Artificial Neural Networks and Information Theory

Colin Fyfe,
Department of Computing and Information Systems,
The University of Paisley.
Room H242
Phone 848 3305.

Edition 1.2,
2000

Contents

1 Introduction

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

Objectives e
Intelligence L
Artificial Neural Networks
Biological and Silicon Neurons
Learning in Artificial Neural Networks
Typical Problem Areas
A short history of ANNs e
A First Tutorial e
1.8.1 Worked Example
1.8.2 Exercises e

2 Information Theory and Statistics

2.1
2.2

2.3

24

2.5
2.6
2.7

Probability e e e
Statistics L
2.2.1 The Gaussian or Normal Distribution
Quantification of Information
2.3.1 Logarithms
2.3.2 Information
2.3.3 Entropy
2.3.4 Joint and Conditional Entropy L0
2.3.5 Mutual Information o
2.3.6 The Kullback Leibler Distance
2.3.7 Entropy from a Continuous Distribution
2.3.8 Entropy and the Gaussian Distribution
Information Theory and the Neuron
2.4.1 One Neuron with Noise on the Output
24.2 Noiseon the Inputs o
2.4.3 More than one output neuron oL
Principal Component Analysis o o
A Silly Example
Exercise

3 Hebbian Learning

3.1
3.2
3.3
3.4

3.5

Simple Hebbian Learning oL
3.1.1 Stability of the Simple Hebbian Rule
Weight Decay in Hebbian Learning
Principal Components and Weight Decay
Oja’s One Neuron Model o o e
3.4.1 Derivation of Oja’s One Neuron Model
Recent PCA Models e
3.5.1 Qja’s Subspace Algorithm

CONTENTS

3.5.2 0Oja’s Weighted Subspace Algorithm 46
3.5.3 Sanger’s Generalized Hebbian Algorithm 47
3.6 The InfoMax Principle in Linsker’s Model 47
3.7 Regressiono 48
3.7.1 Minor Components Analysis. 0. 50
3.8 Your Practical Work 51
3.8.1 Annealing of Learning Rate 51
3.82 TheData 51
Anti-Hebbian Learning 53
4.1 The Novelty Filter 54
4.2 Foldidk’s First Model 59
421 An Example 56
4.2.2 Foldidk’s Second Model oL o 56
4.3 Rubner and Schulten’s Model 0oL 58
4.4 The Negative Feedback Model, o8
4.4.1 Biological Interneurons. oL o o 99
4.4.2 Extensions to the Interneuron Network 59
4.5 The Anti-Hebbian Synapse as Energy Minimiser 64
Objective Function Methods 67
5.1 The Adaline e 67
5.2 The Backpropagation Network 0. 68
5.2.1 The Backpropagation Algorithm 69
5.2.2 The XOR problem e 69
5.2.3 Backpropagationand PCA o oL 70
5.3 Using Principal Components 71
9.3.1 Preprocessing Lol 71
5.3.2 Principal Components Pruning L. 72
5.4 Cross-Entropy as the Objective Function 74
5.5 TheI-Max Model e 75
5.5.1 An Example 7
5.6 Contextual Information o 78
5.6.1 Information Transfer and Learning Rules 80
5.6.2 Results 82
5.7 The Paisley Connection 82
5.7.1 Imtroduction e 82
5.7.2 The Canonical Correlation Network 83
5.7.3 Experimental Results 85
5.7.4 Artificial Data 85
5.7.5 Realdata 86
5.7.6 Random Dot Stereograms 86
5.7.7 More than twodatasets 88
5.7.8 Non-linear Correlations 88
5.8 Speeding up Error Descent oL o 90
5.8.1 Mathematical Backgroundo oL 92
5.8.2 QuickProp 93
5.8.3 Line Search e 93
5.8.4 Conjugate Gradients 94
5.9 Least Mean Square Error Reconstruction, 95

5.10 Conclusion L 96

CONTENTS

6 Identifying Independent Sources

6.1 The Trouble with Principal Components
6.1.1 Independent Codes L
6.1.2 A Typical Experiment

6.2 Competitive Learning
6.2.1 Simple Competitive Learning

6.3 Anti-Hebbian and Competitive Learning
6.3.1 Sparse Coding
6.3.2 Foldidk’s Sixth Model o
6.3.3 Implementation Details
6.3.4 Results

6.4 Competitive Hebbian Learning,

6.5 Multiple Cause Models
6.5.1 Saund’s Model
6.5.2 Dayanand Zemel

6.6 Predictability Minimisation o o

6.7 Mixtures of Experts
6.7.1 An Example

6.8 The Paisley Connection
6.8.1 Non negative Weights and Factor Analysis.
6.8.2 Non negative Outputs
6.8.3 Additive Noise L
6.8.4 Topographical Ordering and Modular Noise.
6.8.50 Results
6.8.6 Additive Noise L

6.9 Probabilistic Models L
6.9.1 Mixtures of Gaussianso oL
6.9.2 A Logistic Belief Network
6.9.3 The Helmholtz Machine and the EM Algorithm
6.9.4 The Wake-Sleep algorithm

6.10 Conclusion

7 Independent Component Analysis

7.1

7.2

7.3

74

7.5

7.6

7.7

A Restatement of the Problem
Jutten and Herault
7.2.1 An Example Separation Lo
7.2.2 Learning the weights oL
Non-linear PCA
7.3.1 Simulations and Discussion
Information Maximisation e
7.4.1 The Learning Algorithm
The Paisley Dimension L
7.5.1 Example oL
Penalised Minimum Reconstruction Error
7.6.1 The Least Mean Square Error Network
7.6.2 Adding Competition
Conclusion e e e e

8 Learning

8.1

8.2

The Bias-Variance Dilemma
8.1.1 Decomposition of the Error oL
8.1.2 General Statistical Derivation
813 An Example
The VC Dimension e

8.3

8.4

8.5

8.6

8.7
8.8

8.9 Conclusion

Unsupervised Learning using Kernel Methods
9.1 Introduction

9.2

9.3

9.4

9.5

9.6

PAC Learning

83.1 Examples
Regularisation

841 Regression.
8.4.2 Weight Decay

8.4.3 Eigenvector Analysis of Weight Decay
Radial Basis Functions
RBF and MLP as Approximators
Comparison with MLPs
Learning in Radial Basis Functions
Fixed Centers selected at Random
8.6.2 Self-organised Selection of Centres

8.5.1
8.5.2

8.6.1

8.6.3 Supervised Selection of Centres

Cross-Validation

Support Vector Machines

8.8.1 C(lassification
882 ACaseStudy
8.8.3 Simulationso

Kernel PCA
9.2.1 The Linear Kernel
9.2.2 Non linear Kernels

9.2.3 The Curse of Kernel Dimensionality
Kernel Principal Factor Analysis

9.3.1 Principal Factor Analysis
9.3.2 The Varimax Rotation
9.3.3 Kernel Principal Factor Analysis

9.3.4 Simulations 0oL
Kernel Exploratory Projection Pursuit
9.4.1 Exploratory Projection Pursuit
9.4.2 Kernel Exploratory Projection Pursuit

9.4.3 Simulationso
Canonical Correlation Analysis
9.5.1 Kernel Canonical Correlation Analysis

9.5.2 Simulationso L.
Conclusion

Linear Algebra

A.1 Vectors

A2

A1l
Al12
A1l3
Al4
Al5
Al6
Al

A21
A22
A23
A24

Same direction vectors
Addition of vectors
Length of avector

The Scalar Product of 2 Vectors
The direction between 2 vectors

Linear Dependence
Neural Networks
Matrices

Transpose v o e e
Addition o
Multiplication by a scalar
Multiplication of Matrices

CONTENTS

CONTENTS 5

A25 Identity 198

A2.6 Inverse. e 198

A3 Eigenvalues and Eigenvectors o 198

B Calculus 199
B.1 Introduction e e e e e e 199
B.1.1 Partial Derivatives e 199

B.1.2 Second Derivatives 200

C Backpropagation Derivation 201

C.1 The XOR problem 202

CONTENTS

Chapter 1

Introduction

1.1 Objectives

After this chapter, you should
1. understand the basic building blocks of artificial neural networks (ANNs)
2. understand the two modes of operation in ANNs
3. understand the importance of learning in ANNs
4. be able to use a simple rule to create learning in an ANN
5. begin to understand the importance of linearly inseparable problems

6. know some of the problems on which ANNs have been used.

1.2 Intelligence

This course comprises an advanced course to those new information processing simulations which
are intended to emulate the information processors which we find in biology.

Traditional artificial intelligence is based on high-level symbol processing i.e. logic program-
ming, expert systems, semantic nets etc all rely on there being in existence some high level represen-
tation of knowledge which can be manipulated by using some type of formal syntax manipulation
scheme - the rules of a grammar. Such approaches have proved to be very successful in emulating
human prowess in a number of fields e.g.

e we now have software which can play chess at Grand Master level
e we can match professional expertise in medecine or the law using expert systems

e we have software which can create mathematical proofs for solving complex mathematical
problems.

Yet there are still areas of human expertise which we are unable to mimic using software e.g. our
machines have difficulty reliably reading human handwriting, recognising human faces or exhibiting
common sense. Notice how low-level the last list seems compared to the list of achievements: it
has been said that the difficult things have proved easy to program whereas the easy things have
proved difficult.

8 CHAPTER 1. INTRODUCTION

Axon

Flow of information through the neuron

Figure 1.1: A simplified neuron

1.3 Artificial Neural Networks

Now tasks such as those discussed above seemingly require no great human expertise - young
children are adept at many of these tasks. This explains the underlying presumption of creating
artificial neural networks (ANNs): that the expertise which we show in this area is due to the nature
of the hardware on which our brains run. Therefore if we are to emulate biological proficiencies
in these areas we must base our machines on hardware (or simulations of such hardware) which
seems to be a silicon equivalent to that found within our heads.

First we should be clear about what the attractive properties of human neural information
processing are. They may be described as :

e Biological information processing is robust and fault-tolerant: early on in life!, we have our
greatest number of neurons yet though we daily lose many thousands of neurons we continue
to function for many years without an associated deterioration in our capabilities

e Biological information processors are flexible: we do not require to be reprogrammed when
we go into a new environment; we adapt to the new environment, i.e. we learn.

e We can handle fuzzy, probabilistic, noisy and inconsistant data in a way that is possible with
computer programs but only with a great deal of sophisticated programming and then only
when the context of such data has been analysed in detail. Contrast this with our innate
ability to handle uncertainty.

e The machine which is performing these functions is highly parallel, small, compact and
dissipates little power.

We shall therefore begin our investigation of these properties with a look at the biological
machine we shall be emulating.

1.4 Biological and Silicon Neurons

A simplified neuron is shown in Figure 1.1. Information is received by the neuron at synapses on
its dendrites. Each synapse represents the junction of an incoming axon from another neuron with
a dendrite of the neuron represented in the figure; an electro-chemical transmission occurs at the
synapse which allows information to be transmitted from one neuron to the next. The information
is then transmitted along the dendrites till it reaches the cell body where a summation of the
electrical impulses reaching the body takes place and some function of this sum is performed. If

I Actually several weeks before birth

1.5. LEARNING IN ARTIFICIAL NEURAL NETWORKS 9

wl
Incoming
data w2

/W3/

y Output

Figure 1.2: The artificial neuron. The weights model the synaptic efficiencies. Some form of
processing not specified in the diagram will take place within the cell body.

this function is greater than a particular threshold the neuron will fire: this means that it will send
a signal (in the form of a wave of ionisation) along its axon in order to communicate with other
neurons. In this way, information is passed from one part of the network of neurons to another.
It is crucial to recognise that synapses are thought to have different efficiencies and that these
efficiencies change during the neuron’s lifetime. We will return to this feature when we discuss
learning.

We generally model the biological neuron as shown in Figure 1.2. The inputs are represented
by the input vector x and the synapses’ efficiencies are modelled by a weight vector w. Therefore
the single output value of this neuron is given by

v =53 wia) = fwx) = f(wx) (L1)

You will meet all 3 ways of representing the operation of summing the weighted inputs. Sometimes
f() will be the identity function i.e. f(x)=x. Notice that if the weight between two neurons is
positive, the input neuron’s effect may be described as excitatory; if the weight between two
neurons is negative, the input neuron’s effect may be described as inhibitory.

Consider again Figure 1.2. Let w; = 1,ws = 2, w3 = —3 and wy = 3 and let the activation
function, (), be the Heaviside (threshold) function such that

o=} 2 "

Now if the input vector x = (x1,x2,x3,x4) = (1,2,1,2). Then the activation of the neuron is w.x
=D jwjzj = 1*1 + 2%2 + 1%(-3) + 2*3 = 8 and so y = {(8) =1. However if the input vector is
(3,1,2,0), then the activation is 3*1 + 1*2 4 2*(-3) + 0*3 = -1 and so y = f(-1) =0.

Therefore we can see that the single neuron is an extremely simple processing unit. The power
of neural networks is believed to come from the accumulated power of adding many of these simple
processing units together - i.e. we throw lots of simple and robust power at a problem. Again we
may be thought to be emulating nature, as the typical human has several hundred billion neurons.
We will often imagine the neurons to be acting in concert in layers such as in Figure 1.3.

In this figure, we have a set of inputs (the input vector, x) entering the network from the left-
hand side and being propagated through the network via the weights till the activation reaches
the output layer. The middle layer is known as the hidden layer as it is invisible from outwith the
net: we may not affect its activation directly.

1.5 Learning in Artificial Neural Networks

There are two modes in artificial neural networks:

1. activation transfer mode when activation is transmitted throughout the network

10 CHAPTER 1. INTRODUCTION

An Artificial Neural Network

weights
Inputs C
—_— Outputs
O
.0
Hidden
Input Neurons Output
Neurons Neurons

Figure 1.3: A typical artificial neural network consisting of 3 layers of neurons and 2 conecting
layers of weights

2. learning mode when the network organises usually on the basis of the most recent activation
transfer.

We will now consider the learning mode.

We stated that neural networks need not be programmed when they encounter novel environ-
ments. Yet their behaviour changes in order to adapt to the new environment. Such behavioural
changes are due to changes in the weights in the network. We call the changes in weights in a
neural network learning. The changes in weights in an artificial neural network are intended to
model the changing synaptic efficiencies in real neural networks: it is believed that our learning is
due to changes in the efficiency with which synapses pass information between neurons.

There are 3 main types of learning in a neural network:

Supervised learning: with this type of learning, we provide the network with input data and
the correct answer i.e. what output we wish to receive given that input data. The input
data is propagated forward through the network till activation reaches the output neurons.
We can then compare the answer which the network has calculated with that which we
wished to get. If the answers agree, we need make no change to the network; if, however, the
answer which the network is giving is different from that which we wished then we adjust
the weights to ensure that the network is more likely to give the correct answer in future if
it is again presented with the same (or similar) input data. This weight adjustment scheme
is known as supervised learning or learning with a teacher. The tutorial at the end of this
chapter gives an example of supervised learning.

Unsupervised learning: with this type of learning, we only provide the network with the input
data. The network is required to self-organise (i.e. to teach itself) depending on some
structure in the input data. Typically this structure may be some form of redundancy in
the input data or clusters in the data.

Reinforcement learning: is a half-way house between these two: we provide the network with
the input data and propagate the activation forward but only tell the network if it has
produced a right or a wrong answer. If it has produced a wrong answer some adjustment
of the weights is done so that a right answer is more likely in future presentations of that
particular piece of input data.

For many problems, the interesting facet of learning is not just that the input patterns may be
learned/classified /identified precisely but that this learning has the capacity to generalise. That

1.6. TYPICAL PROBLEM AREAS 11

is, while learning will take place on a set of training patterns an important property of the learning
is that the network can generalise its results on a set of test patterns which it has not seen during
learning. One of the important consequences here is that there is a danger of overlearning a set
of training patterns so that new patterns which are not part of the training set are not properly
classified.

For much of this course we will concentrate on unsupervised learning; the major exceptions
occur in Chapters 5 and 8 in which we will use supervised learning methods.

1.6 Typical Problem Areas

The number of application areas in which artificial neural networks are used is growing daily. Here
we simply produce a few representative types of problems on which neural networks have been
used

Pattern completion: ANNs can be trained on sets of visual patterns represented by pixel values.
If subsequently, a part of an individual pattern (or a noisy pattern) is presented to the
network, we can allow the network’s activation to propagate through the network till it
converges to the original (memorised) visual pattern. The network is acting like a content-
addressable memory. Typically such networks have a recurrent (feedback as opposed to a
feedforward) aspect to their activation passing. You will sometimes see this described as a
network’s topology.

Classification: An early example of this type of network was trained to differentiate between
male and female faces. It is actually very difficult to create an algorithm to do so yet an
ANN has been shown to have near-human capacity to do so.

Optimisation: It is notoriously difficult to find algorithms for solving optimisation problems. A
famous optimisation problem is the Travelling Salesman Problem in which a salesman must
travel to each of a number of cities, visiting each one once and only once in an optimal (i.e.
least distance or least cost) route. There are several types of neural networks which have
been shown to converge to ‘good-enough’ solutions to this problem i.e. solutions which may
not be globally optimal but can be shown to be close to the global optimum for any given
set of parameters.

Feature detection: An early example of this is the phoneme producing feature map of Kohonen:
the network is provided with a set of inputs and must learn to pronounce the words; in doing
S0, it must identify a set of features which are important in phoneme production.

Data compression: There are many ANNs which have been shown to be capable of representing
input data in a compressed format losing as little of the information as possible; for example,
in image compression we may show that a great deal of the information given by a pixel
to pixel representation of the data is redundant and a more compact representation of the
image can be found by ANNs.

Approximation: Given examples of an input to output mapping, a neural network can be trained
to approximate the mapping so that a future input will give approximately the correct answer
i.e. the answer which the mapping should give.

Association: We may associate a particular input with a particular output so that given the
same (or similar) output again, the network will give the same (or a similar) output again.

Prediction: This task may be stated as: given a set of previous examples from a time series,
such as a set of closing prices for the FTSE, to predict the next (future) sample.

Control: For example to control the movement of a robot arm (or truck, or any non-linear
process) to learn what inputs (actions) will have the correct outputs (results).

12 CHAPTER 1. INTRODUCTION

1.7 A short history of ANNs

The history of ANNs started as long ago as 1943 when McCullogh and Pitts showed that simple
neuron-like building blocks were capable of performing all possible logic operations. At that
time too, Von Neumann and Turing discussed interesting aspects of the statistical and robust
nature of brain-like information processing, but it was only in the 1950s that actual hardware
implementations of such networks began to be produced. The most enthusiastic proponent of the
new learning machines was Frank Rosenblatt who invented the perceptron machine, which was
able to perform simple pattern classification.

However, it became apparant that the new learning machines were incapable of solving cer-
tain problems and in 1969 Minsky and Papert wrote a definitive treatise, ‘Perceptrons’, which
clearly demonstrated that the networks of that time had limitations which could not be tran-
scended. The core of the argument against networks of that time may be found in their inability
to solve XOR problems (see Chapter 5). Enthusiasm for ANNs decreased till the mid ’80s when
first John Hopfield, a physicist, analysed a particular class of ANNs and proved that they had
powerful pattern completion properties and then in 1986 the subject really took off when Rumel-
hart, McClelland and the PDP Group rediscovered powerful learning rules which transcended the
limitations discussed by Minsky and Papert.

1.8 A First Tutorial

This tutorial will emphasise learning in neural nets. Recall that learning is believed to happen
at the synapses (the meeting points between neurons) and that we model synaptic efficiency with
weights.

You are going to hand simulate a simple neural net (see Figure 1.4) performing classification
according to the AND (see table) OR and XOR rules. We will use a network with three input
neurons - the two required for the input values and a third neuron known as the bias neuron. The
bias always fires 1 (i.e. is constant).

You will work in groups of 3 - one person in charge of selecting the input, one in charge of
calculating the feedforward value of the neuron, and one person in charge of calculating the change
in weights.

To begin with, the group selects random (between 0 and 1) values for the three weights shown
in the figure.

1. The INPUTER selects randomly from the set of patterns shown in the table and places the
cards in the appropriate places on the table.

2. The FEEDFORWARDER multiplies the weights by the input patterns to calculate the
output.

2
?J=Zwiﬂfi (1.3)
=0
Theny =1ify >0,y =-1ify <O0.

3. The WEIGHTCHANGER changes the weights when the value of y is not the same as the
target yp according to the formula

w; =w; + 1 (yr — y) * x; (14)

Steps (1)-(3) are repeated as often as necessary.

1.8.1 Worked Example

Let us have initial values wg = 0.5, w; = 0.3, w2 = 0.7 and let n be 0.1.

1.8. A FIRST TUTORIAL 13

Bias first second | target
input input | output
1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 -1
Table 1.1: The values for the AND patterns
BIAS
O ightO
First _ Output
Input (O——wefghtt = Neuron
ght2
Second
Input O

Figure 1.4: The Simple Neural Network

1. “Randomly” select pattern 1. The FEEDFORWARDER calculates y = 0.5 +0.3 +0.7 =1.5.
So y=1 which is the same as the target and so the WEIGHTCHANGER does nothing.

2. Imagine pattern 2 is chosen. The FEEDFORWARDER calculates y = 0.54+0.3 -0.7 = 0.1.
So y=1. Now yy = -1 and so WEIGHTCHANGER calculates

wp = we+01%x(-2)%x1=05-02=0.3
wp = w +01%x(-2)x1=03-02=0.1
wy = we+01%x(-2)x(-1)=0.74+0.2=09

3. Now pattern 3 is chosen. The FEEDFORWARDER calculates y = 0.3-0.1 + 0.9 =1.1. So
y =1 and yr = -1 and so WEIGHTCHANGER calculates

wo = woy+01x(-2)x1=03-0.2=0.1
w; = w; +01x%(=2)x(-1)=0.1+02=0.3
wy = wy+01%x(=2)%x1=09-02=0.7

4. Now pattern 4 is chosen. The FEEDFORWARDER calculates y = 0.1 - 0.3 - 0.7 = -0.9. So
y = -1 and yp = -1. Therefore the WEIGHTCHANGER does nothing.

5. Now select pattern 2. The FEEDFORWARDER calculates y = 0.1 - 0.3 + 0.7 =0.5. Then
y =1 but ypr = -1. WEIGHTCHANGER calculates

wo = wo+01%(=2)x1=01-02=-0.1
wp = w +01%x(-2)x(-1)=034+0.2=0.5
wy = wy+01%x(-2)x1=07-02=0.5

6. Now all of the patterns give the correct response (try it).

We can draw the solution found by using the weights as the parameters of the line axy +bxs+c =
0. Using a = wy,b = w2, c = wy we get

0.521 +0.522 —0.1=0 (].5)

14

X2

X1

CHAPTER 1. INTRODUCTION

Figure 1.5: The line joining (0,0.2) and (0.2,0) cuts the 4 points into 2 sets correctly

convergence

1.5 T T T T T T T T
first —
second -----
third -
1k fourth - |
0.5 - _
0

Figure 1.6: The iterative convergence of the network to a set of weights which can perform the
correct mapping is shown diagrammatically here.

which we can draw by getting two points. If ;1 = 0, then 0.5z> = 0.1 and so x2 = 0.2 which
gives us one point (0,0.2). Similarly we can find another point (0.2,0) which is drawn in Figure
1.5. Notice the importance of the BIAS weight: it allows a solution to be found which does not
go through the origin; without a bias we would have to have a moving threshold.

We can see the convergence of wg + wix; + woxs = 0 in Figure 1.6. Notice that initially 2
patterns are correctly classified, very quickly a third is correctly classified and only on the fourth
change are all 4 patterns correctly classified.

1.8
1
2
3

.2 Exercises

. Repeat the worked example with different initial values for the weights. (Objectives 3, 4).

. Repeat for the OR patterns. (Objectives 3, 4).

. Experiment with different initial values, learning rates. (Objectives 3, 4).

. Now do the XOR problem. Don’t spend too long on it - it’s impossible. (Objective 5).

1.8. A FIRST TUTORIAL 15

Nut type A-1 | type A-2 | type A-3 | type B-1 | type B-2 | type B -3
Length (cm) 2.2 1.5 0.6 2.3 1.3 0.3
Weight (g) 1.4 1.0 0.5 2.0 1.5 1.0

Table 1.2: The lengths and weights of six instances of two types of nuts

5. Draw the XOR coordinates and try to understand why it is impossible. (Objective 5).

6. Now we will attempt to train a network to classify the data shown in Table 1.2. Then we
will train a network with the input vectors , x, equal to
(1, 2.2, 1.4) with associated training output 1 (equal to class A)

1, 1.5, 1.0) with associated training output 1

1, 0.6, 0.5) with associated training output 1

1, 2.3, 2.0) with associated training output -1 (equal to class B)

1, 1.3,1.5) with associated training output -1

(1, 0.3,1.0) with associated training output -1

Note that the initial 1 in each case corresponds to the bias term

(
(
(
(

7. Describe in your own words an Artificial Neural Network and its operation (Objectives 1,
2).

8. Describe some typical problems which people have used ANNs to solve. Attempt to describe
what features of the problems have made them attractive to ANN solutions. (Objective 6).

16

CHAPTER 1. INTRODUCTION

Chapter 2

Information Theory and Statistics

In this chapter, we review Statistics, Probability and Information Theory and then investigate the
topic of Principal Component Analysis(PCA).

2.1 Probability

Probability deals with the study of random variations. We define the probability of an event which
is sure to happen to be 1 and the probability of an event which will certainly not happen to be 0.
All other probabilities lie between 0 and 1.

If we have a finite number of equally likely events which can happen, we can define the prob-
ability of an outcome happening to be

where N is the number of events which result in the outcome happening and M is the total number
of possible events.Therefore

P(Heads) =

N | =

where Heads is the event of a coin falling down with a head face up and

. 4 1
P(King) = 55 =13
where King is the event of a pack of cards being cut at a King.
We see that if we toss two coins we have four events, HH,HT ,TH and TT, so that the probability

of two Heads is)
PH,H) ==~
(H,H) =

Note also that if an outcome’s probability is x, then the probability of having the opposite of
the outcome is 1-x. In the above, the probability of not getting two Heads is

P(Not(H,H)) = Z

We write the joint probability of two outcomes, A and B, as P(ANB). Thus if we are interested
in the two outcomes :

1. We cut a King from a pack of 52 playing cards

2. We cut a spade from a pack of 52 playing cards

17

18 CHAPTER 2. INFORMATION THEORY AND STATISTICS

we can then define the joint probability

1
P(King N Spade) = —
52
since there is only a single card for which both outcomes are jointly possible.
We write the conditional probability of an event A given B has happened as P(A|B). It can
be shown that
P(ANB)

P(AIB) = =55

If events are independent, then
P(ANB)=P(A).P(B)

You will notice that this happened in our example of cutting the King of Spades in which
P(King) = % and P(Spade) = i. Notice that this does not necessarily happen since e.g.
P(BlackCard) = § but P(Spade N BlackCard) # &. These events are not independent.

We are sometimes interested in the marginal distribution of a random variable which is jointly

varying with another e.g. let the joint distributions vary according to the table!

1 2 3 4 |X

T T L LT T

5 g 16 32 32

3 E i E E Then the marginal distribution of X (the distribution of X over
16 16 16 16

411 0 0 0

y

all values of Y) is (%, %, %, %) while the marginal distribution of Y is (i, %, i, i)

2.2 Statistics

A variable whose outcome is determined by the outcome of an experiment with a random compo-
nent is known as a random variable. Consider the two coins tossing experiment. Let the random
variable X be the number of heads obtained. Then X can take on the values 0,1 and 2. Here X is
a discrete random variable. We are often interested in the distribution of the possible outcomes
which we can think of as a function from the set of outcomes to the interval [0,1]. Thus in our
two coins experiment we have

X 0 1 2
Probability Function | 0.25 0.5 0.25
Notice that if we have a generic table
X , the number of heads To T1 To - Ty
f(x) = P(X=x) f(xo) f(z1) f(z2) -+ f(zy)

then the f(x;) must satisfy

2.3 flw) =1

This is extensible to deal with the situation of a continuous probability distribution such as
would be found were we to measure the mass of sugar in a 1 kg bag of sugar: we might expect
that the mean weight of sugar would be 1 kg but would not expect every single bag of sugar to
weigh in at exactly 1 kg. We might plot the difference between the 1 kg weight which is stated on
the bag and the actual weight of the sugar as in Figure 2.1. Because we can never get a weight to
infinite accuracy, it makes little sense to talk of the probability of a particular weight. Also the
generalisation of the features of the distribution above must hold:

I This example is taken from Cover and Thomas

2.2. STATISTICS 19

A Probability Distribution

Figure 2.1: A general probability distribution

1. f(z) >0,Vx
2. [f(z)dz =1, i.e. the total area under the curve must sum to 1.

To find the actual probability associated with any interval, we simply integrate across the interval.
Thus, the probability that x lies between the values a and b is

b
Pla<z<b) :/ f(z)dx

We usually call f(z) the probability density function (PDF) of the distribution.

We will often be interested in the expected value of a function of a random variable and will
use E(f(X)) to denote this value. The simplest expectation to take is the mean. For discrete
variables, we know that

px = B(X) =Y wif(x)
i
For example in our two coins experiment we have the expected number of heads,

w(H) =0.25%0+05%14025%2=0+0.5+05=1

which is what we would have expected! For continuous variables, we have

ux = E(X) = /:Uf(a:)da:

to get the usual mean or average.

Expectation is a linear operator in that E(aX + bY) = aE(X) + bE(Y).

The variance of a distribution defines the amount of spread in the distribution. It is calculated
from the expected value of the square of the difference of the X-value from the mean:

o? = Var(X) = B(X —)

20 CHAPTER 2. INFORMATION THEORY AND STATISTICS

o itself is known as the standard deviation. It is easily shown that
0’ = BE(X?) - [E(X)P

which is often more convenient for on-line calculation since it can be done in 1 pass through the
data (as opposed to a first pass to calculate the mean and a second to calculate the squared
divergence from the mean). So to calculate the variance of our two coins experiment, we have

02=025%(0-1)24+05%x(1—-1)24025%(2—-1)2=0.5

2.2.1 The Gaussian or Normal Distribution

A continuous random variable X is said to be normally distributed if its probability density function
is
1 (z —p)?
fla) = —=exp (— T4}

As a probability density function, f(x) must satisfy ffooo f(z)dz = 1. The value of u is the mean
of the distribution. The value of o is the standard deviation of the distribution. Large values of
o give a widely spread distribution; small values of o give a narrowly peaked distribution. The
normal distribution is symmetrical about the mean. We sometimes describe the distribution as
N(u,0?); a Gaussian distribution is totally described by these two parameters. Figure 2.1 is
actually a diagrammatic representation of a Normal distribution. The effect of varying p and o is
shown in Figure 2.2.

The standard normal distribution is N(0,1); there are tables in many statistical books which
give the probability of an outcome being less than a particular value in terms of the standard
normal distribution.

We can of course have distributions of variables in more than one dimension. So if we have a
Gaussian distribution of a two dimensional variable which has the same variance in both directions
we could view this as a bell-shaped dome rising to its maximum height over the mean (centre)
of the distribution. If one direction has greater spread than the other we have a distribution
function which looks oval from outside; it will still rise to its greatest height above the mean but
will be narrower than it is long. Sometimes there is correlation between the variables in which the
distribution is measured and in this case we describe the variance as a matrix, though externally,
the distribution will still look bell shaped as before. The only difference now is that the axes of
the bell will not correspond to the axes of the measurements.

2.3 Quantification of Information

2.3.1 Logarithms

A quick statement of some facts about logarithms of which you should be aware

1. y=log,(z) «— a¥ =x

2.
log,(z) = 0¢—z=1
log,(z) > O0«—a>1
log,(z) < O0+«—ax<1

3. log,(x) is not defined for = < 0.

4. log,(zy) = log,(x) + log,(y)
5. log,(5) = log,(z) —log,(y)

2.3. QUANTIFICATION OF INFORMATION 21

Vari ous nmeans

Vari ous vari ances

2 I T

AN exp(-xrx) ——
N exp(-x*x/4) ----

‘exp(-x*x/0.4) --—---

Figure 2.2: The top diagram shows the effect of different values of u; the bottom of different values

AF A Note that in +he hattom Eorire we have nat 11cod +he — L tarm 40 narmalice +he heiocht and

22 CHAPTER 2. INFORMATION THEORY AND STATISTICS

6.
log,(z%) = 2log,(x)
log,(z°) = 3log,(x)
log,(z") = nlog,(x)
7. log,(a) =1
8.
log,(a?) = 2log,(a) =2
log,(a") = mnlog,(a) =n
9. log,(va) = Llog,(a) = 1
10.
1 -
log,(=5) = log, (%) = ~21og, () = ~2
1
loga(a_n) = loga(a_n) =-n loga(a’) =—-n

These are the most important facts about logarithms you must know. They can be found in any
elementary university mathematics book and will not be proved here.
We will begin with a consideration of a finite system of discrete events.

2.3.2 Information

Shannon devised a measure of the information content of an event in terms of the probability
of the event happening. He wished to quantify the intuitive concept that the occurrance of an
unlikely event tells you more than that of a likely event. He defined the information in an event
i, to be —logp; where p; is the probability that the event labelled ¢ occurs.

This satisfies our intuitive concept that if an event which is unlikely (has a low probability)
happens, we learn more than if an event which has a high probability happens. If we toss a coin
and it turns up Heads we have learned something - we can now rule out the outcome Tails; but
when we cut a pack of cards and find we have the King of Spades, we have learned a lot more -
we can rule out the other 51 cards.

We see that if an event is bound to happen (and so its probability is 1) that the information
we get from it is 0 since log(1) =0. Similarly the closer the probability of an event is to 0, the
larger the information quantity we get when the event happens.

If we work in logarithms to base two, we say our information is in bits. Thus, if we toss a coin,
P(H) = 0.5 and so the information we get when we see a Head is

1
I= —logzi =log, 2 = 1bit

which satisfies us as computer scientists in that we know that it takes 1 bit to hold the information
that A rather than B has happened. With our previous event of tossing two coins, P(HH) = i
and so the information we get when we find the event HH is

1 .
I = —log, i log, 4 = log, 2% = 2log, 2 = 2bits
If we had 3 coins, P(HHH) = % and so the information we get from this event is

1
I =—log, 5= log, 8 = log, 2° = 3log, 2 = 3bits

2.3. QUANTIFICATION OF INFORMATION 23

i.e. we have gained more information from the less likely event.

If we work in log to base 10 our results are in digits; if we work in log to base e we have nats.
We will assume log, unless otherwise stated but you can use digits for your tutorial work e.g. if
we have the coin-tossing experiment, the information gained in digits when a Head is revealed is

I(H) = —log;,0.5=0.3
while in the two coin experiment,
I(HH) = —10g100.25 = 0.6
and in the three coin experment,
I(HHH) = —10g190.125 = 0.9

Notice that while these last three figures are all information measured in digits, they are in the
same proportion as the information measured in bits that we used earlier.

2.3.3 Entropy

Using information, we define the entropy (or uncertainty or information content) of a set of N
events to be

N
H == pilogp
i=1

That is, the entropy is the information we would expect to get from one event happening where
this expectation is taken over the ensemble of possible outcomes. It is the mean information we
get from the dataset.

Thus if we toss a single coin, we have two possible events, each with associated probability of
0.5. So the entropy associated with tossing a coin is

H = p(H)I(H)+p(T)I(T)

1 1 1 1 1 1 .
—Z §log2 3= —§log2 3~ 510g2 3= log22 = 1bit

i=1

which is what we would expect - we need 1 bit of data to describe the result of a single coin tossing
experiment.

Now we can consider an example with a non-uniform distribution: let us imagine a horse race
with 8 horses taking part. Let the probability of each horse winning be (%, %, %, %, é, é, é, 61—4).
Then the entropy of the horse race is

1

1 1
H=—-log= — -1
7 %63 718

1 1 1 1 1 1 1
- —=log=— —log— —4—log — = 2bit
1788716 ®16 64 Bea
Notice that if we had 8 horses of equal probability, H = —8 * glogs = 3bits i.e. there is more
uncertainty if every horse in the race has equal probability of winning. This is a general rule:
there is more uncertainty in a situation if every outcome is equally probable.

Entropy is always > 0 since 0 < P(X) <1 and so log #X) > 0.

A Worked Example in Digits

Consider a bag with 8 balls in it. Let there originally be 4 red and 4 black balls and let us not be
able to differentiate between the red balls nor within the set of black balls. Then

P(Red)

P(Black) =

24 CHAPTER 2. INFORMATION THEORY AND STATISTICS

Then the information we get when we pick a ball is either

1
I(Red) = —logy, 5= 0.3digits or

1
I(Black) = —log, 5= 0.3digits

Then the entropy (or uncertainty or expected information we get when we pick a ball) is

2
- Zpi log, pidigits

i=1

H

1
2
~ —(%*(—0.3)+%*(—0.3))
= 0.3digits

1 1 1
= _(5 log 3 + 5 log; o

Now let us change the experiment: we now have 2 red balls and 6 black balls and so
P(Red) =
P(Black) =

Then the information we get when we pick a ball is either

1
I(Red) = —log, 1= 0.6digits or
3
I(Black) = —log, 1= 0.12digits
Then the entropy is
2
H = - Zpi log,, pidigits

i=1
1 1 3 3
_(Z log; o 1 + 1 log Z)

~ _(i £ (=0.6) + Z £ (=0.12))

= 0.24digits
Notice the drop in entropy since we have some prior knowledge of what we expect to see when

we pick a ball and so we gain less information when we pick it.
Let us continue in this way: we now have 1 red balls and 7 black balls and so

P(Red) =

P(Black) =

|~ 00|

Then the information we get when we pick a ball is either

1

I(Red) —log, 3= 0.9digits or

7
I(Black) = —logq i 0.058digits

2.3. QUANTIFICATION OF INFORMATION 25

X

o;|>~ﬁ|»~ﬁ|»~ Lo
Ol -

N =y el
O 5|Fooi-g|H o

s W N

Table 2.1: The joint distribution of X and Y.

Then the entropy is

2
H = =) pilog,pidigits
=1
1 1 7 7
= _(g logy 3 + 3 logy g)
1

7
~ —(g *(—0.9) + 3* (—0.058))

= 0.16digits

2.3.4 Joint and Conditional Entropy

For a pair of random variables X and Y, if p(i,7) is the joint probability of X taking on the it"
value and Y taking on the j!* value, we define the entropy of the joint distribution as:

H(X,Y)=-> p(i,j)logp(i,j)
i

Similarly, we can define the conditional entropy (or equivocation or remaining uncertainty in
x if we are given y) as:

H(X|Y) == p(i,) logp(ilj)
i,J
This may seem a little strange since we use the joint probability times the logarithm of the
conditional probability, but note that

HX]Y) = Zp(j)H(X|Y=j)

J
= (i) > plili) log p(ils)
i i

— > pli, j) log p(ilj)

i,
We can relate the conditional and joint entropy using the following formula
H(X,)Y)=H(X)+ H(Y|X) (2.1)

A diagrammatic representation of three distributions is shown in Figure 5.10.

A Worked Example

We previously met the joint probability distribution shown in Table 2.1.
We noted that the marginal distribution of X (the distribution of X over all values of Y) is

(1,4, %, %) while the marginal distribution of Y is (§, 1,1,). We will use this now to calculate

the associated entropies.

26 CHAPTER 2. INFORMATION THEORY AND STATISTICS

Notice first that

H(X) = =) pilogpi
i
1.1 1 1 1.1
= —(clog=+-log=+2x=log =
(Glogg +Jlog 7 +2xglogg)
= gbits
Similarly, H(Y) = 2 bits

Now the conditional entropy is given by

M»
=
k<
I
=
Lai
k<
|

HX|Y) =

-
I
-

) + _H(]-:O:O:O)

e S

w| =

Similarly we can show that H(Y'|X) = £ bits.
To calculate H(X,Y) we will calculate

H(X,Y) = =Y pli,j)logp(i,j)

,J

—(110 1—f—ilo i+
8§ %8 T16 %16 "

2
g bits

2.3.5 Mutual Information

The mutual information between two random variables X and Y is denoted by I(X,Y).
Shannon also showed that if x is a transmitted signal and y is the received signal, then the
information which receiving y gives about x is

I(w;y) = H(x)— H(zly) (2.2)
or I(z;y) = H(y)— H(y|v) (2.3)
or I(z;y) = H(z)+ H(y) — H(z,y) (2.4)

Because of the symmetry of the above equations, this term is known as the mutual information
between x and y.

For the example in section 2.3.4, we can calculate the mutual information between X and Y as

I(z;y) = H(z)— H(zly)

This accords well with our intuition that there is some information available about X when we
know Y (look at the last line of the table) but not really that much (look at the third line).

2.3. QUANTIFICATION OF INFORMATION 27

The channel capacity is defined to be the maximum value over all possible values of x and y
of this mutual information.
In summary, the basic facts in which we will take an interest are:

e Because the occurance of an unlikely event has more information than that of a likely event,
it has a higher information content.

e Hence, a data set with high variance is liable to contain more information than one with
small variance.

e A channel of maximum capacity is defined by 100% mutual information i.e. I(z;y) = H(z)

2.3.6 The Kullback Leibler Distance

We may use entropy-based measures to measure the difference between two different probabil-
ity distributions. The most common method is to use the Kullback Leibler Distance which is
sometimes known as relative entropy.
Relative entropy is defined as
p(i)

B o oopli)
D(pllq) = Xi:p(Z) log 7 = Bllog”_79) (2.5)

It can be thought of as a measure of the inefficiency of assuming that the distribution is q when
the true distribution is p. e.g. if we know the true distribution of a set of finite symbols, we can
construct the optimal (Huffman) coding for that set. But if we assume that the distribution is q
when in fact it is p, we will construct an inefficient coding. We can in fact show that in this case

the average length of the code (which should be H(p)) will in fact be H(p) + D(p || ¢).
Relative entropy has the following properties:

e It is always non-negative; in other words, we always lose some efficiency when we assume
the wrong probability distribution.

e It is not commutative. D(p || ¢) # D(q || p). Notice that this means that it is not a true
distance measure.

An Example

Let us consider an experiment in which there are two possible outcomes 0 and 1. Let us believe
that the probability distribution of outcomes is p(0) = 0.5 , p(1) =0.5) when the real distribution
is p(0) = 0.25, p(1) = 0.75. Then

3 1
D(q|lp) Jlog s+ log i
4 2

= 0.1887 bits

This is a measure of the penalty we incur if we assume the wrong distribution. Notice that

1. i1
D(plle) = §logg+—log
4

2
= 0.2075 bits

NI

2.3.7 Entropy from a Continuous Distribution

To parallel the discrete distributions, we can define the differential entropy of a distribution as

W) = = [7o) 1og flo)ds (2.6)

28 CHAPTER 2. INFORMATION THEORY AND STATISTICS

where S is the support set of the random variable X. For example if we consider a random variable
distributed uniformly between 0 and a, so that its density function is % from 0 to a and 0 elsewhere,
then its differential entropy is

1 1
h(X) = —/0 Elogg =loga (2.7)

This is intuitively appealing since, if a has a large value (the distribution has a large spread) the
distribution’s entropy is large.

All of those same extensions to the basic idea which we met when we used discrete entropy are
valid for differential entropy but we should note that some of our answers are not necessarily finite.
We are, however, most often interested in the relationship e.g. between the outputs of a neural
network and the inputs and it can be shown that the infinite part of their differential entropy will
cancel out meaning that the mutual information between inputs and outputs is a relevant finite
quantity to use to measure the effectiveness of the network.

2.3.8 Entropy and the Gaussian Distribution

Let us attempt to find the distribution which has greatest entropy. This task means little in this
form since we can merely keep adding points to the distribution to increase the uncertainty /entropy
in the distribution. We must constrain the problem in some way before it makes sense.

Haykin puts it this way:

With the differential entropy of a random variable x defined by
o0
h(z) = —/ f(z)log f(x)dx (2.8)
— 00

find the probability density function f(x) for which h(x) is a maximum, subject to the
two constraints

/jo flz)dz =1 (2.9)

and -
/ (x — p)?f(z)dr = 0® = a constant (2.10)

where p is the mean of the distribution and o? is its variance.

The first constraint simply ensures that the function f() is a proper probability density func-
tion; the second constrains the variance of the distribution. We will show that the distribution
with greatest entropy for a given variance (spread) is the Gaussian distribution. There is more
uncertainty /information in a Gaussian distribution than in any other comparable distribution!

So we have an optimisation problem (maximise the entropy) under certain constraints. We
incorporate the constraints into the optimisation problem using Lagrange multipliers so that we
wish to find the maximum of

o0

_/O; f(x)log f(x)dw + M /O; f(x)dx+>\2/ (x — p)* f(z)dz

= [T @08) 4 A0S @) + dale — 2 F) e

where A; and A, are the Lagrange multipliers. This maximum is achieved when the derivative of
the integrand with respect to the function f(x) is zero. i.e. when

0 = —1-logf(x)+ A1+ Xa(x—p)?

logf(z) = —1+A + Aao(z—p)?
fx) = exp(—=1+ A+ Xa(z —p)?) (2.11)

2.4. INFORMATION THEORY AND THE NEURON 29

Substituting this into equations 2.9 and 2.10 gives

/ exp(—1+ A + Xz —p)¥)dz = 1

— 00

/ (@ = m)?exp(=1+ A\ + Xo(w — p)*)dw = o

—00

which gives us two equations in the two unknowns A; and A which can be solved to give

A = 1-log(2n0?)
1
Ay = ——
2 202

which can be inserted in equation 2.11 to give

() = —a—exp(~ L2

2o 202

) (2.12)

the probability density function of a Gaussian distribution. When we use this to calculate the
entropy of the Gaussian distribution we get

h(z) = %{1 +log(2r0?)} (2.13)

In summary, we have shown

1. The Gaussian distribution is the distribution with the greatest entropy for a given variance:
if x and y are both random variables with a given variance o? and if x is a Gaussian random
variable, then

h(z) > hy) (2.14)

2. The entropy of a Gaussian random variable is totally determined by its variance. We will
later see that this is not true for other distributions.

2.4 Information Theory and the Neuron

Linsker has analysed the effect of noise on a neuron’s processing capabilities.

He begins by stating the Infomax principle (we will discuss his network in a later chapter)
which can be stated approximately as: it is the responsibility of the neurons in the output layer
of a network to jointly maximise the information at the outputs about the input activations of the
network. i.e. we should maximise the average mutual information between inputs x and outputs
y. However he shows that this maximisation cannot be done without taking account of noise in
the system.

2.4.1 One Neuron with Noise on the Output

Consider the situation in Figure 2.3. We have a single ouput neuron which is receiving the weighted
sum of its inputs but whose firing is corrupted by some processing noise. It is known that real
neurons are noisy? and that the source of this noise may come from a variety of sources. We will
not consider the chemical or electrical source of such noise, but simply model the system as

y = wjzs) +v (2.15)
j

The general problem cannot be analysed but we can make some assumptions to make the analysis
of (2.15) tractable: let us assume that

?Indeed the noise may be essential to the information passing of a real neuron

30 CHAPTER 2. INFORMATION THEORY AND STATISTICS

Figure 2.3: A single output neuron takes the weighted sum of the inputs but its firing is corrupted
by noise.

2

e the output of the neuron, y, is a Gaussian random variable with variance o,

e the processing noise is also a zero mean Gaussian random variable with variance o2.

e the noise is uncorrelated with any of the inputs i.e.

E(vz;) =0,V (2.16)

Now the mutual information between inputs and outputs is given by

I(x;9) = h(y) — h(ylx) (2.17)

which is simply stating that the information in the output about the inputs is the expected
information in the output minus the entropy/uncertainty in the output when we know the inputs.
Now this last term is solely due to the noise since the neuron is otherwise deterministic and so
h(y|x) = h(v). Therefore

I(%;9) = h(y) = h(v) (2.18)

Now with our Gaussian assumptions, we have

hly) = %{1+10g(27m§)}

1 ‘
hw) = 3{1+log(2no?)}
Notice that o, depends on o,. Then the information at the output about the inputs is given by

I(x;y) = h(y) —h(v)
= %{1 +log(2m02)} — %{1 +log(2moy) }

1. ol
5 IOg ;

v

g

2
The ratio —% is the signal-to-noise ratio of the neuron. Usually we can do little about the variance of

the noise and so to improve this ratio we must increase the variance of the output. i.e. to maximise
the information at the output about the inputs, we must (under the Gaussian assumptions and
with noise only on the outputs) increase the variance of the outputs. We can do this by allowing
the weights to grow in magnitude; since increase in the value of the weights does not affect the
noise, this can be done independently of any noise effects. Again, intuitively appealing.

2.4. INFORMATION THEORY AND THE NEURON 31

1 weights
/
Outputs

Inputs x‘ 0 W, O—>

noise /

Figure 2.4: Now the noise is affecting the inputs and is therefore being transmitted by the weights.

2.4.2 Noise on the Inputs

However this simple situation does not often prevail; more commonly we have the situation in
Figure 2.4 in which there is noise on our inputs. Intuitively we might expect that the fact that
the weights are being used to transmit the noise as well as the inputs might limit the effectiveness
of weight growth described in the last section. We shall see that this is so.

Let us make the same assumptions about the nature of the distributions and the noise where
such assumptions are made with respect to each input noise. Now we have

y = D wilz;+vy)
> wimi+ Y wiv;
J J
= Z w;T; + p
J
where the summed noise p is a zero mean Gaussian distribution whose variance is given by
o, = /Z w;v; — 0)*f(p;)dp;
Zw?/r/ff(pj)dpj
J
- Yuie
J

and so the entropy of the noise this time is given by

M

h(p) = 31+ 2102(Y 0%} (2.19)

and so the mutual information between inputs and output is given by

0.2

Tx5y) = 5 log(=) (2.20)
v 7

Again we must assume that we have no control over the magnitude of the noise and so we must
2

G'
maximise ~—~+—
Qo wi?’

weights since by doing so we are also increasing the effect of the noise on the denominator. More
sophisticated tactics must be employed on a neuron-by-neuron basis.

Now in this case it is not sufficient merely to increase the magnitude of the

32 CHAPTER 2. INFORMATION THEORY AND STATISTICS

v

weights Noise

il

output s

Figure 2.5: Two outputs attempting to jointly convey as much information as possible about the
inputs.

2.4.3 More than one output neuron

Consider the network shown in Figure 2.5. Each output neuron’s activation is given by

Yi = (Z wi;Tj) + v (2.21)
J

We will use the same assumptions as previously. Since the noise terms are uncorrelated and
Gaussian, they are also independent and so

h(v) = h(vi,v2) = h(v1) + h(ve) = 1 + log(2ma?) (2.22)

Now since the output neurons are both dependent on the same input vector x there will be a
correlation between their outputs. Let the correlation matrix be R. Then

R=E<ny>=(y1)(m y2)=(’"”) (2.23)

Y2 r21 T22

where r;; = E(y;y;). i.e. if the outputs are zero mean, the main diagonal contains the variances
of each output while the off-diagonal terms contain the covariances.

2 2
ri = 03 +0’V

ri2 =Tr21 = 0102012
2 2

reg = 05 +0,

where 02,7 = 1,2 is the variance of each output neuron in the absence of noise while p;» is the
correlation coefficient of the output signals also in the absence of noise. Note that in the calculation
of 791, we use the fact that E(v11v2) = 0 etc.

Now the general case of a multivariate Gaussian distribution has entropy

h(y) =1 + log(2m det(R)) (2.24)
and so the mutual information is given by
det(R
I0x:y) = log(“0Y) (2:25)

v

2

- and so to maximise mutual

So we again can’t do anything about the power in the noise, ¢
information we must maximise

det(R) = T11T22 — 7127921
= o, +o,(0] +03) + 003 (1 - piy) (2:26)

So we can identify two separate situations:

2.5. PRINCIPAL COMPONENT ANALYSIS 33

Large noise variance If o2 is large, we can ignore the third term in equation (2.26) since it
is independent of o2. Thus since o2 is a given (we cannot affect it) we must maximise
the central term, o? + o2 which can be done by maximising the variance of either neuron
independently of the other. In other words, each neuron is on its own trying to maximise
the information which it is giving about the inputs.

Low noise variance But if 62 is small, the third term becomes more important. Now there is a
trade off between maximising the variance on each output neuron and keeping the correlation
coefficient between the neurons as small as possible.

Therefore in a low noise situation, it pays a network to ensure that each output neuron is uncorre-
lated with the others i.e. is conveying different information about the inputs from the information
conveyed by the others. On the other hand when there is a lot of noise in the system, it pays to
have redundancy in the outputs: we only ensure that each neuron is conveying as much information
about the inputs as possible.

Clearly there exists a continuum of possible answers between the low and high noise limits.

2.5 Principal Component Analysis

Firstly recall that matrix A has an eigenvector c if when we multiply ¢ by A we get a vector whose
direction is the same as ¢ though its length may be (usually is) different. We can write this as

Ac = e (2.27)

A is a scalar known as the eigenvalue.

Inputs to a neural net generally exhibit high dimensionality i.e. the N input lines can each be
viewed as 1 dimension so that each pattern will be represented as a coordinate in N dimensional
space.

A major problem in analysing data of high dimensionality is identifying patterns which exist
across dimensional boundaries. Such patterns may become visible when a change of basis of the
space is made, however an a priori decision as to which basis will reveal most patterns requires
fore-knowledge of the unknown patterns.

A potential solution to this impasse is found in Principal Component Analysis which aims
to find that orthogonal basis which maximises the data’s variance for a given dimensionality of
basis. The usual tactic is to find that direction which accounts for most of the data’s variance
- this becomes the first basis vector (the first Principal Component direction). One then finds
that direction which accounts for most of the remaining variance - this is the second basis vector
and so on. If one then projects data onto the Principal Component directions, we perform a
dimensionality reduction which will be accompanied by the retention of as much variance (or
information) in the data as possible.

In general, it can be shown that the k' basis vector from this process is the same as the k"
eigenvector of the co-variance matrix, C where

cij = E(z; — E(z))(z; — E(x))]

For zero-mean data, the covariance matrix is equivalent to a simple correlation matrix.

Now, if we have a set of weights which are the eigenvectors of the input data’s covariance
matrix,C, then these weights will transmit the largest values to the outputs when an item of input
data is in the direction of the largest correlations which corresponds to those eigenvectors with the
largest eigenvalues. Thus, if we can create a situation in an Artificial Neural Network where one
set of weights (into a particular output neuron) converges to the first eigenvector (corresponding
to the largest eigenvalue), the next set of weights converges to the second eigenvector and so on, we
will be in a position to maximally recreate at the outputs the directions with the largest variance
in the input data.

34 CHAPTER 2. INFORMATION THEORY AND STATISTICS

X2 First
~7 Principal
Component

-

X1

Figure 2.6: There is a correlation between the information in the two directions given. PCA has
extracted the first principal component direction which contains most of the variance in the data.

Note that representing data as coordinates using the basis found by a PCA means that the data
will have greatest variance along the first principal component, the next greatest variance along
the second, and so on. While it is strictly only true to say that information and variance may be
equated in Gaussian distributions, it is a good rule-of-thumb that a direction with more variance
contains more information than one with less variance. Thus PCA provides a means of compressing
the data whilst retaining as much information within the data as possible. A diagrammatical
representation is shown in Figure 2.6: here we show the points of a two dimensional distribution
on the plane; we therefore require two coordinates to describe each point exactly but if we are
only allowed a single coordinate, our best bet is to choose to use the coordinate axis labelled “first
principal component”. This axis will allow us to represent each point as accurately as possible
with a single coordinate. It is the best possible linear compression of the information in the data.

It can be shown that if a set of input data has eigenvalues {A1, Ag, ..., A,,} and if we represent
the data in coordinates on a basis spanned by the first m eigenvectors, the loss of information due
to the compression is

n
E= Y X (2.28)
i=m+1
Artificial Neural Networks and PCA come together in 2 ways:
1. There are some networks which use Principal Components as an aid to learning e.g. by
compressing the data on the principal components we are discarding noise in the data and

retaining the essential variance/information in the data. We are then using PCA to prepro-
cess the data before letting the network loose on it.

2. Some networks have been explicitly designed to calculate Principal Components

Our interest will lie mainly in the latter type of network.

2.6 A Silly Example

Following Kohonen and Ritter, we represent each of 16 animals/birds by a 29-bit vector, the first
16 bits of which were 0 except for the bit which identified the particular animal. The other bits
were associated with the animal’s attributes as shown in Table 2.2. The output data were plotted
in the obvious manner - each output vector was identified as a binary number (1/0) and converted
to decimal to give the coordinates in each direction.

2.6. A SILLY EXAMPLE 35
dove hen duck goose owl hawk cagle fox dog wolf ca t tiger lion horse zebra cow
small 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0
medium 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
big 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
2 legs 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
4 legs 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
hair 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
hooves 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
mane 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
feathers 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
hunt 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
run 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
fly 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
swim 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Table 2.2: Animal names and their attributes
Attribute/class | First PC Second PC Third PC

dove 0.017 -0.071 0.054

hen 0.013 -0.057 0.059

duck 0.014 -0.062 0.083

goose 0.018 -0.077 0.078

owl 0.027 -0.077 -0.022

hawk 0.027 -0.077 -0.022

eagle 0.028 -0.060 -0.116

fox 0.044 0.008 -0.155

dog 0.044 0.021 -0.066

wolf 0.061 0.020 -0.118

cat 0.044 -0.009 -0.062

tiger 0.057 0.021 -0.019

lion 0.065 0.026 0.005

horse 0.059 0.036 0.140

zebra, 0.059 0.036 0.140

cow 0.041 0.024 0.102

small 0.161 -0.431 0.166

medium 0.177 -0.012 -0.457

big 0.281 0.143 0.369

2 legs 0.146 -0.482 0.113

4 legs 0.474 0.183 -0.034

hair 0.474 0.183 -0.034

hooves 0.159 0.096 0.383

mane 0.243 0.116 0.167

feathers 0.146 -0.482 0.112

hunt 0.354 -0.149 -0.512

run 0.345 0.159 0.081

fly 0.118 -0.364 -0.029

swim 0.032 -0.139 0.161

Table 2.3: The first 3 Principal Components of the input data’s covariance matrix. It is easily

verified that they form an orthonormal basis of the 3 dimensional subspace

36 CHAPTER 2. INFORMATION THEORY AND STATISTICS

Table 2.3 shows the first 3 Principal Components of the covariance matrix of the data of Table
2.2 as identified by the interneuron weights of the middle layer. It is easily verified that the vectors
form an orthonormal basis of a 3 dimensional subspace of the data.i.e. the length of each vector
is 1 and the product of any two vectors is 0.

e The first Principal Component is most strongly identifying animal type features: animals
tend to be big, have 4 legs and hair; some have hooves or a mane; somewhat more hunt and
runm.

e The second Principal Component completes the job: the birds all are represented by a
negative component as are the small, medium, 2 legs, feathers, hunt, fly and swim attributes.
Also, it can be seen that the more prototypical bird-like features have larger absolute values
e.g. |fly| > |swim| since the prototypical bird is more likely to fly than swim. Note also that
the cat has a small negative value brought about by its prototypical bird-like attribute of
smallness.

e The Third Principal Component seems to be mainly differentiating the hunters from the
non-hunters, though differentiation in size and between fliers and s wimmers is also taking
place

Note that the components defining e.g. horse and zebra are identical in all 3 directions as there
is nothing in the input data provided which will allow us to discriminate between these groups.
Similarly, the attributes “4 legs” and “hair” are identically represented as they are identically
distributed in the information we have given.

2.7 Exercise

1. Write out all the possibilities in a table when you roll two dice. What is the probablity of
getting a 77 (Have a red die and a black one).

2. Calculate the probability of cutting

(a) An ace

(b) A heart

(c) The ace of hearts
)

(d) An ace or a heart.

Check that P(Ace or Heart) = P(Ace) +P(Heart) - P(Ace and Heart).
This is a general law: P(A or B) = P(A) + P(B) - P(A and B).

3. An urn contains 3 red balls and 4 black ones and we pick a ball blind from it
(a) What is the probability that a red ball is picked
(b) Given that a red ball is picked what is the probability that a black ball is now picked.

(c) If we now have a second urn containing 4 red balls and 5 black ones and we select an
urn at random, what is the probability that a black ball is picked?

4. The probability of getting a first is % if you take ANNs, % if you take SSM and % if you
take GBH. If you select your course at random, what is the probability that you do not get
a first?

5. A fair die is rolled. Find the mean and variance of the random number X of the value
appearing on top.

6. How much information (in bits) do you gain when you cut the ace of spades?

2.7. EXERCISE 37

7. How much information do you gain when you throw 10 coins simultaneously? 8. Let p(x,y)
be given by

X:Y| O 1
0 |1/3 1/3|Find
1 0 1/3

(f) Draw a Venn Diagram for the above

8. A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
Find the entropy H(X) in bits. You may find the following expressions useful:

38

CHAPTER 2. INFORMATION THEORY AND STATISTICS

Chapter 3

Hebbian Learning

3.1 Simple Hebbian Learning

The aim of unsupervised learning is to present a neural net with raw data and allow the net to
make its own representation of the data - hopefully retaining all information which we humans find
important. Unsupervised learning in neural nets is generally realised by using a form of Hebbian
learning which is based on a proposal by Donald Hebb who wrote:

When an azon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased.

Neural nets which use Hebbian learning are characterised by making the activation of a unit
depend on the sum of the weighted activations which feed into the unit. They use a learning rule
for these weights which depends on the strength of the simultaneous activation of the sending and
receiving neuron. With respect to the network depicted in Figure 3.1, these conditions are usually
written as

Yi = Zwijxj (31)
J
and Aw;; = az;y; (3.2)

the latter being the learning mechanism. Here y; is the output from neuron i, z; is the jt" input,
and w;; is the weight from z; to y;. «a is known as the learning rate and is usually a small
scalar which may change with time. Note that the learning mechanism says that if z; and y; fire
simultaneously, then the weight of the connection between them will be strengthened in proportion
to their strengths of firing.

It is possible to introduce a (non-linear) function into the system using

Yyi = Q(Z Wij ;) (3.3)
J
and Aw;; = az;y; (3.4)

weights

Input

Output
Neurons o

Neurons

Figure 3.1: A one layer network whose weights can be learned by simple Hebbian learning.

39

40 CHAPTER 3. HEBBIAN LEARNING

for some function, g(); we will still call this Hebb learning.
Substituting Equation (3.1) into Equation (3.2), we can write the Hebb learning rule as

A’wi]' = CMCU]'E Wik T

k
aZwikxkxj (35)
k

If we take a to be the time constant, At and divide both sides by this constant we get

Aw;;
At” - Zki WikTrTj
which, as At — 0 is equivalent to (3.6)
d
7 W(t) o« CW(t) (3.7

where C}; is the correlation coefficient calculated over all input patterns between the it and jth
terms of the inputs and W (#) is the matrix of weights at time t. In moving from the stochastic
equation (3.5) to the averaged differential equation (3.7), we must place certain constraints on the
process particularly on the learning rate @ which we will not discuss in this course. We are using
the notation

dwy, dwyp | dwiy
d dt dt dt
ZW=| (3:8)
dwm1 dwmz ., dWmn
dt dt dt

The advantage of this formulation is that it emphasises the fact that the resulting weights
depend on the second order statistical properties of the input data i.e. the covariance matrix is
the crucial factor.

3.1.1 Stability of the Simple Hebbian Rule

At convergence the weights should have stopped changing. Thus at a point of convergence if this
point exists E(AW) =0 or in terms of the differential equations %W =0.

However, a major difficulty with the simple Hebb learning rule is that unless there is some
limit on the growth of the weights, the weights tend to grow without bound: we have a positive
feedback loop - a large weight will produce a large value of y (Equation 3.1) which will produce
a large increase in the weight (Equation 3.2). Let us examine mathematically the Hebb rule’s
stability:

Recall first that a matrix A has an eigenvector x with a corresponding eigenvalue A if

Ax = \x

In other words, multiplying the vector x or any of its multiples by A is equivalent to multiplying
the whole vector by a scalar A. Thus the direction of x is unchanged - only its magnitude is affected.
Consider a one output-neuron network and assume that the Hebb learning process does cause
convergence to a stable direction, w*; then if wy, is the weight vector linking xj, to y, at convergence,

0= E(Aw}) = E(yz;) = B wjzja;) = »_ Rijw;
j J

where R is the correlation matrix of the distribution. Now this happens for alli , so Rw = 0. Now
the correlation matrix, R, is a symmetric, positive semi-definite matrix and so all its eigenvalues
are non-negative. But the above formulation shows that w* must have eigenvalue 0. Now consider
a small disturbance, €, in the weights in a direction with a non-zero (i.e. positive) eigenvalue. Then

E(Awx) = R(w" +¢€) = Re >0

3.2. WEIGHT DECAY IN HEBBIAN LEARNING 41

i.e. the weights will grow in any direction with non-zero eigenvalue (and such directions must
exist). Thus there exists a fixed point at W=0 but this is an unstable fixed point: if all weights
happen to be zeroa single small change from this will cause all the weights to move from zero. In
fact, it is well known that in time, the weight direction of nets which use simple Hebbian learning
tend to be dominated by the direction corresponding to the largest eigenvalue.

We will now discuss one of the major ways of limiting this growth of weights while using
Hebbian learning and review its important side effects.

3.2 Weight Decay in Hebbian Learning

As noted in Section 3.1, if there are no constraints placed on the growth of weights under Hebbian
learning, there is a tendancy for the weights to grow without bounds. It is possible to renormalise
weights after each learning epoch, however this adds an additional operation to the network’s
processing. By renormalising, we mean making the length of the weight vector always equal to
1 and so after each weight change we divide the weight vector by its length; this preserves its
direction but makes sure that its length is 1. We then have the two stage operation:

w; = Wj+ AW]'
! [lwll

Another possibility is to allow the weights to grow until each reaches some limit, e.g. have an
upper limit of wt and a lower limit of w™ and clip the weights when they reach either of these
limits. Clearly a major disadvantage of this is that if all weights end up at one or other of these
limits' the amount of information which can be retained in the weights is very limited.

A third possibility is to prune weights which do not seem to have importance for the network’s
operation. However, this is an operation which must be performed using non-local knowledge -
typically which weights are of much smaller magnitude than their peers.

Hence, interest has grown in the use of decay terms embedded in the learning rule itself.
Ideally such a rule should ensure that no single weight should grow too large while keeping the
total weights on connections into a particular output neuron fairly constant. One of the simplest
forms of weight decay was developed as early as 1968 by Grossberg and was of the form:

/ = QYT — Wij (39)

It is clear that the weights will be stable (when dti”t“ = 0) at the points where w;; = aE(y;z;).
Using a similar type of argument to that employed for simple Hebbian learning, we can show
that at convergence we must have aCw = w. Thus w would have to be an eigenvector of the
correlation matrix of the input data with corresponding eigenvalue % We shall be interested in a
somewhat more general result.

Grossberg went on to develop more sophisticated learning equations which use weight decay

e.g. for his instar coding, he has used

dw:s
5 = oty —wikey (3.10)
t
where the decay term is gated by the input term z; and for outstar coding
dw;;
d—tz] = Oé{iL”j - wij}yi (3].].)

where the decay term is gated by the output term y;. These, while still falling some way short of
the decay in which we will be interested, show that researchers of even 15 years ago were beginning
to think of both differentially weighted decay terms and allowing the rate of decay to depend on
the statistics of the data presented to the network.

I This will certainly happen if simple Hebbian learning is used

42 CHAPTER 3. HEBBIAN LEARNING

3.3 Principal Components and Weight Decay

Miller and MacKay have provided a definitive study of the results of a decay term on Hebbian
learning. They suggest an initial distinction between Multiplicative Constraints and Subtractive
Constraints.

They define Multiplicative Constraints as those satisfying

% w(t) = Cw(t) — 7(w)w(t)

where the decay in the weights is governed by the product of a function of the weights, v(w), and
the weights, w(t), themselves. The decay term can be viewed as a feedback term which limits
the rate of growth of each weight in proportion to the size of the weight itself while the first term
defines the Hebbian learning itself.

Subtractive Constraints are satisfied by equations of the form

d
—w(t) = Cw(t) — ¢(w)n

dt

where the decay in the weights is governed by the product of a function of the weights ,e(w), and
a constant vector,n, (which is often {1,1,..1}1").

They prove that

e Hebb rules whose decay is governed by Multiplicative Constraints will, in cases typical of
Hebb learning, ensure that the weights will converge to a stable point

e This stable point is a multiple of the principal eigenvector of the covariance matrix of the
input data

e Hebb rules governed by Subtractive Constraints will tend to lead to saturation of the weights
at their extreme permissible values.

e Under Subtractive Constraints, there is actually a fixed point within the permitted hypercube
of values but this is unstable and is only of interest in anti-Hebbian learning(see below).

e If specific limits (w™ and w™) do not exist, weights under Subtractive Constraints will tend
to increase without bound.

In summary then, Subtractive Constraints offer little that cannot be had from simple clipping
of the weights at preset upper and lower bounds. Multiplicative Constraints, however, seem to
give us not just weights which are conveniently small, but also weights which are potentially useful
since

Yi = E W;;jT; = Wi.X
J
where wj is the vector of weights into neuron y; and x is the vector of inputs. But,
wi.x = |wi||x| cosd

where |d| is the length of d and 6 is the angle between the 2 vectors.

This is maximised when the angle between the vectors is 0. Thus, if w; is the weight into
the first neuron which converges to the first Principal Component, the first neuron will maximally
transmit information along the direction of greatest correlation, the second along the next largest,
etc. In Section 2.5, we noted that these directions were those of greatest variance which from
Section 2.3, we are equating with those of maximal information transfer through the system.

Given that there are statistical packages which find Principal Components, we should ask
why it is necessary to reinvent the wheel using Artificial Neural Networks. There are 2 major
advantages to PCA using ANNs:

3.4. OJA’S ONE NEURON MODEL 43

1. Traditional statistical packages require us to have available prior to the calculation, a batch
of examples from the distribution being investigated. While it is possible to run the ANN
models with this method - “batch mode” - ANNs are capable of performing PCA in real-
time i.e. as information from the environment becomes available we use it for learning in
the network. We are, however, really calculating the Principal Components of a sample, but
since these estimators can be shown to be unbiased and to have variance which tends to zero
as the number of samples increases, we are justified in equating the sample PCA with the
PCA of the distribution. The adaptive/recursive methodology used in ANNs is particularly
important if storage constraints are important.

2. Strictly, PCA is only defined for stationary distributions. However, in realistic situations, it
is often the case that we are interested in compressing data from distributions which are a
function of time; in this situation, the sample PCA outlined above is the solution in that it
tracks the moving statistics of the distribution and provides as close to PCA as possible in
the circumstances.

However, most proofs of convergence of ANNs which find Principal Components require the
learning rate to converge to 0 in time and, in practice, it is the case that convergence is
often more accurate when the learning rate tends to decrease in time. This would preclude
an ANN following a distribution’s statistics, an example of the well-known trade-off between
tracking capability and accuracy of convergence.

We now look at several ANN models which use weight decay with the aim of capturing Principal
Components. We will make no attempt to be exhaustive since that would in itself require a thesis;
we do however attempt to give representative samples of current network types.

3.4 0Oja’s One Neuron Model

There were a number of ANN models developed in the 1980s which used Hebbian learning. The
most important was Oja’s.

Oja proposed a model which extracts the largest principal component from the input data. He
suggested a single output neuron which sums the inputs in the usual fashion

m
y= Z Wi
i=1
His variation on the Hebb rule, though, is
Aw; = a(ziy — y*w;)

Note that this is a rule defined by Multiplicative Constraints (y* = v(w)) and so will
converge to the principal eigenvector of the input covariance matrix. The weight decay term has
the simultaneous effect of making Y w? tend towards 1 i.e. the weights are normalised.

However, this rule will find only the first eigenvector (that direction corresponding to the
largest eigenvalue) of the data. It is not sufficient to simply throw clusters of neurons at the data
since all will find the same (first) Principal Component; in order to find other PCs, there must be
some interaction between the neurons. Other rules which find other principal components have
been identified by subsequent research, an example of which is shown in the next Section.

3.4.1 Derivation of Oja’s One Neuron Model

If we have a one neuron model whose activation is modelled by

=Y e, (3.12)
J

44 CHAPTER 3. HEBBIAN LEARNING

and use simple Hebbian learning with renormalisation

wi(t+1) = w;(t) + ay(t)z;(t)
w;(t) + ay(t)z;(t)

{37, (wi(t) + ay(t)zy(t))2}

If « is very small, we can expand the last equation as a power series in « to get

U)j(t +].)

wi(t+1) =w;(t) +ay(t)(z; () —y(t)w;(t)) + O(a?) (3.13)

where the last term, O(a?) denotes terms which contain a term in the square or higher powers of
a which we can ignore if a << 1.

Therefore we can look at Oja’s rule as an approximation to the simple Hebbian learning followed
by an explicit renormalisation.

3.5 Recent PCA Models

We will consider 3 of the most popular PCA models. It is of interest to begin with the development
of Oja’s models over recent years.

3.5.1 QOja’s Subspace Algorithm

The One Neuron network reviewed in the last section is capable of finding only the first Principal
Component. While it is possible to use this network iteratively by creating a new neuron and
allowing it to learn on the data provided by the residuals left by subtracting out previous Principal
Components, this involves several extra stages of processing for each new neuron.

Therefore Oja’s Subspace Algorithm provided a major step forward. The network has N output
neurons each of which learns using a Hebb type rule with weight decay. Note however that it does
not guarantee to find the actual directions of the Principal Components; the weights do however
converge to an orthonormal basis of the Principal Component Space. We will call the space
spanned by this basis the Principal Subspace. The learning rule is

Aw;j = a(zyi — yi Z WkjYk) (3.14)
k

which has been shown to force the weights to converge to a basis of the Principal Subspace.

Two sets of typical results from an experiment are shown in Table 3.2. The results shown
in Table 3.2 are from a network with 5 inputs each of zero mean random Gaussians, where z1’s
variance is largest, x2’s variance is next largest, and so on. Sample input data is shown in Table
3.1. You should be able to see that there is more spread in the data the further to the left you
look. All data is zero mean.

Therefore, the largest eigenvalue of the input data’s covariance matrix comes from the first
input, z;, the second largest comes from z5 and so on. The advantage of using such data is that
it is easy to identify the principal eigenvectors (and hence the principal subspace). There are 3
interneurons in the network and it can be seen that the 3-dimensional subspace corresponding to
the first 3 principal components has been identified by the weights. There is very little of each
vector outside the principal subspace i.e. in directions 4 and 5. The left matrix represents the
results from the interneuron network?, the right shows Oja’s results. The lower (WX W) section
shows that the product of any two weights vectors is 0 while the product of a weight vector with
itself is 1.Therefore the weights form an orthonormal basis of the space (i.e. the weights are at
right angles to one another and of length 1). The upper (W) section shows that this space is
almost entirely defined by the first 3 eigenvectors.

2which is equivalent to the subspace algorithm(see later)

3.5. RECENT PCA MODELS 45

First Second Third Fourth Fifth
-4.28565 -3.91526 3.13768 0.0433859 -0.677345
4.18636 3.43597 2.81336 -1.08159 -1.63082
-6.56829 0.849423 6.22813 -2.35614 -0.903031
5.97706 6.2691 -1.70276 -4.28273 0.626593
-2.54685 2.1765 -4.60265 2.34825 0.00339159
4.48306 -3.4953 3.50614 -2.22695 0.107193
-3.92944 -0.0524066 -4.75939 -0.816988 -1.10556
-1.37758 -2.22294 -0.108765 1.19515 1.84522
0.849091 0.189594 -3.75911 0.597238 1.73941
2.60213 -0.952078 -0.542339 0.58135 0.459956
6.21475 -0.48011 -1.31189 -2.50365 -0.809325
-4.33518 2.53261 1.47284 -4.52822 1.6673
10.1211 -4.96799 3.61302 0.00288919 0.48462

1.1967 3.71773 0.214127 0.105751 -0.343055

-8.72964 8.72083 1.2801 -1.41662 1.21766
10.8954 -7.03958 -2.00256 -2.27068 -2.1738
-2.1017 -0.779569 3.09251 1.51042 -2.11619

1.63661 2.40136 -4.79798 0.190769 -0.225283
-0.736219 0.389274 1.65305 1.79372 -0.133088
2.51133 -3.50206 -2.2774 2.13589 1.01751

Table 3.1: Each column represents the values input to a single input neuron. Each row represents
the values seen by the network at any one time.

W W

0.249 0.789 0.561 0.207 -0.830 0.517
0.967 -0.234 -0.100 || -0.122 0.503 0.856
-0.052 -0.568 0.821 0.970 0.241 -0.003
0.001 0.002 0.016 -0.001 0.001 0.001
-0.001 0.009 0.005 0.000 0.000 -0.001
wTw wTw

1.001 0.000 0.000 1.000 0.000 0.000
0.000 1.000 0.000 0.000 1.000 0.000
0.000 0.000 1.000 0.000 0.000 1.000

Table 3.2: Results from the simulated network and the reported results from Oja et al. The left
matrix represents the results from the negative feedback network (see next Chapter), the right from
Oja’s Subspace Algorithm. Note that the weights are very small outside the principal subspace
and that the weights form an orthonormal basis of this space. Weights above 0.1 are shown in
bold font.

46 CHAPTER 3. HEBBIAN LEARNING

W W

1.000 -0.036 -0.008 || 1.054 -0.002 -0.002
0.036 0.999 -0.018 || 0.002 1.000 0.001
0.010 0.018 1.000 || 0.003 -0.002 0.954
-0.002 -0.002 0.016 | -0.001 0.001 -0.002
0.010 0.003 0.010 || 0.001 -0.001 0.000
wTw wTw

1.001 0.000 0.000 || 1.111 0.000 0.000
0.000 1.000 0.000 | 0.000 1.000 0.000
0.000 0.000 1.000 || 0.000 0.000 0.909

Table 3.3: Results from the interneuron network (left) and from Oja (right).
Both methods find the principal eigenvectors of the input data covariance matrix. The interneuron
algorithm has the advantage that the each vector is equally weighted.

One advantage of this model compared with some other networks is that it is completely
homogeneous i.e. the operations carried out at each neuron are identical. This is essential if we
are to take full advantage of parallel processing.

The major disadvantage of this algorithm is that it finds only the Principal Subspace of the
eigenvectors not the actual eigenvectors themselves.

3.5.2 0Oja’s Weighted Subspace Algorithm

The final stage is the creation of algorithms which find the actual Principal Components of the
input data. In 1992, Oja et al recognised the importance of introducing asymmetry into the weight
decay process in order to force weights to converge to the Principal Components. The algorithm
is defined by the equations

n
Yi = E Wij Ty
j=1

where a Hebb-type rule with weight decay modifies the weights according to
N
Aw;j = ay;(z; — 0; Zykwkj)
k=1

Ensuring that 6, < 6 < 63 < ... allows the neuron whose weight decays proportional to 6,
(i.e. whose weight decays least quickly) to learn the principal values of the correlation in the
input data. That is, this neuron will respond maximally to directions parallel to the principal
eigenvector, i.e. to patterns closest to the main correlations within the data. The neuron whose
weight decays proportional to #; cannot compete with the first but it is in a better position than
all of the others and so can learn the next largest chunk of the correlation, and so on.

It can be shown that the weight vectors will converge to the principal eigenvectors in the order
of their eigenvalues. The algorithm clearly satisfies Miller and Mackay’s definition of Multiplicative
Constraints with y(w;) = 6; >, yrwriz;. To compare the results with Oja’s Weighted Subspace
Algorithm, we repeat ed the above experiment with the algorithm. The results are shown in
Table 3.3; the left set is from the negative feedback network (next Chapter), the right from Oja’s
Weighted Subspace Algorithm.

Clearly both methods find the Principal eigenvectors. We note that the interneuron results
have the advantage of equally weighting each eigenvector.

3.6. THE INFOMAX PRINCIPLE IN LINSKER’S MODEL 47

3.5.3 Sanger’s Generalized Hebbian Algorithm

Sanger has developed a different algorithm (which he calls the “Generalized Hebbian Algorithm”)
which also finds the actual Principal Components. He also introduces asymmetry in the decay
term of his learning rule:

13
Aw;j = a(zjyi — yi Zwkjyk) (3.15)
k=1

Note that the crucial difference between this rule and Oja’s Subspace Algorithm is that the decay
term for the weights into the i*” neuron is a weighted sum of the first i neurons’ activations.
Sanger’s algorithm can be viewed as a repeated application of Oja’s One Neuron Algorithm by
writing it as

i—1

Awj = o[zyi — vi Y wijy] — yiwis) (3.16)

k=1
We see that the central term comprises the residuals after the first j-1 Principal Components
have been found, and therefore the rule is performing the equivalent of One Neuron learning on
subsequent residual spaces. So that the first neuron is using

Awy; = a(ziyr — yiwi;) (3.17)

while the second is using
Aws; = a([ziy2 — yawiiy1] — y;wm’) (3.18)

and so on for all the rest.

However, note that the asymmetry which is necessary to ensure convergence to the actual
Principal Components, is bought at the expense of requiring the j* neuron to ‘know’ that it is
the j* neuron by subtracting only j terms in its decay. It is Sanger’s contention that all true
PCA rules are based on some measure of deflation such as shown in this rule.

3.6 The InfoMax Principle in Linsker’s Model

Linsker has developed a Hebb learning ANN model which attempts to realise the InfoMax principle
- the neural net created should transfer the maximum amount of information possible between
inputs and outputs subject to constraints needed to inhibit unlimited growth. Linsker notes that
this criterion is equivalent to performing a principal component analysis on the cell’s inputs.

Although Linsker’s model is a multi-layered model, it does not use a supervised learning mech-
anism; he proposes that the information which reaches each layer should be processed in a way
which maximally preserves the information. That this does not, as might be expected, lead to an
identity mapping, is actually due to the effect of noise. Each neuron “responds to features that
are statistically and information-theoretically most significant”. He equates the process with a
Principal Component Analysis.

Linsker’s network is shown in Figure 3.2. Each layer comprises a 2-dimensional array of neu-
rons. Each neuron in layers from the second onwards receives input from several hundred neurons
in the previous layer and sums these inputs in the usual fashion. The region of the previous layer
which sends input to a neuron is called the receptive field of the neuron and the density of distri-
bution of inputs from a particular region of the previous layer is defined by a Gaussian distribution
i.e. we can imagine two layers of neurons with the a neuron in the second layer receiving most
activation from those neurons which lie directly below it and less activation from those neurons
further away from directly beneath it. At the final layer, lateral connections within the layer are
allowed.

The Hebb-type learning rule is

Aw;j = a(z; — E(x))(y; — E(y)) +b

48 CHAPTER 3. HEBBIAN LEARNING

Environment = input neurons

Layer 1 neurons

Layer 2 neurons

Layer 3 neurons

Figure 3.2: Linsker’s model

where a and b are constants.

In response to the problem of unlimited growth of the network weights, Linsker uses a hard
limit to the weight-building process i.e. the weights are not allowed to exceed w™ nor decrease
beyond w~ where w™ = —wt.

Miller and MacKay have observed that Linsker’s model is based on Subtractive Constraints,
ie.

Awgj = azjy; — aB(x)y; — aB(y)(z; — E(z))

Both y; and E(y) are functions of w, but in neither case are we multiplying these by w itself.
Therefore, as noted earlier, the weights will not tend to a multiple of the principal eigenvector but

will saturate at the bounds (w;: or w;;) of their permissible values.

2,

Because the effects of the major eigenvectors will still be felt, there will not be a situation where
a weight will tend to w™ in a direction where the principal eigenvector has a positive correlation
with the other weights. However, the directions of the weight matrix will, in general, bear little
resemblence to any eigenvector of the correlation matrix. The model will not, in general, enable
maximal information transfer through the system.

Linsker showed that after several layers, this model trained on noise alone, developed

e center-surround cells - neurons which responded optimally to inputs of a bright spot sur-
rounded by darkness or vice-versa

e bar detectors - neurons which responded optimally to lines of activity in certain orientations

Such neurons exist in the primary visual cortex of mammals. They have been shown to respond
even before birth to their optimal inputs though their response is refined by environmental influ-
ences i.e. by experience.

3.7 Regression

Regression comprises finding the best estimate of a dependent variable, y, given a vector of pre-
dictor variables, x. Typically, we must make some assumptions about the form of the predictor

3.7. REGRESSION 49

Figure 3.3: The vertical lines will be minimised by the Least Squares method. The shortest
distances, r;, will be minimised by the Total Least Squares method.

surface e.g. that the surface is linear or quadratic, smooth or disjoint etc.. The accuracy of the
results achieved will test the validity of our assumptions.

This can be more formally stated as: let (X,Y) be a pair of random variables such that
X € R™)Y € R. Regression aims to estimate the response surface,

f(z) = B(Y|X = z) (3.19)

from a set of p observations, x;,v;,7 = 1,...,p.

The usual method of forming the optimal surface is the Least (Sum of) Squares Method which
minimises the Euclidean distance between the actual value of y and the estimate of y based on the
current input vector, x. Formally, if we have a function, f, which is an estimator of the predictor
surface, and an input vector, x, then our best estimator of y is given by minimising

N
E = min Z(yi — f(xi))? (3.20)

i.e. the aim of the regression process is to find that function f which most closely matches y with
the estimate of y based on using () on the predictor, x, for all values (y,x).

For a linear function of a scalar x, we have y = mx + ¢, and so the search for the best estimator,
f, is the search for those values of m and ¢ which minimise

E1 = %{?Z(yz — mx; — 0)2
(2

For each sample point in Figure 3.3, this corresponds to finding that line which minimises the sum
of the vertical lengths such as PR from all actual y-values to the best-fitting line, y = mx + c.
However, in minimising this distance, we are making an assumption that only the y-values
contain errors while the x-values are known accurately. This is often not true in practical sit-
uations in which, for example, which variable constitutes the response variable and which the
predictor variables is often a matter of choice rather than being a necessary feature of the prob-
lem. Therefore, the optimal line will be that which minimises the distance, r, i.e. which minimises
the shortest distance from each point, (x;,y;) to the best fitting line. Obviously, if we know the

30 CHAPTER 3. HEBBIAN LEARNING

relative magnitude of the errors in x and y, we will incorporate that into the model; however here
we assume no foreknowledge of the magnitudes of errors. Thus, we are seeking those values of m

and ¢ which minimise)
. . Yi —mx; —C
FEs = min E rf:mln E %
m,c 4= m,c &= 1+m
(3 (3

This is the so-called Total Least Squares method. Because of the additional computational burden
introduced by the non-linearity in calculating Eo, TLS is less widely used than LS although the
basic idea has been known for most of this centuary.

3.7.1 Minor Components Analysis

Xu et al. have shown that the TLS fitting problem can be solved by performing a Minor Com-
ponent Analysis of the data: i.e. finding those directions which instead of containing maximum
variance of the data contain minimum variance. Since there may be errors in both y and x we do
not differentiate between them and indeed incorporate y into the input vector x. Therefore we
reformulate the problem as: find the direction w such that we minimise Fs i.e.

2
wW.X + ¢
E;, = min % over all inputs x
w w

_ i wx@+c

WTRW +2ewlE(x) + 2
T

= N min

w W™W

where R = £ S| xix;7, the autocorrelation matrix of the data set and E(x) = & 3% | x;, the
mean vector of the data set. Since, at convergence, ddEZ = 0, we must have

Rw + cE(x) — Aw =0 (3.21)
where \ = WTRW'FiVC;ViE(XHCZ. Now we wish to find a hyperplane of the form
wx+c=0
So, taking expectations of this equation we have ¢ = —w.E(x) which we can substitute

Cw—Aw=0 (3.22)
where now A = WWTTC;" where C is the covariance matrix = R — E(xx
that every eigenvector is a solution of the minimisation of Es.

Using a similar technique to that used earlier to show that only the greatest Principal Com-
ponent was stable for Oja’s one neuron rule, we can now show that only the smallest Principal
Component is stable for this rule.

As an example of the network in operation, we show in the first line of Table 3.4 the converged
values of the weights of an MCA network when sample points are drawn from the line and both
x and y coordinates are subject to noise. Clearly the algorithm has been successful.

For the lines shown in Table 3.4, points were drawn uniformly from only the first (both x and
y positive) quadrant of the distribution determined by the line in each case. The first 3 lines
show the direction to which the network converged when the distribution was affected by only
white noise in both x and y direction drawn from N(0,0.05). Clearly the degree of accuracy of the
convergence depends very greatly on the relative proportion of the amount of variance due to the
length of the distribution from which points were drawn and the white noise. In the third case,
the noise was of the same order as the variance due to the spread of points on the line and the
convergence was severly disrupted.

7). From this we can see

3.8. YOUR PRACTICAL WORK

Actual Distribution Direction Found Outliers
3x + 2y =10 0.300x 4+ 0.200y =1 none
3x+2y=1 2970x + 2.018y =1 none
3x + 2y =0.1 24.3x + 23.7y =1 none
3x+2y=1 3.424x + 1.714y = 1 | 1% in y direction
3x+2y=1 2.459x + 2.360y = 1 | 1% in x direction

51

Table 3.4: Directions converged to when the points from the distribution were disturbed by noise
drawn from N(0,0.05)

3.8 Your Practical Work

3.8.1 Annealing of Learning Rate

The mathematical theory of learning in Principal Component Nets requires the learning rate to
be such that ay > 0,) @ < 00,Y ar = co. In practise, we relax these requirements somewhat
and we find that we can generally find an approximation to the Principal Components when we
use a small learning rate.

However for more accurate results we can anneal the learning rate to zero during the course of
the experiment. Different annealing schedules have been tried - e.g. to subtract a small constant
from the learning rate at each iteration, to multiply the learning rate by a number < 1 during
the course of each iteration, to have a fixed learing rate for the first 1000 iterations and then to
anneal it and so on. All of these have been successfully used in practise and it is reccommended
that your simulations use one of these methods.

3.8.2 The Data

The theory of Principal Components is most easily applied when we have Gaussian distributions.
Not all compilers come with a built-in Gaussian distribution but most usually have a means of
creating samples from a uniform distribution from 0 to 1: e.g. in C on the Unix workstations, we
typically use drand48(). Donald Knuth has an algorithm which provides a means of creating a
pseudo-Gaussian distribution from a uniform distribution. The C++ code for doing so is shown
below:

#define A1 3.949846138
#define A3 0.252408784
#define A5 0.076542912
#define A7 0.008355968
#define A9 0.029899776

double cStat::normalMean(double mean,double stdev)
{

int j;

float r,x;

float rsq;

r=0;
for(j=0;j<12;j++) r += drand48();
r = (r-6)/4;

T*T;

rsq =
= ((((A9*rsq+A7)*rsq + AB)*rsq + A3)*rsq+Al)*r;

X

52 CHAPTER 3. HEBBIAN LEARNING

return mean+x*stdev;

}

This is a function which takes in two doubles (the mean and standard deviation of the distribution
you wish to model) and returns a single value from that distribution. It uses 5 values, 4; — Ay,
which are constant for the life of the program. You should call the function with e.g.

x[0] = aStat.normalMean(0,7);

x[1]= aStat.normalMean(0,6); etc

Chapter 4

Anti-Hebbian Learning

All the ANNs we have so far met have been feedforward networks - activation has been propagated
only in one direction. However, many real biological networks are characterised by a plethora of
recurrent connections. This has led to increasing interest in networks which, while still strongly
directional, allow activation to be transmitted in more than one direction i.e. either laterally or
in the reverse direction from the usual flow of activation. One interesting idea is to associate
this change in direction of motion of activation with a minor modification to the usual Hebbian
learning rule called Anti-Hebbian learning.

If inputs to a neural net are correlated, then each contains information about the other. In
information theoretical terms, there is redundancy in the inputs (I(z;y) >0).

Anti-Hebbian learning is designed to decorrelate input values. The intuitive idea behind the
process is that more information can be passed through a network when the nodes of the network
are all dealing with different data. The less correlated the neurons’ responses, the less redundancy
is in the data transfer. Thus the aim is to produce neurons which respond to different signals. If
2 neurons respond to the same signal, there is a measure of correlation between them and this is
used to affect their responses to future similar data. Anti-Hebbian learning is sometimes known
as lateral inhibition as this type of learning is generally used between members of the same layer
and not between members of different layers. The basic model(Figure 4.1) is defined by

Aw;j = —ay;y;

Therefore, if initially y; and y; are highly correlated then the weights between them will grow
to a large negative value and each will tend to turn the other off.

Feedforward
ights
Outputs
Inputs O
O Anti-Hebb
weights

O
O
O

Figure 4.1: Anti-Hebbian Weights
Negative decorrelating weights between neurons in the same layer are learned using an “anti-
Hebbian” learning rule

93

54 CHAPTER 4. ANTI-HEBBIAN LEARNING

[~~1° 7 ~~°~° >X’:X+MX:FX
B I RO S T
Lo
o
o
o
L

Figure 4.2: The System Model of the Novelty Filter

It is clear that there is no need for weight decay terms or limits on anti-Hebbian weights as
they are automatically self-limiting, provided decorrelation can be attained. When the outputs
have been decorrelated, we have E(y;y;) = 0 and

i.e. weight change stops when the outputs are decorrelated. Success in decorrelating the
outputs results in weights being stabilised.

Several authors have developed Principal Component models using a mixture of one of the
above PCA methods (often Oja’s One Neuron Rule) and Anti-Hebbian weights between the output
neurons.

We first note a similarity between the aims of PCA and anti-Hebbian learning: the aim of anti-
Hebbian learning is to decorrelate neurons. If a set of neurons performs a Principal Component
Analysis, their weights form an orthogonal basis of the space of principal eigenvectors. Thus, both
methods perform a decorrelation of the neurons’ responses.

Further, in information theoretic terms, decorrelation ensures that the maximal amount of
information possible for a particular number of output neurons is transferred through the system.
We will consider only noise-free information-transfer since if there is some noise in the system,
some duplication of information may be beneficial to optimal information transfer.

4.1 The Novelty Filter

The role of negative feedback in static models has most often been as the mechanism for competi-
tion often based on biological models of activation transfer and sometimes based on psychological
models.

An interesting early model was proposed by Kohonen who uses negative feedback in a number
of models, the most famous of which (at least of the simple models) is the so-called “novelty filter”
(see Figure 4.2). Here we have an input vector x which generates feedback gain by the vector of
weights, M. Each element of M is adapted using anti-Hebbian learning:

dmz] 1o
i = —arw;
’ 7
where x = x+ Mx

andso (I + M)x = x

4.2. FOLDIAK’S FIRST MODEL 35

X Ul
1
W,
Inputs Outputs
Wor y
2
X, O 2

Figure 4.3: Foldidk’s First Model

Therefore x = (I-M) 'x=Fx (4.2)

“It is tentatively assumed (I — M)~! always exists.” Kohonen shows that, under fairly general
conditions on the sequence of x and the initial conditions of the matrix M, the values of F always
converge to a projection matrix under which the output X approaches zero although F does not
converge to the zero matrix i.e. F converges to a mapping whose kernel (that bit of the space
which is mapped to 0) is the subspace spanned by the vectors x. Thus any new input vector xi
will cause an output which is solely a function of the novel features in x;.

4.2 Foldiak’s First Model

Foldidk has suggested many neural net models, several of which combine anti-Hebbian learning
and weight decay. Here, we will examine the first 2 as they are examples of solely anti-Hebbian
learning.

The first model is shown diagrammatically in Figure 4.3 and has anti-Hebbian connections
between the output neurons.

The equations which define its dynamical behaviour are

n
Yi =Ti + Zwijyj
=1

with learning rule
Awy; = —ayuy; for i # j

In matrix terms, we have
y = x+Wy
Andso,y = (I-W)'x

Therefore we can view the system as a transformation, T, from the input vector x to the output
y given by
y=Tx=(I1-W)x (4.3)

Now the matrix W must be symmetric and has only non-zero non-diagonal terms i.e. if we consider
only a two input, two output net as in the diagram,

W:(O w) (4.4)

w 0

so that T is given by

T:(I—W)—1=<_1w T)Lﬁ(i} lf) (4.5)

Now let the two dimensional input vector have correlation matrix

2
Cpu = (1 001202) (4.6)

pPoO102 5

36 CHAPTER 4. ANTI-HEBBIAN LEARNING

where p is the correlation coefficient. Now the correlation matrix for y can be calculated since y
= Tx we have Cy, = E(yy!) = E(Tx.(Tx)!) = TC,,T*. Then

Cyy =

L (e et nel eD st) gy

(w? —1)2 \ poioa(w? +1) + (of + 03)w w?o? + 2wpoy oy + 02

The anti-Hebb rule reaches equilibrium when the the units are decorrelated and so the terms
w1z = war = 0. Notice that this gives us a quadratic equation in w (which naturally we can
solve).
Let us consider the special case that the elements of x have the same variance so that oy =
oo = 0. Then the cross correlation terms become po?w? + 20%w + po? and so we must solve the
quadratic equation
pw? +2w+p=0 (4.8)

_Zltvi=p Vpl_p2 (4.9)

Foldidk further shows that this is a stable point in the weight space.

which has a zero at

wy

4.2.1 An Example

Consider data which has correlation matrix

1 0957
C”‘(o.%? 1) (4.10)

Notice that the cross correlations are very high. This data was actually created by using the
algorithm

a = N(0,5)
x1 = N(0,1)+a
2 = N(0,1)+a

where N(0,d) is a normal distribution with zero mean and standard deviation d.

When we use Féldidk’s algorithm on this data we find that the w weight converges to -0.753.
The decorrelation can be seen graphically in Figure 4.4: the high correlation in the input data
is clearly visible - a high positive value of x; means a high positive value for o and vice versa -
while there is no apparent structure in the output values.

4.2.2 Foldiak’s Second Model

Foldiak suggests a further model by allowing all neurons to receive their own outputs with weight
1.

Awi; = a(l - yiyi)
which can be written in matrix form as

AW = a(I —yyT) (4.11)

where I is the identity matrix.

This net will converge when the outputs are decorrelated (due to the off-diagonal anti-Hebbian
learning) and when the expected variance of the outputs is equal to 1. i.e. this learning rule forces
each network output to take responsibility for the same amount of information since the entropy
of each output is the same.

This is generalisable to

Awgj = a(bi; — yiy;)
where 6;; = 0 for ¢ # j. The value of #ii for all i, will determine the variance on that output and
so we can manage the information output of each neuron.

4.2. FOLDIAK’S FIRST MODEL

I nput val ues

25 T T T T T T
"before.dat" <
o
20 - B
15 + o .
o
s S
o 0
10 | o, B ® .
5 - —
0
-5+ -
10 + i
o
o
-15 1 1 1 1 1 1
-15 -10 -5 0 5 10 15 20 25
Qut put val ues
8 T T T T
"after.dat" o
3
6 - —
o o
o
4 > o < -
© 5 0 @ @ o o &
° o & o 00 & > @ooo 00 o
2 | o oo ° ®0%8<@ng®00 N i
00 o RS S
o © o ngi:g%i<§§ 0@?@ Qgé&wo%o 0% @?} @ ° e
2 % %©O@Q&OO& ngoo %2000, 0 6
0 .00 009 3 ° % %gg o > ® @
o o o
A go & §0%? R Bo %8 o 0@ °
o Q. O & HEXE ooo%e%ooo 70
S o 8 oy 8§ 00 Lo} %
2 b o ° S8 @ o 0, & o _
S Q0@ i 0 sO @
o @ o, o o <>o<><>
o 8 S goo% 00 o o
[
-4 - © o © %00 4
-6 1 1 1 1
-6 -4 -2 0 2 4 6

Figure 4.4: The original data is highly correlated. The output data has been decorrelated.

38 CHAPTER 4. ANTI-HEBBIAN LEARNING

Hebb
weights

Anti-Hebb

\ weights

Figure 4.5: The weights from the input layer to the outputs are adjusted by Hebbian learing;
meanwhile each output neuron is trying to turn off those succeeding it using weights which are
adjusted by anti-Hebbian learing.

N HQ\

2 ——

Inputs

X3 —0O 2
o2~

Xqg —=0O

Xg —=0O

Figure 4.6: The negative feedback network.

4.3 Rubner and Schulten’s Model

Several authors have combined Hebbian and Anti-Hebbian learning with a view to extracting all
the principal components of a data set. One such example is shown in Figure 4.5.
Rubner and Schulten have a model in which the feedforward weights use either

e simple Hebbian learning with a renormalisation after each learning cycle or
e Hebbian learning of the one neuron Oja type

Either of which will guarantee to find the first principal component of the input data. However
each output neuron is joined to every subsequent output neuron with a weight which is adjusted by
anti-Hebbian learning. So the output of the second output neuron is determined by the Principal
component of the input data but also by the need to decorrelate itself from the first output
neuron. The net result is that it learns to respond to the second principal component. The third
neuron is attempting in its turn to extract the maximum information from the data but also must
decorrelate its output with the first two output neurons (which have learned the first two principal
components); it then learns to respond maximally to the third principal component direction etc..

4.4 The Negative Feedback Model

The negative feedback network is shown in Figure 4.6. The input neurons are at the left hand
side; activation is propagated through weights to the output neurons where a summation takes
place and then the activation is fedback as inhibition to the input neurons. It can be shown that
not only does the negative feedback stop the positive feedback loop in simple Hebbian networks
(i-e. stops the weights from growing without bound) but it also causes the weights to converge to
the Principal Components of the input data.

The rules governing the organisation of the network are

N
Zi = Z’wi]ﬂ?]’ (412)
Jj=1

4.4. THE NEGATIVE FEEDBACK MODEL 39

M

zi(t+1) « z;(t) — Zwkak (4.13)
k=1

Awij = QZT; (t +].) (414)

where x,(t) is the firing of the p!* input neuron at time t.

There is no explicit weight decay, normalisation or clipping of weights in the model. The
subtraction of the weighted sum of the output neuron values acts like anti-Hebbian learning. We
will consider the network as a transformation from inputs x to outputs z; by considering the effects
of these rules on individual neurons, we can show that the resultant network is equivalent to Oja’s
Subspace Algorithm.

Substituting (4.13) into (4.14) we get

AU)ji = O[Ii(t +].)Zj

alz(t) — Z WkiZk)Z)
k

CM(CUZ'Z]' —Zj Z wkizk) (415)
k

where we have dropped the time (t) notation for simplicity.

This last formulation of the learning rule (4.15) is exactly the learning rule for the Subspace
Algorithm, Equation (3.14). The comparative results given in the various tables in Chapter 3 were
from a negative feedback network.

4.4.1 Biological Interneurons

Because this network is similar to that found in biological networks, we have in the past called
the network “The Interneuron Network”: there are in the cortex negative feedback neurons called
interneurons which inhibit the neurons which cause them to fire. The results of the last section
have one major drawback when considered as a model of biological systems: the weights of the
connections from the interneuron,z, to the summing neuron,y, are assumed to be identical to those
from the summing neuron,y, to the interneuron,z. This is biologically implausible. We therefore
have proposed a model where these weights are initially different and then learn independently
from each other (albeit on the same data).

= x—Vz (4.16)

z = Wy=Wx (4.17)
AW = a,yz’ (4.18)
AV = a,yz" (4.19)

where the initial values of both VT and W are small random numbers not correlated in any way
with each other.

Note that both learning rules for W and V are identical up to the learning rate and use only
simple Hebbian learning. The results of an experiment identical to the last ones but with different
feedforward and feedback weights is shown in Table 4.1.

4.4.2 Extensions to the Interneuron Network

The major difficulty with the basic interneuron network is the same as that which applies to
the Oja’s Subspace Algorithm - it finds only the subspace of the principal components not the
principal component directions themselves.

60 CHAPTER 4. ANTI-HEBBIAN LEARNING

Inter neuron model VW Model
W W A%

1.000 -0.036 -0.008 || 0.985 -0.041 -0.003 | 1.013 -0.017 -0.024

0.036 0.999 -0.018 || -0.019 1.033 0.031 | -0.027 0.965 0.032

0.010 0.018 1.000 0.022 -0.032 1.028 | 0.020 -0.017 0.969

-0.002 -0.002 0.016 || -0.024 -0.041 0.038 | -0.007 -0.034 0.037

0.010 0.003 0.010 0.098 -0.007 -0.011 | 0.010 0.000 0.002

Table 4.1: Results from the interneuron network (left) with symmetric weights,W. and for the V
and W vectors from the VW Model(see text)

Phased Creation of Interneurons

The first results in each table given when we discussed Oja’s models are those from the negative
feedback network. The second set of results (those which find the actual Principal Components,
Table 3.3) are from a network using the following algorithm: the system is created with 1 in-
terneuron; this interneuron finds the first principal component using the above learning rule. It
then loses its plasticity i.e. its weights will not subsequently change. We then create a second
interneuron. Since the first neuron has found and subtracted the first principal component, the
second neuron will find the largest remaining principal component. It too now loses its plasticity.
Then the third interneuron is created etc.. Therefore, we have introduced our asymmetry in the
time dimension; note that whereas to do so with e.g. Oja’s Single Neuron Network would have
required the introduction of an extra mechanism - that of subtracting the projection of the data
onto the subspace already found - we do not require this here as the network automatically finds
and subtracts this subspace.
Four factors make the interneuron network especially exciting as a PCA network:

simplicity - there are no logistic or hyperbolic functions to be calculated; there is no additional
computation within the learning rule; there is no sequential passing back of errors or decay
terms.

homogeneity - every interneuron is performing exactly the same calculation as its neighbours;
every summing neuron is performing exactly the same calculation as its neighbours.

locality of information - each interneuron uses only the information which it receives from its
own connections; similarly with the summing neurons which calculate the y values

parallelism - each operation at each interneuron is independent of what is happening at any
other interneuron; similarly with the summing neurons

Lateral Inhibition

However, the phased creation of neurons described in the last section does not utilise the inherent
potential of this network for parallel information processing. We now develop learning algorithms
which do this while retaining as much as possible of the other features. We amend the basic
network by allowing the inhibitory effect of each interneuron to act on the other interneurons as
well as the summing neurons.

The first type of network will be characterised by

’

z = Wx

z = z —Uz

X < x-—Vz
AW = p,xz!
AV = p,xzl

AU = ~zz'

4.4. THE NEGATIVE FEEDBACK MODEL 61

Input 1 Input 2 Input3 Input4 Inputd
Interneuron 1 | 0.552 0 0.004 0.000 0.001
Interneuron 2 | 0.700 0 0.005 0.000 0.001
Interneuron 3 | 0.035 0.991 0.004 0.000 0.000
Interneuron 4 | 0.450 0 0.003 0.000 0.001

Table 4.2: A 5 input, 4 interneuron network with the same type of input data as previously

where z' is the initial activation of the interneuron before receiving the lateral inhibition from
other interneurons and U is the matrix of weights between the interneurons.

We do not however allow self-connections from interneurons to themselves. Two methods have
been used with this amended network in order to create the necessary asymmetry:

e in the first, we allow the network weights to be upgraded at different rates;

e in the second, we use different activation functions to force convergence to the Principal
Components.

We note that we have now a 3-phase operation:

1. The activation is fed forward from the summing neurons to the interneurons

2. The interneurons feed their activation to their peers and recalculate their activations
3. The activation is fed back to the summing neurons from the interneurons

While this is more computationally complex than before, we only require O(m?) additional cal-
culations, where m is the number of interneurons. Further all learning processes continue to use
simple Hebbian learning.

Now Oja has proved the importance of asymmetry in a network if you wish to find the actual
Principal Components rather than the subspace of PCs. We can show that the lateral inhibition is
not in itself sufficient to cause convergence to the actual Principal Components but it does however
give us an alternative means of inserting the asymmetry (e.g. by having the lateral feedback affect
the other neurons in an asymmetric manner or allowing the learning rates to be different).

Non-negative Weights

There is one obvious asymmetry used in nature which we have not used as yet: it is believed
that signals from neurons may be excitatory or inhibitory but not both i.e. a neuron’s output
can excite (positively) other neurons or it can inhibit (negatively) other neurons; what cannot
happen is that it excites some and inhibits others. The results reported in previous Chapters were
based on a model where the weights were allowed to take any value positive or negative and so a
neuron could be exciting some neurons while inhibiting others. In fact, it is possible for a neuron
to switch from excitatory activation to inhibitory as its weight changes from positive to negative.
If we allow only non-negative weights i.e. ensure that if a weight, while learning, never takes a
negative value, we have the following interesting situation:

Assume that two weights of our converged network have values w; = ac; + bey and wy =
cc; + decj, where the ¢, are the eigenvectors of the data’s covariance matrix. Then since the
weights converge to an orthogonal basis of the space, ac + bd = 0. Now if none of the terms a,b,c
or d can be negative, then at least 2 must be zero (one from each term ac and bd). In other
words, this constraint swings the weight vectors through the weight space to the actual Principal
Components themselves. Since we are not directing the process, situations where several sets
of weights converge to the same Principal Component tend to appear. An extreme example is
shown in Table 4.2 in which we report the results of a simulation on the same type of data as
previously but where the basic VW interneuron network was set up and the weights allowed to
learn concurrently. Clearly, the weights of interneurons 1,2 and 4 have all converged to the same

62 CHAPTER 4. ANTI-HEBBIAN LEARNING

Direction 1 2 3 4 5 Value
First PC 0.584 0.811 0.000 -0.002 -0.002 | 59.3
Second PC | -0.006 0.001 -0.469 -0.617 -0.632 | 33.7
Third PC | -0.811 0.584 -0.010 0.005 0.011 7.1
Fourth PC 0.012 -0.008 -0.876 0.235 0.421 24
Fifth PC 0.002 -0.001 0.111 -0.751 0.650 0.5

Table 4.3: Principal Components of the new data calculated using a standard statistical package

Interneuron 1 | 0.005 0.000 0.465 0.616 0.635
Interneuron 2 | 0.391 0.518 0.001 0.000 0.000
Interneuron 3 | 0.324 0.467 0.001 0.000 0.000
Interneuron 4 | 0.296 0.409 0.001 0.000 0.000

Table 4.4: A 5-4 interneuron circuit operating on the data of the previous table

Principal Component. Note that the weights marked only “0” have been stopped from becoming
negative.

To further investigate the network’s potential, data from a distribution whose Principal Com-
ponents are shown in Table 4.3 was used as input to the network: it should be clear that there
is a sharp division in the data between the first two directions and the last three. It might seem
to be possible for the network to converge to a mixture of the above weights e.g. the direc-
tions {0.584,0,0.469,0,0} and {0,0.811,0,0.617,0.632} span the subspace of the first two Principal
Components. This does not happen; the network converges to the first 2 Principal Components
themselves (see analysis in the next Section).

It is impossible for the network using the positive weight constraint to converge to any direction
containing a negative component i.e. from the third onwards. To find out how the network would
respond to a situation where there were more degrees of freedom than possible directions to be
found, we used the network with these 5 inputs and 4 interneurons (with the constraint that no
weights are allowed to become negative). The results are shown in Table 4.4.

It is clear that the first interneuron has found the second Principal Component while the
second, third and fourth interneurons have found the first Principal Component. This is a general
finding with this type of network with the non-negative weight constraints.

This form of information extraction may be of importance if the data has been preprocessed in
order to have isolated the “texture” data from the “colour” data from the “smell” data etc.. This
type of distributed data-processing is known to happen in biological neural networks. However,
this type of data-processing cannot be an initial data-processing function. The information must
first be differentiated into disjoint dimensions: if there is any overlap between the dimensions in
which the data exists, no more than one Principal Component per data set is possible.

We note that the length of the total vector of weights into interneurons 2, 3 and 4 is one unit.
This is convenient in that it dispels the end of “grandmother cells”- that elusive neuron which
would recognise only your grandmother. A grandmother cell is inconvenient in that damage to
such a cell might lead to your never recognising your grandmother again. If such recognition is
spread over a group of neurons such as is shown here, this provides a robustness in the network
which has been missing up till now.

Asymmetry in Distance

Another possible model is suggested by the innate asymmetry in real biological neural networks
in terms of the distances between neurons. This will manifest itself as different times to respond
to a signal depending on the distance which the signal must travel (assuming that there is some
uniformity in the speed of information transfer).

This differential is used in a new model where different interneurons take different lengths of
times to respond to the input signal x. Therefore while the activation from the input neurons

4.4. THE NEGATIVE FEEDBACK MODEL 63

\Y% W
1.000 0.006 -0.010 | 1.000 0.006 -0.010
-0.000 -1.000 0.013 | -0.000 -1.000 0.013
0.012 0.023 1.000 | 0.012 0.023 1.000
0.000 -0.003 0.004 | 0.000 -0.002 0.004
-0.002 -0.004 -0.001 | -0.002 -0.004 -0.001

Table 4.5: Results of the Differential Distance Model; each column shows the converged weights
between one interneuron and the input neurons after learning on data from independent zero mean
Gaussians with descending variances

is transmitted to all interneurons at the same time, each interneuron’s response takes a different
length of time to feedback to the input neurons. Thus the negative feedback is felt and used in a
phased manner and learning takes place immediately the returned signal is received. Therefore,
we embed the learning process in the feedback loop, so that we now postulate a learning and
activation-transmission process which takes place in the order in which the following equations
are given.

initial value of x = x(0) = x (4.20)
z = Wx (4.21)

x(t) = x(t—-1)—vi(t—1)z (4.22)

Awi(t) = a(t)z(t)x!(t) (4.23)

Avi(t) = a(t)z(t)x?(t) (4.24)

where e.g. v;i(t — 1) indicates the value of the vector of weights v; at the time t-1 into the ‘"
output neuron. The process (defined by Equations (4.22), (4.23) and (4.24)) is repeated for each
interneuron in turn. This corresponds to the feedback from the interneurons being received at
different times (perhaps depending on the physical distance which the activation must traverse,
perhaps depending on the efficiency of transmission of the interneuron). This process results in the
weights of the first (fastest) interneuron learning the first Principal Component, the second fastest
interneuron learns the second Principal Component etc.. Experimental results from a network
with 5 inputs and 3 interneurons are given in Table 4.5. In order to demonstrate the effect of
the network, we have carried out our simulations on the same type of data as previously. Clearly
the first 3 principal components have been found by the 3 interneurons. Note that the crucial
difference between this model and previous models is the embedding of the learning process in the
activation reception process. When this is done, the resulting network is more similar to a Sanger-
type network rather than an Oja-type network. The k! interneuron is learning to extract the
maximum amount of information which is left after the previous (k-1) interneurons have extracted
their information.

Equivalence to Sanger’s Algorithm

Sanger’s algorithm has, as a learning rule
i
Awij = ayi(z; — Y yrwr))
k=1
in a totally feedforward architecture, where the outputs at y are given by
Yi = Z Wij Ty
J

We can show that the interneuron network using the rules determined by Equations 4.20 - 4.24 is
equivalent to Sanger’s algorithm:

64 CHAPTER 4. ANTI-HEBBIAN LEARNING

y

The anti-hebbian
synapse

Figure 4.7: The synapse from x is modified using anti-Hebbian learning.

Let the x values be indexed with the time of feedback from the interneurons. Then,
x;(0) is the initial value of z; at time 0. i.e. z;(0) = x; originally
x;(1) is the value of z; after receiving the feedback activation from the first (and hence closest)
interneuron. i.e. z;(1) = 2;(0) — v1;21. Note that the time values are only ordinal indices - they
do not imply equal intervals between feedback activations.

Similarly, if ;(2) is the value of z; after receiving feedback from the first 2 interneurons, then

Zj (2) = .Z'j(].) — U522 = I](O) — kajzk (425)
k=1

In general, if ;(4) is the value of x; after receiving feedback from the first i interneurons,

12 [
I](l) = I](O) — Z’Ukak =T; — Z VkjRk (426)
k=1 k=1

Therefore,
A’Uij = Awij = aa:j(i)zi

= az;(0) - kajzk)zi
k=1

i
= az(z; — kajzk)
k=1

4.5 The Anti-Hebbian Synapse as Energy Minimiser

Palmieri derives the anti-hebb synapse as a self-organising energy system using the following
argument. Figure 4.7 shows a single idealised neuron with one linear synapse. The output of the
neuron is given by

y=lz+wz=z+wzr (4.27)

Notice that there is only one weight which can be modified. Anti-hebbian learning changes the
strength of the synaptic connection proportional to the activation of the input x and the output
y but with a negative sign.

Aw = —azxy (4.28)

We can view the anti-Hebbian synapse as attempting to turn off the neuron to which it is attached.
If we treat x and z as random variables (each instances of distributions which may or may not
be related to one another), the aim is to change the value of w so that we reach the minimum

4.5. THE ANTI-HEBBIAN SYNAPSE AS ENERGY MINIMISER 65
expected value of the squared output y i.e. we are changing w to reach min,, E(y?), the minimum
energy output. Now we can change w to get to this minimum by calculating

IE(y*)
ow

9 2
= a—wE((wx +2)%)
= 2E((wz + 2)z)
= 2wE(z?) + E(x2))

To reach a minimum we change the weights proportional to the negative of this derivative i.e.

dw o BE(?”z), and at a minimum, when oBW) 0, we have the optimal w* equal to
dt ow ow
E
w = - E&2) (4.29)

This assumes of course that such a minimum exists. We then have the minimum value of the
output energy as

min E(y®) = E(2%) 42w E(zz) + (w*)?E(2?)
_ B - E(xg)(mEz)(xz)

= E(2*)+w*E(z2)
Note that, at the optimal value, w*, we have x and y decorrelated since
E(zy) = E(z(w*z + 2)) = w*E(2?) + E(zz) =0 (4.30)

since w* = —%(%. So in attempting to minimise the output energy we have decorrelated the x
and y values.

66

CHAPTER 4. ANTI-HEBBIAN LEARNING

Chapter 5

Objective Function Methods

This chapter deals with a general class of methods which involve setting an objective function for
the network and then optimising the value of that function using gradient based learning. The
commonest type of objective function network uses minimisation of error as the the criterion and
so such networks are said to be performing error descent. As we shall shortly see this is not the
only possible criterion for ANNs.

Error descent methods are usually associated with supervised learning in which we must provide
the network with a set of example data and the answer we expect to get when the network is
presented with that data. So we present the input to the neural net, feed the activation forward
through the weights currently in the network and then compare the actual output we get with
the target output which we knew we wanted with this set of input data. We can then adjust
the weights in the network so that the answer we wish to get (the target answer) is more likely
next time the network is presented with this or similar data. The introductory tutorial we met in
Chapter 1 was based on supervised learning. In this chapter we will use error descent sometimes
in such a way that it may be considered an exercise in unsupervised learning e.g. by using the
network for autoassociation which is sometimes described as self-supervision.

5.1 The Adaline

The Adaline is a simple one-layered neural network.

Let the P! input pattern be x?, with corresponding output of’ and target . So of =
> Wiy is the output of a single output neuron network. Then the sum squared error from using
the Adaline on all training patterns is given by

E= ZP:EP = %Z(tp —of)? (5.1)

P

where the fraction is included due to inspired hindsight. Now, if our Adaline is to be as accurate
as possible, we wish to minimise the squared error. To minimise the error, we can find the
gradient of the error with respect to the weights and move the weights in the opposite direction.
If the gradient is positive, the error would be increased by changing the weights in a positive
direction and therefore we change the weights in a negative direction. If the gradient is negative,

in order to decrease the error we must change the weights in a positive direction. This is shown
oE*
dwj *
We say that we are searching for the Least Mean Square error and so the rule is called the

LMS or Delta rule or Widrow-Hoff rule. Now, for an Adaline with a single output, o,

diagrammatically in Figure 5.1. Formally Apw; = —y

OET _ OB 30"
ow; 0o dw;

(5.2)

67

68 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Error

Positive

Negative
9 gradient

gradient

/

o Weight
Minimum

error

Figure 5.1: A schematic diagram showing error descent. In the negative gradient section, we wish
to increase the weight; in the positive gradient section, we wish to decrease the weight

and because of the linearity of the Adaline units (i.e. 0 =3, w;z;),

9"
Bwj J
EP
aa—P = —(t" —o") and so
o
Apw; = i oP).:U}D

This has proved to be a most powerful rule and is at the core of almost all current supervised
learning methods. But it should be emphasised that nothing we have written has guaranteed that
the method will cause the weights to converge i.e. for learing to cease. It can in fact be proved
that this method will give the best (in a least mean square error sense) approximation to the
function being modelled.

The tutorial we met in Chapter 1 walks through an example problem using the Delta rule.

5.2 The Backpropagation Network

An example of a multi-layered perceptron (MLP) is shown in Figure 1.3. Activity in the network
is propagated forwards via weights from the input layer to the hidden layer where some function
of the net activation is calculated. Then the activity is propagated via more weights to the
output neurons. Now two sets of weights must be updated - those between the hidden and output
layers and those between the input and hidden layers. The error due to the first set of weights
is calculated using the Least Mean Square rule which we used in the Adaline network; however,
now we require to propagate backwards that part of the error due to the errors which exist in the
second set of weights and assign the error proportionately to the weights which cause it. You may
see that we have a problem - the credit assignment problem - in that we must decide how
much effect each weight in the first layer of weights has on the final output of the network. This
assignment is the core result of the backprop method.

We may have any number of hidden layers which we wish since the method is quite general;
however, the limiting factor is usually training time which can be excessive for many-layered
networks. In addition, it has been shown that networks with a single hidden layer are sufficient
to approximate any continuous function (or indeed any function with only a finite number of
discontinuities) provided we use non-linear (differentiable) activation functions in the hidden layer.

5.2. THE BACKPROPAGATION NETWORK 69

oSN
Inpus LX) Output
O Y V
o ©
-

Figure 5.2: The net which will be used for the solution of the XOR problem using backpropagation

5.2.1 The Backpropagation Algorithm

A derivation of the backpropagation algorithm is given in an Appendix C. You will only require
to know the algorithm not derive it.
The whole algorithm is now given in a ‘how-to-do-it’ form:

1. Initialise the weights to small random numbers
2. Choose an input pattern, x, and apply it to the input layer

3. Propagate the activation forward through the weights till the activation reaches the output
neurons

4. Calculate the ds for the output layer 67 = (£ — oF) f'(Actl’) using the desired target values
for the selected input pattern.

5. Calculate the ds for the hidden layer using 67 = Zjvzl 6 wji. f' (Act])
6. Update all weights according to Apwg; = .0 .0
7. Repeat steps 2 to 6 for all patterns.

A final point is worth noting: the actual update rule after the errors have been backpropagated is
local. This makes the backpropagation rule a candidate for parallel implementation.

5.2.2 The XOR problem
You will use the net shown in Figure C.1 to solve the XOR problem. The procedure is

Initialisation .

e Initialise the W-weights and V-weights to small random numbers.
e Initialise the learning rate, n to a small value e.g. 0.001.

e Choose the activation function e.g. tanh().

Select Pattern It will be one of only 4 patterns for this problem. Note that the pattern chosen
determines not only the inputs but also the target pattern.

Feedforward to the hidden units first, labelled 1 and 2.

act; = wip +wiixry + wiax2
acty = Wy + W21T1 + W22
o1 = tanh(acty)

02 = tanh(acts)

70 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Now feedforward to the output unit which we will label 3

acty = w10 +v1101 + V1202

o3 = tanh(acts)

Feedback errors calculate error at output

03 = (t—o03)*f'(03) = (t - o03)(1 - 03)

and feedback error to hidden neurons

& = 3o f(o1) = dzv11 (1 —0})
62 = d3v12f'(02) = G3012(1 — 03)
Change weights

Aviy = 1.03.01

Aviy = 1.03.09

Avyg = n.d3.1

Awyy = n.01.11

Awyy = 1.01.2T9

Awyg = n.d;.1

Aws; = n.02.11

Awgy = 1.02.2T2

Awyy = n.02.1

Go back to Select Pattern

5.2.3 Backpropagation and PCA

Consider a two-layer (of weights) neural network such as in Figure 1.3. We are going to use such
a network for autoassociation i.e. to train a network to associate each input with itself. We use
a network with n inputs, n outputs and m hidden neurons where m<n. For autoassociation, we
present the input data to the input neurons, propagate the data forward through weights to the
hidden neurons and then through the output neuron’s weights to the output neurons. The target
pattern is then equal to the input pattern. We will show that such a network performs Principal
Components Analysis of the data when the network is a linear network i.e. where each neuron
merely performs a weighted summation of the inputs. Another way of describing this situation is
to state that the activation function f() is the identity function i.e. f(Act) = Act.

Let us denote by A the matrix of weights from inputs to hidden neurons and by B the matrix
of weights from hidden neurons to outputs. Then we have

hi =

Yi

Theny =

Z aijsnj
J

> bijhy
J

BAx

Let the target pattern be t when the input pattern is x. Then the error is given by

Eap = E((t — BAx)?)

5.3. USING PRINCIPAL COMPONENTS 71

So in the special case of autoassociation, we wish to minimise the mean reconstruction error
Eap = E((x — BAx)?) (5.4)

We may write W = BA since we have only linear processes and so y = BAx = Wx. Now one
definition of the principal component projection is that it is equal to that matrix P which minimises
the mean square projection error i.e. which minimises

E((x - Px)*) (5.5)

which is exactly our aim with the backprop rule above. This suggests that the linear backprop
network converges only when BA=P and this can in fact be proved. Now A is m*n and B is
n*m so that BA is n*n, a square matrix which from the above must have m columns equal to (a
rotation of) the first m eigenvectors of the covariance matrix of the input data. But notice that
this is not a uniquely determined minimum: the actual minimum is found for any rotation of the
subspace.

So the minimum value of the function E4 p will be found when BA defines a projection of the
data on the Principal Subspace of dimension m, where m is the number of hidden neurons. Notice
it follows that the loss of information is equal to the projection of the data on the subspace we
have discarded i.e. on the other n-m directions. So the information loss is

>N (5.6)

where)\; is the it" eigenvector of the data’s covariance matrix.

5.3 Using Principal Components

As well as having neural networks which can find Principal Components, we can use PCs to
facilitate a neural network’s learning.

5.3.1 Preprocessing

The backpropagation network can be slow to converge. One of the reasons for this is that the
weight changing process often consists of conflicting demands due to the interacting nature of
the network weights on the error signal. This interaction is not relieved by momentum terms or
adaptive learning rates.

One possibility is to use Principal Components Analysis as a preprocessing tool for backpropa-
gation networks. L.e. we will project the input data onto its Principal Components before feeding
it to the backpropagation network. Then we would have e.g. x[1] = the projection of the input
data onto the first PC
x[2] = the projection of the input data onto the second PC etc
This is effective since the Principal Components are uncorrelated with each other and so the pro-
jections of the data on the PC directions are orthogonal to one another and so the learning for
each weight interferes less with that of other weights. It can in fact be shown that the Hessian !
of the error with respect to the weights is more nearly diagonal when we use principal component
preprocessing and so we can use different learning rates appropriate to the size of the error in each
PC direction: if a PC direction has a large error we use a large learning rate in this direction.

This type of preprocessing is of most use when we have high volume, high dimensional data
when the PCA is used to cut the dimensionality of the data in such a way as to minimise informa-
tion loss. Speech signal processing and image proceessing using backpropagation networks have
both benefited from PCA preprocessing; in the former case, the processed signals have then been
categorised as particular vowels; in the latter, face recognition has been a typical problem.

In both cases there has been a substantial speed up in the rate of learning.

Lthe matrix of second derivatives of the error with respect to the weights

72 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Figure 5.3: A set of data points may be approximated by either the straight line or the curve.
Either would seem to fit the data; however, the line may give a better generalisation performance
(on the test set) than the curve which is actually producing a lower error on the training set.

5.3.2 Principal Components Pruning

When training and testing a neural network, we usually have separate training and testing data
sets. While we wish to see as good a performance as possible on the training set, we are even
more interested in the network’s performance on the test set; we already know how we wish the
network to perform on the training set, what we are interested is how well it will perform on new
data i.e. data which it has not seen during training. So we are looking for a measure of how well
the network generalises. There is a trade-off between accuracy on the training set and accuracy
on the test set.

Now a perfect memory of the patterns which are met during training is essentially a look-up
table and look-up tables are discontinuous in that the item looked-up either is found to correspond
to a particular result or not. Also generalisation is important not only because we wish a network
to perform on new data which it has not seen during learning but also because we are liable to
have data which is noisy, distorted or incomplete. Consider the set of 5 training points in Figure
5.3. We have shown two possible models for these data points - a linear model (perhaps the line
minimising the squared error) and a polynomial fit which models the five given points exactly.

The problem with the more exact representation given by the curve is that it may be misleading
in positions other than those directly on the curve. If a neural network has a large number of
weights (each weight represents a degree of freedom), we may be in danger of overfitting the
network to the training data which will lead to poor performance on the test data. To avoid this
danger we may remove connections/weights but how do we decide which weights are the important
ones and which are the ones which it is possible to remove without damaging the power of the
network?

First attempts at pruning a network used the criterion of removing weights which had small
absolute value. This however may remove important weights since such weights can have a crucial
responsibility in correctly approximating the data set. In addition some weights may have a large
magnitude but be unnecessary in that other weights also have learned the same information.

Levin, Leen and Moody have developed a method known as Principal Components Pruning;:

1. Train the network using the backpropagation algorithm
2. Calculate the correlation matrix of the input training data.
3. Rank the Principal Components starting with those of largest eigenvalues.

4. Remove the lowest eigen-nodes. This is equivalent to projecting the data onto the Principal
eigenvectors.

5.3. USING PRINCIPAL COMPONENTS 73

class

class

Figure 5.4: The Double Convex Regions.

5. Check the effect of the removal on the test data. If the validation error is not increased
accept the removal. Otherwise not.

6. Project the weights out of the layer onto the Principal Subspace validated above. W <«
WC,CF where C} is the matrix whose columns are the largest | eigenvectors of the correlation
matrix.

7. Repeat this process through all layers till all eigennodes have been pruned.

Notice that when we prune an “eigen-node” we are not actually removing a node from the network,
we are merely removing that part of the node’s activation which is not a projection onto the
first(largest) 1 Principal Components.

We can discuss the algorithm in the light of our previous analysis of linear backpropagation:
we see that we are basically making sure that the network is capturing those directions in the
input data which contain most information and we are simply slicing off those eigen-nodes which
have responsibility for low information directions.

This provides a fast easily implementable algorithm.

The Double Convex Classification

One of the standard classification tasks for supervised learning networks is that of classifying
points from two classes which interact in the way shown in Figure 5.4. The task is to train a
backpropagation network to differentiate the two classes given examples from the classes. The
task is a difficult one since the two classes are non-linearly separable.

Girolami used initially a network with 2 inputs (the x and y coordinates), H hidden neurons
and 1 output neuron where the output has value 0 if the network classifies the input as belonging
to class A and 1 if the network classifies the point as belonging to class B; however a network with
two outputs was found to perform better. The value of H is the crucial factor: if H is too large
the network will learn to model the individual points; if H is too small the network will not have
enough power to model the distribution. It is possible to use trial and error to show that a value
of about 45 is optimal for this problem.

Thus there are two inputs to the network comprising the x and y coordinate of the input and
two outputs each of which represents one of the classes. Girolami showed that starting with a
2*90*2 network, there was virtually no increase in test error till the network had been pruned to
under 50 eigennodes at which point the error began to increase substantially.

74 CHAPTER 5. OBJECTIVE FUNCTION METHODS

5.4 Cross-Entropy as the Objective Function

We have previously used only minimisation of error as the criterion to determine convergence of the
backpropagation algorithm. However the algorithm is quite general: you can use it to maximise or
minimise any objective function which is differentiable with respect to the parameters (weights)
of the function.

Consider first the case in which we wish to use an ANN to distinguish between the members
of two classes, ®; and ©,. It would be possible to have two outputs, one for each class. But on
the grounds of parsimony alone we will opt for a network with only a single output; we would like
the output of that neuron to represent the posterior probability for one class, e.g. ©; so that

P(O1x) = y
P(O:]x) = 1-y

where x is the input data. If we have a target coding scheme which states that t=1 if the input
comes from class ©; and t=0 if the input comes from class ©,, these can be combined into the
single expression:
p(tx) = y' (1 —y)'" (5.7)
remembering that u® = 1,Vu.
Consider first if we have a data set comprising only two points, (t1,x1), (t2,%2). Then we wish
to maximise the probability of this distribution i.e. to maximise

p(ti|x1 and ta|xz) =y (L —y1)' ™0 wyl2 (1 — yo)' " (5.8)

since these events are independent.

In general, if we have P different patterns, subscripted by the letter ¢ so that y; is the actual
output when the target output is ¢; then the probability of obtaining the complete set of training
data and corresponding targets (assuming the training examples are drawn independently from
the the distribution of examples) is

P
P(training set) = H yr(l—y)th (5.9)
i=1

Our aim is to maximise this probability. We usually find it more convenient to work with the
logarithm of this value which will be negative since all the individual values are < 1. So we will
attempt to minimise the negative of the logarithm of the above probability i.e. to minimise

P
E —lnHyi"(l —)t
i=1

P
= > {In(g)h +1n(1—y,) =)

i=1

P
_ Z{tl In Yi + (]_ — ti) In (]- - yt)}

by using gradient descent. The term E is known as the cross entropy and is the one we wish to
minimise.

Now if we differentiate this error function with respect to y; (as required by the backpropagation
algorithm) we get

OB _ _ti_1-ti,
yi vi 1—wus
_ _ti—tyi —yi iy
yi(1—y:)
Yi —t;

yi(1 — i)

5.5. THE I-MAX MODEL 75

and so the absolute minimum of E occurs when y; = t;, Vi since this is the point at which BE =0.
The double helix classification problem of the last section would be one which could use this
objective function easily.

A nice property of this error function is that if we are using the logistic function y = g(a) =
m we find the derivative of the error with respect to the activation, a is

OF OF 0y; i — i
= % y—)-yi(l —Yi) =yi—ti (5.10)

" Ba; Oy; 0a; yi(l —y;

where we have used the special properties of the logistic function that ¢'(a) = g(a)(1 —g(a)). This
very simple form of the d; which is the term which is backpropagated in the algorithm makes this
measure particularly appealing.

At the minimum, (where ¢; = y;), the cross-entropy is equal to

E==) {t:lnt;+ (1 —t;)In (1 —t;)} (5.11)

i

It is possible to extend this measure of classification to both several classes and to continuous
distributions. For example, if we have a continuous distribution in which p(x) is the probability
distribution of the target and q(x) is the probability distribution of the output given the input x,
the general measure of cross-entropy is given by

- / p(x) In g(x)

- [peoma0 + [peonpex) - [500 1px)

@— X)In X
- [#0w 23~ [peotap
D(pllq) + H(p)

From this we can see that minimising the cross-entropy between target and actual outputs is
equivalent to minimising the Kullback-Leibler distance between the distributions (given that the
entropy of the target distribution, the last term in the above sequence, is unchanged by the learning
procedure). In other words, we are making the output probabilities as close as possible to the
probability distribution of the target values.

Finally we note that this error function requires an output between 0 and 1 and so a sigmoid
(logistic) function at the output layer is needed as well as a sigmoid at the hidden layer.

E

5.5 The I-Max Model

Becker and Hinton have an interesting model using error descent learning. They begin with the
question “What is the best way to model the input distribution to encode interesting features in
the data” and come up with the observation that they wish to constrain the learning problem
by restricting the features of interest to those which are liable to be useful for later perceptual
processing. In a general non-specific environment, there are regularities (“coherence”) in that any
part of the environment is very likely to be predictable from other close parts of the environment
e.g. any object has a finite compact surface area and so there exists a set of points all physically
close to one another which share visually similar features. Similarly there exists temporal coherence
in our environment - only in Star Trek can objects vanish from one location and reappear in
another. Also there is a coherence across sensory modalities - we generally see and smell and
feel an orange at a single instant in time. This suggests that we should use coherence to extract
information from the input data; one objective that might be appropriate for a network would
be the extraction of redundancy (which gives rise to coherence) in raw sensory data since we do
not, for example, have to use sight, smell and touch of an orange in order to identify the orange.

76 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Maximise |

neurons @

Image patch 1 Image patch 2

Figure 5.5: Two neurons receive inputs from adjacent parts of the image. Learning attempts to
maximise the mutual information between the neurons’ outputs.

This is shown diagrammatically in Figure 5.5 in which the two output neurons are attempting to
reduce the redundancy in their outputs based on their reaction to the input data which comes
from the same source.

We could perform error descent on the squared error of the difference between the outputs
but one difficulty with this is that the network could simply learn to output a constant value at
both neurons a and b. So we need to force the neurons to extract as much information as possible
but still ensure that they are agreeing. This suggests that the optimisation criterion should be to
maximise the mutual information between the two neurons

I., = H(a)+ H(b)— H(a,b)
= H(a) — H(alb)
(or = H(b)— H(bla))

Written this way we can see that by maximising the mutual information between the neurons, we
are maximising the entropy (the expected information output) of each neuron while minimising
the conditional entropy (the uncertainty left about each neuron’s output) given the other’s value.
So we wish each neuron to be as informative as possible while also telling us as little as possible
about the other neuron’s outputs.

Now if we have two binary (1/0) probabilistic units, we can estimate the mutual information by
sampling their activity over a large set of input cases. This gives us an estimate of their individual
and joint probabilities and so the mutual information can be calculated. If the expected output of
the j* output neuron on the K'” training example is sf i.e. s; = E(y;) when the input pattern
is K, Becker and Hinton show that the partial derivative of the mutual information with respect
to the expected output on training case K is

Olyisy; _ gy Si_ Ky Sif Sij
dsk P*(log 5 s; log P s7log Sﬁ) (5.12)
but I will not expect you to memorise this formula! Notice that here P is the probability of
training case K and s; = E(1 — y;) etc.

The point which we wish to highlight is that we have a method of changing the weights (e.g.

by least mean square learning) to maximise the mutual information.

Aw =x o = gﬁ

Oow 0Js Ow
It is possible to extend the IMax algorithm to both continuous variables and to multi-valued
spatially coherent features; the latter is interesting in that it uses a general method of ensuring

that every output is a valid probability between 0 and 1. If we have a discrete random variable
A€ {ay,...,an}, we can define the probability of the i*" event as

(5.13)

exp (z;)
Yoo exp ()

which is guaranteed to give a value between 0 and 1 and to ensure that the probabilities sum to 1.

P(A=a)= (5.14)

5.5. THE I-MAX MODEL 7

Figure 5.6: The Starship Enterprise.

5.5.1 An Example

Becker has used this type of network on simplified random-dot stereograms. A random dot stere-
ogram is shown in Figure 5.6. We can focus on the Enterprise by allowing our eyes to focus beyond
the plane of the picture and get the coherence in the image from the non-coherent random dot
stereogram; the input to each eye is maximally informative about the input to the other when we
focus on the starship. However the randomness need not be in dot format(Figure 5.7).

Becker has performed a number of experiments such as having networks learn particular fre-
qunces from a number of different sets of frequencies or finding the coherence in a random dot
stereogram image. One of the simplest however was using a set of simple, binary random-binary
stereograms such as shown in Figure 5.8a.

Each input vector consists of a one dimensional random binary strip which corresponds to the
right image and a shifted version of this which corresponds to the left image. The right image
in each case is totally random and the left image is generated by choosing a randomly chosen
global shift. The only local property is the invariant between images shift corresponding to the
depth in a random dot stereogram. Now the neurons are attempting to maximise their mutual
information and so the only way that they can do this is by representing the shift information.
The multi-layered version is shown in Figure 5.8b. Two different global shifts were used - one
pixel forward or one backward.

Becker found that if she used a small training set, the neurons learned features about the
training set as well as the global shift. Since the features of the training set were randomly
generated this is irrelevant information. As she increased the size of the training set, the network
learned only the global shift. The probability that only the shift will be learned can be increased
by increasing the number of receptive fields while the lower level neurons can respond to more
local features.

78 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Figure 5.7: Extraction of coherent information

However since shift is a higher order feature of the data - it cannot be learned from any single
pair of inputs - we require a multi-layered perceptron to accurately detect the shift operator. In
this case the best results are achieved by maximising the mutual information at the top layer only
and then backpropagating the error to the first layers. The output neurons are in a position to
respond to global features.

If we simply extend the architecture in Figure 5.8a, to multiple receptive fields with one unit
receiving input from each receptive field, each neuron now tries to maximise the sum of its pairwise
mutual information from each of the other neurons. Interestingly, once one pair of neurons “catches
on” to the shift feature, their mutual information becomes very large and convergence accelerates
which provides a stronger shift-tuned signal for the other neurons and helps their convergence.

5.6 Contextual Information

Kay and Phillips? have developed a neural network which attempts to use contextual information
to help extract information from input data. It is clear that we use such information e.g. to
give ourselves clues about the exact meaning of the input data. Since their interest is in mod-
elling biological processes, they use only local processing and investigate ways of helping neurons
distinguish relevant from irrelevant information at early stages of processing.

They wish neurons to use contextual information in a way that is not confused with the input
data and so have two entirely different sets of inputs to each neuron: the normal feedforward data
connections and lateral context connections.

They envisage a network with m receptive field units and n contextual field units and have a
probabilistic mechanism for the firing of the neuron. If the inputs are x and the contexts are ¢

2working in the University of Stirling, to give you contextual information.

5.6. CONTEXTUAL INFORMATION 79

T

0
1

@

1
0

o @ waimisel >
NS N

AN
1]olzfo/ ¢ 4 1 1 boa]o]afo[s][a][do]l2 a1l a1 |
o/1jo/of¢4101bhfolalalaldfol 1094

Figure 5.8: In (a), two neurons recieve as input random binary patterns in which the left half is
a shifted version of the right half. The inputs to the two neurons contains no other information
(other than the common shift). The learning algorithm adjusts the weights of the network to
maximise the mutual information between neurons over the whole set of training patterns.

In (b), the first layer of weights is trained to extract some low order features and the next layer
hierarchically combines these into more accurate feature detectors.

80 CHAPTER 5. OBJECTIVE FUNCTION METHODS
then they define the activation derived from each by two separate values

m
> wiw;
i=1

n
> i
i=1

They now wish to combine these inputs but in a way that allows the normal input to drive the
firing of the output neuron but allows the context to affect the magnitude of the output neuron’s
response. Specifically, the activation function is such that

Sx

Se

1. If the weighted sum of inputs, s,, is zero there is no output.
2. If the weighted sum of contexts, s., is zero, the output is the weighted sum of inputs, s,.

3. If the contexts and inputs agree (the sign of s, and s. agree) the output should be greater
than that produced by the inputs alone.

4. If the contexts and inputs disagree(the sign of s, and s, are different) the output should be
less than that which would be produced by the inputs alone.

5. Only the inputs should determine the sign of the output i.e. the context cannot change the
direction (positive or negative) of the output decision.

They use the following activation function:
1
flsz,80) = Esx(l + exp (2s,8c)) (5.15)

which has the above qualities. Now they use a binary probabilistic neuron which is more likely to
fire the larger the above function is:

1

p=PY =1X=x,C =c) T+ o (—Fmsl) (5.16)
Since the neuron is binary, its output is either 1 or 0. If the value of the activation function is
large, the probability of firing (given the current input x and context c) is large since the bottom
line of the right hand side will then tend to 1. If on the other hand the activation function is
largely negative the probability will tend to 0. Finally if the activation function is around 0 (which
can only happen when s, is around zero or the context is strongly disagreeing with the inputs)
the probability of firing is around % The probability density function of firing is shown in Figure
5.9 as a function of both inputs and context.

5.6.1 Information Transfer and Learning Rules

We see from Figure 5.10 the relationships between the various sets of information possible. We
can require a number of different objective functions to be optimised depending on our particular
criterion of success. For example, we may require the network to minimise the uncertainty in
the distribution of outputs given the inputs and context units information. This is equivalent to
minimisation of H(Y|X,C). Now this conditional entropy can be calculated since we know that
the probability that a particular neuron will fire is p. Thus

H(Y|X,C) = —E(plogp+ (1 —p)log(l —p))x,c (5.17)

where the expectation is taken over the joint distribution of inputs, X, and contexts, C. Now we
calculate

OH(Y|X,C) p Of

Em E(p(1 ~ p)log 0,)x,c
OH(Y|X,C) p_ Of

5 —E(p(1 —p)log 1= p s, CO)x,c

5.6. CONTEXTUAL INFORMATION 81

1/ (1+exp(- 0.5*x*(1l+exp(2*x*y)))) —

Figure 5.9: The probability function associated with the embedding of contextual information in
input activation.

H(Y) = H(Y[X,C) + I(Y;CIX) + I(Y;X;C) + I(Y;X|C)

Figure 5.10: The information in the output can be decomposed into the various conditional and
unconditional mutual informations and the residual entropy.

82 CHAPTER 5. OBJECTIVE FUNCTION METHODS

inputs W
W, outputs
contexts)

Figure 5.11: A simple network showing a single output neuron with two inputs and two inputs
from contextual units.

w1 w2 (% (%)
1.2 0 07 0

Table 5.1: The trained network has learned to associate the input with the context with which it
was correlated.

Again I do not expect you to memorise these equations but you should know the general method.
Kay and Phillips in fact go further and define a class of optimisation criteria based on

F=IY;X;C0)+ aIY;X|C) +aI(Y;C|X) +a3H(Y|X,C) (5.18)

By adjusting the various parameters, a1, a2,as we can adjust the importance of the various sub-
criteria, which make up F. They extend the above derivation of 8H(§JUX’C) and ZHYIXC) ¢4 the
other sub-criteria which provides a general model for optimising the learing rules of the network

in the usual way.

5.6.2 Results

Consider the network shown in Figure 5.11. We have two bipolar (1/-1) input neurons and two
bipolar (1/-1) context inputs thus giving 16 possible patterns. Only the X; and Cj neurons’
values were correlated. We select one of the simplest of the family of objective functions described
above, that of maximising F' = I(Y; X; C) i.e. maximising the joint information between inputs,
output and context units. When we set the correlation between C; and X; to be 0.8 (a very high
correlation), we find that the weights in Table 5.1 are learned.

Essentially the network has learned the correlation between the input and context unit which
were correlated but has ignored the non-information in the other two units. In this case any new
data is more liable to be classified in the first class if it also is presented with the same context. If
we create data such that a context unit and an input have negative correlation, this is reflected in
the weights - one being positive, the other negative while, as before, the other two remain about
0.

5.7 The Paisley Connection

5.7.1 Introduction

Canonical Correlation Analysis is used when we have two data sets which we believe have some
underlying correlation. Consider two sets of input data, from which we draw iid samples to form a
pair of input vectors, x; and x2. Then in classical CCA, we attempt to find the linear combination
of the variables which gives us maximum correlation between the combinations. Let

Yypr = WiXjp = Zwljmlj (519)
J

5.7. THE PAISLEY CONNECTION 83

Y2 = W2X2=Zw2j$2j (5.20)
J

Then we wish to find those values of w; and wy which maximise the correlation between y; and
y2. Whereas Principal Components Analysis and Factor Analysis deals with the interrelationships
within a set of variables, CCA deals with the relationships between two sets of variables. If the
relation between y; and y- is believed to be causal, we may view the process as one of finding the
best predictor of the set x5 by the set x; and similarly of finding the most predictable criterion
in the set x5 from the x; data set. Thus, we later review a data set in which a set of exam results
are split into those achieved by students when they had access to their books and those marks
obtained when the students were denied their books during the exam. We might wish to use a
student’s open book exams to predict how well he/she might do in the closed book exams.

One way to view canonical correlation analysis is as an extension of multiple regression. Re-
call that in multiple regression analysis the variables are partitioned into an x;-set containing q
variables and a z»-set containing p =1 variable. The regression solution involves finding the linear
combination of x; which is most highly correlated with xs.

Let x; have mean p; and x, have mean ps. Then the standard statistical method lies in
defining

In o= B{(xi—m)(x1—p)" } (5.21)
Toy = B{(x2 — pa)(x2 — p2)"} (5.22)
o= B{(x1—m)(x2 —p2)"} (5.23)
and K = $,,°5,5,) (5.24)

where T denotes the transpose of a vector. We then perform a Singular Value Decomposition of
K to get

K= (a17a27"'7ak)D(617627"'76k)T (525)

where a; and 3; are the standardised eigenvectors of K K™ and KT K respectively and D is the
diagonal matrix of eigenvalues.

Then the first canonical correlation vectors (those which give greatest correlation) are given
by

wi o= S (5.26)
_1
Wy = 2222 Bl (527)

with subsequent canonical correlation vectors defined in terms of the subsequent eigenvectors, «;
and BZ

In this chapter, we present a neural implementation of CCA which adaptively learns the optimal
weights to maximise correlations between the data sets.

5.7.2 The Canonical Correlation Network

The input data comprises two vectors x; and x,. Activation is fed forward from each input to the
corresponding output through the respective weights, wy and wo (see Figure 5.12 and equations
(5.19) and (5.20)) to give outputs y; and ys.

We wish to maximise the correlation E(y;y2) where E() denotes the expectation which will be
taken over the joint distribution of x; and x2. We may regard this problem as that of maximising
the function g;(w1|w2) = E(y1y2) which is defined to be a function of the weights, w; given the
other set of parameters, wo. This is an unconstrained maximisation problem which has no finite
solution and so we must constrain the maximisation. Typically in CCA, we add the constraint that
E(y? = 1) and similarly with y» when we maximise g»(wa|w1). Using the method of Lagrange

84 CHAPTER 5. OBJECTIVE FUNCTION METHODS

maximise correlation
outputs % Yo

@

W,

Y wel ghts

X4 inputs Xy

Figure 5.12: The CCA Network. By adjusting weights, w; and ws, we maximise correlation
between y; and y-

multipliers, this yields the constrained optimisation functions,

Ji = Eyiy2) + %/\1(1 —y?) and
Jo = E(?lez)‘F%/\Z(l—yg)
We may equivalently use
J = E(ylyz)+%/\1(1—9%)+%/\2(1—y§)

but it will be more convenient in the following sections to regard these as separate criteria which
can be optimised independently by implicitly assuming that w; is constant when we are changing
wy and vice-versa. We wish to find the optimal solution using gradient ascent and so we find the
derivative of the instantaneous version of each of these functions with respect to both the weights,
w; and wy, and the Lagrange multipliers, A; and A;. By changing the Lagrange multipliers in
proportion to the derivates of J we are changing the relative strength of the constraint compared
to the function we are optimising; this allows us to smoothly maximise that function in the region
in which we are satisfying the constraint.
Noting that
Ogi(wilwa) — O(y1y2) O(wWix1ya)

= = = 5.28
8w1 8w1 8w1 x1y2 ()
these yield respectively
oJ
8_1 = X1Y2 — /\1y1X1 = X1 (y2 - >\1y1)
w1
dJy)
7 1—
8A1 X (yl)

Similarly with the J> function, wo and As. This gives us a method of changing the weights
and the Lagrange multipliers on an online basis. We use the joint learning rules

Awj = naij(y2 — Aiyr)
AXp = nmo(l—yi)
Awzj = nw2i(y1 — Aay2)
Ay = no(l—y3) (5.29)

where w1 ; is the j* element of weight vector, w; etc. It has been found empirically that best
results are achieved when 79 >> 1.

5.7. THE PAISLEY CONNECTION 85

However, just as a neural implementation of Principal Component Analysis (PCA) e.g. the
Subspace Algorithm may be very interesting but not a generally useful method of finding Prin-
cipal Components, so a neural implementation of CCA may be only a curiosity. However, it has
been shown that nonlinear extensions of PCA networks are able to search for the independent
components of a data set (ICA) and that such extensions are therefore justifiable as engineering
tools for investigating data sets. We therefore extend our neural implementation of CCA by max-
imising the correlation between outputs when such outputs are a nonlinear function of the inputs.
We investigate a particular case of maximisation of E(y;y2) when the values y; are a nonlinear
function of the inputs, x;.

For the nonlinear optimisation, we use e.g. y3 = Zj wsj f3(vsjx1;) = wsfs where the function
f3() is applied on an element-wise basis to give the vector f5.

The equivalent optimisation function for the nonlinear problem is then

1
J3(wslwy) = E(y3y4)+§/\3(1—y§)

1
Ji(walws) = E(y4y3)+§>\4(1—y2)

One solution is discussed in section 5.7.8.

5.7.3 Experimental Results

We report simulations on both real and artificial data sets of increasing complexity. We begin
with data sets in which there is a linear correlation and we demonstrate the effectiveness of the
network on Becker’s random dot stereogram data. We then extend the method in two ways not
possible with standard statistical techniques:

1. We maximise correlations between more than two input data sets.

2. We consider maximising correlations where such correlations may be on nonlinear projections
of the data.

5.7.4 Artificial Data

Our first experiment comprises an artificial data set: x; is a 4 dimensional vector, each of whose
elements is drawn from the zero-mean Gaussian distribution, N(0,1); x» is a 3 dimensional vector,
each of whose elements is also drawn from N(0,1). In order to introduce correlations between
the two vectors, x; and x», we generate an additional sample from N(0,1) and add it to the first
elements of each vector. Thus there is no correlation between the two vectors other than that
existing between the first element of each.

Using an initial learning rate of 0.0001 which is decreased linearly to 0 over 50000 iterations,
the weights converge to the vectors (0.679, 0.023, -0.051, -0.006) and (0.681, 0.004, 0.005). This
clearly illustrates the high correlation between the first elements of each of the vectors and also the
fact that this is the only correlation between the vectors. We may compare the reported results
with the optimal values of (+/0.5,0,0,0) and (+/0.5,0,0).

The effect of the constraint on the variance of the outputs is clearly seen when we change
the distribution from which all samples are drawn to N(0, 5). The weight vectors converge to
(0.141, 0.002, 0.003, 0.002) and (0.141, 0.002, -0.001) - the optimal results are (1/0.02,0,0,0) and
(1/0.02,0,0). The differences in magnitude are due to the constraint, E(y?) = 1 since

E@y}) =1+ E(wixx'wl) =w;R,,w! =1 (5.30)

where R, is the covariance matrix of the input data.

86 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Standard Statistics Maximum Correlation | 0.6962
w1 0.0260 0.0518
W 0.0824 0.0081 0.0035
Neural Network Maximum Correlation 0.6630
w1 0.0264 0.0526
W 0.0829 0.0098 0.0041

Table 5.2: The converged weights from the neural network are compared with the values reported
from a standard statistical technique.

5.7.5 Real data

Our second experiment uses a real data set; it comprises 88 students’ marks on 5 module exams.
The exam results can be partitioned into two data sets: two exams were given as close book
exams (C) while the other three were opened book exams (O). The exams were on the subjects
of Mechanics(C), Vectors(C), Algebra(O), Analysis(O), and Statistics(O). We thus split the five
variables (exam marks) into two sets-the closed-book exams (z11,x12) and the opened-book exams
(21, T22,23). One possible quantity of interest here is how highly a student’s ability on closed-
book exams is correlated with his ability on open-book exams. Alternatively, one might try to use
the open-book exam results to predict the closed-book results (or vice versa).

The results shown in Table 5.2 were found using a learning rate of 0.0001 and 50000 iterations.
We have reported our results to 4 decimal places in this section to facilitate comparison with those
reported in a standard statistical text which were found by standard statistical batch methods.
The w; vector consists of the weights from the closed book exam data to y; while the wy vector
consists of the weights from the open book exam data to y,. We note the excellent agreement
between the methods. The highest correlations are given by a weighted average of 17 and x5 with
the former receiving half the weight of the latter (since wi; & wi2) and the average of a1, w22
and o3 heavily weighted on o1 (since way >> wag, Wag).

5.7.6 Random Dot Stereograms

It has been suggested that one of the goals of sensory information processing may be the extraction
of common information between different sensors or across sensory modalities. One reason that
this is possible is because of the coherence which exists in time and place in sensory input data.
We may view the above network as a means of merging two different data streams - x; and xs -
which may be either representatives of two different modalities or as different representatives of
the same modality where such representatives may be different in either time or place. Becker
has developed this idea and experimented on a data set which is an abstraction of random dot
stereograms: an example is shown graphically in Figure 5.13. The central idea behind this is that
two different neural units or neural network modules should learn to extract features that are
coherent across their inputs. If there is any feature in common across the two inputs, it should be
discovered, while features which are independent across the two inputs will be ignored.

Each input vector consists of a one dimensional random strip which corresponds to the left
image and a shifted version of this which corresponds to the right image. The left image has
components drawn with equal probability from the set {—1,1} and the right image is generated
by choosing a randomly chosen global shift - either one pixel left or one pixel right - and applying
it to the left image. We wish to find the maximum linear correlation between y; and ys which are
themselves linear combinations of x; and x». Because the shifts are chosen with equal probability,
there are two equal sets of correlations corresponding to left-shift and right-shift. In order to find
these, we require two pairs of outputs and the corresponding pairs of weights (wy, ws) and (ws,
wy). The learning rules for w3 and wy in this experiment are analagous to those for w; and wy;
at each presentation of a sample of input data, a simple competition between the products y;ys
and y3y4 determine which weights will learn on the current input samples: if y1y> > ysys, then
w1, Wo are updated, else ws, w4 are updated.

5.7. THE PAISLEY CONNECTION 87

right shift
—

T
A

Maximise Correlations pairwise

Figure 5.13: The Random dot stereogram data and network. The x;, set is either a left shifted or
a right shifted (as shown) version of the x; set. We find that w; and ws reliably find the left shift
and w3 and wy the right shift or vice versa.

wi | -0.002 1.110 0.007 -0.009
wy | 0.002 0.025 0.973 0.020
ws | -0.014 0.026 1.111 -0.002
wy | 0.013 0.984 0.003 -0.007

Table 5.3: The converged weights clearly show that the first pair of neurons has learned a right
shift while the second pair has learned a left shift.

Using a learning rate of 0.001 and 100000 iterations, the weights converge to the vectors shown
in Table 5.3.

The first pair of weights w; and ws have identified the second element of x; and the third
element of x» as having maximum correlation while other inputs are ignored (the weights from
these are approximately 0). This corresponds to a right shift. This first pair of outputs has a
(sample) correlation of 0.512. Similarly the second pair of weights has idenfied the third element
of x; and the second element of x5 as having maximum correlation while other inputs are ignored.
The second pair has a (sample) correlation of 0.530 and corresponds to an identification of left
shift.

Now for some patterns there will be ambiguity since it is possible that by chance a right-shifted
pattern will happen to match the weights w3, w4 and therefore a bank of pairs of pairs of neurons
is required to perform as well as Becker’s IMAX network. For best results, each set of four neurons
as above should see as input a slightly different part of the input data (though with a global left
or right shift).

The table thus demonstrates that these high correlations come from one pair learning the
shift-left transformation while the other learns the shift-right.

It should be noted at this point that Becker only uses a subset of 12 of the 16 possible patterns.
Those which are ambiguous (such as (-1,1,-1,1)) are removed whereas we are drawing our data
from all 16 possible patterns. In addition, Becker uses computationally expensive backpropagation
of the derivatives of mutual information. We are able to find both correlations with a very simple
network.

Comparing the CCA network with Kay and Phillips’ network, we might consider e.g. from the
first data set, x; as the input data to the network and x, as the contextual input. The results
from the CCA network and the Kay and Phillips network are similar too, though Kay and Phillips
use a probabilistic network with an nonlinear activation function designed to manage the effect of
contextual information on the response of the network to input data.

88 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Finally, the CCA network presented here may be criticised as a model of biological information
processing in that it appears as a non-local implementation of Hebbian learning i.e. the wy weights
use the magnitude of y2 as well as y; to self-organise. One possibility is to postulate non-learning
connections which join y2 to y; thus providing the information that w; requires for learning.
Alternatively we may describe the \; parameter as a lateral weight from y» to y; and so the
learning rules become

Awy; = (nmxu(i—j—yl)

AN = mo(1—yi)

where we have had to incorporate a A; term into the learning rate. Perhaps the second of these
suggestions is more plausible than the first as a solution to the non-local feature of the previous
learning rules since non-learning connections hardwires some activation passing into the cortex.
This is an area of further investigation.

5.7.7 More than two data sets

In integrating information from different sensory modalities, the cortex may be presented with the
problem of integrating that from more than two data sets simultaneously. Therefore we extend
the algorithm without introducing unnecessarily complex activation passing which would become
biologially implausible.

We create an artificial data set which comprises three vectors each of whose first elements have
correlations of equal magnitude: x;, x, and x3 are each 3 dimensional vectors, each of whose
elements is initially independently drawn from N(0,1). We now draw a sample from N(0,1) and
add it to the first element of each of x;, xo and x3 and attempt to maximise the correlation
between y;, y» and y3. We opt to maximise three separate constrained objective functions:

1 .

Jl = E(ylyz) + 5)\1(1 — yf) and
1 .

Jo = E(yys) + 5/\2(1 - yﬁ) and
1 .

Js = E(ysy1) + 5/\3(1 - ?Ja%)

We use gradient ascent on the instantaneous version of each of these functions with respect to
both the weights, w;, wy and ws, and the Lagrange multipliers, A1, Ay and A3. This gives us the
learning rules

oJ

8_1 = x1y2 — Myix1 = x1(y2 — A1y1)
w1

oJ.

6_2 = X2U3 — A2y2x2 = X2(Z/3 - /\2y2)
W2

0J.

6—3 = X3y1 — A3Y3X3 = X3(y1 — A3¥3)
w3

The derivates with respect to the Lagrange multipliers are similar to the previous rules (5.29)
though we have found empirically that the best result are achieved when the \’s learning rate is
again very greatly increased (now 1o & 2001 to 10007).

Using n =0.0001, no = 0.05 and 100000 iterations, the weights converge to the values shown in
Table 5.4. The three way correlation derived by this method is equal to three pairwise correlations.

5.7.8 Non-linear Correlations

Now while the data set in Section 5.7.6 provides us with an abstraction of random dot stereograms,
it is not a complete and accurate abstraction of how the cortex extracts depth information from

5.7. THE PAISLEY CONNECTION 89

w; | 0.812 0.013 0.027
wy | 0.777 -0.014 0.030
wsz | 0.637 0.007 0.012

Table 5.4: The weights of the converged three input vectors network. The network has clearly
identified the correlation between the first element in each vector.

B

Figure 5.14: The left figure represents visual information from a surface AB which is passed
through pupils R and L to flat “retinas” MS and TU. The right figure represents the same scene
when the external surface A’B’ is not parallel to the plane of the retinas.

surfaces: at any one time, we view not just single points but segments of (at least) a surface.
Consider Figure 5.14. We see that the relationship between the projection of the surface on the
retinas is a function of the angle between the plane of the surface and the plane of the retinas.
We do not wish to determine the precise relationship in any specific case since we wish to create
a general purpose depth analyser which does not depend on e.g. both the retinas and the surface
being flat, the pupils having a precise relationship with the limits of the viewed surfaces.

Therefore in our final experiment, we investigate the general problem of maximising correlations
between two data sets when there may be an underlying nonlinear relationship between the data
sets: we generate artificial data according to the prescription:

11 = 1—sinf+ (5.31)
T3 = cost + uso (5.32)
T = O—7+ps (5.33)
Toa = O—m+puy (5.34)

where 6 is drawn from a uniform distribution in [0, 27] and p;,7 = 1, ...,4 are drawn from the zero
mean Gaussian distribution N(0, 0.1). Equations (5.31) and (5.32) define a circular manifold in the
two dimensional input space while equations (5.33) and (5.34) define a linear manifold within the
input space where each manifold is only approximate due to the presence of noise (u;,i = 1,...,4).
The subtraction of 7 in the linear manifold equations is merely to centre the data.

Thus x; = {z11, 212} lies on or near the circular manifold x2, + 2%, = 1 while x5 = {x21, 722}
lies on or near the line 57 = T25.

We wish to test whether the network can find nonlinear correlations between the two data sets,
x; and x2, and test whether such correlations are greater than the maximum linear correlations.
To do this we train two pairs of output neurons:

e We train one pair of weights w; and wo using rules (5.29)
e We train a second pair of outputs, y3 and y4 which are calculated from

ys = Zj wsj tanh(vsjz1;) = wsfs and (5.35)

90 CHAPTER 5. OBJECTIVE FUNCTION METHODS

Ya =)ojwajtanh(vyze;) = wafy (5.36)
This gives us another pair of adaptable parameters which may be changed to maximise the
correlation. In particular, since the weights, v3 and v4 are used prior to the use of the

nonlinearity, this gives us extra flexibility in maximising correlations.

The correlation between y; and y» neurons was maximised using the previous linear operation
(11) while that between y3 and y4 used the functions

1
Js = E(ysys) + §>\3(1 —y3) and

1
Ji = E(ysys) + §>\4(1 - y3)

whose derivatives give us (taking into account the nonlinearities (5.35) and (5.36))

oJ.

8_3 = f3ys — Asysfs = f3(ys — A3y3)
W3

aJ.

Tve 2= waya(1 -)% — Aawi (1 — £2)x, 43
V3

= wi(l - £)x1(ya — Asys) (5.37)

Similarly with the Jy function, wy, v4, and A4. This gives us a method of changing the weights
and the Lagrange multipliers on an online basis. We use the joint learning rules

Awz = nf3(ys — A3y3)
Awy = nfi(ys — Mya)
Avy; = mx1iwsi(ya — Asys) (1 — £5)
Avy = nxaiwai(ys — Aaya) (1 — £7)

We use a learning rate of 0.001 for all weights and learn over 100000 iterations. The network finds
a sample linear correlation between the data sets of 0.623 (equal to the correlation between y;
and y») while the nonlinear neurons, y3 and y4, have a sample correlation of 0.865. In putting the
data sets through the nonlinear tanh() function we have created a relationship whose correlations
are greater than the linear correlations of the original data set. We show a test of the outputs
from both the linear and nonlinear networks in Figure 5.15 in which we graph the output values
of the trained network from each pair of neurons against inputs where the 6 values in equations
(5.31)-(5.34) range from -3 to 3 . We see that the linear network is aligning the outputs as well
as may be expected but the nonlinear network’s outputs are very closely aligned with each other
over much more of the data set.

5.8 Speeding up Error Descent

We have, however, used error descent as our chosen method of supervised weight adaption. But
the backpropagation method as described so far is innately slow. The reason for this is shown
diagrammatically in Figure 5.16. In this Figure, we show (in two dimensions) the contours of
constant error. Since the error is not the same in each direction we get elipses rather than circles.
If we are following the path of steepest descent, which is perpendicular to the contours of constant
error, we get a zig-zag path as shown. The axes of the elipse can be shown to be parallel to the
eigenvectors of the Hessian matrix. The greater the difference between the largest and the smallest
eigenvalues, the more eliptical the error surface is and the more zig-zag the path that the fastest
descent algorithm takes.

5.8. SPEEDING UP ERROR DESCENT 91

Qut put of |inear network
| | | | |

yl. .

~

0 10 20 30 40 50 60

1.5 I I =<1 T

Figure 5.15: The top diagram shows the outputs, y; and y», of the linear network, while the lower
diagram shows the outputs, y3 and yq4, of the nonlinear network. Visual inspection would suggest
that the outputs from the nonlinear network are more correlated. The actual sample corrrelation
values achieved were 0.623 (linear) and 0.865 (nonlinear).

92 CHAPTER 5. OBJECTIVE FUNCTION METHODS

c2 L
Minimum
Error
Error
Contours
Error descent
path
First eigenvector C1

Figure 5.16: The path taken by the route of fastest descent is not the path directly to the centre
(minimum) of the error surface.

5.8.1 Mathematical Background

The matrix of second derivatives is known as the Hessian and may be written as

’°E o*E o°E
Bwf w1 Ows Owy Ow,y,
’E *E ’E
Owi Ow dw? OwoOwW,y,
H= 1ow 2 2 (5.38)
’°E o°E o*E
Owy 0w, Owo 0wy, Ow?2

If we are in the neighbourhood of a minimum w*, we can consider the (truncated) Taylor
series expansion of the error as

E(w) = E(w*) + (w —w")TVE + %(w —w)TH(w - w*) (5.39)

where H is the Hessian matrix at w* and VE is the vector of derivatives of E at w*. Now at the
minimum (w*), VE is zero and so we can approximate equation 5.39 with

E(w)=E(wW")+ %(w —w)TH(w — w") (5.40)

The eigenvectors of the Hessian,c; are defined by
HCi = /\ici (541)

and form an orthonormal set (they are perpendicular to one another and have length 1) and so
can be used as a basis of the w space. So we can write

w—w"= Z Q;c; (5.42)
i
Now since H(w — w*) = 3. \;a;¢; we have

E(w) = E(wx) + % Z N (5.43)

In other words, the error is greatest in directions where the eigenvalues of the Hessian are greatest.
Or alternatively, the contours of equal error are determined by \/L)\— So the long axis in Figure

5.16 has radius proportional to \/%—1 and the short axis has radius proportional to \/% Ideally we
would like to take this information into account when converging towards the minimum.

5.8. SPEEDING UP ERROR DESCENT 93

Now we have AE = Y, a;\ic; and we have Aw = Y. Aw;c; so since we wish to use Aw =
—nAE, we have
Aai = _n/\iai (544)
and so
a®? = (1 — g;)adt (5.45)

which gives us a means of adjusting the distance travelled along the eigenvector in each direction.
So by taking a larger learning rate 17 we will converge quicker to the minimum error point in weight
space. However, there are constraints in that the changes to «; form a geometric sequence,

ol = (1=nr)a”

agz) = (1- n/\i)al(-l) =(1- n)\i)%zgo)
o = -l = (1 -nr) el
o = 1=maef" Y =1 - Ta’

This will diverge if |1 —n)\;| > 1. Therefore we must choose a value of 1 as large as possible but
not so large as to break this bound. Therefore n <)% where \; is the greatest eigenvalue of the
Hessian. But note that this means that the convergence along other directions will be at best
proportional to (1 — %) i.e. convergence is determined by the ratio of the smallest to the largest
eigenvalues.

Thus gradient descent is inherently a slow method of finding the minimum of the error surface.
We can now see the effect of momentum diagrammatically since the momentum is built up in
direction c; while the continual changes of sign in direction cy causes little overall change in the
momentum in this direction.

5.8.2 QuickProp

Fahlman has developed an heuristic which attempts to take into account the curvature of the error
surface at any point by defining

_ aij(k)Awij (k - 1); if Awij(k - 1) 75 0
AUJij (k) = { Mo Bifj , if Awij (k _ 1) =0 (5.46)
where -
. Ow;j
(k) = mm(m, Umaz) (5.47)
Owij - Owij

The idea is to approximate the error surface with a parabola and to use two successive evaluations
of the error and an evaluation of is gradient (the rate of change of the error). It is usual to use
the algorithm with an upper bound set on the step size.

5.8.3 Line Search

If we know the direction in which we wish to go - the direction in which we will change the weights
- we need only determine how far along the direction we wish to travel. We therefore choose a
value of A in

wtth) — w(®) £ 2O q®) (5.48)

in order to minimise
E(\) = E(w® +2Ha®) (5.49)

We show E as a function of A in Figure 5.17. If we start at a point a and have points b and ¢
such that E(a) > E(b) and E(c) > E(b) then it follows that there must be a minimum between a
and c. So we now fit a parabola to a, b and ¢ and choose the minimum of that parabola to get d.
Now we can choose 3 of these four points (one of which must be d) which also satisfy the above
relation and iterate the parabola fitting and minimum finding.

94 CHAPTER 5. OBJECTIVE FUNCTION METHODS

lambda

Figure 5.17: The error function as a function of A. The (unknown) error function is shown as a
solid line. The fitted parabola is shown as a dotted line with minimum value at d.

g(t+1)

- .
/ Contours of Equal Gradient of E
with respect to lambda
/

. g(t-1)

Figure 5.18: After minimising error in one direction, the new direction of fastest descent is per-
pendicular to that just traversed. This leads to a zigzagging approach to the minimum.

5.8.4 Conjugate Gradients

Now we must find a method to find the direction d in which to search for the minimum. Our first
attempt might be to find the best (minimum error) point along one direction and then start from
there to find the best point along the fastest descent direction from that point. However as shown
in Figure 5.18, we see that this leads to zig-zagging and so the minimisation of the error function
proceeds very slowly.

We require conjugate or non-interfering directions: we choose the direction d**+1) such that
the component of the direction d® is (approximately) unaltered.

The slowness of the vanilla backpropagation method is due partly at least to the interaction
between different gradients. Thus the method zig-zags to the minimum of the error surface. The
conjugate-gradient method avoids this problem by creating an intertwined relationship between
the direction of change vector and the gradient vector. The method is

e Calculate the gradient vector g for the batch of patterns as usual. Call this g(0), the value
of g at time 0 and let p(0) = g(0).

e Update the weights according to

Aw(n) = 1(n)p(n) (5.50)

e Calculate the new gradient vector g(n+1) with the usual method

e Calculate the parameter 5(n) (see below).

5.9. LEAST MEAN SQUARE ERROR RECONSTRUCTION 95

e Recalculate the new value of p using
p(n+1)=—gn+1)+ B(n)p(n) (5.51)

e Repeat from step 2 till convergence

The step left undefined is the calculation of the parameter 3(n). This can be done in a number
of ways but the most common (and one of the easiest) is the Fletcher-Reeves formula

gl'(n+Dgln+1)

) = = T e m)

(5.52)

The calculation of the parameter n(n) (which is equivalent to A in the last section in that it
determines how far a jump will be made) is done to minimise the cost function

E(w(n) +np(n)) (5.53)

As with the Newton method, convergence using this method is much faster but computationally
more expensive.

5.9 Least Mean Square Error Reconstruction

Finally it is worth stating that many attempts have been made to derive the PCA algorithms

using an error descent mechanism. Consider the negative feedback netork discussed in Chapter 3.

Then let us wish to minimise the error, e, at x after the output neuron’s activation is returned.
We wish to minimise

J(W) = %ITE(e2|W) = %].TE(X - WW'x)2|W) (5.54)

where 1 is the vector of 1s.
Consider the j* component of the reconstruction error, ;.

M
ej =xj — Zwijwi.x (5.55)
i=1

where, as before, w; is the vector of weights into the i*” output neuron. Then we wish to find
stationary point(s) of the derivative of J(W) i.e. where

9J(W) _ ZM Oej _
oW, = Ki oW, 0 (5.56)
Now,
Oe;
8an = —WnX — (Win.x)[0,0, ..., 1,0,..0]" (5.57)

where the last vector has a 1 in only the jt* position. Then,

8J (W) M M
o, = —j;(xj — 2 wijwi.x).{wmjx-I-wm.x[(),O,..,l,O..,O]T)}
= —(x—W'Wx)w,,.x - (x - W . Wx)(w,,.2)17 (5.58)

This can be used in the usual way in the gradient ascent algorithm

8J(W)

AW W

96 CHAPTER 5. OBJECTIVE FUNCTION METHODS

to give a learning rule
AW =x"x(I - W' W)W + (x - WI'Wx)(Wx)” (5.59)

Now while this last equation is not quite the algorithm we have used previously, Xu has shown
that “on the average”, the scalar product of our negative feedback algorithm (or equivalently Oja’s
subspace algorithm) and the above learning rule is positive. Thus “on the average”, the negative
feedback network can be thought of as minimising the residuals at x.

It should be stated that this is not the only way to attempt to derive a PCA network: we could
for instance attempt to derive a network which maximised variance under the constraint that the
network weights have unit length.

5.10 Conclusion

In this chapter we have seen a number of different features associated with finding an objective
function and using the criterion of optimising this function to determine the course of adaption
of the weights of the network. Some of these methods are sometimes described as unsupervised
learning but it is more accurate to state that the methods involve some features of self-supervision.

In the two cases of Becker and Hinton’s IMax and Kay and Phillips’ Contextual network, we
looked at explicit optimisation of information theoretical objectives which gave fascinating insights
into the capabilities of the networks concerned.

Finally we have looked at two methods which are used to quicken the rate of convergence of
supervised learning methods without affecting the generalisation characteristics of the networks
using them; in general such methods tend to be computationally expensive but do manage to
speed up the convergence to the optimum value of the objective function.

Chapter 6

Identifying Independent Sources

6.1 The Trouble with Principal Components

Figure 6.1 illustrates some disadvantages of attempting to use Principal Components to discover
the information in data. The top diagram shows a situation in which there is a non-linear re-
lationship between the variables; the bottom one shows a distribution consisting of two distinct
sub-distributions.

Recall first that PCA is a linear operation and so the principal component directions are all
straight lines. Thus in the first case, the first PC would form a chord of the circular distribution,
while in the second case, the first PC would be a diagonal of the rectangle approximately parallel
to the x-axis. The trouble in each case is that projecting the data onto the first PC completely
hides the structure in the data - you cannot see either the circular dependency in the first case or
that, in the second, there are two different blobs to the distribution. We will concentrate on the
latter situation in this chapter in which a distribution has two or more underlying causes; we are
looking for neural algorithms which identify independent sources of the observed data.

The neurons we use will have non-linear activation functions since wholly linear networks have
a very limited set of capabilities. In addition, we will be discussing our networks in the context of
biological neurons which tend to have non-linear activation functions: typically a neuron will not
fire till a particular threshold has been reached and will saturate (not exceed a particular firing
rate) when a specific input level has been attained.

6.1.1 Independent Codes

Barlow has developed a theory of learning based on the neuron as a “suspicious coincidence
detector”: if input A is regularly met in conjunction with input B this represents a suspicious
coincidence; there is something in the neuron’s environment which is worth investigating. A crude
example might be the coincidence of mother’s face and food and warmth for a young animal. We
can note the similarity of this question to that asked by Becker and Hinton (last chapter) but we
will see that a very different tactic will be taken by the researchers discussed in this chapter.

The types of codes which are developed using the learing rules in this chapter are sometimes
known as “factorial codes”: we have lots of different symbols representing the different parts of
the environment and the occurrence of a particular input is simply the product of probabilities of
the individual code symbols. So if neuron 1 says that it has identified a sheep and neuron 2 states
that it has identified blackness, then presenting a black sheep to the network will cause neurons 1
and 2 to both fire. Also such a coding should be invertible: if we know the code we should be able
to go to the environment and identify precisely the input which caused the code reaction from the
network. So when we see neurons 1 and 2 firing we know that it was due to a black sheep.

We will maintain a close connection with psychological principles which should suggest that
we are using a biologically plausible rule such as the Hebb rule. We have seen that the Hebb rule
will extract information from the environment. What we need to do is modify the Hebb rule so

97

98 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

12 T T T T T T T T T
"circ.dat" <

10

N

T

o o8
0
o

1

0 % o @
_2 1 1 1 1 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10 12
2.4 T T T T T
o "twodi sts.dat" ¢
2.2 oo & .
o o o % . o °
ogto g %
&% o $38 o o O o o
© % Ooog %Q&@%o 2 0§>@&& 00%8 o s
2 r <& o o® %@ 4 o Q@ & < FoPoY < =
% 89, ® g % 00 o o
o &0 o BT eled o o S o
o 5© 0&3083 <@ X5 HEOR % o
1.8 o ° o& 388 Co o i
. o o R
o
1.6 —
1.4} N .
o
°
1.2} o S8 ° 00 & % o o o s R
6 000 o % 03 Bo 00 %
°9 o B & : W%o% ¥ o2 o 000 ° °
1k S o%g{? °F AN PN i
o, @ TR SR o 0080, % 0 o o
3 N e° e § ?OO@O@ i o <
0.8 @ 0 %0 ° PN 3 i
0. 6 1 1 1 1 1
-15 -10 -5 0 5 10 15 20

Figure 6.1: Two distributions where Principal Component Analysis does not find the structure in
the data: in the first distribution, the first PC would be an almost horizontal chord of the arc;
in the second, it would lie on the diagonal of the rectangle. So projecting onto either principal
component axis would hide the structure in the data.

6.2. COMPETITIVE LEARNING 99

[
|

Sample
input
patterns

W Output

Patterns

Figure 6.2: The top line shows sample data (input values) presented to the network. The second
layer shows the independent sources which we hope will also be the network’s response. If this is
s0, it has clearly identified the suspicious coincidences of lines.

that each neuron responds to a particular set of inputs which is unique to itself. One way to do
this is with competitive learning.

6.1.2 A Typical Experiment

Often in artificial neural network research, we create artificial data and run our networks on them
before attempting experiments with real world data. The advantages of artificial data are

1. We have more control over our data. Real world data is often noisy with outliers and, in
addition, we are also relying on the efficacy of our sampling methods.

2. We can more easily understand our results. We will create data with the specific aim of
aiding our understanding of the network.

3. We know the answers we hope to get from our network. Our data has been specifically
created to help test a particular hypothesis.

4. We can control the magnitude of our data set. We will use a limited number of representative
samples.

The input data here consists of a square grid of input values where z; = 1 if the i!" square is black
and 0 otherwise. However the patterns are not random patterns: each input consists of a number
of randomly chosen horizontal or vertical lines. The network must identify the existence of these
lines. The important thing to note is that each line can be considered as an independent source of
blackening a pixel on the grid: it may be that a particular pixel will be twice blackened by both
a horizontal and a vertical line at the same time but we need to identify both of these sources.

Typically, on an 8*8 grid, each of the 16 possible lines are drawn with a fixed probability of %
independently from each of the others. The data set then is highly redundant in that there exists
264 possible patterns and we are only using at most 2'6 of these. We will typically have 16 output
neurons whose aim is to identify (or respond optimally to) one of the input lines. Thus from any
pattern composed of some of the set of 16 lines, we can identify exactly which of the 16 lines were
used to create the pattern. Note the factorial nature of the coding we are looking for: neurons 1,
3 and 10 will fire if and only if the input is composed of a pattern from sources 1,3 and 10. Note
also the code’s reversibility: given that neurons 1,3 and 10 are firing we can recreate the input
data exactly.

If we use a principal component net on this data, our first principal component will be a small
magnitude uniform vector over all 64 positions. i.e. we get a global smearing of the patterns which
does not reveal how each pattern came to be formed.

6.2 Competitive Learning

One of the non-biological aspects of the basic Hebbian learning rule is that there is no limit to the
amount of resources which may be given to a synapse. This is at odds with real neural growth in

100 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

that it is believed that there is a limit on the number and efficiency of synapses per neuron. In
other words, there comes a point during learning in which if one synapse is to be strengthened,
another must be weakened. This is usually modelled as a competition for resources.

In competitive learning, there is a competition between the output neurons after the activity
of each neuron has been calculated and only that neuron which wins the competition is allowed
to fire. Such output neurons are often called winner-take-all units. The aim of competitive
learning is to categorize the data by forming clusters. However, as with the Hebbian learning
networks, we provide no correct answer (i.e. no labelling information) to the network. It must
self-organise on the basis of the structure of the input data. The method attempts to ensure that
the similarities of instances within a class is as great as possible while the differences between
instances of different classes is as great as possible.

6.2.1 Simple Competitive Learning

The basic mechanism of simple competitive learning is to find a winning unit and update its
weights to make it more likely to win in future should a similar input be given to the network.
We first have the activity transfer equation

Yi = E wijxj,Vi
J

which is followed by a competition between the output neurons and then
Aw;; = n(z; —w;;), for the winning neuron i

Note that the change in weights is a function of the difference between the weights and the
input. This rule will move the weights of the winning neuron directly towards the input. If used
repeatedly over a distribution, the weights will tend to the mean value of the distribution since
Aw;j = 0 <= w;; = E(z;), the mean value of the jt" input. We can actually describe this rule
as a variant of the Hebb learning rule if we state that y; =1 for the winning i** neuron and y; =0
otherwise. Then the learning rule can be written Aw;; = ny;(x; —w;;) i.e. a Hebbian learning rule
with weight decay. A geometric analogy is often given to aid understanding simple competitive
learning. Consider Figure 6.3: we have two groups of points lying on the surface of the sphere
and the weights of the network are represented by the two radii. The weights have converged to
the mean of each group and will be used to classify any future input to one or other group.

A potential problem with this type of learning is that some neurons can come to dominate the
process i.e. the same neuron continues to win all of the time while other neurons (dead neurons)
never win. While this can be desirable if we wish to preserve some neurons for possible new sets
of input patterns it can be undesirable if we wish to develop the most efficient neural network.
It pays in this situation to ensure that all weights are normalised at all times (and so already
on the surface of the sphere) so that one neuron is not just winning because it happens to be
greater in magnitude than the others. Another possibility is leaky learning where the winning
neuron is updated and so too by a lesser extent are all other neurons. This encourages all neurons
to move to the areas where the input vectors are to be found. The amount of the leak can be
varied during the course of a simulation. Another possibility is to have a variable threshold so that
neurons which have won often in the past have a higher threshold than others. This is sometimes
known as learning with a conscience. Finally noise in the input vectors can help in the initial
approximate weight learning process till we get approximate solutions. As usual an annealing
schedule is helpful.

6.3 Anti-Hebbian and Competitive Learning

6.3.1 Sparse Coding

Hertz et al point out that simple competitive learning leads to the creation of grandmother cells,
the proverbial neuron which would fire if and only if your grandmother hove in sight. The major

6.3. ANTI-HEBBIAN AND COMPETITIVE LEARNING 101

Cluster B Cluster A

X, &

(Weights)

Centre (origin)

Figure 6.3: The input vectors are represented by points on the surface of a sphere and the lines
represent the directions to which the weights have converged. Each is pointing to the mean of the
group of vectors surrounding it.

X Ul
1 g
Inputs Outputs
X O yZ
feedforward ~ feedback
weights weights

Figure 6.4: Foldiak’s last model: we have feedforward weights from inputs to outputs and then
feedback (or lateral) connections between the outputs.

difficulty with such neurons is their lack of robustness: if you lose your grandmother cell, will you
never again recognise your grannie. In addition, we should note that if we have N grandmother
cells we can only recognise N categories whereas if we are using a binary code, we could distinguish
between 2V categories.

So simple competitive learning leads to a single neuron firing in response to an input pattern.
At the other extreme, when a large number of neurons are firing for each input pattern, subsequent
layers have to work much harder to identify the information being presented by that layer. So if
our layer is used to classify a full 2V categories, it may allow a very compact representation but
make the subsequent identification of the individual categories difficult.

Foldidk has suggested that an appropriate compromise between these competing constraints
would be to have the neurons in a layer forming a sparse coding of the input data. i.e. each
pattern is represented by a set of m firing neurons where m > 1 but m << n, the number of
neurons in the layer. He believes that such a representation potentially trades off the benefits of
increased representational capacity to be had with a distributed representation with the simplicity
to be had with a completely local representation. It is this balance between cooperation (so that
a set of output neurons can represent the input pattern which is currently being presented) and
competition (so that not all outputs are used to represent all patterns) that seems necessary for
the extraction of salient features of the problem.

102 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

6.3.2 Foldidk’s Sixth Model

The major difference between this model and Fo6ldidk’s previous ones is that the neurons are non-
linear units, each with an adjustable threshold over which its activation must be before the neuron
can fire. In order to get a sparse coding, each neuron tries to keep its probability of firing down by
adjusting its own threshold. If a neuron has been firing frequently, its threshold will increase to
make it more difficult for the neuron to fire in the future; if it has been firing only occasionally, its
threshold will decrease making it easier for the neuron to fire in future. This mechanism does have
some biogical plausibility in that neurons do become habituated to inputs and stop responding so
strongly to repeated sets of inputs. An obvious example of which you will be aware is your reaction
when you emerge from a dark tavern into broad daylight; initially you will be blinded because
there is too much environmental information being processed by the neurons in your retina. This
effect soon disappears as you become used to your new environment.
Let there be n inputs and m output neurons (the representational layer). Then

n m
yi = f(z 2% + Zwijyj —t;) (6.1)
j=1 j=1

where g;; is the weight of the feedforward connection from the jt input zj, wi; is the weight of
the lateral connection from the j** output neuron to the i** in that layer and ¢; is the adjustable
threshold for the it* output neuron. Both sets of weights and the threshold are adjustable by
competitive type learning:

o —alyy —pP) ifi £
sz] - { Oifi:jorwij<0
A(Iij = Byi (ﬂfj - Qij)

At; = y(yi —p)

where a, 3,7 are adjustable learning rates. The feedforward weights, g;;, use simple competitive
learning. The lateral learning rule for the w weights will stabilise when E(y;y;) = p?. i.e. each pair
of units will tend to fire together a fixed proportion of the time. This rule will interact with the
rule which changes the threshold: the long term effect of this rule should be to set the threshold
t; to a set value to ensure E(y;) = p. By choosing the value of p appropriately we can determine
the level of sparseness of the firing pattern. For example suppose p = 11—0. Each neuron will fire
about 11—0 of the time and will fire at the same time as each of its neighbours about ﬁ of the time.
So if we have 500 output neurons, then each input pattern would elicit a response from about 50
output neurons which is a distributed representation and not a grandmother cell response but one
in which the number of neurons firing at any one time is much less than the number of output

neurons.

6.3.3 Implementation Details

Foldidk actually describes his feedforward rule with the differential equation

dy; - S .
dtz = f(z qijT; + Zwijyj —ti) —y; (6.2)
=1 i=1

which is viewing the neuron as a dynamically changing neuron responding to a mixture of feed-
forward inputs and lateral inputs which are themselves changing in time. It can be shown that
, provided the feedback is symmetric, the network is guaranteed to settle after a brief transient.
Foldidk simulates this transient by numerically solving the differential equations. He uses initial
conditions

vi (0) = FOQ_ qijzs — i) (6.3)
j=1

6.4. COMPETITIVE HEBBIAN LEARNING 103

Network output Input pattern

1000000000000000 t
0000100000000000 ior!
0010011000001000 J

Table 6.1: Some of the codes found by Foldiak’s network after being presented with 8000 letters.
t appears frequently in the text and so t uses a small number of firing neurons while J appears
infrequently and so can use a larger number of firing neurons. Note also that i and ! share a code.

with the function f(u) equal to the logistic function m. The values at the stable state are
now rounded to 1 or 0 depending on whether y; > 0.5 or not. Feedforward weights are initially
random but normalised so that ¢;; = 1 and the feedback weights are zero.

I suggest that you repeat this experiment but do not numerically simulate the transient but
operate a method which selects one output randomly at a time to update. Continue for a set
number of iterations (2 or 10 or 1007) and investigate under what conditions the network converges.

6.3.4 Results

On the experimental data discussed previously, the network learns to find the lines so that the
feedforward weights match a single possible line. The code generated in this case is optimal in
that there is no redundancy between neurons - every neuron represents a different line - and all
information in the input is preserved - the set of output neurons will identify exactly which of the
input squares is on by identifying which lines are represented in the pattern.

An extension to this experiment was the presentation of input patterns consisting of images
of letters presented in a fixed position on an 8*15 raster display. During training the letters
were presented in a random order with the same probabilities that they appeared in a piece of
English text. The results were as you might have hoped (Table 6.1) had you hand-designed a code
(e.g. & la Huffmann): frequent letters had fewer active bits than infreqent ones since otherwise
the correlations introduced by simultaneous frequent firing would force the decorrelating lateral
weights to increase inhibition between the neurons. Another feature was that no two frequent
letters were assigned to the same output though some rare letters did share an output. Finally
the code has the nice property that similar inputs e.g. O and Q are mapped to similar output
neurons.

Finally note the interaction between the lateral weights and the threshold; this will be a theme
of this chapter.

6.4 Competitive Hebbian Learning

White has attempted to play off the extreme focussing of competitive learing with the broad
smearing of Hebbian learing with a model which attempts to combine both effects.
Consider a one layer network with outputs

Yi = f(z wijxj) - (6.4)

N | =

and x; is the j' input. Then each output satisfies —3 < y; < 1. The

where f(U) =]:{»ex;i(fu) b}

information given by the outputs is proportional to

N
F=>"y} (6.5)
=1

If we simply wish to maximise F we can use gradient ascent so that

oF

G = i) (6.6)

Awij =

104 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Now since 2f] is constant for the whole weight vector into output neuron i, we can ignore this
factor (it alters the magnitude of the change but not the direction) to get simple Hebbian learning:

Awij = Qy;Tj (67)

where «, the learning rate, contains the 2f; factor. But we know that this causes every output
neuron to move to the principal component of the input data - i.e. all are covering the same infor-
mation. We introduce a penalty term to discourage this and the simplest is that the mean square
correlation between output neurons should be as low as possible: if we get totally decorrelated
outputs then

E(git) = E((yiyr)?) = 0 (6.8)

We can incorporate the constraint into the optimisation by using the method of Lagrange multi-
pliers: now we try to maximise the function G given by

1NN
G=F+ B Z Z '/\ilcgilc (6.9)
=1 k=1,k#i
which gives us
oG)
Aw;j = o & ayiei {1+ Y Nikyi} (6.10)
4 k#i

White shows that one solution to this (for the A\ values) occurs when all A, are equal to -4. Thus
the weight change equation becomes

Aw;j = ay;x;{l — 423;%} (6.11)
ki

This rule is known as the Competitive Hebbian Rule: it is used with a hard limit to the overall
length of the vector of weights into a particular output neuron and in addition we do not allow
the term in brackets to become negative. There are therefore three phases to the learning in this
network:

Neuron outputs are weak In this case there is essentially no interaction between nodes (the
term in the bracket << 1) and all nodes will use simple Hebbian learning to learn the first
Principal Component direction. But note that when they have done so, (or are doing so)
they enter a region where the this interaction is not insignificant and so some interaction
between output neurons begins to take place - the neurons have learned their way out of the
uniform region of weak outputs.

Neuron outputs are in the intermediate range This is the effective range of learning for the
Competitive Hebbian Algorithm. A winning node - one which happens to be firing strongly
- will tend to turn off the learning for the other nodes. This will result in different neurons
learning different regions of the input space.

Neuron outputs are too strong When the competitive learning factor (the bracketed term)
becomes negative, no learning takes place since we simply make the last term 0. If a system
gets to this stage, there is no way it can learn its way out of the region and we must simply
stop the algorithm and restart.

The Competitive Hebbian Algorithm had some success on our horizontal and vertical lines problem
but has proved difficult to stabilise and indeed the actual parameters used in the algorithm have
to be hand tuned for a particular problem to get the best results.

6.5. MULTIPLE CAUSE MODELS 105

Input measurement Coding
_— =
Layer

layer prediction

-
Figure 6.5: Saund’s model has activation propagating forwards and prediction propagating back-
wards.

6.5 Multiple Cause Models

The algorithms discussed in this chapter are sometimes known as “Multiple Cause Models” since
the aim is to discover a vocabulary of independent causes or generators such that each input can
be completely accounted for by the action of a few of these possible generators e.g. that any set
of the 216 possible patterns can be accounted for by some combination of the 16 output neurons,
each of which represents one of the 16 possible independent inputs.

6.5.1 Saund’s Model

Saund has focussed his attention on the activation function. His network is shown in Figure
6.5. We have a binary input vector {z1,s,...,2j,...,2,} which is joined by weights w;; to an
output/coding layer { y1, ..., Yi, ..., ym }- The weights are thought of as associating an input vector
with activity at a cluster centre determined by the weights into that centre. This should remind
you of competitive learning which is the simplest way to view this part of the process.

The cluster centre then corresponds to an output neuron which is in a position to predict
the input that caused it to react. This prediction is then returned to the input layer. Saund
views the outputs as performing a voting rule associating each prediction with the firing of the
various output neurons: if the it* neuron is firing strongly, then it must be because the inputs to
it approximate the data vector which is currently being presented to the network. We can view
such firing as the probability that it is caused by an item of data which is close to the weights into
that neuron. Thus he defines the prediction of the network for the jt* input value as

rj=1- H(1 — Wkj-Yr) (6.12)
k

Clearly if all weighted sums of the outputs are close to zero then the prediction is close to zero. On
the other hand as soon as a single weighted feedback is close to 1, the prediction of the network
goes to one - rather like the neuron saying “I’ve found it”. The prediction function for 2D inputs
is shown in Figure 6.6. It is sometimes known as a noisy-OR function since it is a smoothing of
the Boolean OR function.

Saund identifies an objective function equal to the log likelihood (derived in a similar way to
that discussed in the last chapter)

g = log (wijriy + (1= i) (1 —ri;) (6.13)
J

where the i subscript identifies the i"* pattern and the j the j'* input neuron. If z;; and r;;
simultaneously approach 1 or 0 then the objective function tends to zero. At all other times the

106 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

The prediction function

Figure 6.6: The prediction function for a two dimensional data set.

objective function will be negative. A global objective function is merely the sum of these objective
functions over all input patterns and the optimal weights are found by batch gradient ascent.

Saund shows that the network will identify the independent horizontal or vertical lines and
points out the inter-dependencies in the training regime: the optimal weights cannot be calculated
independently for each hidden unit but are dependent on one another’s predictions.

On the left hand side of Figure 6.7, we show a single neuron with cluster centre (1,1,1) is
attempting to predict the pattern (1,1,0). The best it can do is to predict (0.666,0.666,0.666)
which minimises the error function. However a second neuron with centre (1,1,0) can minimise
this error (in fact send it to zero) when it comes on line leaving the first neuron free to continue
responding maximally to (1,1,1). Note that each neuron has responded to a different pattern and
each is minimising the error for a different part of the input space.

OC.%GG OO <'1>

1 1 0 1

=

0 Inputs

0.666 0.666 0.666 1 1 0 Predictions

Figure 6.7: If there is only a single cluster centre at (1,1,1) the output neuron cannot respond
accurately to the input (1,1,0) since the incorrect prediction of a 1 on the third input would give
an error of magnitude 1. The best that can be done is to predict % for each input. But if we have
two centres, the second centre can concentrate its resources on this input leaving the other centre
to react to the pattern (1,1,1).

6.6. PREDICTABILITY MINIMISATION 107

Predictions

PR

Prediction
Units

Figure 6.8: Schmidhuber’s Predictability Minimisation network: input patterns are coded across
the (large) code neurons. Each code neuron feeds forward to all the other prediction units but
not its own. Each prediction unit attempts to predict the corresponding code unit’s output. Each
code neuron is meanwhile attempting to avoid being predictable.

6.5.2 Dayan and Zemel

Dayan and Zemel view the problem as one of finding a set of prior probability and conditional
probabilities that (approximately) minimize the description length of a set of examples drawn from
the distribution: the minimum description length refers to the number of output neurons required
to describe the input in an invertible code. Their first model uses a backpropagation network with
a single hidden layer for autoassociation. They use, however, a cross-entropy error to judge the
accuracy of the reconstructions at the output layer. Using this on the lines data, they had some
success but found that the network tended to get stuck in a local minima about 73% of the time
in which a particular output would have responsibility for more than one line.

6.6 Predictability Minimisation

Schmidhuber has developed a network (Figure 6.8)for extraction of independent sources based on
the principle of predictability minimisation. The core idea is that each prediction layer (the last
layer in the Figure) attempts to predict each code neuron’s output based only on the output of the
other code neurons while simultaneously each code unit is attempting to become as unpredictable
as possible by representing input properties which are independent from the features which are
being represented by other code neurons.

Notice that each prediction neuron is connected in a feedforward manner to all code neurons
except the code neuron whose output it is attempting to predict. Let the output of the i** code
neuron be g;. Then

Yi = f(z Wi T) (6.14)

where f(u) = m and x; is the j* input. So 0 < y; < 1. The output of the prediction
units is given by
P, = Z'Ulcjyj (6.15)
7k

So Py, sees only the response of the other code neurons and not the code neuron which it is trying
to predict. Now we have two pass training (both using conventional backprop).

Pass 1 Each set of weights is trained to minimise the mean squared prediction error over all sets
of inputs. i.e. to minimise 37 3. (Pf — y¥)2, where PP is the output of the i*" prediction
neuron to the pt® input pattern etc. If it does minimise this function, the P; will then be
the conditional expectation E(y;|{yk,k # j}) of the prediction unit given the output of all

108 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Expert Expert Expert Gating
network network network Network
1 2 m

[Input data |

Figure 6.9: Each expert and the gating network sees all input data. Each expert learns to take
responsibility for a particular set of input data and the gating expert learns how much confidence
to have in each network’s output for that input.

the other code neurons. We can see that this conditional expectation will not be the same
as actually predicting the value of the code unit. e.g. if the code unit fires 1 one third of the
time and O the other two thirds, the conditional expectation would be 0.333 in this context.

Pass 2 Now in the second pass the weights are again adjusted so that the code units are at-
tempting to maximise essentially the same objective function which was previously being
minimised i.e. to make them as unpredictable as possible. But now we only need change
the w weights into the code units.

The two criteria co-evolve by fighting each other. Note that each w weight is maximising only
the local prediction error while each v weight is being updated to minimise the global prediction
error.

Schmidhuber states that the code evolved by his network is quasi-binary: each coding neuron
is either 0/1 for each pattern or responds with a constant value to each input pattern in which
case it is simply giving a “don’t know” response to each pattern.

6.7 Mixtures of Experts

We now introduce a method known as the mixtures of experts: the desire is to have each expert
(which is typically itself a backpropagation neural network) learn to take responsibility for a
particular subset of the input data. The experts are then assigned a weight which can be thought
of as the confidence that a gating network has in each expert’s responsibility for responding to
that input data.

Consider the network shown in Figure 6.9. Each expert sees all the input data and is itself
a network which can be trained by supervised learning (error descent) methods. The gating
network also sees the input data and is trained by supervised learning. Its responsibility is to put
a probability on the chance that each network is the one to take responsibility for that input.

A First Attempt

A first attempt might be to use as error descent on

EC =]t =) iyl | (6.16)
[

where y{ is the output vector of expert ¢ on case ¢ , p§ is the proportional contribution of expert
1 to the combined output vector and t¢ is the target output on case c. Notice that it is the gating
expert which determines p§ while the experts independently calculate their outputs,y;.

6.7. MIXTURES OF EXPERTS 109

The problem with this error function is that this introduces a strong coupling between the
experts causing them to act together to try to reduce the error. So each expert attempts to
minimise the residual errors when all the other experts have had their say which tends to lead to
situations where several experts are combining to take responsibility for each case.

An Improvement

What we really require is for our gating expert to make the decision about which single expert
should be used in each case. This suggests an error term of the form

EC=E(|t—yi ") =Y of I t°—vi |I” (6.17)
i

Here the error is the expected value of the residual error where each expert is expected to provide
the whole of the approximation to the target and the gating network evaluates how close this
whole approximation is. There will be still some indirect coupling since when another expert
changes its weights the gating network may alter its assessment of responsibility apportionment
but this is much less direct than before. Simulations have shown that this network can evolve to
find independent sources.

When an expert network gives less error than the weighted average of the errors over all experts,
its responsibility for that case is increased (the gating network increases the value of p¢) and if it
does worse, its responsibility is decreased.

There is still a difficulty with this error measure however which we see when we consider the
rate of change of the error with the output,

OFE°
y§

= —2pi(t° — i) (6.18)

from which we can see that the rate of change for terms which are far away from the current target
is greater than those closer. While this is gated by the probability vector, it still has an adverse
effect on convergence.

The Final Error Measure

Consider the error measure
1
E°=—log) piexp(—5 ||t —yi |) (6.19)
i

which can be derived by assuming that all output vectors can be described by a Gaussian distribu-
tion and we are maximising the negative log probability of their independent joint distributions.
When we now calculate the derivative of the error function with respect to the experts’ outputs
we get

OE° plexp (=L |ltc—ye) . .
= : 2 | - (t° —yi) (6.20)

dys Y ;piexp(—3 [t —yS P’

This term has been shown to have much better performance due to the fact that the first fractional
term takes into account how well the i*" expert is performing compared to all other experts.

6.7.1 An Example

Jacobs et al performed an experiment in which 4 vowel sounds from a 75 speakers were to be
discriminated by an ANN. They compared the results using the Mixture of Experts network with
a backpropagation network and showed that latter typically took about twice as long to train. The
actual convergence of the weights in the network is interesting: initially each expert in the network
attempts to minimise all the error in the network over every example. There is, at this stage, no

110 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Expert 0 | Expert 2 Discrimination line
from Expert O

Discrimination
line from
a Expert 2

Confidenceline

Figure 6.10: An exaggerated view of how the gating network and the mixtures of experts work
together. The almost vertical line is the gating networks’ view of the experts: on examples to the
left of the line it assigns responsibility to Expert 0 while to the right it assigns responsibility to
expert 0. Each of these experts have a linear discriminant function which is accurate for its region
of responsibility but inaccurate outside. In this way the combined network acts together to give a
non-linear boundary between classes.

cooperation in the network and each network is attempting to deal with the whole problem itself.
However a stage is reached when one network begins to receive more cases from a particular class
than the others and quickly assumes responsibility for this class. This leaves the other experts
free to concentrate on error minimisation for the other classes.

Finally we see an exaggerated version of converged weights in Figure 6.10 where we have experts
and the gating network working together to model the problem. It can be seen that each of the
networks has a region of the input space where it is effective and a region where it is ineffective.
The gating network has learned these regions and assigns responsibility for the network’s output
to the expert for problems in the area where the expert is effective.

6.8 The Paisley Connection

6.8.1 Non negative Weights and Factor Analysis

Charles and Fyfe have shown that a simple change to the Subspace Algorithm results in a network
which will find the independent components of the bars data: we simply do not allow the weights
to go negative. The rationale for this rule is that neurons can inhibit other neurons or excite
other neurons but what cannot happen is that a neuron which at one time excites another neuron
changes its synaptic connections (weights) so that it now inhibits that neuron. Recall that we
used this simple rule with Gaussian data and showed that this rule enabled convergence to the
actual Principal Components of the simple Gaussian data. We now state that this change leads
to the weights converging to the bars of the bars data.

Table 6.2 shows an example of the patterns typically learned (each output identifies a separate
bar).

A standard method of finding independent sources of this type is the statistical technique of
Factor Analysis (FA). PCA and FA are closely related statistical techniques both of which achieve
an efficient compression of the data but in a different manner. They can both be described as
methods to explain the data set in a smaller number of dimensions but FA is based on assumptions
about the nature of the underlying data whereas PCA is model free.

We can also view PCA as an attempt to find a transformation from the data set to a compressed
code, whereas in FA we try to find the linear transformation which takes us from a set of hidden
factors to the data set. Since PCA is model free, we make no assumptions about the form of the

6.8. THE PAISLEY CONNECTION 111
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0.351583 0.351481 0.342942 0.349674 0.344767 0.344997 0.343597 0.344819
0 0 0 0 0 0 0 0

Table 6.2: The weights into a single output neuron. The weights have been arranged to display
their connection with the input grid.

Output 1 Output 2
Input 1 | 0.000755 0.708634
Input 2 | 0.001283 0.705238
Input 3 | 0.021043 0.021338
Input 4 | 0.708208 0.002265
Input 5 | 0.705604 0.001692

Table 6.3: The converged weights of the network showing that the underlying sources have been
found.

data’s covariance matrix. However FA begins with a specific model which is usually constrained
by our prior knowledge or assumptions about the data set. The general FA model can be described
by the following relationship:

x=Lf+u (6.21)

where x is a vector representative of the data set, f is the vector of factors, L is the matrix of
factor loadings and u is the vector of sp ecific (unique) factors.

We now view the output vector, y, in our network as the vector of factors. It is well known
that factor analysis does not give us a unique set of factors or loadings since any rotation of the
factors and a corresponding rotation of the factor loadings explains the data set equally efficiently.
Therefore, typically the underlying factors are constrained dependent on the researcher’s prior
knowledge or the type of solution is constrained by some more or less ad hoc arrangement.

As an extension to the factor analysis on discrete data, we use 5 mixtures of sine waves as
input data to our network so that

zg = sin(t) + sin(2¢)
. ™ . ™
zy = sin(t+ §) + sin(2¢ + Z)
zz = sin(3t+ 377T)
4
z3 = sin(4t+ ?W) + sin(5t)
xgy = 2sin(5t)

The first two mixtures, ¢ and x, are identical but slightly out of phase, the 3rd is a totally
independent sine wave and the last two contain the same sine wave, however one has another
mixed on to it. Therefore the relationship between the outputs of the sources is straightforward
in the case of x3 and x4 but time-varying in the case of xy and x; where the underlying source is
emitting different phase signals.

6.8.2 Non negative Outputs

A further possibility is to only allow the outputs to be non-negative: this has the same effect of
forcing the weights to learn the individual bars.

112 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

A final possibility is to use a function of the outputs in the nonlinear PCA algorithm which
ignores negative weights. e.g.

Awy = n{yiz; —yi y_ wiyr}
k
where y; = exp(z Wi ;)
J
An alternative function is)
Yi (6.22)

1+exp({- 3, wijz;} +a)
where a is chosen to move the sigmoid parallel to the x-axis so that it is close to 0 at x=0 and
gets closer to 0 as x becomes more negative.

All of these methods used with the subspace rule cause convergence of the weights to find the
individual bars.

We may show that for every n-dimensional space, there exists a basis with n+1 basis vectors
in which every point can be represented by positive coordinates. i.e. intuitively, if we have a
3-dimensional space, we can choose an origin and then every point can be coded with 4 positive
numbers which will explicitly identify its position. Such bases are known as overcomplete bases -
you have more vectors than you need to form a basis.

6.8.3 Additive Noise

However, the outputs of the network as described in the previous section will learn partial bars
when there are more outputs than causes - i.e. the bars are shared between the outputs. If there
are sixteen causes in the input space then only sixteen outputs should be used to code these
individual causes regardless of the dimensionality of the output space. By adding noise to our
network after the application of the non-linearity we can ensure that only as many outputs respond
to the data as there are causes. An added bonus is that this may be interesting from a biological
perspective as real neurons tend to operate in a noisy environment. There are already a number
of a biologically plausible aspects to the network such as Hebbian learning, local learning, sparse
coding, as well as thresholding and the possibility of topographical mapping.

Non-linear PCA can be shown to be an approximation to the minimization of J = E(x —
Wy)?2 = E(x — Wf(a))2, where E() is the expectation operator. Now we add noise to the process
so that y = f(a)+u where p is a vector of independently drawn noise from a zero mean distribution.
So defining f = f(a), let

J = Ekx-Wy)? (6.23)
= J+ ZJ?W? (6.24)

Terms containing single expectations of u can be removed from the equation as they are drawn from
zero mean noise and thus are independent of x. Intuitively, we see that, with a low magnitude of
added noise to the network the first term of (6.24) dominates and so non-linear PCA is performed
in the normal manner. If the noise level is increased then the learning is moderated by this
additional weighted noise term which has the effect of forcing some weight vectors to zero (the
degenerate solution). Extracting a weight update rule from the energy equation (6.24), we have

AW o f(a)(x — Wf(a)) - AWT (6.25)

As the amplitude of the noise becomes larger then the right term has more effect and pushes the
weight values downwards. So the introduction of the noise into the network at the outputs has
the effect of introducing a second pressure into the learning rule of the non-linear PCA algorithm.
This is a natural way in which to introduce a sparsification term on to the weights.

The major advantage of additive noise is that it reduces the number of basis terms used to
code an input: we are finding the Minimum Overcomplete Basis.

6.8. THE PAISLEY CONNECTION 113

Additive noise has a further advantage in that it can be added in a number of ways. For
example, if it is added uniformly on to all outputs (the diagonal values of A matrix are all the
same) then all of the weight vectors are penalised equally and only features that are strong enough
to dominate the noise are learned. So in the case of the bars if we have 20 outputs in are network
trying to learn 16 individual bars then only 16 outputs will respond, the weight vectors connected
to the other 4 all having zero weight values.

Noise may also be added in a graduated manner, i.e. the first output is given a small magnitude
of noise (e.g. zero mean, gaussian noise of standard deviation 0.001) and this is increased by noise
x output number (where the first output is number one and the last is twenty) for every subsequent
output. That is the diagonal values of A matrix become increasingly larger. So if the first output
is on the left then the effect of adding noise in the manner is to force the bars to be learned at
the first 16 outputs starting from the left side. In this way we can begin control the location in
which factors are learned. In Section 6.8.5, we show how that high magnitude noise can be added
locally on modules of the output space to force features to be learned on the outputs between the
areas of high magnitude noise. By introducing temporal context, we can then force the network
to learn vertical and horizontal bars in separate areas of the output space. Once we have separate
'modules’ of the output space responding to these different types of bar then it is easy to from the
concepts of ’vertical’ and ’horizontal’ at a higher processing level.

6.8.4 Topographical Ordering and Modular Noise.

By introducing temporal context via lateral connections between the outputs (6.11), we can achieve
an ordering in the coding of the bars at the outputs. This is achieved by giving values to the
lateral weights proportional to the distance between any particular pair of outputs and increasing
an output’s activation in proportion to the previous values of the other outputs weighted by
the lateral connections. The lateral connections come into play after the feedforward stage of the
algorithm but before the application of the non-linearity. So a; + a; (t)+Zf:7 k0 (@it (E—=1)75),
where 7; is a lateral weight. The lateral weights can be set in a number of ways, for example using
a gaussian or difference of gaussians, or gaussian weighted cosines or sines, however the method
that we use here is simply to connect an output only to its nearest four neighbours. Lateral weight
values to the left of an output are -0.2 and -0.7 (nearest) and to the right 0.2 and 0.7 (nearest).
If the bars appear as part of horizontally or vertically moving sequences then this network now
can order the outputs so that temporally close features are coded spatially close at the output
neurons. Now using these lateral connections along with modular noise we can force vertical and
horizontal bars to be learned in different modules of the output space. This is achieved by creating
two “wells of attraction” at the outputs by adding zero mean gaussian noise after the application
of the non-linearity proportional to |cos(2*7*(number of output/total number of outputs| where
each of the outputs are numbered 1,2,3 This has the effect of encouraging one set of features
to be coded around the output that is one third from the left and one set of features to be coded
around the output that is one third from the right. This happens because the noise is of lower
magnitude at these points and so the error minimisation term dominates.

6.8.5 Results

In this section a variety of aspects of our network are illustrated with the benchmark “bars data”
before testing on real image data. Unless otherwise stated the the networks are trained over 50000
presentations of the data with a learning rate of 0.05 which is annealed linearly to zero over the
training period. The squares in the following figures are individual weight vectors each connecting
to one output, arranged 2-dimensionially for the convenience of viewing the results. The diameter
of circles within the squares represent the individual weight values where black is a positive weight
and white is a negative weight.

\ENTIFYING INDEPENDENT SOURCES
Inputs (x)

Figure 6.11: Lateral connections are added between neighbouring outputs and the activations
of these are fed to their neighbour at the same time as the neighbouring output receives the
feedforward signal from the inputs. In this way temporal context is incorporated into the network
s0 as to encourage neighbouring outputs to learn factors which are temporally close on the inputs.
Note that in this example only the closest neighbours are connected.

Random Mixes of Horizontal and Vertical Bars

We use the more difficult form of this data in horizontal and vertical bars may appear together
(Note that we have already shown this network to be resistent to noisy versions of this data).
Each bar (horizontal or vertical) may appear at the input to the network with a probability of
1/8 as described previously.

The converged weights of our network when using using the straightforward rectification of
the outputs is shown in Figures 6.12 and 6.13. In the case where 24 outputs are used then all
of the bars are found but some of the bars are shared by two or three outputs. The threshold
implementation of the network is more successful at identifying the bars in this case, Figures 6.14
and 6.15 show the converged weights when using this implementation of the network on the data.
That is when more outputs than bars are used in the network then all of the individual bars are
indentified, redundant weight vectors simply contain noisy values on the weights. We use the soft
threshold function with the artificial data here as it is very flexible to work with and forgiving of
non-optimal network parameters. The other threshold functions from this family once optimised,
however, yield results that are virtually indentical.

We have found that the soft threshold non-linearity is more effective than the plain rectification
on the outputs. With exactly as many outputs as bars then both networks identify all of the bars
easily, whereas when there are more outputs in the network than bars that make up the data set
then all of the bars are identified but in the case of the rectified network some bars are identified

6.8. THE PAISLEY CONNECTION 115

Figure 6.12: Converged weights of the non-linear PCA network with the straightforword rectifi-
cation [a]T - 16 outputs

more than once, and junctions of of bars or combinations of bars are also found.

6.8.6 Additive Noise

Additive noise, as can be seen from the results presented here below (zero mean, gaussian noise
of standard deviation 0.01 is added to every output) is beneficial in all of these networks when
added to the outputs after the application of the non-linearity. Figure 6.16 show that the additive
noise enables each of these networks to identify all of the individual bars. That is, only as many
outputs are used as are required in the coding; the weights connected to the other outputs each
learn values that are close to zero.

As stated earlier we can add noise in a graduated way across the outputs so that the first
output has zero mean gaussian noise of standard deviation 0.001 added to it and every subsequent
output having double the amount of noise as the previous output. In a network with 20 outputs
this has the effect of forcing the first 16 outputs to learn all of the bars but the last 4 to learn
nothing. In this way we can control the location on the outputs where factors may be learned.

Illusory Causes

In the situation where bar patterns are non-sparse (the bars appear with a random probability of
7/8 each) then networks with built in sparse priors cannot be expected to identify the individual
bars. With our threshold network the results (Figure 6.17) indicate that the network converges
to a very sparse representation - i.e. the illusory bars between the actual bars patterns. As
the network operates so as to find a sparse response with the minimum descriptive length and
because the individual bars are appearing in dense patterns together, then the network cannot
learn the individual bars. Instead the network learns the spaces between bars patterns which is
the appropriate sparse response (illusory bars). Note that in this experiment that the horizontal

116 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Figure 6.13: Converged weights of the non-linear PCA network with the straightforword rectifi-
cation [a]t - 24 outputs

and vertical bars are not mixed so as to allow the weights to learn a more visually interesting
response.

Although most of the weight vectors have prominent negative values, one of the weight vectors
has small positive values on all of its weights. This weight vector is used to ensure that the output
values respond with a significant positive value (normally a magnitude of over 3) to the illusory
bars.

Using Noise to Modularise the Network Response

Additive noise on the outputs has another useful property - that of enabling the network to learn
related features in modules of output space. We create two “wells of attraction” at the outputs
of the lateral connected network (Section 6.8.4) by adding local zero mean gaussian noise after
the application of the non-linearity proportional to |cos(2*7*(number of output/total number of
outputs| where each of the outputs are numbered 1,2,3 This has the effect of encouraging one
set, of features to be coded around the output that is one third from the left and one set of features
to be coded around the output that is one third from the right (6.18). This happens because the
noise is of lower magnitude at these points and so the error minimisation term of (3) dominates.

6.8. THE PAISLEY CONNECTION 117

Figure 6.14: Trained threshold network - 16 outputs

Real Image Data

In this section we test our network on some real images with noise added in a variety of ways to
the outputs of the network before feedback. We use the shifted logistic function here because, as
it saturates at ’1’, the visual effect of reconstructed patches having different brightnesses is less
prominent. The value for the threshold parameter 8 that we use in the non-linearity is 4 and we
set the slope parameter ¢ = 0.4. The learning rate is kept the same in all of the experiments at
0.05 and training conducted over 100 000 samples of the input images (8x8 samples). In each case
the learned codes are tested on a new but similar image by sampling (again 8x8 patches) over this
image completely so that each area is covered at least once and the sampled patches overlap by 6
pixels (this is used to even out the contrast between neighbouring reconstructed image patches - it
helps with the visualisation process but has a slightly negative effect on the reconstruction error).

Striped Wood Data

The first real image that we test our network with is an image of striped wood, shown in Figure
6.19. The structure in this example is very clear, i.e. it is made up largely of slightly off-vertical
stripes. One would expect in this case that the structure in this data set could be learned by
only a few outputs in a network. The results of using a PCA network confirm this to some extent
because we find that there are only 5 or 6 significant principal components (Figure 6.19). By
adding noise either uniformly (Figure 6.20) or in a graduated manner (Figure 6.21) to our shifted
logistic network we can force the network to learn only the most significant causes in the data.
The reconstruction of the striped wood image is shown in each of the following examples; this is
to show that even though the reconstruction of the image with fewer codes is less detailed the
structure of the original image is still clearly visable. Our purpose is not to form codes that can
reconstruct the image with minimal error but to identify the fundamental underlying factors in
the data. For example we do not normally want to reconstruct noise in an image. It could be said

118 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Figure 6.15: Trained threshold network - 24 outputs

that we are adding noise to remove noise from an image.

6.9 Probabilistic Models

Hinton, Gharamani, Dayan et al have developed models which attempt to use a generative model =
top down connections from underlying reasons for the input image i.e. the top down connections
create the image from an abstraction of the image. This is based on the view that “Visual
perception consists of inferring the underlying state of the stochastic graphics model using the
false but useful assumption that the observed sensory input was generated by the model.”

Learning is done by maximising the likelihood that the observed data came from the generative
model. The simplest generative model is the Mixtures of Gaussians model.

6.9.1 Mixtures of Gaussians

e Fach data point has an associated probability of being generated by a mixure of Gaussian
distributions.

e Given the current parameters of the model, we calculate the probability that any data point

6.9. PROBABILISTIC MODELS 119

Figure 6.16: Trained soft threshold network with additive noise - 24 outputs. Note that some
weight vectors have no significant weight values

came from the distributions. The posterior probability

e The learing process adjusts the parameters of the model - the means, variances and mixing
proportions (weights) of the Gaussians - to maximise the likelihood that the model produced
the points.

So when we generate a data point

e Pick a hidden neuron (the underlying cause of the data). Give it a state of 1, set all other
hidden neurons’ states to 0.

Each hidden neuron will have probability of being picked of m; - a prior probability.

Feed back to input weights through weight vector g;. The g; is the center of the Gaussian
= {gjh gj2, -y an}

Add local independent zero mean Gaussian noise to each input.

This means that each data point is a Gaussian cloud with mean g; and variance o?.

120 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Figure 6.17: The noisy soft threshold network discovers illusory bars - 24 outputs

—(di—gj:)? /207 (6.26)

1
e
™o

p(d) ZZMH 5

Interpreting Data - Expectation Step

1. Compute the probability density for each data point (assuming the model is correct.)

1 (di—g::)2 /202
p(dls; =1) =] N (o /e (6.27)

2. Weight these with the prior probabilities ;.

3. Use Bayes theorem to calculate the probability of the data.

p(s; =1|d) = Z?::gg;ﬂ; i)l) (6.28)

We have now calculated the posterior probabilities of the hidden states given the data (“per-
ceptual inference”) - the E-step of the EM Algorithm and we now perform the M step, which
involves changing the parameters to maximise the Expectation.

6.9. PROBABILISTIC MODELS 121

Learning as Expectation Maximisation

We use the existing parameters to calculate the optimal new parameters.

E{p(s; = 1]d)d}

& E{p(s; = 1]d)}

sz~ Elels =1d)(di — g;)°}
z E{p(s; = 1|d)}

m = E{p(s; =1]d)}

We have now a means of maximising the expectation - the M-step but we can also use incre-
mental learning which involves gradient ascent such as

Agji = ep(s; = 1|d)(di — g;ji) (6.29)

6.9.2 A Logistic Belief Network

Multiple layers of binary stochastic neurons whose state s; is based on top down expectations §;
from the layers above.

p(sj =1) =8; = o(go; + Z Skgkj) (6.30)
k

If the configuration of a network is «,

P = []p(s¢ pa(i,) (6.31)

where pa(i,) is the states of i’s parents in configuration o and s¢ is the state of the i‘* neuron
in configuration a.
Using negative log probabilities as an energy measure, we have

E*=—InP*=-) (s¢In + (1 - s2)In(1 — 57)) (6.32)

u

where 8% is the top-down expectation for unit u.
We use the ratio of
AE} = EoIs«=0 — pols.=! (6.33)

to chose the new state of the ut? neuron:
p(sy = 1|a) = o (AEY) (6.34)

Hinton shows that this can be factorised into top down effects and knock on effects from below.
Given Gibbs sampling,
Agj; = esj(si — 3;) (6.35)

6.9.3 The Helmholtz Machine and the EM Algorithm

As prelude to the discussion in the next a discussion of the Helmholtz machine will be useful. The
stochastic Helmholtz machine consists of a pair of Bayesian networks that are fitted to training
data using an algorithm that approximates generalised Expectation Maximisation (EM).

The EM algorithm is a general approach to iterative computation of maximum-likelihood
estimates when the observed data can be viewed as incomplete data. The term incomplete data
has two implications :

1. The existence of two sample spaces X and Y represented by the observed data vector x and
the complete data vector y, respectively.

122 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

2. The one-to-many mapping y — z(y) from space Y to X.

The complete vector y is not observed directly, but only through the vector x. The EM
algorithm is executed in two steps: first an expectation step (E), followed by a maximisation step
(M). During the E step the complete-data log-likelihood, P(Y—x,M) , given the observed data
vector x and the current model, M , is calculated.

The Helmholtz machine then, based on a generalised EM algorithm, has a generative network
P(x,y—V) and a recognition network Q(y—=x,W), where V and W may be thought of as generative
and recognition weight parameters respectively. The recognition model is used to infer a probabil-
ity distribution over the underlying causes from the sensory input. The separate generative model
is used to train the recognition model.

6.9.4 The Wake-Sleep algorithm

The Wake-Sleep algorithm was designed as an improvement on the Helmholtz machine. The main
disadvantage of the Helmholtz machine is that a recognition network that is compatible with the
generative network must be estimated and this is often a difficult task. In the Wake-Sleep algorithm
rather than using Gibbs sampling, a separate set of bottom-up recognition connections are used
to pick binary states for units in the layer below. The learning for the top-down generative
weights is the same as for a Logistic Belief Net. This learning rule follows the gradient of the
penalised log-likelihood where the penalty term is the Kullback-Liebler divergence between the
true posterior distribution and the distribution produced by the recognition process. The penalised
log-likelihood acts as a lower bound on the log-likelihood of the data and the effect of learning is
to improve this lower bound. In attempting to raise the bound, the learning tries to adjust the
generative model so that the true posterior distribution is as close as possible to the distribution
actually computed. The recognition weights are learned by introducing a sleep phase in which the
generative model is run top-down to produce fantasy data. The network knows the true causes
of this fantasy data and attempts to maximise the log-likelihood of recovering these causes by
adjusting the recognition weights. Frey provides a clear description of the mathematical process
for the Wake-Sleep algorithm which may be summarised by the following analysis.

The Rectified Gaussian Belief Net

Hinton and Ghahramani’s network is based on the Rectified Gaussian Belief Network (RGBN)
which is well described in and and is an improvement in some ways on the Wake-Sleep algorithm.
The RGBN uses units with states that are either positive real values or zero, so it can represent
real-valued latent variables directly. The main disadvantage of the network is that the recognition
process requires Gibbs sampling.

The generative model for the RGBN consists of multiple layers of units each of which has a real-
valued unrectified state, y;, and a rectified state, [y;]+ = max(y;,0). The value of y; is gaussian
distributed with a standard deviation o; and a mean §; that is determined by the generative bias
goj, and the combined effects of the rectified states of units, k, in the layer above:

G5 = 9o + Y _lur]Trs (6.36)
k

Given the states of its parents, then the rectified state [y;]+ has a gaussian distribution above zero,
but all of the mass that falls below zero is concentrated in an infinitely dense spike at zero. This
form of density is a problem for sampling and so Gibbs sampling is performed on the unrectified
states. Now, consider a unit in an intermediate layer of a multi-layer RGBN. With the unrectified
states of all the other units in the network, then Gibbs sampling is performed to select a value
for y; according to its posterior distribution given the unrectified states of all the other units. In
terms of energies, which are defined as to negative log probabilities, then the rectified states of the
units in the layer above contribute a quadratic energy term by determining §; . The unrectified
states of units, i, in the layer below contribute nothing if [y;]+ is 0, and if [y;]+ is positive then

6.10. CONCLUSION 123

they each contribute because of the effect of [y;]+ on y;. The energy function may then be written
as

E(y;) = Y= yg Z Yi — Zk yk] ki (6.37)

where h is an index over all of the units in the same layer as j including j itself; so y; influences
the right hand side of this energy function by [y;]+ = max(y;,0). H and G show that learning
rules for generative, recognition and lateral connections may be formed that not only identify the
underlying causes in a data set but also that a topographical mapping may also be formed on data
sets such as in the stereo disparity problem. Because sampling is used, this method is considerably
slower than e.g. Charles’ method. Additionally, because of the top-down mechanism of learning
it must be assumed that either horizontal mixes or vertical mixes of bars are present (in the case
of the bars data) at the inputs, that is there must not be a mix of both types in the data.

Attias provides a review of current probabilistic approaches to Factor Analysis and related areas
and Frey provides a comprehensive overview of the probabilistic theory and techniques related to
this area of research.

6.10 Conclusion

It is of interest that in each of these models there is a balancing of competing criteria: e.g. cooper-
ation between outputs (finding several causes per input) is balanced with competition (separation
of responsibilities for coding different independent sources). This seems to be an essential part of
each solution but we still seem to be lacking an overall rationale for this observation.

124 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Figure 6.18: Trained weights of noisy soft threshold network using noise to modularize the response
of the network

6.10. CONCLUSION 125

Figure 6.19: The six smaller squares are the visual representation of the weights of a PCA network
when trained on the Striped Wood example. There are only 5 significant principal components
for this data so only 6 outputs were used in the network. The top three squares from left to right
are; the Striped Wood training sample, test sample, and reconstructed image.

126 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

IIIIIIII ||ii
+

Figure 6.20: The first 2 sets of weight vectors shown above are learned by the shifted logistic
network without added noise and are shown with the reconstructed images generated with codes
from the test image (the first using 6 outputs, the second 16 outputs). The bottom set of 16
weights are learned when noise is added uniformly on to all of the outputs of the network (zero
mean, gaussian noise of 0.05 standard deviation)

|
| e

i

6.10. CONCLUSION 127

Figure 6.21: This figure shows 3 sets of weights (16 in each set) learned in three different noise
implimentations our noisy shifted logistic network when noise is added gradually on to the outputs
(also shown are the reconstructed images). The first output recieves the smallest amount of noise
and each subsequent output recieves initial noise* (distance of output from first output + 1). The
initial noise for the three sets of results shown here are (from top to bottom) - 0.05, 0.02 and 0.005
respectively.

128 CHAPTER 6. IDENTIFYING INDEPENDENT SOURCES

Chapter 7

Independent Component Analysis

There is however a second strand of research using artificial neural networks on this problem of
separating out a single source from a mixture of sources. This second strand deals with continuous
signals - as opposed to the binary signals we used in the last chapter - and has its roots in the
world of signal processing. The problem is generally known as the “blind separation of sources”
or sometimes “the cocktail party problem”. The latter name is a reference to the human ability
to extract a single voice from a mixture of voices: there is no simple algorithmic solution to
this problem yet people have no difficulty following a conversation even when the conversation is
embedded in multiple other conversations. The former name is in more general use: we wish to
separate out a single source signal from a mixture of sources and/or noise. The problem is known
as “blind” since we make (almost) no assumptions about the signals.

We will consider only a linear mixture of signals - this problem is difficult enough; polynomial
and other non-linear mixtures are beyond the scope of this course (or this lecturer).

The problem may be set up as follows: let there be N independent non-Gaussian signals
(s1, 82, ..sn) which are mixed using a (square) mixing matrix A to get N vectors ,z;, each of which
is an unknown mixture of the independent signals,

X = As (7.1)

There may in addition be noise added to the mixing process but we shall ignore that for the time
being. Then the aim is to use an artificial neural network to retrieve the original input signals
when the only information presented to the network is the unknown mixture of the signals. The
weights in the network will be W such that

y = Wx (7.2)

where the elements of y are the elements of the original signal in some order i.e. we are not
insisting that the first output of our neural network is equal to the first signal, the second equal
to the second signal and so on. We merely insist that neuron i’s output is one of the N signals
uncontaminated by any of the other signals. Neural and quasi-neural methods of performing this
task are known as Independent Component Analysis networks (ICA) and are often thought of as
extensions of PCA networks.

However we did make one assumption when we defined the problem which was that the signals
should be non-Gaussian. The reason for this is that if we add together two Gaussian signals we
simply get a third Gaussian signal. Therefore if two or more of our signals (or noise sources) were
Gaussian distributed there is no way to disentangle them. This is less an assumption than an
incontrovertible fact which cannot be side-stepped in our form of life.

7.1 A Restatement of the Problem

Let us take another look at the problem. In Figure 7.1, we show two dimensional data points each
of which were drawn independently from the uniform distribution within the parallelogram. The

129

130 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

Second Principal Component

Second Independent Direction
Component Direction ",

First Independent Component
Direction

First Principal
‘ Component Direction

Figure 7.1: The data were points drawn independently from the uniform parallelogram distribution
shown. The first Principal Component is the direction with greatest spread - the long axis of the
parallelogram. The second is of necessity perpendicular to that. The independent component
directions however are parallel to the sides of the parallelogram.

A Kurtotic 7
Distribution/” /

Figure 7.2: Deviations from Gaussian distributions: the dotted line on the left represents a nega-
tively skewed distribution; that on the right represents a positively kurtotic distribution; in each
case, the solid line represents a Gaussian distribution

first Principal Component is the direction with greatest spread - the long axis of the parallelogram.
The second is of necessity perpendicular to that; we have no choice with two dimensional data;
the second PC must be perpendicular to the first and so in a plane (with 2D data) we must
draw the second PC as shown. The independent component directions however are parallel to
the sides of the parallelogram. The first Independent Component gives no information about the
direction of the second; they truly are independent. Each however finds the underlying causes
of the distribution in that each finds the independent directions of the uniform two dimensional
distribution.

We will see that there are two major methods used to solve this problem - one uses information
theory while the other uses the higher order moments of the data. We have already used the first
two moments of a set of data:

1. The first moment is the mean. The mean can be calculated from
p=EX)= /p(:n)a:da: (7.3)
2. The second moment is the variance. The variance can be calculated from

7 = (X =) = [pla)(e - nde (7.4)

For a Gaussian distribution, that is all there is to know about the distribution. For other
distributions, you may well be interested in higher moments:

7.2. JUTTEN AND HERAULT 131

X Ul
1
W,
Inputs Outputs
Wor y
2
X, O 2

Figure 7.3: Jutten and Herault’s model.

e The third moment measures skewness (see Figure 7.2) in a distribution:

E((X - 1)) = [pla)(e — pdo (7.5)

If a distribution is perfectly symmetrical, this will evaluate to 0.

e The fourth moment measures the kurtosis of a distribution. This is a measure of the pro-
portion of the distribution which is in the tails of the distribution:

E(X =) =3 = [plo)a - p'de - 3 (7.6)

The term “-3” is added to ensure that a Gaussian distribution has 0 kurtosis.

It can be shown that if two distributions are independent, then their higher moments satisfy the
same constraint that we saw with the second order statistics when we decorrelate the distributions:

E((XY)?) = E(XP).E(Y?),Vp (7.7)

This fact is used in some algorithms

Before we look at some algorithms which have been proposed for this problem we might ask
what type of applications might benefit from being able to perform a blind separation. One area
is the automatic retrieval of a single voice from a noisy environment; one reason delaying the
introduction of speech communication with auto-teller machines (those nice machines which dish
out bank notes) is that these machines tend to be situated in busy high streets where there are lots
of people and lots of traffic and so an individual speaking into such a machine will certainly have
competition. Secondly there has been an enormous increase recently in the use of the telephone
for e.g. home banking. Again while most people ensure that they can use the phone in a quiet
area of their home we would like to make our communication robust against interruptions from
children, door bells etc.

7.2 Jutten and Herault

Jutten and Herault proposed a neural network architecture (Figure 7.3) similar to Foldidk’s first
model. The feedforward of activation and the lateral inhibition are defined by:

n
Yi = Ti — E WijYj
J=1

As before, in matrix terms, we can write

y = x-Wy
Andso,y = (I+W) 'x

This looks very similar to models we discussed earlier (see Foldidk’s models) but we shall see that
crucially Jutten and Herault introduce an non-linearity into the learning rule.

Before we look whether we can find a learning rule which will adaptively solve the problem,
let us first consider if it is possible that such a network can separate two mixed sources.

132 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

7.2.1 An Example Separation

Consider the 2*2 problem. Let us have two signals s; (t), s2(¢) which are functions of time and let
them be mixed using a matrix A to get the mixed signals z; (), z2(t). Then

t
t

I (t) = a1181() + a1252

(t)
T2(t) = axsi(t) + axsa(t)

Now we have outputs from the network satisfying

Yyir = T1— w21Y2
Y2 = T2 —Wi12Y1
Substituting we get
Yr = X1 — W21 (332 - w12y1)

. . Tl — w212
and rearranging gives y; = ————
1—wywy2
.. T2 — Wi12T1
Similarly, y» = ————
1 — wawi2

Substituting for the z; values gives

(G11 - w21G21)81 + (Glz - w21G22)82

nit) =
1() 1 — waiwi2
y (t) _ (021 - w12a11)51 + (022 - w12a12)52
> =
1 —wowis

From this we can see two pairs of solutions at which the y values are a function only of a single
signal s value:

o If wy = Z—; and wiy = Z—':";‘ then we get the solution:

(012 - w21€l22)82

) =

1(t) 1 — waiwi2
_ (al2 - Ea22)82
- Tram

_ (112((112012 - (111(122) 39
Q12012 — G11G22
= aj252(t)
((121 - w12011)81
1 —warwia

= 0,2181(t)

Similarly, y2(t)

e Alternatively, if wo; = % and wis = % then we get the solution:

(011 - w21a21)51

ty =
v 1 — waiwi2
= a1181(t)
(022 - wlzalz)sz
(1) =
y(t) 1 — waiwi2
= azgSg(t)

In either case the network is extracting the single signals from the mixture - each output is a
function of only one s;(t). However this only shows that the solution is possible; it does not give
us an algorithm for finding these optimal weights. We must find a learning algorithm which will
adapt the weights during learning to find these optimal weights.

7.3. NON-LINEAR PCA 133

7.2.2 Learning the weights

Having got a network which is theoretically capable of separating the two sources, we require to
find a (neural network) algorithm which will adjust the parameters (the weights) till the separation
actually happens.

The learning rule Jutten and Herault use is

Awi; = —af(yi)g(y;) fori #j (7.8)

which is clearly an extension of Hebbian learning.

Notice that if we use identity functions for f() and g() we are using exactly simple Hebbian
learning which we know will decorrelate the outputs. Recall that when we decorrelate the outputs,
E(y;y;) = 0. If we have two independent sources the expected value of all joint higher order
moments will be equal to the product of individual higher order moments. ie. FE(yjyj") =
E(y;')E(y;*) for all values of m and n.

Jutten and Herault suggest using two different odd functions in the learning rule 7.8. An odd
function is one which satisfies f(-x) = -f(x) such as f(x) = 2* so that e.g. f(-2) = - 8 = -f(2). Since
the functions f() and g() are odd functions, their Taylor series expansion will consist solely of the
odd terms e.g.

Zaz 1227 and g(z sz TRE AL (7.9)
7j=0

The familiar tanh() function (note its oddness) is one such and its expansion is

tanh(s) =s— —+ — — .. (7.10)

Therefore the change due to the learing rule for a two output network is of the form
Awi; = —af(y1)g(y2)

= —azzaab yr

Convergence is reached when all the moments E(y%jﬂygk“) =0,Vy, k. Now statistical indepen-

dence occurs when N
Byt = B Byt (7.11)

J and H state that since most audio signals have an even distribution, their odd moments are zero
and hence at the above state of convergence we have the independence criterion (7.11) satisfied.

In practice the signal separation properties seem to work when separating 2 or perhaps 3
voices from a mixture but no more than that; also the process is not robust and requires careful
parameter setting.

Another example of using the network was given in the image processing field: the input data
was words written on card but with a sloping style. The network successfully converted the image
to one in which the writing was parallel to the edges of the paper. The result is due to the fact
that a sloped line introduces dependencies between the x and y coordinates. This dependency is
minimised when the lines are either horizontal or vertical. In fact if the original writing is closer
to the vertical than horizontal orientation, the output will be a vertical line of text.

7.3 Non-linear PCA

Oja’s Subspace Algorithm was shown earlier to find the Principal Components of the input data
which we know means decorrelation rather than independence of the outputs. The learning rule
is repeated here for convenience:

Awij = oliy; — y; > wiky) (7.12)
k

134 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

Since it finds an approximation to true PCA and PCA gives us the least error in reconstruction
of the data from a linear operation, the Oja network can be thought of as finding the best linearly
compressed form of the data.

Karhunen and Joutsensalo have derived from equation 7.12 a non-linear equivalent:

Awg; = alwif(y;) = F(y;) Y wik f(yr)) (7.13)
k

This can be derived as an approximation to the best non-linear compression of the data. While
there is no 100% secure derivation of this algorithm as a solution to the ICA of a data set, it
has been found experimentally that the algorithm does indeed find independent sources of some
mixtures of signals (see below). Also the addition of a non-linearity breaks the symmetry which we
found using the original subspace algorithm: with the original algorithm, the individual principal
components were not found (indeed it is experimentally found that the algorithm tends to divide
the variance up evenly between the output neurons). Therefore the original linear algorithm finds
only a basis of the subspace not the actual principal components themselves. However this non-
linear algorithm (7.13) finds the independent sources exactly not just a linear combination of the
sources.

7.3.1 Simulations and Discussion

Karhunen and Joutsensalo have shown that the algorithm derived above is capable of separating
signals into their significant subsignals. As an example, we repeat their experiment to separate
samples of a sum of sinusoids into its component parts: the experimental data consists of N
samples of a signal composed of the sum of 2 sinusoids in noise:

2
x(t) = Z Ajcos(2mfit —6;) + wy (7.14)
j=1

The amplitudes, A;, frequencies, f; and phases §; are unknown and must be estimated by the
algorithm. We use initially white noise, w; ~ N(0,0.05) where ¢ denotes time.

Our input vector is a vector comprising a randomly drawn instance of x(¢) and that of the 14
subsequent times, t + 1,..t + 14. We can show that a network whose output neurons use a non-
linear function are better able to separate the input signal into its component parts while those
using linear functions are less able to differentiate the individual subsignals. The original signal
is shown in Figure 7.4 while the output of the non-linear output neurons are shown in Figure 7.5.
This capability is not affected by coloured noise. Clearly the output neuron has identified one
of independent sinusoids. But in general, this network’s performance on e.g. voice data has not
yielded very good results.

7.4 Information Maximisation

Bell and Sejnowski have developed a network based on the desire to maximise mutual information
between inputs X and outputs Y:

I(X;Y)=HY) - HY|X) (7.15)
They reason, however, that H(Y|X) is independent of the weights W and so

OI(X;Y) OH(Y)
ow Ow

(7.16)

Now comes the interesting part: the entropy of a distribution is maximised when all outcomes
are equally likely. Therefore we wish to choose an activation function at the output neurons which
equalises each neuron’s chances of firing and so maximises their collective entropy. An example

7.4. INFORMATION MAXIMISATION 135

original mxture
2 T T T T

AT

0 20 40 60 80 100

Figure 7.4: The original signal comprising a mixture of sinusoids

first output signal
0.8 T T T T

0 20 40 60 80 100

Figure 7.5: The output from the first interneuron after training when the output neuron’s output
is a non-linear function of its inputs

136 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

Figure 7.6: The solid line shows a Gaussian probability distribution. The sigmoid is the optimal
function for evening out the output distribution so that all outputs are equally likely.

is given in Figure 7.6 in which we show a Gaussian distribution and a sigmoid. Note that at the
points of the distribution at which there are maximum values the slope of the sigmoid is greatest:
the high density parts of the probability density function of the inputs is matched with the highly
sloping parts of the sigmoid; this evens out the distribution at the outputs.

If we consider a single output Y with a single input X joined by a single weight w, the distri-
bution of the Y values is shown in Figure 7.7 over the weights w and inputs X where

1

= T e (=os) (7.17)

Y

For large values of w (=1) the Gaussian nature of the input distribution is clear. For negative
values of w the distribution becomes a bipolar distribution with equal probability for each of the
two limiting values; but there is an intermediate value of w at which the output distribution is
uniform. This last is the optimal value of w for which our learning algorithms should search.

Notice that this value depends on the actual distribution of the input data which is the sort
of relationship that suits neural learning since it inherently responds to the statistics of the input
distribution.

7.4.1 The Learning Algorithm

We can write the probability density function of an output y as

fuly) = fg) (7.18)

ox

where f,() is the probability density function of y and f.() is the probability density function of
x. Then the entropy of the output is

dy

H(y) = —E(In f,(y)) = E(n|57]) = E(ln fo (<)) (7.19)

7.4. INFORMATION MAXIMISATION

Qut put Probability Distribution

Cooocoo0o
NWAOO~N®

137

Figure 7.7: The distribution of the outputs as a function of inputs and weights. The weight which
gives the most uniform distribution is about 0 in this case. Note that when the weight increases
towards 1, the distribution becomes more peaked (actually Gaussian). When the weight decreases

we tend to get a bimodal distribution.

Now the second term here is unaffected by any change in the weights and therefore we can con-

centrate on maximising the first term with respect to w:

0H 0 Jdy Oy,._, 0 Oy
A _— = 1 —_— = —_— —_—
Y e 8w(n|8m) (855) Ow Ox
In the special case of the logistic transfer function,
act = wzx + wy
. 1
y = 1 + 67act
Then
9y
A 1—
g wy(l —y)
0 Oy
—-ZZ _ 1—9)(1 1-2
5w B y(1 = y)(1+wa(l - 2y))

Dividing (7.22) by (7.21) give the learning rule for the logistic function of

Aw (g—y)
x

4,00y 1
1 99y 1 _
ow Ox w+m(1 2y)

A similar argument gives the derivation of the weight update rule for the bias term

Awy x 1 —2y

Notice the effect of these two rules:

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

138 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

1. at convergence, Awg = 0 and so the expected output is % This in effect moves the sigmoid
horizontally along its graph till the centre of the sigmoid (the steepest part) is above the
peak of the input distribution f,().

2. Meanwhile the first rule is shaping the output distribution:

e the % part acts like an anti-decay term and moves the weights away from one of the
uninformative situations, where w is zero and y is constant regardless of the input. i.e.

1

Y
e the other term is anti-Hebbian. This keeps the rule from moving to the other uninfor-
mative solution which is that the y output is always 1

These forces balance out (recall the comments in the last chapter) and cause the output distribution
to stabilise at the maximum entropy solution.

We do not reproduce the derivation of the many input-many output rule but merely give the
results:

AW o« (WH™ (1 -2y)x"
Awyg x 1-—2y

It is possible to use very flexible sigmoids in which e.g. the top and bottom parts of the sigmoid
are independently matched to the input signal’s statistics. Bell and Sejnowski show that such a
network can extract 10 voices from a linear mixture of voices with great precision. Their algorithm
has only failed under two conditions:

e When more than one of the sources was white Gaussian noise
e When the mixing matrix was almost singular

In the first case, there is no possible algorithm which can extract a single Gaussian from a mixture
of Gaussians since the mixture of Gaussians is itself a Gaussian. In the second case the problem
is ill defined since we have n signals and < n independent inputs to the neural network.

It has been shown that removing the correlations (the second order statistics) from the input
data greatly increases the speed of convergence of the network: Hebbian (and anti-Hebbian)
learning responds mostly to the correlations in the input data; by removing these the network can
concentrate on the other facets of learning. This is sometimes known as sphering the data - if
we were outside the data set we would see a high dimensional sphere (rather than an ellipse) - or
whitening the data - if we plot the data as a time series it would change approximately equally at
all frequencies.

7.5 The Paisley Dimension

The group of methods based on Projection Pursuit is based on one central idea: rather than solving
the difficult problem of identifying structure in high dimensional data, project the data onto a
low dimensional subspace and look for structure in the projection. However not all projections
will reveal the data’s structure equally well. Therefore we define an index that measures how
“interesting” a given projection is, and then represent the data in terms of the projections that
maximise the index and are therefore maximally “interesting”.

We will initially restrict our attention to one dimensional subspaces i.e. we will identify an
index for each line in the space and attempt to maximise the index in order to make projections
of the raw data onto the line as interesting as possible.

Clearly the choice of index is the crucial factor in Projection Pursuit, and the index is specified
by our desire to identify interesting directions. Therefore we must define what we mean by
“interesting directions”.

7.5. THE PAISLEY DIMENSION 139

u w v Weights

% O Z Y
Inputs

go O™\,

S A Q> %

Figure 7.8: The extended exploratory projection pursuit network.
The first layer of weights, U, decorrelates the inputs; the interaction between the second layer of
weights, W and the third, V eliminates statistical dependencies from the z values.

Friedman notes that what constitutes an interesting direction is more difficult to define than
what constitutes an uninteresting direction. The idea of “interestingness” is usually defined in
relation to the oft-quoted observation of Diaconis and Freedman that most projections of high-
dimensional data onto arbitrary lines through most multi-dimensional data give almost Gaussian
distributions. This would suggest that if we wish to identify “interesting” features in data, we
should look for those directions, projections onto which are as non-Gaussian as possible. The
negative feedback network can be used to find interesting directions by using it to identify directions
which are most kurtotic or most skewed (using the fourth and third moments respectively).

Girolami and Fyfe have developed an extension of the negative feedback network described in
Chapter 4.

The first layer of weights perform exactly as we saw in Foldiak’s second model; the equations
are

n
Zi = &Iy + Zuijzj
j=1
with learning rule
A’U,i]’ = —a(l — ZiZ]')

The net result is that the outputs, the components of z, are decorrelated with about equal variance.
Note that since if the signals (such as voice signals) are not Gaussian this does not lead to
separation of the independent sources. The net result is the removal of the second order statistics
from the data - the covariance matrix of the z values should be diagonal.

Now z is fed forward through the W weights to the output neurons where there is a second layer
of lateral inhibition. However before the activation is passed through this layer it is passed back
to the originating z values as inhibition and then a non-linear function of the inputs is calculated:

acti = E Wijzj
J

Zj = zj—wijacti

s; = act; — tanh(act;)

Now we pass this output through the lateral inhibition to get the final output y values
Yi = 8; + Z'Uijsj (7.26)
J

and then the new weights are calculated

Awij = ﬂzjyi
Avij = YYiy;

The net result is the removal of any dependence from the output signals.

140 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

0.65 020 -043 0.60 0.467
-03 -049 07 -03 057
0.68 1.5 -0.8 041 1.34
-0.234 038 035 045 -0.76
08 -043 06 -0.7 04

Table 7.1: The Mixing Matrix used to create a babble of voices.

Male 1 0.011347
Male 2 | 0.001373
Female 1 | 0.000288
Female 2 | 0.000368
Female 3 | 0.000191

Table 7.2: Fourth Order Cumulants of the individual voices.

7.5.1 Example

One of the descriptions of this type of problem is that of the “cocktail party problem”. Girolami
has therefore used this network to extract a single voice from a linear mixture of voices.

Five samples of five seconds of natural speech was recorded using the standard telecom sampling
rate of 8khz. Two adult male and female voices were used along with that of a female child. The
speakers each spoke their name and a six digit number. The samples were then linearly mixed
using the 5 x 5 mixing matrix shown in Table 7.1 which is well conditioned with a determinant
value of 1.42. The fourth order statistics of the original signals are shown in Table 7.2.

The output signals played back are clear with no residual of the mixture as shown in Figure
7.9. When we look at the converged weight matrices, we see that both U and V are diagonal and
symmetric as would be expected. The magnitudes of the values in U indicate the large correlations
in the incoming raw data, with the off-diagonal terms being typically within an order of magnitude
less than the diagonal terms. Compare this with the V weight matrix where the off-diagonal terms
are all three orders of magnitude less than the diagonal terms, indicative of the whitened input to
the layer of neurons.

7.6 Penalised Minimum Reconstruction Error

We conclude this chapter with a new network which is an extension of a PCA network but which
has been used to find Multiple Causes; we do this to emphasise that this chapter and the previous
one are really variations on a theme. Both are approaching the same problem but from different
perspectives.

7.6.1 The Least Mean Square Error Network

We discussed in Chapter 5 how Xu has recently derived a neural network which we can describe as
one which feeds activation forward to outputs and then back to inputs through the same weights.
He envisages the returning signal from the outputs as trying to reconstruct the input vector. He
aims to minimise the least mean square error at its inputs and shown that it is a PCA network.
The error term is

JW) = B(lx-xI)
= [p60 l1x - W W | dx

Starting from this (which is one of the definitions of PCA), Xu derives the learning rule

AW = uxTx(I- W W)W + (x - WWx)(Wx)T (7.27)

7.6. PENALISED MINIMUM RECONSTRUCTION ERROR 141

A b o
i e -t~
L o B
Jibht Ao et

Figure 7.9: The original signals, how they were seen by the network after the mixing matrix has
mixed them and the retrieved signals heard by the network.

142 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

If we put this into the feedforward and feedback terms, we may use y = Wx and e = x — WX Wx
and so state the rule as
AW = p(xe! Wy' + ey?l) (7.28)

7.6.2 Adding Competition

Now in the context of the discussion in the last chapter, we have a network which is wholly given
over to cooperation - the neurons are taking the maximum information out of the data set. We
require to add some competition to the network to find the independent sources.

One way to do this is to simply add a non-linearity to the learning rule to get

AW = p(xe’ f(Wy') +ef(y)") (7.29)

This does have some effect in finding the individual sources (this is the same method Karhunen
and Joutsensalo use) but the competition is quite weak. A better solution, developed by Zhang,
Xu and Fu, is to explicitly add a penalty term to the cost function to get

E(W) = J(W) + AG(W) (7.30)

where J() is the best reconstruction criterion as before and G() is a competition criterion which
will penalise cooperation. The Lagrange parameter A will trade-off competition for cooperation
S0 we get compromise between these two criteria.

The next section will consider the nature of the competition function G().

The Nature of the Competition Function

Zhang et al develop a competition function based on information theory. Firstly let the it
activation be h; which will then be passed through an activation function f() to get the output y;.
Then, in the absence of noise on the inputs, the mutual information between inputs and outputs
satisfies

I(y,x) = I(y,) (7.31)

If the postsynaptic potentials are factorial (recall the previous Chapter),

p(h) = [p(hs) (7.32)

One possible index might be to reduce the pairwise correlation over the outputs. Thus we might
have

G

M M
Z Z gij where

i=1 j=L.j#i

/ (yiy;)p(x)dx

Gij

This would certainly work for Gaussian distributions but is not sufficient for non-Gaussian distri-
butions and so we might extend this to

9ij = /(yz’yj)kp(X)dX (7.33)
Then e.g. taking k¥ = 2 we would have
Aw; = p(xewjy; +yje — Ayjx > y7) (7.34)
I#]

thereby introducing higher order statistics into the learning rule.

7.7. CONCLUSION 143

We can imagine a number of competition functions all of which should share the property that
when the output of one neuron increases the other’s output must decrease. i.e. if o;() is the output
function of the i*"* neuron, then

80’i
Byj

<O0,Vj#i (7.35)

7.7 Conclusion

We should view the last two chapters as two different facets of the same problem -that of identifying
underlying causes from data which is a mixture of independent data from the underlying causes.
The methods in the previous chapter tend to concentrate on the play-off between two neural
methods - competition and cooperation. The methods in this chapter are based more on the
statistical properties of independent distributions.

There is as yet no complete solution to this problem and research is continuing on networks
like those discussed in these chapters. It is a fascinating area of research and one which may well
bear fruit in the near future.

144 CHAPTER 7. INDEPENDENT COMPONENT ANALYSIS

Chapter 8

Learning

In this concluding chapter, we shall investigate analytically issues associated with learning in
artificial neural networks. Many of these issues, in fact, arose within other communities e.g.
machine learning or statistical inference but are very valid for ANNs. Our concern is always the
operation of our networks on the test set of data rather than the training set. We referred to this
in Chapter 5 as the network’s generalisation properties.

We will first investigate a particular problem with learning machines known as the “Bias-
Variance Dilemma” and use the analysis to investigate whether it is possible to improve the
generalisation performance of out neural networks. We will then consider two specific measure
of performance in neural networks and introduce a new type of network whose generalisation
performance is suspect. We will investigate ways to improve it.

8.1 The Bias-Variance Dilemma

Consider again Figure 5.3. We noted then that a network could be overtrained in that it could
be trained to fit the training data exactly but would then not perform so well on the test data.
We stated that one reason for this poor performance could be that the network had too many
parameters (weights or neurons) for the problem and discussed one method of pruning the network.
In this section, we are going to investigate the source of the problem more analytically. Much of
the discussion is based on the article by Geman et al.

Consider the double convex problem of Chapter 5. We wish to make an inference with respect
to which class any particular input point belongs. There are two main classes of methods for doing
so:

1. Parametric modelling: we create a model of the input data and then must simply adjust the
parameters of the model to get the minimum error on the training set. The simplest model
would be to use a linear model of the form

Yy =wi1T; +waT2 +ws (8.1)

which can be thought of a simple one layer linear neural network used to classify the inputs
(1, %2) according to the value of y. The LMS training algorithm could be used to find the
optimal value of wy, w2 and ws. Clearly this would not be a very successful model because
the data is simply not linearly separable but it would have the advantage of being very quick
to train. This is typical of parametric models: if you have the right model, it is certainly
the most efficient method to use; if you have the wrong model, the inherent errors in the
difference between the model and reality are insuperable. This type of error is known as
bias. Notice that we can still get the best possible estimator within the constraints set by
the model but that even this estimator will be subject to bias.

145

146 CHAPTER 8. LEARNING

2. Non-parametric estimation: sometimes non-parametric estimation is known as model-free
estimation since we do not, in advance, make any suppositions about the type of model. We
can, during learning, change both the parameters of the current model (the weights) and
change the nature of the model itself by e.g. changing the activation functions or adding
new neurons or adding new layers. Backpropagation learning is usually described as non-
parametric estimation since we can change not only the weights into the output layer but
also the weights into and hence the activation of the hidden layer. Estimation of this type
is inherently slow. Also we shall see that such models are very much at the mercy of the
data set - a different data set would produce a different model and so errors on the training
set do not necessarily give good estimates of the possible errors on the test set. In addition,
if we have too many parameters in our current model, we are liable to the type of error
discussed in Chapter 5 in which the ANN simply memorises the input data and performs
no generalisation: this type of error is known as wvariance. A different set of training data
would create a different final model.

The bias-variance dilemma is the result of having to play off one of these types of error against
the other in any real world estimation problem. We will see that reducing the error in one will
have an adverse effect on the other.

If an estimator can be shown to asymptotically converge to the object of estimation it is known
as a consistent estimator. So if our ANN can be shown to be capable of modelling the distribution
given enough training examples it is consistent. However, in practice, the number of training
examples can be excessively large. In addition, when we have only a limited number of samples, a
parametric estimator can outperform a non-parametric one which will be very dependent on the
actual data points seen during training.

It is important to be clear that non-parametric estimation is not without parameters; it is
simply that its parameters may not have a valid meaning in terms of the model’s existence whereas
in parametric modelling, the parameters have, in some way, a meaning for our model.

8.1.1 Decomposition of the Error

Let us consider a family of estimators which has a mean value, E(y), of outputs with which we are
attempting to estimate the target value,t. Let there be a training set D ={(x1,t1), ..., (xn,tn)}.
Then the error that we wish to minimise is

E((t-y)’|x,D) (8.2)
where the expectation is taken over the training set and the input distribution. Now

E((t-y)’lx,D) = B(((t - E(t]x)) + (E(t]x) — y))*|x, D)
= E((t - E(t}x))*|x, D) + E(E(t|x) — y)*|x, D)
+2B((t - E(t[x)[x, D).(E(t]x, D) - y)|x, D))
= BE((t - E(t}x))’|x, D) + E((E(t]x) - y)’|x, D)

The first term does not depend on the data set, D or on the output y. It is simply the variance
of t given x. So no estimator can get rid of this term - the innate variance in the data cannot be
removed. So the last term, the squared distance of the estimator to the expected value of t given
x is a natural predictor of the effectiveness of y as a predictor for t. We concentrate on this term
therefore

E(ly—E(tx)*) = E(((y—E(y
= E(y-E@¥)?)

+2E(y — E(y))-(E(y) — E(t|x)))
= E(ly—E®)*)

8.1. THE BIAS-VARIANCE DILEMMA 147

The first term is known as the “variance” - the amount of squared error due to the distance which
the current estimator is from the mean estimator; the second term is known as the bias - the
amount by which the expected estimator y differs from the expected target for this particular
input value x. If the bias is non-zero, we have a biased estimator. The algorithm is derived using
a more general notation in Section 8.1.2 since you will meet this convention in books (Geman et
ol used it) but I will not expect you to reproduce it though the equivalence of the two derivations
should be clear.

8.1.2 General Statistical Derivation

We will consider the above problem in a slightly more general form: we wish to choose a function
f() of the inputs x which minimises the sum of squares of the observed errors i.e. those on the
training set alone. It can be shown that this estimator is the best mean squared error predictor
of y given x.

It can be shown that, among all possible estimators, the function () which minimises

E((t - f(x)*]x) (8.3)

(where ¢t is the target output when the input is x) is the best mean-squared-error estimator and
recall that this was what our learning algorithm was intended to minimise.

Let there be a training set D ={(x1,%1), ..., (Xn,tn)}. Then the error that we wish to minimise
is

E((t—y)*Ix,D) = E((t - f(x,D))*|x, D) (8.4)

where we have explicitly shown the dependence which f() has on the training set D. Now

E((t- f(x,D)*[x,D) = B((t - E(t}x)) - (E(t|x) - f(x,D))’|x, D)
= E((t - E(t|x))’|x, D) + E(E(t|x) — f(x,D))*|x, D)

+2B((t - E(t[x)[x, D).(E(t]x, D) - f(x)))
= BE((t - E(t|x))’|x, D) + E(E(t|x) - f(x,D))*|x, D)

The first term does not depend on the data set, D or on the estimator (). It is simply the variance
of t given x. So the squared distance of the estimator to the expected value of t given x is a natural
predictor of the effectiveness of f() as a predictor for t. We concentrate on this term therefore

E((f(x;D) - E(t}x))*) = E((f(x;D) - E(f(x; D))) + (E(f(x; D)) — E(t[x))*)
= E((f(x;D) = E(f(x; D)))*) + E(E(f(x; D)) — E(t|x))?)

+2E((f(x; D) — E(f(x; D))).(E(f(x; D)) — E(t[x)))
= E((f(x;D) - E(f(x; D)))*) + E(E(f(x; D)) — E(t[x)))

Again the first term is the variance of the particular estimator; the second is the bias associated
with the family of estimators.

8.1.3 An Example

From the same paper, we repeat a low dimensional example which is itself drawn from one devel-
oped by Wahba for ease of exposition: it has a one dimensional input and one dimensional output.
We draw 100 data points from the function

g(r) = 4.26(e “ —de 2" +3e ") + 1 (8.5)

where 7 is a random number drawn from a zero mean Gaussian distribution of standard deviation

0.2. The input data and the underlying function (without the noise) are shown in Figure 8.1.
The data was used to train a backpropagation network with one input, one output and a

varied number of hidden neurons. When we use a single hidden neuron, the network is not

148

One Hi dden Neuron

T T T T

Fi fteen Hi dden Neurons
0.2 T T T T T T T

CHAPTER 8. LEARNING

Figure 8.1: The top diagram shows the input data to the backpropagation network.

The second diagram shows the output when using a one hidden neuron network. The model is
not powerful enough to model the data; most of the resulting error is due to the bias. The last
diagram shows the output from a 15 hidden neuron output. The model is more powerful and more
accurately models the data. In each case the noise-free underlying function is shown with a dotted

line.

8.2. THE VC DIMENSION 149

Too nmany degrees of freedom
0- 4 T T T T T T T T T

Figure 8.2: The same network as previously but trained on as subset of only 10 points. Clearly the
network is too powerful for this data set and has memorised the data points rather than extracted
the underlying function.

powerful enough to model the data and there is a large residual error due to the bias in the model.
When we use 50 hidden neurons, the network has too many degrees of freedom (weights) and the
network is able to model the actual data points and the underlying model is hidden.

Rather than choosing to show this we have shown in Figure 8.2 the results when the same 15
hidden neuron network is trained on a subset of the data points. Since it has much less training
data to work on but still has the same number of degrees of freedom (weights) available to it, it
can afford to memorise the data.

This would suggest correctly that one tactic which could be used to limit the damage done
by both bias and variance simultaneously would be to simply increase the number of data points:
as we increase the number of points, we can afford to use more complex models so reducing bias
but at the same time the use of more points more heavily constrains the model and so variance is
reduced. Of course this only works if we have more representative data.

Another tactic which is sometimes used to minimise the variance is to employ a regularisation
tactic which smoothes the target data set. This will be discussed in a later section.

8.2 The VC Dimension

Let S denote the set of N points in the n-dimensional space of input vectors.
S={x;,i=1,2,...,N} (8.6)

A dichotomy is a rule (or neural network) which splits the set by classifying some points to set A
and all the rest to set B. So for a neural net, we could have

{0 ifxe A
y:

1 ifxeB=SnA (8.7)

If we denote by A(S) the number of distinct dichotomies implementable by the neural network i.e.
the number of distinct A and B sets into which the network can partition the set S. Now the total

150 CHAPTER 8. LEARNING

log F
gZ

dyc

Figure 8.3: The general form of the growth function F(N). Notice that the vertical axis is a log
axis so the function grows initially as 2% till it reaches the VC dimension when it tails off to grow
like a power law.

number of distinct pairs of sets is 2/5/ where |S| is the number of elements in S. i.e. the number
of dichotomies possible for any neural network is less than or equal to 25! If a network can be
trained to make the 2/5! different dichotomies, we say the set S is shattered by the network.

Then looking at this from the point of view of the network, there is a largest size of set S
which the network is capable of shattering. This largest size is one measure of the power of the
network and is known as the Vapnik-Chervonenkis Dimension which, for some reason, tends to be
shortened to the VC dimension.

We can think of the VC dimension as the maximum number of training examples which a
network can learn to classify for all possible labellings of the classification function. It should be
emphasised that the “dimension” term does not refer to a geometrical concept. Sometimes its
value can be related to the number of weights in the network but often is not easy to evaluate
computationally.

Now this VC dimension is all very well for telling us how many totally random pattern sets
can be classified by the neural network. But what about more typical sets of patterns - such as
those in which there is some structure? Also it is not clear that the VC dimension is very useful in
general since we know that if a data set can be totally recalled by an ANN it is simply acting like a
look-up table. Therefore we require to increase the number of patterns beyond the VC dimension
(see Figure 8.3) so that generalisation can take place and it is only when we have a network which
is correctly classifying a number of patterns much greater than its VC dimension that we can be
hopeful that it is responding to some structure in the data and simply memorising the individual
points.

It can be shown that if a network has M neurons and W weights then the VC dimension must
satisfy

dve < 2W log,(eM) (8.8)

where e is the base of natural logarithms (& 2). From this it can be calculated that the minimum
number of patterns must satisfy

w
€
where € is a small number representing twice the number of incorrectly classified examples on the
training set. E.g. to be confident in the generalisation properties of the network when we have
95% corrrectness on our training set we require about ten times as many training examples as
weights in the network.

We will state without proving the main result with respect to the VC Dimension: if the VC
Dimension of a set of functions is finite, each function in the set can be learned.

8.3. PAC LEARNING 151

8.3 PAC Learning

One investigation of learning and generalisation is based on the Probably Approximately Correct
model developed by Valiant in the 1980s. This discussion is based on that of Sonntag.

Suppose we have a set of data {(x1,¥1), (X2,¥2), ..., (Xn, Yn)} which are drawn independently
and at random from an unknown probability distribution. There is a fixed but unknown function f
such that y; = f(x;) and f() belongs to some known class (or assumed known class) of functions,F.
If the class of functions which are used for learning, i.e. the assumptions in the learning rule, do
not agree with the underlying reality of the data set, there will be a “bias” built in to the learning
system.

Consider the case of a binary classification problem so that y; € {0,1} and let the current
estimate of f be f . Then if we present a new x to our current learning machine/neural network,
we can define the error of the network to be the probability that it misclassifies x. i.e.

Error; = P(f(x) #y) (8.10)

where y is the correct response to input x i.e. y = f(x). We are assuming that x is selected from
the distribution according to the same procedures for selecting the rest of the training examples.
Now on what does this probability depend?

1. Since we must of necessity select only a limited number of training examples, in general this
will not be enough to differentiate between all possible functions f().

2. Also there is the possibility that the set of training examples might not be representative of
the set of test examples.

These both contribute to the variance element in the learning process. However, if we have enough
samples, the first error is very unlikely and becomes increasingly so as we increase the number of
samples. It is still possible but with increasingly low probability. For the second type of error, we
must ensure that the method used to draw the test and training examples are identical. If we do
this then the prediction error on new test samples will be small. So the learned function f will
Probably be Approximately Correct.

If we wish to show that every member of the set F can be learned we can write that for all
€ > 0, there exists a § > 0 such that for every f € F

P(Error; >¢€) <9 (8.11)

i.e. we can choose to limit the probability of misclassification by puting a confidence limit on our
probability of misclassification.

8.3.1 Examples

Again following Sonntag, consider a very simple example where we have a one dimensional data
set, z € [0,1] i.e. we draw the input x randomly from the unit interval. We wish to learn the

function
/0 whenz<a
fl@) = { 1 whenz>a (8.12)

where a € [0, 1]. Identifying this simple function means identifying the cut-off point a. If we take a
large enough sample, there will be enough pairs of examples (z;, y;) with x; near a so that a good
estimate of a can be obtained e.g. by choosing our estimate as the midpoint of the interval [a;, az]
where a; is the largest x; with corresponding y; = 0 and a3 is the smallest z; with corresponding
y; = 1. It could be that there is an error due to bad sampling but this error decreases as the
number of samples increases. It could be that there is an error because our new x lies within the
interval [a;, az] but, again, as we take more and more samples, the expected length of this interval
decreases thus decreasing the probability of choosing a test value in this set.

152 CHAPTER 8. LEARNING

Si ne Basis Functions
1 T T T T FARN NN
Y \ S shn(Brx) —
0.8 | / A sinplorx) -
: VA \ A sin(20*x) ----- R

1 -

o6F: / \

0.4 _:;’ / ".‘ \

-0.4 B ‘;" \
0.6 | ; \

-0.8 Lo \ 4
. \ h \ "/
/ A\ A

Figure 8.4: Three of the sine basis functions.

However consider the situation where of set of functions F is known to consist of the set of
all functions fi(z) = sin(kz) over the same interval. So our classification procedure is known to
satisfy

0 when fi(x) <0

fla) = { 1 when fi(z) >0 (8.13)

Now given any sequence (x;,y;) we cannot be confident in our current prediction since if our
current prediction is f = f; there exist an infinite number of possible alternatives to f;. This is
illustrated in Figure 8.4. We can make a prediction but not with any degree of probability.

8.4 Regularisation

We stated that one tactic which might be used is to smooth the response of the network in
the region of any data points, thus getting rid of any tendency to model the noise in the data.
This tactic has a long history in statistical analyis and so we will first review regularisation in a
statistical context.

8.4.1 Regression

As stated previously, regression comprises finding the best estimate of a dependent variable, y,
given a vector of predictor variables, x. With parametric regression, we must make some assump-
tions about the form of the predictor surface e.g. that the surface is linear or quadratic, smooth
or disjoint etc.. The accuracy of the results achieved will test the validity of our assumptions.

This can be more formally stated as: let (X,Y) be a pair of random variables such that
X € R"Y € R. Regression aims to estimate the response surface,

f(2) = B(Y]X =)) (8.14)

from a set of p observations, x;,y;,i = 1,...,p.

8.4. REGULARISATION 153

The usual method of forming the optimal surface is the Least (Sum of) Squares Method which
minimises the Euclidean distance between the actual value of y and the estimate of y based on the
current input vector, x. Formally, if we have a function, f, which is an estimator of the predictor
surface, and an input vector, x, then our best estimator of y is given by minimising

N
E= mfinZ(yi — f(xi))? (8.15)

i.e. the aim of the regression process is to find that function f which most closely matches y with
the estimate of y based on using f() on the predictor, x, for all values (y,x). However, this leaves
the possibility that the function may be merely approximated accurately at the N values of x and
y. It may be far from a good approximator at other points. Intuitively, it would seem to be a
good idea to force the function to smoothly interpolate between the points. Therefore to enforce
a smoothness constraint on the solution, a penalty for roughness is often imposed: e.g.

Er = mfin Z(yi — f(xi))* + /\/(f”(t))zdt (8.16)

The intuitive reason behind the use of this smoothing criterion is that the second derivative of
a function tells us how much the function jumps about.)\ is the parameter which trades off the
accuracy of the solution at the N points with the smoothness. This is sometimes known as the
penalized least squares fitting algorithm.
The general form is

Er=E+) (8.17)
where (2 is the penalty term. This is only one penalty from a family of penalty functions known
as regularisers.

8.4.2 Weight Decay

If we choose 1
Q=g Z w? (8.18)

then we are penalising large weights. When a weight has a large absolute value, it will contribute
greatly to the function, Er which we are trying to minimise. It is an empirical finding that such
a regularising term can add greatly to a network’s performance in terms of generalisation.

An intuitively appealing reason for this is that small weights will keep the net inputs to a
neuron small and so the activation function will tend to be used in its central region where it is
closer to a linear activation function than at the extreme values. But we know that to model all
noisy points requires sharp changes of direction which in turn demands the non-linearity found at
these extreme values and so our penalty term is smoothing out the demands of different points by
keeping to a linear(ish) interpolation between these points.

More analytically, consider what happens to the error term when we change w:

0Er OE 09
S TR (8.19)

Considering only the effect of the regularising term on a single weight we have

Q
— = — = 2nlw; 8.20
when © = Y, w?. Clearly the weights will only stop changing when w; = 0. The solution of this
differential equation is actually

w;(t) = wi(0)e "™ (8.21)
showing that the decay to zero is exponential and depends on the initial value of the weight,
w;(0), the learning rate and the relative importance which is given to the penalty term - this
being determined by the A parameter.

So ‘fi—‘t" x %UE will be a compromise between the two factors.

154 CHAPTER 8. LEARNING

8.4.3 Eigenvector Analysis of Weight Decay

This section owes much to Bishop’s book(p257). We will consider the situation without the
regularising term and then with such a term.

Without weight decay

Consider the truncated Taylor series expansion of E(w) in the neighbourhood of some particular
value of the weights e.g. Ww.

1
E(w) = E(W) + (w = W)b + o (w — W) TH(w — W) (8.22)
where b is vector of first derivatives of E with respect to w at the point w.
oOE
b=—"—l|& 8.23
o (5.23)
and H is the Hessian matrix of double derivatives whose (i,j)th element is
0’FE
H, =——|& 8.24
Y 8wi8w]~ | ()

For points close to w, the truncation of the Taylor series is accurate since (w — W) is very small
and so higher power terms containing (w — w)* for k& > 2 can be ignored.

Now we can find the local minimum of the function in the neighbourhood of w by calculating
the derivative of this function. Noting that the first term is constant, we get

OF .

Now if there is a minimum w* in this neighbourhood, then b=0 since there is no rate of change
of the function at the minimum. Let w* be the current estimate of this optimum w* and so the
expansion can be written

E(w*) = E(W") + %(w* — W) H(W* — W) (8.26)

where the Hessian must be evaluated at w*.
Let us now consider the eigenvalues-eigenvectors of H i.e.

Since the eigenvectors form an orthonormal basis of the space, we can now express the term
(w — w*) in this basis as
(w—w")= Z a;u; (8.28)
i
for some scalars «;. Substituting this into (8.26),

E(w*) = E(v?/*)-l-%(Zaiui)H(Zaiui)

= E(W")+ %(Z Oliui)(z Aiaiu;)

I |

since the u; are orthonormal. So in general the weight change rule has most effect in those
directions with greatest spread and in which the difference between the current weight and the
optimal is greatest.

8.5. RADIAL BASIS FUNCTIONS 155

O
Q/ O
O
Input Hidden Output
Layer layer layer

Figure 8.5: A typical radial basis function network. Activation is fed forward from the input layer
to the hidden layer where a (basis) function of the Euclidean distance between the inputs and the
centres of the basis functions is calculated. The weighted sum of the hidden neuron’s activations
is calculated at the single output neuron

Using Regularisation

Let us now consider the effect of the regularisation term. Let the minimum of the complete
function,Eg, be moved to a point w by the use of the regularisation term in the weight change
rule. Now the minimum is achieved when

b+H((W —w) +A(W—w) =0 (8.29)

Now we expand w* and w in the eigenvector basis to get

w—w" E a;u; as before, and
i
E Biu;
i

which we can substitute into equation (8.29) to get

W — W

Aj

b3 =5

(8.30)

So that along directions where the individual eigenvalues are much greater than the decay pa-
rameter, A; >> A, the minimum of the error function is little changed. On the other hand, in
directions where the decay parameter is relatively large compared with the eigenvalue,A >> A;,
the corresponding components of change are virtually suppressed and so any change will take place
only in the former directions. So if the noise in the data really has small variance (small \), the
training algorithm will ignore that noise.

8.5 Radial Basis Functions

We noted in Chapter 5 that, while the multilayer perceptron is capable of approximating any
continuous function, it can suffer from excessively long training times. In this section we will in-
vestigate a different type of ANN which can substantially shorten the time necessary for supervised
learning.

A typical radial basis function (RBF) network is shown in Figure 8.5. The input layer is simply
a receptor for the input data. The crucial feature of the RBF network is the function calculation
which is performed in the hidden layer. This function performs a non-linear transformation from
the input space to the hidden-layer space. The hidden neurons’ functions form a basis for the input

156 CHAPTER 8. LEARNING

Figure 8.6: A “tiling” of a part of the plane

vectors and the output neurons merely calculate a linear (weighted) combination of the hidden
neurons’ outputs.

An often-used set of basis functions is the set of Gaussian functions whose mean and standard
deviation may be determined in some way by the input data (see below). Therefore, if ¢(x) is
the vector of hidden neurons’ outputs when the input pattern x is presented and if there are M
hidden neurons, then

$(x) = (D1(x),h2(x), e par(x)7
where ¢;(x) = exp (=X || x—c;|?)

where the centres c¢; of the Gaussians will be determined by the input data. Note that the terms
|| x — c; || represent the Euclidean distance between the inputs and the i* centre. For the moment
we will only consider basis functions with A\; = 0. The output of the network is calculated by

y = w.p(x) = wlo(x) (8.31)

where w is the weight vector from the hidden neurons to the output neuron.

To get some idea of the effect of basis functions consider Figure 8.6. In this figure we have
used an eliptical tiling of a portion of the plane; this could be thought of as a Gaussian tiling as
defined above but with a different standard deviation in the vertical direction from that in the
horizontal direction. We may then view the lines drawn as the 1 (or 2 or 3 ...) standard deviation
contour. Then each basis function is centred as shown but each has a non-zero effect elsewhere.
Thus we may think of
A as the point (1,0,0,0,0,0,0,0,0)
and B as (0,0,0,0,1,0,0,0,0)

Since the basis functions actually have non-zero values everywhere this is an approximation since
A will have some effect particularly on the second, fourth and fifth basis functions (the next three
closest) but these values will be relatively small compared to 1, the value of the first basis function.

However the value of the basis functions marked 2,3,5 and 6 at the point C will be non-
negligible. Thus the coordinates of C in this basis might be thought of as (0,0.2,0.5,0,0.3,0.4,0,0,0)
i.e. it is non-zero over 4 dimensions.

Notice also from this simple example that we have increased the dimensionality of each point
by using this basis.

8.5.1 RBF and MLP as Approximators

We examine the approximation properties of both a multi-layered perceptron and a radial basis
function on data drawn from a noisy version of a simple trigonometric function. Consider the

8.5. RADIAL BASIS FUNCTIONS 157

Oiginal Data(15 points)
l- 2 T T T T T T T T T

"sinepoin.dat" <

Figure 8.7: 15 data points drawn from a noisy version of sin(27z).

set of points shown in Figure 8.7 which are drawn from sin(27z) + noise. The convergence of
radial basis function networks is shown in Figure 8.8. In all cases the centres of the basis functions
were set evenly across the interval [0,1]. It is clear that the network with 1 basis function is
not powerful enough to give a good approximation to the data; we recognise from the previous
discussion that the error is due to bias introduced because our parametric model is not sufficiently
accurate. That with 3 basis functions makes a much better job while that with 5 is better yet.
Note that in thelast cases the approximation near the end points (0 and 1) is much worse than
that in the centre of the mapping. This illustrates the fact that RBFs are better at interpolation
than extrapolation: where there is a region of the input space with little data, an RBF cannot be
expected to approximate well.

The above results might suggest that we should simply create a large RBF network with a
great many basis functions, however if we create too many basis functions the network will begin
to model the noise rather than try to extract the underlying signal from the data. An example is
shown in Figure 8.9. In order to compare the convergence of the RBF network with an MLP we
repeat the experiment with the same data but with a multi-layered perceptron with linear output
units and a tanh() nonlinearity in the hidden units. The results are shown in Figure 8.10.

Notice that in this case we were required to have biases on both the hidden neurons and the
output neurons and so the nets in the Figure had 1, 3 and 5 hidden neurons plus a bias neuron in
each case. This is necessary because

e In an RBF network, activation contours (where the hidden neurons fire equally are circular
(or ellipsoid if the function has a different response in each direction).

e In an MLP network, activation contours are planar - the hidden neurons have equal responses
to a plane of input activations which must go through the origin if there is no bias.

However the number of basis neurons is not the only parameter in the RBF. We can also change
its properties when we move the centres or change the width of the basis functions. We illustrate
this last in Figure 8.11 in which we illustrate this fact on the same type of data as before but use a

158

Radi al
—
0.8

CHAPTER 8. LEARNING

Basi s Functions
T

T
"testrbfl.dat"

"testrbf3.dat"
"testrbf5. dat"

basis functions.

Figure 8.8: Approximation of the above data using radial basis function networks with 1, 3 and 5

Model 1'i ng Noi se
1.5 T T T T
sin(2*pi *x) —
"testrbf15. dat"
"si nepoi n. dat"
1+ o =8
0%
0.5
/// \é\
0 %
-0.5 gl
\\ & //
N
S o -
-1 1 1 1
0 0.2 0.4

Figure 8.9: The data points which were corrupted by noise, the underlying signal and the network
approximation by a radial basis function net with 15 basis functions.

8.5. RADIAL BASIS FUNCTIONS 159

Mil ti-1ayered Perceptron
1.2 T T T T T T

"testm p2.dat" —
1k JI—— "testm p4.dat" - _

NN "testm p6.dat" -----

Figure 8.10: A comparison of the network convergence using multilayered perceptrons on the same
data.

value of A =1 and A = 100 for the parameter A when calculating the output of the basis neurons.
y =exp(=\| x; —c; ||*) (8.32)

We see clearly that by introducing these extra possible parameters which can be changed in our
model we have introduced another possible complication to the bias-variance dilemma. A small
value of A smears out the response of individual neurons over the whole data set but in doing
so introduces bias into the model; a large value of A means that each neuron’s response is very
localised but allows the network to model the noise thus introducing variance. This A can also be
thought of as a type of regularisation parameter.

We will, in section 8.6, investigate learning in radial basis functions with respect to the various
types of parameters.

8.5.2 Comparison with MLPs

Both RBFs and MLPs can be shown to be universal approximators i.e. each can arbitrarily closely
model continuous functions. There are however several important differences:

1. The neurons of an MLP generally all calculate the same function of the neurons’ activations
e.g. all neurons calculate the logistic function of their weighted inputs. In an RBF, the
hidden neurons perform a non-linear mapping whereas the output layer is always linear.

2. The non-linearity in MLPs is generally monotonic; in RBFs we use a radially decreasing
function.

3. The argument of the MLP neuron’s function is the vector product w.x of the input and the
weights; in an RBF network, the argument is the distance between the input and the centre
of the radial basis function, || x — w ||.

4. MLPs perform a global calculation whereas RBFs find a sum of local outputs. Therefore
MLPs are better at finding answers in regions of the input space where there is little data

160 CHAPTER 8. LEARNING

Vari ation of Lanbda
1.5 T T T T T T T T T

"sinepoin.dat" <
|

RS

Figure 8.11: Using a basis function with a wide neighbourhood is equivalent to smoothing the
output. A narrower neighbourhood function will more closely model the noise.

in the training set. If accurate results are required over the whole training space, we may
require many RBF's i.e. many hidden neurons in an RBF network. However because of the
local nature of the model, RBF's are less sensitive to the order in which data is presented to
them.

5. MLPs must pass the error back in order to change weights progressively. RBFs do not do
this and so are much quicker to train.

8.6 Learning in Radial Basis Functions

We have said that radial basis functions can be used as universal discriminators. However we still
have to find the actual parameters which determine the slope of the discrimination line. These are
the weights between the basis functions (in the hidden layer) and the output layer, the position of
the centers and the spread of the hidden neurons. We will largely follow Haykin’s analysis in this.

We first note that these changes can be viewed as happening on different timescales. Also the
hidden layer’s activation functions will be learned using a non-linear optimisation strategy while
the output layer’s weights can be adjusted through a fast linear optimisation.

8.6.1 Fixed Centers selected at Random

Let us first choose the centres of the basis functions randomly to instances of input data drawn
from the data set and set the spread of all basis functions to be equal and constant. If we assume
that the drawing of data points from the data set is not biased, and we have no other information,
this is the best strategy. We choose an isotropic Gaussian whose standard deviation depends on
the spread of the centres: let the current centre of the it* basis function be c;

$i(%) = G| x - ¢ |]) = exp(—= || x — ¢ |I?) (3.33)

&2

8.6. LEARNING IN RADIAL BASIS FUNCTIONS 161

where M is the number of basis functions and d the maximum distance between the chosen centres.
So we are fixing the standard deviation of the Gaussian as

g =

d
Vo (8.34)

This type of network is known as a linear parametric model since we are only interested in
changing the value of the weights.

The LMS Algorithm

We may train the network now using the simple LMS algorithm (see Chapter 5) in the usual way.
If the sum of the errors over all N patterns is

N N N

E=g 3t -0 =530 - S wgx)p =33 ¢ (8.35)

i=1 i=1 j i=1

N | =

where, as before, t! represents the target output for the it* input pattern, then we can represent
the instantaneous error (the error on presentation of a single pattern) by

E = %(ti - ij¢j(xi))2 = %e? (8.36)
J

and so we can create an on-line learning algorithm using

OE!)))))
gor ~ ;wm (x)gr(x) = s (x') (8:37)
Therefore we will change the weights after presentation of the i** input pattern x* by
Awy, = —SWk =e'.¢r(x") (8.38)

Using Pseudo-Inverses

Because we only need to learn one set of parameters in this linear part of the network we can use
a pseudo-inverse method. Let us begin by constructing the matrix G comprised of the responses
of each hidden neuron to each input vector in the training set. Thus

9ij = exp(—ﬁ | x*—¢; |I*),i=1,2,...,N;5=1,2,... M (8.39)

i.e. the response of the 5 hidden neuron to the i‘" training pattern. Then the pseudo-inverse of
G is given by

Gt =(GTe)tat (8.40)
which can always be calculated since (GT'G) is a square non-singular matrix. (Even if it is singular

because of redundancy in the input data, there are fast efficient methods of calculating the pseudo-
inverse.) Now it is a property of pseudo-inverses that GTG = I, the identity matrix, and so since

t = wl@
Then w = tGt

This method is not a true neural method since it requires no learning but is efficient.

162 CHAPTER 8. LEARNING

8.6.2 Self-organised Selection of Centres

We can however opt to move the location of our basis functions at the same time as training
the weights. When we do so the model becomes a non-linear one and the closed form (matrix)
solutions no longer become possible. A radial basis function is non-linear if the basis functions
can move, change size or change basis functions in any way.

One possibility for training such a network is to use an unsupervised training method on the
weights (while continuing to use the supervised learning on the weights). We could choose to
allocate each point to a particular radial basis function (i.e. such that the greatest component of
the hidden layer’s activation comes from a particular neuron) according to the k-nearest neighbours
rule. In this rule, a vote is taken among the k-nearest neighbours as to which neuron’s centre they
are closest and the new input is allocated accordingly. The centre of the neuron is moved so that
it remains the average of the inputs allocated to it.

Note that now it does not pay to use a pseudo-inverse method for the output weights since the
parameters of the pseudo-inverse are changing at the same time

8.6.3 Supervised Selection of Centres

In this section we allow the positions of the centres to change but do it using a supervised learning
approach. We can use a the same error function as before with a generalisation of the LMS rule:

0E
Ac; = —nza—Ci (8.41)

This unfortunately is not guaranteed to converge (unlike the equivalent weight change rule) since
the cost function E is not convex with respect to the centres and so a local minimum is possible.
Note that the learing rate need not be the same as that used to update the weights.

It is usual to combine this with the supervised adaption of the width parameter. So in this
approach, all the parameters of the network are dynamically changed using supervised learning.

In general it has been found that radial basis networks all of whose parameters are modified
using supervised learning procedures have greater generalisation properties than those which either
do not change the location of the centres or those which change their centres using an unsupervised
algorithm.

8.7 Cross-Validation

We have seen that to minimise an error function, it is essential to
e determine the correct model
e determine the optimal parameters for this model

We have used error descent typically as our chosen method for the second of these but one message
of this chapter is that it is essential to pay close attention to the first issue. But these two issues
are features not only of the training data but also of the test data - we are above all seeking good
generalisation which means that the network must perform as well as possible on the test set as
well as the training set. But how can we in advance state what is optimal performance on the test
set? One method is the method of cross-validation.

The basic form of cross-validation is to split the p members of the data set into two subsets,
one containing p-1 members which will be used for training, and the other single element which
will be used to evaluate the validation error. We repeat this with each of the p members being
omitted in turn and calculate the total validation error. This is known as leave-one-out validation.
It has the obvious disadvantage that it requires us to retrain the network p times.

We may have sufficient data (or be so short of processing time) that it is possible to consider
splitting the p members of the set into only % subsets each of size N. Now our validation is
leave-N-out validation.

8.8. SUPPORT VECTOR MACHINES 163

X

Figure 8.12: Only the points C and D will be used to find the correct direction of w and intercept
b. A and B are close enough.

8.8 Support Vector Machines

One of the most popular recent methods has been that of Support Vector Machines(SVMs). The
SVM tries to formalise the intuitive idea that only some of the data points which are used to
train a supervised network are actually necessary: some points are redundant as training points
and only add to the length of time a simulation takes without improving the accuracy of the final
result.

Let us imagine that we are given a set of training points {(x1,v1),X2,y2), ..., Xs, y;)} which we
wish to use to train a neural network. Let us begin by describing the situation where there is a
linear relationship between inputs and outputs. Then we have

y=f(x)=(w,x)+0b (8.42)

where (,) denotes the dot product. Now we wish to have functions which are as flat as possible
which in the above case means that we wish to have w as small as possible. One way to do this
is to minimise the Euclidean distance
2
gl (8.43)

subject to the constraints that we wish the resulting function to approximate the true function i.e.
subject to the constraint that the difference at each data point between y; and f(x;) is (almost)
0. This results in a situation such as shown in Figure 8.13. The points A and B are close enough
to the correct line that they can be ignored while C and D are further away and must be used to
find w and b.

8.8.1 Classification

Consider the special case where the function f(x;) =1 or —1,Vi. i.e. we are classifying all points
as belonging to one of two classes. Then we are looking for w and b such that

X w+b > +1lify; =41 (8.44)
x.w+b < —lify; =-1 (8.45)

These can be combined into one set of inequalities:

Now the points for which the equality in equation 8.44 holds lie on the hyperplane H; : x;.w+b =1
which has perpendicular distance from the origin = :T;b where ||w]|| is the euclidean norm (length)

[[wll

164 CHAPTER 8. LEARNING

of w. Similarly equation 8.45 leads to the hyperplane H, : x;.w +b = —1 which has perpendicular

distance from the origin = ﬂlTW’ So the width of the margin is = and what we wish to do is to

[Tw]

minimise this width while still performing accurate classification. Also the training points which
just lie on these hyperplanes are the only ones necessary to determine the parameters w and b and
they are known as the support vectors. We can solve this problem using the method of Lagrange

multipliers: we must minimise

l l
1 .
i=1 i=1

where the last constraint ensures that the o; > 0. Note that we are now required to minimise L,
with respect to w, b and «; and that at the optimal point the derivative of L, with respect to
these parameters should vanish.

Because the problem is convex, we can equivalently optimise the ”dual” problem: mazimise L,
subject to the constraints that the gradient of L, with respect to w and b vanish. Differentiating
L, we get

l
0L,
a9 = W—E QiYiXq
ow ‘
=1
l
and sow = E QiYiX;
i=1

at the optimum point. Similarly finding the derivative with respect to b and setting this equal to
0 gives

Zaiyi =0 (848)

which we can substitute into the problem to give us

LD = Zai — %Zaiajyiijixj (849)
(2 2,]
which is the dual problem which we must maximise.

Support vector training in the linear separable case then involves using the last equation to
solve the original optimisation problem. Only those points which are on the separating hyperplanes
will have values of «; not equal to zero. All points which are currently correctly classified will lie
within acceptable bounds and will not be used for determining the parameters.

8.8.2 A Case Study

Our goal was to analyse a two-dimensional data-set and try to discover the best-fitting set of
regression curves that both generalised the data and followed the laws of probability, while also
taking into account large variances in the sample sizes associated with each set of observations.

In particular, we analysed a dataset of soccer results where the independent variable is the
bookmaker’s evaluation of the winning chan-ces of the favourite at the end of the match, and
the dependent variable is the actual frequency of a particular ’double-result’ occurring given the
bookmaker’s prior evaluation of the odds. A ’double-result’ is the combination of the outcomes
at the end of the first and second halves and so, as we have three possible different outcomes
of home win, draw, or away win at the end of each half, we have nine possible double-results in
all. It should be noted that the use of the full-time favourite odds as independent variables are
a good enough approximation to a smooth and consistent scale for our dependent variables to be
considered viable - however one of our main difficulties is that we have far larger sample sizes for
some dependent variables than others, and also some double-results occur very infrequently so an
accurate regression fit may be difficult.

8.8. SUPPORT VECTOR MACHINES 165

Figure 8.13: Only the points C and D will be used to find the correct direction of w and intercept
b. A and B are close enough.

The independent variable is based on odds of favourites between 6/4 and 1/3. This is turned
into an independent variable range of between -1 and 1 where -1 is equivalent to the probability
that the away team has 100% chance of winning and 1 is equal to the probability that the home
team has 100% chance of winning, where such probabilities are given by the bookmaker.

However some independent variable ranges are very poorly represented e.g. there are very few
independent variables near the extremities of +1 (see Table 8.1. In fact the majority of our data
exists for values between -0.2 and +0.5; outside of this range, there is a very sharp decline in the
number of observations.

This section discusses an application demonstrating how to build into a Support Vector Ma-
chine (SVM) [2, 14] knowledge of which points are more reliable than others while keeping the
good generalisation and smoothing properties of SVMs.

The e parameter is the focus of our attention. If we prescribe in advance the required degree
of accuracy, we may set € to an appropriate value. Sometimes we simply wish to investigate what
degree of accuracy gives us best generalisation over the data. However for our data set, we have
knowledge about the data set additional to the dependent and independent variables: we know
that some values of the (z;,y;) data set are based on a greater number of samples than others.
Therefore we build in this knowledge by altering the value of € at each data point. Therefore we
now have a vector of parameters, €;,7 = 1, ..., IV, one for each data point. To calculate €; we use
the sample size, s; from which the dependent variable was calculated. Define

Si

Zj Sj

Let t,,,i be the smallest value of ¢; so calculated and ¢,,4, be the largest. We chose €4, and €,
to be the maximum and minimum permitted values of ¢; respectively and set

t; =

(8.50)

€ = —— " % (€maz — Emin) + €min (8.51)

tmaz - tmin

We then use the interior point optimiser, LOQO [15] to solve the quadratic optimisation problem.

8.8.3 Simulations

The number of observations for each (z;,y;) pair is shown in Figure 8.14 as is the corresponding
value of €;. We see that the greatest number of samples and hence the smallest values of €; occur in
the central region between -0.2 and 0.5. In Figure 8.15 we show one set of regression curves for the

166 CHAPTER 8. LEARNING

Fav. Odds Sample H-H H-D H-A D-H D-D D-A A-H AD A-A
1/5 3 0 0 0 2 1 0 0 0 0
2/9 7 3 0 0 2 1 0 0 0 1
1/4 21 11 1 0 4 3 0 1 0 1
2/7 36 15 1 1 12 3 1 0 1 2
1/3 35 22 1 1) 1 2 0 0 3

4/11 26 14 0 0 1 10 1 0 0 0
2/5 58 28 4 0 13 4 4 1 2 2
4/9 87 92 4 0 12 6 4) 0 4
1/2 70 33 6 0 13 8 2 4 1 3
8/15 74 26 2 1 15 15 4 3) 3
4/7 164 57 10 2 40 23 10 3) 14
8/13 200 72 11 3 45 28 10 8 8 15
4/6 229 104 4 2 46 31 13) 7 17
8/11 303 83 16 1 a0 60 32 14 18 29
4/5 251 75 15) 38 46 29 0 17 26
5/6 112 32) 1 23 19 7)) 15

10/11 235 69 6 4 38 48 25 3 12 30
1/1 200 a7 8 2 32 41 16 8 18 18

11/10 200 48 19 3 25 34 20 4 14 33
6/5 230 93 15) 33 46 31 3 10 34
5/4 322 69 25 6 43 98 40 9 18 54
11/8 236 39 14) 33 45 23)) 47
6/4 232 26 12 1 24 50 28) 11 45

Table 8.1: The odds and outcomes of English Premier division games in one season.

variable ¢; method (top) and the corresponding curve for the single € method. On each graph we
also show the regression curve from an alternative method based on a second degree polynomial
which also takes into account the sample sizes and which has been shown to be successful at
making its creator money! The variable €; method is clearly closer to the proven technique. We
conjecture that the end points are having a more pivotal effect in the latter case.

8.8. SUPPORT VECTOR MACHINES 167

Figure 8.14: The number of data points and corresponding value of € at each data pair.

168 CHAPTER 8. LEARNING

Figure 8.15: The top diagram shows the regression curve from the variable €; case. The bottom
shows that from the constant e case on the same data set. Each graph also shows the regression
curve from a tried and trusted polynomial regression which also takes into account the sample
sizes.

0.7

poly comp.

05

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0.7

poly comp.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

8.8. SUPPORT VECTOR MACHINES 169

Figure 8.16: The sum of the probabilities using the variable ¢ method. The probabilities sum to
approximately 1 in the region in which we have most data but diverge substantially from 1 at the
extremities.

1.35, T

131 T

1.15F T

11 q

1.05 b

0.95 I I I I I I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

170 CHAPTER 8. LEARNING

Bibliography

[1]
2]
[3]
[4]
[5]
[6]
[7]

(8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]

D. Charles and C. Fyfe. Modelling multiple cause structure using rectification constraints.
Network: Computation in Neural Systems, 1998.

N Christiani and J Shawe-Taylor. An Introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

C. Fyfe and R. Baddeley. Non-linear data structure extraction using simple hebbian networks.
Biological Cybernetics, 72(6):533-541, 1995.

S. Mika, B. Scholkopf, A. Smola, K.-R. Muller, M. Scholz, and G. Ratsch. Kernel pca and
de-noising in feature spaces. In Advances in Neural Processing Systems, 11, 1999.

P.L.Lai and C. Fyfe. A neural network implementation of canonical correlation analysis.
Neural Networks, 12(10):1391-1397, Dec. 1999.

S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active shape model using
kernel pca. In BMV(C99, 1999.

B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch, and A. J. Smola. Input
space vs feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10:1000-1017, 1999.

B. Scholkopf, S. Mika, A. Smola, G. Ratsch, and K.-R. Muller. Kernel pca pattern reconstruc-
tion via approximate pre-images. In L. Niklasson M. Boden R. Ziemke, editor, Proceedings of
8th International Conference on Artificial Neural Networks, pages 147-152. Springer Verlag,
1998.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigen-
value problem. Technical Report 44, Max Planck Institut fur biologische Kybernetik, Dec
1996.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigen-
value problem. Neural Computation, 10:1299-1319, 1998.

B. Scholkopf, A. Smola, and K.-R. Muller. Support Vector Machines, chapter Kernel Principal
Component Analysis, pages 327-370. 1999.

A. J. Smola, O. L. Mangasarian, and B Scholkopf. Sparse kernel feature analysis. Technical
Report 99-04, University of Wiscosin Madison, 1999.

A. J. Smola, S. Mika, B. Scholkopf, and R. C. Williamson. Regularized principal maniforlds.
Machine Learning, pages 1-28, 2000. (submitted).

A. J. Smola and B. Scholkopf. A tutorial on support vector regression. Technical Report
NC2-TR-1998-030, NeuroCOLT2 Technical Report Series, Oct. 1998.

R. J. Vanderbei. Loqo: An interior point code for quadratic programming. Technical Report
SOR-94-15, Princeton University, Sept. 1998.

V Vapnik. The nature of statistical learning theory. Springer Verlag, New York, 1995.

171

172 BIBLIOGRAPHY

8.9 Conclusion

The theme of this Chapter is an investigation of the efficacy of training a network on one set of
data and testing it on another.

We have investigated two aspects of this both of which can be used to quantify the general-
isation properties of ANNs. The VC dimension is an abstract tool which provides a worst case
scenario for analysing the power of a neural network; as such it often seems to have little relevance
to everyday neural network construction. The PAC system is created with a similar intention in
that it is used to give confidence in a network’s outputs.

The Bias-Variance trade-off on the other hand is very real and we have used the medium of a
different type of supervised neural network to show its relevance.

We have also met the technique of regularisation which is intended to ensure that we find a
smooth function and so hopefully good interpolation for data which was not seen during training.

Chapter 9

Unsupervised Learning using
Kernel Methods

9.1 Introduction

In this Chapter, we use radial kernels to learn mappings in an unsupervised manner. The use of
radial kernels has been derived from the work of Vapnik [16], Burges [?] etc in the field of Support
Vectors Machines. Support Vector regression for example, performs a nonlinear mapping of the
data set into some high dimensional feature space in which we may then perform linear operations.
Since the original mapping was nonlinear, any linear operation in this feature space corresponds
to a nonlinear operation in data space.

We first review recent work on Kernel Principal Component Analysis (KPCA) [12, 13,9, 10, 7,
6, 11, 4, 8] which has been the most frequently reported linear operation involving unsupervised
learning in feature space. We then extend the method to perform other Kernel-based operations:
Kernel Principal Factor Analysis, Kernel Exploratory Projection Pursuit and Kernel Canonical
Correlation Analysis. For each operation, we derive the appropriate rules and give exemplar
simulation results. Since this book is on Radial Basis Functions, we will report results only using
radial kernels, however the theory is quite general and many interesting results may be had using
non-radial kernels.

9.2 Kernel PCA

This section is based very much on the analysis in [9, 10]. A very good Matlab simulation of
Kernel PCA can be found at

http://svm.first.gmd.de

In the next section, we show that sample Principal Component Analysis (PCA) may be performed
on the samples of a data set in a particular way which will be useful in the performance of PCA
in the nonlinear feature space.

9.2.1 The Linear Kernel

PCA finds the eigenvectors and corresponding eigenvalues of the covariance matrix of a data set.
Let x = {x1,...,xpm} be iid (independent, identically distributed) samples drawn from a data
source. If each x; is n-dimensional, 3 at most n eigenvalues/eigenvectors. Let C be the covariance
matrix of the data set; then C is n x n. Then the eigenvectors, e;, are n dimensional vectors which
are found by solving

Ce = e (9.1

173

174 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

where) is the eigenvalue corresponding to e. We will assume the eigenvalues and eigenvectors are
arranged in non-decreasing order of eigenvalues and each eigenvector is of length 1. We will use
the sample covariance matrix as though it was the true covariance matrix and so

1 M
Cw o7 > xix] (9.2)
j=1

Now each eigenvector lies in the span of x; i.e. the set x = {x1,...,xas} forms a basis set (normally
overcomplete since M > n) for the eigenvectors. So each e; can be expressed as

e = Z alx; (9.3)
J

Now if we wish to find the principal components of a new data point x we project it on the

eigenvectors previously found: the first principal component is (x.e;), the second is (x.ez), etc.

These are the coordinates of x in the eigenvector basis. There are only n eigenvectors (at most)

and so there can only be n coordinates in the new system: we have merely rotated the data set.
Now consider projecting one of the data points from y on the eigenvector ep; then

Xi.€1 = Xg. E ajx; = Oél-ZXka (9.4)
J J

Now let K be the matrix of dot products. Then K;; = x;x;.
Multiplying both sides of (9.1) by x; we get

x;Cer = Aep.xy, (9.5)

and using the expansion for e;, and the definition of the sample covariance matrix, C, gives

1
MK%1 =M Ko (9.6)

Now it may be shown [10] that all interesting solutions of this equation are also solutions of
KO[l = M/\1a1 (97)

whose solution is that «; is the principal eigenvector of K.

9.2.2 Non linear Kernels

Now we preprocess the data using ® : x — F. So F is now the space spanned by ®(x;), ..., ®(x) .

The above arguments all hold and the eigenvectors of the dot product matrix K;; = (®(x;).®(x;)).

But now the Kernel Trick: provided we can calculate K we don’t need the individual terms ®(x;).
In this Chapter, we will exclusively use Gaussian kernels so that

Kij = (2(x:)-2(x;)) = exp(—(xi —yi)*/(207) (9.8)

This kernel has been shown [10] to satisfy the conditions of Mercer’s theorem and so can be used
as a kernel for some function ®(.). One issue that we must address in feature space is that the
eigenvectors should be of unit length. Let v; be an eigenvector of C. Then v; is a vector in the
space F spanned by ®(x1), ..., ®(x,s) and so can be expressed in terms of this basis. This is an at
most M-dimensional subspace of a possibly infinite dimensional space which gives computational
tractibility to the kernel algorithms. Then

M .
v, = Za}@(xj) (9.9)
j=1

9.2. KERNEL PCA 175

for eigenvectors v; corresponding to non-zero eigenvalues. Therefore

M
viTvi = oz;-‘I>(XJ-)T‘I>(xk)oz;c
Jrk=1

M
_ i i
= D oK
k=1
= o.(Ka')

= \Nat.a'

Now af are (by definition of the eigenvectors of K) of unit magnitude. Therefore since we require
the eigenvectors to be normalised in feature space, F, i.e. vlv; = 1, we must normalise the
eigenvectors of K, of, by dividing each by the square root of their corresponding eigenvalues.

Now we can simply perform a principal component projection of any new point x by finding
its projection onto the principal components of the feature space,F. Thus

M
vid(x) = Y al®(x;).8(x) = Y ol K(x;,x) (9.10)
j=1 j=1

And the above argument shows that any operation which can be defined in terms of dot products
can be Kernelised. We will in subsequent sections use similar arguments with Factor Analysis,
Exploratory Projection Pursuit and Canonical Correlation Analysis; however first we give an
illustratory example.

There are many examples of KPCA in the literature (e.g. [10, 7, 6]) and we will in this Chapter
only give results using KPCA later when we wish to compare it with other Kernel methods.

9.2.3 The Curse of Kernel Dimensionality

One of the difficulties associated with unsupervised kernel methods in general is that the nonlinear
mapping, ®() maps the input data to a feature space of high, possibly infinite, dimensionality.
Now one of the advantages kernel methods are said to have is that they are actually working in
a space of dimensionality equal only to the number of data points. This is true but in practise
the dimensionality may be even less than that if two or more data points coincide. Then we
have a reduced rank K matrix. Perhaps more common is the situation when two or more points
lie very close to one another (in feature space) and then we have an ill-conditioned K matrix
whose lower eigenvectors are very susceptible to noise. It is our finding that kernel methods are
typically plagued with problems of this type, a fact which should not be surprising given that
we are estimating M eigenvectors from M points. Some methods for creating a reduced set of
vectors have been suggested in the past. In addition to addressing this problem, such methods
also alleviate the computational problems associated with large matrices. We now suggest further
methods to find a reduced set and perform an empirical study of some of these methods.

The data set we will use consists of 65 colour spectra of 115 asteroids used by [?]. The data
set is composed of a mixture of the 52-colour survey by [?], together with the 8-colour survey
conducted by [?] providing a set of asteroid spectra spanning 0.3-2.5mm. Success is measured in
terms of the accuracy of classification of asteroids into the correct data types.

We report results in Table 9.1 (Kernel Factor Analysis is discussed in the next section- the
results are shown here for completeness). The table shows the effectiveness of performing a linear
classification of the projections onto feature space of the data. The methods for choosing a reduced
set of points (called initialisation methods in the Table) were:

Random We simply randomly select a subset of the data set to use as the points which we use
to perform a Kernel PCA. Typically we use 100 out of the 116 points.

176 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Initialisation method Kernel method Dataset | Accuracy
Random Principal Component Analysis | Asteroid 63%
k-Means Principal Component Analysis | Asteroid 68%

SOM Principal Component Analysis | Asteroid 74%
MoG Principal Component Analysis | Asteroid 67%
Random Principal Factor Analysis Asteroid 65%
k-Means Principal Factor Analysis Asteroid 70%
SOM Principal Factor Analysis Asteroid 75%
MoG Principal Factor Analysis Asteroid 68%

Table 9.1: The percentage accuracy of two kernel methods when different means of creating the
data vectors used to determine the kernels.

k-Means We select 50 centres selected using the k-means algorithm. These centres became
'virtual points’ on which the KPCA algorithm was performed. Often we found that some
centres coincided in which case one was removed (see discussion on ill-conditioned covariance
matrices).

SOM We begin with a 10*10 grid of output neurons in a Self-Organising Map [?] and train the
network on this data set. Typically around half the nodes are not responding to a part of
the data space and are discarded. The centres from the other half are used as a form of
'virtual data’ on which to perform the KPCA.

MoG We assume the data was formed from a Mixtures of Gaussian causes (we actually used
diagonal covariance matrices for the Gaussian covariance matrices) and optimised the pa-
rameters of the model using the EM Algorithm. Typically we found that the data set was
best explained by 20-30 Gaussians whose means were used as ’virtual data’ on which the
KPCA was performed. The centres were found using the EM algorithm.

We see from Table 9.1 that the SOM provided the best points (in terms of accuracy of the
clustering) on which KPCA was performed. Perhaps the most interesting result is the difference
between the SOM and the k-means algorithm; this may best be explained by the fact that the
centres in the k-means algorithm are totally competitive and tend to move to the regions of
greatest mass. In the SOM, the topology preservation causes some neurons to map to regions of
lower probability density, something which in other guises is a drawback when the mapping has
neurons whose centres are in areas of low mass. This study is part of a larger study over different
data sets, however these results seem to be typical.

9.3 Kernel Principal Factor Analysis

A standard method of finding independent sources in a data set is the statistical technique of
Factor Analysis (FA). PCA and FA are closely related statistical techniques both of which achieve
an efficient compression of the data but in a different manner. They can both be described as
methods to explain the data set in a smaller number of dimensions but FA is based on assumptions
about the nature of the underlying data whereas PCA is model free.

We can also view PCA as an attempt to find a transformation from the data set to a compressed
code, whereas in FA we try to find the linear transformation which takes us from a set of hidden
factors to the data set. Since PCA is model free, we make no assumptions about the form of the
data’s covariance matrix. However FA begins with a specific model which is usually constrained
by our prior knowledge or assumptions about the data set. The general FA model can be described
by the following relationship:

x=Lf+u (9.11)

where x is a vector representative of the data set, f is the vector of factors, L is the matrix of
factor loadings and u is the vector of specific (unique) factors.

9.3. KERNEL PRINCIPAL FACTOR ANALYSIS 177

The usual assumptions built into the model are that:

e E(f) =0, Var(f) =l i.e. the factors are zero mean, of the same power and uncorrelated with
each other.

e E(u) =0, Cov(u;,u;) =0, Vi, j, i.e the specific factors are also zero mean and uncorrelated
with each other

e Cov(f,u) = 0 i.e. the factors and specific factors are uncorrelated

Let C = E(xxT) be the covariance matrix of x (again assuming zero mean data). Then C' =
AAT + ® where @ is the covariance matrix of the specific factors, u and so ® is a diagonal matrix,
diag{®11,P22,,®Parrr}. Now whereas PCA attempts to explain C' without a specific model, FA
attempts to find parameters A and ® which explain C and only if such models can be found will
a Factor Analysis be successful.

Estimations of the Factor loading is usually done by means of one of two methods - Maximum
Likelihood Estimation or Principal Factor Analysis [?]. Since Principal Factor Analysis is a method
which may be performed using dot products, this is the method in which we shall be interested in
this Chapter.

9.3.1 Principal Factor Analysis
Expanding C = E(xx!) , then

Cii = Y A} + @5 = hi + @, (9.12)
J

i.e. the variance of the data set can be broken into two parts the first of which is known as

the communality and is the variance of z; which is shared via the factor loadings with the other

variables. The second is the specific or unique variance associated with the i*” input.

In Principal Factor Analysis (PFA), an initial estimate of the communalities is made. This is
inserted into the main diagonal of the data covariance matrix and then a PCA is performed on the
“reduced correlation matrix”. A commonly used estimate of the communalities is the maximum
of the square of the multiple correlation coefficient of the it* variable with every other variable.

We have previously [1] derived a neural network method of performing Principal Factor Anal-
ysis.

9.3.2 The Varimax Rotation

In PCA the orthogonal components are arranged in descending order of importance and a unique
solution is always possible. The factor loadings in FA are not unique and there are likely to
be substantial loadings on more than one factor that may be negative or positive. This often
means that the results in standard FA are difficult to interpret. To overcome these problems
it is possible to perform a rigid rotation of the axes of the factor space and so identify a more
simplified structure in the data that is more easily interpretable. One well-known method of
achieving this is the Varimax rotation [?]. This has as its rationale that factors should be formed
with a few large loadings and as many near zero loadings as possible, normally achieved by an
iterative maximization of a quadratic function of the factor loadings. It is worth noting that the
Varimax rotation aims for a sparse response to the data and this has acknowledged as an efficient
form coding. In the experiments presented here it can be seen that by using a Varimax rotation
we can gain more straightforward, interpretable results than with PCA in kernel space.

9.3.3 Kernel Principal Factor Analysis

Let x = x1, ..., xp be iid (independent, identically distributed) samples drawn from a data source.
Let C be the covariance matrix of the data set and let us define C~ = C'— D where we will assume

178 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

that D is a diagonal matrix of the form D = uI . We are thus stripping out the same amount of
variance from each element in the diagonal of the covariance matrix of the data.
Then the eigenvectors of this reduced covariance matrix, e;, are n dimensional vectors which

are found by solving
C_ei = /\iei (913)

where \; is the eigenvalue corresponding to e;. We will assume the eigenvalues and eigenvectors
are arranged in non-decreasing order of eigenvalues and each eigenvector is of length 1. We will
use the sample covariance matrix as though it was the true covariance matrix and so

M
1
C™~ o7 > oxix] =l (9.14)
j=1
Then
LM
C7e = Wi ijx]Tei —ple;
j=1
1 M
ie. \je; = i ijijei — ue;
j=1
M
Thus Zx]’(x]rei) = M(p+ M)e; (9.15)

j=1

Thus each eigenvector lies in the span of y; i.e. the set x = x1, ..., x); forms a basis set for the
eigenvectors. So each e; can be expressed as

e; = Z QX5 (916)
J

Now if we wish to find the principal components of a new data point x we project it on the
eigenvectors previously found: the first principal component is x.e;, the second is x.ez, etc. These
are the coordinates of x in the eigenvector basis. There are only n eigenvectors (at most) and so
there can only be n coordinates in the new system: we have merely rotated the data set.

Now consider projecting one of the data points from x on the eigenvector e;; then

Xp.€e] = Xg. Zaljxj = . Zxkxj (9.17)
J J

Now let K be the matrix of dot products. Then K;; = x;x;.
Multiplying both sides of (9.13) by x; we have

X{C_ei = /\iei.xk
M
1
x,{(M ijx?—uI)Zafxp = A\ Zafxp.xk
j=1 P P
1
—K2Oéi — uKai = /\zKCMz

M
Now it may be shown [10] that all interesting solutions of this equation are also solutions of
Ka; = M(/\z + /I,)Oéi (918)

whose solution is that «; is a principal eigenvector of K with eigenvalue v; = M (\; +). Now, if
we have a nonlinear mapping to a feature space, F, then C~ & 7 Z]Nil ®(x;)®T (x;) — pl and
the above arguments continue to hold.

9.3. KERNEL PRINCIPAL FACTOR ANALYSIS 179

Note that the direction of each eigenvector is exactly the same as the KPCA solution but the
corresponding eigenvalue is different. Since we wish our e; to be of unit length we have that

M
efe; = Y al®(x;) @(xi)af
Jrk=1
M .
= ZagK]’kaf
Jrk=1
= O[i.(KOéi)

= 7iQ;.04

where we have used af to be the k" element of the it" eigenvector.

Now «; are (by definition of the eigenvectors of K) of unit magnitude. Therefore since we
require the eigenvectors to be normalised in feature space, F, i.e. e]'e; = 1, we must normalise the
eigenvectors of K, «;, by dividing each by the square root of their corresponding eigenvalues, ;.
But note now that these eigenvalues contain both a term from the eigenvalues of the covariance
matrix and also p (see (9.18)). Thus the Varimax rotation may have a different solution when
applied in the KPFA space compared with that found in the KPCA space.

However this assumption of noise in the feature space is less interesting than the assumption
of noise in the data space which is then transformed by passing the noise through the nonlinearity
into the feature space. Thus we now consider the situation in which the input data contains the
noise and the nonlinear function, ®() acts on both signal and noise. There seems to be no generic
solution to this and so we must consider the effect of the noise through different functions.

e Consider the feature space of all monomials of degree 2 on two dimensional data. i.e.

B(x) = ®((w1,22)) = (27, 172, 23) (9.19)
Then if our model is such that (x1,z2) = (z] + p1, x5 + p2), then
®(x) = (o1 +m)?, (21 +)2y + p2), (o3 + p2)?) (9.20)
which, for zero mean noise, has expectation
®(x) = ((1)° + 1,27 23, (23)” + %) (9.21)

So the noise in this space does not satisfy the conditions,
LM
Cm o7 > e(x;)@" (x;) — pl
j=1

e Consider the space formed from the Gaussian function: now there is no known nonlinear
function but we may consider the kernel matrix directly

Kij = ®(xi,%;) = exp(—(x; — x;)?/0)
= exp(—(x; +pi—%; —p;)*/o)

where we have used p; and p; as vectors of noise. Then while it is true that the expected
value of this is given by

Kij = exp(~(x; —x;)*/0) (9.22)
this is true only of the expectation. Considering this on a data point by data point basis,
exp(—(xj + pi — x5 — p;)*/0) # exp(—(x; —xj)?/0) (9.23)

other than the special case when ¢ = 5. Thus we have an interesting analogy to subtracting
out a common term from the C' covariance matrix: the K matrix is only absolutely correct
along its main diagonal.

180 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Wariance=0.171

Wariance=0.113 Wariance=0.112 = Wariance=0.020

A Ve
S
il
-2
-2] 2 2

Wariance=0.075

Figure 9.1: The first eigenvectors found by Kernel Principal Component Analysis on the data set
shown.

9.3. KERNEL PRINCIPAL FACTOR ANALYSIS 181

“Warnance=0.163 “arance=0.104 2 “arance=0.104 ‘warance=0.066
—

Figure 9.2: The directions found by Kernel Principal Factor Analysis. We may compare this with
Figure 9.1.

182 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

9.3.4 Simulations

We first create artificial data in the form of two noisy arcs of a cirle. The filters found by KPCA
are shown in Figure 9.1 while those found by KPFA are shown in Figure 9.2 ; the FA results were
achieved after a Varimax rotation. We see that the results from KPFA are more tightly defined
(more local) than those from KPCA and that it concentrates on one of the two arcs at one time.

9.4 Kernel Exploratory Projection Pursuit

9.4.1 Exploratory Projection Pursuit

Exploratory Projection Pursuit attempts to project the data onto a low dimensional subspace
in order to look for structure in the projection. However not all projections reveal the data’s
structure equally well; so we define an index that measures how “interesting” a given projection
is, and then represent the data in terms of the projections that are maximally interesting.

Friedman [?] notes that what constitutes an interesting direction is more difficult to define
than what constitutes an uninteresting direction. The idea of “interestingness” is usually defined
in relation to the oft-quoted observation of Diaconis and Freedman([?]) that most projections
through most multi-dimensional data are almost Gaussian. This would suggest that if we wish
to identify “interesting” features in data, we should look for those projections which are as non-
Gaussian as possible.

Thus we require a method for moving a filter (a weight vector) so that it finds linear com-
binations of the data set which are as non-Gaussian as possible. Some possible measures of
non-Gaussianity lie in the higher order statistics of the data: for example, the third moment
measures skewness in a data set while the fourth measures the volume of the distribution found
in the tails of the distribution. Since we are not interested in the mean or the variance of the
distribution (one Gaussian is an uninteresting as any other Gaussian) we sphere (or whiten) the
data to remove the first and second moments; we can envisage this as translating the data till its
mean is over the origin and squeezing in or teasing out the data in each direction till it has equal
spread in each direction. It is then with this sphered data that we look for interesting filters. We
have previously given a neural implementation of Exploratory Projection Pursuit [3].

9.4.2 Kernel Exploratory Projection Pursuit

[12] have introduced the term Kernel Projection Pursuit: they argue that rather than finding the
vector, vi which maximises the variance of the projections in feature space

m

V] = argmax 1 Z(v.@(xi)f (9.24)

veV m “
=1
we may choose any other function of the projection to maximise. Thus we may choose

1 m
Vi = argmax - Z q(v.®(x;)) (9.25)

i=1

where ¢(.) may be a higher power or indeed we can use more general functions of all variable
projections so that we have

V1 = argmax QU{v.®(x1),v.®(x2), ..., v.®(x) }) (9.26)

where @(.) may now be any function with a finite maximum. However, there is no necessity or
capability when using that single operation to perform sphering of the data which the EPP method
demands. Therefore we perform a two-stage operation just as we would if we were operating in
data space.

9.5. CANONICAL CORRELATION ANALYSIS 183

The operation of KPCA gives us principal components in feature space. Since we are already
centering these Kernels, all that is required for sphering is to divide each projection by the square
root of its eigenvalue and we have a set of coordinates in feature space which is sphered. Now we
may choose any method to search for higher order structure in feature space. We choose to use a
neural method which we have already shown to perform EPP on sphered data in data space [3].
Let z; be the projection of the data point x; onto feature space after the sphering has been carried
out. Now z is fed forward through weights, W, to output neurons to give a vector. Now the
activation is passed back to the originating z values as inhibition and then a non-linear function
of the inputs is calculated:

Yi = E WijZj
J
Zj & Zj — WY

s; = tanh(y;)
and then the new weights are calculated using simple Hebbian learning
Awi;; = Bzyi

Note at this stage the operation of our algorithm is identical to that used previously in data space.
Because we are using the sphered projections onto the eigenvectors, it is irrelevant as to whether
these eigenvectors are eigenvectors in the data space or eigenvectors in the (nonlinear) feature
space.

9.4.3 Simulations

We use the Iris data set to compare KPCA (Figure 9.3) and KEPP (Figure 9.4). Figure 9.3 shows
the projection of the iris data set on the first two principal component directions found by Kernel
PCA. We can see that one cluster has been clearly found but the other two clusters are very
intertwined. In Figure 9.4 we see the projections of the same data set onto the filters of the first
two Exploratory Projection Pursuit directions. One cluster has been split from the other two and
in addition, the separation between the second and third clusters is very much greater than with
KPCA. It is worth noting that this result was found with great repeatability which is rather unlike
many EPP methods working in data space. We require more investigation of this feature.

9.5 Canonical Correlation Analysis

Canonical Correlation Analysis is a statistical technique used when we have two data sets which
we believe have some underlying correlation. Consider two sets of input data; x; and x2. Then in
classical CCA, we attempt to find that linear combination of the variables which give us maximum
correlation between the combinations. Let

yr = W1X1=E W1;5T15
J

y2 = W2X2=E W25 T2j
J

where we have used x;; as the 7t element of x;.

Then we wish to find those values of w; and wy which maximise the correlation between y;
and ys. If the relation between y; and ys is believe to be causal, we may view the process as one
of finding the best predictor of the set x2 by the set x; and similarly of finding the best predictable
criterion in the set x5 from the set x; data set.

184 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

6r *
*
*
* +*¢
4+ * ¥ +
+
+x T
+ﬁ+
2r +
+ %
*
+*;
+
oF ¥ %
%
+**
++
oL # oy (5)
n
.y
+§*
-4+ Jjék
+*";
+ e P
j?ﬁ’
sk +*
~
_8 1 1 1 1 1 1 1 1 J
-8 6 -4 -2 0 2 4 6 8 10

Figure 9.3: The projections on the first two kernel principal component directions of the iris data
set; one cluster has clearly been identified but the other two are very intertwined.

9.5. CANONICAL CORRELATION ANALYSIS 185

++
I
++ +
#+ *
+ +
. f
+ o+ tox .
+
+
L+
+
N
+ +
* o4
* %+
% ¥
Ty
+%
* Btk
* *
*
*
*4*** *
* T ©
’#f o
* * @)
*
A o
E
1 1 1 1 1 1
-6 -4 -2 0 2 4

Figure 9.4: The projections of the first two kernel exploratory projection pursuit directions of the
iris data set; one cluster has clearly been identified and the second and third clusters have been
partially separated.

186 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Then the standard statistical method (see [?]) lies in defining

U= B{(xi—) —)"}
Yo = E{(x2— pa)(x2 —p2)"}
12 = E{(x1—) (x2 —p2)"}
and K = S25,57 (9.27)

where T denotes the transpose of a vector. We then perform a Singular Value Decomposition of
K to get

K= (Oél,az,...,ak)D(Bl,Bz,...,ﬂk)T (928)
where a; and 3; are the standardised eigenvectors of K K™ and KT K respectively and D is the
diagonal matrix of eigenvalues.

Then the first canonical correlation vectors (those which give greatest correlation) are given
by
_1
W1 = 2112 (63] (929)
1
Wy = 2222 Bl (930)

with subsequent canonical correlation vectors defined in terms of the subsequent eigenvectors, a;
and f3;.

9.5.1 Kernel Canonical Correlation Analysis

Consider mapping the input data to a high dimensional (perhaps infinite dimensional) feature
space, F'. Now,

Si1o= B{(®(x1) — p)(®(x1) — pa)"}
S = E{(®(x2) — p2)(B(x2) — p2)"}
10 = E{(®(x1) —) (D(x2) — p2) "

where now p; = E(®(x;)) for i = 1,2. Let us assume for the moment that the data has been
centred in feature space (we actually will use the same trick as [10] to centre the data later). Then
we define

Y o= E{®(x))®(x;)T}
Yoy = E{®(x)®(xy)'}
Y, = E{®(x)®(x)!}

and we wish to find those values w; and wy which will maximise W{lewz subject to the con-
straints WfEllwl =1 and wg’222w2 =1.

In practise we will approximate X1, with % > P(x1:)®(x2;), the sample average.

At this stage we can see the similarity with our nonlinear CCA: if we consider an instanta-
neous hill-climbing algorithm, we would derive precisely our NLCCA algorithm for the particular
nonlinearity involved.

Now w; and w exist in the feature space which is spanned by {®(x11), ®(x12), ..., ®(x15,), P(X21),
and therefore can be expressed as

n n
wio= > an®(xn) + > ani®(xa)
i—1 i—1

Wy o=) Bu(xi) + Y Baid(x)
=1 i=1

ey @(x20) }

9.5. CANONICAL CORRELATION ANALYSIS 187

With some abuse of the notation we will use x; to be the it" instance from the set of data i.e.
from either the set of values of x; or from those of x» and write

2n
W1 = Z O[i(I) (Xt)
i=1

W2

2n
> Bi®(xi)
i=1
Therefore substituting this in the criteria we wish to optimise, we get
1
(wlsiw,y) = - ; o BT (%) B (x17) zl: 5@ (x0:)®(x) (9.31)
(2

where the sums over i are to find the sample means over the data set. Similarly with the constraints
and so

wisw, = %Zak@T(xk)‘ﬁ(xu).Zalq)T(xu)q)(xl)
k,i l

wlSw, = %Zﬂk@T(xk)@(xm).ZBZQT(XQZ-)@()([)
k,i l

Using (K1)ij = ®%(x;)®(x1;) and (K3)i; = ®(x;)®(x2;) we then have that we require to max-
imise a® K1 K] 3 subject to the constraints o’ K; K] o = 1 and ST K2 KT8 = 1. Therefore if we
define ¥1; = K K[, X909 = KK and Y12 = K; K] we solve the problem in the usual way: by
forming matrix K = 21_1%21222_2% and performing a singular value decomposition on it as before
to get

K = (71,72) D (01,62, ..., 0x) " (9.32)

where 7; and ; are again the standardised eigenvectors of KK7 and KT K respectively and D is
the diagonal matrix of eigenvalues !
Then the first canonical correlation vectors in feature space are given by

1

(5] = 2112’}/1 (933)
—1

B = .26, (9.34)

with subsequent canonical correlation vectors defined in terms of the subsequent eigenvectors, ;
and 6;.
Now for any new values x;, we may calculate

Wl.(I)(Xl) = Zal‘ﬁ(xz)q)(xl) = ZaiKl(Xiaxl) (935)

which then requires to be centered as before. We see that we are again performing a dot product
in feature space (it is actually calculated in the subspace formed from projections of x;).

The optimal weight vectors are vectors in a feature space which we may never determine. We
are simply going to calculate the appropriate matrices using the kernel trick - e.g. we may use
Gaussian kernels so that

Ki(x14,%15) = exp(—(x1; — x15)°) (9.36)

which gives us a means of calculating K1, without ever having had to calculate ®(x1;) or ®(x1;)
explicitly.

I This optimisation is applicable for all symmetric matrices (Theorem A.9.2, [?]).

188 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Contours of equal correlation projected onto the line data’s eigenvectors

Correlation=0.997 Correlation=0.992 Correlation=0.936 Correlation=0.885

AL
_TZ\-'\O\- 2 _i\l O- 2

Correlation=0.651 Correlation=0.217 Correlation=0.117 Correlation=0.037

Correlation=0.003

Figure 9.5: The contours of equal correlation when projected onto the first twelve cca directions
of the first data set (the circle data)

9.5.2 Simulations

We have previously [5] tested a neural implementation of CCA on artificial data comprising a
line and a circle. The best linear correlation of the data set was 0.623 while the nonlinear neural
method was able to get a correlation of 0.865. We show in Figures 9.5 and 9.6 two simulations with
noisy versions of the data: the first shows the contours of the first twelve directions of maximum
correlation of the circle data; the second shows the contours of maximum correlation of the line
data. We see first that we have more than two non-zero correlation projections which is impossible
with a linear method. We also see that we can achieve remarkably high correlations with this data
set.

We have to be a little careful with these results since it is perfectly possible to create perfect
correlations using radial kernels by simply setting the width of these kernels to co! Perhaps a
better example is shown in Figure 9.7 in which we show the results of this technique on a set
of data discussed in ([?],p290); it comprises 88 students’ marks on 5 module exams. The exam
results can be partitioned into two data sets: two exams were given as close book exams (C) while

9.5. CANONICAL CORRELATION ANALYSIS 189

Contours of equal correlation when projected onto the circle data’s eigenvectors
Correlation=0.994 Correlation=0.989 Correlation=0.966 Correlation=0.926

i

-2 0 2
Correlation=0.217

-2 0 2 -2 0 2

Figure 9.6: The contours of equal correlation when projected onto the first twelve cca directions
of the second data set (the line data)

190 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Correlation=0.761

Correlation=0.761

Correlation=0.065

100 100
80 80
60 60
407 40% 8
20 20
OO 0O 50 100

Correlation=0.065

100 100 100
80 80 80
60 60 60
407 407 407
20 20
0O 5.0 160 OO 5.0 Z{(.)O

Figure 9.7: The kernel canonical correlation directions found using radial kernels. The contour
lines are lines of equal correlation. Each pair of diagrams shows the equal correlation contours
from the perspective of one of the data sets.

the other three were opened book exams (O). The exams were on the subjects of Mechanics(C),
Vectors(C), Algebra(O), Analysis(O), and Statistics(O). We thus split the five variables (exam
marks) into two sets-the closed-book exams (11, 12) and the opened-book exams (21, T22, T23).
One possible quantity of interest here is how highly a student’s ability on closed-book exams is
correlated with his ability on open-book exams. Alternatively, one might try to use the open-book
exam results to predict the closed-book results (or vice versa).

The results in Figure 9.7 are clearly very good but come with two caveats:

1. The method requires a dot product between members of the data set x; and x5 and therefore
the vectors must be of the same length. Therefore in the exam data, we must discard one
set of exam marks.

2. The method requires a matrix inversion and the data sets may be such that one data point
may be repeated (or almost) leading to a singularity or badly conditioned matrices. One
solution is to add noise to the data set; this is effective in the exam data set, is a nice
solution if we were to consider biological information processors but need not always work.

9.6. CONCLUSION 191

An alternative is to add pl, where I is the identity matrix to X1; and Y55 - a method which
was also used in [?]. This gives robust and reliable solutions.

9.6 Conclusion

We have reviewed the technique of Kernel Principal Component Analysis and extended the use of
kernels to three other methods of unsupervised investigation of structure in data:

1. Principal Factor Analysis
2. Exploratory Projection Pursuit
3. Canonical Correlation Analysis

Each of these methods may be expressed in terms of a dot product. We have restricted our
examples to simulations using Gaussian kernels but there are many other possible kernels (both
radial and otherwise). It is an open research question as to which kernel is optimal in different
situations.

192 CHAPTER 9. UNSUPERVISED LEARNING USING KERNEL METHODS

Bibliography

[1]

2]

[3]

[4]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

D. Charles and C. Fyfe. Modelling multiple cause structure using rectification constraints.
Network: Computation in Neural Systems, 1998.

N Christiani and J Shawe-Taylor. An Introduction to Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

C. Fyfe and R. Baddeley. Non-linear data structure extraction using simple hebbian networks.
Biological Cybernetics, 72(6):533-541, 1995.

S. Mika, B. Scholkopf, A. Smola, K.-R. Muller, M. Scholz, and G. Ratsch. Kernel pca and
de-noising in feature spaces. In Advances in Neural Processing Systems, 11, 1999.

P.L.Lai and C. Fyfe. A neural network implementation of canonical correlation analysis.
Neural Networks, 12(10):1391-1397, Dec. 1999.

S. Romdhani, S. Gong, and A. Psarrou. A multi-view nonlinear active shape model using
kernel pca. In BMV(C99, 1999.

B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch, and A. J. Smola. Input
space vs feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10:1000-1017, 1999.

B. Scholkopf, S. Mika, A. Smola, G. Ratsch, and K.-R. Muller. Kernel pca pattern reconstruc-
tion via approximate pre-images. In L. Niklasson M. Boden R. Ziemke, editor, Proceedings of
8th International Conference on Artificial Neural Networks, pages 147-152. Springer Verlag,
1998.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigen-
value problem. Technical Report 44, Max Planck Institut fur biologische Kybernetik, Dec
1996.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigen-
value problem. Neural Computation, 10:1299-1319, 1998.

B. Scholkopf, A. Smola, and K.-R. Muller. Support Vector Machines, chapter Kernel Principal
Component Analysis, pages 327-370. 1999.

A. J. Smola, O. L. Mangasarian, and B Scholkopf. Sparse kernel feature analysis. Technical
Report 99-04, University of Wiscosin Madison, 1999.

A. J. Smola, S. Mika, B. Scholkopf, and R. C. Williamson. Regularized principal maniforlds.
Machine Learning, pages 1-28, 2000. (submitted).

A. J. Smola and B. Scholkopf. A tutorial on support vector regression. Technical Report
NC2-TR-1998-030, NeuroCOLT2 Technical Report Series, Oct. 1998.

R. J. Vanderbei. Logo: An interior point code for quadratic programming. Technical Report
SOR-94-15, Princeton University, Sept. 1998.

193

194 BIBLIOGRAPHY

[16] V Vapnik. The nature of statistical learning theory. Springer Verlag, New York, 1995.

Appendix A

Linear Algebra

A.1 Vectors

ai

We can show a two-dimensional vector a = [a] in the (x,y)-plane as in Figure A.1. We can
2

write this as a = (a;,a2)” where the T stands for the transpose of the vector(see below). This
system can be extended to

e 3D vectors so that a = (a1,az,a3)? where az can be thought to be the projection of the
vector on the z-axis.

e 4D vectors so that a = (a1, as,as3,as)”. Now it is difficult to visualise a.

e n-dimensional vectors a = (a1, as, ..., a,)’. Now no one can visualise the vectors!

A.1.1 Same direction vectors

In 2D, the vector a = (a;,az)? and the vector 2a = (2ay,2az)’ are parallel - and the second
vector is twice the length of the first. In general, the vector a = (ay,as,- - -,a,)’ and the vector
ka = (kay,kas,- -, kay)T are parallel.

A.1.2 Addition of vectors

If a = (a;,a2)’ and b = (by,b2) then we may write a +b = (a; + by, as + by)?. In general, if

a = (a’laa2a"'aan)T and
b = (bl,bg,...,bn)T then
a+b = (a1 +by,az+ba,..;ay+by)7"

The vector a

Figure A.1: A two dimensional vector

195

196 APPENDIX A. LINEAR ALGEBRA

A.1.3 Length of a vector

In two dimensions we know that the length of the vector, a can be found by

la| = \/a} + a3 (A1)
\/a? + a3 + a? in 3 dimensions

la| = \/a% + a% +---+ a2 in n dimensions

This is extendable to

|al

To normalise a vector (i.e. to give it length 1 but keep its direction unchanged), divide by its

length to give ﬁ In ANN books, you will often meet || a ||. This is identical to |a].

A.1.4 The Scalar Product of 2 Vectors

In 2D the scalar product of two vectors, a and b is given by
a.b =a;.b; +asx.by (A.2)
This can be extended to 3-dimensional vectors as
a.b = a;.by + as.bs + as.bs (A.3)

and, in general,
a.b= (ll.bl + (Lz.bg i an.bn (A4)

The scalar product of a and b can be viewed as the projection of a onto b.

A.1.5 The direction between 2 vectors
In 2D the direction between two vectors, a and b is given by
a.b
|a].|b]
ai.by +as.bo + -+ ay.by,
Vai+ai+ -+ a2 /b 4+ + -+ b2

cos =

A.1.6 Linear Dependence

Consider vector a = (1,3)1, b = (1,-1)?, and ¢ = (5,4)%, then we can write
c=225a+27b
We say that c is a linear combination of a and b or that the set of vectors a, b and ¢ are in the
space spanned bya and b. We call a and b the basis of the space just as the X-axis and the Y-axis
are the basis of the usual Cartesian plane. Indeed we can note that the unit vectors (1,0)” and
(0,1)* in these directions is the usual basis of that plane.

If we have a set of vectors which cannot be shown to have the property that one of them is
a linear combination of the others, the set is said to exhibit linear independence. Such a set can
always form a basis of the space in which the vectors lie.

A.1.7 Neural Networks

We often consider a weight vector w and a set of inputs x and are interested in the weighted sum
of the inputs
Act = szxz =wlix=wx (A.5)

[3

A.2. MATRICES 197

A.2 DMatrices

A matrix is an array (of numbers) such as

{2 35 4 0.1]
A=12 12 7 9 (A.6)
Lg 0.6 599 1 J

A.2.1 Transpose

The transpose of a matrix, A, is that matrix whose columns are the rows of the original matrix
and is usually written AT, If A is as above, then

2 2 9

r |35 12 06

A= 7 59 (4.7)
01 9 1

Clearly if the array A is m*n then A” is n*m.

A.2.2 Addition

To add matrices, add corresponding entries. It follows that the matrices must have the same order.
Thus if A is as above and

B =

N o~ =
= w O
O = O
S N =

] s

then A + B is the matrix

3 35 4 11
] a9

A+B=| 6 42 8 16
11 1.6 599 1

A.2.3 Multiplication by a scalar

2 35 4 01
A=1|2 12 7 9 (A.10)

If again,

9 06 599 1

then 3A is that matrix each of whose elements is multiplied by 3

6 105 12 0.3
34=| 6 36 21 27 (A.11)

27T 1.8 1797 3

A.2.4 Multiplication of Matrices

We multiply the elements of the rows of the first matrix by the elements in the columns of the
second. Let C be the matrix

C:H 0 i] (A.12)

Then CB is the matrix
31 0 1
CB = [6 41 7] (A.13)

198 APPENDIX A. LINEAR ALGEBRA

A.2.5 Identity

Additive Identity

The additive m*n identity matrix is that m*n matrix each of whose entries is 0.
Thus A + O = A = Opsen + A, VA which are m*n matrices.

Multiplicative Identity

The multiplicative identity is usually denoted by the letter I and is such that AxI = IxA = A, VA
such that the multiplication is possible.
Then

Iy = [

I3.3 = etc.

oo~ O
oo = O
= o O

A.2.6 Inverse

The inverse of a matrix is that matrix which when the operation is applied to the matrix and its
inverse, the result is the identity matrix.

Additive Inverse

Therefore we are looking for the matix -A such that A+(-A) = 0. Clearly if A = [
—a —b
=

Multiplicative Inverse

a b
. d}then

We are now looking for that matrix A~! such that AA~! = A='A = I when this matriz exists.

A.3 Eigenvalues and Eigenvectors
A matrix A has an eigenvector x with a corresponding eigenvalue A if
Ax = Xx

In other words, multiplying the vector x or any of its multiples by A is equivalent to multiplying
the whole vector by a scalar A. Thus the direction of x is unchanged - only its magnitude is affected.

Appendix B

Calculus

B.1 Introduction

Consider a function y = f(x). Then %% , the derivative of y with respect to x, gives the rate of

change of y with respect to x. Then as we see in Figure B.1, the ratio ﬁ—g is the tangent of the

angle which the triangle makes with the x-axis i.e. gives a value of the average slope of the curve
y

at this point. Now if we take the lima, .o % = Z_z we get the gradient of the curve.

If |§—g| is large we have a steep curve; if |§—g| is small we have a gently sloping curve.

Since we are often interested in change in weights with respect to time we often use ‘fi—‘t”. In a
simulation, we cannot change weights in an infinitesimally small instance of time and so we use
the notation Aw fi—lé’ for the change in w. Now we are often using systems of learning which
are changing weights according to the error descent procedure Aw o —%. In other words, (see
Figure B.2) if % is large and negative we will be making large increases to the value of w while
if % is large and positive we will be making large decreases to w. If % is small we will only be

making a small change to w. Notice that at the minimum point % =0.

B.1.1 Partial Derivatives

Often we have a variable which is a function of two or more other variables. For example our
(instantaneous) error function can be thought of as a function both of the weights, w, and of the
inputs, x. To show the derivative of E with respect to w, we use % which should be interpreted
as the rate of change of E with respect to w when x, the input, is held constant. We can think of
this as a mountain surface with grid lines on it. Then g—g is the rate of change in one direction

y=f(x)

Figure B.1: The ratio %% is the tangent of the angle which the triangle makes with the x-axis i.e.
gives the average slope of the curve at this point

199

200 APPENDIX B. CALCULUS

Error

Negative Postt.lve
gradient

gradient

/

o Weight
Minimum

error

Figure B.2: A schematic diagram showing error descent. In the negative gradient section, we wish
to increase the weight; in the positive gradient section, we wish to decrease the weight

while the other (orthogonal) direction is kept constant.

B.1.2 Second Derivatives

Now let g = %, the rate of change of E with respect to w. We may be interested in how quickly

g changes as we change w. To find this we would calculate 2_5;5 now note that this gives us the
rate of change of the derivative of E with respect to w (or the rate of change of the rate of change
of E with respect to w.

For the error descent methods, we are often interested in regions of the error space where the
rate of descent of the error remains constant over a region. To do so we shall be interested in this

value, 0—5. To emphasise that this may be found by differntiating E with respect to w and then

9
differentiating it again, we will write this rate as gfff . This is its second derivative.

Appendix C

Backpropagation Derivation

We must first note that our activation functions will be non-linear in this chapter: if we were to be
using linear activation functions, our output would be a linear combination of linear combinations
of the inputs i.e. would simply be linear combinations of the inputs and so we would gain nothing
by using a three layer net rather than a two layer net.

As before, consider a particular input pattern, x”’, we have an output of” and target t£'. Now
however we will use a non-linear activation function, f(). o; = f(Act;) = f(32; wijo;) where we
have taken any threshold into the weights as before. Notice that the o; represents the outputs
of neurons in the preceeding layer. Thus if the equation describes the firing of a neuron in the
(first) hidden layer, we revert to our previous definition where o; = f(Act;) = f(3_; wijz;) while
if we wish to calculate the firing in an output neuron the o; will represent the firing of hidden
layer neurons. However now f() must be a differentiable function (unlike the perceptron) and a
non-linear function (unlike the Adaline). Now we still wish to minimise the sum of squared errors,

E = ZP:EP = %Z(H’—ol’)? (C.1)

P

at the outputs. To do so, we find the gradient of the error with respect to the weights and move

the weights in the opposite direction. Formally, Apw;; = —v ggf .
ij

Now we have, for all neurons,

OEY OEP 9Act?

= . C.2
Bwij 8Actf° Bwij ()

and % = 0; . Therefore if we define §F = —% we get an update rule of
prij = ’)/(Szpof (03)

Note how like this rule is to that developed in the previous chapter (where the last o is replaced
by the input vector, x). However, we still have to consider what values of ¢ are appropriate for
individual neurons. We have

oEY OEY 09of

P _ _ - _
o = dActP doF "0 Act? (C4)

8?4‘55, = f'(Actf’) . This
explains the requirement to have an activation function which is differentiable. Thus for output
neurons we get the value 67 = (tF — of’) f'(Actl) .

However, if the neuron is a hidden neuron, we must calculate the responsibility of that neuron’s
weights to the final error. To do this we take the error at the output neurons and propagate this

for all neurons. Now, for all output neurons, % = —(tY - o), and

201

202 APPENDIX C. BACKPROPAGATION DERIVATION

oSN
Inpus LX) Output
O Y V
o ©
-

Figure C.1: The net which will be used for the solution of the XOR, problem using backpropagation

backward through the current weights (the very same weights which were used to propagate the
activation forward). Consider a network with N output neurons and H hidden neurons. We use a
chain rule to calculate the effect on unit i in the hidden layer:

N P N N
OEF 0Act; OEF OEF P
Z 9Act? 9o~ Z 9Act?” aoP Zw]’“o’“ Z < 9Actt T T 25w (C9)
J= J=

Note that the terms % represent the effect of change on the error from the change in activation
J

in the output neurons. On substitution, we get

dEP OEP doP
6113 = _aActP = — aop .aActP E (SPU)‘” ACtP) (06)
J i

This may be thought of as assigning the error term in the hidden layer proportional to the hidden
neuron’s contribution to the final error as seen in the output layer.

C.1 The XOR problem

We can use the net shown in Figure C.1 to solve the XOR problem. The procedure is

Initialisation .

e Initialise the W-weights and V-weights to small random numbers.
e Initialise the learning rate, n to a small value e.g. 0.001.

e Choose the activation function e.g. tanh().

Select Pattern It will be one of only 4 patterns for this problem. Note that the pattern chosen
determines not only the inputs but also the target pattern.

Feedforward to the hidden units first, labelled 1 and 2.

acty = wip + wW11T1 + w122
acta = wz + Ww21T1 + W2k
o1 = tanh(acty)
02 = tanh(acty)

Now feedforward to the output unit which we will label 3

acty = w10 +v1101 + V1202
tanh(acts)

03

C.1. THE XOR PROBLEM 203

Feedback errors calculate error at output
03 = (t—o3)xf'(03) = (t—03)(1—0})

and feedback error to hidden neurons

61 = Ozv11f (01) = d3u11 (1 — 0F)
b = dz3v12f'(02) = S3v12(1 — 03)
Change weights

Av;; = n.03.01

Aviy = 1.03.09

Avig = n.d3.1

Awyy = 1.01.11

Awyy = 1.01.T9

Awyg = n.d;.1

Awyy = n.02.11

Awgy = 1.02.T2

Awyy = n.02.1

Go back to Select Pattern

