
Cracking Veneta’s Insipid Crackme v.2 
by bLaCk-eye 

www.cryptocracking.cjb.net  
 

 
Intro: 
 Welcome to this new tutorial from me. Today’s target is of course another crypto 
crackme published on www.crackmes.de some days ago. As the author says, it’s directed 
to newbies in cryptography. 
 Have a nice reading… 
 
Info: 
 
Crackme……………Insipid Crackme v.2 
Author……………...Veneta/MBE 
Url………………….www.crackmes.de
Type………………..crypto keygenme 
Protection…………..sha256, e2, CRT-256 
Difficulty…………...2/10 
 
Tools: 

- IDA 
- OllyDbg 
- MSVC 6.0 for keygen 
- FSG Unpacker 
- Crypto Searcher by x3chun (can get it gere: www.cryptocracking.cjb.net ) 

 
Essay: 
 
 Ok, load the target in PEiD and we all see it’s compressed using fsg 2.0. Grab an 
unpacker for it, or anything to obtain an unpacked version of the crackme. 
 As soon as we have an unpacked version, we can use the crypto searcher to check 
for any known crypto algorithm signature. The results are quite satisfactory: 

- SHA 256 
- E2 by Nippon Telegraph 
- Biglib 

 
The above information will be very useful when coding the keygen. 

 Now load it in IDA and wait for the disassembling and analysis to end. 
 Once Ida is finished you can use the information gathered by the crypto searcher. 
From the fact that the crackme is coded in assembly we figure that the crypto algo might 
be written by Witeg ( www.witeg.cad.pl ), as he is the only one who has implemented the 
algo’s in assembly. Instead of downloading the sources from Witeg’s site and then trying 
to figure out what procedure represents what we go www.cryptosig.prv.pl , a site 
maintained by Cauchy. The site is about a crypto signature to use with IDA (.sig) to 

http://www.cryptocracking.cjb.net/
http://www.crackmes.de/
http://www.crackmes.de/
http://www.cryptocracking.cjb.net/
http://www.witeg.cad.pl/
http://www.cryptosig.prv.pl/


identify the crypto routines. What did Cauchy do actually: he has taken all of Witeg’s 
public sources (yes there are some unreleased ones, which I got my hands on) and 
compiled then and from the result of the compile he built a signature file for IDA. (for 
more details on signature files, what they represent and how to use them, go to Ida’s site). 
This signature file will recognize itself and automatically any of the Witeg’s routines 
used in the crackme. 
 To use the signature file, download it from Cauchy’s site, extract it into Ida\Sig\ 
directory and in ida press SHIFT+F5, then INS and from the list of available signature 
file select “Crypto by Cauchy//HTB Team”. 
 Ida will apply it and you’ll see it has found 6 functions. 
 Now let’s ge finally to the core of the protection (many of the variables have been 
renamed by myself to improve the quality of the disassembly): 
- crackme get’s the name of the user and checks if it’s greater then zero but smaller then 
32 in leght: 
 
.RIF1:0040454A                 push    100h            ; nMaxCount 
.RIF1:0040454F                 push    offset szname   ; lpString 
.RIF1:00404554                 push    3ECh            ; nIDDlgItem 
.RIF1:00404559                 push    ds:hDlg         ; hDlg 
.RIF1:0040455F                 call    GetDlgItemTextA 
.RIF1:00404564                 test    eax, eax 
.RIF1:00404566                 jz      loc_404715 
.RIF1:0040456C                 cmp     eax, 20h 
.RIF1:0040456F                 ja      loc_404715 
 

- the crackme hashes the name with Sha256 to get a hash of 256bits 
 
.RIF1:00404575                 push    offset szname 
.RIF1:0040457A                 push    eax 
.RIF1:0040457B                 push    offset name_sha1 ; address of hash 
.RIF1:00404580                 call    _SHA256@0       ; SHA256() 
 

- the crackme then encrypts the hash using E2 and the following 16 bytes key: 
“.:exile:.”,0x0,”A0F792”. The hash is encrypted in 128 bit blocks (that’s the size of the 
blocks used by E2 cipher, check it’s specifications). 
 
.RIF1:00404585                 push    offset a_Exile_ ; ".:exile:." 
.RIF1:0040458A                 call    _E2_SetKey@4    ; E2_SetKey(x) 
.RIF1:0040458F                 push    offset name_sha1 
.RIF1:00404594                 push    offset e2_encrypted_name_hash_1 
.RIF1:00404599                 call    _E2_Encrypt@8   ; E2_Encrypt(x,x) 
.RIF1:0040459E                 push    offset name_sha_2 
.RIF1:004045A3                 push    offset e2_encrypted_name_hash_2 
.RIF1:004045A8                 call    _E2_Encrypt@8   ; E2_Encrypt(x,x) 
.RIF1:004045AD                 call    _E2_Clear@0     ; E2_Clear() 
 

- the crackme gets the serial number and checks if it’s length is greater then zero: 
 
.RIF1:004045B2                 push    100h            ; nMaxCount 
.RIF1:004045B7                 push    offset szserial ; lpString 
.RIF1:004045BC                 push    3EFh            ; nIDDlgItem 
.RIF1:004045C1                 push    ds:hDlg         ; hDlg 
.RIF1:004045C7                 call    GetDlgItemTextA 
.RIF1:004045CC                 test    eax, eax 
.RIF1:004045CE                 jz      loc_404715   ; bad jump  
 

- the crackme then creates 8 bignums, used later: 
 



.RIF1:004045D4                 push    0 

.RIF1:004045D6                 call    createbig       ; create a bignumber 

.RIF1:004045DB                 mov     ds:prime1, eax 

.RIF1:004045E0                 push    0 

.RIF1:004045E2                 call    createbig       ; create a bignumber 

.RIF1:004045E7                 mov     ds:prime2, eax 

.RIF1:004045EC                 push    0 

.RIF1:004045EE                 call    createbig       ; create a bignumber 

.RIF1:004045F3                 mov     ds:big_serial, eax 

.RIF1:004045F8                 push    0 

.RIF1:004045FA                 call    createbig       ; create a bignumber 

.RIF1:004045FF                 mov     ds:big_sha256, eax 

.RIF1:00404604                 push    0 

.RIF1:00404606                 call    createbig       ; create a bignumber 

.RIF1:0040460B                 mov     ds:big_encryted_sha, eax 

.RIF1:00404610                 push    0 

.RIF1:00404612                 call    createbig       ; create a bignumber 

.RIF1:00404617                 mov     ds:big_rem1, eax 

.RIF1:0040461C                 push    0 

.RIF1:0040461E                 call    createbig       ; create a bignumber 

.RIF1:00404623                 mov     ds:big_rem2, eax 

.RIF1:00404628                 push    0 

.RIF1:0040462A                 call    createbig       ; create a bignumber 

.RIF1:0040462F                 mov     ds:dword_407CA4, eax 
 

- some of the bignum are getting initialized: 
 
.RIF1:00404634                 push    ds:big_sha256 
.RIF1:0040463A                 push    20h 
.RIF1:0040463C                 push    offset name_sha1 
.RIF1:00404641                 call    big_readb256    ; read bignum from a base 
256 string 
.RIF1:00404646                 push    ds:big_encryted_sha 
.RIF1:0040464C                 push    20h 
.RIF1:0040464E                 push    offset e2_encrypted_name_hash_1 
.RIF1:00404653                 call    big_readb256    ; read bignum from a base 
256 string 
.RIF1:00404658                 push    ds:big_serial 
.RIF1:0040465E                 push    offset szserial 
.RIF1:00404663                 call    big_readb16     ; read bignum from a base 
16 ascii string 
.RIF1:00404668                 push    ds:prime1 
.RIF1:0040466E                 push    offset aA0f79281a9ef48 ; 
"A0F79281A9EF48CDDE52D8E4AC862EC8B984CD1"... 
.RIF1:00404673                 call    big_readb16 
.RIF1:00404678                 push    ds:prime2       ; read bignum from a base 
16 ascii string 
.RIF1:0040467E                 push    offset aD3734933ad4e43 ; 
"D3734933AD4E43D986390D1E841C2430AB14C15"... 
.RIF1:00404683                 call    big_readb16     ; read bignum from a base 
16 ascii string 

 
- now that the binums are initilised the crackme uses them to test the serial number: 
 
.RIF1:00404688                 push    ds:big_rem1 
.RIF1:0040468E                 push    ds:dword_407CA4 
.RIF1:00404694                 push    ds:prime1 
.RIF1:0040469A                 push    ds:big_serial 
.RIF1:004046A0                 call    big_div 
.RIF1:004046A5                 push    ds:big_rem2 
.RIF1:004046AB                 push    ds:dword_407CA4 
.RIF1:004046B1                 push    ds:prime2 
.RIF1:004046B7                 push    ds:big_serial 
.RIF1:004046BD                 call    big_div 
.RIF1:004046C2                 push    ds:big_rem1 
.RIF1:004046C8                 push    ds:big_sha256 
.RIF1:004046CE                 call    big_compare 
.RIF1:004046D3                 push    eax 
.RIF1:004046D4                 push    ds:big_rem2 



.RIF1:004046DA                 push    ds:big_encryted_sha 

.RIF1:004046E0                 call    big_compare 

.RIF1:004046E5                 pop     ebx 

.RIF1:004046E6                 add     eax, ebx 

.RIF1:004046E8                 test    eax, eax 

.RIF1:004046EA                 jnz     short loc_404715 
 

 So what is exactly do in the above code? 
 Well it calculates: 
 rem_1 = big_serial % prime1 
 rem_2 = big_serial % prime2, “%” represents modulo operation (gives the 
reminder) 
 If: 

rem_1 == sha256 (name) 
and 
rem_2 == encrypted_sha256 (name) 
 
Then the serial number is valid, else it’s not valid. 
So how do we generate a valid serial: 
- take name 
- hash it using E2 and the already defined 128 bit key (look up) 
- having name’s sha256 and encrypted sha256 find a number S so that 

S % prime1 == sha256 
S % prime2 == encrypted_sha256 
Because prime1 and prime2 have the greatest reminder 1 (duh, they are 
primes) this problem has a solution always. This is known as the Chinese 
Reminder Theorem. To find S we use Miracl bignums functions. 

- Print S as a bignum in base16 as serial 
 
 
One problem still ramins: if sha256 => prime1 or encrypted_sha256 => prime2 then we 
have no valid serial, as you all might know, the reminder is always smaller then the 
divisor. 
Because of this I found out that many names don’t have a corresponding serial number: 
e.g.: bLaCk, bLaCk-eye, Veneta… 

 
Final words: 
 It was a very easy crypto crackme, just for newbies. 
 Check the source of the keygen. 
Greets: 
 Kanal23, TKM! , and RET reversing groups 
 
 Best wishes and have a nice new year 

bLaCk-eye 
mycherynos@yahoo.com 

 


	Cracking Veneta’s Insipid Crackme v.2

