
ARM White Paper January 2002

Page 1 of 15 © ARM 2002

The ARM Architecture Version 6 (ARMv6)

David Brash

Architecture Program Manager, ARM Ltd.

A microprocessor’s architecture defines the instruction set and programmer’s model for
any processor that will be based on that architecture. Different processor implementations
may be built to comply with the architecture. Each processor may vary in performance
and features, and be optimized to target different applications.

Future processors, based on the new ARMv6 architecture will provide developers of
embedded systems with higher levels of system performance, whilst maintaining
excellent power and area efficiency.

The Evolution of the ARM Architecture
The ARM architecture has evolved steadily to respond to the changing needs of ARM’s
partners, and of the design community in general.

At each major revision of the ARM architecture, significant features have been added.
Between major architecture revisions, new features have been included as variants on the
architectures. The key letters appended to the core names indicate specific architecture
enhancements within each implementation.

• V3 introduced 32-bit addressing, and architecture variants:
o T – Thumb state: 16-bit instruction execution.
o M – long multiply support (32 x 32 => 64 or 32 x 32 + 64 => 64). This

feature became standard in architecture V4 onwards.
• V4 added halfword load and store.
• V5 improved ARM and Thumb interworking, count leading-zeroes (CLZ)

instruction, and architecture variants:
o E – enhanced DSP instructions including saturated arithmetic operations

and 16-bit multiply operations
o J – support for new Java state, offering hardware and optimized software

acceleration of bytecode execution.

All of the ‘TEJ’ enhancements above become part of the new ARMv6 architecture
specification.

In order to maintain backwards compatibility, ARMv6 also includes ARMv5 compliant
memory management and exception handling. This enables the significant third-party
developer community to exploit existing development effort, and supports the reuse of
existing software and design experience.

ARM White Paper January 2002

Page 2 of 15 © ARM 2002

The introduction of a new architecture does not replace existing architectures, or make
them redundant. Where the provisions of ARMv4 or ARMv5 meet market needs, new
cores and derivative products will continue to be based on these architectures, whilst
tracking technology and process trends. For example, the ARM7TDMI core based on the
V4T architecture is still being ‘designed-in’ to many new products, where a performance
level of 100MIPS or so is adequate. Processors based on the ARMv5 architecture
continue in development.

The ARM architecture will of course continue to evolve with appropriate enhancements
in the future.

1998 2000 2002 2004

time

ARMv5

ARMv6

ARMv7

1994 1996 2006

StrongARM®

ARM926EJ

ARM1022E XScaleTM

ARM1020

ARM10EJ ARM9E

ARM920T

V6 cores

V7 cores

ARM7TDMI ARM720T

V4

Figure 1. ARM Architecture Revisions

Implementations of the ARMv6 architecture are primarily driven by ARM’s partner
development activity. The first ARM implementations of ARMv6 are underway; more
information will be released with the product rollout during 2002.

Driving Architecture Development
Next generation architectures have been driven by the needs of emerging products and
evolving markets. The key design constraints are predictable. The function, performance,
speed, power, area and cost parameters must be balanced to meet the requirements of
each application. ARMv6 offers better ways of optimizing these constraints across a
number of vertical market segments.

Delivering leading performance/power (MIPS/Watt) has been fundamental to ARM’s
success in the past, and will continue to be a critical benchmark for future applications.

ARM White Paper January 2002

Page 3 of 15 © ARM 2002

Functionality is growing dramatically as computing and communications continue to
converge in many consumer products. Increasingly, consumers expect features such as
advanced user interfaces, multimedia capability and improved product quality. ARMv6
will enable more efficient support for all of these new features and technologies across a
number of market segments.

A number of specific market drivers for ARMv6 have been identified. ARMv6 will
benefit developers targeting wireless, networking, automotive and consumer
entertainment markets. ARM has worked with architecture licensees and key partners
such as Intel, Microsoft, Symbian and Texas Instruments in specifying the requirements
for ARMv6.

As well as taking into account changing market requirements, key improvements in
software, synthesis and process technology also influence the architecture specification.
The development of ARMv6 will enable partners to better exploit these, and other
technological advances.

Key ARMv6 Improvements
In developing the ARMv6 architecture, effort has been focused on five key areas:

Memory Management
System design and performance is heavily affected by the way that memory is managed.
The memory management architectural enhancements improve the overall processor
performance significantly – especially for platform-type applications where operating
systems need to manage frequent task changes. With the changes in ARMv6, average
instruction fetch and data latency is greatly reduced; the processor has to spend less time
waiting for instructions or data cache misses to be loaded. The memory management
improvements will provide a boost in overall system performance by as much as 30%.

In addition, the memory management enhancements will enable more efficient bus usage.
Less bus activity will yield significant power savings as a result of reduced memory
access.

Multiprocessing
Application convergence is driving system implementations towards the need for
multiprocessor systems. Wireless platforms, especially for 2.5G and 3G, are typical
applications that demand integration between ARM processors, ARM and DSPs, or other
application accelerators.

Multiprocessor systems share data efficiently by sharing memory. New ARMv6
capabilities in data sharing and synchronization will make it easier to implement
multiprocessor systems, as well as improving their performance. New instructions enable
more complex synchronization schemes, greatly improving system efficiency.

ARM White Paper January 2002

Page 4 of 15 © ARM 2002

Multimedia Support
Single Instruction Multiple Data (SIMD) capabilities enable more efficient software
implementation of high-performance media applications such as audio and video
encoders. Over sixty SIMD instructions are added to the ARMv6 Instruction Set
Architecture (ISA).

Adding the SIMD instructions will provide performance improvements of between 2x
and 4x, depending on the multimedia application. The SIMD capabilities will enable
developers to implement high-end features such as video codecs, speaker-independent
voice recognition and 3D graphics, especially relevant for next generation wireless
applications.

Data Handling
A system’s endianism refers to the way data is referenced and stored in a processor’s
memory.

With increasing system on a chip (SoC) integration, a single chip is more likely to
contain little-endian OS environments and interfaces (such as USB, PCI), but with big-
endian data (TCP/IP packets, MPEG streams). With ARMv6, support for mixed-endian
systems has been improved. As a result, handling data in mixed-endian systems under
ARMv6 is far more efficient.

Unaligned data is data that is not aligned to its natural size boundary. For example, within
DSP applications there is sometimes a requirement to treat words with half-word data
alignment. For a processor to handle this situation efficiently requires that it be able to
load a word aligned to any half-word boundary.

Current versions of the architecture require a number of instructions to manage unaligned
data. ARMv6 compliant architectures will manage unaligned data more efficiently in
hardware. In algorithms that rely heavily on DSP operations with unaligned data, ARMv6
implementations will have a performance advantage and may also benefit from reduced
code size. Unaligned support also makes it more efficient for ARM to emulate other
processors, such as Motorola’s 68000 family.

Similar to recent ARMv5 implementations such as ARM10 and XScale1™, ARMv6 is
based on a 32-bit processor. ARMv6 will support implementations based on bus widths
of 64-bits and above - ARM10 and XScale support 64-bit buses today. This provides bus
throughput equivalent to, or even better than a 64-bit machine, but without the power and
area overhead of a full 64-bit CPU.

Exceptions and Interrupts
For implementations targeted at real-time systems, efficient handling of interrupts can be
critical. Examples include systems such as hard disk controllers, and engine management

1 XScale is a registered trademark of Intel Corporation.

ARM White Paper January 2002

Page 5 of 15 © ARM 2002

applications, where the consequences can be severe if a critical interrupt does not get
serviced in time. More efficient handling of exception and interrupt conditions also
improve overall system performance. This is especially important in reducing system
latency.

In ARMv6, new instructions have been added to the ISA to improve the implementation
of interrupts and exceptions. These provide the ability to efficiently nest exception
handling onto a different privileged mode.

Each of these architectural advances is described in more detail in the following sections.

Programmer’s Model
Six new status bits have been added to the programmer’s model. Four bits are associated
with providing “greater than or equal to” status for the new multimedia instructions. The
E-bit indicates the current load/store endian setting for the core, and the A-bit is used to
mask imprecise data aborts.

• GE[3:0] bits
o SIMD status bits - greater than or equal to for each 8/16-bit slice

• E-bit
o Indicates the current load/store endian setting of the core
o Can be set/cleared with the SETEND instruction

• A-bit
o Indicates if imprecise data abort exceptions are masked

Compatibility
ARMv6 maintains 100% backward compatibility at the binary level for operating
systems and applications. The ARMv6 architecture requires that all Thumb and ‘E’
instructions be implemented for backwards compatibility with ARMv5.

Some of the newly introduced ARMv6 instructions also have Thumb equivalents – for
example the new ‘REV*’ instructions. The BXJ instruction is also a requirement within
ARMv6 for consistent Java support – regardless of whether Jazelle technology is
implemented or not.

Improved Memory Management
Memory management is primarily concerned with two issues. First, the translation of
virtual addresses into physical addresses within a system. Second, ensuring appropriate
levels of protection between different processes and tasks.

ARM White Paper January 2002

Page 6 of 15 © ARM 2002

The ARM architecture is a load-store architecture, where the ARM core instructions can
only operate on data in registers that form part of the core. Load and store instructions are
used to transfer data to and from this register file.

A multi-level memory system is part of normal system design hierarchy. Closer coupled
memory systems tend to run faster, with level 1 memory systems ideally having no wait
states. In practical terms, this limits the size of memories that can be supported at core
clock speeds. Many high performance systems are now supporting additional (larger) L2
caches with some wait states, but less latency than if the memory was located off-chip.
L3 cache may be provided as fast off-chip SRAM, with "normal" DRAM a level behind
that.

ARM first introduced cores (e.g. ARM7TDMI), then developed and offered cached cores
with MMU's (e.g. ARM720/920). ARMv6 is a logical progression on this - providing a
complete definition of the L1 memory system, and to a lesser extent how memory levels
beyond this need to behave for overall system correctness.

ARM core

Level 1
Cache(s)

Tightly
Coupled
Memory

-

TCM(s)

Level 2

Cache(s)

DRAM

SRAM

Flash

ROM

Address
translation

Instruction
Prefetchn

Load

Store

CP15 configuration
- control

Physical Address

Virtual
Address

R15
.
.
.

R0

Additional
Processors

Figure 2. ARMv6 Memory Model

L1 memory will run synchronized to the core. Where different clock domains are
introduced into a design, memory synchronization becomes dependent on the
implementation.

ARM White Paper January 2002

Page 7 of 15 © ARM 2002

ARM Virtual Memory System Architecture
The ARM Virtual Memory System Architecture v6 (VMSAv6) fully specifies the new
Level 1 cache system – that most tightly coupled to the processor. The VMSA also
specifies a Tightly-Coupled Memory (TCM) and DMA system. The architecture permits
a range of implementations of these systems, with software-visible configuration registers
to allow identification of the resources that exist. V6 supports hierarchy and memory
ordering rules to ensure system correctness for additional levels of cache in both single
processor and multiprocessor systems. Memory ordering rules define the architecture,
without constraining the implementation.

Version 6 now supports physically tagged caches, reducing software overhead on context
switches. This can save up to 20% of the processor utilization by eliminating the need to
perform cache flushing by the OS.

ARM v6 L1 Cache
The L1 cache is architected to reduce the requirement for cache clean and invalidation on
a context switch. The cache may be organized as a Harvard system with separate
instruction and data caches, or as a single unified von Neumann cache. The TCM is a
physically-addressed area of scratchpad memory, which is implemented alongside the L1
cache. Similarly, the TCM can be organized as a Harvard or von Neumann system. The
L1 DMA subsystem is designed to allow background transfers to and from the TCM.

Page Table Formats
Page table formats have been revised in ARMv6. Figure 3 illustrates the new first level
page table format.

SBZ

Coarse page table page address

Section base address

Reserved

SBZ

nG

S

A
P
X

TEX

AP

P

P

Domain

Domain

XN

C

B

1

0

1 1

1 0

0 0

SBZ

Figure 3. ARMv6 First Level Page Table Format

The XP bit in Coprocessor 15 is used to enable this format, otherwise an ARMv5 legacy
mode is invoked for backwards compatibility.
New features include:

• an execute never bit (XN)
• a “not Global” (nG) bit for address matching

ARM White Paper January 2002

Page 8 of 15 © ARM 2002

Application Space Identifier - or ASID - support is another key feature in this area. When
the nG-bit is set, address translation uses the virtual address and ASID for translation
matching. This provides a significant saving in software overhead on context switches,
avoiding the need to flush on-chip translation buffers in most cases. The result is
improved performance. The architecture also supports its use in task-aware debugging.
The ASID forms part of a process ID that can be used in task aware debugging.
Type extension, shared, and access permission bits are used to provide all the attributes
necessary for the ARMv6 memory model. A P-bit, which is compatible with the
mechanism already available on Intel’s XScaleTM product, has been added for memory
protection.

Additional Translation Table Base Register
To improve page table handling, a second translation table base register has been added;
CP15 now supports TTBR0 and TTBR1. A control register is used to program N, the
number of leading zeroes (most significant address bits) in virtual addresses that use
TTBR0; 0 < N < 7. The device resets with N equal to zero, meaning all virtual addresses
use TTBR0, otherwise the address space 0-232-N will use TTBR0 and other addresses will
use TTBR1. The size of the first level page table required for TTBR0 will vary from 128
bytes to 16kB depending on the value of N, offering additional scope for memory savings
in resource critical systems, particularly where multiple tables are held in memory and
swapped on a context switch by updating the translation base register.

Multiprocessing
While many ARM processors today are used in isolation, or with simple communications
links to another resource with its own memory, there are increasing requirements for
unified memory models, and closer coupling of processors in general.

Systems consisting of multiple processors – either multiple ARM processors or a mixture
of ARMs and DSPs, are becoming more common. Improvements to the ARMv6 memory
management unit (MMU) are important in ensuring that processors get predictable and
consistent (coherent) views of memory when it is shared between multiple processors.

Improvements include defining the level1 memory system, and the memory order model
- how loads and stores to memory relate to each other.

As well as memory improvements to facilitate multiprocessing, Load and Store Exclusive
instructions have been added in version 6 to support semaphores in multiprocessor
systems (used to synchronise tasks). These instructions provide a more powerful and
flexible mechanism over the current swap instructions.

• LDREX{<cond>} <Rd>, [<Rn>]
This performs a load, then sets a monitor to “watch” the address
• STREX {<cond>} <Rd>, <Rm>, [<Rn>]
This performs a store and returns “success” in Rd if no intervening access
detected by the monitor.

ARM White Paper January 2002

Page 9 of 15 © ARM 2002

Exceptions and Interrupts
The desire to implement more efficient processing of exception and interrupt conditions
has led to several architectural enhancements in ARMv6. A low interrupt latency mode
allows implementations to modify or switch off features. This is enabled by the FI bit in
CP15 register 1 (the CPU control and configuration register). This facility enables
designers to make performance versus latency tradeoffs, and support both in the design.
For example, Load Multiple or Store Multiple instructions (LDM/STM) can be made
interruptible where low latency is important. Normally, these instructions would run to
completion.

ARMv6 provides for vectored interrupt support. The Vectored Interrupt Controller (VIC)
is enabled by the VE bit in CP15 register 1. The VE bit is used to enable returning
vectored interrupts directly to the core. VIC support is currently provided through an
external system peripheral. This requires an IRQ or FIQ system interrupt, and then the
interrupt handler needs to perform a memory mapped read of a register for the vector
address.

Imprecise external aborts are supported in ARMv6. The A-bit added to the program
status register (CPSR), provides an abort mask for this - like the I and F bit masks for
IRQ and FIQ.

Stack Handling and Mode Change support
New stack handling capabilities in ARMv6 avoid the need for multiple stacks. The
ARMv6 register model supports separate stacks in the different modes. Many operating
systems like to nest all their state saving and restoring onto a single stack. Version 6
makes this much more efficient. The stack handling capabilities are based on new cross-
mode state-saving instructions:

• SRS #Mode - Save Return State onto stack belonging to ‘Mode’
• RFE - Return From Exception

The SRS instruction allows register 14 and the SPSR (Saved Processor Status Register)
for the current mode to be saved to a stack in a different mode. The RFE instruction loads
the PC and CPSR (Current Processor Status Register) from the saved state.

New instructions support fast mode changes in privileged modes. Instructions cannot be
used in user mode for security reasons.

• CPSID #Mode (and disable interrupts)
• CPSIE #Mode (and enable interrupts)

The CPS instructions allow software to move efficiently to a different mode while
enabling or disabling interrupts.

ARM White Paper January 2002

Page 10 of 15 © ARM 2002

Table 1a and 1b show code extracts, including entry code and exit code, comparing stack
handling with SRS/CPS/RFE usage in ARMv6 with ARMv5. The two sections of code
are exact equivalents for the context:

• An FIQ entry - FIQ2 - from a VIC is to be processed in ABORT mode (there is a
higher priority FIQ - FIQ1 - which uses FIQ mode directly)

• In ARMv5, the handler needs to use the FIQ_stack as a scratchpad for R0-R3 to
provide the necessary workspace

• The target (abort mode) stack has R2, R3, R14 (Link register) and SPSR (the
saved status captured in FIQ mode needed for the eventual return) added to the
ABORT_stack

• R0 and R1 are transferred with their context intact

ARMv5 ARMv6
FIQ2handler. FIQs are now re-enabled, with original R2, R3, R14, SPSR on stack. Includes code
to stack any more registers required, process the interrupt and unstack extra registers.

 STMIA R13, {R0-R3}
 MOV R0, LR
 MRS R1, SPSR
 ADD R2, R13, #8
 MRS R3, CPSR
 BIC R3, R3, #0x1F
 ORR R3, R3, #0x1B ; = Abort mode No.
 MSR CPSR_c, R3
 STMFD R13!, {R0,R1}
 LDMIA R2, {R0,R1}
 STMFD R13!, {R0,R1}
 LDMDB R2, {R0,R1}
 BIC R3, R3, #0x40 ; = F bit
 MSR CPSR_c, R3

 SUB R14, R14, #4
 SRSFD R13_abt!
 CPSIE f, #0x1B ; = Abort mode
 STMFD R13!, {R2,R3}

Exit code including the LDR/STR instructions needed to acknowledge the VIC

 ADR R2, #VICaddress
 MRS R3, CPSR
 ORR R3, R3, #0x40 ; = F bit
 MSR CPSR_c, R3
 STR R0, [R2,#AckFinished]
 LDR R14, [R13,#12] ; Original SPSR value
 MSR SPSR_fsxc, R14
 LDMFD R13!, {R2,R3,R14}
 ADD R13, R13, #4
 SUBS PC, R14, #4

 LDMFD R13!, {R2,R3}
 ADR R14, #VICaddress
 CPSID f
 STR R0, [R14,#AckFinished]
 RFEFD R13!

Approximate cycles: 35 Approximate cycles: 11

Table 1a. Efficient code handling in ARMv6

The code illustrates a different stack mechanism for FIQ-mode and ABORT-mode:

• FIQ-mode: "Empty ascending" stack; uses STMIA and LDMDB

ARM White Paper January 2002

Page 11 of 15 © ARM 2002

• ABORT-mode: "Full descending" stack; uses STMDB and LDMIA
o DB == decrement before
o IA == increment after

• “FD”is a stack-orientated suffix for the Full Descending stack model, supported in
the ARM assembler. STMFD and LDMFD translate to STMDB and LDMIA.

• ADR is a pseudo assembler instruction used to load an address

In the ARMv5 case, it was necessary to save R2 and R3, as the registers were required
for the algorithm. In the ARMv6 case they were stored for equivalence reasons.

Entry code:
add R2, R3, R14 and SPSR to the target (ABORT) stack
 switch mode => ABORT

exit code:
recover R2 and R3 context
 return from handler (pop values from the ABORT stack)
 - "LR" => PC
 - "SPSR" => CPSR

Table 1b. Entry/Exit code handling in ARMv6

For ARMv5 the FIQs are disabled for some time at the start of the lower-priority FIQs.
The worst-case interrupt latency for the FIQ1 interrupt occurs if a lower-priority FIQ2
has just fetched its handler address, and is approximately:

• 3 cycles for the pipeline refill after the LDR PC instruction fetches the handler
address

• + 24 cycles to get to and execute the MSR instruction that re-enables FIQs
• + 3 cycles to re-enter the FIQ exception
• + 5 cycles for the LDR PC instruction at FIQhandler
• or about 35 cycles.

For ARMv6, the worst-case interrupt latency for a FIQ1 now occurs if the FIQ1 occurs
during a FIQ2’s interrupt entry sequence, just after it disables FIQs, and is
approximately:

• 3 cycles for the pipeline refill for the FIQ2’s exception entry sequence
• + 5 cycles to get to and execute the CPSIE instruction that re-enables FIQs
• + 3 cycles to re-enter the FIQ exception
• or about 11 cycles.

The underlying mechanism illustrated can be used from any privileged mode, to stack
and swap state to a different privileged mode, then return from this mode using the stack
values.

ARM White Paper January 2002

Page 12 of 15 © ARM 2002

Data Handling
Version 6 has introduced two features for mixed-endian support:

E-bit
A state bit (E-bit) is set and cleared under program control using the SETEND
instruction. The E-bit defines which endian to load and store data. Figure 4 illustrates the
functionality associated with the E-bit for a word load or store operation.

Byte 3 Byte 2 Byte 1 Byte 0 Byte 0 Byte 1 Byte 2 Byte 3

Byte 3

Byte 2

Byte 1

Byte 0

Data bytes in memory

Incrementing address
byte 0 => byte 3

ARM
register

ARM
register

31 31 0 0

CPSR E-bit = 1 CPSR E-bit = 0

Figure 4. Endian support - Word Load/Store with E-bit

This mechanism enables efficient dynamic data load/store for system designers who
know they need to access data structures in the opposite endianness to their
OS/environment. Note that the address of each data byte is fixed in memory. However,
the byte lane in a register is different.

Unaligned Data Support
In ARMv5 (ARM state), an access will abort in all unaligned cases when the A-bit in
CP15 register 1 is set, otherwise:
• an unaligned word load (LDR) will rotate right by addr[1:0] x 8 bits
• unaligned word stores (STR) will ignore addr[1:0] and treat them as zero
• unaligned halfword loads and stores are UNPREDICTABLE
• Dword (64-bit) loads and stores LDRD/STRD are implementation dependent as to

whether they require Dword or word alignment to execute correctly.

Version 6 introduces unaligned data support for 32-bit words and 16-bit halfwords, the
behavior controlled by a new (U-bit) in CP15 register 1. The A-bit will still cause
unaligned errors to abort in all cases; Dwords if not word aligned. When the U-bit is set

ARM White Paper January 2002

Page 13 of 15 © ARM 2002

and the A-bit is clear, LDR, STR, LDRH and STRH support unaligned accesses in
hardware. All other unaligned accesses will data abort and require handling in software.

REV Instructions
Three byte reverse instructions are available in both ARM and Thumb states. The byte
reverse (REV) instructions can be used to improve byte-swap routines present in many
code bases today typically replacing four instructions with a single instruction (Figure 5).

New instructions (ARM and Thumb variants)

• REV - byte reverse a word
• REV16 - byte reverse packed (2 x) halfwords
• REVSH - byte reverse + sign extend halfword

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2 B1 B0

B0 B1 B2 B3 B2 B3 B0 B1 S S B0 B1

REVSH{<cond>} Rd, Rm REV16{<cond>} Rd, Rm REV{<cond>} Rd, Rm

Rd Rd Rd

Rm Rm Rm
31 24 16 8 0 31 24 16 8 0 31 24 16 8 0

Figure 5. ARMv6 Byte Reverse Instructions

Media Extensions
The media extensions were announced during 2000, and will be implemented for the first
time in ARMv6 designs. They include a set of Single Instruction Multiple Data (normally
known as SIMD) instructions, as well as new multiplier and Sum-of-Absolute-
Differences support. The SIMD instructions use the GE-bits added to the programmer’s
model.
The new instructions support 8 and 16-bit SIMD arithmetic, including four 8-bit and two
16-bit operations, parallel add and subtract, selection, packing and unpacking.

Advanced multiplier options include dual 16-bit multiply-accumulate, and a new long
multiply instruction, useful for cryptographic applications. Table 2 demonstrates the
efficiency of the complex multiply in ARMv6 architectures.

ARM White Paper January 2002

Page 14 of 15 © ARM 2002

ARMv5TE: 5 cycles in a single-cycle implementation

SMULTT Real,Ra,Rb ;Real = Ra.real*Rb.real
SMULBB Temp,Ra,Rb ;Temp = Ra.imag*Rb.imag
SUB Real,Real,Temp ;Real = Ra.real*Rb.real - Ra.imag*Rb.imag
SMULTB Imag,Ra,Rb ;Imag = Ra.real*Rb.imag
SMLABT Imag,Ra,Rb ;Imag = Ra.real*Rb.imag + Ra.imag*Rb.real

ARMv6: 2 cycles in a single-cycle implementation

SMUSD Real,Ra,Rb ;Real = Ra.real*Rb.real - Ra.imag*Rb.imag
SMUADX Imag,Ra,Rb ;Imag = Ra.real*Rb.imag + Ra.imag*Rb.real

Table 2. Example 16-bit Complex Multiply

ARMv6 provides better support for the sum of absolute differences calculation, with the
inclusion of the USAD8 (sum of differences) and USADA8 (sum of differences and
accumulate) instructions. These are particularly useful for video encoding and motion
estimation applications.

Table 3 shows the relative performance of the sum of absolute differences. The
comparison with version 5TE relates to a software implementation in ARM registers.
This can also be accelerated with the MOVE coprocessor.

Architecture Cycles/4 pixels
ARMv5TE 18 cycles

ARMv6 3 cycles

Table 3. Implementing Sum of Absolute Differences
Architectural provision in ARMv6 yields a choice between hardware and software
implementation, giving similar performance results. A single instruction in software, with
the register usage overhead, or the MOVE coprocessor hardware option with dedicated
resource, which leaves the ARM processor free for other tasks.

ARM White Paper January 2002

Page 15 of 15 © ARM 2002

Summary
The introduction of the ARMv6 architecture brings a new set of features and a
performance leap that will meet the needs of ARM’s partners as they design next-
generation products across a range of target markets.

ARMv6 consolidates the developments in ARMv5, and provides 100% backwards
compatibility. It also adds significant enhancements for next-generation applications.
New multimedia support provides 4x-processing improvements in some media
applications. The new VMSA provides faster context switches enhancing performance of
platform processors hosting complex operating systems. Improved multiprocessor
support eases development and enhances the performance of systems based on multiple
ARM cores, or ARM plus DSP core configurations.

ARM will be working with a growing number of partners during 2002 to ensure the
successful introduction of the ARMv6 architecture. As well as ARMv6-compliant silicon
product introduction, considerable effort will also be devoted to development support –
examples are improved AMBA support used for on-chip connectivity, platform design
support, code generation and debug tools, as well as operating system porting.

