

The development of the Crystal Clear Electronics curriculum was supported by the European Commission

in the framework of the Erasmus + programme in connection with the “Developing an innovative

electronics curriculum for school education” project under “2018-1-HU01-KA201-047718” project

number.

The project was implemented by an international partnership of the following 5 institutions:

• Xtalin Engineering Ltd. – Budapest

• ELTE Bolyai János Practice Primary and Secondary Grammar School – Szombathely

• Bolyai Farkas High School – Târgu Mureș

• Selye János High School – Komárno

• Pro Ratio Foundation working in cooperation with Madách Imre High School – Šamorín

Copyrights

This curriculum is the intellectual property of the partnership led by Xtalin Engineering Ltd., as the

coordinator. The materials are designed for educational use and are therefore free to use for this purpose;

however, their content cannot be modified or further developed without the written permission of Xtalin

Engineering Ltd. Re-publication of the materials in an unchanged content is possible only with a clear

indication of the authors of the curriculum and the source of the original curriculum, only with the written

permission of Xtalin Engineering Ltd.

Contact http://crystalclearelectronics.eu/en/

info@kristalytisztaelektronika.hu

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

17 - PWM with Microcontroller
Written by Endre Szesztay

English translation by Xtalin Engineering Ltd.

Revised by Szabolcs Veréb

INTRODUCTION

In previous chapters, we have learned about the essence of PWM. We have seen, that PWM can be used

to implement analogue (continuous) power or voltage control without analogue components by switching

a voltage (or current) rapidly. This feature is important in two cases:

● If we would like to create an analogue signal in a purely digital system (by purely digital system

we mean that we have logic circuits and signals only, which can only be switched on or switched

off, for example 5 V and 0 V)

● If we would like to control high power signals, such as in motor control.

In the light of above it isn’t surprising that most microcontrollers contain a PWM control unit. This is a

counter/timer peripheral (hardware unit) with PWM functions or a separate peripheral designed

specifically to create PWM signals. To make it simple: we set the frequency and the duty cycle, and the

PWM signal magically appears on one pin of the microcontroller. This pin can even drive an LED or a

switching element (FET) directly.

It’s important to note that after these values are set, the generation of the PWM signal happens

independently from the CPU, so it doesn’t take valuable processor time away from other tasks. We will

talk about this later.

HOW DOES A PWM PERIPHERAL WORK?
In order to use the PWM controller let’s have a look at its operation in detail. A PWM controller is usually

responsible for the following functions, although these might vary in different microcontrollers:

● Setting the PWM frequency (period of time) and duty cycle - these are mandatory

● Generating an interrupt at the end of each cycle – usually they also provide this feature (We will

talk about interrupts in detail later. Basically, the processor is able to stop the currently running

program based on certain external signals and start to run a specified program section. After that,

it returns to the original program section).

● Generating further interrupts at the peripheral’s different events, for example when the output

PWM signal changes (0->1, or 1->0 transition)

● Managing several PWM outputs which have different duty cycles

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

● Setting output (pins): we can choose at which pin of the microcontroller the created signal would

be accessible; or when the internal counter reaches the threshold, what transition should happen

on the output: 0->1 or 1->0 (polarity).

● If there are more outputs, setting the timings between each other (turn on and off at the same

time or work alternating)

● Synchronizing several completely independent PWM controllers

● Controlling DMA – this is a hardware element which makes it possible to move data between the

memory and the peripheral without using the CPU.

● Managing other input signals, as an example: an external error signal can block the operation of

the PWM.

Let’s have a look at some examples, what kind of tasks we can implement with a microcontroller PWM

unit:

● Producing a square wave signal with set frequency. Here we don’t change the duty cycle of the

signal (50% for a square wave), but we alter the frequency. This can be useful if we would like to

produce a sound with varying tone.

● Generating a fixed-frequency PWM signal with the duty cycle set in the program. We can use this

to continuously regulate motors, or the brightness of an LED, and after filtering we can create an

analogue voltage too.

● Generating a varying PWM signal from cycle to cycle. This is more complicated but there is an

opportunity for the duty cycle to be different in each PWM cycle. When using this the program of

the CPU has to be synchronized with a signal generated by the PWM unit. Quick controls can be

implemented like this which are commonly used to control motors.

Of course, the PWM unit can be used in several different ways as well, and this depends only on the

imagination of the programmer.

Regulation vs Control

The upper last two sections apparently say the same thing but in one of them I use the word control while

in the other I use the word regulation. The difference is that the word regulation is used for that case

when we change the speed of the motor by setting voltage on the motor to a previously calculated value.

Like this the speed won’t be accurate, only approximate, but the motor will do what we want: spin slower

or faster.

In comparison control is a more complex process. Using the example above we continuously measure the

speed of the motor and based on the measurements we modify the voltage on the motor. (If the motor

spins too fast then we slowly decrease the voltage and vica versa.) We call this repeated measurement-

calculation-intervention process control. In specialized literature you can meet the „feedback” expression

too, which basically means the same thing but here the sensing and measuring is emphasised. The result

of the measurement is the feedback signal, which gets “fed back” to the controller to achieve control.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Implementing the control, we have mentioned above is way more complex than it look at first glance. The

reason for this is that controllers can easily get into a positive-feedback loop, where the result is not a

steady sate, but a continuously oscillating output instead. Those who are interested can learn more about

control by searching for “PID”, or “PI controller” on the internet.

We talked about that the PWM controller is a peripheral of microcontrollers. But what exactly is a

peripheral?

For example, generation of a PWM signal can be implemented in software too. A counter loop has to be

created and the state of an output pin has to be changed at the right times. This is a very simple task;

however, it would consume a lot of CPU time. Because of that, specialized hardware elements are built

inside the microcontroller for tasks like this, and these are called peripherals.

The peripherals work on their own and they don’t consume CPU resources. They have their own internal

logic; they get the clock signal; they have a direct connection to the pins of the microcontroller and the

program needs set them up and read and write the required data.

Here are some of the most common type of peripherals:

● ports: these peripherals make the pins of the microcontroller available for the program; we can

read the state of the inputs and we can set the state of the outputs with the help of simple

registers.

● counters – timers: through registers, we can set the speed of the counter, and we can read the

current value anytime in software. This is perfect for time measurement.

● PWM: we will talk about this in detail in this chapter

● communication peripherals, for example: RS232, USB

● analogue – digital (ADC) and digital – analogue (DAC) converters. With these, the pins of the

microcontroller can be used to measure or generate not only digital signals such as 0 V or 5 V but

any voltage within the entire supply voltage range.

● interrupt controller. In this curriculum, you will learn more about this later

The next important question is how the program running on the CPU can communicate with the

peripherals, in our case the PWM controller. Peripherals have registers for this purpose and we can control

our peripherals by writing proper codes (numbers) into these registers. Registers nothing but special

section of memory from the CPU’s perspective so it is usually able to read and write them. However, they

do much more than simple memory does because the data (value of each bit) inside them directly affects

the operation of the hardware (the logic circuit in peripherals).

Don’t confuse peripheral registers with the CPU’s own registers; the latter is used in the internal logic of

the CPU and only machine code can directly refer to them and we're not dealing with that right now.

The peripheral registers can be accessed by simple memory read and write actions, similarly as the any

other memory but on a special address. The datasheet of the microcontroller describes the operation of

the peripherals and the addresses of the registers where they can be accessed and the meaning of each

bits (effect) inside the register.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Our Atmel processor has an 8-bit architecture, which means that the registers are also 8-bit wide. There

are registers where each bit means something different, and there are registers where whole register is

an 8-bit number.

There are some peripherals where a 16-bit number is used, with two registers, one acting as the lower

byte (Lo) and one acting as a higher byte (Hi), and the registers have to be written separately. Handling of

registers and PWM peripheral will be discussed in detail.

Interrupts

I mentioned while talking about the features of PWM peripherals, that they can generate an interrupt.

We will talk about this in more detail in a later chapter, but I just explain the essence of it in a few lines.

The interrupt mechanism generally means that the CPU stops execution of our code in response to an

external signal and it starts to run another part of the program (this is called the interrupt routine).

Interrupts are used to notify the CPU immediately, so the program is able to respond to an external event.

It’s important that after the interrupt has been served (the interrupt routine finished) the CPU should be

able to get back to run the previous part of code that was interrupted in a way the internal state of the

CPU is the same as it was before (CPU registers are unvaried) so the interrupted program doesn’t

recognize anything from serving the interrupt. There are special commands and mechanisms in the CPU

and the microcontroller to handle the interrupts; on the one hand during an interrupt the CPU has to save

the internal registers’ state, and on the other hand the code which serves the interrupt should be able to

identify the origin of the interrupt.

Almost all peripherals are able to generate some kind of interrupt through which the CPU can quickly

respond to the events of the outside world; this can be an external signal on a pin, receiving data through

some kind of communication channel, or the end of a timer. The interrupt controller is also a separate

peripheral which allows you to set which units can request an interrupt from the CPU and in what order

of priority.

OPERATION OF THE PWM PERIPHERAL

In the Atmega16A microcontroller we use, the timer peripherals can generate a PWM signal too.

COUNTERS (REVISION)
The essence of the counter peripheral is the counter register. This is an 8- or 16-bit register which is able

to increase or decrease its value by one synchronized with a periodic signal. For example, if the value of

the counter (register) is 12 then it will have the following values 13, 14...etc. after each period of the clock

signal.

If the counter has 8 bits, then usually after 255 its value changes to 0 and the counting continues from

here. The value of the counter register can be read or overwritten by the CPU at any time, but you don’t

need to do this during normal PWM production.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

With a timer you can implement timing, measure time, and counting tasks too. Timing or time measuring

can be implemented if the counter is driven from a constant clock source, counting can be implemented

if we connect an external impulse in place of the clock signal. TCNTn is short for “timer-counter”, which is

the register name of the peripheral in Atmega16A. After the register a number signifies which timer

peripheral we are talking about, as there are multiple inside the controller. For example: TCNT2 means

the TCNT register of the second timer.

OPERATION OF THE PWM PERIPHERAL

Figure 1 – Operation of PWM peripheral

The figure above shows the typical operation of the PWM peripheral. The datasheet of the microcontroller

calls this “Fast PWM Mode”, where the counter always counts up. In the figure above the top waveform

represents the value of the counter register TCNTn, and as you can see it is counting up to 255, and then

starting from 0 again, creating this sawtooth wave.

The other operation mode supported by the microcontroller is called “Phase Correct PWM Mode”, where

the counter does not go back to 0 after reaching 255, but starts to count down instead, creating a triangle

wave. This is important, if you need to synchronize multiple PWM peripherals together, but we won’t be

using this mode in the curriculum.

To generate a PWM signal we need another value that does not count, to which we can compare our

counter after every count. This register is called the OCRn (Output Compare Register), and you can see its

value in the figure above represented by a dashed line. If the counter value is smaller than the OCR

register’s value, the PWM output is “0”, when it is bigger, the output is “1” (this can be reversed by a

setting). This way, modifying the OCR value from 0 to 255, sets the duty cycle of the PWM signal from 0%

to 100%.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

USING THE PWM PERIPHERAL

ADJUSTING LED BRIGHTNESS
After learning about the inner operation of the PWM peripheral, let’s see which registers we need to set

in the Atmega16A to use it.

The simple program below changes the brightness of an LED continuously from minimum brightness to

maximum brightness and then back. To achieve this, it produces an approximately 31 kHz PWM signal,

and the duty cycle will determine the brightness of the LED.

A full example can be found on the website of the curriculum.

The hardware, that is required to operate the program, is very simple to build. You only need to connect

an LED and a 330 Ω resistor between the ATMega16A’s appropriate pin and the GND. This pin is the chip’s

21st pin, its name is „PD7 (OC2)” and a detailed description can be found in the datasheet of the

microcontroller. Its name refers to the fact that this pin has two functions: basically, it is the D port’s 7th

pin, but the OC signal of the 2nd timer can also be accessed here. The OC is the abbreviation of „Output

Compare” i.e. this is where the result of the comparison between the counter (TCNT2) and the OCR2

register comes out.

To make our program work correctly, we have to do the following main steps:

● Set the IO ports properly so that the produced PWM signal can appear on the

microcontroller’s pin. This is done by the IOInit() function.

● The registers of the timer-counter peripheral have to be set correctly so that the PWM

can works in the right mode. This is done by the PWMInit() function.

● Finally, the compare value has to be set i.e. the duty cycle of the PWM. This is done by

the infinite cycle which is in the main() function; it continuously and slowly changes the

comparing level and because of that the brightness of the LED also changes continuously.

The comments in the source code explain the tasks of the certain parts but we will see it in detail. If we

would like to write our program, then it is required to look at the Timer/Counter units in the

microcontroller’s datasheet.

The program consists of a single main.c file, which contains all the required code. The program starts

to run in the main() function and this calls the IOInit() then the PWMInit() functions. The

IOInit() does simple register writes and the comments show the meanings of the registers. The

PWMInit() function sets the operation of the timer (PWM). The comments embedded into the code

show what they refer to, in order to understand it more deeply it is recommended to review the

datasheet.

Setting multiple bits

Instead of the sbi() (set bit, set bit to 1) and cbi() (clear bit, set bit to zero) commands defined in the

compat/deprecated.h file there is a different way to set and clear bits of a register, using bitwise “or” and

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

“and” operations. The following operations sets the three counter select bits (CS22, CS21, and CS20) of

the timer control register of timer 2 to “001”.

TCCR2 = TCCR2 | (0<<CS22) | (0<<CS21) | (1<<CS20);

This is a bit more difficult to understand than the sbi and cbi commands, that’s why we are using them

rather than these bitwise operations. However, it is worth to look at how the sbi and cbi macros are

defined. Macros are #define expressions, that the pre-processor processes before compilation, they

can take parameters, similar to functions. If we look at the expression sbi(TCCR2, WGM20);, every

part is a macro definition. The macro sbi is defined as the following:

#define sbi(port, bit) (port) |= (1 << (bit))

As you can see it is basically a short notation for the same bitwise operations we have shown above. Since

macros are processed before compilation, using the sbi macro is equivalent to writing the bitwise

operations ourselves, but it makes our code more readable. The TCCR2 is also a macro:

#define TCCR2 _SFR_IO8(0x25)

As you can see it uses another macro, _SFR_IO8(), which creates a memory address out of an I/O

address. This is important so that we can assign a value to the register, so for example the TCCR2 = 0;

becomes a valid command.

Of course, the WGM20 is a macro too which simply defines WGM20 as the constant 6:

#define WGM20 6

This expresses what the datasheet shows on page 125, that the WGM20 bit is the 6th bit in the byte which

contains it.

The final parts of the main() function have only one thing to do, change the value of the OCR2 register

continuously, and reverse the counting direction when it reaches one of the boundaries. This is the

register (Output Compare Register) of the contains the value, which is compared with the counter after

each step, determining the duty cycle of the PWM signal.

/*
 * Chapter 17
 *
 * Adjusting the brightness of the LED on the PD7 pin of the microcontroller,
 * by linearly changing the duty ratio of the PWM
 */

#include "../Headers/main.h"

int main(void)
{
 //Initialization of outputs and inputs
 IOInit();

 //Initialization of PWM
 PWMInit();

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

 //Start counting upwards
 bool cntr_up = true;

 //Infinite loop
 while (1)
 {

 //If PWM duty ratio increases
 if (cntr_up)
 {
 //If it is lower than MAX
 if (OCR2 < PWM_DUTY_MAX)
 {
 //Increase
 OCR2++;
 }

 //If it has reached the maximum
 else
 {
 //Changing direction
 cntr_up = false;
 }
 }

 //If PWM duty ratio decreases
 else
 {
 //If it is larger than MIN
 if (OCR2 > PWM_DUTY_MIN)
 {
 //Decrease
 OCR2--;
 }

 //If it reached the minimum
 else
 {
 //Changing direction
 cntr_up = true;
 }
 }

 //Delay in order to make the changes visible
 _delay_ms(PWM_DELAY_MS);
 }

 return 0;
}

void PWMInit()

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

{
/*

 * The PWM frequency (page 120 of the datasheet) fpwm=fclkIO/(N*510),
 * where N is the division of the clock signal.
 * From this N=fclkIO/fpwm*1/510, namely for a frequency around 10 kHz
 * N=8e6/10e3*1/510=1.569 is required..

 * There is only 1,8,32,64,128,256,1024 divisions in the microcontroller,
 * by choosing N=1

 * fpwm=15.686kHz
 *
 */

 //Simple clock signal division for the timer2
 cbi(TCCR2, CS22);
 cbi(TCCR2, CS21);
 sbi(TCCR2, CS20);
 //Non-negated PWM operation, the OC2 output is 0 if the counter is bigger
 //than the threshold
 sbi(TCCR2, COM21);
 cbi(TCCR2, COM20);
 //Phase correct PWM mode
 cbi(TCCR2, WGM21);
 sbi(TCCR2, WGM20);

 /* Instead of the sbi() and cbi() functions,

 * which are definied in the compat/deprecated.h file,
 * we can set each bit with the following solution which is based
 * on the following "or" connections:
 * TCCR2 = TCCR2 | (0<<CS22) | (0<<CS21) | (1<<CS20);
 * This is kind of messy, so it’s recommended to use the functions above.
 */
}

Further Possibilities

In the code above, the brightness is changed by changing the value in the OCR2 (8-bit long) register. If

you’d like to play with the code or try your own program, then you only need to write a number between

0 and 255 into this register. In the case of 0 the duty cycle and so the brightness of the LED will be zero

while in case of 255 you’ll get full brightness.

Out of bounds values

If you write a value which is out of the range of 0..255, in principle that is an illegal command (according

to the rules of the C language) however the code can be built and it will run. The value of the register will

be the lower 8 bits of the value we have written. So, for example writing 256 would mean that you wrote

0 and, writing 257 means 1, and so on.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

BUZZER - PLAYING A MELODY
Another example project named CE17_2_PWM_zummer is also available on the website of the

curriculum, which can play melodies.

Building the hardware isn’t complicated here either: a speaker has to be connected to the microcontroller

through a resistor but now we must use pin 19th the chip, which is PD5 (OC1A). The reason for this is that

we are using the first timer peripheral for this task (16-bit Timer/Counter1). This is a 16-bit timer (as the

name suggests) instead of an 8-bit one, so we can adjust the output timing in much smaller steps.

The structure of this program is a little bit more complicated. This is partly because its operation is more

complicated, and partly because the program is separated to multiple source files for easier

maintainability. Storing program functions that belong together in separate files is a general practice in

software development. This keeps files short and easy to understand. The code is contained by the files

main.c, io.c, pwm.c and music.c, and their associated main.h, io.h, pwm.h and

music.h headers.

In this example the timing peripheral works in “Clear Timer on Compare Match” (CTC) mode. This means

that when the values of the counter and the comparator (OCR) register are the same then not only the

output changes state but also the counter is reset, and the counting starts over. This operation is explained

on the datasheet’s 74th page.

Figure 2 – Operation of timer peripheral (ATMega16A datasheet)

The signal produced during CTC operation mode always has a duty cycle of 50%, although its frequency

changes according to the value of the OCR register. This makes this mode suitable for producing a variable

frequency signal.

The buzzer program plays two simple melodies through the speaker. To play a melody you only have to

change the frequency of the signal, the duty cycle can stay constant. The program works very simply, the

OCR values representing sounds are taken from a table in memory, they are pre-programmed.

We are using a 16-bit timer this time, where both the counter (TCR1), and the output compare (OCR)

registers are 16-bit wide, meaning their value is not restricted to be in the range of 0.255, but it can go

from 0 to 65535. We can create a higher resolution PWM signal this way, which is needed to play tunes.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

Crystal Clear Electronics

This project was supported by the European Commission. The content of this publication does not reflect the official opinion of the European Union.
Responsibility for the information and views expressed therein lies entirely with the author(s).

Managing 16-Bit Registers

It’s important to know how to read and write 16-bit registers with an 8-bit processor. An 8-bit processor

can only move 8 bits of data in one instruction, and generally has 8-bit registers. The internal

representation and operations on 16-bit numbers are done by the compiler, but the registers of the

processor when we store or read the registers, we cannot simply assign a 16-bit value to an 8-bit register.

The solution is that the processor has two 8-bit registers representing the 16-bit OCR1A register, called

OCR1AL and OCR1AH, and we have to assign to them separately. The OCR1AL contains the lower 8 bits

while the OCR1AH contains the upper/higher 8 bits. An assignment can be done like this:

//Upper 8 bit
 OCR1AH = (note >> 8);
 //Lower 8 bit
 OCR1AL = note & 0xFF;

There are some registers where it is necessary to do a read or write operation to both parts at the same

time, such as the timer counter, or output compare registers. The timer peripheral increments or

decrements the counter independently from the CPU, so if we read the first half of the current value from

one register, by the time the CPU gets around to read the second half, the value might have already

changed, resulting in a false value in the CPU. Similarly, when writing to the output compare register,

having one half of the number being a new value, and the other half an old value can mess up the PWM

output.

To solve this problem there is a second 8-bit register hidden in the processor. When we read or write the

lower part of a 16-bit register, then the upper 8-bit is written into, or read from this hidden register by

the CPU. This means that when handling 16-bit registers the order of accessing the lower and upper parts

is very important.

When reading a 16-bit register, such as the OCR1A we should always read the lower byte first (in this case

OCR1AL). This way simultaneously to our reading operation the CPU copies the current value of the

higher byte to the hidden register. When we next read the higher byte, the CPU will give us the correct

value from the hidden register, which is coherent with the lower byte.

Writing a 16-bit register is the other way around, the upper byte must be written first. When writing the

upper byte (such as OCR1AH), the CPU writes the value into the hidden register instead of the actual

register. Then, when we write the lower byte, the CPU copies the previously saved higher byte to the real

register as well in one operation, avoiding an incoherent value in the peripheral. You can read more about

this operation on page 87 under section 16.3 of the datasheet.

Further Possibilities

The inner workings of the melody playing code is explained in the comments by the code, so we will omit

the explanation here. However, I suggest after understanding the operation of the PWM peripheral, you

make changes to the example code according to your own ideas, and create your own PWM program.

This is xxx personal copy - distribution is strictly prohibited.

http://crystalclearelectronics.eu | All rights reserved Xtalin Engineering Ltd.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12

