
Server-side approaches to
clickjacking detection

Brad Hill, PayPal

WebAppSec WG F2F, 3 April 2012

Drawbacks of X-Frame-Options

• IFRAMES desirable for many key clickjacking
attack cases. (Like, Pay, Follow, +1) Users
want in-context information without
disclosure to embedding origin

• Allow-From doesn’t help – adversary is
potentially the same as the “legitimate” origin

• Also doesn’t stop pop-under-and-close attacks

Drawbacks of client-enforced
screenshot approach

• Incomplete coverage of attack scenarios
– Fake mouse cursor, attention stealing attacks

• False positives

• User-interaction to resolve false positives

• Low deployment rates

Server side approaches?

• What can we do today without user-agent
support?

• Can we profitably combine these techniques
with user-agent mechanisms?

Adaptive UI Randomization

• Clickjacking attacks are still subject to the read
restrictions of the same-origin policy

• Attack setup relies on a consistent layout of
the victim page

• What if we randomize the location of the
button?

Naïve Randomization

• Attacker can send multiple clicks to possible
locations

• Attacker can profit even at a small success rate

• Few interfaces allow randomization among a
large number of locations without creating a
very poor user experience

Refining Randomization

• Among a set of possible locations for a
randomized placement:

– Record missed clicks (to locations where the
button is not)

– Record just the first click, hit or miss

– Group first-click statistics by the target of the
action (“bucketize”)

“Bucketizing”

• Associate possible clickjacking targets with a
beneficiary or beneficiaries

• Perform back-end fraud analysis based on
these buckets

• Examples:

– “pay” -> payee

– “like, +1, etc.” -> social graph node

Look at first-click miss rates,
 bucket-by-bucket

• A given interface will have a discoverable
natural rate of missed clicks, but it should be
small

• If clickjacking attempts are made on that
interface, miss rate will be (1 - 1/N) where N is
the number of possible randomized
placements
 (also works for pop-under-and-close attacks)

Campaign detection

• Can’t distinguish individual clickjacking
attempts

• But a campaign of clickjacking will quickly
show up – the missed click rate for that bucket
will rise above the natural missed click rate

Sensitivity of Detection

100(M + 2σ) = M(100 – x) + (x * (1 – 1/N))

Where:

σ = standard deviation for natural missed click
distribution

M = natural miss rate

N = number of randomized locations

x = clickjacking attempts per 100 clicks

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9

C
lic

kj
ac

ki
n

g
 a

tt
em

p
ts

 p
er

 1
00

 c
lic

ks

N (number of randomized locations)

Sensitivity of Clickjacking Detection
at two standard deviations from natural missed click rate

M=3%, σ=1% M=25%, σ=2%

Pretty good…

• And it’s better than it looks.

• As N increases, the chances of the success of
each attempt goes down.

• Increase in natural conversion rate possible
before detection is even lower:

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

P
er

ce
n

ta
g

e
in

cr
ea

se
 in

 c
o

n
ve

rs
io

n

N (number of randomized locations)

Conversion Rate Improvement
with clickjacking before detection at 2σ

M=3%, σ=1% M=25%, σ=2%

Results

• Randomizing among as few as 3 locations, if
the natural missed click rate is low, we can put
the attacker at risk of detection if they
attempt to increase their natural conversion
rate as little as 1% through clickjacking.

Adaptive Response

• What if rivals mount clickjacking campaigns
against their competition to cause a DoS

• Instead of turning off service, can trigger a switch
to a functional, if less optimal, interface that is
more clickjacking resistant
– Popup in dedicated context with X-Frame-Options
– Add a CAPTCHA or re-verify credentials
– These responses can be completely automated, and

combined with manual investigation according to
standard anti-fraud practices

Weaknesses

• Doesn’t work for complex UIs with lots of buttons
(webmail, etc) or no room for randomization
(“NASCAR” interfaces)

• Doesn’t work where bucketization isn’t possible
(privacy attacks like Flash camera settings)

• Needs sophisticated back-end analysis and fraud
response processes

• Can’t stop targeted or small-scale attacks
• Attacker can try to pollute the natural missed

click rate of their own or a large population of
buckets at low cost

Attacks: The Sleepy Frog

+

=

Combining with Client-Side Screenshot
Approaches

• “Sleepy Frog” attack easily detected by
screenshot approaches

• UI Randomization effective against attention
stealing and phantom cursor attacks

Combining with Client-Side Screenshot
Approaches

• Add a feedback loop to apply statistical
approach to client-side enforcement

• Resource advertises a feedback URI for
suspected clickjacking

• Front-end screenshot technology allows clicks
to go through, but reports to the target server
that it suspects a clickjacking attack

Advantages:

• False positive problem disappears

– Each site can find its own rate of false positives and
use back-end fraud response processes to deal with
suspected clickjacking

– No need to pop-up a confusing dialog to the user

• Small install base can help protect everyone

– Suspected clickjacking from a small install base of
user-agent support can add good evidence to buckets

– Detecting and disabling attackers protects even users
that can’t detect or prevent the attacks

Conclusions

• Randomization isn’t for everyone
– High cost, only usable in certain UIs

– But the primary attack targets are in its “sweet
spot”

• Combines well with client-side techniques

• A reporting loop + back-end fraud analysis
approach can remove some weaknesses of
heuristic client-side techniques, even if no
randomization is applied

