
VM2Docker: Automating the Conversion from
Virtual Machine to Docker Container

by

Eric Lubin
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2015

c� Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 16, 2015

Certified by. .
Jim Yang

Sr. Manager, R&D, VMware
Thesis Supervisor

Certified by. .
Martin C. Rinard

Professor of Computer Science
Thesis Supervisor

Accepted by .
Albert R. Meyer

Chairman, Department Committee on Graduate Theses

VM2Docker: Automating the Conversion from Virtual

Machine to Docker Container

by

Eric Lubin

Submitted to the Department of Electrical Engineering and Computer Science
on January 16, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Container technology represents a flourishing field in cloud computing. For many
types of computing, containers are a viable alternative to virtual machines because
many applications do not require isolated kernels. Containers share the kernel with
the host, as opposed to virtual machines which have a completely isolated kernel.
Because of this distinction, containers are more lightweight and higher performing,
but also have less isolation and therefore increased security concerns. The Docker
framework, among other alternatives, has gotten the most attention and popularity
over the past year and provides a powerful layered filesystem to improve deployability
and provide space savings for those containers that share many layers in common. As
of this writing, there is no system for automatically converting VMs to containers,
as all configuration must be done manually. This is potentially unwieldy for system
administrators looking to convert five to ten, or even hundreds, of virtual machines
at once. This thesis presents a system we call VM2Docker that attempts to automate
this conversion. VM2Docker specifically focuses on automatically generating layers
for Docker to take advantage of the filesystem similarities across VMs of the same
operating system. VM2Docker has been tested on various releases of Ubuntu, CentOS,
and Mageia with a large degree of success and is able to provide filesystem space
savings and deployment speed improvements with as few as 2 instances of a VM of a
given operating system and release.

Thesis Supervisor: Jim Yang
Title: Sr. Manager, R&D, VMware

Thesis Supervisor: Martin C. Rinard
Title: Professor of Computer Science

2

Acknowledgments

This thesis would not have been where it is today if not the help and guidance of a

number of essential people.

First, thank you to David Dillion at VMware. In the early days of this summer, you

introduced me to the Docker framework while it was still young, and it immediately

sparked my interest. This got me on the path to the overall thesis topic as a whole.

Second, thank you so much to Jim Yang, my manager at VMware, for your guid-

ance and help throughout the entire process. The ability to pick my own topic,

although a daunting task, is something for which I am incredibly grateful.

Finally, thank you to Martin Rinard for advising my thesis writing and helping

me pull together this document as it is today, especially when figuring out the best

way to present the system evaluation.

3

Contents

1 Introduction 12

2 Docker Fundamentals 14

2.1 System Details . 15

2.1.1 cgroups . 15

2.1.2 namespaces . 16

2.1.3 Another Union FileSystem (AUFS) 16

2.1.4 Docker Registry . 16

2.2 Technical Terms . 17

2.2.1 Dockerfile . 17

2.2.2 Base Image . 18

2.2.3 Containers vs. Images . 18

2.3 Use Cases . 19

2.3.1 Cloud . 19

2.3.2 DevOps . 19

2.4 Industry Response . 19

2.4.1 Comparison to Virtual Machines 20

2.4.2 Competitors & Alternatives 21

3 Related Work 24

3.1 Docker import . 24

3.2 Docker commit . 25

3.3 "Dockerization" . 26

4

3.4 Parallels Virtuozzo Containers (PVC) 27

3.5 Docker ! VM . 27

4 VM2Docker 28

4.1 Use Cases . 28

4.2 System Overview . 29

4.2.1 Chief + Agent . 31

4.3 Filesystem Conversion . 31

4.3.1 Base Image . 31

4.3.2 Package Management . 32

4.3.3 Diff . 34

4.3.4 Dockerfiles . 36

4.3.5 Verification . 37

4.3.6 Additional Space-Reducing Techniques 37

4.4 Process Detection . 37

4.5 Technical Implementation & Specifications 38

4.5.1 Usage . 39

5 Evaluation 40

5.1 Evaluation Strategy . 40

5.2 Quantitative Results . 42

5.2.1 Disk Usage . 43

5.2.2 Dependency Detection . 57

5.3 Qualitative Results . 57

5.3.1 OS Compatibility . 57

5.3.2 Conversion Time . 60

6 Conclusion 61

6.1 Contribution . 61

6.2 Future Work . 62

6.2.1 Multi-Container Orchestration 62

5

6.2.2 Socket Security . 63

6.2.3 Diff Alternatives . 63

6.2.4 More Optimal Layering . 64

6

List of Figures

2-1 A graphic outlining the three fundamental components that make up

the Docker framework. Namespace and cgroup support are provided by

the LXC (LinuX Container) kernel extensions, and filesystem layering

is provided by AUFS. 15

2-2 An example of a simple Dockerfile. The first line inherits from the

default Ubuntu base image, the second installs the python package, the

third adds the app.py script to the container, and the fourth defines

the command that will be run when the container is started. 17

2-3 A graphic providing examples of the difference between containers and

images in the Docker Engine. Containers are the top-most writable

layers of the filesystem and represented by the rectangles with dashed

lines and grey background. Images are the read-only layers used for

inheritance and are represented by the rectangles with the solid lines

and white background. 18

2-4 A comparison of the components and isolation of virtual machines as

compared to Docker containers. Each container consists of only an

application and its dependencies and shares the underlying kernel with

the host OS. 21

7

4-1 The following diagram illustrates an overview of the system and how

the VM2Docker framework interacts with the virtual machines pro-

vided as input and converts them to corresponding Docker images. The

rounded squares represent the input virtual machines and the rounded

diamonds represent the resulting Docker images. To be converted,

each VM must be running an instance of the "agent", as described in

section 4.2.1, and identified by a gray circle with the letter "A." The

"chief," which initiates the conversion and is identified by the circle

labeled VM2Docker, is itself a Docker image and can therefore be run

on any host that has Docker installed. The resulting Docker images

are deployed to a Docker registry, which can either be hosted on Host

1 or a separate host entirely. 30

4-2 An example of how VMDocker layers the filesystems of three virtual

machines running the same operating system and release. Docker will

keep only one copy of layers DI0 and DI1, because each of the three

VMs share these in common. 32

4-3 In the example above, packages A-G are pictured. Package X depends

on package Y if and only if there is a directed edge from X to Y . Of

those pictured, packages B, C, and D do not need to be installed be-

cause during installation of package A, the package manager will detect

that B and D are uninstalled dependencies, and that C is recursively a

dependency of them. Packages E and F still need to be included, even

though their in-degree is bigger than 0, because they are a strongly

connected component on which no other installed nodes depend. All

those packages that are removed from the list of packages to be in-

stalled are pictured with a dashed line circle, while the packages that

can’t be removed are pictured with a solid line circle. 34

4-4 An example of the Docker image build process and the set of instruc-

tions used to get between images. Starting from the base image, DI0,

Docker generates image DI1 by executing instructions contained in DF1. 36

8

5-1 The following diagram illustrates an overview of the system and how

the VM2Docker framework interacts with the virtual machines pro-

vided as input and converts them to corresponding, layered, Docker

containers. The rounded squares represent the input virtual machines,

the circles correspond to immutable programs that interact with the

inputs or outputs in some way, and the rounded diamonds represent

the resulting Docker images. Each image consists of a series of layers,

which is illustrated by starting at the given image and traversing the

links backwards to the base image (DI0). The final images, equal to

the original VM filesystem, are represented by the shaded diamonds

(DI3). The number of these is exactly equal to N, the original number

of VMs to be converted. 45

9

List of Tables

5.1 The results of running VM2Docker with a single VM input and various

releases of Ubuntu. The rdiff algorithm generall provides slightly

smaller delta files. For all inputs, ⌅ = 2 and therefore space savings

begin to occur on the second instance of a given OS release. 48

5.2 The results of running VM2Docker with a single VM input and vari-

ous releases of CentOS. The rdiff algorithm generall provides slightly

smaller delta files. For all inputs, ⌅ = 2 and therefore space savings

begin to occur on the second instance of a given OS release. 49

5.3 The results of running VM2Docker with a single VM input and various

releases of Mageia. The rdiff algorithm generall provides slightly

smaller delta files. For all inputs, ⌅ = 2 and therefore space savings

begin to occur on the second instance of a given OS release. The *

denotes that VM2Docker was run on the fullly featured release of this

OS with all default packages installed, which explains the increase in

overall size of the input VM. 49

5.4 The results of running VM2Docker with a single VM input and various

releases of Ubuntu. As the overall layering increases, the size of DI3

decreases, which results in a increasing % overall reduction, � in the

marginal cost of deploying a given VM. For all inputs, ⌅ = 2 and

therefore space savings begin to occur on the second instance of a

given OS release. 51

10

5.5 The results of running VM2Docker with a single VM input and various

releases of CentOS and Mageia. As the overall layering increases, the

size of DI3 decreases, which results in a increasing % overall reduction,

� in the marginal cost of deploying a given VM. For all inputs, ⌅ = 2

and therefore space savings begin to occur on the second instance of a

given OS release. 51

5.6 The results of running the multi VM scenario A with M=1. All values

are in MB. 53

5.7 The results of running the multi VM scenario B with M=1. All values

are in MB. 54

5.8 The results of running the multi VM scenario C with M=1. All values

are in MB. 54

5.9 The results of running the multi VM scenario D with M=1. All values

are in MB. 55

5.10 The results of running the multi VM scenario E with M=1. All values

are in MB. 56

5.11 The results show a fairly aggressive reduction of packages required to

be listed across many different operating systems and releases. Of the

original packages to be installed, as many as 85.2% and as few as 30.8%

can be removed without affecting the overall set of packages. 57

11

Chapter 1

Introduction

Containers are a lightweight alternative to virtual machines that have been getting a

lot of hype in the cloud-computing environment in recent months. Instead of being

fully isolated from the host, containers tradeoff this isolation and share a kernel with

the host and all other containers running on the same system in favor of higher

density and performance. Within this context, Docker is one of the most prominent

open-source container solutions. In this thesis, we introduce, describe the design

and implementation of, and evaluate the VM2Docker system, which automates the

conversion from virtual machine to Docker container

Chapter 2 describes the fundamentals of the Docker framework and introduces

the layered filesystem. It also provides a brief comparison to virtual machines and

presents a discussion of the benefits and drawbacks of each.

Chapter 3 describes any related work as it pertains to the conversion from an

arbitrary virtual machine to the container format.

Chapter 4 presents an overview of the VM2Docker framework. It breaks down

this conversion into the filesystem handling and process detection components. It

further describes the automatic layering that VM2Docker hopes to achieve within

the filesystem.

Chapter 5 evaluates the effectiveness and overall utility of the VM2Docker frame-

work. The discussion focuses on the conversion process itself, both from a qualitative

and quantitative perspective. The disk usage of the various layers of the filesystem

12

is the primary means by which the use of VM2Docker provides a clear advantage

over running many copies of many virtual machines running the same release of a

given operating system, as long as these virtual machines contain applications that

are capable of being run within a container.

Finally, chapter 6 presents an overall summary of the benefits and drawbacks

of VM2Docker and its contribution to the field. Possible future improvements and

additional features of the project are also discussed.

13

Chapter 2

Docker Fundamentals

Docker is a relatively new open-source framework that serves as a lightweight al-

ternative to virtual machines. It provides users with the ability to create isolated,

high-performing containers that can be seamlessly deployed to other hosts running

the Docker Engine. Unlike virtual machines, containers share the kernel with the host

and therefore rely on specific features in the kernel to provide a comparable level of

isolation. For now, these containers are restricted to Linux; however, Microsoft has

recently made a commitment to bring container technology based on Docker to the

Windows platform [1].

For the past few years, Docker has been under active heavy development and in

recent months is gaining popularity across the industry. An extraordinary number of

new projects and platforms are being built on top of Docker, resulting in a rich and

lively ecosystem.

In section 2.1, we outline the technical details of Docker; in section 2.2, we describe

fundamental terms that will be essential to the understanding of VM2Docker; in

section 2.3 we dive into the wide variety of use cases Docker containers can have; and

finally in section 2.4 we discuss the industry’s response to Docker.

14

2.1 System Details

The Docker platform is divided into the Docker Engine, which supports the runtime

and execution of containers, and the Docker Registry, which provides the hosting and

delivery of a repository of Docker images. Each container provides a namespaced,

isolated environment for execution. Docker exploits filesystem layering, as well as

specific features of the Linux kernel to make all of these possible.

LXC$

AU
FS
$

layered'filesystem'

process'grouping'&'
resource'management'

process'isola4on'&'
faux'server'layout'

Figure 2-1: A graphic outlining the three fundamental components that make up the
Docker framework. Namespace and cgroup support are provided by the LXC (LinuX
Container) kernel extensions, and filesystem layering is provided by AUFS.

2.1.1 cgroups

Cgroups, or control groups, are a feature on the Linux kernel that provides resource

limiting, in the form of memory or disk limits, as well as prioritization of CPU and

15

disk throughput. These features are comparable to those offered by a virtual machine

hypervisor to allocate a given amount of memory and CPU, network, and disk priority

to a virtual machine.

2.1.2 namespaces

Namespaces are the mechanism by which each Docker container is isolated from the

host and other containers. There are many different namespaces that LXC supports,

but perhaps the two most significant ones are the pid and net namespaces. The pid

namespace is responsible for giving each container its own isolated environment for

processes. A given container can only see and send signals to the processes that are

running within the same container. In addition, the net namespace allows different

containers to have what appears to be distinct network interfaces, thereby permitting

two containers to simultaneously bind to the same port, for example [2].

2.1.3 Another Union FileSystem (AUFS)

AUFS, Another Union FileSystem, is the primary means through which Docker

achieves both storage savings and faster deployments of containers. Each image

inherits from a sequence of other images, up to the base image, and represents the

set or sequence of changes on the filesystem. This layering of filesystems and images

accomplishes two main benefits. First, it allows for a high degree of storage savings.

If two containers are running the same OS and share some libraries and dependencies,

the majority of their filesystems will only be represented once on disk and are not

duplicated. Second, when downloading and deploying a container, if a host already

has previous layers of the filesystem on which a given container depends, it need only

download the incremental changes.

2.1.4 Docker Registry

Docker provides a public registry to which developers can push their custom Docker

images and share their creations with others [3]. It has support for creating private

16

images, but requires the user to pay to have more than one privately hosted image.

Docker also has open sourced the Docker Registry [4] to allow for privately hosted

registries. For enterprises, this is a superior solution that allows for easy deployment

and configuration of Docker containers across a wide area datacenter.

2.2 Technical Terms

The comprehension of a few terms related to Docker is essential to the understanding

of this thesis.

2.2.1 Dockerfile

A Dockerfile, similar to a Makefile, is composed of a set of instructions used by Docker

to build an image. It typically starts with an inheritance line, specifying from which

image to inherit. This can either be a base image, or another image that has been

previously built. After the inheritance instruction, the rest of the Dockerfile consists

of a combination of commands to run, files to add, environment variables to set, and

ports to expose. The Dockerfile can then be passed into the Docker engine, along with

an optional tag, and the resulting image is built. Each command in the Dockerfile

represents a new layer on the file system. Each change is performed, copy-on-write,

such that the entire image ancestry is accessible at any time.

Figure 2-2: An example of a simple Dockerfile. The first line inherits from the default
Ubuntu base image, the second installs the python package, the third adds the app.py
script to the container, and the fourth defines the command that will be run when
the container is started.

17

2.2.2 Base Image

A base image is a special kind of Docker image that does not have a parent image.

The base image instead represents the set of files that make a given operating system

unique, excluding the kernel. Examples of base images are Ubuntu 14.04 and Cen-

tOS7. Base images do not have a parent and instead fully represent an entire OS on

their own. Base images are used as starting points from which all other images can

inherit [5].

2.2.3 Containers vs. Images

Images are read-only layers on the filesystem. Each layer is a distinct image. To

run a container, one specifies an image and a command to run. All changes to the

filesystem go to the top-most container layer of the filesystem, preserving all image

layers beneath. Figure 2-3 illustrates all of these concepts.

Figure 2-3: A graphic providing examples of the difference between containers and
images in the Docker Engine. Containers are the top-most writable layers of the
filesystem and represented by the rectangles with dashed lines and grey background.
Images are the read-only layers used for inheritance and are represented by the rect-
angles with the solid lines and white background.

18

2.3 Use Cases

2.3.1 Cloud

This is the primary target for which VM2Docker is geared. As an alternative to

hosting virtual machines in the cloud, many cloud providers now offer the option to

either directly use containers, run containers within a container-optimized VM, or

both.

2.3.2 DevOps

Another essential audience for the Docker framework is the DevOps paradigm. De-

vOps is the process by which a piece of software is developed and subsequently de-

ployed, along with the continuous revision process of simultaneous development and

deployment. Historically, DevOps has been challenging to get right because of all

of the dependencies a certain piece of software might have. During deployment, the

software installed on a given developer’s host must also be installed on the host run-

ning the deployed application. Docker provides a streamlined way to guarantee that

a piece of software running in a container on one host will run exactly the same on

another host, as long as each host has the Docker Engine installed. This guarantee

is an invaluable asset and is touted as the "first true" DevOps tool [6]. Ops man-

agers may choose to deploy the Docker containers in the cloud or in their own private

cluster of Docker-supported machines.

2.4 Industry Response

The hype over Docker, both in the open-source community as well as in the indus-

try, has been unprecedented. In the past year and even more recently in the past

six months, a number of influential players in the cloud hosting industry have be-

gun to offer native support for running Docker containers. Specifically, Amazon has

launched its own EC2 container service [7], and Google has been working on their con-

tainer engine powered by the open-source cluster manager Kubernetes. Additionally,

19

VMware, initially perceived to be threatened by container technology, has announced

a partnership with Docker which attempts improve the overall user experience [8].

In addition to the established cloud providers, other providers such as Tutum and

Orchard, which was acquired by Docker, have been created that focus specifically

on container deployment in the cloud. The excitement and popularity of the Docker

framework across the industry is a testament to its utility and novelty as compared

to the prior industry standard, virtual machines.

2.4.1 Comparison to Virtual Machines

While it remains to be seen whether Docker poses an immediate threat to the virtual

machine landscape, it is evident that virtual machines and containers are distinct

products that aren’t necessarily direct competitors. Each caters to a slightly different

audience.

Since Docker shares the kernel with the host, it only supports Linux-based con-

tainers and immediately discards support for legacy enterprise software that might

need a Windows environment to run.

Central to the distinction between container and virtual machine is the tradeoff

between density and isolation. Virtual machines offer the strongest form of isolation,

comparable to that offered by physically separated hosts. Containers, on the other

hand, share the kernel with the host, and therefore provide a much larger attack

surface through which an attacker might be able to compromise another container on

the same host.

By giving up isolation, unlike virtual machines which incur a performance over-

head, containers achieve near native performance as compared to running directly on

the host itself [9]. Furthermore, the density of containers on a given host can be much

higher than that of VMs.

Since Docker can run directly inside of a virtual machine, but not vice versa,

there are interesting ways in which Docker and VMware VMs might be able to work

together in the future to offer a streamlined experience that captures the benefits

of each. Multiple, trusted containers running in the same VM, for example, could

20

Docker Engine

Host OS

APP A

Bins/Libs

APP B

Bins/Libs

APP C

Bins/Libs

(a) Docker Container

Hypervisor

OS

APP A

Bins/Libs

OS

APP B

Bins/Libs

OS

APP C

Bins/Libs

(b) Virtual Machine

Figure 2-4: A comparison of the components and isolation of virtual machines as
compared to Docker containers. Each container consists of only an application and
its dependencies and shares the underlying kernel with the host OS.

provide stronger isolation while still achieving the portability and deployment benefits

that Docker containers provide.

Another distinct advantage of VMs is the ability to perform live migrations from

one host to another. VMware dubs this process vMotion [10], and it is used as a

direct building block for VMware’s Dynamic Resource Scheduling (DRS) [11]. Docker

containers, unless running in a VM (and migrated with vMotion), cannot be live

migrated to another host and instead must be shut down, moved, and started back

up. CRIU [12] is a project under heavy active development that attempts to bring

this live migration to the container ecosystem by implementing checkpoint/restore

functionality for Linux in userspace. Once completed, CRIU might be able to be

used as a primitive for dynamic resource scheduling among different Docker hosts.

However, as of this writing, no such feature exists.

2.4.2 Competitors & Alternatives

Docker is one of the most successful and popular frameworks for container technology.

However, there are also a number of other alternatives that are also built on top of

Linux containers.

In addition, we discuss briefly containers and their connection to Platform as a

21

Service (PaaS).

Flockport

Flockport is a young alternative to Docker that focuses on entire virtualization work-

loads, instead of app delivery. As a result, Flockport does not boast the same kind

of layered filesystem as Docker and instead is built on top of the LXC protocol [13].

Spoonium

Spoonium is a platform that attempts to bring container technologies to platforms not

necessarily based on Linux. It touts many of the features of the Docker framework.

Interestingly, Docker, too, has announced its intention of bringing Docker support to

the Windows platform. Thus, it remains to be seen of Spoonium will experience the

same kind of success that Docker has.

Rocket - CoreOS

Rocket, by CoreOS, is an alternative to Docker under heavy active development.

CoreOS initially provided complete support for Docker, and their operating system

was specifically built as a bare-bones operating system with the minimal amount of

software installed to run Docker. A range of disputes over the overall product vision

has inspired CoreOS to develop their own take on containers, called Rocket, and we

will see what sort of improvements and following this gets in the coming months as

the software matures [14].

Ubuntu - LXD

One final player in the container field is Ubuntu and their announcement of LXD.

LXD aims to build on top of LXC and serve as a hypervisor for containers. A

main feature it aims to support is the live snapshotting of containers through CRIU

[12], which also enables them to support live migration of containers between hosts.

These features are invaluable and would serve as an essential addition to the container

22

framework, thereby bringing some of this container technology inline with that offered

by VMware, vMotion, and DRS [10, 11]. Since LXD will work on a slightly lower

level of the stack than Docker, it is possible it will also serve as an enhancement,

rather than a direct competitor, to Docker [15].

Platform as a Service

Platform as a service is a category of cloud services that focuses on the delivery of apps

using shared libraries from the provider. From the user’s perspective, they are working

within a sandboxed environment. The provider is tasked with delivering the platform

to their users in an economical manner that minimizes the overhead of providing

the separation and isolation between user’s applications. Container technologies are

essential to this goal as they provide a means of providing high-performing, isolated

environments to users without sacrificing security [16].

23

Chapter 3

Related Work

In this chapter, we discuss existing research in the fields relating to both container

alternatives and conversion mechanisms. The existing work in this field is fairly

limited, and to the extent of our research there is no existing tool that attempts to

automate the conversion from VM to container. Everything must be done manually.

Nevertheless, there are a few tools, as well as terminologies that are important in our

overall discussion.

In sections 3.1 and 3.2, we introduce two tools built into the Docker engine and

describe why they are insufficient for the VM conversion process. Then, in section 3.3

we describe the term "dockerization" and how it is currently used in practice. In

section 3.4 we mention Parallels Virtuozzo Containers and their connection to Docker.

Finally, in section 3.5 we describe the alternative conversion, from Docker to Virtual

Machine.

3.1 Docker import

Included with Docker is the import tool that has the following documentation:

Usage: docker import URL|- [REPOSITORY[:TAG]]

Create an empty filesystem image and import the contents of the tarball

(.tar, .tar.gz, .tgz, .bzip, .tar.xz, .txz) into it, then optionally tag

24

it.

Theoretically, this tool would permit us to create a tarball out of a full-fledged

virtual machine and import it directly into Docker. However, doing so would com-

pletely abandon the notion of layering different filesystems together to construct an

image, and the final Docker image would take up the same space as the original virtual

machine. Furthermore, if multiple virtual machines were converted in this manner,

even if they had the same underlying OS and distribution, their layers wouldn’t share

any of the same lineage. Thus, two docker images would take up the same amount of

space as the original two VMs.

As a result, Docker recommends that this tool be used only to create base images.

Base images should be made as small as possible and intuitively only contain the nec-

essary files to provide a fully-functioning OS. Packages can subsequently be installed

on top of the base image depending on the desired function of the container.

3.2 Docker commit

Also, included with Docker is the import tool that has the following documentation:

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Create a new image from a container’s changes

As previously mentioned, a container represents the top-most writable layer of the

filesystem, while images are the read-only layers from which a container can inherit.

In the course of a container’s lifetime, as changes are accrued, one can optionally

choose to save these changes to a read-only layer, to be used in future images or

containers, by using the docker commit tool.

25

3.3 "Dockerization"

Dockerization is the process of converting an application to be capable of being run

within the Docker framework. Existing containers that run nginx, apache, or mysql,

for example, are said to have been "Dockerized" from their original forms. This pro-

cess generally consists of someone picking a framework or tool for which there is no

publicly available Docker image. Then a Dockerfile can be generated that provides

instructions on how to build the corresponding environment for the software. Finally,

the Dockerfile and any associated files are shared to the public Docker registry, allow-

ing other users to download and build these images for private use. The mapping from

application to container is by no means automatic and generally one must manually

write the instructions in the Dockerfile.

Of particular importance is the distinction between making use of docker commit,

as mentioned in section 3.2, as compared to creating a Docker image that is built

purely from a set of instructions in a Dockerfile. Docker commit is not accepted as

a valid Dockerization tool because it masks the exact changes made to the filesystem

layer and generally results in Docker images that take up more space than if one were

to build the same image from a set of instructions.

In fact, Docker has recently started labeling "trusted builds" as those in the

registry for which there is a Dockerfile containing instructions of how they are built

in a publicly accessible GitHub repository. The builds are "trusted" in the sense

that the complete set of instructions of how each image is built is observable by all

potential users. Thus, no trusted builds are created with the commit tool.

Thus, VM2Docker aims to streamline the Dockerization process by offering the

automatic and large-scale conversion of VMs to their corresponding Docker containers.

We specifically focus on the filesystem layering process for evaluation, and we do not

make use of the docker commit tool in favor of greater transparency of the set of

instructions used to build each image.

26

3.4 Parallels Virtuozzo Containers (PVC)

Parallels is one of the few existing solutions that provides a seamless conversion from

containers to virtual machines, and vice versa. Parallels’ container solution is called

Virtuozzo Containers and differs largely from Docker. However, the underlying idea

of a more lightweight version of a virtual machine still remains. Parallels’ pmigrate

tool is a command-line utility that provides the seamless conversion between the two

types of formats [17].

Interestingly, as of December 15, 2014, Parallels has abandoned their Virtuozzo

Container format in favor of the Docker container format for their Cloud Server [18].

3.5 Docker ! VM

Unlike the task of converting VMs to Docker, the converse is extremely straightfor-

ward. Since Docker can be run within a VM, one can simply run the same Docker

container within a VM to obtain a Docker image that has been “converted" to a VM.

27

Chapter 4

VM2Docker

In this chapter, we outline the design and implementation of the VM2Docker system.

In section 4.1, we discuss typical use cases for VM2Docker. In section 4.2 we outline

and diagram the system as a whole. The system itself consists of two major com-

ponents: filesystem conversion, as discussed in section 4.3, and process detection, as

described in section 4.4. Finally, we conclude with a brief discussion of the system’s

technical specifications in section 4.5.

4.1 Use Cases

Overall VM2Docker has a number of theoretical and practical use cases where it

might be particularly effective. We target single and multi-purpose virtual machines

that run standard, unprivileged processes. Notably, the primary prerequisite is that

any process or application running in the VM must also be able to function correctly

in a headless Linux container. This excludes GUI applications, although they could

theoretically be supported through a tool such as Docker Desktop [19]. This also

excludes any VMs that use custom modifications to the kernel or have privileged

access to special devices on the host. As of Docker 1.2, custom privileges can also

be added to containers to parallel those specified for a given VM on a case by case

basis, but this generally breaks the complete isolation that Docker provides between

containers.

28

Examples of such virtual machines that would be capable of being converted to a

container are the following:

• Web server

• Database

• Mail server

• Git server

• Hadoop node

• Cluster or grid computing node

• Other non-UI computing

In all of these cases, VM2Docker will succeed in converting a given set of hosts to

their corresponding, automatically layered Docker images. The goal of the layering

is to maximize the size and quantity of layers that are shared in common among the

different virtual machines. Since Docker retains just one copy of each layer on disk,

regardless of how many images use the layer, the total disk space used by the con-

verted containers will be less than that used by the original VMs. Furthermore, when

run, the containers will achieve performance benefits of running on the lightweight

Docker framework as compared to their original, fully-isolated and less performant

VM environments. A full analysis and evaluation of the improved disk usage of VMs

converted with VM2Docker is provided in chapter 5.

4.2 System Overview

In this section, we outline the design and implementation of the VM2Docker frame-

work. The filesystem conversion process is broken down into three important steps.

First, as outlined in section 4.3.1, we determine the OS and distribution running on

each VM and matches it up with a given Docker base image. Second, as described in

section 4.3.2, we assemble one or more additional layers corresponding to the packages

29

that are installed in each VM. Finally, we apply a diff-based algorithm to create a

layer that contains all other files that haven’t yet been accounted for but were on the

original VM filesystem. The next component of the VM conversion process consists of

container configuration. VM2Docker automatically determines which processes are

running on each host, along with the commands to run them, and maps them to

commands to be run in a corresponding Dockerfile. Exposed ports are automatically

detected and opened on the given containers, and container resources are allocated

based on the resources present in the initial VM.

1

2

N

1

2

N

Figure 4-1: The following diagram illustrates an overview of the system and how
the VM2Docker framework interacts with the virtual machines provided as input
and converts them to corresponding Docker images. The rounded squares represent
the input virtual machines and the rounded diamonds represent the resulting Docker
images. To be converted, each VM must be running an instance of the "agent",
as described in section 4.2.1, and identified by a gray circle with the letter "A."
The "chief," which initiates the conversion and is identified by the circle labeled
VM2Docker, is itself a Docker image and can therefore be run on any host that has
Docker installed. The resulting Docker images are deployed to a Docker registry,
which can either be hosted on Host 1 or a separate host entirely.

30

4.2.1 Chief + Agent

As displayed in figure 4-1, the VM2Docker framework is divided into two components:

the chief and the agent. The chief is centrally deployed on a single server which

initiates the conversion. The agent is a self-contained executable that is deployed and

run on each VM that needs to be converted. The chief communicates with the agent

on each VM in order to convert them to their corresponding, layered, Docker images.

4.3 Filesystem Conversion

A significant component of this endeavor comprises the optimal decomposition of a

virtual machine into a set of configuration files and an associated Dockerfile, which

together can be used to build a Docker image. Docker‘s filesystem layering allows

multiple images that inherit from the same parent image to share many of the same

files, therefore drastically cutting down on the total space needed for many copies or

minor derivations of the same base image. In addition to space savings, the corre-

sponding Docker images take up a fraction of the space of a VM and can therefore

be downloaded and shared in a much more convenient manner.

Starting from the original VM, VM2Docker will apply a set of transformations in

order to decompose the VM’s filesystem into a set of layers, which, together, make up

the original filesystem. At the end of the automatic layering process, a filesystem diff

is created and applied from the topmost Docker layer to the original VM filesystem.

This ensures that after the diff is applied, the Docker image is byte for byte equivalent

to the original VM’s filesystem. Figure 4-2 depicts how three such virtual machines,

all running the same operating system and release, might share certain layers in

common after being converted to the Docker format.

4.3.1 Base Image

The most straightforward way of exploiting layering in Docker is by means of simple

Docker image inheritance. Built into the engine is a method by which each image

31

VM VM VM

DI

DI

DI

DI
0

1

2

3

1 2 3

Figure 4-2: An example of how VMDocker layers the filesystems of three virtual
machines running the same operating system and release. Docker will keep only one
copy of layers DI0 and DI1, because each of the three VMs share these in common.

can be told to start from an existing image, identified by a repository and tag name.

This could either be a base image corresponding to a specific release of an operating

system, or it could be a more complex image, which itself inherits from another image.

We make use of this layering by automatically detecting the distribution and

release of the corresponding VM. As long as the VM is running a release of Linux

with a kernel version that exceeds 3.8, it should be supported by VM2Docker. The

distribution and release can be found in /etc/*-release and roughly correspond to

the repository and tag name, respectively. Once obtained, we check for the existence

of the corresponding base image on the Docker Registry. For now, we are using

the publicly available registry but intend to transition to a private registry. A private

registry would allow any such base images that are not available on the public registry,

like RedHat because of licensing reasons, to be generated on the fly with a tool like

debootstrap [20] and then pushed to the registry for future availability.

4.3.2 Package Management

To increase the number of layers and maximize the sharing of these layers across

different Docker images, we make aggressive use of package detection and installation.

Each OS has a slightly different package management tool, so VM2Docker abstracts

out the particular commands for a given tool and is therefore extensible regardless of

32

the operating system in use. We have tested and implemented code that works for

Ubuntu, Mageia, and CentOS, which use apt-get, urpmi, and yum, respectively.

We maximize layers in common by first computing the intersection of packages

for all VMs of the same operating system and release. This set of packages is culled

using dependency detection, which is described below. Once filtered, a Dockerfile is

constructed that inherits from a given base image and contains instructions to install

all packages in common.

This process is repeated a second time for each VM using the remaining packages

that have not yet been installed. A Dockerfile is generated that inherits from the

image created in the previous step and installs the remaining packages specific to this

VM. Note that if there is only one VM of a given operating system and release, these

two layers will be the same.

Presumably, the package installation process will consist only of package installs,

but it is conceivably possible that there are some installed on the base image, but not

the VM, which would lead to a Dockerfile instruction to uninstall the given packages.

The goal of this technique is to coerce the Docker image filesystem to be as similar

to the original VM as possible before calculating the diff, thereby reducing its size.

Dependency Detection

A useful feature of VM2Docker that greatly reduces the number of packages installed

and increases Dockerfile readability is its ability to reduce the number of packages

listed to be installed within a given Dockerfile without affecting correctness.

Many packages installed on a given OS are never directly installed. Instead, they

are installed as a result of satisfying a dependency for another package. In other

words, even if explicit instructions to install these packages are not given, the end

result is the same. VM2Docker takes advantage of this observation and the resulting

improvements are incredibly effective, as shown in the evaluation section in table 5.11.

To accomplish this dependency-safe reduction in packages, we generate a directed

graph of all the packages that will be installed, where there is an edge from A to B

if and only if package A depends on package B. Once generated, the only packages

33

that need to be directly installed are those that have an in-degree of 0 or are a part of

a strongly connected component of size greater than 1. The addition of the strongly

connected component requirement takes into account the possibility of dependency

cycles, in which packages will have an in-degree of greater than 0 but still must be

included in the install list. See figure 4-3 for a visual representation of such a directed

graph.

Figure 4-3: In the example above, packages A-G are pictured. Package X depends
on package Y if and only if there is a directed edge from X to Y . Of those pictured,
packages B, C, and D do not need to be installed because during installation of pack-
age A, the package manager will detect that B and D are uninstalled dependencies,
and that C is recursively a dependency of them. Packages E and F still need to be
included, even though their in-degree is bigger than 0, because they are a strongly
connected component on which no other installed nodes depend. All those packages
that are removed from the list of packages to be installed are pictured with a dashed
line circle, while the packages that can’t be removed are pictured with a solid line
circle.

4.3.3 Diff

The topmost layer of the Docker image consists of all the files needed such that the

entire filesystem is byte-by-byte equivalent to the original VM filesystem. This is

accomplished by calculating a filesystem diff from the existing Docker image, with all

packages installed, to the original VM filesystem. The Dockerfile is given instructions

to inherit from the Docker image completed in the previous step, equipped with all

packages installed, and then to apply the diff to the filesystem, thereby recovering the

34

complete VM filesystem. There are a number of different strategies for computing

this diff, each with its own benefits and drawbacks. We analyzed two in particular:

rsync and rdiffdir, and VM2Docker is fully extensible to support other algorithms

with very little user intervention and a simple subclass.

rsync

rsync is a backup tool used to sync changes to and from a remote server. It can

also be used between directories on the same host. Two rounds of rsync are needed

in order to account for additions and modifications, as well as deletions. The first

round, from Docker image to the VM filesystem, represents all of the changes and

additions that need to be added to the Docker image to get to the VM. The second

round, which we run in reverse, gives us the set of changes and deletions that have

been applied. Cross-referencing these lists, we extract just the deletions and convert

them to a list of the filepaths of the deleted files. We create a tarball of all of the

changes and additions. To build the final Docker image, we expand the tarball and

then iterate through the list and delete each file listed. This yields the filesystem of

the original VM.

rsync has the benefit of being a native C executable that is bundled with almost

every Linux system. The one major drawback is how it handles file modifications.

Since the diff is represented as a set of files in directories, it has no way of indicating

which components of a file have changed without copying the modified file in its

entirety. This can be especially wasteful if a large file has only a few bytes modified.

While the rsync algorithm is optimal about remote backups in only sending the

changed version of a file and patching it on the other side, running rsync for two

directories on the same host does not have the same sort of optimizations.

rdiffdir

rdiffdir is a tool based on rdiff but that can be used for directories as well. The

rdiff tool is an independent implementation of the rsync algorithm that generates

delta files that can then be used to patch the existing file without the target file

present. For example, if rdiff generates a delta file from A to B. rdiff can use

the delta to patch A and recover file B, even if B is no longer present. The rdiff

35

algorithm uses a fixed size window to generate rolling hashes of a given file in order

to generate these deltas in an optimal manner.

Use of rdiffdir generally allows for more optimal, smaller diffs to be created,

thereby resulting in more portable Docker build instructions. The one major draw-

back of using rdiffdir is its non-native implementation. As a component of the Du-

plicity framework, rdiffdir is written in Python and therefore has some pre-existing

dependencies. While the generating of the Delta file happens within the VM2Docker

chief environment where dependencies are less important, the patching of the filesys-

tem using the generated delta occurs in the resulting Docker container environment.

If a given VM did not already have it installed, rdiffdir would need to be installed,

the patch applied, and then uninstalled, which is a lot less straightforward than the

expansion of a tarball as seen in the rsync example.

4.3.4 Dockerfiles

The instructions to build a given Docker image are provided in a corresponding Dock-

erfile. Starting from the base image, which we will call DI0, VM2Docker generates a

Dockerfile with a set of instructions that denote how to generate the next layer, given

the current one. Figure 4-4 depicts this progression of Docker images, and how the

Dockerfiles (DF) bridge the gap between them.

0 1 2 3321

Figure 4-4: An example of the Docker image build process and the set of instructions
used to get between images. Starting from the base image, DI0, Docker generates
image DI1 by executing instructions contained in DF1.

Depending on the operating system and the diff algorithm specified, VM2Docker

generates the appropriate commands and inserts them into the Dockerfiles, along

with the auxiliary delta file in the case of DF3. When built, the Docker images are

generated and take the inheritance scheme as pictured in figure 4-4.

36

4.3.5 Verification

With all of these filesystem transformations in place, it is essential to verify that the

Docker image that is built is identical to the original VM in terms of its filesystem.

Since the diff operation is always executed last, the resulting patch should always

restore the final filesystem to be a byte-for-byte identical copy as the original VM

filesystem. Even if the process of installation or uninstalling packages selects the

wrong ones, the worst that can happen is an increase in the size of the diff layer,

which does not affect the correctness of the system.

For completeness, we implement an optional flag that can be enable a verification

tool to be run with the virtual machine conversion. After conversion is complete, it

will build the final Docker images and export them to disk. The resulting Docker

images are identical to the VM if and only if the filesystem diff between the Docker

image filesystem and the original VM filesystem is the empty set.

4.3.6 Additional Space-Reducing Techniques

Certain files in the VM are either unnecessary, or can be regenerated on the fly.

Since Docker containers share their kernel with the host operating system, they dis-

regard any kernel modules that are provided in the container. Thus, we can safely

remove these associated files from the diff in order to save space. Furthermore, the

package repository cache takes up a fair amount of space, and is used only for per-

formance reasons. This can be safely purged from the filesystem without affecting

correctness. For Ubuntu, these files are located at /var/cache/apt/pkgcache.bin

and /var/cache/apt/srcpkgcache.bin and can potentially take up about 100 MB.

4.4 Process Detection

In addition to converting the filesystem to one that may better exploit layering,

another big component of VM2Docker is its ability to automatically configure the

resulting containers in a manner similar to that of the original VM.

37

Unlike VMs which start up an entire operating system, Docker containers are

started by running a specific command in the shell. VM2Docker maps each run-

ning process on a host to a new container. In this paradigm, the command that

runs the container corresponds to the command to start up the given process, and

each VM may potentially map to multiple containers. Although technically feasible,

VM2Docker may not always work with multi-process VMs, depending on the level

and type of interprocess communication occurring between the isolated processes.

Further research into multi-container orchestration is discussed in section 6.2.

The VM2Docker agent, which runs directly on the host with root privileges, can

automatically detect the currently running processes that were kickstarted at startup,

as well as the commands used to start them using ps. Furthermore, we use netstat

to determine which processes are bound to which ports, to be sure to expose the

corresponding ports through Docker. The agent also reads information available in

the proc pseudo-filesystem in order to determine the current working directory and

environment variables of the given process. All of this information is transmitted to

the chief over a socket and is used during the container configuration component of

the conversion process.

Finally, in terms of resource allocation, the VM2Docker agent reads from the

/proc pseudo file-system and parses the information available in meminfo and cpuinfo.

This information is passed over a socket to the VM2Docker chief during conversion

in order to provide the container with the same resource restrictions and allocations

as its corresponding VM.

4.5 Technical Implementation & Specifications

The VM2Docker chief is written as a Python script and is made to communicate with

one or more VM2Docker agents. Each agent is a simple executable, written in C, and

is compiled to the appropriate architecture and OS, depending on the VM. The C

agent sets up a TCP socket through which the chief can communicate via a custom

remote procedure call protocol. This protocol is responsible for transmitting the en-

38

tire filesystem, checking app dependencies, and getting specific runtime information

about the process that will be running within the container. In order to be platform

independent, the VM2Docker chief is bundled with an associated Dockerfile such that

the conversion process happens within Docker container. This allows for all depen-

dencies to be automatically and seamlessly installed. The entire conversion process

is therefore platform agnostic and requires only the Docker environment as well as

a target Docker host and/or registry to store the newly created Docker images and

optionally run them. Thus, VM2Docker makes use of Docker’s ability to run inside of

itself [27]. Prior to making this design decision, an early prototype of VM2Docker in-

stead took as argument the filepath to the root of the VM’s filesystem. This required

a separate VM to be running the same operating system as the VM to be converted,

which proved unwieldy for each additional operating system attempted. Furthermore,

since we had only access to the filesystem, process detection was not possible either.

The current chief and agent design overcomes both of these challenges.

An additional technical challenge was determining the protocol to be used to

respond to remote procedure calls to the agent over the socket. These calls returned

both plain text, as well as raw data in the case of the filesystem transmission, of

arbitrary length back to the chief for processing. To handle the incoming data, we

designed a reusable ring buffer in Python with a seamless interface that provided

methods for reading until a specified single or multi-byte delimiter. The protocol we

chose makes use of the null byte as a delimiter for text. In the case of a file, a header

is sent that specifies the number of bytes to read after the header, while ignoring any

occurrences of the delimiter. This abstraction allowed us to effectively and seamlessly

handle the transmission of data from agent to chief.

4.5.1 Usage

The prototype of VM2Docker is available at https://github.com/ecbtln/vm2docker.

39

https://github.com/ecbtln/vm2docker

Chapter 5

Evaluation

All evaluation was done on a Mid 2012 15 inch MacBook Pro with 2.7 Ghz Intel

Core i7 processor and 16GB of RAM, equipped with a solid state drive (SSD). All

VMs were running on the same host, though VM2Docker makes no such restriction in

practice, as only the IP address of each VM is required. The practical convenience of

running on the same host allowed for a drastic speed improvement when transferring

the entire VM’s filesystem over the socket from agent to chief, as opposed to over a

potentially slower network connection.

In section 5.1 we outline our strategy for evaluating the different aspects of

VM2Docker, and in sections 5.2 and 5.3 we discuss the results of these quantitative

and qualitative measures, respectively.

5.1 Evaluation Strategy

When attempting to evaluate the performance and effectiveness of the VM2Docker

framework, we must first describe the variables of interest and the overall benefits of

the Docker container format. The most explicit benefits, as introduced in chapter 2,

are those related to the performance benefits, as well as portability, of the Docker

format. Since Docker containers are more lightweight than their VM counterparts,

containers are much quicker to startup and have generally less performance overhead

and are more comparable to running directly "native" on the host. As a result of this

40

improved performance, hosts can also support a higher density of running containers

as compared to the corresponding virtual machines.These benefits are universal to the

Docker framework and are not in any way affected by the specifics of the VM2Docker

framework. Therefore, we acknowledge that these benefits are essential and must

be considered when deciding whether to use virtual machines or Docker containers,

but that they will not be directly quantified when evaluating the effectiveness and

performance of the VM2Docker system as a whole.

One of the other major benefits of the Docker framework is a consequence of

its unique, layered filesystem. When containers are built, stored, and deployed, the

Docker Engine makes aggressive use of caching of previous layers in order to improve

build and deployment time. For example, if a Dockerfile used to generate a Docker

image has already been built and is then modified by the addition of one more com-

mand at the end of the file, the Docker Engine will not need to rebuild the entire

Docker image from scratch. Instead, it will automatically recognize that all layers

up to the last one have already been built (and cached), and it can quickly generate

a new image just by layering one command on top of the already existing Docker

image. In addition to build time, deployment time and storage space can also be

greatly improved by the automatic layering provided by VM2Docker. As mentioned

in section 3.1, without VM2Docker, the only automatic method of converting a VM

to the Docker format is one huge layer, in its entirety, using the Docker import tool.

Every time this container is deployed, the contents of the entire filesystem must be

transmitted over the network from the Docker registry to the host wishing to run

the container. This gets especially wasteful when multiple containers, imported from

VMs, need to be deployed. Even if they are identical except for perhaps a few pack-

ages or other files that have been changed, the entire VM must be transmitted over

the network to be deployed, and the additional Docker image takes up an identical

additional amount of space as the original VM.

As the number of layers and the sharing of these layers increase across multiple

VMs, Docker has the ability to improve deployment time, by transmitting only the

necessary layers, and overall space usage. This is the primary quantitative metric by

41

which we evaluate the VM2Docker system across multiple releases of three different

operating systems: Ubuntu, CentOS, and Mageia. We first focus on the conversion

of a single VM and analyze the relative size of each layer in the resulting Docker

image, with and without package detection. We look at the results of using the

two aforementioned diff strategies (rsync and rdiffdir). Then, we expand the set

of inputs to multiple virtual machines at a time, with varying amounts of filesystem

contents in common across many different layers in order to analyze the space savings

as a function of N , the number of virtual machines.

Additionally, we briefly discuss the benefits of minimizing the complexity of each

Dockerfile as a function of the number of packages included for a given install in-

struction. As mentioned in section 4.3.2, we present the results of the application of

dependency detection on minimizing the length of a given package install list without

affecting the resulting built Docker image.

We also spend some time qualitatively describing the process of making use of

VM2Docker for these three distinct operating systems and their respective package

management tools.

Finally, although we focus on the filesystem layer sizes that VM2Docker produces,

we also briefly mention the time required to successfully convert and deploy a set of

VMs to their Docker counterparts. These absolute numbers are less essential because

the conversion must only proceed once. However, we still spend some time describing

certain factors that may affect the conversion time, such as network throughput, hard

drive speed, and the number of packages installed.

5.2 Quantitative Results

In the following section, we evaluate the quantitative results of the VM2Docker frame-

work. Primarily, we focus on disk usage and the relative sizes of various different layers

that VM2Docker creates. Next, we touch on the ability for VM2Docker to make use

of dependency detection to cull the list of packages required to recover the original

VM, in its entirety.

42

5.2.1 Disk Usage

The primary innovation of VM2Docker is the means by which it generates reusable,

stackable layers that are automatically employed by Docker to minimize space usage

on a given host. Overall, the goal of layering is to allow a host to save space by

keeping one copy of an entire sequence of images, no matter how many unique Docker

images inherit from the same parent. Within this context, VM2Docker targets virtual

machines that are running the same operating system and release and potentially

share a lot of packages in common. VM2Docker automatically layers the virtual

machines provided so that the Docker engine is able to optimally store only one copy

of the common layers, regardless of how many unique Docker images (converted from

virtual machines) may inherit.

Figure 5-1 shows an example of the four basic layers we try to create for every

virtual machine (DI0 through DI3), where two of the four are shared among all vir-

tual machines of the same operating system and release. The major pieces of state

that are provided as input are the N virtual machines (VMs) and their correspond-

ing M unique releases of operating systems (OSs). The outputs of the VM2Docker

framework are the diamonds, DI0, DI1, DI2, and DI3, which correspond to the base

image, the common packages layer, the unique packages layer, and the additional files

layer, respectively.

Descriptions of State

VM

The VMs are the inputs provided to the library. They are fully functioning virtual

machines with as many or as few packages and additional files installed as needed.

They must be running a Linux-based operating system with kernel version � 3.8. Any

OS beyond that is theoretically supported; however, VM2Docker has been only tested

to work with Ubuntu, CentOS, and Mageia. Support for additional OSs is achieved

by subclassing the appropriate base class and overriding a small set of OS-specific

commands and parameters.

43

OS

Each OS is an operating system and specific release that corresponds to the set of

VMs provided as input. Therefore M N . If all VMs provided as input are of

the same operating system and release, then M = 1. Ubuntu, CentOS, and Mageia

were specifically chosen because the publicly accessible "Docker Hub" has base images

available for many of the major releases of these operating systems.

Base Images

Base images are watered-down versions of a given release of an operating system and

range in size between 100 and 200 MB. They do not contain any kernel libraries.

They are represented by DI0 in the diagram

Common Packages

The next layer, DI1, consists of a given base image with the set of packages installed

that are common to all VMs of a given operating system release in the set of VMs

provided as input.

Unique Packages

The next layer, DI2, consists of the installation of additional packages, on top of the

common packages, that are not in the intersection of software for a given operating

system release.

Additional Files

The final step in the conversion of files is performing a filesystem diff from the previous

layer, DI2 to the original VM. The files that are contained in this diff represent DI3.

44

1

2

N

1

2

M

0,1 0,M

1,M

0,M

1,1

1

1 1

1

2

22

2

2,1

3,1 3,1

2,1 2,M

3,M 3,M

Inputs

Figure 5-1: The following diagram illustrates an overview of the system and how the
VM2Docker framework interacts with the virtual machines provided as input and
converts them to corresponding, layered, Docker containers. The rounded squares
represent the input virtual machines, the circles correspond to immutable programs
that interact with the inputs or outputs in some way, and the rounded diamonds
represent the resulting Docker images. Each image consists of a series of layers,
which is illustrated by starting at the given image and traversing the links backwards
to the base image (DI0). The final images, equal to the original VM filesystem, are
represented by the shaded diamonds (DI3). The number of these is exactly equal to
N, the original number of VMs to be converted.

Single VM Conversions

For the following set of experiments, we will assume that N = 1 in the following

diagram. By extension, this also implies that M = 1. In practice, this reduces the

effectiveness and utility of the system as a whole. As we will see, there is a tradeoff

between increased layering and increased aggregate image size. VM2Docker generally

favors the former at the expense of the latter, but the benefits of the former are

not fully realized without multiple virtual machines present. As a result, converting

45

a single virtual machine, while supported, is less optimal and is done purely as a

theoretical analysis of the relative size of layers that VM2Docker can produce for a

wide range of inputs.

We start by analyzing the results of running a single, vanilla install of a Linux

operating system through VM2Docker with package management disabled. These

virtual machine installers were obtained through the respective software websites are

available for public download. With package management disabled, the view of layers

produced for a given virtual machine is collapsed to DI0 and DI3. There is also a

Dockerfile, which we will denote DF , that provides the instructions and additional

data to the Docker engine of how to build DI3 from DI0. While the total size of

DI3 is by definition the same regardless of which diff algorithm is used, as we will

see, the size of the delta file and therefore DF can vary. Thus, the size of DF and

DI3 are therefore important metrics in determining the speed of deployment and disk

space required while running, respectively. We assume for the sake of consistency,

that all sizes are provided, uncompressed. In practicality, the Docker engine likely

automatically makes use of compression on both sides of a given download of an

image. We therefore leave that topic as one beyond the scope of this paper and

simply acknowledge this omission.

We use the term, bare VM, to denote a virtual machine, not including kernel

files and other cache files that may be removed, as mentioned in section 4.3.6. This

exclusion allows us to focus on benefits and drawbacks of our layering strategy without

confounding the results of the strict benefits of excluding the kernel files, which would

not be used inside of the Docker framework.

Tables 5.1, 5.2, and 5.3 show the results of these conversions. As we see, rdiffdir

generally provides a slightly more compact delta file as compared to the rsync alter-

native. However, due to the dependencies of the rdiffdir package itself, as discussed

in section 4.3.3, the rsync algorithm is generally simpler and more straightforward to

analyze. Furthermore, the byte representation of the the rsync diff file (a tarball of

changes and modifications) maps directly to the size of DI3, so it is simpler to use

these interchangeably in our discussion.

46

In many cases, the aggregate size of all layers is no smaller than the original bare

VM size. Overall, as introduce more and more layers from package management, the

size of DI3 decreases. This implies that some increase in the size of DI0+DI1+DI2,

x, results in a decrease in the size of DI3, y, where |x| � |y|. These results are an

example of the size to layering tradeoff mentioned at the beginning of this subsection.

To better quantify this tradeoff, we introduce two important quantities that will be

used throughout the evaluation process.

First, we introduce a measure of the total space used in all layers up to and

including layer i. This metric, �i, is defined as:

�i =
iX

j=0

DIj (5.1)

Throughout our discussion of single VM conversions without package manage-

ment, �1 is the only additional value of interest, since DI2 = DI3 = 0 so �1 = �2 =

�3. When we incorporate package management, DI2 6= 0 and then with multiple

VM conversions DI3 6= 0. These values will help quantify the fixed cost of increased

layering at different locations in the inheritance tree for the first such VM to be

converted.

We also define a metric, ⌅, as the minimum whole number of VMs needed in

order to achieve the goal of aggregate space savings. As we will see, ⌅ increases as

we add more aggressive package management detection, but this also decreases DI3,

which can be thought of as the marginal cost of an additional VM of the particular

OS and release. Theoretically, ⌅ can be defined at multiple layers of the inheritance

tree, depending on which packages certain VMs share in common. For example, two

VMs may share the same OS and release, and some but not all of the same packages

installed. In this case, they would share DI0 and DI1 in common. In other cases,

certain VMs might only differ in their filesystem composition, and could therefore

share up to DI2 in common. Thus, we consider ⌅i as the minimum whole number of

VMs needed to achieve the goal of aggregate space savings, where the VMs share up

to layer i in common. This value can be attained by solving the following inequality

47

for the smallest possible whole number value, ⌅i.

In the equations below, we define � as the size of the Bare VM.

�i + (�3 � �i) ⇤ ⌅i ⌅i ⇤ � (5.2)

However, for simplicity, we consider only this value when all packages are shared in

common, and the DI3 layer is different. Therefore, formally, ⌅ = ⌅2 can be simplified

to the following:

�i + (�3 � �i) ⇤ ⌅i ⌅i ⇤ �

�2 + (�3 � �2) ⇤ ⌅2 ⌅2 ⇤ �

�2 + (DI3) ⇤ ⌅ ⌅ ⇤ �

⌅ � �2

� �DI3

⌅ =

⇠
�2

� �DI3

⇡

In the results, the layering tradeoff is very minimal while making use of only

filesystem diffs. With ⌅ = 2 for all OS releases tested, we see that the presence of

even a single additional container image of the same OS and release ensures that the

layering strategy introduced by Docker not only breaks up the VM into more logical,

deployable components but also saves space in the process.

Ubuntu Server
Release 12.04 13.04 13.10 14.04 14.10

Bare VM (�) 1023.5 774.1 1055.2 1109.9 1029.9
Base Image (DI0) 99.1 160.4 174.6 192.0 196.9

rsync 956.7 730.9 963.6 1008.9 876.4
rdiff 934.4 738.2 957.3 971.2 872.5
⌅ 2 2 2 2 2

Table 5.1: The results of running VM2Docker with a single VM input and various
releases of Ubuntu. The rdiff algorithm generall provides slightly smaller delta files.
For all inputs, ⌅ = 2 and therefore space savings begin to occur on the second instance
of a given OS release.

48

CentOS Minimal
Release 5* 6 7

Bare VM (�) 2441.5 618.2 779.4
Base Image (DI0) 496.0 236.1 243.1

rsync 2190.0 450.1 601.8
rdiff 2138.7 416.7 519.4
⌅ 2 2 2

Table 5.2: The results of running VM2Docker with a single VM input and various
releases of CentOS. The rdiff algorithm generall provides slightly smaller delta files.
For all inputs, ⌅ = 2 and therefore space savings begin to occur on the second instance
of a given OS release.

Mageia
Release 3 4*

Bare VM (�) 636.1 2706.1
Base Image (DI0) 160.4 174.1

rsync 525.1 2575.4
rdiff 511.0 2613.0
⌅ 2 2

Table 5.3: The results of running VM2Docker with a single VM input and various
releases of Mageia. The rdiff algorithm generall provides slightly smaller delta files.
For all inputs, ⌅ = 2 and therefore space savings begin to occur on the second instance
of a given OS release. The * denotes that VM2Docker was run on the fullly featured
release of this OS with all default packages installed, which explains the increase in
overall size of the input VM.

We next continue the analysis of these basic, vanilla linux VMs by enabling the

use of package management. We therefore now also consider the size of an additional

layer, DI1, in our discussion. For simplicity, we assume we are only using rsync as

our preferred method of filesystem diff, and label this DI3.

As shown in tables 5.4 and 5.5, when package management is enabled in VM2Docker

we observe a few important trends. First, the size of DI3 decreases as a result of the

existence of DI1. This makes sense and is expected because the package management

logic allows for some of the filesystem space occupied by packages that was formerly

stored in the filesystem diff to be extracted downwards into DI1. A consequence of

this is that the total size of all layers, �3, also increases. However, overall this tradeoff

is considered acceptable and preferred because ⌅ remains fixed at 2 and the overall

49

layering and therefore deployability of each container increases.

When analyzing the overall results of these base case experiments and the layering

results of converting a single virtual machine at a time, we take a step back and

consider the efficiency of these outcomes. An optimal conversion would be one such

that the size of DI3 is as close to 0 as possible. This would imply that the package

extraction and reinstallation process is 100% effective and is able to fully account for

all or almost all files within a VM. The implications of such a container would be that

the vanilla VMs would be fully "Dockerized." In practice, however, the size of DI3

is far from zero, although the resulting sizes are still greatly reduced from the size of

the original bare VM. There are a few practical limitations of the package detection

and reinstallation process that can account for these results. Due to the automatic

detection of packages and reinstallation on top of DI0 with auto-generated commands,

it is likely that some, but not all, of the packages that are reinstalled are not identical

byte-for-byte versions of the original packages that were installed on the VM. This

can be due to a difference in version number, release, or some other subtle difference

in the installation process. This would result in some or all of a given package to still

exist in the “additional files" component of DI3. There is also a host of software and

files that can’t necessarily be reinstalled from the default package management tool

for the given OS. Cache files, too, can sometimes account for 50-100 MB of files in

the original VM.

This point of comparison is used to quantify the percentage reduction in the

marginal cost of deploying an additional VM, before and after the VM2Docker frame-

work has performed the automatic layering. In tables 5.4 and 5.5, this value is repre-

sented by the symbol � and is shown to range from 15.8 to 56.5.

Multiple VM Conversions

For the following set of experiments, we will assume that M = 1 in figure 5-1. This

will greatly reduce the number of experiments to be run as well as simplify the

understanding of the system diagram in each case. Each distinct operating system

does not share any resulting image layers in common because the first layer, the base

50

Ubuntu Server
Release 12.04 13.10 14.04 14.10

Bare VM (�) 1023.5 1055.2 1109.9 1029.9
DI0 99.1 174.6 192.0 196.9
DI1 227.3 273.7 194.9 271.7
DI3 862.2 733.7 894.8 687.6
� 15.8 30.5 19.4 33.2
�3 1188.6 1182.0 1281.7 1156.2
⌅ 2 2 2 2

Table 5.4: The results of running VM2Docker with a single VM input and various
releases of Ubuntu. As the overall layering increases, the size of DI3 decreases, which
results in a increasing % overall reduction, � in the marginal cost of deploying a given
VM. For all inputs, ⌅ = 2 and therefore space savings begin to occur on the second
instance of a given OS release.

CentOS Mageia
Release 6 7 3

Bare VM (�) 618.2 779.4 636.1
DI0 236.1 243.1 160.4
DI1 244.0 417.1 544.2
DI3 380.5 339.9 465.9
� 38.5 56.5 26.8
�3 860.6 1000.1 1170.5
⌅ 2 2 2

Table 5.5: The results of running VM2Docker with a single VM input and various
releases of CentOS and Mageia. As the overall layering increases, the size of DI3

decreases, which results in a increasing % overall reduction, � in the marginal cost
of deploying a given VM. For all inputs, ⌅ = 2 and therefore space savings begin to
occur on the second instance of a given OS release.

image (DI0), is OS and release-specific. Thus, restricting our set of inputs such that

all VMs share the same OS and release (M = 1) does not drastically alter the results

and instead represents a narrowing of scope to a single tree of image layers, pictured

on the right in figure 5-1. The results for M > 1 can be therefore obtained by merging

the results from a set of M independent experiments each of which M = 1.

We therefore seek to analyze various combinations of VM inputs of a given OS and

release, each with different package and file compositions. These results will provide

material support for the theoretical calculations done in the previous section. In all

experiments so far, it was determined that only a second additional VM was needed

51

in order to establish total space savings as compared to not using the VM2Docker

system at all. Thus, these multiple VM experiments, for simplicity, will only have

2 or 3 total VMs provided as input, but we argue that the scenarios chosen are

highly representative of the types of combinations and subsets of VMs VM2Docker

might need to handle. Furthermore, as the number of VMs of a given OS and release

increases, the overall space savings will increase, as argued in the previous section.

It is challenging to describe what might be an "average" looking input to this

system because one could use a virtual machine to do a wide range of computing.

Nonetheless, there are many real-world practical use cases where VM2Docker might

be particularly effective. The class of VMs that are used as servers in a simple client-

server interaction are one example of such inputs. A given VM might be running a

webserver, database, mail server, or other server-based daemon and might represent

one such input to the VM2Docker system.

We have designed a total of five experiments with various characteristics and

combinations of input VMs in order to highlight strengths and weaknesses of the

overall algorithm and framework. For each scenario, we begin by describing how we

expect VM2Docker to handle these inputs in terms of the expected size of the outputs.

These experiment descriptions will be OS-agnostic. We next present the results of

running this experiment for specific releases of multiple OS’s (Ubuntu, CentOS, and

Mageia).

1. Scenario A

Input :

V M1: Minimal OS, ⇠ 1GB — V M2: OS Complete Install, ⇠ 2-3GB

The difference between these two VMs is additional packages and repositories

that are provided in the complete install. The second VM will contains all of

the packages on the first VM, as well as a few gigabytes of additional software.

Expected Output :

With two VMs provided as input, they will each share the same base image

52

DI0 for the given OS release. The next layer, DI1, will also be common to

the two containers and will contain all the packages common to the two VMs.

At this point, the inheritance tree will split into two, one branch for each of

the two provided inputs. DI1 will be exactly the same size as the original DI1

from the single VM experiments. DI

1
2 will be an empty layer that occupies no

space, because there are no packages in VM1 that are not also in VM2. DI

2
2

will take up a few GB as it will be where all of the packages unique to VM2

are located. Finally, DI

1
3 will be the same size as its corresponding layer in

the original experiments and DI

1
3 we can expect to be larger as it will contain

the remainder of the packages and their associated files not also installed in the

previous layer.

Release Ubuntu 13.10 CentOS 6 Mageia 3
V M1 1055.2 618.2 636.1
V M2 3232.4 2051.1 1669.4
DI1 273.7 244.0 544.2
DI1

2 0 0 0
DI2

2 2092.1 490.8 898.1
DI1

3 733.7 380.5 465.9
DI2

3 1646.1 1541.9 1225.3

Table 5.6: The results of running the multi VM scenario A with M=1. All values are
in MB.

2. Scenario B

Input :

V M1: Minimal OS, ⇠ 1GB — V M2: Minimal OS + 300MB additional files,

⇠ 1GB

Expected Output :

The only differences between these two VMs comes in the addition of 300MB

of files that can’t be categorized into packages. This will result in an increase

in DI

2
3 of the size of the additional files that were added to the VM. All other

values should be the same as those in the single VM experiments.

53

Release Ubuntu 13.10 CentOS 6 Mageia 3
V M1 1055.2 618.2 636.1
V M2 1355.2 918.2 936.1
DI1 273.7 244.0 544.2
DI1

2 0 0 0
DI2

2 0 0 0
DI1

3 733.7 380.5 465.9
DI2

3 1033.7 680.5 765.9

Table 5.7: The results of running the multi VM scenario B with M=1. All values are
in MB.

3. Scenario C

Input :

V M1: Minimal OS, ⇠ 1GB — V M2: Minimal OS + 300MB additional files,

⇠ 1GB —V M3: OS Complete Install, ⇠ 2-3GB

Expected Output :

These results should be a combination of the two previous two experiments,

with the sizes remaining the same as if the experiments were run separately.

Release Ubuntu 13.10 CentOS 6 Mageia 3
V M1 1055.2 618.2 636.1
V M2 1355.2 918.2 936.1
V M3 3232.4 2051.1 1669.4
DI1 273.7 244.0 544.2
DI1

2 0 0 0
DI2

2 0 0 0
DI3

2 2092.1 490.8 898.1
DI1

3 733.7 380.5 465.9
DI2

3 1033.7 680.5 765.9
DI3

3 1646.1 1541.9 1225.3

Table 5.8: The results of running the multi VM scenario C with M=1. All values are
in MB.

4. Scenario D

Input :

V M1: Minimal OS, ⇠ 1GB — V M2: OS Complete Install + 300MB addi-

54

tional files, ⇠ 2-3GB —V M3: OS Complete Install, ⇠ 2-3GB

Expected Output :

These results should be similar in practice to the previous experiment as well.

An interesting feature of VM2Docker will be exposed here as well. Since DI

2
2

and DI

3
2 are the same, they will be only represented once on disk by the same

image. This is thanks to an implicit feature of Docker. Since VM2Docker gen-

erates Dockerfiles, which are instructions to generate the image, the Dockerfiles

for DI

2
2 and DI

3
2 will be the same (the commands are the same and they are

installing the same packages). VM2Docker sorts the list of packages being in-

stalled alphabetically to ensure that the command in the Dockerfile is the same

on subsequent runs.

Release Ubuntu 13.10 CentOS 6 Mageia 3
V M1 1055.2 618.2 636.1
V M2 3532.4 2351.1 1969.4
V M3 3232.4 2051.1 1669.4
DI1 273.7 244.0 544.1
DI1

2 0 0 0
DI2

2 2092.1 490.8 898.1
DI3

2 2092.1 490.8 898.1
DI1

3 733.7 380.5 465.9
DI2

3 1946.1 1841.9 1525.3
DI3

3 1646.1 1541.9 1225.3

Table 5.9: The results of running the multi VM scenario D with M=1. All values are
in MB.

5. Scenario E

Input :

V M1: Minimal OS, ⇠ 1GB — V M2: OS Complete Install, ⇠ 2-3GB —V M3:

OS Complete Install + Ruby, ⇠ 2-3GB

Expected Output :

55

These results will be the same as in the previous experiment, except that DI

2
2

and DI

3
2 will no longer occupy the same space on disk and will be two distinct

images. The Ruby package itself is no more than 10-20MB, the end result will

be more than 2GB additional space used on disk. This reveals a shortcoming

of VM2Docker in its inability to execute multiple rounds of finding packages in

common between multiple VMs. This will be addressed further in the discussion

and future work section.

Release Ubuntu 13.10 CentOS 6 Mageia 3
V M1 1055.2 618.2 636.1
V M2 3232.4 2051.1 1669.4
V M3 3245.4 2063.8 1680.2
DI1 273.7 244.0 544.2
DI1

2 0 0 ??
DI2

2 2092.1 490.8 898.1
DI3

2 2104.9 502.1 909.3
DI1

3 733.7 380.5 465.9
DI2

3 1646.1 1541.9 1225.3
DI3

3 1647.3 1542.3 1225.8

Table 5.10: The results of running the multi VM scenario E with M=1. All values
are in MB.

Overall, VM2Docker performs as expected when combining the single VM exper-

iments with various combinations of VMs from the same OS and release. Of interest

is the ability with which each of the given operating system’s reinstallation process

effectively reduces the size of DI3. Relative to the size of the original VM, it seems as

if CentOS 6 had the smallest DI2 layer, while still being able to reduce the size of DI3.

Furthermore, Ubuntu 13.10 seems to have the largest reduction from original bare

VM size to DI3, but DI2 is also the largest for this OS, so it comes at a fixed cost.

Of course, this fixed cost is made up for after the second VM is converted, as is the

case in scenario D. Thus, as a whole we argue that these experimental results support

the argument that the introduction of automatic layering by base image, packages,

and filesystem diff and serves to reduce the overall space used by the containers as

compared to the original VMs, as long as ⌅ � 2.

56

5.2.2 Dependency Detection

We now present the experimental results of applying the dependency detection algo-

rithm mentioned in section 4.3.2. The results are even better than expected, as shown

in table 5.11, suggesting that a relatively high percentage of the packages installed for

a given OS and release are actually dependencies of others. During the installation

process, most package management tools will automatically resolve the dependencies

of a desired piece of software, therefore enabling the removal of these dependencies

from the list of software to be installed in a given Dockerfile. Overall, simplicity

and readability of a Dockerfile is always beneficial, as it allows for more transparent

exposure of the steps involved in the build process of a given Docker image.

Ubuntu Server CentOS Mageia
Release 12.04 13.04 13.10 14.04 14.10 6 7 3
Before 205 226 248 183 245 78 165 311
After 67 129 147 109 144 54 67 46

% Saved 67.3 42.9 40.7 40.4 41.2 30.8 59.4 85.2

Table 5.11: The results show a fairly aggressive reduction of packages required to be
listed across many different operating systems and releases. Of the original packages
to be installed, as many as 85.2% and as few as 30.8% can be removed without
affecting the overall set of packages.

5.3 Qualitative Results

5.3.1 OS Compatibility

VM2Docker is written with the intent of supporting all potential operating systems

a given VM might be running. OS-specific implementation details are largely limited

to the package management features provided by VM2Docker to increase the number

of generated layers. Each OS uses a particular package management tool, with its

own command signature and behavior. VM2Docker must be capable of generating

instructions to install and uninstall packages for the given OS. Furthermore, to sup-

port the culling of packages and the automatic dependency detection, each OS must

be capable of dynamically determining the dependencies for a given package.

57

As a result, the following four commands must be provided for each additional

package management tool that requires support.

1. Get list of installed packages

2. Install the given packages

3. Uninstall the given packages

4. Get the dependencies for a given package

We now discuss how these commands were implemented for the various operating

systems tested.

Ubuntu

Ubuntu uses dpkg and apt-get as its package management tool. The following

commands were therefore defined in order to provide support for Ubuntu:

1. dpkg –get-selections

2. apt-get install %s

3. apt-get remove %s

4. apt-cache depends %s | grep “Depends:”

CentOS

CentOS uses the yum package manager as its package management tool. The following

commands were therefore defined in order to provide support for CentOS.

1. rpm -qa –queryformat ‘%{NAME}\n’

2. yum -y install %s

3. yum -y erase %s

4. repoquery –requires –resolve %s –qf %{NAME}

58

Additionally, as of CentOS 7, there is a built-in firewall in the OS that interferes

with the VM2Docker agent and its ability to accept socket connections from external

clients (the chief). For this particular build of Linux, the firewall is managed by the

firewall-cmd command, and therefore an exception was required to be granted over

TCP for the appropriate port (by default 49153).

Mageia

Mageia uses the urpmi package manager as its package management tool. The fol-

lowing commands were therefore defined in order to provide support for Mageia in

VM2Docker.

1. rpm -qa –queryformat ‘%{NAME}\n’

2. urpmi –auto %s

3. urpme %s

4. urpmq -d %s

Additionally, similar to CentOS 7, Mageia provides a firewall, called Shorewall,

that is enabled by default and prevents the VM2Docker agent to accept socket connec-

tions from external clients (the chief). For this particular build of Linux, the firewall

is managed by the iptables command, and therefore an exception was required to

be granted over TCP for the appropriate port (by default 49153).

As a whole, VM2Docker attempts to provide seamless and simplified support

for any Linux-based operating system. While many components of the conversion

process are OS-agnostic, such as the Docker-based host initiating the conversion, the

overall filesystem benefits of detecting package dependencies outweigh the costs of

supporting a wide range of package management tools. The 3-4 commands that must

be provided for full package management support are, in our opinion, a minimal one-

time configuration cost in order to harness the full-layering benefits of the VM2Docker

conversion process.

59

5.3.2 Conversion Time

There are a number of different factors that can drastically impact the overall conver-

sion time of the virtual machines provided as input. In particular, as the number of in-

put VMs increases, the overall time increases proportionally as each VM is processed,

one at a time, after the package intersection step. Another important determinant of

conversion time is the time the hard drive is in use when calculating and applying the

filesystem diff. Solid state drives provide an incredible performance improvement over

a spinning disk hard drive during the filesystem diff generation process. In practice,

the diff operation was slowed down by almost an entire order of magnitude on a hard

disk as compared to an SSD. In addition to hard drive speed, network speed also be-

comes a non-negligible factor in the overall conversion time. Since the contents of the

entire filesystem of a given VM are compressed and sent through a TCP socket from

the agent to the host initiating the conversion, the throughput on the network plays

an important role in the overall conversion process. Finally, since a component of the

installation process involves the reinstallation of detected packages within a Docker

container, the installation process ends up being a fairly significant component of the

overall conversion time. Different sets of packages, OS’s, internet download speeds, or

some combination of all three have the ability to alter the overall conversion time. In

practice, the conversion of the default Ubuntu 14.04 server, for example, takes about

10 minutes when the VM, VM2Docker chief, and target registry are all co-located on

the same host. while connected to the MIT network, with the package reinstallation

taking approximately half of the total amount of time.

60

Chapter 6

Conclusion

In this chapter, we wrap up by discussing VM2Docker’s overall contribution to the

field. We then discuss future enhancements and additions to our work.

6.1 Contribution

This thesis presents a novel area of research in an otherwise extremely popular and

burgeoning research area and industry: container technology. With very few existing

tools out to convert a given virtual machine to a layered Docker container, we argue

that VM2Docker is unique and unprecedented in its approach.

Our design decision of separating the logic of the host initiating the conversion,

the chief, and those being converted, the agents, represents an effective and successful

approach to the challenges outlined in the original proposal. The manner in which

the chief achieves platform independence by executing the conversion within a Docker

container is an innovative use of the very technology we wish to extend.

The evaluation of our system reveals promising quantitative and qualitative results

for VM2Docker. We tested VM2Docker on various releases of three major Linux

operating systems: Ubuntu, CentOS, and Mageia. We executed both tests that had

a single virtual machine as input, as well as those that had many virtual machines

as input. The single VM tests showed the breakdown of sizes for each of the four

layers DI0 - DI3 for all OSs and releases provided as input. Generally, we saw an

61

overall decrease in the marginal cost of VM deployment DI3, as the number of layers

increased. Overall space savings were always realized after the second VM (⌅ = 2).

In the multi VM tests, we analyzed the behavior and effectiveness of VM2Docker

under five scenarios and found expected behavior and space savings, as predicted

by the single VM experiments. In terms of OS compatibility, each was capable of

being supported by VM2Docker with the definition of only four simple commands

that are specific to the OS’s package management tool. We believe this is a very

minimal and acceptable set-up cost needed to achieve all of the layering benefits of

VM2Docker conversion process and the subsequent deployment optimizations and

space improvements.

6.2 Future Work

Despite the successes of VM2Docker, there are a number of avenues of further research

that could greatly enhance the overall conversion process.

6.2.1 Multi-Container Orchestration

In its current form, VM2Docker targets the conversion from one virtual machine to

one Docker container. However, this approach may be fundamentally flawed because

Docker containers are generally centered around running a single application, while

virtual machines have the ability to run multiple applications at once. While contain-

ers can support as many processes and applications as needed, the generally accepted

design pattern has been to separate each application into its own container and link

the two containers in some way depending on their level of interaction. This would

then require a container orchestration tool to handle the configuration of these links.

Before we began work on this thesis, there existed only third-party orchestration

tools each with their own benefits and drawbacks. Since then, Docker has announced

their own native tool, called Docker Compose, which provides a simple way of creating

a single YAML configuration file with the desired parameters that link up two or more

containers [21].

62

In the future, the ability to map a single VM to multiple containers orchestrated

through Docker Compose would be an invaluable addition to the VM2Docker frame-

work. Furthermore, each of these containers would share all or most of the same

layers in the filesystem, thereby taking up very little additional space.

6.2.2 Socket Security

The security of VM2Docker was completely disregarded in the generation of this

prototype. When the agent is run on a host, a socket is opened up for listening.

Any malicious user with access to the host’s IP address may connect to this socket

and arbitrarily execute any of the given remote procedure calls, thereby having full

read access to the host’s filesystem. In the future, a key-based solution should be

used to only allow connections from trusted sources. Specifically, before building the

executable agent, it could be signed by the chief. This would ensure that subsequent

connections would only be allowed by the host that signed the executable.

6.2.3 Diff Alternatives

For simplicity, we focused on using rsync as the primary means of generating a

filesystem diff. We also briefly touched upon rdiffdir because of its ability to

incorporate block-level, instead of file-level changes, into the corresponding delta file.

Both rsync and rdiffdir would be less successful in the case of a large file that

has been moved from one location to another. In this case, each would detect a

deletion, followed by a subsequent addition of a seemingly unrelated file. One way of

solving this issue is to incorporate a hash-based approach to determine any such files

that have been moved but are otherwise unchanged. Likely, this algorithm on its own

would be prohibitively costly in terms of the time it takes to run. Instead a hybrid

rsync and hash-based approach could be used and the file size threshold at which a

given file’s hash is calculated could be tuned accordingly.

An alternative diff algorithm that might be of interest as well is Scarab [22].

Scarab is a C++ library used to patch binary content files and would therefore not

63

suffer the same dependency issues as those with from rdiffdir and python.

6.2.4 More Optimal Layering

A final open-ended area of research concerns the layering algorithm used by VM2Docker.

While the results in chapter 5 were as a whole fairly successful and promising, the

overall size of DI3 for many images suggests that there is still room for improvement.

Specifically, one way of improving the overall layering process is by modifying

the package management logic to incorporate a dynamic number of layers, instead of

being fixed to two. Currently, the first layer, DI1, is always the intersection of the

packages for all VMs of the given OS and release. Thus, as shown in Scenario E of

section 5.2.1, there are examples where VM2Docker would greatly improve the overall

space usage and the efficiency of the layering by recursively applying the package

intersection algorithm across multiple iterations. In scenario E, this occurred with

as few as three input VMs, where the intersection of packages among the three were

small but the remaining two VMs had a significant number of remaining packages in

common (all but one) that VM2Docker did not detect. These commonalities are more

and more likely as the number of input VMs increases. As a result, an algorithm,

either greedy or brute-force, might be generated to determine the optimal order of

package intersections across various input virtual machines and many layers.

Another important observation from these evaluation results was that the package

reinstallation process was never able to perfectly reinstall packages. Although, as a

whole, each intermediate layer served to reduce the marginal cost of an additional

VM deployment, (� > 0), this sometimes came at the cost of increases in the total

size of all the layers, as compared to the original bare VM. While this cost was always

offset after the second instance of a given VM (⌅ = 2), further research could be done

to determine if there is a more optimal way of package reinstallation that minimizes

this tradeoff.

Overall, however, we are satisfied with the package installation process as a whole.

In addition to providing layering between common components of different VMs, each

of our Docker images retain the qualitative feature of being generated from a basic

64

and readable sequence of commands laid out in the Dockerfile. This transparency

allows for any third-party user to verify the authenticity and safety of a given Docker

image before building, as is the motivation behind Docker’s “trusted builds" [23].

65

Bibliography

[1] “Docker CTO: Why Microsoft’s Docker plans for Windows will matter to you,"
October 28, 2014. Available:
http://www.zdnet.com/docker-cto-why-microsofts-docker-plans-for-
windows-will-matter-to-you-7000035150/. ‘

[2] “PaaS under the hood, episode 1: kernel namespaces," November 28, 2012.
Available: http://blog.dotcloud.com/under-the-hood-Linux-kernels-
on-dotcloud-part.

[3] “Docker Hub Registry," [Online]. Available:
https://registry.hub.docker.com.

[4] “Docker Registry," 2014. [Online]. Available:
https://github.com/docker/docker-registry.

[5] “Creating a Base Image," 2014. [Online]. Available:
https://docs.docker.com/articles/baseimages/.

[6] “Docker: The first true devops tool?" 2014. [Online]. Available:
http://www.infoworld.com/article/2608674/application-development/
application-development-docker-the-first-true-devops-tool.html.

[7] “AWS doubles down on Docker technology, launches EC2 container service,"
2014. [Online]. Available: http://www.zdnet.com/article/aws-doubles-
down-on-docker-technology-launches-ec2-container-service/.

[8] “VMware + Containers = Containers without Compromise," 2014. [Online].
Available: http://blogs.vmware.com/cto/vmware-containers-containers-
without-compromise/.

[9] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. F.
De Rose, “Performance Evaluation of Container-based Virtualization for High
Performance Computing Environments," 2013. [Online]. Available:
http://marceloneves.org/papers/pdp2013-containers.pdf.

66

http://www.zdnet.com/docker-cto-why-microsofts-docker-plans-for-windows-will-matter-to-you-7000035150/
http://www.zdnet.com/docker-cto-why-microsofts-docker-plans-for-windows-will-matter-to-you-7000035150/
http://blog.dotcloud.com/under-the-hood-Linux-kernels-on-dotcloud-part
http://blog.dotcloud.com/under-the-hood-Linux-kernels-on-dotcloud-part
https://registry.hub.docker.com
https://github.com/docker/docker-registry
https://docs.docker.com/articles/baseimages/
http://www.infoworld.com/article/2608674/application-development/application-development-docker-the-first-true-devops-tool.html
http://www.infoworld.com/article/2608674/application-development/application-development-docker-the-first-true-devops-tool.html
http://www.zdnet.com/article/aws-doubles-down-on-docker-technology-launches-ec2-container-service/
http://www.zdnet.com/article/aws-doubles-down-on-docker-technology-launches-ec2-container-service/
http://blogs.vmware.com/cto/vmware-containers-containers-without-compromise/
http://blogs.vmware.com/cto/vmware-containers-containers-without-compromise/
http://marceloneves.org/papers/pdp2013-containers.pdf

[10] “VMware vMotion: Virtual Machine Live Migration," [Online]. Available:
http://www.vmware.com/products/vsphere/features/vmotion.

[11] “vSphere Dynamic Resource Scheduler & Distributed Power Management,"
[Online]. Available:
http://www.vmware.com/products/vsphere/features/drs-dpm.

[12] “CRIU," 2014. [Online]. Available: http://criu.org/.

[13] “Flockport Rivals Docker with Open Source Container Virtualization," 2014.
[Online]. Available:
http://thevarguy.com/virtualization-applications-and-technologies/
091614/flockport-rivals-docker-open-source-container-virtualiz.

[14] “CoreOS is building a container runtime, Rocket," 2014. [Online]. Available:
https://coreos.com/blog/rocket/.

[15] “Ubuntu LXD: Not a Docker replacement, a Docker enhancement," 2014.
[Online]. Available: http://www.zdnet.com/article/ubuntu-lxd-not-a-
docker-replacement-a-docker-enhancement/.

[16] “Are Docker Containers Essential To PaaS?" 2014. [Online]. Available:
http://www.informationweek.com/cloud/software-as-a-service/are-
docker-containers-essential-to-paas/a/d-id/1316220

[17] “Converting Virtual Containers, Virtual Machines, and Hardware Nodes to each
other," 2014. [Online]. Available: http://kb.sp.parallels.com/en/6324.

[18] “Parallels to adopt Docker as native app format in Cloud Server," 2014.
[Online]. Available: http://www.theregister.co.uk/2014/12/15/
parallels_to_adopt_docker_as_native_app_format_in_cloud_server/.

[19] “Docker Desktop: Your Desktop Over SSH Running Inside of a Docker
Container," 2013. [Online] Available:
https://blog.docker.com/2013/07/docker-desktop-your-desktop-over-
ssh-running-inside-of-a-docker-container/.

[20] “Debootstrap," [Online]. Available: https://wiki.debian.org/Debootstrap.

[21] “Docker Announces Orchestration for Multi-Container Distributed Apps,"
2014. [Online]. Available: https://blog.docker.com/2014/12/docker-
announces-orchestration-for-multi-container-distributed-apps/.

[22] “Scarab: A system to patch your content files," 2013. [Online]. Available:
https://github.com/loyso/Scarab.

[23] “Introducing Trusted Builds," 2013. [Online]. Available:
https://blog.docker.com/2013/11/introducing-trusted-builds/.

67

http://www.vmware.com/products/vsphere/features/vmotion
http://www.vmware.com/products/vsphere/features/drs-dpm
http://criu.org/
http://thevarguy.com/virtualization-applications-and-technologies/091614/flockport-rivals-docker-open-source-container-virtualiz
http://thevarguy.com/virtualization-applications-and-technologies/091614/flockport-rivals-docker-open-source-container-virtualiz
https://coreos.com/blog/rocket/
http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-replacement-a-docker-enhancement/
http://www.zdnet.com/article/ubuntu-lxd-not-a-docker-replacement-a-docker-enhancement/
http://www.informationweek.com/cloud/software-as-a-service/are-docker-containers-essential-to-paas/a/d-id/1316220
http://www.informationweek.com/cloud/software-as-a-service/are-docker-containers-essential-to-paas/a/d-id/1316220
http://kb.sp.parallels.com/en/6324
http://www.theregister.co.uk/2014/12/15/parallels_to_adopt_docker_as_native_app_format_in_cloud_server/
http://www.theregister.co.uk/2014/12/15/parallels_to_adopt_docker_as_native_app_format_in_cloud_server/
https://blog.docker.com/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-a-docker-container/
https://blog.docker.com/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-a-docker-container/
https://wiki.debian.org/Debootstrap
https://blog.docker.com/2014/12/docker-announces-orchestration-for-multi-container-distributed-apps/
https://blog.docker.com/2014/12/docker-announces-orchestration-for-multi-container-distributed-apps/
https://github.com/loyso/Scarab
https://blog.docker.com/2013/11/introducing-trusted-builds/

[24] “Fig | Fast, isolated development environments using Docker," 2014. [Online].
Available: http://www.fig.sh.

[25] “Kubernetes," 2014. [Online]. Available:
https://github.com/GoogleCloudPlatform/kubernetes.

[26] “Launching Containers with fleet," 2014. [Online]. Available:
http://coreos.com/docs/launching-containers/launching/launching-
containers-fleet/.

[27] “Docker can now run within docker," 2013. [Online]. Available:
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/.

68

http://www.fig.sh
https://github.com/GoogleCloudPlatform/kubernetes
http://coreos.com/docs/launching-containers/launching/launching-containers-fleet/
http://coreos.com/docs/launching-containers/launching/launching-containers-fleet/
https://blog.docker.com/2013/09/docker-can-now-run-within-docker/

	Introduction
	Docker Fundamentals
	System Details
	cgroups
	namespaces
	Another Union FileSystem (AUFS)
	Docker Registry

	Technical Terms
	Dockerfile
	Base Image
	Containers vs. Images

	Use Cases
	Cloud
	DevOps

	Industry Response
	Comparison to Virtual Machines
	Competitors & Alternatives

	Related Work
	Docker import
	Docker commit
	"Dockerization"
	Parallels Virtuozzo Containers (PVC)
	Docker VM

	VM2Docker
	Use Cases
	System Overview
	Chief + Agent

	Filesystem Conversion
	Base Image
	Package Management
	Diff
	Dockerfiles
	Verification
	Additional Space-Reducing Techniques

	Process Detection
	Technical Implementation & Specifications
	Usage

	Evaluation
	Evaluation Strategy
	Quantitative Results
	Disk Usage
	Dependency Detection

	Qualitative Results
	OS Compatibility
	Conversion Time

	Conclusion
	Contribution
	Future Work
	Multi-Container Orchestration
	Socket Security
	Diff Alternatives
	More Optimal Layering

