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PREFACE - Second Edition

The Second Edition incorporates the latest developments in the area of
Information Retrieval. The major addition to this text is descriptions of the
automated indexing of multimedia documents. Items in information retrieval are
now considered to be a combination of text along with graphics, audio, image and
video data types. What this means from an Information Retrieval System design
and implementation is discussed.

The growth of the Internet and the availability of enormous volumes of data
in digital form have necessitated intense interest in techniques to assist the user in
locating data of interest. The Internet has over 800 million indexable pages as of
February 1999 (Lawrence-99.) Other estimates from International Data Corporation
suggest that the number is closer to 1.5 billion pages and the number will grow to 8
billion pages by the Fall 2000 (http://news.excite.com/news/zd/000510/21/inktomi-
chief-gets, 11 May 2000.) Buried on the Internet are both valuable nuggets to
answer questions as well as a large quantity of information the average person does
not care about. The Digital Library effort is also progressing, with the goal of
migrating from the traditional book environment to a digital library environment.

The challenge to both authors of new publications that will reside on this
information domain and developers of systems to locate information is to provide
the information and capabilities to sort out the non-relevant items from those
desired by the consumer. In effect, as we proceed down this path, it will be the
computer that determines what we see versus the human being. The days of going
to a library and browsing the new book shelf are being replaced by electronic
searching the Internet or the library catalogs. Whatever the search engines return
will constrain our knowledge of what information is available. An understanding of
Information Retrieval Systems puts this new environment into perspective for both
the creator of documents and the consumer trying to locate information.

This book provides a theoretical and practical explanation of the latest
advancements in information retrieval and their application to existing systems. It
takes a system approach, discussing all aspects of an Information Retrieval System.
The importance of the Internet and its associated hypertext linked structure are put
into perspective as a new type of information retrieval data structure. The total
system approach also includes discussion of the human interface and the importance
of information visualization for identification of relevant information. With the
availability of large quantities of multi-media on the Internet (audio, video, images),
Information Retrieval Systems need to address multi-modal retrieval. The Second
Edition has been expanded to address how Information Retrieval Systems are



expanded to include search and retrieval on multi-modal sources. The theoretical
metrics used to describe information systems are expanded to discuss their practical
application in the uncontrolled environment of real world systems.

The primary goal of writing this book is to provide a college text on
Information Retrieval Systems. But in addition to the theoretical aspects, the book
maintains a theme of practicality that puts into perspective the importance and
utilization of the theory in systems that are being used by anyone on the Internet.
The student will gain an understanding of what is achievable using existing
technologies and the deficient areas that warrant additional research. The text
provides coverage of all of the major aspects of information retrieval and has
sufficient detail to allow students to implement a simple Information Retrieval
System. The comparison algorithms from Chapter 11 can be used to compare how
well each of the student’s systems work.

The first three chapters define the scope of an Information Retrieval
System. The theme, that the primary goal of an Information Retrieval System is to
minimize the overhead associated in locating needed information, is carried
throughout the book. Chapter 1 provides a functional overview of an Information
Retrieval System and differentiates between an information system and a Database
Management System (DBMS). Chapter 2 focuses on the functions available in an
information retrieval system. An understanding of the functions and why they are
needed help the reader gain an intuitive feeling for the application of the technical
algorithms presented later. Chapter 3 provides the background on indexing and
cataloging that formed the basis for early information systems and updates it with
respect to the new digital data environment.

Chapter 4 provides a discussion on word stemming and its use in modern
systems. It also introduces the underlying data structures used in Information
Retrieval Systems and their possible applications. This is the first introduction of
hypertext data structures and their applicability to information retrieval. Chapters
5, 6 and 7 go into depth on the basis for search in Information Retrieval Systems.
Chapter 5 looks at the different approaches to information systems search and the
extraction of information from documents that will be used during the query
process. Chapter 6 describes the techniques that can be used to cluster both terms
from documents for statistical thesauri and the documents themselves. Thesauri can
assist searches by query term expansion while document clustering can expand the
initial set of found documents to similar documents. Chapter 7 focuses on the
search process as a mapping between the user’s search need and the documents in
the system. It introduces the importance of relevance feedback in expanding the
user’s query and discusses the difference between search techniques against an
existing database versus algorithms that are used to disseminate newly received
items to user’s mail boxes.

Chapter 8 introduces the importance of information visualization and its
impact on the user’s ability to locate items of interest in large systems. It provides
the background on cognition and perception in human beings and then how that
knowledge is applied to organizing information displays to help the user locate
xii



needed information. Chapter 9 describes text-scanning techniques as a special
search application within information retrieval systems. It describes the hardware
and software approaches to text search.

Chapter 10 discusses how information retrieval is applied to multimedia
sources. Information retrieval techniques that apply to audio, imagery, graphic and
video data types are described along with likely future advances in these areas. The
impacts of including these data types on information retrieval systems are discussed
throughout the book.

Chapter 11 describes how to evaluate Information Retrieval Systems
focusing on the theoretical and standard metrics used in research to evaluate
information systems. Problems with the measurement’s techniques inevaluating
operational systems are discussed along with possible required modifications.
Existing system capabilities are highlighted by reviewing the results from the Text
Retrieval Conferences (TRECs).

Although this book covers the majority of the technologies associated with
Information retrieval Systems, the one area omitted is search and retrieval of
different languages. This area would encompass discussions in search
modifications caused by different languages such as Chinese and Arabic that
introduce new problems in interpretation of word boundaries and "assumed"
contextual interpretation of word meanings, cross language searches (mapping
queries from one language to another language, and machine translation of results.
Most of the search algorithms discussed in Information retrieval are applicable
across languages. Status of search algorithms in these areas can be found in non-
U.S. journals and TREC results.

xiii
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1 Introduction to Information Retrieval
Systems

1.1
1.2
1.3
1.4
1.5
1.6

Definition of Information Retrieval System
Objectives of Information Retrieval Systems
Functional Overview
Relationship to Database Management Systems
Digital Libraries and Data Warehouses
Summary

This chapter defines an Information Storage and Retrieval System (called
an Information Retrieval System for brevity) and differentiates between
information retrieval and database management systems. Tied closely to the
definition of an Information Retrieval System are the system objectives. It is
satisfaction of the objectives that drives those areas that receive the most attention
in development. For example, academia pursues all aspects of information
systems, investigating new theories, algorithms and heuristics to advance the
knowledge base. Academia does not worry about response time, required resources
to implement a system to support thousands of users nor operations and
maintenance costs associated with system delivery. On the other hand, commercial
institutions are not always concerned with the optimum theoretical approach, but
the approach that minimizes development costs and increases the salability of their
product. This text considers both view points and technology states. Throughout
this text, information retrieval is viewed from both the theoretical and practical
viewpoint.

The functional view of an Information Retrieval System is introduced to
put into perspective the technical areas discussed in later chapters. As detailed
algorithms and architectures are discussed, they are viewed as subfunctions within
a total system. They are also correlated to the major objective of an Information
Retrieval System which is minimization of human resources required in the
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finding of needed information to accomplish a task. As with any discipline,
standard measures are identified to compare the value of different algorithms. In
information systems, precision and recall are the key metrics used in evaluations.
Early introduction of these concepts in this chapter will help the reader in
understanding the utility of the detailed algorithms and theory introduced
throughout this text.

There is a potential for confusion in the understanding of the differences
between Database Management Systems (DBMS) and Information Retrieval
Systems. It is easy to confuse the software that optimizes functional support of
each type of system with actual information or structured data that is being stored
and manipulated. The importance of the differences lies in the inability of a
database management system to provide the functions needed to process
“information.” The opposite, an information system containing structured data,
also suffers major functional deficiencies. These differences are discussed in detail
in Section 1.4.

1.1 Definition of Information Retrieval System

An Information Retrieval System is a system that is capable of storage,
retrieval, and maintenance of information. Information in this context can be
composed of text (including numeric and date data), images, audio, video and
other multi-media objects. Although the form of an object in an Information
Retrieval System is diverse, the text aspect has been the only data type that lent
itself to full functional processing. The other data types have been treated as
highly informative sources, but are primarily linked for retrieval based upon search
of the text. Techniques are beginning to emerge to search these other media types
(e.g., EXCALIBUR’s Visual RetrievalWare, VIRAGE video indexer). The focus
of this book is on research and implementation of search, retrieval and
representation of textual and multimedia sources. Commercial development of
pattern matching against other data types is starting to be a common function
integrated within the total information system. In some systems the text may only
be an identifier to display another associated data type that holds the substantive
information desired by the system’s users (e.g., using closed captioning to locate
video of interest.) The term “user” in this book represents an end user of the
information system who has minimal knowledge of computers and technical fields
in general.

The term “item” is used to represent the smallest complete unit that is
processed and manipulated by the system. The definition of item varies by how a
specific source treats information. A complete document, such as a book,
newspaper or magazine could be an item. At other times each chapter, or article
may be defined as an item. As sources vary and systems include more complex
processing, an item may address even lower levels of abstraction such as a
contiguous passage of text or a paragraph. For readability, throughout this book
the terms “item” and “document” are not in this rigorous definition, but used
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interchangeably. Whichever is used, they represent the concept of an item. For
most of the book it is best to consider an item as text. But in reality an item may be
a combination of many modals of information. For example a video news program
could be considered an item. It is composed of text in the form of closed
captioning, audio text provided by the speakers, and the video images being
displayed. There are multiple "tracks" of information possible in a single item.
They are typically correlated by time. Where the text discusses multimedia
information retrieval keep this expanded model in mind.

An Information Retrieval System consists of a software program that
facilitates a user in finding the information the user needs. The system may use
standard computer hardware or specialized hardware to support the search
subfunction and to convert non-textual sources to a searchable media (e.g.,
transcription of audio to text). The gauge of success of an information system is
how well it can minimize the overhead for a user to find the needed information.
Overhead from a user’s perspective is the time required to find the information
needed, excluding the time for actually reading the relevant data. Thus search
composition, search execution, and reading non-relevant items are all aspects of
information retrieval overhead.

The first Information Retrieval Systems originated with the need to
organize information in central repositories (e.g., libraries) (Hyman-82).
Catalogues were created to facilitate the identification and retrieval of items.
Chapter 3 reviews the history of cataloging and indexing. Original definitions
focused on “documents” for information retrieval (or their surrogates) rather than
the multi-media integrated information that is now available (Minker-77, Minker-
77.)

As computers became commercially available, they were obvious
candidates for the storage and retrieval of text. Early introduction of Database
Management Systems provided an ideal platform for electronic manipulation of the
indexes to information (Rather-77). Libraries followed the paradigm of their
catalogs and references by migrating the format and organization of their hardcopy
information references into structured databases. These remain as a primary
mechanism for researching sources of needed information and play a major role in
available Information Retrieval Systems. Academic research that was pursued
through the 1980s was constrained by the paradigm of the indexed structure
associated with libraries and the lack of computer power to handle large (gigabyte)
text databases. The Military and other Government entities have always had a
requirement to store and search large textual databases. As a result they began
many independent developments of textual Information Retrieval Systems. Given
the large quantities of data they needed to process, they pursued both research and
development of specialized hardware and unique software solutions incorporating
Commercial Off The Shelf (COTS) products where possible. The Government has
been the major funding source of research into Information Retrieval Systems.
With the advent of inexpensive powerful personnel computer processing systems
and high speed, large capacity secondary storage products, it has become
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commercially feasible to provide large textual information databases for the
average user. The introduction and exponential growth of the Internet along with
its initial WAIS (Wide Area Information Servers) capability and more recently
advanced search servers (e.g., INFOSEEK, EXCITE) has provided a new avenue
for access to terabytes of information (over 800 million indexable pages -
Lawrence-99.) The algorithms and techniques to optimize the processing and
access of large quantities of textual data were once the sole domain of segments of
the Government, a few industries, and academics. They have now become a needed
capability for large quantities of the population with significant research and
development being done by the private sector. Additionally the volumes of non-
textual information are also becoming searchable using specialized search
capabilities. Images across the Internet are searchable from many web sites such
as WEBSEEK, DITTO.COM, ALTAVISTA/IMAGES. News organizations such
as the BBC are processing the audio news they have produced and are making
historical audio news searchable via the audio transcribed versions of the news.
Major video organizations such as Disney are using video indexing to assist in
finding specific images in their previously produced videos to use in future videos
or incorporate in advertising. With exponential growth of multi-media on the
Internet capabilities such as these are becoming common place. Information
Retrieval exploitation of multi-media is still in its infancy with significant
theoretical and practical knowledge missing.

1.2 Objectives of Information Retrieval Systems

The general objective of an Information Retrieval System is to minimize
the overhead of a user locating needed information. Overhead can be expressed as
the time a user spends in all of the steps leading to reading an item containing the
needed information (e.g., query generation, query execution, scanning results of
query to select items to read, reading non-relevant items). The success of an
information system is very subjective, based upon what information is needed and
the willingness of a user to accept overhead. Under some circumstances, needed
information can be defined as all information that is in the system that relates to a
user’s need. In other cases it may be defined as sufficient information in the
system to complete a task, allowing for missed data. For example, a financial
advisor recommending a billion dollar purchase of another company needs to be
sure that all relevant, significant information on the target company has been
located and reviewed in writing the recommendation. In contrast, a student only
requires sufficient references in a research paper to satisfy the expectations of the
teacher, which never is all inclusive. A system that supports reasonable retrieval
requires fewer features than one which requires comprehensive retrieval. In many
cases comprehensive retrieval is a negative feature because it overloads the user
with more information than is needed. This makes it more difficult for the user to
filter the relevant but non-useful information from the critical items. In
information retrieval the term “relevant” item is used to represent an item
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containing the needed information. In reality the definition of relevance is not a
binary classification but a continuous function. From a user’s perspective
“relevant” and “needed” are synonymous. From a system perspective, information
could be relevant to a search statement (i.e., matching the criteria of the search
statement) even though it is not needed/relevant to user (e.g., the user already knew
the information). A discussion on relevance and the natural redundancy of relevant
information is presented in Chapter 11.

The two major measures commonly associated with information systems
are precision and recall. When a user decides to issue a search looking for
information on a topic, the total database is logically divided into four segments
shown in Figure 1.1. Relevant items are those documents that contain information
that helps the searcher in answering his question. Non-relevant items are those
items that do not provide any directly useful information. There are two
possibilities with respect to each item: it can be retrieved or not retrieved by the
user’s query. Precision and recall are defined as:

Figure 1.1 Effects of Search on Total Document Space

where Number_Possible_Relevant are the number of relevant items in the
database. Number_Total_Retieved is the total number of items retrieved from the
query. Number_Retrieved_Relevant is the number of items retrieved that are
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relevant to the user’s search need. Precision measures one aspect of information
retrieval overhead for a user associated with a particular search. If a search has a
85 per cent precision, then 15 per cent of the user effort is overhead reviewing non-
relevant items. Recall gauges how well a system processing a particular query is
able to retrieve the relevant items that the user is interested in seeing. Recall is a
very useful concept, but due to the denominator, is non-calculable in operational
systems. If the system knew the total set of relevant items in the database, it would
have retrieved them. Figure 1.2a shows the values of precision and recall as the
number of items retrieved increases, under an optimum query where every returned
item is relevant. There are “N” relevant items in the database. Figures 1.2b and
1.2c show the optimal and currently achievable relationships between Precision
and Recall (Harman-95). In Figure 1.2a the basic properties of precision (solid
line) and recall (dashed line) can be observed. Precision starts off at 100 per cent
and maintains that value as long as relevant items are retrieved. Recall starts off
close to zero and increases as long as relevant items are retrieved until all possible
relevant items have been retrieved. Once all “N” relevant items have been
retrieved, the only items being retrieved are non-relevant. Precision is directly
affected by retrieval of non-relevant items and drops to a number close to zero.
Recall is not effected by retrieval of non-relevant items and thus remains at 100 per

1.2a Ideal Precision and Recall

Figure 1.2b Ideal Precision/Recall Graph
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Figure 1.2c Achievable Precision/Recall Graph

cent once achieved. Precision/Recall graphs show how values for precision and
recall change within a search results file (Hit file) as viewed from the most relevant
to least relevant item. As with Figure 1.2a, in the ideal case every item retrieved is
relevant. Thus precision stays at 100 per cent (1.0). Recall continues to increase
by moving to the right on the x-axis until it also reaches the 100 per cent (1.0)
point. Although Figure 1.2c stops here, continuation stays at the same x-axis
location (recall never changes) but precision decreases down the y-axis until it gets
close to the x-axis as more non-relevant are discovered and precision decreases.
Figure 1.2c is from the latest TREC conference (see Chapter 11) and is
representative of current capabilities.

To understand the implications of Figure 1.2c, its useful to describe the
implications of a particular point on the precision/recall graph. Assume that there
are 100 relevant items in the data base and from the graph at precision of .3 (i.e.,
30 per cent) there is an associated recall of .5 (i.e., 50 per cent). This means there
would be 50 relevant items in the Hit file from the recall value. A precision of 30
per cent means the user would likely review 167 items to find the 50 relevant
items.

The first objective of an Information Retrieval System is support of user
search generation. There are natural obstacles to specification of the information a
user needs that come from ambiguities inherent in languages, limits to the user’s
ability to express what information is needed and differences between the user’s
vocabulary corpus and that of the authors of the items in the database. Natural
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languages suffer from word ambiguities such as homographs and use of acronyms
that allow the same word to have multiple meanings (e.g., the word “field” or the
acronym “U.S.”). Disambiguation techniques exist but introduce significant
system overhead in processing power and extended search times and often require
interaction with the user.

Many users have trouble in generating a good search statement. The
typical user does not have significant experience with nor even the aptitude for
Boolean logic statements. The use of Boolean logic is a legacy from the evolution
of database management systems and implementation constraints. Until recently,
commercial systems were based upon databases. It is only with the introduction of
Information Retrieval Systems such as RetrievalWare, TOPIC, AltaVista, Infoseek
and INQUERY that the idea of accepting natural language queries is becoming a
standard system feature. This allows users to state in natural language what they
are interested in finding. But the completeness of the user specification is limited
by the user’s willingness to construct long natural language queries. Most users on
the Internet enter one or two search terms.

Multi-media adds an additional level of complexity in search
specification. Where the modal has been converted to text (e.g., audio
transcription, OCR) the normal text techniques are still applicable. But query
specification when searching for an image, unique sound, or video segment lacks
any proven best interface approaches. Typically they are achieved by having
prestored examples of known objects in the media and letting the user select them
for the search (e.g., images of leaders allowing for searches on "Tony Blair".) This
type specification becomes more complex when coupled with Boolean or natural
language textual specifications.

In addition to the complexities in generating a query, quite often the user
is not an expert in the area that is being searched and lacks domain specific
vocabulary unique to that particular subject area. The user starts the search
process with a general concept of the information required, but not have a focused
definition of exactly what is needed. A limited knowledge of the vocabulary
associated with a particular area along with lack of focus on exactly what
information is needed leads to use of inaccurate and in some cases misleading
search terms. Even when the user is an expert in the area being searched, the
ability to select the proper search terms is constrained by lack of knowledge of the
author’s vocabulary. All writers have a vocabulary limited by their life
experiences, environment where they were raised and ability to express themselves.
Other than in very technical restricted information domains, the user’s search
vocabulary does not match the author’s vocabulary. Users usually start with simple
queries that suffer from failure rates approaching 50% (Nordlie-99).

Thus, an Information Retrieval System must provide tools to help
overcome the search specification problems discussed above. In particular the
search tools must assist the user automatically and through system interaction in
developing a search specification that represents the need of the user and the
writing style of diverse authors (see Figure 1.3) and multi-media specification.
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Figure 1.3 Vocabulary Domains

In addition to finding the information relevant to a user’s needs, an
objective of an information system is to present the search results in a format that
facilitates the user in determining relevant items. Historically data has been
presented in an order dictated by how it was physically stored. Typically, this is in
arrival to the system order, thereby always displaying the results of a search sorted
by time. For those users interested in current events this is useful. But for the
majority of searches it does not filter out less useful information. Information
Retrieval Systems provide functions that provide the results of a query in order of
potential relevance to the user. This, in conjunction with user search status (e.g.,
listing titles of highest ranked items) and item formatting options, provides the
user with features to assist in selection and review of the most likely relevant items
first. Even more sophisticated techniques use item clustering, item summarization
and link analysis to provide additional item selection insights (see Chapter 8.)
Other features such as viewing only “unseen” items also help a user who can not
complete the item review process in one session. In the area of Question/Answer
systems that is coming into focus in Information Retrieval, the retrieved items are
not returned to the user. Instead the answer to their question - or a short segment
of text that contains the answer - is what is returned. This is a more complex
process then summarization since the results need to be focused on the specific
information need versus general area of the users query. The approach to this
problem most used in TREC - 8 was to first perform a search using existing
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algorithms, then to syntactically parse the highest ranked retrieved items looking
for specific passages that answer the question. See Chapter 11 for more details.

Multi-media information retrieval adds a significant layer of complexity
on how to display multi-modal results. For example, how should video segments
potentially relevant to a user's query be represented for user review and selection?
It could be represented by two thumbnail still images of the start and end of the
segment, or should the major scene changes be represented (the latter technique
would avoid two pictures of the news announcer versus the subject of the video
segment.)

1.3 Functional Overview

A total Information Storage and Retrieval System is composed of four
major functional processes: Item Normalization, Selective Dissemination of
Information (i.e., “Mail”), archival Document Database Search, and an Index
Database Search along with the Automatic File Build process that supports Index
Files. Commercial systems have not integrated these capabilities into a single
system but supply them as independent capabilities. Figure 1.4 shows the logical
view of these capabilities in a single integrated Information Retrieval System.
Boxes are used in the diagram to represent functions while disks represent data
storage.

1.3.1 Item Normalization

The first step in any integrated system is to normalize the incoming items
to a standard format. In addition to translating multiple external formats that
might be received into a single consistent data structure that can be manipulated by
the functional processes, item normalization provides logical restructuring of the
item. Additional operations during item normalization are needed to create a
searchable data structure: identification of processing tokens (e.g., words),
characterization of the tokens, and stemming (e.g., removing word endings) of the
tokens. The original item or any of its logical subdivisions is available for the user
to display. The processing tokens and their characterization are used to define the
searchable text from the total received text. Figure 1.5 shows the normalization
process.

Standardizing the input takes the different external formats of input data
and performs the translation to the formats acceptable to the system. A system
may have a single format for all items or allow multiple formats. One example of
standardization could be translation of foreign languages into Unicode. Every
language has a different internal binary encoding for the characters in the
language. One standard encoding that covers English, French, Spanish, etc. is
ISO-Latin. The are other internal encodings for other language groups such as
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Russian (e.g, KOI-7, KOI-8), Japanese, Arabic, etc. Unicode is an evolving
international standard based upon 16 bits (two bytes) that will be able to represent

Figure 1.4 Total Information Retrieval System
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Figure 1.5 The Text Normalization Process

all languages. Unicode based upon UTF-8, using multiple 8-bit bytes, is becoming
the practical Unicode standard. Having all of the languages encoded into a single
format allows for a single browser to display the languages and potentially a single
search system to search them. Of course such a search engine would have to have
the capability of understanding the linguistic model for all the languages to allow
for correct tokenization (e.g., word boundaries, stemming, word stop lists, etc.) of
each language.



Introduction to Information Retrieval Systems 13

Multi-media adds an extra dimension to the normalization process. In
addition to normalizing the textual input, the multi-media input also needs to be
standardized. There are a lot of options to the standards being applied to the
normalization. If the input is video the likely digital standards will be either
MPEG-2, MPEG-1, AVI or Real Media. MPEG (Motion Picture Expert Group)
standards are the most universal standards for higher quality video where Real
Media is the most common standard for lower quality video being used on the
Internet. Audio standards are typically WAV or Real Media (Real Audio). Images
vary from JPEG to BMP. In all of the cases for multi-media, the input analog
source is encoded into a digital format. To index the modal different encodings of
the same input may be required (see Section 1.3.5 below). But the importance of
using an encoding standard for the source that allows easy access by browsers is
greater for multi-media then text that already is handled by all interfaces.

The next process is to parse the item into logical sub-divisions that have
meaning to the user. This process, called “Zoning,” is visible to the user and used
to increase the precision of a search and optimize the display. A typical item is
sub-divided into zones, which may overlap and can be hierarchical, such as Title,
Author, Abstract, Main Text, Conclusion, and References. The term “Zone” was
selected over field because of the variable length nature of the data identified and
because it is a logical sub-division of the total item, whereas the term “fields” has a
connotation of independence. There may be other source-specific zones such as
“Country” and “Keyword.” The zoning information is passed to the processing
token identification operation to store the information, allowing searches to be
restricted to a specific zone. For example, if the user is interested in articles
discussing “Einstein” then the search should not include the Bibliography, which
could include references to articles written by “Einstein.” Zoning differs for
multi-media based upon the source structure. For a news broadcast, zones may be
defined as each news story in the input. For speeches or other programs, there
could be different semantic boundaries that make sense from the user’s perspective.

Once a search is complete, the user wants to efficiently review the results
to locate the needed information. A major limitation to the user is the size of the
display screen which constrains the number of items that are visible for review. To
optimize the number of items reviewed per display screen, the user wants to display
the minimum data required from each item to allow determination of the possible
relevance of that item. Quite often the user will only display zones such as the
Title or Title and Abstract. This allows multiple items to be displayed per screen.
The user can expand those items of potential interest to see the complete text.

Once the standardization and zoning has been completed, information
(i.e., words) that are used in the search process need to be identified in the item.
The term processing token is used because a “word” is not the most efficient unit
on which to base search structures. The first step in identification of a processing
token consists of determining a word. Systems determine words by dividing input
symbols into three classes: valid word symbols, inter-word symbols, and special
processing symbols. A word is defined as a contiguous set of word symbols
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bounded by inter-word symbols. In many systems inter-word symbols are non-
searchable and should be carefully selected. Examples of word symbols are
alphabetic characters and numbers. Examples of possible inter-word symbols are
blanks, periods and semicolons. The exact definition of an inter-word symbol is
dependent upon the aspects of the language domain of the items to be processed by
the system. For example, an apostrophe may be of little importance if only used for
the possessive case in English, but might be critical to represent foreign names in
the database. Based upon the required accuracy of searches and language
characteristics, a trade off is made on the selection of inter-word symbols. Finally
there are some symbols that may require special processing. A hyphen can be used
many ways, often left to the taste and judgment of the writer (Bernstein-84). At
the end of a line it is used to indicate the continuation of a word. In other places it
links independent words to avoid absurdity, such as in the case of “small business
men.” To avoid interpreting this as short males that run businesses, it would
properly be hyphenated “small-business men.” Thus when a hyphen (or other
special symbol) is detected a set of rules are executed to determine what action is to
be taken generating one or more processing tokens.

Next, a Stop List/Algorithm is applied to the list of potential processing
tokens. The objective of the Stop function is to save system resources by
eliminating from the set of searchable processing tokens those that have little value
to the system. Given the significant increase in available cheap memory, storage
and processing power, the need to apply the Stop function to processing tokens is
decreasing. Nevertheless, Stop Lists are commonly found in most systems and
consist of words (processing tokens) whose frequency and/or semantic use make
them of no value as a searchable token. For example, any word found in almost
every item would have no discrimination value during a search. Parts of speech,
such as articles (e.g., “the”), have no search value and are not a useful part of a
user’s query. By eliminating these frequently occurring words the system saves the
processing and storage resources required to incorporate them as part of the
searchable data structure. Stop Algorithms go after the other class of words, those
found very infrequently.

Ziph (Ziph-49) postulated that, looking at the frequency of occurrence of
the unique words across a corpus of items, the majority of unique words are found
to occur a few times. The rank-frequency law of Ziph is:

Frequency * Rank = constant

where Frequency is the number of times a word occurs and rank is the rank order
of the word. The law was later derived analytically using probability and
information theory (Fairthorne-69). Table 1.1 shows the distribution of words in
the first TREC test database (Harman-93), a database with over one billion
characters and 500,000 items. In Table 1.1, WSJ is Wall Street Journal (1986-89),
AP is AP Newswire (1989), ZIFF - Information from Computer Select disks, FR -
Federal Register (1989), and DOE - Short abstracts from Department of Energy.
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The highly precise nature of the words only found once or twice in the
database reduce the probability of their being in the vocabulary of the user and the
terms are almost never included in searches. Eliminating these words saves on
storage and access structure (e.g., dictionary - see Chapter 4) complexities. The
best technique to eliminate the majority of these words is via a Stop algorithm
versus trying to list them individually. Examples of Stop algorithms are:

Stop all numbers greater than “999999” (this was selected to allow dates
to be searchable)

Stop any processing token that has numbers and characters intermixed

The algorithms are typically source specific, usually eliminating unique item
numbers that are frequently found in systems and have no search value.

In some systems (e.g., INQUIRE DBMS), inter-word symbols and Stop
words are not included in the optimized search structure (e.g., inverted file
structure, see Chapter 4) but are processed via a scanning of potential hit
documents after inverted file search reduces the list of possible relevant items.
Other systems never allow interword symbols to be searched.

The next step in finalizing on processing tokens is identification of any
specific word characteristics. The characteristic is used in systems to assist in
disambiguation of a particular word. Morphological analysis of the processing
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token’s part of speech is included here. Thus, for a word such as “plane,” the
system understands that it could mean “level or flat” as an adjective, “aircraft or
facet” as a noun, or “the act of smoothing or evening” as a verb. Other
characteristics may classify a token as a member of a higher class of tokens such as
“European Country” or “Financial Institution.” Another example of
characterization is if upper case should be preserved. In most systems upper/lower
case is not preserved to avoid the system having to expand a term to cover the case
where it is the first word in a sentence. But, for proper names, acronyms and
organizations, the upper case represents a completely different use of the
processing token versus it being found in the text. “Pleasant Grant” should be
recognized as a person’s name versus a “pleasant grant” that provides funding.
Other characterizations that are typically treated separately from text are numbers
and dates.

Once the potential processing token has been identified and characterized,
most systems apply stemming algorithms to normalize the token to a standard
semantic representation. The decision to perform stemming is a trade off between
precision of a search (i.e., finding exactly what the query specifies) versus
standardization to reduce system overhead in expanding a search term to similar
token representations with a potential increase in recall. For example, the system
must keep singular, plural, past tense, possessive, etc. as separate searchable tokens
and potentially expand a term at search time to all its possible representations, or
just keep the stem of the word, eliminating endings. The amount of stemming that
is applied can lead to retrieval of many non-relevant items. The major stemming
algorithms used at this time are described in Chapter 4. Some systems such as
RetrievalWare, that use a large dictionary/thesaurus, looks up words in the existing
dictionary to determine the stemmed version in lieu of applying a sophisticated
algorithm.

Once the processing tokens have been finalized, based upon the stemming
algorithm, they are used as updates to the searchable data structure. The
searchable data structure is the internal representation (i.e., not visible to the user)
of items that the user query searches. This structure contains the semantic concepts
that represent the items in the database and limits what a user can find as a result
of their search. When the text is associated with video or audio multi-media, the
relative time from the start of the item for each occurrence of the processing token
is needed to provide the correlation between the text and the multi-media source.
Chapter 4 introduces the internal data structures that are used to store the
searchable data structure for textual items and Chapter 5 provides the algorithms
for creating the data to be stored based upon the identified processing tokens.

1.3.2 Selective Dissemination of Information

The Selective Dissemination of Information (Mail) Process (see Figure
1.4) provides the capability to dynamically compare newly received items in the
information system against standing statements of interest of users and deliver the
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item to those users whose statement of interest matches the contents of the item.
The Mail process is composed of the search process, user statements of interest
(Profiles) and user mail files. As each item is received, it is processed against
every user’s profile. A profile contains a typically broad search statement along
with a list of user mail files that will receive the document if the search statement
in the profile is satisfied. User search profiles are different than ad hoc queries in
that they contain significantly more search terms (10 to 100 times more terms) and
cover a wider range of interests. These profiles define all the areas in which a user
is interested versus an ad hoc query which is frequently focused to answer a
specific question. It has been shown in recent studies that automatically expanded
user profiles perform significantly better than human generated profiles (Harman-
95).

When the search statement is satisfied, the item is placed in the Mail
File(s) associated with the profile. Items in Mail files are typically viewed in time
of receipt order and automatically deleted after a specified time period (e.g., after
one month) or upon command from the user during display. The dynamic
asynchronous updating of Mail Files makes it difficult to present the results of
dissemination in estimated order of likelihood of relevance to the user (ranked
order). This is discussed in Chapter 2.

Very little research has focused exclusively on the Mail Dissemination
process. Most systems modify the algorithms they have established for
retrospective search of document (item) databases to apply to Mail Profiles.
Dissemination differs from the ad hoc search process in that thousands of user
profiles are processed against one item versus the inverse and there is not a large
relatively static database of items to be used in development of relevance ranking
weights for an item.

Both implementers and researchers have treated the dissemination process
as independent from the rest of the information system. The general assumption
has been that the only knowledge available in making decisions on whether an
incoming item is of interest is the user’s profile and the incoming item. This
restricted view has produced suboptimal systems forcing the user to receive
redundant information that has little value. If a total Information Retrieval System
view is taken, then the existing Mail and Index files are also potentially available
during the dissemination process. This would allow the dissemination profile to be
expanded to include logic against existing files. For example, assume an index file
(discussed below) exists that has the price of oil from Mexico as a value in a field
with a current value of $30. An analyst will be less interested in items that discuss
Mexico and $30 oil prices then items that discuss Mexico and prices other than
$30 (i.e., looking for changes). Similarly, if a Mail file already has many items on
a particular topic, it would be useful for a profile to not disseminate additional
items on the same topic, or at least reduce the relative importance that the system
assigns to them (i.e., the rank value).

Selective Dissemination of Information has not yet been applied to multi-
media sources. In some cases where the audio is transformed into text, existing
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textual algorithms have been applied to the transcribed text (e.g., the DARPA's
TIDES Portal), but little research has gone into dissemination techniques for multi-
media sources.

1.3.3 Document Database Search

The Document Database Search Process (see Figure 1.4) provides the
capability for a query to search against all items received by the system. The
Document Database Search process is composed of the search process, user entered
queries (typically ad hoc queries) and the document database which contains all
items that have been received, processed and stored by the system. It is the
retrospective search source for the system. If the user is on-line, the Selective
Dissemination of Information system delivers to the user items of interest as soon
as they are processed into the system. Any search for information that has already
been processed into the system can be considered a “retrospective” search for
information. This does not preclude the search to have search statements
constraining it to items received in the last few hours. But typically the searches
span far greater time periods. Each query is processed against the total document
database. Queries differ from profiles in that they are typically short and focused
on a specific area of interest. The Document Database can be very large, hundreds
of millions of items or more. Typically items in the Document Database do not
change (i.e., are not edited) once received. The value of much information quickly
decreases over time. These facts are often used to partition the database by time
and allow for archiving by the time partitions. Some user interfaces force the user
to indicate searches against items received older than a specified time, making use
of the partitions of the Document database. The documents in the Mail files are
also in the document database, since they logically are input to both processes.

1.3.4 Index Database Search

When an item is determined to be of interest, a user may want to save it
for future reference. This is in effect filing it. In an information system this is
accomplished via the index process. In this process the user can logically store an
item in a file along with additional index terms and descriptive text the user wants
to associate with the item. It is also possible to have index records that do not
reference an item, but contain all the substantive information in the index itself. In
this case the user is reading items and extracting the information of interest, never
needing to go back to the original item. A good analogy to an index file is the card
catalog in a library. Another perspective is to consider Index Files as structured
databases whose records can optionally reference items in the Document Database.
The Index Database Search Process (see Figure 1.4) provides the capability to
create indexes and search them. The user may search the index and retrieve the
index and/or the document it references. The system also provides the capability to
search the index and then search the items referenced by the index records that
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satisfied the index portion of the query. This is called a combined file search. In
an ideal system the index record could reference portions of items versus the total
item.

There are two classes of index files: Public and Private Index files. Every
user can have one or more Private Index files leading to a very large number of
files. Each Private Index file references only a small subset of the total number of
items in the Document Database. Public Index files are maintained by professional
library services personnel and typically index every item in the Document
Database. There is a small number of Public Index files. These files have access
lists (i.e., lists of users and their privileges) that allow anyone to search or retrieve
data. Private Index files typically have very limited access lists.

To assist the users in generating indexes, especially the professional
indexers, the system provides a process called Automatic File Build shown in
Figure 1.4 (also called Information Extraction). This capability processes selected
incoming documents and automatically determine potential indexing for the item.
The rules that govern which documents are processed for extraction of index
information and the index term extraction process are stored in Automatic File
Build Profiles. When an item is processed it results in creation of Candidate Index
Records. As a minimum, certain citation data can be determined and extracted as
part of this process assisting in creation of Public Index Files. Examples of this
information are author(s), date of publication, source, and references. More
complex data, such as countries an item is about or corporations referenced, have
high rates of identification. The placement in an index file facilitates normalizing
the terminology, assisting the user in finding items. It also provides a basis for
programs that analyze the contents of systems trying to identify new information
relationships (i.e., data mining). For more abstract concepts the extraction
technology is not accurate and comprehensive enough to allow the created index
records to automatically update the index files. Instead the candidate index record,
along with the item it references, are stored in a file for review and edit by a user
prior to actual update of an index file.

The capability to create Private and Public Index Files is frequently
implemented via a structured Database Management System. This has introduced
new challenges in developing the theory and algorithms that allow a single
integrated perspective on the information in the system. For example, how to use
the single instance information in index fields and free text to provide a single
system value of how the index/referenced item combination satisfies the user’s
search statement. Usually the issue is avoided by treating the aspects of the search
that apply to the structured records as a first level constraint identifying a set of
items that satisfy that portion of the query. The resultant items are then searched
using the rest of the query and the functions associated with information systems.
The evaluation of relevance is based only on this later step. An example of how
this limits the user is if part of the index is a field called “Country.” This certainly
allows the user to constrain his results to only those countries of interest (e.g., Peru
or Mexico). But because the relevance function is only associated with the portion
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of the query associated with the item, there is no way for the user to ensure that
Peru items have more importance to the retrieval than Mexican items.

1.3.5 Multimedia Database Search

Chapter 10 provides additional details associated with multi-media search
against different modalities of information. From a system perspective, the multi-
media data is not logically its own data structure, but an augmentation to the
existing structures in the Information Retrieval System. It will reside almost
entirely in the area described as the Document Database. The specialized indexes
to allow search of the multi-media (e.g., vectors representing video and still
images, text created by audio transcription) will be augmented search structures.
The original source will be kept as normalized digital real source for access
possibly in their own specialized retrieval servers (e.g., the Real Media server,
ORACLE Video Server, etc.) The correlation between the multi-media and the
textual domains will be either via time or positional synchronization. Time
synchronization is the example of transcribed text from audio or composite video
sources. Positional synchronization is where the multi-media is localized by a
hyperlink in a textual item. The synchronization can be used to increase the
precision of the search process. Added relevance weights should be assigned when
the multi-media search and the textual search result in hits in close proximity. For
example when the image of Tony Blair is found in the section of a video where the
transcribed audio is discussingTony Blair, then the hit is more likely then when
either event occurs independently. The same would be true when the JPEG image
hits on Tony Blair in a textual paragraph discussing him in an HTML item.

Making the multi-media data part of the Document Database also implies
that the linking of it to Private and Public Index files will also operate the same
way as with text.

1.4 Relationship to Database Management Systems

There are two major categories of systems available to process items:
Information Retrieval Systems and Data Base Management Systems (DBMS).
Confusion can arise when the software systems supporting each of these
applications get confused with the data they are manipulating. An Information
Retrieval System is software that has the features and functions required to
manipulate “information” items versus a DBMS that is optimized to handle
“structured” data. Information is fuzzy text. The term “fuzzy” is used to imply the
results from the minimal standards or controls on the creators of the text items.
The author is trying to present concepts, ideas and abstractions along with
supporting facts. As such, there is minimal consistency in the vocabulary and
styles of items discussing the exact same issue. The searcher has to be omniscient
to specify all search term possibilities in the query.
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Structured data is well defined data (facts) typically represented by tables.
There is a semantic description associated with each attribute within a table that
well defines that attribute. For example, there is no confusion between the
meaning of  “employee name” or “employee salary” and what values to enter in a
specific database record. On the other hand, if two different people generate an
abstract for the same item, they can be different. One abstract may generally
discuss the most important topic in an item. Another abstract, using a different
vocabulary, may specify the details of many topics. It is this diversity and
ambiguity of language that causes the fuzzy nature to be associated with
information items. The differences in the characteristics of the data is one reason
for the major differences in functions required for the two classes of systems.

With structured data a user enters a specific request and the results
returned provide the user with the desired information. The results are frequently
tabulated and presented in a report format for ease of use. In contrast, a search of
“information” items has a high probability of not finding all the items a user is
looking for. The user has to refine his search to locate additional items of interest.
This process is called “iterative search.” An Information Retrieval System gives
the user capabilities to assist the user in finding the relevant items, such as
relevance feedback (see Chapters 2 and 7). The results from an information system
search are presented in relevance ranked order. The confusion comes when DBMS
software is used to store “information.” This is easy to implement, but the system
lacks the ranking and relevance feedback features that are critical to an
information system. It is also possible to have structured data used in an
information system (such as TOPIC). When this happens the user has to be very
creative to get the system to provide the reports and management information that
are trivially available in a DBMS.

From a practical standpoint, the integration of DBMS’s and Information
Retrieval Systems is very important. Commercial database companies have already
integrated the two types of systems. One of the first commercial databases to
integrate the two systems into a single view is the INQUIRE DBMS. This has
been available for over fifteen years. A more current example is the ORACLE
DBMS that now offers an imbedded capability called CONVECTIS, which is an
informational retrieval system that uses a comprehensive thesaurus which provides
the basis to generate “themes” for a particular item. CONVECTIS also provides
standard statistical techniques that are described in Chapter 5. The INFORMIX
DBMS has the ability to link to RetrievalWare to provide integration of structured
data and information along with functions associated with Information Retrieval
Systems.

1.5 Digital Libraries and Data Warehouses

Two other systems frequently described in the context of information
retrieval are Digital Libraries and Data Warehouses (or DataMarts). There is
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significant overlap between these two systems and an Information Storage and
Retrieval System. All three systems are repositories of information and their
primary goal is to satisfy user information needs. Information retrieval easily dates
back to Vannevar Bush’s 1945 article on thinking (Bush-45) that set the stage for
many concepts in this area. Libraries have been in existence since the beginning of
writing and have served as a repository of the intellectual wealth of society. As
such, libraries have always been concerned with storing and retrieving information
in the media it is created on. As the quantities of information grew exponentially,
libraries were forced to make maximum use of electronic tools to facilitate the
storage and retrieval process. With the worldwide interneting of libraries and
information sources (e.g., publishers, news agencies, wire services, radio
broadcasts) via the Internet, more focus has been on the concept of an electronic
library. Between 1991 and 1993 significant interest was placed on this area
because of the interest in U.S. Government and private funding for making more
information available in digital form (Fox-93). During this time the terminology
evolved from electronic libraries to digital libraries. As the Internet continued its
exponential growth and project funding became available, the topic of Digital
Libraries has grown. By 1995 enough research and pilot efforts had started to
support the 1ST ACM International Conference on Digital Libraries (Fox-96).

There remain significant discussions on what is a digital library.
Everyone starts with the metaphor of the traditional library. The question is how
do the traditional library functions change as they migrate into supporting a digital
collection. Since the collection is digital and there is a worldwide communications
infrastructure available, the library no longer must own a copy of information as
long as it can provide access. The existing quantity of hardcopy material
guarantees that we will not have all digital libraries for at least another generation
of technology improvements. But there is no question that libraries have started
and will continue to expand their focus to digital formats. With direct electronic
access available to users the social aspects of congregating in a library and learning
from librarians, friends and colleagues will be lost and new electronic collaboration
equivalencies will come into existence (Wiederhold-95).

Indexing is one of the critical disciplines in library science and significant
effort has gone into the establishment of indexing and cataloging standards.
Migration of many of the library products to a digital format introduces both
opportunities and challenges. The full text of items available for search makes the
index process a value added effort as described in Section 1.3. Another important
library service is a source of search intermediaries to assist users in finding
information. With the proliferation of information available in electronic form, the
role of search intermediary will shift from an expert in search to being an expert in
source analysis. Searching will identify so much information in the global Internet
information space that identification of the “pedigree” of information is required to
understand its value. This will become the new refereeing role of a library.

Information Storage and Retrieval technology has addressed a small
subset of the issues associated with Digital Libraries. The focus has been on the
search and retrieval of textual data with no concern for establishing standards on
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the contents of the system. It has also ignored the issues of unique identification
and tracking of information required by the legal aspects of copyright that restrict
functions within a library environment. Intellectual property rights in an
environment that is not controlled by any country and their set of laws has become
a major problem associated with the Internet. The conversion of existing hardcopy
text, images (e.g., pictures, maps) and analog (e.g., audio, video) data and the
storage and retrieval of the digital version is a major concern to Digital Libraries.
Information Retrieval Systems are starting to evolve and incorporate digitized
versions of these sources as part of the overall system. But there is also a lot of
value placed on the original source (especially printed material) that is an issue to
Digital Libraries and to a lesser concern to Information Reteval systems. Other
issues such as how to continue to provide access to digital information over many
years as digital formats change have to be answered for the long term viability of
digital libraries.

The term Data Warehouse comes more from the commercial sector than
academic sources. It comes from the need for organizations to control the
proliferation of digital information ensuring that it is known and recoverable. Its
goal is to provide to the decision makers the critical information to answer future
direction questions. Frequently a data warehouse is focused solely on structured
databases. A data warehouse consists of the data, an information directory that
describes the contents and meaning of the data being stored, an input function that
captures data and moves it to the data warehouse, data search and manipulation
tools that allow users the means to access and analyze the warehouse data and a
delivery mechanism to export data to other warehouses, data marts (small
warehouses or subsets of a larger warehouse), and external systems.

Data warehouses are similar to information storage and retrieval systems
in that they both have a need for search and retrieval of information. But a data
warehouse is more focused on structured data and decision support technologies.
In addition to the normal search process, a complete system provides a flexible set
of analytical tools to “mine” the data. Data mining (originally called Knowledge
Discovery in Databases - KDD) is a search process that automatically analyzes data
and extract relationships and dependencies that were not part of the database
design. Most of the research focus is on the statistics, pattern recognition and
artificial intelligence algorithms to detect the hidden relationships of data. In
reality the most difficult task is in preprocessing the data from the database for
processing by the algorithms. This differs from clustering in information retrieval
in that clustering is based upon known characteristics of items, whereas data
mining does not depend upon known relationships. For more detail on data mining
see the November 1996 Communications of the ACM (Vol. 39, Number 11) that
focuses on this topic.
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1.6 Summary

Chapter 1 places into perspective a total Information Storage and
Retrieval System. This perspective introduces new challenges to the problems that
need to be theoretically addressed and commercially implemented. Ten years ago
commercial implementation of the algorithms being developed was not realistic,
allowing theoreticians to limit their focus to very specific areas. Bounding a
problem is still essential in deriving theoretical results. But the commercialization
and insertion of this technology into systems like the Internet that are widely being
used changes the way problems are bounded. From a theoretical perspective,
efficient scalability of algorithms to systems with gigabytes and terabytes of data,
operating with minimal user search statement information, and making maximum
use of all functional aspects of an information system need to be considered. The
dissemination systems using persistent indexes or mail files to modify ranking
algorithms and combining the search of structured information fields and free text
into a consolidated weighted output are examples of potential new areas of
investigation.

The best way for the theoretician or the commercial developer to
understand the importance of problems to be solved is to place them in the context
of a total vision of a complete system. Understanding the differences between
Digital Libraries and Information Retrieval Systems will add an additional
dimension to the potential future development of systems. The collaborative
aspects of digital libraries can be viewed as a new source of information that
dynamically could interact with information retrieval techniques. For example,
should the weighting algorithms and search techniques discussed later in this book
vary against a corpus based upon dialogue between people versus statically
published material? During the collaboration, in certain states, should the system
be automatically searching for reference material to support the collaboration?

EXERCISES

1. The metric to be minimized in an Information Retrieval System from a user’s
perspective is user overhead. Describe the places that the user overhead is
encountered from when a user has an information need until when it is
satisfied. Is system complexity also part of the user overhead?

2. Under what conditions might it be possible to achieve 100 per cent precision
and 100 per cent recall in a system? What is the relationship between these
measures and user overhead?

3. Describe how the statement that “language is the largest inhibitor to good
communications” applies to Information Retrieval Systems.
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4. What is the impact on precision and recall in the use of Stop Lists and Stop
Algorithms?

5. Why is the concept of processing tokens introduced and how does it relate to
a word? What is the impact of searching being based on processing tokens
versus the original words in an item.

6. Can a user find the same information from a search of the Document file that
is generated by a Selective Dissemination of Information process (Hint - take
into consideration the potential algorithmic basis for each system)?
Document database search is frequently described as a “pull” process while
dissemination is described as a “push” process. Why are these terms
appropriate?

7. Does a Private Index File differ from a standard Database Management
System (DBMS)? (HINT - there are both structural and functional
differences) What problems need to addressed when using a DBMS as part of
an Information retrieval System?

8. What is the logical effect on the Document file when a combined file search
of both a Private Index file and Document file is executed? What is returned
to the user?

9. What are the problems that need resolution when the concept of
dissemination profiles expands to including existing data structures (e.g.,
Mail files and/or Index files)?

10. What is the difference between the concept of a “Digital Library” and an
Information Retrieval System? What new areas of information retrieval
research may be important to support a Digital Library?
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2 Information Retrieval System
Capabilities

2.1 Search Capabilties
2.2 Browse Capabilities
2.3 Miscellaneous Capabilities
2.4 Standards
2.5 Summary

This chapter discusses the major functions that are available in an
Information Retrieval System. Search and browse capabilities are crucial to assist
the user in locating relevant items. The search capabilities address both Boolean
and Natural Language queries. The algorithms used for searching are called
Boolean, natural language processing and probabilistic. Probabilistic algorithms
use frequency of occurrence of processing tokens (words) in determining
similarities between queries and items and also in predictors on the potential
relevance of the found item to the searcher. Chapter 4 discusses in detail the data
structures used to support the algorithms, and Chapters 5 and 7 describe the
algorithms. The majority of existing commercial systems are based upon Boolean
query and search capabilities. The newer systems such as TOPIC, RetrievalWare,
and INQUERY all allow for natural language queries. With the introduction of
multimedia searches comes new problems in how to represent queries in the
different modalities and how to present the results of a search.

Given the imprecise nature of the search algorithms, Browse functions to
assist the user in filtering the search results to find relevant information are very
important. To allow different systems to inter-operate there are evolving standards
in both the language and architecture areas. Standardization of the interfaces
between systems will have the same effect on information systems that acceptance
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of the Structured Query Language (SQL) has had in the Database Management
System field. It will allow independent service providers to develop tools and
augmentations that will be applicable to any Information Retrieval System
accelerating the development of functions needed by the user. Examples of these
functions are information visualization tools and query expansion tools.

2.1 Search Capabilities

The objective of the search capability is to allow for a mapping between a
user’s specified need and the items in the information database that will answer
that need. The search query statement is the means that the user employs to
communicate a description of the needed information to the system. It can consist
of natural language text in composition style and/or query terms (referred to as
terms in this book) with Boolean logic indicators between them. How the system
translates the search query into processing steps to find the potential relevant items
is described in later chapters. One concept that has occasionally been implemented
in commercial systems (e.g., RetrievalWare), and holds significant potential for
assisting in the location and ranking of relevant items, is the “weighting” of search
terms. This would allow a user to indicate the importance of search terms in either
a Boolean or natural language interface. Given the following natural language
query statement where the importance of a particular search term is indicated by a
value in parenthesis between 0.0 and 1.0 with 1.0 being the most important:

Find articles that discuss automobile emissions(.9) or sulfur dioxide(.3) on
the farming industry.

the system would recognize in its importance ranking and item selection process
that automobile emissions are far more important than items discussing sulfur
dioxide problems.

The search statement may apply to the complete item or contain
additional parameters limiting it to a logical division of the item (i.e., to a zone).
As discussed in Chapter 1, this restriction is useful in reducing retrieval of non-
relevant items by limiting the search to those subsets of the item whose use of a
particular word is consistent with the user’s search objective. Finding a name in a
Bibliography does not necessarily mean the item is about that person. Recent
research has shown that for longer items, restricting a query statement to be
satisfied within a contiguous subset of the document (passage searching) provides
improved precision (Buckley-95, Wilkinson-95). Rather than allowing the search
statement to be satisfied anywhere within a document it may be required to be
satisfied within a 100 word contiguous subset of the item (Callan-94).

Based upon the algorithms used in a system many different functions are
associated with the system’s understanding the search statement. The functions
define the relationships between the terms in the search statement (e.g., Boolean,
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Natural Language, Proximity, Contiguous Word Phrases, and Fuzzy Searches) and
the interpretation of a particular word (e.g., Term Masking, Numeric and Date
Range, Contiguous Word Phrases, and Concept/Thesaurus expansion).

Rather than continuing the use of the term processing token to represent
the searchable units extracted from an item, the terminology “word” or “term” is
also used in some contexts as an approximation that is intuitively more meaningful
to the reader.

2.1.1 Boolean Logic

Boolean logic allows a user to logically relate multiple concepts together
to define what information is needed. Typically the Boolean functions apply to
processing tokens identified anywhere within an item. The typical Boolean
operators are AND, OR, and NOT. These operations are implemented using set
intersection, set union and set difference procedures. A few systems introduced the
concept of “exclusive or” but it is equivalent to a slightly more complex query
using the other operators and is not generally useful to users since most users do
not understand it. Placing portions of the search statement in parentheses are used
to overtly specify the order of Boolean operations (i.e., nesting function).     If
parentheses are not used, the system follows a default precedence ordering of
operations (e.g., typically NOT then AND then OR). In the examples of effects of
Boolean operators given in Figure 2.1, no precedence order is given to the
operators and queries are processed Left to Right unless parentheses are included.
Most commercial systems do not allow weighting of Boolean queries. A technique
to allow weighting Boolean queries is described in Chapter 7. Some of the
deficiencies of use of Boolean operators in information systems are summarized by
Belkin and Croft (Belkin-89).

A special type of Boolean search is called “M of N” logic. The user lists
a set of possible search terms and identifies, as acceptable, any item that contains a
subset of the terms. For example, “Find any item containing any two of the
following terms: “AA,” “BB,” “CC.” This can be expanded into a Boolean search
that performs an AND between all combinations of two terms and “OR”s the
results together ((AA AND BB) or (AA AND CC) or (BB AND CC)). Some
search examples and their meanings are given in Figure 2.1. Most Information
Retrieval Systems allow Boolean operations as well as allowing for the natural
language interfaces discussed in Section 2.1.8. As noted in Chapter 1, very little
attention has been focused on integrating the Boolean search functions and
weighted information retrieval techniques into a single search result.
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2.1.2 Proximity

Proximity is used to restrict the distance allowed within an item
between two search terms. The semantic concept is that the closer two terms are

SEARCH STATEMENT SYSTEM OPERATION

COMPUTER OR PROCESSOR NOT Select all items discussing Computers
MAINFRAME  and/or Processors that do not discuss

Mainframes

COMPUTER OR (PROCESSOR NOT Select all items discussing Computers
MAINFRAME) and/or items that discuss Processors and

do not discuss Mainframes

COMPUTER AND NOT PROCESSOR    Select all items that discuss computers
OR MAINFRAME and not processors or mainframes in the

item

Figure 2.1 Use of  Boolean Operators

found in a text the more likely they are related in the description of a particular
concept. Proximity is used to increase the precision of a search. If the terms
COMPUTER and DESIGN are found within a few words of each other then the
item is more likely to be discussing the design of computers than if the words are
paragraphs apart. The typical format for proximity is:

TERM1 within “m” “units” of  TERM2

The distance operator “m” is an integer number and units are in Characters,
Words, Sentences, or Paragraphs. Certain items may have other semantic units
that would prove useful in specifying the proximity operation. For very structured
items, distances in characters prove useful. For items containing imbedded images
(e.g., digital photographs), text between the images could help in precision when
the objective is in locating a certain image. Sometimes the proximity relationship
contains a direction operator indicating the direction (before or after) that the
second term must be found within the number of units specified. The default is
either direction. A special case of the Proximity operator is the Adjacent (ADJ)
operator that normally has a distance operator of one and a forward only direction
(i.e., in WAIS). Another special case is where the distance is set to zero meaning
within the same semantic unit. Some proximity search statement examples and
their meanings are given in Figure 2.2.
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2.1.3 Contiguous Word Phrases

A Contiguous Word Phrase (CWP) is both a way of specifying a query
term and a special search operator. A Contiguous Word Phrase is two or more
words that are treated as a single semantic unit. An example of a CWP is “United
States of America.” It is four words that specify a search term representing a

SEARCH STATEMENT SYSTEM OPERATION

“Venetian” ADJ “Blind” would find items that mention a
Venetian Blind on a window but not
items discussing a Blind Venetian

“United” within five words of   would hit on “United States and
“American” American interests,” “United Airlines

and American Airlines” not on “United
States of America and the American
dream”

“Nuclear” within zero paragraphs of   would find items that have “nuclear”
“clean-up” and “clean-up” in the same paragraph.

Figure 2.2 Use of  Proximity

single specific semantic concept (a country) that can be used with any of the
operators discussed above. Thus a query could specify “manufacturing” AND
“United States of America” which returns any item that contains the word
“manufacturing” and the contiguous words “United States of America.”

A contiguous word phrase also acts like a special search operator that is
similar to the proximity (Adjacency) operator but allows for additional specificity.
If two terms are specified, the contiguous word phrase and the proximity operator
using directional one word parameters or the Adjacent operator are identical. For
contiguous word phrases of more than two terms the only way of creating an
equivalent search statement using proximity and Boolean operators is via nested
Adjacencies which are not found in most commercial systems. This is because
Proximity and Boolean operators are binary operators but contiguous word phrases
are an “N”ary operator where “N” is the number of words in the CWP.

Contiguous Word Phrases are called Literal Strings in WAIS and Exact
Phrases in RetrievalWare. In WAIS multiple Adjacency (ADJ) operators are used
to define a Literal String (e.g., “United” ADJ “States” ADJ “of” ADJ “America”).
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2.1.4 Fuzzy Searches

Fuzzy Searches provide the capability to locate spellings of words that are
similar to the entered search term. This function is primarily used to compensate
for errors in spelling of words. Fuzzy searching increases recall at the expense of
decreasing precision (i.e., it can erroneously identify terms as the search term). In
the process of expanding a query term fuzzy   searching includes other terms that
have similar spellings, giving more weight (in systems that rank output) to words
in the database that have similar word lengths and position of the characters as the
entered term. A Fuzzy Search on the term “computer” would automatically
include the following words from the information database: “computer,”
“compiter,” “conputer,” “computter,” “compute.” An additional enhancement
may lookup the proposed alternative spelling and if it is a valid word with  a
different meaning, include it in the search with a low ranking or not include it at
all (e.g., “commuter”). Systems allow the specification of the maximum number of
new terms that the expansion includes in the query. In this case the alternate
spellings that are “closest” to the query term is included. “Closest” is a heuristic
function that is system specific.

Fuzzy searching has its maximum utilization in systems that accept items
that have been Optical Character Read (OCRed). In the OCR process a hardcopy
item is scanned into a binary image (usually at a resolution of 300 dots per inch or
more). The OCR process is a pattern recognition process that segments the
scanned in image into meaningful subregions, often considering a segment the area
defining a single character. The OCR process will then determine the character
and translate it to an internal computer encoding (e.g., ASCII or some other
standard for other than Latin based languages). Based upon the original quality of
the hardcopy this process introduces errors in recognizing characters. With decent
quality input, systems achieves in the 90 - 99 per cent range of accuracy. Since
these are character errors throughout the text, fuzzy searching allows location of
items of interest compensating for the erroneous characters.

2.1.5 Term Masking

Term masking is the ability to expand a query term by masking a portion
of the term and accepting as valid any processing token that maps to the unmasked
portion of  the term. The value of term masking is much higher in systems that do
not perform stemming or only provide a very simple stemming algorithm. There
are two types of search term masking: fixed length and variable length. Sometimes
they are called fixed and variable length “don’t care” functions.

Fixed length masking is a single position mask. It masks out any symbol
in a particular position or the lack of that position in a word. Figure 2.3 gives an
example of fixed term masking. It not only allows any character in the masked
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position, but also accepts words where the position does not exist. Fixed length
term masking is not frequently used and typically not critical to a system.

Variable length “don’t cares” allows masking of any number of characters
within a processing token. The masking may be in the front, at the end, at both
front and end, or imbedded. The first three of these cases are called suffix search,
prefix search and imbedded character string search, respectively. The use of an
imbedded variable length don’t care is seldom used. Figure 2.3 provides examples
of the use of variable length term masking. If “*” represents a variable length
don’t care then the following are examples of its use:

“*COMPUTER” Suffix Search
“COMPUTER*” Prefix Search
“*COMPUTER*” Imbedded String Search

Of the options discussed, trailing “don’t cares” (prefix searches) are by far the most
common. In operational systems they are used in 80-90 per cent of the search
terms (Kracsony-81) and in may cases are a default without the user having to
specify it.

2.1.6 Numeric and Date Ranges

Term masking is useful when applied to words, but does not work for
finding ranges of numbers or numeric dates. To find numbers larger than “125,”
using a term “125*” will not find any number except those that begin with the

SEARCH STATEMENT

*computer*

comput*

*comput*

SYSTEM OPERATION

Matches“multi-national,”
“multinational,” “multinational” but
does not match “multi national” since it
is two processing tokens.

Matches,“minicomputer”
“microcomputer” or “computer”

Matches “computers,” “computing,”
“computes”

Matches “microcomputers” ,
“minicomputing,” “compute”

Figure 2.3 Term Masking
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digits “125.” Systems, as part of their normalization process, characterizes words
as numbers or dates. This allows for specialized numeric or date range processing
against those words. A user could enter inclusive (e.g., “125-425” or “4/2/93-
5/2/95” for numbers and dates) to infinite ranges (“>125,” “<=233,” representing
“Greater Than” or “Less Than or Equal”) as part of a query.

2.1.7 Concept/Thesaurus Expansion

Associated with both Boolean and Natural Language Queries is the ability
to expand the search terms via Thesaurus or Concept Class database reference tool.
A Thesaurus is typically a one-level or two-level expansion of a term to other terms
that are similar in meaning. A Concept Class is a tree structure that expands each
meaning of a word into potential concepts that are related to the initial term (e.g.,
in the TOPIC system). Concept classes are sometimes implemented as a network
structure that links word stems (e.g., in the RetrievalWare system). An example of
Thesaurus and Concept Class structures are shown in Figure 2.4 (Thesaurus-93)
and Figure 2.5. Concept class representations assist a user who has minimal
knowledge of a concept domain by allowing the user to expand upon a particular
concept showing related concepts. A concept based database shows associations
that are not normally found in a language based thesaurus. For example, “negative
advertising” may be linked to “elections” in a concept database, but are hopefully
not synonyms to be found in a thesaurus. Generalization is associated with the user
viewing concepts logically higher in a hierarchy that have more general meaning.
Specificity is going lower in the thesaurus looking at concepts that are more
specific.

Thesauri are either semantic or based upon statistics. A semantic
thesaurus is a listing of words and then other words that are semantically similar.
Electronic versions of thesauri are commercially available and are language based
(e.g., English, Spanish, etc.). Systems such as RetrievalWare and TOPIC provide
them as part of the search system. In executing a query, a term can be expanded to
all related terms in the thesaurus or concept tree. Optionally, the user may display
the thesaurus or concept tree and indicate which related terms should be used in a
query. This function is essential to eliminate synonyms which introduce meanings
that are not in the user’s search statement. For example, a user searching on
“pasture lands” and “fields” would not want all of the terms associated with
“magnetic fields” included in the expanded search statement.

The capability usually exists to browse the thesaurus or concept trees and
add additional terms and term relationships in the case of concept trees. This
allows users to enhance the thesaurus or concept tree with jargon specific to their
area of interest.
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Figure 2.4 Thesaurus for term “computer”

Figure 2.5 Hierarchical Concept Class Structure for “Computer”

The problem with thesauri is that they are generic to a language
and can introduce many search terms that are not found in the document database.
An alternative uses the database or a representative sample of it to create
statistically related terms. It is conceptually a thesaurus in that words that are
statistically related to other words by their frequently occurring together in the
same items. This type of thesaurus is very dependent upon the database being
searched and may not be portable to other databases. The statistical techniques for
generating a thesaurus are discussed in detail in Chapter 6. In a statistical
thesaurus it is very difficult to name a thesaurus class or understand by viewing it
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what caused its creation (i.e., there is not a semantic basis defining the classes).
As such, statistical thesauri are frequently used as automatic expansions of user’s
searches without the user directly interacting with the thesaurus.

Theoretically thesauri and concept trees could be used to either expand a
search statement with additional terms or make it more specific but substituting
more specific terms. From this perspective expanding the terms increases the
recall of the search with a possible decrease in precision. Going to more specific
terms increases precision and possibly reduce recall. In most cases the
generalization process is used in expanding a search statement with more terms.

2.1.8 Natural Language Queries

Rather than having the user enter a specific Boolean query by specifying
search terms and the logic between them, Natural Language Queries allow a user
to enter a prose statement that describes the information that the user wants to find.
The longer the prose, the more accurate the results returned. The most difficult
logic case associated with Natural Language Queries is the ability to specify
negation in the search statement and have the system recognize it as negation. The
system searches and finds those items most like the query statement entered.  The
techniques for locating items similar to the search statement (described in Chapters
5 and 7) are suited for finding items like other items but do not have inherent
techniques to exclude items that are like a certain portion of the search statement.
For many users, this type of an interface provides a natural extension to asking
someone to perform a search. In this case the discourse is with the computer. An
example of a Natural Language Query is:

Find for me all the items that discuss oil reserves and current attempts to
find new oil reserves. Include any items that discuss the international
financial aspects of  the oil production process. Do not include items about
the oil industry in the United States.

The way a system uses this input for a search is described in Chapter 7.   The
problem with many techniques and systems is to understand the negation concept
of excluding items about the oil industry in the United States.

When this capability has been made available, users have a tendency to
enter sentence fragments that reflect their search need rather than  complete
sentences.   This is predictable because the users want to minimize use  of the
human resource (their time). The likely input for the above example is:

oil reserves and attempts to find new oil reserves,  international financial
aspects of oil production, not United States oil industry
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This usage pattern is important because sentence fragments make morphological
analysis of the natural language query difficult and may limit the system’s ability
to perform term disambiguation (e.g., understand which meaning of a word is
meant).

Using the same search statement, a Boolean query attempting to find the
same information might appear:

(“locate” AND “new” and “oil reserves”) OR (“international”
AND “financ*” AND “oil production”) NOT (“oil industry”
AND “United States”)

Associated with natural language queries is a function called relevance
feedback. The natural language does not have to be input by the user but just
identified by the user. This introduces the concept of finding items that “are like”
other items. Thus a user could identify a particular item(s) in the database or text
segments within item(s) and use that as the search statement. This is discussed in
detail in Chapter 7.

To accommodate the negation function and provide users with a transition
to the natural language systems, most commercial systems have a user interface
that provides both a natural language and Boolean logic capability. Negation is
handled by the Boolean portion of a search. The integration of these two search
statement types has not been achieved in Information Retrieval Systems. Natural
language interfaces improve the recall of systems with a decrease in precision
when negation is required.

2.1.9 Multimedia Queries

The user interface becomes far more complex with the introduction of the
availability of multimedia items. All of the previous discussions still apply for
search of the textual portions of a multimedia database. But in addition, the user
has to be able to specify search terms for the other modalities. The current systems
only focus on specification of still images as another search criteria. The still
image could be used to search images that are part of an item. They also could be
used to locate a specific scene in a video product. As described later, in the video
modality, scene changes are extracted to represent changes in the information
presentation. The scene changes are represented as a series of images.
Additionally, where there is static text in the video, the current technology allows
for OCRing the text (e.g., in the latest release of the VIRAGE system). The ability
to search for audio as a match makes less sense as a user specification. To
adequately perform the search you would have to simulate the audio segment and
then look for a match. Instead audio sources are converted to searchable text via
audio transcription. This allows queries to be applied to the text. But, like Optical
Character Reading (OCR) output, the transcribed audio will contain many errors
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(accuracies of 85-90% are the best that can be achieved from news broadcasts,
conversational speech is in the range of 60%). Thus the search algorithms must
allow for errors in the data. The errors are very different compared to OCR. OCR
errors will usually create a text string that is not a valid word. In automatic speech
recognition (ASR), all errors are other valid words since ASR selects entries
ONLY from a dictionary of words. Audio also allows the user to search on specific
speakers, since speaker identification is relatively accurate against audio sources.

The correlation between different parts of a query against different
modalities is usually based upon time or location. The most common example
would be on time. For example if a video news program has been indexed, the user
could have access to the scene changes, the transcribed audio, the closed
captioning and the index terms that a user has assigned while displaying the video.
The query could be "Find where Bill Clinton is discussing Cuban refugees and
there is a picture of a boat". All of the separate tracks of information are correlated
on a time basis. The system would return those locations where Bill Clinton is
identified as the speaker (user the audio track and speaker identification), where in
any of the text streams (OCRed text from the video, transcribed audio, closed
captioning, or index terms) there is discussion of refugees and Cuba, and finally
during that time segment there is at least one scene change that includes a boat.

2.2 Browse Capabilities

Once the search is complete, Browse capabilities provide the user with the
capability to determine which items are of interest and select those to be displayed.
There are two ways of displaying a summary of the items that are associated with a
query: line item status and data visualization. From these summary displays, the
user can select the specific items and zones within the items for display. The
system also allows for easy transitioning between the summary displays and review
of specific items. If searches resulted in high precision, then the importance of the
browse capabilities would be lessened. Since searches return many items that are
not relevant to the user’s information need, browse capabilities can assist the user
in focusing on items that have the highest likelihood in meeting his need.

2.2.1 Ranking

Under Boolean systems, the status display is a count of the number of
items found by the query. Every one of the items meet all aspects of the Boolean
query. The reasons why an item was selected can easily be traced to and displayed
(e.g., via highlighting) in the retrieved items. Hits are retrieved in either a sorted
order (e.g., sort by Title) or in time order from the newest to the oldest item. With
the introduction of ranking based upon predicted relevance values, the status
summary displays the relevance score associated with the item along with a brief
descriptor of the item (usually both fit on one display screen line). The relevance
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score is an estimate of the search system on how closely the item satisfies the
search statement. Typically relevance scores are normalized to a value between 0.0
and 1.0. The highest value of 1.0 is interpreted that the system is sure that the
item is relevant to the search statement. This allows the user to determine at what
point to stop reviewing items because of reduced likelihood of relevance.
Theoretically every item in the system could be returned but many of the items will
have a relevance value of 0.0 (not relevant). Practically, systems have a default
minimum value which the user can modify that stops returning items that have a
relevance value below the specified value. In addition to ranking based upon the
characteristics of the item and the database, in many circumstances collaborative
filtering is providing an option for selecting and ordering output. In this case,
users when reviewing items provide feedback to the system on the relative value of
the item being accessed. The system accumulates the various user rankings and
uses this information to order the output for other user queries that are similar.
Collaborative filtering has been very successful in sites such as AMAZON.COM
MovieFinder.com, and CDNow.com in deciding what products to display to users
based upon their queries (Herlocker-99)

Since one line is usually dedicated per item in a summary display, part of
a zone truncated by allocated space on the display is typically displayed with the
relevance weight of the item. This zone is frequently the Title and provides the
user with additional information with the relevance weight to avoid selecting non-
relevant items for review. Presenting the actual relevance number seems to be
more confusing to the user than presenting a category that the number falls in. For
example, some systems create relevance categories and indicate, by displaying
items in different colors, which category an item belongs to. Other systems uses a
nomenclature such as High, Medium High, Medium, Low, and Non-relevant. The
color technique removes the need for written indication of an item’s relevance,
thereby providing additional positions in a line to display more of the title but
causes problems with users that suffer from partial or total color blindness.

Rather than limiting the number of items that can be assessed by the
number of lines on a screen, other graphical visualization techniques showing the
relevance relationships of the hit items can be used. For example, a two or three
dimensional graph can be displayed where points on the graph represent items and
the location of the points represent their relative relationship between each other
and the user’s query. In some cases color is also used in this representation. This
technique allows a user to see the clustering of items by topics and browse through
a cluster or move to another topical cluster. This has an analogy of moving
through the stacks at a library. In a single image the user can see the effects of his
search statement rather than displaying a few items at a time.

Information visualization is also being used in displaying individual items
and the terms that contributed to the item’s selection. This graphical display assists
the user in determining how to reformulate his query to improve finding the
information the user requires. Chapter 8 describes information visualization.
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2.2.2 Zoning

When the user displays a particular item, the objective of minimization of
overhead still applies. The user wants to see the minimum information needed to
determine if the item is relevant. Once the determination is made an item is
possibly relevant, the user wants to display the complete item for detailed review.
Limited display screen sizes require selectability of what portions of an item a user
needs to see to make the relevance determination. For example, display of the
Title and Abstract may be sufficient information for a user to predict the potential
relevance of an item. Limiting the display of each item to these two zones allows
multiple items to be displayed on a single display screen. This makes maximum
use of the speed of the user’s cognitive process in scanning the single image and
understanding the potential relevance of the multiple items on the screen.

Related to zoning for use in minimizing what an end user needs to review
from a hit item is the idea of locality and passage based search and retrieval. In
this case the basic search unit is not the complete item, but an algorithmic defined
subdivision of the item. This has been known as passage retrieval where the item
is divided into uniform-sized passages that are indexed (Kaskiel-97, Knaus-95,
Zobel-95) and locality based retrieval where the passage boundaries can be
dynamic (Kretser-99.) In these cases the system can display the particular passage
or locality that caused the item to be found rather than the complete item. The
system would also provide an expand capability to retrieve the complete item as an
option.

2.2.3 Highlighting

Another display aid is an indication of why an item was selected. This
indication, frequently highlighting, lets the user quickly focus on the potentially
relevant parts of the text to scan for item relevance. Different strengths of
highlighting indicates how strongly the highlighted word participated in the
selection of the item. Most systems allow the display of an item to begin with the
first highlight within the item and allow subsequent jumping to the next highlight.
Another capability, which is gaining strong acceptance, is for the system to
determine the passage in the document most relevant to the query and position the
browse to start at that passage. The DCARS system that acts as a user frontend to
the RetrievalWare search system allows the user to browse an item in the order of
the paragraphs or individual words that contributed most to the rank value
associated with the item.

Highlighting has always been useful in Boolean systems to indicate the
cause of the retrieval. This is because of the direct mapping between the terms in
the search and the terms in the item. Using Natural Language Processing,
automatic expansion of terms via thesauri, and the similarity ranking algorithms
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discussed in detail later in this book, highlighting loses some of its value The
terms being highlighted that caused a particular item to be returned may not have
direct or obvious mapping to any of the search terms entered. This causes
frustration by the user trying to guess why a particular item was retrieved and how
to use that information in reformulating the search statement to make it more
exact. In a ranking system different terms can contribute to different degrees to the
decision to retrieve an item. The highlighting may vary by introducing colors and
intensities to indicate the relative importance of a particular word in the item in the
decision to retrieve the item. Information visualization appears to be a better
display process to assist in helping the user formulate his query than highlights in
items.

2.3 Miscellaneous Capabilities

There are many additional functions that facilitate the user’s ability to
input queries, reducing the time it takes to generate the queries, and reducing a
priori the probability of entering a poor query. Vocabulary browse provides
knowledge on the processing tokens available in the searchable database and their
distribution in terms of items within the database. Iterative searching and search
history logs summarize previous search activities by the user allowing access to
previous results from the current user session. Canned queries allow access to
queries generated and saved in previous user sessions.

2.3.1 Vocabulary Browse

Vocabulary Browse provides the capability to display in
alphabetical sorted order words from the document database. Logically, all unique
words (processing tokens) in the database are kept in sorted order along with a
count of the number of unique items in which the word is found. The user can
enter a word or word fragment and the system will begin to display the dictionary
around the entered text. Figure 2.6 shows what is seen in vocabulary browse if the
user enters “comput.” The system indicates what word fragement the user entered
and then alphabetically displays other words found in the database in collating
sequence on either side of the entered term. The user can continue scrolling in
either direction reviewing additional terms in the database. Vocabulary browse
provides information on the exact words in the database. It helps the user
determine the impact of using a fixed or variable length mask on a search term and
potential mis-spellings. The user can determine that entering the search term
“compul*” in effect is searching for “compulsion” or “compulsive” or
“compulsory.” It also shows that someone probably entered the word “computen”
when they really meant “computer.” It provides insight on the impact of using
terms in a search. By vocabulary browsing, a term may be seen to exist in a large
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number of documents which could make it a poor candidate as an ORed term
requiring additional ANDed terms to focus on items of interest. The search term
“computer” would return an excessive number of hits if used as an “OR” term.

TERM

compromise
comptroller
compulsion
compulsive
compulsory

comput

computation
compute
computen
computer
computerize
computes

OCCURRENCES

53
18

5
22

4

265
1245

1
10,800

18
29

Figure 2.6 Vocabulary Browse List with entered term “comput”

2.3.2 Iterative Search and Search History Log

Frequently a search returns a Hit file containing many more items than
the user wants to review. Rather than typing in a complete new query, the results
of the previous search can be used as a constraining list to create a new query that
is applied against it. This has the same effect as taking the original query and
adding additional search statement against it in an AND condition. This process
of refining the results of a previous search to focus on relevant items is called
iterative search. This also applies when a user uses relevance feedback to enhance
a previous search.

During a login session, a user could execute many queries to locate the
needed information. To facilitate locating previous searches as starting points for
new searches, search history logs are available. The search history log is the
capability to display all the previous searches that were executed during the current
session. The query along with the search completion status showing number of
hits is displayed.
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2.3.3 Canned Query

The capability to name a query and store it to be retrieved and executed
during a later user session is called canned or stored queries. Users tend to have
areas of interest within which they execute their searches on a regular basis. A
canned query allows a user to create and refine a search that focuses on the user’s
general area of interest one time and then retrieve it to add additional search
criteria to retrieve data that is currently needed. For example, a user may be
responsible for European investments. Rather than always having to create a query
that limits the search to European geographic search terms and then the specific
question requiring resolution, a canned query can be created with all the needed
geographic terms and used as a starting point for additional query specification.
Significant effort can go into making the canned query into a comprehensive and
focused search since it is created once but used many times with additional search
terms for specific information needs. Queries that start with a canned query are
significantly larger than ad hoc queries. Canned query features also allow for
variables to be inserted into the query and bound to specific values at execution
time.

2.3.4 Multimedia

Once a list of potential items that satisfy the query are discovered, the
techniques for displaying them when they are multimedia introduces new
challenges. The discussions under Ranking, above, suggest that typically hits are
listed in the likely order of importance with one hit per line. The rationale is to
present the most information possible to the user on the largest number of item to
allow the user to select the items to be retrieved. To display more aggregate data,
textual interfaces sometimes allow for clustering of the hits and then use of
graphical display to show a higher level view of the information.  Neither of these
techniques lend themselves well when the information is multimodal. The textual
aspect of the multimedia can be used to apply all of the techniques described above.
But using the example in 2.1.9 above, how does the system also include the image
of the boat that was part of the query. Typically a "thumbnail" of the image is
displayed with the hit item. But this has the disadvantage of using more than one
line per hit and reducing the number of hits that a user can select from on a single
screen. If the source is audio, then other problems associated with the human
linear processing of audio becomes major issues. In the textual domain, users can
visually scan text very fast and via peripheral processing can maintain the context
of what they are reading. If the output against audio searches was audio hit files,
the user processing rate associated with listening drops dramatically. This is
another reason why the transcribed audio (even if it is errorful) becomes a critical
augmentation in users reviewing audio files. Thus in addition to listening to the
audio, the user can visually be following the transcribed text. This provides a
mechanism for the user to percieve the context and additionally provides a quick
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scanning option to look ahead at upcoming information to be used in conjunction
with the audio processing of the original source. In tests recently performed (May
2000 in paper to be published) it was shown that the combination of errorful
transcribed audio used in conjunction with the having the original audio also
available reduced the processing time of items by 50 per cent from audio only  (this
was the initial testing, experience would drop it even further). The transcribed text
could also be used as a navigation technique through the audio (Whittaker-99.)
They appropriately label this new paradigm What You See Is (Almost) What You
Hear (WYSIAWYH). They also noted that even though the transcribed text  could
be used as an index into future retrieval of the audio source, most users also needed
the ability to annotate the transcriptions (note taking) to allow them to include
other audio information such as in tonal information provided by the original
speech.

The second area of complexity comes from any attempt at ranking such an
output. In the textual only domain, there has been significant research into
algorithms and heuristics associated with weighting algorithms for textual items.
But when the hit is composed of different modalities, (e.g., text, image, audio),
how did you create an aggregate weight of each "hit region". Little research has
gone into the derivation of the weight assigned to an item that combines the
weights assigned to how well each modality satisfied its portion of  the query.

2.4 Z39.50 and WAIS Standards

There are two potential sources for any standard, those agreed to by an
official standards organization and a de facto standard based upon high usage
across a large user population. The standards organization most involved  in
Information Systems standards in the United States is the American National
Standards Institute/ National Information Standards Organization (ANSI/NISO) in
generating its Z39.SO, Information Retrieval Application Service Definition and
Protocol Specification. NISO is the only organization accredited by ANSI to
approve and maintain standards for information services, libraries and publishers.
This standard is one of many standards they generated to support interconnection
of computer systems. Its relationship to other standards can be seen in the Open
Systems Interconnection (OSI) basic reference model (ISO 7498). In addition to
the formal standard, a second de facto standard is the WAIS standard based upon
its usage in the INTERNET.

In addition to standards associated with specific language interfaces of
Information Retrieval Systems, there are attempts being made to standardize the
architecture of information systems. The largest de facto information system is the
Internet and the Internet Engineering Task Force is focusing on how the
architecture of the Internet should be modified to allow future scalability and
addressability of items on the Internet. This architecture directly affects
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commercial information systems usage on the Internet and the integratability of
future research into this environment.

The Z39.50 standard does not specify an implementation, but the
capabilities within an application (Application Service) and the protocol used to
communicate between applications (Information Retrieval Application Protocol).
It is a computer to computer communications standard for database searching and
record retrieval. Its objective is to overcome different system incompatibilities
associated with multiple database searching (e.g., unique user interfaces,
command language, and basic search functions). The first version of Z39.50 was
approved in 1992. An international version of Z39.50, called the Search and
Retrieve Standard (SR), was approved by the International Organization for
Standardization (ISO) in 1991. Z39.50-1995, the latest version of  Z39.50, replaces
SR as the international information retrieval standard.

The standard describes eight operation types: Init (initialization), Search,
Present, Delete, Scan, Sort, Resource-report, and Extended Services. There are
five types of queries (Types 0, 1, 2, 100, 101, and 102). Type 101 extends previous
types allowing for proximity and Type-102 is a Ranked List Query (yet to be
defined). The Extended Services include saving query results, queries, and
updating the database.

The client is identified as the “Origin” and performs the communications
functions relating to initiating a search, translation of the query into a standardized
format, sending a query, and requesting return records. The server is identified as
the “Target” and interfaces to the database at the remote responding to requests
from the Origin (e.g., pass query to database, return records in a standardized
format and status). The end user does not have to be aware of the details of the
standard since the Origin function performs the mapping from the user’s query
interface into Z39.50 format. This makes the dissimilarities of different database
systems transparent to the user and facilitates issuing one query against multiple
databases at different sites returning to the user a single integrated Hit file.

The communications between the Origin and Target utilize a dialogue
known as Z39.50 association. Z39.50 not only standardizes the messages to be
exchanged between the Origin and Target systems, but also the structure and the
semantics of the search query, the sequence of message exchange, and the
mechanism for returning records (Turner-95, Kunze-95). The 1992 version of
Z39.50 was focused on library functions such as database searching, cataloguing
and interlibrary loan (primarily MARC bibliographic record structure). Z39.50
version 3 (in Z39.50-1995) addresses additional functions to support non-
bibliographic data such as full text documents and images. It also begins to
address some of the functions being defined as necessary to information systems
such as ranking values. Z39.50-1995 has just been approved by NISO and is
published as the new standard (the latest information on Z39.50 is available on the
Worldwide Web at http://ds.internic.net/z3950/z3950.html).

Wide Area Information Service (WAIS) is the de facto standard for many
search environments on the INTERNET. WAIS was developed by a project
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started in 1989 by three commercial companies (Apple, Thinking Machines, and
Dow Jones). The original idea was to create a program that would act as a
personal librarian. It would act like a personal agent keeping track of significant
amounts of data and filtering it for the information most relevant to the user. The
interface concept was user entered natural language statements of topics the user
had interest. In addition it provided the capability to communicate to the
computer that a particular item was of interest and have the computer
automatically find similar items (i.e., relevance feedback). The original corporate
interest was in Apple providing the user interface, Thinking Machines providing
the processing power, and Dow Jones providing the data.

The developers of WAIS pursued a generalized system of information
retrieval that could access data collections all around the world (Hahn-94, Levine-
94) on the Internet. Like other Internet services, free versions of WAIS were
originally provided. Some of the initial products migrated to a commercial
company that sells and supports a WAIS system. A free version of WAIS is still
available via the Clearinghouse for Networked Information Discovery and
Retrieval (CINDIR) called “FreeWAIS.”

The original development of WAIS started with the 1988 Z39.50 protocol
as a base following the client/server architecture concept. At that time Z39.50 was
focused on a bibliographic MARC record structure against structured files.
Numerous deficiencies were identified in the Z39.50 protocol forcing the
developers of WAIS to vary from the Z39.50 standard (ORION-93). The
developers incorporated the information retrieval concepts that allow for ranking,
relevance feedback and natural language processing functions that apply to full text
searchable databases. Since they were diverging from the standard, they decided to
simplify their client server interface. In particular they decided to have a non-
Markovian process. Thus state information is not kept between requests between
clients and servers. This is one of the major differences between WAIS and
Z39.50 compliant systems.

The availability of  FreeWAIS in the public domain made it the method of
choice for implementing databases on the INTERNET. The architecture gained
significant momentum from the mandate that all U.S. Government Agencies
publish their material electronically and make it accessible to the general public.
WAIS and the INTERNET became the standard approach for answering the
mandate. Additionally, many organizations are using WAIS as the engine to
archive and access large amounts of textual information. The appeal for WAIS is
that, for public domain software, it represents a well tested and documented
product that can be trusted with data. A substantial community continues to test,
fix and enhance the basic system. The current trend is away from WAIS and to a
standard Internet interface (WEB interface) and using one of the more powerful
search systems.

Another activity being driven by the publishing and Digital Libraries
efforts is the creation of a unique way of identifying, naming and controlling
documents in an information retrieval environment. It has the same paradigm as
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the TIPSTER architecture of separating the indexes and surrogate search structures
from storing the actual item. The leader in this effort is the Center for National
Research Initiatives (CNRI) that is working with the Department of Defense and
also the American Association of Publishers (AAP), focusing on an Internet
implementation that allows for control of electronic published and copyright
material. The CNRI concept is based upon using a “handle” system where the
handle is the unique network identifier of a digital object. The AAP prefers the
term Digital Object Identifier over the term handle (CNRI-97). Most computer
systems identify an item by the location it is stored (e.g., Uniform Resource
Locators (URLs) on the Internet - see Section 4.7 for more detail). From a library
and large information system perspective it is far more efficient to refer to items by
name rather than location. There is still significant debate over whether the name
should be just a unique identifier (e.g., a number) or also have semantic content to
the user. The term “handle” refers to this unique name. A Handle server (similar
to document manager in TIPSTER) ensures persistence, location independence and
multiple instance management. Persistence ensures that the handle is available to
locate information potentially past the life of the organization that created the item
to identify any locations of the item. Location independence allows for the
movement of items with a mechanism for knowing their current location. Multiple
instance allows keeping track of the location of duplicates of an item. Inherent in
this architecture is a unique “Handle” naming authority(s) and servers to assign
names and keep track of locations. This is similar to the Domain Name Servers
used in networks, but is designed to handle orders of magnitude more objects in
efficient fashion.

In addition to the Handle Server architecture, CNRI is also advocating a
communications protocol to retrieve items from existing systems. This protocol
call Repository Archive Protocol (RAP) defines the mechanisms for Clients to use
the handles to retrieve items. It also includes other administrative functions such as
privilege validation. The Handle system is designed to meet the Internet
Engineering Task Force (IETF) requirements for naming Internet objects via
Uniform Resource Names to replace URLs as defined in the Internet’s RFC-1737
(IETF-96).

2.5 Summary

Chapter 2 provides an overview of the functions commonly associated
with Information Retrieval Systems. These functions define the user’s view of the
system versus the internal implementation that is described throughout the rest of
this book. Until the early 1990s, the pressure on development of new user
functions that assist the user in locating relevant items was driven by the academic
community. The commercialization of information retrieval functions being
driven by the growth of the Internet has changed the basis of development time
from “academic years” (i.e., one academic year equals 18 months - the time to
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define the research, perform it and publish the results) to “Web years” (i.e., one
Web year equals three months - demand to get new products up very quickly to be
first). The test environment and test databases are changing from small scale
academic environments to millions of records with millions of potential users
testing new ideas. Even IBM, one of the most traditional, conservative companies,
has an “alpha” site available on the Internet which contains the latest visualization
and search software that is still in the process of  being developing.

The areas to expect Web year changes in capabilities is in functions to
assist the user in expanding his query, application of the above functions into a
multilingual environment (i.e., the Internet provides information in many
languages), and most importantly tools to support information visualization
capabilities. The short queries that the typical user enters return too much data.
The research community continues to development algorithms that is used to
improve the precision and recall of the user’s search. Automatic learning from
user’s queries coupled with large thesauri and concept dictionaries performs the
query expansion process. New visualization tools have the most significant impact
by allowing use of human cognitive processing to interpret the results of a user’s
search statement and focus on the items that most likely are relevant. Visualization
tools also assist the users in enhancing their queries to find needed information.
The basic search capabilities described in this chapter will not change much, but
significant improvements can be expected in the browse capabilities. The
underlying reason for these advancements is the need to optimize the human
resource in finding needed information.

EXERCISES

1. Describe the rationale why use of proximity will improve precision versus use
of just the Boolean functions. Discuss its effect on improvement of recall.

2. Show that the proximity function can not be used to provide an equivalent to
a Contiguous Word Phrase.

3. What are the similarities and differences between use of fuzzy searches and
term masking? What are the potentials for each to introduce errors?

4. Are thesauri a subclass of concept classes? Justify your answer.

5. Which would users prefer, Boolean queries or Natural Language queries?
Why?

6. Ranking is one of the most important concepts in Information Retrieval
Systems. What are the difficulties in applying ranking when Boolean queries
are used?
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7. What is the relationship between vocabulary browse and thesauri/concept
classes?

8. Why should researchers in information retrieval care about standards?

9. What problems does multimedia information retrieval introduce? What
solutions would you recommend to resolve the problems?
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3 Cataloging and Indexing

3.1
3.2
3.3
3.4
3.5

History and Objectives of Indexing
Indexing Process
Automatic Indexing
Information Extraction
Summary

The first two chapters of this book presented the architecture of a total
Information Storage and Retrieval System and the basic functions that apply to it.
One of the most critical aspects of an information system that determines its
effectiveness is how it represents concepts in items. The transformation from the
received item to the searchable data structure is called Indexing. This process can
be manual or automatic, creating the basis for direct search of items in the
Document Database or indirect search via Index Files. Rather than trying to create
a searchable data structure that directly maps to the text in the input items, some
systems transform the item into a completely different representation that is
concept based and use this as the searchable data structure. The concept weighting
schemes have demonstrated the capability to find items that the traditional
weighted and non-weighted data structures have missed. Systems that use a
specialized hardware text search processor do not require the searchable data
structure, but search the original standardized documents (see Chapter 9).

Once the searchable data structure has been created, techniques must be
defined that correlate the user-entered query statement to the set of items in the
database to determine the items to be returned to the user. This process is called
Search and is often different between searches applied to the document database
(called ad hoc queries) and searches against incoming items to determine the Mail
File(s) the item should be delivered to (called dissemination searches). In the
newer systems a by-product of the search process is a relative value for each item
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with respect to its correlation to the query constraints. This value is used in
ranking the item. In some cases a simplified ranking algorithm is applied to the
items found from the search process after it is completed.

Closely associated with the indexing process is the information extraction
process. Its goal is to extract specific information to be normalized and entered
into a structured database (DBMS). It is similar to the process of creating the
search structure for an item in that both must locate concepts in the item.
Information extraction differs because it focuses on very specific concepts and
contains a transformation process that modifies the extracted information into a
form compatible with the end structured database. This process was referred to in
Chapter 2 as Automatic File Build. Another way information extraction can be
used is in the generation of a summary of an item. The emphasis changes from
extracting facts to go into index fields to extracting larger contextual constructs
(e.g., sentences) that are combined to form a summary of an item.

3.1 History and Objectives of Indexing

To understand the system design associated with creation and
manipulation of the searchable data structures, it is necessary to understand the
objectives of the indexing process. Reviewing the history of indexing shows the
dependency of information processing capabilities on manual and then automatic
processing systems. Through most of the 1980’s the goals of commercial
Information Retrieval Systems were constrained to facilitating the manual indexing
paradigm. In the 1990’s, exponential growth in computer processing capabilities
with a continuing decrease in cost of computer systems has allowed Information
Retrieval Systems to implement the previously theoretical functions introducing, a
new information retrieval paradigm.

3.1.1 History

Indexing (originally called Cataloging) is the oldest technique for
identifying the contents of items to assist in their retrieval. The objective of
cataloging is to give access points to a collection that are expected and most useful
to the users of the information. The basic information required on an item, what is
the item and what it is about, has not changed over the centuries. As early as the
third-millennium, in Babylon, libraries of cuneiform tablets were arranged by
subject (Hyman-89). Up to the 19th Century there was little advancement in
cataloging, only changes in the methods used to represent the basic information
(Norris-69). In the late 1800s subject indexing became hierarchical (e.g., Dewey
Decimal System). In 1963 the Library of Congress initiated a study on the
computerization of bibliographic surrogates. From 1966 - 1968 the Library of
Congress ran its MARC I pilot project. MARC (MAchine Readable Cataloging)
standardizes the structure, contents and coding of bibliographic records. The
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system became operational in 1969 (Avram-75). The earliest commercial
cataloging system is DIALOG, which was developed by Lockheed Corporation in
1965 for NASA. It became commercial in 1978 with three government files of
indexes to technical publications. By 1988, when it was sold to Knight-Ridder,
DIALOG contained over 320 index databases used by over 91,000 subscribers in
86 countries (Harper-81).

Indexing (cataloging), until recently, was accomplished by creating a
bibliographic citation in a structured file that references the original text. These
files contain citation information about the item, keywording the subject(s) of the
item and, in some systems a constrained length free text field used for an
abstract/summary. The indexing process is typically performed by professional
indexers associated with library organizations. Throughout the history of libraries,
this has been the most important and most difficult processing step. Most items
are retrieved based upon what the item is about. The user’s ability to find items on
a particular subject is limited by the indexer creating index terms for that subject.
But libraries and library indexing have always assumed the availability of the
library staff to act if needed as a human intermediary for users having problems in
locating information. For users looking for well-defined data (e.g., people by name
and titles) have good success by themselves. But when users are searching for
topics they fail on 70% of single query requests and 45% of the time in ever
finding the data they need. But when the users consult with a librarian the failure
rates drop to 10% (Nordlie-99.) Thus library based indexing was never under
significant pressure to invent user interfaces, support material and augmented
search engines that would assure users could find the material they needed. They
could rely on human interaction to resolve the more complex information needs.

The initial introduction of computers to assist the cataloguing function did
not change its basic operation of a human indexer determining those terms to
assign to a particular item. The standardization of data structures (e.g., MARC
format) did allow sharing of the indexes between libraries. It reduced the manual
overhead associated with maintaining a card catalog. By not having to make
physical copies of the index card for every subject index term, it also encouraged
inclusion of additional index terms. But the process still required the indexer to
enter index terms that are redundant with the words in the referenced item. The
user, instead of searching through physical cards in a card catalog, now performed
a search on a computer and electronically displayed the card equivalents.

In the 1990s, the significant reduction in cost of processing power and
memory in modern computers, along with access to the full text of an item from
the publishing stages in electronic form, allow use of the full text of an item as an
alternative to the indexer-generated subject index. The searchable availability of
the text of items has changed the role of indexers and allowed introduction of new
techniques to facilitate the user in locating information of interest. The indexer is
no longer required to enter index terms that are redundant with words in the text of
an item. The searcher is no longer presented a list of potential item of interest, but
is additionally informed of the likelihood that each item satisfies his search goal.
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3.1.2 Objectives

The objectives of indexing have changed with the evolution of 
Information Retrieval Systems. Availability of the full text of the item in
searchable form alters the objectives historically used in determining guidelines for
manual indexing. The full text searchable data structure for items in the
Document File provides a new class of indexing called total document indexing.
In this environment, all of the words within the item are potential index descriptors
of the subject(s) of the item. Chapter 1 discusses the process of Item normalization
that takes all possible words in an item and transforms them into processing tokens
used in defining the searchable representation of an item. In addition to
determining the processing tokens, current systems have the ability to
automatically weight the processing tokens based upon their potential importance
in defining the concepts in the item.

The first reaction of many people is to question the need for manual
indexing at all, given that total document indexing is available for search. If one
can search on any of the words in a document why does one need to add additional
index terms? Previously, indexing defined the source and major concepts of an
item and provided a mechanism for standardization of index terms (i.e., use of a
controlled vocabulary). A controlled vocabulary is a finite set of index terms from
which all index terms must be selected (the domain of the index). In a manual
indexing environment, the use of a controlled vocabulary makes the indexing
process slower, but potentially simplifies the search process. The extra processing
time comes from the indexer trying to determine the appropriate index terms for
concepts that are not specifically in the controlled vocabulary set. Controlled
vocabularies aide the user in knowing the domain of terms that the indexer had to
select from and thus which terms best describe the information needed.
Uncontrolled vocabularies have the opposite effect, making indexing faster but the
search process much more difficult.

The availability of items in electronic form changes the objectives of
manual indexing. The source information (frequently called citation data) can
automatically be extracted. There is still some utility to the use of indexes for
index term standardization. Modern systems, with the automatic use of thesauri
and other reference databases, can account for diversity of language/vocabulary use
and thus reduce the need for controlled vocabularies. Most of the concepts
discussed in the document is locatable via search of the total document index. The
primary use of manual subject indexing now shifts to abstraction of concepts and
judgments on the value of the information. The automatic text analysis algorithms
can not consistently perform abstraction on all concepts that are in an item. They
can not correlate the facts in an item in a cause/effect relationship to determine
additional related concepts to be indexed. An item that is discussing the increase
in water temperatures at factory discharge locations could be discussing “economic
stability” of a country that has fishing as its major industry. It requires the
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associative capabilities of a human being to make the connection. A computer
system would typically not be able to correlate the changes in temperature to
economic stability. The additional index terms added under this process enhance
the recall capability of the system. For certain queries it may also increase the
precision. This processing deficiency indicates the potential for future
enhancements of Information Retrieval Systems with Artificial Intelligence
techniques.

The words used in an item do not always reflect the value of the concepts
being presented. It is the combination of the words and their semantic implications
that contain the value of the concepts being discussed. The utility of a concept is
also determined by the user’s need. The Public File indexer needs to consider the
information needs of all users of the library system. Individual users of the system
have their own domains of interest that bound the concepts in which they are
interested. It takes a human being to evaluate the quality of the concepts being
discussed in an item to determine if that concept should be indexed. The
difference in “user need” between the library class of indexers and the individual
users is why Private Index files are an essential part of any good information
system. It allows the user to logically subset the total document file into folders of
interest including only those documents that, in the user’s judgment, have future
value. It also allows the user to judge the utility of the concepts based upon his
need versus the system need and perform concept abstraction. Selective indexing
based upon the value of concepts increases the precision of searches.

Availability of full document indexing saves the indexer from entering
index terms that are identical to words in the document. Users may use Public
Index files as pan of their search criteria to increase the recall. They may want to
constrain the search by their Private Index file to increase the precision of the
search. Figure 3.1 shows the potential relationship between use of the words in an
item to define the concepts. Public Indexing of the concept adds additional index
terms over the words in the item to achieve abstraction. The index file use fewer
terms than found in the items because it only indexes the important concepts.
Private Index files are even more focused, limiting the number of items indexed to
those that have value to the user and within items only the concepts bounded by the
specific user’s interest domain. There is overlap between the Private and Public
Index files, but the Private Index file is indexing fewer concepts in an item than the
Public Index file and the file owner uses his specific vocabulary of index terms.

In addition to the primary objective of representing the concepts within an
item to facilitate the user’s finding relevant information, electronic indexes to
items provide a basis for other applications to assist the user. The format of the
index, in most cases, supports the ranking of the output to present the items most
likely to be relevant to the user’s information needs first (see Chapters 5 and 7).
Also, the index can be used to cluster items by concept (see Chapter 6). The
clustering of items has the effect of making an electronic system similar to a
physical library. The paradigm of going to the library and browsing the book
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shelves in a topical area is the same as electronically browsing through items
clustered by concepts.

3.2 Indexing Process

When an organization with multiple indexers decides to create a public or
private index some procedural decisions on how to create the index terms assist the
indexers and end users in knowing what to expect in the index file. The first
decision is the scope of the indexing to define what level of detail the subject index
will contain. This is based upon usage scenarios of the end users. The other
decision is the need to link index terms together in a single index for a particular
concept.

Figure 3.1 Items Overlap Between Full Item Indexing,
Public File Indexing and Private File Indexing

Linking index terms is needed when there are multiple independent concepts found
within an item.
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3.2.1 Scope of Indexing

When performed manually, the process of reliably and consistently
determining the bibliographic terms that represent the concepts in an item is
extremely difficult. Problems arise from interaction of two sources: the author and
the indexer. The vocabulary domain of the author may be different than that of the
indexer, causing the indexer to misinterpret the emphasis and possibly even the
concepts being presented. The indexer is not an expert on all areas and has
different levels of knowledge in the different areas being presented in the item.
This results in different quality levels of indexing. The indexer must determine
when to stop the indexing process.

There are two factors involved in deciding on what level to index the
concepts in an item: the exhaustivity and the specificity of indexing desired.
Exhaustivity of indexing is the extent to which the different concepts in the item
are indexed. For example, if two sentences of a 10-page item on microprocessors
discusses on-board caches, should this concept be indexed? Specificity relates to
the preciseness of the index terms used in indexing. For example, whether the
term “processor” or the term “microcomputer” or the term “Pentium” should be
used in the index of an item is based upon the specificity decision. Indexing an
item only on the most important concept in it and using general index terms yields
low exhaustivity and specificity. This approach requires a minimal number of
index terms per item and reduces the cost of generating the index. For example,
indexing this paragraph would only use the index term “indexing.” High
exhaustivity and specificity indexes almost every concept in the item using as many
detailed terms as needed. Under these parameters this paragraph would have
“indexing,” “indexer knowledge,” “exhaustivity” and “specificity” as index terms.
Low exhaustivity has an adverse effect on both precision and recall. If  the full text
of the item is indexed, then low exhaustivity is used to index the abstract concepts
not explicit in the item with the expectation that the typical query searches both the
index and the full item index. Low specificity has an adverse effect on precision,
but no effect to a potential increase in recall.

Another decision on indexing is what portions of an item should be
indexed. The simplest case is to limit the indexing to the Title or Title and
Abstract zones. This indexes the material that the author considers most important
and reduces the costs associated with indexing an item. Unfortunately this leads to
loss of both precision and recall.

Weighting of index terms is not common in manual indexing systems.
Weighting is the process of assigning an importance to an index term’s use in an
item. The weight should represent the degree to which the concept associated with
the index term is represented in the item. The weight should help in discriminating
the extent to which the concept is discussed in items in the database. The manual
process of assigning weights adds additional overhead on the indexer and requires
a more complex data structure to store the weights.
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3.2.2 Precoordination and Linkages

Another decision on the indexing process is whether linkages are
available between index terms for an item. Linkages are used to correlate related
attributes associated with concepts discussed in an item. This process of creating
term linkages at index creation time is called precoordination. When index terms
are not coordinated at index time, the coordination occurs at search time. This is
called postcoordination, that is coordinating terms after (post) the indexing
process. Postcoordination is implemented by “AND”ing index terms together,
which only finds indexes that have all of the search terms.

Factors that must be determined in the linkage process are the number of
terms that can be related, any ordering constraints on the linked terms, and any
additional descriptors are associated with the index terms (Vickery-70). The range
of the number of index terms that can be linked is not a significant implementation
issue and primarily affects the design of the indexer’s user interface. When
multiple terms are being used, the possibility exists to have relationships between
the terms. For example, the capability to link the source of a problem, the problem
and who is affected by the problem may be desired. Each term must be caveated
with one of these three categories along with linking the terms together into an
instance of the relationships describing one semantic concept. The order of the
terms is one technique for providing additional role descriptor information on the
index terms. Use of the order of the index terms to implicitly define additional
term descriptor information limits the number of index terms that can have a role
descriptor. If order is not used, modifiers may be associated with each term linked
to define its role. This technique allows any number of terms to have the
associated role descriptor. Figure 3.2 shows the different types of linkages. It
assumes that an item discusses the drilling of oil wells in Mexico by CITGO and
the introduction of oil refineries in Peru by the U.S. When the linked capability is
added, the system does not erroneously relate Peru and Mexico since they are not
in the same set of linked items. It still does not have the ability to discriminate
between which country is introducing oil refineries into the other country.
Introducing roles in the last two examples of Figure 3.2 removes this ambiguity.
Positional roles treat the data as a vector allowing only one value per position.
Thus if the example is expanded so that the U.S. was introducing oil refineries in
Peru, Bolivia and Argentina, then the positional role technique would require three
entries, where the only difference would be in the value in the “affected country”
position. When modifiers are used, only one entry would be required and all three
countries would be listed with three “MODIFIER”s.

3.3 AUTOMATIC INDEXING

Automatic indexing is the capability for the system to automatically
determine the index terms to be assigned to an item. The simplest case is when all
words in the document are used as possible index terms (total document indexing).
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More complex processing is required when the objective is to emulate a human
indexer and determine a limited number of index terms for the major concepts in
the item. As discussed, the advantages of human indexing are the ability to
determine concept abstraction and judge the value of a concept. The
disadvantages of human indexing over automatic indexing are cost, processing

Figure 3.2 Linkage of Index Terms

time and consistency. Once the initial hardware cost is amortized, the costs of
automatic indexing are absorbed as part of the normal operations and maintenance
costs of the computer system. There are no additional indexing costs versus the
salaries and benefits regularly paid to human indexers.

Processing time of an item by a human indexer varies significantly based
upon the indexer’s knowledge of the concepts being indexed, the exhaustivity and
specificity guidelines and the amount and accuracy of preprocessing via Automatic
File Build. Even for relatively short items (e.g., 300 - 500 words) it normally takes
at least five minutes per item. A significant portion of this time is caused by the
human interaction with the computer (e.g., typing speeds, cursor positioning,
correcting spelling errors, taking breaks between activities). Automatic indexing
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requires only a few seconds or less of computer time based upon the size of the
processor and the complexity of the algorithms to generate the index.

Another advantage to automatic indexing is the predictably of algorithms.
If the indexing is being performed automatically, by an algorithm, there is
consistency in the index term selection process. Human indexers typically generate
different indexing for the same document. In an experiment on consistency in
TREC-2, there was, on the average, a 20 per cent difference in judgment of the
same item’s topics between the original and a second independent judge of over
400 items (Harman-95). Since the judgments on relevance are different, the
selection of index terms and their weighting to reflect the topics is also different.
In automatic indexing, a sophisticated researcher understands the automatic
process and be able to predict its utility and deficiencies, allowing for
compensation for system characteristics in a search strategy. Even the end user,
after interacting with the system, understands for certain classes of information and
certain sources, the ability of the system to find relevant items is worse than other
classes and sources. For example, the user may determine that searching for
economic issues is for less precise than political issues in a particular newspaper
based information system. The user may also determine that it is easier to find
economic data in a information database containing Business Weekly than the
newspaper source.

Indexes resulting from automated indexing fall into two classes: weighted
and unweighted. In an unweighted indexing system, the existence of an index
term in a document and sometimes its word location(s) are kept as part of the
searchable data structure. No attempt is made to discriminate between the value of
the index terms in representing concepts in the item. Looking at the index, it is
not possible to tell the difference between the main topics in the item and a casual
reference to a concept. This architecture is typical of the commercial systems
through the 1980s. Queries against unweighted systems are based upon Boolean
logic and the items in the resultant Hit file are considered equal in value. The last
item presented in the file is as likely as the first item to be relevant to the user’s
information need.

In a weighted indexing system, an attempt is made to place a value on the
index term’s representation of its associated concept in the document. An index
term’s weight is based upon a function associated with the frequency of occurrence
of the term in the item. Luhn, one of the pioneers in automatic indexing,
introduced the concept of the “resolving power” of a term. Luhn postulated that
the significance of a concept in an item is directly proportional to the frequency of
use of the word associated with the concept in the document (Luhn-58, Salton-75).
This is reinforced by the studies of Brookstein, Klein and Raita that show “content
bearing” words are not randomly distributed (i.e., Poisson distributed), but that
their occurrence “clump” within items (Brookstein-95). Typically, values for the
index terms are normalized between zero and one. The higher the weight, the
more the term represents a concept discussed in the item. The weight can be
adjusted to account for other information such as the number of items in the
database that contain the same concept (see Chapter 5).
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The query process uses the weights along with any weights assigned to
terms in the query to determine a scalar value (rank value) used in predicting the
likelihood that an item satisfies the query. Thresholds or a parameter specifying
the maximum number of items to be returned are used to bound the number of
items returned to a user (see Chapter 7). The results are presented to the user in
order of the rank value from highest number to lowest number.

Automatic indexing can either try to preserve the original text of an item
basing the final set of searchable index values on the original text or map the item
into a completely different representation, called concept indexing, and use the
concepts as a basis for the final set of index values. The automatic indexing
techniques are introduced in this section and later described in detail in Chapter 5.

3.3.1 Indexing by Term

When the terms of the original item are used as a basis of the index
process, there are two major techniques for creation of the index: statistical and
natural language. Statistical techniques can be based upon vector models and
probabilistic models with a special case being Bayesian models. They are classified
as statistical because their calculation of weights use statistical information such
as the frequency of occurrence of words and their distributions in the searchable
database. Natural language techniques also use some statistical information, but
perform more complex parsing to define the final set of index concepts.

Often weighted systems are discussed as vectorized information systems.
This association comes from the SMART system at Cornell University created by
Dr. Gerald Salton (Salton-73, Salton-83). The system emphasizes weights as a
foundation for information detection and stores these weights in a vector form.
Each vector represents a document and each position in a vector represents a
different unique word (processing token) in the database. The value assigned to
each position is the weight of that term in the document. A value of zero indicates
that the word was not in the document. The system and its associated research
results have been evolving for over 30 years. Queries can be translated into the
vector form. Search is accomplished by calculating the distance between the query
vector and the document vectors.

In addition to a vector model, the other dominant approach uses a
probabilistic model. The model that has been most successful in this area is the
Bayesian approach. This approach is natural to information systems and is based
upon the theories of evidential reasoning (drawing conclusions from evidence).
Bayesian approaches have long been applied to information systems (Maron-60).
The Bayesian approach could be applied as part of index term weighting, but
usually is applied as part of the retrieval process by calculating the relationship
between an item and a specific query. A Bayesian network is a directed acyclic
graph in which each node represents a random variable and the arcs between the
nodes represent a probabilistic dependence between the node and its parents
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(Howard-81, Pearl-88). Figure 3.3 shows the basic weighting approach for index
terms or associations between query terms and index terms.

Figure 3.3 Two-level Bayesian network

The nodes and represent “the item contains concept  and the F nodes
represent “the item has feature (e.g., words) The network could also be
interpreted as C representing concepts in a query and F representing concepts in an
item. The goal is to calculate the probability of given To perform that
calculation two sets of probabilities are needed:

1. The prior probability that an item is relevant to concept C

2. The conditional probability that the features where m are
present in an item given that the item contains topic

The automatic indexing task is to calculate the posterior probability
the probability that the item contains concept  given the presence of

features The Bayes inference formula that is used is:

If the goal is to provide ranking as the result of a search by the posteriors, the
Bayes rule can be simplified to a linear decision rule:

where is an indicator variable that equals 1 only if is present in the item
(equals zero otherwise) and w is a coefficient corresponding to a specific
feature/concept pair. A careful choice of w produces a ranking in decreasing order
that is equivalent to the order produced by the posterior probabilities. Interpreting
the coefficients, w, as weights corresponding to each feature (e.g., index term) and
the function g as the sum of the weights of the features, the result of applying the
formula is a set of term weights (Fung-95).
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Another approach to defining indexes to items is via use of natural
language processing. The DR-LINK (Document Retrieval through Linguistic
Knowledge) system processes items at the morphological, lexical, semantic,
syntactic, and discourse levels (Liddy-93, Weiner-95). Each level uses information
from the previous level to perform its additional analysis. The discourse level is
abstracting information beyond the sentence level and can determine abstract
concepts using pre-defined models of event relationships. This allows the indexing
to include specific term as well as abstract concepts such as time (e.g.,
differentiates between a company was sold versus a company will be sold). Normal
automatic indexing does a poor job at identifying and extracting “verbs” and
relationships between objects based upon the verbs.

3.3.2 Indexing by Concept

The basis for concept indexing is that there are many ways to express the
same idea and increased retrieval performance comes from using a single
representation. Indexing by term treats each of these occurrences as a different
index and then uses thesauri or other query expansion techniques to expand a
query to find the different ways the same thing has been represented. Concept
indexing determines a canonical set of concepts based upon a test set of terms and
uses them as a basis for indexing all items This is also called Latent Semantic
Indexing because it is indexing the latent semantic information in items. The
determined set of concepts does not have a label associated with each concept (i.e.,
a word or set of words that can be used to describe it), but is a mathematical
representation (e.g., a vector).

An example of a system that uses concept indexing is the MatchPlus
system developed by HNC Inc. The MatchPlus system uses neural networks to
facilitate machine learning of concept/word relationships and sensitivity to
similarity of use (Caid-93). The systems goal is to be able to determine from the
corpus of items, word relationships (e.g., synonyms) and the strength of these
relationships and use that information in generating context vectors. Two neural
networks are used. One neural network learning algorithm generates stem context
vectors that are sensitive to similarity of use and another one performs query
modification based upon user feedback.

Word stems, items and queries are represented by high dimensional (at
least 300 dimensions) vectors called context vectors. Each dimension in a vector
could be viewed as an abstract concept class. The approach is based upon
cognitive science work by Waltz and Pollack (Waltx-85). To define context
vectors, a set of n features are selected on an ad hoc basis (e.g., high frequency
terms after removal of stop words). The selection of the initial features is not
critical since they evolve and expand to the abstract concept classes used in the
indexing process. For any word stem k, its context vector Vk is an n-dimensional
vector with each component j interpreted as follows:
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positive if k is strongly associated with feature j
if word k is not associated with feature j

negative if word k contradicts feature j

The interpretation of components for concept vectors is exactly the same as weights
in neural networks. Each of the n features is viewed as an abstract concept class.
Then each word stem is mapped to how strongly it reflects each concept in the
items in the corpus. There is overlap between the concept classes (features)
providing a distributed representation and insulating against a small number of
entries for context vectors that could have no representation for particular stems
(Hinton-84), Once the context vectors for stems are determined, they are used to
create the index for an item. A weighted sum of the context vectors for all the
stems in the item is calculated and normalized to provide a vector representation of
the item in terms of  the n concept classes (features). Chapter 5 provides additional
detail on the specific algorithms used. Queries (natural language only) go through
the same analysis to determine vector representations. These vectors are then
compared to the item vectors.

3.3.3 Multimedia Indexing

Indexing associated with multimedia differs from the previous discussions
of indexing. The automated indexing takes place in multiple passes of the
information versus just a direct conversion to the indexing structure. The first pass
in most cases is a conversion from the analog input mode into a digital structure.
Then algorithms are applied to the digital structure to extract the unit of processing
of the different modalities that will be used to represent the item. In an abstract
sense this could be considered the location of a processing token in the modality.
This unit will then undergo the final processing that will extract the searchable
features that represent the unit. Indexing video or images can be accomplished at
the raw data level (e.g., the aggregation of raw pixels), the feature level
distinguishing primitive attributes such as color and luminance, and at the
semantic level where meaningful objects are recognized (e.g., an airplane in the
image/video frame). An example is processing of video. The system (e.g., Virage)
will periodically collect a frame of video input for processing. It might compare
that frame to the last frame captured to determine the differences between the
frames. If the difference is below a threshold it will discard the frame. For a frame
requiring processing, it will define a vector that represents the different features
associated with that frame. Each dimension of the vector represents a different
feature level aspect of  the frame. The vector then becomes the unit of processing in
the search system. This is similar to processing an image. Semantic level indexing
requires pattern recognition of objects within the images. Examples can be found
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in MITs Photobook (Pentland-94), IBM's QBIC (Niblack-93) and the MultiMedia
Datablade from Informix/Virage (Bach-96.)

If  you consider an analog audio input, the system will convert the audio to
digital format and determine the phonemes associated with the utterances. The
phonemes will be used as input to a Hidden Markov Search model (see Chapter 4
and Chapter 10), that will determine with a confidence level the words that were
spoken. A single phoneme can be divided into four states for the Markov model. It
is the textual words assocaited with the audio that becomes the searchable
structure.

In addition to storing the extracted index searchable data, a multimedia
item needs to also store some mechanism to correlate the different modalities
during search. There are two main mechanisms that are used, positional and
temporal. Positional is used when the modalities are interspersed in a linear
sequential composition. For example a document that has images or audio
inserted, can be considered a linear structure and the only relationship between the
modalities will be the juxtaposition of each modality. This would allow for a query
that would specify location of an image of a boat within one paragraph of "Cuba
and refugees".

The second mechanism is based upon time because the modalities are
executing concurrently. The typical video source off television is inherently a
multimedia source. It contains video, audio, and potentially closed captioning.
Also the creation of multimedia presentations are becoming more common using
the Synchronized Multimedia Integration Language (SMIL). It is a mark-up
language designed to support multimedia presentations that integrate text (e.g.,
from slides or free running text) with audio, images and video. In both of these
examples, time is the mechanism that is used to synchronize the different
modalities. Thus the indexing must include a time-offset parameter versus a
physical displacement. It also suggests that the proximity to increase precision will
be based upon time concurrency (or ranges) versus physical proximity.

3.4 Information Extraction

There are two processes associated with information extraction:
determination of facts to go into structured fields in a database and extraction of
text that can be used to summarize an item. In the first case only a subset of the
important facts in an item may be identified and extracted. In summarization all of
the major concepts in the item should be represented in the summary.

The process of extracting facts to go into indexes is called Automatic File
Build in Chapter 1. Its goal is to process incoming items and extract index terms
that will go into a structured database. This differs from indexing in that its
objective is to extract specific types of information versus understanding all of  the
text of the document. An Information Retrieval System’s goal is to provide an in-
depth representation of the total contents of an item (Sundheim-92). An
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Information Extraction system only analyzes those portions of a document that
potentially contain information relevant to the extraction criteria. The objective of
the data extraction is in most cases to update a structured database with additional
facts. The updates may be from a controlled vocabulary or substrings from the item
as defined by the extraction rules. The term “slot” is used to define a particular
category of information to be extracted. Slots are organized into templates or
semantic frames. Information extraction requires multiple levels of analysis of the
text of an item. It must understand the words and their context (discourse
analysis). The processing is very similar to the natural language processing
described under indexing.

In establishing metrics to compare information extraction, the previously
defined measures of precision and recall are applied with slight modifications to
their meaning. Recall refers to how much information was extracted from an item
versus how much should have been extracted from the item. It shows the amount
of correct and relevant data extracted versus the correct and relevant data in the
item. Precision refers to how much information was extracted accurately versus
the total information extracted.

Additional metrics used are overgeneration and fallout. Overgeneration
measures the amount of irrelevant information that is extracted. This could be
caused by templates filled on topics that are not intended to be extracted or slots
that get filled with non-relevant data. Fallout measures how much a system
assigns incorrect slot fillers as the number of potential incorrect slot fillers
increases (Lehnert-91).

These measures are applicable to both human and automated extraction
processes. Human beings fall short of perfection in data extraction as well as
automated systems. The best source of analysis of data extraction is from the
Message Understanding Conference Proceedings. Conferences (similar to TREC)
were held in 1991, 1992, 1993 and 1995. The conferences are sponsored by the
Advanced Research Project Agency/Software and Intelligent Systems Technology
Office of the Department of Defense. Large test databases are made available to
any organization interested in participating in evaluation of their algorithms. In
MUC-5 (1993), four experienced human analysts performed detailed extraction
against 120 documents and their performance was compared against the top three
information extraction systems. The humans achieved a 79 per cent recall with 82
per cent precision. That is, they extracted 79 per cent of the data they could have
found and 18 per cent of what they extracted was erroneous. The automated
programs achieved 53 per cent recall and 57 per cent precision. The other
mediating factor is the costs associated with information extraction. The humans
required between 15 and 60 minutes to process a single item versus the 30 seconds
to three minutes required by the computers. Thus the existing algorithms are not
operating close to what a human can achieve, but they are significantly cheaper. A
combination of the two in a computer-assisted information extraction system
appears the most reasonable solution in the foreseeable future.

Another related information technology is document summarization.
Rather than trying to determine specific facts, the goal of document summarization
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is to extract a summary of an item maintaining the most important ideas while
significantly reducing the size. Examples of summaries that are often part of any
item are titles, table of contents, and abstracts with the abstract being the closest.
The abstract can be used to represent the item for search purposes or as a way for a
user to determine the utility of an item without having to read the complete item.
It is not feasible to automatically generate a coherent narrative summary of an item
with proper discourse, abstraction and language usage (Sparck Jones-93).
Restricting the domain of the item can significantly improve the quality of the
output (Paice-93, Reimer-88). The more restricted goals for much of the research
is in finding subsets of the item that can be extracted and concatenated (usually
extracting at the sentence level) and represents the most important concepts in the
item. There is no guarantee of readability as a narrative abstract and it is seldom
achieved. It has been shown that extracts of approximately 20 per cent of the
complete item can represent the majority of significant concepts (Morris-92).
Different algorithms produces different summaries. Just as different humans create
different abstracts for the same item, automated techniques that generate different
summaries does not intrinsically imply major deficiencies between the summaries.
Most automated algorithms approach summarization by calculating a score for
each sentence and then extracting the sentences with the highest scores. Some
examples of the scoring techniques are use of rhetorical relations (e.g., reason,
direction, contrast: see Miike-94 for experiments in Japanese), contextual inference
and syntactic coherence using cue words (Rush-71), term location (Salton-83), and
statistical weighting properties discussed in Chapter 5. There is no overall
theoretic basis for the approaches leading to many heuristic algorithms. Kupiec et
al. are pursuing statistical classification approach based upon a training set
reducing the heuristics by focusing on a weighted combination of criteria to
produce “optimal” scoring scheme (Kupiec-95). They selected the following five
feature sets as a basis for their algorithm:

Sentence Length Feature that requires sentence to be over five words in
length

Fixed Phrase Feature that looks for the existence of phrase “cues” (e.g.,
“in conclusion)

Paragraph Feature that places emphasis on the first ten and last five
paragraphs in an item and also the location of the sentences within the
paragraph

Thematic Word Feature that uses word frequency

Uppercase Word Feature that places emphasis on proper names and
acronyms.
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As with previous experiments by Edmundson, Kupiec et al. discovered that
location based heuristics gives better results than the frequency based features
(Edmundson-69).

Although there is significant overlap in the algorithms and techniques for
information extraction and indexing items for information retrieval, this text does
not present more detail on information extraction. For additional information, the
MUC proceedings from Morgan Kaufman Publishers, Inc. in San Francisco is one
source of the latest detailed information on information extraction.

3.5 Summary

This chapter introduces the concepts behind indexing. Historically, term
indexing was applied to a human-generated set of terms that could be used to
locate an item. With the advent of computers and the availability of text in
electronic form, alternatives to human indexing are available and essential. There
is too much information in electronic form to make it feasible for human indexing
of each item. Thus automated indexing techniques are absolutely essential. When
humans performed the indexing, there were guidelines on the scope of the indexing
process. They were needed to ensure that the human indexers achieved the
objectives of a particular indexing effort. The guidelines defined the level of detail
to which the indexing was to be applied (i.e., exhaustivity and specificity). In
automated systems there is no reason not to index to the lowest level of detail. The
strength in manual indexing was the associative powers of the human indexer in
consolidating many similar ideas into a small number of representative index terms
and knowing when certain concepts were of such low value as to not warrant
indexing. Automated indexing systems try to achieve these by using weighted and
natural language systems and by concept indexing. The reliance of automated
systems on statistical information alone never achieve totally accurate assignment
of importance weights to the concepts being indexed. The power of language is not
only in the use of words but also the elegance of their combinations.

The goal of automatic indexing is not to achieve equivalency to human
processing, but to achieve sufficient interpretation of items to allow users to locate
needed information with the minimum amount of wasted effort. Even the human
indexing process has left much to be desired and caused significant energy by the
user to locate all of the needed information.

As difficult as determining index terms is, text summarization encounters
an even higher level of complexity. The focus of text summarization is still on just
the location of text segments that adequately represent an item. The combining of
these segments into a readable “abstract” is still an unachievable goal. In the near
term, a summarization that may not be grammatically correct but adequately covers
the concepts in an item can be used by user to determine if the complete item
should be read in detail.
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The importance of  the algorithms being developed for automatic indexing
can not be overstated. The original text of items is not being searched. The
extracted index information is realistically the only way to find information. The
weaker the theory and implementation of the indexing algorithms is, the greater
the impact on the user in wasting energy to find needed information. The Global
Information Infrastructure (e.g., the Internet) is touching every part of our lives
from academic instruction to shopping and getting news. The indexing and search
algorithms drives the success of  this new aspect of everyday life.

EXERCISES

1. Under what circumstances is manual indexing not required to ensure finding
information? Postulate an example where this is true.

2. Does high specificity always imply high exhaustivity? Justify your answer.

3. Trade off  the use of precoordination versus postcoordination.

4. What are the problems with Luhn’s concept of  “resolving power”?

5. How does the process of information extraction differ from the process of
document indexing?
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4 Data Structure

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introduction to Data Structures
Stemming Algorithms
Inverted File Structure
N-Gram Data Structure
PAT Data Structure
Signature File Structure
Hypertext and XML Data Structures
Hidden Markov Models
Summary

Knowledge of data structures used in Information Retrieval Systems
provides insights into the capabilities available to the systems that implement
them. Each data structure has a set of associated capabilities that provide an
insight into the objectives of the implementers by its selection. From an
Information Retrieval System perspective, the two aspects of a data structure that
are important are its ability to represent concepts and their relationships and how
well it supports location of those concepts. This chapter discusses the major
logical data structures that are used in information retrieval systems. The
implementation of a data structure (e.g., as an object, linked list, array, hashed file)
is discussed only as an example. A description of Hidden Markov Models (HMMs)
is included in Section 8. HMMs are starting to be used as a new approach for
searching for information.
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4.1 Introduction to Data Structures

There are usually two major data structures in any information system.
One structure stores and manages the received items in their normalized form.
The process supporting this structure is called the “document manager.” The
other major data structure contains the processing tokens and associated data to
support search. Figure 4.1 expands the document file creation function in Figure
1.4 from Chapter 1, showing the document manager function. Details on the
creation of processing tokens can be found in Section 1.3.1. The results of a search
are references to the items that satisfy the search statement, which are passed to the
document manager for retrieval. This chapter focuses on data structures used to
support the search function. It does not address the document management
function nor the data structures and other related theory associated with the parsing
of queries. For that background the reader should pursue a text on finite automata
and language (regular expressions).

Figure 4.1 Major Data Structures



Data Structure 73

One of the first transformations often applied to data before placing it in
the searchable data structure is stemming. Stemming reduces the diversity of
representations of a concept (word) to a canonical morphological representation.
The risk with stemming is that concept discrimination information may be lost in
the process, causing a decrease in precision and the ability for ranking to be
performed. On the positive side, stemming has the potential to improve recall.

The most common data structure encountered in both data base and
information systems is the inverted file system (discussed in Section 4.3). It
minimizes secondary storage access when multiple search terms are applied across
the total database. All commercial and most academic systems use inversion as the
searchable data structure. A variant of the searchable data structure is the N-gram
structure that breaks processing tokens into smaller string units (which is why it is
sometimes discussed under stemming) and uses the token fragments for search. N-
grams have demonstrated improved efficiencies and conceptual manipulations over
full word inversion. PAT trees and arrays view the text of an item as a single long
stream versus a juxtaposition of words. Around this paradigm search algorithms
are defined based upon text strings. Signature files are based upon the idea of fast
elimination of non-relevant items reducing the searchable items to a manageable
subset. The subset can be returned to the user for review or other search
algorithms may be applied to it to eliminate any false hits that passed the signature
filter.

A special data structure that is becoming common place because of its use
on the Internet is hypertext. This structure allows the creator of an item to
manually or automatically create imbedded links within one item to a related item.

4.2 Stemming Algorithms

The concept of stemming has been applied to information systems from
their initial automation in the 1960’s. The original goal of stemming was to
improve performance and require less system resources by reducing the number of
unique words that a system has to contain. With the continued significant increase
in storage and computing power, use of stemming for performance reasons is no
longer as important. Stemming is now being reviewed for the potential
improvements it can make in recall versus its associated decline in precision. A
system designer can trade off the increased overhead of stemming in creating
processing tokens versus reduced search time overhead of processing query terms
with trailing “don’t cares” (see Section 2.1.5 Term Masking) to include all of their
variants. The stemming process creates one large index for the stem versus Term
Masking which requires the merging (ORing) of the indexes for every term that
matches the search term.
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4.2.1 Introduction to the Stemming Process

Stemming algorithms are used to improve the efficiency of the
information system and to improve recall. Conflation is the term frequently used
to refer to mapping multiple morphological variants to a single representation
(stem). The premise is that the stem carries the meaning of the concept associated
with the word and the affixes (endings) introduce subtle modifications to the
concept or are used for syntactical purposes. Languages have precise grammars
that define their usage, but also evolve based upon human usage. Thus exceptions
and non-consistent variants are always present in languages that typically require
exception look-up tables in addition to the normal reduction rules.

At first glance, the idea of equating multiple representations of a word as
a single stem term would appear to provide significant compression, with
associated savings in storage and processing. For example, the stem “comput”
could associate “computable, computability, computation, computational,
computed, computing, computer, computerese, computerize” to one compressed
word. But upon closer examination, looking at an inverted file system
implementation, the savings is only in the dictionary since weighted positional
information is typically needed in the inversion lists. In an architecture with
stemming, the information is in the one inversion list for the stem term versus
distributed across multiple inversion lists for each unstemmed term. Since the size
of the inversion lists are the major storage factor, the compression of stemming
does not significantly reduce storage requirements. For small test databases such
as the Cranfield collection, Lennon reported savings of 32 per cent (Lennon-81).
But when applied to larger databases of 1.6 Megabytes and 50 Megabytes, the
compression reduced respectively to 20 percent and 13.5 percent (Harman-91).
Harman also points out that misspellings and proper names reduce the
compression even more. In a large text corpus, such as the TREC database, over
15 per cent of the unique words are proper nouns or acronyms that should not be
stemmed.

Another major use of stemming is to improve recall. As long as a
semantically consistent stem can be identified for a set of words, the generalization
process of stemming does help in not missing potentially relevant items.
Stemming of the words “calculate, calculates, calculation, calculations,
calculating” to a single stem (“calculat”) insures whichever of those terms is
entered by the user, it is translated to the stem and finds all the variants in any
items they exist. In contrast, stemming can not improve, but has the potential for
decreasing precision. The precision value is not based on finding all relevant items
but just minimizing the retrieval of non-relevant items. Any function that
generalizes a user’s search statement can only increase the likelihood of retrieving
non-relevant items unless the expansion guarantees every item retrieved by the
expansion is relevant.
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It is important for a system to be able to categorize a word prior to making
the decision to stem it. Certain categories such as proper names and acronyms
should not have stemming applied because their morphological basis is not related
to a common core concept. Stemming can also cause problems for Natural
Language Processing (NLP) systems by causing the loss of information needed for
aggregate levels of  natural language processing (discourse analysis). The tenses of
verbs may be lost in creating a stem, but they are needed to determine if a
particular concept (e.g., economic support) being indexed occurred in the past or
will be occurring in the future. Time is one example of the type of relationships
that are defined in Natural Language Processing systems (see Chapter 5).

The most common stemming algorithm removes suffixes and prefixes,
sometimes recursively, to derive the final stem. Other techniques such as table
lookup and successor stemming provide alternatives that require additional
overheads. Successor stemmers determine prefix overlap as the length of a stem is
increased. This information can be used to determine the optimal length for each
stem from a statistical versus a linguistic perspective. Table lookup requires a
large data structure. A system such as RetrievalWare that is based upon a very
large thesaurus/concept network has the data structure as part of its basic product
and thus uses table look-up. The Kstem algorithm used in the INQUERY System
combines a set of simple stemming rules with a dictionary to determine processing
tokens.

The affix removal technique removes prefixes and suffixes from terms
leaving the stem. Most stemmers are iterative and attempt to remove the longest
prefixes and suffixes (Lovins-68, Salton-68, Dawson-74, Porter-80 and Paice-90).
The Porter algorithm is the most commonly accepted algorithm, but it leads to loss
of precision and introduces some anomalies that cause the user to question the
integrity of the system. Stemming is applied to the user's query as well as to the
incoming text. If the transformation moves the query term to a different semantic
meaning, the user will not understand why a particular item is returned and may
begin questioning the integrity of the system in general.

4.2.2 Porter Stemming Algorithm

The Porter Algorithm is based upon a set of conditions of the stem, suffix
and prefix and associated actions given the condition. Some examples of stem
conditions are:

1. The measure, m, of  a stem is a function of sequences of vowels (a, e, i,
o, u, y) followed by a consonant. If V is a sequence of vowels and C is a
sequence of consonants, then m is:
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where the initial C and final V are optional and m is the number VC
repeats.

Measure

m=0
m=1
m=2

Example

free, why
frees, whose
prologue, compute

2. *<X>
3. *v*
4. *d
5. *o

- stem ends with letter X
- stem contains a vowel
- stem ends in double consonant
- stem ends with consonant-vowel-consonant sequence

where the final consonant is not w, x, or y

Suffix conditions take the form current_suffix = = pattern
Actions are in the form old_suffix -> new_suffix

Rules are divided into steps to define the order of applying the rules. The
following are some examples of  the rules:

STEP

1a
1b
1b11

1c
2
3
4
5a
5b

CONDITION

NULL
*v*
NULL
*v*
m>0
m>0
m>1
m>1
m>1 and *d
and *<L>

SUFFIX

sses
ing
at
y
aliti
icate
able
e
NULL

REPLACEMENT

ss
NULL
ate
i
al
ic
NULL
NULL
single letter

EXAMPLE

stresses->stress
making->mak
inflat(ed)-> inflate
happy->happi
formaliti->formal
duplicate->duplic
adjustable->adjust
inflate->inflat
controll->control

Given the word “duplicatable,” the following are the steps in the stemming
process:

duplicat
duplicate
duplic

rule 4
rule 1b1
rule 3

1 1b1 rules are expansion rules to make correction to stems for proper conflation.
For example stemming of skies drops the es, making it ski, which is the wrong
concept and the I should be changed to y.
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The application of another rule in step 4, removing “ic,” can not be applied since
only one rule from each step is allowed be applied.

4.2.3 Dictionary Look-Up Stemmers

An alternative to solely relying on algorithms to determine a stem is to use
a dictionary look-up mechanism. In this approach, simple stemming rules still
may be applied. The rules are taken from those that have the fewest exceptions
(e.g., removing pluralization from nouns). But even the most consistent rules have
exceptions that need to be addressed. The original term or stemmed version of the
term is looked up in a dictionary and replaced by the stem that best represents it.
This technique has been implemented in the INQUERY and RetrievalWare
Systems.

The INQUERY system uses a stemming technique called Kstem. Kstem
is a morphological analyzer that conflates word variants to a root form (Kstem-95).
It tries to avoid collapsing words with different meanings into the same root. For
example, “memorial” and “memorize” reduce to “memory.” But “memorial” and
“memorize” are not synonyms and have very different meanings. Kstem, like
other stemmers associated with Natural Language Processors and dictionaries,
returns words instead of truncated word forms. Generally, Kstem requires a word
to be in the dictionary before it reduces one word form to another. Some endings
are always removed, even if the root form is not found in the dictionary (e.g.,
‘ness’, ‘ly’). If the word being processed is in the dictionary, it is assumed to be
unrelated to the root after stemming and conflation is not performed (e.g.,
‘factorial’ needs to be in the dictionary or it is stemmed to ‘factory’). For irregular
morphologies, it is necessary to explicitly map the word variant to the root desired
(for example, “matrices” to “matrix”).

The Kstem system uses the following six major data files to control and
limit the stemming process:

Dictionary of words (lexicon)

Supplemental list of  words for the dictionary

Exceptions list for those words that should retain an “e” at the
end (e.g., “suites” to “suite” but “suited” to “suit”)

Direct_Conflation - allows definition of direct conflation via
word pairs that override the stemming algorithm

Country_Nationality - conflations between nationalities and
countries (“British” maps to “Britain”)
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Proper Nouns - a list of proper nouns that should not be
stemmed.

The strength of the RetrievalWare System lies in its Thesaurus/Semantic
Network support data structure that contains over 400,000 words. The dictionaries
that are used contain the morphological variants of words. New words that are not
special forms (e.g., dates, phone numbers) are located in the dictionary to
determine simpler forms by stripping off suffixes and respelling plurals as defined
in the dictionary.

4.2.4 Successor Stemmers

Successor stemmers are based upon the length of prefixes that optimally
stem expansions of additional suffixes. The algorithm is based upon an analogy in
structural linguistics that investigated word and morpheme boundaries based upon
the distribution of phonemes, the smallest unit of speech that distinguish one word
from another (Hafer-74). The process determines the successor varieties for a
word, uses this information to divide a word into segments and selects one of the
segments as the stem.

The successor variety of a segment of a word in a set of words is the
number of distinct letters that occupy the segment length plus one character. For
example, the successor variety for the first three letters (i.e., word segment) of a
five-letter word is the number of words that have the same first three letters but a
different fourth letter plus one for the current word. A graphical representation of
successor variety is shown in a symbol tree. Figure 4.2 shows the symbol tree for
the terms bag, barn, bring, both, box, and bottle. The successor variety for any
prefix of a word is the number of children that are associated with the node in the
symbol tree representing that prefix. For example, the successor variety for the
first letter “b” is three. The successor variety for the prefix “ba” is two.

The successor varieties of a word are used to segment a word by applying
one of the following four methods :

1. Cutoff method: a cutoff value is selected to define stem length. The
value varies for each possible set of words.

2. Peak and Plateau: a segment break is made after a character whose
successor variety exceeds that of the character immediately preceding it
and the character immediately following it.

3. Complete word method: break on boundaries of complete words.
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4. Entropy method: uses the distribution of successor variety letters. Let
|Dak| be the number of words beginning with the k length sequence of
letters a. Let |Dakj| be the number of words in Dak with successor j. The

Figure 4.2 Symbol Tree for terms bag, barn, bring, box, bottle , both

probability that a member of Dak has the successor j is given by |Dakj|/|Dak|. The
entropy (Average Information as defined by Shannon-51) of |Dak| is:
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Using this formula a set of entropy measures can be calculated for a word and its
predecessors. A cutoff value is selected and a boundary is identified whenever the
cutoff value is reached. Hafer and Weiss experimented with the techniques,
discovering that combinations of the techniques performed best, which they used in
defining their stemming process. Using the words in Figure 4.2 plus the additional
word “boxer,” the successor variety stemming is shown in Figure 4.3.

PREFIX

b
bo

box
boxe
boxer

Successor Variety

3
2
1
1
1

Branch Letters

a,r,o
t,x
e
r

blank

Figure 4.3 Successor Variety Stemming

If the cutoff method with value four was selected then the stem would be “boxe.”
The peak and plateau method can not apply because the successor variety
monotonically decreases. Applying the complete word method, the stem is “box.”
The example given does not have enough values to apply the entropy method. The
advantage of the peak and plateau and the complete word methods is that a cutoff
value does not have to be selected (Frakes-92).

After a word has been segmented, the segment to be used as the stem must
be selected. Hafer and Weiss used the following rule:

if (first segment occurs in <= 12 words in database)
first segment is stem

else (second segment is stem)

The idea is that if a segment is found in more than 12 words in the text being
analyzed, it is probably a prefix. Hafer and Weiss noted that multiple prefixes in
the English language do not occur often and thus selecting the first or second
segment in general determines the appropriate stem.

4.2.5 Conclusions

Frakes summarized studies of various stemming studies (Frakes-92). He
cautions that some of the authors failed to report test statistics, especially sizes,
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making interpretation difficult. Also some of the test sample sizes were so small as
to make their results questionable. Frakes came to the following conclusions:

Stemming can affect retrieval (recall) and where effects were identified
they were positive. There is little difference between retrieval
effectiveness of different full stemmers with the exception of the Hafer
and Weiss stemmer.

Stemming is as effective as manual conflation.

Stemming is dependent upon the nature of  the vocabulary.

To quantify the impact of stemmers, Paice has defined a stemming
performance measure called Error Rate Relative to Truncation (ERRT) that can be
used to compare stemming algorithms (Paice-94). The approach depends upon the
ability to partition terms semantically and morphologically related to each other
into “concept groups.” After applying a stemmer that is not perfect, concept
groups may still contain multiple stems rather than one. This introduces an error
reflected in the Understemming Index (UI). Also it is possible that the same stem
is found in multiple groups. This error state is reflected in the Overstemming
Index (OI). The worst case stemming algorithm is where words are stemmed via
truncation to a word length (words shorter than the length are not truncated). UI
and OI values can be calculated based upon truncated word lengths. The perfect
case is where UI and OI equal zero. ERRT is then calculated as the distance from
the origin to the (UI, OI) coordinate of the stemmer being evaluated (OP) versus
the distance from the origin to the worst case intersection of the line generated by
pure truncation (OT) (see Figure 4-4).

The values calculated are biased by the initial grouping of the test terms.
Larger ERRT values occur with looser grouping. For the particular test runs, the
UI of the Porter Algorithm was greater than the UI of the Paice/Husk algorithms
(Paice-90). The OI was largest for the Paice and the least for Porter. Finally, the
ERRT of the Porter was greater than the Paice algorithm. These results suggest
that the Paice algorithm appeared significantly better than the Porter algorithm.
But the differences in objectives between the stemmers (Porter being a light
stemmer - tries to avoid overstemming leaving understemming errors and Paice
being the opposite, a heavy stemmer) makes comparison less meaningful. While
this approach to stemmer evaluation requires additional work to remove
imprecisions and provide a common comparison framework, it provides a
mechanism to develop a baseline to discuss future developments.

The comparisons by Frakes and Paice support the intuitive feeling that
stemming as a generalization of processing tokens for a particular concept (word)
can only help in recall. In experiments, stemming has never been proven to
significantly improve recall (Harman-91). Stemming can potentially reduce
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Figure 4.4 Computation of  ERRT value

precision. The impact on precision can be minimized by the use of ranking items
based upon all the terms in the query, categorization of terms and selective
exclusion of some terms from stemming. Unless the user is very restrictive in the
query , the impact of the other search terms and those expanded automatically by
the system ameliorates the effects of generalization caused by stemming.
Stemming in large databases should not be viewed as a significant compression
technique to save on storage. Its major advantage is in the significant reduction of
dictionary sizes and therefore a possible reduction in the processing time for each
search term.

4.3 Inverted File Structure

The most common data structure used in both database management and
Information Retrieval Systems is the inverted file structure. Inverted file structures
are composed of three basic files: the document file, the inversion lists (sometimes
called posting files) and the dictionary. The name “inverted file” comes from its
underlying methodology of storing an inversion of the documents: inversion of the
document from the perspective that, for each word, a list of documents in which
the word is found in is stored (the inversion list for that word). Each document in
the system is given a unique numerical identifier. It is that identifier that is stored
in the inversion list. The way to locate the inversion list for a particular word is
via the Dictionary. The Dictionary is typically a sorted list of all unique words
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(processing tokens) in the system and a pointer to the location of its inversion list
(see Figure 4.5). Dictionaries can also store other information used in query
optimization such as the length of inversion lists.

Figure 4.5 Inverted File Structure

Additional information may be used from the item to increase precision
and provide a more optimum inversion list file structure. For example, if zoning is
used, the dictionary may be partitioned by zone. There could be a dictionary and
set of inversion lists for the “Abstract” zone in an item and another dictionary and
set of inversion lists for the “Main Body” zone. This increases the overhead when
a user wants to search the complete item versus restricting the search to a specific
zone. Another typical optimization occurs when the inversion list only contains
one or two entries. Those entries can be stored as part of the dictionary. The
inversion list contains the document identifier for each document in which the
word is found. To support proximity, contiguous word phrases and term weighting
algorithms, all occurrences of a word are stored in the inversion list along with the
word position. Thus if the word “bit” was the tenth, twelfth and eighteenth word
in document #1, then the inversion list would appear:

bit -1(10), 1(12), 1(18)

Weights can also be stored in inversion lists. Words with special characteristics
are frequently stored in their own dictionaries to allow for optimum internal
representation and manipulation (e.g., dates which require date ranging and
numbers).

When a search is performed, the inversion lists for the terms in the query
are located and the appropriate logic is applied between inversion lists. The result
is a final hit list of items that satisfy the query. For systems that support ranking,
the list is reorganized into ranked order. The document numbers are used to
retrieve the documents from the Document File. Using the inversion lists in Figure
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4-5, the query (bit AND computer) would use the Dictionary to find the inversion
lists for “bit” and “computer.” These two lists would be logically ANDed: (1,3)
AND (1,3,4) resulting in the final Hit list containing (1,3).

Rather than using a dictionary to point to the inversion list, B-trees can be
used. The inversion lists may be at the leaf level or referenced in higher level
pointers. Figure 4.6 shows how the words in Figure 4.5 would appear. A B-tree of
order m is defined as:

A root node with between 2 and 2m keys

All other internal nodes have between m and 2m keys

All keys are kept in order from smaller to larger

All leaves are at the same level or differ by at most one level.

Figure 4-6 B-Tree Inversion Lists

Cutting and Pedersen described use of B-trees as an efficient inverted file storage
mechanism for data that undergoes heavy updates (Cutting-90).

The nature of information systems is that items are seldom if ever
modified once they are produced. Most commercial systems take advantage of this
fact by allowing document files and their associated inversion lists to grow to a
certain maximum size and then to freeze them, starting a new structure. Each of
these databases of document file, dictionary, inversion lists is archived and made
available for a user’s query. This has the advantage that for queries only interested
in more recent information, only the latest databases need to be searched. Since
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older items are seldom deleted or modified, the archived databases may be
permanently backed-up, thus saving on operations overhead. Starting a new
inverted database has significant overhead in adding new words and inversion lists
until the frequently found words are added to the dictionary and inversion lists.
Previous knowledge of archived databases can be used to establish an existing
dictionary and inversion structure at the start of a new database, thus saving
significant overhead during the initial adding of new documents2.

Inversion lists structures are used because they provide optimum
performance in searching large databases. The optimality comes from the
minimization of data flow in resolving a query. Only data directly related to the
query are retrieved from secondary storage. Also there are many techniques that
can be used to optimize the resolution of the query based upon information
maintained in the dictionary.

Inversion list file structures are well suited to store concepts and their
relationships. Each inversion list can be thought of as representing a particular
concept. The inversion list is then a concordance of all of the items that contain
that concept. Finer resolution of concepts can additionally be maintained by
storing locations with an item and weights of the item in the inversion lists. With
this information, relationships between concepts can be determined as part of
search algorithms (see Chapter 7). Location of concepts is made easy by their
listing in the dictionary and inversion lists. For Natural Language Processing
algorithms, other structures may be more appropriate or required in addition to
inversion lists for maintaining the required semantic and syntactic information.

4.4 N-Gram Data Structures

N-Grams can be viewed as a special technique for conflation (stemming)
and as a unique data structure in information systems. N-Grams are a fixed length
consecutive series of “n” characters. Unlike stemming that generally tries to
determine the stem of a word that represents the semantic meaning of the word, n-
grams do not care about semantics. Instead they are algorithmically based upon a
fixed number of characters. The searchable data structure is transformed into
overlapping n-grams, which are then used to create the searchable database.
Examples of bigrams, trigrams and pentagrams are given in Figure 4.7 for the
word phrase “sea colony.” For n-grams, with n greater than two, some systems
allow interword symbols to be part of the n-gram set usually excluding the single
character with interword symbol option. The symbol # is used to represent the
interword symbol which is anyone of a set of symbols (e.g., blank, period,
semicolon, colon, etc.). Each of the n-grams created becomes a separate
processing tokens and are searchable. It is possible that the same n-gram can be
created multiple times from a single word.

2 The INQUIRE DBMS provides this feature.



86                        Chapter 4

se ea co ol lo on ny

sea col olo lon ony

#se sea ea# #co col olo lon ony ny#

#sea# #colo colon olony lony#

Bigrams
(no interword symbols)

Trigrams
(no interword symbols)

Trigrams
(with interword symbol #)

Pentagrams
(with interword symbol #)

Figure 4.7 Bigrams, Trigrams and Pentagrams for “sea colony”

4.4.1 History

The first use of n-grams dates to World War II when it was used by
cryptographers. Fletcher Pratt states that “with the backing of  bigram and trigram
tables any cryptographer can dismember an simple substitution cipher” (Pratt-42).
Use of bigrams was described by Adamson as a method for conflating terms
(Adamson-74). It does not follow the normal definition of stemming because what
is produced by creating n-grams are word fragments versus semantically
meaningful word stems. It is this characteristic of mapping longer words into
shorter n-gram fragments that seems more appropriately classified as a data
structure process than a stemming process.

Another major use of n-grams (in particular trigrams) is in spelling error
detection and correction (Angell-83, McIllroy-82, Morris-75, Peterson-80,
Thorelli-62, Wang-77, and Zamora-81). Most approaches look at the statistics on
probability of occurrence of n-grams (trigrams in most approaches) in the English
vocabulary and indicate any word that contains non-existent to seldom used n-
grams as a potential erroneous word. Damerau specified four categories of spelling
errors (Damerau-64) as shown in Figure 4.8. Using the classification scheme,
Zamora showed trigram analysis provided a viable data structure for identifying
misspellings and transposed characters. This impacts information systems as a
possible basis for identifying potential input errors for correction as a procedure
within the normalization process (see Chapter 1). Frequency of occurrence of n-
gram patterns also can be used for identifying the language of an item (Damashek-
95, Cohen-95).
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Error Category

Single Character Insertion

Single Character Deletion

Single Character Substitution

Transposition of two adjacent characters

Example

compuuter

compter

compiter

comptuer

Figure 4.8 Categories of  Spelling Errors

In information retrieval, trigrams have been used for text compression
(Wisn-87) and to manipulate the length of index terms (Will-79, Schek-78,
Schuegraf-76). D’Amore and Mah (D’Amore-85) used a variety of different n-
grams as index elements for inverted file systems they implemented. They have
also been the core data structure to encode profiles for the Logicon LMDS system
(Yochum-95) used for Selective Dissemination of Information. For retrospective
search, the Acquaintance System uses n-grams to store the searchable document
file (Damashek-95, Huffman-95) for retrospective search of large textual
databases.

4.4.2 N-Gram Data Structure

As shown in Figure 4.7, an n-gram is a data structure that ignores words
and treats the input as a continuous data, optionally limiting its processing by
interword symbols. The data structure consists of fixed length overlapping symbol
segments that define the searchable processing tokens. These tokens have logical
linkages to all the items in which the tokens are found. Inversion lists, document
vectors (described in Chapter 5) and other proprietary data structures are used to
store the linkage data structure and are used in the search process. In some cases
just the least frequently occurring n-gram is kept as part of a first pass search
process (Yochum-85). Examples of these implementations are found in Chapter
5.

The choice of the fixed length word fragment size has been studied in
many contexts. Yochum and D’Amore investigated the impacts of different values
for “n.” Fatah Comlekoglu (Comlekoglu-90) investigated n-gram data structures
using an inverted file system for n=2 to n=26. Trigrams (n-grams of length 3)
were determined to be the optimal length, trading off information versus size of
data structure. The Aquaintance System uses longer n-grams, ignoring word



88 Chapter 4

boundaries. The advantage of n-grams is that they place a finite limit on the
number of searchable tokens.

The maximum number of unique n-grams that can be generated, MaxSeg, can be
calculated as a function of n which is the length of the n-grams, and which is the
number of processable symbols from the alphabet (i.e., non-interword symbols).

Although there is a savings in the number of unique processing tokens
and implementation techniques allow for fast processing on minimally sized
machines, false hits can occur under some architectures. For example, a system
that uses trigrams and does not include interword symbols or the character position
of the n-gram in an item finds an item containing “retain detail” when searching
for “retail” (i.e., all of the trigrams associated with “retail” are created in the
processing of “retain detail”). Inclusion of interword symbols would not have
helped in this example. Inclusion of character position of the n-gram would have
discovered that the n-grams “ret,” “eta,” “tai,” “ail” that define “retail” are not all
consecutively starting within one character of each other. The longer the n-gram,
the less likely this type error is to occur because of more information in the word
fragment. But the longer the n-gram, the more it provides the same result as full
word data structures since most words are included within a single n-gram.
Another disadvantage of n-grams is the increased size of inversion lists (or other
data structures) that store the linkage data structure. In effect, use of n-grams
expands the number of processing tokens by a significant factor. The average word
in the English language is between six and seven characters in length. Use of
trigrams increases the number of processing tokens by a factor of five (see Figure
4.7) if interword symbols are not included. Thus the inversion lists increase by a
factor of five.

Because of the processing token bounds of n-gram data structures,
optimized performance techniques can be applied in mapping items to an n-gram
searchable structure and in query processing. There is no semantic meaning in a
particular n-gram since it is a fragment of processing token and may not represent
a concept. Thus n-grams are a poor representation of concepts and their
relationships. But the juxtaposition of n-grams can be used to equate to standard
word indexing, achieving the same levels of recall and within 85 per cent precision
levels with a significant improvement in performance (Adams-92). Vector
representations of the n-grams from an item can be used to calculate the similarity
between items.

4.5 PAT Data Structure

Using n-grams with interword symbols included between valid processing
tokens equates to a continuous text input data structure that is being indexed in
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contiguous “n” character tokens. A different view of addressing a continuous text
input data structure comes from PAT trees and PAT arrays. The input stream is
transformed into a searchable data structure consisting of substrings. The original
concepts of PAT tree data structures were described as Patricia trees (Flajolet-86,
Frakes-92, Gonnet-83, Knuth-73, and Morrison-68) and have gained new
momentum as a possible structure for searching text and images (Gonnet-88) and
applications in genetic databases (Manber-90). The name PAT is short for PAtricia
Trees (PATRICIA stands for Practical Algorithm To Retrieve Information Coded
In Alphanumerics.)

In creation of PAT trees each position in the input string is the anchor
point for a sub-string that starts at that point and includes all new text up to the
end of the input. All substrings are unique. This view of text lends itself to many
different search processing structures. It fits within the general architectures of
hardware text search machines and parallel processors (see Chapter 9). A substring
can start at any point in the text and can be uniquely indexed by its starting
location and length. If all strings are to the end of the input, only the starting
location is needed since the length is the difference from the location and the total
length of the item. It is possible to have a substring go beyond the length of the
input stream by adding additional null characters. These substrings are called
sistring (semi-infinite string). Figure 4.9 shows some possible sistrings for an
input text.

A PAT tree is an unbalanced, binary digital tree defined by the sistrings.
The individual bits of the sistrings decide the branching patterns with zeros
branching left and ones branching right. PAT trees also allow each node in the
tree to specify which bit is used to determine the branching via bit position or the

Text

sistring 1
sistring 2
sistring  5
sistring 10
sistring 20
sistring 30

Economics for Warsaw is complex.

Economics for Warsaw is complex.
conomics for Warsaw is complex.
omics for Warsaw is complex.
for Warsaw is complex.

w is complex.
ex.

Figure 4.9 Examples of sistrings

number of bits to skip from the parent node. This is useful in skipping over levels
that do not require branching.

The key values are stored at the leaf nodes (bottom nodes) in the PAT
Tree. For a text input of size “n” there are “n” leaf nodes and “n-1” at most
higher level nodes. It is possible to place additional constraints on sistrings for the
leaf nodes. We may be interested in limiting our searches to word boundaries.
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Thus we could limit our sistrings to those that are immediately after an interword
symbol. Figure 4.10 gives an example of the sistrings used in generating a PAT

INPUT
sistring 1
sistring 2
sistring 3
sistring 4
sistring 5
sistring 6
sistring 7
sistring 8

100110001101
1001....
001100...
01100....

11.......
1000...
000.....

001101
01101

Figure 4.10 Sistrings for input “100110001101”

tree. If the binary representations of “h” is (100), “o” is (110), “m” is (001) and
“e” is (101) then the word “home” produces the input 100110001101.... Using the
sistrings, the full PAT binary tree is shown in Figure 4.11. A more compact tree
where skip values are in the intermediate nodes is shown in Figure 4.12. In this
version the value in the intermediate nodes (indicated by rectangles) is the number
of bits to skip until the next bit to compare that causes differences between similar
terms. This final version saves space, but requires comparing a search value to the
leaf node (in an oval) contents to ensure the skipped bits match the search term
(i.e., skipped bits are not compared).

The search terms are also represented by their binary representation and
the PAT trees for the sistrings are compared to the search terms looking for
matches.

As noted in Chapter 2, one of the most common classes of searches is
prefix searches. PAT trees are ideally constructed for this purpose because each
sub-tree contains all the sistrings for the prefix defined up to that node in the tree
structure. Thus all the leaf nodes after the prefix node define the sistrings that
satisfy the prefix search criteria. This logically sorted order of PAT trees also
facilitates range searches since it is easy to determine the sub-trees constrained by
the range values. If the total input stream is used in defining the PAT tree, then
suffix, imbedded string, and fixed length masked searches (see Section 2.1.5) are
all easy because the given characters uniquely define the path from the root node to
where the existence of sistrings need to be validated. Fuzzy searches are very
difficult because large number of possible sub-trees could match the search term.

A detailed discussion on searching PAT trees and their representation as
an array is provided by Gonnet, Baeza-Yates and Snider (Gonnet-92). In their
comparison to Signature and Inversion files, they concluded that PAT arrays have
more accuracy than Signature files and provide the ability to string searches that
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Figure 4.11 PAT Binary Tree for input “100110001101”
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Figure 4.12 PAT Tree skipping bits for “100110001101”

are inefficient in inverted files (e.g., suffix searches, approximate string searches,
longest repetition).

Pat Trees (and arrays) provide an alternative structure if string searching
is the goal. They store the text in an alternative structure supporting string
manipulation. The structure does not have facilities to store more abstract concepts
and their relationships associated with an item. The structure has interesting
potential applications, but is not used in any major commercial products at this
time.
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4.6 Signature File Structure

The goal of a signature file structure is to provide a fast test to eliminate
the majority of items that are not related to a query. The items that satisfy the test
can either be evaluated by another search algorithm to eliminate additional false
hits or delivered to the user to review. The text of the items is represented in a
highly compressed form that facilitates the fast test. Because file structure is
highly compressed and unordered, it requires significantly less space than an
inverted file structure and new items can be concatenated to the end of the
structure versus the significant inversion list update. Since items are seldom
deleted from information data bases, it is typical to leave deleted items in place and
mark them as deleted. Signature file search is a linear scan of the compressed
version of items producing a response time linear with respect to file size.

The surrogate signature search file is created via superimposed coding
(Faloutsos-85, Moders-49). The coding is based upon words in the item. The
words are mapped into a “word signature.” A word signature is a fixed length
code with a fixed number of bits set to “1.” The bit positions that are set to one are
determined via a hash function of the word. The word signatures are ORed
together to create the signature of an item. To avoid signatures being too dense
with “1”s, a maximum number of words is specified and an item is partitioned into
blocks of that size. In Figure 4.13 the block size is set at five words, the code
length is 16 bits and the number of bits that are allowed to be “1” for each word is
five.

TEXT: Computer Science graduate students study (assume block size is
five words)

WORD

Computer
Science
graduate
students
study

Block Signature

Signature

0001  0110 0000 0110
1001 0000 1110 0000
1000  0101  0100 0010
0000  0111 1000 0100
0000 0110 0110 0100

1001 0111 1110 0110

Figure 4.13 Superimposed Coding

The words in a query are mapped to their signature. Search is accomplished by
template matching on the bit positions specified by the words in the query.

The signature file can be stored as a signature with each row representing
a signature block. Associated with each row is a pointer to the original text block.
A design objective of a signature file system is trading off the size of the data
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structure versus the density of the final created signatures. Longer code lengths
reduce the probability of collision in hashing the words (i.e., two different words
hashing to the same value). Fewer bits per code reduce the effect of a code word
pattern being in the final block signature even though the word is not in the item.
For example, if the signature for the word “hard” is 1000 0111 0010 0000, it
incorrectly matches the block signature in Figure 4.13 (false hit). In a study by
Faloutous and Christodoulakis (Faloutous-87) it was shown that if compression is
applied to the final data structure, the optimum number of bits per word is one.
This then takes on the appearance of a binary coded vector for each item, where
each position in the vector represents the existence of a word in the item. This
approach requires the maximum code length but ensures that there are not any
false hits unless two words hash to the same value.

Search of the signature matrix requires O(N) search time. To reduce the
search time the signature matrix is partitioned horizontally. One of the earliest
techniques hashes the block signature to a specific slot. If a query has less than the
number of words in a block it maps to a number of possible slots rather than just
one. The number of slots decreases exponentially as the number of terms increases
(Gustafson-71). Another approach maps the signatures into an index sequential
file, where, for example, the first “n” bits of the signature is used as the index to
the block of signatures that will be compared sequentially to the query (Lee-89).
Other techniques are two level signatures (Sacks-Davis-83, Sacks-Davis-88) and
use of B-tree structures with similar signatures clustered at leaf nodes (Deppisch-
86).

Another implementation approach takes advantage of the fact that
searches are performed on the columns of the signature matrix, ignoring those
columns that are not indicated by hashing of any of the search terms. Thus the
signature matrix may be stored in column order versus row order (Faloutsos-88,
Lin-88, Roberts-79), called vertical partitioning. This is in effect storing the
signature matrix using an inverted file structure. The major overhead comes from
updates, since new “1”s have to be added to each inverted column representing a
signature in the new item.

Signature files provide a practical solution for storing and locating
information in a number of different situations. Faloutsos summarizes the
environments that signature files have been applied as medium size databases,
databases with low frequency of terms, WORM devices, parallel processing
machines, and distributed environments (Faloutsos-92).

4.7 Hypertext and XML Data Structures

The advent of the Internet and its exponential growth and wide acceptance
as a new global information network has introduced new mechanisms for
representing information. This structure is called hypertext and differs from
traditional information storage data structures in format and use. The hypertext is
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stored in Hypertext Markup Language (HTML) and eXtensible Markup Language
(XML). HTML is an evolving standard as new requirements for display of items
on the Internet are identified and implemented. Bot of these languages provide
detailed descriptions for subsets of text similar to the zoning discussed previously.
These subsets can be used the same way zoning is used to increase search accuracy
and improve display of hit results.

4.7.1 Definition of Hypertext Structure

The Hypertext data structure is used extensively in the Internet
environment and requires an electronic media storage for the item. Hypertext
allows one item to reference another item via an imbedded pointer. Each separate
item is called a node and the reference pointer is called a link. The referenced item
can be of the same or a different data type than the original (e.g., a textual item
references a photograph). Each node is displayed by a viewer that is defined for
the file type associated with the node.

For example, Hypertext Markup Language (HTML) defines the internal
structure for information exchange across the World Wide Web on the Internet. A
document is composed of the text of the item along with HTML tags that describe
how to display the document. Tags are formatting or structural keywords
contained between less-than, greater than symbols (e.g., <title>, <strong> meaning
display prominently). The HTML tag associated with hypertext linkages is <a
href= …#NAME /a> where “a” and “/a” are an anchor start tag and anchor end
tag denoting the text that the user can activate, “href” is the hypertext reference
containing either a file name if the referenced item is on this node or an address
(Uniform Resource Locator - URL) and a file name if it is on another node.
“#NAME” defines a destination point other than the top of the item to go to. The
URL has three components: the access method the client used to retrieve the item,
the Internet address of the server where the item is stored, and the address of the
item at the server (i.e., the file including the directory it is in). For example, the
URL for the HTML specification appears:

http://info.cern.ch/hypertext/WWW/MarkUp/HTML.html

“HTTP” stands for the Hypertext Transfer Protocol which is the access protocol
used to retrieve the item in HTML. Other Internet protocols are used for other
activities such as file transfer (ftp://), a specific text search system (gopher://),
remote logon (tenet://) and collaborative newsgroups (news://). The destination
point is found in “info.cern.ch” which is the name of the “info” machine at CERN
with “ch” being Switzerland, and “/hypertext/WWW/MarkUP/HTML.html”
defines where to find the file HTML.html. Figure 4.14 shows an example of a
segment of a HTML document. Most of the formatting tags indicated by < > are
not described, being out of the scope of this text, but detailed descriptions can be
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found in the hundreds of books available on HTML. The <a href= ... > are the
previously described hypertext linkages.

An item can have many hypertext linkages. Thus, from any item there are
multiple paths that can be followed in addition to skipping over the linkages to
continue sequential reading of the item. This is similar to the decision a reader
makes upon reaching a footnote, whether to continue reading or skip to the
footnote. Hypertext is sometimes called a ”generalized footnote.”

In a conventional item the physical and logical structure are closely
related. The item is sequential with imbedded citations to other distinct items or

<CENTER>
<IMG SC=”/images/home_iglo.jpg” WIDTH=468 HEIGHT=107
BORDER=0 ALT=”WELCOME TO NETSCAPE><BR>
<P>
<DL>
<A HREF=”/comprod/mirror/index.html”>
<DD>
The beta testing is over: please read our report <A
HREF=”http://www.charm.net/doc/charm/report/theme.html”> and your
can find more references at
HREF=”http://www.charm.net/doc/charm/results/tests.html”>

Figure 4.14 Example of  Segment of  HTML

locations in the item. From the author’s perspective, the substantive semantics lie
in the sequential presentation of the information. Hypertext is a non-sequential
directed graph structure, where each node contains its own information. The
author assumes the reader can follow the linked data as easily as following the
sequential presentation. A node may have several outgoing links, each of which is
then associated with some smaller part of the node called an anchor. When an
anchor is activated, the associated link is followed to the destination node, thus
navigating the hypertext network. The organizational and reference structure of a
conventional item is fixed at printing time while hypertext nodes and links can be
changed dynamically. New linkages can be added and the information at a node
can change without modification to the item referencing it.

Conventional items are read sequentially by a user. In a hypertext
environment, the user “navigates” through the node network by following links.
This is the defining capability that allows hypertext to manage loosely structured
information. Each thread through different nodes could represent a different
concept with additional detail. In a small and familiar network the navigation
works well, but in a large information space, it is possible for the user to become
disoriented. This issue is discussed in detail in Chapters 5, 7, and 8.

Quite often hypertext references are used to include information that is
other than text (e.g., graphics, audio, photograph, video) in a text item. The
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multiple different uses for hypertext references are evolving as more experience is
gained with them. When the hypertext is logically part of the item, such as in a
graphic, the referenced file is usually resident at the same physical location. When
other items created by other users are referenced, they frequently are located at
other physical sites. When items are deleted or moved, there is no mechanism to
update other items that reference them. Linkage integrity is a major issue in use of
hypertext linkages.

Dynamic HTML became available with Navigator 4.0 and Internet
Explorer 4.0. It is a collective term for a combination of the latest HTML tags and
options, style sheets and programming that will let you create WEB pages that are
more animated and responsive to user interaction. Some of the features supported
are an object-oriented view of a WEB page and its elements, cascading style sheets,
programming that can address most page elements add dynamic fonts. Object
oriented views are defined by the Document Object Model - DOM (Micorsoft calls
this the Dynamic HTML Object Model while Netscape calls it the HTML Object
Model). For example every heading on a page can be named and given attributes
of text style and color that can be manipulated by name in a small "program" or
script included on the page. A style sheet describes the default style characteristics
(page layout, font, text size, etc) of a document or portion of a document. Dynamic
HTML allows the specification of style sheets in a cascading fashion (linking style
sheets to predefined levels of precedence within the same set of pages. As a result
of a user interaction, a new style sheet can be applied changing the appearance of
the display. Layering is the use of alternative style sheets to vary the content of a
page by providing content layers that overlay and superimpose existing content
sections. The existing HTML programming capabilities are being expanded to
address the additional data structures. Netscape is also allowing for dynamic fonts
to be part of the WEB page thus eliminating the font choice being dependent upon
what the browser provides. Since there is no international standard definition of
Dynamic HTML, it is being defined in parallel by both Microsoft and Netscape
thus precipitating differences in definition and function.

4.7.2 Hypertext History

Although information sciences is just starting to address the impact of the
hypertext data structure, the concept of hypertext has been around for over 50
years. In 1945 an article written by Vannevar Bush in 1933 was published
describing the Memex (memory extender) system (Bush-67). It was a microfilm
based system that would allow the user to store much of the information from the
scientific explosion of the 1940s on microfilm and retrieve it at multiple readers at
the user’s desk via individual links. The term “hypertext” came from Ted Nelson
in 1965 (Nelson-74). Nelson’s vision of all the world’s literature being interlinked
via hypertext references is part of his Xanadu System. The lack of cost effective
computers with sufficient speed and memory to implement hypertext effectively
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was one of the main inhibitors to its development. One of the first commercial
uses of a hypertext system was the mainframe system, Hypertext Editing System,
developed at Brown University by Andres van Dam and later sold to Houston
Manned Spacecraft Center where it was used for Apollo mission documentation
(van Dam-88). Other systems such as the Aspen system at MIT, the KMS system
at Carnegie Mellon, the Hyperties system at the University of Maryland and the
Notecards system developed at Xerox PARC advanced the hypertext concepts
providing hypertext (and hypermedia) systems. HyperCard, delivered with
Macintosh computers, was the first widespread hypertext production product. It
had a simple metalanguage (HyperTalk) that facilitated authoring hypertext items.
It also provided a large number of graphical user interface elements (e.g., buttons,
hands,) that facilitated the production of sophisticated items.

Hypertext became more available in the early 1990’s via its use in CD-
ROMs for a variety of educational and entertainment products. Its current high
level of popularity originated with it being part of the specification of the World
Wide Web by the CERN (the European Center for Nuclear Physics Research) in
Geneva, Switzerland. The Mosaic browser, freely available from CERN on the
Internet, gave everyone who had access the ability to receive and display hypertext
documents.

4.7.3 XML

The extensible Markup Language (XML) is starting to become a standard data
structure on the WEB. Its first recommendation (1.0) was issued on February 10,
1998. It is a middle ground between the simplicities but lack of flexibility of
HTML and the complexity but richness of SGML (ISO 8879). Its objective is
extending HTML with semantic information. The logical data structure within
XML is defined by a Data Type Description (DTD) and is not constrained to the 70
defined tags and 50 attributes in the single DTD for HTML. The user can create
any tags needed to describe and manipulate their structure. The W3C (Worldwide
Web Consortium) is redeveloping HTML as a suite of XML tags. The following is
a simple example of XML tagging:

<company>Widgets Inc.</company>
<city>Boston</city>
<state>Mass</state>
<product>widgets</product>

The W3C is also developing a Resource Description Format (RDF) for
representing properties of WEB resources such as images, documents and
relationships between them. This will include the Platform for Internet Content
Selection (PICS) for attaching labels to material for filtering (e.g., unsuitable for
children).
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Hypertext links for XML are being defined in the Xlink (XML Linking
Language) and Xpoint (XML Pointer language) specifications. This will allow for
distinction for different types of links to locations within a document and external
to the document. This will allow an application to know if a link is just a
repositioning reference within an item or link to another document that is an
extension of the existing document. This will help in determining what needs to
be retrieved to define the total item to be indexed.

Finally XML will include an XML Style Sheet Linking definition to
define how to display items on a particular style sheet and handle cascading style
sheets. This will allow designers to limit what is displayed to the user (saving on
display screen space) and allow expansion to the whole item if desired.

4.8 Hidden Markov Models

Hidden Markov Models (HMM) have been applied for the last 20 years to
solving problems in speech recognition and to a lesser extent in the areas locating
named entities (Bikel-97), optical character recognition (Bazzi-98) and topic
identification (Kubala-97). More recently HMMs have been applied more
generally to information retrieval search with good results. One of the first
comprehensive and practical descriptions of Hidden Markov Models was written by
Dr. Lawrence Rabiner (Rabiner-89)

A HMM can best be understood by first defining a discrete Markov
process. The easiest way to understand it is by an example. Lets take the example
of a three state Markov Model of the Stock Market. The states will be one of the
following that is observed at the closing of the market:

State 1 (S1): market decreased
State 2 (S2): market did not change
State 3 (S3): market increased in value

The movement between states can be defined by a state transition matrix with state
transitions (this assumes you can go from any state to any other state):

Given that the market fell on one day (State 1), the matrix suggests that the
probability of the market not changing the next day is .1. This then allows
questions such as the probability that the market will increase for the next 4 days
then fall. This would be equivalent to the sequence of SEQ = {S3, S3, S3, S3, S1}.
In order to simplify our model, lets assume that instead of the current state being
dependent upon all the previous states, lets assume it is only dependent upon the
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last state (discrete, first order, Markov chain.) This would then be calculated by the
formula:

In the equation we also assume the probability of the initial state of S3 is
S3(init)=1. The following graph depicts the model. The directed lines indicate the
state transition probabilities ai,j. There is also an implicit loop from every state back
to itself. In the example every state corresponded to an observable event (change
in the market).

When trying to apply this model to less precise world problems such as in speech
recognition, this model was too restrictive to be applicable. To add more flexibility
a probability function was allowed to be associated with the state. The result is
called the Hidden Markov Model. It gets its name from the fact that there are two
stochastic processes with the underlying stochastic process not being observable
(hidden), but can only be analyzed by observations which originate from another
stochastic process. Thus the system will have as input a series of results, but it will
not know the Markov model and the number of states that were associated with
generating the results. So part of the HMM process is in determining which model
of states best explains the results that are being observed.

Amore formal definition of a discrete Hidden Markov Model is
summarized by Mittendorf and Schauble (Mittendorf-94): as consisting of the
following:
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1.    S = { S0, , …, Sn-1} as a finite set of states where s0 always denotes the
initial state. Typically the states are interconnected such that any state can
be reached from any other state.
2.    V = { v0, , …, vm-1} is a finite set of output symbols. This will
correspond to the physical output from the system being modeled.

3.  A = S x S a transition probability matrix where  ai,j   represents the

probability of transitioning from state i to state j such that  for

all i = 0, ... , n -1. Every value in the matrix is a positive value between 0
and 1. For the case where every state can be reached from every other
state every value in the matrix will be non-zero.

4. B = S X V is an output probability matrix where element  bj,k  is a

function determining the probability and  for all

j = 0, ..., n - l .

5. The initial state distribution.

The HMM will generate an output symbol at every state transition. The transition
probability is the probability of the next state given the current state. The output
probability is the probability that a given output is generated upon arriving at the
next state.

Given the HMM definition, it can be used as both a generator of
possible sequences of outputs and their probabilities (as shown in example
above), or given a particular out sequence it can model its generation by
an appropriate HMM model. The complete specification of a HMM
requires specification of the states, the output symbols and three
probability measures for the state transitions, output probability functions
and the initial states. The distributions are frequently called A, B, and θ
and the following notation is used to define the model:

One of the primary problems associated with HMM is how to efficiently calculate
the probability of a sequence of observed outputs given the HMM model. This can
best be looked at as how to score a particular model given a series of outputs. Or
another way to approach it is how to determine which of a number of competing
models should be selected given an observed set of outputs. This is in effect
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uncovering the hidden part of the model. They typical approach is to apply an
"optimality criterion" to select the states. But there are many such algorithms to
choose from. Once you have selected the model that you expect corresponds to the
output, then there is the issue of determining which set of state sequences best
explains the output. The final issue is how best to tune the λ model to maximize
the probability of the output sequence given λ .  This is called the training sequence
and is crucial to allow the models to adapt to the particular problem being solved.
More details can be found in Rabiner's paper (Rabiner-89).

4.9 Summary

Data structures provide the implementation basis of search techniques in
Information Retrieval Systems. They may be searching the text directly, as in use
of signature and possibly PAT trees, or providing the structure to hold the
searchable data structure created by processing the text in items. The most
important data structure to understand is the inverted file system. It has the
greatest applicability in information systems. The use of n-grams has also found
successes in a limited number of commercial systems. Even though n-grams have
demonstrated successes in finding information, it is not a structure that lends itself
to representing the concepts in an item. There is no association of an n-gram with
a semantic unit (e.g., a word or word stem). Judging the relative importance
(ranking) of items is much harder to accomplish under this data structure and the
algorithmic options are very limited.

PAT and Signature data file structures have found successful
implementations in certain bounded search domains. Both of these techniques
encounter significant problems in handling very large databases of textual items.
The Hypertext data structure is the newest structure to be considered from an
Information Retrieval System perspective. It certainly can be mathematically
mapped to linked lists and networks. But the model of how dependencies between
items as hyperlinks are resolved is just being considered. The future high usage of
this structure in information systems make its understanding important in finding
relevant information on the Internet. Marchionini and Shneiderman believe that
hypertext will be used in conjunction with full text search tools (Marchionini-88).

The stemming discussed in this chapter has the greatest effect on the
human resources it takes to find relevant information. Stemming can increase the
ability of the system to find relevant item by generalizing many words to a single
representation. But this process reduces precision. Enough information has not
been gathered to practically trade off the value of the increase in recall versus the
decrease in precision for different degrees of stemming.



Data Structure 103

EXERCISES

1. Describe the similarities and differences between term stemming algorithms
and n-grams. Describe how they affect precision and recall.

2. Apply the Porter stemming steps to the following words: irreplaceable,
informative, activation, and triplicate.

3. Assuming the database has the following words: act, able, arch, car, court,
waste, wink, write, writer, wrinkle. Show the successor variety for the word
“writeable.” Apply the cutoff method, peak and plateau method and complete
word method to determine possible stems for the word. Explain your
rationale for the cutoff method.

4. Assuming a term is on the average 6 characters long, calculate the size of the
inversion lists for each of the sources in Table 1.1, Distribution of words in
TREC Database. Assume that 30 per cent of the words in any item are
unique. What is the impact on the calculation if the system has to provide
proximity versus no proximity. Assume 4 bytes is needed for the unique
number assigned to each item.

5. Describe how a bigram data structure would be used to search for the search
term “computer science” (NOTE: the search term is a contiguous word
phrase). What are the possible sources of errors that could cause non-relevant
items to be retrieved?
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6. The following data structure comes from creating a PAT tree for the sentence
“This is the house that Jack built.” Ignoring upper and lower case and using
5 bits to represent the letters of the alphabet, explain why the tree was built in
this fashion. The first word, “This", is called the header and is not part of the
binary decisions of the PAT tree. Keep in mind that “to the right” is a 1 and
“to the left” is a 0. In general only the first characters are required to
determine the direction of the next term.

The skip value for all of the terms is 1 except for the term Jack where it is 2
and the term “that” where it is 11. Explain why the skip value for “that” is
11.

7. What is the effect of changing the number of bits that are allowed to be a one
in a signature file assuming the block size and code length remain constant?

8. Given three Urns with 4 distinct colors balls in the Urns.Assume via some
random process an initial Urn is chosen and a colored ball is extracted and its
color is recorded and the ball is replaced. A new Urn is randomly selected and
the process is followed. Define a Hidden Markov Model (create your own
transition matrix). Calculate the probability of the following output: (color 1,
color 3, color 1, color 4, color 4).



5 Automatic Indexing

5.1 Classes of Automatic Indexing
5.2 Statistical Indexing
5.3 Natural Language
5.4 Concept Indexing
5.5 Hypertext Linkages
5.6 Summary

Chapter 3 introduced the concept and objectives of indexing along with its
history. This chapter focuses on the process and algorithms to perform indexing.
The indexing process is a transformation of an item that extracts the semantics of
the topics discussed in the item. The extracted information is used to create the
processing tokens and the searchable data structure. The semantics of the item not
only refers to the subjects discussed in the item but also in weighted systems, the
depth to which the subject is discussed. The index can be based on the full text of
the item, automatic or manual generation of a subset of terms/phrases to represent
the item, natural language representation of the item or abstraction to concepts in
the item. The results of this process are stored in one of the data structures
(typically inverted data structure) described in Chapter 4. Distinctions, where
appropriate, are made between what is logically kept in an index versus what is
physically stored.

This text includes chapters on Automatic Indexing and User Search
techniques. There is a major dependency between the search techniques to be
implemented and the indexing process that stores the information required to
execute the search. This text categorizes the indexing techniques into statistical,
natural language, concept, and hypertext linkages. Insight into the rationale for
this classification is presented in Section 5.1.

5.1 Classes of Automatic Indexing

Automatic indexing is the process of analyzing an item to extract the
information to be permanently kept in an index. This process is associated with
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the generation of the searchable data structures associated with an item. Figure 1.5
Data Flow in an Information Processing System is reproduced here as Figure 5.1 to
show where the indexing process is in the overall processing of an item. The figure
is expanded to show where the search process relates to the indexing process. The
left side of the figure including Identify Processing Tokens, Apply Stop Lists,
Characterize tokens, Apply Stemming and Create Searchable Data Structure is all
part of the indexing process. All systems go through an initial stage of zoning
(described in Section 1.3.1) and identifying the processing tokens used to create the
index. Some systems automatically divide the document up into fixed length
passages or localities, which become the item unit that is indexed (Kretser-99.)
Filters, such as stop lists and stemming algorithms, are frequently applied to
reduce the number of tokens to be processed. The next step depends upon the
search strategy of a particular system. Search strategies can be classified as
statistical, natural language, and concept. An index is the data structure created to
support the search strategy.

Statistical strategies cover the broadest range of indexing techniques and
are the most prevalent in commercial systems. The basis for a statistical approach
is use of frequency of occurrence of events. The events usually are related to
occurrences of processing tokens (words/phrases) within documents and within the
database. The words/phrases are the domain of searchable values. The statistics
that are applied to the event data are probabilistic, Bayesian, vector space, neural
net. The static approach stores a single statistic, such as how often each word
occurs in an item, that is used in generating relevance scores after a standard
Boolean search. Probabilistic indexing stores the information that are used in
calculating a probability that a particular item satisfies (i.e., is relevant to) a
particular query. Bayesian and vector approaches store information used in
generating a relative confidence level of an item’s relevance to a query. It can be
argued that the Bayesian approach is probabilistic, but to date the developers of
this approach are more focused on a good relative relevance value than producing
and absolute probability. Neural networks are dynamic learning structures that are
discussed under concept indexing where they are used to determine concept
classes.

Natural Language approaches perform the similar processing token
identification as in statistical techniques, but then additionally perform varying
levels of natural language parsing of the item. This parsing disambiguates the
context of the processing tokens and generalizes to more abstract concepts within
an item (e.g., present, past, future actions). This additional information is stored
within the index to be used to enhance the search precision.

Concept indexing uses the words within an item to correlate to concepts
discussed in the item. This is a generalization of the specific words to values used
to index the item. When generating the concept classes automatically, there may
not be a name applicable to the concept but just a statistical significance.
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Figure 5.1 Data Flow in Information Processing System
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Finally, a special class of indexing can be defined by creation of hypertext
linkages. These linkages provide virtual threads of concepts between items versus
directly defining the concept within an item.

Each technique has its own strengths and weaknesses. Current
evaluations from TREC conferences (see Chapter 11) show that to maximize
location of relevant items, applying several different algorithms to the same corpus
provides the optimum results, but the storage and processing overhead is
significant.

5.2 Statistical Indexing

Statistical indexing uses frequency of occurrence of events to calculate a
number that is used to indicate the potential relevance of an item. One approach
used in search of older systems does not use the statistics to aid in the initial
selection, but uses them to assist in calculating a relevance value of each item for
ranking. The documents are found by a normal Boolean search and then statistical
calculations are performed on the Hit file, ranking the output (e.g., term frequency
algorithms). Since the index does not contain any special data, these techniques
are discussed in Chapter 7 under ranking.

Probabilistic systems attempt to calculate a probability value that should
be invariant to both calculation method and text corpora. This allows easy
integration of the final results when searches are performed across multiple
databases and use different search algorithms. A probability of 50 per cent would
mean that if enough items are reviewed, on the average one half of the reviewed
items are relevant. The Bayesian and Vector approaches calculate a relative
relevance value (e.g., confidence level) that a particular item is relevant. Quite
often term distributions across the searchable database are used in the calculations.
An issue that continues to be researched is how to merge results, even from the
same search algorithm, from multiple databases. The problem is compounded
when an attempt is made to merge the results from different search algorithms.
This would not be a problem if true probabilities were calculated.

5.2.1 Probabilistic Weighting

The probabilistic approach is based upon direct application of the theory
of probability to information retrieval systems. This has the advantage of being
able to use the developed formal theory of probability to direct the algorithmic
development. It also leads to an invariant result that facilitates integration of
results from different databases. The use of probability theory is a natural choice
because it is the basis of evidential reasoning (i.e., drawing conclusions from
evidence). This is summarized by the Probability Ranking Principle (PRP) and its
Plausible Corollary (Cooper-94):
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HYPOTHESIS: If a reference retrieval system’s response to each request
is a ranking of the documents in the collection in order of decreasing
probability of usefulness to the user who submitted the request, where the
probabilities are estimated as accurately as possible on the basis of
whatever data is available for this purpose, then the overall effectiveness
of the system to its users is the best obtainable on the basis of that data.

PLAUSIBLE COROLLARY: The most promising source of techniques
for estimating the probabilities of usefulness for output ranking in IR is
standard probability theory and statistics.

There are several factors that make this hypothesis and its corollary difficult
(Gordon-92, Gordon-91, Robertson-77). Probabilities are usually based upon a
binary condition; an item is relevant or not. But in information systems the
relevance of an item is a continuous function from non-relevant to absolutely
useful. A more complex theory of expected utility (Cooper-78) is needed to address
this characteristic. Additionally, the output ordering by rank of items based upon
probabilities, even if accurately calculated, may not be as optimal as that defined by
some domain specific heuristic (Stirling-77). The domains in which probabilistic
ranking are suboptimal are so narrowly focused as to make this a minor issue. But
these issues mentioned are not as compelling as the benefit of a good probability
value for ranking that would allow integration of results from multiple sources.

The source of the problems that arise in application of probability theory
come from a lack of accurate data and simplifying assumptions that are applied to
the mathematical model. If nothing else, these simplifying assumptions cause the
results of probabilistic approaches in ranking items to be less accurate than other
approaches. The advantage of the probabilistic approach is that it can accurately
identify its weak assumptions and work to strengthen them. In many other
approaches, the underlying weaknesses in assumptions are less obvious and harder
to identify and correct. Even with the simplifying assumption, results from
comparisons of approaches in the TREC conferences have shown that the
probabilistic approaches, while not scoring highest, are competitive against all
other approaches.

There are many different areas in which the probabilistic approach may be
applied. The method of logistic regression is described as an example of how a
probabilistic approach is applied to information retrieval (Gey-94). The approach
starts by defining a “Model 0” system which exists before specific probabilistic
models are applied. In a retrieval system there exist query terms and document
terms which have a set of attributes  from the query (e.g., counts of
term frequency in the query), from the document (e.g., counts of term frequency in
the document ) and from the database (e.g., total number of documents in the
database divided by the number of documents indexed by the term).

The logistic reference model uses a random sample of query-document-
term triples for which binary relevance judgments have been made from a training
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sample. Log O is the logarithm of the odds (logodds) of relevance for term
which is present in document  and query

The logarithm that the Query is relevant to the  Document is the sum of the
logodds for all terms:

where O(R) is the odds that a document chosen at random from the database is
relevant to query The coefficients c are derived using logistic regression which
fits an equation to predict a dichotomous independent variable as a function of
independent variables that show statistical variation (Hosmer-89). The inverse
logistic transformation is applied to obtain the probability of relevance of a
document to a query:

The coefficients of the equation for logodds is derived for a particular database
using a random sample of query-document-term-relevance quadruples and used to
predict odds of relevance for other query-document pairs.

Gey applied this methodology to the Cranfield Collection (Gey-94). The
collection has 1400 items and 225 queries with known results. Additional
attributes of relative frequency in the query (QRF), relative frequency in the
document (DRF) and relative frequency of the term in all the documents (RFAD)
were included, producing the following logodds formula:

where QAF, DAF, and IDF were previously defined, QRF = QAF\ (total number
of terms in the query), DRF = DAF\(total number of words in the document) and
RFAD = (total number of term occurrences in the database)\ (total number of all
words in the database). Logs are used to reduce the impact of frequency
information; then smooth out skewed distributions. A higher maximum likelihood
is attained for logged attributes.

The coefficients and log (O(R)) were calculated creating the final formula
for ranking for query vector which contains q terms:
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The logistic inference method was applied to the test database along with
the Cornell SMART vector system which uses traditional term frequency, inverse
document frequency and cosine relevance weighting formulas (see Section 5.2.2).
The logistic inference method outperformed the vector method.

Thus the index that supports the calculations for the logistic reference
model contains the O(R) constant value (e.g., -5.138) along with the coefficients
through Additionally, it needs to maintain the data to support DAF, DRF, IDF
and RFAD. The values for QAF and QRF are derived from the query.

Attempts have been made to combine the results of different probabilistic
techniques to get a more accurate value. The objective is to have the strong points
of different techniques compensate for weaknesses. To date this combination of
probabilities using averages of Log-Odds has not produced better results and in
many cases produced worse results (Hull-96).

5.2.2 Vector Weighting

One of the earliest systems that investigated statistical approaches to
information retrieval was the SMART system at Cornell University (Buckley-95,
Salton-83). The system is based upon a vector model. The semantics of every item
are represented as a vector. A vector is a one-dimensional set of values, where the
order/position of each value in the set is fixed and represents a particular domain.
In information retrieval, each position in the vector typically represents a
processing token. There are two approaches to the domain of values in the vector:
binary and weighted. Under the binary approach, the domain contains the value of
one or zero, with one representing the existence of the processing token in the
item. In the weighted approach, the domain is typically the set of all real positive
numbers. The value for each processing token represents the relative importance
of that processing token in representing the semantics of the item. Figure 5.2
shows how an item that discusses petroleum refineries in Mexico would be
represented . In the example, the major topics discussed are indicated by the index
terms for each column (i.e., Petroleum, Mexico, Oil, Taxes, Refineries and
Shipping).

Binary vectors require a decision process to determine if the degree that a
particular processing token represents the semantics of an item is sufficient to
include it in the vector. In the example for Figure 5.2, a five-page item may have
had only one sentence like “Standard taxation of the shipment of the oil to
refineries is enforced.” For the binary vector, the concepts of “Tax” and
“Shipment” are below the threshold of importance (e.g., assume threshold is 1.0)
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Figure 5.2 Binary and Vector Representation of an Item

and they not are included in the vector. A weighted vector acts the same as a
binary vector but it provides a range of values that accommodates a variance in the
value of the relative importance of a processing token in representing the semantics
of the item. The use of weights also provides a basis for determining the rank of
an item.

The vector approach allows for a mathematical and a physical
representation using a vector space model. Each processing token can be
considered another dimension in an item representation space. In Chapter 7 it is
shown that a query can be represented as one more vector in the same n-
dimensional space. Figure 5.3 shows a three-dimensional vector representation
assuming there were only three processing tokens, Petroleum Mexico and Oil.

Figure 5.3 Vector Representation
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The original document vector has been extended by additional
information such as citations/references to add more information for search and
clustering purposes. There have not been significant improvements in retrieval
using these techniques. Introduction of text generated from multimedia sources
introduces a new rationale behind extending the vocabulary associated with an
item. In the case where the text is not generated directly by an author but is the
result of audio transcription, the text will contain a significant number of word
errors. Audio transcription maps the phonemes that are in an audio item to the
words most closely approximating those phonemes in a dictionary. Good audio
transcription of broadcast news still has 15% of the words in error and
conversational speech still has 40% or more of the words in error. These will be
valid words but the wrong word. One mechanism to reduce the impact of the
missing words is to use the existing database to expand the document. This is
accomplished by using the transcribed document as a query against the existing
database, selecting a small number of the highest ranked results, determining the
most important (highest frequency) words across those items and adding those
words to the original document. The new document will then be normalized and
reweighted based upon the added words (Singhal-99). This technique reduced the
losses in retrieval effectiveness from 15-27% to 7-13% when the audio
transcriptions had high errors (40% or more). It has marginal benefit when the
transcription has errors in the 15% range.

There are many algorithms that can be used in calculating the weights
used to represent a processing token. Part of the art in information retrieval is
deriving changes to the basic algorithms to account for normalization (e.g.,
accounting for variances in number of words in items). The following subsections
present the major algorithms starting with the most simple term frequency
algorithm.

5.2.2.1 Simple Term Frequency Algorithm

In both the unweighted and weighted approaches, an automatic indexing
process implements an algorithm to determine the weight to be assigned to a
processing token for a particular item. In a statistical system, the data that are
potentially available for calculating a weight are the frequency of occurrence of the
processing token in an existing item (i.e., term frequency - TF), the frequency of
occurrence of the processing token in the existing database (i.e., total frequency -
TOTF) and the number of unique items in the database that contain the processing
token (i.e., item frequency - IF, frequently labeled in other publications as
document frequency - DF). As discussed in Chapter 3, the premises by Luhn and
later Brookstein that the resolving power of content-bearing words is directly
proportional to the frequency of occurrence of the word in the item is used as the
basis for most automatic weighting techniques. Weighting techniques usually are
based upon positive weight values.
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The simplest approach is to have the weight equal to the term frequency.
This approach emphasizes the use of a particular processing token within an item.
Thus if the word “computer” occurs 15 times within an item it has a weight of 15.
The simplicity of this technique encounters problems of normalization between
items and use of the processing token within the database. The longer an item is,
the more often a processing token may occur within the item. Use of the absolute
value biases weights toward longer items, where a term is more likely to occur with
a higher frequency. Thus, one normalization typically used in weighting
algorithms compensates for the number of words in an item.

An example of this normalization in calculating term-frequency is the
algorithm used in the SMART System at Cornell (Buckley-96). The term
frequency weighting formula used in TREC 4 was:

where slope was set at .2 and the pivot was set to the average number of unique
terms occurring in the collection (Singhal-95). In addition to compensating for
document length, they also want the formula to be insensitive to anomalies
introduced by stemming or misspellings.

Although initially conceived of as too simple, recent experiments by the
SMART system using the large databases in TREC demonstrated that use of the
simpler algorithm with proper normalization factors is far more efficient in
processing queries and return hits similar to more complex algorithms.

There are many approaches to account for different document lengths
when determining the value of Term Frequency to use (e.g., an items that is only
50 words may have a much smaller term frequency then and item that is 1000
words on the same topic). In the first technique, the term frequency for each word
is divided by the maximum frequency of the word in any item. This normalizes the
term frequency values to a value between zero and one. This technique is called
maximum term frequency. The problem with this technique is that the maximum
term frequency can be so large that it decreases the value of term frequency in
short items to too small a value and loses significance.

Another option is to use logaritmetic term frequency. In this technique
the log of the term frequency plus a constant is used to replace the term frequency.
The log function will perform the normalization when the term frequencies vary
significantly due to size of documents. Along this line the COSINE function used
as a similarity measure (see Chapter 7) can be used to normalize values in a
document. This is accomplished by treating the index of a document as a vector
and divide the weights of all terms by the length of the vector. This will normalize
to a vector of maximum length one. This uses all of the data in a particular item to
perform the normalization and will not be distorted by any particular term. The
problem occurs when there are multiple topics within an item. The COSINE
technique will normalize all values based upon the total length of the vector that
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represents all of topics. If a particular topic is important but briefly discussed, its
normalized value could significantly reduce its overall importance in comparison
to another document that only discusses the topic.

Another approach recognizes that the normalization process may be over
penalizing long documents (Singhal-95). Singhal did experiments that showed
longer documents in general are more likely to be relevant to topics then short
documents. Yet normalization was making all documents appear to be the same
length. To compensate, a correction factor was defined that is based upon
document length that maps the Cosine function into an adjusted normalization
function. The function determines the document length crossover point for longer
documents where the probability of relevance equals the probability of retrieval,
(given a query set). This value called the "pivot point" is used to apply an
adjustment to the normalization process. The theory is based upon straight lines so
it is a matter of determining slope of the lines.

K is generated by the rotation of the pivot point to generate the new line and the
old normalization = the new normalization at that point. The slope for all higher
values will be different. Substituting pivot for both old and new value in the above
formula we can solve for K at that point. Then using the resulting formula for K
and substituting in the above formula produces the following formula:

Slope and pivot are constants for any document/query set. Another problem is
that the Cosine function favors short documents over long documents and also
favors documents with a large number of terms. This favoring is increased by
using the pivot technique. If log(TF) is used instead of the normal frequency then
TF is not a significant factor. In documents with large number of terms the Cosine
factor is approximated by the square root of the number of terms. This suggests
that using the ratio of the logs of term frequencies would work best for longer items
in the calculations:

This leads to the final algorithm that weights each term by the above formula
divided by the pivoted normalization:

Singhal demonstrated the above formula works better against TREC data then
TF/MAX(TF) or vector length normalization. The effect of a document with a
high term frequency is reduced by the normalization function by dividing the TF
by the average TF and by use of the log function. The use of pivot normalization
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adjusts for the bias towards shorter documents increasing the weights of longer
documents.

5.2.2.2 Inverse Document Frequency

The basic algorithm is improved by taking into consideration the
frequency of occurrence of the processing token in the database. One of the
objectives of indexing an item is to discriminate the semantics of that item from
other items in the database. If the token “computer” occurs in every item in the
database, its value representing the semantics of an item may be less useful
compared to a processing token that occurs in only a subset of the items in the
database. The term “computer” represents a concept used in an item, but it does not
help a user find the specific information being sought since it returns the complete
database. This leads to the general statement enhancing weighting algorithms that
the weight assigned to an item should be inversely proportional to the frequency of
occurrence of an item in the database. This algorithm is called inverse document
frequency (IDF). The un-normalized weighting formula is:

where WEIGHTij is the vector weight that is assigned to term “j” in item “i,”
(term frequency) is the frequency of term “j” in item “i” , “n” is the number of
items in the database and (item frequency or document frequency) is the
number of items in the database that have term “j” in them. A negative log is the
same as dividing by the log value, thus the basis for the name of the algorithm.
Figure 5.4 demonstrates the impact of using this weighting algorithm. The term
“refinery” has the highest frequency in the new item (10 occurrences). But it has a
normalized weight of 20 which is less than the normalized weight of “Mexico.”
This change in relative importance between “Mexico” and “refinery” from the
unnormalized to normalized vectors is due to an adjustment caused by “refinery”
already existing in 50 per cent of the database versus “Mexico” which is found in
6.25 per cent of the items.

The major factor of the formula for a particular term is
The value for IF can vary from “1” to “n.” At “n,” the term is found in

every item in the database and the factor becomes As the
number of items a term is found in decreases, the value of the denominator
decreases eventually approaching the value which is close to 1. The weight
assigned to the term in the item varies from
The effect of this factor can be too great as the number of items that a term is found
in becomes small. To compensate for this, the INQUERY system at the University
of Massachusetts normalizes this factor by taking an additional log value.
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Assume that the term “oil” is found in 128 items, “Mexico” is found in
16 items and “refinery” is found in 1024 items. If a new item arrives with
all three terms in it, “oil” found 4 times, “Mexico” found 8 times, and
“refinery found 10 times and there are 2048 items in the total database,
Figure 5.4 shows the weight calculations using inverse document
frequency.

Using a simple unnormalized term frequency, the item vector is (4, 8, 10)
Using inverse document frequency the following calculations apply:

with the resultant inverse document frequency item vector = (20, 64, 20)

Figure 5.4 Example of Inverse Document Frequency

The value of “n” and vary as items are added and deleted from the
database. To implement this algorithm in a dynamically changing system, the
physical index only stores the frequency of occurrence of the terms in an item
(usually with their word location) and the IDF factor is calculated dynamically at
retrieval time. The required information can easily be determined from an
inversion list for a search term that is retrieved and a global variable on the
number of items in the database.

5.2.2.3 Signal Weighting

Inverse document frequency adjusts the weight of a processing token for
an item based upon the number of items that contain the term in the existing
database. What it does not account for is the term frequency distribution of the
processing token in the items that contain the term. The distribution of the
frequency of processing tokens within an item can affect the ability to rank items.
For example, assume the terms “SAW” and “DRILL” are found in 5 items with the
following frequencies defined in Figure 5.5.

Both terms are found a total of 50 times in the five items. The term
“SAW” does not give any insight into which item is more likely to be relevant to a
search of “SAW”. If precision is a goal (maximizing relevant items shown first),
then the weighting algorithm could take into consideration the non-uniform
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distribution of term “DRILL” in the items that the term is found, applying even
higher weights to it than “SAW.” The theoretical basis for the algorithm

Item Distribution SAW DRILL

A 10 2
B 10 2
C 10 18
D 10 10
E 10 18

Figure 5.5 Item Distribution for SAW and DRILL

to emphasize precision is Shannon’s work on Information Theory (Shannon-51).
In Information Theory, the information content value of an object is

inversely proportional to the probability of occurrence of the item. An instance of
an event that occurs all the time has less information value than an instance of a
seldom occurring event. This is typically represented as INFORMATION = -Log2
(p), where p is the probability of occurrence of event “p.” The information value
for an event that occurs .5 per cent of the time is:

The information value for an event that occurs 50 per cent of the time is:

If there are many independent occurring events then the calculation for the average
information value across the events is:

The value of AVE_INFO takes its maximum value when the values for every is
the same. Its value decreases proportionally to increases in variances in the values
of The value of can be defined as the ratio of the frequency of
occurrence of the term in an item to the total number of occurrences of the item in
the data base. Using the AVE_INFO formula, the terms that have the most
uniform distribution in the items that contain the term have the maximum value.
To use this information in calculating a weight, the formula needs the inverse of
AVE_INFO, where the minimum value is associated with uniform distributions



Automatic Indexing 119

and the maximum value is for terms that have large variances in distribution in the
items containing the term. The following formula for calculating the weighting
factor called Signal (Dennis-67) can be used:

producing a final formula of:

An example of use of the weighting factor formula is given for the values in Figure
5.5:

The weighting factor for term “DRILL” that does not have a uniform distribution is
larger than that for term “SAW” and gives it a higher weight.

This technique could be used by itself or in combination with inverse
document frequency or other algorithms. The overhead of the additional data
needed in an index and the calculations required to get the values have not been
demonstrated to produce better results than other techniques and are not used in
any systems at this time. It is a good example of use of Information Theory in
developing information retrieval algorithms. Effectiveness of use of this formula
can be found in results from Harman and also from Lockbaum and Streeter
(Harman-86, Lochbaum-89).

5.2.2.4 Discrimination Value

Another approach to creating a weighting algorithm is to base it upon the
discrimination value of a term. To achieve the objective of finding relevant items,
it is important that the index discriminates among items. The more all items
appear the same, the harder it is to identify those that are needed. Salton and Yang
(Salton-73) proposed a weighting algorithm that takes into consideration the ability
for a search term to discriminate among items. They proposed use of a
discrimination value for each term “i”:
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where AVESIM is the average similarity between every item in the database and
AVESIMi is the same calculation except that term “i” is removed from all items.
There are three possibilities with the DISCRIMi value being positive, close to zero
or negative. A positive value indicates that removal of term “i” has increased the
similarity between items. In this case, leaving the term in the database assists in
discriminating between items and is of value. A value close to zero implies that
the term’s removal or inclusion does not change the similarity between items. If
the value of DISCRIMi is negative, the term’s effect on the database is to make the
items appear more similar since their average similarity decreased with its
removal. Once the value of DISCRMi is normalized as a positive number, it can be
used in the standard weighting formula as:

5.2.2.5 Problems With Weighting Schemes

Often weighting schemes use information that is based upon processing
token distributions across the database. The two weighting schemes, inverse
document frequency and signal, use total frequency and item frequency factors
which makes them dependent upon distributions of processing tokens within the
database. Information databases tend to be dynamic with new items always being
added and to a lesser degree old items being changed or deleted. Thus these
factors are changing dynamically. There are a number of approaches to
compensate for the constant changing values.

a. Ignore the variances and calculate weights based upon current values,
with the factors changing over time. Periodically rebuild the complete
search database.

b. Use a fixed value while monitoring changes in the factors. When the
changes reach a certain threshold, start using the new value and update all
existing vectors with the new value.

c. Store the invariant variables (e.g., term frequency within an item) and
at search time calculate the latest weights for processing tokens in items
needed for search terms.

In the first approach the assumption minimizes the system overhead of
maintaining currency on changing values, with the effect that term weights for the
same term vary from item to item as the aggregate variables used in calculating the
weights based upon changes in the database vary over time. Periodically the
database and all term weights are recalculated based upon the most recent updates
to the database. For large databases in the millions of items, the overhead of
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rebuilding the database can be significant. In the second approach, there is a
recognition that for the most frequently occurring items, the aggregate values are
large. As such, minor changes in the values have negligible effect on the final
weight calculation. Thus, on a term basis, updates to the aggregate values are only
made when sufficient changes not using the current value will have an effect on the
final weights and the search/ranking process. This process also distributes the
update process over time by only updating a subset of terms at any instance in time.
The third approach is the most accurate. The weighted values in the database only
matter when they are being used to determine items to return from a query or the
rank order to return the items. This has more overhead in that database vector
term weights must be calculated dynamically for every query term. If the system is
using an inverted file search structure, this overhead is very minor.

An interesting side effect of maintaining currency in the database for term
weights is that the same query over time returns a different ordering of items. A
new word in the database undergoes significant changes in its weight structure
from initial introduction until its frequency in the database reaches a level where
small changes do not have significant impact on changes in weight values.

Another issue is the desire to partition an information database based
upon time. The value of many sources of information vary exponentially based
upon the age of an item (older items have less value). This leads to physically
partitioning the database by time (e.g., starting a new database each year),
allowing the user to specify the time period to search. There are issues then of how
to address the aggregate variables that are different for the same processing token
in each database and how to merge the results from the different databases into a
single Hit file.

The best environment would allow a user to run a query against multiple
different time periods and different databases that potentially use different
weighting algorithms, and have the system integrate the results into a single
ranked Hit file. This issue is discussed in Chapter 7.

5.2.2.6 Problems With the Vector Model

In addition to the general problem of dynamically changing databases and
the effect on weighting factors, there are problems with the vector model on
assignment of a weight for a particular processing token to an item. Each
processing token can be viewed as a new semantic topic. A major problem comes
in the vector model when there are multiple topics being discussed in a particular
item. For example, assume that an item has an in-depth discussion of “oil” in
“Mexico” and also “coal” in “Pennsylvania.” The vector model does not have a
mechanism to associate each energy source with its particular geographic area.
There is no way to associate correlation factors between terms (i.e., precoordination
discussed in Chapter 3) since each dimension in a vector is independent of the
other dimensions. Thus the item results in a high value in a search for “coal in
Mexico.”
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Another major limitation of a vector space is in associating positional
information with a processing term. The concept of proximity searching (e.g.,
term “a” within 10 words of term “b”) requires the logical structure to contain
storage of positional information of a processing term. The concept of a vector
space allows only one scalar value to be associated with each processing term for
each item. Restricting searches to subsets of an item has been shown to provide
increased precision (see Chapter 7). In effect this capability overcomes the multi-
topical item problem by looking at subsets of an item and thus increasing the
probability that the subset is discussing a particular semantic topic.

5.2.3 Bayesian Model

One way of overcoming the restrictions inherent in a vector model is to
use a Bayesian approach to maintaining information on processing tokens. The
Bayesian model provides a conceptually simple yet complete model for information
systems. In its most general definition, the Bayesian approach is based upon
conditional probabilities (e.g., Probability of Event 1 given Event 2 occurred).
This general concept can be applied to the search function as well as to creating the
index to the database. The objective of information systems is to return relevant
items. Thus the general case, using the Bayesian formula, is P(REL/DOCi ,
Queryj) which is interpreted as the probability of relevance (REL) to a search
statement given a particular document and query. Interpretation of this process is
discussed in detail in Chapter 7. In addition to search, Bayesian formulas can be
used in determining the weights associated with a particular processing token in an
item. The objective of creating the index to an item is to represent the semantic
information in the item. A Bayesian network can be used to determine the final set
of processing tokens (called topics) and their weights. Figure 5.6 shows a simple
view of the process where represents the relevance of topic “i” in a particular
item and represents a statistic associated with the event of processing token “j”
being present in the item.

Figure 5.6 Bayesian Term Weighting
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The “m” topics would be stored as the final index to the item. The statistics
associated with the processing token are typically frequency of occurrence. But
they can also incorporate proximity factors that are useful in items that discuss
multiple topics. There is one major assumption made in this model:

Assumption of  Binary Independence : the topics and the processing token
statistics are independent of each other. The existence of one topic is not
related to the existence of the other topics. The existence of one
processing token is not related to the existence of other processing tokens.

In most cases this assumption is not true. Some topics are related to other topics
and some processing tokens related to other processing tokens. For example, the
topics of  “Politics” and “Economics” are in some instances related to each other
(e.g., an item discussing Congress debating laws associated with balance of trade)
and in many other instances totally unrelated. The same type of example would
apply to processing tokens. There are two approaches to handling this problem.
The first is to assume that there are dependencies, but that the errors introduced by
assuming the mutual independence do not noticeably effect the determination of
relevance of an item nor its relative rank associated with other retrieved items.
This is the most common approach used in system implementations. A second
approach can extend the network to additional layers to handle interdependencies.
Thus an additional layer of Independent Topics (ITs) can be placed above the
Topic layer and a layer of Independent Processing Tokens (IPs) can be placed
above the processing token layer. Figure 5.7 shows the extended Bayesian network.
Extending the network creates new processing tokens for those cases where there
are dependencies between processing tokens. The new set of Independent
Processing Tokens can then be used to define the attributes associated with the set
of topics selected to represent the semantics of an item. To compensate for
dependencies between topics the final layer of Independent Topics is created. The
degree to which each layer is created depends upon the error that could be
introduced by allowing for dependencies between Topics or Processing Tokens.
Although this approach is the most mathematically correct, it suffers from losing a
level of precision by reducing the number of concepts available to define the
semantics of an item.

5.3 Natural Language

The goal of natural language processing is to use the semantic
information in addition to the statistical information to enhance the indexing of the
item. This improves the precision of searches, reducing the number of false hits a
user reviews. The semantic information is extracted as a result of processing the
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language rather than treating each word as an independent entity. The simplest
output of this process results in generation of phrases that become indexes to an
item. More complex analysis generates thematic representation of events rather

Figure 5.7 Extended Bayesian Network

than phrases. Statistical approaches use proximity as the basis behind determining
the strength of word relationships in generating phrases. For example, with a
proximity constraint of adjacency, the phrases “venetian blind” and “blind
Venetian” may appear related and map to the same phrase. But syntactically and
semantically those phrases are very different concepts. Word phrases generated by
natural language processing algorithms enhance indexing specification and
provide another level of disambiguation. Natural language processing can also
combine the concepts into higher level concepts sometimes referred to as thematic
representations. One example represents them as concept-relationship-concept
triples (Liddy-93).
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5.3.1 Index Phrase Generation

The goal of indexing is to represent the semantic concepts of an item in
the information system to support finding relevant information. Single words have
conceptual context, but frequently they are too general to help the user find the
desired information. Term phrases allow additional specification and focusing of
the concept to provide better precision and reduce the user’s overhead of retrieving
non-relevant items. Having the modifier “grass” or “magnetic” associated with the
term “field” clearly disambiguates between very different concepts. One of the
earliest statistical approaches to determining term phrases proposed by Salton was
use of a COHESION factor between terms (Salton-83):

where SIZE-FACTOR is a normalization factor based upon the size of the
vocabulary and is the total frequency of co-occurrence of the pair
Termk , Termh in the item collection. Co-occurrence may be defined in terms of
adjacency, word proximity, sentence proximity, etc. This initial algorithm has
been modified in the SMART system to be based on the following guidelines
(BUCKLEY-95):

any pair of adjacent non-stop words is a potential phrase

any pair must exist in 25 or more items

phrase weighting uses a modified version of the SMART system single
term algorithm

normalization is achieved by dividing by the length of the single-term
subvector.

Natural language processing can reduce errors in determining phrases by
determining inter-item dependencies and using that information to create the term
phrases used in the indexing process. Statistical approaches tend to focus on two
term phrases. A major advantage of natural language approaches is their ability to
produce multiple-term phrases to denote a single concept. If a phrase such as
“industrious intelligent students” was used often, a statistical approach would
create phrases such as “industrious intelligent” and “intelligent student.” A
natural language approach would create phrases such as “industrious student,”
“intelligent student” and “industrious intelligent student.”

The first step in a natural language determination of phrases is a lexical
analysis of the input. In its simplest form this is a part of speech tagger that, for
example, identifies noun phrases by recognizing adjectives and nouns. Precise part
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of speech taggers exist that are accurate to the 99 per cent range. Additionally,
proper noun identification tools exist that allow for accurate identification of
names, locations and organizations since these values should be indexed as phrases
and not undergo stemming. Greater gains come from identifying syntactic and
semantic level dependencies creating a hierarchy of semantic concepts. For
example, “nuclear reactor fusion” could produce term phrases of  “nuclear reactor”
and “nuclear fusion.” In the ideal case all variations of a phrase would be reduced
to a single canonical form that represents the semantics for a phrase. Thus, where
possible the phrase detection process should output a normalized form. For
example, “blind Venetian” and “Venetian who is blind” should map to the same
phrase. This not only increases the precision of searches, but also increases the
frequency of occurrence of the common phrase. This, in turn, improves the
likelihood that the frequency of occurrence of the common phrase is above the
threshold required to index the phrase. Once the phrase is indexed, it is available
for search, thus participating in an item’s selection for a search and the rank
associated with an item in the Hit file. One solution to finding a common form is
to transform the phrases into a operator-argument form or a header-modifier form.
There is always a category of semantic phrases that conies from inferring concepts
from an item that is non-determinable. This comes from the natural ambiguity
inherent in languages that is discussed in Chapter 1.

A good example of application of natural language to phrase creation is in
the natural language information retrieval system at New York University
developed in collaboration with GE Corporate Research and Development
(Carballo-95). The text of the item is processed by a fast syntactical process and
extracted phrases are added to the index in addition to the single word terms.
Statistical analysis is used to determine similarity links between phrases and
identification of subphrases. Once the phrases are statistically noted as similar, a
filtering process categorizes the link onto a semantic relationship (generality,
specialization, antonymy, complementation, synonymy, etc.).

The Tagged Text Parser (TTP), based upon the Linguistic String
Grammar (Sager-81), produces a regularized parse tree representation of each
sentence reflecting the predicate-argument structure (Strzalkowski-93). The
tagged text parser contains over 400 grammar production rules. Some examples of
the part of speech tagger identification are given in Figure 5.8.

CLASS EXAMPLES
determiners a, the
singular nouns paper, notation, structure, language
plural nouns operations, data, processes
preposition in, by, of, for
adjective high, concurrent
present tense verb presents, associates
present participal multiprogramming

5.8 Part of Speech Tags
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The TTP parse trees are header-modifier pairs where the header is the main
concept and the modifiers are the additional descriptors that form the concept and
eliminate ambiguities. Figure 5.9 gives an example of a regularized parse tree
structure generated for the independent clause:

The former Soviet President has been a local hero ever since a Russian
tank invaded Wisconsin

|assert
perf[HAVE]
verb[BE]

subject
np
noun[President]
t_pos[The]
adj[former]
adj[Soviet]

object
np
noun[hero]
t_pos[a]
adj[local]

adv[ever]

[since]
verb[invade]

subject
np

noun [tank]
t_pos[a]
adj[Russian]

object
np

noun[Wisconsin]

Figure 5.9 TTP Parse Tree

This structure allows for identification of potential term phrases usually based upon
noun identification. To determine if a header-modifier pair warrants indexing,
Strzalkowski calculates a value for Informational Contribution (IC) for each
element in the pair. Higher values of IC indicate a potentially stronger semantic
relationship between terms. The basis behind the IC formula is a conditional
probability between the terms. The formula for IC between two terms (x,y) is:

sub_ord
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where is the frequency of (x,y) in the database, is the number of pairs in
which “x” occurs at the same position as in (x,y) and D(x) is the dispersion
parameter which is the number of distinct words with which x is paired. When
IC= 1, x occurs only with and

Nominal compounds are the source of many inaccurate identifications in
creating header-modifier pairs. Use of statistical information on frequency of
occurrence of phrases can eliminate some combinations that occur infrequently
and are not meaningful.

The next challenge is to assign weights to term phrases. The most
popular term weighting scheme uses term frequencies and inverse document
frequencies with normalization based upon item length to calculate weights
assigned to terms (see Section 5.2.2.2). Term phrases have lower frequency
occurrences than the individual terms. Using natural language processing, the
focus is on semantic relationships versus frequency relationships. Thus weighting
schemes such as inverse document frequency require adjustments so that the
weights are not overly diminished by the potential lower frequency of the phrases.
For example, the weighting scheme used in the New York University system uses
the following formula for weighting phrases:

where is 1 for i<N and 0 otherwise and and are normalizing factors.
The N assumes the phrases are sorted by IDF value and allows the top “N” highest
IDF (inverse document frequency) scores to have a greater effect on the overall
weight than other terms.

5.3.2 Natural Language Processing

Section 5.3.1 discussed generation of term phrases as indexes. Lexical
analysis determining verb tense, plurality and part of speech is assumed to have
been completed prior to the following additional processing. Natural language
processing not only produces more accurate term phrases, but can provide higher
level semantic information identifying relationships between concepts.

The DR-LINK system (Liddy-93) and its commercial implementation via
Textwise System adds the functional processes Relationship Concept Detectors,
Conceptual Graph Generators and Conceptual Graph Matchers that generate
higher level linguistic relationships including semantic and discourse level
relationships. This system is representative of natural language based processing
systems. During the first phase of this approach, the processing tokens in the
document are mapped to Subject Codes as defined by the codes in the Longman’s



Automatic Indexing 129

Dictionary of Common English (LDOCE). Disambiguation uses a priori statistical
term relationships and the ordering of the subject codes in the LDOCE, which
indicates most likely assignment of a term to a code. These codes equate to index
term assignment and have some similarities to the concept-based systems discussed
in Section 5.4.

The next phase is called the Text Structurer, which attempts to identify
general discourse level areas within an item. Thus a news story may be subdivided
into areas associated with EVALUATION (opinions), Main event (basic facts),
and Expectations (Predictions). These have been updated to include Analytical
Information, Cause/Effect Dimension and Attributed Quotations in the more recent
versions of DR-LINK (see http://199.100.96.2 on the Internet). These areas can
then be assigned higher weighting if the user includes “Preference” in a search
statement. The system also attempts to determine TOPIC statement identifiers.
Natural language processing is not just determining the topic statement(s) but also
assigning semantic attributes to the topic such as time frame (past, present, future).
To perform this type analysis, a general model of the predicted text is needed. For
example, news items likely follow a model proposed by van Dijk (Dijk-88). Liddy
reorganized this structure into a News Schema Components consisting of
Circumstance, Consequence, Credentials, Definition, Error, Evaluation,
Expectation, History, Lead, Main Event, No Comment, Previous Event, References
and Verbal reaction. Each sentence is evaluated and assigned weights associated
with its possible inclusion in the different components. Thus, if a query is oriented
toward a future activity, then, in addition to the subject code vector mapping, it
would weight higher terms associated with the Expectation component.

The next level of semantic processing is the assignment of terms to
components, classifying the intent of the terms in the text and identifying the
topical statements. The next level of natural language processing identifies inter-
relationships between the concepts. For example, there may be two topics within
an item “national elections” and “guerrilla warfare.” The relationship “as a result
of” is critical to link the order of these two concepts. This process clarifies if the
elections were caused by the warfare or the warfare caused by the elections.
Significant information is lost by not including the connector relationships. These
types of linkages are generated by general linguistic cues (words in text) that are
fairly general and domain independent.

The final step is to assign final weights to the established relationships.
The relationships are typically envisioned as triples with two concepts and a
relationship between them. Although all relationships are possible, constructing a
system requires the selection of a subset of possible relationships and the rules to
locate the relationships. The weights are based upon a combination of statistical
information and values assigned to the actual words used in establishing the
linkages. Passive verbs would receive less weight than active verbs.

The additional information beyond the indexing is kept in additional data
structures associated with each item. This information is used whenever it is
implicitly included in a search statement that is natural language based or
explicitly requested by the user.
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5.4 Concept Indexing

Natural language processing starts with a basis of the terms within an
item and extends the information kept on an item to phrases and higher level
concepts such as the relationships between concepts. In the DR-LINK system,
terms within an item are replaced by an associated Subject Code. Use of subject
codes or some other controlled vocabulary is one way to map from specific terms to
more general terms. Often the controlled vocabulary is defined by an organization
to be representative of the concepts they consider important representations of their
data. Concept indexing takes the abstraction a level further. Its goal is to gain the
implementation advantages of an index term system but use concepts instead of
terms as the basis for the index, producing a reduced dimension vector space.

Rather than a priori defining a set of concepts that the terms in an item
are mapped to, concept indexing can start with a number of unlabeled concept
classes and let the information in the items define the concepts classes created.
The process of automatic creation of concept classes is similar to the automatic
generation of thesaurus classes described in Chapter 6. The process of mapping
from a specific term to a concept that the term represents is complex because a
term may represent multiple different concepts to different degrees. A term such
as “automobile” could be associated with concepts such as “vehicle,”
“transportation,” “mechanical device,” “fuel,” and “environment.” The term
“automobile” is strongly related to “vehicle,” lesser to “transportation” and much
lesser the other terms. Thus a term in an item needs to be represented by many
concept codes with different weights for a particular item.

An example of applying a concept approach is the Convectis System from
HNC Software Inc. (Caid-93, Carleton-95). The basis behind the generation of the
concept approach is a neural network model (Waltz-85). Context vector
representation and its application to textual items is described by Gallant (Gallant-
91a, Gallant-91b). If a vector approach is envisioned, then there is a finite number
of concepts that provide coverage over all of the significant concepts required to
index a database of items. The goal of the indexing is to allow the user to find
required information, minimizing the reviewing of items that are non-relevant. In
an ideal environment there would be enough vectors to account for all possible
concepts and thus they would be orthogonal in an “N” dimensional vector-space
model. It is difficult to find a set of concepts that are orthogonal with no aspects in
common. Additionally, implementation trade offs naturally limit the number of
concept classes that are practical. These limitations increase the number of classes
to which a processing token is mapped.

The Convectis system uses neural network algorithms and terms in a
similar context (proximity) of other terms as a basis for determining which terms
are related and defining a particular concept. A term can have different weights
associated with different concepts as described. The definition of a similar context
is typically defined by the number of non-stop words separating the terms. The
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farther apart terms are, the less coupled the terms are associated within a particular
concept class. Existing terms already have a mapping to concept classes. New
terms can be mapped to existing classes by applying the context rules to the classes
that terms near the new term are mapped. Special rules must be applied to create a
new concept class. Example 5.9 demonstrates how the process would work for the
term “automobile.”

Figure 5.10 Concept Vector for Automobile

Using the concept representation of a particular term, phrases and
complete items can be represented as a weighted average of the concept vectors of
the terms in them. The algorithms associated with vectors (e.g., inverse document
frequency) can be used to perform the merging of concepts.

Another example of this process is Latent Semantic Indexing (LSI). Its
assumption is that there is an underlying or “latent” structure represented by
interrelationships between words (Deerwester-90, Dempster-77, Dumais-95,
Gildea-99, Hofmann-99). The index contains representations of the “latent
semantics” of the item. Like Convectis, the large term-document matrix is
decomposed into a small set (e.g., 100-300) of orthogonal factors which use linear
combinations of the factors (concepts) to approximate the original matrix. Latent
Semantic Indexing uses singular-value decomposition to model the associative
relationships between terms similar to eigenvector decomposition and factor
analysis (see Cullum-85).

Any rectangular matrix can be decomposed into the product of three
matrices. Let X be a mxn matrix such that:

where and have orthogonal columns and are m x r and r x n matrices, is
an r x r diagonal matrix and r is the rank of matrix X. This is the singular value
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decomposition of X. The k largest singular values of are kept along with their
corresponding columns in and matrices, the resulting matrix:

is the unique matrix of rank k that is closest in least squares sense to X. The

matrix containing the first k independent linear components of the original X
represents the major associations with noise eliminated.

If you consider X to be the term-document matrix (e.g., all possible terms
being represented by columns and each item being represented by a row), then
truncated singular value decomposition can be applied to reduce the
dimmensionality caused by all terms to a significantly smaller dimensionality that
is an approximation of the original X:

where and are left and right singular vectors and are
singualr values. A threshold is used against the full SV diagnonal matrix to
determine the cutoff on values to be used for query and document representation
(i.e., the dimensionality reduction). Hofmann has modified the standard LSI
approach using addional formalism via Probabilistic Latent Semantic Analysis
(Hofmann-99).

With so much reduction in the number of words, closeness is determined
by patterns of word usage versus specific co-locations of terms. This has the effect
of a thesaurus in equating many terms to the same concept. Both terms and
documents (as collections of terms) can be represented as weighted vectors in the k
dimensional space. The selection of k is critical to the success of this procedure. If
k is too small, then there is not enough discrimination between vectors and too
many false hits are returned on a search. If k is too large, the value of Latent
Semantic Indexing is lost and the system equates to a standard vector model.

5.5 Hypertext Linkages

A new class of information representation, described in Chapter 4 as the
hypertext data structure, is evolving on the Internet. Hypertext data structures
must be generated manually although user interface tools may simplify the process.
Very little research has been done on the information retrieval aspects of hypertext
linkages and automatic mechanisms to use the information of item pointers in
creating additional search structures. In effect, hypertext linkages are creating an
additional information retrieval dimension. Traditional items can be viewed as two
dimensional constructs. The text of the items is one dimension representing the



Automatic Indexing 133

information in the items. Imbedded references are a logical second dimension that
has had minimal use in information search techniques. The major use of the
citations has been in trying to determine the concepts within an item and clustering
items (Salton-83). Hypertext, with its linkages to additional electronic items, can
be viewed as networking between items that extends the contents. To understand
the total subject of an item it is necessary to follow these additional information
concept paths. The imbedding of the linkage allows the user to go immediately to
the linked item for additional information. The issue is how to use this additional
dimension to locate relevant information.

The easiest approach is to do nothing and let the user follow these paths to
view items. But this is avoiding one of the challenges in information systems on
creating techniques to assist the user in finding relevant information. Looking at
the Internet at the current time there are three classes of mechanisms to help find
information: manually generated indexes, automatically generated indexes and web
crawlers (intelligent agents). YAHOO (http://www.yahoo.com) is an example of
the first case where information sources (home pages) are indexed manually into a
hyperlinked hierarchy. The user can navigate through the hierarchy by expanding
the hyperlink on a particular topic to see the more detailed subtopics. At some
point the user starts to see the end items. LYCOS (http://www.lycos.com) and
Altavista (http://www.altavista.digital.com) automatically go out to other Internet
sites and return the text at the sites for automatic indexing. Lycos returns home
pages from each site for automatic indexing while Altavista indexes all of the text
at a site. None of these approaches use the linkages in items to enhance their
indexing.

Webcrawlers (e.g., WebCrawler, OpenText, Pathfinder) and intelligent
agents (Coriolis Groups’ NetSeeker™) are tools that allow a user to define items of
interest and they automatically go to various sites on the Internet searching for the
desired information. They are better described as a search tool than an indexing
tool that a priori analyzes items to assist in finding them via a search.

What is needed is an index algorithm for items that looks at the hypertext
linkages as an extension of the concepts being presented in the item where the link
exists. Some links that are for references to multi-media imbedded objects would
not be part of the indexing process. The Universal Reference Locator (URL)
hypertext links can map to another item or to a specific location within an item.
The current concept is defined by the information within proximity of the location
of the link. The concepts in the linked item, or with a stronger weight the concepts
in the proximity of the location included in the link, need to be included in the
index of the current item. If the current item is discussing the financial state of
Louisiana and a hyperlink is included to a discussion on crop damage due to
draughts in the southern states, the index should allow for a “hit” on a search
statement including “droughts in Louisiana.”

One approach is to view the hyperlink as an extension of the text of the
item in another dimension. The index values of the hyperlinked item has a
reduced weighted value from contiguous text biased by the type of linkage. The
weight of processing tokens appears:
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where  is the Weight associated with processing token “j” in item “i” and
processing token “l” in item “k” that are related via a hyperlink. is the
weight associated with strength of the link. It could be a one-level link that is
weak or strong, or it could be a multilevel transitive link. and are
weighting/normalization factors. The values could be stored in an expanded index
structure or calculated dynamically if only the hyperlink relationships between
items are available.

Taking another perspective, the system could automatically generate
hyperlinks between items. Attempts have been made to achieve this capability, but
they suffer from working with static versus dynamic growing databases or ignoring
the efficiency needed for an operational environment (Allan-95, Furuta-89,
Rearick-91). Kellog and Subhas have proposed a new solution based upon
document segmentation and clustering (Kellog-96). They link at both the
document and document sub-part level using the cover-coefficient based
incremental clustering method (C2ICM) to generate links between the document
(document sub-parts) pairs for each cluster. (Can-95). The automatic link
generation phase is performed in parallel with the clustering phase. Item pairs in
the same cluster are candidates for hyperlinking (link-similarity) if they have a
similarity above a given threshold. The process is completed in two phases. In the
first phase the document seeds and an estimate of the number of clusters is
calculated. In the second phase the items are clustered and the links are created.
Rather than storing the link information within the item or storing a persistent link
ID within the item and the link information externally, they store all of the link
information externally. They create HTML items on demand. When analyzing
links missed by their algorithm, three common problems were discovered:

misspellings or multiple word representations (e.g., cabinet maker and
cabinetmaker)

parser problems with document segmentation caused by punctuation
errors (lines were treated as paragraphs and sentences)

problems occurred when the definition of subparts (smaller sentences) of
items was attempted

A significant portion of errors came from parsing rather than algorithmic
problems. This technique has maximum effectiveness for referential links which
naturally have higher similarity measures.
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5.6 Summary

Automatic indexing is the preprocessing stage allowing search of items in
an Information Retrieval System. Its role is critical to the success of searches in
finding relevant items. If the concepts within an item are not located and
represented in the index during this stage, the item is not found during search.
Some techniques allow for the combinations of data at search time to equate to
particular concepts (i.e. postcoordination). But if the words are not properly
identified at indexing time and placed in the searchable data structure, the system
can not combine them to determine the concept at search time. If an inefficient
data structure is selected to hold the index, the system does not scale to
accommodate large numbers of items.

The steps in the identification of the processing tokens used in the index
process were generally discussed in Chapter 3. Chapter 5 focuses on the specific
characteristics of the processing tokens to support the different search techniques.
There are many ways of defining the techniques. All of the techniques have
statistical algorithmic properties. But looking at the techniques from a conceptual
level, the approaches are classified as statistical, natural language and concept
indexing. Hypertext linkages are placed in a separate class because an algorithm
to search items that include linkages has to address dependencies between items.
Normally the processing for processing tokens is restricted to an item. The next
item may use some corpus statistics that changed by previous items, but does not
consider a tight coupling between items. In effect, one item may be considered an
extension of another, which should effect the concept identification and
representation process.

Of  all the statistical techniques, an accurate probabilistic technique would
have the greatest benefit in the search process. Unfortunately, identification of
consistent statistical values used in the probabilistic formulas has proven to be a
formidable task. The assumptions that must be made significantly reduce the
accuracy of the search process. Vector techniques have very powerful
representations and have been shown to be successful. But they lack the flexibility
to represent items that contain many distinct but overlapping concepts. Bayesian
techniques are a way to relax some of the constraints inherent in a pure vector
approach, allowing dependencies between concepts within the same item to be
represented. Most commercial systems do not try to calculate weighted values at
index time. It is easier and more flexible to store the basic word data for each item
and calculate the statistics at search time. This allows tuning the algorithms
without having to re-index the database. It also allows the combination of
statistical and traditional Boolean techniques within the same system.

Natural language systems attempt to introduce a higher level of
abstraction indexing on top of the statistical processes. Making use of rules
associated with language assist in the disambiguation of terms and provide an
additional layer of concepts that are not found in purely statistical systems. Use of
natural language processing provides the additional data that could focus searches,
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reducing the retrieval of non-relevant items. The tendency of users to enter short
queries may reduce the benefits of this approach.

Concept indexing is a statistical technique whose goal is to determine a
canonical representation of the concepts. It has been shown to find relevant items
that other techniques miss. In its transformation process, some level of precision is
lost. The analysis of enhanced recall over potential reduced precision is still under
investigation.

EXERCISES

1. What are the trade offs in use of Zoning as part of the indexing process?

2. What are the benefits of a weighted index system over a Binary index system?
Are there benefits that the binary system can provide over a weighted system?

3. How do the concepts underlying Discrimination Value indexing provide a
good or poor basis for searching items? What is the major problem with the
weight formula?

4. Given the following Item collection of 10 items, where the numbers reflect
the frequency of occurrence of each term in each item, calculate the Inverse
Document Frequency and Signal weights for documents Dl and D2.

5. Under what conditions would the Bayesian and the Vector approach be the
same?

6. Describe how use of Natural Language Processing will assist in the
disambiguation process. What is the impact on index structure and the user
search interface to take advantage of the results of disambiguation?

7. What information is available in a natural language based indexing system
that is not available in normal statistical systems? What effect does this have
on the search process?
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8. What is the effect of Latent Semantic Indexing on the characteristics of the
searchable data structure (i.e., the index)? Which user functions described in
Chapter 2 have significant problems or are impossible to provide when using
LSI?

9. Conceptually, what role does Hypertext play in indexing and the definition of
an item? What is the major problem with URLs as a basis for hypertext
links?

10. Discuss how the decisions on the use of different techniques can affect the
user’s ability to find information. Frame your answer in the context of an
overall system objective of maximizing recall or maximizing precision.

11. Trade off the different techniques for length normalization of an item.
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6 Document and Term Clustering

6.1
6.2
6.3
6.4
6.5

Introduction to Clustering
Thesaurus Generation
Item Clustering
Hierarchy of Clusters
Summary

Chapter 5 introduced indexing associated with representation of the
semantics of an item. In all of the techniques discussed in Chapter 5, our
information database can be viewed as being composed of a number of independent
items indexed by a series of index terms. This model lends itself to two types of
clustering: clustering index terms to create a statistical thesaurus and clustering
items to create document clusters. In the first case clustering is used to increase
recall by expanding searches with related terms. In document clustering the search
can retrieve items similar to an item of interest, even if the query would not have
retrieved the item. The clustering process is not precise and care must be taken on
use of clustering techniques to minimize the negative impact misuse can have.
These issues are discussed in Section 6.1 along with some general guidelines of
clustering.

Section 6.2 discusses a variety of specific techniques to create thesaurus
clusters. The techniques can be categorized as those that use the complete database
to perform the clustering and those that start with some initial structure. Section
6.3 looks at the same techniques as they apply to item (document) clustering. A
class of clustering algorithms creates a hierarchical output. The hierarchy of
clusters usually reflects more abstract concepts in the higher levels and more
detailed specific items in the lower levels. Given the large data sets in information
retrieval systems, it is essential to optimize the clustering process in terms of time
and required processing power. Hierarchical clustering and its associated
performance improvements are described in Section 6.4.
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6.1 Introduction to Clustering

The concept of clustering has been around as long as there have been
libraries. One of the first uses of clustering was an attempt to cluster items
discussing the same subject. The goal of the clustering was to assist in the location
of information. This eventually lead to indexing schemes used in organization of
items in libraries and standards associated with use of electronic indexes.
Clustering of words originated with the generation of thesauri. Thesaurus, coming
from the Latin word meaning “treasure,” is similar to a dictionary in that it stores
words. Instead of definitions, it provides the synonyms and antonyms for the
words. Its primary purpose is to assist authors in selection of vocabulary. The
goal of clustering is to provide a grouping of similar objects (e.g., terms or items)
into a “class” under a more general title. Clustering also allows linkages between
clusters to be specified. The term class is frequently used as a synonym for the
term cluster. They are used interchangeably in this chapter.

The process of clustering follows the following steps:

a. Define the domain for the clustering effort. If a thesaurus is being
created, this equates to determining the scope of the thesaurus such as
“medical terms.” If document clustering is being performed, it is
determination of the set of items to be clustered. This can be a subset of
the database or the complete database. Defining the domain for the
clustering identifies those objects to be used in the clustering process and
reduce the potential for erroneous data that could induce errors in the
clustering process.

b. Once the domain is determined, determine the attributes of the objects
to be clustered. If a thesaurus is being generated, determine the specific
words in the objects to be used in the clustering process. Similarly, if
documents are being clustered, the clustering process may focus on
specific zones within the items (e.g., Title and abstract only, main body of
the item but not the references, etc.) that are to be used to determine
similarity. The objective, as with the first step (a.) is to reduce erroneous
associations.

c. Determine the strength of the relationships between the attributes
whose co-occurrence in objects suggest those objects should be in the same
class. For thesauri this is determining which words are synonyms and the
strength of their term relationships. For documents it may be defining a
similarity function based upon word co-occurrences that determine the
similarity between two items.

d. At this point, the total set of objects and the strengths of the
relationships between the objects have been determined. The final step is
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applying some algorithm to determine the class(s) to which each item will
be assigned.

There are guidelines (not hard constraints) on the characteristics of  the classes:

A well-defined semantic definition should exist for each class. There is a
risk that the name assigned to the semantic definition of the class could
also be misleading. In some systems numbers are assigned to classes to
reduce the misinterpretation that a name attached to each class could
have. A clustering of items into a class called “computer” could mislead a
user into thinking that it includes items on main memory that may
actually reside in another class called “hardware.”

The size of the classes should be within the same order of magnitude.
One of the primary uses of the classes is to expand queries or expand the
resultant set of retrieved items. If a particular class contains 90 per cent
of the objects, that class is not useful for either purpose. It also places in
question the utility of the other classes that are distributed across 10 per
cent of the remaining objects.

Within a class, one object should not dominate the class. For example,
assume a thesaurus class called “computer” exists and it contains the
objects (words/word phrases) “microprocessor,” “286-processor,” “386-
processor” and “pentium.” If the term “microprocessor” is found 85 per
cent of the time and the other terms are used 5 per cent each, there is a
strong possibility that using “microprocessor” as a synonym for “286-
processor” will introduce too many errors. It may be better to place
“microprocessor” into its own class.

Whether an object can be assigned to multiple classes or just one must be
decided at creation time. This is a tradeoff based upon the specificity and
partitioning capability of the semantics of the objects. Given the
ambiguity of language in general, it is better to allow an object to be in
multiple classes rather than constrained to one. This added flexibility
comes at a cost of additional complexity in creating and maintaining the
classes.

There are additional important decisions associated with the generation of thesauri
that are not part of item clustering (Aitchison-72):

Word coordination approach: specifies if phrases as well as individual
terms are to be clustered (see discussion on precoordination and
postcoordination in Chapter 3).
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Word relationships: when the generation of a thesaurus includes a human
interface (versus being totally automated), a variety of relationships
between words are possible. Aitchison and Gilchrist (Aitchison-72)
specified three types of relationships: equivalence, hierarchical and non-
hierarchical. Equivalence relationships are the most common and
represent synonyms. The definition of a synonym allows for some
discretion in the thesaurus creation, allowing for terms that have
significant overlap but differences. Thus the terms photograph and print
may be defined as synonyms even though prints also include lithography.
The definition can even be expanded to include words that have the same
“role” but not necessarily the same meaning. Thus the words “genius”
and “moron” may be synonyms in a class called “intellectual capability.”
A very common technique is hierarchical relationships where the class
name is a general term and the entries are specific examples of the general
term. The previous example of “computer” class name and
“microprocessor,” “pentium,” etc. is an example of this case. Non-
hierarchical relationships cover other types of relationships such as
“object”-“attribute” that would contain “employee” and “job title.”

A more recent word relationship scheme (Wang-85) classified
relationships as Parts-Wholes, Collocation, Paradigmatic, Taxonomy and
Synonymy, and Antonymy. The only two of these classes that require
further amplification are collocation and paradigmatic. Collocation is a
statistical measure that relates words that co-occur in the same proximity
(sentence, phrase, paragraph). Paradigmatic relates words with the same
semantic base such as “formula” and “equation.”

In the expansion to semantic networks other relationships are
included such as contrasted words, child-of (sphere is a child-of
geometric volume), parent-of, part-of (foundation is part of a building),
and contains part-of (bicycle contains parts-of wheel, handlebars)
(RetrievalWare-95).

Homograph resolution: a homograph is a word that has multiple,
completely different meanings. For example, the term “field” could mean
a electronic field, a field of grass, etc. It is difficult to eliminate
homographs by supplying a unique meaning for every homograph
(limiting the thesaurus domain helps). Typically the system allows for
homographs and requires that the user interact with the system to select
the desired meaning. It is possible to determine the correct meaning of the
homograph when a user enters multiple search terms by analyzing the
other terms entered (hay, crops, and field suggest the agricultural meaning
for field).

Vocabulary constraints: this includes guidelines on the normalization and
specificity of the vocabulary. Normalization may constrain the thesaurus
to stems versus complete words. Specificity may eliminate specific words
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or use general terms for class identifiers. The previous discussion in
Chapter 3 on these topics applies to their use in the thesauri.

As is evident in these guidelines, clustering is as much an arcane art as it is a
science. Good clustering of terms or items assists the user by improving recall.
But typically an increase in recall has an associated decrease in precision.
Automatic clustering has the imprecision of information retrieval algorithms,
compounding the natural ambiguities that come from language. Care must be
taken to ensure that the increases in recall are not associated with such decreases in
precision as to make the human processing (reading) of the retrieved items
unmanageable. The key to successful clustering lies in steps c. and d., selection of
a good measure of similarity and selection of a good algorithm for placing items in
the same class. When hierarchical item clustering is used, there is a possibility of
a decrease in recall discussed in Section 6.4. The only solution to this problem is
to make minimal use of the hierarchy.

6.2 Thesaurus Generation

Manual generation of clusters usually focuses on generating a thesaurus
(i.e., clustering terms versus items) and has been used for hundreds of years. As
items became available in electronic form, automated term statistical clustering
techniques became available. Automatically generated thesauri contain classes that
reflect the use of words in the corpora. The classes do not naturally have a name,
but are just a groups of statistically similar terms. The optimum technique for
generating the classes requires intensive computation. Other techniques starting
with existing clusters can reduce the computations required but may not produce
optimum classes.

There are three basic methods for generation of a thesaurus; hand crafted,
co-occurrence, and header-modifier based. Using manually made thesauri only
helps in query expansion if the thesauri is domain specific for the domain being
searched. General thesaurus (e.g., WordNet) does not help as much because of the
many different meanings for the same word (Voorhees-93, Voorhees-94).
Techniques for co-occurrence creation of thesauri are described in detail below. In
header-modifier based thesauri term relationships are found based upon linguistic
relationships. Words appearing in similar grammatical contexts are assumed to be
similar (Hindle-90, Grafenstette-94, Jing-94, Ruge-92). The linguistic parsing of
the document discovers the following syntactical structures: Subject-Verb, Verb-
Object, Adjective-Noun, and Noun-Noun. Each noun has a set of verbs, adjectives
and nouns that it co-occurs with, and a mutual information value is calculated for
each using typically a log function (see Mandala-99). Then a final similarity
between words is calculated using the mutual information to classify the terms.
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6.2.1 Manual Clustering

The manual clustering process follows the steps described in Section 6.1
in the generation of a thesaurus. The first step is to determine the domain for the
clustering. Defining the domain assists in reducing ambiguities caused by
homographs and helps focus the creator. Usually existing thesauri, concordances
from items that cover the domain and dictionaries are used as starting points for
generating the set of potential words to be included in the new thesaurus. A
concordance is an alphabetical listing of words from a set of items along with their
frequency of occurrence and references of which items in which they are found.
The art of manual thesaurus construction resides in the selection of the set of words
to be included. Care is taken to not include words that are unrelated to the domain
of the thesaurus or those that have very high frequency of occurrence and thus hold
no information value (e.g., the term Computer in a thesaurus focused on data
processing machines). If a concordance is used, other tools such as KWOC, KWIC
or KWAC may help in determining useful words. A Key Word Out of Context
(KWOC) is another name for a concordance. Key Word In Context (KWIC)
displays a possible term in its phrase context. It is structured to identify easily the
location of the term under consideration in the sentence. Key Word And Context
(KWAC) displays the keywords followed by their context. Figure 6.1 shows the
various displays for “computer design contains memory chips” (NOTE: the phrase
is assumed to be from doc4; the other frequency and document ids for KWOC were

Figure 6.1 Example of  KWOC, KWIC and KWAC
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created for this example.) In the Figure 6.1 the character “/” is used in KWIC to
indicate the end of the phrase. The KWIC and KWAC are useful in determining
the meaning of homographs. The term “chips” could be wood chips or memory
chips. In both the KWIC and KWAC displays, the editor of the thesaurus can read
the sentence fragment associated with the term and determine its meaning. The
KWOC does not present any information that would help in resolving this
ambiguity.

Once the terms are selected they are clustered based upon the word
relationship guidelines and the interpretation of the strength of the relationship.
This is also part of the art of manual creation of the thesaurus, using the judgment
of the human analyst. The resultant thesaurus undergoes many quality assurance
reviews by additional editors using some of the guidelines already suggested before
it is finalized.

6.2.2 Automatic Term Clustering

There are many techniques for the automatic generation of term clusters
to create statistical thesauri. They all use as their basis the concept that the more
frequently two terms co-occur in the same items, the more likely they are about the
same concept. They differ by the completeness with which terms are correlated.
The more complete the correlation, the higher the time and computational
overhead to create the clusters. The most complete process computes the strength
of the relationships between all combinations of the “n” unique words with an
overhead of Other techniques start with an arbitrary set of clusters and
iterate on the assignment of terms to these clusters. The simplest case employs one
pass of the data in creation of the clusters. When the number of clusters created
is very large, the initial clusters may be used as a starting point to generate more
abstract clusters creating a hierarchy.

The steps described in Section 6.1 apply to the automatic generation of
thesauri. The basis for automatic generation of a thesaurus is a set of items that
represents the vocabulary to be included in the thesaurus. Selection of this set of
items is the first step of determining the domain for the thesaurus. The processing
tokens (words) in the set of items are the attributes to be used to create the clusters.
Implementation of the other steps differs based upon the algorithms being applied.
In the following sections a term is usually restricted to be included in only one
class. It is also possible to use a threshold instead of choosing the highest value,
allowing a term to be assigned to all of the classes that it could be included in
above the threshold. The automated method of clustering documents is based upon
the polythetic clustering (Van Rijsbergen-79) where each cluster is defined by a set
of words and phrases. Inclusion of an item in a cluster is based upon the similarity
of the item's words and phrases to those of other items in the cluster.
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6.2.2.1 Complete Term Relation Method

In the complete term relation method, the similarity between every term
pair is calculated as a basis for determining the clusters. The easiest way to
understand this approach is to consider the vector model. The vector model is
represented by a matrix where the rows are individual items and the columns are
the unique words (processing tokens) in the items. The values in the matrix
represent how strongly that particular word represents concepts in the item. Figure
6.2 provides an example of a database with 5 items and 8 terms.

To determine the relationship between terms, a similarity measure is
required. The measure calculates the similarity between two terms. In Chapter 7 a
number of similarity measures are presented. The similarity measure is not critical

Figure 6.2 Vector Example

in understanding the methodology so the following simple measure is used:

where “k” is summed across the set of all items. In effect the formula takes the two
columns of the two terms being analyzed, multiplying and accumulating the values
in each row. The results can be paced in a resultant “m” by “m” matrix, called a
Term-Term Matrix (Salton-83), where “m” is the number of columns (terms) in
the original matrix. This simple formula is reflexive so that the matrix that is
generated is symmetric. Other similarity formulas could produce a non-symmetric
matrix. Using the data in Figure 6.2, the Term-Term matrix produced is shown in
Figure 6.3. There are no values on the diagonal since that represents the auto-
correlation of a word to itself. The next step is to select a threshold that determines
if two terms are considered similar enough to each other to be in the same class. In
this example, the threshold value of 10 is used. Thus two terms are considered
similar if the similarity value between them is 10 or greater. This produces a new
binary matrix called the Term Relationship matrix (Figure 6.4) that defines which
terms are similar. A one in the matrix indicates that the terms specified by the
column and the row are similar enough to be in the same class. Term 7
demonstrates that a term may exist on its own with no other similar terms
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identified. In any of the clustering processes described below this term will always
migrate to a class by itself.

The final step in creating clusters is to determine when two objects
(words) are in the same cluster. There are many different algorithms available.
The following algorithms are the most common: cliques, single link, stars and
connected components.

Figure 6.3 Term-Term Matrix

Figure 6.4 Term Relationship Matrix

Cliques require all items in a cluster to be within the threshold of all other
items. The methodology to create the clusters using cliques is:

0. Let i = 1
1. Select and place it in a new class
2. Start with where r = k = i + 1
3. Validate if is within the threshold of all terms within the current

class
4. If not, let k = k + 1
5. If k > m (number of  words)
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then r = r  + 1
if  r = m then go to 6 else

k = r
create a new class with in it
go to 3

else go to 3

6. If current class only has in it and there are other classes
with in them

then delete current class
else i = i + 1

7. If i = m + 1 then go to 8
else go to 1

8. Eliminate any classes that duplicate or are subsets of other classes.

Applying the algorithm to Figure 6.4, the following classes are created:

Class 1 (Term 1, Term 3, Term 4, Term 6)
Class 2 (Term 1, Term 5)
Class 3 (Term 2, Term 4, Term 6)
Class 4 (Term 2, Term 6, Term 8)
Class 5 (Term 7)

Notice that Term 1 and Term 6 are in more than one class. A characteristic of this
approach is that terms can be found in multiple classes.

In single link clustering the strong constraint that every term in a class is
similar to every other term is relaxed. The rule to generate single link clusters is
that any term that is similar to any term in the cluster can be added to the cluster.
It is impossible for a term to be in two different clusters. This in effect partitions
the set of terms into the clusters. The algorithm is:

1. Select a term that is not in a class and place it in a new class
2. Place in that class all other terms that are related to it
3. For each term entered into the class, perform step 2
4. When no new terms can be identified in step 2, go to step 1.

Applying the algorithm for creating clusters using single link to the Term
Relationship Matrix, Figure 6.4, the following classes are created:

Class 1 (Term 1, Term 3, Term 4, Term 5, Term 6, Term 2, Term 8)
Class 2 (Term 7)

There are many other conditions that can be placed on the selection of
terms to be clustered. The Star technique selects a term and then places in the
class all terms that are related to that term (i.e., in effect a star with the selected
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term as the core). Terms not yet in classes are selected as new seeds until all terms
are assigned to a class. There are many different classes that can be created using
the Star technique. If we always choose as the starting point for a class the lowest
numbered term not already in a class, using Figure 6.4, the following classes are
created:

Class 1 (Term 1, Term 3, Term 4, Term 5, Term 6)
Class 2 (Term 2, Term 4, Term 8, Term 6)
Class 3 (Term 7)

This technique allows terms to be in multiple clusters (e.g., Term 4). This could be
eliminated by expanding the constraints to exclude any term that has already been
selected for a previous cluster

The String technique starts with a term and includes in the class one
additional term that is similar to the term selected and not already in a class. The
new term is then used as the new node and the process is repeated until no new
terms can be added because the term being analyzed does not have another term
related to it or the terms related to it are already in the class. A new class is started
with any term not currently in any existing class. Using the additional guidelines to
select the lowest number term similar to the current term and not to select any term
already in an existing class produces the following classes:

Figure 6.5 Network Diagram of Term Similarities
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Class 1 (Term 1, Term 3, Term 4, Term 2, Term 6, Term 8)
Class 2 (Term 5)
Class 3 (Term 7)

A technique to understand these different algorithms for generating
classes is based upon a network diagram of the terms. Each term is considered a
node and arcs between the nodes indicate terms that are similar. A network
diagram for Figure 6.4 is given in Figure 6. 5. To determine cliques, sub-networks
are identified where all of the items are connected by arcs. From this diagram it is
obvious that Term 7 (T7) is in a class by itself and Term 5 (T5) is in a class with
Term 1 (T1). Other common structures to look for are triangles and four sided
polygons with diagonals. To find all classes for an item, it is necessary to find all
subnetworks, where each subnetwork has the maximum number of nodes, that the
term is contained. For Term 1 (T1), it is the subnetwork T1, T3, T4, and T6.
Term 2 (T2) has two subnetworks: T2, T4, T6 and the subnetwork T2, T6, T8.
The network diagram provides a simple visual tool when there are a small number
of nodes to identify classes using any of the other techniques.

The clique technique produces classes that have the strongest
relationships between all of the words in the class. This suggests that the class is
more likely to be describing a particular concept. The clique algorithm produces
more classes than the other techniques because the requirement for all terms to be
similar to all other terms will reduce the number of terms in a class. This will
require more classes to include all the terms. The single link technique partitions
the terms into classes. It produces the fewest number of classes and the weakest
relationship between terms (Salton-72, Jones-71, Salton-75). It is possible using
the single link algorithm that two terms that have a similarity value of zero will be
in the same class. Classes will not be associated with a concept but cover a
diversity of concepts. The other techniques lie between these two extremes.

The selection of the technique is also governed by the density of the term
relationship matrix and objectives of the thesaurus. When the Term Relationship
Matrix is sparse (i.e., contains a few number of ones), then the constraint
dependencies between terms need to be relaxed such as in single link to create
classes with a reasonable number of items. If the matrix is dense (i.e., lots of ones
implying relationships between many terms), then the tighter constraints of the
clique are needed so the number of items in a class does not become too large.

Cliques provide the highest precision when the statistical thesaurus is
used for query term expansion. The single link algorithm maximizes recall but can
cause selection of many non-relevant items. The single link assignment process
has the least overhead in assignment of terms to classes, requiring
comparisons (Croft-77)
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6.2.2.2 Clustering Using Existing Clusters

An alternative methodology for creating clusters is to start with a set of
existing clusters. This methodology reduces the number of similarity calculations
required to determine the clusters. The initial assignment of terms to the clusters is
revised by revalidating every term assignment to a cluster. The process stops when
minimal movement between clusters is detected. To minimize calculations,
centroids are calculated for each cluster. A centroid is viewed in Physics as the
center of mass of a set of objects. In the context of vectors, it will equate to the
average of all of the vectors in a cluster.

One way to understand this process is to view the centroids of the clusters
as another point in the N-dimensional space where N is the number of items. The
first assignment of terms to clusters produces centroids that are not related to the
final clustering of terms. The similarity between all existing terms and the
centroids of the clusters can be calculated. The term is reallocated to the cluster(s)
that has the highest similarity. This process is iterated until it stabilizes.
Calculations using this process are of the order O(n). The initial assignment of
terms to clusters is not critical in that the iterative process changes the assignment
of terms to clusters.

A graphical representation of terms and centroids illustrates how the

Figure 6.6b. Initial Centroids for Clusters

Figure 6.6a Centroids after Reassigning Terms
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classes move after the initial assignment. The solid black box represents the
centroid for each of the classes. In Figure 6.6b. the centroids for the first three
arbitrary class are shown. The ovals in Figure 6.6b. show the ideal cluster
assignments for each term. During the next iteration the similarity between every
term and the clusters is performed reassigning terms as needed. The resulting new
centroid for the new clusters are again shown as black squares in Figure 6.6a. The
new centroids are not yet perfectly associated with the ideal clusters, but they are
much closer. The process continues until it stabilizes.

The following example of this technique uses Figure 6.2 as our weighted
environment, and assumes we arbitrarily placed Class 1 = (Term 1 and Term 2),
Class 2 = (Term3 and Term 4) and Class 3 = (Term5 and Term 6). This would
produce the following centroids for each class:

Each value in the centroid is the average of the weights of the terms in the cluster
for each item in the database. For example in Class 1 the first value is calculated
by averaging the weights of Term 1 and Term 2 in Item 1. For Class 2 and 3 the
numerator is already the sum of the weights of each term. For the next step,
calculating similarity values, it is often easier to leave the values in fraction form.

Applying the simple similarity measure defined in Section 6.2.2.1
between each of the 8 terms and 3 centroids just calculated comes up with the
following assignment of similarity weights and new assignment of terms to classes
in the row Assign shown in Figure 6.7:

Figure 6.7 Iterated Class Assignments

In the case of Term 5, where there is tie for the highest similarity, either class
could be assigned. One technique for breaking ties is to look at the similarity
weights of the other items in the class and assign it to the class that has the most
similar weights. The majority of terms in Class 1 have weights in the high 20’s/2,
thus Term 5 was assigned to Class 3. Term 7 is assigned to Class 1 even though
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its similarity weights are not in alignment with the other terms in that class.
Figure 6.8 shows the new centroids and results of similarity comparisons for the
next iteration.

Class 1 = 8/3, 2/3, 3/3, 3/3, 4/3
Class 2 = 2/4, 12/4, 3/4, 3/4, 11/4
Class 3 = 0/1, 1/1, 3/1, 0/1, 1/1

Figure 6.8 New Centroids and Cluster Assignments

In this iteration of the process,, the only change is Term 7 moves from Class 1 to
Class 3. This is reasonable, given it was not that strongly related to the other terms
in Class 1.

Although the process requires fewer calculations than the complete term
relationship method, it has inherent limitations. The primary problem is that the
number of classes is defined at the start of the process and can not grow. It is
possible for there to be fewer classes at the end of the process. Since all terms must
be assigned to a class, it forces terms to be allocated to classes, even if their
similarity to the class is very weak compared to other terms assigned.

6.2.2.3 One Pass Assignments

This technique has the minimum overhead in that only one pass of all of
the terms is used to assign terms to classes. The first term is assigned to the first
class. Each additional term is compared to the centroids of the existing classes. A
threshold is chosen. If the item is greater than the threshold, it is assigned to the
class with the highest similarity. A new centroid has to be calculated for the
modified class. If the similarity to all of the existing centroids is less than the
threshold, the term is the first item in a new class. This process continues until all
items are assigned to classes. Using the system defined in Figure 6.3, with a
threshold of 10 the following classes would be generated:

Class 1 = Term 1, Term 3, Term 4
Class 2 = Term 2, Term 6, Term 8
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Class 3 = Term 5
Class 4 = Term 7

NOTE: the centroid values used during the one-pass process:

Class1 (Term1, Term3) = 0, 7/2, 3/2, 0, 4/2
Class1 (Term1, Term3, Term4) = 0, 10/3, 3/3, 3/3, 7/3
Class2 (Term2, Term6) = 6/2, 3/2, 0/2, 1/2, 6/2

Although this process has minimal computation on the order of  O(n), it does not
produce optimum clustered classes. The different classes can be produced if the
order in which the items are analyzed changes. Items that would have been in the
same cluster could appear in different clusters due to the averaging nature of
centroids.

6.3 Item Clustering

Clustering of items is very similar to term clustering for the generation of
thesauri. Manual item clustering is inherent in any library or filing system. In this
case someone reads the item and determines the category or categories to which it
belongs. When physical clustering occurs, each item is usually assigned to one
category. With the advent of indexing, an item is physically stored in a primary
category, but it can be found in other categories as defined by the index terms
assigned to the item.

With the advent of electronic holdings of items, it is possible to perform
automatic clustering of the items. The techniques described for the clustering of
terms in Sections 6.2.2.1 through 6.2.2.3 also apply to item clustering. Similarity
between documents is based upon two items that have terms in common versus
terms with items in common. Thus, the similarity function is performed between
rows of the item matrix. Using Figure 6.2 as the set of items and their terms and
similarity equation:

as k goes from 1 to 8 for the eight terms, an Item-Item matrix is created (Figure
6.9). Using a threshold of 10 produces the Item Relationship matrix shown in
Figure 6.10.
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Figure 6.9 Item/Item Matrix

Figure 6.10 Item Relationship Matrix

Using the Clique algorithm for assigning items to classes produces the following
classes based upon Figure 6.10:

Class 1 = Item 1, Item 2, Item 5
Class 2 = Item 2, Item 3
Class 3 = Item 2, Item 4, Item 5

Application of the single link technique produces:

Class 1 = Item 1, Item 2, Item 5, Item 3, Item 4

All the items are in this one cluster, with Item 3 and Item 4 added because of their
similarity to Item 2. The Star technique (i.e., always selecting the lowest non-
assigned item) produces:

Class 1 - Item 1, Item 2, Item 5
Class 2 - Item 3, Item 2
Class 3 - Item4, Item2, Item5

Using the String technique and stopping when all items are assigned to classes
produces the following:

Class 1 - Item 1, Item 2, Item 3
Class 2 - Item 4, Item 5
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In the vocabulary domain homographs introduce ambiguities and
erroneous hits. In the item domain multiple topics in an item may cause similar
problems. This is especially true when the decision is made to partition the
document space. Without precoordination of semantic concepts, an item that
discusses “Politics” in “America” and “Economics” in “Mexico” could get
clustered with a class that is focused around “Politics” in “Mexico.”

Clustering by starting with existing clusters can be performed in a manner
similar to the term model. Lets start with item 1 and item 3 in Class 1, and item 2
and item 4 in Class 2. The centroids are:

Class 1 = 3/2, 4/2, 0/2, 0/2, 3/2, 2/2, 4/2, 3/2
Class 2 = 3/2, 2/2, 4/2, 6/2, 1/2, 2/2, 2/2, 1/2

The results of recalculating the similarities of each item to each centroid and
reassigning terms is shown in Figure 6.11.

Figure 6.11 Item Clustering with Initial Clusters

Finding the centroid for Class 2, which now contains four items, and recalculating
the similarities does not result in reassignment for any of the items.

Instead of using words as a basis for clustering items, the Acquaintance
system uses n-grams (Damashek-95, Cohen-95). Not only does their algorithm
cluster items, but when items can be from more than one language, it will also
recognize the different languages.

6.4 Hierarchy of Clusters

Hierarchical clustering in Information Retrieval focuses on the area of
hierarchical agglomerative clustering methods (HACM) (Willet-88). The term
agglomerative means the clustering process starts with unclustered items and
performs pairwise similarity measures to determine the clusters. Divisive is the
term applied to starting with a cluster and breaking it down into smaller clusters.
The objectives of creating a hierarchy of clusters are to:
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Reduce the overhead of search
Provide for a visual representation of the information space
Expand the retrieval of relevant items.

Search overhead is reduced by performing top-down searches of the centroids of
the clusters in the hierarchy and trimming those branches that are not relevant
(discussed in greater depth in Chapter 7). It is difficult to create a visual display of
the total item space. Use of dendograms along with visual cues on the size of
clusters (e.g., size of the ellipse) and strengths of the linkages between clusters
(e.g., dashed lines indicate reduced similarities) allows a user to determine
alternate paths of browsing the database (see Figure 6.12). The dendogram allows
the user to determine which clusters to be reviewed are likely to have items of
interest. Even without the visual display of the hierarchy, a user can use the

Figure 6.12 Dendogram

logical hierarchy to browse items of interest. A user, once having identified an
item of interest, can request to see other items in the cluster. The user can increase
the specificity of items by going to children clusters or by increasing the generality
of items being reviewed by going to a parent cluster.

Most of the existing HACM approaches can be defined in terms of the
Lance-Williams dissimilarity update formula (Lance-66). It defines a general
formula for calculating the dissimilarity D between any existing cluster and a
new cluster created by combining clusters and
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By proper selection of and the current techniques for HACM can be
represented (Frakes-92). In comparing the various methods of creating
hierarchical clusters Voorhees and later El-Hamdouchi and Willet determined that
the group average method produced the best results on document collections
(Voorhees-86, El-Hamdouchi-89).

The similarity between two clusters can be treated as the similarity
between all objects in one cluster and all objects in the other cluster. Voorhees
showed that the similarity between a cluster centroid and any item is equal to the
mean similarity between the item and all items in the cluster. Since the centroid is
the average of all items in the cluster, this means that similarities between
centroids can be used to calculate the similarities between clusters.

Ward’s Method (Ward-63) chooses the minimum square Euclidean
distance between points (e.g., centroids in this case) normalized by the number of
objects in each cluster. He uses the formula for the variance I, choosing the
minimum variance:

where is the number of objects in and is the squared Euclidean
distance. The process of selection of centroids can be improved by using the
reciprocal nearest neighbor algorithm (Murtaugh-83, Murtaugh-85).

The techniques discribed in Section 6.2 created independent sets of
classes. The automatic clustering techniques can also be used to create a hierarchy
of objects (items or terms). The automatic approach has been applied to creating
item hierarchies more than in hierarchical statistical thesaurus generation. In the
manual creation of thesauri, network relationships are frequently allowed between
terms and classes creating an expanded thesaurus called semantic networks (e.g.,
in TOPIC and RetrievalWare). Hierarchies have also been created going from
general categories to more specific classes of terms. The human creator ensures
that the generalization or specification as the hierarchy is created makes semantic
sense. Automatic creation of a hierarchy for a statistical thesaurus introduces too
many errors to be productive.

But for item hierarchies the algorithms can also be applied. Centroids
were used to reduce computation required for adjustments in term assignments to
classes. For both terms and items, the centroid has the same structure as any of the
items or terms when viewed as a vector from the Item/Term matrix (see Figure
6.2). A term is a vector composed of a column whereas an item is a vector
composed of a row. The Scatter/Gather system (Hearst-96) is an example of this
technique. In the Scatter/Gather system an initial set of clusters was generated.
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Each of these clusters was re-clustered to produce a second level. This process
iterated until individual items were left at the lowest level.

When the creation of the classes is complete, a centroid can be calculated
for each class. When there are a large number of classes, the next higher level in
the hierarchy can be created by using the same algorithms used in the initial
clustering to cluster the centroids. The only change required may be in the
thresholds used. When this process is complete, if there are still too many of these
higher level clusters, an additional iteration of clustering can be applied to their
centroids. This process will continue until the desired number of clusters at the
highest level is achieved.

A cluster can be represented by a category if the clusters were monolithic
(membership is based upon a specific attribute). If the cluster is polythetic,
generated by allowing for multiple attributes (e.g., words/concepts), then it can best
be represented by using a list of the most significant words in the cluster. An
alternative is to show a two or three-dimensional space where the clusters are
represented by clusters of points. Monolithic clusters have two advantages over
polythetic (Sanderson-99): how easy it is for a user to understand the topic of the
cluster and the confidence that every item within the cluster will have a significant
focus on the topic. For example, YAHOO is a good example of a monolithic
cluster environment.

Sanderson and Croft proposed the following methodology to building a
concept hierarchy. Rather than just focusing the construction of the hierarchy, they
looked at ways of extracting terms from the documents to represent the hierarchy.
The terms had the following characteristics:

Terms had to best reflect the topics

A parent term would refer to a more general concept then its child

A child would cover a related subtopic of the parent

A directed acyclic graph would represent relationships versus a pure
hierarchy.

Ambiguous terms would have separate entries in the hierarchy for each
meaning.

As a concept hierarchy, it should be represented similar to WordNet (Miller-95)
which uses synonyms, antonyms, hyponym/hypernym (is-a/is-a-type-of), and
meronym/holonym (has-part/is-a-part-of). Some techniques for generating
hierarchies are Grefenstette's use of the similarity of contexts for locating
synonyms (Grefenstette-94), use of key phrases (e.g., "such as", "and other") as an
indicator of hyponym/hypernym relationships (Hearst-98), use of head and
modifier noun and verb phrases to determine hierarchies (Woods-97) and use of a
cohesion statistic to measure the degree of association between terms (Forsyth-86).
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Sanderson and Croft used a test based upon subsumption. It is defined given two
terms X and Y, X subsumes Y if:

X subsumes Y if the documents which Y occurs in are almost (.8) a subset of the
documents that X occurs in. The factor of .8 was heuristically used because an
absolute condition was eliminating too many useful relationships. X is thus a
parent of Y.

The set of documents to be clustered was determined by a query and the
query terms were used as the initial set of terms for the monolithic cluster. This set
was expanded by adding more terms via query expansion using peudorelevance
feedback (Blind feedback, Local Context Analysis) which is described in Chapter
7. They then used the terms and the formula above to create the hierarchies.

6.5 Summary

Thesauri, semantic nets and item clusters are essential tools in
Information Retrieval Systems, assisting the user in locating relevant items. They
provide more benefit to the recall process than in improving precision. Thesauri,
either humanly generated or statistical, and semantic nets are used to expand
search statements, providing a mapping between the users vocabulary and that of
the authors. The number of false hits on non-relevant items retrieved is determined
by how tightly coupled the terms are in the classes. When automatic techniques
are used to create a statistical thesaurus, techniques such as cliques produce classes
where the items are more likely to be related to the same concept than any of the
other approaches. When a manually created thesaurus is used, human intervention
is required to eliminate homonyms that produce false hits. A homonym is when a
term has multiple, different meanings (e.g., the term field meaning an area of grass
or an electromagnetic field). The longer (more terms) in the search statement, the
less important the human intervention to eliminate homonyms. This is because
items identified by the wrong interpretation of the homonym should have a low
weight because the other search terms are not likely to be found in the item. When
search statements are short, significant decreases in precision will occur if
homonym pruning is not applied.

Item clustering also assists the user in identifying relevant items. It is
used in two ways: to directly find additional items that may not have been found
by the query and to serve as a basis for visualization of the Hit file. Each item
cluster has a common semantic basis containing similar terms and thus similar
concepts. To assist the user in understanding the major topics resulting from a
search, the items retrieved can be clustered and used to create a visual (e.g.,
graphical) representation of the clusters and their topics (see Chapter 8 for
examples). This allows a user to navigate between topics, potentially showing
topics the user had not considered. The topics are not defined by the query but by
the text of the items retrieved.
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When items in the database have been clustered, it is possible to retrieve
all of the items in a cluster, even if they were not identified by the search
statement. When the user retrieves a strongly relevant item, the user can look at
other items like it without issuing another search. When relevant items are used to
create a new query (i.e., relevance feedback discussed in Section 7.3), the retrieved
hits are similar to what might be produced by a clustering algorithm. As with the
term clustering, item clustering assists in mapping between a user’s vocabulary and
the vocabulary of the authors.

From another perspective term clustering and item clustering achieve the
same objective even though they are the inverse of each other. The objective of
both is to determine additional relevant items by a co-ocurrence process. A
statistical thesaurus creates a cluster of terms that co-occur in the same set of items.
For all of the terms within the same cluster (assuming they are tightly coupled)
there will be significant overlap of the set of items they are found in. Item
clustering is based upon the same terms being found in the other items in the
cluster. Thus the set of items that caused a term clustering has a strong possibility
of being in the same item cluster based upon the terms. For example, if a term
cluster has 10 terms in it (assuming they are tightly related), then there will be a
set of items where each item contains major subsets of the terms. From the item
perspective, the set of items that has the commonality of terms, has a strong
possibility to be placed in the same item cluster.

Hierarchical clustering of items is of theoretical interest, but has minimal
practical application. The major rationale for using hierarchical clustering is to
improve performance in search of clusters. The complexity of maintaining the
clusters as new items are added to the system and the possibility of reduced recall
(discussed in Chapter 7) are examples of why this is not used in commercial
systems. Hierarchical thesauri are used in operational systems because there is
additional knowledge in the human generated hierarchy. They have been
historically used as a means to select index terms when indexing items. It provides
a controlled vocabulary and standards between indexers.

EXERCISES

1. If clustering has been completed on two different domains. Discuss the
impact of merging the domains into a single cluster for both term clustering
and item clustering. What factors will affect the amount of work that will be
required to merge the clusters together? (HINT: consider the steps in
clustering)

2. Which of the guidelines and additional decisions can be incorporated in an
automatic statistical thesaurus construction program? Describe how they
would be implemented and the risks with their implementation. Describe your
justification for the guidelines and exercises selected that can not be
automated.
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3. Prove that a term could not be found in multiple clusters when using the
single link technique.

4. Describe what effect increasing and decreasing the threshold value has on the
creation of classes and under what condition you would make the change.

5. Given the following Term-Term matrix:

a. Determine the Term Relationship matrix using a threshold of 10 or higher

b. Determine the clusters using the clique technique

c. Determine the clusters using the single link technique

d. Determine the clusters using the star technique where the term selected for
the new seed for the next star is the smallest number term nor already part of
a class.

e. Discuss the differences between the single link, the clique and the star
clusters. What are the characteristics of the items that would suggest which
technique to use?

6. Given the following set of items:
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a. Starting with Item 1 and Item 2 in Class 1, and with Item 3 and Item 4 in
Class 2, determine which items should be assigned to the clusters.

b. Use the one-pass technique to determine cluster assignment,

c. What are the differences in the results from the two processes?

7. Will the clustering process always come to the same final set of clusters no
matter what the starting clusters? Explain your answer.

8. Can statistical thesaurus generation be used to develop a hierarchical cluster
representation of a set of items? Discuss the value of creating the hierarchy
and how you would use it in a system.

9. What is the effect of clustering techniques on reducing the user overhead of
finding relevant items.
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7 User Search Techniques

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Search Statements and Binding
Similarity Measures and Ranking
Relevance Feedback
Selective Dissemination of Information Search
Weighted Searches of Boolean Systems
Searching the INTERNET and Hypertext
Summary

Previous chapters defined the concept of indexing and the data structures
most commonly associated with Information Retrieval Systems. Chapter 5
described different weighting algorithms associated with processing tokens.
Applying these algorithms creates a data structure that can be used in search.
Chapter 6 describes how clustering can be used to enhance retrieval and reduce the
overhead of search. Chapter 7 focuses on how search is performed. To understand
the search process, it is first necessary to look at the different binding levels of the
search statement entered by the user to the database being searched. The selection
and ranking of items is accomplished via similarity measures that calculate the
similarity between the user’s search statement and the weighted stored
representation of the semantics in an item. Relevance feedback can help a user
enhance search by making use of results from previous searches. This technique
uses information from items judged as relevant and non-relevant to determine an
expanded search statement. Chapter 6 introduces the concept of representing
multiple items via an single averaged representation called a “centroid.”
Searching centroids can reduce search computation, but there is an associated risk
of missing relevant items because of the averaging nature of a centroid.
Hyperlinked items introduce new concepts in search originating from the dynamic
nature of the linkages between items.
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7.1 Search Statements and Binding

Search statements are the statements of an information need generated by
users to specify the concepts they are trying to locate in items. As discussed in
Chapter 2, the search statement uses traditional Boolean logic and/or Natural
Language. In generation of the search statement, the user may have the ability to
weight (assign an importance) to different concepts in the statement. At this point
the binding is to the vocabulary and past experiences of the user. Binding in this
sense is when a more abstract form is redefined into a more specific form. The
search statement is the user’s attempt to specify the conditions needed to subset
logically the total item space to that cluster of items that contains the information
needed by the user.

The next level of binding comes when the search statement is parsed for
use by a specific search system. The search system translates the query to its own
metalanguage. This process is similar to the indexing of item processes described
in Chapter 5. For example, statistical systems determine the processing tokens of
interest and the weights assigned to each processing token based upon frequency of
occurrence from the search statement. Natural language systems determine the
syntactical and discourse semantics using algorithms similar to those used in
indexing. Concept systems map the search statement to the set of concepts used to
index items.

The final level of binding comes as the search is applied to a specific
database. This binding is based upon the statistics of the processing tokens in the
database and the semantics used in the database. This is especially true in
statistical and concept indexing systems. Some of the statistics used in weighting
are based upon the current contents of the database. Some examples are Document
Frequency and Total Frequency for a specific term. Frequently in a concept
indexing system, the concepts that are used as the basis for indexing are
determined by applying a statistical algorithm against a representative sample of
the database versus being generic across all databases (see Chapter 5). Natural
Language indexing techniques tend to use the most corpora-independent
algorithms. Figure 7.1 illustrates the three potential different levels of binding.
Parenthesis are used in the second binding step to indicate expansion by a
thesaurus.

The length of search statements directly affect the ability of Information
Retrieval Systems to find relevant items. The longer the search query, the easier it
is for the system to find items. Profiles used as search statements for Selective
Dissemination of Information systems are usually very long, typically 75 to 100
terms. In large systems used by research specialists and analysts, the typical ad
hoc search statement is approximately 7 terms. In a paper to be published in
SIGIR-97, Fox et al. at Virginia Tech have noted that the typical search statement
on the Internet is one or two words. These extremely short search statements for
ad hoc queries significantly reduce the effectiveness of many of the techniques
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INPUT Binding

“Find me information on the User search statement using
impact of the oil spills in Alaska on vocabulary of user
the price of oil”

impact, oil (petroleum), spills Statistical system binding extracts
(accidents), Alaska, price (cost, processing tokens
value)

impact (.308), oil (.606), petroleum Weights assigned to search terms
(.65), spills (.12), accidents (.23),   based upon inverse document
Alaska (.45), price (.16), cost (.25),  frequency algorithm and database
value (.10)

Figure 7.1 Examples of Query Binding

whose performance is discussed in Chapter 10 and are requiring investigation into
new automatic search expansion algorithms.

7.2 Similarity Measures and Ranking

Searching in general is concerned with calculating the similarity between
a user’s search statement and the items in the database. Although many of the
older systems are unweighted, the newer classes of Information Retrieval Systems
have logically stored weighted values for the indexes to an item. The similarity
may be applied to the total item or constrained to logical passages in the item. For
example, every paragraph may be defined as a passage or every 100 words. The
PIRCS system from Queen’s College, CUNY, applies its algorithms to
subdocuments defined as 550 word chunks (Kwok-96, Kwok-95). In this case, the
similarity will be to the passages versus the total item. Rather limiting the
definition of a passage to a fixed length size, locality based similarity allows
variable length passages (neighborhoods) based upon similarity of content
(Kretser-99). This then leads to the ability to define locality based searching and
retrieval of the precise locations of information that satisfies the query. The highest
similarity for any of the passages is used as the similarity measure for the item.
Restricting the similarity measure to passages gains significant precision with
minimal impact on recall. In results presented at TREC-4, it was discovered that
passage retrieval makes a significant difference when search statements are long
(hundreds of terms) but does not make a major difference for short queries. The
lack of a large number of terms makes it harder to find shorter passages that
contain the search terms expanded from the shorter queries.
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Once items are identified as possibly relevant to the user’s query, it is best
to present the most likely relevant items first. This process is called “ranking.”
Usually the output of the use of a similarity measure in the search process is a
scalar number that represents how similar an item is to the query.

7.2.1 Similarity Measures

A variety of different similarity measures can be used to calculate the
similarity between the item and the search statement. A characteristic of a
similarity formula is that the results of the formula increase as the items become
more similar. The value is zero if the items are totally dissimilar. An example of a
simple “sum of the products” similarity measure from the examples in Chapter 6 to
determine the similarity between documents for clustering purposes is:

This formula uses the summation of the product of the various terms of two items
when treating the index as a vector. If is replaced with then the same
formula generates the similarity between every Item and The problem
with this simple measure is in the normalization needed to account for variances in
the length of items. Additional normalization is also used to have the final results
come between zero and +1 (some formulas use the range -1 to +1).

One of the originators of the theory behind statistical indexing and
similarity functions was Robertson and Spark Jones (Robertson-76). Their model
suggests that knowledge of terms in relevant items retrieved from a query should
adjust the weights of those terms in the weighting process. They used the number
of relevant documents versus the number of non-relevant documents in the
database and the number of relevant documents having a specific query term versus
the number of non-relevant documents having that term to devise four formulas for
weighting. This assumption of the availability of relevance information in the
weighting process was later relaxed by Croft and Harper (Croft-79). Croft
expanded this original concept, taking into account the frequency of occurrence of
terms within an item producing the following similarity formula (Croft-83):

where C is a constant used in tuning, is the inverse document frequency for
term “i” in the collection and
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where K is a tuning constant,            is the frequency of           “i”            and 
is the maximum frequency of any term in item “j.” The best values for K seemed
to range between 0.3 and 0.5.

Another early similarity formula was used by Salton in the SMART
system (Salton-83). Salton treated the index and the search query as n-
dimensional vectors (see Chapter 5). To determine the “weight” an item has with
respect to the search statement, the Cosine formula is used to calculate the distance
between the vector for the item and the vector for the query:

where is the kth term in the weighted vector for Item “i” and is
the kth term in query “j.” The Cosine formula calculates the Cosine of the angle
between the two vectors. As the Cosine approaches “1,” the two vectors become
coincident (i.e., the term and the query represent the same concept). If  the two are
totally unrelated, then they will be orthogonal and the value of the Cosine is “0.”
What is not taken into account is the length of the vectors. For example, if the
following vectors are in a three dimensional (three term) system:

Item = (4, 8, 0)
Query 1 = (1, 2, 0)
Query 2= (3, 6, 0)

then the Cosine value is identical for both queries even though Query 2 has
significantly higher weights in the terms in common. To improve the formula,
Salton and Buckley (Salton-88) changed the term factors in the query to:

where is the frequency of term “i” in query “k,” is the maximum
frequency of any term in query “k” and is the inverse document frequency for
term “i” (see Chapter 5 for the formula). In the most recent evolution of the
formula, the IDF factor has been dropped (Buckley-96).

Two other commonly used measures are the Jaccard and the Dice
similarity measures (Rijsbergen-79). Both change the normalizing factor in the
denominator to account for different characteristics of  the data. The denominator
in the Cosine formula is invariant to the number of  terms in common and produces
very small numbers when the vectors are large and the number of common
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elements is small. In the Jaccard similarity measure, the denominator becomes
dependent upon the number of terms in common. As the common elements
increase, the similarity value quickly decreases, but is always in the range -1 to +1.
The Jaccard formula is :

The Dice measure simplifies the denominator from the Jaccard measure and
introduces a factor of 2 in the numerator. The normalization in the Dice formula is
also invariant to the number of terms in common.

Figure 7.2 shows how the normalizing denominator results vary with the
commonality of terms. For the Dice value, the numerator factor of 2 is divided into
the denominator. Notice that as long as the vector values are same, independent of
their order, the Cosine and Dice normalization factors do not change. Also notice
that when there are a number of terms in common between the query and the
document, that the Jaccard formula can produce a negative normalization factor.

It might appear that similarity measures only apply to statistical systems
where the formulas directly apply to the stored indexes. In the implementation of
Natural Language systems, also weighted values come from statistical data in
conjunction with the natural language processing stored as indexes. Similarity
algorithms are applied to these values in a similar fashion to statistical systems.
But in addition to the similarity measures, constructs are used at the discourse level
to perform additional filtering of the items.

Use of a similarity algorithm returns the complete data base as search
results. Many of the items have a similarity close or equal to zero (or minimum
value the similarity measure produces). For this reason, thresholds are usually
associated with the search process. The threshold defines the items in the resultant
Hit file from the query. Thresholds are either a value that the similarity measure
must equal or exceed or a number that limits the number of items in the Hit file. A
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QUERY = (2, 2, 0, 0, 4)
DOC1 = (0, 2, 6, 4, 0)
DOC2 = (2, 6, 0, 0, 4)

Cosine Jaccard Dice

DOC1 36.66 16 20

DOC2 36.66 –12 20

Figure 7.2 Normalizing Factors for Similarity Measures

default is always the case where the similarity is greater than zero. Figure 7.3
illustrates the threshold process. The simple “sum of the products” similarity
formula is used to calculate similarity between the query and each document. If no
threshold is specified, all three documents are considered hits. If a threshold of 4
is selected, then only DOC1 is returned.

Vector: American, geography, lake, Mexico, painter, oil,
reserve, subject

DOC1                 geography of Mexico suggests oil reserves are available
vector (0, 1, 0, 2, 0, 3, 1, 0)

DOC2 American geography has lakes available everywhere
vector (1, 3, 2, 0, 0, 0, 0, 0)

DOC3 painters suggest Mexico lakes as subjects
vector (0, 0, 1, 3, 3, 0, 0, 2)

QUERY oil reserves in Mexico
vector (0, 0, 0, 1, 0, 1, 1, 0)

SIM(Q, DOC1) = 6, SIM (Q, DOC2) = 0, SIM(Q, DOC3) = 3

Figure 7.3 Query Threshold Process
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Figure 7.4 Item Cluster Hierarchy

One special area of concern arises from search of clusters of terms that
are stored in a hierarchical scheme (see Chapter 6). The items are stored in
clusters that are represented by the centroid for each cluster. Figure 7.4 shows a
cluster representation of an item space. In Figure 7.4, each letter at the leaf
(bottom nodes) represent an item (i.e., K, L, M, N, D, E, F, G, H, P, Q, R, J). The
letters at the higher nodes (A, C, B, I) represent the centroid of their immediate
children nodes. The hierarchy is used in search by performing a top-down process.
The query is compared to the centroids “A” and “B.” If the results of the similarity
measure are above the threshold, the query is then applied to the nodes’ children.
If not, then that part of the tree is pruned and not searched. This continues until
the actual leaf nodes that are not pruned are compared. The problem comes from
the nature of a centroid which is an average of a collection of items (in Physics, the
center of gravity). The risk is that the average may not be similar enough to the
query for continued search, but specific items used to calculate the centroid may be
close enough to satisfy the search. The risks of missing items and thus reducing
recall increases as the standard deviation increases. Use of centroids reduces the
similarity computations but could cause a decrease in recall. It should have no
effect on precision since that is based upon the similarity calculations at the leaf
(item) level.

In Figure 7.5 the filled circle represents the query and the filled boxes
represent the centroids for the three clusters represented by the ovals. In this case,
the query may only be similar enough to the end two circles for additional analysis.
But there are specific items in the right cluster that are much closer to the query
than the cluster centroid and could satisfy the query. These items cannot be
returned because when their centroid is eliminated they are no longer considered.

As part of investigating improved techniques to present Hits to users,
Hearst and Pedersen from XEROX Palo Alto Research Center (PARC) are
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Figure 7.5 Centroid Comparisons

pursuing topical clustering as an alternative to similarity search ranking (Hearst-
96). In their experiments they applied the clustering to the entire corpora.
Although the clustering conveyed some of the content and structure of the corpora,
it was shown to be less effective in retrieval than a standard similarity query
(Pirolli-96). Constraining the search to the hierarchy retrieved fewer relevant
items than a similarity query that focused the results on an indexed logical subset
of the corpus.

7.2.2 Hidden Markov Models Techniques

Use of Hidden Markov Models for searching textual corpora has
introduced a new paradigm for search. In most of the previous search techniques,
the query is thought of as another "document" and the system tries to find other
documents similar to it. In HMMs the documents are considered unknown
statistical processes that can generate output that is equivalent to the set of queries
that would consider the document relevant. Another way to look at it is by taking
the general definition that a HMM is defined by output that is produced by passing
some unknown key via state transitions through a noisy channel. The observed
output is the query, and the unknown keys are the relevant documents. The noisy
channel is the mismatch between the author's way of expressing ideas and the
user's ability to specify his query. Leek, Miller and Schwartz (Leek-99) computed
for each document the probability that D was the relevant document in the users
mind given that Q was the query produced, i.e., P(D is R/Q).

The development for a HMM approach begins with applying Bayes rule to
the conditional probability:

Since we are performing the analysis from the document's perspective, the P(Q)
will be the same for every document and thus can be ignored. P(D is R) is also
almost an impossible task in a large diverse corpora. Relevant documents sets
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seem to be so sensitive to the specific queries, that trying to estimate P(D is R) does
not return any noticeable improvements in query resolution. Thus the probability
that a document is relevant given a specific query can be estimated by calculating
the probability of the query given the document is Relevant, i.e., P(Q/D is R).

As described in Chapter 4, a Hidden Markov Model is defined by a set of
states, a transition matrix defining the probability of moving between states, a set
of output symbols and the probability of the output symbols given a particular state.
The set of all possible queries is the output symbol set and the Document file
defines the states. States could for example be any of the words or stems of the
words in the documents. Thus the HMM process traces itself through the states of
a document (e.g., the words in the document) and at each state transition has an
output of query terms associated with the new state. State transitions are
associated with ways that words are combined to make documents. Given the
query, it is possible to calculate the probability that any particular document
generated the query.

The biggest problem in using this approach is to estimate the transition
probability matrix and the output (queries that could cause hits) for every document
in the corpus. If there was a large training database of queries and the relevant
documents they were associated with that included adequate coverage, then the
problem could be solved using Estimation-Maximization algorithms (Dempster-77,
Bryne-93.) But given the lack of data, Leek et. al. recommend making the
transition matrix independent of specific document sets and applying simple
unigram estimation for output distributions (Leek-99).

7.2.3 Ranking Algorithms

A by-product of use of similarity measures for selecting Hit items is a
value that can be used in ranking the output. Ranking the output implies ordering
the output from most likely items that satisfy the query to least likely items. This
reduces the user overhead by allowing the user to display the most likely relevant
items first. The original Boolean systems returned items ordered by date of entry
into the system versus by likelihood of relevance to the user’s search statement.
With the inclusion of statistical similarity techniques into commercial systems and
the large number of hits that originate from searching diverse corpora, such as the
Internet, ranking has become a common feature of modern systems. A summary
of ranking algorithms from the research community is found in an article written
by Belkin and Croft (Belkin-87).

In most of the commercial systems, heuristic rules are used to assist in the
ranking of items. Generally, systems do not want to use factors that require
knowledge across the corpus (e.g., inverse document frequency) as a basis for their
similarity or ranking functions because it is too difficult to maintain current values
as the database changes and the added complexity has not been shown to
significantly improve the overall weighting process. A good example of how a
commercial product integrates efficiency with theoretical concepts is the
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RetrievalWare system’s approach to queries and ranking (RETRIEVALWARE-
95).

RetrievalWare first uses indexes (inversion lists) to identify potential
relevant items. It then applies coarse grain and fine grain ranking. The coarse
grain ranking is based on the presence of query terms within items. In the fine
grain ranking, the exact rank of the item is calculated. The coarse grain ranking is
a weighted formula that can be adjusted based on completeness, contextual
evidence or variety, and semantic distance. Completeness is the proportion of the
number of query terms (or related terms if a query term is expanded using the
RetrievalWare semantic network/thesaurus) found in the item versus the number in
the query. It sets an upper limit on the rank value for the item. If weights are
assigned to query terms, the weights are factored into the value. Contextual
evidence occurs when related words from the semantic network are also in the
item. Thus if the user has indicated that the query term “charge” has the context of
“paying for an object” then finding words such as “buy,” “purchase,” “debt”
suggests that the term “charge” in the item has the meaning the user desires and
that more weight should be placed in ranking the item. Semantic distance
evaluates how close the additional words are to the query term. Synonyms add
additional weight; antonyms decrease weight. The coarse grain process provides
an initial rank to the item based upon existence of words within the item. Since
physical proximity is not considered in coarse grain ranking, the ranking value can
be easily calculated.

Fine grain ranking considers the physical location of query terms and
related words using factors of proximity in addition to the other three factors in
coarse grain evaluation. If the related terms and query terms occur in close
proximity (same sentence or paragraph) the item is judged more relevant. A factor
is calculated that maximizes at adjacency and decreases as the physical separation
increases. If the query terms are widely distributed throughout a long item, it is
possible for the item to have a fine grain rank of zero even though it contains the
query terms.

Although ranking creates a ranking score, most systems try to use other
ways of indicating the rank value to the user as Hit lists are displayed. The scores
have a tendency to be misleading and confusing to the user. The differences
between the values may be very close or very large. It has been found to be better
to indicate the general relevance of items than to be over specific (see Chapter 8).

7.3 Relevance Feedback

As discussed in the early chapters in this text, one of the major problems
in finding relevant items lies in the difference in vocabulary between the authors
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and the user. Thesuari and semantic networks provide utility in generally
expanding a user’s search statement to include potential related search terms. But
this still does not correlate to the vocabulary used by the authors that contributes to
a particular database. There is also a significant risk that the thesaurus does not
include the latest jargon being used, acronyms or proper nouns. In an interactive
system, users can manually modify an inefficient query or have the system
automatically expand the query via a thesaurus. The user can also use relevant
items that have been found by the system (irrespective of their ranking) to improve
future searches, which is the basis behind relevance feedback. Relevant items (or
portions of relevant items) are used to reweight the existing query terms and
possibly expand the user’s search statement with new terms.

The first major work on relevance feedback was published in 1965 by
Rocchio (republished in 1971: Rocchio-71). Rocchio was documenting
experiments on reweighting query terms and query expansion based upon a vector
representation of queries and items. The concepts are also found in the
probabilistic model presented by Robertson and Sparck Jones (Robertson-76). The
relevance feedback concept was that the new query should be based on the old
query modified to increase the weight of terms in relevant items and decrease the
weight of terms that are in non-relevant items. This technique not only modified
the terms in the original query but also allowed expansion of new terms from the
relevant items. The formula used is:

where
= the revised vector for the new query
= the original query

r = number of  relevant items
= the vectors for the relevant items

nr = number of non-relevant items
= the vectors for the non-relevant items.

The factors r and nr were later modified to be constants that account for the
number of items along with the importance of that particular factor in the equation.
Additionally a constant was added to to allow adjustments to the importance of
the weight assigned to the original query. This led to the revised version of the
formula:
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where and are the constants associated with each factor (usually 1/n or 1/nr

times a constant). The factor is referred to as positive feedback because

it is using the user judgments on relevant items to increase the values of terms for

the next iteration of searching. The factor is referred to as negative

feedback since it decreases the values of terms in the query vector. Positive
feedback is weighted significantly greater than negative feedback. Many times
only positive feedback is used in a relevance feedback environment. Positive
feedback is more likely to move a query closer to a user’s information needs.
Negative feedback may help, but in some cases it actually reduces the effectiveness
of a query. Figure 7.6 gives an example of the impacts of positive and negative
feedback. The filled circles represent non-relevant items; the other circles
represent relevant items. The oval represents the items that are returned from the
query. The solid box is logically where the query is initially. The hollow box is
the query modified by relevance feedback (positive only or negative only in the
Figure).

Figure 7.6 Impact of Relevance Feedback

Positive feedback moves the query to retrieve items similar to the items retrieved
and thus in the direction of more relevant items. Negative feedback moves the
query away from the non-relevant items retrieved, but not necessarily closer to
more relevant items.

Figure 7.7 shows how the formula is applied to three items (two relevant
and one non-relevant). If we use the factors  (½ times a constant ½),
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= ¼ (1/1 times a constant ¼) in the foregoing formula we get the following revised
query (NOTE: negative values are changed, to a zero value in the revised Query
vector):

Figure 7.7 Query Modification via Relevance Feedback

Using the unnormalized similarity formula

produces the results shown in Figure 7.8:

Figure 7.8 Effect of Relevance Feedback

In addition to showing the benefits of relevance feedback, this example
illustrates the problems of identifying information. Although DOC3 is not relevant
to the user, the initial query produced one of the highest similarity measures for it.
This was caused by a query term (Term 4) of interest to the user that has a
significant weight in DOC3. The fewer the number of terms in a user query, the
more likely a specific term to cause non-relevant items to be returned. The
modification to the query by the relevance feedback process significantly increased
the similarity measure values for the two relevant items (DOC1 and DOC2) while
decreasing the value of the non-relevant item. It is also of interest to note that the
new query added a weight to Term 2 that was not in the original query. One
reason that the user might not have initially had a value to Term 2 is that it might
not have been in the user’s vocabulary. For example, the user may have been
searching on “PC” and “word processor” and not been aware that many authors
use the specific term “Macintosh” rather than “PC.”

Relevance feedback, in particular positive feedback, has been proven to be
of significant value in producing better queries. Some of the early experiments on
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the SMART system (Ide-69, Ide-71, Salton-83) indicated the possible
improvements that would be gained by the process. But the small collection sizes
and evaluation techniques put into question the actual gains by using relevance
feedback. One of the early problems addressed in relevance feedback is how to
treat query terms that are not found in any retrieved relevant items. Just applying
the algorithm would have the effect of reducing the relative weight of those terms
with respect to other query terms. From the user’s perspective, this may not be
desired because the term may still have significant value to the user if found in the
future iterations of the search process. Harper and van Rijisbergen addressed this
issue in their proposed EMIM weighting scheme (Harper-78, Harper-80).
Relevance feedback has become a common feature in most information systems.
When the original query is modified based upon relevance feedback, the systems
ensure that the original query terms are in the modified query, even if negative
feedback would have eliminated them. In some systems the modified query is
presented to the user to allow the user to readjust the weights and review the new
terms added.

Recent experiments with relevance feedback during the TREC sessions
have shown conclusively the advantages of relevance feedback. Queries using
relevance feedback produce significantly better results than those being manually
enhanced. When users enter queries with a few number of terms, automatic
relevance feedback based upon just the rank values of items has been used. This
concept in information systems called pseudo-relevance feedback, blind feedback
or local context analysis (Xu-96) does not require human relevance judgments.
The highest ranked items from a query are automatically assumed to be relevant
and applying relevance feedback (positive only) used to create and execute an
expanded query. The system returns to the user a Hit file based upon the
expanded query. This technique also showed improved performance over not
using the automatic relevance feedback process. In the automatic query processing
tests from TREC (see Chapter 10) most systems use the highest ranked hits from
the first pass to generate the relevance feedback for the second pass.

7.4 Selective Dissemination of Information Search

Selective Dissemination of Information, frequently called dissemination
systems, are becoming more prevalent with the growth of the Internet. A
dissemination system is sometimes labeled a “push” system while a search system
is called a “pull” system. The differences are that in a search system the user
proactively makes a decision that he needs information and directs the query to the
information system to search. In a dissemination system, the user defines a profile
(similar to a stored query) and as new information is added to the system it is
automatically compared to the user’s profile. If it is considered a match, it is
asynchronously sent to the user’s “mail” file (see Chapter 1).
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One concept that ties together the two search statements (query and
profile) is the introduction of a time parameter associated with a search statement.
As long as the time is in the future, the search statement can be considered active
and disseminating as items arrive. Once the time parameter is past, the user’s
need for the information is no longer exists except upon demand (i.e., issuing the
search statement as an ad hoc query).

The differences between the two functions lie in the dynamic nature of the
profiling process, the size and diversity of the search statements and number of
simultaneous searches per item. In the search system, an existing database exists.
As such, corpora statistics exist on term frequency within and between terms.
These can be used for weighting factors in the indexing process and the similarity
comparison (e.g., inverse document frequency algorithms). A dissemination
system does not necessarily have a retrospective database associated with it. Thus
its algorithms need to avoid dependency upon previous data or develop a technique
to estimate terms for their formula. This class of system is also discussed as a
binary classification system because there is no possibility for real time feedback
from the user to assist in search statement refinement. The system makes a binary
decision to reject or file the item (Lewis-95).

Profiles are relatively static search statements that cover a diversity of
topics. Rather than specifying a particular information need, they usually
generalize all of the potential information needs of a user. They are focused on
current information needs of the user. Thus profiles have a tendency to contain
significantly more terms than an ad hoc query (hundreds of terms versus a small
number). The size tends to make them more complex and discourages users from
wanting to change them without expert advice.

One of the first commercial search techniques for dissemination was the
Logicon Message Dissemination System (LMDS). The system originated from a
system created by Chase, Rosen and Wallace (CRW Inc.). It was designed for
speed to support the search of thousands of profiles with items arriving every 20
seconds. It demonstrated one approach to the problem where the profiles were
treated as the static database and the new item acted like the query. It uses the
terms in the item to search the profile structure to identify those profiles whose
logic could be satisfied by the item. The system uses a least frequently occurring
trigraph (three character) algorithm that quickly identifies which profiles are not
satisfied by the item. The potential profiles are analyzed in detail to confirm if the
item is a hit.

Another example of a dissemination approach is the Personal Library
Software (PLS) system. It uses the approach of accumulating newly received items
into the database and periodically running user’s profiles against the database.
This makes maximum use of the retrospective search software but loses near real
time delivery of items. More recent examples of a similar approach are the
Retrievalware and the InRoute software systems. In these systems the item is
processed into the searchable form. Since the Profiles are relatively static, some
use is made in identifying all the terms used in all the profiles. Any words in the
items that are members of this list can not contribute to the similarity process and
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thus are eliminated from the search structure. Every profile is then compared to
the item. Retrieval ware uses a statistical algorithm but it does not include any
corpora data. Thus not having a database does not affect its similarity measure.
InRoute, like the 1NQUERY system used against retrospective database, uses
inverse document frequency information. It creates this information as it processes
items, storing and modifying it for use as future items arrive. This would suggest
that the values would be continually changing as items arrive until sufficient items
have arrived to stabilize the inverse document frequency weights. Relevance
feedback has been proven to enhance the search capabilities of ad hoc queries
against retrospective databases. Relevance feedback can also be applied to
dissemination systems. Unlike an ad hoc query situation, the dissemination
process is continuous, and the issue is the practicality of archiving all of the
previous relevance judgments to be used in the relevance feedback process. Allan
performed experiments on the number of items that have to arrive and be judged
before the effects of relevance feedback stabilize (Allan-96). Previous work has
been done on the number of documents needed to generate a new query and the
amount of training needed (Buckley-94, Aalbersberg-92, Lewis-94). The two
major choices are to save relevant items or relevance statistics for words. By
saving dissimilar items, Allan demonstrated that the system sees a 2-3 per cent loss
in effectiveness by archiving 10 per cent of the relevance judgments. This still
requires significant storage space. He was able to achieve high effectiveness by
storing information on as few as 250 terms.

Another approach to dissemination uses a statistical classification
technique and explicit error minimization to determine the decision criteria for
selecting items for a particular profile (Schutze-95). In this case, the classification
process is related to assignment for each item into one of two classes: relevant to a
user’s profile or non-relevant. Error minimization encounters problems in high
dimension spaces. The dimensionality of an information space is defined by the
number of unique terms where each term is another dimension. This is caused by
there being too many dimensions for a realistic training set to establish the error
minimization parameters. To reduce the dimensionality, a version of latent
semantic indexing (LSI) can be used. The process requires a training data set
along with its associated profiles. Relevance feedback is an example of a simple
case of a learning algorithm that does not use error minimization. Other examples
of algorithms used in linear classifiers that perform explicit error minimization are
linear discriminant analysis, logistic regression and linear neural networks.

Schutze et al. used two approaches to reduce the dimensionality: selecting
a set of existing features to use or creating a new much smaller set of features that
the original features are mapped into. A measure was used to determine the
most important features. The test was applied to a table that contained the number
of relevant and non-relevant items in which a term occurs plus the
number of relevant and non-relevant items in which the term does not occur

respectively). The formula used was:
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To focus the analysis, only items in the local region defined by a profile were
analyzed. The chi-squared technique provides a more effective mechanism than
frequency of occurrence of terms. A high score indicates a feature whose
frequency has a significant dependence on occurrence in a relevant or non-relevant
item.

An alternative technique to identify the reduced feature (vector) set is to
use a modified latent semantic index (LSI) technique to determine a new reduced
set of concept vectors. The technique varies from the LSI technique described in
Chapter 5 by creating a separate representation of terms and items by each profile
to create the “local” space of items likely to be relevant (i.e., Local LSI). The
results of the analysis go into a learning algorithm associated with the
classification technique (Hull-94). The use of the profile to define a local region is
essential when working with large databases. Otherwise the number of  LSI factors
is in the hundreds and the ability to process them is currently unrealistic. Rather
than keeping the LSI factors separate per profile, another approach is to merge the
results from all of the queries into a single LSI analysis (Dumais-93). This
increases the number of factors with associated increase in computational
complexity.

Once the reduced vector set has been identified, then learning algorithms
can be used for the classification process. Linear discriminate analysis, logistic
regression and neural networks are three possible techniques that were compared
by Schutze et al. Other possible techniques are classification trees (Tong-94,
Lewis-94a), Bayesian networks (Croft-94), Bayesian classifiers (Lewis-92), rules
induction (Apte-94), nearest neighbor techniques (Masand-92, Yang-94), and least
square methods (Fuhr-89). Linear discrimination analysis uses the covariance
class for each document class to detect feature dependence (Gnanadesikan-79).
Assuming a sample of  data from two groups with  and members, mean vectors

and and covariance matrices and respectively, the objective is to
maximize the separation between the two groups. This can be achieved by
maximizing the distance between the vector means, scaling to reflect the structure
in the pooled covariance matrix. Thus choose a such that:
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is maximized where T is the transpose and
Since C is positive, the Cholesky decomposition of Let  then

the formula becomes;

which is maximized by choosing This means:

The one dimensional space defined by should cause the group means to be
well separated. To produce a non-linear classifier, a pair of shrinkage parameters
is used to create a very general family of estimators for the group covariance
matrix (Freidman-89). This process called Regularized Discriminant Analysis
looks at a weighted combination of the pooled and unpooled covariance matrices.
The optimal values of the shrinkage parameters are selected based upon the cross
validation over the training set. The non-linear classifier produced by this
technique has not been shown to make major improvements in the classification
process (Hull-95).

A second approach is to use logistic regression (Cooper-94a). It models a
binary response variable by a linear combination of one or more predictor
variables, using a logit link function:

and modeling variance with a binomial random variable. This is achieved by
modeling the dependent variable as a linear combination of
independent variables using a form In this formula is the estimated
response probability (probability of relevance), is the feature vector (reduced
vector) for document I, and is the weight vector which is estimated from the
matrix of feature vectors. The optimal value of can be calculated using the
maximum likelihood and the Newton-Raphson method of numerical optimization
(McCullagh-89). The major difference from previous experiments using logistic
regression is that Schutze et al. do not use information from all the profiles but
restrict the analysis for each profile.

A third technique is to use neural networks for the learning function. A
neural network is a network of input and output cells (based upon neuron functions
in the brain) originating with the work of McCulloch and Pitts (McCulloch-43).
Each input pattern is propagated forward through the network. When an error is
detected it is propagated backward adjusting the cell parameters to reduce the
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error, thus achieving learning. This technique is very flexible and can
accommodate a wide range of distributions. A major risk of neural networks is
that they can overfit by learning the characteristics of the training data set and not
be generalized enough for the normal input of items. In applying training to a
neural network approach, a validation set of items is used in addition to the
training items to ensure that overfitting has not occurred. As each iteration of
parameter adjustment occurs on the training set, the validation set is retested.
Whenever the errors on the validation set increase, it indicates that overfitting is
occurring and establishes the number of iterations on training that improve the
parameter values while not harming generalization.

The linear and non-linear architectures for an implementation of neural
nets is shown in Figure 7.9.

Figure 7.9 Linear and Non-linear networks

In the non-linear network, each of the hidden blocks consists of three hidden
units. A hidden unit can be interpreted as feature detectors that estimate the
probability of a feature being present in the input. Propagating this to the output
unit can improve the overall estimation of relevance in the output unit. The
networks show input of both terms and the LSI representation (reduced feature set).
In both architectures, all input units are directly connected to the output units.
Relevance is computed by setting the activations of the input units to the
document’s representation and propagating the activation through the network to
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the output unit, then propagating the error back through the network using a
gradient descent algorithm (Rumelhart-95). A sigmoid was chosen as:

as the activation function for the units of the network (Schutze-95). In this case
backpropagation minimizes the same error as logistic regression (Rumelhart-95a),
The cross-entropy error is:

where   is the relevance for document I and     is the estimated relevance (or
activation of the output unit) for document i. The definition of the sigmoid is
equivalent to:

which is the same as the logit link function.
Schutze et al. performed experiments with the Tipster test database to

compare the three algorithms. They show that the linear classification schemes
perform 10-15 per cent better than the traditional relevance feedback. To use the
learning algorithms based upon error minimization and numerical computation
one must use some technique of dimensionality reduction. Their experiments show
that local latent semantic indexing is best for linear discrimination analysis and
logistic regression since they have no mechanism for protecting against overfitting.
When there are mechanisms to avoid overfitting such as in neural networks, other
less precise techniques of dimension reduction can be used. This work suggests
that there are alternatives to the statistical classification scheme associated with
profiles and dissemination.

An issue with Mail files is the logical reorganization associated with
display of items. In a retrospective query, the search is issued once and the hit list
is a static file that does not change in size or order of presentation. The
dissemination function is always adding items that satisfy a user’s profile to the
user’s Mail file. If the items are stored sorted by rank, then the relative order of
items can always be changing as new items are inserted in their position based
upon the rank value. This constant reordering can be confusing to the user who
remembers items by spatial relationships as well as naming. Thus the user may
remember an item next to another item is of significant interest. But in trying to
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retrieve it at a later time, the reordering process can make it significantly harder to
find.

7.5 Weighted Searches of Boolean Systems

The two major approaches to generating queries are Boolean and natural
language. Natural language queries are easily represented within statistical models
and are usable by the similarity measures discussed. Issues arise when Boolean
queries are associated with weighted index systems. Some of the issues are
associated with how the logic (AND, OR, NOT) operators function with weighted
values and how weights are associated with the query terms. If the operators are
interpreted in their normal interpretation, thay act too restrictive or too general
(i.e., AND and OR operators respectively). Salton, Fox and Wu showed that using
the strict definition of the operators will suboptimize the retrieval expected by the
user (Salton-83a). Closely related to the strict definition problem is the lack of
ranking that is missing from a pure Boolean process. Some of the early work
addressing this problem recognized the fuzziness associated with mixing Boolean
and weighted systems (Brookstein-78, Brookstein-80)

To integrate the Boolean and weighted systems model, Fox and Sharat
proposed a fuzzy set approach (Fox-86). Fuzzy sets introduce the concept of
degree of membership to a set (Zadeh-65). The degree of membership for AND
and OR operations are defined as:

where A and B are terms in an item. DEG is the degree of membership. The
Mixed Min and Max (MMM) model considers the similarity between query and
document to be a linear combination of the minimum and maximum item weights.
Fox proposed the following similarity formula:

where and are weighting coefficients for the OR operation and
and are the weighting coefficients for the AND operation. Lee and Fox
found in their experiments that the best performance comes when is between
0.5 to 0.8 and is greater than 0.2.
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The MMM technique was expanded by Paice (Paice-84) considering all
item weights versus the maximum/minimum approach. The similarity measure is
calculated as:

where the are inspected in ascending order for AND queries and descending
order for OR queries. The r terms are weighting coefficients. Lee and Fox showed
that the best values for r are 1.0 for AND queries and 0.7 for OR queries (Lee-88).
This technique requires more computation since the values need to be stored in
ascending or descending order and thus must be sorted.

An alternative approach is using the P-norm model which allows terms
within the query to have weights in addition to the terms in the items. Similar to
the Cosine similarity technique, it considers the membership values
to be coordinates in an “n” dimensional space. For an OR query, the origin (all
values equal zero) is the worst possibility. For an AND query the ideal point is the
unit vector where all the  values equal 1. Thus the best ranked documents will
have maximum distance from the origin in an OR query and minimal distance
from the unit vector point. The generalized queries are:

The operators (AND and OR) will have a strictness value assigned that varies from
1 to infinity where infinity is the strict definition of the Boolean operator. The
values are the query term weights. If we assign the strictness value to a parameter
labeled “S” then the similarity formulas between queries and items are:

Another approach suggested by Salton provides additional insight into the
issues of merging the Boolean queries and weighted query terms under the
assumption that there are no weights available in the indexes (Salton-83). The
objective is to perform the normal Boolean operations and then refine the results
using weighting techniques. The following procedure is a modification to his
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approach for defining search results. The normal Boolean operations produce the
following results:

“A OR B” retrieves those items that contain the term A or the term B or
both

“A AND B” retrieves those items that contain both terms A and B

“A NOT B” retrieves those items that contain term A and not contain
term B.

If  weights are then assigned to the terms between the values 0.0 to 1.0, they may be
interpreted as the significance that users are placing on each term. The value 1.0
is assumed to be the strict interpretation of a Boolean query. The value 0.0 is
interpreted to mean that the user places little value on the term. Under these
assumptions, a term assigned a value of 0.0 should have no effect on the retrieved
set. Thus

OR should return the set of  items that contain A as a term
AND will also return the set of items that contain term A
NOT also return set A.

This suggests that as the weight for term B goes from 0.0 to 1.0 the
resultant set changes from the set of all items that contains term A to the set
normally generated from the Boolean operation. The process can be visualized by
use of the VENN diagrams shown in Figure 7.10. Under the strict interpretation

OR would include all items that are in all the areas in the VENN
diagram. OR would be only those items in A (i.e., the whie and black
dotted areas) which is everything except items in “B NOT A” (the grey area.)
Thus as the value of query term B goes from 0.0 to 1.0, items from “B NOT A”
are proportionally added until at 1.0 all of the items will be added.

Similarly, under the strict interpretation AND would include all
of the items that are in the black dotted area. AND will be all of the
items in A as described above. Thus, as the value of query term B goes from 1.0 to
0.0 items will be proportionally added from “A NOT B” (white area) until at 0.0
all of the items will be added.

Finally, the strict interpretation of  NOT  is grey area while
NOT is all of A. Thus as the value of B goes from 0.0 to 1.0, items are
proportionally added from “A AND B” (black dotted area) until at 1.0 all of the
items have been added.

The final issue is the determination of which items are to be added or
dropped in interpreting the weighted values. Inspecting the items in the totally
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Figure 7.10 VENN Diagram

strict case (both terms having weight 1.0) and the case where the value is 0.0 there
is a set of items that are in both solutions (invariant set). In adding items they
should be the items most similar to the set of items that does not change in either
situation. In dropping items, they should be the items least similar to those that are
in both situations.

Thus the algorithm follows the following steps:

1. Determine the items that are satisfied by applying strict
interpretation of the Boolean functions

2.    Determine the items that are part of the set that is invariant

3. Determine the Centroid of the invariant set

4. Determine the number of items to be added or deleted by
multiplying the term weight times the number of items outside of
the invariant set and rounding up to the nearest whole number

5. Determine the similarity between items outside of the
invariant set and the Centroid

6. Select the items to be included or removed from the final set

Figure 7.11 gives an example of solving a weighted Boolean query.
ends up with a set containing all of the items that contain the

term “Computer” and two items from the set “computer” NOT “program.” The
symbol stands for rounding up to the next integer. In  the final  set
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Figure 7.11 Example of Weighted Boolean Query

contains all of set “cost” AND “sale” plus .25 of the set of “sale” NOT “cost.”
Using the simple similarity measure:

leads to the following set of similarity values based upon the centroids:
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For Q1, two additional items are added to the invariant set by
choosing the lowest number items because of the tie at 24, giving the answer of
(D1, D3, D8). For Q2, one additional item is added to the invariant set (D3, D4,

giving the answer (D1, D3, D4, D5).

7.6 Searching the INTERNET and Hypertext

The Internet has multiple different mechanisms that are the basis for
search of items. The primary techniques are associated with servers on the Internet
that create indexes of items on the Internet and allow search of them. Some of the
most commonly used nodes are YAHOO, AltaVista and Lycos. In all of these
systems there are active processes that visit a large number of Internet sites and
retrieve textual data which they index. The primary design decisions are on the
level to which they retrieve data and their general philosophy on user access.
LYCOS (http://www.lycos.com) and AltaVista automatically go out to other
Internet sites and return the text at the sites for automatic indexing
(http://www.altavista.digital.com). Lycos returns home pages from each site for
automatic indexing while Altavista indexes all of the text at a site. The retrieved
text is then used to create an index to the source items storing the Universal
Resource Locator (URL) to provide to the user to retrieve an item. All of the
systems use some form of ranking algorithm to assist in display of the retrieved
items. The algorithm is kept relatively simple using statistical information on the
occurrence of words within the retrieved text.

Closely associated with the creation of the indexes is the technique for
accessing nodes on the Internet to locate text to be indexed. This search process is
also directly available to users via Intelligent Agents. Intelligent Agents provide
the capability for a user to specify an information need which will be used by the
Intelligent Agent as it independently moves between Internet sites locating
information of interest. There are six key characteristics of intelligent agents
(Heilmann-96):

1. Autonomy - the search agent must be able to operate without
interaction with a human agent. It must have control over its own
internal states and make independent decisions. This implies a search
capability to traverse information sites based upon pre-established criteria
collecting potentially relevant information.

2. Communications Ability - the agent must be able to communicate with
the information sites as it traverses them. This implies a universally
accepted language defining the external interfaces (e.g., Z39.50).
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3. Capacity for Cooperation - this concept suggests that intelligent agents
need to cooperate to perform mutually beneficial tasks.

4.  Capacity for Reasoning - There are three types of reasoning scenarios
(Roseler-94):

Rule-based - where user has defined a set of conditions and
actions to be taken

Knowledge-based - where the intelligent agents have stored
previous conditions and actions taken which are used to deduce
future actions

Artificial evolution based - where intelligent agents spawn new
agents with higher logic capability to perform its objectives.

5. Adaptive Behavior - closely tied to 1 and 4 , adaptive behavior permits
the intelligent agent to assess its current state and make decisions on the
actions it should take

6. Trustworthiness - the user must trust that the intelligent agent will act
on the user’s behalf  to locate information that the user has access to and is
relevant to the user.

There are many implementation aspects of Intelligent Agents. They include
communications to traverse the Internet, how to wrap the agent in an appropriate
interface shell to work within an Internet server, and security and protection for
both the agent and the servers. Although these are critical for the implementation
of the agents, the major focus for information storage and retrieval is how to
optimize the location of relevant items as the agent performs its task. This requires
expansion of search capabilities into conditional and learning feedback
mechanisms that are becoming major topics in information retrieval.

Automatic relevance feedback is being used in a two-step process to
enhance user’s queries to include corpora-specific terminology. As an intelligent
agent moves from site to site, it is necessary for it to use similar techniques to learn
the language of the authors and correlate it to the search need of the user. How
much information gained from relevance feedback from one site should be carried
to the next site has yet to be resolved. Some basic groundwork is being laid by the
work on incremental relevance feedback discussed earlier. It will also need
capabilities to normalize ranking values across multiple systems. The quantity of
possible information being returned necessitates a merged ranking to allow the
user to focus on the most likely relevant items first.

Finally, there is the process of searching for information on the Internet
by following Hyperlinks. A Hyperlink is an embedded link to another item that
can be instantiated by clicking on the item reference. Frequently hidden to the user
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is a URL associated with the text being displayed. As discussed in Chapter 5,
inserting hyperlinks in an item is a method of indexing related information. One
of the issues of the existing Hyperlink process is the inability for the link to have
attributes. In particular, a link may be a pointer to another object that is an integral
aspect of the item being displayed (e.g. an embedded image or quoted text in
another item). But the reference could also be to another item that generally
supports the current text. It could also be to another related topic that the author
feels may be of interest to the reader. There are many other interpretations of the
rationale behind the link that are author specific.

Understanding the context of the link in the item being viewed determines
the utility of following the associated path. Thus the Hyperlinks create a static
network of linked items based upon an item being viewed. The user can manually
move through this network space by following links. The search in this sense is
the ability to start with an item and create the network of associated items (i.e.,
following the links). The results of the search is a network diagram that defines
the interrelated items which can be displayed to the user to assist in identification
of where the user is in the network and to facilitate movement to other nodes
(items) within the network (Gershon-95, Hasan-95, Mukherjea-95, Munzner-95).
The information retrieval aspect of this problem is how to automatically follow the
hyperlinks and how the additional information as each link is instantiated impacts
the resolution of the user’s search need. One approach is to use the function
described in Section 5.5 as a mechanism for assigning weights to the terms in
original and linked items to use with the search statement to determine hits.

New search capabilities are continually becoming available on the
Internet. Dissemination systems are proliferating to provide individual users with
items they are potentially interested in for personal or business reasons. Some
examples are the Pointcast system, FishWrap newspaper service at MIT and
SFGATE (San Francisco Examiner and San Francisco Chronicle) that allow users
to define specific areas of interest. Items will be e-mailed as found or stored in a
file for later retrieval. The systems will continually update your screen if you are
on the Internet with new items as they are found (http://fishwrap-
docs.www.media.mit.edu/docs/, http:/www.sfgate.com, http:/www.pointcast.com).
There are also many search sites that collect relevance information from user
interaction and use relevance feedback algorithms and proprietary heuristics and
provide modifications on information being delivered. Firefly interacts with a user,
learning the user’s preferences for record albums and movies. It provides
recommendations on potential products of interest. The Firefly system also
compares the user’s continually changing interest profile with other users and
informs users of others with similar interests for possible collaboration
(http:/www.ffly.com). Another system that uses feedback across multiple users to
categorize and classify interests is the Empirical Media system
(http:/www.empiracal.com). Based upon an individual user’s relevance ranking of
what is being displayed the system learns a user’s preference. It also judges from
other user’s rankings of items the likelihood that an item will be of interest to other
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users that show the same pattern of interest. Thus it uses this “Collaborative
Intelligence” in addition to its internal ranking algorithms to provide a final
ranking of items to individual users. Early research attempts at using queries
across multiple users to classify document systems did not show much promise
(Salton-83). But the orders of magnitude increase (million times greater or more)
in user interaction from the Internet provides a basis for realistic clustering and
learning.

7.7 Summary

Creating the index to an Information Retrieval System defines the
searchable concepts that represent the items received by a system. The user search
process is the mechanism that correlates the user‘s search statement with the index
via a similarity function. There are a number of techniques to define the indexes
to an item. It is typically more efficient to incur system overhead at index creation
time than search time. An item is processed once at index time, but there will be
millions of searches against the index. Also, the user is directly affected by the
response time of a search but, in general, is not aware of how long it takes from
receipt of an item to its being available in the index. The selection and
implementation of similarity algorithms for search must be optimized for
performance and scaleable to accommodate very large databases.

It is typical during search parsing that the user’s initial search statement
is expanded via a thesaurus or semantic net to account for vocabulary differences
between the user and the authors. But excessive expansion takes significantly
more processing and increases the response time due to the number of terms that
have to be processed. Most systems have default limits on the number of new
terms added to a search statement. Chapter 7 describes some of the basic
algorithms that can be used as similarity measures. These algorithms are still in a
state of evolution and are continually being modified to improve their performance.
The search algorithms in a probabilistic indexing and search system are much
more complex than the similarity measures described. For systems based upon
natural language processing, once the initial similarity comparisons are completed,
there is an additional search processing step to make use of discourse level
information, adding additional precision to the final results.

Relevance feedback is an alternative to thesaurus expansion to assist the
user in creating a search statement that will return the needed information.
Thesaurus and semantic net expansions are dependent upon the user’s ability to
use the appropriate vocabulary in the search statement that represents the required
information. If the user selects poor terms, they will be expanded with many more
poor terms. Thesaurus expansion does not introduce new concepts that are
relevant to the users information need, it just expands the description of existing
concepts. Relevance feedback starts with the text of an item that the user has
identified as meeting his information need; incorporating it into a revised search
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statement. The vocabulary in the relevant item text has the potential for
introducing new concepts that better reflect the user’s information need along with
adding additional terms related to existing search terms and adjusting the weights
(importance) of existing terms.

Selective Dissemination of Information search is different from searches
against the persistent information database in that it is assumed there is no
information from a large corpus available to determine parameters in determining
a temporary index for the item to use in the similarity comparison process (e.g.,
inverse document frequency factors.) An aspect of dissemination systems that
helps in the search process is the tendency for the profiles to have significantly
more terms than ad hoc queries. The additional information helps to identify
relevant items and increase the precision of the search process. Relevance
feedback can also be used with profiles with some constraints. Relevance feedback
used with ad hoc queries against an existing database tends to move the
terminology defining the search concepts towards the information need of the user
that is available in the current database. Concepts in the initial search statement
will eventually lose importance in the revised queries if they are not in the
database. The goal of profiles is to define the coverage of concepts that the user
cares about if they are ever found in new items. Relevance feedback applied to
profiles aides the user by enhancing the search profile with new terminology about
areas of interest. But, even though a concept has not been found in any items
received, that area may still be of critical importance to the user if it ever is found
in any new items. Thus weighting of original terms takes on added significance
over the ad hoc situation.

Searching the Internet for information has brought into focus the
deficiencies in the search algorithms developed to date. The ad hoc queries are
extremely short (usually less than three terms) and most users do not know how to
use the advanced features associated with most search sites. Until recently
research had focused on a larger more sophisticated query. With the Internet being
the largest most available information system supporting information retrieval
search, algorithms are in the process of being modified to account for the lack of
information provided by the users in their queries. Intelligent Agents are being
proposed as a potential mechanism to assist users in locating the information they
require. The requirements for autonomy and the need for reasoning in the agents
will lead to the merging of information retrieval algorithms and the learning
processes associated with Artificial Intelligence. The use of hyperlinks is adding
another level of ambiguity in what should be defined as an item. When similarity
measures are being applied to identify the relevance weight, how much of the
hyperlinked information should be considered part of the item? The impacts on the
definition of information retrieval boundaries are just starting to be analyzed while
experimental products are being developed in Web years and immediately being
made available.
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EXERCISES

1.     Discuss the sources of potential errors in the final set of search terms from
when a user first identifies a need for information to the creation of the final
query. (HINT: you may also want to use information from Chapter 1)

2.     Why are there three levels of binding in the creation of a search?

3. Why does the numerator remain basically the same in all of the similarity
measures.? Discuss other possible approaches and their impact on the
formulas.

4. Given the following set of retrieved documents with relevance judgments

a. Calculate a new query using a factor of 1/2 for positive feedback and 1/4
for negative feedback

b. Determine which documents would be retrieved by the original and by the
new query

c. Discuss the differences in documents retrieved by the original versus the
new query.

5.  Is the use of positive feedback always better than using negative feedback to
improve a query?

6. What are some potential ambiguities in use of relevance feedback on
hypertext documents.
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7. Given the following documents, determine which documents will be returned
by the query and

8. How would you define an item on the Internet with respect to a search
statement and similarity function?
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8 Information Visualization

8.1
8.2
8.3
8.4

Introduction to Information Visualization
Cognitive and Perception
Information Visualization Technologies
Summary

The primary focus on Information Retrieval Systems has been in the areas
of indexing, searching and clustering versus information display. This has been
due to the inability of technology to provide the technical platforms needed for
sophisticated display, academic’s focusing on the more interesting algorithmic
based search aspects of information retrieval, and the multi-disciplinary nature of
the human-computer interface (HCI). The core technologies needed to address
sophisticated information visualization have matured, supporting productive
research and implementation into commercial products. The commercial demand
for these technologies is growing with availability of the “information highway.”
System designers need to treat the display of data as visual computing instead of
treating the monitor as a replica of paper. Functions that are available with
electronic display and visualization of data that were not previously provided are
(Brown-96):

modify representations of data and information or the display condition
(e.g., changing color scales)

use the same representation while showing changes in data (e.g., moving
between clusters of items showing new linkages)

animate the display to show changes in space and time

enable interactive input from the user to allow dynamic movement
between information spaces and allow the user to modify data presentation
to optimize personal preferences for understanding the data.
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Create hyperlinks under user control to establish relationships between
data

If information retrieval had achieved development of the perfect search
algorithm providing close to one hundred per cent precision and recall, the need
for advances in information visualization would not be so great. But reality has
demonstrated in TREC and other information fora that advancements are not even
close to achieving this goal. Thus, any technique that can reduce the user overhead
of finding the needed information will supplement algorithmic achievements in
finding potential relevant items. Information Visualization addresses how the
results of a search may be optimally displayed to the users to facilitate their
understanding of what the search has provided and their selection of most likely
items of interest to read. Visual displays can consolidate the search results into a
form easily processed by the user’s cognitive abilities, but in general they do not
answer the specific retrieval needs of the user other than suggesting database
coverage of the concept and related concepts.

The theoretical disciplines of cognitive engineering and perception
provide a theoretical base for information visualization. Cognitive engineering
derives design principles for visualization techniques from what we know about the
neural processes involved with attention, memory, imagery and information
processing of the human visual system. By 1989 research had determined that
mental depiction plays a role in cognition that is different from mental description.
Thus, the visual representation of an item plays as important a role as its symbolic
definition in cognition.

Cognitive engineering results can be applied to methods of reviewing the
concepts contained in items selected by search of an information system.
Visualization can be divided into two broad classes: link visualization and
attribute (concept) visualization. Link visualization displays relationships among
items. Attribute visualization reveals content relationships across large numbers of
items. Related to attribute visualization is the capability to provide visual cues on
how search terms affected the search results. This assists a user in determining
changes required to search statements that will return more relevant items.

8.1 Introduction to Information Visualization

The beginnings of the theory of visualization began over 2400 years ago.
The philosopher Plato discerned that we perceive objects through the senses, using
the mind. Our perception of the real world is a translation from physical energy
from our environment into encoded neural signals. The mind is continually
interpreting and categorizing our perception of our surroundings. Use of a
computer is another source of input to the mind’s processing functions. Text-only
interfaces reduce the complexity of the interface but also restrict use of the more
powerful information processing functions the mind has developed since birth.
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Information visualization is a relatively new discipline growing out of the
debates in the 1970s on the way the brain processes and uses mental images. It
required significant advancements in technology and information retrieval
techniques to become a possibility. One of the earliest researchers in information
visualization was Doyle, who in 1962 discussed the concept of “semantic road
maps” that could provide a user a view of the whole database (Doyle-62). The
road maps show the items that are related to a specific semantic theme. The user
could use this view to focus his query on a specific semantic portion of the
database. The concept was extended in the late 1960s, emphasizing a spatial
organization that maps to the information in the database (Miller-68). Sammon
implemented a non-linear mapping algorithm that could reveal document
associations providing the information required to create a road map or spatial
organization (Sammons-69).

In the 1990s technical advancements along with exponential growth of
available information moved the discipline into practical research and
commercialization. Information visualization techniques have the potential to
significantly enhance the user’s ability to minimize resources expended to locate
needed information. The way users interact with computers changed with the
introduction of user interfaces based upon Windows, Icons, Menus, and Pointing
devices (WIMPs). Although movement in the right direction to provide a more
natural human interface, the technologies still required humans to perform
activities optimized for the computer to understand. A better approach was stated
by Donald A. Norman (Rose-96):

... people are required to conform to technology. It is time to reverse this
trend, time to make technology conform to people

Norman stresses that to optimize the user’s ability to find information, the focus
should be on understanding the aspects of the user’s interface and processing of
information which then can be migrated to a computer interface (Norman-90).

Although using text to present an overview of a significant amount of
information makes it difficult for the user to understand the information, it is
essential in presenting the details. In information retrieval, the process of getting
to the relevant details starts with filtering many items via a search process. The
results of this process is still a large number of potentially relevant items. In most
systems the results of the search are presented as a textual list of each item perhaps
ordered by rank. The user has to read all of the pages of lists of the items to see
what is in the Hit list. Understanding the human cognitive process associated with
visual data suggests alternative ways of presenting and manipulating information
to focus on the likely relevant items. There are many areas that information
visualization and presentation can help the user:

a. reduce the amount of time to understand the results of a search and
likely clusters of relevant information
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b. yield information that comes from the relationships between items
versus treating each item as independent

c. perform simple actions that produce sophisticated information search
functions

A study was performed by Fox et al. using interviews and user task analysis on
professionals in human factors engineering, library science, and computer science
to determine the requirements to optimize their work with documents (Fox-93a).
Once past the initial requirement for easy access from their office, the researchers’
primary objective was the capability to locate and explore patterns in document
databases. They wanted visual representations of the patterns and items of interest.
There was a consistent theme that the tools should allow the users to view and
search documents with the system sensitive to their view of the information space.
The users wanted to be able to focus on particular areas of their interest (not
generic system interest definitions) and then easily see new topical areas of
potential interest to investigate. They sought an interface that permits easy
identification of trends, interest in various topics and newly emerging topics.
Representing information in a visual mode allows for cognitive parallel processing
of multiple facts and data relationships satisfying many of these requirements.

The exponential growth in available information produces large Hit files
from most searches. To understand issues with the search statement and retrieved
items, the user has to review a significant number of status screens. Even with the
review, it is hard to generalize if the search can be improved. Information
visualization provides an intuitive interface to the user to aggregate the results of
the search into a display that provides a high-level summary and facilitates
focusing on likely centers of relevant items. The query logically extracts a virtual
workspace (information space) of potential relevant items which can be viewed and
manipulated by the user. By representing the aggregate semantics of the
workspace, relationships between items become visible. It is impossible for the
user to perceive these relationships by viewing the items individually. The
aggregate presentation allows the user to manipulate the aggregates to refine the
items in the workspace. For example, if the workspace is represented by a set of
named clusters (name based upon major semantic content), the user may select a
set of clusters that defines the next iteration of the search.

An alternative use of aggregates is to correlate the search terms with items
retrieved. Inspecting relevant and non-relevant items in a form that highlights the
effect of the expanded search terms provides insights on what terms were the major
causes for the results. A user may have thought a particular term was very
important. A visual display could show that the term in fact had a minimal effect
on the item selection process, suggesting a need to substitute other search terms.

Using a textual display on the results of a search provides no mechanism
to display inter-relationships between items. For example, if the user is interested
in the development of a polio vaccine, there is no way for a textual listing of found
items to show “date” and “researcher” relationships based upon published items.
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The textual summary list of the Hit file can only be sorted via one attribute,
typically relevance rank.

Aspects of human cognition are the technical basis for understanding the
details of information visualization systems. Many techniques are being developed
heuristically with the correlation to human cognition and perception analyzed after
the techniques are in test. The commercial pressures to provide visualization in
delivered systems places the creativity under the intuitive concepts of the
developer.

8.2 Cognition and Perception

The user-machine interface has primarily focused on a paradigm of a
typewriter. As computers displays became ubiquitous, man-machine interfaces
focused on treating the display as an extension of paper with the focus on
consistency of operations. The advent of WIMP interfaces and simultaneous
parallel tasks in the user work environment expanded the complexity of the
interface to manipulate the multiple tasks. The evolution of the interface focused
on how to represent to the user what is taking place in the computer environment.
The advancements in computer technology, information sciences and
understanding human information processing are providing the basis for extending
the human computer interface to improve the information flow, thus reducing
wasted user overhead in locating needed information. Although the major focus is
on enhanced visualization of information, other senses are also being looked at for
future interfaces. The audio sense has always been part of simple alerts in
computers. Illegal inputs are usually associated with a beep, and more recently
users have a spectrum of audio sounds to associate with everything from start-up to
shut down. The sounds are now being replaced by speech in both input and output
interfaces. Still in the research arena is the value of using audio to encapsulate
information (e.g., higher pitch as you move through an information space plus
increased relevance). The tactile (touch) sense is being addressed in the
experiments using Virtual Realty (VR). For example, VR is used as a training
environment for areas such as medical procedures where tactile feedback plays an
increasing role. Olfactory and taste are two areas where practical use for
information processing or computer interfaces in general has yet to be identified.
For Information Retrieval Systems, the primary area of interest is in information
visualization.

8.2.1 Background

A significant portion of the brain is devoted to vision and supports the
maximum information transfer function from the environment to a human being.
The center of debates in the 1970s was whether vision should be considered data
collection or also has aspects of information processing. In 1969 Arnheim
questioned the then current psychological division of cognitive operations of
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perception and thinking as separate processes (Arnheim-69). Until then perception
was considered a data collection task and thinking as a higher level function using
the data. He contended that visual perception includes the process of
understanding the information, providing an ongoing feedback mechanism
between the perception and thinking. He further expanded his views arguing that
treating perception and thinking as separate functions treats the mind as a serial
automata (Arnheim-86). Under this paradigm, the two mental functions exclude
each other, with perception dealing with individual instances versus
generalizations. Visualization is the transformation of information into a visual
form which enables the user to observe and understand the information. This
concept can be extended where the visual images provide a fundamentally
different way to understand information that treats the visual input not as discrete
facts but as an understanding process. The Gestalt psychologists postulate that the
mind follows a set of rules to combine the input stimuli to a mental representation
that differs from the sum of the individual inputs (Rock-90):

Proximity - nearby figures are grouped together

Similarity - similar figures are grouped together

Continuity - figures are interpreted as smooth continuous patterns rather
than discontinuous concatenations of shapes (e.g., a circle with
its diameter drawn is perceived as two continuous shapes, a circle
and a line, versus two half circles concatenated together)

Closure - gaps within a figure are filled in to create a whole (e.g., using
dashed lines to represent a square does not prevent understanding
it as a square)

Connectedness - uniform and linked spots, lines or areas are perceived as
a single unit

Shifting the information processing load from slower cognitive processes
to faster perceptual systems significantly improves the information-carrying
interfaces between humans and computers (Card-96). There are many ways to
present information in the visual space. An understanding of the way the cognitive
processes work provides insights for the decisions on which of the presentations
will maximize the information passing and understanding. There is not a single
correct answer on the best way to present information.

8.2.2 Aspects of the Visualization Process

One of the first-level cognitive processes is preattention, that is, taking the
significant visual information from the photoreceptors and forming primitives.
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Primitives are part of the preconscious processes that consist of involuntary lower
order information processing (Friedhoff-89). An example of this is the ease with
which our visual systems detect borders between changes in orientation of the same
object. In Figure 8.1 the visual system detects the difference in orientations
between the left and middle portion of the figure and determines the logical border
between them. An example of using the conscious processing capabilities of the
brain is the detection of the different shaped objects and the border between them
shown between the left side and middle of the Figure 8.1. The reader can likely
detect the differences in the time it takes to visualize the two different boundaries.

Figure 8.1 Preattentive Detection Mechanism

This suggests that if information semantics are placed in orientations, the mind’s
clustering aggregate function enables detection of groupings easier than using
different objects (assuming the orientations are significant). This approach makes
maximum use of the feature detectors in the retina.

The preattentive process can detect the boundaries between orientation
groups of the same object. A harder process is to identify the equivalence of rotated
objects. For example, a rotated square requires more effort to recognize it as a
square. As we migrate into characters, the problem of identification of the
character is affected by rotating the character in a direction not normally
encountered. It is easier to detect the symmetry when the axis is vertical. Figure
8.2 demonstrates these effects.

Figure 8.2 Rotating a Square and Reversing Letters in “REAL”
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Another visual factor is the optical illusion that makes a light object on a
dark background to appear larger than if the item is dark and the background is
light. Making use of this factor suggests that a visual display of small objects
should use bright colors. An even more complex area is the use of colors. Colors
have many attributes that can be modified such as hue, saturation and lightness.
Hue is the physiological attribute of color sensation. Saturation is the degree to
which a hue is different from a gray line with the same lightness, while lightness is
the sensation of the amount of white or black. Complementary colors are two
colors that form white or gray when combined (red/green, yellow/blue). Color is
one of the most frequently used visualization techniques to organize, classify, and
enhance features (Thorell-90). Humans have an innate attraction to the primary
colors (red, blue, green and yellow), and their retention of images associated with

these colors is longer. But colors also affect emotion, and some people have strong
aversion to certain colors. The negative side of use of colors is that some people are
color blind to some or many colors. Thus any display that uses colors should have
other options available.

Depth, like color, is frequently used for representing visual information.
Classified as monocular cues, changes in shading, blurring (proportional to
distance), perspective, motion, stereoscopic vision, occlusion and texture depict
depth. Most of the cues are affected more by lightness than contrast. Thus, choice
of colors that maximizes brightness in contrast to the background can assist in
presenting depth as a mechanism for representing information. Depth has the
advantage that depth/size recognition are learned early in life and used all of the
time. Gibson and Walk showed that six-month-old children already understand
depth suggesting that depth may be an innate concept (Gibson-60). The cognitive
processes are well developed, and the use of this information in classifying objects
is ubiquitous to daily life. The visual information processing system is attuned to
processing information using depth and correlating it to real world paradigms.

Another higher level processing technique is the use of configural aspects
of a display (Rose-95). A configural effect occurs when arrangements of objects
are presented to the user allowing for easy recognition of a high-level abstract
condition. Configural clues substitute a lower level visual process for a higher
level one that requires more concentration (see preattentive above). These clues
are frequently used to detect changes from a normal operating environment such as
in monitoring an operational system. An example is shown in Figure 8.3 where
the sides of a regular polygon (e.g., a square in this example) are modified. The
visual processing system quickly detects deviations from normally equally sized
objects.

Another visual cue that can be used is spatial frequency. The human
visual and cognitive system tends towards order and builds an coherent visual
image whenever possible. The multiple spatial channel theory proposes that a
complex image is constructed from the external inputs, not received as a single
image. The final image is constructed from multiple receptors that detect changes
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Figure 8.3 Distortions of a Regular Polygon

in spatial frequency, orientation, contrast, and spatial phase. Spatial frequency is
an acuity measure relative to regular light-dark changes that are in the visual field
or similar channels. A cycle is one complete light-dark change. The spatial
frequency is the number of cycles per one degree of visual field. Our visual
systems are less sensitive to spatial frequencies of about 5-6 cycles per degree of
visual field (NOTE: one degree of visual field is approximately the viewing angle
subtended by the width of a finger at arms length). Other animals have
significantly more sensitive systems that allow them to detect outlines of
camouflaged prey not detected by humans until we focus on the area. Associated
with not processing the higher spatial frequencies is a reduction in the cognitive
processing time, allowing animals (e.g. cats) to react faster to motion. When
looking at a distinct, well defined image versus a blurred image, our visual system
will detect motion/changes in the distinct image easier than the blurred image. If
motion is being used as a way of aggregating and displaying information, certain
spatial frequencies facilitate extraction of patterns of interest. Dr. Mary Kaiser of
NASA-AMES is experimenting with perceptually derived displays for aircraft.
She is interested in applying the human vision filters such as limits of spatial and
temporal resolution, mechanisms of stereopsis, and attentional focus to aircraft
(Kaiser-96).

The human sensory systems learn from usage. In deciding upon visual
information techniques, parallels need to be made between what is being used to
represent information and encountering those techniques in the real world
environment. The human system is adept at working with horizontal and vertical
references. They are easily detected and processed. Using other orientations
requires additional cognitive processes to understand the changes from  the
expected inputs. The typical color environment is subdued without large areas of
bright colors. Thus using an analogous situation, bright colors represent items to
be focused on correlating to normal processing (i.e., noticing brightly colored
flowers in a garden). Another example of taking advantage of sensory information
that the brain is use to processing is terrain and depth information. Using a
graphical representation that uses depth of rectangular objects to represent
information is an image that the visual system is used to processing. Movement in
that space is more easily interpreted and understood by the cognitive processes than
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if, for example, a three-dimensional image of a sphere represented a visual
information space.

In using cognitive engineering in designing information visualization
techniques, a hidden risk is that “understanding is in the eye of the beholder.” The
integration of the visual cues into an interpretation of what is being seen is also
based upon the user’s background and context of the information. The human
mind uses the latest information to assist in interpreting new information. If a
particular shape has been representing important information, the mind has a
predisposition to interpret new inputs as the same shape. For example, if users
have been focusing on clusters of items, they may see clusters in a new presentation
that do not exist. This leads to the question of changing visualization presentations
to minimize legacy dispositions. Another issue is that our past experiences can
affect our interpretation of a graphic. Users may interpret figures according to
what is most common in their life experiences rather than what the designer
intended.

8-3 Information Visualization Technologies

The theories associated with information visualization are being applied
in commercial and experimental systems to determine the best way to improve the
user interface, facilitating the localization of information. They have been applied
to many different situations and environments (e.g., weather forecasting to
architectural design). The ones focused on Information Retrieval Systems are
investigating how best to display the results of searches, structured data from
DBMSs and the results of link analysis correlating data. The goals for displaying
the result from searches fall into two major classes: document clustering and
search statement analysis. The goal of document clustering is to present the user
with a visual representation of the document space constrained by the search
criteria. Within this constrained space there exist clusters of documents defined by
the document content. Visualization tools in this area attempt to display the
clusters, with an indication of their size and topic, as a basis for users to navigate
to items of interest. This is equivalent to searching the index at a library and then
pursuing all the books on the different shelf locations that are retrieved by the
search. The second goal is to assist the user in understanding why items were
retrieved, thereby providing information needed to refine the query. Unlike the
traditional Boolean systems where the user can easily correlate the query to the
retrieved set of items, modern search algorithms and their associated ranking
techniques make it difficult to understand the impacts of the expanded words in the
search statement. Visualization techniques approach this problem by displaying
the total set of terms, including additional terms from relevance feedback or
thesaurus expansion, along with documents retrieved and indicate the importance
of the term to the retrieval and ranking process.

Structured databases are important to information retrieval because
structured tiles are the best implementation to hold certain citation and semantic
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data that describe documents. Link analysis is also important because it provides
aggregate-level information within an information system. Rather than treating
each item as independent, link analysis considers information flowing between
documents with value in the correlation between multiple documents. For
example, a time/event link analysis correlates multiple documents discussing a oil
spill caused by a tanker. Even if all of the items retrieved on the topic are relevant,
displaying the documents correlated by time may show dependencies of events that
are of information importance and are not described in any specific document.
This section summarizes some of the major techniques being applied. This can
assist in correlating the theory of visual perception to the practice of implementing
systems.

One way of organizing information is hierarchical. A tree structure is
useful in representing information that ranges over time (e.g., genealogical
lineage), constituents of a larger unit (e.g., organization structures, mechanical
device definitions) and aggregates from the higher to lower level (e.g., hierarchical
clustering of documents). A two-dimensional representation becomes difficult for
a user to understand as the hierarchy becomes large. One of the earliest
experiments in information visualization was the Information Visualizer developed
by XEROX PARC. It incorporates various visualization formats such as DataMap,
InfoGrid, ConeTree, and the Perspective wall. The Cone-Tree is a 3-Dimensional
representation of data, where one node of the tree is represented at the apex and ail
the information subordinate to it is arranged in a circular structure at its base. Any
child node may also be the parent of another cone. Selecting a particular node,
rotates it to the front of the display. Compared to other hierarchical
representations (e.g., node and link trees) the cone makes the maximum
information available to the user providing a perspective on size of each of the
subtrees (Gershon-95a, Robertson-93). An example of a Cone-Tree is shown in
Figure 8.4. The squares at the leaf nodes in tree are the actual documents. Higher
level nodes can be considered centroids representing the semantic of the child
nodes. Where the database is large, the boxes may represent a cluster of related
items versus a single item. These clusters could be expanded to lower levels of the
tree. The perspective wall divides the information into three visual areas with the
area being focused on in the front and other areas out of focus to each side (see
Figure 8.5). This allows the user to keep all of the information in perspective
while focusing on a perticular area.

Another technique used in display of hierarchical information is tree maps
(Johnson-91). This technique makes maximum use of the display screen space by
using rectangular boxes that are recursively subdivided based upon parent-child
relationships between the data. A particular information work space focused on
articles on computers may appear as shown in Figure 8.6. The size of the boxes
can represent the number of items on a particular topic. The location of the boxes
can indicate a relationship between the topics. In Figure 8.6, the CPU, OS,
Memory, and Network management articles are all related to a general category of
computer operating systems versus computer applications which are shown in the
rest of the figure.
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Figure 8.4 Cone Tree

Figure 8.5 Perspective Wall
From inXight web site - www.inxight.com
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Figure 8.6 Tree Map

When the information has network-type relationships, an approach using
clusters can be shown via a semantic scatterplot. Both the Vineta and Bead
systems display clustering patterns using a three-dimensional scatterplot (Krohn-
95, Chalmers-92 respectively). Battelle Pacific Northwest National Laboratory
correlates documents and performs multidimensional scaling to plot each as a point
in Euclidean vector space. The difficulty of representing all of the axis is
overcome by projecting the space onto a plane and using elevation to indicate the
frequency of occurrence and importance of a theme (concept) creating a semantic
landscape (Wise-95 Card-96). The detailed relationships between items and their
composite themes can be seen by the valleys, cliffs and ranges shown on the terrain
map. One way of overcoming the multidimensional space representation in a
hierarchical environment is to create embedded coordinate spaces. In this
technique the larger coordinate space is redefined with coordinates inside of other
coordinates. Thus a six-dimensional coordinate space may have three of the
coordinates defined as a subspace within the other three coordinate spaces. This
has been called Feiner’s “worlds within worlds” approach (Feiner-90). Other
techniques suggested to solve this representation problem can be found in semantic
regions suggested by Kohonen, linked trees or graphs in the Narcissus system, or a
non-Euclidean landscape suggested by Lamping and Rao (Munzner-95, Lin-91 and
Lin-92, Hendley-95, Lamping-95 respectively). When searches are used to define
the user’s infospace of interest and provide additional focusing of semantic
interest, the “information crystal” (similar to a VENN diagram) assists the user in
detecting patterns of term relationships in the constrained Hit file (Spoerri-93).
The CyberWorld system constrains its clustering visualization to a three-
dimensional sphere (Hemmje-94). Another clustering system that uses statistical
information for a small number of items (50 - 120) to show term relationships via
spatial positioning is the VIBE system (Olsen-93). The VIBE system allows users
to associate query terms with different locations in the visual display. Documents
are distributed to show their relevance to the different terms. Lin has taken the
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self-organization concept further by using Kohonen’s algorithm to automatically
determine a table of contents (TOC) and display the results in a map display (Lin-
96).

The goal of many visualization techniques is to show the semantic
relationships between individual items to assist the user in locating those groups of
items of interest. Another objective of visualization is in assisting the users in
refining their search statements. It is difficult for users in systems using similarity
measures to determine what are the primary causes for the selection and ranking of
items in a Hit file. The automatic expansion of terms and intricacies of the
similarity algorithms can make it difficult to determine the effects that the various
words in the search statement are having on creating the Hit file. Visualization
tools need to assist the user in understanding the effects of his search statement
even to the level of identifying important terms that are not contributing to the

Figure 8.7 Envision Interface
(from SIGIR 96, page 68)

search process. One solution is a graphical display of the characteristics of the
retrieved items which contributed to their selection. This is effected in the
Envision system when index terms are selected as an axis.

The Envision system not only displays the relevance rank and estimated
relevance of each item found by a query, but also simultaneously presents other
query information. The design is intentionally graphical and simple using two-
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dimensional visualization. This allows a larger variety of user computer platforms
to have access to their system (Nowell-96). Figure 8.7 shows Envision’s three
interactive windows to display search results: Query window, Graphic View
window, and Item Summary window. The Query window provides an editable
version of the query. The Item Summary window provides bibliographic citation
information on items selected in the Graphic View window. The Graphic View
window is similar to scatterplot graphs. Each item in the Hit file is represented by
an icon in the window. Selecting an item in the window provides bibliographic
information on the same display. Circles represent single items with the relevance
weights displayed below them. Ellipses represent clusters of multiple items that
are located at the same point in the scatterplot with the number of items in the

Figure 8.8 Visualization of Results
(from SIGIR 96, page 88)

ellipse and their weights below the ellipse. In this example, estimated relevance is
on the X-axis and author’s name is on the Y-axis. This type of interface provides a
very user friendly environment but encounters problems when the number of
relevant items and entries for an axis becomes very large. Envision plans to
address this issue by a “zoom” feature that will allow seeing larger areas of the
scatterplot at lesser detail.
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A similar technique is used by Veerasamy and Belkin (Veerasamy-96).
They use a series of vertical columns of bars. The columns of bars represent
documents, and the rows represent index terms. The height of the bar corresponds
to the weight of the corresponding term (row) in the corresponding item (column).
In addition to the query terms, the system shows the additional words added to the
system by relevance feedback. Figure 8.8 provides an example for a search
statement of “How affirmative action affected the construction industry.” This
approach quickly allows a user to determine which terms had the most effect on
retrieving a specific item (i.e. by scanning down the column). It also allows the
user to determine how the various terms contributed to the retrieval process (i.e. by
scanning a row). This latter process is very important because it allows a user to
determine if what he considers to be an important search term is not contributing
strongly or not found at all in the items being retrieved. It also shows search terms
that are causing items to be retrieved allowing their removal or reduction in query
weight if they are causing false hits. In the Boolean environment this function was
accomplished by vocabulary browsing (see Chapter 2) that allows for a user to see
the number of items a particular term is in prior to including it in a search.

Figure 8.9 Example of DCARS Query Histogram
(from briefing by CALSPAN)
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Figure 8.10 CityScape Example

A slightly different commercial version having properties similar to the
systems above is the Document Content Analysis and Retrieval System (DCARS)
being developed by Calspan Advanced Technology Center. Their system is
designed to augment the RetrievalWare search product. They display the query
results as a histogram with the items as rows and each term’s contribution to the
selection indicated by the width of a tile bar on the row (see Figure 8.9). DCARS
provides a friendly user interface that indicates why a particular item was found,
but it is much harder to use the information in determining how to modify search
statements to improve them.

Another representation that is widely used for both hierarchical and
network related information is the “cityscape” which uses the metaphor of
movement within a city. In lieu of using hills, as in the terrain approach,
skyscrapers represent the theme (concept) area as shown in Figure 8.10. This is
similar to extending bar charts to three dimensions. Buildings can be connected by
lines which can vary in representation to describe interrelationships between
themes. Colors or fill designs can be used for the visualization presenting another
layer of information (e.g., the building having the same color may be members of a
higher concept). Movement within the cityscape (or terrain) of the viewer
perspective allows zooming in on specific information areas that will bring into
view additional structures that might have been hidden by the previous viewpoint.
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An easily understood metaphor for users is that of a library. Information
content can be represented as areas within a library that the user can navigate
through. Once in a particular “information room” the user can view the virtual
“books” available within that space as if they are silting on a bookshelf. Once the
book is accessed, the user can scan a group of related items with each item
represented as a page within the book. The user can fan the pages out. This is
exemplified by the WebBook (Card-96a).

Correlating items or words within items was described in detail in
Chapter 6 to cluster items or create statistical thesauri. When the complete term
relationship method is used, a very large matrix is created. Each cell in the matrix
defines the similarity between two terms (or items). Meaningful display of the
table is not possible in table form. Mitre Corporation has developed an interface
that displays the complete matrix using clusters of dots to represent correlation’s.
Once the user zooms in on a particular area of correlation, the specific words
become visible along with clusters showing their correlation to other words
(Gershon-96). Anther approach to representing thesaurus and contents is being
tested by Zizi and Pediotakis (Zizi-96). They build a thesaurus automatically from
the abstracts of the items extracting both single and two-word expressions. They
create a presentation view and a document view. They divide the display space,
based upon thesaurus classes, into regions. Each area is sized proportionally to the
importance of the class for the collection. Once the presentation view is defined,
the document view is created. The documents are placed on ellipses corresponding
to the presentation view, and the weight of the document is reflected by the radius
of the ellipse.

Another task in information systems is the visualization of specific text
within an item versus between items. In some situations, items are allowed to
change over time via editing. Thus, there is both the static representation and a
time varying representation. Text changing representations are very important
when the text being represented is a software program of millions of lines of code.
AT&T Bell laboratories created the SeeSoft system which uses columns and color
codes to show when different lines of code have been changed. This technique was
used as a basis for a similar code visualization tool, DEC FUSE/SoftVis (Zaremba-
95). They created small pictures of files that represent the code in the file with the
size of the picture scaled to the number of lines of code in the file. Color coding
indicates different characteristics of the code (e.g., green is comments). A user can
quickly see the relative structure of all of the code files composing a system along
with the complexity of each of the modules. The TileBars tool from Xerox PARC
provides the user with a visualization of the distribution of query terms within each
item in a Hit file. Using this tool, the user can quickly locate the section of the
item that is most likely to be of interest.

Although information retrieval focuses on the unstructured text, another
aspect of informational items is the citation data and structured aspects of indexing
items. This data structure can be manipulated via structured databases as well as
traditional information systems. Visualization tools have also been constructed for
databases. The first visualization tool was the Query By Example user interface
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developed by IBM (Zloof-75). The interface presented the user with two-
dimensional tables on the display screen and based upon the user is defining values
of interest on the tables, the system would complete the search. Current visual
query languages use visual representations of the database structure and contents
(Catarci-96). The Information Visualization and Exploration Environment (IVEE)
makes use of the three dimensional representation of the structured database as
constrained by the user’s search statement (Ahlberg-95). In one representation a
three-dimensional box represents a larger space and smaller boxes within the space
represent realizations of specific values (e.g., the box represents a department and
the smaller boxes represent employees in the department). It has additional
visualizations of data as maps and starfields. The user is provided with sliders and
toggles to manipulate the search. Another specialized tool for displaying homes
for sale in a database is the HomeFinder system. It presents a starfield display of
homes for sale and overlays it with a city map showing the geographic location for
each icon that represents a home (Ahlberg-94).

When hyperlinks are used as the information retrieval basis for locating
relevant items, the user encounters orientation problems associated with the path
the user followed to get to the current location. This is effect getting “lost in
cyberspace.” One solution is providing the user with a view of the information
space. The user can user a pointing device to indicate the item the user would like
to navigate to. MITRE Corporation has developed a tool used with web browsers
that enables a user to see a tree structure visual representation of the information
space they have navigated through (Gershon-96).

Another area in information visualization is the representation of pattern
and linkage analysis. A system that incorporates many information visualization
techniques including those used to represent linkage analysis is the Pathfinder
Project sponsored by the Army (Rose-96). It contains the Document Browser,
CAMEO, Counts, CrossField Matrix, OILSTOCK and SPIRE tools. The
Document Browser uses different colors and their density for words in the text of
items to indicate the relative importance of the item to their profile of interest.
CAMEO models an analytic process by creating nodes and links to represent a
problem. Queries are associated with the nodes. The color of the nodes change
based on how well the found items satisfy the query. Counts uses statistical
information on words and phrases and plots them over time. Time is used as a
parameter to show trends in development of events. The display uses a three-
dimensional cityscape representation of the data. The Cross Field Matrix creates a
two-dimensional matrix of two fields in a dataset. Selected values in each of the
datasets will be in each row and column for the two fields. Colors are used to
represent time span. For example, countries could be on one axis and products on
the other axis. The colors would indicate how long the country has been producing
a particular product. Intersection can be used to access all the items that supported
the particular product in a particular country. OILSTOCK allows the placement of
data on a geographic mapping tool. The relationship of data to maps is a different
use of information visualization. Discussion of this area is left to the many sources
on Geographic Information Systems (GIS). The SPIRE tool is a type of
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scattergraph of information. Items are clustered and displayed in a star chart
configuration. Distance between two points is indicative of their similarity based
upon concurrence of terms.

8.4 Summary

Information visualization is not a new concept. The well known saying
that “a picture is worth a thousand words” is part of our daily life. Everything
from advertisements to briefings make use of visual aides to significantly increase
the amount of information presented and provide maximum impact on the
audience. The significant amount of “noise” (non-relevant items) in interactions
with information systems requires use of user interface aides to maximize the
information being presented to the user. Pure textual interfaces provide no
capabilities for aggregation of data, allowing a user to see an overview of the
results of a search. Viewing the results of a search using a hierarchical paradigm
allows higher levels of abstraction showing overall results of searches before the
details consume the display.

Visualization techniques attempt to represent aggregate information using
a metaphor (e.g., peaks, valleys, cityscapes) to highlight the major concepts of the
aggregation and relationships between them. This allows the user to put into
perspective the total information before pursuing the details. It also allows major
pruning of areas of non-relevant information. A close analogy is when searching
on “fields” in the index at a library, the book shelves on horticulture would be
ignored if magnetic fields was the information need. By having the data visualized
constrained by the users search, the display is focused on the user’s areas of
interest. Relationships between data and effectiveness of the search become
obvious to the user before the details of individual items hide the higher level
relationships.

Cognitive engineering suggests that alternative representations are needed
to take maximum advantage of different physilogical and cultural experiences of
the user. Colors are useless to a color blind user. A person who grew up on a farm
living in the country may have more trouble understanding a “city-scape” than a
New York city resident. Using visual cues that a person has developed over his
life-experience can facilitate the mapping of the visual metphor to the information
it is representing.

As the algorthms and automatic search expansion techniques become
more complex, use of visualization will take on additional responsibilities in
clarifying to the user, not only what information is being retrieved, but the
relationship between the search statement and the items. Showng relationships
between items has had limited use in systems and been focused on data mining
type efforts. The growth of hypertext linkages will require new visualization tools
to present the network relationships between linked items and assist the user in
navigating this new structure.
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The technical limiter to the use of information visualization is no longer
the understanding of useful visual techniques nor the ability of computers to
display the techniques. The issue is the computational overhead in calculating the
relationships between items based upon a dynamically created subset of an
information space. To collect the information to display a “city-scape” display
from the results of a search requires:

identifying the sbset of items that is relevant to the search statement

applying a threshold to determine the subset to process for visualization

calculating the pairwise similarity between all of the indicated items and
clustering the results

determining the theme or subject of the clusters

determining the strength of the relationships between the clusters

creating the information visualization for the results.

Not only does the user expect to see the aggregate level clustered, but the user
expects to be able to expand upon any particular cluster and see the results also
displayed using a visualization technique. Thus at each level, the precision of the
clustering process increases. The user expects to interact with the system and see
the results of the search in near real time processing (e.g., anthing more than 20
seconds is delayed response).

There are two major processing issues in developing the information
visualization display. The first is in the third step of calculating the pairwise
similarities of all of the items. The second major issue is in the increased precision
expected as the user moves from the higher to lower levels of information
visualization. This requires an additional level of precision that will likely need
natural language processing to achieve. The indexes for items and the algorithms
proposed to determine similarity between a query and the items may need
adjustments to optimize their performance in locating and organizing the results
from a search for the information visualization process.

EXERCISES

1. Describe the need for information visualization. Under what circumstances is
information visualization not useful. (HINT: consider SDI functions and also
consider possible characteristics of the results of a search)

2. Describe how other senses could be used in displaying results form searches.
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3. Discuss the limits associated with use of preattentive processes, configural
aspects, and spatial frequency as a basis for information visualization.

4. Access the Internet and locate three informaion visualization techniques that
are available. Describe what cognitive engineering principles are beingused
in the techniques.

5. Discuss the difficulties of a user being able to correlate his search to the Hit
file. What approach would you use to overcome these problems.
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9.1
9.2
9.3

Introduction to Text Search Techniques
Software Text Search Algorithms
Hardware Text Search Systems

Three classical text retrieval techniques have been defined for organizing
items in a textual database, for rapidly identifying the relevant items and for
eliminating items that do not satisfy the search. The techniques are full text
scanning (streaming), word inversion and multiattribute retrieval (Faloutsos-85,
Salton-83). In addition to using the indexes as a mechanism for searching text in
information systems, streaming of text was frequently found in the systems as an
additional search mechanism. In addition to completing a query, it is frequently
used to highlight the search terms in the retrieved item prior to display. In the
earlier history of information systems, where the hardware (CPU, memory and disk
systems) were limiters in performance, specialized hardware text search systems
were created. The were used to offload the search process from the main computer
leaving the user interface, access and display. If there is a requirement for a
system to be able to accurately search for the complete set of search terms, then
streaming will be required as a final step. The need for hardware text search
streamers has been declining with the increases in CPU power, disk access and
memory. But there is still a market for it in the areas of genetic research and many
existing legacy systems in use.

9.1 Introduction to Text Search Techniques

The basic concept of a text scanning system is the ability for one or more
users to enter queries, and the text to be searched is accessed and compared to the
query terms. When all of the text has been accessed, the query is complete. One
advantage of this type architecture is that as soon as an item is identified as
satisfying a query, the results can be presented to the user for retrieval. Figure 9.1
provides a diagram of a text streaming search system. The database contains the
full text of the items. The term detector is the special hardware/software that
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contains all of the terms being searched for and in some systems the logic between
the items. It will input the text and detect the existence of the search terms. It will
output to the query resolver the detected terms to allow for final logical processing
of a query against an item. The query resolver performs two functions. It will
accept search statements from the users, extract the logic and search terms and
pass the search terms to the detector. It also accepts results from the detector and
determines which queries are satisfied by the

Figure 9.1 Text Streaming Architecture

item and possibily the weight associated with hit. The Query Resolver will pass
information to the user interface that will be continually updating search status to
the user and on request retrieve any items that satisfy the user search statement.
The process is focused on finding at least one or all occurrences of  a pattern of  text
(query term) in a text stream. It is assumed that the same alhabet is used in both
situations (although in foreign language streamers different encodings may have to
be available for items from the same language such as in cryllic). The worst case
search for a pattern of  m characters in a string of n characters is at least n - m + 1
or a magnitude of O(n) (Rivest-77). Some of the original brute force methods
could require O(n*m) symbol comparisons (Sedgewick-88). More recent
improvements have reduced the time to O(n + m).

In the case of hardware search machines, multiple parallel search
machines (term detectors) may work against the same data stream allowing for
more queries or against different data streams reducing the time to access the
complete database. In software systems, multiple detectors may execute at the
same time.

There are two approaches to the data stream. In the first approach the
complete database is being sent to the detector(s) functioning as a search of the
database. In the second approach random retrieved items are being passed to the
detectors. In this second case the idea is to perform an index search of the database
and let the text streamer perform additional search logic that is not satisfied by the
index search (Bird-78, Hollar-79). Examples of  limits of  index searches are:
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search for stop words

search for exact matches when steming is performed

search for terms that contain both leading and trailing “don’t cares”

search for symbols that are on the interword symbol list (e.g., “ , ;)

The major disadvantage of basing the search on streaming the text is the
dependency of the search on the slowest module in the computer (the I/O module).
Inversions/indexes gain their speed by minimizing the amount of data to be
retrieved and provide the best ratio between the total number of items delivered to
the user versus the total number of items retrieved in response to a query. But
unlike inversion systems that can require storage overheads of 50% to 300%, of the
original databases (BIRD-78), the full text search function does not require any
additional storage overhead. There is also the advantage where hits may be
returned to the user as soon as found. Typically in an index system, the complete
query must be processed before any hits are determined or available. Streaming
systems also provide a very accurate estmate of current search status and time to
complete the query. Inversions/indexes also encounter problems in fuzzy searches
(m of n characters) and imbedded string query terms (i.e., leading and trailing
“don’t care”, see Chapter 2). It is difficult to locate all the possibe index values
short of searching the complete dictionary of possible terms. Most streaming
algorithms will locate imbedded query terms and some algorithms and hardware
search units will also perform fuzzy searches. Use of special hardware text
serarch units insures a scalable environment where performance bottlenecks can be
overcome by adding additional search units to work in parallel of of the data being
streamed.

Many of the hardware and software text searchers use finite state
automata as a basis for their algorithms. A finite state automata is a logical
machine that is composed of five elements:

I - a set of input symbols from the aphabet supported by the automata
S - a set of possible states
P - a set of productions that define the next state based upon the current
state and

input symbol
- a special state called the initial state
- a set of one or more final states from the set S

A finite state automata is represented by a directed graph consisting of a series of
nodes (states) and edges between nodes represented as transitions defined by the set
of productions. The symbol(s) associated with each edge defines the inputs that
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allow a transition from one node to another node Figure 9.2a shows a finite
state automata that will identify the character string CPU in any input stream. The
automata is defined by the the automata definition in Figure 9.2b

Figure 9.2b Automata Definition

Figure 9.2a Finite State Automata

The automata remains in the initial state until it has an input symbol of  “C” which
moves it to state It will remain in that state as long as it receives “C”s as input.
If it receives a “P” it will move to If it receives anything else it falls back to the
initial state. Once in state it will either go to the final state if “U” is the next
symbol, go to if a “C” is received or go back to the initial state if anything
else is received.

It is possible to represent the productions by a table with the states as the
rows and the input symbols that cause state transitions as each column. The states
are representing the current state and the values in the table are the next state
given the particular input symbol.



Text Search Algorithms 225

9.2 Software Text Search Algorithms

In software streaming techniques, the item to be searched is read into
memory and then the algorithm is applied. Although nothing in the architecture
described above prohibits software streaming from being applied to many
simulataneous searches against the same item, it is more frequently used to resolve
a particular search against a particular item. There are four major algorithms
associated with software text search: the brute force approach, Knuth-Morris-
Pratt, Boyer-Moore, Shift-OR algorithm, and Rabin-Karp. Of all of the algrithms,
Boyer-Moore has been the fastest requiring at most O(n + m) comparisons (Smit-
82), Knuth-Pratt-Morris and Boyer-Moore both require O(n) preprocessing of
search strings (Knuth-77, Boyer-77, Rytter-80).

The Brute force approach is the simplest string matching algorithm. The
idea is to try and match the search string against the input text. If as soon as a mis-
match is detected in the cmparison process, shift the nput text one position and
start the comparison process over. The expectednumber of comparisons when
searching an input text string of n characters for a pattern of m characters is
(Baeza-Yates-89):

where is the expected number of comparisons and c is the size of the alphabet
for the text.

The Knuth-Pratt-Morris algorithm made a major imprvement in previous
algorithms in that even in the worst case it does not depend upon the length of the
text pattern being searched for. The basic concept behind the algorithm is that
whenever a mismatch is detected, the previousmatched characters define the
number of characters that can be skipped in the input stream prior to starting the
comparison process again. For example given:

Position  1 2 3 4 5 6 7 8
Input Stream = a b d a d e f g
Search Pattern = a b d f

When the mismatch occurs in position 4 with a “f” in the pattern and a “b” in the
input stream, a brute force approach may shift just one position in the input text
and restart the comparison. But since the first three positions of the pattern
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matched (a b d), then shifting one position can not find an “a” because it has
already been identified as a “b”. The algorithm allows the comparison to jump at
least the three positions associated with the recognized “a b d” . Since the
mismatch on the position could be the beginning of the search string, four
positions can not be skipped. To know the number of  positions to jump based upon
a mismatch in the search pattern, the search pattern is pre-processed to define a
number of characters to be jumped for each position. The Shift Table that specifies
the number of places to jump given a mismatch is shown in Figure 9.3. In the
table it should be noted that the alignment is primarily based on aligning over the
repeats of the letters “a” and “ab”. Figure 9.4 provides an example application of
the algorithm (Salton-89) where S is the search pattern and I is the input text
stream.

Boyer-Moore recognized that the string algorithm could be significantly
enhanced if the comparison process started at the end of the search pattern
processing right to left versus the start of the search pattern. The advantage is that
large jumps are possible when the mismatched character in the input stream does
not exist in the search pattern which occurs frequently. This leads to two possible
sources of determining how many input characters to be jumped. As in the Knuth-
Morris-Pratt technique any characters that have been matched in the search pattern
will require an alignment with that substring. Additionally the character in the
input stream that was mismatched also requires alignment with its next occurrence

Figure 9.3 Shift Characters Table



Text Search Algorithms 227

Figure 9.4 Example of  Knuth-Morris-Pratt Algorithm

in the search pattern or the complete pattern can be moved. This can be defined as:

- on a mismatch, the character in the input stream is compared to
the search pattern to determine the shifting of the search pattern (number
of characters in input stream to be skipped) to align the input character to
a character in the search pattern. If the character does not exist in the
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search pattern then it is possible to shift the length of the search pattern
matched to that position.

- on a mismatch occurs with previous matching on a substring in
the input text, the matching process can jump to the repeating ocurrence
in the pattern of the initially matched subpattern - thus aligning that
portion of the search pattern that is in the input text.

Upon a mismatch, the comparison process can skip the MAXIMUM
Figure 9.5 gives an example of this process. In this example

the search pattern is (a b d a a b) and the alphabet is (a, b, c, d, e, f) with m = 6
and c = 6.

Figure 9.5 Boyer-Moore Algorithm

The comparison starts at the right end of the search pattern and works towards the
start of the search pattern. In the first comparison (Figure 9.5 a.) the mismatch
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occurs in position 4 after matching on positions 7, 6, and 5.. wants to
align the next occurrence of the input text stream mismatch character “f ” which
does not exist in the search pattern thus allowing for a skip of three positions.

recognizes that the mismatch occurred after 3 previous search pattern
characters had matched. Based upon the pattern stream it knows that the
subpattern consisting of the first three characters (a b) repeats in the first two
positions of the search pattern. Thus given a mismatch in position 4, the search
pattern can be moved four places to align the subpattern consisting of the first two
characters (a b) over their known occurrence in positions 6, and 7 in the input text.
In the next comparison (Figure 9.5 b.) there is a mismatch in position 9. The input
character that mismatched is a “d” and the fewest positions to shift to align the
next occurrence of a “d” in the search pattern over it is one position. The analysis
for is the same as before. With the next jump of four positions, the two
patterns will match.

The original Boyer-Moore algorithm has been the basis for additional text
search techniques. It was originally designed to support scanning for a single
search string. It was expanded to handle multiple search strings on a single pass
(Kowalski-83). Enhanced and simplified versions of the Boyer-Moore algorithm
have been developed by may researchers (Mollier-Nielsen-84, Iyengar-80,
Commentz-Walter-79, Baeza-Yates-90, Galil-79, Horspol-80).

A different approach that has similarity to n-grams and signature files
defined in Chapter 4 is to divide the text into m-character substrings, calculate a
hash function (signature) value for each of the strings (Harrison-71). A hash value
is calculated for the search pattern and compared to that of the text. Karp and
Rabin discovered an efficient signature function to calculate these values; h(k) = k
mod q, where q is a large prime number (Karp-87). The signature value for each
location in the text which is based upon the value calculated for the previous
location. Hashing functions do not gauranttee uniqueness. Their algorithm wll
find those positions in the text of an item that have the same hash value as the
search pattern. But the actual text must then be compared to ensure there is a
match. Detailed implementation of the Karp-Rabin algorithm is presented by
Baeza-Yates (Baeza-Yates-92). In his comparison of all of the algorithms on a
search of 1000 random patterns in random text, the Horspool simplification of the
Boyer-Moore algorithm showed the best execution time for patterns of any length.
The major drawback of the Boyer-Moore class of algorithms is the significant
preprocessing time to set up the tables. Many of these algorithms are also
implemented with hardware.

Another approach based upon Knuth-Pratt-Morris uses a finite state
machine to process multiple query terms (Aho-75). The pattern matching machine
consists of a set of states. The machine processes the input text by successively
reading in the next symbol and based upon the current state, make the state
transitions while indicating matches when they occur. The machines operation is
based upon three functions; GOTO (i.e., state transition), a failure function and an
output function. Figure 9.6 shows the functions for the set of words HE, SHE, HIS,
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and HER. The initial state is labeled state 0. The GOTO function is a directed
graph where the letter(s) on the connecting line between states (circles) specify the
transition for that input given the current state. For example in Figure 9.6, if the
current state is 1 and a E or I are received, then the machine will go to steates 2
and 6 respectively. The absence of an arrow or current input character that is not
on a line leading from the current nore represents a failure condition. When a
failure occurs, the failure function maps a state into another state (it could be to
itself) to continue the search process. Certain states are defined as output states.
Whenever they are reached it means one or more query terms have been matched.

Figure 9.6 Tables for Aho-Corasick Algorithm

Thus if an H has been received and the system is in state 1. If the next input
symbol is an E the system moves to state 2, if an I is received then it moves to
state 6, if any other letter is received, it will be an error and Failure Function (the
third column in 9.6(b)) specifies the system should move to state 0 and the same
input character is applied to this state.
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The number of characters compared is the same for both the Aho-
Corasick and the KMP algorithms. In the new algorithm the number of state
transitions required to process a string is independent of the number of search
terms and the operation to perfom the search is linear with respect to the number of
characters in the input stream. The order of  magnitude of  the number of characters
compared is equal to where w is a constant greater than 1 and T is the
number of characters in the input string. This is a major enhancement over both
Knuth-Morris-Pratt which is proportional to the number of characters in the query
and Boyer-Moore which can only handle one query term.

These concepts were expanded by Baeza-Yates and Gonnet and can
handle “don’t care” symbols and compliment symbols (Baeza-Yates-92a). The
search also handles the cases of up to k mismatches. Their approach uses a vector
of m differnet states, where m is the length of the search pattern and state i gives
the state of the search between the positions 1 , . . . , i of the pattern and positions  (j
- i + 1), . . . , j of the text where  j is the current position in the text. This n effect
expands the process to act like it has m simultaneous comparators working. If is
the set of states after reading the character of the text. It
represents the number of characters that are different in the corresponding
positions between and where pat is the search
pattern and text is the text being searched. If then there is a perfect match.
Otherwise it provides a fuzzy search capability where the search term length and
the found term length are the same and the value is for the number of mismatches.
For example let the search pattern be ababc (m = 5) and a segment of input text to
be cbbabababcaba then figure 9.7 Shows the value for  vector. For example

Figure 9.7 Vector for Position j - 1
the vector value for vector position 3 is 0 because the three pat characters aba have
no matches with the corresponding three characters bab from the input text stream.
When one position in the text is advanced, the new vector is shown in Figure 9.8.
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Figure 9.8 Vector for Position j

If T(x) is a table such that otherwise Thus
everywhere that the current vector value is zero (i.e., the apttern matches), the T(x)
value will be zero. Eery other location will have a T(x) value of one. Thus for
example 9.7 above the will appear (1,0,1,0,1) and for Figure 9.8 it will be
(0,1,0,1,1) which is called T(new) below. It is then possible to define:

If  then the following shows the effect of moving the one position from
Figure 9.7 (call old) to Figure 8 (call new):

Because of these operations, they called the algorithm the Shift-add algorithm. To
extend the technique to allow for “don’t care” symbols, compliments of a character
o class (i.e., matches a character that does not belong to the class), or any finite set
of symbols, three possibilities will exist for any position in the pattern:

a character from the alphabet
a “don’t care” character (*)

a compliment of a chracter or class of characters
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Letting m’ be the total of the number of elements in each class with * assigned a
value of 1 and compliments not cosidered. Let m be the size of the pattern. The
pattern:

has m = 6 and m’ = 18. The Shift-add algorithm is extended by modifying the
table T, such that, for each position every character in the class is processed. Thus
if the alhabet equals (a, b, c, d) and the pattern is:

with m =5 and m’ = 8. If  b=l (as for string mtching), the entries for th table T are:

Baeza-Yates and Gonnet describe the details of  the implementation of  this
algorithm in the referenced paper. One advantage to this algorithm is that it can
easily be implemented in a hardware solution. The Shift-add algorithm is
extended by Wu and Manber to handle insertions and deletions as well as
positional mismatches (Wu-92).

9.3 Hardware Text Search Systems

Software text search is applicable to many circumstances but has
encountered restrictions on the ability to handle many search terms simultaneously
against the same text and limits due to I/O speeds. One approach that off loaded
the resource intensive searching from the main processors was to have a
specialized hardware machine to perform the searches and pass the results to the
main computer which supported the user interface and retrieval of hits. Since the
searcher is hardware based, scalability is achieved by increasing the number of
hardware search devices. The only limit on speed is the time it takes to flow the
text off of secondary storage (i.e., disk drives) to the searchers. By having one
search machine per disk, the maximum time it takes to search a database of any
size will be the time to search one disk. In some systems, the disks were formated
to optimize the data flow off of the drives. Another major advantage of using a
hardware text search unit is in the elimination of the index that represents the
document database. Typically the indexes are 70% the size of the actual items.
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Other advantages are that new items can be searched as soon as received by the
system rather than waiting for the index to be created and the search speed is
deterministic. Even though it may be slower than using an index, the predictability
of how long it will take to stream the data provides the user with an exact search
time. As hits as discovered they can immediately be made available to the user
versus waiting for the total search to complete as in index searches.

Figure 9.1 represents hardware as well as software text search solutions.
The algrithmetic part of  the system is focused on the term detector. There has been
three approaches to implementing term detectors: parallel comparators
orassociative memory, a cellular structure, and a universal finite state automata
(Hollar-79).

When the term cmparator is implemented with parallel comparators, each
term in the query is assgned to an individual comparison element and input data
are serially streamed into the detector. When a match occurs, the term comparator
informs the external query resolver (usually in the main computer) by setting status
flags. In some systems, some of the Boolean logic between terms is resolved in the
term detector hardware (e.g., in the GESCAN machine). Instead of  using specially
designed comparators

Specialized hardware that interfaces with computers and is used to search
secondary storage devices was developed from the early 1970s with the most recent
product being the Parasel Searcher (previously the Fast Data Finder). The need for
this hardware was driven by the limits in computer resources. The typical
hardware configuration is shown in Figure 9.9 in the dashed box. The speed of
search is then based on the speed of  the I/O.

Figure 9.9 Hardware Text Search Unit

One of  the earliest hardware text string search units was the Rapid Search Machine
developed by General Electric (Roberts-78). The machine consisted of a special
purpose search unit where a single query was passed against a magnetic tape
containing the documents. A more sophisticated search unit was developed by
Operating Systems Inc. called the Associative File Processor (AFP) (Bird-77). It is
capable of searching against multiple queries at the same time. Following that
initial development, OSI, using a different approach, developed the High Speed
Text Search (HSTS) machine. It uses an algorithm similar to the Aho-Corasick
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software finite state machine algorithm except that it runs three parallel state
machines. One state machine is dedicated to contiguous word phrases (see chapter
2), another for imbedded term match and the final for exact word match. In
parallel with that development effort, GE redesigned thier Rapid Search Machine
into the GESCAN unit. TRW, based upon analysis of the HSTS, decided to
develop their own text search unit. This became the Fast Data Finder which is
now being marketed by Parasal. All of these machines were based upon state
machines that input the text string and compared them to the query terms.

The GESCAN system uses a text array processor (TAP) that
simultaneously matches many terms and conditions against a given text stream the
TAP receives the query information from the users computer and directly access
the textual data from secondary storage. The TAP consists of a large cache
memory and an array of four to 128 query processors. The text is loaded into the
cahche and searched by the query processors (Figure 9.10). Each query processor
is independent and can be loaded at any time. A complete query is handled by
each query processor. Queries support exact term matches, fixed length don’t
cares, variable length don’t cares, terms may be restricted to specified zones,
Boolean logic, and proximity.

A query processor works two operations in parallel; matching query terms
to input text and boolean logic resolution. Term matching is performed by a series
of character cells each containing one character of  the query. A string of character
cells is implemented on the same LSI chip and the chips can be connected in series
for longer strings. When a word or phrase of the query is matched, a signal is sent

Figure 9.10 GESCAN Text Array Processor
to the resolution sub-process on the LSI chip. The resolution chip is responsible
for resolving the Boolean logic between terms and proximity requirements. If  the
item satisfies the query, the information is transmitted to the users computer. The
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text array processor uses these chips in a matrix arrangement as shown in Figure
9.10. Each row of  the matrix is a query processor in which the first chip performs
the query resolution while the remaining chips match query terms. The maximum
number of characters in a query is restricted by the length of a row while the
number of rows limit the number of simultaneous queries that can be processed.

Another approach for hardware searchers is to augment disc storage. The
augmentation is a generalized associative search element placed between the read
and write heads on the disk. The content addressable segment sequential memory
(CASSM) system (Roberts-78) uses these search elements in parallel to obtain
structured data from a database. The CASSM system was developed at the
University of  Florida as a general purpose search device (Copeland-73). It can be
used to perform string searching across the database. Another special search
machine is the relational associative processor (RAP) developed at the University
of Toronto (Schuster-79). Like CASSM performs search across a secondary
storage device using a series of cells comparing data in parallel.

The Fast Data Finder (FDF) is the most recent specialized hardware text
search unit still in use in many organizations. It was developed to search text and
has been used to search English and foreign languages. The early Fast Data
Finders consisted of an array of programmable text processing cells connected in
series forming a pipeline hardware search processor (Mettler-93). The cells are
implemented using a VSLI chip. In the TREC tests each chip contained 24
processor cells with a typical system containing 3600 cells (the FDF-3 has a rack
mount configuration with 10,800 cells). Each cell will be a comparator for a single
character limiting the total number of characters in a query to the nuber of cells.
The cells are interconnected with an 8-bit data path and approximately 20-bit
control path. The text to be searched passes through each cell in a pipeline fashion
until the complete database has been searched. As data is analyzed at each cell, the
20 control lines states are modified dependning upon their current state and the
results from the comparator. An example of a Fast Data Finder system is shown in
Figure 9.11. A cell is composed of  both a register cell (Rs) and a comparator (Cs).
The input from the Document database is controlled and buffered by the
microprocess/memory and feed through the comapators. The search characters
are stored in the registers. The connection between the registers reflect the control
lines that are also passing state information.

Groups of cells are used to detect query terms, along with logic between
the terms, by appropriate programming of the control lines. When a pattern match
is detected, a hit is passed to the internal microprocessor that passes it back to the
host processor, allowing immediate access by the user to the Hit item. The
functions supported by the Fast data Finder are:

Boolean Logic including negation
Proximity on an arbitrary pattern
Variable length “don’t cares”
Term counting and thresholds
fuzzy matching
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term weights
numeric ranges

The expense and requirement that the complete database be streamed to
complete a search has discuraged general use of hardware text search units.
Paracel, who now markets the Fast Data Finder, is modifying its application to the
area of genetic analysis. Comparing sequence homology (linear sequence of genes
as another chromosone) to known familys of proteins can provide insights about
functions of newly sequenced genes. Parcel has combined the search capability of
the FDF with their Biology Tool Kit (BTK). The major function that is applied is
the fuzzy match capability that can be applied to chromosones. Searches can be
applied to DNA against DNA, protein against protein, or DNA against protein

Figure 9.11 Fast Data Finder Architecture

searches. The FDF is configured to implement linear Smith-Waterman (S-W) and
sequence-profile algorithms. The Smith-Waterman dynamic programming
algorithm is optimal for finding local sequence similarities. The General Profile
algorithm allows search for regions of nucleic acids or proteins that have been
conserved during evolution (Paracel-96). The Fast Data Finder is loaded with a
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sequence and will report back those sequences in the database whose local
similarity score exceed a threshold that most closely resemble the query sequence.
The BTK software then completes the analysis process in software.

9.4 Summary

Text search techniques using text scanning have played an important role
in the development of Information Retrieval Systems. In the 1970s and 1980s they
were essential tools for compensating for the insufficient computer power and for
handling some of the more difficult search capabilities such as imbedded character
strings and fuzzy searches. They currently play an important role in word
processor systems (e.g., the Find function) and in Information Retrieval Systems
for locating offensive terms (e.g., imbedded character strings) in the dictionary.
The need for specialized hardware text search units to directly search the data on
secondary storage has diminished with the growth of processing power of
computers.

EXERCISES

1. Trade off the use of hardware versus software text search algorithms citing
advantages and disadvantages of each in comparison to the other.

2. Construct finite state automata for each of the following set of terms:

a. BIT,  FIT,  HIT,  MIT,  PIT,  SIT

b. CAN, CAR, CARPET, CASE, CASK, CAKE

c. HE, SHE, HER, HERE, THERE, SHEAR

Be sure to define the three sets I, S, and P along with providing the state
drawing (e.g., see Figure 9.2).

3. Use the Boyer-Moore text search algorithm to search for the term FANCY in
the text string FANCIFUL FANNY FRUIT FILLED MY FANCY.

a. Show all of  the steps and explain each of the required character shifts.
b. How many character comparisons are required to obtain a match?
c. Compare this to what it would take using the Knuth-Pratt-Morris

algorithm (you do not have to show the work for the KMP algorithm).

4. a. Use the problem defined in question three and create the GOTO, Failure
and OUTPUT functions for the Aho-Corasick algorithm (see Figure 9.6).

b. Trace through the steps in searching for the term FANCY.
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c. What are the trade offs between using the Aho-Corasick versus
Boyer-Moore algorithms?

5. What algorithmetic basis is used for the GE-SCAN and Fast Data Finder
hardware text search machines? Why was this approach used over others?
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10 Multimedia Information Retrieval

10.1
10.2
10.3
10.4
10.5
10.6

Spoken Language Audio Retrieval
Non-Speech Audio Retrieval
Graph Retrieval
Imagery Retrieval
Video Retrieval
Summary

While the book up to this point has described techniques for indexing and
retrieving text, increasing volumes of non-text artifacts such as graphics, imagery,
audio (speech, music, sound), and video are available in personal collections, on-
line services and the web. When indexing text, the elements used as the basis of
indexing include characters, word stems, words, and phrases. However, when
dealing with imagery, audio, or video, we must utilize techniques that process
different elements. In audio, this might mean phonemes (or basic units of sound)
and their properties (e.g., loudness, pitch), in imagery this might include principle
components such as color, shape, texture, and location, and in video this might
include camera position and movement in addition to imagery and audio elements.

With approximately 10 million sites on the World Wide Web, increasingly users are
demanding content-based access to materials. This is evident by the advent of
question answering services (e.g., www.ask.com) as well as the success of spoken
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language understanding (e.g.,               www.sls.lcs.mit.edu/sls,
www.ibm.com/software/speech, www.speech.sri.com, www.nuance.com,
cslu.cse.ogi.edu) and tools to support content-based access to speech (e.g.,
www.speech.cs.cmu.edu/speech ). In addition, innovations are appearing in the
areas of content-based access to non-speech audio (e.g., www.musclefish.com),
imagery (www.qbic.almaden.ibm.com) and video (e.g., www.virage.com,
www.broadcast.com, www.necn.com). A separated but related body of research
addresses the use of multimedia and intelligent processing to enhance the human
computer interface (Maybury and Wahlster 1998). Other research focuses on the
automation of the extraction, transformation (to another media), and summarization
of media content, however, here we focus primarily on retrieval.

In the remainder of this chapter we discuss retrieval of a range of classes of
media including spoken language, non-speech audio, graphics, imagery, and video,
the latter of which depends upon processing of the previous media types.   We
illustrate information access for each of these media types by describing specific
systems in order to give the reader a concrete sense of the nature and capabilities of
current systems in these areas.

10.1 Spoken Language Audio Retrieval

Just as a user may wish to search the archives of a large text collection, the
ability to search the content of audio sources such as speeches, radio broadcasts, and
conversations would be valuable for a range of applications. An assortment of
techniques have been developed to support the automated recognition of speech
(Waibel and Lee 1990). These have applicability for a range of application areas
such as speaker verification, transcription, and command and control. For example,
Jones et al. (1997) report a comparative evaluation of speech and text retrieval in
the context of the Video Mail Retrieval (VMR) project. While speech transcription
word error rates may be high (as much as 50% or more depending upon the source,
speaker, dictation vs. conversation, environmental factors and so on), redundancy in
the source material helps offset these error rates and still support effective retrieval.
In Jones et al.’s speech/text comparative experiments, using standard information
retrieval evaluation techniques, speaker-dependent techniques retain approximately
95% of the performance of retrieval of text transcripts, speaker independent
techniques about 75%. However, system scalability remains a significant challenge.
For example, whereas even the best speech recognition systems have on the order of
100,000 words in an electronic lexicon, text lexicons include upwards  of 500,0000
vocabulary words. Another challenge is the need expend significant time and effort
to develop an annotated video mail corpus to support machine learning and
evaluation.

Some recent efforts have focused on the automated transcription of
broadcast news. For example, Figure 10.1 illustrates BBN’s Rough ’n’ Ready
prototype that aims to provide information access to spoken language from audio
and video sources (Kubala et al. 2000). Rough’n’Ready “creates a Rough
summarization of speech that is Ready for browsing.” Figure 10.1 illustrates a



Multimedia Information Retrieval 243

January 31, 1998 sample from ABC’s World News Tonight in which the left hand
column indicates the speaker, the center column shows the translation with
highlighted named entities (i.e., people, organizations, locations) and the rightmost
column lists the topic of discussion. Rough’n’Ready’s transcription is created by the
BYBLOS™ large vocabulary speech recognition system, a continuous-density
Hidden Markov Model (HMM) system that has been competitively tested in annual
formal evaluations for the past 12 years (Kubala, F. et al., 1997). BYBLOS runs at 3
times real-time, uses a 60,000 word dictionary, and most recently reported word
error rates of 18.8% for the broadcast news transcription task.

Figure 10.1. BBN’s Rough and Ready

Additional research in broadcast news processing is addressing  multilingual
information access. For example, Gauvain (2000) at LIMSI reports a North
American broadcast news transcription system that performs with a 13.6% word
error rate and reports spoken document retrieval performance using the SDR’98
TREC-7 data. Current work is investigating broadcast transcription of German and
French broadcasts. Joint research between the Tokyo Institute of Technology and
NHK broadcasting (Furui et al. 2000) is addressing transcription and topic
extraction from Japanese broadcast news. The focus of Furui et al. is on improving
processing by modeling filled pauses, performing on-line incremental speaker
adaptation and by using a context dependent language model that models  readings
of words.  The language model includes Chinese characters (Kanji) and  two kinds
of  Japanese characters (Hira-gana and Kata-kana).
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10.2 Non-Speech Audio Retrieval

In addition to content-based access to speech audio, noise/sound retrieval
is also important in such fields as music and movie/video production. Thorn Blum
et al. (1997) describe a user-extensible sound classification and retrieval system,
called SoundFisher (www.musclefish.com), that draws from several disciplines,
including signal processing, psychoacoustics, speech recognition, computer music,
and multimedia databases. Just as image indexing algorithms use visual feature
vectors to index and match images, Blum et al. use a vector of directly measurable
acoustic features (e.g., duration, loudness, pitch, brightness) to index sounds. This
enables users to search for sounds within specified feature ranges. For example,
Figure 10.2a illustrates the analysis of male laughter on several dimensions
including amplitude, brightness, bandwidth, and pitch. Figure 10.2b shows an end-
user content-based retrieval application that enables a user to browse and/or query a
sound database by acoustic (e.g., pitch, duration) and/or perceptual properties (e.g.,
“scratchy”) and/or query by example. For example, SoundFisher supports such
complex content queries as “Find all AIFF encoded files with animal or human
vocal sounds that are similar to barking sounds without regard to duration or
amplitude.” The user can also perform a weighted query-by-value (e.g., foreground
and transition with >.8 metallic and >.7 plucked aural properties and 2000 hz <
average pitch < 300 hz and duration ...). The system can also be trained by
example, so that perceptual properties (e.g., “scratchiness” or “buzziness”) that are
more indirectly related to acoustic features can be specified and retrieved.

Figure 10.2a. Analysis of Male Laugher. Figure 10.2b. Content based access to
audio.
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Figure 10.2. Content-based Retrieval of  Non-speech Audio

Performance of the SoundFisher system was evaluated using a database of 400
widely ranging sound files (e.g., captured from nature, animals, instruments,
speech). Additional requirements identified by this research include the need for
sound displays, sound synthesis (a kind of query formulation/refinement tool),
sound separation, and matching of  trajectories of  features over time.

10.3 Graph Retrieval

Another important media class is graphics, to include tables and charts
(e.g., column, bar, line, pie, scatter). Graphs are constructed from more primitive
data elements such as points, lines, and labels. An innovative example of a graph
retrieval system is Sagebook (Chuah, Roth, and Kerpedjiev 1997) created at
Carnegie Mellon University (see www.cs.cmu.edu/Groups/sage/sage.html).
SageBook, enables both search and customization of stored data graphics. Just as
we may require an audio query during audio retrieval, Sagebook supports data-
graphic query, representation (i.e., content description), indexing, search, and
adaptation capabilities.

Figure 10.3 shows an example of a graphical query and the data-graphics
returned for that query. As illustrated in the bottom left hand side of Figure 10.3,
queries are formulated via a graphical direct-manipulation interface (called

Figure 10.3. SageBrush Query Interface and SageBook display of retrieved relevant
graphics
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SageBrush) by selecting and arranging spaces (e.g., charts, tables), objects
contained within those spaces (e.g., marks, bars), and object properties (e.g., color,
size, shape, position). The right hand side of Figure 10.3 displays the relevant
graphics retrieved by matching the underlying content and/or properties of the
graphical query at the bottom left of Figure 10.3 with those of graphics stored in a
library. Both exact matching and similarity based matching is performed on both
graphical elements (or graphemes) as well as on the underlying data represented by
the graphic. For example, in the query and responses in Figure 10.3, for two
graphemes to match, they must be of the same class (i.e. bars, lines, marks) as well
as use the same properties (i.e. color, shape, size, width) to encode data. The
matches returned are sorted according to their degree of similarity to the query
based on the match criteria. In Figure 10.3, all the data-graphics returned by a
“close graphics matching strategy” (i.e., they are all of type “chart”, have exactly
one space in the graphic, and contain graphemes of  type horizontal interval bar) are
highlighted in the Figure.

In addition, retrieved data-graphics can be manually adapted.  SageBook
maintains an internal representation of the syntax and semantics of data-graphics,
which includes spatial relationships between objects, relationships between data-
domains (e.g., interval, 2D coordinate), and the various graphic and data attributes.
Search is performed both on graphical and data properties, with three and four
alternative search strategies, respectively, to enable varying degrees of match
relaxation. Just as in large text and imagery collections, several data-graphic
grouping techniques based on data and graphical properties were designed to enable
clustering for browsing large collections. Finally, SageBook provides automatic
adaptation techniques that can modify the retrieved graphic (e.g., eliminating
graphical elements) that do not match the specified query.

The ability to retrieve graphics by content may enable new capabilities in a
broad range of domains beyond business graphics. For example, graphics play a
predominant role in domains such as cartography (terrain, elevation, features),
architecture (blueprints), communications and networking (routers and links),
systems engineering (components and connections) and military campaign planning
(e.g., forces and defenses overlayed on maps). In each of these cases graphical
elements, their properties, relations, and structure, can be analyzed for retrieval
purposes.

10.4 Imagery Retrieval

Increasing volumes of imagery -- from web page images to personal
collections from digital cameras  -- have escalated the need for more effective and
efficient imagery access. Researchers have identified needs for indexing and search
of not only the metadata associated with the imagery (e.g., captions, annotations)
but also retrieval directly on the content of the imagery. Initial algorithm
development has focused on the automatic indexing of visual features of imagery
(e.g., color, texture, shape) which can be used as a means for retrieving similar
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images without the burden of manual indexing (Niblack and Jain, 1993, 1994,
1995). However, the ultimate objective is semantic based access to imagery.

Flicker et al.’s (1997) Query By Image Content (QBIC) system
(www.qbic.almaden.ibm.com, Seybold 1994) and its commercial version, Ultimedia
Manager (www.ibm.com/software/data/umm/umm.html), exemplifies this imagery
attribute indexing approach. QBIC supports access to imagery collections on the
basis of visual properties such as color, shape, texture, and sketches (viewing from
the Internet will show colors described in the text.). In their approach, query
facilities for specifying color parameters, drawing desired shapes, or selecting
textures replace the traditional keyword query found in text retrieval. For example,
Figure 10.4a illustrates a query to a database of all US stamps prior to 1995 in
which QBIC is asked to retrieve red images. The “red stamps” results are displayed
in Figure 10.4b. If there are text captions associated with the imagery these of
course can be exploited. For example, if we further refine this search by adding the
keyword “president” we obtain the results shown in Figure 10.4c in which all
stamps are both red in color and are related to “president”. For the careful reader,
the female stamp in the bottom right hand corner of Figure 10.4c is of Martha
Washington from the presidential stamp collection.

Figure 10.4a. QBIC Query by Color red
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Figure 10.4b. Retrieved red stamps

Figure 10.4c. Red stamps of  Presidents



Multimedia Information Retrieval 249

Using QBIC the user can also specify queries such as “find images with a
coarsely textured, red round object and a green square”. Because robust, domain
independent object identification remains difficult and manual image annotation is
tedious, the authors have developed automated and semiautomated object outlining
tools (e.g., foreground/background models to extract objects) to facilitate database
population.

More recently researchers have explored the application of content based
imagery access to video retrieval. For example, Flicker et al. (1997) perform shot
detection, extract a representative frame (r-frame, sometimes called keyframe) for
each shot, and derive a layered representation of moving objects. This enables
queries such as “find me all shots panning left to right” which yield a list of
relevancy ranked r-frames (which acts as a thumbnail), selection of which retrieves
the associated video shot.

Additional research in image processing has addressed specific kinds of
content-based retrieval problems. Consider face processing, where we distinguish
face detection (i.e., identifying a face or faces in a scene), face recognition
(authenticating that a given face is of a particular person), and face retrieval (find
the closest matching face in a repository given an example or some search criteria).
For example, for the past few years the US Immigration and Naturalization Service
has been using a face recognition system (www.faceit.com) to “watch” and approve
registered “fast lane” drivers crossing the Otay Mesa port of entry at the US/Mexico
border. Using a radiofrequency (RF) tag on the automobile, the system retrieves a
picture of the driver registered with the automobile from a database, which is then
matched to an image taken in real-time of the actual driver. If the verification is
successful, the car is permitted to proceed without delay; if not, the vehicle is routed
to an inspection station. Since FaceIt® can find the head anywhere in the field of
view of the camera, it works on any kind of vehicle (car, van, or sports utility).
System performance can be assessed using measurements analogous to those used
in text retrieval, such as precision and recall.

Researchers have also developed systems to track human movement (e.g.,
heads, hands, feet) and to differentiate human expressions (Pentland, 1997) such as
a smile, surprise, anger, or disgust. This expression recognition is related to research
in emotion recognition (Picard,1997) in the context of human computer interaction.
Face recognition is also important in video retrieval.  For example, Wactlar et al.’s
(2000) Informedia Digital Video Library system extracts information from audio
and video and supports full content search over digitized video sources. Among
other capabilities, Informedia provides a facility called named face which
automatically associates a name with a face and enables the user to search for a face
given a name and vice versa.

10.5 Video Retrieval

The ability to support content based access to video promises access to
video mail (Jones et al., 1997), video taped meetings (Kubala et al.  1999),
surveillance video, and broadcast television. For example, Maybury, Merlino, and
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Morey (1997) report on the ability to create “personalcasts” from news broadcasts
via the Broadcast News Navigator (BNN) system. BNN is a web-based tool that
automatically captures, annotates, segments, summarizes and visualizes stories from
broadcast news video. What QBIC is to static stock imagery, BNN is to broadcast
news video. BNN integrates text, speech, and image processing technologies to
perform multistream analysis of video to support content-based search and retrieval.
BNN addresses the problem of time-consuming, manual video
acquisition/annotation techniques that frequently result in inconsistent, error-full or
incomplete video catalogues.

Figure 10.5 illustrates BNN’s video query page. From this web page, the
user can select to search among thirty national or local news sources, specify an
absolute or relative date range, search closed captions or speech transcriptions, run a
pre-specified profile, search on text keywords, or search on concepts that express
topics or so-called named entities such as people, organizations, and locations.  In
Figure 10.5a the user has selected to search all news video sources for a 2 week
period (27 February to 12 March, 2000) using free text as well as person and
location tags. As displayed in Figure 10.5b, BNN automatically generates a custom
query web page which includes menus of people and location names from content
extracted over the relevant time period to ease query formulation by the user. In
Figure 10.5b, the user has selected “George Bush” and “George W. Bush” from the
people menu, “New York” and “New York City” from the location menu, and the
key words “presidential primary”. Because BNN incorporates the Alembic natural
language information extraction system
(www.mitre.org/resources/centers/it/g063/nl-index.html ) the retrieved   results
include only stories that contain the person “Bush” as opposed to stories about
brush or shrub and the state or city “New York”.

Figure 10.5a. Initial Query Page
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Figure 10.5b. Detailed Content-based Query

Figure 10.5. Broadcast News Navigator Query by Content

Figure 10.6 illustrates the kind of results BNN returns. Figures 6a and 6b display a
“story skim” in which a keyframe together with the three most frequently occurring
named entities are displayed for each relevant story. Figure 10.6a shows skims of
those stories related to “Bush” whereas 6b shows “Gore” stories. When the user
selects the first 5 March story (2nd row, far right) in Figure 10.6b, the display shown
in Figure 10.6c is generated. In Figure 10.6c, when the user selects the closed
caption button next to this story, the closed caption/transcribed text displays as
shown detailing the number of delegates each candidate has won to date. In this
manner the user can directly access dozens of news stations with a single query and
can rapidly perform detailed and comparative analyses.

In addition to this direct access method, BNN also supports simple
browsing of stories during particular time intervals or from particular sources. A
useful facility in this regard is the ability to display a graph of named entity
frequency over time. In addition, the user can automatically data mine the named
entities in the analyzed stories using the “search for correlations” link shown on the
left panel in Figure 10.6.

To evaluate the effectiveness of  BNN, Merlino and Maybury (1999) report
an empirical study of the optimal presentation of multimedia summaries of
broadcast news with the belief that different mixes can improve user precision, recall,
timeliness, and perceived quality of interaction. In that study, the authors empirically
investigated the most effective presentations for both retrieval (i.e., finding relevant
documents) and comprehension (i.e., answer a question) using twenty users who
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Figure 10.6a: “George Bush” Stories

Figure 10.6b. “Al Gore” Stories
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Figure 10.6c: BNN Story Detail Retrieval of  “presidential primary” stories

Figure 10.6: BNN Retrieval of  “presidential primary” stories

were individually asked two sets of ten questions. The authors found that using
BNN users could improve their retrieval performance by looking at only the 3 most
frequent named entities (i.e., people, organizations, and locations) in the story (as in
Figure 10.6b) rather than looking at the story details (as in Figure 10.6c). BNN
enabled users to find video content about six times as fast as they could if searching
with simple keywords. A key reason for this enhanced performance is BBN’s
automated segmentation of news programs into individual stories using cross media
cues such as visual changes, speaker changes, and topic changes. Evaluation
revealed the importance of quality source material and the need to enhance the
selection of keyframes.

The topic detection and tracking initiative (TDT) for broadcast news and
newswire sources (Wayne 1998) aims to explore algorithms that perform story
segmentation (detection of story boundaries), topic tracking (detection of stories
that discuss a topic, for each given target topic) and topic detection (detection of
stories that discuss an arbitrary topic, for all topics). Whereas BNN focuses on
story segmentation, subsequent research on the Geospatial News on Demand
Environment (GeoNODE) addresses topic detection and tracking. GeoNODE
(Hyland et al. 1999) presents news in a geospatial and temporal context. An analyst
can navigate the information space through indexed access into multiple types of
information sources -- from broadcast video, on-line newspapers, to specialist
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archives. GeoNODE incorporates information extraction, data mining/correlation
and visualization components. Figure 10.7 illustrates the ability of GeoNODE to
automatically nominate and animate topics from sources such as North American
broadcast news and a Spanish web newspaper thereby directing analysis to the
relevant documents having the right topic, the right time, and the right place. Figure
10.7 displays the GeoNODE time line of stories relevant to a given query across
primary sources such as major CNN and MS-NBC programs. In contrast, Figure
10.8 cartographically encodes frequencies of documents that mention a location
using color coded countries (higher color saturation of a country means more
mentions) and yellow circles plotted on specific locations (the more documents that
mention that location the larger the circle). For example, in the map in Figure 10.8
in the zoomed in portion on the left, North and South America are dark brown
indicating high reporting frequency across sources whereas Africa has fewer reports
and thus lighter color. Concentrations of larger yellow circles are situated in major
cities in North and South America (e.g. note that large circles appear in most South
American country capitals). This enables the user to retrieve documents with
specific geospatial mentions directly. In preliminary evaluations with a corpus of
65,000 documents with 100 manually identified topics (covering 6941 of the
documents), GeoNODE identified over 80% of the human defined topics and
detected 83% of stories within topics with a misclassification error of .2%, results
comparable to TDT initiative results.

Figure 10.7: GeoNODE Time-line

The ability to provide sophisticated analytic environments such as GeoNODE will
in the future increasingly rely on an ability to extract information from a broad
range of sources including text, audio, and video. Progress will depend upon the
establishment of multimedia corpora, common evaluation tasks, and machine
learning strategies to create high performance extraction and analysis systems.
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Figure 10.8: GeoNODE Map Display

10.6 Summary

This chapter addresses content-based access to multimedia. Multimedia
retrieval encompasses a range of media types including text, speech and non-speech
audio, and video. This chapter illustrates multiple systems that provide content-
based retrieval of media, some of which have become commercial software. This
chapter summarizes, where results have been reported, empirical evaluation of these
advances.

Impressive as these initial systems may be, they serve as pathfinders in
new subfields of multimedia retrieval research. Many unanswered research
questions remain which offer fertile ground for research. For example, imagery
retrieval is presently based on shallow image feature analyses (e.g., color, shape,
texture) and so integration of these results with those from deeper semantic analysis
of text documents remains a challenge. Higher level intentional models of media
(e.g., what is the purpose of a clip of non-speech audio or a graphic?) require even
more sophisticated analytic methods but promise even deeper representations of
media and correspondingly more powerful retrieval. In addition, enhanced
interfaces promise to enhance retrieval performance and user satisfaction. Finally,
techniques for rapidly creating multimedia corpora so scientists can create machine
learned systems as well as develop metrics, measures, and methods for effective
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community evaluations will remain important for fostering continued progress in
the field.

Exercises

1.    Define multimedia information retrieval.
2. List three types of media beyond text that could be indexed for subsequent

retrieval.
3.    What are the predominant features of still imagery can be used to support

content-based indexing?
4. What kind of  features in audio can be used to index the content?
5. How large are text lexicons used in information retrieval systems? Speech

systems?
6.    What kind of word error rates are typical for English (e.g., BYBLOS)? What

kind of error rates are typical for French? Japanese?
7.    What are the two levels of representation that the SoundFisher system uses to

ensure effective non-speech audio retrieval?
8. What elements in video can be used to index the content?
9.    Define face detection, face recognition, and face retrieval.
10. List three applications for content-based video?
11. What does TDT stand for?
12. Define and distinguish tracking and detection.
13. What new media do you believe will appear in the future and benefit from

content based retrieval?
14. What new application areas do you envision being enabled by content based

multimedia retrieval?
15. What if any political, economic, and social impact might these technologies

have?
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11.1
11.2
11.3
11.4

Introduction to Information System Evaluation
Measures Used in System Evaluations
Measurement Example -TREC-Results
Summary

Interest in the evaluation techniques for Information Retrieval Systems has
significantly increased with the commercial use of information retrieval technologies
in the everyday life of the millions of users of the Internet. Until 1993 the
evaluations were done primarily by academicians using a few small, well known
corpora of test documents or even smaller test databases created within academia.
The evaluations focused primarily on the effectiveness of search algorithms. The
creation of the annual Text Retrieval Evaluation Conference (TREC) sponsored by
the Defense Advanced Research Projects Agency (DARPA) and the National
Institute of Standards and Technology (NIST) changed the standard process of
evaluating information systems. Conferences have been held every year, starting
from 1992, usually in the Fall months. The conference provides a standard database
consisting of gigabytes of test data, search statements and the expected results from
the searches to academic researchers and commercial companies for testing of their
systems. This has placed a standard baseline into comparisons of algorithms.
Although there is now a standard database, there is still debate on the accuracy and
utility of the results from use of the test corpus. Section 11.2 introduces the
measures that are available for evaluating information systems. The techniques are
compared stressing their utility from an academic as well as a commercial
perspective. Section 11.3 gives examples of results from major comparisons of
information systems and algorithms.

11.1 Introduction to Information System Evaluation

In recent years the evaluation of Information Retrieval Systems and
techniques for indexing, sorting, searching and retrieving information have become
increasingly important (Saracevic-95). This growth in interest is due to two major
reasons: the growing number of retrieval systems being used and additional focus on
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evaluation methods themselves. The Internet is an example of an information space
(infospace) whose text content is growing exponentially along with products to find
information for value. Information retrieval technologies are the basis behind the
search of information on the Internet. In parallel with the commercial interest, the
introduction of a large standardized test database and a forum for yearly analysis via
TREC has provided a methodology for evaluating the performance of algorithms
and systems. There are many reasons to evaluate the effectiveness of an Information
Retrieval System (Belkin-93, Callan-93):

To aid in the selection of a system to procure
To monitor and evaluate system effectiveness
To evaluate query generation process for improvements
To provide inputs to cost-benefit analysis of an information system
To determine the effects of changes made to an existing information
system.

From an academic perspective, measurements are focused on the specific
effectiveness of a system and usually are applied to determining the effects of
changing a system’s algorithms or comparing algorithms among systems. From a
commercial perspective, measurements are also focused on availability and
reliability. In an operational system there is less concern over 55 per cent versus 65
per cent precision than 90 per cent versus 80 per cent availability. For academic
purposes, controlled environments can be created that minimize errors in data. In
operational systems, there is no control over the users and care must be taken to
ensure the data collected are meaningful.

The most important evaluation metrics of information systems will always
be biased by human subjectivity. This problem arises from the specific data
collected to measure the user resources in locating relevant information. Metrics to
accurately measure user resources expended in information retrieval are inherently
inaccurate. A factor in most metrics in determining how well a system is working is
the relevancy of items. Relevancy of an item, however, is not a binary evaluation,
but a continuous function between an item’s being exactly what is being looked for
and its being totally unrelated. To discuss relevancy, it is necessary to define the
context under which the concept is used. From a human judgment standpoint,
relevancy can be considered:

Subjective - depends upon a specific user’s judgment
Situational - relates to a user’s requirements
Cognitive - depends on human perception and behavior
Temporal - changes over time
Measurable - observable at a points in time

The subjective nature of relevance judgments has been documented by Saracevic
and was shown in TREC-experiments (Harman-95, Saracevic-91). In TREC-2 and
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TREC-3, two or three different users were given the same search statement and the
same set of possible hits to judge as relevant or not. In general, there was a
unanimous agreement on 70-80 per cent of the items judged by the human. Even in
this environment (i.e., where the judges are not the creators of the query and are
making every effort to be unbiased) there is still significant subjective disagreement
on the relevancy of items. In a dynamic environment, each user has his own
understanding of the requirement and the threshold on what is acceptable (see
Chapter 1). Based upon his cognitive model of the information space and the
problem, the user judges a particular item. Some users consider information they
already know to be non-relevant to their information need. For example, a user
being presented with an article that the user wrote does not provide “new” relevant
information to answer the user’s query, although the article may be very relevant to
the search statement. Also the judgment of relevance can vary over time.
Retrieving information on an “XT” class of PCs is not of significant relevance to
personal computers in 1996, but would have been valuable in 1992. Thus, relevance
judgment is measurable at a point in time constrained by the particular users and
their thresholds on acceptability of information.

Another way of specifying relevance is from information, system and
situational views. The information view is subjective in nature and pertains to
human judgment of the conceptual relatedness between an item and the search. It
involves the user’s personal judgment of the relevancy (aboutness) of the item to the
user’s information need. When reference experts (librarians, researchers, subject
specialists, indexers) assist the user, it is assumed they can reasonably predict
whether certain information will satisfy the user’s needs. Ingwersen categorizes the
information view into four types of “aboutness” (Ingwersen-92):

Author Aboutness - determined by the author’s language as matched by
the system in natural language retrieval

Indexer Aboutness - determined by the indexer’s transformation of the
author’s natural language into a controlled vocabulary

Request Aboutness - determined by the user’s or intermediary’s
processing of a search statement into a query

User Aboutness - determined by the indexer’s attempt to represent the
document according to presupposition about what the
user will want to know

In this context, the system view relates to a match between query terms and
terms within an item. It can be objectively observed, manipulated and tested without
relying on human judgment because it uses metrics associated with the matching of
the query to the item (Barry-94, Schamber-90). The semantic relatedness between
queries and items is assumed to be inherited via the index terms that represent the
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semantic content of the item in a consistent and accurate fashion. Other aspects of
the system view are presented in Section 11.2.

The situation view pertains to the relationship between information and the
user’s information problem situation. It assumes that only users can make valid
judgments regarding the suitability of information to solve their information need.
Lancaster and Warner refer to information and situation views as relevance and
pertinence respectively (Lancaster-93). Pertinence can be defined as those items
that satisfy the user’s information need at the time of retrieval. The TREC-
evaluation process uses relevance versus pertinence as its criteria for judging items
because pertinence is too variable to attempt to measure in meaningful items (i.e., it
depends on each situation).

11.2 Measures Used in System Evaluations

To define the measures that can be used in evaluating Information Retrieval
Systems, it is useful to define the major functions associated with identifying
relevant items in an information system (see Figure 11.1). Items arrive

Figure 11.1 Identifying Relevant Items

in the system and are automatically or manually transformed by “indexing” into
searchable data structures. The user determines what his information need is and
creates a search statement. The system processes the search statement, returning
potential hits. The user selects those hits to review and accesses them.

Measurements can be made from two perspectives: user perspective and
system perspective. The user perspective was described in Section 11.1. The
Author’s Aboutness occurs as part of the system executing the query against the
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index. The Indexer Aboutness and User Aboutness occur when the items are
indexed into items are indexed into the system. The Request Aboutness occurs
when the user creates the search statement. The ambiguities in the definition of
what is relevant occurs when the user is reviewing the hits from the query.

Typically, the system perspective is based upon aggregate functions,
whereas the user takes a more personal view. If a user’s PC is not connecting to the
system, then, from that user’s view the system is not operational. From the system
operations perspective, one user not having access out of 100 users still results in a
99 per cent availability rate. Another example of how averaging distorts
communications between the system and user perspective is the case where there are
150 students taking six courses. Assume there are 5 students in three of the courses
and 45 students in the other three courses. From the system perspective there is an
average of 25 students per instructor/course. For 10 per cent of the students (15
students) there is a great ratio of 10 students per instructor. But, 90 per cent of the
users (students) have a ratio of 45 students to one instructor. Thus most of the users
may complain of the poor ratio (45 to one) to a system person who claims it is really
good (25 to one). Techniques for collecting measurements can also be objective or
subjective. An objective measure is one that is well-defined and based upon
numeric values derived from the system operation. A subjective measure can
produce a number, but is based upon an individual users judgments.

Measurements with automatic indexing of items arriving at a system are
derived from standard performance monitoring associated with any program in a
computer (e.g., resources used such as memory and processing cycles) and time to
process an item from arrival to availability to a search process. When manual
indexing is required, the measures are then associated with the indexing process.
The focus of the metrics is on the resources required to perform the indexing
function since this is the major system overhead cost. The measure is usually
defined in terms of time to index an item. The value is normalized by the
exhaustivity and specificity (see Chapter 3) requirements. Another measure in both
the automatic and manual indexing process is the completeness and accuracy of the
indexes created. These are evaluated by random sampling of indexes by quality
assurance personnel.

A more complex area of measurements is associated with the search
process. This is associated with a user creating a new search or modifying an
existing query. In creating a search, an example of an objective measure is the time
required to create the query, measured from when the user enters into a function
allowing query input to when the query is complete. Completeness is defined as
when the query is executed. Although of value, the possibilities for erroneous data
(except in controlled environments) are so great that data of this nature are not
collected in this area in operational systems. The erroneous data comes from the
user performing other activities in the middle of creating the search such as going to
get a cup of coffee.

Response time is a metric frequently collected to determine the efficiency
of the search execution. Response time is defined as the time it takes to execute the
search. The ambiguity in response time originates from the possible definitions of
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the end time. The beginning is always correlated to when the user tells the system to
begin searching. The end time is affected by the difference between the user’s view
and a system view. From a user’s perspective, a search could be considered
complete when the first result is available for the user to review, especially if the
system has new items available whenever a user needs to see the next item. From a
system perspective, system resources are being used until the search has determined
all hits. To ensure consistency, response time is usually associated with the
completion of the search. This is one of the most important measurements in a
production system. Determining how well a system is working answers the typical
concern of a user: “the system is working slow today.”

It is difficult to define objective measures on the process of a user selecting
hits for review and reviewing them. The problems associated with search creation
apply to this operation. Using time as a metric does not account for reading and
cognitive skills of the user along with the user performing other activities during the
review process. Data are usually gathered on the search creation and Hit file review
process by subjective techniques, such as questionnaires to evaluate system
effectiveness.

In addition to efficiency of the search process, the quality of the search
results are also measured by precision and recall. Precision is a measure of the
accuracy of the search process. It directly evaluates the correlation of the query to
the database and indirectly is a measure of the completeness of the indexing
algorithm. If the indexing algorithm tends to generalize by having a high threshold
on the index term selection process or by using concept indexing, then precision is
lower, no matter how accurate the similarity algorithm between query and index.
Recall is a measure of the ability of the search to find all of the relevant items that
are in the database. The following are the formulas for precision and recall:

where Number_Possible_Relevant is the number of relevant items in the database,
Number_Retrieved_Relevant is the number of relevant items in the Hit file, and
Number_Total_Retrieved is the total number of items in the Hit File. In controlled
environments it is possible to get values for both of these measures and relate them
to each other. Two of the values in the formulas, Number_Retrieved_Relevant and
Number_Total_Retrieved, are always available. Number_Possible-Relevant poses a
problem in uncontrolled environments because it suggests that all relevant items in
the database are known. This was possible with very small databases in some of the
early experiments in information systems. To gain the insights associated with
testing a search against a large database makes collection of this data almost
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impossible. Two approaches have been suggested. The first is to use a sampling
technique across the database, performing relevance judgments on the returned
items. This would form the basis for an estimate of the total relevant items in the
database (Gilbert-79). The other technique is to apply different search strategies to
the same database for the same query. An assumption is then made that all relevant
items in the database will be found in the aggregate from all of the searches (Sparck
Jones-75). This later technique is what is applied in the TREC-experiments. In this
controlled environment it is possible to create Precision/Recall graphs by reviewing
the Hit file in ranked order and recording the changes in precision and recall as each
item is judged.

In an operational system it is unrealistic to calculate recall because there is
no reasonable approach to determine Number_Possible_Relevant. It is possible,
however, to calculate precision values associated with queries, assuming the user
provides relevance judgments. There is a pragmatic modification that is required to
the denominator factor of Number_Total_Retrieved. The user can not be forced to
review all of the items in the Hit file. Thus, there is a likely possibility that there
will be items found by the query that are not retrieved for review. The adjustment to
account for this operational scenario is to redefine the denominator to
Number_Total_Reviewed versus Nnumber_Total_Retrieved. Under this condition
the Precision factor becomes the precision associated with satisfying the user’s
information need versus the precision of the query. If reviewing three relevant items
satisfies the user’s objective in the search, additional relevant items in a Hit file do
not contribute to the objective of the information system. The other factor that needs
to be accounted for is the user not reviewing items in the Hit file because the
summary information in the status display is sufficient to judge the item is not likely
to be relevant. Under this definition, precision is a more accurate measure of the use
of the user’s time.

Although precision and recall formed the initial basis for measuring the
effectiveness of information systems, they encounter mathematical ambiguities and a
lack of parallelism between their properties (Salton-83). In particular, what is the
value of recall if there are no relevant items in the database or recall if no items are
retrieved (Fairthorne-64, Robertson-69)? In both cases the mathematical formula
becomes 0/0. The lack of parallelism comes from the intuitiveness that finding more
relevant items should increase retrieval effectiveness measures and decrease with
retrieval of non-relevant items. Recall is unaffected when non-relevant items are
retrieved. Another measure that is directly related to retrieving non-relevant items
can be used in defining how effective an information system is operating. This
measure is called Fallout and defined as (Salton-83):

where Number_Total_Nonrelevant is the total number of non-relevant items in the
database. Fallout can be viewed as the inverse of recall and will never encounter the
situation of 0/0 unless all the items in the database are relevant to the search. It can
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be viewed as the probability that a retrieved item is non-relevant. Recall can be
viewed as the probability that a retrieved item is relevant. From a system
perspective, the ideal system demonstrates maximum recall and minimum fallout.
This combination implicitly has maximum precision. Of the three measures
(precision, recall and fallout), fallout is least sensitive to the accuracy of the search
process. The large value for the denominator requires significant changes in the
number of retrieved items to affect the current value. Examples of precision, fallout
and recall values for systems tested in TREC-4 are given in Section 11.3.

There are other measures of search capabilities that have been proposed. A
new measure that provides additional insight in comparing systems or algorithms is
the “Unique Relevance Recall” (URR) metric. URR is used to compare more two
or more algorithms or systems. It measures the number of relevant items that are
retrieved by one algorithm that are not retrieved by the others:

Number_unique_relevant is the number of relevant items retrieved that were not
retrieved by other algorithms. When many algorithms are being compared, the
definition of uniquely found items for a particular system can be modified, allowing
a small number of other systems to also find the same item and still be considered
unique. This is accomplished by defining a percentage of the total number of
systems that can find an item and still consider it unique. Number_relevant can take
on two different values based upon the objective of the evaluation:

Figure 11.2a Number Relevant Items
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Figure 11.2b Four Algorithms With Overlap of Relevant Retrieved

Using TNRR as the denominator provides a measure for an algorithm of the percent
of the total items that were found that are unique and found by that algorithm. It is a
measure of the contribution of uniqueness to the total relevant items that the
algorithm provides. Using the second measure, TURR, as the denominator,
provides a measure of the percent of total unique items that could be found that are
actually found by the algorithm. Figure 11.2a and 11.2b provide an example of the
overlap of relevant items assuming there are four different algorithms. Figure 11.2a
gives the number of items in each area of the overlap diagram in Figure 11.2b. If a
relevant item is found by only one or two techniques as a “unique item,” then from
the diagram the following values URR values can be produced:

Algorithm I         -  6 unique items (areas A, C, E)
Algorithm II - 16 unique items (areas B, C, J)
Algorithm III - 29 unique items (areas E, H, L)
Algorithm IV - 31 unique items (areas J, L, M)

Algorithm

Algorithm I 6/985 = .0061 6/61= .098
Algorithm II 16/985 = .0162 16/61= .262
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Algorithm III 29/985 = .0294 29/61 = .475
Algorithm IV 31/985 = .0315 31/61 = .508

The URR value is used in conjunction with Precision, Recall and Fallout to
determine the total effectiveness of an algorithm compared to other algorithms. The
URRTNRR value indicates what portion of all unique items retrieved by all of the
algorithms was retrieved by a specific algorithm. The URRTURR value indicates the
portion of possible unique items that a particular algorithm found. In the example,
Algorithm IV found 50 per cent of all unique items found across all the algorithms.
The results indicate that if I wanted to increase my recall by running two algorithms,
I would choose algorithm III or IV in addition to the algorithm with the highest
recall value. Like Precision, URR can be calculated since it is based upon the
results of retrieval versus results based upon the complete database. It assists in
determining the utility of using multiple search algorithm to improve overall system
performance (see Chapter 7).

Other measures have been proposed for judging the results of searches
(Keen-71, Salton-83):

Novelty Ratio: ratio of relevant and not known to the user to total
relevant retrieved

Coverage Ratio: ratio of relevant items retrieved to total relevant
by the user before the search

Sought Recall: ratio of the total relevant reviewed by the user after the
search to the total relevant the user would have liked to examine

In some systems, programs filter text streams, software categorizes data or
intelligent agents alert users if important items are found. In these systems, the
Information Retrieval System makes decisions without any human input and their
decisions are binary in nature (an item is acted upon or ignored). These systems are
called binary classification systems for which effectiveness measurements are
created to determine how algorithms are working (Lewis-95). One measure is the
utility measure that can be defined as (Cooper-73):

where and are positive weighting factors the user places on retrieving relevant
items and not retrieving non-relevant items while and are factors associated
with the negative weight of not retrieving relevant items or retrieving non-relevant
items. This formula can be simplified to account only for retrieved items with
and equal to zero (Lewis-96). Another family of effectiveness measures called the
E-measure that combines recall and precision into a single score was proposed by
Van Rijsbergen (Rijsbergen-79).
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11.3 Measurement Example-TREC-Results

Until the creation of the Text Retrieval Conferences (TREC) by the
Defense Advance Research Projects Agency (DARPA) and the National Institute of
Standards and Technology (NIST), experimentation in the area of information
retrieval was constrained by the researcher’s ability to manually create a test
database. One of the first test databases was associated with the Cranfield I and II
tests (Cleverdon-62, Cleverdon-66). It contained 1400 documents and 225 queries.
It became one of the standard test sets and has been used by a large number of
researchers. Other test collections have been created by Fox and Sparck Jones (Fox-
83, Sparck Jones-79). Although there has been some standard usage of the same test
data, in those cases the evaluation techniques varied sufficiently so that it has been
almost impossible to compare results and derive generalizations. This lack of a
common base for experimentation constrained the ability of researchers to explain
relationships between different experiments and thus did not provide a basis to
determine system improvements (Sparck Jones-81). Even if there had been a better
attempt at uniformity in use of the standard collections, all of the standard test sets
suffered from a lack of size that prevented realistic measurements for operational
environments.

The goal of the Text Retrieval Conference was to overcome these
problems by making a very large, diverse test data set available to anyone interested
in using it as a basis for their testing and to provide a yearly conference to share the
results. There have been five TREC-conferences since 1992, usually held in the
Fall. Two types of retrieval are examined at TREC: “adhoc” query, and “routing”
(dissemination). In TREC-the normal two word “ad hoc” is concatenated into a
single word. As experience has been gained from TREC-1 to TREC-5, the details
and focus of the experiments have evolved. TREC-provides a set of training
documents and a set of test documents, each over 1 Gigabyte in size. It also
provides a set of training search topics (along with relevance judgments from the
database) and a set of test topics. The researchers send to the TREC-sponsor the list
of the top 200 items in ranked order that satisfy the search statements. These lists
are used in determining the items to be manually reviewed for relevance and for
calculating the results from each system. The search topics are “user need”
statements rather than specific queries. This allows maximum flexibility for each
researcher to translate the search statement to a query appropriate for their system
and assists in the determination of whether an item is relevant.

Figure 11.3 describes the sources and the number and size of items in the
test database (Harman-95). Figure 11.3 also includes statistics on the number of
terms in an item and number of unique terms in the test databases. The database was
initially composed of disks 1 and 2. In later TRECs, disk 3 of data was added to
focus on the routing tests. Figure 11.3b includes in the final column the statistics for
the Cranfield test collection. Comparing the Cranfield collection to the contents of
disk 1 shows that the TREC-test database is approximately 200 times larger and the
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average length of the items is doubled. Also the dictionary size of unique words is
20 times larger. All of the documents are formatted in Standard Generalized Markup
Language (SGML) with a Document Type Definition (DTD) included for each
collection allowing easy parsing. SGML is a superset of HTML and is one of the
major standards used by the publishing industry.

It was impossible to perform relevance judgments on all of the items in the
test databases (over 700,000 items) to be used in recall and fallout formulas. The
option of performing a random sample that would find the estimated 200 or
more relevant items for each test search would require a very large sample size to

be manually analyzed. Instead, the pooling method proposed by Sparck Jones was
used. The top 200 documents based upon the relevance rank from each of the
researchers was pooled, redundant items were eliminated and the resultant set was
manually reviewed for relevance. In general one-third of the possible items
retrieved were unique (e.g., out of 3300 items 1278 were unique in TREC-1)
(Harman-93). This ratio also been shown to be true in other experiments (Katzer-
82). In TREC, each test topic was judged by one person across all of the possible
documents to ensure consistency of relevance judgment.

The search Topics in the initial TREC-consisted of a Number, Domain
(e.g., Science and Technology), Title, Description of what constituted a relevant
item, Narrative natural language text for the search, and Concepts which were
specific search terms.

The following describes the source contents of each of the disks shown in
Figure 11.3 available for TREC analysis:

Disk 1
WSJ - Wall street journal (1987, 1988, 1989)
AP - AP Newswire(1989)
ZIFF - Articles from Computer Select disks (ZIFF-Davis Publishing)
FR - Federal Register (1989)
DOE - Short Abstracts from DOE Publications

Disk 2
WSJ - Wall Street Journal (1990, 1991,1992)
AP -AP Newswire(1988)
ZIFF - Articles from Computer Select disks (ZIFF-Davis Publishing)
FR - Federal register (1988)

Disk 3
SJMN - San Jose Mercury News (1991)
AP - AP Newswire(1990)
ZIFF - Articles from Computer Select disks (ZIFF-Davis Publishing)
PAT - U.S. Patents(1993)
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Figure 11.3b TREC-Training and Adhoc Test Collection

Figure 11.3a Routing Test Database
(from TREC-5 Conference Proceedings to be published, Harmon-96)

Precision and recall were calculated in the initial TREC. To experiment
with a measure called Relative Operating Characteristic (ROC) curves, calculation
of Probability of Detection (same as Recall formula) and calculation of Probability
of False Alarm (same as Fallout) was also tried. This use of a set of common
evaluation formulas between systems allows for consistent comparison between
different executions of the same algorithm and between different algorithms. The
results are represented on Recall-Precision and Recall-Fallout graphs (ROC curves).
Figure 11.4 shows how the two graphs appear. The x-axis plots the recall from zero
to 1.0 based upon the assumption that the relevant items judged in the pooling
technique account for all relevant items. The precision or fallout value at each of
the discrete recall values is calculated based upon reviewing the items, in relevance
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rank score order, that it requires to reach that recall value. For example, assume
there are 200 relevant items. A particular system, to achieve a recall of 40 per cent
(.4) requiring retrieval of 80 of the relevant items, requires retrieving the top 160
items with the highest relevance scores. Associated with the Precision/Recall graph,
for the x-axis value of .4, the y-axis value would be 80/160 or .5. There are
sufficient sources of potential errors in generating the graphs, that they should only
be used as relative comparisons between algorithms rather than absolute
performance indicators. It has been proven they do provide useul comparative
information.
In addition to the search measurements, other standard information on system
performance such as system timing, storage, and specific descriptions on the tests
are collected on each system. This data is useful because the TREC-objective is to
support the migration of techniques developed in a research environment into
operational systems.

TREC-5 was held in November 1996. The results from each
conference have varied based upon understanding from previous conferences and
new objectives. A general trend has been followed to make the tests in each TREC-
closer to realistic operational uses of information systems (Harman-96).

Figure 11.4 Examples of TREC-Result Charts

TREC-1 (1992) was constrained by researchers trying to get their systems
to work with the very large test databases. TREC-2 in August 1993 was the first real
test of the algorithms which provided insights for the researchers into areas in which
their systems needed work. The search statements (user need statements) were very
large and complex. They reflect long-standing information needs versus adhoc
requests. By TREC-3, the participants were experimenting with techniques for
query expansion and the importance of constraining searches to passages within
items versus the total item. There were trade offs available between manual and
automatic query expansion and the benefits from combining results from multiple
retrieval techniques. Some of the experiments were driven by the introduction of
shorter and less complex search statements. The “concept” field, which contained
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terms related to the query that a user might be expected to be aware of, was
eliminated from the search statements. This change was a major source for the
interest into query expansion techniques. TREC-4 introduced significantly shorter
queries (average reduction from 119 terms in TREC-3 to 16 terms in TREC-4) and
introduced five new areas of  testing called “tracks” (Harman-96). The queries were
shortened by dropping the title and a narrative field, which provided additional
description of a relevant item.

The multilingual track expanded TREC-4 to test a search in a Spanish test
set of 200 Mbytes of articles from the “El Norte” newspaper. The interactive track
modified the previous adhoc search testing from a batch to an interactive
environment. Since there are no standardized tools for evaluating this environment,
the TREC-5 goals included development of evaluation methodologies as well as
investigating the search aspects. The database merging task investigated methods
for merging results from multiple subcollections into a single Hit file. The
confusion track dealt with corrupted data. Data of this type are found in Optical
Character Reader (OCR) conversion of hardcopy to characters or speech input. The
database for TREC-had random errors created in the text. Usually in real world
situations, the errors in these systems tend not to be totally random but bursty or
oriented towards particular characters. Finally, additional tests were performed on
the routing (dissemination) function that focused on three different objectives: high
precision, high recall and balanced precision and recall. Rather than ranking all
items, a binary text classification system approach was pursued where each item is
either accepted or rejected (Lewis-96, Lewis-95).

Figure 11.5 TREC-1 Adhoc manual versus Automatic Query
(from TREC-1 Conference Proceedings, page 15, Harmon-93)



272 Chapter 11

Figure 11.6 TREC-1 Routing Manual versus Automatic Results
(from TREC-1 Conference Proceedings, page 18, Harmon-93)

Insights into the advancements in information retrieval can be gained by
looking at changes in results between TRECs mitigated by the changes in the test
search statements. Adhoc query results from TREC-1 were calculated for automatic
and manual query construction. Automatic query construction is based upon
automatic generation of the query from the Topic fields. Manual construction is
also generated from the Topic field manually with some machine assistance if
desired. Figures 11.5 shows the Precision/Recall results top two systems for each
hmethod. The precision values were very low compared to later TRECs. It also
shows that there was very little difference between manual construction of a query
and automatic construction.

Routing (dissemination) also allowed for both an automatic and a manual
query construction process. The generation of the query followed the same
guidelines as the generation of the queries for the adhoc process. Figure 11.6 shows
the results from the top two manual and automatic routing systems. In this case,
unlike the adhoc query process, the automatic query building process is better as
shown by the results from the “fuhr1” system.
By TREC-3 and TREC-4 the systems were focusing on how to accommodate the
shorter queries. It is clear that if the shorter queries had been executed for TREC-1,
the results would have been worse than those described. Figures 11.7 and 11.8 show
the precision recall results for Automatic and Manual adhoc searches for TREC-3
and TREC-4 (Harman-96). The significant reduction in query size caused even the
best algorithms shown in the figures to perform worse in TREC-4 than in TREC-3.
The systems that historically perform best at TRECs (e.g., City University, London -
citya 1, INQUERY - INQ201, Cornell University -
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Figure 11.7 Automatic AdHoc Query results from TREC-3 and TREC-4
(from TREC-5 Conference Proceedings to be published, Harmon-96)

Figure 11.8 Manual AdHoc Query results fromTREC3 and TREC4
(from TREC-5 Conference Proceedings to be published, Harmon-96)
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CrnlEA) all experienced 14 per cent to 36 per cent drops in retrieval
performance. The manual experiments also suffered from a similar significant
decrease in performance. The following is the legend to the Figures:

CrnlEA - Cornell University - SMART system - vector based weighted system
pircs1 - Queens College - PIRCS system - spreading activation on 550

word subdocuments from documents
cityal - City University, London - Okapi system - probabilistic term weighting
INQ201 - University of Massachusetts - INQUERY system - probabilistic

weighting using inference netscitri2 - RMIT, Australia -
standard cosine with OKAPI measure
CnQst2 - Excalibur Corporation - Retrievalware - two pass weights
brkly-10 - University of California, Berkley - logistic regression model based on

6 measures of document relevance
ASSCTV1 - Mead Data Central, Inc. - query expansion via thesaurus

Even though all systems experienced significant problems when the size of the
queries was reduced, a comparison between Figure 11.5 and Figures 11.7 and 11.8
shows a significant improvement in the Precision/Recall capabilities of the systems.
A significant portion of this improvement occurred between TREC-1 and TREC-2.

By participating on a yearly basis, systems can determine the effects of
changes they make and compare them with how other approaches are doing. Many
of the systems change their weighting and similarity measures between TRECs.
INQUERY determined they needed better weighting formulas for long documents
so they used the City University algorithms for longer items and their own version of
a probabilistic weighting scheme for shorter items. Another example of the learning
from previous TRECs is the Cornell “SMART” system that made major
modifications to their cosine weighting formula introducing a non-cosine length
normalization technique that performs well for all lengths of documents. They also
changed their expansion of a query by using the top 20 highest ranked items from a
first pass to generate additional query terms for a second pass. They used 50 terms
in TREC-4 versus the 300 terms used in TREC-3. These changes produced
significant improvements and made their technique the best in the Automatic Adhoc
for TREC-4 versus being lower in TREC-3.

In the manual query method, most systems used the same search
algorithms. The difference was in how they manually generated the query. The
major techniques are the automatic generation of a query that is edited, total manual
generation of the query using reference information (e.g., online dictionary or
thesaurus) and a more complex interaction using both automatic generation and
manual expansion.

When TREC-introduced the more realistic short search statements, the
value of previously discovered techniques had to be reevaluated. Passage retrieval
(limiting the similarity measurement to a logical subsets of the item) had a major
impact in TREC-3 but minimal utility in TREC-4. Also more systems began making
use of multiple algorithms and selecting the best combination based upon
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characteristics of the items being searched. A lot more effort was spent on testing
better ways of expanding queries (due to their short length) while limiting the
expanded terms to reduce impacts on precision. The automatic techniques showed a
consistent degradation from TREC-3 to TREC-4. For the Manual Adhoc results,
starting at about a level of .6, there was minimal difference between the TRECs.

The Routing systems are very similar to the Adhoc systems. The

Figure 11.9 Routing results from TREC-3 and TREC-4
(from TREC-5 Conference Proceedings to be published, Harmon-96)

researchers tended to use the same algorithms with minor modifications to adjust for
the lack of a permanent database in dissemination systems. Not surprisingly, the
same systems that do well in the Adhoc tests do well in the Routing tests. There was
significant diversity on how the search statements were expanded (see TREC-4
proceedings). Unlike the Adhoc results, the comparison of TREC-3 and TREC-4
Routing shown in Figure 11.9 has minimal changes with a slight increase in
precision. The following is the legend for the Routing comparison for systems not
defined in the adhoc legend:

nyuge2 - GE Corporate Research and New York University - use of
natural language processing to identify syntactic phrases

nyuir2 - New York University - use of natural language processing to
identify syntactic phrases
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cityr - City University, London

As with the adhoc results, comparing Figure 11.6 with Figure 11.8 shows
the significant improvement in Routing capability between TREC-1 and the later

Figure 11.10 Results of TREC-4 Spanish Track
(from TREC-5 Conference Proceedings to be published, Harmon-96)

TRECs. TREC-5 results were very close to those from TREC-4 but the queries had
become more difficult so actual improvements came from not seeing a degradation
in the Precision/Recall and Routing graphs.

The multilingual track expanded between TREC-4 and TREC-5 by the
introduction of Chinese in addition to the previous Spanish tests. The concept in
TREC-5 is that the algorithms being developed should be language independent
(with the exception of stemming and stopwords). In TREC-4, the researchers who
spent extra time in linguistic work in a foreign language showed better results (e.g.,
INQUERY enhanced their noun-phrase identifier in their statistical thesaurus
generator). The best results in came from the University of Central Florida, which
built an extensive synonym list. Figure 11.10 shows the results of the Spanish adhoc
search in TREC-4. In TREC-5 significant improvements in precision were made in
the systems participating from TREC-4. In Spanish, the Precision-Recall charts are
better than those for the Adhoc tests, but the search statements were not as
constrained as in the ad hoc. In Chinese, the results varied significantly between the
participants with some results worse than the adhoc and some better. This being the
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first time for Chinese, it is too early to judge the overall types of performance to be
expected. But for Spanish, the results indicate the applicability to the developed
algorithms to other languages. Experiments with Chinese demonstrates the
applicability to a language based upon pictographs that represent words versus an
alphabet based language.

The confusion track was preliminary in TREC-4. By TREC-5 the test
database had expanded by taking the Federal Register (250Mbytes), creating dvi
image files and then running NIST OCR programs against it. This produced
approximately 5 per cent corruption typical of OCR operations. A second dataset
with closer to 20 per cent corruption was produced by down-sampling the images
and redoing the OCR (Voorhees-96). A set of known item topics was created by
selecting items that seemed to be unique and creating a description of them. These
were used and the evaluation metric was the rank of the item in the Hit file. Most of
the search systems used some version of n-gram indexing (see Chapter 4). The
results are too preliminary to draw any major conclusions from them.

The results in TREC 8, held in November 1999 did not show any
significant improvement over the best TREC 3 or TREC four results in this text for
automatic searching. The manual searching did show some improvement because
the user interaction techniques are improving with experience. One participant,
Readware, did perform significantly better than the other participants. The major
change with TREC 8 was the introduction of the Question/Answer track. The goal
of the track is to encourage research into systems that return answers versus lists of
documents. The user is looking for an answer to an information need and does not
want to have to browse through long items to locate the specific information of
interest.

The experiment was run based upon 200 fact based short answer questions.
The participants returned a ranked list of up to five document-id/string location pairs
for each query. The strings were limited to either 50 or 250 characters. The
answers were judged based upon the proposed string including units if asked for
(e.g., world's population) and for famous objects answers had to pertain to that
specific object.

Most researchers processed the request using their normal search
algorithms, but included "blind feedback" to increase the precision of the higher
ranked hits. Then techniques were used to parse the returned document around the
words that caused the hit using natural language techniques to focus on the likely
strings to be returned. Most of the participants only tried to return the 250-character
string range.

The TREC-series of conferences have achieved their goal of defining a
standard test forum for evaluating information retrieval search techniques. It
provides a realistic environment with known results. It has been evolving to equate
closer to a real world operational environment that allows transition of the test
results to inclusion of commercial products with known benefits. By being an open
forum, it has encouraged participation by most of the major organizations
developing algorithms for information retrieval search.
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11.4 Summary

Evaluation of Information Retrieval Systems is essential to understand the
source of weaknesses in existing systems and trade offs between using different
algorithms. The standard measures of Precision, Recall, and Fallout have been used
for the last twenty-five years as the major measures of algorithmic effectiveness.
With the insertion of information retrieval technologies into the commercial market
and ever growing use on the Internet, other measures will be needed for real time
monitoring the operations of systems. One example was given in the modifications
to the definition of Precision when a user ends his retrieval activity as soon as
sufficient information is found to satisfy the reason for the search.

The measures to date are optimal from a system perspective, and very
useful in evaluating the effect of changes to search algorithms. What are missing are
the evaluation metrics that consider the total information retrieval system,
attempting to estimate the system’s support for satisfying a search versus how well
an algorithm performs. This would require additional estimates of the effectiveness
of techniques to generate queries and techniques to review the results of searches.
Being able to take a system perspective may change the evaluation for a particular
aspect of the system. For example, assume information visualization techniques are
needed to improve the user’s effectiveness in locating needed information. Two
levels of search algorithms, one optimized for concept clustering the other optimized
for precision, may be more effective than a single algorithm optimized against a
standard Precision/Recall measure.

In all cases, evaluation of Information Retrieval Systems will suffer from
the subjective nature of information. There is no deterministic methodology for
understanding what is relevant to a user’s search. The problems with information
discussed in Chapter 1 directly affect system evaluation techniques in Chapter 11.
Users have trouble in translating their mental perception of information being sought
into the written language of a search statement. When facts are needed, users are
able to provide a specific relevance judgment on an item. But when general
information is needed, relevancy goes from a classification process to a continuous
function. The current evaluation metrics require a classification of items into
relevant or non-relevant. When forced to make this decision, users have a different
threshold. These leads to the suggestion that the existing evaluation formulas could
benefit from extension to accommodate a spectrum of values for relevancy of an
item versus a binary classification. But the innate issue of the subjective nature of
relevant judgments will still exist, just at a different level.

Research on information retrieval suffered for many years from a lack of a
large, meaningful test corpora. The Text REtrieval Conferences (TRECs),
sponsored on a yearly basis, provide a source of a large “ground truth” database of
documents, search statements and expected results from searches essential to
evaluate algorithms. It also provides a yearly forum where developers of algorithms
can share their techniques with their peers. More recently, developers are starting
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to combine the best parts of their algorithms with other developers algorithms to
produce an improved system.

EXERCISES

1. What are the problems associated with generalizing the results from controlled
tests on information systems to their applicability to operational systems?
Does this invalidate the utility of the controlled tests?

2. What are the main issues associated with the definition of relevance? How
would you overcome these issues in a controlled test environment?

3. What techniques could be applied to evaluate each step in Figure 11.1?

4. Consider the following table of relevant items in ranked order from four
algorithms along with the actual relevance of each item. Assume all algorithms
have highest to lowest relevance is from left to right (Document 1 to last
item). A value of zero implies the document was non-relevant).

a. Calculate and graph precision/recall for all the algorithms on one graph.
b. Calculate and graph fallout/recall for all the algorithms on one graph
c. Calculate the TNRR and TURR for each algorithm (assume uniquely

found is only when one algorithm found a relevant item)
d. Identify which algorithm is best and why.

5. What is the relationship between precision and TURR.
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string search techniques

Aho-Corasick Algorithm, 229-231
Boyer-Moore, 226-229
brute force, 226
Knuth-Pratt-Morris,  225-226
shift-add algorithm, 232

structured data, 20
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tri-grams, 86

Understemming Index (UI), 81
Unicode, 12
Unique Relevance Recall measure,

267
unweighted indexing, 60
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