
Direct Memory Attack the KERNEL
by: ULF FRISK

Rise of the Machines:

Agenda

PWN LINUX, WINDOWS and OS X kernels by DMA code injection
DUMP memory at >150MB/s
PULL and PUSH files
EXECUTE code
OPEN SOURCE project

USING a $100 PCIe-card

About Me: Ulf Frisk

Penetration tester
Online banking security
Employed in the financial sector – Stockholm, Sweden
MSc, Computer Science and Engineering

Special interest in Low-Level Windows programming and DMA

Learning by doing project – x64 asm and OS kernels

Disclaimer

This talk is given by me as an individual
My employer is not involved in any way

PCILeech

PCILeech == PLX USB3380 DEV BOARD + FIRMWARE + SOFTWARE

PCIeÆ Å USB3

$78
No Drivers Required

>150MB/s DMA
32-bit (<4GB) DMA only

SLOTSCREAMER

PRESENTED by Joe Fitzpatrick, Miles Crabill @ DEF CON 2yrs ago

PCILeech compared to SLOTSCREAMER
SAME HARDWARE
DIFFERENT FIRMWARE and SOFTWARE
FASTER 3MB/s Æ >150MB/s
KERNEL IMPLANTS

http://www.nsaplayset.org/
http://www.nsaplayset.org/

PCI Express
• PCIe is a high-speed serial expansion ”bus”
• Packet based, point-to-point communication
• From 1 to 16 serial lanes – x1, x4, x8, x16
• Hot pluggable
• Different form factors and variations

• PCIe
• Mini – PCIe (mPCIe)
• Express Card
• Thunderbolt

• DMA capable, circumventing the CPU

DMA – Direct Memory Access

Code executes in virtual address
space

PCIe DMA works with physical
(device) addresses

PCIe devices can access memory
directly if the IOMMU is not used

VT-d enabledNo VT-d (“normal”)

Firmware

• 46 bytes - This is the entire firmware !!!
• 5a00 = HEADER, 2a00 = LENGTH (little endian)
• 2310 4970 0000 = USBCTL register
• 0000 e414 bc16 = PCI VENDOR_ID and PRODUCT_ID (Broadcom SD-card)

• C810 … 0400 = DMA ENDPOINTS – GPEP0 (WRITE), GPEP1-3 (READ)
• 2110 d118 0190 = USB VENDOR_ID and PRODUCT_ID (18D1, 9001 = Google Glass)

Into the KERNELS
Most computers have more than 4GB memory!
Kernel Module (KMD) can access all memory
KMD can execute code

Search for code signature using DMA and patch code
Hijack execution flow of kernel code

PCIe DMA works with physical addresses
Kernel code run in virtual address space

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

The Stages 1-2-3

CALL stage_2_offset
E8 ?? ?? ?? ??

STAGE #1
(hooked function)

STAGE #2
(free space in kernel)

RESTORE STAGE #1

CMPXCHG (RET)

LOCATE KERNEL

ALLOCATE 0x2000

Write Physical Address & RET

WRITE STAGE #3 STUB

STAGE #3

LOOP: wait for DMA write

Set up DMA buffer 4MB/16MB

LOOP: wait for command
MEM READ
MEM WRITE
EXEC
EXIT

CREATE THREAD

Linux Kernel
Located in low memory
Location dependant on KASLR slide

#1 search for vfs_read (”random hook function”)
#2 search for kallsyms_lookup_name
#3 write stage 2
#4 write stage 1
#5 wait for stage 2 to return with physical address of stage 3

DEMO !!!

Linux DEMO

GENERIC kernel implant
PULL and PUSH files
DUMP memory

Windows 10

Kernel is located at top of memory
Problem if more than 3.5 GB RAM in target
Kernel executable not directly reachable …
PAGE TABLE is loaded below 4GB -

Windows 10

• CPU CR3 register
point to physical address (PA) of PML4

• PML4E point to PA of PDPT
• PDPTE point to PA of PD
• PDE point to PA of PT
• PT contains PTEs (Page Table Entries)
• PML4, PDPT, PD, PT all < 4GB !!! -

Windows 10
• Kernel address space starts at Virtual Address (VA) 0xFFFFF80000000000
• KASLR Æ no fixed module VA between reboots
• PTE & 0x8000000000000007 == ”page signature”
• Driver always have same collection of ”page signatures” Æ ”driver signature”
• Search for

”driver signature”
• Rewrite PTE

physical address

Windows 10 DEMO

PAGE TABLE rewrite to insert kernel module
EXECUTE code
DUMP memory
SPAWN system shell
UNLOCK

Windows 10

• Anti-DMA security features NOT ENABLED by default

• SECURE if virtualization-based security (credential/device guard)
is enabled

• Users may still mess around with UEFI
settings to circumvent on some
computers/configurations

OS X Kernel

Located in low memory
Location dependant on KASLR slide

Enforces KEXT signing
System Integrity Protection
Thunderbolt and PCIe is protected with VT-d (IOMMU)

DMA does not work! – what to do?

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OS X – VT-d bypass

Apple has the answer!
Just disable VT-d -

https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OS X

#1 search for Mach-O kernel header
#2 search for memcpy (”random hook function”)
#3 write stage 2
#4 write stage 1
#5 wait for stage 2 to return with physical address of stage 3

DEMO !!!

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

OS X DEMO

VT-d BYPASS
DUMP memory
UNLOCK

https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg
https://commons.wikimedia.org/wiki/File:The_OS_X_Logo.svg

Mitigations

Hardware without DMA ports

BIOS DMA port lock down and TPM change detection
Firmware/BIOS password
Pre-boot authentication

IOMMU / VT-d
Windows 10 virtualization-based security

PCILeech: Use Cases

Awareness – full disk encryption is not invincible …
Excellent for forensics and malware analysis
Load unsigned drivers into the kernel
Pentesting
Law enforcement

PLEASE DO NOT DO EVIL with this tool

PCILeech

x64 target operating systems
Runs on 64-bit Windows 7/10

Read up to 4GB natively, all memory if assisted by kernel module
Execute code

Kernel modules for Linux, Windows, OS X

PCILeech

C and ASM in Visual Studio

Modular design
Create own signatures
Create own kernel implants

Minimal sample kernel implant

Key Takeaways

INEXPENSIVE universal DMA attacking is here

PHYSICAL ACCESS is still an issue
- be aware of potential EVIL MAID attacks

FULL DISK ENCRYPTION is not invincible

References

• PCILeech
• https://github.com/ufrisk/pcileech

• SLOTSCREAMER
• https://github.com/NSAPlayset/SLOTSCREAMER
• http://www.nsaplayset.org/slotscreamer

• Inception
• https://github.com/carmaa/inception

• PLX Technologies USB3380 Data Book

Questions and Answers?

