always stale, and so the cache SHOULD validate it before using it for sub-
sequent requests. See section 14.9.4 for a more restrictive way to force revalidation.

If an origin server wishes to force any HTTP/1.1 cache, no matter how it is con-
figured, to validate every request, it SHOULD use the “must-revalidate” cache-
control directive (see section 14.9).

Servers specify explicit expiration times using either the Expires header or the max-
age directive of the Cache-Control header.

An expiration time cannot be used to force a user agent to refresh its display or
reload a resource; its semantics apply only to caching mechanisms, and such mech-
anisms need only check a resource’s expiration status when a new request for that
resource is initiated. See section 13.13 for an explanation of the difference between
caches and history mechanisms.

13.2.2 Heuristic Expiration

Since origin servers do not always provide explicit expiration times, HTTP caches
typically assign heuristic expiration times, employing algorithms that use other
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header values (such as the Last-Modified time) to estimate a plausible expiration
time. The HTTP/1.1 specification does not provide specific algorithms, but does
impose worst-case constraints on their results. Since heuristic expiration times
might compromise semantic transparency, they ought to be used cautiously, 
and we encourage origin servers to provide explicit expiration times as much as
possible.

13.2.3 Age Calculations

In order to know if a cached entry is fresh, a cache needs to know if its age exceeds
its freshness lifetime. We discuss how to calculate the latter in section 13.2.4; this
section describes how to calculate the age of a response or cache entry.

In this discussion, we use the term “now” to mean “the current value of the clock at
the host performing the calculation.” Hosts that use HTTP, but especially hosts
running origin servers and caches, SHOULD use NTP [28] or some similar proto-
col to synchronize their clocks to a globally accurate time standard.

HTTP/1.1 requires origin servers to send a Date header, if possible, with every
response, giving the time at which the response was generated (see section 14.18).
We use the term “date_value” to denote the value of the Date header, in a form
appropriate for arithmetic operations.

HTTP/1.1 uses the Age response-header to convey the estimated age of the
response message when obtained from a cache. The Age field value is the cache’s
estimate of the amount of time since the response was generated or revalidated by
the origin server.

In essence, the Age value is the sum of the time that the response has been resident
in each of the caches along the path from the origin server, plus the amount of time
it has been in transit along network paths.

We use the term “age_value” to denote the value of the Age header, in a form appro-
priate for arithmetic operations.

A response’s age can be calculated in two entirely independent ways:

1. now minus date_value, if the local clock is reasonably well synchronized to
the origin server’s clock. If the result is negative, the result is replaced by zero.

2. age_value, if all of the caches along the response path implement HTTP/1.1.
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Given that we have two independent ways to compute the age of a response when
it is received, we can combine these as

corrected_received_age = max(now – date_value, age_value)

and as long as we have either nearly synchronized clocks or all-HTTP/1.1 paths,
one gets a reliable (conservative) result.

Because of network-imposed delays, some significant interval might pass between the
time that a server generates a response and the time that it is received at the next out-
bound cache or client. If uncorrected, this delay could result in improperly low ages.

Because the request that resulted in the returned Age value must have been initiated
prior to that Age value’s generation, we can correct for delays imposed by the net-
work by recording the time at which the request was initiated. Then, when an Age
value is received, it MUST be interpreted relative to the time the request was initi-
ated, not the time that the response was received. This algorithm results in conser-
vative behavior no matter how much delay is experienced. So, we compute

corrected_initial_age = corrected_received_age + (now – request_time)

where “request_time” is the time (according to the local clock) when the request
that elicited this response was sent.

Summary of age calculation algorithm, when a cache receives a response:
/*
* age_value
*   is the value of Age: header received by the cache with
*       this response.
* date_value
*   is the value of the origin server's Date: header
* request_time
*   is the (local) time when the cache made the request
*       that resulted in this cached response
* response_time
*   is the (local) time when the cache received the
*       response
* now
*   is the current (local) time
*/

apparent_age = max(0, response_time - date_value);
corrected_received_age = max(apparent_age, age_value);
response_delay = response_time - request_time;
corrected_initial_age = corrected_received_age + response_delay;
resident_time = now - response_time;
current_age  = corrected_initial_age + resident_time;
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The current_age of a cache entry is calculated by adding the amount of time (in sec-
onds) since the cache entry was last validated by the origin server to the cor-
rected_initial_age. When a response is generated from a cache entry, the cache
MUST include a single Age header field in the response with a value equal to the
cache entry’s current_age.

The presence of an Age header field in a response implies that a response is not first-
hand. However, the converse is not true, since the lack of an Age header field in a
response does not imply that the response is first-hand unless all caches along the
request path are compliant with HTTP/1.1 (i.e., older HTTP caches did not imple-
ment the Age header field).

13.2.4 Expiration Calculations

In order to decide whether a response is fresh or stale, we need to compare its fresh-
ness lifetime to its age. The age is calculated as described in section 13.2.3; this sec-
tion describes how to calculate the freshness lifetime, and to determine if a response
has expired. In the discussion below, the values can be represented in any form
appropriate for arithmetic operations.

We use the term “expires_value” to denote the value of the Expires header. We use
the term “max_age_value” to denote an appropriate value of the number of seconds
carried by the “max-age” directive of the Cache-Control header in a response (see
section 14.9.3).

The max-age directive takes priority over Expires, so if max-age is present in a
response, the calculation is simply

freshness_lifetime = max_age_value

Otherwise, if Expires is present in the response, the calculation is

freshness_lifetime = expires_value - date_value

Note that neither of these calculations is vulnerable to clock skew, since all of the
information comes from the origin server.

If none of Expires, Cache-Control: max-age, or Cache-Control: s-maxage (see
section 14.9.3) appears in the response, and the response does not include other
restrictions on caching, the cache MAY compute a freshness lifetime using a
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heuristic. The cache MUST attach Warning 113 to any response whose age is more
than 24 hours if such a warning has not already been added.

Also, if the response does have a Last-Modified time, the heuristic expiration value
SHOULD be no more than some fraction of the interval since that time. A typical
setting of this fraction might be 10%.

The calculation to determine if a response has expired is quite simple:

response_is_fresh = (freshness_lifetime > current_age)

13.2.5 Disambiguating Expiration Values

Because expiration values are assigned optimistically, it is possible for two caches to
contain fresh values for the same resource that are different.

If a client performing a retrieval receives a non-first-hand response for a request that
was already fresh in its own cache, and the Date header in its existing cache entry
is newer than the Date on the new response, then the client MAY ignore the
response. If so, it MAY retry the request with a “Cache-Control: max-age=0” direc-
tive (see section 14.9), to force a check with the origin server.

If a cache has two fresh responses for the same representation with different valida-
tors, it MUST use the one with the more recent Date header. This situation might
arise because the cache is pooling responses from other caches, or because a client
has asked for a reload or a revalidation of an apparently fresh cache entry.

13.2.6 Disambiguating Multiple Responses

Because a client might be receiving responses via multiple paths, so that some
responses flow through one set of caches and other responses flow through a differ-
ent set of caches, a client might receive responses in an order different from that in
which the origin server sent them. We would like the client to use the most recently
generated response, even if older responses are still apparently fresh.

Neither the entity tag nor the expiration value can impose an ordering on responses,
since it is possible that a later response intentionally carries an earlier expiration
time. The Date values are ordered to a granularity of one second.
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When a client tries to revalidate a cache entry, and the response it receives contains
a Date header that appears to be older than the one for the existing entry, then the
client SHOULD repeat the request unconditionally, and include

Cache-Control: max-age=0

to force any intermediate caches to validate their copies directly with the origin
server, or

Cache-Control: no-cache

to force any intermediate caches to obtain a new copy from the origin server.

If the Date values are equal, then the client MAY use either response (or MAY, if it
is being extremely prudent, request a new response). Servers MUST NOT depend
on clients being able to choose deterministically between responses generated dur-
ing the same second, if their expiration times overlap.

13.3 Validation Model
When a cache has a stale entry that it would like to use as a response to a client’s
request, it first has to check with the origin server (or possibly an intermediate cache
with a fresh response) to see if its cached entry is still usable. We call this “validat-
ing” the cache entry. Since we do not want to have to pay the overhead of retrans-
mitting the full response if the cached entry is good, and we do not want to pay the
overhead of an extra round-trip if the cached entry is invalid, the HTTP/1.1 pro-
tocol supports the use of conditional methods.

The key protocol features for supporting conditional methods are those concerned
with “cache validators.” When an origin server generates a full response, it attaches
some sort of validator to it, which is kept with the cache entry. When a client (user
agent or proxy cache) makes a conditional request for a resource for which it has a
cache entry, it includes the associated validator in the request.

The server then checks that validator against the current validator for the entity,
and, if they match (see section 13.3.3), it responds with a special status code [usu-
ally, 304 (Not Modified)] and no entity-body. Otherwise, it returns a full response
(including an entity-body). Thus, we avoid transmitting the full response if the val-
idator matches, and we avoid an extra round-trip if it does not match.
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In HTTP/1.1, a conditional request looks exactly the same as a normal request for
the same resource, except that it carries a special header (which includes the valida-
tor) that implicitly turns the method (usually, GET) into a conditional.

The protocol includes both positive and negative senses of cache-validating condi-
tions. That is, it is possible to request either that a method be performed if and only
if a validator matches or if and only if no validators match.

Note: A response that lacks a validator may still be cached, and served from
cache until it expires, unless this is explicitly prohibited by a cache-control
directive. However, a cache cannot do a conditional retrieval if it does not have
a validator for the entity, which means it will not be refreshable after it expires.

13.3.1 Last-Modified Dates

The Last-Modified entity-header field value is often used as a cache validator. In
simple terms, a cache entry is considered to be valid if the entity has not been mod-
ified since the Last-Modified value.

13.3.2 Entity Tag Cache Validators

The ETag response-header field value, an entity tag, provides for an “opaque”
cache validator. This might allow more reliable validation in situations where it is
inconvenient to store modification dates, where the one-second resolution of
HTTP date values is not sufficient, or where the origin server wishes to avoid cer-
tain paradoxes that might arise from the use of modification dates.

Entity Tags are described in section 3.11. The headers used with entity tags are
described in sections 14.19, 14.24, 14.26 and 14.44.

13.3.3 Weak and Strong Validators

Since both origin servers and caches will compare two validators to decide if they
represent the same or different entities, one normally would expect that if the entity
(the entity-body or any entity-headers) changes in any way, then the associated val-
idator would change as well. If this is true, then we call this validator a “strong
validator.”
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However, there might be cases when a server prefers to change the validator only on
semantically significant changes, and not when insignificant aspects of the entity
change. A validator that does not always change when the resource changes is a
“weak validator.”

Entity tags are normally “strong validators,” but the protocol provides a mechanism
to tag an entity tag as “weak.” One can think of a strong validator as one that
changes whenever the bits of an entity changes, while a weak value changes when-
ever the meaning of an entity changes. Alternatively, one can think of a strong val-
idator as part of an identifier for a specific entity, while a weak validator is part of
an identifier for a set of semantically equivalent entities.

Note: One example of a strong validator is an integer that is incremented in
stable storage every time an entity is changed.

An entity’s modification time, if represented with one-second resolution,
could be a weak validator, since it is possible that the resource might be mod-
ified twice during a single second.

Support for weak validators is optional. However, weak validators allow for
more efficient caching of equivalent objects; for example, a hit counter on a
site is probably good enough if it is updated every few days or weeks, and any
value during that period is likely “good enough” to be equivalent.

A “use” of a validator is either when a client generates a request and includes the val-
idator in a validating header field, or when a server compares two validators.

Strong validators are usable in any context. Weak validators are only usable in con-
texts that do not depend on exact equality of an entity. For example, either kind 
is usable for a conditional GET of a full entity. However, only a strong validator is
usable for a subrange retrieval, since otherwise the client might end up with an
internally inconsistent entity.

Clients MAY issue simple (non-subrange) GET requests with either weak validators
or strong validators. Clients MUST NOT use weak validators in other forms of
request.

The only function that the HTTP/1.1 protocol defines on validators is comparison.
There are two validator comparison functions, depending on whether the compar-
ison context allows the use of weak validators or not:
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• The strong comparison function: In order to be considered equal, both val-
idators MUST be identical in every way, and both MUST NOT be weak.

• The weak comparison function: In order to be considered equal, both valida-
tors MUST be identical in every way, but either or both of them MAY be
tagged as “weak” without affecting the result.

An entity tag is strong unless it is explicitly tagged as weak. Section 3.11 gives the
syntax for entity tags.

A Last-Modified time, when used as a validator in a request, is implicitly weak
unless it is possible to deduce that it is strong, using the following rules:

• The validator is being compared by an origin server to the actual current val-
idator for the entity, and

• That origin server reliably knows that the associated entity did not change
twice during the second covered by the presented validator.

or

• The validator is about to be used by a client in an If-Modified-Since or If-
Unmodified-Since header, because the client has a cache entry for the associ-
ated entity, and

• That cache entry includes a Date value, which gives the time when the origin
server sent the original response, and

• The presented Last-Modified time is at least 60 seconds before the Date value.

or

• The validator is being compared by an intermediate cache to the validator
stored in its cache entry for the entity, and

• That cache entry includes a Date value, which gives the time when the origin
server sent the original response, and

• The presented Last-Modified time is at least 60 seconds before the Date value.

This method relies on the fact that if two different responses were sent by the ori-
gin server during the same second, but both had the same Last-Modified time, then
at least one of those responses would have a Date value equal to its Last-Modified
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time. The arbitrary 60-second limit guards against the possibility that the Date and
Last-Modified values are generated from different clocks, or at somewhat different
times during the preparation of the response. An implementation MAY use a value
larger than 60 seconds, if it is believed that 60 seconds is too short.

If a client wishes to perform a subrange retrieval on a value for which it has only a
Last-Modified time and no opaque validator, it MAY do this only if the Last-
Modified time is strong in the sense described here.

A cache or origin server receiving a conditional request, other than a full-body GET
request, MUST use the strong comparison function to evaluate the condition.

These rules allow HTTP/1.1 caches and clients to safely perform subrange retrievals
on values that have been obtained from HTTP/1.0 servers.

13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates

We adopt a set of rules and recommendations for origin servers, clients, and caches
regarding when various validator types ought to be used, and for what purposes.

HTTP/1.1 origin servers

• SHOULD send an entity tag validator unless it is not feasible to generate one.

• MAY send a weak entity tag instead of a strong entity tag, if performance con-
siderations support the use of weak entity tags, or if it is unfeasible to send a
strong entity tag.

• SHOULD send a Last-Modified value if it is feasible to send one, unless the
risk of a breakdown in semantic transparency that could result from using this
date in an If-Modified-Since header would lead to serious problems.

In other words, the preferred behavior for an HTTP/1.1 origin server is to send
both a strong entity tag and a Last-Modified value.

In order to be legal, a strong entity tag MUST change whenever the associated
entity value changes in any way. A weak entity tag SHOULD change whenever the
associated entity changes in a semantically significant way.

Note: In order to provide semantically transparent caching, an origin server
must avoid reusing a specific strong entity tag value for two different entities,
or reusing a specific weak entity tag value for two semantically different enti-
ties. Cache entries might persist for arbitrarily long periods, regardless of
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expiration times, so it might be inappropriate to expect that a cache will never
again attempt to validate an entry using a validator that it obtained at some
point in the past.

HTTP/1.1 clients

• If an entity tag has been provided by the origin server, MUST use that entity
tag in any cache-conditional request (using If-Match or If-None-Match).

• If only a Last-Modified value has been provided by the origin server,
SHOULD use that value in non-subrange cache-conditional requests (using
If-Modified-Since).

• If only a Last-Modified value has been provided by an HTTP/1.0 origin
server, MAY use that value in subrange cache-conditional requests (using If-
Unmodified-Since). The user agent SHOULD provide a way to disable this,
in case of difficulty.

• If both an entity tag and a Last-Modified value have been provided by the ori-
gin server, SHOULD use both validators in cache-conditional requests. This
allows both HTTP/1.0 and HTTP/1.1 caches to respond appropriately.

An HTTP/1.1 origin server, upon receiving a conditional request that includes both
a Last-Modified date (e.g., in an If-Modified-Since or If-Unmodified-Since header
field) and one or more entity tags (e.g., in an If-Match, If-None-Match, or If-Range
header field) as cache validators, MUST NOT return a response status of 304 (Not
Modified) unless doing so is consistent with all of the conditional header fields in
the request.

An HTTP/1.1 caching proxy, upon receiving a conditional request that includes
both a Last-Modified date and one or more entity tags as cache validators, MUST
NOT return a locally cached response to the client unless that cached response is
consistent with all of the conditional header fields in the request.

Note: The general principle behind these rules is that HTTP/1.1 servers and
clients should transmit as much nonredundant information as is available in
their responses and requests. HTTP/1.1 systems receiving this information
will make the most conservative assumptions about the validators they receive.

HTTP/1.0 clients and caches will ignore entity tags. Generally, last-modified values
received or used by these systems will support transparent and efficient caching, and
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so HTTP/1.1 origin servers should provide Last-Modified values. In those rare cases
where the use of a Last-Modified value as a validator by an HTTP/1.0 system could
result in a serious problem, then HTTP/1.1 origin servers should not provide one.

13.3.5 Nonvalidating Conditionals

The principle behind entity tags is that only the service author knows the seman-
tics of a resource well enough to select an appropriate cache validation mechanism,
and the specification of any validator comparison function more complex than
byte-equality would open up a can of worms. Thus, comparisons of any other head-
ers (except Last-Modified, for compatibility with HTTP/1.0) are never used for
purposes of validating a cache entry.

13.4 Response Cacheability
Unless specifically constrained by a cache-control (section 14.9) directive, a caching
system MAY always store a successful response (see section 13.8) as a cache entry,
MAY return it without validation if it is fresh, and MAY return it after successful
validation. If there is neither a cache validator nor an explicit expiration time asso-
ciated with a response, we do not expect it to be cached, but certain caches MAY
violate this expectation (for example, when little or no network connectivity is avail-
able). A client can usually detect that such a response was taken from a cache by
comparing the Date header to the current time.

Note: Some HTTP/1.0 caches are known to violate this expectation without
providing any Warning.

However, in some cases it might be inappropriate for a cache to retain an entity, or
to return it in response to a subsequent request. This might be because absolute
semantic transparency is deemed necessary by the service author, or because of secu-
rity or privacy considerations. Certain cache-control directives are therefore pro-
vided so that the server can indicate that certain resource entities, or portions
thereof, are not to be cached regardless of other considerations.

Note that section 14.8 normally prevents a shared cache from saving and returning
a response to a previous request if that request included an Authorization header.

A response received with a status code of 200, 203, 206, 300, 301, or 410 MAY be
stored by a cache and used in reply to a subsequent request, subject to the expira-
tion mechanism, unless a cache-control directive prohibits caching. However, a
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cache that does not support the Range and Content-Range headers MUST NOT
cache 206 (Partial Content) responses.

A response received with any other status code (e.g., status codes 302 and 307)
MUST NOT be returned in a reply to a subsequent request unless there are cache-
control directives or other headers that explicitly allow it. For example, these
include the following: an Expires header (section 14.21); a “max-age,” “s-maxage,”
“must-revalidate,” “proxy-revalidate,” “public” or “private” cache-control directive
(section 14.9).

13.5 Constructing Responses from Caches
The purpose of an HTTP cache is to store information received in response to
requests for use in responding to future requests. In many cases, a cache simply
returns the appropriate parts of a response to the requester. However, if the cache
holds a cache entry based on a previous response, it might have to combine parts of
a new response with what is held in the cache entry.

13.5.1 End-to-End and Hop-by-Hop Headers

For the purpose of defining the behavior of caches and noncaching proxies, we
divide HTTP headers into two categories:

• End-to-end headers, which are transmitted to the ultimate recipient of a
request or response. End-to-end headers in responses MUST be stored as part
of a cache entry and MUST be transmitted in any response formed from a
cache entry.

• Hop-by-hop headers, which are meaningful only for a single transport-level
connection, and are not stored by caches or forwarded by proxies.

The following HTTP/1.1 headers are hop-by-hop headers:

• Connection

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• TE
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• Trailers

• Transfer-Encoding

• Upgrade

All other headers defined by HTTP/1.1 are end-to-end headers.

Other hop-by-hop headers MUST be listed in a Connection header (section 14.10)
to be introduced into HTTP/1.1 (or later).

13.5.2 Nonmodifiable Headers

Some features of the HTTP/1.1 protocol, such as Digest Authentication, depend
on the value of certain end-to-end headers. A transparent proxy SHOULD NOT
modify an end-to-end header unless the definition of that header requires or specif-
ically allows that.

A transparent proxy MUST NOT modify any of the following fields in a request or
response, and it MUST NOT add any of these fields if not already present:

• Content-Location

• Content-MD5

• ETag

• Last-Modified

A transparent proxy MUST NOT modify the following field in a response:

• Expires

It MAY add this field if not already present. If an Expires header is added, it MUST
be given a field-value identical to that of the Date header in that response.

A proxy MUST NOT modify or add any of the following fields in a message that
contains the no-transform cache-control directive, or in any request:

• Content-Encoding

• Content-Range

• Content-Type
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A non-transparent proxy MAY modify or add these fields to a message that does
not include no-transform, but if it does so, it MUST add a Warning 214
(Transformation applied) if one does not already appear in the message (see sec-
tion 14.46).

Warning: Unnecessary modification of end-to-end headers might cause
authentication failures if stronger authentication mechanisms are introduced
in later versions of HTTP. Such authentication mechanisms MAY rely on the
values of header fields not listed here.

The Content-Length field of a request or response is added or deleted according
to the rules in section 4.4. A transparent proxy MUST preserve the entity-length
(section 7.2.2) of the entity-body, although it MAY change the transfer-length
(section 4.4).

13.5.3 Combining Headers

When a cache makes a validating request to a server, and the server provides a 304
(Not Modified) response or a 206 (Partial Content) response, the cache then con-
structs a response to send to the requesting client.

If the status code is 304 (Not Modified), the cache uses the entity-body stored in
the cache entry as the entity-body of this outgoing response. If the status code is
206 (Partial Content) and the ETag or Last-Modified headers match exactly, the
cache MAY combine the contents stored in the cache entry with the new contents
received in the response and use the result as the entity-body of this outgoing
response (see 13.5.4).

The end-to-end headers stored in the cache entry are used for the constructed
response, except that

• any stored Warning headers with warn-code 1xx (see section 14.46) MUST be
deleted from the cache entry and the forwarded response.

• any stored Warning headers with warn-code 2xx MUST be retained in the
cache entry and the forwarded response.

• any end-to-end headers provided in the 304 or 206 response MUST replace
the corresponding headers from the cache entry.
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Unless the cache decides to remove the cache entry, it MUST also replace the end-
to-end headers stored with the cache entry with corresponding headers received in
the incoming response, except for Warning headers as described immediately above.
If a header field-name in the incoming response matches more than one header in
the cache entry, all such old headers MUST be replaced.

In other words, the set of end-to-end headers received in the incoming response
overrides all corresponding end-to-end headers stored with the cache entry (except
for stored Warning headers with warn-code 1xx, which are deleted even if not over-
ridden).

Note: This rule allows an origin server to use a 304 (Not Modified) or a 206
(Partial Content) response to update any header associated with a previous
response for the same entity or subranges thereof, although it might not always
be meaningful or correct to do so. This rule does not allow an origin server to
use a 304 (Not Modified) or a 206 (Partial Content) response to entirely delete
a header that it had provided with a previous response.

13.5.4 Combining Byte Ranges

A response might transfer only a subrange of the bytes of an entity-body, either
because the request included one or more Range specifications, or because a con-
nection was broken prematurely. After several such transfers, a cache might have
received several ranges of the same entity-body.

If a cache has a stored non-empty set of subranges for an entity, and an incoming
response transfers another subrange, the cache MAY combine the new subrange
with the existing set if both the following conditions are met:

• Both the incoming response and the cache entry have a cache validator.

• The two cache validators match using the strong comparison function (see sec-
tion 13.3.3).

If either requirement is not met, the cache MUST use only the most recent partial
response (based on the Date values transmitted with every response, and using the
incoming response if these values are equal or missing), and MUST discard the
other partial information.
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13.6 Caching Negotiated Responses
Use of server-driven content negotiation (section 12.1), as indicated by the presence
of a Vary header field in a response, alters the conditions and procedure by which a
cache can use the response for subsequent requests. See section 14.44 for use of the
Vary header field by servers.

A server SHOULD use the Vary header field to inform a cache of what request-
header fields were used to select among multiple representations of a cacheable
response subject to server-driven negotiation. The set of header fields named by the
Vary field value is known as the “selecting” request-headers.

When the cache receives a subsequent request whose Request-URI specifies one or
more cache entries including a Vary header field, the cache MUST NOT use such
a cache entry to construct a response to the new request unless all of the selecting
request-headers present in the new request match the corresponding stored request-
headers in the original request.

The selecting request-headers from two requests are defined to match if and only if
the selecting request-headers in the first request can be transformed to the selecting
request-headers in the second request by adding or removing linear white space
(LWS) at places where this is allowed by the corresponding BNF, and/or combin-
ing multiple message-header fields with the same field name following the rules
about message headers in section 4.2.

A Vary header field-value of “*” always fails to match and subsequent requests on
that resource can only be properly interpreted by the origin server.

If the selecting request header fields for the cached entry do not match the select-
ing request header fields of the new request, then the cache MUST NOT use a
cached entry to satisfy the request unless it first relays the new request to the origin
server in a conditional request and the server responds with 304 (Not Modified),
including an entity tag or Content-Location that indicates the entity to be used.

If an entity tag was assigned to a cached representation, the forwarded request
SHOULD be conditional and include the entity tags in an If-None-Match header
field from all its cache entries for the resource. This conveys to the server the set of
entities currently held by the cache, so that if any one of these entities matches the
requested entity, the server can use the ETag header field in its 304 (Not Modified)
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response to tell the cache which entry is appropriate. If the entity-tag of the new
response matches that of an existing entry, the new response SHOULD be used to
update the header fields of the existing entry, and the result MUST be returned 
to the client.

If any of the existing cache entries contains only partial content for the associated
entity, its entity-tag SHOULD NOT be included in the If-None-Match header
field unless the request is for a range that would be fully satisfied by that entry.

If a cache receives a successful response whose Content-Location field matches that
of an existing cache entry for the same Request-URI, whose entity-tag differs from
that of the existing entry, and whose Date is more recent than that of the existing
entry, the existing entry SHOULD NOT be returned in response to future requests
and SHOULD be deleted from the cache.

13.7 Shared and Non-shared Caches
For reasons of security and privacy, it is necessary to make a distinction between
“shared” and “non-shared” caches. A non-shared cache is one that is accessible only
to a single user. Accessibility in this case SHOULD be enforced by appropriate
security mechanisms. All other caches are considered to be “shared.” Other sections
of this specification place certain constraints on the operation of shared caches in
order to prevent loss of privacy or failure of access controls.

13.8 Errors or Incomplete Response Cache Behavior
A cache that receives an incomplete response (for example, with fewer bytes of data
than specified in a Content-Length header) MAY store the response. However, the
cache MUST treat this as a partial response. Partial responses MAY be combined as
described in section 13.5.4; the result might be a full response or might still be par-
tial. A cache MUST NOT return a partial response to a client without explicitly
marking it as such, using the 206 (Partial Content) status code. A cache MUST
NOT return a partial response using a status code of 200 (OK).

If a cache receives a 5xx response while attempting to revalidate an entry, it MAY
either forward this response to the requesting client or act as if the server failed to
respond. In the latter case, it MAY return a previously received response unless
the cached entry includes the “must-revalidate” cache-control directive (see sec-
tion 14.9).
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13.9 Side Effects of GET and HEAD
Unless the origin server explicitly prohibits the caching of their responses, the appli-
cation of GET and HEAD methods to any resources SHOULD NOT have side
effects that would lead to erroneous behavior if these responses are taken from a
cache. They MAY still have side effects, but a cache is not required to consider such
side effects in its caching decisions. Caches are always expected to observe an origin
server’s explicit restrictions on caching.

We note one exception to this rule: Since some applications have traditionally used
GETs and HEADs with query URLs (those containing a “?” in the rel_path part) to
perform operations with significant side effects, caches MUST NOT treat responses
to such URIs as fresh unless the server provides an explicit expiration time. This
specifically means that responses from HTTP/1.0 servers for such URIs SHOULD
NOT be taken from a cache. See section 9.1.1 for related information.

13.10 Invalidation After Updates or Deletions
The effect of certain methods performed on a resource at the origin server might
cause one or more existing cache entries to become non-transparently invalid. That
is, although they might continue to be “fresh,” they do not accurately reflect what
the origin server would return for a new request on that resource.

There is no way for the HTTP protocol to guarantee that all such cache entries are
marked invalid. For example, the request that caused the change at the origin server
might not have gone through the proxy where a cache entry is stored. However, sev-
eral rules help reduce the likelihood of erroneous behavior.

In this section, the phrase “invalidate an entity” means that the cache will either
remove all instances of that entity from its storage or will mark these as “invalid”
and in need of a mandatory revalidation before they can be returned in response to
a subsequent request.

Some HTTP methods MUST cause a cache to invalidate an entity. This is either
the entity referred to by the Request-URI or by the Location or Content-Location
headers (if present). These methods are

• PUT

• DELETE

• POST
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In order to prevent denial of service attacks, an invalidation based on the URI in a
Location or Content-Location header MUST only be performed if the host part is
the same as in the Request-URI.

A cache that passes through requests for methods it does not understand SHOULD
invalidate any entities referred to by the Request-URI.

13.11 Write-Through Mandatory
All methods that might be expected to cause modifications to the origin server’s
resources MUST be written through to the origin server. This currently includes all
methods except for GET and HEAD. A cache MUST NOT reply to such a request
from a client before having transmitted the request to the inbound server, and having
received a corresponding response from the inbound server. This does not prevent a
proxy cache from sending a 100 (Continue) response before the inbound server has
sent its final reply. The alternative (known as “write-back” or “copy-back” caching) is
not allowed in HTTP/1.1, due to the difficulty of providing consistent updates and
the problems arising from server, cache, or network failure prior to write-back.

13.12 Cache Replacement
If a new cacheable (see sections 14.9.2, 13.2.5, 13.2.6, and 13.8) response is
received from a resource while any existing responses for the same resource are
cached, the cache SHOULD use the new response to reply to the current request.
It MAY insert it into cache storage and MAY, if it meets all other requirements, use
it to respond to any future requests that would previously have caused the old
response to be returned. If it inserts the new response into cache storage the rules
in section 13.5.3 apply.

Note: A new response that has an older Date header value than existing cached
responses is not cacheable.

13.13 History Lists
User agents often have history mechanisms, such as “Back” buttons and history
lists, which can be used to redisplay an entity retrieved earlier in a session.

History mechanisms and caches are different. In particular, history mechanisms
SHOULD NOT try to show a semantically transparent view of the current state of
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a resource. Rather, a history mechanism is meant to show exactly what the user saw
at the time when the resource was retrieved.

By default, an expiration time does not apply to history mechanisms. If the entity
is still in storage, a history mechanism SHOULD display it even if the entity has
expired, unless the user has specifically configured the agent to refresh expired his-
tory documents. 

This is not to be construed to prohibit the history mechanism from telling the user
that a view might be stale.

Note: If history list mechanisms unnecessarily prevent users from viewing stale
resources, this will tend to force service authors to avoid using HTTP expira-
tion controls and cache controls when they would otherwise like to. Service
authors may consider it important that users not be presented with error mes-
sages or warning messages when they use navigation controls (such as BACK)
to view previously fetched resources. Even though sometimes such resources
ought not to be cached, or ought to expire quickly, user interface considera-
tions may force service authors to resort to other means of preventing caching
(e.g., “once-only” URLs) in order not to suffer the effects of improperly func-
tioning history mechanisms.

14 Header Field Definitions
This section defines the syntax and semantics of all standard HTTP/1.1 header
fields. For entity-header fields, both sender and recipient refer to either the client or
the server, depending on who sends and who receives the entity.

14.1 Accept
The Accept request-header field can be used to specify certain media types which
are acceptable for the response. Accept headers can be used to indicate that the
request is specifically limited to a small set of desired types, as in the case of a request
for an inline image.

Accept     = "Accept" ":"
#( media-range [ accept-params ] )

media-range  = ( "*/*"
| ( type "/" "*" )
| ( type "/" subtype )
) *( ";" parameter )

accept-params = ";" "q" "=" qvalue *( accept-extension )
accept-extension = ";" token [ "=" ( token | quoted-string ) ]
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The asterisk “*” character is used to group media types into ranges, with “*/*” indi-
cating all media types and “type/*” indicating all subtypes of that type. The media-
range MAY include media type parameters that are applicable to that range.

Each media-range MAY be followed by one or more accept-params, beginning
with the “q” parameter for indicating a relative quality factor. The first “q” param-
eter (if any) separates the media-range parameter(s) from the accept-params.
Quality factors allow the user or user agent to indicate the relative degree of pref-
erence for that media-range, using the qvalue scale from 0 to 1 (section 3.9). The
default value is q=1.

Note: Use of the “q” parameter name to separate media type parameters from
Accept extension parameters is due to historical practice. Although this pre-
vents any media type parameter named “q” from being used with a media
range, such an event is believed to be unlikely given the lack of any “q” param-
eters in the IANA media type registry and the rare usage of any media type
parameters in Accept. Future media types are discouraged from registering any
parameter named “q”.

The example

Accept: audio/*; q=0.2, audio/basic

SHOULD be interpreted as “I prefer audio/basic, but send me any audio type if it
is the best available after an 80% markdown in quality.”

If no Accept header field is present, then it is assumed that the client accepts all
media types. If an Accept header field is present, and if the server cannot send a
response which is acceptable according to the combined Accept field value, then the
server SHOULD send a 406 (not acceptable) response.

A more elaborate example is

Accept: text/plain; q=0.5, text/html, text/x-dvi; q=0.8, text/x-c

Verbally, this would be interpreted as “text/html and text/x-c are the preferred
media types, but if they do not exist, then send the text/x-dvi entity, and if that does
not exist, send the text/plain entity.”

Media ranges can be overridden by more specific media ranges or specific media
types. If more than one media range applies to a given type, the most specific ref-
erence has precedence. For example,

Accept: text/*, text/html, text/html;level=1, */*

454 Appendix C • Hypertext Transfer Protocol: HTTP/1.1



have the following precedence:

1. text/html;level=1

2. text/html

3. text/*

4. */*

The media type quality factor associated with a given type is determined by find-
ing the media range with the highest precedence which matches that type. For
example,

Accept: text/*;q=0.3, text/html;q=0.7, text/html;level=1,
text/html;level=2;q=0.4, */*;q=0.5

would cause the following values to be associated:

text/html;level=1 = 1

text/html = 0.7

text/plain = 0.3

image/jpeg = 0.5

text/html;level=2 = 0.4

text/html;level=3 = 0.7

Note: A user agent might be provided with a default set of quality values for
certain media ranges. However, unless the user agent is a closed system which
cannot interact with other rendering agents, this default set ought to be con-
figurable by the user.

14.2 Accept-Charset
The Accept-Charset request-header field can be used to indicate what character sets
are acceptable for the response. This field allows clients capable of understanding
more comprehensive or special-purpose character sets to signal that capability to a
server which is capable of representing documents in those character sets.

Accept-Charset = "Accept-Charset" ":" 1#( ( charset | "*" )[ ";" "q" "=" qvalue ] )
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Character set values are described in section 3.4. Each charset MAY be given an
associated quality value which represents the user’s preference for that charset. The
default value is q=1. An example is

Accept-Charset: iso-8859-5, unicode-1-1;q=0.8

The special value “*”, if present in the Accept-Charset field, matches every charac-
ter set (including ISO-8859-1) which is not mentioned elsewhere in the Accept-
Charset field. If no “*” is present in an Accept-Charset field, then all character sets
not explicitly mentioned get a quality value of 0, except for ISO-8859-1, which gets
a quality value of 1 if not explicitly mentioned.

If no Accept-Charset header is present, the default is that any character set is accept-
able. If an Accept-Charset header is present, and if the server cannot send a response
which is acceptable according to the Accept-Charset header, then the server
SHOULD send an error response with the 406 (not acceptable) status code, though
the sending of an unacceptable response is also allowed.

14.3 Accept-Encoding
The Accept-Encoding request-header field is similar to Accept, but restricts the
content-codings (section 3.5) that are acceptable in the response.

Accept-Encoding = "Accept-Encoding" ":"
1#( codings [ ";" "q" "=" qvalue ] )

codings         = ( content-coding | "*" )

Examples of its use are:
Accept-Encoding: compress, gzip
Accept-Encoding:
Accept-Encoding: *
Accept-Encoding: compress;q=0.5, gzip;q=1.0

Accept-Encoding: gzip;q=1.0, identity; q=0.5, *;q=0

A server tests whether a content-coding is acceptable, according to an Accept-
Encoding field, using these rules:

1. If the content-coding is one of the content-codings listed in the Accept-
Encoding field, then it is acceptable, unless it is accompanied by a qvalue of
0. (As defined in section 3.9, a qvalue of 0 means “not acceptable.”)
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2. The special “*” symbol in an Accept-Encoding field matches any available
content-coding not explicitly listed in the header field.

3. If multiple content-codings are acceptable, then the acceptable content-
coding with the highest non-zero qvalue is preferred.

4. The “identity” content-coding is always acceptable, unless specifically
refused because the Accept-Encoding field includes “identity;q=0”, or because
the field includes “*;q=0” and does not explicitly include the “identity”
content-coding. If the Accept-Encoding field-value is empty, then only the
“identity” encoding is acceptable.

If an Accept-Encoding field is present in a request, and if the server cannot send a
response which is acceptable according to the Accept-Encoding header, then the
server SHOULD send an error response with the 406 (Not Acceptable) status code.

If no Accept-Encoding field is present in a request, the server MAY assume that the
client will accept any content coding. In this case, if “identity” is one of the avail-
able content-codings, then the server SHOULD use the “identity” content-coding,
unless it has additional information that a different content-coding is meaningful
to the client.

Note: If the request does not include an Accept-Encoding field, and if the
“identity” content-coding is unavailable, then content-codings commonly
understood by HTTP/1.0 clients (i.e., “gzip” and “compress”) are preferred;
some older clients improperly display messages sent with other content-cod-
ings. The server might also make this decision based on information about the
particular user agent or client.

Note: Most HTTP/1.0 applications do not recognize or obey qvalues associ-
ated with content-codings. This means that qvalues will not work and are not
permitted with x-gzip or x-compress.

14.4 Accept-Language
The Accept-Language request-header field is similar to Accept, but restricts the set
of natural languages that are preferred as a response to the request. Language tags
are defined in section 3.10.

Accept-Language = "Accept-Language" ":"
1#( language-range [ ";" "q" "=" qvalue ] )

language-range = ( ( 1*8ALPHA *( "-" 1*8ALPHA ) ) | "*" )
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Each language-range MAY be given an associated quality value which represents an
estimate of the user’s preference for the languages specified by that range. The qual-
ity value defaults to “q=1”. For example,

Accept-Language: da, en-gb;q=0.8, en;q=0.7

would mean: “I prefer Danish, but will accept British English and other types of
English.” A language-range matches a language-tag if it exactly equals the tag, or if
it exactly equals a prefix of the tag such that the first tag character following the pre-
fix is “-”. The special range “*”, if present in the Accept-Language field, matches
every tag not matched by any other range present in the Accept-Language field.

Note: This use of a prefix matching rule does not imply that language tags are
assigned to languages in such a way that it is always true that if a user under-
stands a language with a certain tag, then this user will also understand all lan-
guages with tags for which this tag is a prefix. The prefix rule simply allows the
use of prefix tags if this is the case.

The language quality factor assigned to a language-tag by the Accept-Language field
is the quality value of the longest language-range in the field that matches the
language-tag. If no language-range in the field matches the tag, the language qual-
ity factor assigned is 0. If no Accept-Language header is present in the request, the
server SHOULD assume that all languages are equally acceptable. If an Accept-
Language header is present, then all languages which are assigned a quality factor
greater than 0 are acceptable.

It might be contrary to the privacy expectations of the user to send an Accept-
Language header with the complete linguistic preferences of the user in every
request. For a discussion of this issue, see section 15.1.4. 

As intelligibility is highly dependent on the individual user, it is recommended that
client applications make the choice of linguistic preference available to the user. If
the choice is not made available, then the Accept-Language header field MUST
NOT be given in the request.

Note: When making the choice of linguistic preference available to the user, we
remind implementers of the fact that users are not familiar with the details of lan-
guage matching as described above, so they should provide appropriate guidance.
As an example, users might assume that on selecting “en-gb”, they will be served
any kind of English document if British English is not available. A user agent
might suggest in such a case to add “en” to get the best matching behavior.
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14.5 Accept-Ranges
The Accept-Ranges response-header field allows the server to indicate its acceptance
of range requests for a resource:

Accept-Ranges   = "Accept-Ranges" ":" acceptable-ranges
acceptable-ranges = 1#range-unit | "none"

Origin servers that accept byte-range requests MAY send

Accept-Ranges: bytes

but are not required to do so. Clients MAY generate byte-range requests without
having received this header for the resource involved. Range units are defined in sec-
tion 3.12.

Servers that do not accept any kind of range request for a resource MAY send

Accept-Ranges: none

to advise the client not to attempt a range request.

14.6 Age
The Age response-header field conveys the sender’s estimate of the amount of time
since the response (or its revalidation) was generated at the origin server. A cached
response is “fresh” if its age does not exceed its freshness lifetime. Age values are cal-
culated as specified in section 13.2.3.

Age = "Age" ":" age-value
age-value = delta-seconds

Age values are non-negative decimal integers, representing time in seconds.

If a cache receives a value larger than the largest positive integer it can represent, 
or if any of its age calculations overflows, it MUST transmit an Age header with a
value of 2147483648 (2^31). An HTTP/1.1 server that includes a cache MUST
include an Age header field in every response generated from its own cache. Caches
SHOULD use an arithmetic type of at least 31 bits of range.

14.7 Allow
The Allow entity-header field lists the set of methods supported by the resource
identified by the Request-URI. The purpose of this field is strictly to inform the
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recipient of valid methods associated with the resource. An Allow header field
MUST be present in a 405 (Method Not Allowed) response.

Allow  = "Allow" ":" #Method

Example of use:

Allow: GET, HEAD, PUT

This field cannot prevent a client from trying other methods. However, the indica-
tions given by the Allow header field-value SHOULD be followed. The actual set
of allowed methods is defined by the origin server at the time of each request.

The Allow header field MAY be provided with a PUT request to recommend the
methods to be supported by the new or modified resource. The server is not
required to support these methods and SHOULD include an Allow header in the
response giving the actual supported methods.

A proxy MUST NOT modify the Allow header field even if it does not understand
all the methods specified, since the user agent might have other means of commu-
nicating with the origin server.

14.8 Authorization
A user agent that wishes to authenticate itself with a server—usually, but not nec-
essarily, after receiving a 401 response—does so by including an Authorization
request-header field with the request. The Authorization field value consists of cre-
dentials containing the authentication information of the user agent for the realm
of the resource being requested.

Authorization = "Authorization" ":" credentials

HTTP access authentication is described in “HTTP Authentication: Basic and
Digest Access Authentication” [43]. If a request is authenticated and a realm speci-
fied, the same credentials SHOULD be valid for all other requests within this realm
(assuming that the authentication scheme itself does not require otherwise, such as
credentials that vary according to a challenge value or using synchronized clocks).

When a shared cache (see section 13.7) receives a request containing an
Authorization field, it MUST NOT return the corresponding response as a reply to
any other request, unless one of the following specific exceptions holds:
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1. If the response includes the “s-maxage” cache-control directive, the cache
MAY use that response in replying to a subsequent request. But (if the
specified maximum age has passed) a proxy cache MUST first revalidate it
with the origin server, using the request-headers from the new request to
allow the origin server to authenticate the new request. (This is the defined
behavior for s-maxage.) If the response includes “s-maxage=0”, the proxy
MUST always revalidate it before reusing it.

2. If the response includes the “must-revalidate” cache-control directive, the
cache MAY use that response in replying to a subsequent request. But if 
the response is stale, all caches MUST first revalidate it with the origin server,
using the request-headers from the new request to allow the origin server to
authenticate the new request.

3. If the response includes the “public” cache-control directive, it MAY be
returned in reply to any subsequent request.

14.9 Cache-Control
The Cache-Control general-header field is used to specify directives that MUST be
obeyed by all caching mechanisms along the request/response chain. The directives
specify behavior intended to prevent caches from adversely interfering with the
request or response. These directives typically override the default caching algo-
rithms. Cache directives are unidirectional in that the presence of a directive in a
request does not imply that the same directive is to be given in the response.

Note that HTTP/1.0 caches might not implement Cache-Control and might
only implement Pragma: no-cache (see section 14.32).

Cache directives MUST be passed through by a proxy or gateway application,
regardless of their significance to that application, since the directives might be
applicable to all recipients along the request/response chain. It is not possible to
specify a cache-directive for a specific cache.
Cache-Control  = "Cache-Control" ":" 1#cache-directive

cache-directive = cache-request-directive
| cache-response-directive
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cache-request-directive =
"no-cache"                              ; Section 14.9.1
| "no-store"                             ; Section 14.9.2
| "max-age" "=" delta-seconds            ; Section 14.9.3, 14.9.4
| "max-stale" [ "=" delta-seconds ]      ; Section 14.9.3
| "min-fresh" "=" delta-seconds          ; Section 14.9.3
| "no-transform"                         ; Section 14.9.5
| "only-if-cached"                       ; Section 14.9.4
| cache-extension                        ; Section 14.9.6

cache-response-directive =
"public"                                ; Section 14.9.1
| "private" [ "=" <"> 1#field-name <"> ] ; Section 14.9.1
| "no-cache" [ "=" <"> 1#field-name <"> ]; Section 14.9.1
| "no-store"                             ; Section 14.9.2
| "no-transform"                         ; Section 14.9.5
| "must-revalidate"                      ; Section 14.9.4
| "proxy-revalidate"                     ; Section 14.9.4
| "max-age" "=" delta-seconds            ; Section 14.9.3
| "s-maxage" "=" delta-seconds           ; Section 14.9.3
| cache-extension                        ; Section 14.9.6

cache-extension = token [ "=" ( token | quoted-string ) ]

When a directive appears without any 1#field-name parameter, the directive applies
to the entire request or response. When such a directive appears with a 1#field-
name parameter, it applies only to the named field or fields, and not to the rest of
the request or response. This mechanism supports extensibility; implementations 
of future versions of the HTTP protocol might apply these directives to header
fields not defined in HTTP/1.1.

The cache-control directives can be broken down into these general categories:

• Restrictions on what are cacheable; these may only be imposed by the origin
server.

• Restrictions on what may be stored by a cache; these may be imposed by either
the origin server or the user agent.

• Modifications of the basic expiration mechanism; these may be imposed by
either the origin server or the user agent.

• Controls over cache revalidation and reload; these may only be imposed by a
user agent.

• Control over transformation of entities.

• Extensions to the caching system.
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14.9.1 What Is Cacheable

By default, a response is cacheable if the requirements of the request method,
request header fields, and the response status indicate that it is cacheable.
Section 13.4 summarizes these defaults for cacheability. The following Cache-
Control response directives allow an origin server to override the default cacheabil-
ity of a response.

public

Indicates that the response MAY be cached by any cache, even if it would normally
be non-cacheable or cacheable only within a non-shared cache. (See also
Authorization, section 14.8, for additional details.)

private

Indicates that all or part of the response message is intended for a single user and
MUST NOT be cached by a shared cache. This allows an origin server to state
that the specified parts of the response are intended for only one user and are not
a valid response for requests by other users. A private (non-shared) cache MAY
cache the response.

Note: This usage of the word “private” only controls where the response may
be cached, and cannot ensure the privacy of the message content.

no-cache

If the no-cache directive does not specify a field-name, then a cache MUST NOT
use the response to satisfy a subsequent request without successful revalidation with
the origin server. This allows an origin server to prevent caching even by caches that
have been configured to return stale responses to client requests.

If the no-cache directive does specify one or more field-names, then a cache MAY
use the response to satisfy a subsequent request, subject to any other restrictions on
caching. However, the specified field-name(s) MUST NOT be sent in the response
to a subsequent request without successful revalidation with the origin server. This
allows an origin server to prevent the reuse of certain header fields in a response,
while still allowing caching of the rest of the response.

Note: Most HTTP/1.0 caches will not recognize or obey this directive.
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14.9.2 What May Be Stored by Caches

no-store

The purpose of the no-store directive is to prevent the inadvertent release or reten-
tion of sensitive information (for example, on backup tapes). The no-store directive
applies to the entire message and MAY be sent either in a response or in a request.
If sent in a request, a cache MUST NOT store any part of either this request or any
response to it. If sent in a response, a cache MUST NOT store any part of either
this response or the request that elicited it. This directive applies to both non-shared
and shared caches. “MUST NOT store” in this context means that the cache MUST
NOT intentionally store the information in nonvolatile storage, and MUST make a
best-effort attempt to remove the information from volatile storage as promptly as
possible after forwarding it.

Even when this directive is associated with a response, users might explicitly store
such a response outside of the caching system (e.g., with a “Save As” dialog).
History buffers MAY store such responses as part of their normal operation.

The purpose of this directive is to meet the stated requirements of certain users and
service authors who are concerned about accidental releases of information via
unanticipated accesses to cache data structures. While the use of this directive might
improve privacy in some cases, we caution that it is NOT in any way a reliable or
sufficient mechanism for ensuring privacy. In particular, malicious or compromised
caches might not recognize or obey this directive, and communications networks
might be vulnerable to eavesdropping.

14.9.3 Modifications of the Basic Expiration Mechanism

The expiration time of an entity MAY be specified by the origin server using the
Expires header (see section 14.21). Alternatively, it MAY be specified using the max-
age directive in a response. When the max-age cache-control directive is present in
a cached response, the response is stale if its current age is greater than the age value
given (in seconds) at the time of a new request for that resource. The max-age direc-
tive on a response implies that the response is cacheable (i.e., “public”) unless some
other, more restrictive cache directive is also present.

If a response includes both an Expires header and a max-age directive, the max-age
directive overrides the Expires header, even if the Expires header is more restrictive.
This rule allows an origin server to provide, for a given response, a longer expira-
tion time to an HTTP/1.1 (or later) cache than to an HTTP/1.0 cache. This might
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be useful if certain HTTP/1.0 caches improperly calculate ages or expiration times,
perhaps due to desynchronized clocks.

Many HTTP/1.0 cache implementations will treat an Expires value that is less than
or equal to the response Date value as being equivalent to the Cache-Control
response directive “no-cache.” If an HTTP/1.1 cache receives such a response, and
the response does not include a Cache-Control header field, it SHOULD consider
the response to be non-cacheable in order to retain compatibility with HTTP/1.0
servers.

Note: An origin server might wish to use a relatively new HTTP cache control
feature, such as the “private” directive, on a network including older caches that
do not understand that feature. The origin server will need to combine the new
feature with an Expires field whose value is less than or equal to the Date value.
This will prevent older caches from improperly caching the response.

s-maxage

If a response includes an s-maxage directive, then for a shared cache (but not for a
private cache), the maximum age specified by this directive overrides the maximum
age specified by either the max-age directive or the Expires header. The s-maxage
directive also implies the semantics of the proxy-revalidate directive (see section
14.9.4)—i.e., that the shared cache must not use the entry after it becomes stale to
respond to a subsequent request without first revalidating it with the origin server.
The s-maxage directive is always ignored by a private cache.

Note that most older caches, not compliant with this specification, do not imple-
ment any cache-control directives. An origin server wishing to use a cache-control
directive that restricts, but does not prevent, caching by an HTTP/1.1-compliant
cache MAY exploit the requirement that the max-age directive overrides the Expires
header, and the fact that pre-HTTP/1.1-compliant caches do not observe the max-
age directive.

Other directives allow a user agent to modify the basic expiration mechanism.
These directives MAY be specified on a request:

max-age

Indicates that the client is willing to accept a response whose age is no greater than
the specified time in seconds. Unless the max-stale directive is also included, the
client is not willing to accept a stale response.
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min-fresh

Indicates that the client is willing to accept a response whose freshness lifetime is no
less than its current age plus the specified time in seconds. That is, the client wants
a response that will still be fresh for at least the specified number of seconds.

max-stale

Indicates that the client is willing to accept a response that has exceeded its expira-
tion time. If max-stale is assigned a value, then the client is willing to accept a
response that has exceeded its expiration time by no more than the specified num-
ber of seconds. If no value is assigned to max-stale, then the client is willing to
accept a stale response of any age.

If a cache returns a stale response, either because of a max-stale directive on a request,
or because the cache is configured to override the expiration time of a response, the
cache MUST attach a Warning header to the stale response, using Warning 110
(Response is stale).

A cache MAY be configured to return stale responses without validation, but only
if this does not conflict with any “MUST”-level requirements concerning cache val-
idation (e.g., a “must-revalidate” cache-control directive).

If both the new request and the cached entry include “max-age” directives, then the
lesser of the two values is used for determining the freshness of the cached entry for
that request.

14.9.4 Cache Revalidation and Reload Controls

Sometimes a user agent might want or need to insist that a cache revalidate its cache
entry with the origin server (and not just with the next cache along the path to the
origin server), or to reload its cache entry from the origin server. End-to-end reval-
idation might be necessary if either the cache or the origin server has overestimated
the expiration time of the cached response. End-to-end reload may be necessary if
the cache entry has become corrupted for some reason.

End-to-end revalidation may be requested either when the client does not have its
own local cached copy, in which case we call it “unspecified end-to-end revalida-
tion,” or when the client does have a local cached copy, in which case we call it “spe-
cific end-to-end revalidation.”
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The client can specify these three kinds of action using Cache-Control request
directives:

End-to-end reload

The request includes a “no-cache” cache-control directive or, for compatibility with
HTTP/1.0 clients, “Pragma: no-cache.” Field names MUST NOT be included
with the no-cache directive in a request. The server MUST NOT use a cached copy
when responding to such a request.

Specific end-to-end revalidation

The request includes a “max-age=0” cache-control directive, which forces each
cache along the path to the origin server to revalidate its own entry, if any, with the
next cache or server. The initial request includes a cache-validating conditional with
the client’s current validator.

Unspecified end-to-end revalidation

The request includes a “max-age=0” cache-control directive, which forces each
cache along the path to the origin server to revalidate its own entry, if any, with the
next cache or server. The initial request does not include a cache-validating condi-
tional; the first cache along the path (if any) that holds a cache entry for this
resource includes a cache-validating conditional with its current validator.

max-age

When an intermediate cache is forced, by means of a max-age=0 directive, to reval-
idate its own cache entry, and the client has supplied its own validator in the
request, the supplied validator might differ from the validator currently stored with
the cache entry. In this case, the cache MAY use either validator in making its own
request without affecting semantic transparency.

However, the choice of validator might affect performance. The best approach is for
the intermediate cache to use its own validator when making its request. If the
server replies with 304 (Not Modified), then the cache can return its now validated
copy to the client with a 200 (OK) response. If the server replies with a new entity
and cache validator, however, the intermediate cache can compare the returned val-
idator with the one provided in the client’s request, using the strong comparison
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function. If the client’s validator is equal to the origin server’s, then the intermedi-
ate cache simply returns 304 (Not Modified). Otherwise, it returns the new entity
with a 200 (OK) response.

If a request includes the no-cache directive, it SHOULD NOT include min-fresh,
max-stale, or max-age.

only-if-cached

In some cases, such as times of extremely poor network connectivity, a client may
want a cache to return only those responses that it currently has stored, and not to
reload or revalidate with the origin server. To do this, the client may include the
only-if-cached directive in a request. If it receives this directive, a cache SHOULD
either respond using a cached entry that is consistent with the other constraints of
the request, or respond with a 504 (Gateway Timeout) status. However, if a group
of caches is being operated as a unified system with good internal connectivity, such
a request MAY be forwarded within that group of caches.

must-revalidate

Because a cache MAY be configured to ignore a server’s specified expiration time,
and because a client request MAY include a max-stale directive (which has a simi-
lar effect), the protocol also includes a mechanism for the origin server to require
revalidation of a cache entry on any subsequent use. When the must-revalidate
directive is present in a response received by a cache, that cache MUST NOT use
the entry after it becomes stale to respond to a subsequent request without first
revalidating it with the origin server (i.e., the cache MUST do an end-to-end reval-
idation every time, if, based solely on the origin server’s Expires or max-age value,
the cached response is stale).

The must-revalidate directive is necessary to support reliable operation for certain
protocol features. In all circumstances, an HTTP/1.1 cache MUST obey the must-
revalidate directive; in particular, if the cache cannot reach the origin server for any
reason, it MUST generate a 504 (Gateway Timeout) response.

Servers SHOULD send the must-revalidate directive if and only if failure to reval-
idate a request on the entity could result in incorrect operation, such as a silently
unexecuted financial transaction. Recipients MUST NOT take any automated
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action that violates this directive, and MUST NOT automatically provide an unval-
idated copy of the entity if revalidation fails.

Although this is not recommended, user agents operating under severe connectiv-
ity constraints MAY violate this directive but, if so, MUST explicitly warn the user
that an unvalidated response has been provided. The warning MUST be provided
on each unvalidated access, and SHOULD require explicit user confirmation.

proxy-revalidate

The proxy-revalidate directive has the same meaning as the must-revalidate direc-
tive, except that it does not apply to non-shared user agent caches. It can be used
on a response to an authenticated request to permit the user’s cache to store and
later return the response without needing to revalidate it (since it has already been
authenticated once by that user), while still requiring proxies that service many
users to revalidate each time (in order to make sure that each user has been authen-
ticated). Note that such authenticated responses also need the public cache control
directive in order to allow them to be cached at all.

14.9.5 No-Transform Directive

no-transform

Implementers of intermediate caches (proxies) have found it useful to convert the
media type of certain entity bodies. A non-transparent proxy might, for example,
convert between image formats in order to save cache space or to reduce the amount
of traffic on a slow link.

Serious operational problems occur, however, when these transformations are
applied to entity bodies intended for certain kinds of applications. For example,
applications for medical imaging, scientific data analysis, and those using end-to-
end authentication all depend on receiving an entity body that is bit-for-bit identi-
cal to the original entity-body.

Therefore, if a message includes the no-transform directive, an intermediate cache
or proxy MUST NOT change those headers that are listed in section 13.5.2 as
being subject to the no-transform directive. This implies that the cache or proxy
MUST NOT change any aspect of the entity-body that is specified by these head-
ers, including the value of the entity-body itself.
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14.9.6 Cache Control Extensions

The Cache-Control header field can be extended through the use of one or more
cache-extension tokens, each with an optional assigned value. Informational exten-
sions (those which do not require a change in cache behavior) MAY be added with-
out changing the semantics of other directives. Behavioral extensions are designed
to work by acting as modifiers to the existing base of cache directives. Both the new
directive and the standard directive are supplied, such that applications which do
not understand the new directive will default to the behavior specified by the stan-
dard directive, and those that understand the new directive will recognize it as mod-
ifying the requirements associated with the standard directive. In this way, extensions
to the cache-control directives can be made without requiring changes to the base
protocol.

This extension mechanism depends on an HTTP cache obeying all of the cache-
control directives defined for its native HTTP-version, obeying certain extensions,
and ignoring all directives that it does not understand.

For example, consider a hypothetical new response directive called community
which acts as a modifier to the private directive. We define this new directive to
mean that, in addition to any non-shared cache, any cache which is shared only by
members of the community named within its value may cache the response. An ori-
gin server wishing to allow the UCI community to use an otherwise private
response in their shared cache(s) could do so by including

Cache-Control: private, community="UCI"

A cache seeing this header field will act correctly even if the cache does not under-
stand the community cache-extension, since it will also see and understand the pri-
vate directive and thus default to the safe behavior.

Unrecognized cache-directives MUST be ignored; it is assumed that any cache-
directive likely to be unrecognized by an HTTP/1.1 cache will be combined with
standard directives (or the response’s default cacheability) such that the cache
behavior will remain minimally correct even if the cache does not understand the
extension(s).

14.10 Connection
The Connection general-header field allows the sender to specify options that are
desired for that particular connection and MUST NOT be communicated by prox-
ies over further connections.
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The Connection header has the following grammar:
Connection = "Connection" ":" 1#(connection-token)
connection-token = token

HTTP/1.1 proxies MUST parse the Connection header field before a message is
forwarded and, for each connection-token in this field, remove any header field(s)
from the message with the same name as the connection-token. Connection options
are signaled by the presence of a connection-token in the Connection header field,
not by any corresponding additional header field(s), since the additional header
field may not be sent if there are no parameters associated with that connection
option.

Message headers listed in the Connection header MUST NOT include end-to-end
headers, such as Cache-Control.

HTTP/1.1 defines the “close” connection option for the sender to signal that the
connection will be closed after completion of the response. For example,

Connection: close

in either the request or the response header fields indicates that the connection
SHOULD NOT be considered “persistent” (section 8.1) after the current
request/response is complete.

HTTP/1.1 applications that do not support persistent connections MUST include
the “close” connection option in every message.

A system receiving an HTTP/1.0 (or lower-version) message that includes a
Connection header MUST, for each connection-token in this field, remove and
ignore any header field(s) from the message with the same name as the connection-
token. This protects against mistaken forwarding of such header fields by pre-
HTTP/1.1 proxies. See section 19.6.2.

14.11 Content-Encoding
The Content-Encoding entity-header field is used as a modifier to the media-type.
When present, its value indicates what additional content-codings have been
applied to the entity-body, and thus what decoding mechanisms must be applied in
order to obtain the media-type referenced by the Content-Type header field.
Content-Encoding is primarily used to allow a document to be compressed with-
out losing the identity of its underlying media type.

Content-Encoding = "Content-Encoding" ":" 1#content-coding
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Content-codings are defined in section 3.5. An example of its use is

Content-Encoding: gzip

The content-coding is a characteristic of the entity identified by the Request-URI.
Typically, the entity-body is stored with this encoding and is only decoded before
rendering or analogous usage. However, a non-transparent proxy MAY modify the
content-coding if the new coding is known to be acceptable to the recipient, unless
the “no-transform” cache-control directive is present in the message.

If the content-coding of an entity is not “identity,” then the response MUST
include a Content-Encoding entity-header (section 14.11) that lists the non-
identity content-coding(s) used.

If the content-coding of an entity in a request message is not acceptable to the ori-
gin server, the server SHOULD respond with a status code of 415 (Unsupported
Media Type).

If multiple encodings have been applied to an entity, the content codings MUST
be listed in the order in which they were applied. Additional information about the
encoding parameters MAY be provided by other entity-header fields not defined by
this specification.

14.12 Content-Language
The Content-Language entity-header field describes the natural language(s) of the
intended audience for the enclosed entity. Note that this might not be equivalent
to all the languages used within the entity-body.

Content-Language = "Content-Language" ":" 1#language-tag

Language tags are defined in section 3.10. The primary purpose of Content-
Language is to allow a user to identify and differentiate entities according to the
user’s own preferred language. Thus, if the body content is intended only for a
Danish-literate audience, the appropriate field is

Content-Language: da

If no Content-Language is specified, the default is that the content is intended for
all language audiences. This might mean that the sender does not consider it to be
specific to any natural language, or that the sender does not know for which lan-
guage it is intended.
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Multiple languages MAY be listed for content that is intended for multiple audi-
ences. For example, a rendition of the “Treaty of Waitangi,” presented simultane-
ously in the original Maori and English versions, would call for

Content-Language: mi, en

However, just because multiple languages are present within an entity does not
mean that it is intended for multiple linguistic audiences. An example would be a
beginner’s language primer, such as “A First Lesson in Latin,” which is clearly
intended to be used by an English-literate audience. In this case, the Content-
Language would properly only include “en.”

Content-Language MAY be applied to any media type—it is not limited to textual
documents.

14.13 Content-Length
The Content-Length entity-header field indicates the size of the entity-body, in a dec-
imal number of OCTETs, sent to the recipient or, in the case of the HEAD method,
the size of the entity-body that would have been sent had the request been a GET.

Content-Length  = "Content-Length" ":" 1*DIGIT

An example is

Content-Length: 3495

Applications SHOULD use this field to indicate the transfer-length of the message-
body, unless this is prohibited by the rules in section 4.4. 

Any Content-Length greater than or equal to zero is a valid value. Section 4.4
describes how to determine the length of a message-body if a Content-Length is
not given.

Note that the meaning of this field is significantly different from the corre-
sponding definition in MIME, where it is an optional field used within the
“message/external-body” content-type. In HTTP, it SHOULD be sent when-
ever the message’s length can be determined prior to being transferred, unless
this is prohibited by the rules in section 4.4.

14.14 Content-Location
The Content-Location entity-header field MAY be used to supply the resource loca-
tion for the entity enclosed in the message when that entity is accessible from a
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location separate from the requested resource’s URI. A server SHOULD provide a
Content-Location for the variant corresponding to the response entity; especially in
the case where a resource has multiple entities associated with it, and those entities
actually have separate locations by which they might be individually accessed, the
server SHOULD provide a Content-Location for the particular variant which is
returned.

Content-Location = "Content-Location" ":"
( absoluteURI | relativeURI )

The value of Content-Location also defines the base URI for the entity.

The Content-Location value is not a replacement for the original requested URI; it
is only a statement of the location of the resource corresponding to this particular
entity at the time of the request. Future requests MAY specify the Content-Location
URI as the request-URI if the desire is to identify the source of that particular
entity.

A cache cannot assume that an entity with a Content-Location different from the
URI used to retrieve it can be used to respond to later requests on that Content-
Location URI. However, the Content-Location can be used to differentiate between
multiple entities retrieved from a single requested resource, as described in sec-
tion 13.6.

If the Content-Location is a relative URI, the relative URI is interpreted relative to
the Request-URI.

The meaning of the Content-Location header in PUT or POST requests is unde-
fined; servers are free to ignore it in those cases.

14.15 Content-MD5
The Content-MD5 entity-header field, as defined in RFC 1864 [23], is an MD5
digest of the entity-body for the purpose of providing an end-to-end message
integrity check (MIC) of the entity-body. (Note: A MIC is good for detecting acci-
dental modification of the entity-body in transit, but is not proof against malicious
attacks.)

Content-MD5  = "Content-MD5" ":" md5-digest
md5-digest  = <base64 of 128 bit MD5 digest as per RFC 1864>
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The Content-MD5 header field MAY be generated by an origin server or client to
function as an integrity check of the entity-body. Only origin servers or clients MAY
generate the Content-MD5 header field; proxies and gateways MUST NOT gen-
erate it, as this would defeat its value as an end-to-end integrity check. Any recipi-
ent of the entity-body, including gateways and proxies, MAY check that the digest
value in this header field matches that of the entity-body as received.

The MD5 digest is computed based on the content of the entity-body, including
any content-coding that has been applied, but not including any transfer-encoding
applied to the message-body. If the message is received with a transfer-encoding,
that encoding MUST be removed prior to checking the Content-MD5 value
against the received entity.

This has the result that the digest is computed on the octets of the entity-body
exactly as, and in the order that, they would be sent if no transfer-encoding were
being applied.

HTTP extends RFC 1864 to permit the digest to be computed for MIME com-
posite media-types (e.g., multipart/* and message/rfc822), but this does not change
how the digest is computed as defined in the preceding paragraph.

There are several consequences of this. The entity-body for composite types MAY
contain many body-parts, each with its own MIME and HTTP headers (including
Content-MD5, Content-Transfer-Encoding, and Content-Encoding headers). If a
body-part has a Content-Transfer-Encoding or Content-Encoding header, it is
assumed that the content of the body-part has had the encoding applied, and the
body-part is included in the Content-MD5 digest as is—i.e., after the application.
The Transfer-Encoding header field is not allowed within body-parts.

Conversion of all line breaks to CRLF MUST NOT be done before computing or
checking the digest: The line break convention used in the text actually transmitted
MUST be left unaltered when computing the digest.

Note: While the definition of Content-MD5 is exactly the same for HTTP
as in RFC 1864 for MIME entity-bodies, there are several ways in which the
application of Content-MD5 to HTTP entity-bodies differs from its appli-
cation to MIME entity-bodies. One is that HTTP, unlike MIME, does not
use Content-Transfer-Encoding, and does use Transfer-Encoding and
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Content-Encoding. Another is that HTTP more frequently uses binary con-
tent types than MIME, so it is worth noting that, in such cases, the byte order
used to compute the digest is the transmission byte order defined for the type.
Lastly, HTTP allows transmission of text types with any of several line break
conventions and not just the canonical form using CRLF.

14.16 Content-Range
The Content-Range entity-header is sent with a partial entity-body to specify 
where in the full entity-body the partial body should be applied. Range units are
defined in section 3.12.

Content-Range = "Content-Range" ":" content-range-spec

content-range-spec      = byte-content-range-spec
byte-content-range-spec = bytes-unit SP

byte-range-resp-spec "/"
( instance-length | "*" )

byte-range-resp-spec = (first-byte-pos "-" last-byte-pos)
| "*"

instance-length           = 1*DIGIT

The header SHOULD indicate the total length of the full entity-body, unless this
length is unknown or difficult to determine. The asterisk “*” character means that
the instance-length is unknown at the time when the response was generated.

Unlike byte-ranges-specifier values (see section 14.35.1), a byte-range-resp-spec
MUST only specify one range, and MUST contain absolute byte positions for both
the first and last byte of the range.

A byte-content-range-spec with a byte-range-resp-spec whose last-byte-pos value is
less than its first-byte-pos value, or whose instance-length value is less than or equal
to its last-byte-pos value, is invalid. The recipient of an invalid byte-content-range-
spec MUST ignore it and any content transferred along with it.

A server sending a response with status code 416 (Requested range not satisfiable)
SHOULD include a Content-Range field with a byte-range-resp-spec of “*”. The
instance-length specifies the current length of the selected resource. A response with
status code 206 (Partial Content) MUST NOT include a Content-Range field with
a byte-range-resp-spec of “*”.
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Examples of byte-content-range-spec values, assuming that the entity contains a
total of 1234 bytes:

• The first 500 bytes:
bytes 0-499/1234

• The second 500 bytes:
bytes 500-999/1234

• All except for the first 500 bytes:
bytes 500-1233/1234

• The last 500 bytes:
bytes 734-1233/1234

When an HTTP message includes the content of a single range (for example, a
response to a request for a single range or a request for a set of ranges that overlap
without any holes), this content is transmitted with a Content-Range header, and a
Content-Length header showing the number of bytes actually transferred. For
example,

HTTP/1.1 206 Partial content
Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-Range: bytes 21010-47021/47022
Content-Length: 26012
Content-Type: image/gif

When an HTTP message includes the content of multiple ranges (for example, a
response to a request for multiple non-overlapping ranges), these are transmitted as
a multipart message. The multipart media type used for this purpose is “multi-
part/byteranges” as defined in appendix 19.2. See appendix 19.6.3 for a compati-
bility issue.

A response to a request for a single range MUST NOT be sent using the multi-
part/byteranges media type. A response to a request for multiple ranges, whose
result is a single range, MAY be sent as a multipart/byteranges media type with one
part. A client that cannot decode a multipart/byteranges message MUST NOT ask
for multiple byte ranges in a single request.

When a client requests multiple byte ranges in one request, the server SHOULD
return them in the order that they appeared in the request. If the server ignores a
byte-range-spec because it is syntactically invalid, the server SHOULD treat the
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request as if the invalid Range header field did not exist. (Normally, this means
return a 200 response containing the full entity).

If the server receives a request (other than one including an If-Range request-header
field) with an unsatisfiable Range request-header field (that is, all of whose byte-
range-spec values have a first-byte-pos value greater than the current length of the
selected resource), it SHOULD return a response code of 416 (Requested range not
satisfiable) (section 10.4.17).

Note: Clients cannot depend on servers to send a 416 (Requested range not
satisfiable) response instead of a 200 (OK) response for an unsatisfiable Range
request-header, since not all servers implement this request-header.

14.17 Content-Type
The Content-Type entity-header field indicates the media type of the entity-body
sent to the recipient or, in the case of the HEAD method, the media type that
would have been sent had the request been a GET.

Content-Type  = "Content-Type" ":" media-type

Media types are defined in section 3.7. An example of the field is

Content-Type: text/html; charset=ISO-8859-4

Further discussion of methods for identifying the media type of an entity is pro-
vided in section 7.2.1.

14.18 Date
The Date general-header field represents the date and time at which the message
originated, having the same semantics as orig-date in RFC 822. The field value is
an HTTP-date, as described in section 3.3.1; it MUST be sent in RFC 1123 
[8]-date format.

Date = "Date" ":" HTTP-date

An example is

Date: Tue, 15 Nov 1994 08:12:31 GMT
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Origin servers MUST include a Date header field in all responses, except in these
cases:

1. If the response status code is 100 (Continue) or 101 (Switching Protocols),
the response MAY include a Date header field, at the server’s option.

2. If the response status code conveys a server error—e.g., 500 (Internal Server
Error) or 503 (Service Unavailable)—and it is inconvenient or impossible
to generate a valid Date.

3. If the server does not have a clock that can provide a reasonable approxi-
mation of the current time, its responses MUST NOT include a Date
header field. In this case, the rules in section 14.18.1 MUST be followed.

A received message that does not have a Date header field MUST be assigned one
by the recipient if the message will be cached by that recipient or gatewayed via a
protocol which requires a Date. An HTTP implementation without a clock MUST
NOT cache responses without revalidating them on every use. An HTTP cache,
especially a shared cache, SHOULD use a mechanism, such as NTP [28], to syn-
chronize its clock with a reliable external standard.

Clients SHOULD only send a Date header field in messages that include an entity-
body, as in the case of the PUT and POST requests, and even then it is optional. A
client without a clock MUST NOT send a Date header field in a request.

The HTTP-date sent in a Date header SHOULD NOT represent a date and time
subsequent to the generation of the message. It SHOULD represent the best avail-
able approximation of the date and time of message generation, unless the imple-
mentation has no means of generating a reasonably accurate date and time. In
theory, the date ought to represent the moment just before the entity is generated.
In practice, the date can be generated at any time during the message origination
without affecting its semantic value.

14.18.1 Clockless Origin Server Operation

Some origin server implementations might not have a clock available. An origin
server without a clock MUST NOT assign Expires or Last-Modified values to a
response, unless these values were associated with the resource by a system or user
with a reliable clock. It MAY assign an Expires value that is known, at or before
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server configuration time, to be in the past (this allows “pre-expiration” of responses
without storing separate Expires values for each resource).

14.19 ETag
The ETag response-header field provides the current value of the entity tag for the
requested variant. The headers used with entity tags are described in sections 14.24,
14.26, and 14.44. The entity tag MAY be used for comparison with other entities
from the same resource (see section 13.3.3).

ETag = "ETag" ":" entity-tag

Examples:
ETag: "xyzzy"
ETag: W/"xyzzy"
ETag: ""

14.20 Expect
The Expect request-header field is used to indicate that particular server behaviors
are required by the client.

Expect    = "Expect" ":" 1#expectation

expectation = "100-continue" | expectation-extension
expectation-extension = token [ "=" ( token | quoted-string )

*expect-params ]
expect-params = ";" token [ "=" ( token | quoted-string ) ]

A server that does not understand or is unable to comply with any of the expecta-
tion values in the Expect field of a request MUST respond with appropriate error
status. The server MUST respond with a 417 (Expectation Failed) status if any of
the expectations cannot be met or, if there are other problems with the request,
some other 4xx status.

This header field is defined with extensible syntax to allow for future extensions. If
a server receives a request containing an Expect field that includes an expectation-
extension that it does not support, it MUST respond with a 417 (Expectation
Failed) status.

Comparison of expectation values is case-insensitive for unquoted tokens (includ-
ing the 100-continue token), and is case-sensitive for quoted-string expectation-
extensions.
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The Expect mechanism is hop-by-hop; that is, an HTTP/1.1 proxy MUST return
a 417 (Expectation Failed) status if it receives a request with an expectation that it
cannot meet. However, the Expect request-header itself is end-to-end; it MUST be
forwarded if the request is forwarded.

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the Expect
header.

See section 8.2.3 for the use of the 100 (Continue) status.

14.21 Expires
The Expires entity-header field gives the date/time after which the response is con-
sidered stale. A stale cache entry may not normally be returned by a cache (either a
proxy cache or a user agent cache) unless it is first validated with the origin server
(or with an intermediate cache that has a fresh copy of the entity). See section 13.2
for further discussion of the expiration model.

The presence of an Expires field does not imply that the original resource will
change or cease to exist at, before, or after that time.

The format is an absolute date and time as defined by HTTP-date in section 3.3.1;
it MUST be in RFC 1123 date format:

Expires = "Expires" ":" HTTP-date

An example of its use is

Expires: Thu, 01 Dec 1994 16:00:00 GMT

Note: If a response includes a Cache-Control field with the max-age directive (see
section 14.9.3), that directive overrides the Expires field.

HTTP/1.1 clients and caches MUST treat other invalid date formats, especially
including the value “0”, as in the past (i.e., “already expired”).

To mark a response as “already expired,” an origin server sends an Expires date that
is equal to the Date header value. (See the rules for expiration calculations in sec-
tion 13.2.4.)

To mark a response as “never expires,” an origin server sends an Expires date approx-
imately one year from the time the response is sent. HTTP/1.1 servers SHOULD
NOT send Expires dates more than one year in the future.
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The presence of an Expires header field with a date value of some time in the future
on a response that otherwise would by default be non-cacheable indicates that the
response is cacheable, unless indicated otherwise by a Cache-Control header field
(section 14.9).

14.22 From
The From request-header field, if given, SHOULD contain an Internet e-mail
address for the human user who controls the requesting user agent. The address
SHOULD be machine-usable, as defined by “mailbox” in RFC 822 [9] as updated
by RFC 1123 [8]:

From  = "From" ":" mailbox

An example is

From: webmaster@w3.org

This header field MAY be used for logging purposes and as a means for identifying
the source of invalid or unwanted requests. It SHOULD NOT be used as an inse-
cure form of access protection. The interpretation of this field is that the request is
being performed on behalf of the person given, who accepts responsibility for the
method performed. In particular, robot agents SHOULD include this header so
that the person responsible for running the robot can be contacted if problems
occur on the receiving end.

The Internet e-mail address in this field MAY be separate from the Internet host
which issued the request. For example, when a request is passed through a proxy,
the original issuer’s address SHOULD be used.

The client SHOULD NOT send the From header field without the user’s approval,
as it might conflict with the user’s privacy interests or their site’s security policy. It
is strongly recommended that the user be able to disable, enable, and modify the
value of this field at any time prior to a request.

14.23 Host
The Host request-header field specifies the Internet host and port number of the
resource being requested, as obtained from the original URI given by the user or
referring resource (generally an HTTP URL, as described in section 3.2.2). The Host
field value MUST represent the naming authority of the origin server or gateway
given by the original URL. This allows the origin server or gateway to differentiate

482 Appendix C • Hypertext Transfer Protocol: HTTP/1.1



between internally ambiguous URLs, such as the root “/” URL of a server for mul-
tiple host names on a single IP address.

Host = "Host" ":" host [ ":" port ] ; Section 3.2.2

A “host” without any trailing port information implies the default port for the serv-
ice requested (e.g., “80” for an HTTP URL). For example, a request on the origin
server for <http://www.w3.org/pub/WWW/> would properly include

GET /pub/WWW/ HTTP/1.1
Host: www.w3.org

A client MUST include a Host header field in all HTTP/1.1 request messages. If
the requested URI does not include an Internet host name for the service being
requested, then the Host header field MUST be given with an empty value. An
HTTP/1.1 proxy MUST ensure that any request message it forwards does con-
tain an appropriate Host header field that identifies the service being requested
by the proxy. All Internet-based HTTP/1.1 servers MUST respond with a 400
(Bad Request) status code to any HTTP/1.1 request message which lacks a Host
header field.

See sections 5.2 and 19.6.1.1 for other requirements relating to Host.

14.24 If-Match
The If-Match request-header field is used with a method to make it conditional. A
client that has one or more entities previously obtained from the resource can ver-
ify that one of those entities is current by including a list of their associated entity
tags in the If-Match header field. Entity tags are defined in section 3.11. The pur-
pose of this feature is to allow efficient updates of cached information with a min-
imum amount of transaction overhead. It is also used, on updating requests, to
prevent inadvertent modification of the wrong version of a resource. As a special
case, the value “*” matches any current entity of the resource.

If-Match = "If-Match" ":" ( "*" | 1#entity-tag )

If any of the entity tags match the entity tag of the entity that would have been
returned in the response to a similar GET request (without the If-Match header) on
that resource, or if “*” is given and any current entity exists for that resource, then
the server MAY perform the requested method as if the If-Match header field did
not exist.
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A server MUST use the strong comparison function (see section 13.3.3) to com-
pare the entity tags in If-Match.

If none of the entity tags match, or if “*” is given and no current entity exists, the
server MUST NOT perform the requested method, and MUST return a 412
(Precondition Failed) response. This behavior is most useful when the client wants
to prevent an updating method, such as PUT, from modifying a resource that has
changed since the client last retrieved it.

If the request would, without the If-Match header field, result in anything other
than a 2xx or 412 status, then the If-Match header MUST be ignored.

The meaning of “If-Match: *” is that the method SHOULD be performed if the
representation selected by the origin server (or by a cache, possibly using the Vary
mechanism; see section 14.44) exists, and MUST NOT be performed if the repre-
sentation does not exist.

A request intended to update a resource (e.g., a PUT) MAY include an If-Match
header field to signal that the request method MUST NOT be applied if the entity
corresponding to the If-Match value (a single entity tag) is no longer a representa-
tion of that resource. This allows the user to indicate that they do not wish the
request to be successful if the resource has been changed without their knowledge.
Examples:

If-Match: "xyzzy"
If-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-Match: *

The result of a request having both an If-Match header field and either an If-None-
Match or an If-Modified-Since header field is undefined by this specification.

14.25 If-Modified-Since
The If-Modified-Since request-header field is used with a method to make it con-
ditional: If the requested variant has not been modified since the time specified in
this field, an entity will not be returned from the server; instead, a 304 (not modi-
fied) response will be returned without any message-body.

If-Modified-Since = "If-Modified-Since" ":" HTTP-date

An example of the field is

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
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A GET method with an If-Modified-Since header and no Range header requests
that the identified entity be transferred only if it has been modified since the date
given by the If-Modified-Since header. The algorithm for determining this includes
the following cases:

(a) If the request would normally result in anything other than a 200 (OK) sta-
tus, or if the passed If-Modified-Since date is invalid, the response is exactly
the same as for a normal GET. A date which is later than the server’s cur-
rent time is invalid.

(b) If the variant has been modified since the If-Modified-Since date, the
response is exactly the same as for a normal GET.

(c) If the variant has not been modified since a valid If-Modified-Since date,
the server SHOULD return a 304 (Not Modified) response.

The purpose of this feature is to allow efficient updates of cached information with
a minimum amount of transaction overhead.

Note: The Range request-header field modifies the meaning of If-Modified-
Since; see section 14.35 for full details.

Note: If-Modified-Since times are interpreted by the server, whose clock might
not be synchronized with the client.

Note: When handling an If-Modified-Since header field, some servers will use
an exact date comparison function, rather than a less-than function, for decid-
ing whether to send a 304 (Not Modified) response. To get the best results
when sending an If-Modified-Since header field for cache validation, clients
are advised to use the exact date string received in a previous Last-Modified
header field whenever possible.

Note: If a client uses an arbitrary date in the If-Modified-Since header instead
of a date taken from the Last-Modified header for the same request, the client
should be aware of the fact that this date is interpreted in the server’s under-
standing of time. The client should consider unsynchronized clocks and
rounding problems due to the different encodings of time between the client
and server. This includes the possibility of race conditions if the document has
changed between the time it was first requested and the If-Modified-Since date
of a subsequent request, and the possibility of clock-skew-related problems if
the If-Modified-Since date is derived from the client’s clock without correction

Hypertext Transfer Protocol: HTTP/1.1 485



to the server’s clock. Corrections for different time bases between client and
server are at best approximate due to network latency.

The result of a request having both an If-Modified-Since header field and either an
If-Match or an If-Unmodified-Since header field is undefined by this specification.

14.26 If-None-Match
The If-None-Match request-header field is used with a method to make it condi-
tional. A client that has one or more entities previously obtained from the resource
can verify that none of those entities is current by including a list of their associated
entity tags in the If-None-Match header field. The purpose of this feature is to allow
efficient updates of cached information with a minimum amount of transaction
overhead. It is also used to prevent a method (e.g., PUT) from inadvertently mod-
ifying an existing resource when the client believes that the resource does not exist.

As a special case, the value “*” matches any current entity of the resource.

If-None-Match = "If-None-Match" ":" ( "*" | 1#entity-tag )

If any of the entity tags match the entity tag of the entity that would have been
returned in the response to a similar GET request (without the If-None-Match
header) on that resource, or if “*” is given and any current entity exists for that
resource, then the server MUST NOT perform the requested method, unless
required to do so because the resource’s modification date fails to match that sup-
plied in an If-Modified-Since header field in the request. Instead, if the request
method was GET or HEAD, the server SHOULD respond with a 304 (Not
Modified) response, including the cache-related header fields (particularly ETag) of
one of the entities that matched. For all other request methods, the server MUST
respond with a status of 412 (Precondition Failed).

See section 13.3.3 for rules on how to determine if two entities tags match. The
weak comparison function can only be used with GET or HEAD requests.

If none of the entity tags match, then the server MAY perform the requested
method as if the If-None-Match header field did not exist, but MUST also ignore
any If-Modified-Since header field(s) in the request. That is, if no entity tags match,
then the server MUST NOT return a 304 (Not Modified) response.

If the request would, without the If-None-Match header field, result in anything
other than a 2xx or 304 status, then the If-None-Match header MUST be ignored.
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(See section 13.3.4 for a discussion of server behavior when both If-Modified-Since
and If-None-Match appear in the same request.)

The meaning of “If-None-Match: *” is that the method MUST NOT be performed
if the representation selected by the origin server (or by a cache, possibly using the
Vary mechanism; see section 14.44) exists, and SHOULD be performed if the rep-
resentation does not exist. This feature is intended to be useful in preventing races
between PUT operations.

Examples:
If-None-Match: "xyzzy"
If-None-Match: W/"xyzzy"
If-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
If-None-Match: W/"xyzzy", W/"r2d2xxxx", W/"c3piozzzz"
If-None-Match: *

The result of a request having both an If-None-Match header field and either an If-
Match or an If-Unmodified-Since header field is undefined by this specification.

14.27 If-Range
If a client has a partial copy of an entity in its cache, and wishes to have an up-to-
date copy of the entire entity in its cache, it could use the Range request-header
with a conditional GET (using either or both of If-Unmodified-Since and If-
Match.) However, if the condition fails because the entity has been modified, the
client would then have to make a second request to obtain the entire current
entity-body.

The If-Range header allows a client to “short-circuit” the second request.
Informally, its meaning is “If the entity is unchanged, send me the part(s) that I am
missing; otherwise, send me the entire new entity.”

If-Range = "If-Range" ":" ( entity-tag | HTTP-date )

If the client has no entity tag for an entity but does have a Last-Modified date, it
MAY use that date in an If-Range header. (The server can distinguish between a
valid HTTP-date and any form of entity-tag by examining no more than two char-
acters.) The If-Range header SHOULD only be used together with a Range header,
and MUST be ignored if the request does not include a Range header or if the
server does not support the subrange operation.
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If the entity tag given in the If-Range header matches the current entity tag for the
entity, then the server SHOULD provide the specified subrange of the entity using
a 206 (Partial content) response. If the entity tag does not match, then the server
SHOULD return the entire entity using a 200 (OK) response.

14.28 If-Unmodified-Since
The If-Unmodified-Since request-header field is used with a method to make it
conditional. If the requested resource has not been modified since the time speci-
fied in this field, the server SHOULD perform the requested operation as if the If-
Unmodified-Since header were not present.

If the requested variant has been modified since the specified time, the server MUST
NOT perform the requested operation, and MUST return a 412 (Precondition
Failed).

If-Unmodified-Since = "If-Unmodified-Since" ":" HTTP-date

An example of the field is

If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT

If the request normally (i.e., without the If-Unmodified-Since header) would result
in anything other than a 2xx or 412 status, the If-Unmodified-Since header
SHOULD be ignored. 

If the specified date is invalid, the header is ignored.

The result of a request having both an If-Unmodified-Since header field and either
an If-None-Match or an If-Modified-Since header field is undefined by this
specification.

14.29 Last-Modified
The Last-Modified entity-header field indicates the date and time at which the ori-
gin server believes the variant was last modified.

Last-Modified = "Last-Modified" ":" HTTP-date

An example of its use is

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

The exact meaning of this header field depends on the implementation of the ori-
gin server and the nature of the original resource. For files, it may be just the file
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system last-modified time. For entities with dynamically included parts, it may be
the most recent of the set of last-modify times for its component parts. For data-
base gateways, it may be the last-update time stamp of the record. For virtual
objects, it may be the last time the internal state changed.

An origin server MUST NOT send a Last-Modified date which is later than the
server’s time of message origination. In such cases, where the resource’s last modifi-
cation would indicate some time in the future, the server MUST replace that date
with the message origination date.

An origin server SHOULD obtain the Last-Modified value of the entity as close as
possible to the time that it generates the Date value of its response. This allows a
recipient to make an accurate assessment of the entity’s modification time, especially
if the entity changes near the time that the response is generated.

HTTP/1.1 servers SHOULD send Last-Modified whenever feasible.

14.30 Location
The Location response-header field is used to redirect the recipient to a location
other than the Request-URI for completion of the request or identification of a new
resource. For 201 (Created) responses, the Location is that of the new resource
which was created by the request. For 3xx responses, the location SHOULD indi-
cate the server’s preferred URI for automatic redirection to the resource. The field
value consists of a single absolute URI.

Location    = "Location" ":" absoluteURI

An example is

Location: http://www.w3.org/pub/WWW/People.html

Note: The Content-Location header field (section 14.14) differs from
Location in that the Content-Location identifies the original location of the
entity enclosed in the request. It is therefore possible for a response to contain
header fields for both Location and Content-Location. Also see section 13.10
for cache requirements of some methods.

14.31 Max-Forwards
The Max-Forwards request-header field provides a mechanism with the TRACE
(section 9.8) and OPTIONS (section 9.2) methods to limit the number of proxies
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or gateways that can forward the request to the next inbound server. This can be
useful when the client is attempting to trace a request chain which appears to 
be failing or looping in mid-chain.

Max-Forwards  = "Max-Forwards" ":" 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining number of
times this request message may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTIONS request containing a
Max-Forwards header field MUST check and update its value prior to forwarding
the request. If the received value is zero (0), the recipient MUST NOT forward the
request; instead, it MUST respond as the final recipient. If the received Max-
Forwards value is greater than zero, then the forwarded message MUST contain an
updated Max-Forwards field with a value decremented by one (1).

The Max-Forwards header field MAY be ignored for all other methods defined by
this specification and for any extension methods for which it is not explicitly
referred to as part of that method definition.

14.32 Pragma
The Pragma general-header field is used to include implementation-specific direc-
tives that might apply to any recipient along the request/response chain. All pragma
directives specify optional behavior from the viewpoint of the protocol; however,
some systems MAY require that behavior be consistent with the directives.

Pragma      = "Pragma" ":" 1#pragma-directive
pragma-directive = "no-cache" | extension-pragma
extension-pragma = token [ "=" ( token | quoted-string ) ]

When the no-cache directive is present in a request message, an application
SHOULD forward the request toward the origin server even if it has a cached copy
of what is being requested. This pragma directive has the same semantics as the no-
cache cache-directive (see section 14.9) and is defined here for backward com-
patibility with HTTP/1.0. Clients SHOULD include both header fields when a
no-cache request is sent to a server not known to be HTTP/1.1 compliant.

Pragma directives MUST be passed through by a proxy or gateway application,
regardless of their significance to that application, since the directives might be
applicable to all recipients along the request/response chain. It is not possible to
specify a pragma for a specific recipient; however, any pragma directive not relevant
to a recipient SHOULD be ignored by that recipient.
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HTTP/1.1 caches SHOULD treat “Pragma: no-cache” as if the client had sent
“Cache-Control: no-cache.” No new Pragma directives will be defined in HTTP.

Note: Because the meaning of “Pragma: no-cache” as a response header field
is not actually specified, it does not provide a reliable replacement for “Cache-
Control: no-cache” in a response.

14.33 Proxy-Authenticate
The Proxy-Authenticate response-header field MUST be included as part of a 407
(Proxy Authentication Required) response. The field value consists of a challenge
that indicates the authentication scheme and parameters applicable to the proxy for
this Request-URI.

Proxy-Authenticate = "Proxy-Authenticate" ":" 1#challenge

The HTTP access authentication process is described in “HTTP Authentication:
Basic and Digest Access Authentication” [43]. Unlike WWW-Authenticate, the
Proxy-Authenticate header field applies only to the current connection and
SHOULD NOT be passed on to downstream clients. However, an intermediate
proxy might need to obtain its own credentials by requesting them from the down-
stream client, which in some circumstances will appear as if the proxy is forwarding
the Proxy-Authenticate header field.

14.34 Proxy-Authorization
The Proxy-Authorization request-header field allows the client to identify itself (or
its user) to a proxy which requires authentication. The Proxy-Authorization field
value consists of credentials containing the authentication information of the user
agent for the proxy and/or realm of the resource being requested.

Proxy-Authorization   = "Proxy-Authorization" ":" credentials

The HTTP access authentication process is described in “HTTP Authentication:
Basic and Digest Access Authentication” [43]. Unlike Authorization, the Proxy-
Authorization header field applies only to the next outbound proxy that demanded
authentication using the Proxy-Authenticate field. When multiple proxies are used
in a chain, the Proxy-Authorization header field is consumed by the first outbound
proxy that was expecting to receive credentials. A proxy MAY relay the credentials
from the client request to the next proxy if that is the mechanism by which the
proxies cooperatively authenticate a given request.

Hypertext Transfer Protocol: HTTP/1.1 491



14.35 Range

14.35.1 Byte Ranges

Since all HTTP entities are represented in HTTP messages as sequences of bytes,
the concept of a byte range is meaningful for any HTTP entity. (However, not all
clients and servers need to support byte-range operations.)

Byte-range specifications in HTTP apply to the sequence of bytes in the entity-
body (not necessarily the same as the message-body).

A byte-range operation MAY specify a single range of bytes, or a set of ranges within
a single entity.

ranges-specifier = byte-ranges-specifier
byte-ranges-specifier = bytes-unit "=" byte-range-set
byte-range-set = 1#( byte-range-spec | suffix-byte-range-spec )
byte-range-spec = first-byte-pos "-" [last-byte-pos]
first-byte-pos = 1*DIGIT
last-byte-pos  = 1*DIGIT

The first-byte-pos value in a byte-range-spec gives the byte offset of the first byte in
a range. The last-byte-pos value gives the byte offset of the last byte in the range;
that is, the byte positions specified are inclusive. Byte offsets start at zero.

If the last-byte-pos value is present, it MUST be greater than or equal to the first-
byte-pos in that byte-range-spec, or the byte-range-spec is syntactically invalid. The
recipient of a byte-range-set that includes one or more syntactically invalid byte-
range-spec values MUST ignore the header field that includes that byte-range-set.

If the last-byte-pos value is absent, or if the value is greater than or equal to the cur-
rent length of the entity-body, the last-byte-pos is taken to be equal to one less than
the current length of the entity-body in bytes.

By its choice of last-byte-pos, a client can limit the number of bytes retrieved with-
out knowing the size of the entity.

suffix-byte-range-spec = "-" suffix-length
suffix-length = 1*DIGIT

A suffix-byte-range-spec is used to specify the suffix of the entity-body, of a length
given by the suffix-length value. (That is, this form specifies the last N bytes of an
entity-body.) If the entity is shorter than the specified suffix-length, the entire
entity-body is used.

492 Appendix C • Hypertext Transfer Protocol: HTTP/1.1



If a syntactically valid byte-range-set includes at least one byte-range-spec whose
first-byte-pos is less than the current length of the entity-body, or at least one suffix-
byte-range-spec with a non-zero suffix-length, then the byte-range-set is satisfiable.
Otherwise, the byte-range-set is unsatisfiable. If the byte-range-set is unsatisfiable,
the server SHOULD return a response with a status of 416 (Requested range not sat-
isfiable). Otherwise, the server SHOULD return a response with a status of 206
(Partial Content) containing the satisfiable ranges of the entity-body.

Examples of byte-ranges-specifier values (assuming an entity-body of length
10000):

• The first 500 bytes (byte offsets 0-499, inclusive): bytes=0-499

• The second 500 bytes (byte offsets 500-999, inclusive): bytes=500-999

• The final 500 bytes (byte offsets 9500-9999, inclusive): bytes=-500

• Or bytes=9500-

• The first and last bytes only (bytes 0 and 9999): bytes=0-0,-1

• Several legal but not canonical specifications of the second 500 bytes (byte 
offsets 500-999, inclusive):
bytes=500-600,601-999
bytes=500-700,601-999

14.35.2 Range Retrieval Requests

HTTP retrieval requests using conditional or unconditional GET methods MAY
request one or more subranges of the entity, instead of the entire entity, using the
Range request header, which applies to the entity returned as the result of the request:

Range = "Range" ":" ranges-specifier

A server MAY ignore the Range header. However, HTTP/1.1 origin servers and
intermediate caches ought to support byte ranges when possible, since Range sup-
ports efficient recovery from partially failed transfers and supports efficient partial
retrieval of large entities.

If the server supports the Range header and the specified range or ranges are appro-
priate for the entity:

• The presence of a Range header in an unconditional GET modifies what is
returned if the GET is otherwise successful. In other words, the response car-
ries a status code of 206 (Partial Content) instead of 200 (OK).
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• The presence of a Range header in a conditional GET (a request using one 
or both of If-Modified-Since and If-None-Match, or one or both of If-
Unmodified-Since and If-Match) modifies what is returned if the GET is oth-
erwise successful and the condition is true. It does not affect the 304 (Not
Modified) response returned if the conditional is false.

In some cases, it might be more appropriate to use the If-Range header (see section
14.27) in addition to the Range header.

If a proxy that supports ranges receives a Range request, forwards the request to an
inbound server, and receives an entire entity in reply, it SHOULD only return the
requested range to its client. It SHOULD store the entire received response in its
cache if that is consistent with its cache allocation policies.

14.36 Referer
The Referer [sic] request-header field allows the client to specify, for the server’s
benefit, the address (URI) of the resource from which the Request-URI was
obtained (the “referrer,” although the header field is misspelled.) The Referer
request-header allows a server to generate lists of back-links to resources for inter-
est, logging, optimized caching, etc. It also allows obsolete or mistyped links to be
traced for maintenance. The Referer field MUST NOT be sent if the Request-URI
was obtained from a source that does not have its own URI, such as input from the
user keyboard.

Referer    = "Referer" ":" ( absoluteURI | relativeURI )

Example:

Referer: http://www.w3.org/hypertext/DataSources/Overview.html

If the field value is a relative URI, it SHOULD be interpreted relative to the
Request-URI. The URI MUST NOT include a fragment. See section 15.1.3 for
security considerations.

14.37 Retry-After
The Retry-After response-header field can be used with a 503 (Service Unavailable)
response to indicate how long the service is expected to be unavailable to the
requesting client. This field MAY also be used with any 3xx (Redirection) response
to indicate the minimum time the user agent is asked wait before issuing the
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redirected request. The value of this field can be either an HTTP-date or an inte-
ger number of seconds (in decimal) after the time of the response.

Retry-After = "Retry-After" ":" ( HTTP-date | delta-seconds )

Two examples of its use are
Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
Retry-After: 120

In the latter example, the delay is 2 minutes.

14.38 Server
The Server response-header field contains information about the software used by
the origin server to handle the request. The field can contain multiple product
tokens (section 3.8) and comments identifying the server and any significant sub-
products. The product tokens are listed in order of their significance for identifying
the application.

Server     = "Server" ":" 1*( product | comment )

Example:

Server: CERN/3.0 libwww/2.17

If the response is being forwarded through a proxy, the proxy application MUST
NOT modify the Server response-header. Instead, it SHOULD include a Via field
(as described in section 14.45).

Note: Revealing the specific software version of the server might allow the
server machine to become more vulnerable to attacks against software that is
known to contain security holes. Server implementers are encouraged to make
this field a configurable option.

14.39 TE
The TE request-header field indicates what extension transfer-codings it is willing
to accept in the response and whether or not it is willing to accept trailer fields in 
a chunked transfer-coding. Its value may consist of the keyword “trailers” and/or a
comma-separated list of extension transfer-coding names with optional accept
parameters (as described in section 3.6).

TE    = "TE" ":" #( t-codings )
t-codings = "trailers" | ( transfer-extension [ accept-params ] )
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The presence of the keyword “trailers” indicates that the client is willing to accept
trailer fields in a chunked transfer-coding, as defined in section 3.6.1. This keyword
is reserved for use with transfer-coding values even though it does not itself repre-
sent a transfer-coding.

Examples of its use are
TE: deflate
TE:
TE: trailers, deflate;q=0.5

The TE header field only applies to the immediate connection. Therefore, the key-
word MUST be supplied within a Connection header field (section 14.10) when-
ever TE is present in an HTTP/1.1 message.

A server tests whether a transfer-coding is acceptable, according to a TE field, using
these rules:

1. The “chunked” transfer-coding is always acceptable. If the keyword “trail-
ers” is listed, the client indicates that it is willing to accept trailer fields in
the chunked response on behalf of itself and any downstream clients. The
implication is that, if given, the client is stating that either all downstream
clients are willing to accept trailer fields in the forwarded response, or that
it will attempt to buffer the response on behalf of downstream recipients.

Note: HTTP/1.1 does not define any means to limit the size of a
chunked response such that a client can be assured of buffering the
entire response.

2. If the transfer-coding being tested is one of the transfer-codings listed in the
TE field, then it is acceptable unless it is accompanied by a qvalue of 0. (As
defined in section 3.9, a qvalue of 0 means “not acceptable.”)

3. If multiple transfer-codings are acceptable, then the acceptable transfer-cod-
ing with the highest non-zero qvalue is preferred. The “chunked” transfer-
coding always has a qvalue of 1.

If the TE field-value is empty or if no TE field is present, the only transfer-coding
is “chunked.” A message with no transfer-coding is always acceptable.
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14.40 Trailer
The Trailer general field value indicates that the given set of header fields is present
in the trailer of a message encoded with chunked transfer-coding.

Trailer = "Trailer" ":" 1#field-name

An HTTP/1.1 message SHOULD include a Trailer header field in a message using
chunked transfer-coding with a non-empty trailer. Doing so allows the recipient to
know which header fields to expect in the trailer.

If no Trailer header field is present, the trailer SHOULD NOT include any header
fields. See section 3.6.1 for restrictions on the use of trailer fields in a “chunked”
transfer-coding.

Message header fields listed in the Trailer header field MUST NOT include the fol-
lowing header fields:

• Transfer-Encoding

• Content-Length

• Trailer

14.41 Transfer-Encoding
The Transfer-Encoding general-header field indicates what (if any) type of trans-
formation has been applied to the message body in order to safely transfer it
between the sender and the recipient. This differs from the content-coding in that
the transfer-coding is a property of the message, not of the entity.

Transfer-Encoding    = "Transfer-Encoding" ":" 1#transfer-coding

Transfer-codings are defined in section 3.6. An example is

Transfer-Encoding: chunked

If multiple encodings have been applied to an entity, the transfer-codings MUST
be listed in the order in which they were applied. Additional information about the
encoding parameters MAY be provided by other entity-header fields not defined by
this specification.

Many older HTTP/1.0 applications do not understand the Transfer-Encoding header.
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14.42 Upgrade
The Upgrade general-header allows the client to specify what additional communi-
cation protocols it supports and would like to use if the server finds it appropriate
to switch protocols. The server MUST use the Upgrade header field within a 101
(Switching Protocols) response to indicate which protocol(s) are being switched.

Upgrade    = "Upgrade" ":" 1#product

Example:

Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11

The Upgrade header field is intended to provide a simple mechanism for transition
from HTTP/1.1 to some other, incompatible protocol. It does so by allowing the
client to advertise its desire to use another protocol, such as a later version of HTTP
with a higher major version number, even though the current request has been
made using HTTP/1.1. This eases the difficult transition between incompatible
protocols by allowing the client to initiate a request in the more commonly sup-
ported protocol while indicating to the server that it would like to use a “better”
protocol if available (where “better” is determined by the server, possibly according
to the nature of the method and/or resource being requested).

The Upgrade header field only applies to switching application-layer protocols
upon the existing transport-layer connection. Upgrade cannot be used to insist on
a protocol change; its acceptance and use by the server is optional. The capabilities
and nature of the application-layer communication after the protocol change are
entirely dependent upon the new protocol chosen, although the first action after
changing the protocol MUST be a response to the initial HTTP request contain-
ing the Upgrade header field.

The Upgrade header field only applies to the immediate connection. Therefore, the
upgrade keyword MUST be supplied within a Connection header field (section
14.10) whenever Upgrade is present in an HTTP/1.1 message.

The Upgrade header field cannot be used to indicate a switch to a protocol on a dif-
ferent connection. For that purpose, it is more appropriate to use a 301, 302, 303,
or 305 redirection response.

This specification only defines the protocol name “HTTP” for use by the family of
Hypertext Transfer Protocols, as defined by the HTTP version rules of section 3.1
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and future updates to this specification. Any token can be used as a protocol name;
however, it will only be useful if both the client and the server associate the name
with the same protocol.

14.43 User-Agent
The User-Agent request-header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing of protocol vio-
lations, and automated recognition of user agents for the sake of tailoring responses
to avoid particular user agent limitations. User agents SHOULD include this field
with requests. The field can contain multiple product tokens (section 3.8) and com-
ments identifying the agent and any subproducts which form a significant part of
the user agent. By convention, the product tokens are listed in order of their sig-
nificance for identifying the application.

User-Agent   = "User-Agent" ":" 1*( product | comment )

Example:

User-Agent: CERN-LineMode/2.15 libwww/2.17b3

14.44 Vary
The Vary field value indicates the set of request-header fields that fully determines,
while the response is fresh, whether a cache is permitted to use the response to reply
to a subsequent request without revalidation. For non-cacheable or stale responses,
the Vary field value advises the user agent about the criteria that were used to select
the representation. A Vary field value of “*” implies that a cache cannot determine
from the request headers of a subsequent request whether this response is the appro-
priate representation. See section 13.6 for use of the Vary header field by caches.

Vary = "Vary" ":" ( "*" | 1#field-name )

An HTTP/1.1 server SHOULD include a Vary header field with any cacheable
response that is subject to server-driven negotiation. Doing so allows a cache to
properly interpret future requests on that resource and informs the user agent about
the presence of negotiation on that resource. A server MAY include a Vary header
field with a non-cacheable response that is subject to server-driven negotiation,
since this might provide the user agent with useful information about the dimen-
sions over which the response varies at the time of the response.
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A Vary field value consisting of a list of field-names signals that the representation
selected for the response is based on a selection algorithm which considers ONLY
the listed request-header field values in selecting the most appropriate representa-
tion. A cache MAY assume that the same selection will be made for future requests
with the same values for the listed field-names, for the duration of time for which
the response is fresh.

The field-names given are not limited to the set of standard request-header fields
defined by this specification. Field-names are case-insensitive.

A Vary field value of “*” signals that unspecified parameters not limited to the
request-headers (e.g., the network address of the client) play a role in the selection
of the response representation. The “*” value MUST NOT be generated by a proxy
server; it may only be generated by an origin server.

14.45 Via
The Via general-header field MUST be used by gateways and proxies to indicate the
intermediate protocols and recipients between the user agent and the server on
requests, and between the origin server and the client on responses. It is analogous
to the “Received” field of RFC 822 [9] and is intended to be used for tracking mes-
sage forwards, avoiding request loops, and identifying the protocol capabilities of all
senders along the request/response chain.

Via = "Via" ":" 1#( received-protocol received-by [ comment ] )
received-protocol = [ protocol-name "/" ] protocol-version
protocol-name   = token
protocol-version = token
received-by    = ( host [ ":" port ] ) | pseudonym
pseudonym     = token

The received-protocol indicates the protocol version of the message received by the
server or client along each segment of the request/response chain. The received-
protocol version is appended to the Via field value when the message is forwarded
so that information about the protocol capabilities of upstream applications
remains visible to all recipients.

The protocol-name is optional if and only if it would be “HTTP.” The received-by
field is normally the host and optional port number of a recipient server or client
that subsequently forwarded the message. However, if the real host is considered to
be sensitive information, it MAY be replaced by a pseudonym. If the port is not
given, it MAY be assumed to be the default port of the received-protocol.
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Multiple Via field values represent each proxy or gateway that has forwarded the
message. Each recipient MUST append its information such that the end result is
ordered according to the sequence of forwarding applications.

Comments MAY be used in the Via header field to identify the software of the
recipient proxy or gateway, analogous to the User-Agent and Server header fields.
However, all comments in the Via field are optional and MAY be removed by any
recipient prior to forwarding the message.

For example, a request message could be sent from an HTTP/1.0 user agent to an
internal proxy code-named “fred,” which uses HTTP/1.1 to forward the request to
a public proxy at nowhere.com, which completes the request by forwarding it to the
origin server at www.ics.uci.edu. The request received by www.ics.uci.edu would
then have the following Via header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1.1)

Proxies and gateways used as a portal through a network firewall SHOULD NOT,
by default, forward the names and ports of hosts within the firewall region. This
information SHOULD only be propagated if explicitly enabled. If not enabled, the
received-by host of any host behind the firewall SHOULD be replaced by an appro-
priate pseudonym for that host.

For organizations that have strong privacy requirements for hiding internal struc-
tures, a proxy MAY combine an ordered subsequence of Via header field entries
with identical received-protocol values into a single such entry. For example,

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

could be collapsed to

Via: 1.0 ricky, 1.1 mertz, 1.0 lucy

Applications SHOULD NOT combine multiple entries unless they are all under
the same organizational control and the hosts have already been replaced by pseu-
donyms. Applications MUST NOT combine entries which have different received-
protocol values.

14.46 Warning
The Warning general-header field is used to carry additional information about the
status or transformation of a message which might not be reflected in the message.
This information is typically used to warn about a possible lack of semantic
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transparency from caching operations or transformations applied to the entity body
of the message.

Warning headers are sent with responses using
Warning  = "Warning" ":" 1#warning-value
warning-value = warn-code SP warn-agent SP warn-text [SP warn-date]
warn-code = 3DIGIT
warn-agent = ( host [ ":" port ] ) | pseudonym

; the name or pseudonym of the server adding
; the Warning header, for use in debugging

warn-text = quoted-string
warn-date = <"> HTTP-date <">

A response MAY carry more than one Warning header.

The warn-text SHOULD be in a natural language and character set that is most
likely to be intelligible to the human user receiving the response. This decision MAY
be based on any available knowledge, such as the location of the cache or user, the
Accept-Language field in a request, the Content-Language field in a response, etc.
The default language is English and the default character set is ISO-8859-1.

If a character set other than ISO-8859-1 is used, it MUST be encoded in the warn-
text using the method described in RFC 2047 [14].

Warning headers can in general be applied to any message; however, some specific
warn-codes are specific to caches and can only be applied to response messages.
New Warning headers SHOULD be added after any existing Warning headers. A
cache MUST NOT delete any Warning header that it received with a message.
However, if a cache successfully validates a cache entry, it SHOULD remove any
Warning headers previously attached to that entry except as specified for specific
Warning codes. It MUST then add any Warning headers received in the validating
response. In other words, Warning headers are those that would be attached to the
most recent relevant response.

When multiple Warning headers are attached to a response, the user agent ought to
inform the user of as many of them as possible, in the order that they appear in the
response. If it is not possible to inform the user of all of the warnings, the user agent
SHOULD follow these heuristics:

• Warnings that appear early in the response take priority over those appearing
later in the response.
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• Warnings in the user’s preferred character set take priority over warnings in
other character sets but with identical warn-codes and warn-agents.

Systems that generate multiple Warning headers SHOULD order them with this
user agent behavior in mind.

Requirements for the behavior of caches with respect to Warnings are stated in sec-
tion 13.1.2.

This is a list of the currently defined warn-codes, each with a recommended warn-
text in English, and a description of its meaning:

110 Response is stale

MUST be included whenever the returned response is stale.

111 Revalidation failed

MUST be included if a cache returns a stale response because an attempt to revali-
date the response failed, due to an inability to reach the server.

112 Disconnected operation

SHOULD be included if the cache is intentionally disconnected from the rest of
the network for a period of time.

113 Heuristic expiration

MUST be included if the cache heuristically chose a freshness lifetime greater than
24 hours and the response’s age is greater than 24 hours.

199 Miscellaneous warning

The warning text MAY include arbitrary information to be presented to a human
user, or logged. A system receiving this warning MUST NOT take any automated
action, besides presenting the warning to the user.

214 Transformation applied

MUST be added by an intermediate cache or proxy if it applies any transformation
changing the content-coding (as specified in the Content-Encoding header) or
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media-type (as specified in the Content-Type header) of the response, or the entity-
body of the response, unless this Warning code already appears in the response.

299 Miscellaneous persistent warning

The warning text MAY include arbitrary information to be presented to a human
user, or logged. A system receiving this warning MUST NOT take any automated
action.

If an implementation sends a message with one or more Warning headers whose
version is HTTP/1.0 or lower, then the sender MUST include in each warning-
value a warn-date that matches the date in the response.

If an implementation receives a message with a warning-value that includes a warn-
date, and that warn-date is different from the Date value in the response, then that
warning-value MUST be deleted from the message before storing, forwarding, or
using it. (This prevents bad consequences of naive caching of Warning header
fields.) If all of the warning-values are deleted for this reason, the Warning header
MUST be deleted as well.

14.47 WWW-Authenticate
The WWW-Authenticate response-header field MUST be included in 401
(Unauthorized) response messages. The field value consists of at least one challenge
that indicates the authentication scheme(s) and parameters applicable to the
Request-URI.

WWW-Authenticate = "WWW-Authenticate" ":" 1#challenge

The HTTP access authentication process is described in “HTTP Authentication:
Basic and Digest Access Authentication” [43]. User agents are advised to take spe-
cial care in parsing the WWW-Authenticate field value as it might contain more
than one challenge, or if more than one WWW-Authenticate header field is pro-
vided, the contents of a challenge itself can contain a comma-separated list of
authentication parameters.

15 Security Considerations
This section is meant to inform application developers, information providers, and
users of the security limitations in HTTP/1.1 as described by this document. The
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discussion does not include definitive solutions to the problems revealed, though it
does make some suggestions for reducing security risks.

15.1 Personal Information
HTTP clients are often privy to large amounts of personal information (e.g., the
user’s name, location, mail address, passwords, encryption keys), and SHOULD be
very careful to prevent unintentional leakage of this information via the HTTP pro-
tocol to other sources. We very strongly recommend that a convenient interface be
provided for the user to control dissemination of such information, and that design-
ers and implementers be particularly careful in this area. History shows that errors
in this area often create serious security and/or privacy problems and generate
highly adverse publicity for the implementer’s company.

15.1.1 Abuse of Server Log Information

A server is in the position to save personal data about a user’s requests which might
identify their reading patterns or subjects of interest. This information is clearly
confidential in nature and its handling can be constrained by law in certain coun-
tries. People using the HTTP protocol to provide data are responsible for ensuring
that such material is not distributed without the permission of any individuals that
are identifiable by the published results.

15.1.2 Transfer of Sensitive Information

Like any generic data transfer protocol, HTTP cannot regulate the content of the
data that is transferred, nor is there any a priori method of determining the sensi-
tivity of any particular piece of information within the context of any given request.
Therefore, applications SHOULD supply as much control over this information as
possible to the provider of that information. Four header fields are worth special
mention in this context: Server, Via, Referer, and From.

Revealing the specific software version of the server might allow the server machine
to become more vulnerable to attacks against software that is known to contain
security holes. Implementers SHOULD make the Server header field a configurable
option.

Proxies that serve as a portal through a network firewall SHOULD take special pre-
cautions regarding the transfer of header information that identifies the hosts

Hypertext Transfer Protocol: HTTP/1.1 505



behind the firewall. In particular, they SHOULD remove, or replace with sanitized
versions, any Via fields generated behind the firewall.

The Referer header allows reading patterns to be studied and reverse links drawn.
Although it can be very useful, its power can be abused if user details are not sepa-
rated from the information contained in the Referer. Even when the personal infor-
mation has been removed, the Referer header might indicate a private document’s
URI whose publication would be inappropriate.

The information sent in the From field might conflict with the user’s privacy inter-
ests or their site’s security policy, and hence it SHOULD NOT be transmitted with-
out the user being able to disable, enable, and modify the contents of the field. The
user MUST be able to set the contents of this field within a user preference or appli-
cation defaults configuration.

We suggest, though do not require, that a convenient toggle interface be provided
for the user to enable or disable the sending of From and Referer information.

The User-Agent (section 14.43) and Server (section 14.38) header fields can some-
times be used to determine that a specific client or server have a particular security
hole which might be exploited. Unfortunately, this same information is often used
for other valuable purposes for which HTTP currently has no better mechanism.

15.1.3 Encoding Sensitive Information in URIs

Because the source of a link might be private information or might reveal an oth-
erwise private information source, it is strongly recommended that the user be able
to select whether or not the Referer field is sent. For example, a browser client could
have a toggle switch for browsing openly/anonymously, which would respectively
enable/disable the sending of Referer and From information.

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP
request if the referring page was transferred with a secure protocol.

Authors of services which use the HTTP protocol SHOULD NOT use GET-based
forms for the submission of sensitive data, because this will cause this data to be
encoded in the Request-URI. Many existing servers, proxies, and user agents will
log the request URI in some place where it might be visible to third parties. Servers
can use POST-based form submission instead
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15.1.4 Privacy Issues Connected to Accept Headers

Accept request-headers can reveal information about the user to all servers which
are accessed. The Accept-Language header in particular can reveal information the
user would consider to be of a private nature, because the understanding of partic-
ular languages is often strongly correlated to the membership of a particular ethnic
group. User agents that offer the option to configure the contents of an Accept-
Language header to be sent in every request are strongly encouraged to let the con-
figuration process include a message which makes the user aware of the loss of
privacy involved.

An approach that limits the loss of privacy would be for a user agent to omit the
sending of Accept-Language headers by default, and to ask the user whether or not
to start sending Accept-Language headers to a server if it detects, by looking for any
Vary response-header fields generated by the server indicating that such sending
could improve the quality of service.

Elaborate user-customized accept header fields sent in every request—in particular,
if they include quality values—can be used by servers as relatively reliable and long-
lived user identifiers. Such user identifiers would allow content providers to do
click-trail tracking, and would allow collaborating content providers to match cross-
server click-trails or form submissions of individual users. Note that for many users
not behind a proxy, the network address of the host running the user agent will also
serve as a long-lived user identifier. In environments where proxies are used to
enhance privacy, user agents ought to be conservative in offering accept header con-
figuration options to end users. As an extreme privacy measure, proxies could filter
the accept headers in relayed requests. General-purpose user agents that provide a
high degree of header configurability SHOULD warn users about the loss of pri-
vacy which can be involved.

15.2 Attacks Based on File and Path Names
Implementations of HTTP origin servers SHOULD be careful to restrict the doc-
uments returned by HTTP requests to only those that were intended by the server
administrators. If an HTTP server translates HTTP URIs directly into file system
calls, the server MUST take special care not to serve files that were not intended to
be delivered to HTTP clients. For example, UNIX, Microsoft Windows, and other
operating systems use “..” as a path component to indicate a directory level above
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the current one. On such a system, an HTTP server MUST disallow any such con-
struct in the Request-URI if it would otherwise allow access to a resource outside
those intended to be accessible via the HTTP server. Similarly, files intended for ref-
erence only internally to the server (such as access control files, configuration files,
and script code) MUST be protected from inappropriate retrieval, since they might
contain sensitive information. Experience has shown that minor bugs in such
HTTP server implementations have turned into security risks.

15.3 DNS Spoofing
Clients using HTTP rely heavily on the Domain Name Service, and are thus gen-
erally prone to security attacks based on the deliberate mis-association of IP
addresses and DNS names. Clients need to be cautious in assuming the continuing
validity of an IP number/DNS name association.

In particular, HTTP clients SHOULD rely on their name resolver for confirmation
of an IP number/DNS name association, rather than caching the result of previous
host name lookups. Many platforms already can cache host name lookups locally
when appropriate, and they SHOULD be configured to do so. It is proper for these
lookups to be cached, however, only when the TTL (Time to Live) information
reported by the name server makes it likely that the cached information will remain
useful.

If HTTP clients cache the results of host name lookups in order to achieve a
performance improvement, they MUST observe the TTL information reported
by DNS.

If HTTP clients do not observe this rule, they could be spoofed when a previously
accessed server’s IP address changes. As network renumbering is expected to become
increasingly common [24], the possibility of this form of attack will grow.
Observing this requirement thus reduces this potential security vulnerability.

This requirement also improves the load-balancing behavior of clients for replicated
servers using the same DNS name and reduces the likelihood of a user’s experienc-
ing failure in accessing sites which use that strategy.

15.4 Location Headers and Spoofing
If a single server supports multiple organizations that do not trust one another, then
it MUST check the values of Location and Content-Location headers in responses
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that are generated under control of said organizations to make sure that they do not
attempt to invalidate resources over which they have no authority.

15.5 Content-Disposition Issues
RFC 1806 [35], from which the often implemented Content-Disposition (see sec-
tion 19.5.1) header in HTTP is derived, has a number of very serious security con-
siderations. Content-Disposition is not part of the HTTP standard, but since it is
widely implemented, we are documenting its use and risks for implementers. See
RFC 2183 [49] (which updates RFC 1806) for details.

15.6 Authentication Credentials and Idle Clients
Existing HTTP clients and user agents typically retain authentication information
indefinitely. HTTP/1.1 does not provide a method for a server to direct clients to
discard these cached credentials. This is a significant defect that requires further
extensions to HTTP. Circumstances under which credential caching can interfere
with the application’s security model include but are not limited to:

• Clients that have been idle for an extended period following which the server
might wish to cause the client to reprompt the user for credentials.

• Applications that include a session termination indication (such as a “logout”
or “commit” button on a page) after which the server side of the application
“knows” that there is no further reason for the client to retain the credentials.

This is currently under separate study. There are a number of work-arounds to parts
of this problem, and we encourage the use of password protection in screen savers, idle
time-outs, and other methods which mitigate the security problems inherent in this
problem. In particular, user agents which cache credentials are encouraged to provide
a readily accessible mechanism for discarding cached credentials under user control.

15.7 Proxies and Caching
By their very nature, HTTP proxies are men-in-the-middle, and represent an
opportunity for man-in-the-middle attacks. Compromise of the systems on which
the proxies run can result in serious security and privacy problems. Proxies have
access to security-related information, personal information about individual users
and organizations, and proprietary information belonging to users and content
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providers. A compromised proxy, or a proxy implemented or configured without
regard to security and privacy considerations, might be used in the commission of
a wide range of potential attacks.

Proxy operators should protect the systems on which proxies run as they would protect
any system that contains or transports sensitive information. In particular, log infor-
mation gathered at proxies often contains highly sensitive personal information and/or
information about organizations. Log information should be carefully guarded, and
appropriate guidelines for use developed and followed (see section 15.1.1).

Caching proxies provide additional potential vulnerabilities, since the contents of the
cache represent an attractive target for malicious exploitation. Because cache con-
tents persist after an HTTP request is complete, an attack on the cache can reveal
information long after a user believes that the information has been removed from
the network. Therefore, cache contents should be protected as sensitive information.

Proxy implementers should consider the privacy and security implications of their
design and coding decisions, and of the configuration options they provide to proxy
operators (especially the default configuration).

Users of a proxy need to be aware that they are no more trustworthy than the peo-
ple who run the proxy; HTTP itself cannot solve this problem.

The judicious use of cryptography, when appropriate, may suffice to protect against
a broad range of security and privacy attacks. Such cryptography is beyond the
scope of the HTTP/1.1 specification.

15.7.1 Denial of Service Attacks on Proxies

They exist. They are hard to defend against. Research continues. Beware.
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19 Appendices

19.1 Internet Media Type message/http and application/http
In addition to defining the HTTP/1.1 protocol, this document serves as the speci-
fication for the Internet media type “message/http” and “application/http.” The
message/http type can be used to enclose a single HTTP request or response mes-
sage, provided that it obeys the MIME restrictions for all “message” types regarding
line length and encodings. The application/http type can be used to enclose a
pipeline of one or more HTTP request or response messages (not intermixed). The
following is to be registered with IANA [17].

Media Type name:  message

Media subtype name: http

Required parameters: none

Optional parameters: version, msgtype

version: The HTTP-Version number of the enclosed message (e.g., “1.1”). If
not present, the version can be determined from the first line of the body.

msgtype: The message type—“request” or “response.” If not present, the type
can be determined from the first line of the body.

Encoding considerations: only “7bit,” “8bit,” or “binary” are permitted

Security considerations: none

Media Type name:  application

Media subtype name: http
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Required parameters: none

Optional parameters: version, msgtype

version: The HTTP-Version number of the enclosed messages (e.g., “1.1”). If
not present, the version can be determined from the first line of the body.

msgtype: The message type—“request” or “response.” If not present, the type
can be determined from the first line of the body.

Encoding considerations: HTTP messages enclosed by this type are in
“binary” format; use of an appropriate Content-Transfer-Encoding is required
when transmitted via E-mail.

Security considerations: none

19.2 Internet Media Type multipart/byteranges
When an HTTP 206 (Partial Content) response message includes the content of
multiple ranges (a response to a request for multiple non-overlapping ranges), these
are transmitted as a multipart message-body. The media type for this purpose is
called “multipart/byteranges.”

The multipart/byteranges media type includes two or more parts, each with its own
Content-Type and Content-Range fields. The required boundary parameter speci-
fies the boundary string used to separate each body-part.

Media Type name:  multipart

Media subtype name: byteranges

Required parameters: boundary

Optional parameters: none

Encoding considerations: only “7bit,” “8bit,” or “binary” are permitted

Security considerations: none

For example:
HTTP/1.1 206 Partial Content
Date: Wed, 15 Nov 1995 06:25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT
Content-type: multipart/byteranges; boundary=THIS_STRING_SEPARATES
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--THIS_STRING_SEPARATES
Content-type: application/pdf
Content-range: bytes 500-999/8000

...the first range...
--THIS_STRING_SEPARATES
Content-type: application/pdf
Content-range: bytes 7000-7999/8000

...the second range
--THIS_STRING_SEPARATES--

Notes:

1. Additional CRLFs may precede the first boundary string in the entity.

2. Although RFC 2046 [40] permits the boundary string to be quoted, some
existing implementations handle a quoted boundary string incorrectly.

3. A number of browsers and servers were coded to an early draft of the byte-
ranges specification to use a media type of multipart/x-byteranges, which 
is almost, but not quite compatible with the version documented in
HTTP/1.1.

19.3 Tolerant Applications
Although this document specifies the requirements for the generation of HTTP/1.1
messages, not all applications will be correct in their implementation. We therefore
recommend that operational applications be tolerant of deviations whenever those
deviations can be interpreted unambiguously.

Clients SHOULD be tolerant in parsing the Status-Line and servers tolerant when
parsing the Request-Line. In particular, they SHOULD accept any amount of SP
or HT characters between fields, even though only a single SP is required.

The line terminator for message-header fields is the sequence CRLF. However, we
recommend that applications, when parsing such headers, recognize a single LF as
a line terminator and ignore the leading CR.

The character set of an entity-body SHOULD be labeled as the lowest common
denominator of the character codes used within that body, with the exception that
not labeling the entity is preferred over labeling the entity with the labels US-ASCII
or ISO-8859-1. See section 3.7.1 and 3.4.1.
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Additional rules for requirements on parsing and encoding of dates and other
potential problems with date encodings include:

• HTTP/1.1 clients and caches SHOULD assume that an RFC 850 date which
appears to be more than 50 years in the future is in fact in the past (this helps
solve the “year 2000” problem).

• An HTTP/1.1 implementation MAY internally represent a parsed Expires
date as earlier than the proper value, but MUST NOT internally represent a
parsed Expires date as later than the proper value.

• All expiration-related calculations MUST be done in GMT. The local time
zone MUST NOT influence the calculation or comparison of an age or expi-
ration time.

• If an HTTP header incorrectly carries a date value with a time zone other than
GMT, it MUST be converted into GMT using the most conservative possible
conversion.

19.4 Differences Between HTTP Entities and RFC 2045 Entities
HTTP/1.1 uses many of the constructs defined for Internet Mail (RFC 822 [9])
and the Multipurpose Internet Mail Extensions (MIME [7]) to allow entities to be
transmitted in an open variety of representations and with extensible mechanisms.
However, RFC 2045 discusses mail, and HTTP has a few features that are different
from those described in RFC 2045. These differences were carefully chosen to opti-
mize performance over binary connections, to allow greater freedom in the use of
new media types, to make date comparisons easier, and to acknowledge the practice
of some early HTTP servers and clients.

This appendix describes specific areas where HTTP differs from RFC 2045.
Proxies and gateways to strict MIME environments SHOULD be aware of these
differences and provide the appropriate conversions where necessary. Proxies and
gateways from MIME environments to HTTP also need to be aware of the differ-
ences because some conversions might be required.

19.4.1 MIME-Version

HTTP is not a MIME-compliant protocol. However, HTTP/1.1 messages MAY
include a single MIME-Version general-header field to indicate what version of the
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MIME protocol was used to construct the message. Use of the MIME-Version
header field indicates that the message is in full compliance with the MIME proto-
col (as defined in RFC 2045 [7]). Proxies/gateways are responsible for ensuring full
compliance (where possible) when exporting HTTP messages to strict MIME envi-
ronments.

MIME-Version  = "MIME-Version" ":" 1*DIGIT "." 1*DIGIT

MIME version “1.0” is the default for use in HTTP/1.1. However, HTTP/1.1
message parsing and semantics are defined by this document and not the MIME
specification.

19.4.2 Conversion to Canonical Form

RFC 2045 [7] requires that an Internet mail entity be converted to canonical form
prior to being transferred, as described in section 4 of RFC 2049 [48]. Section 3.7.1
of this document describes the forms allowed for subtypes of the “text” media type
when transmitted over HTTP. RFC 2046 requires that content with a type of “text”
represent line breaks as CRLF and forbids the use of CR or LF outside of line break
sequences. HTTP allows CRLF, bare CR, and bare LF to indicate a line break
within text content when a message is transmitted over HTTP.

Where it is possible, a proxy or gateway from HTTP to a strict MIME environment
SHOULD translate all line breaks within the text media types described in section
3.7.1 of this document to the RFC 2049 canonical form of CRLF. Note, however,
that this might be complicated by the presence of a Content-Encoding and by the
fact that HTTP allows the use of some character sets which do not use octets 13
and 10 to represent CR and LF, as is the case for some multi-byte character sets.

Implementers should note that conversion will break any cryptographic checksums
applied to the original content unless the original content is already in canonical
form. Therefore, the canonical form is recommended for any content that uses such
checksums in HTTP.

19.4.3 Conversion of Date Formats

HTTP/1.1 uses a restricted set of date formats (section 3.3.1) to simplify the
process of date comparison. Proxies and gateways from other protocols SHOULD
ensure that any Date header field present in a message conforms to one of the
HTTP/1.1 formats and rewrite the date if necessary.
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19.4.4 Introduction of Content-Encoding

RFC 2045 does not include any concept equivalent to HTTP/1.1’s Content-
Encoding header field. Since this acts as a modifier on the media type, proxies and
gateways from HTTP to MIME-compliant protocols MUST either change the
value of the Content-Type header field or decode the entity-body before forward-
ing the message. (Some experimental applications of Content-Type for Internet
mail have used a media-type parameter of “;conversions=<content-coding>” to per-
form a function equivalent to Content-Encoding. However, this parameter is not
part of RFC 2045.)

19.4.5 No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC 2045.
Proxies and gateways from MIME-compliant protocols to HTTP MUST remove
any non-identity CTE (“quoted-printable” or “base64”) encoding prior to deliver-
ing the response message to an HTTP client.

Proxies and gateways from HTTP to MIME-compliant protocols are responsible
for ensuring that the message is in the correct format and encoding for safe trans-
port on that protocol, where “safe transport” is defined by the limitations of the
protocol being used. Such a proxy or gateway SHOULD label the data with an
appropriate Content-Transfer-Encoding if doing so will improve the likelihood of
safe transport over the destination protocol.

19.4.6 Introduction of Transfer-Encoding

HTTP/1.1 introduces the Transfer-Encoding header field (section 14.41).
Proxies/gateways MUST remove any transfer-coding prior to forwarding a message
via a MIME-compliant protocol.

A process for decoding the “chunked” transfer-coding (section 3.6) can be repre-
sented in pseudocode as

length := 0
read chunk-size, chunk-extension (if any) and CRLF
while (chunk-size > 0) {
read chunk-data and CRLF
append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF
}
read entity-header
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while (entity-header not empty) {
append entity-header to existing header fields
read entity-header
}
Content-Length := length
Remove "chunked" from Transfer-Encoding

19.4.7 MHTML and Line Length Limitations

HTTP implementations which share code with MHTML [45] implementations
need to be aware of MIME line-length limitations. Since HTTP does not have this
limitation, HTTP does not fold long lines. MHTML messages being transported
by HTTP follow all conventions of MHTML, including line-length limitations
and folding, canonicalization, etc., since HTTP transports all message-bodies as
payload (see section 3.7.2) and does not interpret the content or any MIME header
lines that might be contained therein.

19.5 Additional Features
RFC 1945 and RFC 2068 document protocol elements used by some existing
HTTP implementations, but not consistently and correctly across most HTTP/1.1
applications. Implementers are advised to be aware of these features, but cannot rely
upon their presence in, or interoperability with, other HTTP/1.1 applications.
Some of these describe proposed experimental features, and some describe features
that experimental deployment found lacking that are now addressed in the base
HTTP/1.1 specification.

A number of other headers, such as Content-Disposition and Title, from SMTP
and MIME are also often implemented (see RFC 2076 [37]).

19.5.1 Content-Disposition

The Content-Disposition response-header field has been proposed as a means for the
origin server to suggest a default filename if the user requests that the content is saved
to a file. This usage is derived from the definition of Content-Disposition in RFC
1806 [35].

content-disposition = "Content-Disposition" ":"
disposition-type *( ";" disposition-parm )

disposition-type = "attachment" | disp-extension-token
disposition-parm = filename-parm | disp-extension-parm
filename-parm = "filename" "=" quoted-string
disp-extension-token = token
disp-extension-parm = token "=" ( token | quoted-string )
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An example is

Content-Disposition: attachment; filename="fname.ext"

The receiving user agent SHOULD NOT respect any directory path information
present in the filename-parm parameter, which is the only parameter believed to
apply to HTTP implementations at this time. The filename SHOULD be treated
as a terminal component only.

If this header is used in a response with the application/octet-stream content-type,
the implied suggestion is that the user agent should not display the response, but
directly enter a “save response as...” dialog.

See section 15.5 for Content-Disposition security issues.

19.6 Compatibility with Previous Versions
It is beyond the scope of a protocol specification to mandate compliance with pre-
vious versions. HTTP/1.1 was deliberately designed, however, to make supporting
previous versions easy. It is worth noting that, at the time of composing this speci-
fication (1996), we would expect commercial HTTP/1.1 servers to

• Recognize the format of the Request-Line for HTTP/0.9, 1.0, and 1.1
requests;

• Understand any valid request in the format of HTTP/0.9, 1.0, or 1.1; and

• Respond appropriately with a message in the same major version used by the
client.

And we would expect HTTP/1.1 clients to

• Recognize the format of the Status-Line for HTTP/1.0 and 1.1 responses; and

• Understand any valid response in the format of HTTP/0.9, 1.0, or 1.1.

For most implementations of HTTP/1.0, each connection is established by the
client prior to the request and closed by the server after sending the response. Some
implementations implement the Keep-Alive version of persistent connections
described in section 19.7.1 of RFC 2068 [33].

19.6.1 Changes from HTTP/1.0

This section summarizes major differences between versions HTTP/1.0 and
HTTP/1.1.
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19.6.1.1 Changes to Simplify Multi-homed Web Servers and Conserve IP Addresses

The requirements that clients and servers support the Host request-header, report
an error if the Host request-header (section 14.23) is missing from an HTTP/1.1
request, and accept absolute URIs (section 5.1.2) are among the most important
changes defined by this specification.

Older HTTP/1.0 clients assumed a one-to-one relationship of IP addresses and
servers; there was no other established mechanism for distinguishing the intended
server of a request from the IP address to which that request was directed. The
changes outlined above will allow the Internet, once older HTTP clients are no
longer common, to support multiple Web sites from a single IP address, greatly sim-
plifying large operational Web servers, where allocation of many IP addresses to a
single host has created serious problems. The Internet will also be able to recover
the IP addresses that have been allocated for the sole purpose of allowing special-
purpose domain names to be used in root-level HTTP URLs. Given the rate of
growth of the Web and the number of servers already deployed, it is extremely
important that all implementations of HTTP (including updates to existing
HTTP/1.0 applications) correctly implement these requirements:

• Both clients and servers MUST support the Host request-header.

• A client that sends an HTTP/1.1 request MUST send a Host header.

• Servers MUST report a 400 (Bad Request) error if an HTTP/1.1 request does
not include a Host request-header.

• Servers MUST accept absolute URIs.

19.6.2 Compatibility with HTTP/1.0 Persistent Connections

Some clients and servers might wish to be compatible with some previous imple-
mentations of persistent connections in HTTP/1.0 clients and servers. Persistent
connections in HTTP/1.0 are explicitly negotiated as they are not the default
behavior. HTTP/1.0 experimental implementations of persistent connections are
faulty, and the new facilities in HTTP/1.1 are designed to rectify these problems.
The problem was that some existing 1.0 clients may be sending Keep-Alive to a
proxy server that doesn’t understand Connection, which would then erroneously
forward it to the next inbound server, which would establish the Keep-Alive con-
nection and result in a hung HTTP/1.0 proxy waiting for the close on the response.
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The result is that HTTP/1.0 clients must be prevented from using Keep-Alive when
talking to proxies. However, talking to proxies is the most important use of persist-
ent connections, so that prohibition is clearly unacceptable. Therefore, we need
some other mechanism for indicating a persistent connection is desired, which is
safe to use even when talking to an old proxy that ignores Connection. Persistent
connections are the default for HTTP/1.1 messages; we introduce a new keyword
(Connection: close) for declaring non-persistence. See section 14.10.

The original HTTP/1.0 form of persistent connections (the Connection: Keep-
Alive and Keep-Alive header) is documented in RFC 2068 [33].

19.6.3 Changes from RFC 2068

This specification has been carefully audited to correct and disambiguate key word
usage; RFC 2068 had many problems in respect to the conventions laid out in RFC
2119 [34].

It clarified which error code should be used for inbound server failures (e.g., DNS
failures). (Section 10.5.5)

CREATE had a race that required an ETag be sent when a resource is first created.
(Section 10.2.2).

Content-Base was deleted from the specification: It was not implemented widely,
and there is no simple, safe way to introduce it without a robust extension mecha-
nism. In addition, it is used in a similar, but not identical fashion in MHTML [45].

Transfer-coding and message lengths all interact in ways that required fixing exactly
when chunked encoding is used (to allow for transfer encoding that may not be self-
delimiting); it was important to straighten out exactly how message lengths are
computed. (Sections 3.6, 4.4, 7.2.2, 13.5.2, 14.13, and 14.16)

A content-coding of “identity” was introduced, to solve problems discovered in
caching. (Section 3.5)

Quality Values of zero should indicate that “I don’t want something” to allow clients
to refuse a representation. (Section 3.9)

The use and interpretation of HTTP version numbers has been clarified by RFC
2145. It requires proxies to upgrade requests to highest protocol version they sup-
port to deal with problems discovered in HTTP/1.0 implementations. (Section 3.1)
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Charset wildcarding is introduced to avoid explosion of character set names in
accept headers. (Section 14.2)

A case was missed in the Cache-Control model of HTTP/1.1; s-maxage was intro-
duced to add this missing case. (Sections 13.4, 14.8, 14.9, and 14.9.3)

The Cache-Control: max-age directive was not properly defined for responses.
(Section 14.9.3)

There are situations where a server (especially a proxy) does not know the full length
of a response but is capable of serving a byte-range request. We therefore need a
mechanism to allow byte ranges with a content-range not indicating the full length
of the message. (Section 14.16)

Range request responses would become very verbose if all metadata were always
returned; by allowing the server to only send needed headers in a 206 response, this
problem can be avoided. (Sections 10.2.7, 13.5.3, and 14.27)

Fix problem with unsatisfiable range requests. There are two cases: syntactic prob-
lems and range doesn’t exist in the document. The 416 status code was needed to
resolve this ambiguity needed to indicate an error for a byte-range request that falls
outside of the actual contents of a document. (Sections 10.4.17 and 14.16)

Rewrite of message transmission requirements to make it much harder for imple-
menters to get it wrong, as the consequences of errors here can have significant
impact on the Internet, and to deal with the following problems:

1. Changing “HTTP/1.1 or later” to “HTTP/1.1,” in contexts where this was
incorrectly placing a requirement on the behavior of an implementation of
a future version of HTTP/1.x.

2. Made it clear that user agents should retry requests, not “clients” in general.

3. Converted requirements for clients to ignore unexpected 100 (Continue)
responses, and for proxies to forward 100 responses, into a general require-
ment for 1xx responses.

4. Modified some TCP-specific language, to make it clearer that non-TCP
transports are possible for HTTP.

5. Require that the origin server MUST NOT wait for the request body before
it sends a required 100 (Continue) response.
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6. Allow, rather than require, a server to omit 100 (Continue) if it has already
seen some of the request body.

7. Allow servers to defend against denial of service attacks and broken clients.

This change adds the Expect header and 417 status code. The message transmission
requirements fixes are in sections 8.2, 10.4.18, 8.1.2.2, 13.11, and 14.20.

Proxies should be able to add Content-Length when appropriate. (Section 13.5.2)

Clean up confusion between 403 and 404 responses. (Sections 10.4.4, 10.4.5, and
10.4.11)

Warnings could be cached incorrectly, or not updated appropriately. (Sections
13.1.2, 13.2.4, 13.5.2, 13.5.3, 14.9.3, and 14.46). Warning also needed to be a
general header, as PUT or other methods may have need for it in requests.

Transfer-coding had significant problems, particularly with interactions with chunked
encoding. The solution is that transfer-codings become as full fledged as content-
codings. This involves adding an IANA registry for transfer-codings (separate from
content-codings), a new header field (TE) and enabling trailer headers in the future.
Transfer encoding is a major performance benefit, so it was worth fixing [39]. TE
also solves another, obscure, downward interoperability problem that could have
occurred due to interactions between authentication trailers, chunked encoding,
and HTTP/1.0 clients. (Sections 3.6, 3.6.1, and 14.39)

The PATCH, LINK, and UNLINK methods were defined but not commonly
implemented in previous versions of this specification. See RFC 2068 [33].

The Alternates, Content-Version, Derived-From, Link, URI, Public, and Content-
Base header fields were defined in previous versions of this specification, but not
commonly implemented. See RFC 2068 [33].

20 Index
Please see the PostScript version of this RFC for the INDEX.
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21 Full Copyright Statement
Copyright (C) The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implemen-
tation may be prepared, copied, published, and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this doc-
ument itself may not be modified in any way, such as by removing the copyright
notice or references to the Internet Society or other Internet organizations, except
as needed for the purpose of developing Internet standards in which case the pro-
cedures for copyrights defined in the Internet Standards process must be followed,
or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the
Internet Society or its successors or assigns.

This document and the information contained herein is provided on an “AS IS”
basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEER-
ING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.
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HTTP Status Codes

100 Continue code, 400–402, 410–411
101 Switching Protocols code, 411
110 Response is stale code, 503
111 Revalidation failed code, 503
112 Disconnected operation code, 503
113 Heuristic expiration code, 503
199 Miscellaneous warning code, 503
200 OK code, 411
201 Created code, 411–412
202 Accepted code, 412
203 Non-authoritative Information code, 412
204 No Content code, 412–413
205 Reset Content code, 413
206 Partial Content code, 413–414
214 Transformation applied code, 503–504
299 Miscellaneous persistent warning code,

504
300 Multiple Choices code, 414–415
301 Moved Permanently code, 415
302 Found code, 415–416
303 See Other code, 416
304 Not Modified code, 416–417
305 Use Proxy code, 417
307 Temporary Redirect code, 417–418
400 Bad Request code, 418
401 Unauthorized code, 186, 418–419
403 Forbidden code, 186, 419
404 Not Found code, 419
405 Method Not Allowed code, 419
406 Not Acceptable code, 419–420
407 Proxy Authentication Required code, 186,

420

408 Request Timeout code, 420
409 Conflict code, 420–421
410 Gone code, 421
411 Length Required code, 421
412 Precondition Failed code, 421
413 Request Entity Too Large code, 422
414 Request-URI Too Long code, 422
415 Unsupported Media Type code, 422
416 Requested Range Not Satisfiable code,

422
417 Expectation Failed code, 423
500 Internal Server Error code, 423
501 Not Implemented code, 423
502 Bad Gateway code, 423
503 Service Unavailable code, 423–424
504 Gateway Timeout code, 424
505 HTTP Version Not Supported code, 424

# (signs)
for comments, 25
HTTP rules, 367

A

AAA (Access, Authentication, and
Authorization), 177

access denial in, 186–187
in Apache 1.x/2.0, 182
in Apache 2.1/2.2, 182–185
authentication in, 186–187
logic in, 185–186
login schemes in, 195–199

Index
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AAA (Access, Authentication, and
Authorization), continued

modules for, 187–188
authentication function, 190–192
basic authentication providers, 188–190,

193–195
configuration, 193
digest authentication providers, 193–195

overview, 180–181
summary, 199–200

Abnormal running, modules dealing with,
337–338

absoluteURI option, 389
abstract in HTTP/1.1 specification, 358
Accept request-header field, 159, 453–455,

507
Accept-Charset request-header field, 455–456
Accept-Encoding request-header field,

456–457
Accept-Language request-header field, 159,

382, 457–458
Accept-Ranges response-header field, 459
Accepted status code, 412
Access

AAA. See AAA (Access, Authentication, and
Authorization)

denying, 186–187
in HTTP/1.1 specification, 424

access_checker hook
in host-based access control, 183
purpose, 45
in request processing, 155–156

ACCESS_CONF option, 246
Acknowledgments in HTTP/1.1 specification,

510–512, 530
AddHandler directive, 42
AddLanguage directive, 159
AddOutputFilter directive, 211
AddOutputFilterByType directive, 211
Age calculations in cache expiration model,

434–436

Age of responses in HTTP/1.1 specification,
363

Age response-header field, 459
Agent-driven content negotiation, 425–427
Alias directive, 157–158
Allow directive, 182
Allow entity-header field, 459–460
Ampersands (&) for key/value pairs, 138
Anonymous authentication, 193
ap_ header files, 39
ap_check_cmd_context function, 255
ap_check_command_context function, 256
ap_config.h file, 268
ap_dbd API, 290, 302–303
ap_dbd_acquire function, 283–284, 286–287,

302–303
ap_dbd_cacquire function, 287, 302–303
ap_dbd_close function, 283, 287, 302
ap_dbd_open function, 282, 287, 302–303
ap_dbd_prepare function, 287, 302, 304
ap_dbd_t type, 302
ap_destroy_sub_req function, 164, 167
AP_FILTER_PROTO_CHANGE field, 216
AP_FILTER_PROTO_CHANGE_LENGTH

field, 216
AP_FILTER_PROTO_NO_BYTERANGE

field, 216
AP_FILTER_PROTO_NO_CACHE field, 217
AP_FILTER_PROTO_NO_PROXY field, 217
AP_FILTER_PROTO_TRANSFORM field,

217
ap_filter_protocol function, 216
ap_filter_rec_t type, 209–210
ap_filter_t type, 67, 208–209
AP_FTYPE_CONNECTION filters, 204
AP_FTYPE_CONTENT_SET filters, 203–204
AP_FTYPE_NETWORK filters, 204
AP_FTYPE_PROTOCOL filters, 203
AP_FTYPE_RESOURCE filters, 203–204
AP_FTYPE_TRANSCODE filters, 204
ap_get_brigade function, 137
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ap_get_module_config function, 144
ap_getword_conf function, 250
ap_hook_access_checker hook, 181
ap_hook_auth_checker hook, 181
ap_hook_check_user_id hook, 181
ap_hook_fatal_exception hooks, 336
ap_hook_handler function, 268–269
ap_hook_monitor function, 337–338
ap_hook_translate_name function, 268
ap_hook_type_checker function, 269
AP_IMPLEMENT_EXTERNAL_HOOK_RU

N_ALL macro, 268
AP_IMPLEMENT_EXTERNAL_HOOK_RU

N_FIRST macro, 268
AP_IMPLEMENT_EXTERNAL_HOOK_VOI

D macro, 268
AP_INIT_FLAG macro, 246–247
AP_INIT_ITERATE macro, 247–248
AP_INIT_ITERATE2 macro, 247–250
AP_INIT_NO_ARGS macro, 246
AP_INIT_RAW_ARGS macro, 247, 250, 258
AP_INIT_TAKE1 macro, 242–243, 246
AP_INIT_TAKE2 macro, 247
AP_INIT_TAKE3 macro, 247
AP_INIT_TAKE12 macro, 247
ap_internal_fast_redirect function, 162
ap_internal_redirect function, 161
ap_log_cerror function, 324–325
ap_log_error function, 324–325
ap_log_perror function, 324–325
ap_log_rerror function, 324–325
ap_lookup_provider function, 275
ap_meets_conditions function, 146
AP_MODE_GETLINE mode, 231
AP_MODE_READBYTES mode, 231
ap_pass_brigade function, 137, 205, 221
ap_pcfg_open_custom function, 261
ap_provider API, 272–277
ap_provider.h header file, 41
ap_register_output_filter_protocol function,

216

ap_run_sub_req function, 164
ap_set_content_type function, 125, 211
ap_set_file_slot function, 245
ap_set_flag_slot function, 247
ap_set_module_config function, 283
ap_some_auth_required function, 186
ap_sub_req_lookup_dirent function, 164
ap_sub_req_lookup_file function, 164
ap_sub_req_lookup_uri function, 164
ap_sub_req_method_uri function, 164
Apache 1

AAA in, 182
history, 1–2

Apache 2
AAA in, 182
connection pooling in, 291–292
history, 2–3

Apache 2.2
AAA in, 182–185
smart filtering in, 211–217

Apache Bugzilla database, 10
#apache chat channel, 17
Apache license, 12–14, 343

accepting warranty or additional liability con-
ditions, 347

applying, 347–348
definitions, 343–345
disclaimer of warranty, 346–347
grant of copyright license, 345
grant of patent license, 345
limitation of liability, 347
redistribution provisions, 345–346
submission of contributions, 346
trademarks, 346

Apache Module Developers mailing list, 16
#apache-modules chat channel, 17
Apache Portable Runtime (APR), 53–54

apr_status_t and return values, 58
APU library, 56–57
buckets and brigades, 74–75
conditional compilation, 59
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Apache Portable Runtime (APR), continued
data structures, 70–73
databases, 79–83
declaration macros, 58
developers list for, 16
encoding and cryptography, 76–77
extensions, 79
filesystems, 76
internationalization, 69
libraries, 21
modules, 54–55
namespacing, 57–58
networks, 76
pools, 29, 78–79

basic memory management, 61–62
connection, 290–292
generalized memory management, 62–63
implicit and explicit cleanup, 63–64
lifetime, 65–67
limitations, 68
subpools, 98

processes and threads, 78
reference manual, 57
resource management, 59

lifetime, 65–67
pool limitations, 68
pools, 61–64
problem of, 60–61

strings and formats, 69
summary, 83–84
time and date, 70
URI handling, 77

Apache Software Foundation (ASF), 3–6
ApacheCon conferences, 17
APLOG_DEBUG level, 326
APLOG_INFO level, 326–327
APLOG_MARK macro, 325
APLOG_TOCLIENT level, 325
Appendices in HTTP specification

additional features, 524–525
HTTP entities vs. RFC 2045 entities,

521–524

Internet media types
message/http and application/http, 518–519
multipart/byteranges, 519–520

tolerant applications, 520–521
application/http type, 518–519
application/x-www-form-urlencoded format,

138
Applications, tolerant, 520–521
Applications development

Apache history, 1–3
Apache Software Foundation, 3–6
codebase, 7–9
developers, 10–11
forums, 9–10
further reading, 16–19
intellectual property in, 12–16
participation in forums, 11
process, 6
summary, 19

APR. See Apache Portable Runtime (APR)
apr_ header files, 39
apr_allocator function, 106
apr_array_header_t type, 70
#apr chat channel, 17
apr_conf_vector_t type, 29
apr_date module, 70
apr_dbd API, 82–83, 290, 292–294

database operations in, 294–298
functions in, 298–301

apr_dbd_check_conn function, 299
apr_dbd_close function, 298
apr_dbd_driver_t type, 294, 307–308
apr_dbd_error function, 298, 301
apr_dbd_escape function, 301
apr_dbd_get_driver function, 298
apr_dbd_get_entry function, 300
apr_dbd_get_name function, 300
apr_dbd_get_row function, 297, 300
apr_dbd.h file, 298
apr_dbd_init function, 298
apr_dbd_internal.h file, 307–308
apr_dbd_name function, 298
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apr_dbd_native function, 293
apr_dbd_native_handle function, 298
apr_dbd_num_cols function, 300
apr_dbd_num_tuples function, 300
apr_dbd_open function, 298
apr_dbd_pquery function, 295, 301
apr_dbd_prepare function, 296, 301
apr_dbd_prepared_t type, 294, 308
apr_dbd_pselect function, 295, 301
apr_dbd_pvquery function, 295, 301
apr_dbd_pvselect function, 295, 301
apr_dbd_query function, 295, 299
apr_dbd_results_t type, 294
apr_dbd_row_t type, 294, 308
apr_dbd_select function, 295–296, 300
apr_dbd_set_dbname function, 299
apr_dbd_t type, 294, 308
APR_DBD_TRANSACTION_COMMIT

mode, 297
apr_dbd_transaction_end function, 299
APR_DBD_TRANSACTION_IGNORE_ERR

ORS mode, 297
apr_dbd_transaction_mode_get function, 299
apr_dbd_transaction_mode_set function, 299
APR_DBD_TRANSACTION_ROLLBACK

mode, 297
apr_dbd_transaction_start function, 299
apr_dbd_transaction_t type, 294, 308
apr_dbm.h file, 80
apr_dbm module, 80–81, 106
APR_DECLARE_EXTERNAL_HOOK macro,

270
APR_DECLARE macro, 58, 284
apr_file_info module, 76
apr_file_io module, 76
apr_filepath function, 111
apr_fnmatch module, 76
apr_global_mutex function, 78, 102
APR_HASH_KEY_STRING macro, 73
apr_hash module, 70
apr_hash_t type, 72

APR_HOOK_FIRST macro, 171, 269
APR_HOOK_LAST macro, 269
APR_HOOK_MIDDLE macro, 269
APR_HOOK_REALLY_FIRST macro, 269
APR_HOOK_REALLY_LAST macro, 269
apr_hooks.h file, 268, 270
apr_hooks module, 79
apr_iconv library, 69
APR_IMPLEMENT_EXTERNAL_HOOK_R

UN_ALL macro, 271
APR_IMPLEMENT_OPTIONAL_HOOK_R

UN_ALL macro, 270
apr_memcache module, 106
apr_mmap module, 76
apr_network_io module, 76
apr_off_t type, 231
apr_optional_hooks.h file, 268, 270
apr_optional_hooks module, 79
apr_optional module, 79
apr_palloc function, 286
apr_poll module, 76
apr_pool_cleanup function, 280
apr_pool_cleanup_kill function, 63–64
apr_pool_cleanup_register function, 64, 283
apr_pool_cleanup_run function, 64
apr_pool_clear function, 99
apr_pool_t type, 29
apr_proc_mutex function, 78, 102
apr_queue_create function, 73
apr_queue module, 70
apr_queue_t type, 73
apr_read_type_e, 231
apr_reslist_create function, 278
apr_reslist_destroy function, 278
apr_reslist module, 78

implementing, 278–284
for resource reuse, 99

apr_ring module, 70, 73
apr_rmm module, 105–106
apr_shm function, 78, 104–105
apr_signal function, 78
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apr_status_t type, 58, 165–166, 298
apr_strings module, 69
apr_strmatch module, 69
apr_table_addn function, 71
apr_table_merge function, 72
apr_table_mergen function, 72
apr_table module, 70
apr_table_overlap function, 72
apr_table_set function, 72
apr_table_setn function, 71–72
apr_table_t type, 71
apr_thread_cond function, 78
apr_thread_mutex function, 78
apr_thread_proc function, 78
apr_thread_rwlock function, 78
apr_time_from_sec macro, 70
apr_time module, 70
apr_time_sec macro, 70
apr_time_t type, 70
apr_uri module, 77
apr_uri_parse function, 77
apr_uri_t type, 77
apr_uri_unparse function, 77
APR-UTIL (APU) library, 56–57
apr_xlate module, 69
APU_MODULE_DECLARE_DATA module,

307
apvfs library, 76
apxs utility, 128
Architecture. See Platform and architecture
ARRAY_merge function, 254–255
Arrays, 70–71
Articles, websites for, 19
ASF (Apache Software Foundation), 3–6
ASF members, 5
#asfinfra chat channel, 17
Asterisks (*) in HTTP rules, 367
Attribute/value pairs in transfer codings, 376
Audits for intellectual property violations, 16
Augmented BNF, 366–368
auth_checker hook, 45, 155–156
AuthDBDUserPWQuery, 304

Authentication
AAA. See AAA (Access, Authentication, and

Authorization)
in Apache 2.1/2.2, 183–184
basic, 178–179
cookies for, 198–199
credentials, 509
digest, 179, 193–195
HTTP/1.1 specification, 424
methods, 187
in mod_authn_dbd, 304
providers, 188–190, 193–195
Require directive, 186
Web login, 180

Authentication dialog, 179–180
authn_dbd_password function, 305
authn_dbd_prepare function, 304–305
authn_provider structure, 194
Author addresses in HTTP/1.1 specification,

516–518
Authorization

AAA. See AAA (Access, Authentication, and
Authorization)

in Apache 2.1/2.2, 184–185
Authorization field, 460–461
authz_dbd_login function, 270–271

B

Backports, 8
Backslash characters (\) in HTTP, 369
Backus-Naur Form (BNF), 366–368
Bad Gateway status code, 423
Bad Request status code, 418
Bars (|) in HTTP rules, 366
Basic authentication, 178–179
Basic authentication providers, 188–190,

193–195
Basic rules in HTTP, 368
Binary exponential backoff algorithm,

402–403



Index 537

block argument for filters, 208
Blocking for input filters, 231
Blocks, coding, 86–87
BNF (Backus-Naur Form), 366–368
Bodies

entities, 395
HTTP messages, 385–386

Braces ({}) for blocks, 86
Branches in code repository, 7
Breakpoints, 329–330
Brigades, 74–75, 132-137, 210-211, 217-227
Broken connections, 138 debugging, 339–340
Browsers

authentication dialogs for, 197–199
delays and broken connections in, 339–340

Buckets, 74–75
for handlers 132-137

for filters, 217–227
metadata, 205
for rings, 73

Buffer overflows, 109
Bugzilla database, 10
Builds

cross-platform, 284–288
forum participation for, 11

Byte ranges
for cache responses, 448
working with, 492–493

in apache, 203

C

C language
stubs, 122
wrappers, 63

C++ language
for pools, 64
throw/catch structures, 116

Cache-Control general-header field, 431,
461–462

basic expiration mechanism for, 464–466

cacheable responses for, 463–464
extensions, 470
revalidation and reload controls for, 466–469

Cacheable responses in HTTP/1.1 specifica-
tion, 362

Caches
in HTTP, 362, 427–428

client-controlled behavior for, 432
control mechanisms for, 431
correctness of, 429
errors in, 450
expiration model, 433–438
history lists, 452–453
invalidation in, 451–452
for negotiated responses, 449–450
replacement of, 452
response cacheability, 444–445
responses from, 445–448
security considerations, 509–510
shared and non-shared, 450
side effects in, 451
validation model, 438–444
warnings for, 430–432
write-through mandatory, 452

for pools, 96
in request processing, 160
for shared memory, 104

Calculations in cache expiration model,
434–437

Callback functions
for filters, 205
for modules, 125–126

Canonical form
conversion to, 522
media types, 379–380

case statements, 87
CGI (Common Gateway Interface), 123, 291
Character sets

in HTTP/1.1 specification, 374–375
in RFC 2068, 528

Chat for developers, 9, 17
check_password function, 194
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check_user_id hook
for authentication, 183–184, 190
purpose, 45
in request processing, 155–156

child_init function
for garbage collection, 96
for reslist, 281
for threads, 93–94, 117

Child pools, 67
chroot command, 113
Chunked transfer coding, 204, 377–378
CLA (Contributor License Agreement), 15

corporate, 353–356
individual, 349–353

Classic LAMP Model, 291
Cleanup, pool, 63–64
client_cookie function, 271
Client error 4xx status code definitions,

418–423
client_login function, 270
Clients and client behavior

for caches, 432
in HTTP/1.1 specification, 361
idle, 509
for prematurely closed connections, 402–403

Clockless origin server operation, 479–480
cmd_parms_struct structure, 243
Codebase, 7
Coding, 85

blocks, 86–87
comments, 87–88
declarations, 87
flow control, 87
forum participation for, 11
functions, 86
lines, 86

Combining cache response headers, 447–448
<Comment> container, 258
Comments

coding, 87–88
in containers, 25
HTTP, 368–369

COMMIT for transactions, 297
Commit-Then-Review (CTR) code, 8
Committers in Apache Software Foundation, 5
Common Gateway Interface (CGI), 123, 291
Communicating between modules, 90–92
Comparisons, URI, 372
Compatibility of HTTP versions, 525–529
Compilation

conditional, 59
module, 128

Complex parsing, filters for, 221–225
Complexity in handler vs. filter decisions, 47
compress encoding format, 376
Compression and decompression, 49, 203,

232-235
Conditional compilation, 59, 284-288
Conferences for developers, 17
Configuration 237-262

AAA modules, 193
basics, 41–42
filters, 213–215
modules. See Modules
pools, 66
in start-up phase, 23–25

Configuration data
scope of, 89
in thread-safe programming, 92

Configuration records, 29
Configuration vectors, 88
Conflict status code, 420–421
Conflicts

directives, 238
in httpd.conf, 251–253

conn_rec object, 29
definition, 37–38
for filters, 203

CONNECT method, 410
Connection general-header field, 470–471
Connections

debugging, 339–340
filters, 203–204
HTTP/1.0 compatibility with, 526–527
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HTTP/1.1, 359
message transmission requirements, 400–403
persistent, 396–400, 526–527
pooling, 67, 290–292
scope of, 90

Constructor/destructor model, 60
Containers, 24–25

context checking, 255–257
custom, 257–261
merging, 251–254

Content-Base in RFC 2068, 527
Content codings in HTTP/1.1 specification,

375–376
Content-Disposition response-header field

for default filenames, 524–525
security issues, 509

Content-Encoding entity-header field,
395–396, 471–472, 523

Content filters, 202–205
Content generators, 123

default handlers, 144–148
HelloWorld module. See HelloWorld module
reading form data, 138–144
in request processing, 42–43, 48
summary, 148

Content-Language entity-header field, 382,
472–473

Content-Length entity-header field, 216, 387,
473

Content-Location entity-header field,
473–474, 489

Content-MD5 entity-header field, 216,
474–476

Content negotiation, 424–425
agent-driven, 426–427
HTTP/1.1, 360
in apache, 158–160
server-driven, 425–426
transparent, 427

Content-Range entity-header field, 383,
476–478

Content-Transfer-Encoding (CTE) field, 523

Content-Type entity-header field, 395–396,
478

See also ap_set_content_type
Context in configuration, 25, 255–257
Continuation lines, 86
Continue status code, 400–402, 410–411
Contributor License Agreement (CLA), 15

corporate, 353–356
individual, 349–353

Control mechanisms for caches, 431
Conversion

to canonical form, 522
of date formats, 522

Cookies for authentication, 198–199
copy function for buckets, 74
Copyleft, 13
Copyright license, 345
copyright notice in HTTP1.1 specification,

358
Copyright statement in HTTP/1.1 specifica-

tion, 530
Core dumps, debugging, 332–333
CoredumpDirectory directive, 332
Corporate CLA, 353–356
Costs, license, 12
CR LF

HTTP, 368–369
with media types, 379–380

Crashes, tracing, 331–332
CREATE keyword in RFC 2068, 527
Credentials, authentication, 509
Cross-MPM programming, 101–102

process and global locks in, 102–104
shared memory in, 104–106

Cross-platform issues
API builds, 284–288
programming, 99–101

Cryptography, 76–77
CTR (Commit-Then-Review) code, 8
Cursors, 296–297
Custom containers, 257–261
Custom login schemes, 195–199
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D

Data axis for filters, 46–49
Data compression and decompression, 49
Data structures, 70

arrays, 70–71
hash tables, 72–73
for module configuration, 239
queues, 73
rings, 73
tables, 71–72

Data types, 294–296
Data vs. metadata, 153
Database framework, 79–80, 289

ap_dbd, 302–303
Apache 1.x/2.0 vs. Apache 2.2, 290
apr_dbd, 82–83, 292–294

functions in, 298–301
operations in, 294–298

apr_dbm, 80–81
connection pooling, 290–292
DBD architecture, 292
DBD driver, 306–320
mod_authn_dbd application, 303–306
summary, 320

Date
format conversions, 522
in HTTP/1.1 specification, 373–374
module for, 70

Date general-header field, 478–480
Day-based anonymous authentication, 193
DBD, drivers in, 292, 306–307

apr_dbd_internal.h for, 307
exporting, 307–308
functions, 309–320

dbd_close function, 280
dbd_construct function, 278–279
dbd_destruct function, 280
dbd_mysql driver, 311
dbd_setup function, 280–281
DDoS (distributed denial of service) attacks,

109

Debugging, 323
core dumps, 332–333
crash tracing, 331–332
filters, 338–341
hooks for, 336–338
logging for, 324–327
modules for, 333–337
MPMs for, 331
running under debugger, 327–333
servers, 329–331
summary, 341
help for system administrators, 326–327

Declarations
coding, 87
macros for, 58
module APIs, 286–288

DECLINED handler value, 126
default_handler function, 144
Defaults

handlers, 144–148
text media type, 379–380

deflate encoding format, 376
deflate_in_filter function, 232–235
Delays, debugging, 339–340
DELETE method

cache invalidation with, 451
as idempotent method, 404
working with, 409

Deletions, cache invalidation after, 451–452
Delta seconds, 374
Denial of service (DoS) attacks

protecting against, 109–110
on proxies, 510

Deny directive, 182
Deny from directive, 186
Denying access, 186–187
Dependencies, external. See Libraries
destroy function, 74
Developers, 10–11

in Apache Software Foundation, 5
documentation for, 18
mailing list, 16
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Development branches in code repository, 7
Development forums, 9–10
Digest authentication

overview, 179
providers, 193–195

Directives
Cache-Control field, 461–462
characteristics, 24
context for, 25
for filters, 211
functions for, 242–246
for module configuration, 238, 242–250
preprocessor, 285–286
user data in, 244–245

Directories, configuring, 240–241
<Directory> container, 238, 240, 251–252
<DirectoryMatch> directive, 241
Disambiguating in cache expiration model

expiration values, 437
multiple responses, 437–438

Disconnected operation warn code, 503
Distributed denial of service (DDoS) attacks,

109
Diverting requests, 161–163
DNS spoofing, 508
do_garbage function, 97–98
Document variants, 168–171
Documentation

APR, 57
forum participation for, 11
websites for, 18

DoS (denial of service) attacks
protecting against, 109–110
on proxies, 510

doxygen format, 57
Drivers, DBD, 292, 306–307

apr_dbd_internal.h for, 307
dbd_mysql, 311
exporting, 307–308
functions, 309–320

E

Encoding
APR, 76–77
HTTP formats, 375–376
in form data, 138-139
in URIs, 506

enctype attribute, 138
End-to-end headers, 445–446
End-to-end reload, 467
Entities

filtering, 204
HTTP vs. RFC 2045, 521–524
in HTTP/1.1 specification, 360, 394

bodies, 395–396
header fields, 395
length, 396

Entity tags
for cache validation, 439, 442–444
in HTTP/1.1 specification, 382–383

Environment variables
CGI, 41
for filters, 214–215
in request_rec, 30
setting, 24, 45, 55, 91

EOS bucket type, 226
checking for, 219
in debugging, 340
support for, 75

err_headers_out table, 92
Error log, 324–326
ErrorDocument directive, 163
Errors and error documents

in caches, 450
connection monitoring for, 400
I/O, 137–138
in modules, 172–174
in request processing, 162–163
in secure programming, 109

ETag response-header field, 216, 480
Event MPMs, 27
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exec command, 113
EXEC_ON_READ option, 246
Existing parsers, filtering through, 225–227
Expanded macros, 121
expat library, 206, 225–226
Expect request-header field, 480
Expectation Failed status code, 423
Expiration and expiration models, 362–363

age calculations, 434–436
for Cache-Control general-header field,

464–466
disambiguating, 437–438
expiration calculations, 437
heuristic, 433–434
server-specified, 433

Expires entity-header field, 481–482
Explicit cleanup of pools, 63–64
Explicit expiration time in HTTP/1.1 specifi-

cation, 362
Explicit user agent warnings, 431–432
Exporting

drivers, 307–308
functions, 264
optional hooks, 270–271

Extending API, 263–264
APR, 79
cross-platform builds, 284–288
hooks and optional hooks, 267–271
new function implementation, 264–266
provider API, 272–277
providing services, 277–284
summary, 288

External dependencies. See Libraries

F

Fastcgi, 28
fatal_exception hook, 268
Fatal exception hooks, 268, 336
Feasibility factor in handler vs. filter

decisions, 46

fetch_dbm_value function, 81
File bucket type, 75
File names, attacks based on, 507–508
<Files> container, 238, 240, 251
Filesystems

APR, 76
mapping, 156–158
security in, 111–113

filter_func function, 210
filter_hooks function, 214
filter_init_func function, 210
filter_insert function, 213–214
filter-oriented output, 133
FilterChain directive, 213
Filters and filter modules, 201–202

buckets for, 217–221
callback functions for, 205
for complex parsing, 221–225
content, protocol, and connection, 202–205
debugging, 338–341
through existing parsers, 225–227
input, 202, 207–208, 210–211, 230–235
mod_filter, 213
objects, 208–210
output, 202, 207, 210–211
pipelining for, 205–206
for pools, 67
postprocessing and preprocessing, 212
for protocol handling, 215–217
request processing, 46–49
self-configuration, 213–215
stdio-like I/O, 227–230
summary, 235–236

find_file function, 112–113
First-hand responses in HTTP/1.1 specifica-

tion, 362
Fixups hook

purpose, 45
in request processing, 155–156

Fixups phase in subrequests, 166
#flastmod SSI element, 165
Flexibility with libraries, 119
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Flow and flow control
coding, 87
for message connections, 400
upstream/downstream, 363

Flush bucket type, 75
Forbidden status code, 186, 419
Form data, parsing, 138–144
form_data function, 265
form_hooks function, 266
Form-processing modules, 49
form_value function, 142, 265
Format strings, 295–296
Formats

APR, 69
date/time, 373–374, 522

Found status code, 415–416
Free Software Foundation (FSF), 13
Free software licenses, 12
Fresh responses in HTTP/1.1 specification,

363
Freshness lifetime in HTTP/1.1 specification,

363
From request-header field, 482
FSF (Free Software Foundation), 13
#fsize SSI element, 165
Full copyright statement in HTTP/1.1 specifi-

cation, 530
Full date formats in HTTP/1.1 specification,

373–374
Fully generic shared memory, 106
Functions

apr_dbd API, 298–301
callback, 125–126, 205
coding, 86
DBD driver, 309–320
for directives, 242–246
exporting, 264
implementing, 264–266
optional, 265–266
registering, 115
static, 129
using, 266

G

Garbage collection
function for, 96–98
in resource management, 60–61

Gateway Timeout status code, 424
Gateways in HTTP/1.1 specification, 362
GDBM, 80–81
General header fields, 387–388
Generic grammar in HTTP/1.1 specification,

366–369
GET method

as idempotent method, 404
OK status code with, 411
side effects of, 451
working with, 405–406

Global data in thread-safe programming, 92
Global locks, 102–104
global mutexes, 102–103
GLOBAL_ONLY macro, 255
global_score entry, 334
Global variables, 117, 338
GNU General Public License (GPL), 13–14
Gone status code, 421
GPL (GNU General Public License), 13–14
Grammar in HTTP/1.1 specification, 366–369
Grant of copyright license, 345
Grant of patent license, 345
gzip encoding format, 375

H

Handler field, 127
Handler hook

purpose, 45
in request processing, 156

Handlers
default, 144–148
vs. filters, 46–48
pools, 66
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Hash characters (#)
for comments, 25
HTTP rules, 367

Hash tables, 72–73
HEAD method, 404

as idempotent method, 404
OK status code with, 411
side effects of, 451
working with, 406

Header field definitions in HTTP/1.1 specifi-
cation, 453

Accept, 453–455
Accept-Charset, 455–456
Accept-Encoding, 456–457
Accept-Language, 457–458
Accept-Ranges, 459
Age, 459
Allow, 459–460
Authorization, 460–461
Cache-Control, 461–470
Connection, 470–471
Content-Encoding, 471–472
Content-Language, 472–473
Content-Length, 473
Content-Location, 473–474
Content-MD5, 474–476
Content-Range, 476–478
Content-Type, 478
Date, 478–480
ETag, 480
Expect, 480–481
Expires, 481–482
From, 482
Host, 482–483
If-Match, 483–484
If-Modified-Since, 484–486
If-None-Match, 486–487
If-Range, 487–488
If-Unmodified-Since, 488
Last-Modified, 488–489
Location, 489
Max-Forwards, 489–490
Pragma, 490–491

Proxy-Authenticate, 491
Proxy-Authorization, 491
Range, 492–494
Referer, 494
Retry-After, 494–495
Server, 495
TE, 495–496
Trailer, 497
Transfer-Encoding, 497
Upgrade, 498–499
User-Agent, 499
Vary, 499–500
Via, 500–501
Warning, 501–504
WWW-Authenticate, 504

header_parser hook, 197
purpose, 45
in request processing, 155–156

Headers and header fields 153-155
for cache responses, 445–448
contents, 384–385
entities, 395
filter, 204
general, 387–388
in HTTP/1.1. See Header field definitions in

HTTP/1.1 specification
Range, 493–494
request messages, 154, 391
response messages, 394

headers_in table, 91
headers_out table, 92
Heap bucket type, 75
HelloWorld module, 124

completed, 127–129
handler field, 127
I/O, 132–133

errors, 137–138
input, 134–137
output, 133–134

request_rec for, 129–130
response page for, 130–132
return values, 126–127
skeleton, 124–126
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Heuristic expiration
in cache expiration model, 433–434
in HTTP/1.1 specification, 363

Heuristic expiration warn code, 503
Hexadecimal numeric characters, 369
History lists, 452–453
Hooks, 267

analysis of, 267–269
for debugging, 336–338
optional, 270–271
order of execution, 269
pools, 66
processing, 44–46, 50–51
in request processing, 155–156

Hop-by-hop headers, 445–446
Host access

in AAA, 181
in Apache 2.1/2.2, 183

Host request-header field, 390, 482–483, 526
.htaccess file

for authentication, 186
purpose, 238–239
for request processing security, 160

http_ header files, 39
HTTP/1.0, changes from, 525–526
HTTP/1.1 specification

abstract, 358
access authentication, 424
acknowledgments, 510–512, 530
appendices, 518–529
author addresses, 516–518
caching. See Caches
character sets, 374–375
connections

message transmission requirements, 400–403
persistent, 396–399

content codings, 375–376
content negotiation, 424–427
copyright notice, 358
date/time formats, 373–374
entities, 394–396
entity tags, 382–383

full copyright statement, 530
header fields. See Header field definitions in

HTTP/1.1 specification
index, 529
language tags, 382
media types, 379–381
memo status, 357
method definitions, 403–410
notational conventions and generic grammar,

366–369
overall operation, 364–366
product tokens, 381
purpose, 358–359
quality values, 381–382
range units, 383
references, 512–516
requirements, 359
security considerations, 504–510
status codes. See Status code definitions
terminology, 359–365
transfer codings, 376–378
Uniform Resource Identifiers, 371–372
versions, 370–371

http_config.h file, 40, 246–247, 255
http_connection.h file, 40
http_core.h file, 40
HTTP entities vs. RFC 2045 entities, 521–524
http_log.h file, 40, 324
http_main.h file, 40
HTTP messages

bodies, 385–386
connection transmission requirements,

400–403
headers, 154, 384–385, 387–388, 391
HTTP protocol for, 152–153
length, 386–387
request. See Request processing and messages
response, 153, 392–394
types, 383–384

http_protocol.h file, 40, 132, 134
http_request.h file, 40
http URL, 372
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HTTP Version Not Supported status code, 424
http_vhost.h file, 40
httpd.conf file

intro 23-25
for authentication, 186
conflicts in, 251–253
containers in, 24–25

context checking, 255–257
custom, 257–261
merging, 251–254

for core dumps, 332
directives. See Directives
for request processing security, 160

#httpd-dev chat channel, 17
httpd.h file

conn_rec in, 37
contents, 40
request_rec in, 30–35
server_rec in, 35–37

Hypertext Transfer Protocol (HTTP). See
HTTP messages; Request processing
and messages

I

IANA (Internet Assigned Numbers Authority)
Character Set registry, 374
for content codings, 375
for transfer codings, 377

Idempotent methods, 404
identity encoding format, 376
Idle clients, 509
If-Match request-header field, 483–484
If-Modified-Since request-header field,

484–486
If-None-Match request-header field, 486–487
If-Range request-header field, 487–488
If-Unmodified-Since request-header field, 488
Image processing filters, 49
Immortal bucket type, 75
Implementing new functions, 264–266
Implicit cleanup of pools, 63–64

Implied linear white space, 368–369
Inbound/outbound paths, 364
#include file SSI command, 165–166
#include virtual SSI command, 165–166
Incomplete responses in caches, 450
Index in HTTP/1.1 specification, 529
Individual CLA, 349–353
Information gathering in request processing,

163–167
Informational 1xx status code definitions,

410–411
Initialization

library, 116–117
pool, 66
server start-up, 22-23, 268

Input filters, 202, 230
blocking, 231
callback functions for, 205, 207–208
example, 232–235
modes for, 231
readbytes for, 231–232
strategies for, 210–211

Inputs
module, 134–137
safe use of, 108
validating, 107–108

insert_filter hook
in request processing, 156
for self-configuration, 213–214

Intellectual property, 12–16
Interactive online forums, 16–17
Internal redirects in request processing,

161–162
Internal Server Error status code, 423
Internationalization, 69
Internet Assigned Numbers Authority (IANA)

Character Set registry, 374
for content codings, 375
for transfer codings, 377

Internet media types
in HTTP/1.1 specification, 379–381
message/http and application/http, 518–519
multipart/byteranges, 519–520
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Internet Relay Chat (IRC), 9, 17
Invalidation, cache, 451–452
invoke_cmd function, 330
I/O

filter, 230–235
stdio-like, 227–230
strategies, 210–211

module, 132–133
errors, 137–138
input, 134–137
output, 133–134
reading form data, 138–144

iovec type, 75
IP addresses, conserving, 526
IRC (Internet Relay Chat), 9, 17

K–L

Key/value pairs for form data, 138
Keys, hash table, 72–73

Labels, 295–296
LAMP architecture, 289–292
Language tags, 382
Last-modified dates in cache validation, 439,

442–444
Last-Modified entity-header field, 485,

488–489
lb_scores entry, 335
Length of HTTP messages, 386–387
Length Required status code, 421
Levels

authentication, 178–180
logging, 325–327

libdbi, 292
libjpeg library, 114–115
libmysqlclient library, 116
Libraries

APR, 21
apvfs, 76
with filters, 206

good practice, 114–118
module building with, 118–120
serf, 75
state changes in, 117–118
third-party, 114

libxml2 library, 117–118, 206
Licenses

Apache, 12–14, 343–348
corporate CLA, 353–356
GPL, 13
individual CLA, 349–353

Lifetime
in module data management, 88–90
in resource management, 65–67

<Limit> container, 256–257
<LimitExcept> container, 256
Line-length limitations in MIME, 524
Linear white space (LWS), 368–369, 384–385
Lines

coding, 86
in HTTP requests, 154

Linux in LAMP architecture, 289
Literals, 366
load_module function, 330–333
LoadFile directive, 118–120
LoadModule directive, 119
<Location> container, 238, 240–241, 251–252
Location header spoofing, 508–509
Location response-header field, 489
Locks in cross-MPM programming, 102–104
log_transaction hook, 45
logger hooks, 156
Logging and log information

abuse of, 505
for debugging, 324–327
in request processing, 156, 161

Login
custom schemes, 195–199
Web, 180

LogLevel directive, 325
longjmp function, 114
LWS (linear white space), 368–369, 384–385
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M

<Macro> container, 259–260
macro_section function, 260
macro_t type, 259
Macros

APR, 58
expanded, 121

Mailing lists, 9, 16
make_label function, 296
Malformed requests, 163
Malicious requests, 163
malloc function, 68
map_to_storage hook

purpose, 44
in request processing, 155–156

Mapping in HTTP requests, 154, 156–158
Markup parsing modules, 49
max-age directive, 465, 467–468
Max-Forwards request-header field, 489–490
max-stale directive, 466
MaxRequestsPerChild, 96, 98
MD5 hash, 194
Media types

in HTTP/1.1 specification, 379–381
message/http and application/http, 518–519
multipart/byteranges, 519–520

Memory
managing, 61–63, 96
shared, 104–106

merge_config function, 252
Merging containers, 251–254
Meritocracy in Apache Software Foundation, 4
message/http type, 518–519
Messages, HTTP. See HTTP messages
Metadata

vs. data, 153
private, 160

Metadata buckets, 205
Method definitions, 403

CONNECT, 410
DELETE, 409
GET, 405–406

HEAD, 406
idempotent, 404
OPTIONS, 404–405
POST, 407
PUT, 408–409
safe, 403–404
TRACE, 409

Method Not Allowed status code, 419
Method tokens, 388
Metux MPM, 28
MHTML messages, 524
MIME character set, 374

in HTTP/1.1 specification, 380–381
line-length limitations, 524

MIME-Version header field, 521–522
min-fresh directive, 466
Miscellaneous persistent warning warn code,

504
Miscellaneous warning warn code, 503
Missing character sets, 375
Mmap bucket type, 75
mod_ header files, 39
mod_access module, 182
mod_alias module, 43, 157
mod_auth_basic module, 184, 187, 190, 272
mod_auth_cookie module, 92
mod_auth_dbm module, 182
mod_auth_digest module, 182, 184, 187, 272
mod_authn_alias module, 184
mod_authn_anon module, 184, 272
mod_authn_day module, 194
mod_authn_dbd module, 184, 196, 272,

303–306
mod_authn_dbm module, 184, 272
mod_authn_default module, 184
mod_authn_file module, 184, 272
mod_authn_ldap module, 272
mod_authnz_day module, 194
mod_authnz_ldap module, 184–185, 265
mod_authz_dbd.h file, 270
mod_authz_dbd module, 185, 196–197,

270–271
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mod_authz_dbm module, 185
mod_authz_default module, 185
mod_authz_groupfile module, 269
mod_authz_host module, 183–184
mod_authz_owner module, 185, 269
mod_authz_user module, 185, 191–192
mod_backdoor module, 333, 337
mod_backtrace module, 333, 336
mod_cband module, 110
mod_dbd.h file, 41, 285–286
mod_dbd module, 277–278
mod_deflate module, 49, 214, 232, 261
mod_diagnostics module, 333, 338–341
mod_env module, 91
mod_evasive module, 110
mod_expat module, 227
mod_ext_filter, 48
mod_fcgid, 28
mod_filter module, 213–214, 216
mod_form.h file, 266
mod_form module, 265
mod_headers table, 91
mod_helloworld.c file, 127
mod_include module, 165, 264
mod_includes filter, 48
mod_info module, 333
mod_ldap module, 105–106
mod_line_edit module, 222
mod_load_average module, 110
mod_macro module, 259
mod_negotiation module, 43, 158–160
mod_proxy module, 248
mod_proxy_html module, 225, 248–249,

326–327, 340–341
mod_publisher module, 264, 273
mod_rewrite, 43, 91, 326
mod_robots module, 110
mod_ruid, 28
mod_security module, 110
mod_setenvif module, 91
mod_ssl filter, 49
mod_status module, 333–334
mod_transform.h file, 264

mod_transform module, 168, 264
mod_transform_set_XSLT function, 264, 284
mod_transform_XSLTDoc function, 264

mod_txt module, 217-221
configuration for, 244–245

mod_upload module, 140
mod_watchdog module, 333
mod_whatkilledus module, 333, 336
mod_xhtml module, 276
mod_xmlns module, 228, 273–275
Modes for filters, 207–208, 231
Modules

AAA, 187–188
authentication function, 190–192
basic authentication providers, 188–190,

193–195
configuration, 193
digest authentication providers, 193–195

in APR, 54–55
in APU, 56–57
communicating between, 90–92
configuring, 237

alternative methods, 261
basics, 237–239
context in, 255–257
custom containers for, 257–261
directives for, 242–250
function types for, 246–250
hierarchy, 250–255
process, 239–240
scope of, 246
server and directory, 240–241
structures for, 239
summary, 262
user data in, 244–245

data management, 88
configuration vectors, 88
lifetime scopes, 88–90

debugging. See Debugging
error handling and reusability of, 172–174
libraries for, 118–120
for request processing, 168–174
written and compiled in other languages,

120–122
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Monitor hook, 67, 268, 337–338
Monitoring connections, 400
Moved Permanently status code, 415
mpm_common, hooks exported by, 268
Multi-homed Web servers, 526
Multi-Processing Modules (MPMs), 22, 25

cross-MPM programming issues, 101–102
process and global locks, 102–104
shared memory, 104–106

for debugging, 331
purpose, 26–27
UNIX-family, 27–28
working with, 28–29

Multiline comments, 87–88
multipart/byteranges type, 519–520
multipart/form-data format, 138
Multipart types in HTTP/1.1 specification,

380–381
Multiple Choices status code, 414–415
Multiple responses in cache expiration model,

437–438
MultiViews option, 159
must-revalidate directive, 468–469
Mutexes, 102–103
MySQL databases, 79

drivers, 82–83, 295
in LAMP architecture, 289
thread-safe library versions, 116
DBD Driver, 307-320

N

N rule, 367
Names

attacks based on, 507–508
HTTP rules, 366

Namespace modules, 273–274
Namespacing in APR, 57–58
NDBM, 80–81
Negotiated responses, caching, 449–450

Negotiation
content, 158–160, 424–427
in persistent connections, 397–398

Networks
APR, 76
security for, 111

New functions, implementing, 264–266
News, websites for, 19
Newsgroups, 16
no-cache directive, 463
No Content status code, 412–413
no-store directive, 464
no-transform directive, 469
Non-authoritative Information status code,

412
Non-shared caches, 450
Nonmodifiable headers, 446–447
Nonstandard request processing, 44
Nonvalidating conditionals, 444
Not Acceptable status code, 419–420
Not Found status code, 419
Not Implemented status code, 423
NOT_IN_DIR macro, 255
NOT_IN_DIRECTORY macro, 255
NOT_IN_FILES macro, 255
NOT_IN_LIMIT macro, 255–256
NOT_IN_LOCATION macro, 255
NOT_IN_VIRTUALHOST macro, 255
Not Modified status code, 416–417
Notational conventions in HTTP/1.1 specifi-

cation, 366–369
Notes for filters, 214–215
notes table, 91
Null pointers, 332
NULL values, 269

O

OK return value, 126
OK status code, 411
Online chat, 17
Online forums, 16–17
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only-if-cached directive, 468
open_logs hook, 268
Operating systems

MPMs with, 28–29
for security, 111–113, 178

Operational phase in two-phase operation, 25
Optional elements in HTTP rules, 367
optional_fn_retrieve hook, 268
Optional functions, 265–266
Optional hooks, 270–271
OPTIONS method, 404–405
OR_ALL option, 246
OR_AUTHCFG option, 246
OR_FILEINFO option, 246
OR_INDEXES option, 246
OR_LIMIT option, 246
OR_OPTIONS option, 246
Oracle drivers, 295
Order

hook execution, 269
request processing, 49–50

Order directive, 182
Origin servers

and 100 (Continue) status, 401
in HTTP/1.1 specification, 361

Output, module, 133–134
Output filters, 202

callback functions for, 205, 207
strategies for, 210–211

Overflow, buffer, 109

P

Parameters, media type, 379
Parentheses () in rules, 367
parse_form_from_POST function, 140–142
parseChunk function, 206
Parsing

filters for, 221–227
form data, 138–144
HTTP constructs, 368

Partial Content status code, 413–414
Passwords

in Apache 2.1/2.2, 184
in basic authentication, 178–179
in mod_authn_dbd, 305–306

Patent license, 345
Patents, 14–15
Paths and path names

attacks based on, 507–508
inbound/outbound, 364
vs. URLs, 157

People and processes in security, 178
Per-directory configuration, 41
Per-server configuration, 41
Perchild MPM, 28
Perl language, 2, 289
Persistent connections

considerations, 399
HTTP/1.0 compatibility with, 526–527
in message transmissions, 400
operation, 397–398
proxy servers, 398
purpose, 396–397

Persistent data
garbage collection, 96–98
memory/resource management, 96–99
reslist, 99
resource reuse, 99
scope of, 90
shared resources, 106
subpools, 98
thread safety in, 93–96

Personal information, security for, 505–507
Peruser MPM, 28
Philosophy of Apache Software Foundation, 6
PHP in LAMP architecture, 289
Pipe bucket type, 75
Pipelining

for filters, 205–206
in persistent connections, 398

Piracy, 14–15
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Platform and architecture, 21
basic concepts and structures, 29
configuration basics, 41–42
conn_rec object, 37–39
cross-platform issues

API builds, 284–288
programming, 99–101

for DBD driver, 306
key API components, 39–41
MPMs, 26–29
overview, 21–22
process_rec object, 37
request processing. See Request processing and

messages
request_rec object, 30–35
server_rec object, 35–37
two-phase operation, 22–26

PMC members in Apache Software
Foundation, 5

Pointers
crashes from, 332
declaring, 87
for merging containers, 253–254
in request_rec, 30
in shared memory, 105–106

Pool bucket type, 75
poolclass class, 64
Pools, See Apache Portable Runtime (APR),

pools
post_config hook, 268
Post-configuration hooks, 66, 268
POST method, 404

cache invalidation with, 451
OK status code with, 411
parsing data from, 140–142
vs. PUT, 408
working with, 407

post_read_request hook
purpose, 44
in request processing, 155–156

PostgreSQL drivers, 295
Postprocessing filters, 212
Pragma general-header field, 490–491

pre_config hook, 268
Pre-configuration hooks, 66, 268
pre_connection hook, 67
pre_mpm hook, 268
Precautionary principle, 107–109
Precondition Failed status code, 421
Predecessors of functions, 269
Prefork MPM, 27–28
Prematurely closed connections, 402–403
Prepackaged configuration functions, 245–246
Preprocessing filters, 212
Preprocessor directives, 285–286
private directive, 463
Private metadata, 160
Privileges, 111
process_connection hook, 67
process_rec object, 29, 37
process_score entry, 335
Processes, 29

APR, 78
in cross-MPM programming, 102–104

Processing hooks, 44–46, 50–51
Product tokens, 381
Programming techniques and caveats, 85

coding conventions, 85–88
cross-MPM, 101–106
cross-platform, 99–101
external dependencies and libraries, 114–120
inter-module communication, 90–92
module data management, 88–90
modules written and compiled in other lan-

guages, 120–122
persistent data, 93–99
secure programming, 106–113
summary, 122
thread-safe, 92–93

Protocol filters, 202–205, 215–217
Provider API, 272–277
Providers, authentication, 188–190, 193–195
Proxies

and 100 (Continue) status, 402
Apache, 48
for cache responses, 446–447
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denial of service attacks on, 510
in HTTP/1.1 specification, 361
persistent connections, 398
security considerations in HTTP, 509–510

Proxy-Authenticate response-header field, 187,
491

Proxy Authentication Required status code,
186, 420

Proxy-Authorization request-header field, 491
proxy-revalidate directive, 469
ProxyHTMLLinks directive, 249
ProxyPassReverse directive, 241
public directive, 463
Public domain software, 12
Public mailing lists, 16
PUT method

cache invalidation with, 451
as idempotent method, 404
working with, 408–409

Python in LAMP architecture, 289

Q

q parameter in Accept field, 454
Quality values

in HTTP/1.1 specification, 381–382
in RFC 2068, 527

Queues, 73
quick_handler hook, 44

R

Range field, 492–494
Range request-header field, 485, 493–494
Range units in HTTP/1.1 specification, 383
read function, 74
readbytes, 231–232
Reading form data, 138–144
Reason phrase in response messages, 392–394
Redirect directive, 158, 163

REDIRECT_STATUS variable, 162
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414–418
Redirects in request processing, 161–162
Redistribution section in Apache license,

345–346
Reference manual, APR, 57
References in HTTP/1.1 specification,

512–516
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register_hooks function, 117, 189, 192, 267,

269, 271
Registering functions, 115
Release managers, 9
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Reload controls, 466–469
RemoveOutputFilter directive, 211
Replacement of caches, 452
Report generation in Site Valet, 168
Repositories, code, 7, 10
Representation in HTTP/1.1 specification,
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Request Entity Too Large status code, 422
Request-Line in request messages, 388
Request pools, 30
Request processing and messages, 151–152,
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in Apache, 42, 155–156
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content negotiation in, 158–160
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order of, 49–50
phases in, 43–44
pools in, 66
private metadata in, 160
processing hooks, 44–46, 50–51
scope in, 89–90
security in, 160
summary, 51
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Request processing and messages, continued
in HTTP, 153, 360

anatomy of, 153–155
diversion in, 161–163
header fields in, 391
information gathering in, 163–167
logging in, 161
malformed and malicious, 163
Request-Line for, 388–390
resources identified in, 390–391

modules for, 168–174
summary, 174–175

request_rec object
for configuration data, 239–240
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for filters, 203
for HelloWorld, 129–130
for module communication, 90–92

Request/response protocols, 364
Request Timeout status code, 420
Request-URI

with PUT, 408
in request messages, 389–390

Request-URI Too Long status code, 422
Request URLs, 43
Requested Range Not Satisfiable status code, 422
Require directive, 186, 188, 256
Requirements in HTTP/1.1 specification, 359
Reset Content status code, 413
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implementing, 278–284
working with, 99

Resources and resource management
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pools, 61–64, 78–79
problem of, 60–61
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reusing, 99
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Retry-After response-header field, 494–495
Return values
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resources, 99

Revalidation failed warn code, 503
Revalidation for Cache-Control, 466–469
Review and consensus process, 8
Review-Then-Commit (RTC) code, 8
RFC 2045 entities, 521–524
RFC 2068, changes from, 527–529
Rings, 73
Roles in Apache Software Foundation, 4–5
ROLLBACK for transactions, 297
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RTC (Review-Then-Commit) code, 8

S

s-maxage directive, 465, 528
Safe methods, 403–404
Safe programming techniques, 178
Satisfy directive, 182
SAX filters, 228
Scope

of module configuration, 246
of module data, 88–90
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Scoreboard, 334–335
scoreboard.h file, 334
Scrutiny of DBD driver, 306
SDBM, 80
Seconds, delta, 374
Security, 177–178

AAA. See AAA (Access, Authentication, and
Authorization)

HTTP, 504–505
authentication credentials and idle clients,

509
content-disposition issues, 509
denial of service attacks on proxies, 510
DNS spoofing, 508
file and path name attacks, 507–508
location header spoofing, 508–509
personal information, 505–507
proxies and caching, 509–510

in request processing, 160
secure programming, 106–107

denial of service attacks, 109–110
operating system for, 111–113
precautionary principle, 107–109

Security phase, hooks in, 156
See Other status code, 416
Self-configuration filters, 213–215
Semantically transparent caches, 363
Semi-colons (:), HTTP comments, 368
Sensitive information

encoding in URIs, 506
transfer of, 505–506

Separators in coding, 86
serf library, 75
Server-driven content negotiation, 425–426
Server error 5xx status code definitions,

423–424
Server log information, abuse of, 505
server_rec object, 29

for configuration data, 239–240
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Server response-header field, 495
Server-specified expiration, 433

Servers, 29
configuring, 240–241
debugging, 329–331
HTTP/1.1, 361
multi-homed, 526
start-up, 268, 329–331

Service Unavailable status code, 423–424
Services, providing, 277–284
Session management with SQL, 196–197
set_allowed_ports function, 248
set_links function, 249–250
set_links_raw_args function, 250
setaside function, 74
SetHandler directive, 42
setjmp function, 114
SetOutputFilter directive, 211
Shared caches, 450
Shared memory, 104–106
Shareware, 13
Shutdown in two-phase operation, 26
Side effects

with GET and HEAD, 451
with libraries, 119

Site Valet software, 53, 168
Skeletons, module, 124–126
Sloppy programming, 108–109
Smart filtering, 211–217
Socket bucket type, 75
Software licenses, 12–14
Specific end-to-end cache revalidation, 467
split function, 74
Spoofing

DNS, 508
location headers, 508–509

SQL databases
and apr_dbd, 82–83
session management with, 196–197
statements in, 295–296

Square brackets ([]) in rules, 367
Stable branches of code repository, 7
Stale responses, 363
Standard modules, 333–335
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STANDARD20_MODULE_STUFF macro,
124, 239–240

start_comment function, 258
Start-up, server, 268, 329–331
Start-up phase, configuration in, 23–25
startElement event, 228
State changes in libraries, 117–118
Static data in thread-safe programming, 92
static functions, 129
Status code definitions, 392–394, 410

client error 4xx, 418–423
from handlers, 126
informational 1xx, 410–411
redirection 3xx, 414–418
server error 5xx, 423–424
successful 2xx, 411–414

STATUS file, 8
Status-line in response messages, 392–394
stdio-like filter I/O, 227–230
Stealth libraries, 119
Strings

APR, 69
format, 295–296

Strong cache validators, 439–442
Strong entity tags, 382
Structures. See Data structures
Stubs, 122
Submission of contributions section in Apache

license, 346
Subpools, 98
subprocess_env table, 91
Subrequests, 163–167
Subversion repository, 10
Subversion system, 7
Successful 2xx status code definitions,

411–414
Successors of functions in determining order,

269
suexec, 28
switch statements, 87
Switching Protocols status code, 411

System administrators, debugging assistance
for, 326–327

Systems-level modules, 26

T

Tables, 71–72
of bags, 138
hash tables, 72–73

TCP connections, 29, 37
TE request-header field, 495–496
Temporary files, creating, 100–101
Temporary Redirect status code, 417–418
Termination, library, 116–117
Terminology in HTTP/1.1 specification,

359–365
test_config hook, 268
Testing, forum participation for, 11
Text

filtering, 217–221
media types, 379–380
parsing, 221–225

TEXT rule, 369
Third-party extensions, 18
Third-party intellectual property, 15–16
Third-party libraries

compatibility of, 114
debugging, 340–341

Thread safety, 92–93
with libraries, 116
in persistent data, 93–96

Threads, APR, 78
throw/catch structures, 116
Time

in HTTP/1.1 specification, 373–374
module for, 70

tmpfile function, 100
Tokens

in HTTP/1.1 specification, 381
in request messages, 388
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Tolerant applications, 520–521
TRACE method

as idempotent method, 404
OK status code with, 411
working with, 409

Traceback for command handler functions,
330–333

Tracing crashes, 331–332
Trademarks in Apache license, 346
Trailer general field, 497
Trailers in chunked transfer coding, 378
Transactions, 297–298
Transfer codings in HTTP/1.1 specification,

376–378
Transfer-Encoding general-header field,

385–386, 497, 523–524
Transfer-length of messages, 386–387
Transformation applied warn code, 503–504
Transformations

filters for, 212
XSLT, 168

transforms table, 169
Transient bucket type, 75
translate_alias_redir function, 157–158
translate_name hook

purpose, 44
in request processing, 155–156

Translation, forum participation for, 11
Transmission requirements for connections,

400–403
Transparent caches, 363
Transparent content negotiation, 427
Transparent proxies, 446–447
Transport-layer security, 178
Trunks in code repository, 7
Trust nothing principle, 107–109
try_alias_list function, 158
Tunnels, 362
Tutorials, websites for, 19
Two-phase operation, 22–23

operational phase, 25
start-up, 23–25

type_checker hooks, 168
purpose, 45
in request processing, 155–156

Types
entities, 395–396
HTTP messages, 383–384
media, 379–381

U

Unauthorized status code, 186, 418–419
Uniform Resource Identifiers (URIs), 371–372

APR handling, 77
encoding sensitive information in, 506
in request messages, 389–390

UNIX-family MPMs, 27–28
Unlimited shared resources, 106
Unspecified end-to-end cache revalidation, 467
Unsupported Media Type status code, 422
Updates, cache invalidation after, 451–452
Upgrade general-header, 498–499
Upstream/downstream flow, 363
URIs (Uniform Resource Identifiers), 371–372

APR handling, 77
encoding sensitive information in, 506
in request messages, 389–390

URLs
vs. filesystem paths, 157
http, 372
request, 43

US-ASCII character set, 374
Use directive, 259–260
use_macro function, 260–261
use_namespace function, 274
Use Proxy status code, 417
Usenet newsgroups, 16
User-Agent request-header field, 499
User-Agent string, 161
User agents

in HTTP/1.1 specification, 361
warnings, 431–432



558 Index

User data in configuration functions,
244–245

Usernames in basic authentication, 178–179
Users in Apache Software Foundation, 4–5
Users list, 16
util_ header files, 39
util_filter.h file, 41, 136, 208–209, 227
util_ldap_cache_init function, 105
util_ldap.h file, 41
util_script.h file, 41
Utility factor in handler vs. filter decisions,

46

V

Validation
cache, 438–444
for Cache-Control field, 466–469
input, 107–108

Validators, 363
Values

hash table, 72–73
quality, 381–382, 527
return, 58, 126–127

Variants
of documents, 168–171
in HTTP/1.1 specification, 360–361

Vary field, 499–500
Vectors, configuration, 30, 88
Versions

HTTP, 370–371, 525–529
library, 119–120
Subversion system, 7

vhost macro, 259
Via general-header field, 500–501

Virtual hosts, 238
<VirtualHost> container, 238, 241, 251

W

Warning general-header field, 501–504
Warnings for caches, 430–432
Weak cache validators, 439–442
Weak entity tags, 383
Web, login, 180
Web servers, multi-homed, 526
Websites for developers, 17–19
Weights for HTTP quality values, 381
Whitespace in coding, 86
Wildcards in RFC 2068, 528
Worker MPM, 27
worker_score entry, 335
Wrappers, C, 63
write command, 113
Write-through mandatory in caches, 452
WWW-Authenticate response-header field,

187, 504

X

xdefault function, 228
xhtml_hooks function, 277
XML namespace framework, 272–273
XML_Parse function, 226
xmlns_filter function, 225
xmlns.h file, 275
xmlns structure, 275–276
XMLNSUseNamespace directive, 274
XSLT transformation, 168
xstartElement function, 228
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