
Understanding Arbitrary File Upload
Vulnerablilities

As the name suggests Arbitrary File Upload Vulnerabilities is a type of vulnerability

which occurs in web applications if the file type uploaded is not checked, filtered or

sanitized.

The main danger of these kind of vulnerabilities is that the attacker can upload a

malicious PHP , ASP etc. script and execute it. The main idea is to get the access to

the server and execute desired code. for example an Attacker who have gained

access to such kind of vulnerability can upload a malicious shell script and further

can control the machine to execute desired commands, which would lead to a full

compromise of the server and the victim’s server gets owned.

In this tutorial we’ll be looking at a a basic example of a Vulnerable Script and How

to exploit it. So let’s get started.

Proof of Concept

For the demonstration of a realistic scenario, I have created a basic vulnerable PHP

script.

Upload.php

Code:

 <?php

 /**

 * @author lionaneesh

 * @copyright 2011

 * @page upload.php

 */

 // If the upload request has been made , Upload the file

 $uploadMessage = "";

 if (isset($_POST['upload']))

 {

 $path = $_FILES['uploadFile']['name'];

 if(move_uploaded_file($_FILES['uploadFile']['tmp_name'],$path) ==

TRUE)

 {

 $uploadMessage = "File Uploaded HERE";

 }

 }

 ?>

 <html>

 <head>

 <title>Welcome to Vulnerable Apps</title>

 </head>

 <body>

 <h1>Arbitary file upload (POC)</h1>

 <hr />

 <p>Hey all this is a sample php script to upload image files , This script

doesn't contains file type checking code which makes it prone to Arbitary

file upload vulnerbility. </p>

 <hr />

 <h2>Upload</h2>

 <hr />

 <table>

 <form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="POST"

enctype="multipart/form-data">

 <tr>

 <td width="100">Upload File </td>

 <td width="380"><input class="cmd" type="file"

name="uploadFile"/></td>

 <td><input style="margin-left:20px;" type="submit" name="upload"

class="own" value="Upload"/></td>

 </tr>

 </form>

 </table>

 <?php

 echo $uploadMessage;

 ?>

 </body>

 </html>

In the above script we simply ask the user to input the file to be uploaded and

without even checking what the file-type is or its extension we upload it.

This is a basic example of how these bugs occur.

How to exploit it

Now to exploit this common bug is yet simpler, the hacker can simply download any

Web Shell-Scripts , Written in PHP , ASP etc.

Some PHP Shells :-

Ani-Shell

[R57 Shell

C99 Shell

https://sourceforge.net/projects/ani-shell/
http://www.google.co.in/search?q=r57+Shell&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a#hl=en&client=firefox-a&hs=1kt&rls=org.mozilla:en-US:official&sa=X&ei=DsUrTp3nDoGvrAe_44GyDQ&ved=0CBYQBSgA&q=r57Shell&spell=1&bav=on.2,or.r_gc.r_pw.&fp=c64a0f896fae2d90&biw=1280&bih=697
http://www.google.co.in/search?q=r57+Shell&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a#hl=en&client=firefox-a&hs=1kt&rls=org.mozilla:en-US:official&sa=X&ei=DsUrTp3nDoGvrAe_44GyDQ&ved=0CBYQBSgA&q=c99Shell&spell=1&bav=on.2,or.r_gc.r_pw.&fp=c64a0f896fae2d90&biw=1280&bih=697

Note: These shells are not intended to be used as this way, author is not responsible

for the way in which the user uses it.

Now to exploit this vulnerability the hacker have to carry out some steps :-

Upload the Shell

Go to the link

Gain Access

Source: http://www.go4expert.com/articles/understanding-arbitrary-file-

upload-t26351/

