Rise of the Machines:

Direct Memory Attack the KERNEL

FFFFFFFF

Agenda

PWN LINUX, WINDOWS and OS X kernels by DMA code injection
DUMP memory at >150MB/s

PULL and PUSH files

EXECUTE code

OPEN SOURCE project

USING a $100 PCle-card

About Me: UIf Frisk

Penetration tester

Online banking security

Employed in the financial sector — Stockholm, Sweden
MSc, Computer Science and Engineering

Special interest in Low-Level Windows programming and DMA

Learning by doing project — x64 asm and OS kernels

Disclaimer

This talk is given by me as an individual
My employer is not involved in any way

PClLeech

PCIlLeech == PLX USB3380 DEV BOARD + FIRMWARE + SOFTWARE

PCle =2

(1T LU

$78
No Drivers Required
>150MB/s DMA
32-bit (<4GB) DMA only

NSA Playset SLOTSCREAMER

PRESENTED by Joe Fitzpatrick, Miles Crabill @ DEF CON 2yrs ago

PClLeech compared to SLOTSCREAMER
SAME HARDWARE

DIFFERENT FIRMWARE and SOFTWARE
FASTER 3MB/s = >150MB/s

KERNEL IMPLANTS

T

http://www.nsaplayset.org/
http://www.nsaplayset.org/

PCIl Express

* PCle is a high-speed serial expansion “bus”
* Packet based, point-to-point communication

* From 1 to 16 serial lanes — x1, x4, x8, x16
* Hot pluggable

* Different form factors and variations
* PCle
* Mini — PCle (mPCle)
* Express Card
* Thunderbolt

* DMA capable, circumventing the CPU

PHYSICAL CPL

Core 0 Core 1 Core N

t t t

:

Hosthridee

PClz Endpoint +-

F |

PCle Endpoint +""

I PCle ROOT | | memory

COMPLEX || Controtir T + MEMORY h
™ I

(4 J \."} THE umnr: rom. o

wdum- @)L I Ioiuf j.‘.f:] ..1] Nl

S iﬂr-n- 3 _COMLunlunt el e) e - e

PCle Endpoint
PCle Bridge
PCle Endpoint
g - (8 L

(—PCIe x1

B T 0 O0TH 58

""" rmmmmmﬂﬂﬂ

AR e Ie PC'
n 30 ((FC 1TUF Componenlts 5§

“fr*m.rp it
WA)

.\i

?- S,

,_

DMA - Direct Memory Access

Code executes in virtual address

S pa ce Physical Address Physical Address

PCIe DMA Works With physical Device JAddress Virtual JAddress Device [Address Virtual JAddress
(device) addresses

PCle devices can access memory

Firmware

$ xxd firmware. cﬂeech bin

00000000 {2
00000010: [c&
00000020: (0400 e010 8806 0400 2110

* 46 bytes - This is the entire firmware !!! ,ﬂ
: : rat“” ’ﬂ? \o /

= HEADER, 2a00 = LENGTH (little endian) g
+ 2310 4970 0000 = USBCTL register
» 0000 e414 bc16 = PCI VENDOR_ID and PRODUCT _ID (Broadcom Sb-card)
+ €810 ... 0400 = DMA ENDPOINTS — GPEPO (WRITE), GPEP1-3 (READ)
» 2110 d118 0190 = USB VENDOR_ID and PRODUCT ID (1801, 9001 = Google Glass)

Into the KERNELS

Most computers have more than 4GB memory!
Kernel Module (KMD) can access all memory
KMD can execute code

Search for code signature using DMA and patch code
Hijack execution flow of kernel code

PCle DMA works with physical addresses
Kernel code run in virtual address space

0S X

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

The Stages 1-2-3

STAGE #1 STAGE #2

(hooked function) Vo, (free space in kernel)
v
RESTORE STAGE #1

CALL stage_2_offset

.

<

LOCATE KERNEL

<

ALLOCATE 0x2000

<

WRITE STAGE #3 STUB

<

]
L J
]
[|
[|
|
|
N
|
]
]
N
N
|
|
]
N
N
|
|
N
N
|

CREATE THREAD

\/

Write Physical Address & RET

N
|
L
N
|
N

STAGE #3

\

LOOP: wait for DMA write

\

Set up DMA buffer 4AMB/16MB

\

LOOP: wait for command
MEM READ
MEM WRITE
EXEC
EXIT

Linux Kernel

Located in low memory
Location dependant on KASLR slide

#1 search for vfs_read (“random hook function”)
#2 search for kallsyms_lookup _name
#3 write stage 2

#4 write stage 1
#5 wait for stage 2 to return with physical address of stage 3

DEMO !

Linux DEMO

GENERIC kernel implant
PULL and PUSH files
DUMP memory

Q:\>pcileech dump -kmd linux x64

KMD: Code inserted into the kernel - Waiting to receive execution.
KMD: Execution received - continuing ...
Current Action: Dumping Memory

Access Mode: KMD (kernel module assisted DMA)
Progress: 8678 / 8678 (100%)
A Speed: 166 MB/s
B et Address: 0Xx000000021E000000
Ve ¥y e Sy
R B Pages read: 2221568 / 2221568 (100%)
*‘“%@ﬁi’ Pages fail: 0 (0%)

Memory Dump: Successful.

Q:\>

Windows 10

Kernel is located at top of memory
Problem if more than 3.5 GB RAM in target

Kernel executable not directly reachable ...
PAGE TABLE is loaded below 4GB ©

Windows 10

Intel® 64 and IA-32 Architectures

. Software Developer’s Manual
* CPU CR3 register Volume 3A:

point to physical address (PA) of PML4 System Programming Guide, Part 1
* PMLA4E point to PA of PDPT
* PDPTE point to PA of PD
* PDE point to PA of PT
* PT contains PTEs (Page Table Entries)
* PML4, PDPT, PD, PT all < 4GB !l ©

— PML4E

s

CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Windows 10

e Kernel address space starts at Virtual Address (VA) OxFFFFF80000000000
e KASLR = no fixed module VA between reboots
* PTE & 0x8000000000000007 == "page signature”

* Driver always have same collection of “page signatures” - “driver signature”

Table 4-19. Format of an IA-32e Page-Table Entry that Maps a 4-KByte Page
e Search for
Bit Contents

“driver signature” [EEIE

:
e Rewrite PTE

1 (R/W) Read/write; if O, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

p hyS I Ca I a d d re S S 2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section

- mm.‘m MM primv-—
I (M-1)12 Phy5|ca| address of the 4- KByte page referenced by this entry

Windows 10 DEMO

PAGE TABLE rewrite to insert kernel module

EXECUTE code
DUMP memory
SPAWN system shell
UNLOCK

Q:\>pcileech kmdload -kmd winl@x64_ntfs_20160329 -pt

KMD: Searching for PTE location

KMD: Page Table hijacked - Waiting to receive execution.
KMD: Execution received - continuing ...

KMD: Successfully loaded at address: ox7fffeeee

Q:\>pcileech wx64_pscmd -kmd 9x7fffe000o

EXEC: SUCCESS! shellcode should now execute in kernell
Please see below for results.

PROCESS CREATOR - AUTOMATICALLY SPAWN CMD.EXE ON TARGET!

Automatically spawn a CMD.EXE on the target system. This utility
only work if the target system is locked and the login screen is
visible. If it takes time waiting - then please touch any key on
the target system. If the utility fails multiple times, please
try wx64 pscreate instead.

===== DETAILED INFORMATION AFTER PROCESS CREATION ATTEMPT ======
NTSTATUS ! BxB6000000

ADDITIONAL INFO : ©xeeoe

Microsoft Windows [Version 18.0.10586]
(c) 2015 Microsoft Corporation. All rights reserved.

C: \WINDOWS\system32>whoami
whoami

nt authority\system

C:\WINDOWS\system32>

Windows 10

* Anti-DMA security features NOT ENABLED by default

« SECURE if virtualization-based security (credential/device guard)
is enabled a

Turn On Virtualization Based Security

t:: Turn On Virtualization Based Security

Previous Setting

.. ‘ e
Not Configured <ORUTICAL

* Users may still mess around with UEFI —
settings to circumvent on some Dissbled
computers/configurations

< orted . a o "
SUpported on: | At jeast Windows 10 Server, Windows 10

Options:

Select Platform Security Level: |Secure Boot and DMA Protection v

[v] Enable Virtualization Based Protection of Code Integrity

Credential Guard Configuration: | Enabled without lock

O0S X Kernel OS X

Located in low memory
Location dependant on KASLR slide

Enforces KEXT signing
System Integrity Protection

Thunderbolt and PCle is protected with VT-d (IOMMU) /

2 -
xS TR
aw N 25 Tl

DMA does not work! —what to do?

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OS X - VT-d bypass

Apple has the answer!
Just disable VT-d ©

@ Debugging Thunderbol X -+

- O @ Apple Inc. [US] apple.com

Mac Developer Library & Developer Q

Thunderbolt Device Driver Programming Guide
v Table of Contents

Disabling VT-d

When debugging PCle device drivers, it is often useful to temporarily disable VT-d

Introduction

» Thunderbolt Technology
Overview so that I/O addresses are the same as the corresponding physical addresses. To

» Working with Thunderbolt disable VT-d, add the following to your kernel boot args:

Technology

» Handling and Routing Interrupts

https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OSX

0S X

#1 search for Mach-O kernel header

#2 search for memcpy (“random hook function”)

#3 write stage 2

#4 write stage 1

#5 wait for stage 2 to return with physical address of stage 3

DEMO !!!

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OS X DEMO

VT-d BYPASS
DUMP memory
UNLOCK

Q:\>pcileech kmdload -kmd osx_x64

7

;KMD: Code inserted into the kernel - Waiting to receive execution.
KMD: Execution received - continuing ...

KMD: Successfully loaded at address: 0x1e6a9000

Q:\>pcileech -kmd ©x1e6a9000 ax64 unlock -0 1

EXEC: SUCCESS! shellcode should now execute in kernel!
§Please see below for results.
APPLE 0OS X UNLOCKER - REMOVE PASSWORD REQUIREMENT!

REQUIRED OPTIONS:
-0 : Set to one (1) in order to unlock.
Example: '-0 1'.
===== RESULT AFTER UNLOCK ATTEMPT (©=SUCCESS) ===================
STATUS . ©x00000000

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

Mitigations
Hardware without DMA ports

BIOS DMA port lock down and TPM change detection
Firmware/BIOS password
Pre-boot authentication

IOMMU / VT-d
Windows 10 virtualization-based security

PClLeech: Use Cases

Awareness — full disk encryption is not invincible ...
Excellent for forensics and malware analysis
Load unsigned drivers into the kernel
Pentesting

Law enforcement

PLEASE DO NOT DO EVIL with this tool

PClLeech

X64 target operating systems
Runs on 64-bit Windows 7/10

Read up to 4GB natively, all memory if assisted by kernel module
Execute code

Kernel modules for Linux, Windows, OS X

wxbd_pageinfo.asm + X

PClLeech

; Fetch control registers and store in dataOut.
E ; rcx = 1st parameter (PKMDDATA)
. . . 24 ; rdx = 2nd parameter (ptr to dataln)
C and ASM in Visual Studio 5 3 r8 = 3rd paraneter (ptr to data0ut)
26 ; on exit:
; datalut[e]
; dataOut[1]
+ datalut[2
Modular design S
. 31 main PROC
Create own signatures 33 MOV rax,
34 MOV [r8-8eh], r
] 35 MOV rax,
Create own kernel implants Bl oy e

MOV rax, cr3

MOV [r8+1@h], rax
MW rax, crd
MOV [r8+18h], rax
RET

main EMDP

EMD

Minimal sample kernel implant

Key Takeaways

INEXPENSIVE universal DMA attacking is here

PHYSICAL ACCESS is still an issue
- be aware of potential EVIL MAID attacks

FULL DISK ENCRYPTION is not invincible

References

* PClLeech
 https://github.com/ufrisk/pcileech

* SLOTSCREAMER
 https://github.com/NSAPlayset/SLOTSCREAMER
* http://www.nsaplayset.org/slotscreamer

* Inception
* https://github.com/carmaa/inception

* PLX Technologies USB3380 Data Book

Questions and Answers?

Current Action: Dumping Memory

Access Mode: KMD (kernel module assisted DMA)
Progress: 8678 / 8678 (100%)

Speed: 154 MB/sS

Address: 0X000000021E000000

Pages read: 2221568 / 2221568 (100%)

Pages fail: 0 (0%)

Memory Dump: Successful.

