
Heap Exploitation

Modern Binary Exploitation

CSCI 4968 - Spring 2015
Markus Gaasedelen

MBE - 04/07/2015 Heap Exploitation 1

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 2

HEAP OVERVIEW
Basic overview on dynamic memory and heap structure

MBE - 04/07/2015 Heap Exploitation 3

The Heap

• The heap is pool of memory used for dynamic
allocations at runtime
– malloc() grabs memory on the heap

– free() releases memory on the heap

MBE - 04/07/2015 Heap Exploitation 4

MBE - 04/07/2015 Heap Exploitation 5

Runtime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

The Heap

It’s just another segment
in runtime memory

Basics of Dynamic Memory

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}

MBE - 04/07/2015 Heap Exploitation 6

Heap vs Stack

Heap

• Dynamic memory
allocations at runtime

• Objects, big buffers, structs,
persistence, larger things

• Slower, Manual
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack

• Fixed memory allocations
known at compile time

• Local variables, return
addresses, function args

• Fast, Automatic
– Done by the compiler
– Abstracts away any concept

of allocating/de-allocating

MBE - 04/07/2015 Heap Exploitation 7

Heap Implementations

• Tons of different heap implementations
– dlmalloc
– ptmalloc
– tcmalloc
– jemalloc
– nedmalloc
– Hoard

•

MBE - 04/07/2015 Heap Exploitation 8

Heap Implementations

• Tons of different heap implementations
– dlmalloc
– ptmalloc
– tcmalloc
– jemalloc
– nedmalloc
– Hoard

• Some applications even create their own heap
implementations!

MBE - 04/07/2015 Heap Exploitation 9

Heap Implementations

• glibc 2.19 is what we have on the Warzone
– Default for Ubuntu 14.04 (32bit)

– Its heap implementation is based on ptmalloc2

– Very fast, low fragmentation, thread safe

MBE - 04/07/2015 Heap Exploitation 10

Know Thy Heap

• Everyone uses the heap (dynamic memory)
but few usually know much about its internals

• Do you even know the cost of your mallocs?

MBE - 04/07/2015 Heap Exploitation 11

Malloc Trivia

MBE - 04/07/2015 Heap Exploitation 12

How many bytes on the heap are your
malloc chunks really taking up?

• malloc(32);

• malloc(4);

• malloc(20);

• malloc(0);

Malloc Trivia

MBE - 04/07/2015 Heap Exploitation 13

How many bytes on the heap are your
malloc chunks really taking up?

• malloc(32);
– 40 bytes

• malloc(4);

• malloc(20);

• malloc(0);

Malloc Trivia

MBE - 04/07/2015 Heap Exploitation 14

How many bytes on the heap are your
malloc chunks really taking up?

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);

• malloc(0);

Malloc Trivia

MBE - 04/07/2015 Heap Exploitation 15

How many bytes on the heap are your
malloc chunks really taking up?

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);

Malloc Trivia

MBE - 04/07/2015 Heap Exploitation 16

How many bytes on the heap are your
malloc chunks really taking up?

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes

Malloc Trivia

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes

MBE - 04/07/2015 Heap Exploitation 17

lolwat

How many bytes on the heap are your
malloc chunks really taking up?

Malloc Trivia

• malloc(32);
– 40 bytes

• malloc(4);
– 16 bytes

• malloc(20);
– 24 bytes

• malloc(0);
– 16 bytes

MBE - 04/07/2015 Heap Exploitation 18

lolwat

How many bytes on the heap are your
malloc chunks really taking up?

How many did you get right?
Maybe one? right?

/levels/lecture/heap/sizes

prints distance between mallocs (size of chunk)

MBE - 04/07/2015 Heap Exploitation 19

Heap Chunks

unsigned int * buffer = NULL;

buffer = malloc(0x100);

//Out comes a heap chunk

MBE - 04/07/2015 Heap Exploitation 20

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

Heap Chunks

MBE - 04/07/2015 Heap Exploitation 21

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

• Previous Chunk Size
– Size of previous chunk (if prev chunk is free)

• Chunk Size
– Size of entire chunk including overhead

• Data
– Your newly allocated memory / ptr returned by malloc

Heap Chunks

MBE - 04/07/2015 Heap Exploitation 22

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

• Flags
– Because of byte alignment, the lower 3 bits of the chunk size

field would always be zero. Instead they are used for flag bits.
0x01 PREV_INUSE – set when previous chunk is in use
0x02 IS_MMAPPED – set if chunk was obtained with mmap()
0x04 NON_MAIN_ARENA – set if chunk belongs to a thread arena

Heap Chunks

MBE - 04/07/2015 Heap Exploitation 23

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

/levels/lecture/heap/heap_chunks

prints heap chunks fields

MBE - 04/07/2015 Heap Exploitation 24

Pseudo Memory Map

MBE - 04/07/2015 Heap Exploitation 25

Runtime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – Start of .text Segment

0xbfff0000 – Top of stack

Libraries (libc)

0xb7ff0000 – Top of heap

Heap Segment

Heap Allocations

MBE - 04/07/2015 Heap Exploitation 26

Previous Chunk Size

Chunk Size

Data

Runtime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

0x00000000

0xFFFFFFFF

Heap Segment

Heap Allocations

MBE - 04/07/2015 Heap Exploitation 27

Runtime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Heap Allocations

MBE - 04/07/2015 Heap Exploitation 28

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Segment Growth

• Heap grows DOWN
towards higher memory

• Stack grows UP towards
lower memory

MBE - 04/07/2015 Heap Exploitation 29

Heap Segment

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
>

Stack Segment

G
r
o
w
s

t
o
w
a
r
d
s

l
o
w
e
r

m
e
m
o
r
y

<
-
-
-
-
-
-
-
-
-

Segment Growth

MBE - 04/07/2015 Heap Exploitation 30

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
>

Stack Segment

G
r
o
w
s

t
o
w
a
r
d
s

l
o
w
e
r

m
e
m
o
r
y

<
-
-
-
-
-
-
-
-
-

Segment Growth

• Heap grows DOWN
towards higher memory

• Stack grows UP towards
lower memory

• Any ideas why?

MBE - 04/07/2015 Heap Exploitation 31

Heap Segment

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
>

Stack Segment

G
r
o
w
s

t
o
w
a
r
d
s

l
o
w
e
r

m
e
m
o
r
y

<
-
-
-
-
-
-
-
-
-

Segment Growth

• Heap grows DOWN
towards higher memory

• Stack grows UP towards
lower memory

• Any ideas why?
– Probably historical reasons,

gave low memory systems
more room to fluctuate

MBE - 04/07/2015 Heap Exploitation 32

Heap Segment

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
>

Stack Segment

G
r
o
w
s

t
o
w
a
r
d
s

l
o
w
e
r

m
e
m
o
r
y

<
-
-
-
-
-
-
-
-
-

Heap Chunks – In Use

• Heap chunks exist in two states
– in use (malloc’d)

– free’d

MBE - 04/07/2015 Heap Exploitation 33

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

Heap Chunks – Freed

• Forward Pointer
– A pointer to the next freed chunk

• Backwards Pointer
– A pointer to the previous freed chunk

MBE - 04/07/2015 Heap Exploitation 34

Heap Chunk (freed)
Previous Chunk Size

(4 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

FD
(4 bytes)

BK
(4 bytes)

*(buffer+1)

free(buffer);

Flags

/levels/lecture/heap/print_frees

MBE - 04/07/2015 Heap Exploitation 35

/levels/lecture/heap/print_frees

prints heap chunks in their different states

MBE - 04/07/2015 Heap Exploitation 36

From Glibc 2.19 Source (malloc.c)

struct malloc_chunk {

 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */

 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */

 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */

 struct malloc_chunk* bk_nextsize;

};

MBE - 04/07/2015 Heap Exploitation 37

Heap Implementations

• Heaps go way deeper
– Arenas, Binning

– Chunk coalescing

– Fragmentation

• The details regarding these are heavily
implementation reliant, and more relevant
when attempting to exploit heap metadata

MBE - 04/07/2015 Heap Exploitation 38

Heap Implementations

• If you want to read more about the specifics of
the glibc heap implementation...

• https://sploitfun.wordpress.
com/2015/02/10/understanding-glibc-malloc/

• Or read the source!

MBE - 04/07/2015 Heap Exploitation 39

https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/
https://sploitfun.wordpress.com/2015/02/10/understanding-glibc-malloc/

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 40

HEAP EXPLOITATION
Common heap related concepts as used in exploitation

MBE - 04/07/2015 Heap Exploitation 41

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 42

Heap Overflows

• Buffer overflows are basically the same on the
heap as they are on the stack

MBE - 04/07/2015 Heap Exploitation 43

Heap Overflows

• Buffer overflows are basically the same on the
heap as they are on the stack

• Heap cookies/canaries aren’t a thing

MBE - 04/07/2015 Heap Exploitation 44

Heap Overflows

• Buffer overflows are basically the same on the
heap as they are on the stack

• Heap cookies/canaries aren’t a thing
– No ‘return’ addresses to protect

MBE - 04/07/2015 Heap Exploitation 45

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 46

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 47

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

…
heap overflow

Heap Overflows

• In the real world, lots of cool and complex
things like objects/structs end up on the heap

MBE - 04/07/2015 Heap Exploitation 48

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 49

• In the real world, lots of cool and complex
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted

is now viable attack surface in the application

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 50

• In the real world, lots of cool and complex
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted

is now viable attack surface in the application

• It’s common to put function pointers in structs
which generally are malloc’d on the heap

Heap Overflows

• In the real world, lots of cool and complex
things like objects/structs end up on the heap
– Anything that handles the data you just corrupted

is now viable attack surface in the application

• It’s common to put function pointers in structs
which generally are malloc’d on the heap
– Overwrite a function pointer on the heap, and

force a codepath to call that object’s function!

MBE - 04/07/2015 Heap Exploitation 51

Heap Overflows

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

MBE - 04/07/2015 Heap Exploitation 52

Heap Overflows

 coolguy = malloc(sizeof(struct toystr));
 lameguy = malloc(sizeof(struct toystr));

 coolguy->message = &print_cool;
 lameguy->message = &print_meh;

 printf("Input coolguy's name: ");
 fgets(coolguy->buffer, 200, stdin); // oopz...
 coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

 printf("Input lameguy's name: ");
 fgets(lameguy->buffer, 20, stdin);
 lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

 coolguy->message(coolguy->buffer);
 lameguy->message(lameguy->buffer);

MBE - 04/07/2015 Heap Exploitation 53

Heap Overflows

 coolguy = malloc(sizeof(struct toystr));
 lameguy = malloc(sizeof(struct toystr));

 coolguy->message = &print_cool;
 lameguy->message = &print_meh;

 printf("Input coolguy's name: ");
 fgets(coolguy->buffer, 200, stdin); // oopz...
 coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

 printf("Input lameguy's name: ");
 fgets(lameguy->buffer, 20, stdin);
 lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

 coolguy->message(coolguy->buffer);
 lameguy->message(lameguy->buffer);

MBE - 04/07/2015 Heap Exploitation 54

Silly heap overflow

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 55

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

coolguy

Previous Chunk Size

Chunk Size

lameguy

Heap Overflows

MBE - 04/07/2015 Heap Exploitation 56

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

coolguy

Previous Chunk Size

Chunk Size

lameguy

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

...

Heap Overflows

 coolguy = malloc(sizeof(struct toystr));
 lameguy = malloc(sizeof(struct toystr));

 coolguy->message = &print_cool;
 lameguy->message = &print_meh;

 printf("Input coolguy's name: ");
 fgets(coolguy->buffer, 200, stdin); // oopz...
 coolguy->buffer[strcspn(coolguy->buffer, "\n")] = 0;

 printf("Input lameguy's name: ");
 fgets(lameguy->buffer, 20, stdin);
 lameguy->buffer[strcspn(lameguy->buffer, "\n")] = 0;

 coolguy->message(coolguy->buffer);
 lameguy->message(lameguy->buffer);

MBE - 04/07/2015 Heap Exploitation 57

Silly heap overflow

Overwritten
function pointer!

/levels/lecture/heap/heap_smash

toy function pointer overwrite on heap

MBE - 04/07/2015 Heap Exploitation 58

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 59

Course Terminology

• Use After Free
– A class of vulnerability where data on the heap is

freed, but a leftover reference or ‘dangling pointer’
is used by the code as if the data were still valid

– Most popular in Web Browsers, complex programs

– Also known as UAF

MBE - 04/07/2015 Heap Exploitation 60

Use After Free

MBE - 04/07/2015 Heap Exploitation 61

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

poi
nte

r

Use After Free

MBE - 04/07/2015 Heap Exploitation 62

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

poi
nte

r

free()’d

Use After Free

MBE - 04/07/2015 Heap Exploitation 63

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

free()’d

???

free()’d

Use After Free

MBE - 04/07/2015 Heap Exploitation 64

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

dan
gli

ng
poi

nte
r

Course Terminology

• Dangling Pointer
– A left over pointer in your code that references

free’d data and is prone to be re-used

– As the memory it’s pointing at was freed, there’s
no guarantees on what data is there now

– Also known as stale pointer, wild pointer

MBE - 04/07/2015 Heap Exploitation 65

Use After Free

MBE - 04/07/2015 Heap Exploitation 66

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Data

dan
gli

ng
poi

nte
r

Use After Free

MBE - 04/07/2015 Heap Exploitation 67

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

Newly allocated
data

dan
gli

ng
poi

nte
r

malloc()

Use After Free

MBE - 04/07/2015 Heap Exploitation 68

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

dan
gli

ng
poi

nte
r

malloc()
fgets()
...

Use After Free

MBE - 04/07/2015 Heap Exploitation 69

Heap SegmentRuntime Memory

Stack

ELF Executable

.text segment

.data segment

Heap

Libraries (libc)

0x00000000

0xFFFFFFFF

G
r
o
w
s

t
o
w
a
r
d
s

h
i
g
h
e
r

m
e
m
o
r
y

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
>

Previous Chunk Size

Chunk Size

Data

Previous Chunk Size

Chunk Size

AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
AAAAAAAAAAAAAA

Uh
oh…

dan
gli

ng
poi

nte
r

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 70

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 71

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

struct person {

 int favorite_num;

 int age;

 char name[16];

};

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 72

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

struct person {

 int favorite_num;

 int age;

 char name[16];

};

1. free()

assume dangling pointer exists

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 73

1. free() 2. malloc()

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

struct person {

 int favorite_num;

 int age;

 char name[16];

};

assume dangling pointer exists

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 74

1. free() 2. malloc()

3. Set favorite_num = 0x41414141

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

struct person {

 int favorite_num;

 int age;

 char name[16];

};

assume dangling pointer exists

struct toystr {

 void (* message)(char *);

 char buffer[20];

};

Exploiting a Use After Free

• To exploit a UAF, you usually have to allocate
a different type of object over the one you
just freed

MBE - 04/07/2015 Heap Exploitation 75

1. free() 2. malloc()

3. Set favorite_num = 0x41414141
4. Force dangling pointer

to call ‘message()’

struct person {

 int favorite_num;

 int age;

 char name[16];

};

assume dangling pointer exists

/levels/lecture/heap/heap_uaf

your very first use after free!

MBE - 04/07/2015 Heap Exploitation 76

Use After Free

• You actually don’t need any form of memory
corruption to leverage a use after free

• It’s simply an implementation issue
– pointer mismanagement

MBE - 04/07/2015 Heap Exploitation 77

UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

MBE - 04/07/2015 Heap Exploitation 78

IE CVE Statistics

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-
development-and-cyber-attacks.html

MBE - 04/07/2015 Heap Exploitation 79

IE CVE Statistics

http://blog.tempest.com.br/breno-cunha/perspectives-on-exploit-
development-and-cyber-attacks.html

MBE - 04/07/2015 Heap Exploitation 80

UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

• Why are they so well liked?

MBE - 04/07/2015 Heap Exploitation 81

UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

• Why are they so well liked?
– Doesn’t require any memory corruption to use

MBE - 04/07/2015 Heap Exploitation 82

UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

• Why are they so well liked?
– Doesn’t require any memory corruption to use

– Can be used for info leaks

MBE - 04/07/2015 Heap Exploitation 83

UAF in the Wild

• The ‘hot’ vulnerability nowadays, almost every
modern browser exploit leverages a UAF

• Why are they so well liked?
– Doesn’t require any memory corruption to use

– Can be used for info leaks

– Can be used to trigger memory corruption or get
control of EIP

MBE - 04/07/2015 Heap Exploitation 84

Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect
use after free vulnerabilities in complex
applications is very difficult, even in industry

• Why?
–

MBE - 04/07/2015 Heap Exploitation 85

Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect
use after free vulnerabilities in complex
applications is very difficult, even in industry

• Why?
– UAF’s only exist in certain states of execution, so

statically scanning source for them won’t go far

MBE - 04/07/2015 Heap Exploitation 86

Detecting UAF Vulnerabilities

• From the defensive perspective, trying to detect
use after free vulnerabilities in complex
applications is very difficult, even in industry

• Why?
– UAF’s only exist in certain states of execution, so

statically scanning source for them won’t go far
– They’re usually only found through crashes, but

symbolic execution and constraint solvers are helping
find these bugs faster

MBE - 04/07/2015 Heap Exploitation 87

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 88

Course Terminology

• Heap Spraying
– A technique used to increase exploit reliability, by

filling the heap with large chunks of data relevant
to the exploit you’re trying to land

– It can assist with bypassing ASLR

– A heap spray is not a vulnerability or security flaw

MBE - 04/07/2015 Heap Exploitation 89

Heap Spray in Action

MBE - 04/07/2015 Heap Exploitation 90

Runtime Memory

Stack

ELF Executable

Heap

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
 temp = malloc(1000000);
 memcpy(temp, filler, 1000000);
}

Heap Spray in Action

MBE - 04/07/2015 Heap Exploitation 91

Runtime Memory

Stack

ELF Executable

Heap
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
 temp = malloc(1000000);
 memcpy(temp, filler, 1000000);
}

Heap Spray in Action

MBE - 04/07/2015 Heap Exploitation 92

Runtime Memory

Stack

ELF Executable

Heap
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
 temp = malloc(1000000);
 memcpy(temp, filler, 1000000);
}

Heap Spray in Action

MBE - 04/07/2015 Heap Exploitation 93

Runtime Memory

Stack

ELF Executable

Heap
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

0xbbe09e00 – bottom of heap

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
 temp = malloc(1000000);
 memcpy(temp, filler, 1000000);
}

Heap Spray in Action

MBE - 04/07/2015 Heap Exploitation 94

Runtime Memory

Stack

ELF Executable

Heap
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAA

0x00000000 – Start of memory

0xFFFFFFFF – End of memory

0x08048000 – .text Segment in ELF

0xbfff0000 – Top of stack

Libraries (libc)

0x09104000 – Top of heap

0xbbe09e00 – bottom of heap

3
G
B

o
f

A
A
A
A
A
A
A
A
A
’
s

filler = “AAAAAAAAAAAAA...”;
for(i = 0; i < 3000; i++)
{
 temp = malloc(1000000);
 memcpy(temp, filler, 1000000);
}

Heap Spraying in the Wild

• Generally found in browser exploits, rare in CTF
and wargames but still something you should be
aware of

•

MBE - 04/07/2015 Heap Exploitation 95

Heap Spraying in the Wild

• Generally found in browser exploits, rare in CTF
and wargames but still something you should be
aware of

• Usually heap sprays are done in something like
javascript placed on a malicious html page

memory = new Array();
for(i = 0; i < 0x100; i++)
 memory[i] = ROPNOP + ROP;

MBE - 04/07/2015 Heap Exploitation 96

Heap Spraying on 32bit

• On 32bit systems your address space is at
maximum 4GB (232 bytes)

MBE - 04/07/2015 Heap Exploitation 97

Heap Spraying on 32bit

• On 32bit systems your address space is at
maximum 4GB (232 bytes)

• Spray 3GB of A’s onto the heap?
– +75% chance of 0x23456789 being a valid pointer!

MBE - 04/07/2015 Heap Exploitation 98

Heap Spraying on 32bit

• On 32bit systems your address space is at
maximum 4GB (232 bytes)

• Spray 3GB of A’s onto the heap?
– +75% chance of 0x23456789 being a valid pointer!

– Note: It’s unlikely you would ever need to spray
3GB of anything as heap locations can be
somewhat predictable, even with ASLR

MBE - 04/07/2015 Heap Exploitation 99

Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to
bypass ASLR

MBE - 04/07/2015 Heap Exploitation 100

Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to
bypass ASLR
– Good luck spraying anywhere near 264 bytes

MBE - 04/07/2015 Heap Exploitation 101

Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to
bypass ASLR
– Good luck spraying anywhere near 264 bytes

(spoiler: that’s ~18446744 terabytes)

MBE - 04/07/2015 Heap Exploitation 102

Heap Spraying on 64bit

• On 64bit heap spraying can’t really be used to
bypass ASLR
– Good luck spraying anywhere near 264 bytes

(spoiler: that’s ~18446744 terabytes)

• Targeted sprays are still useful in scenarios
that you have a partial heap ptr overwrite or
need to do some heap grooming

MBE - 04/07/2015 Heap Exploitation 103

Heap Spray Payloads

• Pretty common to spray some critical value
for your exploit, fake objects, or ROP chains

MBE - 04/07/2015 Heap Exploitation 104

Lecture Overview

• Heap Overview

• Heap Exploitation
– Heap Overflows

– Use After Free

– Heap Spraying

– Metadata Corruption

MBE - 04/07/2015 Heap Exploitation 105

Metadata Corruption

• Metadata corruption based exploits involve
corrupting heap metadata in such a way that
you can use the allocator’s internal functions
to cause a controlled write of some sort

• Generally involves faking chunks, and abusing
its different coalescing or unlinking processes

MBE - 04/07/2015 Heap Exploitation 106

Heap Chunks – In Use

Heap Metadata

MBE - 04/07/2015 Heap Exploitation 107

Heap Chunk
Previous Chunk Size

(4 bytes)
Data

(8 + (n / 8)*8 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

Flags

Heap Chunks – Freed

MBE - 04/07/2015 Heap Exploitation 108

Heap Chunk (freed)
Previous Chunk Size

(4 bytes)

*buffer

Chunk Size
(4 bytes)

*(buffer-2) *(buffer-1)

FD
(4 bytes)

BK
(4 bytes)

*(buffer+1)

Flags

Also Heap Metadata

Metadata Corruption

• The ‘hello world’ of heap metadata exploits is
an example taught using the heap unlink()
process when freeing a chunk
• This is a dated and long since patched

technique that is well documented

• https://sploitfun.wordpress.
com/2015/02/26/heap-overflow-using-unlink/

MBE - 04/07/2015 Heap Exploitation 109

Metadata Corruption

• Heap metadata corruption based exploits are
usually very involved and require more
intimate knowledge of heap internals

• It’s suggested you read through some of the
following blogs and exploit writeups on your
own time as they’re pretty interesting

MBE - 04/07/2015 Heap Exploitation 110

glibc Metadata Corruption

• https://kitctf.de/writeups/0ctf2015/freenote/

• https://sploitfun.wordpress.com/2015/03/04/heap-overflow-
using-malloc-maleficarum/

• http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-
heap-overflow/

• http://wapiflapi.github.io/2014/11/17/hacklu-oreo-with-
ret2dl-resolve/

• http://phrack.org/issues/66/10.html

• http://dl.packetstormsecurity.
net/papers/attack/MallocMaleficarum.txt

MBE - 04/07/2015 Heap Exploitation 111

http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://wapiflapi.github.io/2014/11/17/hacklu-oreo-with-ret2dl-resolve/
http://wapiflapi.github.io/2014/11/17/hacklu-oreo-with-ret2dl-resolve/
http://wapiflapi.github.io/2014/11/17/hacklu-oreo-with-ret2dl-resolve/
http://phrack.org/issues/66/10.html
http://phrack.org/issues/66/10.html
http://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
http://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt
http://dl.packetstormsecurity.net/papers/attack/MallocMaleficarum.txt

Metadata Corruption

• Metadata exploits are hard to pull of
nowadays as heaps are fairly hardened
(especially on modern Windows OS’s)

• We won’t really be testing on metadata
corruption, but it’s still something you try to
familiarize yourself with

MBE - 04/07/2015 Heap Exploitation 112

