

CISCO SYSTEMS

Understanding MPLS/VPN Security Issues

Michael Behringer <mbehring@cisco.com>

Agenda

Cisco.com

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures

Internet Access Firewalling Options

- Attacking an MPLS Network
- IPsec and MPLS
- Summary

The Principle: A "Virtual Router"

Virtual Routing and Forwarding Instance

Route Distinguisher: Makes VPN routes unique

ip vrf Customer_A rd 100:110 route-target export 100:1000 route-target import 100:1000

interface Serial0/1 ip vrf forwarding Customer_A Export this VRF with community 100:1000

Import routes from other VRFs with community 100:1000

Assign Interface to "Virtual Router"

General VPN Security Requirements

dilling Cisco.com

Working assumption: The core (PE+P) is secure

Address Space Separation

Cisco.com

Within the MPLS core all addresses are unique due to the Route Distinguisher

Routing Separation

- Each (sub-) interface is assigned to a VRF
- Each VRF has a RD (route distinguisher)
- Routing instance: within one RD
 -> within one VRF
 - -> Routing Separation

Hiding of the MPLS Core Structure

- VRF contains MPLS IPv4 addresses
- Only peering Interface (on PE) exposed (-> CE)!
 -> ACL or unnumbered

Resistance to Attacks: Where and How?

• Where can you attack? Address and Routing Separation, thus: **Only Attack point: peering PE** • How? See ISP Essentials - Intrusions telnet, SNMP, ..., routing protocol) - DoS Secure Secure with ACLs with MD5

- PE router expects IP packet from CE
- Labelled packets will be dropped
- Thus no spoofing possible

Comparison with ATM / FR

dilling Cisco.com

	ATM/FR	MPLS
Address space separation	yes	yes
Routing separation	yes	yes
Resistance to attacks	yes	yes
Resistance to Label Spoofing	yes	yes
Direct CE-CE Authentication (layer 3)	yes	with IPsec

Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures

Internet Access Firewalling Options

- Attacking an MPLS Network
- IPsec and MPLS
- Summary

Security Recommendations for ISPs

- Secure devices (PE, P): They are trusted!
- CE-PE interface: Secure with ACLs
- Static PE-CE routing where possible
- If routing: Use authentication (MD5)
- Separation of CE-PE links where possible (Internet / VPN)
- LDP authentication (MD5)
- VRF: Define maximum number of routes

Note: Overall security depends on weakest link!

PE-CE Routing Security

Cisco.com

In order of security preference:

- 1. Static: If no dynamic routing required (no security implications)
- 2. BGP: For redundancy and dynamic updates (many security features)
- 3. **RIPv2:** If BGP not supported (limited security features)

Securing the MPLS Core

Agenda

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures
 - Internet Access Firewalling Options
- Attacking an MPLS Network
- IPsec and MPLS
- Summary

MPLS Internet Architectures: Principles

- Core supports VPNs and Internet
- VPNs remain separated
- Internet as an option for a VPN
- Essential: Firewalling

Separate VPN and Internet Access

Separate Access Lines + CEs, one PE

- Separation: ***
- **DoS resistance: ++**
- Cost:

SEC-370

(Two lines, but only one PE) © 2003, Cisco Systems, Inc. All rights reserved.

\$\$

(DoS might impact VPN on PE)

Using a Single Access Line

Cisco.com

Requirements to share a line:

- PE requires separate sub-interfaces
- CE requires separate sub-interfaces
- CE side requires separate routing

Shared Access Line, Frame Relay

Shared Access Line, Policy Routing

Shared Access Line, CE with VRFs

Hub-and-Spoke VPN with Internet Access

Alternative Topologies

- Full VPN mesh, one Internet Access
- Internet access at several sites
 - -> Several firewalls needed
 - -> More complex
- Internet Access from all sites
 -> Complex, one firewall per site

Central Firewalling: Option 1: Stacking Firewalls

- + Central Management
- + Strong firewalls
- Customer can choose firewall
- + Different policies per customer possible
- + CEs not touched
- One firewall per customer

Central Firewalling: Option 2: NAT on CE, one central FW

Internet **Firewalling** e.g PIX 535 SP Domain MPLS core PEs VPN VPN CEs NAT Customer Customer Customer 2 3 SEC All rights reserved.

+ Central Management

- + One strong firewall
- + Easy to deploy
- Customer cannot pick his firewall
- CEs need config

Central Firewalling: Option 3: IOS Firewall on CE

- + Economic
- One firewall per customer
- + No central devices
- Management more difficult
- CEs need config

- Same principles as in normal MPLS
- Customer trusts carrier who trusts carrier

Agenda

Cisco.com

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures

Internet Access Firewalling Options

- Attacking an MPLS Network
- IPsec and MPLS
- Summary

Ways to Attack

Cisco.com

- "Intrusion": Get un-authorised access
 Theory: Not possible (as shown before)
 Practice: Depends on:
 - Vendor implementation
 - Correct config and management

Use IPsec between CEs!

"Denial-of-Service": Deny access of others
 Much more interesting...

DoS against MPLS

• DoS is about Resource Starvation, one of:

- Bandwidth
- CPU
- Memory (buffers, routing tables, ...)
- In MPLS, we have to examine:

- Rest is the same as in other networks

Attacking a CE from MPLS (other VPN)

Is the CE reachable from the MPLS side?

-> only if this is an Internet CE, otherwise not! (CE-PE addressing is part of VPN!)

• For Internet CEs:

Same security rules apply as for any other access router.

Attacking a CE-PE Line

Cisco.com

- Also depends on reachability of CE or the VPN behind it
- Only an issue for Lines to Internet-CEs
 Same considerations as in normal networks
- If CE-PE line shared (VPN and Internet):

DoS on Internet may influence VPN! Use CAR!

MPLS hides VPN-CEs: Secure! Internet CEs: Same as in other networks

Attacking a PE Router

Only visible: "your" interface and interfaces of Internet CEs

DoS Attacks to PE can come from:

Cisco.com

- Other VPN, connected to same PE
- Internet, if PE carries Internet VRF

Possible Attacks:

Resource starvation on PE

Too many routing updates, too many SNMP requests, small servers, ...

Agenda

Cisco.com

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures

Internet Access Firewalling Options

- Attacking an MPLS Network
- IPsec and MPLS
- Summary

Use IPsec if you need:

- Encryption of traffic
- Direct authentication of CEs
- Integrity of traffic
- Replay detection

 Or: If you don't want to trust your ISP for traffic separation!

IPsec Topologies

CE to CE (static cryptomap)

Hub and Spoke (dynamic cryptomap)

Full Mesh with TED: Ideal!!!

MPLS/VPN and **TED** are an ideal combination!!

Agenda

Cisco.com

- Analysis of MPLS/VPN Security
- Security Recommendations
- MPLS Security Architectures

Internet Access Firewalling Options

- Attacking an MPLS Network
- IPsec and MPLS

Summary

MPLS doesn't provide:

- Protection against mis-configurations in the core
- Protection against attacks from within the core
- Confidentiality, authentication, integrity, anti-replay -> Use IPsec if required
- Customer network security

- MPLS VPNs can be secured as well as ATM/FR VPNs
- Depends on correct configuration and function of the core
- Use IPsec if you don't trust core
- There are many ways to map VPNs with Internet access securely onto MPLS

Understanding MPLS/VPN Security Issues

Session SEC-370

Please Complete Your Evaluation Form

Session SEC-370

CISCO SYSTEMS

Empowering the Internet Generationsm