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Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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HEAP OVERVIEW
Basic overview on dynamic memory and heap structure
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The Heap

• The heap is pool of memory used for dynamic 
allocations at runtime
– malloc() grabs memory on the heap

– free() releases memory on the heap
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Runtime Memory
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Heap

Libraries (libc)

0x00000000
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The Heap

It’s just another segment
in runtime memory



Basics of Dynamic Memory

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}
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Heap vs Stack

Heap

• Dynamic memory 
allocations at runtime

• Objects, big buffers, structs, 
persistence, larger things

• Slower, Manual 
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack

• Fixed memory allocations 
known at compile time

• Local variables, return 
addresses, function args

• Fast, Automatic
– Done by the compiler
– Abstracts away any concept 

of allocating/de-allocating
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Heap Implementations

• Tons of different heap implementations
– dlmalloc 
– ptmalloc
– tcmalloc
– jemalloc
– nedmalloc
– Hoard

•                                                         
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Heap Implementations

• Tons of different heap implementations
– dlmalloc 
– ptmalloc
– tcmalloc
– jemalloc
– nedmalloc
– Hoard

• Some applications even create their own heap 
implementations!
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Heap Implementations

• glibc 2.19 is what we have on the Warzone
– Default for Ubuntu 14.04 (32bit)

– Its heap implementation is based on ptmalloc2

– Very fast, low fragmentation, thread safe
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Know Thy Heap

• Everyone uses the heap (dynamic memory) 
but few usually know much about its internals

• Do you even know the cost of your mallocs?
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Malloc Trivia
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How many bytes on the heap are your 
malloc chunks really taking up? 

• malloc(32);

• malloc(4);

• malloc(20);

• malloc(0);



Malloc Trivia
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How many bytes on the heap are your 
malloc chunks really taking up? 

• malloc(32);
– 40 bytes

• malloc(4);

• malloc(20);

• malloc(0);



Malloc Trivia
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How many bytes on the heap are your 
malloc chunks really taking up? 

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);

• malloc(0);



Malloc Trivia
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How many bytes on the heap are your 
malloc chunks really taking up? 

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);



Malloc Trivia
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How many bytes on the heap are your 
malloc chunks really taking up? 

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes



Malloc Trivia

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes
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lolwat

How many bytes on the heap are your 
malloc chunks really taking up? 



Malloc Trivia

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes
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lolwat

How many bytes on the heap are your 
malloc chunks really taking up?

How many did you get right?
Maybe one? right?



/levels/lecture/heap/sizes

prints distance between mallocs (size of chunk)
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Heap Chunks

unsigned int * buffer = NULL;

buffer = malloc(0x100);

//Out comes a heap chunk
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Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags



Heap Chunks

MBE - 04/07/2015 Heap  Exploitation 21

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

• Previous Chunk Size
– Size of previous chunk (if prev chunk is free)

• Chunk Size
– Size of entire chunk including overhead



• Data
– Your newly allocated memory / ptr returned by malloc

Heap Chunks
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Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags



• Flags
– Because of byte alignment, the lower 3 bits of the chunk size 

field would always be zero. Instead they are used for flag bits.
0x01 PREV_INUSE – set when previous chunk is in use
0x02 IS_MMAPPED – set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

Heap Chunks
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Heap Chunk
Previous Chunk Size

(4 bytes)
Data
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Flags



/levels/lecture/heap/heap_chunks

prints heap chunks fields
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Pseudo Memory Map
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Runtime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – Start of .text Segment

0xbfff0000 – Top of stack

Libraries (libc)

0xb7ff0000 – Top of heap



Heap Segment

Heap Allocations
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Heap Segment

Heap Allocations
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Heap Allocations
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Segment Growth

• Heap grows DOWN 
towards higher memory

• Stack grows UP towards 
lower memory
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Segment Growth
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Segment Growth

• Heap grows DOWN 
towards higher memory

• Stack grows UP towards 
lower memory

• Any ideas why?
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Segment Growth

• Heap grows DOWN 
towards higher memory

• Stack grows UP towards 
lower memory

• Any ideas why?
– Probably historical reasons, 

gave low memory systems 
more room to fluctuate
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Heap Chunks – In Use

• Heap chunks exist in two states
– in use (malloc’d)

– free’d
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Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags



Heap Chunks – Freed

• Forward Pointer
– A pointer to the next freed chunk

• Backwards Pointer
– A pointer to the previous freed chunk

MBE - 04/07/2015 Heap  Exploitation 34

Heap Chunk (freed)
Previous Chunk Size

(4 bytes)

*buffer

Chunk Size
(4 bytes)
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FD
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BK
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*(buffer+1)

free(buffer);

Flags



/levels/lecture/heap/print_frees
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/levels/lecture/heap/print_frees

prints heap chunks in their different states
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From Glibc 2.19 Source (malloc.c)

struct malloc_chunk {

  INTERNAL_SIZE_T      prev_size;  /* Size of previous chunk (if free).  */

  INTERNAL_SIZE_T      size;       /* Size in bytes, including overhead. */

  struct malloc_chunk* fd;         /* double links -- used only if free. */

  struct malloc_chunk* bk;

  /* Only used for large blocks: pointer to next larger size.  */

  struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */

  struct malloc_chunk* bk_nextsize;

};
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Heap Implementations

• Heaps go way deeper
– Arenas, Binning

– Chunk coalescing

– Fragmentation

• The details regarding these are heavily 
implementation reliant, and more relevant 
when attempting to exploit heap metadata
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Heap Implementations

• If you want to read more about the specifics of 
the glibc heap implementation...

• https://sploitfun.wordpress.
com/2015/02/10/understanding-glibc-malloc/

• Or read the source!
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https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/


Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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HEAP EXPLOITATION
Common heap related concepts as used in exploitation
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Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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Heap Overflows

• Buffer overflows are basically the same on the 
heap as they are on the stack
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Heap Overflows

• Buffer overflows are basically the same on the 
heap as they are on the stack

• Heap cookies/canaries aren’t a thing
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Heap Overflows

• Buffer overflows are basically the same on the 
heap as they are on the stack

• Heap cookies/canaries aren’t a thing
– No ‘return’ addresses to protect
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Heap Overflows
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Heap Overflows
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Heap Overflows

• In the real world, lots of cool and complex 
things like objects/structs end up on the heap
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Heap Overflows

MBE - 04/07/2015 Heap  Exploitation 49

• In the real world, lots of cool and complex 
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted 

is now viable attack surface in the application



Heap Overflows
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• In the real world, lots of cool and complex 
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted 

is now viable attack surface in the application

• It’s common to put function pointers in structs 
which generally are malloc’d on the heap



Heap Overflows

• In the real world, lots of cool and complex 
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted 

is now viable attack surface in the application

• It’s common to put function pointers in structs 
which generally are malloc’d on the heap
– Overwrite a function pointer on the heap, and 

force a codepath to call that object’s function!
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Heap Overflows

struct toystr {

    void (* message)(char *);

    char buffer[20];

};
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Heap Overflows

    coolguy = malloc(sizeof(struct toystr));
    lameguy = malloc(sizeof(struct toystr));

    coolguy->message = &print_cool;
    lameguy->message = &print_meh;

    printf("Input coolguy's name: ");
    fgets(coolguy->buffer, 200, stdin); // oopz...
    coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

    printf("Input lameguy's name: ");
    fgets(lameguy->buffer, 20, stdin);
    lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

    coolguy->message(coolguy->buffer);
    lameguy->message(lameguy->buffer);
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Heap Overflows

    coolguy = malloc(sizeof(struct toystr));
    lameguy = malloc(sizeof(struct toystr));

    coolguy->message = &print_cool;
    lameguy->message = &print_meh;

    printf("Input coolguy's name: ");
    fgets(coolguy->buffer, 200, stdin); // oopz...
    coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

    printf("Input lameguy's name: ");
    fgets(lameguy->buffer, 20, stdin);
    lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

    coolguy->message(coolguy->buffer);
    lameguy->message(lameguy->buffer);
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Silly heap overflow



Heap Overflows
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Heap Overflows
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Heap Overflows

    coolguy = malloc(sizeof(struct toystr));
    lameguy = malloc(sizeof(struct toystr));

    coolguy->message = &print_cool;
    lameguy->message = &print_meh;

    printf("Input coolguy's name: ");
    fgets(coolguy->buffer, 200, stdin); // oopz...
    coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

    printf("Input lameguy's name: ");
    fgets(lameguy->buffer, 20, stdin);
    lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

    coolguy->message(coolguy->buffer);
    lameguy->message(lameguy->buffer);
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Silly heap overflow

Overwritten
function pointer!



/levels/lecture/heap/heap_smash

toy function pointer overwrite on heap
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Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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Course Terminology

• Use After Free
– A class of vulnerability where data on the heap is 

freed, but a leftover reference or ‘dangling pointer’ 
is used by the code as if the data were still valid

– Most popular in Web Browsers, complex programs

– Also known as UAF
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Use After Free
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Use After Free
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Use After Free
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Use After Free
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Course Terminology

• Dangling Pointer
– A left over pointer in your code that references 

free’d data and is prone to be re-used

– As the memory it’s pointing at was freed, there’s 
no guarantees on what data is there now

– Also known as stale pointer, wild pointer
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Use After Free

MBE - 04/07/2015 Heap  Exploitation 66

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s
 
t
o
w
a
r
d
s
 
h
i
g
h
e
r
 
m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

dan
gli

ng 
poi

nte
r



Use After Free

MBE - 04/07/2015 Heap  Exploitation 67

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s
 
t
o
w
a
r
d
s
 
h
i
g
h
e
r
 
m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Newly allocated 
data

dan
gli

ng 
poi

nte
r

malloc()



Use After Free

MBE - 04/07/2015 Heap  Exploitation 68

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s
 
t
o
w
a
r
d
s
 
h
i
g
h
e
r
 
m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

dan
gli

ng 
poi

nte
r

malloc()
fgets()
...



Use After Free

MBE - 04/07/2015 Heap  Exploitation 69

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s
 
t
o
w
a
r
d
s
 
h
i
g
h
e
r
 
m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

Uh 
oh…

dan
gli

ng 
poi

nte
r



Exploiting a Use After Free 

• To exploit a UAF, you usually have to allocate 
a different type of object over the one you 
just freed
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Exploiting a Use After Free 

• To exploit a UAF, you usually have to allocate 
a different type of object over the one you 
just freed
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struct toystr {

    void (* message)(char *);

    char buffer[20];

};

struct person {

    int favorite_num;

    int age;

    char name[16];

};
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struct toystr {

    void (* message)(char *);

    char buffer[20];

};

struct person {

    int favorite_num;

    int age;

    char name[16];

};

1. free()

assume dangling pointer exists



Exploiting a Use After Free 

• To exploit a UAF, you usually have to allocate 
a different type of object over the one you 
just freed
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1. free() 2. malloc()

struct toystr {

    void (* message)(char *);

    char buffer[20];

};

struct person {

    int favorite_num;

    int age;

    char name[16];

};

assume dangling pointer exists



Exploiting a Use After Free 

• To exploit a UAF, you usually have to allocate 
a different type of object over the one you 
just freed
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1. free() 2. malloc()

3. Set favorite_num = 0x41414141

struct toystr {

    void (* message)(char *);

    char buffer[20];

};

struct person {

    int favorite_num;

    int age;

    char name[16];

};

assume dangling pointer exists



struct toystr {

    void (* message)(char *);

    char buffer[20];

};

Exploiting a Use After Free 

• To exploit a UAF, you usually have to allocate 
a different type of object over the one you 
just freed
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1. free() 2. malloc()

3. Set favorite_num = 0x41414141
4. Force dangling pointer

to call ‘message()’

struct person {

    int favorite_num;

    int age;

    char name[16];

};

assume dangling pointer exists



/levels/lecture/heap/heap_uaf

your very first use after free!
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Use After Free 

• You actually don’t need any form of memory 
corruption to leverage a use after free

• It’s simply an implementation issue
– pointer mismanagement
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UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every 
modern browser exploit leverages a UAF
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IE CVE Statistics

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-
development-and-cyber-attacks.html
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IE CVE Statistics

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-
development-and-cyber-attacks.html
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UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every 
modern browser exploit leverages a UAF

• Why are they so well liked?
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modern browser exploit leverages a UAF

• Why are they so well liked?
– Doesn’t require any memory corruption to use

– Can be used for info leaks
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UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every 
modern browser exploit leverages a UAF

• Why are they so well liked?
– Doesn’t require any memory corruption to use

– Can be used for info leaks

– Can be used to trigger memory corruption or get 
control of EIP
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Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect 
use after free vulnerabilities in complex 
applications is very difficult, even in industry

• Why?
–
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Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect 
use after free vulnerabilities in complex 
applications is very difficult, even in industry

• Why?
– UAF’s only exist in certain states of execution, so 

statically scanning source for them won’t go far
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Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect 
use after free vulnerabilities in complex 
applications is very difficult, even in industry

• Why?
– UAF’s only exist in certain states of execution, so 

statically scanning source for them won’t go far
– They’re usually only found through crashes, but 

symbolic execution and constraint solvers are helping 
find these bugs faster
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Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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Course Terminology

• Heap Spraying
– A technique used to increase exploit reliability, by 

filling the heap with large chunks of data relevant 
to the exploit you’re trying to land

– It can assist with bypassing ASLR

– A heap spray is not a vulnerability or security flaw
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Heap Spray in Action
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Runtime Memory

Stack

ELF Executable

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
    temp = malloc(1000000);
    memcpy(temp, filler, 1000000);
}
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Heap Spray in Action
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filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
    temp = malloc(1000000);
    memcpy(temp, filler, 1000000);
}



Heap Spraying in the Wild

• Generally found in browser exploits, rare in CTF 
and wargames but still something you should be 
aware of

•
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Heap Spraying in the Wild

• Generally found in browser exploits, rare in CTF 
and wargames but still something you should be 
aware of

• Usually heap sprays are done in something like 
javascript placed on a malicious html page

memory = new Array(); 
for(i = 0; i < 0x100; i++)
    memory[i] = ROPNOP + ROP;
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Heap Spraying on 32bit

• On 32bit systems your address space is at 
maximum 4GB (232 bytes)
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Heap Spraying on 32bit

• On 32bit systems your address space is at 
maximum 4GB (232 bytes)

• Spray 3GB of A’s onto the heap?
– +75% chance of 0x23456789 being a valid pointer!
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Heap Spraying on 32bit

• On 32bit systems your address space is at 
maximum 4GB (232 bytes)

• Spray 3GB of A’s onto the heap?
– +75% chance of 0x23456789 being a valid pointer!

– Note: It’s unlikely you would ever need to spray 
3GB of anything as heap locations can be 
somewhat predictable, even with ASLR
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Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to 
bypass ASLR
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• On 64bit heap spraying can’t really be used to 
bypass ASLR
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Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to 
bypass ASLR
– Good luck spraying anywhere near 264 bytes 

(spoiler: that’s ~18446744 terabytes)
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Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to 
bypass ASLR
– Good luck spraying anywhere near 264 bytes 

(spoiler: that’s ~18446744 terabytes)

• Targeted sprays are still useful in scenarios 
that you have a partial heap ptr overwrite or 
need to do some heap grooming
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Heap Spray Payloads

• Pretty common to spray some critical value 
for your exploit, fake objects, or ROP chains
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Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption
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Metadata Corruption

• Metadata corruption based exploits involve 
corrupting heap metadata in such a way that 
you can use the allocator’s internal functions 
to cause a controlled write of some sort 

• Generally involves faking chunks, and abusing 
its different coalescing or unlinking processes
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Heap Chunks – In Use

Heap Metadata
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Heap Chunk
Previous Chunk Size
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Heap Chunks – Freed 
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Heap Chunk (freed)
Previous Chunk Size
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Chunk Size
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Metadata Corruption

• The ‘hello world’ of heap metadata exploits is 
an example taught using the heap unlink() 
process when freeing a chunk
• This is a dated and long since patched 

technique that is well documented

• https://sploitfun.wordpress.
com/2015/02/26/heap-overflow-using-unlink/ 
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Metadata Corruption

• Heap metadata corruption based exploits are 
usually very involved and require more 
intimate knowledge of heap internals

• It’s suggested you read through some of the 
following blogs and exploit writeups on your 
own time as they’re pretty interesting
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glibc Metadata Corruption

• https://kitctf.de/writeups/0ctf2015/freenote/

• https://sploitfun.wordpress.com/2015/03/04/heap-overflow-
using-malloc-maleficarum/

• http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-
heap-overflow/

• http://wapiflapi.github.io/2014/11/17/hacklu-oreo-with-
ret2dl-resolve/

• http://phrack.org/issues/66/10.html

• http://dl.packetstormsecurity.
net/papers/attack/MallocMaleficarum.txt
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Metadata Corruption

• Metadata exploits are hard to pull of 
nowadays as heaps are fairly hardened 
(especially on modern Windows OS’s)

• We won’t really be testing on metadata 
corruption, but it’s still something you try to 
familiarize yourself with 
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