
TE
AM
FL
Y

Team-Fly®

Wiley Publishing, Inc.

Geoff Ingram

High-Performance Oracle®

Proven Methods for Achieving

Optimum Performance and Availability

High-Performance Oracle®

Proven Methods for Achieving
Optimum Performance and Availability

Wiley Publishing, Inc.

Geoff Ingram

High-Performance Oracle®

Proven Methods for Achieving

Optimum Performance and Availability

Publisher: Robert Ipsen
Executive Editor: Robert M. Elliott
Assistant Editor: Emilie Herman
Managing Editor: John Atkins
New Media Editor: Brian Snapp
Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appro-
priate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2002 by Geoff Ingram. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, Email:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:
Ingram, Geoff, 1962-

High performance Oracle : proven methods for achieving optimum
performance and availability / Geoff Ingram.

p. cm.
“Wiley Computer Publishing.”
Includes index.

ISBN 0-471-22436-7
1. Oracle (Computer file) 2. Relational databases. 3. Software

maintenance. I. Title.
QA76.9.D3 I53422 2002
005.75'85--dc21

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

This book is dedicated to my wife Renata; to my children Rosalind,
Alexandra, Alice, and Sebastian; to my father Vincent;

and to the memory of my mother Muriel.

Acknowledgments

Special thanks go to Mark Clark, whose vision ultimately made the book possible, and
to Steve Shaw.

Special thanks also go to Bob Elliott and Emilie Herman at Wiley Publishing, Inc.
Bob turned the book proposal into something of a book in its own right. Hopefully the
end result justifies that. Emilie, in her own words, “edits with a heavy red pen,” which
is not actually as painful as it sounds and has definitely led to more concise content,
better organization, and improved readability. Thanks also to John Atkins for the final
polish, and Brian Snapp.

Honorable mentions go to colleagues and others, past and present, whose input
influenced the content in large and small ways. In no particular order: Wai Lee, Glen
Howell, Sheck Cho, Chris Chandler, Nisit Kotecha, Anoop Marld, Richard Dutton,
Arthur Muir, Susan Gruebel, Jose Garcia, Matt Solomon, Pradeep Malhotra, Michael
Wang, Ping Huang, Anna Lam, Peter Chellone, Mike Bean, Tony Way, Andy Knight,
Richard Kirkwood, Jenny Scott, Iain Beckingham, Carlos Tubau-Gamble, Simon Gre-
gory, Adrian Cockcroft, and Ray Leah.

Finally, thanks go to all those Oracle technologists, such as Thomas Kyte and
Jonathan Lewis, who contribute to bulletin boards and news groups on the Web, both
at Oracle and elsewhere. Without such people prepared to share their expertise free of
charge, the Oracle world would be a much poorer place.

TE
AM
FL
Y

Team-Fly®

Contents

Introduction . xxv

Part One Fundamentals of an Oracle Configuration 1

Chapter 1 Installing Oracle . 3

The Oracle DBA Group Cluster . 5

UNIX System Requirements . 5
Oracle UNIX Account Details . 6
Oracle UNIX Memory Requirements . 7
Oracle UNIX Kernel Requirements . 7
Operating System Release . 7
Oracle Software Installation Directory . 7

Installation of Oracle Software via NFS . 9
Cloning the Installed Oracle Software . 13

Performing a Silent Installation . 14
Running Oracle Software over NFS . 15

Installing Client Software with Microsoft Systems
Management Server (SMS) . 16
Using SMS Packages . 17
Running Terminal Server Applications . 20

Summary . 22

Chapter 2 Database Creation . 23

An Overview of Oracle File Types . 24
Control Files . 24
Tablespaces . 24

Online Redo Log Files . 25
Archived Redo Logs . 25
Rollback Segments . 26
Temporary Segments . 27

Traditional Oracle Physical Layout . 28

Oracle Layout for Manageability . 28
AUTOEXTEND . 28
Archive Logs . 29
Database Restores . 29
Database Backups and Exports . 29
Duplicate Databases on the Same Server . 29

OMF . 30
Control Files . 31
Online Redo Logs . 32
Tablespaces . 33

Server Parameter Files (spfiles) . 34

Oracle Layout for Performance . 38
RAID Overview . 38
Raw Partitions versus UNIX File Systems . 41

Tablespaces and Fragmentation . 43

SANs and NAS . 45

Naming Standards and Physical Layout . 47

Choosing a DB_BLOCK SIZE Value . 48

Choosing a Storage Character Set . 49

Creating the Database . 50

Summary . 51

Chapter 3 Configuring Oracle Networking . 53

Oracle Networking Fundamentals . 54

Understanding Dynamic Registration . 55

Using Failover and Load Balancing . 59
Failover to a Different Server . 59
Understanding When Failover Takes Place 61
Failover to an Instance on the Same Server 62
Failover with Load Balancing . 63

Running an Oracle Names Server . 65
A Naming Standard for Oracle Databases . 65
The DB_DOMAIN Parameter . 68
GLOBAL_NAME and GLOBAL_NAMES . 68
NAMES.DEFAULT_DOMAIN . 70
Using an Oracle Names Service on the Client 71
Building an Oracle Names Server . 73

x Contents

Other Oracle Names Configurations . 75
Oracle Names Support Tips . 76

Using LDAP to Resolve Names . 77
Migrating to LDAP . 78

Using Shared Server . 79
Configuring Dispatchers . 79
Connection Pooling . 80
Specifying Shared and Dedicated Server Connections 80

Using Transparent Gateways . 81
Server Configuration . 81
Client Configuration . 82

Summary . 83

Chapter 4 Environment Standards and Tools . 85

Setting a Login Environment . 86

The set_env Alias . 88

Using Perl for Scripts . 90

Building a Perl Interpreter . 90
Installing the C Compiler . 91
Building the Perl Interpreter . 92

Adding Oracle Support to Perl . 93

Standard Tools . 94
All Environments Are Based on oratab . 94
Command-Line Arguments . 95
Logging . 95
Single Instance at a Time . 95
Stopping a Script from Running . 96
Predictable Return Codes . 97

Standard Tools Reference . 97
dbcool_db_up.pl . 97
dbcool_db_start.pl . 98
dbcool_db_shut.pl . 98
dbcool_db_restart.pl . 98
dbcool_ora_startup.pl . 99
dbcool_ora_shutdown.pl . 99

Integrating Oracle Services with UNIX . 100

Configuring and Running Apache . 100
Starting and Stopping Apache . 101
The CGI . 101
Virtual Directories . 101
Web Enabling a Perl Script . 102
Security . 102

Summary . 103

Contents xi

Chapter 5 Securing Your Database . 105

Database Logon Authentication Options 106
Authentication by Database-Encrypted Password 106
External Authentication by the Operating System 106
External Authentication Using a Token . 107
External Authentication with Single Sign-On 108

Using Password Management Policies . 109

Simplifying User Management . 111

Using SET ROLE for Application Security 119

Preventing Application Access . 121

Row-Level Access Control . 124

Preventing Network Access . 126

Roles versus GRANT and REVOKE . 126

Using a Password File . 129

Protecting the Data Dictionary . 129

Oracle Names Security . 130

Oracle Listener Security . 130

Performing a Database Security Audit . 131

Summary . 133

Part Two Designing Fast and Supportable Applications 135

Chapter 6 Designing Supportable Applications . 137

Creating Supportable SQL . 138
SQL Layout for Readability . 138
Use Table Aliases . 139
Use Explicit Constraint Names . 140
Use Meaningful Object Names . 141

Trace Facilities . 141

Error Reporting and Logging . 142
Error Logging Using Files . 144
Error Logging Using Tables . 145

Run Time Configuration . 146

Reporting on Application Status . 147

Restartability . 149
Resumable Operations in Oracle9i . 149
Constraining Undo Requirements . 150

Summary . 151

xii Contents

Chapter 7 Choosing Third-Party Software . 153

Perform Vendor Health Checks . 154

Meet with the Vendor . 154

Ask for Reference Sites . 155

Evaluate the Application Development Environment 155
Choosing the Oracle Version and Features 156
Choosing a Development Language . 157
Regression Testing . 157
Naming Standards . 158
Security . 158

Request Application Benchmarks . 158

Ensure That Space Management Procedures Exist 159

Review the Vendor’s High Availability Solution 159

Evaluate Product Installation . 159

Check Documentation Quality . 160

Check Supportability . 160

Formal Evaluation of Third-Party Software 161

Summary . 163

Part Three Performance Management and
Tuning Techniques . 165

Chapter 8 End-to-End Performance Management 167

The Usercentric View of Performance . 168

The Challenge of End-to-End Performance Management 168
A Sample Three-tier Transaction . 170

The Cost of Performance Problems . 171
The Costs of Identifying a Performance Problem 171
The Cost of Fixing a Performance Problem 172

Instrumenting Middle-tier Code . 173

Instrumenting Database Code . 175

Quantifying the Return on Investment . 179

Summary . 180

Chapter 9 Fundamentals of SQL Tuning . 181

Tuning and the Application Lifecycle . 182

Statistics and Events . 183
Essential Statistics and Events . 184

Contents xiii

Tools for Measuring Events and Statistics 187
SQL*Plus . 187
DbCool . 189
TKPROF . 191

The Buffer Cache . 196
Viewing the Buffer Cache Contents . 197
The Buffer Cache Hit Ratio . 198
The LRU Algorithm and Default Cache Behavior 199
The LRU Algorithm and Table Scan Cache Behavior 199
Controlling the Cache . 200
Full Table Scans and the High Watermark (HWM) 201

Detecting Full Table Scans . 202

SQL Tuning Goals . 204

Generating Execution Plans . 206

Using Parallel Operations . 211

Identifying Which SQL to Tune . 215

Making SQL Faster . 217
Rewriting SQL . 218
SQL Rewrite Tools . 220
Adding or Changing Indexes . 220
Changing the Optimizer Mode . 221
Modifying Statistics . 222
Using SQL HINTs . 222
Stored Outlines . 223

Performance and Cursors . 224
Cursors and the Shared Pool . 226
Reducing Parse Calls by SQL Sharing on the Server 230
Using Cursor Variables . 232

Tuning SQL for the Network . 235
Using Bulk Operations in PL/SQL . 235

Defining Server Memory Requirements . 237

Summary . 239

Chapter 10 Collecting and Using Optimizer Statistics 241

Basic Table and Index Statistics . 242

Column Statistics and Data Skew . 243

The ANALYZE Command . 246

Statistics Collection with DBMS_STATS 247

System Statistics in Oracle9i . 251

Changing Statistics Manually . 254

Using Dynamic Statistics . 256

xiv Contents

Statistics Tables . 256

Summary . 257

Chapter 11 Partitioning . 259

Partitioning Overview . 260

Table-Partitioning Methods . 261
Range Partitioning . 261
List Partitioning . 264
Hash Partitioning . 265
Composite Partitioning . 267

Partitioned Indexes . 268

Summary . 276

Chapter 12 Managing Indexes . 279

The Cost of Index Management . 280

Understanding Index Types . 281
B*tree Indexes . 281
Bitmap Indexes . 282
Bitmap Join Indexes (BJIs) . 284
Index-Organized Tables (IOTs) . 285

Identifying Columns to Index . 287
Indexing SELECT List Columns . 288
Using Index Scans . 289

Identifying Unused Indexes . 290
Indexes and Foreign Keys . 291
Determining Index Usage in Oracle8i . 291
Determining Index Usage in Oracle9i . 294

When to Rebuild Indexes . 296

Building Function-Based Indexes . 300

Summary . 301

Chapter 13 Managing Space Growth . 303

Collecting Space Growth Information . 304
Mapping Oracle Segments to Disk Storage Locations 305
Tablespace Space Collection . 305
Segment Space Collection . 311

Presentating Space-Growth Information 313
Production and Nonproduction Space . 313
Charting Space Usage with Excel . 315

Identifying Excessive Free Space . 318

Identifying Wasted Space in Tables . 320

The Effects of Row Chaining and Migration 323

Contents xv

Avoiding Wasted Space . 324

Summary . 326

Chapter 14 Stress Testing and Benchmarks . 327

Basic Stress Testing . 328

The TPC-C Benchmark . 331

Comparing Two Hardware Platforms . 334
A Baseline Performance Comparison Using Import 335
A CPU Performance Comparison . 337

Summary . 342

Chapter 15 Server Consolidation and Resource Management 343

Server Consolidation Overview . 344

Oracle Profiles . 345

Using Oracle Database Resource Manager 346

Using SRM . 351

Using IBM zSeries . 353

Summary . 354

Chapter 16 Selecting and Using Performance Management Tools 357

Performance Management Roles . 358
Who Is Responsible for Performance Management? 359

Setting Performance Goals . 360

Standardization of Approach . 360

Tool Requirements . 360
Mandatory Requirements . 361
Optional Requirements . 363
Summary of Requirements for a Performance

Management Tool . 365

Using Oracle Expert . 366
Setting the Scope . 366
Collection . 369
Recommendations . 369

Using Precise/Indepth . 372
Time Intervals . 374

Comparing Oracle Expert and Precise/Indepth 375

Summary . 378

xvi Contents

Part Four Backup, Restore, and Recovery 381

Chapter 17 Fundamentals of Oracle Recovery . 383

Understanding the SCN . 384
SCN and Checkpoints . 384
SCN after a Clean Shutdown . 386
SCN after an Instance Crash . 387
Recovery from an Instance Crash . 388
Recovery from a Media Failure . 388
Recovery from a Media Failure Using a Backup Control File 390
How Oracle Applies Changes during Recovery 392
Setting Bounds on Instance Recovery Time 392
Fast-Start On-Demand Rollback . 393
SCN Values during Online Backup . 393

Using and Viewing Oracle Redo . 393
Using LogMiner to View Redo . 394

Using Flashback Query to Recover without a Restore 399

Summary . 401

Chapter 18 Backup and Recovery Using Recovery Manager (RMAN) 403

Oracle Backup and Recovery Requirements 404
The Risks of In-House Scripts . 405
Less-Than-Optimal Performance . 406
Lack of Automation . 407
High Maintenance . 407
Lack of Standards . 407

A Simple Backup Using RMAN . 407

Checking That a Backup Was Successful 410

Using a Backup Catalog . 411
Creating the Catalog . 412
Specifying the Catalog for Backups . 413

Connecting to the Target Using Oracle Net 414

Duplicating a Database . 415
Understanding DBID and Catalog Uniqueness 415
Using the RMAN DUPLICATE Command 417
The DBNEWID Utility . 420

Generating Backup Scripts . 420

Managing Archived Redo Logs on Disk . 423
Checking Archivelog Backups . 423
Synchronizing Archived Redo Log Backup Information 424
Archived Redo Log Naming Standards . 425

Contents xvii

Interfacing to Legato . 425
Installing Legato NetWorker 3 for Oracle . 426
Legato Client Resource Definitions . 427
Creating a Save Group . 429
Legato-Scheduled Backup Scripts . 430
Full Sequence of Operations for a Scheduled Backup 432
Miscellaneous Legato Environment Symbols 432
Querying the Media Manager . 433
Increasing Backup Throughput . 433
Saving Backup Space . 434

Performing RMAN Restore . 434
A Simple Restore and Recovery . 434
Using the CONTROLFILE AUTOBACKUP Command 435
Restoring Noncurrent Files . 437
Restoring Files to Different Names and Locations 438
Managing Disk Backups . 439
Disaster Recovery Restore with Legato . 439

Backup and Restore Troubleshooting . 441
Monitoring the Backup Progress . 442
Stopping a Backup . 442
Testing RMAN Backups and Restores . 443
Debugging a Legato Backup . 443

Summary . 443

Chapter 19 Backup and Restore Using Export and Import 445

Running Pre-Export Checks . 446

Using Parameter Files for Export . 446
Export Modes . 447
Using the Compress Option . 447
Exporting to a Point in Time . 448

Maximizing Export Performance Using Direct Path 450
Security Considerations for Direct Path . 451

Controlling the Size of Export Files . 451

National Language Considerations for Export and Import 454

Using Transportable Tablespaces . 455
A Simple Example . 456
Understanding the Self-Contained Data Requirement 457

Running Import for Maximum Performance 459
Untuned Import Performance . 459
Avoiding Disk Sorts . 460
Avoiding Log Switch Waits . 461
Tuning the Log Buffer . 463
Using Array Inserts and Commits . 463
Using NOLOGGING to Reduce Redo Size 465

xviii Contents

TE
AM
FL
Y

Team-Fly®

Importing when Objects Exist . 466
Handling Import Space Errors . 467
ANALYZE Considerations . 468
Post-Import Checks . 468

Summary . 468

Part Five High Availability (HA) Solutions 471

Chapter 20 VERITAS High Availability (HA) for Oracle 473

VERITAS and ODM . 474

VxFS and VERITAS Volume Manager . 475

VERITAS Storage Rollback . 476
Storage Checkpoints . 477
VxDBA . 477

VCS . 478

VERITAS FlashSnap . 482

VVRF . 482

Summary . 484

Chapter 21 Oracle Replication . 485

Multimaster versus Standby Databases . 486

Synchronous and Asynchronous Data Propagation 486

Conflict Resolution and Notification . 488

Replication Prerequisites . 489

Replication and Sequences . 490

Creating a Replication Configuration . 492
Creating the Standby Database . 492
Network Configuration . 493
Using Replication Manager . 494
Scheduled Link and Scheduled Purge Operations 501
Change Management for Replication . 502

Summary . 502

Chapter 22 Oracle Real Application Clusters . 505

Missing Features in OPS . 506

Components of an RAC Configuration . 507
Database Components in an RAC Configuration 507
Cache Fusion Described . 507
Configuring the Interconnect . 509
Installation Notes . 510
Parameter File Configuration . 511
The Cluster Manager . 514

Contents xix

Starting and Stopping Instances . 514
Networking Configuration for RAC . 515
Transparent Application Failover Configuration 517
Identifying Active Instances . 519

Choosing an Oracle Operating System . 519
Why Linux? . 521
Oracle And Linux . 521

Summary . 523

Chapter 23 Protecting Data Using Standby Databases 525

Running a Physical Standby Database . 526
Prerequisites for Running a Physical Standby Database 526
NOLOGGING Considerations . 529
Creating a Physical Standby Database . 530
Running an Oracle8i Physical Standby Database 534

Running a Physical Standby Database Using
Oracle Data Guard . 541

Running an Oracle9i Logical Standby Database 550
Prerequisites for Running Logical Standby 550
Logical Standby Initialization Parameters 552
Creating the Logical Standby . 553
Applying Redo on the Logical Standby . 556
Logical Standby Failover . 557

Enhancing Standby Management Using Oracle9i

Data Guard Manager . 558

Summary . 559

Part Six Maintaining the Oracle System 561

Chapter 24 Guidelines for Health Checks and Monitoring 563

Defining and Implementing Health Checks 564
Physical Layout Checks . 565
Tablespace Checks . 569

Defining Monitoring Requirements . 575
Database Not Available . 576
Segments That Can’t Extend . 576
Invalid Objects . 578
Files in Recovery Mode . 578
Datafiles Offline . 578
Failing and Broken Jobs . 579
Disabled Constraints and Triggers . 579
Distributed Transactions Awaiting Recovery 579
Full Rollback Segments . 580

xx Contents

Resumable Space Allocation Errors in Oracle9i 580
Alert Log Monitoring . 580

Implementing Monitoring with Database Jobs 581
Creating and Scheduling Jobs . 581
Customizing Job Intervals . 584
Alerting with Email . 585

Implementing Monitoring with OEM . 587
SNMP Frameworks . 588
OIA Architecture . 588
Installing and Running OMS . 589
The OraTcl Scripting Language . 590
Discovering Databases and Services . 591
Creating Events . 593
Using Email Notification in OEM . 596
Fixit Jobs . 598

Summary . 598

Chapter 25 Auditing Techniques . 599

Enabling the Database Audit Trail . 600
Relocating the Audit Trail . 601
Changing Audit Trail Ownership . 602

Understanding the Audit Session Identifier 603

Choosing Audit Options . 604
Audit Trail Views . 604
Auditing BY ACCESS and BY SESSION . 604
Statement and Privilege Auditing . 605
Object Auditing . 608
Recommended Auditing Options . 609

SYSDBA Auditing . 610

Identifying Suspicious Activity . 610

Other Uses of Audit Information . 612

Using Database Triggers for Auditing . 614

Fine-grained Auditing in Oracle9i . 615

Summary . 617

Chapter 26 Migration and Upgrade . 619

Migration Prerequisites . 620
Decision to Upgrade . 620
Third-Party Software . 620
Oracle9i Installation . 620
Resolution of Alerts . 620
Replication . 621

Contents xxi

ARCHIVELOG Mode . 621
Files in AUTOEXTEND Mode . 621
Operating System Versions . 621
Hard-Coded Oracle Environments . 621
Plan Stability . 622
Database Character Set . 622
Test Runs . 622
Compatibility and Parameters . 622
Timings . 623
Backup and Restore . 623

Migration Using ODMA . 624

Post-Migration Tasks . 626

Summary . 628

Chapter 27 Working Effectively with Oracle Support 629

Using Metalink to Meet Support Requirements 630
Problem Reporting via the Web . 630
Single Point of Problem Ownership . 631
24�7 Availability of Metalink . 631

Oracle Expectations of Customers . 632
Role of the Support Analyst and Escalation 633
Need for a Reproducible Test Case . 634
Using STATSPACK to Address Performance Issues 635
Using the Remote Diagnostic Agent . 636

Choosing Your Oracle Product Set . 637

Summary . 640

Chapter 28 Troubleshooting Oracle DBMS Problems 641

Understanding the UNIX System Log . 641

Identifying Oracle Shared Memory . 642

Using UNIX Kernel Tracing . 643
Tracing Database Startup Problems . 643
Locating the Legato Media Interface in Oracle9i 645
Tracing External Procedures . 646

Using Network Tracing . 647
Operating System Network Tracing . 647
Oracle Net Tracing . 650

Using Oracle Event Tracing . 652
Event Tracing for Errors . 652
Event Tracing for Performance Problems 656
Determining Which Events Are Enabled . 656

Operating System Performance Diagnostics 657
Identification of Top CPU Processes . 658

xxii Contents

Memory Utilization . 658
Disk I/O . 660
Network Performance . 660
SymbEL . 661
DBA Access to Server Performance Metrics 661

Summary . 663

Index . 665

Contents xxiii

Introduction

The purpose of this book is to help organizations deploy Oracle8i and Oracle9i (includ-
ing Release 2) systems that meet the key end-user requirements of performance and
availability at the same time. The ability to deliver on these twin requirements requires
a holistic approach to the design and build of the end-to-end Oracle system, and this
holistic approach is at the heart of this book. Too often, insufficient emphasis is given
to components that are not related to the server. For example, consider a scenario
where an Oracle end-user application uses a local configuration file (tnsnames.ora) to
locate an Oracle database. If the database relocates to a new server one weekend, and
the configuration file change is overlooked, end users won’t be able to connect on
Monday morning. The database may as well be down. From the end-user perspective,
it is. In the worst case, the outage could affect the organization’s bottom line. Appro-
priate network configuration, based on a centralized naming service, is a critical suc-
cess factor for delivering availability. A similar emphasis is required on all aspects of
the Oracle configuration, from initial installation to production support, in order to
meet performance and availability requirements.

Overview of the Book and Technology

One of the strengths and weaknesses of Oracle is its sheer flexibility. This is a strength
because you can always (or nearly always) achieve your goal. It’s a weakness because
the number of options available for meeting a straightforward requirement can be
overwhelming and the need to evaluate all the available options can delay deploy-
ment. For example, if you need a high-availability Oracle system, do you choose Ora-
cle replication, Real Application Clusters (RAC), or Oracle Data Guard, or a
combination of all three?

In contrast, Microsoft SQL Server reduces choices for out-of-the-box deployment
through the use of wizards, leading to faster delivery of applications with lower

demands on the database administrator’s (DBA’s) time for cases where the more eso-
teric features are not required. Oracle certainly provides more wizards than ever
before, especially in Oracle9i Release 2, in order to assist the user in choosing the right
approach for the problem in hand, but the Microsoft wizard-for-everything approach
isn’t there yet. What can help is information on how to choose the right approach.

This book sets out to reduce deployment time by choosing approaches in each area
of significance that are proven to work in the real world. In some cases, the approach is
based on a qualitative discussion of requirements against available features. In others,
it requires a step-by-step, hands-on example or code snippet. I have tried to avoid pro-
viding page after page of code, while at the same time attempting to make code exam-
ples self-contained.

Oracle server command-line examples are based on Sun Solaris, which is the most
popular platform for commercial Oracle deployment on UNIX today. These command-
line examples are for illustration only and shouldn’t be viewed as reflecting a personal
preference for Sun. In any case, due to the POSIX compliance of most UNIX flavors
today, the examples are pretty much interoperable with most popular UNIX systems
on which Oracle is deployed. For example,nearly all of them will work unchanged on
Linux. The sheer openness of Oracle’s architecture means that many third-party tools
exist for meeting performance and availability requirements. For example, VERITAS
provides offerings that potentially deliver both enhanced performance and availability
for Oracle. These are covered in Chapter 20. When I recommend or cover a third-party
vendor tool, it is based on a carefully chosen set of vendor-neutral requirements. I also
try to cover Oracle’s own offering as a comparison. In some cases, such as Oracle
Change Manager (which is covered in a separate white paper on the companion Web
site for this book), Oracle provides the best-of-breed offering. However, that doesn’t
mean that there aren’t other tools that could do the job.

What’s most important when choosing third-party software for your Oracle deploy-
ment operating system is a complete set of requirements. Once the requirements are
clear, there are usually several options available to meet them at varying price points.
If the requirements are correct, you can choose a solution to fit your budget.

I’ve emphasized where Oracle features are different or improved in Oracle9i com-
pared to Oracle8i. This is a significant task in itself because Oracle9i contains many
great new features to enhance performance and availability, including the following:

■■ Resumable space management, which enables operations to suspend rather
than abort when space shortages exist. As a result, processing can work the
first time rather than following the traditional (and time-consuming) abort and
then repeat approach.

■■ Flashback query, which enables data to be viewed at a previous point in time
without requiring an expensive restore and recover operation.

■■ Configurable DBA-controlled undo retention means that the legendary ORA-
01555 “snapshot too old . . . “ error becomes a thing of the past.

■■ Standby features in Oracle9i Data Guard (including the long-awaited logical
standby in Release 2) represent a quantum leap forward in providing Oracle
data availability (without data loss) in the face of disasters.

xxvi Introduction

■■ Oracle RAC, which provides a huge step toward delivering performance and
availability at the same time. When deployed on Linux running on Intel, the
price/performance combination becomes very attractive.

How This Book Is Organized

This book is divided into six parts, which are intended to cover subjects in the order
you might address them when setting up an Oracle configuration from scratch. In
order to get the most out of the book, the best approach is to read it from cover to cover
in sequential order. The detail is important, and a lack of attention to detail in all rele-
vant areas of the technology is—based on personal experience—a significant reason
why Oracle systems don’t meet end-user performance and availability requirements.

For example, Chapter 16, which discusses using performance management tools, is
somewhat meaningless without first understanding end-to-end performance manage-
ment (see Chapter 8), the factors that most influence performance (see Chapter 9), and
the definition of criteria for choosing performance management tools (also Chapter
16). Similarly, production tasks (which are covered in Part Six) are likely to be carried
out more efficiently with reduced outages based on a standard Oracle network config-
uration (see Chapter 3) and server configuration (which is covered in Part One).

In the final analysis, all the subjects covered are related. Some of the relationships
are obvious. You might only become aware of others when it’s too late, unless you
understand them in advance. For example, the use of unrecoverable (NOLOGGING)
operations can speed up the performance of your production system. If you run a
standby database without understanding the side effects of NOLOGGING operations,
your standby may be unusable when you need to activate it, following a disaster. As
another example, consider a disaster that requires you to reinstall your Oracle soft-
ware. If you can’t find the CDs (or they were destroyed), you have a problem. Maybe
you can restore from tape, if that option is available. However, if you follow the rec-
ommendations in Chapter 1, your complete Oracle software library will always be
available on disk across redundant sites. Therefore, it’s not really appropriate to say
that some chapters contain information that’s more important than others. But it
would be more convenient.

The following is a list of all the chapters and the key topics that each one covers. Part
One covers the fundamentals of an Oracle configuration:

Chapter 1: Installing Oracle. Topics covered include UNIX configuration for
Oracle, installation via the network file system (NFS), silent installation using
the Oracle Installer, and client installation using Microsoft Systems Management
Server.

Chapter 2: Database Creation. Topics covered include a new layout approach for
manageability based on Oracle-Managed Files (OMF), the use of Oracle9i auto-
matic undo management and server parameter files, Redundant Array of Inde-
pendent Disks (RAID) layout for performance, raw partitions versus file
systems, and the benefits of storage area networks (SANs) and network attached
storage (NAS).

Introduction xxvii

Chapter 3: Configuring Oracle Networking. Topics covered include networking
fundamentals, dynamic registration, network failover and load balancing, com-
plete instructions for running Oracle Names, considerations for running Light-
weight Directory Access Protocol (LDAP), and shared server and transparent
gateway configuration.

Chapter 4: Environment Standards and Tools. Topics covered include how to set
a standard login environment, how to stop and start Oracle services using some
downloadable Perl scripts, and Apache Web server basics for DBAs.

Chapter 5: Securing Your Database. Topics covered include logon authentication
options, password management policies, reducing the cost of user administra-
tion through Oracle9i enterprise users and Oracle Internet Directory, application
security, and how to perform a security audit using a downloadable script.

Part Two shows you how to design fast and supportable applications:

Chapter 6: Designing Supportable Applications. Topics covered include the
provision of tracing facilities, error reporting and logging, run-time application
configuration, and avoiding outages using Oracle9i resumable operations.

Chapter 7: Choosing Third-Party Software. Topics covered include a checklist of
all the things you need to consider to ensure that the third-party software you
purchase meets your immediate and future needs.

Part Three offers performance management and tuning techniques:

Chapter 8: End-to-End Performance Management. Topics covered include the
challenges of end-to-end performance management including a detailed exam-
ple of a three-tier application, the cost of identifying and fixing performance
issues, the measurement and collection of transaction times, and an estimate of
the return on investment.

Chapter 9: Fundamentals of SQL Tuning. Topics covered include tuning and its
place in the application lifecycle, Oracle statistics and events, tools for measur-
ing statistics and events, how to view the Oracle buffer cache and control its
contents, how to detect full table scans and the SQL performing them, viewing
and stepping through SQL execution plans, parallel operations, identifying
which SQL to tune, making SQL faster with and without code changes through
the use of hints and stored outlines, tuning SQL for the network, and defining
server memory requirements using the advisories in Oracle9i Release 2.

Chapter 10: Collecting and Using Optimizer Statistics. Topics covered include
basic table and index statistics, column statistics and skewed data, the ANA-
LYZE command, statistics collection with DBMS_STATS, system statistics in
Oracle9i, and statistics tables.

Chapter 11: Partitioning. Topics covered include an overview of partitioning per-
formance and availability features, partition creation examples using range, list,
hash, and composite methods, partition indexing techniques, and availability
considerations for global indexes.

xxviii Introduction

TE
AM
FL
Y

Team-Fly®

Chapter 12: Managing Indexes. Topics covered include estimating the cost of
index management, understanding index types, identifying which columns to
index including Oracle9i skip scans, identifying unused indexes in Oracle8i and
Oracle9i, determining when to rebuild indexes, and building function-based
indexes.

Chapter 13: Managing Space Growth. Topics covered include collecting space
growth information, presenting space growth information using Microsoft Excel
charts, identifying space waste, minimizing space waste, measuring the effects
of row migration and chaining, and correcting space waste.

Chapter 14: Stress Testing and Benchmarks. Topics covered include how to run
a basic stress test, an overview of the TPC-C benchmark, and the use of a bench-
mark to compare Oracle on running two operating systems.

Chapter 15: Server Consolidation and Resource Management. Topics covered
include an overview of server consolidation, the use of Oracle profiles for
resource control of a single Oracle session, the use of Oracle Resource Manager
for resource control of an Oracle instance, the use of Solaris Resource Manager
(SRM) for resource control on a Sun server, and server consolidation using IBM
zSeries mainframes.

Chapter 16: Selecting and Using Performance Management Tools. Topics cov-
ered include defining roles and responsibilities for those involved in perfor-
mance management, setting performance goals and tool requirements, using
Oracle Expert and Precise/Indepth, and comparing Oracle Expert with Pre-
cise/Indepth.

Part Four covers the best way to perform backups, restores, and recoveries:

Chapter 17: Fundamentals of Oracle Recovery. Topics covered include under-
standing the system change number (SCN), recovering from an instance crash,
recovering from a media failure, using and viewing Oracle redo with LogMiner,
and using Oracle9i Flashback Query to recover without a restore.

Chapter 18: Backup and Recovery Using Recovery Manager (RMAN). Topics
covered include backup and recovery requirements, how RMAN addresses the
risks of in-house scripts, a simple backup using RMAN, backing up using a
backup catalog, cloning a database with the RMAN DUPLICATE command,
managing archived redo logs on disk, using RMAN with Legato NetWorker,
maximizing backup throughput, performing RMAN restore, and backup and
restore troubleshooting.

Chapter 19: Backup and Restore Using Export and Import. Topics covered
include using preexport checks to reduce the chance of import errors, using
parameter files for export, national language support (NLS) considerations,
exporting to a point in time using Oracle9i Flashback Query, maximizing export
performance using direct path, identifying limitations and security considera-
tions for direct path, controlling the size of export files using UNIX file compres-
sion, using transportable tablespaces to speed up restore, and running import
for maximum performance including an import benchmark.

Introduction xxix

Part Five covers high-availability solutions:

Chapter 20: VERITAS High Availability (HA) for Oracle. Topics covered
include Oracle Disk Manager, and an overview of the following VERITAS prod-
ucts and features with respect to Oracle HA—VERITAS File System (VxFS) and
Volume Manager, Storage Rollback, VERITAS Cluster Server (VCS), FlashSnap,
and VERITAS Volume Replication Facility (VVRF).

Chapter 21: Oracle Replication. Topics covered include a comparison of multi-
master replication and standby database for disaster recovery, synchronous and
asynchronous replication, conflict resolution and notification, issues associated
with sequences in a replicated environment, prerequisites for a multimaster con-
figuration, and the setup and execution of a multimaster configuration using
Oracle Enterprise Manager (OEM).

Chapter 22: Real Application Clusters (RAC). Topics covered include the func-
tionality gaps in Oracle Parallel Server (OPS) that RAC solves, the components
of a RAC configuration, a description of cache fusion improvements, installation
improvements and manageability enhancements, interconnect configuration,
parameter differences between RAC and single instance configuration, a com-
plete set of initialization parameters for a two-node cluster, the client network
configuration for load balancing and failover, considerations for choosing your
Oracle operating system, and choosing to run RAC on Linux.

Chapter 23: Protecting Data Using Standby Databases. Topics covered include
creating and running a physical standby database in Oracle8i, creating and run-
ning a physical standby database using Oracle9i Data Guard, creating and run-
ning a logical standby database using Oracle9i Data Guard, and improving
standby management using Oracle9i Data Guard Manager and broker.

Part Six shows you how to maintain your Oracle system:

Chapter 24: Guidelines for Health Checks and Monitoring. Topics covered
include health checks for physical layout, health checks for tablespace and roll-
back segment definitions, defining monitoring requirements, implementing
monitoring using database jobs, sending alerts from within the database using
UNIX sendmail, implementing monitoring using OEM and Oracle Intelligent
Agent (OIA), creating customized monitoring scripts using Tool Control Lan-
guage (Tcl), and performing fixit jobs.

Chapter 25: Auditing Techniques. Topics covered include enabling the database
audit trail, relocating the audit trail and changing ownership, understanding the
audit session identifier, choosing audit options, identifying suspicious activity,
using the audit trail to track input/output (I/O) trends, using triggers to audit
data content changes, and using fine-grained access control to audit SELECT
statements in Oracle9i using the DBMS_FGA package.

Chapter 26: Migration and Upgrade. Topics covered include a migration prereq-
uisites checklist, using Oracle Data Migration Assistant (ODMA) to perform
migration, and post-migration tasks.

xxx Introduction

Chapter 27: Working Effectively with Oracle Support. Topics covered include
benefits and drawbacks of problem reporting via the Web, the Oracle Support
Services (OSS) view of the customer’s role in the support process, the escalation
process, the use of Oracle STATSPACK and Remote Diagnostic Agent to stan-
dardize support, and the choice of your Oracle product set for supportability.

Chapter 28: Troubleshooting Oracle DBMS Problems. Topics covered include
understanding the UNIX system log, identifying Oracle shared memory, using
UNIX kernel tracing, using Oracle and operating system network tracing, using
Oracle event tracing, and utilizing operating system performance diagnostics.

Who Should Read This Book?

One theme that emerges strongly from the book is that both DBAs and developers
have a strong influence on whether systems meet performance and availability goals.
Organizations where developers and DBAs have a rigid view of their respective roles
and responsibilities often deliver production applications that don’t meet end-user
requirements.

At different times, I’ve been both a professional Oracle DBA and a product devel-
oper at Oracle Corporation, so I’ve seen the situation from both sides. The best
approach is one where an organization employs Oracle professionals with a mixture of
skills, where some have an emphasis on development and others have an emphasis on
production DBA support. A secondary goal of this book is to try to break down the tra-
ditional walls between developers and DBAs by giving visibility to the kind of tasks
that each performs. From my experience, a poor relationship between DBA and devel-
opment groups often results from a poor understanding of what the other group does.

Therefore, this book is intended for both DBAs and developers of all levels. In many
ways, the term advanced in the Oracle world is something of a misnomer. The scope of
what Oracle provides is very extensive: There’s a lot to know, but most of it is not espe-
cially complex. Anyone who understands Oracle fundamentals can understand and
benefit from the contents of this book and Oracle’s own Concepts Guide is a great place
to start. The challenge comes in deploying systems based on techniques that work
from the many techniques available. This book sets out to provide a fast track to
deploying systems with performance and availability built in.

Tools You Will Need

This book contains many SQL code examples, and you need a suitable tool to execute
them. DbCool (www.dbcool.com) is a tool you might consider using as a companion to
this book. It was used to run all SQL and generate all SQL output referenced in the text.
One advantage of DbCool is that all SQL output column widths are automatically
sized to fit the width of the data in output. Another is that output results can be
grouped and sorted on the client without re-executing the original SQL. There is no

Introduction xxxi

obligation to use DbCool, which is free and runs on Windows platforms. SQL*Plus and
iSQL*Plus work just as well in many cases, except in situations where line-mode out-
put is incompatible with the requirement, such as stepping through a SQL execution
plan. All SQL examples in the text contain the statement terminator required when you
submit SQL or PL/SQL from SQL*Plus.

Some examples are based on C code, and you will need a C compiler to build the
shared libraries from source code. All code compiles with the free Gnu C compiler (gcc).

It’s assumed that you have access to an Oracle database running the Oracle Enter-
prise Edition, as this is required for some of the more advanced Oracle features. It is
noted in the text when the Enterprise Edition is required.

What’s on the Companion Web Site?

The companion Web site for this book (www.wiley.com/compbooks/ingram) includes
updates on techniques found in the book, links to useful resources, and full source
code for several examples referenced in this book, including the following:

dbcool_perl.tar. A UNIX tar file containing all the scripts required to implement
the Perl-based Oracle management scripts covered in Chapter 4.

dbcool_mon.sql. A PL/SQL package for the collection of Oracle events and sta-
tistics metrics

dbcool_tkprof.sql and dbcool_tkprof.c. A PL/SQL package and external proce-
dure to enable TKPROF to be executed from a client-side application

dbcool_audit.pl. A Perl script to provide a basic database security audit

dbcool_rman_gen.pl and dbcool_legato_gen.pl. Perl scripts to generate a selec-
tion of different backup types for Oracle RMAN backups and Legato Networker
for Oracle backups.

dbcool_space.sql and dbcool_space.xls. A PL/SQL package for collecting data-
base space growth statistics and an Excel spreadsheet for producing JPEG
images charting growth based on the collected statistics

dbcool_utl.sql and dbcool_utl.c. A PL/SQL package and external C code for
performing UNIX-style pattern matching in SQL, and presenting database-
server file system space information. Full details are available in a related paper
on the companion web site.

dbcool_gen_standby.pl. A Perl script to help generate physical and logical
standby databases

dbcool_arch_to_standby.pl. A Perl script to copy archived redo logs from a pri-
mary server to a standby server

dbcool_ora_healthcheck.pl. A Perl script to check database conformance with
layout standards and other configuration issues

dbcool_2pc_pending.pl. A Perl script to notify OEM of a critical severity
problem

xxxii Introduction

High-Performance Oracle®

Proven Methods for Achieving
Optimum Performance and Availability

Fundamentals of an
Oracle Configuration

One

PA R T

3

What could be simpler than installing Oracle on UNIX from the installation media?
Place the CD-ROM in the mounted drive, follow the instructions in the Installation and
User Guide, and you’re done. It’s as simple as that, isn’t it? Long-time Oracle users
know that rarely are things that simple. Even before you unpack the CD-ROM, you
must read and digest the installation documentation for your platform. If you have an
active support contract, check Oracle’s Metalink Web site (metalink.oracle.com) for
late-breaking news on installation issues.

As a database administrator (DBA) or developer, you should begin with a set of
requirements that will help you build a system to meet those requirements. The fol-
lowing are the requirements for your Oracle installation:

■■ First, all Oracle software in your organization should be installed the same way
on all machines. That way, DBAs know how their installed environment looks
and will feel comfortable with it, no matter what machine they log onto. They
will be able to do their job faster and with fewer mistakes, which is especially
important during an emergency callout or after a hardware failure that requires
a reinstallation of the Oracle software.

■■ Second, you want to install the software right the first time. Then your Oracle
software and database instances will be available to your business users in the
shortest possible time.

■■ Third, you need to adopt a service-based approach, founded on standards. By
defining clearly the role of the DBA group, you can set expectations for the peo-
ple you provide the service to.

Installing Oracle

C H A P T E R

1

Before any of this happens, though, the Oracle DBA requires the services of the
UNIX system administrator (SA) for some basic system configuration to support Ora-
cle. To enable this service-based approach, you need to document and publish what
services you provide and the services you require from other groups. But if you’re in
the DBA group, be prepared to standardize first, and not wait for others.

This chapter covers the following topics:

■■ UNIX configuration for Oracle

■■ Installation via the Network File System (NFS)

■■ How to perform a silent installation

■■ Using Microsoft Systems Management Server for client installation

4 Chapter 1

USING REMOTE COPY COMMANDS, REMOTE SHELLS, AND .RHOSTS

Several examples in this book use UNIX remote copy (rcp) and shell (rsh) commands to
copy files between your systems and run remote commands between them. In some
cases, this is an Oracle requirement. For example, Oracle Data Guard Broker (covered in
Chapter 23) enables you to configure a standby database from a primary database by
using the rcp command to copy the primary database files to the standby site. Using
these commands requires the configuration of a .rhosts file to authenticate the local
machine running the command to the remote server that runs the rsh command (or is the
target of an rcp).

To run either an rsh or rcp command against a remote server from a local server, log
onto the remote server and create a file named .rhosts in the remote $HOME directory.
Insert the following line into this file to enable remote operations from the server named
local and account oracle:

local oracle

If you aren’t concerned about security (although you should be!), you can instead add
the line:

+ oracle

This allows remote connections onto the remote server from all other servers,
provided that the remote account is named oracle. The security concern here is that
anyone who can create a local oracle account on any UNIX server on your network, or log
onto such an account, can then access the remote server as the Oracle DBA account
without providing a password. After you’ve configured authentication in the .rhosts file,
the rsh command provides a fast way to check the configuration. For example, to test the
connection to a machine named remote, run:

$ rsh remote

TE
AM
FL
Y

Team-Fly®

The Oracle DBA Group Cluster

Until now, you’ve probably used a local CD-ROM drive to install Oracle software, or
requested that an SA remote mount the drive onto your machine. This book proposes
that you unload the software from the CD-ROM once, and that the DBA group build a
minimum of two UNIX servers to provide redundant Oracle services, including:

■■ Oracle Names address resolution services

■■ Oracle DBA group repository and warehouse

■■ DBA group Web site

■■ Oracle Recovery Manager (RMAN) backup catalog

■■ Oracle software releases

By providing each of the listed services on two different servers, all the services can
remain available if a single server is down. Ideally, these two servers should be on dif-
ferent sites to provide a disaster recovery (DR) capability as well as redundancy
against scheduled site outages. It’s best to dedicate the two servers solely for the pro-
vision of Oracle services: If you allow other groups to co-host with you, you run the
risk that their downtime requirements might impact your database services. Through-
out the rest of this chapter, we’ll refer to this pair of machines as the DBA Cluster, and
the two servers in it as ora1.uk.dbcool.com and ora2.uk.dbcool.com. The following sec-
tions are based on this configuration.

UNIX System Requirements

This section covers the Oracle standard build for your UNIX servers. It’s based on Sun
Solaris, which is the most popular platform used to run commercial Oracle systems.
However, the operating-system-specific details are as critical as covering the same
areas for your organization’s strategic platform.

You should document your standard configuration and publish it on the DBA
group’s Web site on the DBA Cluster so that any UNIX SA knows where to find your
standard build information. With this approach, the DBA is not even involved in a sys-
tem build. Don’t email the details because over time the requirements might change,

Installing Oracle 5

If you connect without being prompted for a password, the rsh and rcp commands are
working as required. If you are prompted for a password, you might need to specify the
host name in the remote .rhosts file using a fully qualified host name, such as
remote.uk.dbcool.com. Finally, check that the remote .rhosts file is owned by the login
account, and that only the login account has write access to the file. If this is not the
case, UNIX denies access for security reasons. If a password prompt still appears, consult
your SA group. They might have disabled all rsh services for security reasons.

and you will have to resend them. Instead, refer people to the DBA Group Web site for
the latest version. Developing this standard build requires a liaison with your SA team.
It might be difficult, as DBAs and SAs sometimes regard each other with suspicion, but
it will save countless hours in the future.

TIP If you don’t know how to set up a Web site, you should learn. Oracle
makes this easy by shipping Apache Web server with the Oracle database
management system (DBMS), starting with Oracle8i Release 3. Chapter 4 covers
basic Apache configuration.

Oracle UNIX Account Details
The goal of the following sections is to provide you with sufficient information to cre-
ate a standard build document for the UNIX SA group that configures your servers.
You should begin by configuring the UNIX account that owns the Oracle software, as
shown in Table 1.1.

Usually, you can simply use the default options for choosing an account name and
group. The Korn shell (ksh) is chosen because it’s very similar to the Bourne shell (sh)
(which Oracle uses to develop its own scripts) with some extra facilities such as a com-
mand history. No DBA should be expected to work in a shell without a command his-
tory. Standardizing the shell makes it possible to standardize a set of aliases for common
commands. If you ever wondered why Oracle doesn’t use the Korn shell, it’s because
Oracle was shipping UNIX systems before ksh existed. On some non-Sun systems (such
as Linux) where ksh is not available, the Bash shell provides similar capabilities.

The Oracle account UNIX home directory should be set to the value of $ORACLE_
BASE, where $ORACLE_BASE is traditionally set to /u01/app/oracle as defined by
the Oracle Optimal Flexible Architecture (OFA) standard. The OFA standard should be
followed religiously for all your Oracle software and database layouts. This book
assumes that you are familiar with it. It’s well documented at www.oracle.com.

A local password file should be used to authenticate the account rather than a net-
work account, and you should consider giving the Oracle account a different password
on each server. This means more effort for the DBA because a repository is required to

6 Chapter 1

Table 1.1 Oracle UNIX Account Details

SETTING VALUE

Oracle UNIX account name oracle

Oracle UNIX group dba

Login shell ksh

Oracle configuration files directory /var/opt/oracle or /etc (owner oracle, group dba)

Oracle $HOME $ORACLE_BASE (owner oracle, group dba)

Authentication local password file

track all the passwords. But if you use a single network logon and someone cracks the
password, they have DBA access to all your databases. Your security audit group
might want to talk to you about that. But security isn’t necessarily about making life
easy for the DBA; it’s about protecting your systems.

Oracle UNIX Memory Requirements
Ensure that at least 400MB are free in /tmp because the Oracle Installer uses temporary
space. Ensure that the system has an absolute minimum of 256MB of RAM. Determin-
ing your memory requirements is discussed later in the book. Make sure that at least
double the amount of physical memory is available in swap space. To avoid excessive
paging, which severely degrades performance, you don’t want your memory require-
ments to exceed physical available memory by much. Chapter 28 explains how to
detect when excessive paging is taking place.

Oracle UNIX Kernel Requirements
Set the following UNIX kernel parameters as below, and ensure that the system is
booted with these in effect. These settings are needed for your database creation (cov-
ered in detail in Chapter 2) to succeed:

set shmsys:shminfo_shmmax=4294967295

set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmseg=10

set shmsys:shminfo_shmmni=100

set semsys:seminfo_semmns=1000

set semsys:seminfo_semmni=100

set semsys:seminfo_semmsl=250

The values listed above relate to Sun Solaris, but most UNIX flavors use similar ter-
minology. Note that shmsys:shminfo_shmmax is not the size of shared memory to allo-
cate; it’s a high watermark value, so you can set it higher for 64-bit versions of Oracle
if required. By building in a high value, you avoid having to increase it and reboot the
system later if more real memory is added. It’s the DBA’s responsibility to ensure that
any shared memory allocated by Oracle fits appropriately into available memory.

Operating System Release
Consult the Oracle Operating System documentation to check the patches required,
and ask your SA to patch the system if necessary. If this step is overlooked, it can result
in mystifying and intermittent errors.

Oracle Software Installation Directory
The OFA recommendation is to use a top-level directory of:

/u01

Minimum size 4Gb, >100000 inodes

Installing Oracle 7

Use an $ORACLE_BASE (top-level directory for the Oracle software tree) of:

/u01/app/oracle

The OFA standard is flexible enough to allow other choices for the top-level direc-
tory. For example, if the file system contains only Oracle software, you might choose
/ora01 instead, to indicate the Oracle-specific contents. This book uses the Oracle OFA
default of /unn (where nn is a two-digit number) in all examples to indicate file sys-
tems containing Oracle databases and software.

It’s essential that the /u01 file system is configured by your SA with sufficient UNIX
inodes to hold all the Oracle installation files. Oracle 9i includes more than 100,000
files. If the number of inodes is not sufficient, the installation proceeds until the num-
ber of inodes is exhausted, at which point an error is reported. The installation then
needs to be repeated after the number of available inodes has been increased.

NOTE Every Oracle DBA should be familiar with OFA. We will be adopting it
along with some extensions not covered by the standard throughout the book.

An OFA-style installation of Oracle software based on a top level of /u01 is shown
in Figure 1.1.

The contents of /u01 must contain only Oracle software under /product and Oracle
database instance-related files under /admin. All contents below /u01 are maintained
by the Oracle DBA group and this requirement must be enforced through UNIX privi-
leges. No other group should have write access to the underlying file system. This is
because you need to monitor space on the file system to ensure that Oracle has space
for its log and trace files. To do that, you need total control of the contents. If you allow
write access to other groups, the temptation to dump scratch data and junk on what is
apparently available space might be too good to resist.

Your UNIX SA Group might prefer to install the Oracle software under /usr/local,
or another standard UNIX directory. That doesn’t sound unreasonable at first, but it
doesn’t meet the OFA standard, which is based on very sound principles that are

8 Chapter 1

 /u01

 /app

 /oracle

 /product/admin

/9.0.1/8.1.7 /9.2.0Database
Info...

Figure 1.1 An OFA directory structure for Oracle software.

proven to work. In this scenario, you need to sell the OFA standard to your SA Group.
Here’s one advantage of OFA: By installing Oracle under a unique name (/u01), you
pretty much guarantee that if you merge your organization at a later time with another
division or company, the others can adopt your /u01 name without any problems. It is
almost certain that /u01 won’t already be in use for a different purpose.

Request a file system with at least 4GB of free space to allow for a complete installa-
tion of Oracle Server Enterprise Edition (a minimum of 2.6GB for Oracle9i) and associ-
ated logs. Seriously consider allocating space up front for two complete Oracle
software versions to coexist, ensuring that when upgrade time comes around, you
don’t have to request additional space. You’ll find that migration is easier as a result.

Installation of Oracle Software via NFS

Traditionally, before you run the Oracle Installer, you need to arrange for a local CD-
ROM drive to be mounted, or a CD-ROM drive to be remote mounted from another
server (assuming that your server has no local drive). You might have to wait for an SA
to become available to do the work and, depending on your organization, you might
be required to follow a Change Control procedure that introduces further delay. This
could happen each time you install Oracle on a server.

By copying the CD contents onto disk first and using this disk copy as the basis for
all installs, you can avoid this SA dependency in the future and speed up your installa-
tions. Installing the Oracle software from the CD-ROM just one time makes the Oracle
software (and subsequent patches) available for installation on all the UNIX servers on
your network without any dependency on the availability of the CD media or an SA.

The key to this approach is the NFS. Every major operating system has an NFS
implementation, and it is used in almost every UNIX environment worldwide. It pro-
vides a convenient mechanism for sharing data across platforms, particularly in read-
only situations such as the delivery of software. As such, it is an excellent fit with our
requirements for installing Oracle quickly and reliably on all servers, and providing an
identical configuration on each one.

WARNING Using NFS to run the installed Oracle software is often the
subject of debate. I don’t recommend it and I’ll explain why in the Running
Oracle Software over NFS section later in this chapter.

After the SA has mounted the first CD in the Oracle ship set onto one server in the
DBA Cluster (ora1.uk.dbcool.com), use the UNIX recursive copy command to copy the
mounted CD contents onto the following disk directory structure, assuming that a
local CD drive has been mounted under the name /cdrom:

$ cd /cdrom/orcl901_1

$ mkdir -p /u01/app/oracle/admin/cdrom/9.0.1/Disk1

$ cp -pr . /u01/app/oracle/admin/cdrom/9.0.1/Disk1

Installing Oracle 9

Repeat the process for each CD-ROM, copying each one into a separate directory
(Disk1, Disk2, Disk3). After this exercise is completed, you have the Oracle installation
contents on disk in a format that can be mounted onto other systems for installation
purposes, or copied onto a local disk first and installed from there.

The choice of Disk1, Disk2, and Disk3 as the directory names is important. These
names enable the Oracle Installer to identify the location of the next CD contents on
disk automatically during installation without prompting you for them. That’s actu-
ally an improvement on a CD-based installation because the disk-based version
doesn’t require you to change the CDs. As a result, you avoid potential Device Busy
messages that occur because the current working directory of the session is set to the
CD-ROM mount point. Your operating-system-specific Installation and User Guide
(IUG) should include notes that warn you not to start installation from the CD direc-
tory, but it’s easy to overlook them.

After you have the CD contents on disk on one node in the DBA Cluster, you can file
the CD-ROM away in your software library. From ora1.uk.dbcool.com, copy the whole
tree to the other server in the DBA Cluster, making sure you’ve configured rcp connec-
tivity as described earlier in the chapter:

$ cd /u01/app/oracle/admin/cdrom/9.0.1

$ rsh ora2.uk.dbcool.com "mkdir -p /u01/app/oracle/admin/cdrom/9.0.1"

$ rcp -pr . ora2.uk.dbcool.com:/u01/app/oracle/admin/cdrom/9.0.1

You now have two binary-identical copies of the CD installation media on the two
servers in the DBA Cluster. I strongly recommend at this point that you plan to retro-
spectively copy all your Oracle CD installation media (including previous versions)
onto these two servers. It can be very unsettling to find yourself in a disaster recovery
situation that needs the reinstallation of some long forgotten version of Oracle for which
the installation CDs can’t be located. The solution is to make sure that you have on disk
all the media for all versions of Oracle that you run, and that you cross-check the ver-
sions of Oracle in use by your applications with the media on disk. As this stage, the
Oracle installation software is available on two different servers and needs to be made
available to the local server where the install is required. One approach is for the SA to
mount the software explicitly from one server in the DBA Cluster. However, if the soft-
ware is mounted from ora1.uk.dbcool.com, and that server is not available, an install
isn’t possible without having an SA change the mount to use ora2.uk.dbcool.com
instead. What’s needed is for the software to be available at all times from whichever
server is available, without requiring the DBA to know which one is currently in use.
Your SA can provide the solution to this problem through the features furnished by
UNIX automount, and the replication facilities of NFS. A detailed discussion of these
features is beyond the scope of this book. However, it’s simple to explain what happens
when such a configuration is in place. When automount and NFS replication are used
to provide access to the Oracle software, the DBA can change to the following auto-
mount directory on the local server and find the Oracle software available read only at:

/u01/app/oracle/admin/cdrom

10 Chapter 1

In this case, automount and NFS work together (as configured by the SA) to ensure
that the remote software is mounted automatically from whichever of the following
directories is available:

ora1.uk.dbcool.com:/u01/app/oracle/admin/cdrom/9.0.1

ora2.uk.dbcool.com:/u01/app/oracle/admin/cdrom/9.0.1

As a result, if ora1.uk.dbcool.com is down, the software is made available to the
local server from ora2.uk.dbcool.com under the same local directory (/u01/app/
oracle/admin/cdrom).

Your OFA software configuration on the installation machine has now been
extended to include an additional automount directory (/u01/app/oracle/admin/
cdrom) through which the Oracle CD-ROM installation media (held on disk on the
DBA Cluster servers) is always available (as shown in Figure 1.2). The implementation

Installing Oracle 11

 /u01

 /app

 /oracle

 /product /admin

Database
Info...

 /app

 /oracle

 /cdrom

 /9.2.0

 /Disk2 /Disk3

 /9.0.1

/Disk2

 /u01

/Disk1

 /8.1.7

/Disk1

 /cdrom

Oracle server to
install

ora1.uk.dbcool.com
or

ora2.uk.dbcool.com

NFS
mount

Figure 1.2 OFA directory structure with NFS extensions.

of the cdrom directory as a remote NFS mount onto one or the other of two machines
is completely transparent to the local user.

NFS replication transparently ensures that one of the remote file systems is always
automounted on the local directory. Provided that you’ve designed the DBA Cluster so
that at least one server is always available, the Oracle software is always available.

Before running the Installer, you might choose to protect yourself from a lack of tem-
porary space in /tmp during your install by pointing the Installer to use a different
temporary directory with more available space. The shell you use determines the envi-
ronment variable you need to set. Running the following commands in whatever shell
you use guarantees that sufficient temporary space is available during installation:

$ mkdir /u01/oradata/tmp

$ TMPDIR=/u01/oradata/tmp; export TMPDIR

$ TEMP=/u01/oradata/tmp; export TEMP

$ TMP=/u01/oradata/tmp; export TMP

Setting the following environment variables and making sure that the required
directories exist saves you from typing them again when you run the Installer:

$ mkdir /u01/app/oracle/product/9.0.1

$ export ORACLE_HOME=/u01/app/oracle/product/9.0.1

$ export ORACLE_BASE=/u01/app/oracle

$ export PATH=/usr/ccs/bin:$ORACLE_HOME/bin:$PATH

If your UNIX system uses /usr/ccs/bin (and Solaris is an example), this directory
must appear first in the path to ensure that Oracle uses the correct UNIX link loader
and archive commands when the software is relinked during the installation. If you
use a different version, you receive an error message when you start up a database. If
this procedure seems convoluted, it is. Chapter 4 covers how to set up a standard Ora-
cle UNIX runtime environment, enabling you to set the environment for a given Ora-
cle version or database instance using a single command.

The Oracle installation program on UNIX is a Java program that requires an X Win-
dows display. Set your UNIX DISPLAY environment variable to the X Windows server
running the screen from where you’ll run the Installer and check that it’s a valid X dis-
play using xdpyinfo:

$ export DISPLAY=yourdisplay.uk.dbcool.com:0.0

$ /usr/openwin/bin/xdpyinfo

TIP If you are using the popular Hummingbird Exceed X Server on a
Microsoft Windows PC, set the Window Manager for the screen display to
Native and make sure you are running version 7.0 (or later) for best results. This
ensures that screen windows for Oracle’s Java-based graphical applications,
such as Oracle Enterprise Manager and Oracle Installer, display correctly.

You’re almost ready to run the Installer. Before you start, warn an SA that they’ll
need to run the root.sh script that Oracle creates during installation. If you forget,

12 Chapter 1

Oracle reminds you during the installation, and it can certainly be irritating to have to
delay completion of the installation because there’s no one on hand to run the script.
Don’t ignore the requirement to run root.sh because it changes the UNIX permissions
on the Oracle Intelligent Agent so that it runs as setuid root, and this is required for
later tasks covered in this book. Now change to the installation media directory on the
NFS mount and run the Installer:

$ cd /u01/app/oracle/admin/cdrom/9.0.1/Disk1

$./runInstaller

Continue by using the default responses until you reach the screen requesting the
Oracle software install destination, where you should find the $ORACLE_HOME
directory and the installation products list (products.jar) set already. Proceed with the
installation and, if possible, avoid a custom install of the software. Pick a complete
installation of the DBMS, choosing the Enterprise version only if you are licensed to
run it. Note that Oracle9i installations are simpler than previous versions because
fewer installations options are presented, and that’s a good thing.

Do not create a database as part of the installation. First we must define a standard
for creating the database, which is covered in Chapter 2. You should also bypass the
network configuration stage during the installation, because we’ll be covering net-
working configuration as a separate step in Chapter 3.

After the installation is complete, you might want to inspect the installation log file,
although the Oracle Installer should make you aware of any errors, their causes, and
possible resolutions.

Cloning the Installed Oracle Software
In the days of Oracle7, it was quite simple to take an installed Oracle software tree and
copy it to another server, saving on the installation time. You simply performed a
recursive copy (using rcp -pr) of the complete contents of the software under the
$ORACLE_HOME directory onto the cloned server. You can still clone a software
installation with Oracle8i and Oracle9i, provided that you also copy the additional files
and directories that Oracle uses to run its Java engine and to keep an inventory of the
installed products. These directories fall outside the $ORACLE_HOME directory. By
copying these directories and files, you ensure that Oracle will work, but also (and just
as important) you ensure that you’re able to perform patches and upgrades in the
future. These are the additional files and directories you need:

/var/opt/oracle/oraInst.loc # contains the location of the inventory

/u01/app/oracle/jre # Java runtime engine

/u01/app/oracle/oui # Oracle Universal Installer

/u01/app/oracle/oraInventory # inventory of installed software

Also, if you’re running the Apache Web server from Oracle, you need to change the
ServerName setting to the name of the cloned server in the Web server configuration file:

/u01/app/oracle/product/9.0.1/Apache/Apache/conf/httpd.conf

Installing Oracle 13

If your $ORACLE_BASE directory on both machines is different, don’t attempt to
clone the installation. Install it from the media or from disk copies of the media. How-
ever, if you are following the recommendations in this book, cloning is possible
because your Oracle software is in the same location on all servers. After you have
cloned the software, remember to relink the software using the Oracle Installer, and
also remember to have the root.sh script reexecuted by the SA on the cloned machine.
Relinking can be performed as a separate step by the Installer. However, product direc-
tories contain a Make file that can be used to perform a manual link without the
Installer. For example, the relational DBMS (RDBMS) and related products can be
relinked using the following commands:

$ cd $ORACLE_HOME/rdbms/lib

$ make -f ins_rdbms.mk install

Performing a Silent Installation

The Oracle Installer is a graphical user interface (GUI) program that by default requires
the DBA to enter configuration information during the install process. After you have
standardized your local installation directory (based on OFA) and the location of the
CD-ROM media on disk (based on the NFS), it’s possible to run a silent installation that
doesn’t require user input. This results in installations with lower cost because DBAs
don’t need to be present during the whole installation process. Silent installation
requires that you create a response (.rsp) file ahead of time to provide the input that the
Installer requires.

Silent installation is essential if you need to install Oracle from a terminal that’s con-
nected to the installation server across a wide area network (WAN). For example, if
you try installing Oracle using the GUI running on a PC display in India onto a server
in London, you might find that the installation takes several hours. That’s because the
Oracle Installer GUI uses X Windows to communicate between the Installer program
on the server and the X Windows screen display running on the user’s terminal. X Win-
dows is an unsuitable protocol for running over a WAN because it sends and receives
lots of small packets. Using X Windows across a WAN, you can expect response times
of several seconds for every keypress you make during the Installer session, and screen
redrawing can take several minutes. Using a silent install based on an .rsp file solves
this problem. Keep in mind that it’s still necessary to set a valid X Windows DISPLAY
variable on the server where the installation takes place, and to use the UNIX xhost�
command on the workstation running the X server enabling the Installer to access the
display. The X display is required to initialize some Java classes in the Oracle Installer.
When the silent install is running, no X Windows traffic is generated.

The construction of the .rsp file is covered in detail in the “Oracle Universal Installer
Concepts Guide.” Several .rsp file settings are mandatory for a silent installation, includ-
ing the following, which are shown with sample values based on previous examples:

FROM_LOCATION="/u01/app/oracle/admin/cdrom/9.0.1/Disk1/stage/

products.jar"

14 Chapter 1

TE
AM
FL
Y

Team-Fly®

LOCATION_FOR_DISK2="="/u01/app/oracle/admin/cdrom/9.0.1/Disk2"

LOCATION_FOR_DISK3="="/u01/app/oracle/admin/cdrom/9.0.1/Disk3"

ORACLE_HOME="/u01/app/oracle/product/9.0.1"

After the .rsp file has been created, a silent installation is initiated using a command
line like this one:

$./runInstaller -silent -responseFile /tmp/901install.rsp

Actions performed during installation can be monitored by inspecting the contents
of the following files located in oraInventory/logs:

installActions.log

silentInstall.log

oraInstall.err

oraInstall.out

Running Oracle Software over NFS
On Web discussion groups and bulletin boards, you frequently see discussions about
whether it’s a good idea to run Oracle software from an NFS mount. Keep in mind that
at this stage, the scope of Oracle software sharing has been limited to the sharing of the
installation media, followed by installation of the Oracle software onto a local file sys-
tem. I believe that sharing the installation media is a very good idea. However, running
Oracle software from an NFS mount is a completely different requirement. At first, it
has a significant attraction because it means that you install the software only once,
and then run it on multiple servers, reducing maintenance. On deeper investigation, I
believe that running Oracle software from an NFS mount is a bad idea, and that, far
from reducing maintenance, it leads to maintenance problems. The rest of this section
presents issues (listed below) that you should consider before running Oracle software
via NFS:

■■ Oracle version dependencies

■■ Network dependencies

■■ Delayed write-caching problems

■■ Time synchronization problems

Side Effects of Oracle Version Dependencies

Recall that in Figure 1.1, the Oracle software is installed under directories using three
digits to identify the Oracle version number (for example, 9.0.1). Oracle defines the
fourth digit in the version number as a patch release on which you don’t need to
regression test your software. The first three digits are the most significant when you
take the delivery of Oracle applications because they identify the release used to
develop and test the application.

This means that when one application running NFS-mounted Oracle software needs
an Oracle code patch upgrade, all applications automatically take the same patch.

Installing Oracle 15

This upgrade requires an outage of all applications sharing the code. Also, problems
sometimes occur when application code regresses (that is, fails to work correctly) where
a fourth digit patch is made. So, for applications requiring the highest availability, you
can’t afford to have them sharing Oracle software releases. If you’re like me, you prob-
ably don’t even apply fourth-digit patches without insisting on regression testing your
applications because you’ve been stung by this in the past.

You could install Oracle to the fourth digit under the . . . /product directory and
upgrade your Oracle applications that need the new version individually, leaving the
third-digit installation unchanged. The downside in that case is that you need to
change the $ORACLE_HOME of that application, the Oracle network listener, and
possibly the scripts that depend on the $ORACLE_HOME. All those changes introduce
the risk of a mistake followed by an unplanned application outage. If you use a local
disk installation of the Oracle software, you don’t need to worry about these issues
because they don’t apply.

Introduction of Network Dependencies

If you run Oracle software via NFS, a network outage prevents Oracle sessions from
starting. This introduces the possibility of causing Oracle application outages that
would simply not occur when running software installed on the local disk. The possi-
bility might be small, but it is finite.

Delayed Write Caching

In an effort to improve efficiency, some NFS implementations cache write operations
on the local machine to batch them before sending the large packages more efficiently
across the network. This means that information might not be written to the server
holding the information for several seconds, with a potential for loss of data, such as
logging and trace information written to database instance log and alert files.

Time Synchronization

NFS does not synchronize the time between the local machine and server. This makes
for the possibility that the timestamps on log and trace files on the NFS server can dif-
fer from the time the client wrote the information. This can lead to confusion when you
are analyzing trace and log files on the server, where the chronology of events is impor-
tant. Of course, you can synchronize the time between servers (usually via the UNIX
NTP command), and your organization probably has time servers in place to do that,
but once again this is a nonissue when running locally installed software.

Installing Client Software with Microsoft
Systems Management Server (SMS)

The previous section covered how to install Oracle DBMS software onto your UNIX
servers. This section describes how to efficiently install the Oracle client software for

16 Chapter 1

PCs using Microsoft Systems Management Server (SMS). SMS is a technology that
companies use to perform hardware and software inventory, software distribution,
and remote diagnostic services for the Windows desktops in the organization. The
decision to invest in SMS is typically made by senior technical architects in an organi-
zation (not the DBA group), usually to save costs on managing PCs across the enter-
prise. If your company manages hundreds or even thousands of Windows desktops
manually, it stands to gain massive savings by standardizing its desktops as a result of
controlling how all software is delivered and supported.

The DBA group can take advantage of SMS deployment by using its software distri-
bution services. Delivery of the packaged Oracle software is as simple as the SMS
administrator using a GUI to drag an icon (representing the package) from the SMS
and drop it onto an icon representing a group of PCs. These PCs are SMS clients, run-
ning a software agent that communicates with the SMS server and enables the PC to
take delivery of packages.

The same delivery effort is required whether the group represents all the PCs in
your organization or just a subset. This voids the need for site visits to install Oracle or
troubleshoot problems resulting from manual installation. At last, the direct relation-
ship between the number of desktops and the number of people required to support
them is broken. The outcome is a more reliable desktop, and fewer outages arising
from business user application failures. These outages escalate support costs and, if the
business function compromised by the outage generates revenue, they can affect your
company’s bottom line directly.

As with any piece of infrastructure that you implement at the organization level, it
has a greater cost up front in terms of planning and design. Microsoft offers real-life
case studies to help you demonstrate the cost savings.

From the DBA’s point of view, using SMS means that the DBA group must take
responsibility for specifying (as opposed to actually creating) the SMS package re-
quired to standardize the Oracle client software delivered to the desktop. Creating
SMS packages requires a certain expertise, and the DBA group can expect to work
closely with the SMS technicians. As any package, it is likely to be deployed across the
organization as part of the standard build for all PCs, so the time invested pays off
quickly. If your DBA staff spends many hours a week, most weeks, diagnosing Oracle
database connectivity issues from the desktop, you are in a prime position for taking
advantage of SMS. If your user sites are spread across many locations, the savings are
even greater because you can eliminate the overhead of traveling time.

Using SMS Packages
SMS uses a before-and-after snapshot technique to identify all changes made to the
desktop during the running of a product installation script. For example, during an
Oracle client installation, the Oracle Installer makes changes to the Windows registry,
creates disk folders and files, and modifies the Windows environment. An SMS pack-
age, at the most simplistic level, stores the desktop changes for the installation process
in a single set of instructions that can then be replayed onto another PC on demand. In
addition, other changes to the desktop can be programmed into the package. For
example, you can set the TNS_ADMIN environment symbol to point to a particular
folder and provide a sqlnet.ora file to reside there. As a result, you can always find Ora-

Installing Oracle 17

cle’s network configuration files in the same place, no matter how many versions of the
Oracle client software exist on the desktop.

A basic SMS package for an Oracle Windows client should include the following
products as a minimum:

■■ Oracle software for TCP/IP support
■■ SQL*Plus
■■ Oracle Installer

The base Oracle networking software is noted for its reliability. SQL*Plus enables
connectivity to be tested, and the Oracle Installer enables you to find out the installed
list of Oracle products. The DBA simply needs to provide the SMS team with the Ora-
cle software installation media and documented instructions to run the Installer for
the products listed. The SMS team creates the package. Testing is performed by the
Oracle team and typically consists of a series of connectivity tests from popular Ora-
cle-based applications in the organization onto the back-end Oracle database servers.
These components are not likely to require updating in the short to midterm, avoid-
ing changes to the desktop environment that are notorious for causing support issues
and instability.

At least some of your Oracle desktop applications are likely to have a dependency
on one or more of the Oracle programmatic interfaces. These products are more likely
to require patch releases. The recommendation is to package them separately and have
them dependent on the base package. This additional package might contain:

■■ The latest Open Database Connectivity (ODBC) driver
■■ The latest Java Database Connectivity (JDBC) driver
■■ Oracle Data Objects for Windows (formerly Oracle Objects for OLE)

You might even decide to create separate packages for these products so that you
can release them separately and independently. The base package should be config-
ured to make additional changes to the Oracle client environment, on top of those
made by the Oracle Installer in the areas of folders and environment symbols. Table 1.2
shows the extra folders that should be created by your Oracle client package, above
and beyond the folders created by the Oracle Installer.

18 Chapter 1

Table 1.2 Additional Oracle Folders for an SMS Client Package

FOLDER NAME PURPOSE

c:\var\opt\oracle Location of the sqlnet.ora file

c:\u01\app\oracle\network\trace Location of network trace files

c:\u01\app\oracle\network\log Location of network log files

c:\u01\app\oracle\product\9.0.1 Version-specific installation folder for each
c:\u01\app\oracle\product\8.1.7 Oracle software release, specified during Oracle

Installer session

Table 1.3 shows the additional environment and registry setting that should be created
by your Oracle client package, above and beyond those created by the Oracle Installer.

TcpMaxConnectRetransmissions is a registry key used to minimize the time for Ora-
cle name-to-address resolution requests to fallback to the next Oracle Names server,
when the first one is not available. Oracle Names is covered in Chapter 3. The retrans-
mission setting is set in the following registry location:

\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Fixing the locations of trace files, log files, and the location of Oracle’s names direc-
tory list (sqlnet.ora) ensures that—in the case of a problem—the Oracle DBA knows
where to find the files. By default, the network log files are placed in the folder from
which any Oracle-enabled application is launched. As a result, they can be difficult to
locate, more so on a machine that uses many network shares. The sqlnet.ora file is
placed by default in an Oracle software version-specific directory, which can lead to
multiple copies of the file coexisting on disk if multiple versions of the Oracle client
software exist. If a problem occurs on the client, what inevitably follows is the problem
of determining which file is actually used by which application. By fixing the location
of the sqlnet.ora file through the TNS_ADMIN setting, only one sqlnet.ora needs to be
present on the PC, and this can be shared by all applications irrespective of the Oracle
software version they are using. The contents of the sqlnet.ora file are explored in
detail in Chapter 3, but here’s a sneak preview that shows how the locations of the log
and trace files can be specified (given the previously created folders):

AUTOMATIC_IPC = OFF

trace_directory_client = c:\u01\app\oracle\network\trace

LOG_DIRECTORY_CLIENT=c:\u01\app\oracle\network\log

names.directory_path = (TNSNAMES,ONAMES)

names.preferred_servers=

(address_list =

(address =

(protocol = TCP)

(port = 1575)

(host = oranames1.uk.dbcool.com)

)

(address =

(protocol = TCP)

(port = 1575)

(host = oranames2.uk.dbcool.com)

)

)

Installing Oracle 19

Table 1.3 Additional Environment and Registry Settings

SETTING VALUE

TNS_ADMIN environment variable c:\var\opt\oracle

TcpMaxConnectRetransmissions 1

Notice that the folder names I’ve chosen for the installation location of the Oracle
software match those for the installation of the Oracle DBMS software on the UNIX
server (apart from the direction of the slashes). Your organization might have naming
standards in place that don’t allow this. If it doesn’t, what could be simpler from a sup-
port perspective than using the same directories on the client and server?

It’s worth mentioning before closing this discussion that Oracle does not support
the installation of Oracle software using SMS. Before you throw up your hands in hor-
ror, what this actually means is that if you encounter any problems resulting from your
SMS-installed Oracle software, Oracle Worldwide Support (WWS) won’t resolve or
submit bugs for those problems unless the same problems can be demonstrated by
installing the software via the Oracle Installer. My personal experience is that Oracle
software installed via SMS offers nothing but benefits, and by thorough testing of your
SMS Oracle packages before deployment, you’ll get the same degree of confidence in
the process that I have. Finally, remember that the snapshot technique used to create
the package is a record of what the Oracle Installer itself does during an installation, so
in effect, an SMS drop of the Oracle client software onto a PC is the same as running the
Installer manually.

Running Terminal Server Applications
Standardizing your PC build through the use of SMS might introduce logistical issues
with installing and running applications. For example, consider a situation where your
organization has outsourced a development project to an offshore data center (ODC),
the environment doesn’t support SMS, and the ODC has no intention of adopting it. Or
consider a situation where the packaged applications themselves are several hundred
MB in size, and the clients are situated over a WAN where delivery of the software
could take several hours for each PC. In either case, even if you could install the soft-
ware via SMS, you still have the possibility that those applications might be sending
many thousands of database records across the network for display in the client appli-
cation at runtime.

In this case, the use of Citrix Metaframe and Microsoft Windows Terminal Server
might be a solution to these concerns. In this configuration, all application processing
is performed on a server running Windows 2000 or Windows NT Terminal Server Edi-
tion. A special client application known as the Citrix Independent Computing Archi-
tecture (ICA) client simply provides the application display, and the only information
transferred across the network consists of screen frames, and keyboard and mouse
movements. This can result in applications using as little as 10 percent of their usual
network bandwidth, and the application looks and behaves exactly as if you were run-
ning it from a local PC. Problems with Terminal Server usually relate to product instal-
lation issues, often involving the Windows registry settings. If you understand the
concept of running a UNIX X Windows application (such as the Oracle Installer) using
a PC for the X Server display, the concept is similar with the ICA client taking the place
of the X display. Figure 1.3 shows how network bandwidth can be saved using a Citrix
Metaframe configuration.

The Citrix/Microsoft infrastructure typically provides load balancing by making a
collection of servers (referred to as a server farm) available to service requests from

20 Chapter 1

potentially many users running applications on the same server at the same time. The
support implications from Oracle’s perspective are the same as using SMS to deliver
Oracle software: Oracle expects you to duplicate the problem in a non-Citrix environ-
ment first. Once again, I can personally vouch for the success of many projects running
applications on Terminal Server. Oracle actually does support the use of Citrix for run-
ning the Application Desktop Integrator (ADI) component of Oracle Financials, so this
solution is not a totally unknown quantity for Oracle Support.

Unfortunately, it’s not possible to deliver software to your Terminal Servers via SMS
2.0. Microsoft is likely to address this at some point, as it seems reasonable to use SMS
to deliver packaged software onto any Windows platform in your organization. In any
case, the lack of SMS delivery isn’t the drawback it might first appear to be. The num-
ber of Terminal Servers you run is probably orders of magnitude less than the number
of user desktops you support, so the number of manual installations of the Oracle soft-
ware is limited.

Installing Oracle 21

UNIX Oracle ServerDesktop System
running

yourapp.exe

UNIX Oracle ServerDesktop System
running Citrix ICA client

NT Terminal Server
running

yourapp.exe

SELECT *
FROM RATES

 SQL results

Mouseclicks
Keystrokes

Screen frames

SELECT *
FROM RATES

 SQL results

(a) Traditional Two-Tier Application

(b) Same Application on Citrix

Figure 1.3 Standard versus Citrix configuration.

Summary

You should now be able to create a standard build document for your UNIX SA group
that will become the basis for the initial configuration of all Oracle server builds in
your organization, as well as a companion document that contains a requirements
specification for an Oracle SMS client package for the desktop. Using a DBA Cluster of
at least two servers, you also have a step-by-step guide to configuring the environment
to support the installation. You now have your Oracle software installed on the client
and the server, and you are ready to create a database (which is covered in Chapter 2).

22 Chapter 1

23

This chapter covers how to create an Oracle database to meet the requirements of per-
formance and availability. This involves covering subjects such as defining naming
standards for the file components of the database, designing a physical layout, choos-
ing a character set, and determining a block size. This chapter is one of the longer chap-
ters in the book because much has changed in terms of Oracle9i features and the
underlying hardware architectures that are available for deploying an Oracle database.
Oracle has made claims of a 40 percent reduction in administration costs in Oracle9i,
and although the actual figure is contentious, it’s certainly true that Oracle has added
features that can reduce administration costs. Along the way, we’ll consider the age-
old debate of using raw partitions versus UNIX file systems. This is often presented as
a religious-style argument with both camps firmly entrenched, armed, and ready for a
war of attrition. I don’t believe that needs to be the case, and like anything else having
to do with physical layout, you simply need to make a call based on the costs and ben-
efits of each approach. The discussion comes down to the relative importance of per-
formance versus availability for your application.

Storage area network (SAN) and network-attached storage (NAS) technologies rep-
resent the future for storage in most organizations and will lead to a fundamental
change in the role of a database administrator (DBA) with respect to the physical lay-
out of the database.

This chapter covers the following topics:

■■ Oracle file types

■■ Traditional Oracle physical layout

Database Creation

C H A P T E R

2

■■ A new layout approach for manageability based on Oracle-Managed
Files (OMF)

■■ Server parameter files (spfiles)

■■ The physical layout for performance based on Redundant Array of Indepen-
dent Disks (RAID)

■■ SAN and NAS for Oracle databases

An Overview of Oracle File Types

It’s useful to briefly review the distinct types of files and their functions in an Oracle
database because the file types have historically had a close association with physical
storage. These types can be grouped under the following headings:

■■ Control files

■■ Tablespace datafiles

■■ Online redo log files

■■ Archived redo logs

■■ Rollback segments, if not using Oracle9i undo tablespaces

■■ Temporary segments

Control Files
Control files maintain a list of the other files in the database, the database name, and sys-
tem change number (SCN). The SCN is a number (internally generated and maintained
by the database) that increases with each data change made by end-user applications; a
unique SCN is assigned to every committed transaction. Chapter 17 on backup and
recovery fundamentals describes the SCN in more depth. From Oracle8i on, the control
file also maintains a list of Recovery Manager (RMAN) backups. This explains why the
control file can increase in size over time as more backup information is stored in it. Loss
of the control file means that the database stops working, so a database usually uses a
minimum of two, which Oracle maintains as mirrors of each other. The database can con-
tinue to operate provided that one control file is available. Traditionally, each control file
is stored on a separate disk; however, with the increasing virtualization of storage space
presented by volume managers, it can be difficult for the DBA to control the placement
at the physical disk level because such information is not readily available.

Tablespaces
An Oracle database is divided into logical units of storage called tablespaces. Table-
spaces themselves consist of operating system disk files or raw partitions. All database
objects (such as tables and indexes) in an Oracle database are stored in tablespaces.
From the DBA’s perspective, tablespaces have the capability to control disk allocation
for data objects and therefore enable the distribution of data across physical devices for

24 Chapter 2

TE
AM
FL
Y

Team-Fly®

the purpose of input/output (I/O) balancing. The tablespace is the largest unit of data
that can be taken offline as a single unit (with the exception of the whole database,
which can be taken offline by a database shutdown). This is useful if you need to
rebuild parts of a database while keeping the rest online. In an index-driven type of
application, where the design is intended to avoid table scans, the I/O patterns on
tablespaces tend to be random on both the table and indexes. To manage space effi-
ciently, the DBA needs to play close attention to the FREELIST, FREELIST GROUPS,
PCTFREE, and PTCUSED settings for objects in a given tablespace, as well as the
OPTIMAL setting for rollback segments. These are covered in more detail in Chapter
13 on managing space growth.

Every Oracle database contains a special tablespace called SYSTEM, which is cre-
ated at database creation time to hold the data dictionary. The SYSTEM tablespace is
always online when the database is open and should never be used to store user objects.

Online Redo Log Files
Every Oracle database must have a set of a least two online redo log file groups. Each
group can contain one or more members. The members in a group are mirrors of each
other. The database continues to run provided that at least one member in each group
is accessible. Traditionally, each member in a group is located on a separate disk (to
avoid a single point of failure), but storage virtualization presents the same challenge
to placement as that posed to control files. The set of log groups can be viewed as a cir-
cular queue: When one redo log group is filled, the system moves on to the next and
eventually circulates back to the first. Redo logs are written in a sequential fashion: The
next write begins where the last one left off.

Archived Redo Logs
To protect the database from a media failure, a database must run in ARCHIVELOG
mode. In this mode, as online redo logs are filled, they are archived to a disk directory
before they can be reused. These files are referred to as archived redo logs. In the event of
a media failure, the most recent database backup can be restored and all changes can
be made because the backup can be applied from the archived redo logs to recover the
database. Oracle’s archiving of logs takes place in the background. It is managed by the
ARCH process, is designed to be fast enough that it completes before an online redo
log needs to be reused, and is at a low enough priority that it doesn’t affect the overall
system performance.

The size of the online redo logs influences the online performance and recovery
time. During a log switch, a checkpoint that flushes dirty buffers to disk occurs. As
checkpoints can degrade performance, many DBAs choose to allocate large online redo
logs (sometimes hundreds of megabytes in size) to minimize the number of check-
points. The improved performance from large online redo logs leads to potentially
slower recovery after an instance crash, due to the requirement for Oracle to apply a
redo in the logs before the database can open. It’s also possible to run an Oracle data-
base in NOARCHIVELOG mode, but if you do that, you have no protection from disk
failures that require point-in-time recovery.

Database Creation 25

Rollback Segments
A database usually has several rollback segments in a dedicated tablespace. These
have a dual purpose. On one hand, they store prechange data to provide a rollback of
uncommitted transactions. On the other hand, they provide read-consistent views of
data for queries.

Transactions are assigned to a rollback segment based on two simple rules. First,
Oracle tries to assign a new transaction to a rollback segment that has the fewest num-
ber of active transactions. If no single segment meets this requirement, then the trans-
action is assigned to a segment in order to keep undo information available for the
longest possible time for use in a read-consistent view. Read consistency guarantees
that a query either returns data as it was at the time the query began or it fails. For that
reason, data for committed transactions in rollback segments can be very valuable.
This is why Oracle tries to keep it for as long as possible rather than freeing it immedi-
ately after a transaction commits.

The extents in a rollback segment are used in a circular fashion, moving from one to
the next after the current extent is full. Multiple transactions can exist in a single extent
at the same time. A transaction writes a record to the current location (the head) of the
rollback segment and moves the head to the next location. When the head wraps
around and catches up with the tail (the location of the oldest active transaction), the
rollback segment allocates a new extent because undo data for active transactions can’t
be reused until either a commit or rollback takes place. However, if the data in the seg-
ment is no longer active, because it has been committed or rolled back, then the space
can be reused. This reuse takes place even if the inactive data is required to generate a
read-consistent view of old data for a long-running query that’s still in progress. At the
point when the long-running query realizes that the old data no longer exists (because
a newer transaction overwrote it), then the famous “ORA-01555: snapshot too old”
error is reported. This is Oracle’s way of telling the user that it couldn’t keep the old
data long enough and had to reuse it for another transaction.

Oracle’s action for this error is to use larger rollback segments. This is somewhat
misleading as you probably have space available in other segments that you could free
up instead.

Historically, Oracle’s rollback segment design has given the DBA a performance and
availability headache due to the dual purpose of the data in the segment. The story
goes something like this. For performance, it’s a good idea to have several rollback seg-
ments in order to support several concurrent transactions and avoid rollback segment
contention. As transactions can’t span rollback segments, the total pool of rollback
space must be fragmented across several smaller segments. Fragmenting the total
space into smaller parts has the side effect of limiting the size of the largest transaction
because the total pool of free space is never available to a single transaction. To address
this, you can set an OPTIMAL value on a rollback segment to cause rollback segments
to shrink by freeing up inactive extents back to the total pool of free space at appropri-
ate times. However, freeing up inactive extents to make room for large transactions can
inadvertently free up old inactive data required for read-consistent views, resulting in
ORA-01555.

Every Oracle DBA has experienced the frustration of having to repeat a long-running
operation that failed with an ORA-01555 or ran out of rollback space. For example, an

26 Chapter 2

ORA-01555 can result from an index build that failed after a long period of time. The
read-consistent view of the table data needed to create the index could not be generated
due to the changing data in the table and other short concurrent transactions that
caused the read-consistent prechange data to be overwritten in the rollback segment.
Even more frustrating, the fragmentation of the pool of rollback space across several
segments can cause a large transaction to run out of rollback space, causing a massive
amount of redo information to be generated upon rollback, followed by a similar
amount upon a repeat of the transaction after extending the space or manually shrink-
ing the segments. The traditional solutions to these problems include a combination of
a massive overallocation of rollback space, a reduction in the number of rollback seg-
ments, manual shrinking, or database “babysitting” to monitor the rollback segments to
ensure that they don’t fill up. It’s possible to use the SET TRANSACTION USE ROLL-
BACK SEGMENT command to explicitly associate a given transaction with a specific
rollback segment. In this case, a large rollback segment is kept offline until it’s needed
for a particularly large transaction, when it’s then placed online for use by the large
transaction. Using this approach, you need to keep in mind that after it’s online, you
can’t prevent Oracle from assigning other transactions to that same rollback segment.

Clearly, rollback segments present a management challenge for the DBA. With Ora-
cle9i, there’s excellent news because Oracle provides a special undo tablespace, which
is covered later in the chapter, to solve the problems of rollback segment management
by managing them automatically, banishing ORA-01555 to the history books.

Temporary Segments
During query processing, Oracle might require disk space for various intermediate
stages of processing that require a sort. Sorting is required during query processing for
statements containing, for example, GROUP BY and ORDER BY statements. The cre-
ation of large indexes also typically requires large amounts of sort space. Oracle
attempts to perform sort operations in memory if resources are available using a mem-
ory buffer whose size, by default, is determined by the sort_area_size parameter. The
sort_area_size parameter can be set dynamically using the ALTER SESSION com-
mand; otherwise, the default initialization parameter value is used. Default parameter
values can be found in the v$parameter view. If the sort buffer is not sufficiently large,
Oracle allocates temporary segments on disk on behalf of the user performing the
Structured Query Language (SQL) operation. By default, an Oracle account uses the
SYSTEM tablespace for sorting unless the DBA remembers to assign a temporary table-
space to the user at creation time. The use of SYSTEM for user sorting can cause severe
performance degradation or fill up the SYSTEM tablespace so that data dictionary
objects can’t extend, causing the database to stop.

Oracle9i provides two new initialization parameters—pga_aggregate_target and
workarea_size_policy—that enable the database to autotune the sort area size. These
parameters together enable an appropriate value to be chosen to meet the sort require-
ments based on the current memory available and the maximum associated with
pga_aggregate_target. By default, autotuning is off and is enabled by setting
workarea_size_policy�true. It’s worth mentioning that the hash_area_size,
bitmap_merge_size, and create_bitmap_area_size can also take advantage of autotun-
ing facilities.

Database Creation 27

Traditional Oracle Physical Layout

Given the types of files described earlier in this chapter, an optimal layout for the best
Oracle performance would necessarily involve many disks. One disk would be needed
for each redo log group, a set of disks would be required for table data (with data
striped across them), and another set of disks would be required for indexes (with data
striped across them). Striping involves splitting logical volumes of storage into fixed-
sized chunks of data across multiple physical disks to balance I/O and improve per-
formance. Another disk would be needed for archived redo logs and yet another for
rollback segment data. Physical disks are then grouped into discrete pools of indepen-
dently managed space at the UNIX operating system level through the creation of sev-
eral file systems. I’ve set up databases like this myself, but not for a long time.

The reason for my change of heart came over time as I noticed the support issues of
fragmenting the total available database space across many relatively small files and
file systems. The issues with this fragmentation seemed to cause more outages for
users and more administration issues for DBAs than performance problems cause. In
any case, in the long term, it usually turned out that the 9GB disk (remember that this
was the mid- to late 1990s—nowadays it’s 36GB or higher) allocated to the redo logs
would eventually have to be “sacrificed” to hold table and index data; the business
people wouldn’t countenance the waste of disk space. This turned out to be a forerun-
ner of the cost issues that have come to the fore with the implementation of SANs. All
of a sudden the business people are charged for every gigabyte of storage they rent,
and they want to be sure they aren’t overpaying because space isn’t used efficiently.

Oracle Layout for Manageability

Let’s take a step back for a moment and look at the DBA’s requirements for Oracle
physical layout. These requirements are for performance and availability. You could
add manageability to that list, but in my opinion, manageability is synonymous with
availability. When I use those two terms, they’re almost interchangeable. Let’s concen-
trate on availability first and see what happens.

The easiest and most flexible way to lay out an Oracle database for the highest avail-
ability from a DBA’s perspective is to put all the files on a single, large file system. The
following are some of the areas that show enhanced manageability when you do this.
You’ll almost certainly find that there other potential issues that suddenly become non-
issues simply because you keep all the space for databases on a server available in a
single file system, where it’s available to any datafile or any database on that server
that needs the space. Nothing is wasted.

AUTOEXTEND
You can turn AUTOEXTEND on for your files. This reduces the possibly that an appli-
cation will fail because an object can’t extend. All datafiles can use all available space.
It doesn’t matter if your TRADES table suddenly experiences 10 times the expected
growth rates because your company decides to take on some extra data processing

28 Chapter 2

work. The reason it doesn’t matter is because all the space on the file system is avail-
able for the TRADES table to grow into. This doesn’t mean that you stop monitoring
database growth. However, it does mean that you can reduce outages from lack of
space because they should never happen unless the disk is full. Availability is
improved. Using AUTOEXTEND means that you don’t have to add datafiles to your
database; you can just let them grow. Your datafiles are no longer restricted to the size
of a small file system. Adding datafiles to a database is a potentially risky operation
because there’s always a chance that the operation will fail because you’ve reached the
maxdatafiles limit for the control file. In this case, you need to recreate the control file,
which is an outage to your database, followed by a tricky control file rebuild. You can
avoid it by not adding files, and you can avoid adding files by making sure that exist-
ing files have space to grow.

Archive Logs
When a large transaction rolls back, the archived redo logs generated no longer need to
fill the disk, causing the database to freeze, because the whole space of the file system
is available to hold the extra logs, which can be backed up and removed in good time.

Database Restores
When you suddenly need to restore or copy another database onto your server, you
know that if the total size of the database is less than the available space on the file sys-
tem, then the database is guaranteed to fit. This is a simple piece of arithmetic you can
do in your head. You don’t need to get a spreadsheet out and spend a couple of hours
working out how to remap the backup files onto the restore file systems in a way that
makes them fit as you would do with multiple smaller file systems. As a result, you can
get the task done faster and your restored or copied system is available sooner.

Database Backups and Exports
You know that an RMAN database backup to disk fits by checking if the file system
free space is less than the physical size of the database you’re backing up. The same
goes for an export: If file system space is fragmented across several smaller file sys-
tems, you don’t know in advance if the output file fits; you need to either spend extra
time checking that it fits or rerun the command if it fills the space, wasting valuable
time.

Duplicate Databases on the Same Server
Using a single file system, you know that you can create a clone of a database on your
server using the RMAN DUPLICATE command if space is available for the source
database. Better still, you can run the command knowing that the process will almost
certainly work the first time because all you need to do is change the $ORACLE_SID
value in the source database to the $ORACLE_SID of the cloned database in each
datafilename in the source database. This is a single change to the init.ora file of the

Database Creation 29

cloned database to set up the duplicate. Once again, no complicated remapping of the
files to different file systems is required.

OMF

So now that you’ve had the opportunity to consider a new way of Oracle physical lay-
out, you’re probably holding up your hands in horror. Certain thoughts are going
through your mind—thoughts like “I must have raw partitions” or “I must have my
redo logs on a dedicated disk for sequential access.” To add weight to the manageabil-
ity benefits of a single (or just a few) large file systems, let’s explore a new feature of
Oracle9i called OMF.

The goal of OMF is to make database administration easier and less prone to mis-
takes. Using OMF means that you no longer need to specify names and locations for
tablespace datafiles, online redo logs, and control files. Instead, you define a directory
in your init.ora file as the default for your datafiles and one or more directories for your
redo logs, with each group having a member in each of the directories you provide.
Oracle then takes responsibility for naming the files in an appropriate way to identify
the type of data in the files and for creating the file in the appropriate directory. For the
redo log groups, it means you no longer have to deal with the hassle of locating each
group member in the correct location: Oracle does it for you and ensures that you can
identify the group from the generated filename.

Oracle also takes responsibility for removing the files when you drop the object that
uses them. This feature alone causes many DBAs to breathe a sigh of relief. If you’ve
ever run a DROP TABLESPACE command, you know that afterwards you should
remove the underlying operating system files in the tablespace to free the physical
space. However, you need to be 100 percent sure you’re removing the correct files, and
on a system supporting many databases, this can cause paranoia. You know that if you
remove the wrong files, you’ve trashed the database. On the other hand, if that table-
space contains OMF, Oracle removes the constituent files for you. Even if you’re not
using OMF, Oracle9i provides a new option—DROP TABLESPACE INCLUDING
CONTENTS AND DATAFILES—to enable datafiles to be removed automatically at the
time a tablespace is dropped. OMF provides an automatic file remove facility for
online redo log files when you use the DROP REDO LOG GROUP command. The
power of OMF is easily demonstrated. In this example, you create a new database
named omfd1 with an instance name of omfd1. Create the following directories first to
hold the OMF because Oracle doesn’t create them for you:

$ mkdir -p /u02/oradata/omfd1

$ mkdir -p /u03/oradata/omfd1

Create an init.ora file containing nothing else but the following entries:

db_name=omfd1

DB_CREATE_FILE_DEST=/u02/oradata/omfd1

DB_CREATE_ONLINE_LOG_DEST_1=/u02/oradata/omfd1

DB_CREATE_ONLINE_LOG_DEST_2=/u03/oradata/omfd1

30 Chapter 2

Now use SQL*Plus to create the database as follows:

SQL> connect / as sysdba;

Connected to an idle instance.

SQL> startup nomount

.

.

.

SQL> create database omfd1;

Database created.

Hopefully, you’re suitably stunned. This takes less than a couple of minutes of
preparation. Of course, for a production database, you wouldn’t allow all the other
parameters to inherit default values in the init.ora, but the example demonstrates the
power of OMF beautifully. For a test or development database, many of the defaults
might be quite acceptable. Now run the following files from SQL*Plus while connected
as SYSDBA exactly as you would after a non-OMF database creation to install the stan-
dard Oracle data dictionary views and packages, where “?” is shorthand for the cur-
rent $ORACLE_HOME:

@?/rdbms/admin/catalog.sql

@?/rdbms/admin/catproc.sql

It is possible that your catalog SQL failed due to insufficient rollback space, but the
Oracle dictionary should be in sufficiently good shape to continue for the purposes of
this example. Now let’s investigate what Oracle has actually created on our behalf
using OMF in terms of control files, redo logs, and tablespace datafiles. It’s also useful
to know that both DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_
DEST_n are dynamic parameters that can be set using ALTER SYSTEM or ALTER SES-
SION while the database is up and running.

Control Files
OMF has created two controls files for our database, one in each of the locations specified
in DB_CREATE_ONLINE_LOG_DEST_1 and DB_CREATE_ONLINE_LOG_DEST_2,
which you can see using the query SELECT NAME FROM V$CONTROLFILE:

/u02/oradata/omfd1/ora_xwqz36p4.ctl

/u03/oradata/omfd1/ora_xwqz36wg.ctl

The names are clearly identified as belonging to Oracle because of the prefix ora_.
The files are clearly identified as control files because the file type is .ctl. As we aren’t
using an Oracle spfile in our example, it’s necessary to manually add a line to the
init.ora file to make sure that the database starts up the next time:

control_files=("/u02/oradata/omfd1/ora_xwqz36p4.ctl",

"/u03/oradata/omfd1/ora_xwqz36wg.ctl")

Database Creation 31

This requirement is no longer necessary if you use an spfile instead of an init.ora file.
spfiles are discussed shortly.

Online Redo Logs
If you reverse engineer the redo log file creation SQL, using DbCool, for example, you
can see that OMF has resulted in the creation of two log file groups, with a member in
each of the locations specified in DB_CREATE_ONLINE_LOG_DEST_1 and DB_
CREATE_ONLINE_LOG_DEST_2 and sized at 100MB each:

ALTER DATABASE ADD LOGFILE GROUP 1

(

'/u02/oradata/omfd1/ora_1_xwqz3784.log',

'/u03/oradata/omfd1/ora_1_xwqz3f7b.log'

) SIZE 100M

/

ALTER DATABASE ADD LOGFILE GROUP 2

(

'/u02/oradata/omfd1/ora_2_xwqz3m80.log',

'/u03/oradata/omfd1/ora_2_xwqz3ryk.log'

) SIZE 100M

/

The files are identified as Oracle files by the ora_ prefix and as redo log files by the
use of the .log file type. You can add another log file group without specifying the log
filenames by running the following:

ALTER DATABASE ADD LOGFILE GROUP 3;

As you can guess, this adds another group with the log file members multiplexed
across the two destinations just like the other groups, as if you had run the following
SQL:

ALTER DATABASE ADD LOGFILE GROUP 3

(

'/u02/oradata/omfd1/ora_3_xwr2ymf3.log',

'/u03/oradata/omfd1/ora_3_xwr2ysgx.log'

) SIZE 104857600

If you drop a log file group by running the ALTER DATABASE DROP LOGFILE
GROUP 3, for example, you find that the member files have been removed for you. You
can check this as follows to prove that the files are no longer present:

$ ls -l /u02/oradata/omfd1/ora_3_xwr2ymf3.log

$ ls -l /u03/oradata/omfd1/ora_3_xwr2ysgx.log

In a pre-OMF situation where you had to remove the operating system files, you
might first query V$LOG and V$LOGFILE several times to make absolutely sure the files
were no longer in use before removing them. Even then, people have removed the wrong

32 Chapter 2

files and sometimes destroyed a production database as a result. Human error always
occurs, but by using OMF, you reduce the chances of these kinds of human errors.

NOTE The naming format of OMF files changed to use a different prefix after
the initial release of Oracle9i, and Oracle does not guarantee that the format
won’t change again in the future.

Tablespaces
Now let’s take a look at the OMF-style SYSTEM tablespace that is created at database
creation time. This is created as if you had run the following SQL:

create tablespace system

datafile '/u02/oradata/omfd1/ora_system_xwqz461n.dbf'

size 104857600 autoextend on

next 2048 maxsize unlimited

default storage

(initial 10240 next 10240 minextents 1 maxextents 121 pctincrease 50)

online permanent;

The file is identified as an Oracle database file by the ora_ prefix and as a datafile by
the use of the .dbf file type. Oracle uses the first eight characters of the tablespace name
in the filename, so you need to restrict your tablespace names to eight characters or less
to take maximum advantage of the OMF-generated association between the tablespace
name and filename. The default attributes of an OMF-created datafile use AUTOEX-
TEND with an unlimited maximum size, an initial size of 100MB, and dictionary-
managed extents. Using OMF, you can create a tablespace without specifying a
datafile. For example, running CREATE TABLESPACE TABLE_DATA creates a table-
space as if you had run the following SQL:

create tablespace table_data

datafile '/u02/oradata/omfd1/ora_table_da_xwr4fvxp.dbf'

size 104857600 autoextend on

next 2048 maxsize unlimited

default storage

(initial 10240 next 10240 minextents 1 maxextents 121 pctincrease50)

online permanent

You can drop the tablespace with DROP TABLESPACE TABLE_DATA and Oracle re-
moves the datafiles for you. You can also modify the default parameters at tablespace
creation time and still have the files as OMF. For example, CREATE TABLESPACE
INDEX3 EXTENT MANAGEMENT LOCAL creates an OMF datafile with local as
opposed to dictionary-managed extents, and CREATE TABLESPACE INDEX4 DE-
FAULT STORAGE (PCTINCREASE 0) creates a dictionary-managed tablespace with
PCTINCREASE 0 instead of the default PCTINCREASE 50. You can identify OMF table-
spaces by the following SQL:

select tablespace_name from dba_tablespaces

where user_management='SYSTEM'

Database Creation 33

To enable easier segment space management, Oracle9i introduces the concept of
automatic segment space management for a locally managed tablespace. This feature
removes the need for the DBA to specify the FREELIST, FREELIST GROUPS, and
PCTUSED settings for tablespace objects. Through information stored in a bitmap,
Oracle maintains the free space available in blocks, which determines the blocks that
are available for insert. As a result, Oracle can manage the space efficiently without
DBA assistance. An OMF tablespace that would require the lowest DBA administration
overhead might look like the following, where the SEGMENT SPACE MANAGE-
MENT AUTO specifies that Oracle and not the DBA should manage segment space:

create tablespace tabauto

extent management local uniform size 128k

segment space management auto

Server Parameter Files (spfiles)

Server parameter files (spfiles) represent another manageability improvement for your
Oracle databases and make some of Oracle9i’s self-tuning features possible. For the
moment, let’s concentrate on the manageability aspects. This example is based on the
same instance as the previous example, omfd1. To remove this database in preparation
for this exercise, you can generate a list of UNIX commands as follows to remove the
files:

select 'rm '||name RM_COMMAND from

(

select f.member name from v$logfile f

Union select name from v$controlfile c

Union select f.file_name from dba_data_files f

union select tf.file_name from dba_temp_files tf

);

RM_COMMAND

--

rm /u02/oradata/omfd1/ora_1_xwrk4zv2.log

rm /u02/oradata/omfd1/ora_2_xwrk5c4k.log

rm /u02/oradata/omfd1/ora_system_xwrk5w6p.dbf

rm /u02/oradata/omfd1/ora_temp1_xwrk7p5o.tmp

rm /u02/oradata/omfd1/ora_undo1_xwrk7gx3.dbf

rm /u02/oradata/omfd1/ora_xwrk4zgp.ctl

rm /u03/oradata/omfd1/ora_1_xwrk55gr.log

rm /u03/oradata/omfd1/ora_2_xwrk5jqg.log

rm /u03/oradata/omfd1/ora_xwrk4zko.ctl

Then you need to SHUTDOWN ABORT the instance before you run the rm com-
mands. In the previous section, we added settings to the Oracle init.ora file prior to
database creation and manually added the control_files section to the init.ora file after-
wards by hand. If you forgot to do that, your next database restart would fail because
Oracle would be unable to identify the location of the control files. Oracle9i addresses
this problem by enabling you to use an spfile instead of an init.ora file. The major dif-

34 Chapter 2

TE
AM
FL
Y

Team-Fly®

ference between the two is that when you run ALTER SYSTEM commands, you can
optionally persist the data into the spfile so that it automatically takes effect the next
time you start the database. You can’t do that with an init.ora parameter file. When
such functionality is in use, it also gives the Oracle database management system
(DBMS) the capability to manage some of the dynamic settings itself, such as increas-
ing or reducing buffer cache sizes depending on usage patterns. So spfiles are a key
enabling factor for self-tuning.

Let’s repeat the database creation exercise in the previous section using an spfile
instead of an init.ora file and use two more Oracle9i features for manageability: auto-
matic undo and the default temporary tablespace. The goals of the exercise are to cre-
ate a database using the simplest process possible and to incorporate several important
manageability features that we might want to use in a production database for the
resulting database.

When the automatic undo feature is operational, as determined by the undo_man-
agement�auto setting in the init.ora file, you can create a special type of tablespace
using the CREATE UNDO TABLESPACE statement. When you have an undo table-
space combined with undo_management�auto, Oracle manages undo for you with-
out requiring you to explicitly create rollback segments, alleviating some of the earlier
issues raised by DBA-managed rollback segments. You can create several undo table-
spaces, although only one can be active at any time. The ALTER SYSTEM SET
UNDO_TABLESPACE�tablespace_name command can be used to switch between
them. When you use automatic undo management, you control the time that Oracle
retains committed undo information through the use of the undo_retention parameter.
This is set in the init.ora file or can be changed dynamically at run time through the
ALTER SYSTEM command. For example, to keep committed undo information for 1
hour, you would enter the following:

alter system set undo_retention=3600

Keep in mind that if an active transaction requires undo space, it takes precedence
over the undo_retention time, and redo space is reused if more space can’t be allocated.
When used carefully and provided you are prepared to live with the additional undo
space required, you can eliminate the ORA-01555 snapshot too old error that has irri-
tated DBAs and users for many years.

The default temporary tablespace feature creates a temporary tablespace with temp-
files to be used for all users at user creation time in cases where the TEMPORARY
TABLESPACE clause is omitted. This tablespace is created using OMF in our example.
The default temporary tablespace feature fixes one of the major problems with tempo-
rary tablespaces described earlier, where the temporary tablespace defaults to the SYS-
TEM tablespace at user creation time, if the DBA doesn’t specify it.

To demonstrate these features, we need to make an spfile first. This requires an
init.ora file. The spfile should never be modified directly with an editor and has built-
in checks to detect tampering. To create an spfile, make a file called undo.ora in $ORA-
CLE_HOME/dbs that contains nothing but the following parameters:

db_name=omfd1

compatible='9.0.0.0.0'

undo_management=auto

Database Creation 35

NOTE The compatible parameter is required for the OMF features to work
during database creation in combination with the undo and default temporary
tablespace statements.

Next, create an spfile from the init.ora file, using the CREATE SPFILE statement in
SQL*Plus:

connect / as sysdba;

create spfile from pfile=’undo.ora’;

At this stage, the database instance hasn’t been started yet. When you start an Ora-
cle9i instance, it searches for spfiles and init.ora files in the following order:

1. spfileomfd1.ora

2. spfile.ora

3. initomfd1.ora

In our example, now that we have an spfile for the instance (spfileomfd1.ora), it will
be used when the instance is started. Now let’s start the instance, staying in SQL*Plus,
and use the ALTER SYSTEM command to set up the directories required for OMF:

startup nomount

alter system set DB_CREATE_FILE_DEST='/u02/oradata/omfd1'

scope=both;

alter system set DB_CREATE_ONLINE_LOG_DEST_1='/u02/oradata/omfd1'

scope=both;

alter system set DB_CREATE_ONLINE_LOG_DEST_2='/u03/oradata/omfd1'

scope=both;

create database omfd1;

The SCOPE qualifier takes one of the values SPFILE, MEMORY, or BOTH. In this
case, the use of BOTH causes the setting to take effect in both MEMORY (the current
session) and SPFILE so that it remains in effect across database shutdown and startup.
You can now shut down Oracle and restart it after database creation without a problem
because the manual settings that were required in the init.ora file are now stored in the
spfile by Oracle automatically. If you want to go the other way, you can create an
init.ora in SQL*Plus from an spfile as follows:

create pfile='fromspfile.ora' from spfile;

Now we’re ready to create the database. The database uses OMF for all its table-
spaces as determined by the spfile settings. In addition, an OMF undo tablespace
named undo1 is created during database creation, along with an OMF default tempo-
rary tablespace. All of this is performed with the following single command:

create database omfd1

default temporary tablespace temp1

undo tablespace undo1;

36 Chapter 2

It’s worth mentioning at this point that on UNIX, when temporary tablespaces are
specified using tempfiles (whether OMF or not), Oracle creates the files as sparse files.
UNIX doesn’t actually allocate blocks in a sparse file until the blocks are used. The
advantage of sparse files is that they can be created almost instantaneously. As a result,
tablespace creation of a temporary tablespace that specifies a tempfile is much faster
than the creation of a tablespace that uses a regular datafile whose blocks are initialized
by the DBMS at creation time. The behavior of sparse files can be demonstrated with
an example. The following temporary tablespace creation statement uses a tempfile
apparently of size 2000MB:

REM this takes only a few seconds...

create temporary tablespace temp2

tempfile '/u02/oradata/d3/temp02.dbf' size 2000m

autoextend on next 1280k extent management local uniform size 128k

/

Although the UNIX ls -l command shows the file to be 2000MB in size, the du -sk
command (which shows the size of blocks actually used, in 1KB units) reports a much
smaller size because the file is sparse:

$ du -sk /u02/oradata/d3/temp02.dbf

96 /u02/oradata/d3/temp02.dbf

By running a SQL statement that forces a disk sort using the tempfile, you can force
blocks to be allocated in the file to demonstrate that the number of used blocks
increases. Oracle tracks the number of blocks used in tempfiles through the
v$temp_space_header view:

select blocks_used from v$temp_space_header where

tablespace_name='TEMP2';

BLOCKS_USED

16

REM run some SQL that performs a large sort on disk...

select sum(length(text)) from all_source;

REM confirm that blocks have been used...

select blocks_used from v$temp_space_header where

tablespace_name='TEMP2';

BLOCKS_USED

4672

The du -sk command can then be used to confirm that blocks have actually been
allocated from the file system holding the tempfile:

$ du -sk /u02/oradata/d3/temp02.dbf

37272 /u02/oradata/d3/temp02.dbf

Database Creation 37

Although sparse files allow the rapid creation of temporary tablespaces that use
tempfiles, they introduce the possibility that the full 2000MB of physical space may no
longer be available when it’s actually needed by a sort operation. To force the physical
space for the tempfile to be allocated in the file system, you can pre-create the file (for
example, using the UNIX dd command) and then add this to the tablespace by speci-
fying the REUSE option in the tablespace creation SQL:

$ dd if=/dev/zero of=/u02/oradata/d3/temp02.dbf bs=1000k count=2000

create temporary tablespace temp2

tempfile '/u02/oradata/d3/temp02.dbf' reuse

autoextend on next 1280k extent management local uniform size 128k

/

Oracle Layout for Performance

Hopefully, the manageability of OMF is obvious, and you are now seriously consider-
ing placing your Oracle database onto one or two large file systems. This still leaves the
issue of performance, which you need to address. Having fantastic manageability is
pointless if users have to wait an unacceptably long time for their SQL to complete. If
that happens, you’ve just reduced the availability of the users’ data.

It’s clear that using the large file system approach means that the DBA no longer has
a direct influence on I/O performance at the hardware level. Instead, the available I/O
throughput is determined by the characteristics of the file system on which the data-
base files are created. As a result, the DBA becomes less involved in hardware perfor-
mance issues: Disk and hardware performance in general become a service provided to
the DBAs by either the system administrator (SA) group or, in the case of managed
SAN storage, possibly a third-party company dedicated to the role.

Performance and availability at the hardware level are now requirements rather
than the responsibility of a DBA. Given the complex nature of modern hardware archi-
tecture and the role of the DBA, it seems likely that the DBA will become further
removed from hardware considerations in the future. Personally, I welcome that. The
complexity of deploying Oracle9i in the most efficient way is quite enough for a DBA.
In the long run, the environment that a DBA sees on a UNIX server will be an abstrac-
tion of something much more complicated and powerful underneath. However, none
of this means that the DBA shouldn’t be interested in the underlying technology or that
the DBA can’t contribute to the requirements. If you’re like me, you want to under-
stand the end-to-end infrastructure because any information might help you deliver a
better database service to business users. No one in the organization probably under-
stands data usage patterns and requirements better than the DBA. The following is an
overview of the hardware technologies that meet the performance and availability
requirements of a production Oracle system.

RAID Overview
The term RAID was first coined in 1987 by academics at the University of California at
Berkeley. Originally, it stood for Redundant Array of Inexpensive Disks, although

38 Chapter 2

today it stands for Redundant Array of Independent Disks. As the name suggests, this
aims to provide higher availability to disk data by introducing redundancy that
enables the data to remain available in the event of a single disk failure and therefore
increases the mean time between failure (MTBF) for disks. At the same time, the data
in the collection of disks, or the array, should appear as a single logical piece of space
at the operating level for usability. Originally, five different levels were defined, with
each providing fault tolerance in a different way to provide a range of cost/perfor-
mance combinations for different types of customers. A nonredundant architecture
(RAID 0) was included.

Disk drives in a RAID group are partitioned into chunks known as stripes, whose
size can range from tens of kilobytes up to several megabytes. Stripes are sized opti-
mally for performance when individual application I/O requests fit into a single stripe.
This means that all disks can work on a different I/O operation at the same time, and
through this parallel operation, throughput is maximized. RAID can be implemented
in hardware or software. Hardware RAID is generally faster and more expensive than
software RAID, and it’s completely transparent to the server it’s running on. RAID is
best understood using simple examples. The most commonly used RAID levels—0, 1,
4, and 5—are shown in Figure 2.1. For simplicity, the example in the discussion con-
siders a file system made out of just six blocks on a host.

Database Creation 39

1

RAID 0 across 3 disks

Data
Blocks

65432

Disk
Layout

1
4

Cabinet

1

RAID 0+1 across 6 disks

65432

Disk
Layout

Data
Blocks

Cabinet 2

Hardware Mirror

1

RAID 4 across 3 disks

Data
Blocks

65432

Disk
Layout

2
5

3
6

1
4

2
5

3
6

1
4

Cabinet 1

2
5

3
6

1
3

2
4

P
P

Cabinet

5 6 P

1

RAID 5 across 3 disks

Data
Blocks

65432

Disk
Layout

Cabinet

1
3

2
P

P
4

P 5 6

n

P

Data Block

Parity Block

Figure 2.1 Examples of RAID configurations.

RAID 0

In the RAID 0 example, the data blocks are distributed, or striped, across three disks.
There is no redundancy, and if a disk is lost, data is irretrievably lost and the system
can’t continue. From an I/O performance standpoint, all three disks can service I/O
operations at the same time. The disk space overhead to provide protection is mean-
ingless in this case so the available data capacity is 100 percent of the total space
allocated.

RAID 0�1

In the RAID 0�1 example, the striped array is mirrored across to an identical array
using hardware mirroring. Writes have extra overhead to maintain the mirroring, but
reads show an increased throughput because they run against either cabinet. If any sin-
gle disk is lost, the system continues to run. In this configuration, the available data
capacity is 50 percent of the total space allocated.

RAID 4

In the RAID 4 example, the use of error checking codes (ECCs) to store parity informa-
tion about the data is shown. When data blocks are written, an extra parity block is
written containing information that can be used to derive the contents of the original
data if a single disk is lost. For example, if the middle disk is lost, then the parity infor-
mation in the third disk along with the data information in the first disk can be used to
regenerate it. Writes take an extra operation to generate the parity information each
time, and reads benefit because the data is striped across multiple disks. The available
data is N—1/N of the total capacity (where N is the number of disks), which for this
three-disk configuration works out to be 66 percent of the total space allocated.

RAID 5

In the RAID 4 configuration, the parity information is kept on a single drive, which can
become a bottleneck during high write requests. On writes, the parity must be regen-
erated each time. RAID 5 is very similar to RAID 4. The difference, however, is that par-
ity information is distributed across all the available drives. The overhead of the ECC
information in the parity block and the performance characteristics are broadly similar
to RAID 4. In the past, RAID 5 has been associated with poorer performance for write-
intensive applications. My advice is to not accept information related to RAID 5 on the
basis of hearsay: Check it out for yourself. Due to the sophistication of nonvolatile
hardware disk caches and write back caching (where the disk returns a write-complete
message to an application as soon as data is in the cache), the poor write performance
of RAID 5 is greatly overstated from my experience and not actually evident in many
cases. As you’ll soon see in the section SANs and NAS, some of the most popular SAN
solutions are implemented over RAID 5 storage, so the decision on RAID levels is no
longer a customer decision.

40 Chapter 2

Advantages of RAID

Using RAID on your disks protects your organization against an application outage
caused by a single disk drive failure. For RAID 0�1, it might protect you against more
than one disk failure depending on the actual disks that fail. The economic cost of an
application outage depends on the organization and application, but includes factors
such as lost sales, data reentry time, and data restore time. As a DBA, you should con-
firm that all of your production systems are protected against a single disk failure; this
requirement is usually implemented with RAID. Keep in mind that if you lose a disk,
your system might no longer be tolerant to a single disk failure (if it’s RAID 4 or RAID
5) so hot-swappable disks are a good idea. These typically reside in a spare slot in the
disk cabinet and are automatically regenerated with data along with an email alert to
the SA team; they are enabled if a drive is lost.

Remember that your hardware requires protection against types of hardware fail-
ures other than just simple disk media failure. This protection involves items such as
redundant power supplies, disk controller cards, and cooling fans. Failure of any of
these can cause a server outage if no redundancy is built in, so systems with high avail-
ability requirements are usually configured to hot swap these components without a
server outage.

Raw Partitions versus UNIX
File Systems
In terms of manageability, which ultimately translates into availability, raw partitions
are at the opposite end of the spectrum from the single UNIX file system approach I’ve
just discussed. Due to the complex nature of setting up a database to use raw devices,
the DBA is dependent on the SA for the initial configuration and long-term manage-
ment. A lot of planning needs to be done up front on the predicted growth of the sys-
tem because each raw partition can only be used for one datafile. Any space not
allocated for the datafile is wasted. If your system doesn’t grow as predicted, and
many if not most systems probably fall into this category, you’re heading for severe
maintenance headaches. With raw devices, it just isn’t that easy to move free space
where it’s needed. Keep in mind also that you can’t use OMF with raw partitions.

Of course, you sometimes have to use raw partitions, for example, when using Ora-
cle Real Application Clusters (RAC) on some versions of UNIX. It’s interesting to note
that Oracle Parallel Server (the forerunner to RAC) is definitely easier to manage on the
VMS operating system, rather than UNIX because the VMS clustering enables you to
use standard files for your Oracle database, which you can extend on demand.

Oracle’s own UNIX Performance Tuning Tips guides usually quote a 5 to 40 percent
increase in disk throughput resulting from the use of raw partitions. However, remem-
ber that disk I/O is just one part of the overall performance equation and might not be
relevant to your particular performance problem. Your requirement as a DBA is actu-
ally to deliver performance that meets the business requirements of today and the
future to the business user. You can usually find many different (and easier) ways to
achieve that than using raw partitions.

Database Creation 41

In my experience with a large number of different types of Oracle systems, from
real-time credit-card billing to warehouses for equity settlements data, I’ve never come
across a performance problem that could be solved by using raw partitions. This
includes situations where raw partitions have been used as a last resort to alleviate per-
ceived I/O problems.

It’s interesting to examine the reasons why raw partitions are supposed to give bet-
ter performance than the UNIX file system. One of the reasons given is that using raw
partitions bypasses the UNIX buffer cache for Oracle reads and writes, and avoids the
central processing unit (CPU) overhead of moving database blocks between the disk
and the UNIX buffer cache. Instead, data goes directly from the disk to the Oracle Sys-
tem Global Area (SGA). On operating systems where free memory is made available
for caching file blocks, the UNIX buffer cache can actually improve performance. In this
case, when Oracle performs a physical read because a data block is not present in the
SGA data block buffer cache, a physical read request is made to the operating system.
If this block is in the operating system buffer cache, the Oracle physical read is not
actually a physical read at all. The point about the operating system buffer cache in this
case is that it makes sure that real memory is used to cache data, if any memory is avail-
able. Solaris is an example of such an operating system. Of course, you could allocate
more memory to the Oracle SGA instead, but if your application causes many table
scans (and if you have any free memory available), leaving the caching to the operat-
ing system can be more flexible. Figure 2.2 shows the screen output for a free Solaris
utility called memtool, showing that some of the Oracle database files are cached in the
operating system buffer cache.

A second reason given for using raw partitions is that they avoid a file system lock
that UNIX takes out to serialize access to data on a file system. For an Oracle applica-
tion with large physical I/O requirements, this serialization can cause a bottleneck.
Other solutions to this problem are available that don’t require using raw partitions;
they were developed precisely to provide the benefits of file system-style usability
with the performance of raw partitions. For example, Quick I/O from VERITAS Soft-
ware Corporation is designed to overcome file system locking through a VERITAS file
that can be extended more flexibly than a raw partition. Operating system vendors are

42 Chapter 2

Figure 2.2 Solaris file data in the UNIX buffer cache.

also looking to make such features available as standard through their file systems.
From Release 3 on, Sun Solaris 8 includes improved file system direct I/O concurrency
(Quick I/O style functionality) for which Sun claims I/O performance approaching 90
percent of raw partition access speeds. The performance of Solaris direct I/O, which is
used by database applications to access unbuffered file system data, is improved by
providing concurrent read and write access to regular files on a UNIX file system and
is specifically aimed at database customers. On the subject of file system caching, VER-
ITAS additionally has a Cached Quick I/O feature, which sets out to provide the I/O
write throughput of raw partitions (Quick I/O) with configurable read buffering for
individually named files. Remember that to increase read buffering, you can control it
through Oracle by increasing the memory allocated to the Oracle data block buffer
cache. From Oracle9i on, you can change the cache size on the fly.

To sum up, raw partitions are options for improving I/O throughput at the cost of
manageability and flexibility. Before you consider using them, be absolutely sure that
your application performance issue is due to an I/O bottleneck that can only be solved
by using raw partitions. Even then, consider whether file system features in your oper-
ating system or through a third-party vendor such as VERITAS can provide the
throughput you require without resorting to raw partitions. It might be helpful to read
the sections in this book on tuning first before you make such a commitment because
you need to identify the root cause of your performance problem first. If you need
orders of magnitude performance improvements, you’re unlikely to get them through
using raw partitions. As a final note, you might have noticed that hardware vendor
benchmarks running Oracle nearly always use raw partitions for performance. You can
see some examples at www.tpc.org. Luckily for the Oracle DBA, real-world business
applications hardly ever have the sole goal of running Online Transaction Processing
(OLTP) transactions as fast as possible at the cost of everything else.

Tablespaces and Fragmentation

Since Oracle7, database fragmentation seemed to be an obsession for many DBAs.
Extent fragmentation exists in two forms. In the first form, any segment containing a
large number of extents was said to be fragmented, and this was deemed to be ineffi-
cient from an I/O standpoint. The second form of fragmentation occurs when a table-
space has enough total space to satisfy a space request, but the space is fragmented
across multiple smaller extents that are noncontiguous. In this case, a request for a
10MB extent would fail if the available space was distributed across 10 extents that
were 1MB. This scenario can occur when lots of segments with different extent sizes
are mixed in the same tablespace, effectively creating holes in the available free space
that can’t be used by any segment. As a result of both types of fragmentation, DBAs
were at the office every weekend exporting and importing the database to defragment
the data into large extents to create more efficient I/O and free wasted space.

From the discussion of storage technologies such as RAID, it’s clear that it’s actually
a good idea to distribute apparently contiguous blocks of data across multiple physical
disks for I/O balancing. Therefore, by definition, RAID is introducing fragmentation.
This leads to the conclusion that fragmentation is good for I/O throughput if the I/O
characteristics of the application can be represented as multiple random concurrent

Database Creation 43

requests for relatively small chunks of data. This description of I/O characteristics
probably fits any Online Transaction Processing (OLTP) type of application where the
user’s data requests are index driven rather than requiring the full table scans found in
a Decision Support System (DSS) type of application. The conclusion is that the exis-
tence of many small extents for a given segment is not only unavoidable with modern
disk storage architectures, but actually beneficial to performance. So the first form of
fragmentation (the existence of many small extents) isn’t actually a problem that needs
to be fixed.

NOTE DSS applications are characterized by mainly read-only activity on
historical data and are used for reporting and forecasting. For example, a
company might store all its historical sales data in a data warehouse to identify
sales trends by region, by quarter, by department, and so forth. DSS appli-
cations usually require processing of all the rows in very large database tables
(referred to as full table scans). DSS applications contrast with OLTP applica-
tions. OLTP applications are characterized by many simultaneous, small, real-
time transactions on small subsets of table rows, which are accessed via
indexes. The ATM machine you use at your bank is a front end to an OLTP
application.

On the other hand, the wastage of space caused by extent fragmentation is a valid
concern, especially if your space is allocated from a managed service like a SAN and
you pay for the amount used on a regular basis. If you still think that having a few
large extents is good and that defragmenting your database is a way of life, then take
the time to read the classic Oracle white paper “How to Stop Defragmenting and Start
Living: The Definitive Word on Fragmentation,” which is available from Oracle’s cor-
porate Web site. Every Oracle DBA should be familiar with the contents of this paper.
To save you from having to read it, the conclusions of the paper are provided in the fol-
lowing list:

■■ The performance of Data Manipulation Language (DML) is largely indepen-
dent of the number of extents in the segment.

■■ Segments smaller than 128MB should be placed in 128KB extent tablespaces.

■■ Segments between 128MB and 4GB should be placed in 4MB extent table-
spaces.

■■ Segments larger than 4GB should be placed in 128MB extent tablespaces.

It’s worth emphasizing these conclusions: It’s not necessary for good DML perfor-
mance to have all your objects allocated across a few very large extents, and you can
avoid space wasted from fragmentation by ensuring that all segments in a given table-
space use the same extent size.

The choice of extent size is designed to restrict the maximum number of extents in
an object to 1,024, which is deemed to be the maximum that’s efficient for Data Defini-
tion Language (DDL) operations. It should be stated that the experience of the authors
of the white paper, and mine personally, is that performance with a few thousand
extents is not much different.

44 Chapter 2

TE
AM
FL
Y

Team-Fly®

Now that we have buried the myth of fragmentation and performance, and have
avoided space wastage, we return to an Oracle physical layout where we create table-
spaces with a uniform extent size and never set storage parameters at the object level.
The result is that extent fragmentation and the wastage that goes with it simply
disappear.

Performance is good because of the underlying RAID technology that distributes
I/O across all disks, and DBA management of space is minimal because datafiles can
autoextend into a large pool of available space on a single, large file system. Database
creation is simplified because file creation is managed by OMF. Automatic undo allo-
cation takes care of the rollback segment headaches we had in the past. Come to think
of it, maybe the Oracle claim of a 40 percent savings in administration costs isn’t so far
fetched after all.

SANs and NAS

SANs and NAS are modern data storage technologies that most organizations are
likely to adopt in the long term, possibly alongside each other.

SAN technology sets out to provide reduced costs, higher availability, improved
performance, and better asset utilization for an organization’s storage. It almost
sounds too good to be true and it’s definitely not cheap to implement. Deciding to
implement a SAN is usually a strategic corporate-level decision. By choosing a SAN,
an organization makes the decision that storage is a strategic enterprise technology
that can be used for competitive advantage, not just a bunch of disks.

To the DBA, and actually to the whole organization, this means that storage is no
longer attached to the database server by a Small Computer Systems Interface (SCSI)
cable. Instead, storage is actually physically located remotely from the server and typ-
ically attached to the server by a dedicated Fibre Channel network for performance
reasons, with the Fibre Channel network isolated from the normal production data
highway used to transfer data between servers.

One important component that enables high performance for storage attached via a
SAN is the host bus adapter (HBA) card. This plugs in to the host, where the storage is
accessed and contains an intelligent I/O processor. HBAs process block-level I/O
without requiring many CPU cycles from the host processors. The existence of an HBA
provides higher performance for SAN compared to NAS, which typically uses a stan-
dard Transmission Control Protocol/Internet Protocol (TCP/IP) network interface
card to attach the host to remote storage devices and therefore requires CPU resources
from the host itself in order to handle data transfer.

The SAN architecture is a collection, referred to as a fabric, of Fibre Channel
hubs, switches, and gateways connecting servers to storage in a many-to-many rela-
tionship. The actual disks where your data is stored might be shared with other appli-
cations or databases on other servers. You no longer have visibility of the underlying
physical layout. The storage is now a managed service and the database server is just
another client of the managed service. The underlying physical disk used to store your
data might be located in a unit such as an IBM Enterprise Storage Server (ESS), known
as Shark, providing up to several terabytes of storage using RAID 5. The traditional
DBA reluctance to deploy a database on RAID 5 is now a relic because it isn’t relevant

Database Creation 45

to a managed storage architecture on a SAN. The DBA can concentrate on what a DBA
does best, which is running databases—managing the storage is left to a dedicated
team.

As a DBA using a SAN for your storage, your relationship with database storage can
be expressed as a simple requirement: You need the storage to deliver performance and
availability. That’s all. Storage matters are out of your hands and are now managed by
a group dedicated to meeting your requirements. In the old days, if your database
server was short of space, you would have probably followed a somewhat tedious pro-
curement process involving your SAs and business users to purchase a new disk. When
the disk arrived, an outage would be arranged to install the new disks. With a SAN,
you submit a request to increase your database file system by 9GB, and the next day, the
file system is bigger. No outage is needed. Because your storage is now managed by a
dedicated team, you can rest assured that performance of the storage is being moni-
tored for you. Data might be relocated behind the scenes to balance I/O. However, it’s
all transparent to the DBA: You see only the benefits of the flexible management of
database space, and performance and availability are guaranteed. Many companies use
an internal charge-back model to account for storage space on a SAN, where business
groups rent space and pay monthly per gigabyte. As a DBA, the use of storage space for
your databases is likely to be more carefully scrutinized in the future as a result. If a
third party provides your SAN as a managed service, what your organization pays is
dictated by how much you use, so good housekeeping of space is critical for keeping
costs down. As well as providing raw space, SANs can actually provide benefits that
are not available from locally attached storage—such as the near-real-time mirroring of
data to a remote site (for disaster recovery) or flash copy for instantaneous backups—
completely transparently to the server that runs the application.

It can’t be emphasized enough that you should be absolutely sure that the end
results don’t compromise the integrity of your database before you use any of these
SAN valued-added features. The Oracle Storage Certification Program (OSCP) on Ora-
cle’s corporate Web site is a good place to start.

NAS, on the other hand, is a fundamentally different technology. The key element of
a NAS system is a dedicated storage appliance directly attached to the corporate pro-
duction data highway. The storage appliance manages storage operations and disk
array. NAS uses standard local area network (LAN) and wide area network (WAN)
protocols such as the Network File System (NFS). This leads to the age-old question of
whether you can run Oracle databases in a NAS configuration. In the past, the
accepted wisdom was that you couldn’t run Oracle databases on NFS because NFS is
based on the unreliable User Datagram Protocol (UDP) (used to send email); therefore,
writes couldn’t be guaranteed. Actually, NFS can run on top of the guaranteed deliv-
ery of TCP/IP if configured to do so, but as it turns out, that’s a moot point. In reality,
Oracle provides the OSCP to enable vendors to certify their storage according to Ora-
cle’s defined requirements for storage compatibility. One of the most popular plat-
forms for running Oracle on NAS is through the NetApp filer (file server appliance)
from Network Appliance Inc. If you’re concerned about the reliability and compatibil-
ity of such a solution, the fact that Oracle uses NetApp to run its ebusiness should put
your mind at rest. NAS uses the corporate production data highway for data, so it fol-
lows that you need to make sure your network has sufficient bandwidth to cope with
the extra traffic resulting from using NAS for database storage.

46 Chapter 2

Naming Standards and Physical Layout

The original Optimal Flexible Architecture (OFA) layout for managing Oracle data-
bases was based on the existence of several real file systems. So how does OFA fit into
the picture if the database actually resides on only a single file system? My approach to
this is to continue to use OFA names when laying out the database.

In this situation, OFA becomes more of a logical layout, but by continuing to use it,
you’re making a statement that you are laying out Oracle in a standard way, but with-
out making any assumptions about the underlying hardware. So, if you query the files
in the Oracle data dictionary, you’ll have no clue that the database actually resides on
a single file system. This has two main advantages. The first is that OFA is a published
standard, and if you recruit new staff, they will be familiar with it. The second is that if
for any reason you have to relocate your database onto a different hardware platform
that actually has multiple smaller file systems, you don’t have to change the file paths
because they are also compatible with that layout.

Here’s one way to create directories to mimic an OFA layout when you have a sin-
gle, large file system called /bigfs for your Oracle database instance OFAD1. In this
case, you arrange for your SA to create three top-level links—/u02, /u03, /u04—which
are links to bigfs, and request that all directory trees matching the pattern u* below
/bigfs are owned by oracle, group dba:

$ mkdir -p /bigfs/u02/oradata/OFAD1

$ mkdir -p /bigfs/u03/oradata/OFAD1

$ mkdir -p /bigfs/u04/oradata/OFAD1

$ ln -s /bigfs/u02 /u02

$ ln -s /bigfs/u03 /u03

$ ln -s /bigfs/u04 /u04

When you create your database, use the /u* links as if they were file system names.
Place the redo log groups on /u02 and /u03, with one member on each, and the table-
spaces in /u04. You should still multiplex the redo log files at the Oracle level and keep
multiple copies of the control file: Ignore the fact that the /bigfs file system is config-
ured as RAID 0�1, which means that all the files on it are actually mirrored at the hard-
ware level. By not making assumptions about the underlying hardware, you protect
yourself against the accidental human removal of those files or write corruption,
because RAID doesn’t protect you from those kinds of problems. In terms of datafile
naming, the files should be OFA compliant. Therefore, the first two datafiles in table-
space TRADES would be the following:

/u04/oradata/OFAD1/trades01.dbf

/u04/oradata/OFAD1/trades02.dbf

The important point is that no reference to /bigfs exists anywhere in the Oracle con-
figuration. Some DBAs like to prefix the name of the datafile with the instance name (in
this case, OFAD1), which would give the following:

/u04/oradata/OFAD1/OFAD1_trades01.dbf

/u04/oradata/OFAD1/OFAD1_trades02.dbf

Database Creation 47

Other DBAs view this as overkill, but it’s not unreasonable to give each file a unique
name. After all, this is exactly what OMF does for you. In the event where you’re run-
ning many instances on a consolidated server, anything that makes the DBA feel more
comfortable must be a good thing. For example, without using the instance name in
such a scenario, all SYSTEM tablespaces in all databases would have the name
system01.dbf. This might cause paranoia in restore situations, due to the concern of
overwriting the wrong file.

The use of upper- or lowercase characters for instance names can cause some unre-
solvable arguments. In some ways, it’s like trying to argue that right is better than left,
or vice versa. If pushed, I would choose uppercase names because they make the direc-
tories and datafile names (if you include the instance in the names) stand out from
other UNIX files, which tend to have all lowercase names. The examples in this book
use both.

Choosing a DB_BLOCK SIZE Value

Before Oracle9i, choosing a db_block_size value for your database required careful
consideration because after being created with the chosen size, it could only be
changed with a time-consuming complete database build. The choice is quite difficult
to make because, in general, a fixed block size is not flexible enough to address the var-
ious requirements of a typical application.

Smaller block sizes are usually more suitable to OLTP-type applications. In a typical
OLTP application, row sizes are small, blocks hold many rows, and many transactions
typically take place at any one time. Because Oracle protects blocks with latches dur-
ing access, the larger the block size in such a situation, the higher the chance that a ses-
sion has to wait while another session holds the latch for a row in the same block. The
problem is exacerbated as the number of concurrent sessions and transaction volumes
increases. So , as a rule, smaller blocks result in less block contention; this applies to
index blocks also.

Considering space usage rather than contention by using smaller blocks increases
the depth of an index tree for the same number of indexed rows, requiring potentially
more physical I/O operations to read the index data. Small blocks are also less space
efficient. This is because Oracle blocks have a fixed overhead, so smaller blocks waste
more space than larger blocks for the same amount of data. Larger blocks are more effi-
cient for physical I/O, so DSS systems or warehouses that scan tables and don’t mod-
ify data are more suited to large block sizes. However, the decision to use a large block
size for the tables forces you to use the same block size for your indexes (prior to
Oracle9i), and that isn’t always a good thing.

It’s clear from the previous discussion that a mixture of block sizes might be appro-
priate for many applications, with the block size chosen to meet the usage profile of the
data. Oracle9i enables you to choose a block size at the tablespace level and create sep-
arate buffer caches for blocks of a particular size. So you are no longer stuck with a
fixed block size, and as a result, the choice of the block size at database creation time is
no longer so critical. The most important side effect of this Oracle9i feature is that you
must stop using db_block_buffers in init.ora to specify the size of the database block

48 Chapter 2

buffer cache. This parameter cannot be changed when the database is running and is
considered obsolete. Instead, you should use the db_cache_size and db_nk_cache_size
initialization parameter settings (where n is the block size that the cache stores data
for), as in the following example of an init.ora file:

db_cache_size=60m

db_2k_cache_size=20m

db_8k_cache_size=20m

The db_cache_size value refers to the cache for the db_block_size used to create the
database. As you can see, you can now use the user-friendlier M unit to specify the
sizes. As the parameters are dynamic, you can change the settings while the database
is running using the ALTER SYSTEM command to change the distribution of total
cache space between buffers of different block sizes. The total cache space available is
controlled by the fixed parameter sga_max_size at instance startup time. Both 4KB or
8KB are typical values used for db_block_size at the initial database creation. After
database creation, you can specify block sizes for application tablespaces according to
the I/O characteristics of your application.

Choosing a Storage Character Set

When you create a database, you need to specify a storage character set for the data-
base in the CHARACTER SET clause of the CREATE DATABASE statement. The
choice is important because it determines what languages client applications can use to
store and display information from the database. On the client, the NLS_LANG envi-
ronment variable can be used to control the character used by the client application.
The rule is that the client character set must be a subset of the database storage charac-
ter set for your application to work correctly.

For example, if you create a database with a storage character set of US7ASCII and
a client application in Paris tries to insert a French name containing accented charac-
ters, then information would be lost at storage time because those accented characters
are represented in 8 bits of information per character and the database stores only
7 bits. To address this, you might create the database with the storage character set of
WE8ISO8859P1, which stores characters in 8 bits, but is limited to handling Western
European languages. If you then extend your client base to include Russia and Poland,
which use Cyrillic characters, or Japan, you are back to your original problem.

Oracle provides a storage character set called UTF8 to act as a universal storage
character set for all languages. Unlike WE8ISO8859P1 and US7ASCII, which store
characters in a single byte, UTF8 stores characters in a variable number of bytes. This
has an impact on the physical size of your database and the way that VARCHAR2
columns need to be sized. VARCHAR2 column sizes store a number of bytes. So if you
use UTF8 as the storage character set, you might increase the column sizes depending
on the languages that you intend to support.

Oracle does provide the ALTER DATABASE CHARACTER SET command, enabl-
ing you to change from one character set to another when the old character set is a

Database Creation 49

subset of the new one. For example, a conversion from US7ASCII to UTF8 would work
because all characters in US7ASCII are also defined in UTF8. If the subset requirement
doesn’t apply, you need to perform an expensive export, database rebuild, and import
to change the character set. So here’s the lesson: Choose your storage character set care-
fully at database creation time with all your possible long-term client user languages in
mind.

You can check for possible data conversion issues introduced by ALTER DATABASE
CHARACTER SET in advance using the Character Set Scanner utility csscan. Using
csscan, you can check all existing data and dictionary data for conversion issues by
running the utility, which scans data and then produces a summary of an exception
report on completion. During the scan, objects are placed into three categories with
respect to convertibility:

■■ CHANGELESS objects require no conversion.

■■ CONVERTIBLE objects require conversion by using a full export followed by a
full import into a database built with the new character set.

■■ EXCEPTIONAL objects contain data that requires a manual change before
conversion.

Creating the Database

Now we that we’ve covered all the various aspects of database creation, it’s time to cre-
ate the database itself. Database creation means that we don’t just create a skeleton
database with the CREATE DATABASE command, but we install the database schema
components for all products that have a database dependency, such as the Java Virtual
Machine, Intermedia, Oracle Replication, and others.

The best tool for creating a database is the Database Configuration Assistant pro-
gram, which has the name dbca on UNIX. As it’s a graphical user interface (GUI) pro-
gram, you need to set the X server display in the usual way before running it. Using
dbca has two main advantages. The most important one is that you can save the data-
base creation steps into a series of scripts and modify them before running them. This
is what I do by choosing the New Database template name. This template means you
can change the tablespace and redo log creation to use OMF, set the local extent man-
agement and uniform extent allocation for your tablespaces, configure automatic undo
management, and alter the storage character set. In short, you can make sure your
database is created exactly how you want it, and you get to keep the original scripts
used. During configuration, if you select the Generate Database Creation Scripts
option, then a set of files is created in the OFA-compliant $ORACLE_BASE/admin/
$ORACLE_SID/scripts directory. For example, using an Oracle SID of OMFD1, the fol-
lowing files are among those created in $ORACLE_BASE/admin/OMFD1/scripts:

init.ora

OMFD1.sh

CreateDB.sql

CreateDBFiles.sql

CreateDBCatalog.sql

50 Chapter 2

JServer.sql

ordinst.sql

spatial.sql

ultraSearch.sql

The top-level script OMFD1.sh is the one you run to create your database. This calls
the other scripts in the order shown. Be sure to check whether a stored parameter file
is created as part of the process. If it is and you’re not aware of that, you’ll find your-
self making changes to the init.ora file that have no effect. You can modify the scripts
to meet your own requirements first and you’ll probably do that. All scripts after
CreateDBCatalog.sql install other products. For any product that you don’t require,
comment out the entry in OMFD1.sh that calls it. By default, dbca configures an undo
tablespace and enables automatic undo management, which is fine because that’s the
most easily managed way to handle undo. The following tablespace creation statement
is a template for the changes you might make to the dbca-generated tablespace cre-
ation scripts in CreateDBFiles.sql and puts into practice the recommendations of this
chapter:

create tablespace oltp_tab blocksize 8kextent management local uniform

size 128k

segment space management auto;

The pre-Oracle9i DBA wouldn’t recognize parts such as the blocksize clause, the
automatic extent management, and the missing datafile specification due to the use of
OMF. Assuming your db_block_size is not 8KB, you must set a cache for 8KB blocks
first before running this statement—for example, ALTER SYSTEM SET DB_8K_
CACHE_SIZE�4M. In a nutshell, this statement encapsulates the path of the Oracle
physical layout in the future. It looks a lot less complicated than the old creation state-
ment looks, and at the same time, it produces a much more manageable database.

The other benefit of dbca is that you can create templates that can be reused for the
future creation of other databases. For example, you might create a template called No
Java for databases that you don’t want to install Java support into.

Summary

New Oracle9i features—such as OMF, automatic undo management, spfiles, default
temporary tablespaces, variable block sizes, and dynamic cache sizes—reduce admin-
istration overhead. The resulting database should be easier to create and administer
than ever before and perform just as well.

After the discussion of RAID, SAN, and NAS technology, it seems likely that the
DBA will be insulated from issues of hardware performance and availability in the
long term and can concentrate on delivering those requirements at the database level
instead.

Database Creation 51

53

Consider an Oracle network that is configured so that all client users have hard-coded
database name-to-address configuration files (tnsnames.ora) residing on each client
PC. One weekend the database moves to a different server, the change management
process is flawed, and the configuration files aren’t updated. On Monday, the users
can’t access the database. The database itself is fine, but the users (they could be real-
time traders) can’t connect to the database. Availability is compromised, and the com-
pany loses money.

Another situation you might find yourself in is a disaster that destroys one of your
main data centers. In this case, you’ll need to relocate many of your databases onto dif-
ferent servers, and the resulting mess of trying to readdress all of the clients to find the
new database locations is a nightmare. To reiterate, high performance on the server
alone is meaningless unless your infrastructure is set up to make that server available
at all times on the network without requiring configuration changes on the client.

This chapter explains, step by step, how to migrate from your existing tnsnames.ora-
based configuration to a centralized Oracle Names configuration based on a predefined
naming standard and how to take advantage of the failover and load-balancing capa-
bilities of Oracle’s networking software.

The following topics are covered:

■■ Oracle networking fundamentals

■■ Dynamic registration

■■ Network failover and load balancing

■■ Running Oracle Names

Configuring Oracle
Networking

C H A P T E R

3

■■ Considerations for running the Lightweight Directory Access Protocol (LDAP)

■■ Shared server configuration

■■ Transparent gateway configuration

Oracle Networking Fundamentals

Starting from Oracle8i, Oracle’s networking capabilities took a significant step forward
and new terminology appeared. As was always the case with Oracle networking, the
old configuration files still work and many database administrators (DBAs) probably
still use the old configuration unchanged. That’s not a problem. This section covers the
changes from the old configuration to the new, how the changes manifest themselves,
and the potential benefits that result.

A traditional pre-Oracle8i network configuration where the client is a desktop PC
running Microsoft Windows and the server is running an Oracle database might use a
tnsnames.ora configuration file on the client as follows:

mydb.dbcool.com=

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS=(PROTOCOL=TCP)

(HOST=srv1.dbcool.com)

(PORT=1521)

)

)

(CONNECT_DATA =

(SID = mydb)

)

)

The file is located in either C:\$ORACLE_HOME\network\admin, by default, or in
a standard directory you define (such as C:\var\opt\oracle), which is controlled by
setting the TNS_ADMIN environment variable. The use of a standard directory is bet-
ter because the tnsnames.ora file can be shared between all Oracle client versions on
the PC.

A user application specifies the Transparent Network Substrate (TNS) alias
mydb.dbcool.com at connect time, and the Oracle networking software that is linked
into the application executable searches the tnsnames.ora file for a match on the alias.
If it finds a match, it identifies the server where the database is located using the
HOST�srv1.dbcool.com entry and attempts a Transmission Control Protocol/Internet
Protocol (TCP/IP) connection to the Oracle listener process on the server, on TCP/IP
port 1521, passing the SID�mydb information to the server. This System ID (SID)
value identifies the database for which the connection request is intended.

The listener process ($ORACLE_HOME/bin/tnslsnr) on the UNIX server is listen-
ing for TCP/IP connections on port 1521. This port is identified from the listener.ora
file located in TNS_ADMIN when the listener was started. For the purpose of this
example, we’ll run an Oracle9i listener. Remember that if you have multiple versions
of Oracle software on your server, you should always run the listener from the most

54 Chapter 3

TE
AM
FL
Y

Team-Fly®

recent release. The listener.ora contains the following contents, which haven’t changed
in format since Oracle7:

LISTENER =

(ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCP)(HOST=srv1.dbcool.com)(PORT=1521))

)

STARTUP_WAIT_TIME_LISTENER = 1

CONNECT_TIMEOUT_LISTENER = 10

LOG_DIRECTORY_LISTENER = /u01/app/oracle/admin/log

TRACE_LEVEL_LISTENER = OFF

TRACE_DIRECTORY_LISTENER = /u01/app/oracle/admin/trace

SID_LIST_LISTENER =

(SID_LIST =

(SID_DESC =

(SID_NAME = mydb)

(ORACLE_HOME = /u01/app/oracle/product/9.0.1)

)

)

When the listener receives a client request containing an SID value, it first completes a
TCP/IP connection with the client program. This connection uses a newly created
TCP/IP port on the server. Once a connection is established, the listener searches the
SID_LIST looking for the SID value passed from the client connection request in an
SID_NAME entry. When the listener finds a match, it spawns an Oracle process using the
executable located in the ORACLE_HOME for the SID_DESC (in this case, . . .
/9.0.1/oracle). It also renames the spawned process to include the name of the SID. At
this point, the listener process bequeaths its connection with the client onto the spawned
process and returns to listening for new requests on the advertised port 1521. A TCP/IP
virtual circuit or connection is now established between the application and the Oracle
database, and the SID name passed is used to identify the Oracle shared memory seg-
ment of the database on the server. If you run the UNIX ps command, you’ll see some-
thing like this for the spawned process, which is referred to as the Oracle shadow process:

UID PID PPID C STIME TTY TIME CMD

oracle 18434 1 0 19:25:13 ? 0:01 oraclemydb (LOCAL=NO)

Hopefully what I’ve said so far is old news. This is all about to change.

Understanding Dynamic Registration

After shutting down and restarting the mydb database in the previous example and
querying the status of the listener using lsnrctl status at the UNIX prompt, the follow-
ing output appears:

STATUS of the LISTENER

.

.

Configuring Oracle Networking 55

.

Service "mydb" has 1 instance(s).

Instance "mydb", status UNKNOWN, has 1 handler(s) for this service

. . .

Service "mydb.dbcool.com", has 1 instance(s).

Instance "mydb", status READY, has 1 handler(s) for this service . . .

The command completed successfully

This is the first clue to the difference in behavior of the Oracle9i listener because
Instance “mydb” appears twice. The extra entry occurs because the database registers
information with the listener at database startup time through a process referred to as
dynamic registration. In contrast, databases that are registered with the listener
through information from the listener.ora file are referred to as statically registered. In
the previous output, the status UNKNOWN refers to the statically registered setting.
That’s the listener’s way of indicating that it doesn’t know anything about that
instance and will only check for its existence when a connection request is made by a
client.

Dynamically registered databases are indicated by status READY or status
BLOCKED (for a standby database) in the status information. A dynamically registered
database also dynamically unregisters from the listener whenever that database shuts
down, and its information disappears from the status list. As result, the listener always
knows the state of the database, whether it’s up or down. This information is used in
the fallback and load balancing of connection requests. You can’t turn self-registration
off (in any documented way at least) and that’s no bad thing due to the benefits. If
you’re wondering why you need a static registered entry in the listener.ora when you
get self-registration for free, the answer is that you don’t need to do static registration
at all, except for a couple of anomalous situations. The result is that, provided you use
the default listener port of 1521, you no longer need a listener.ora file. However, you’ll
probably still use one, if only to direct log and trace information to a standard direc-
tory, as in the earlier example. If you do persist with static registration, you can remove
the ORACLE_HOME entry from the SID_DESC section if your database is Oracle9i.
Therefore, it looks like this:

(SID_LIST =

(SID_DESC =

(SID_NAME = mydb)

)

)

Here’s what happens during self-registration, assuming your listener is up and run-
ning before the databases are started. Whenever you start a database, two pieces of
information are by default registered with the listener: the instance and the service.

The instance value registered with the listener takes its value from the instance
_name parameter in the init.ora file. If this is not set, then the db_name value from the

56 Chapter 3

init.ora file is used. During single instance operation, you don’t have to set this param-
eter, but it’s best to set it to the value of db_name to take full value advantage of
dynamic registration. However, if you are running Oracle in a Real Application Clus-
ters (RAC) configuration, you must set the instance_name parameter to a unique value
for each instance in the cluster.

The service value registered with the listener takes its value from the service_names
parameter in the init.ora file. If this is not set, the database registers itself using the con-
catenation of the db_name and db_domain values from the init.ora file. If you choose
to provide the service_names value, you can use either a fully qualified name (such as
mydb.dbcool.com) or a short name (such as mydb). If you choose a short name and the
db_domain parameter is set, the service registered with the listener is a concatenation
of the service_names value and the db_domain value. For example, the following set-
tings will result in the service mydb.dbcool.com being registered with the listener:

db_domain=dbcool.com

service_names=mydb

Optionally, you can specify multiple service values in the service_names parameter,
separating each by a comma, which is useful in shared server configurations as
explained later in the section “Using Shared Server.” The use of service_names is
mandatory when you need to do connection-time failover or load balancing, or want to
distribute connections transparently between instances in a RAC configuration. To
enable these facilities, you simply set service_names in the database parameter file for
each instance to the same value and refer to that in the service_name setting in the con-
nection request from the client. The following section on load balancing and failover
provides examples.

It’s good practice to set explicit values for the service_names and instance_name ini-
tialization parameters even though Oracle will generate default values for dynamic
registration (based on db_name and db_domain) if you don’t set them. The reason is
that there is a subtle difference in dynamic registration behavior if your listener is
restarted after the databases are up. If your listener is restarted after the databases are
up, then the PMON process for each database will reregister it automatically after a
short time only if you explicitly set service_names and instance_name in the init.ora
file. If you don’t set service_names and instance_name explicitly, then dynamic regis-
tration takes place only when the database is started after the listener is running. If the
listener is subsequently restarted in this case, dynamic registration information is lost.

Clearly, it’s best to start the listener on a server prior to starting any databases and
avoid listener restarts altogether in order to prevent the possibility of losing dynami-
cally registered database service information. At the same time, you need to recognize
that it’s possible for the listener to fail, which inevitably requires a listener restart. Set-
ting explicit values for service_names and instance_name provides protection from a
listener restart by ensuring that your databases automatically remain registered with
the listener as long as they are running. It’s worth keeping in mind that you can also reg-
ister service values manually with the listener at any time while the database is open
using the ALTER SYSTEM REGISTER command from SQL*Plus. This command is use-
ful to replace service values that have been lost as a result of a listener restart, and it reg-
isters exactly the same values as those set by dynamic registration at database startup.

Configuring Oracle Networking 57

To summarize, for a non-RAC configuration, as a general rule you should always set
db_domain in your init.ora file and set instance_name and service_names based on the
values of db_name and db_domain. Don’t register static information using the lis-
tener.ora file because dynamic registration will do that for you. Here’s an example of
the relevant part of an init.ora file where the naming meets these requirements:

db_name=mydb

db_domain=dbcool.com

instance_name=mydb

service_names=mydb.dbcool.com

If you use the Oracle Database Configuration Assistant program to create your data-
bases, which is recommended, then this information will be automatically generated in
the init.ora file for you. For the client connection description, stop using the old-style
SID � entry and replace it with the service_name value, as shown in Table 3.1.

The new style has a pleasing symmetry because the same name is used for all the
following values:

■■ mydb.dbcool.com is the TNS name that end-user applications use in connec-
tion requests. This is specified in the first line of the client connection
description.

■■ mydb.dbcool.com is the service_name value used in the CONNECT_DATA
section of the client connection description. At connection time, service_name
is passed to the database listener on the server, which attempts to match it with
the name of a database service registered with the listener using the
service_names initialization parameter.

■■ mydb.dbcool.com is the service_names value specified in the database initial-
ization file on the database server, used to dynamically register the database
with the listener at database startup time.

58 Chapter 3

Table 3.1 Old- and New-Style Client Connection Descriptions

OLD STYLE NEW STYLE
mydb.dbcool.com= mydb.dbcool.com=

(DESCRIPTION = (DESCRIPTION =

(ADDRESS_LIST = (ADDRESS_LIST =

(ADDRESS=(PROTOCOL=TCP) (ADDRESS=(PROTOCOL=TCP

(HOST=srv1.dbcool.com) (HOST=srv1.dbcool.com)

(PORT=1521) (PORT=1521)

))

))

(CONNECT_DATA = (CONNECT_DATA =

(SID = mydb) (service_name=mydb.dbcool.com)

))

))

Keep in mind that the old-style CONNECT_DATA using a SID value continues
to work.

What about those anomalies mentioned earlier? Unfortunately, Oracle software
doesn’t always obey its own rules for service naming across all products. For example,
Oracle Enterprise Manager (OEM) uses the tnsnames.ora file to locate database
services on the current server. One of our goals is to get rid of that by replacing the
tnsnames.ora file with an Oracle Names server. However, OEM won’t recognize a
Names server. Therefore, on one hand, you want to ditch tnsnames.ora and on the
other hand you want to use OEM. To work around this, you can statically register a ser-
vice name with the listener through the use of the GLOBAL_DBNAME parameter in
the listener.ora file:

SID_LIST_LISTENER =

(SID_LIST =

(SID_DESC =

(SID_NAME = mydb)

(GLOBAL_DBNAME = mydb.dbcool.com)

)

)

If you don’t do this, OEM will identify your database using a combination of the
host name and instance name (srv1_mydb), which is annoying when you’ve already
created a unique name for it that obeys your naming standard, which in this case is
mydb.dbcool.com. To compound matters, using GLOBAL_DBNAME itself has a side
effect. It breaks Transparent Application Failover in RAC, so you should not use
GLOBAL_DBNAME in a RAC configuration.

You’ve probably got a headache by now so let’s move on to the benefits of using a
network configuration based on dynamic listener registration on the server (through
the service_names initialization parameter) and service_name in the client connection
description. This is referred to as the service-name-based approach in the following
examples.

Using Failover and Load Balancing

The behavior of the service-name-based failover and load-balancing capabilities are
best shown using real-world examples.

Failover to a Different Server
For the first failover example, let’s use an example that we’ll actually put to use when
configuring Oracle Recovery Manager (RMAN). In this scenario, your company has
three data centers on different sites that are subject to periodic scheduled power out-
ages for building maintenance. All of the data centers contain Oracle databases. Com-
pany policy dictates that only one site can be out at any time.

The DBA group has a requirement to back up and restore databases 24�7, and all
backups are based on an RMAN backup catalog. This means that the RMAN backup

Configuring Oracle Networking 59

catalog database needs to be available pretty much at all times so the backup and
restore service is available at the other two sites during a site outage. A solution to this
problem is as follows. The DBA group identifies two servers—site1.dbcool.com and
site2.dbcool.com—each on a different site to hold the backup catalog database. This
database is only up and running on one site or the other. The DBA group manages this
switchover manually by shutting down the database on one site, according to the out-
age requirements, and physically copying it to the other site. The init.ora parameters
for the database are the same on both sites and include the following information, rel-
evant to failover:

db_name=rmanp1

db_domain=dbcool.com

instance_name=rmanp1

service_names=rmanp1.dbcool.com

The failover capability is provided through a TNS alias as follows:

rmanp1.dbcool.com =

(description =

(address_list =

(address=(protocol=tcp)(host = site1.dbcool.com)(port = 1521))

(address=(protocol=tcp)(host = site2.dbcool.com)(port = 1521))

(load_balance = false)

(failover = true)

)

(connect_data =

(service_name = rmanp1.dbcool.com)

)

)

NOTE All keyword values in a connection description are case insensitive, so
failover�true, FAILOVER�TRUE, and FAILOVER�true are all equivalent.

All backup clients connect to the catalog database using the TNS alias rmanp1
.dbcool.com, and the connection is made to the service name, which actually comprises
one of the databases on site1 or site2. The list of servers where the database can be
found is provided by the ADDRESS values in the ADDRESS_LIST, and the
FAILOVER�TRUE value means that the client connection fails over to the database at
address site2.dbcool.com if the database is down at site1.dbcool.com. No configuration
change is required on the client system (the server where the database to be backed up
resides) whenever the backup catalog is relocated due to a site outage; the failover fea-
ture takes care of the reconnection. The meaning of LOAD_BALANCE and FAILOVER
are described in the matrix in Table 3.2.

In our case, we use load_balance�false and failover�true to indicate that only one
of our databases is operational at any time. If the first one in the list (on site1.dbcool
.com) is down, then the second one (on site2.dbcool.com) should be contacted as
failover and should be up. There is actually a small outage to the availability of the cat-

60 Chapter 3

alog database due to the need to relocate it to a different site, but because this is under
the control of the DBA group, the relocation can be scheduled at a time when the
backup server is not in use.

NOTE This outage can actually be reduced to almost zero using Oracle9i
standby database technology, which is covered in Chapter 23.

Understanding When Failover
Takes Place
It’s important to understand exactly when a connection attempt fails over and when it
doesn’t. As a side effect of this investigation, you’ll see why the service-name-based
approach provides superior capabilities compared to failover that was available prior
to Oracle8i. Three main failover scenarios are of interest:

■■ The database is down.

■■ The listener is down.

■■ The server is down.

If the Oracle database instance is down on the first connection attempt (ORA-01034
message from the server), failover will take place instantaneously to the second if service
names are in use. Prior to the existence of the service names feature (for example, using
SQL*Net 2.3.4 client failover) the client would receive an ORA-01034 message, and no
failover would take place. So the service-name-based failover is a significant improve-
ment on older versions because the underlying database self-registration means that the
listener knows if the database is up or down and can use this information.

If the target machine is up but there is no tnslsnr process listening on the specified
port, then the remote TCP module responds immediately, indicating that it can’t make
a connection and the client process knows right away that it’s time to failover. In this
case, when the Oracle client application tries to establish a TCP connection, it sends a
message (specifically, an SYN packet) to the TCP module on the target machine asking

Configuring Oracle Networking 61

Table 3.2 LOAD_BALANCE and FAILOVER Connection Options

FAILOVER�TRUE FAILOVER�FALSE

LOAD_BALANCE�TRUE Try one address at Try one address at
random from the random from the
ADDRESS_LIST and attempt ADDRESS_LIST and
a connection. If it fails, try attempt a connection. If
the other address. it fails, return an error

message to the client.

LOAD_BALANCE�FALSE Try the first address from the Meaningless.
ADDRESS_LIST and attempt
a connection. If it fails, try the
next address.

for a connection to a particular port (which by default is 1521 for the Oracle listener)
and this request is rejected.

If the target machine is shut down or not available on the network (that is, a ping
request fails), then the time to failover is determined by the operating system TCP/IP
configuration setting. On Solaris, this is given by the following:

tcp_ip_abort_cinterval

By default, this is set to 180,000 milliseconds (3 minutes). This time can be reduced
to approximately 10 seconds by placing the following command in the Solaris initial-
ization scripts, which are controlled by the root account:

ndd -set /dev/tcp tcp_ip_abort_cinterval 10000

Before you make this change, be aware that it affects all TCP/IP connections on the
server, and if you have some very slow links, then these might time out too quickly. On
the other hand, 3 minutes is a long time to wait for a connection, and many users will
simply give up and call the helpdesk, adding to your support burden.

Failover to an Instance on the Same Server
In a second scenario, say that we have two instances on the same server srv1.dbcool
.com and we want to connect to either one that is up. This is somewhat different from
the previous example because we are not failing over between sites, so the load-
balancing and failover capabilities from the ADDRESS_LIST are not available. How-
ever, we still have a failover capability through the use of service names. In this case, we
register both databases with the listener using the same service name, even though they
have different instance names, as shown in the init.ora parameters in Table 3.3.

If you run the lnsrctl status command, you’ll clearly see the two instances associated
with a single service name:

Service "mydb.dbcool.com" has 2 instance(s).

Instance "mydbp1", status READY, has 1 handler(s) for this

service . . .

Instance "mydbp2", status READY, has 1 handler(s) for this

service . . .

62 Chapter 3

Table 3.3 init.ora Details for Failover to Different Databases on a Server

INITMYDBP1.ORA FILE CONTENTS INITMYDBP2.ORA FILE CONTENTS
db_name=mydbp1 db_name=mydbp2

db_domain=dbcool.com db_domain=dbcool.com

instance_name=mydbp1 instance_name=mydbp2

service_names=mydb.dbcool.com service_names=mydb.dbcool.com

All client applications connect to the service using the following alias:

mydb.dbcool.com =

(description =

(address_list =

(address=(protocol=tcp)(host = srv1.dbcool.com)(port = 1521)))

(connect_data =

(service_name = mydb.dbcool.com)

)

)

The instance to which the first connection attempt is made is determined by the one
that registered first with the listener. If that instance is down, then the other is
contacted.

Failover with Load Balancing
Finally, let’s see an example of load balancing and failover together using an RAC con-
figuration with two instances, one on each node in a two-node cluster. The server
names are rac1.dbcool.com and rac2.dbcool.com. We want to load balance all users
across both instances in the cluster and make sure that connection requests are trans-
parently redirected to other instances in the cluster when one instance is down. Note
that the load-balancing capabilities are actually more sophisticated than a random
selection of the server address. These capabilities are determined by the actual server
loading on each instance.

Before we begin, it’s helpful to distinguish between the Oracle SID value that you
specify in the UNIX environment to identify the instance and the instance_name
parameter you use in the init.ora file. The SID (specified by the $ORACLE_SID UNIX
environment variable) is used by the Oracle software to determine the shared memory
segment, background processes, and init.ora file used when you start an instance on
the server. The instance_name in the init.ora file is used to identify the instance to the
Oracle listener process. In a RAC environment, it’s mandated that each instance in the
RAC has a different instance_name. Therefore, our /var/opt/oracle/oratab file (or
/etc/oratab on some UNIX variants) that identifies the $ORACLE_SID present on the
node looks like this on each node:

mydbp11:/u01/app/oracle/product/9.0.1:N # on rac1.dbcool.com

mydbp12:/u01/app/oracle/product/9.0.1:N # on rac2.dbcool.com

The init.ora files on each node of the cluster (in the example) share the
service_names value, but use different instance names, as shown in Table 3.4.

To support connections to the service mydbp1.dbcool.com, the TNS alias used by all
clients to connect would use the following mydbp1.dbcool.com entry, which specifies
both load balancing and failover, but has no reference to the individual instance on
either node. This means that the Oracle networking software can decide on the
instance that the client application connects to, both for load balancing or failover to

Configuring Oracle Networking 63

the other instance if the first one is down while being completely transparent to the
client application:

mydbp1.dbcool.com=

(description=

(address_list=

(address=(protocol=tcp)(host=rac1.dbcool.com)(port=1521))

(address=(protocol=tcp)(host=rac2.dbcool.com)(port=1521)))

(connect_data=

(service_name=mydbp1.dbcool.com)

)

(load_balance=on)

(failover=on)

)

Of course, it’s sometimes necessary to provide a facility to connect specifically to
one instance or the other. This is facilitated by providing individual aliases that specify
the same service_name but different instance_name values, as shown in Table 3.5.

The TNS aliases can be named any way you choose. The previous examples have a
naming standard that appends the instance_number in each init.ora file to the db_name
component of the name in order to identify the instance—for example, 1 and 2. This

64 Chapter 3

Table 3.4 init.ora Differences for a Two-Node RAC Configuration

INITMYDBP11.ORA ON INITMYDBP12.ORA ON
RAC1.DBCOOL.COM RAC2.DBCOOL.COMb_name=mydbp1

db_name=mydbp1 db_name=mydbp1

instance_number=1 instance_number=2

db_domain=dbcool.com db_domain=dbcool.com

instance_name=mydbp11 instance_name=mydbp12

service_names=mydbp1.dbcool.com service_names=mydbp1.dbcool.com

Table 3.5 TNS Aliases for Instance-Specific RAC Connections

CONNECTION TO INSTANCE ON RAC1 CONNECTION TO INSTANCE ON RAC2
mydbp11.dbcool.com= mydbp12.dbcool.com=

(description= (description=

(address= (address=

(protocol=tcp) (protocol=tcp)

(host=rac1.dbcool.com) (host=rac2.dbcool.com)

(port=1521) (port=1521)

))

(connect_data= (connect_data=

(service_name=mydbp1.dbcool.com) (service_name=mydbp1.dbcool.com)

(instance_name=mydbp11) (instance_name=mydbp12)

))

TE
AM
FL
Y

Team-Fly®

naming convention is used by the Oracle Database Configuration Assistant when cre-
ating a cluster database. Whatever you choose, stick to a standard and you’ll be able to
connect to any of your instances without needing to look up the names.

Running an Oracle Names Server

In my experience, no other Oracle product provides such significant benefits with such
little effort as Oracle Names. If you use Oracle Names and set up the configuration so
that it’s redundant against a single point of failure, then you no longer need to use a
tnsnames.ora file on the client. This means that whenever you create a new Oracle ser-
vice in your organization or relocate an Oracle database onto a different server, no con-
figuration change is required on the client. In fact, the clients won’t even be aware of
the change. This reduces support costs as you should be able to eliminate Oracle con-
nectivity problems from your workload altogether. Provided that you run Oracle
Names on a minimum of two sites, you will still have an Oracle name-to-address ser-
vice available even in the case of a site disaster. You’ll be able to relocate the database
to other servers, possible even in different countries, and the client application won’t
detect a thing. If you use Oracle Names to resolve Oracle service aliases, then by defi-
nition you are centralizing your Oracle name-to-address service. At this point, you
should implement a global naming standard for your Oracle database TNS aliases.
This doesn’t mean that you need to convert the old names; it just means that all names
from this point should obey the standard. You should put a task on your list to convert
the old names over time.

WARNING Be forewarned that Oracle is not releasing Oracle Names after
Oracle9i. That’s fine for now, and Oracle Names will continue to work for
several years. However, the demise of Oracle Names in the long term means we
need to investigate the use of LDAP to resolve Oracle service names in the
future. This is covered in the next section. LDAP is Oracle’s directory protocol of
choice, and Oracle is increasing the number of features available via LDAP over
time. Oracle name resolution using LDAP requires Oracle8i or higher client
software.

A Naming Standard for Oracle
Databases
The point of a database-naming standard is to guarantee that you can address every
Oracle database in your organization by a unique name. This means using a fully qual-
ified name for the connection alias, changing the global_name value that’s stored per-
sistently in the database to match the connection alias, and enforcing the naming
standard. Using this naming schema means that the external name used to connect to
the database on the network matches the database’s internal global name. Why is this
important? Let’s take an example of a poor name choice and fix it to meet the standard
after identifying the problems. For purposes of the example, let’s say that Big Inc is a

Configuring Oracle Networking 65

global organization with a Domain Name Service (DNS) name of big.com and has
offices in London, New York, and Tokyo. A London DBA creates a database, names it
sales, and uses a default domain of world. This is how the relevant part of the init.ora
file looks:

db_name=sales

db_domain=world

The TNS alias used by clients to connect to the database is sales.world. The DBA
group duly adds this to the tnsnames.ora file and delivers the changed file to all
London PCs:

sales.world=

(description=

(address=

(protocol=tcp)

(host=srv1.uk.big.com)

(port=1521)

)

(connect_data=

(service_name=sales.world)

)

Logging onto SQL*Plus and selecting the global name of the database gives the
following:

SQL> select * from global_name;

GLOBAL_NAME

SALES.WORLD

Then a DBA in New York creates a database with the same global name
(sales.world) on a New York server. The connection alias in the tnsnames.ora file that’s
shipped to New York users looks like this:

sales.world=

(description=

(address=

(protocol=tcp)

(host=ny.us.big.com)

(port=1521)

)

(connect_data=

(service_name=sales.world)

)

Everything’s fine until someone in New York needs to access the London server.
Now there’s a problem because the name that London uses to refer to the London data-

66 Chapter 3

base (sales.world) is already in use in New York to refer to the New York database. The
problem can be fixed in ad hoc ways by modifying the TNS name of one of the data-
bases and changing its global name; however, that’s not a well-thought-out solution. A
better solution is to use a global naming scheme based on a top-down notation like
DNS. DNS fixes the problems involved in resolving host names centrally and uniquely,
and you can use a similar approach to name your database services.

To resolve this problem, Big Inc has a meeting with its DBAs and they come up with
a global naming standard for Oracle databases that prevents the names from clashing
in the future. They decide that all database global names and TNS aliases must include
the region in the name, giving the tnsnames.ora entries shown in Table 3.6, which can
be safely copied into the tnsnames.ora files on both sites.

The DBAs agree that the last three components of each name will be used to identify
the region where the service is located, so New York will use us.big.com and London
will use uk.big.com. Tokyo is informed that it should start using jp.big.com for its
databases. This is a simple and flexible naming scheme that enables further subdivi-
sions of the name in a top-down fashion. For example, when the London trading
department wants an equities trading database and an equities warehouse, there’s
nothing to stop the London DBA group from choosing the following names because
they meet the standard, even though the names have five components:

trading.equities.uk.big.com

warehouse.equities.uk.big.com

Additional benefits that no one thought of in advance come about when the New
York and London DBAs have a requirement to connect their databases together for the
purposes of replication using Oracle database links. Now it’s very straightforward to
link the systems together because they already have names that are guaranteed to be
globally unique, and no one needs to struggle with thinking up appropriate names.
With the naming standard in place, it’s a no-brainer. At this point, it’s worth explaining
the exact purposes of the database global_name value, the db_domain init.ora param-
eter, the global_names init.ora parameter, and the names.default_domain setting in the
sqlnet.ora on the client. The relationships between these settings can be confusing.

Configuring Oracle Networking 67

Table 3.6 TNS Aliases in a Global Naming Scheme

NEW YORK ALIAS LONDON ALIAS
sales.us.big.com= sales.uk.big.com=

(description= (description=

(address= (address=

(protocol=tcp) (protocol=tcp)

(host=ny1.us.big.com) (host=srv1.uk.big.com)

(port=1521) (port=1521)

))

(connect_data= (connect_data=

(service_name=sales.us.big.com) (service_name=sales.uk.big.com)

))

The DB_DOMAIN Parameter
The db_domain setting from the init.ora file is used as the default setting for the
domain part of any database link you create. If the db_domain setting in your init.ora
file is uk.dbcool.com, then the following two Structured Query Language (SQL) state-
ments will create the same link, sales.uk.dbcool.com (which you can check by selecting
from the USER_DB_LINKS table):

create database link sales;

create database link sales.uk.big.com;

A database link has two components—a link name, which is stored in the local data
dictionary, and an associated TNS alias, which is the external name that Oracle uses to
connect to the remote database associated with the link name. You’ve probably noticed
that the two link creation statements didn’t specify a TNS alias to identify the remote
database to connect to because there is no USING clause present in the SQL. That’s
another advantage of this naming standard. If you don’t specify the USING clause,
then Oracle silently defaults it to be the same as the link name. So if you create a link
named sales.uk.big.com and use it in a query, Oracle will connect to the remote data-
base identified by the alias sales.uk.big.com. That’s exactly what we want based on our
naming standard. The db_domain setting is also used if you select from the database
link without using a fully qualified link name. In this case, Oracle will silently suffix
the db_domain setting for you. So the following SQL statements are equivalent, using
a db_domain value of uk.big.com:

select * from all_users@sales;

select * from all_users@sales.uk.big.com;

From my experiences of working in a global environment, I strongly recommend
that you don’t rely on default domains on links and always specify domain-qualified
names when you create links or use them. If you don’t, there’s the possibility that in a
globally replicated system, where the databases all have the same names and differ
only in the value of the db_domain, you’ll end up running SQL against the wrong
database by mistake.

GLOBAL_NAME and GLOBAL_NAMES
Sometimes Oracle seems determined to confuse the DBA, and the existence of both global
_name and global_names is an excellent example. It is possible that enforce_global
_names would have been a better choice than global_names. Anyway, the global_name
setting is a persistent setting in the database, and you can view and set it using the fol-
lowing SQL:

select * from global_name;

alter database rename global_name to sales.us.big.com;

Although the name implies that it’s somehow related to the db_domain value in the
init.ora file, you can set the global_name and db_domain independently, which isn’t

68 Chapter 3

really a good thing. In reality, you’ll endeavor to make sure that the global_name value
is identical to the db_name and db_domain values from the init.ora file, joined with a “.”.

The global_name has two main purposes. It’s often used by developers of Oracle
applications to tell the user which database he or she is connected to, usually by
putting the value in the caption of the application window after connection. DbCool
does this. More importantly, the global_name can be used to enforce the global naming
standard for database link names when used in combination with the init.ora setting
global_names�true. Here’s an example of how it works, given that global_names�

false at the start. In the New York database, a DBA creates a database link to the Lon-
don database, and the London database has a global_name setting of sales.uk.big.com:

create database link sales.uk.big.com;

Another New York DBA comes along and creates another link to the London
database:

create database link nonstandard.uk.big.com;

Both these links will work perfectly fine, but you want to disallow the nonstandard
one. To do this, you need to make sure that the global_names�true setting is on the
New York database when you start it up. In this case, a query against the nonstandard
link will return a runtime error:

select * from all_users@nonstandard.uk.big.com;

ORA-02085: database link NONSTANDARD.UK.BIG.COM connects to

SALES.UK.BIG.COM

By setting global_names�true in your init.ora file, you enforce the global naming
standard that any database link name in the local database must match the
global_name of the remote database. If it doesn’t, Oracle will refuse to run the SQL and
return an ORA-02085 error. If you’re familiar with database links, you’ll know that you
might have several database links to a remote database, each with different authenti-
cation at the remote end. For example, one link might connect to the SALES account at
the remote end and one might connect to the MANAGERS account. How do you
enforce the global naming standard while still allowing multiple links with different
authentication? The answer is that you use connection qualifiers. Connection qualifiers
enable you to enforce global naming and at the same time allow multiple links with
different properties connecting to the same remote database. You create such qualified
links as follows and use them just like a regular link:

create database link sales.uk.big.com@q1

connect to managers identified by sz7123

using 'sales.uk.big.com';

select * from commission@sales.uk.big.com@q1;

In the example, the link qualifier is q1. Note that the link name still obeys the global
standard. The qualifier could be any string you choose. When you create a link with a

Configuring Oracle Networking 69

connection qualifier, you must provide the connection alias in the link create statement
in the USING clause. You might think that Oracle could just strip the qualifier off the
end of the link name and use what’s left (sales.uk.big.com) as the connection alias.
However, it doesn’t, and if you forget to provide it, you’ll receive the following
message:

ORA-02019: connection description for remote database not found

You can see the database link information best by querying the SYS.LINK$ table,
which includes the passwords for any link connections in cleartext. For that reason, if
you’re using links, be extra vigilant about security. Also, remember that the HOST col-
umn is not the remote server where the remote database is located; it’s the TNS alias for
the remote database. It’s set to HOST for long forgotten historical reasons. Here are the
contents for the links we created in the examples:

select name,host,userid,password from sys.link;

NAME HOST USERID PASSWORD

--------------------- ------------------ -------- ----------

SALES.UK.BIG.COM@Q1 sales.uk.big.com MANAGERS SZ7123

SALES.UK.BIG.COM sales.uk.big.com

NAMES.DEFAULT_DOMAIN
Recall the TNS alias we used to identify the New York database:

sales.us.big.com=

(description=

.

.

.

Any client application needing to connect to this database would need to specify the
name sales.us.big.com at connect time. Actually, that’s not entirely true. We’ve already
seen that the db_domain value in the database init.ora file can be used to default the
domain used when you create a database link. In a similar way, the names.default_
domain setting can be used to default the domain part of the connection alias during
an Oracle connection. The names.default_domain setting is found in the sqlnet.ora file
that holds client-side Oracle connection settings.

If you set names.default_domain�us.big.com to the sqlnet.ora file on an Oracle
client, then a client application could provide the unqualified name sales at connect
time and the connection would succeed because us.big.com would be silently
appended before connection.

The use of names.default_domain is very strongly discouraged. Its use can result in
DBAs accidentally connecting to the wrong database in replicated environments
where the default domain depends on the location of the client machine. In most
graphical user interface (GUI) applications, either the user chooses a connection from

70 Chapter 3

a list of names or the connect string is built into the application. So the only benefit of
using names.default_domain appears to be in saving a DBA from typing in a few extra
characters when connecting to a database using command-line tools like SQL*Plus. So
it’s not much of a sacrifice to give it up.

Now we have our global naming standard for databases in place. We’ve agreed to
use global_names�true in all our databases, use fully qualified names for our database
connect aliases, and ensure that the db_name and db_domain settings in our init.ora
file match the global_name of the database.

Finally, all host names specified in our TNS connection descriptions should also use
fully qualified domain names. Although the DBA can’t implement this, as it’s a service
provided by the system administrator (SA) group, there’s absolutely no point in the
DBA group implementing domain-qualified names if the underlying host names are
not domain qualified. If this is the case in your organization, encourage your group to
adopt DNS immediately.

Using an Oracle Names Service
on the Client
Now we’ll set up an Oracle Names service based on installing an Oracle Names server
on two hosts. You could use the two hosts in the DBA Cluster discussed in Chapter 1.
The concept of Oracle Names is extremely simple.

To connect to an Oracle database, a client application needs to resolve an Oracle TNS
alias like this:

sales.uk.big.com=

(description=

(address=

(protocol=tcp)

(host=srv1.uk.big.com)

(port=1521)

)

(connect_data=

(service_name=sales.uk.big.com)

)

In the early days, this was done through a lookup in a local tnsnames.ora file on the
client. To use a Names server, load up all the tnsnames.ora entries into the Names
server, remove the tnsnames.ora file on the client, and change the sqlnet.ora file on the
client to use the two Names servers to resolve the aliases instead. In simple terms, the
Oracle Names servers hold a list of database TNS descriptions, which are indexed by
the TNS alias names. So the client application sends sales.uk.big.com to the Names
server at connect time, the Names server returns the description part, and the client
uses the host and service_name values returned in the description to identify the
server and database to connect to. That’s all there is to it.

You can actually verify that a description is all you need to connect to an Oracle
database. You don’t actually need to provide a TNS alias to connect at all. You can
connect using the description instead, making sure it’s enclosed in quotes. It’s a bit

Configuring Oracle Networking 71

awkward to enter the following all on one line instead of sales.uk.big.com, but it does
work using SQL*Plus:

'(description=(address_list=(address=(protocol=tcp)(host=srv1.uk.big.com

)(port=1521)))(connect_data=(service=sales.uk.big.com)))'

That’s how some of Oracle’s tools, and DbCool for that matter, enable you connect
to an Oracle database just by providing an Oracle service or SID, a host name, and a
port number: They create a description based on those details and connect using that.
This is what the sqlnet.ora file used by all clients in London looks like, after changing
it to use the Names servers:

names.directory_path = (TNSNAMES,ONAMES)

names.preferred_servers=

(address_list =

(address =

(protocol = TCP)

(port = 1575)

(host = oran1.uk.big.com)

)

(address =

(protocol = TCP)

(port = 1575)

(host = oran2.uk.big.com)

)

)

The names.directory_path specifies that a local tnsnames.ora file should be used to
resolve an Oracle TNS alias before using the Names server. As there is no tnsnames.ora
(we’ve removed it), the Names server will be used. The purpose of leaving the
tnsnames.ora file as a possibility is so that the DBA can manually add entries to the file
in an emergency and override the Names server. This is a very unlikely scenario.

The names.preferred_servers value specifies the two Names servers to be used to
resolve names. The first server is contacted, and if it’s down, the second one is used.
Provided the servers are never both down at once, which must be a key feature of your
design, you have a 24�7 service. The names for the hosts in the client sqlnet.ora files
should be DNS aliases and not the real host names. This means that in the unlikely
event that you lose both your servers, you can redirect the aliases to two new servers
without having to change the sqlnet.ora file on each client. There’s no need to stop at
two servers. If you want more redundancy, you can add more preferred servers. Two is
a minimum.

Once you’re using an Oracle Names server, you’ll get a very useful feature, known
as a global database link, for free. For example, if you’re connected to sales.uk.big.com
and you want to query SELECT * FROM TRADES@sales.us.big.com, then provided
that your local session logon and password exist on the remote database, you can go
ahead and run the SQL without creating the database link. Oracle looks in the Names
server for a TNS alias matching the database link you specified. If one exists, it uses it
to connect.

72 Chapter 3

Building an Oracle Names Server
You need to designate a minimum of two hosts on which to run Oracle Names to
ensure that the service is maintained if you have an outage on one site or the other,
planned or otherwise. As is often the case, Oracle gives you too much choice in the con-
figuration. The one I’ve chosen means that you hold all of your Oracle TNS entries in
an Oracle database, which gives you all the protection and security that comes with an
Oracle database.

Ensure that you have installed Oracle Names. You can check this by looking for the
$ORACLE_HOME/bin/names executable. Designate a database to hold the TNS
entries, one that has 24�7 availability. For our example, we use the instance onamesp1
located on server s24x7.uk.big.com. Create a schema within the database as follows
using SQL*Plus:

create user names identified by names901
temporary tablespace temp default tablespace tools quota unlimited on
tools;

grant create session to names;

grant resource to names;

revoke unlimited tablespace from names;

grant create synonym to names;

connect names/names901

@/u01/app/oracle/product/9.0.1/network/admin/namesini

Now create a names.ora file on each of your chosen hosts. Our example uses
srv1.uk.big.com and srv2.uk.big.com. Remember that the host name oran1.uk.big.com
used in the client sqlnet.ora file shown previously should be a DNS alias for the real
host name srv1.uk.big.com, and the same relationship exists between oran2.uk
.big.com and srv2.uk.vig.com. The names.ora file is located in the TNS_ADMIN direc-
tory. Table 3.7 shows the contents of the Names services’ names.ora files on each site.

Note that each Names server has a different name, listens for requests on port 1575
(to match the port specified in the sqlnet.ora file on the client sites), and shares the same
REGION database for storing the TNS entries. Table 3.8 shows the contents of the sql-
net.ora files on the Names server sites. These are different from the client versions and
different across the Names server sites. This is because we want the namesctl command-
line utility (used to stop and start the Names servers) to default to the Names server on
the local site first. The order is determined by the order of the preferred servers in the
sqlnet.ora file. The clients have a different requirement: They simply need to access any
Names server that is available so the lookup order does not matter.

To start the Names server on each site, use the namesctl utility. Don’t worry about
messages involving problems contacting the default server (the first in the sqlnet.ora
file) because the server is not up yet.

namesctl start

Configuring Oracle Networking 73

74 Chapter 3

Table 3.7 Contents of the names.ora File on Names Server Sites

FILE NAMES.ORA FILE ON FILE NAMES.ORA FILE ON
FIRST SITE SECOND SITE
NAMES.SERVER_NAME = NAMES.SERVER_NAME =

NS_SRV1.UK.BIG.COM NS_SRV2.UK.BIG.COM

NAMES.ADDRESSES = NAMES.ADDRESSES =

(ADDRESS = (PROTOCOL = TCP) (ADDRESS = (PROTOCOL = TCP)

(HOST = srv1.uk.big.com) (HOST = srv2.uk.big.com)

(PORT = 1575)) (PORT = 1575))

NAMES.ADMIN_REGION = NAMES.ADMIN_REGION =

(REGION = (REGION =

(DESCRIPTION = (DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP) (ADDRESS = (PROTOCOL = TCP)

(HOST = s24x7.uk.big.com) (HOST = s24x7.uk.big.com)

(PORT = 1521)) (PORT = 1521))

(CONNECT_DATA = (CONNECT_DATA =

(SID = onamesp1) (SID = onamesp1)

(Server = Dedicated) (Server = Dedicated)

))

))

(USERID = names) (USERID = names)

(PASSWORD = names901) (PASSWORD = names901)

(NAME = LOCAL_REGION) (NAME = LOCAL_REGION)

(REFRESH = 86400) (REFRESH = 86400)

(RETRY = 60) (RETRY = 60)

(EXPIRE = 600) (EXPIRE = 600)

(VERSION = 134230016) (VERSION = 134230016)

))

Table 3.8 Contents of sqlnet.ora File on Names Server Sites

FILE SQLNET.ORA FILE ON FILE SQLNET.ORA FILE ON
SRV1.UK.BIG.COM SRV2.UK.BIG.COM
names.directory_path = names.directory_path =
(TNSNAMES,ONAMES) (TNSNAMES,ONAMES)
names.preferred_servers= names.preferred_servers=
(address_list = (address_list =

(address = (address =
(protocol = TCP) (protocol = TCP)
(port = 1575) (port = 1575)
(host = srv1.uk.big.com) (host = srv2.uk.big.com)

))
(address = (address =

(protocol = TCP) (protocol = TCP)
(port = 1575) (port = 1575)
(host = srv2.uk.big.com) (host = srv1.uk.big.com)

))
))

TE
AM
FL
Y

Team-Fly®

On one site and as a one-off task, load up your TNS entries from the tnsnames.ora
that you’ve removed from client sites. You can provide the path to the file if it’s not in
the TNS_ADMIN directory. Otherwise, Oracle looks for the tnsnames.ora file:

load_tnsnames

Now start the Names server on the other site. Your Names service is now up and
running on both sites, providing 24�7 service.

Other Oracle Names Configurations
Oracle provides other configurations for running a Names server. One uses a method
referred to as continuous replication, which doesn’t use an Oracle database for holding
names. Instead, it uses only a checkpoint file. As it’s potentially less robust as a result,
I recommend the repository database configuration.

Another configuration means that you run a Names server in each region with its
own Names database repository. In our example, uk.big.com and us.big.com would
run their own repository databases. Local requests for remote services would be met
through an additional Names server (the root domain server) in the hierarchy, and the
root domain server is used only for delegation purposes. This would forward requests
between regions so that a U.S. request for sales.uk.big.com that could not be resolved
locally would be delegated to the United Kingdom Names server by the root domain
server. A configuration based on delegation adds complexity to running the Names
service. If your goal is to provide the most reliable service, it makes much more sense
to reengineer your separate DBA groups to act as a global team, running a single repos-
itory, rather than adding complexity to the service in order to workaround the man-
agement issues of poor communication between your teams. Of course, you need to
locate the single repository in one region or the other. If your U.S. and U.K. teams use
the same standard, the decision on where to locate the repository effectively comes
down to the toss of a coin, where the result doesn’t matter.

A single repository configuration does not stop the Names servers in all regions
from running during a repository outage. It just prevents changes from being made
during the repository outage. It’s also worth remembering that when a Names server
starts, it loads up all names into its cache; therefore, even if a single repository is shared
across countries, the name-to-address resolution can be configured to take place locally
so that it doesn’t require a lookup across a wide area network (WAN). So, in our exam-
ple, U.S. clients would use a sqlnet.ora that referred only to their own local Names
servers rather than the London version given earlier.

names.preferred_servers=

(address_list =

(address =

(protocol = TCP)

(port = 1575)

(host = oran1.us.big.com)

)

(address =

(protocol = TCP)

Configuring Oracle Networking 75

(port = 1575)

(host = oran2.us.big.com)

)

)

The fact that the Names servers in London and New York share a common reposi-
tory is transparent to client requests and is only visible through the names.ora files on
each Names server site. You could make the system more robust by allowing New York
requests to failover to London, and vice versa. This protects against a failure of the ser-
vice on both sites in a single region. In this case, the sqlnet.ora file for New York clients
would look like this:

names.preferred_servers=

(address_list =

(address =

(protocol = TCP)

(port = 1575)

(host = oran1.us.big.com)

)

(address =

(protocol = TCP)

(port = 1575)

(host = oran2.us.big.com)

)

(address =

(protocol = TCP)

(port = 1575)

(host = oran1.uk.big.com)

)

(address =

(protocol = TCP)

(port = 1575)

(host = oran2.uk.big.com)

)

)

London clients would use a similar file with the London servers appearing before
the New York servers.

Oracle Names Support Tips
You should be aware of what happens if you lose your Names repository database due
to a scheduled or unscheduled outage. In this case, your Names servers will continue
to run, but you won’t be able to modify or remove existing TNS definitions in the
server or insert new ones. If you try, you’ll receive the following message:

Response status: NNC-00430: Database not accessible

However, you can still stop and restart the Names server itself, or restart it after a
crash, and it will continue to work because it caches the contents of the Names data-

76 Chapter 3

base on disk as a protection measure against repository outages. It’s a good idea to take
periodic dumps of the Names server contents by using the dump_tnsnames command.
This dumps the contents in a format that is suitable for loading into another Names
repository with the load_tnsnames command. You’ll need to implement monitoring on
the server where the Names server runs, to ensure that a Names server is restarted
immediately after an unexpected crash. When connected to one Names server, you can
connect to the other by using the SET SERVER command using the server name speci-
fied in the names.ora file.

Oracle Names enforces the uniqueness of entries by using the combination of a TNS
alias and description as a unique key. This means you can enter the same alias twice by
accident if the description parts don’t match. The most reliable way to enter and
remove TNS aliases is to use the netmgr program. This enables you to query entries
before you remove them. You can also query aliases by using the dump_tnsnames com-
mand and searching the output file or entering a query command within namesctl. For
example, to query the description of sales.uk.big.com, you would enter the following:

query sales.uk.big.com a.smd

If you register or unregister entries using the namesctl utility, you need to run the
RELOAD command on the other Names servers in order to load the changes into the
other Names servers’ caches. It’s better to use netmgr, which can issue a RELOAD
command on all Names servers for you.

Using LDAP to Resolve Names

The introduction to the section on Oracle Names stated that Oracle Names will not be
provided after Oracle9i. Oracle Names is very good at what it does, which is providing
a 24�7 Oracle name-to-address resolution service with a very low setup and manage-
ment cost. In effect, it’s a directory of Oracle TNS aliases. However, the limitations of
Oracle Names include the proprietary protocol used to access the service and the
restriction on servicing requests for Oracle TNS aliases alone. The future of Oracle
directory services is based on LDAP. LDAP addresses the deficiencies in Oracle Names
because it’s defined by the Internet Engineering Task Force (IETF) and as such repre-
sents an open standard that many other large companies like Microsoft support. As the
IETF is also responsible for Hypertext Transfer Protocol (HTTP) and TCP/IP standards
among others, you can rely on the standard not changing frequently and not without
an extensive consultation process.

LDAP provides access to a distributed directory containing a broad range of infor-
mation about different types of objects, including TNS aliases. The information in the
directory exists in a directory information tree (DIT), and LDAP contains features to
query and modify information in the tree. As you would expect, an LDAP-compliant
directory can support the resolution of Oracle names to addresses in the same way that
Oracle Names does. The difference is that LDAP uses an open standard network pro-
tocol. For the purposes of this book, we’re interested in the using LDAP to resolve Ora-
cle TNS aliases and support centralized user management and enterprise role
management and retrieval, which is discussed in Chapter 5.

Configuring Oracle Networking 77

Chapter 5 contains details on how to set up Oracle Internet Directory (OID), which
is Oracle’s LDAP-compliant directory. My recommendation is to wait for a later release
of OID before deploying it and to consider using Microsoft’s LDAP-compliant direc-
tory as an alternative. A decision to use OID simply to provide an Oracle name resolu-
tion service is an overengineered solution. A directory is much more complicated to
configure and manage than Oracle Names.

Migrating to LDAP
Oracle provides tools to help you migrate your TNS entries from an Oracle Names
server into an LDAP-compliant directory such as OID. The namesctl utility provides
the dump_ldap command to dump TNS entries into a file in LDAP interchange format.
With minor changes to the output, the dumped data can be modified into a format suit-
able for loading into an LDAP directory. The following command when executed at the
namesctl prompt dumps all TNS aliases ending in uk.dbcool.com into a file uk.dbcool
.com.ldif:

dump_ldap uk.dbcool.com -f uk.dbcool.com.ldif

The following example shows the dumped output for a single TNS alias orad1.uk
.dbcool.com modified with the addition of the line “changetype: add” to make it suit-
able for loading into an LDAP directory:

dn: cn=orad1,cn=OracleContext,dc=UK,dc=DBCOOL,dc=COM

changetype: add

objectclass: top

objectclass: orclNetService

cn: orad1

orclNetDescString:(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)(HOS

T=ldn1.dbcool.com)(PORT=1521)))(CONNECT_DATA=(SID=orad1)))

The OracleContext entry in the first line determines the location of the entry in the
DIT as specified by the domain components dc�UK, dc�DBCOOL, and dc�COM. If
your Oracle TNS aliases include names with different numbers of components or com-
ponent names, then you need to create multiple OracleContext entries in the DIT to
hold the names. For example, the following aliases would all require new OracleCon-
text entries in the DIT, in addition to dc�UK, dc�DBCOOL, and dc�COM:

■■ trading.dbcool.com

■■ debt.us.dbcool.com

■■ debt.standby.dbcool.com

Therefore, to simplify migration to LDAP, you might consider requiring all of your
aliases to consist of three-part names ending in dbcool.com and modifying those that
don’t in order to avoid the need to create multiple OracleContext entries in the DIT.
Although using simple names makes LDAP migration easier, it reduces the descrip-
tiveness of the names. For that reason, you should not migrate to LDAP without con-

78 Chapter 3

sidering whether to modify your existing names to make migration easier. Until you
do that, it’s best to stick with Oracle Names.

In order to load names into LDAP, you use the ldapmodify command. The follow-
ing example loads an LDAP-formatted TNS entry in the file orad1.ldif into the OID
running on TCP/IP port 389 on server srv1, where the connection to the directory is
authenticated by the username orcladmin and the password welcome:

$ ldapmodify -D cn=orcladmin -w welcome -h srv1 -p 389 -f orad1.ldif

The example assumes that orad1.ldif contains the LDAP description of
orad1.uk.dbcool.com shown previously and that an OracleContext for dc�UK, dc�

DBCOOL, and dc�COM exists in the directory. Chapter 5 contains a step-by-step
example of how to install OID and create the OracleContext entries and the orclNet-
Service class required to store the aliases in the directory.

As well as the dump_ldap command, Oracle provides the Oracle Names LDAP
Proxy in Oracle9i to enable client applications that can’t use directory naming to use a
Names server that acts as a proxy for an LDAP directory. All Names servers must be
upgraded to Oracle9i first. The LDAP Proxy enables the process of migrating from
Oracle Names to LDAP to be performed in two stages. In the first stage, the server is
modified to use LDAP with changing the client configuration. When this stage is suc-
cessfully implemented, client configurations can be modified to use the LDAP server
directly.

Using Shared Server

In a standard Oracle configuration, each client connection has a corresponding process
on the UNIX database server, which is known as a shadow process. Such connections are
referred to as dedicated server connections because each client has its own server process.
When thousands of users connect concurrently, performance often degrades because
UNIX uses a lot of central processing unit (CPU) cycles’ context-switching between the
processes rather than running SQL requests. To address this, Oracle provides a shared
server architecture that enables a pool of server processes to be shared between multi-
ple clients in order to help performance levels be maintained when the number of
users increases. Shared server processes can be started on demand to satisfy end-user
requests. In previous versions, Oracle called this architecture a multithreaded server
(MTS). MTS was a bad name choice because the rest of the computing community uses
the term multithreaded to refer to lightweight threads of execution running within a sin-
gle process. Shared server is a much better description.

Configuring Dispatchers
Using shared server, many user processes connect to a dispatcher, which directs incom-
ing network session requests to a common queue. An idle shared server process in the
pool picks up the request from the queue. The initial number of dispatchers to start and

Configuring Oracle Networking 79

the maximum network connections for each are specified in the DISPATCHERS initial-
ization parameter as follows:

dispatchers="(protocol=tcp)(dispatchers=2)(connections=200)"

The max_dispatchers initialization parameter controls the maximum number of dis-
patchers and can be altered dynamically using the ALTER SYSTEM command. To con-
trol resource allocation, a pool of dispatchers can be associated with a specific service
name registered with the listener through the service_names parameter. That way,
resource allocation to different groups of clients can be controlled according to busi-
ness requirements. In the following example, two services are defined, where one con-
tains 2 dispatchers and the other 10:

service_names=(g1.db1.big.com, g2.db1.big.com)

dispatchers="(protocol=tcp)(dispatchers=2)(service=g1.d1.big.com)"

dispatchers="(protocol=tcp)(dispatchers=10)(service=g2.d1.big.com)"

In effect, this configuration provides a higher service level for clients that specify
g2.d1.big.com in their connection requests because that service has more dispatchers
allocated to it, enabling requests using that service to be allocated more quickly from
the request queue.

Connection Pooling
In order to make better use of resources, shared server provides connection pooling to
allow an idle session to time out, enabling the connection to be used by an active ses-
sion. This can be useful for interactive Web applications where only a few of several
hundred client connections may be active at any time. When an idle session becomes
active, the physical connection is transparently reconnected. Connection pooling intro-
duces the concept of a network tick, which is a measurement of time (in seconds) that
is used to specify the idle timeout interval. The following example shows a dispatcher
configuration where connection pooling is enabled for idle connections after 3 ticks
(specified by POOL�3), where each tick is 2 seconds long (identified by TICK�2):

dispatchers="(protocol=tcp)(dispatchers=1)(pool=3)(tick=2)

(connections=100)(sessions=400)"

The values of ON and TRUE can be used for POOL in which case the default time of
10 ticks is used. The SESSIONS value specifies the maximum number of network ses-
sions to allow for each dispatcher. Oracle recommends the use of low tick values (such
as 1) for local area networks (LANs) and higher tick values (such as 15) for WANs.

Specifying Shared and Dedicated
Server Connections
The sqlnet.ora file can be configured with use_dedicated_server�on to enforce the use
of a dedicated (that is, nonshared) connection in a shared server configuration. This

80 Chapter 3

overrides other methods. Alternatively, the server�shared or server�dedicated set-
tings can be used in the connect_data section of a TNS alias description to control the
choice of a shared or dedicated server connection according to the end-user applica-
tion requirements. The following example explicitly requests a dedicated server
connection:

trading.dbcool.com=

(description=

(address=(protocol=tcp)(host=trading)(port=1521))

(connect_data=

(service_name=trading.dbcool.com)

(server=dedicated)

)

)

Using Transparent Gateways

Many organizations run database management system (DBMS) technologies from
more than one company in order to meet business requirements. Oracle’s transparent
gateways enable Oracle applications to reference data in Microsoft SQL Server and
Sybase databases (and several others) directly from SQL running in the Oracle data-
base and transparently to the end-user application. This section discusses the Oracle
Transparent Gateway for Microsoft SQL Server.

Server Configuration
The transparent gateway for Microsoft SQL Server needs to be installed on a Windows
server where the Microsoft SQL Server client tools have been installed previously. The
gateway behaves like a standard Oracle listener in the sense that it listens for connec-
tion requests from clients. However, rather than using TCP/IP port 1521 (as used by an
Oracle database), the gateway uses port 1541 by default. The following example shows
the contents of the listener.ora file for a Microsoft SQL Server transparent gateway
installed on server mssql1.dbcool.com and listening for connection requests on
port 1541:

LISTENER =

(ADDRESS_LIST=

(ADDRESS=(PROTOCOL=tcp)(HOST= mssql1.dbcool.com)(PORT=1541)))

SID_LIST_LISTENER=

(SID_LIST=

(SID_DESC=

(SID_NAME=tg4msql)

(ORACLE_HOME=c:\oracle)

(PROGRAM=tg4msql)

)

)

Configuring Oracle Networking 81

The example uses the default SID_NAME value of tg4msql. The value for SID_
NAME can be chosen by the DBA if desired. Whatever value is chosen must match the
corresponding value used in the client TNS alias exactly as it must for a regular con-
nection to any Oracle listener and client application. Associated with the SID_NAME
is a file that identifies the SQL Server database to which the listener forwards SQL
requests from the Oracle client. In the following example, the file inittq4msql.ora iden-
tifies the SQL Server database named mssql1.mdsdb:

inittg4msql.ora

This is a sample agent init file.

It contains the HS parameters that are

needed for the gateway Agent.

#

HS init parameters

#

HS_FDS_CONNECT_INFO=mssql1.mdsdb

HS_FDS_TRACE_LEVEL=ON

The use of HS_FDS_TRACE_LEVEL�ON enables the tracing of the original Oracle
SQL requests into SQL Server format, which can be useful for problem diagnosis. The
configuration file doesn’t contain authentication information for connection to the SQL
Server database. This information is passed from the database link definition used by
the Oracle client application, as shown in the next section. Once the configuration files
are in place, the gateway listener is started using a Windows service in the same way
as an Oracle listener on Windows.

Client Configuration
When an Oracle database references data in a SQL Server database, the Oracle data-
base is the client. Data location transparency in the client is typically enabled through
the use of views created in the Oracle database that reference remote SQL Server
objects via database links. These links are used in exactly the same way as they would
be used to connect to another Oracle database. The difference is that the link specifies
a gateway running on a Microsoft Windows server rather than an Oracle database lis-
tener. The gateway acts as a proxy between the Oracle and Microsoft databases, for-
warding SQL requests from the Oracle side, submitting them to a SQL Server database,
and then returning the results to Oracle. The following SQL shows an example of a
database link used to connect to a SQL Server database via a gateway:

create public database link "TG4MSQL.MSSQL1.MDSDB.DBCOOL.COM"

connect to mds2 identified by xyk791 using

'tg4msql.mssql1.mdsdb.dbcool.com';

There’s nothing to distinguish this link from one you would use to connect to an
Oracle database, except for the naming convention used. My preferred naming con-
vention is to prefix all SQL Server database link names with TG4MSQL to indicate that
the link refers to a SQL Server database. The next part of the name, MSSQL1, is the host

82 Chapter 3

name where the SQL Server database is located, and MDSDB is the name of the data-
base. You can choose your own naming conventions if you don’t like this one. As usual,
the TNS alias used in the link creation statement needs to resolve to a database server
through a tnsnames.ora file, LDAP directory, or Oracle Names server. The TNS alias
for the SQL Server connection in the previous example is shown in the following:

tg4msql.mssql1.mdsdb.dbcool.com =

(description =

(address =

(protocol=tcp)

(host=mssql1.dbcool.com)

(port=1541)

)

(connect_data=(sid=tg4msql))

(hs=ok))

This alias bears a close resemblance to an Oracle TNS alias with two significant dif-
ferences. The use of port�1541 and hs�ok together indicate that the alias refers to a
transparent gateway. By default, transparent gateways use TCP/IP port 1541. The con-
nection can be tested using a simple query against the SQL Server data dictionary from
the Oracle database. For example, the following SQL shows some of the accounts in the
remote SQL Server database if the link is working:

select * from all_users@tg4msql.mssql1.mdsdb.dbcool.com where username

like 'db%' and rownum <=5;

USERNAME USER_ID CREATED

------------------ --------- ---------

db_accessadmin 16385

db_backupoperator 16389

db_datareader 16390

db_datawriter 16391

db_ddladmin 16387

The gateway can translate queries on many of the Oracle data dictionary tables into
queries on the corresponding SQL Server objects. Once the database link exists, views
can be created using the link to enable applications to transparently reference SQL
Server data.

Summary

Oracle provides comprehensive networking facilities that can enhance the perfor-
mance and availability of your applications. The centralizing of naming services pro-
vided by Oracle Names ensures that your Oracle network names are defined in one
place. If you implement the service across multiple sites, the service is available 24�7
even when a single-site outage occurs due to either a disaster or scheduled outage.

Configuring Oracle Networking 83

Using Oracle Names enables you to change the database location details in one place
so that all clients see the change instantaneously without a single configuration change
on the client. Whenever Names is implemented, organizations experience higher avail-
ability and lower support costs for Oracle services. Eventually, you need to move away
from Oracle Names to an LDAP-compliant directory. However, you must understand
the challenges of migrating to LDAP and the extra complexity of managing a directory
service before you consider upgrading.

Oracle Net provides built-in load-balancing and failover capabilities that you can
use to ensure that client connections are transparently redirected to available servers
where resources are available. The shared server capabilities enable thousands of client
connections to be managed efficiently. If you are in the habit of transferring data
between heterogeneous databases in your organization using file transfer, then you
should seriously consider switching to the Oracle transparent gateways, which allow
access to data from other DBMSs directly from an Oracle database, without the over-
head of file copy.

84 Chapter 3

TE
AM
FL
Y

Team-Fly®

85

There are gaps in what Oracle offers to help you manage database servers. For exam-
ple, Oracle has always provided two scripts—dbstart and dbshut—to stop and start
your databases whenever a UNIX server boots up or shuts down. Oracle has always
made it clear that dbstart should only be run at system boot time, as you can see from
the comment in the following code:

It should ONLY be executed as part of the system boot procedure

Countless database administrators (DBAs) found that running dbstart under
Oracle7 while a server was up would not only start databases that were down, but
would actually shut down and restart any databases that were already up! So the com-
ment in the code was of little assistance. In other early releases of Oracle, dbstart and
dbshut weren’t upgraded by Oracle and failed to work properly, which perhaps sug-
gests that the need to provide a standard interface for starting and stopping Oracle
databases wasn’t high on the list of priorities. Given that these scripts do eventually
work properly, what about all the other Oracle services you might like to start on
server boot, such as the listener, gateways, Names servers, and the Oracle Intelligent
Agent?

Clearly, the boot-time functionality provided by dbstart and dbshut is nowhere near
enough. It’s not uncommon to need to restart or shut down a database outside the
server reboot sequence, or start a database in a nonstandard mode, such as managed
standby. You can do all those things, but they typically involve writing custom scripts
using one of the UNIX command shells or consulting the documentation to find out
the exact order of commands. If you’re running a backup through a third-party media

Environment Standards
and Tools

C H A P T E R

4

manager, you might need to automatically shutdown and startup mount your data-
base as part of the backup process and open it afterwards. In that case, you want your
script to have a well-defined interface and return code so that it can interface it with
third-party software such as scheduling tools. In general, you want to be able to embed
your scripts in other scripts easily.

This chapter describes a set of standards and tools for the UNIX environment in
which you manage Oracle database servers. It covers the following topics:

■■ How to set a login environment
■■ How to use the set_env alias
■■ Why Perl is a good choice for Oracle scripting
■■ How to build a Perl interpreter, including an Oracle interface
■■ Standard tools for managing Oracle
■■ Configuring and running Apache
■■ How to integrate Oracle services with machine boot

This chapter defines the requirements that a set of scripts needs to do all these things
and provides the code for you. These scripts are written in Perl. Before we run the
scripts, we’ll set up a standard UNIX login environment that enables you to set Oracle
environments for all instances on the server with a single command.

Setting a Login Environment

Any DBA who logs onto any UNIX Oracle account on any database server in your
organization should find the same initial environment. That way, all DBAs can manage
databases on all servers because the environment is standardized. To do this, you need
to standardize the environment through settings in the $HOME/.profile file that UNIX
runs when you log on. We’ve already standardized on ksh as our login shell (although
bash on Linux works just as well), as described in Chapter 1, so a minimal $HOME/
.profile file looks like this:

--------- ORACLE_BASE setting

Set $ORACLE_BASE from special oratab entry e.g.

#ORACLE_BASE:/u01/app/oracle

MYORATAB=/var/opt/oracle/oratab

if [! -f $MYORATAB] ; then

echo "Please create $MYORATAB" exit 1

fi

ORACLE_BASE='grep "^#ORACLE_BASE:/.*$" $MYORATAB|awk -F: '{ print $2 }''

echo $ORACLE_BASE

if [! -d "$ORACLE_BASE"] ; then

echo "ORACLE_BASE is missing from /var/opt/oracle/oratab"

exit 1

else

export ORACLE_BASE

fi

86 Chapter 4

#--------- end ORACLE_BASE setting

use emacs on set -o if you prefer the emacs editor

set -o vi # enable vi mode for command line editing

export ORACLE_PATH=.:$ORACLE_BASE/sql # to locate useful SQL scripts

export EXINIT="set tabstop=3 ic" # enable case insensitive search

in vi

set X DISPLAY to telnet client machine

export DISPLAY='who am i | awk '{print $6}' | sed 's/(//' | sed

's/)//'':0.0

On Solaris, you must have /usr/ccs/bin first in the path.

Without it, Oracle re-links will fail.

if [-d /usr/ccs/bin] ; then

PATH=/usr/ccs/bin:$ORACLE_BASE/oraperl/bin:$ORACLE_BASE/perl:$PATH:.

fi

Useful aliases

alias tal='tail -f

$ORACLE_BASE/admin/$ORACLE_SID/bdump/alert_$ORACLE_SID.log'

alias dba='sqlplus "/ as SYSDBA"'

Alias to set up Oracle environments based on oratab

alias set_env='. $ORACLE_BASE/admin/scripts/set_environment'

The first section of .profile sets the $ORACLE_BASE environment variable by using
a special entry that we add to the oratab file. As the $ORACLE_BASE setting is so fun-
damental to a working Oracle configuration, it needs to be accessible in a well-known
place and defined only once. The setting needs to be available in such a way that all of
the tools and scripts that need to set it (and all of ours do) know where to find the
value. The natural place to define $ORACLE_BASE is the oratab file because the file
already contains the location and name of all Oracle instances on the server, and every
DBA should understand the contents of the file and know where to find it.

Changes to the contents of the oratab file need to be treated with care. As defined by
Oracle, lines in the oratab file identify two types of content. Lines that start with a # are
treated as comments by Oracle scripts and ignored, and any others identify Oracle
instances on the server that are to be started and stopped by the Oracle-supplied
dbstart and dbshut on server boot:

this line is a comment. Next identifies a database instance . . .

OMFD1:/u01/app/oracle/product/9.0.1:Y

The oratab file is a natural place to add extra information to identify other Oracle
services to start and stop on server boot, as well as the location of $ORACLE_BASE.
Provided that this extra information is added on lines starting with a #, then they will
safely be ignored by Oracle’s own scripts, and we can make use of the extra informa-
tion in our scripts. Our scripts, including .profile, identify the ORACLE_BASE value

Environment Standards and Tools 87

for the server by looking for a line that starts with the string #ORACLE_BASE, fol-
lowed by a “:” followed by the $ORACLE_BASE directory:

#ORACLE_BASE:/u01/app/oracle

On UNIX variants where the /usr/ccs/bin directory exists (such as Solaris), the
PATH setting requires that /usr/ccs/bin appears first to ensure that any Oracle code
relinks, including those at install time, use the correct versions of the linker and
archiver commands. There may be several versions of these on a server, and Oracle
requires that you use the /usr/ccs/bin versions on those platforms where they exist. If
you don’t, your code might link okay, but when you start up the database you’ll get
errors that don’t have an obvious cause. The same applies to Perl interpreters. We’ll be
building one later. It’s important that our Perl interpreter takes precedence over any
other one found on the server, so $ORACLE_BASE/oraperl/bin should appear in the
path before any other directories that might contain another Perl interpreter.

The set_env alias is described in the following section. It’s the only command you’ll
ever use to set up your Oracle environment from the UNIX command line.

The set_env Alias

The set_env alias is designed to let you set Oracle environments based solely on the
contents of the oratab file. This is located in either /var/opt/oracle/oratab or /etc/
oratab depending on your UNIX platform. This section assumes /var/opt/oracle/
oratab. If you run set_env without any arguments, it presents you with a list of Oracle
instances on the server and a list of Oracle client versions. If you choose a version or
System ID (SID) from the list, that environment is set for you as follows:

$ set_env

SIDs on this machine are: OMFD1 WS817D1

Versions on this machine are: 8.1.7 9.0.1

Enter SID or Version: OMFD1

srv1.dbcool.com:OMFD1 >

Once the environment is set, the UNIX command prompt is changed to reflect the
server you are logged onto and the SID in the environment that you set. The appear-
ance of the server name in the prompt is particularly useful if you are running Oracle
in a clustered environment. If you know the environment you want in advance, you
can pass it on the command line directly:

$ set_env OMFD1

srv1.dbcool.com:OMFD1 >

The Versions list enables you to set an Oracle client environment. This is useful if
your UNIX server has no databases installed and you just need to run Oracle client
software of a particular version against a remote database. This is enabled through

88 Chapter 4

special entries in the /var/opt/oracle/oratab file, that are introduced with # followed
by the three dot-separated digits to identify the version as follows:

#

These are our special entries that Oracle's tools ignore

#

#ORACLE_BASE:/u01/app/oracle

#9.0.1:/u01/app/oracle/product/9.0.1:N

#8.1.7:/u01/app/oracle/product/8.1.7:N

#net:9.0.1:Y

these are real SID entries understood by Oracle's tools

WS817D1:/u01/app/oracle/product/8.1.7:Y

OMFD1:/u01/app/oracle/product/9.0.1:Y

You can also see other lines with a special meaning, for example:

#net:9.0.1:Y

The line #net:9.0.1:Y tells our Oracle service startup script (covered later) to start the
9.0.1 tnslsnr process on machine boot rather than the 8.1.7 version. Because there are
two Oracle versions on this server, you need to specify which listener to start. By using
the oratab file to hold information about your Oracle services to start and stop on
machine boot and shutdown, you make the service startup and shutdown process data
driven. That means you can change the behavior of the Oracle services at server boot
time without changing your scripts, resulting in a more robust environment. For exam-
ple, when Oracle9.2 is released, you won’t need your system administrator (SA) to be
involved in the process of changing the environment at server startup time. You will
simply change the oratab entry as follows to start the Oracle9.2 version of the network
listener on machine boot:

#net:9.2.0:Y

The use of set_env sets the UNIX CDPATH environment variable, making it easier
to navigate to Optimal Flexible Architecture (OFA) directories for the database instance
by avoiding the need to specify a full path. For example, running set_env OMFD1 sets
CDPATH as follows:

CDPATH=/u01/app/oracle/admin/OMFD1:.

As a result, navigating to any of the OFA directories for an instance, such as bdump,
cdump, arch, and pfile (or scripts in 9i) can be done using a simple cd command with-
out specifying a full path. For example, the following command takes you to the alert
log directory without the need to specify the full path:

srv1.dbcool.com:OMFD1 > cd bdump

/u01/app/oracle/admin/OMFD1/bdump

If you provide 24�7 support, the ability to navigate easily to the OFA directories
without needing to specify a full path can save time during a crisis.

Environment Standards and Tools 89

Using Perl for Scripts

If you’ve never used Perl before, you might reasonably ask the question “Why Perl?”
In some ways, you don’t need to know because you can treat all of the provided scripts
as a black box that take certain inputs—for example, an $ORACLE_SID—and perform
well-defined actions—for example, database shutdown. But it’s definitely worth
knowing more—once you’ve seen what the scripts can do for you, it’s quite likely that
you’ll want to extend them or use them as a basis for others.

Speaking as a programmer writing a standard set of Oracle DBA scripts, Perl has
several things going for it. It’s excellent for text processing, so it’s easy to process the
structure of the oratab file, parse output from SQL*Plus that may contain Oracle error
messages, or handle command-line arguments. It makes error handling so easy that it
encourages you to do error handling. Error handling may be left out because it’s
tedious to code sometimes with disastrous consequences. It also has built-in function-
ality for handling networking, directories, files, and just about everything else you
might want to do. In short, Perl also makes routine programming tasks easy.

The fact that Perl is free raises doubts in some people’s minds about supportability.
Actually, you’ll find fantastic support available free on the Web, although you should
be warned that the average Perl guru is pretty intolerant of beginners asking the same
basic questions in a newsgroup over and over again without reading the documenta-
tion first. Another strength of Perl is that programmers with knowledge of an existing
scripting language can start writing useful scripts immediately. This usually means
that a page of code written by a beginner could be written by an expert in a couple of
lines, but that’s all part of the fun, and both versions do the job. In fact, the beginner’s
version may be more readable, which is important for maintainability, if not perfor-
mance.

Last, but definitely not least, the Perl interpreter that we’re using will have a built-in
Oracle interface. That means you can write Oracle-enabled programs from a scripting
language, and, as a result, you can create useful Oracle utilities without any compiling
or linking. As an alternative to Perl, you might consider using Tool Control Language
(Tcl) instead. The relative merits of Perl and Tcl are covered briefly in Chapter 24. In
many ways, the choice is a religious discussion, which I prefer to avoid. Both lan-
guages provide excellent features for managing Oracle environments compared to a
standard UNIX shell.

Building a Perl Interpreter

In order for the scripts to run, you need to install a Perl interpreter on each server. It’s
quite possible that your server already has an existing Perl interpreter installed, but
we’re going to build one anyway. The installed server might not have the Oracle func-
tionality built in, and it’s not possible to add it without access to the source code. In any
case, the Perl interpreter should be installed in a predefined location so that all the
scripts can find it, and it’s not a good idea to tamper with any preinstalled software.

The interpreter that we build will be installed under $ORACLE_BASE on all of our
UNIX Oracle servers and should be considered as part of the standard Oracle script

90 Chapter 4

toolkit. Once you’ve built it on one server, you can package it and ship it to all of the
others so that the build cost is a one off.

In order to build the Perl interpreter, you’ll need to download, build, and install var-
ious software packages. Versions are provided in Table 4.1, along with the Web sites
where you can find the software.

All of the previous sites have existed for several years, and it’s possible that more
recent releases of some of the components may be available at the time of this writing.
If so, you may choose to use the more recent releases. If you want to guarantee success,
it’s probably better to use the versions listed. In order to build the Perl interpreter with
Oracle, you need to do things in the following order:

1. On Solaris, install the C compiler Solaris package first. This requires root
privileges.

2. Compile, link, and test the Perl interpreter using the C compiler.

3. Compile and link the Database-independent (DBI) module into the Perl inter-
preter and then test.

4. Compile and link the Database-dependent (DBD) module into the Perl inter-
preter and then test.

Installing the C Compiler
You need a C compiler to build the Perl components from source code. If you’re on
Solaris, you can use the Sun C compiler if it’s installed. However, the Solaris C com-
piler package is an extra-cost option. If you don’t have it, then you can download the
gcc compiler package from www.sunfreeware.com and use that instead. The package
is a prebuilt installable of the gcc compiler for Solaris that is ready to run. If you’re not
running Solaris or Linux, then you have two options. You can use a different C com-
piler than gcc, or you can use your existing C compiler to build the gcc version from
source code. If you’re running Oracle on Linux, you have a head start because the gcc
compiler comes installed with the operating system and no separate install is required.
The following examples assume you are using gcc.

Environment Standards and Tools 91

Table 4.1 Perl Interpreter Software Components

SOFTWARE SITE

Perl interpreter source code v5.6.1 www.activestate.com

Gnu gcc C compiler Solaris www.sunfreeware.com
package v2.95.3

DBI module: Database-independent http://search.cpan.org/search?module�DBI
interface for Perl

DBD-Oracle-1.12: Database- http://search.cpan.org/search?dist�DBD-Oracle
dependent interface for Oracle

If you’re a DBA who is new to C compiling, don’t worry—the software components
compile, build, and even test themselves from a couple of simple commands. To those
people who think that nothing that is free has any value, you’ll be amazed at the qual-
ity of this free software. Life would be much easier if all commercial software was so
well engineered.

To install gcc on Solaris, place the Solaris package from www.sunfreeware.com in
/tmp, for example, and ask the SA to install it as root. Assuming that the file contain-
ing your gcc package is gcc_package_name, this uses a command like the following:

$ pkgadd -d /tmp/gcc_package_name

This installs the gcc executable into /usr/local/bin. Make sure this directory is in
your path and then run gcc -v to check that the compiler is available. Now create a sim-
ple test program, gcctest.c, with the following contents:

main()

{

printf("hello world\n");

}

Compile and link the test program using the following command:

$ gcc -o gcctest gcctest.c

Run the program gcctest and the string “hello world” should appear on the screen.
This confirms that the C compiler is working. Now you can build the Perl interpreter
from source code.

Building the Perl Interpreter
Unpack the source code for the interpreter on your disk into a directory—for example,
/u01/ActiveState5.6.1. Now read the install notes for your server platform in the top-
level directory—for example, README.solaris. Chances are there are no issues for the
platform. Now read the INSTALL file in the top-level directory. In our case, we aren’t
installing Perl into the standard directories of /usr/local or /opt. Perl supports two
types of install: a default one and a locally configurable one. We’ll be using the latter.

The two differences from the defaults that we’ll be making are the use of gcc rather
than cc as the C compiler and the use of /u01/app/oracle/oraperl as our installation
directory for the built interpreter. By default, Perl attempts to create a symbolic link
from /usr/bin/perl to the newly built version. We don’t want to do that, so we’ll turn
that functionality off.

When building Perl, first run a program called Configure that stores the configura-
tion settings in two files: config.sh and Policy.sh. We’ll remove them first and then
build the interpreter with gcc and install into /u01/app/oracle/oraperl as follows:

$ mkdir -p /u01/app/oracle/oraperl

$ cd /u01/ActiveState5.6.1

$ rm -f config.sh Policy.sh

92 Chapter 4

note: -des stops lots of prompts from the build script

$ sh Configure -Dcc=gcc \

-Dprefix=/u01/app/oracle/oraperl -Uinstallusrbinperl -des

compile and link the interpreter

$ make

test the interpreter

$ make test

install the interpreter into /u01/app/oracle/oraperl

$ make install

This process will probably take well under 1 hour.

Adding Oracle Support to Perl

Before building the DBI and DBD modules, make sure that the Perl interpreter in your
path is the one just built. You can do this on Solaris or Linux by running the UNIX
which command, which shows you the path to the Perl interpreter:

$ which perl

/u01/app/oracle/oraperl/bin/perl

Next, unpack the DBI module into a directory of your choice—for example,
/u01/DBI-1.20. Then build, compile, and test the code as follows:

$ cd /u01/DBI-1.20

$ perl Makefile.PL

$ make

$ make test

$ make install

The DBI generic module is required to enable Perl access for any database
supported by Perl. Both Oracle and Sybase are very popular. Next, unpack the DBD
module into a directory of your choice—for example, /u01/DBD-Oracle-1.12. Set an
environment using set_env for a database instance that Perl can use to log on and run
some Oracle SQL tests. Specify the Oracle account to use by setting the ORACLE_
USERID environment symbol. Build, compile, and test DBD as follows:

set a database to test DBD Perl

$ set_env ORA817D1

set a database logon to run the tests

$ export ORACLE_USERID=scott/tiger

$ cd /u01/DBD-Oracle-1.12

$ perl Makefile.PL

Environment Standards and Tools 93

$ make

$ make test

$ make install

If the test stage shows any errors, be sure to check the README documents. You
now have a Perl interpreter with a built-in Oracle interface. The tools in the next sec-
tion are all based on this interpreter.

Standard Tools

This section describes a standard set of tools used for performing the following
functions:

■■ Shutting down a database: dbcool_db_shut.pl

■■ Starting up a database: dbcool_db_start.pl

■■ Testing if a database is up: dbcool_db_up.pl

■■ Starting Oracle services on machine boot: dbcool_ora_startup.pl

■■ Stopping Oracle services on machine shutdown: dbcool_ora_shutdown.pl

All the tools have a common design philosophy incorporating a standard set of fea-
tures, making them easy to use. The features are made available as subroutines in a
common library (dbcool_util.pl), so you can easily embed them into your own scripts
to enforce a common approach.

All Environments Are Based
on oratab
Without a standard approach, if you want to shut down a database from a script and
have several Oracle versions on your server, you need to set the Oracle environment
correctly before shutdown to match the database. This can result in confusion if a shut-
down is run from the environment of the wrong Oracle version. When developers or
DBAs write Oracle scripts using sh or ksh, Oracle environments are often hard coded
within the scripts. Therefore, if the $ORACLE_HOME for a database changes, then the
script breaks.

All the Perl scripts use a few simple functions to set the environment for an SID
based on the oratab file contents. So if you upgrade your database from one version to
another and change oratab to reflect the change, all scripts will continue to work. Here
are some examples that are based on the hard-coded SID name OMFD1. In reality, most
scripts read the SID value from the command line:

set_oracle_env('OMFD1'); # set Oracle environment for SID

$oracle_home = get_oracle_home('OMFD1'); # get home for SID

$oracle_base = get_oracle_base(); # get $ORACLE_BASE

94 Chapter 4

TE
AM
FL
Y

Team-Fly®

Command-Line Arguments
All scripts take arguments in the form of name�value pairs like Oracle’s export and
import command-line utilities rather than the terse and hard-to-remember UNIX for-
mat that uses single-character argument names introduced with the hyphen character.
You can run all commands with a single argument help�y to see what arguments are
available for the script. All argument processing is performed using the standard Perl
CGI.pm package. This package was designed for use in Common Gateway Interface
(CGI) Web scripts, but the interface is so easy to use that I use it for all my scripts,
whether or not they are intended for use on the Web. One side effect of this approach
is that you can enable a script to run from the UNIX command line or Web server with
hardly any effort, and output plain text or HTML-tagged output depending on the call-
ing environment.

Logging
All the scripts send output to a log file every time they are executed. The location of the
log directory is predictable, making it easy find. If the script runs on behalf of a partic-
ular SID, then the log file is given by $ORACLE_BASE/admin/$ORACLE_SID/
log/scriptname.log. For example, you can run the following command to shut down
your OMFD1 database:

$ dbcool_db_shut.pl sid=OMFD1

In this case, the log file will be /u01/app/oracle/admin/OMFD1/dbcool_db_
shut.pl.log. Logging is important for all Oracle startup and shutdown operations.
If your script isn’t specific to any particular instance, then the log is written to
$ORACLE_BASE/admin/log/scriptname.log. The Perl scripts make logging easy. You
can use the logging facilities in your own scripts by using the following subroutine:

set_logging_on($sid);

Single Instance at a Time
The scripts protect you from running more than one instance at a time through func-
tions in the dbcool_lock.pl library. For example, if you are shutting down a database,
you don’t want to allow another shutdown at the same time. These lock features are
designed to embed into other scripts easily using a single function call. The locking is
100 percent guaranteed to make your scripts single threaded. For example, you can run
the following script to shut down your OMFD1 database:

srv1.dbcool.com:OMFD1 >dbcool_ora_shut.pl sid=OMFD1

Environment Standards and Tools 95

If you run the same script at the same time from another session, you’ll receive a
message that informs you that the second attempt failed because the script is running
from another session already:

logfile is: /u01/app/oracle/admin/OMFD1/log/dbcool_ora_shut.pl.log

ERROR: dbcool_ora_shut.pl is already running

INFO: lockfile=/u01/app/oracle/admin/OMFD1/lock/dbcool_ora_shut.pl

To use this feature in your own Perl programs, simply add the following calls near
the top of the code:

require("dbcool_lock.pl");

.

.

.

exit if current script already running for this sid

exit_if_running($sid);

Stopping a Script from Running
All scripts can be stopped from running by creating a stop file. Each script checks for
the existence of the well-known stop file before the script begins its actions. If the stop
file exists, then the script exits immediately with a message. This feature enables you to
temporarily stop a scheduled script from executing without making a potentially risky
code change to the script itself and without having to make a change somewhere else
in your infrastructure—for example, to disable the job scheduler.

Say you have an Oracle Recovery Manager (RMAN) (covered in Chapter 18) closed
database backup scheduled to run at 13:00 every Saturday from a centralized backup
server. One Saturday you need to do some maintenance and therefore need to stop the
database from being shut down at the usual time. Because you always use the
dbcool_db_shut.pl script to shut down the database, you can create a stop file, which
stops the shutdown without impacting any other facilities. The stop file has a pre-
dictable name and location based on the name of the script and the SID, so for the pre-
vious example you would create a stop file in the stop directory for the instance and
the script that you want to stop like this:

touch /u01/app/oracle/admin/OMFD1/stop/dbcool_ora_shut.pl

Any attempts to shut down the database while the stop file exists result in an error
message:

srv1.dbcool.com:OMFD1 >dbcool_db_shut.pl sid=OMFD1

logfile is: /u01/app/oracle/admin/OMFD1/log/dbcool_db_shut.pl.log

ERROR: dbcool_db_shut.pl is stopped

INFO: stopfile=/u01/app/oracle/admin/OMFD1/stop/dbcool_db_shut.pl

96 Chapter 4

You still need to remember to remove the stop file when you want shutdown oper-
ations to continue as normal. To use this feature in your own programs, simply add the
following calls near the top of the code:

require("dbcool_util.pl");

.

.

.

exit if current script is stopped for this sid

exit_if_stopped($sid);

Predictable Return Codes
All scripts return one of two values to the operating system upon completion just like
many UNIX commands. A value of zero means that the operation was a complete suc-
cess. A value of one means the operation failed. This enables you to interface your
scripts with other tools—for example, job schedulers—that need to know whether the
previous operation in the schedule succeeded before they continue processing.

Standard Tools Reference

This section is a reference guide for the standard Perl scripts, which can be down-
loaded in full from the companion Web site. It describes the command-line interface
and behavior. Mandatory arguments are shown in { . . . }. Optional arguments are
shown in [. . .] and choices are separated by |. All commands take a help�y argument
that shows the usage message; this is not shown for clarity. All scripts take log�y|n.
It’s recommended that logging is always used. Arguments that are environment spe-
cific and need to be supplied by the user appear in italics. All scripts return a 0 if the
script succeeded and return a 1 if it did not.

dbcool_db_up.pl
The command-line description for dbcool_db_up.pl is as follows:

dbcool_db_up.pl {sid=ORACLE_SID|tns=TNS_ALIAS} [log=y|n]

The dbcool_db_up.pl script checks if a local database given by sid, or a remote data-
base given by tns, is up. To check if the database is up, an attempt is made to connect
to the database with SQL*Plus using a dummy username. If an Oracle ORA-01017
message is returned, it is used to confirm that the database is up. The script is secure
because a real Oracle logon is not hard coded into it. The following is an example of its
usage:

dbcool_db_up.pl sid=OMFD1

dbcool_db_up.pl tns=omfd1.dbcool.com

Environment Standards and Tools 97

dbcool_db_start.pl
The command-line description for dbcool_db_start.pl is as follows:

dbcool_ora_start.pl {sid=ORACLE_SID} [mode=mode] [log=y|n]

mode=startup nomount|startup mount|mount|open|managed standby

The dbcool_db_start.pl script starts a local database given by sid, but only if the
database is not already up. If the database is up, then the command returns an error.
The mode options are useful for starting the database up into various states. The code
does not perform the sanity checking of states. For example, mode�mount only works
if the database is in nomount state, and mode�open only works if the database is in a
mounted state. The following is an example of its usage:

dbcool_db_start.pl sid=OMFD1 mode='startup nomount'

dbcool_db_start.pl sid=OMFD1 mode='managed standby'

dbcool_db_shut.pl
The command-line description for dbcool_db_shut.pl is as follows:

dbcool_ora_start.pl {sid=ORACLE_SID} [mode=mode] [startup=mount]

[log=y|n]

mode=abort|immediate

The dbcool_db_shut.pl script with only the sid argument does a clean database
shutdown by performing a shutdown abort, followed by a startup restrict, followed by
a shutdown normal. The mode argument can be used to shut down the database with
the abort or immediate options. The startup�mount argument starts the database up
in mount mode immediately after a clean shutdown and is useful before running an
RMAN-closed database backup. The following are examples of its usage:

dbcool_db_shut.pl sid=OMFD1 mode=abort

dbcool_db_shut.pl sid=OMFD1 startup=mount

dbcool_db_restart.pl
The command-line description for dbcool_db_restart.pl is as follows:

dbcool_ora_restart.pl {sid=ORACLE_SID} [log=y|n]

The dbcool_db_restart.pl script does a shutdown abort and then startup, and is use-
ful if a database requires a restart for a parameter change to take effect. The following
is an example of its usage:

dbcool_db_restart.pl sid=OMFD1

98 Chapter 4

dbcool_ora_startup.pl
The command-line description for dbcool_ora_startup.pl is as follows:

dbcool_ora_startup.pl

The dbcool_ora_startup.pl script is typically called by the UNIX boot sequence init
process to start all Oracle-related services defined in the oratab file. This script can take
advantage of the oratab extensions covered earlier in this chapter, so it can start up
Oracle Names servers, gateways, databases, and the network listener.

As the general framework is now in place, you can easily add extra information to
the oratab file yourself, provided you add it on lines that appear as comments. Recall
that comment lines start with a # character. The information in these new lines can be
used to start up other Oracle-dependent services at boot time. All you need to do is
modify the script to reference the oratab lines you’ve added and take appropriate
actions. For example, you might want to start the Oracle9i Intelligent Agent on
machine boot. To enable this, you would define a line in oratab to identify the agent
and version you want to start:

#oia:9.0.1:Y

Then you would modify dbcool_ora_startup.pl to look for a line beginning #oia, fol-
lowed by a three-digit Oracle version number. Having found such a line in oratab, you
would set the Oracle environment to 9.0.1 using set_oracle_env(‘9.0.1’) and then run
the following command to start the agent:

$ agentctl start agent

If you’re not completely sure how to do it, take a look at how the existing code
works for databases or Oracle Names servers, and then copy and modify it as required.
Nearly all programmers write code by cutting and pasting existing code, and this is no
exception.

dbcool_ora_shutdown.pl
The command-line description for dbcool_ora_shutdown.pl is as follows:

dbcool_ora_shutdown.pl [when=time-in-seconds]

The dbcool_ora_shutdown.pl script is typically called by the UNIX shutdown
sequence to shut down all Oracle-related services defined in the oratab file. This script
can take advantage of the oratab extensions covered earlier in this chapter, so it can
shut down Oracle Names servers, gateways, databases, and the network listener. You
must supply a time in seconds to wait before activating the shut down.

Environment Standards and Tools 99

Integrating Oracle Services with UNIX

Now that we have some building blocks for stopping and starting Oracle services,
these can be added to the UNIX server boot sequence so that all our Oracle services
will start up and shut down in synchronization with the UNIX server. To accomplish
this, the UNIX SA needs to create a file /etc/init.d/dbora with the following contents:

ORACLE_OWNER=oracle

case "$1" in

'start')

su $ORACLE_OWNER -c "/u01/app/oracle/perl/dbcool_ora_startup.pl"

;;

'stop')

su $ORACLE_OWNER -c "/u01/app/oracle/perl/dbcool_ora_shutdown.pl when=0"

;;

After the creation of this file, the SA needs to create two links to it using names that
will be called at the appropriate point during the UNIX server boot and startup
sequence. For Sun Solaris, the following links will do the job:

$ cd /etc/rc0.d

$ ln -s /etc/init.d/dbora K10dbora # K... means shutdown

$ cd /etc/rc2.d

$ ln -s /etc/init.d/dbora S99dbora # S... means startup

You should test the startup and shutdown of your Oracle services by arranging for
the server to be rebooted after checking first that dbcool_ora_startup.pl and dbcool_
ora_shutdown.pl run successfully from the Oracle UNIX account. You can find the logs
for dbcool_ora_startup.pl and dbcool_ora_shutdown.pl in the $ORACLE_BASE/
admin/log directory.

Configuring and Running Apache

All DBAs should have an appreciation of how scripts can be called from a Web browser
using the CGI, especially as Oracle now ships a standard Apache Web server with the
Oracle database management system (DBMS). This section describes the basics of
Apache configuration and shows you how to run the dbcool_db_up.pl script over the
Web in a secure way.

100 Chapter 4

Starting and Stopping Apache
Use the following commands to start and stop the Apache Web server (httpd)
processes:

$ $ORACLE_HOME/Apache/Apache/bin/apachectl start

$ $ORACLE_HOME/Apache/Apache/bin/apachectl stop

The CGI
CGI is just a fancy term for giving a user the ability to run a script on a Web server by
initiating it from a browser and passing any screen output back to the browser. Typi-
cally, a user fills in Hypertext Markup Language (HTML) fields in a form. When the
user presses the form submit button, the fields in the form become arguments passed
to the script. The Web server takes the command string and arguments, runs the script,
and sends output back to the client, which is usually tagged in HTML format, but
sometimes in plain text.

For example, we could take the dbcool_db_up.pl script and run it from a Web
browser to save us the effort of logging onto the server and running it from there. In
general, Web execution is much more convenient than other methods because most
PCs have a browser installed, and it’s quite straightforward to take the existing Perl
scripts and run them over the Web.

Virtual Directories
The location used to specify an executable script from the browser is known as a virtual
directory, and the Web server maintains a configuration file, httpd.conf, to hold the
mapping between the virtual directory and the actual server directory where the script
resides. For example, the server path for dbcool_db_up.pl might be /u01/app/
oracle/perl/bin/dbcool_db_up.pl, whereas a Netscape user might call the script using
the URL http://srv1.dbcool.com/cgi-bin/db_cool_db_up.pl. In this example, the vir-
tual directory /cgi-bin/ maps to the real directory /u01/app/oracle/perl/bin/. If you
installed Oracle’s Apache Web server into a $ORACLE_HOME of /u01/product/9.0.1
using the default settings, then the directory to hold executable scripts would be as
follows:

ScriptAlias /cgi-bin/ "/u01/product/9.0.1//Apache/Apache/cgi-bin/"

Apache provides a trivial script called printenv to test the functionality of your CGI
scripts. This script simply shows all the UNIX environment symbols for the environ-
ment in which your script runs. You can run this using the following URL after
installing Apache onto srv1.dbcool.com using the default port settings:

http://srv1.dbcool.com:7777/cgi-bin/printenv

Environment Standards and Tools 101

Web Enabling a Perl Script
Perl is one of the most popular scripting languages used on the Web. Provided you use
the CGI.pm package (and the standard scripts developed here already do), you can
Web enable any script with minimal effort. First your script needs to detect if it’s being
called from a Web server or from the UNIX command line. If you check for the
GATEWAY_INTERFACE environment symbol and it’s set, that’s a very good indicator
that the script is being called from a Web server and not the command line. In this case,
it’s necessary to send an HTML header back to the browser in order for the standard
output of the script to appear in the browser. This code fragment demonstrates what
you need to do:

test if this is running from a web browser

if ($ENV{'GATEWAY_INTERFACE'})

{

send a header back to the browser to text is returned, not HTML

print $query->header('text/plain');

}

.

.

.

All the Perl scripts described in this chapter are already Web enabled. In order to use
them from Apache, you need to modify the PERL5LIB setting in httpd.conf to use our
Oracle-enabled Perl interpreter rather than the one that Oracle ships, which doesn’t
have built-in Oracle functionality. To find the value to use as the replacement, use the
output from the following command, make the change to PERL5LIB, and then stop
and restart the Web server:

perl -e "print join ':',@INC"

You can now test one of the scripts to see how it works on the Web. Copy
dbcool_db_up.pl into the cgi-bin directory and then run it by entering the following
URL into the browser and pressing Return:

http://srv1.dbcool.com:7777/cgi-bin/dbcool_db_up.pl?sid=OMFD1&log=n

In the previous URL, you identify the end of the script name by ? and separate the
arguments with �. When you run a form on the Web and submit it, the URL command
string is created, but in this case you’re creating the URL by hand without a form. In
general, there’s nothing to stop you from typing in the URL yourself as in the example.
You should receive a message in the browser:

DATABASE ORACLE_SID=OMFD1 IS UP

Security
Security is a major concern on the Web due to the easy accessibility of sites. A full dis-
cussion of Web security is beyond the scope of this book. However, as a minimum, a

102 Chapter 4

virtual directory should be password protected to ensure that only the DBA can run
DBA-related scripts in it. As a security example, we’ll protect the cgi-bin directory with
the username oradba and the password guess22. To do this, you need to create a file
called .htaccess (don’t forget the period on the front) in the cgi-bin directory. Add con-
tents to it as follows:

AuthUserFile /u01/app/oracle/.htpassword

AuthGroupfile /dev/null

AuthName "Members Only"

AuthType Basic

<Limit GET>

require user oradba

</Limit>

AuthUserFile is the location where the passwords will be stored. We’ll create it out-
side of the cgi-bin directory for security reasons. In reality, the password file contains
encrypted values, and the Web server is set up to protect access to .htpassword files, so
the file could reside in the cgi-bin directory without too much danger. AuthName is the
caption that appears in the password dialog box when a user tries to run a script in the
directory. The Limit section contains a list of allowed users, which in this case contains
oradba. Now create a password file for the account oradba using the command
htpasswd and the password guess22 when prompted:

$ export PATH=$PATH:$ORACLE_HOME/Apache/Apache/bin

$ htpasswd -c /u01/app/oracle/.htpassword oradba

When you access the dbcool_db_up.pl script, you should be prompted for the user-
name and password that protect the virtual directory. If you find that a dialog box
doesn’t appear, check the setting of AllowOverride in httpd.conf and make sure the
setting for the cgi-bin directory is AuthConfig.

Summary

This chapter has covered the requirements for a standard DBA environment both for
interactive commands and batch scripts. Such an environment enhances availability by
providing a standard interface for common DBA operations like database shutdown
and startup, which can also be easily embedded in other scripts. Through a standard
set of scripts written in Perl, the Oracle services can be shut down and started up in a
reliable way, synchronized with server boot and shutdown, and even invoked via a
Web browser. These scripts are the building blocks for other scripts used in the rest of
the book.

Environment Standards and Tools 103

TE
AM
FL
Y

Team-Fly®

105

Oracle security discussions often focus only on logon authentication and data access
levels, which isn’t enough. Security for your Oracle infrastructure operates at various
levels and doesn’t apply to your database alone. For example, a malicious user that has
the Names Control utility locally installed on his PC can shut down your Names
servers. Without your Names servers, client users in your organization can’t connect to
their Oracle databases. To prevent such a possibility, you can and should protect priv-
ileged Names server shutdown operations with an encrypted password.

Consider another situation, where an enterprising business user develops a
Microsoft Access application that connects to your database using Open Database
Connectivity (ODBC). The subsequent reports executed by the user perform multiple
full-table scans of the largest table in the database and cause all other user sessions to
perform much more slowly as a result. Some of those other users are taking telephone
orders, and orders are lost as potential customers get impatient waiting and hang up.
How can you prevent that user from running a Microsoft Access application against
your database?

This chapter covers how to secure your end-to-end Oracle infrastructure to ensure
that access to your Oracle database is appropriately controlled, including the following
topics:

■■ Logon authentication options
■■ Password management policies
■■ How to reduce the cost of user administration
■■ Application security and how to prevent database access to specific

applications

Securing Your Database

C H A P T E R

5

■■ How to secure Oracle networking software
■■ How to perform a security audit

Database Logon Authentication Options

Before an Oracle user can connect to a database, the user needs to be authenticated.
Oracle provides various ways to do this. The simplest way involves storing the
encrypted password in the database itself. More secure alternatives include authenti-
cation by external services such as SecurID and Kerberos. These are covered in this sec-
tion. The more secure options require extra spending on software and also have a
higher installation, configuration, and maintenance cost.

Authentication by Database-
Encrypted Password
All connections to an Oracle database should be password protected with a password
that’s not easy to guess and conforms to a set of naming rules that are enforced. The
simplest method to administer involves storing the encrypted password in the data-
base itself. In a simple interactive two-tier application, the user typically runs an appli-
cation on a PC. When the application presents a login dialog box, the user fills in his
username and password, and the login request is sent to the database. The password
entered by the user is encrypted and compared against the encrypted password stored
in the data dictionary before login is permitted.

A lot of debate has taken place in the past about the possibility that Oracle pass-
words can be transmitted across the network in clear text, both for login requests and
for connections resulting from database links. The two settings relevant to this case are
the client side environment setting, ORA_ENCRYPT_LOGIN, and the server init.ora
parameter DBLINK_ENCRYPT_LOGIN, which both have a default setting of FALSE.
The good news is that Oracle passwords have not been transmitted in clear text on the
network in either case since Oracle8i, and much earlier on some server platforms. It you
want to confirm this for yourself, then take a look at Chapter 28 for information on how
to do network sniffing both for Oracle Net packets and for general network traffic.

External Authentication by the
Operating System
Operating system authentication is an administrative convenience that is frequently
used in companies that have a large user base of clients on a secure operating system,
such as Microsoft Windows NT or Windows 2000 and UNIX database servers. Such
accounts are referred to as being externally identified by the operating system. In this
case, Oracle enables logons to proceed without requiring the user to specify a pass-
word by assuming that the user’s operating system is secure, and the user has already
been authenticated by the operating system. To enable this facility, the database admin-
istrator (DBA) needs to specify the following in the init.ora file:

106 Chapter 5

REMOTE_OS_AUTHENT=true

OS_AUTHENT_PREFIX=""

The DBA then creates an account using the operating system account name as the
Oracle username:

create user smithjoh identified externally;

grant connect, resource to smithjoh;

The OS_AUTHENT_PREFIX specifies a string that Oracle prefixes onto the name
passed as the Oracle logon account name from the client before checking it against the
list of Oracle accounts in the SYS.USER$ table. Traditionally, this string was OPS$, but
nowadays the value is usually left empty. Once the OS-authenticated account has been
created, the user can connect to Oracle simply by specifying / as the username and
password. So a SQL*Plus user could enter the following to connect:

$ sqlplus /@remotedb.dbcool.com

It needs to be emphasized that just because the DBA has specified to Oracle that the
operating system is secure, it doesn’t mean that database access is secure. Externally
identified accounts actually present a large security hole. All it takes is for a single user
anywhere on the corporate PC network to create a local Windows account on a PC,
using the same name as an externally identified Oracle account. For example, the DBA
may create an Oracle account smithjoh for the Windows domain account TRADERS\
smithjoh, knowing that the user needs to supply a Windows password to log onto the
Windows network. At this point, everything is fine. However, an unscrupulous Win-
dows user with access to the local Administrator password on his PC creates a local
Windows account named smithjoh and logs onto it, in order to masquerade as the
secure domain account. The Oracle UNIX database can’t tell the domain account and
the local NT account apart and lets both users access the database without supplying a
password, on the assumption that the operating system is secure. Any user with un-
authorized root access on an Oracle UNIX client can create a UNIX account in the
same way.

You can avoid the security issues of externally identified operating system accounts
by not using them and instead requiring users to supply a password at connect time.
It’s certainly more inconvenient for the users and requires extra administration to han-
dle users who forget their passwords, but it’s more secure.

External Authentication Using
a Token
If you require users to remember passwords, then they are either likely to forget pass-
words on a regular basis or write passwords down in case they forget them. The first
scenario creates an administration overhead due to the need for regular password
resets, and the second one creates a security risk if another user gains access to the
password.

Securing Your Database 107

These problems can be overcome by using a token-based authentication scheme,
such as SecurID from RSA Security Inc. SecurID hardware tokens are small devices
containing a microprocessor that generates a continually changing code, usually every
60 seconds. In order to gain access to a SecurID-secured system, the user must provide
a passcode consisting of a secret personal identification number (PIN) code, typically
four digits chosen by the user at the time of activitating the device, along with the con-
tinually changing code. The user hardware token is synchronized with a SecurID
server that validates the PIN code and generated code combination. Only if a match is
obtained is the request authenticated. To gain unauthorized access requires possession
of the hardware token device and the PIN code.

A considerable overhead is added to the security infrastructure using such an
approach. The Oracle Advanced Security option is required on both the client and
server, and this option is only available with the Enterprise edition under a separate
license. Proprietary products need to purchased and installed on both the client and
server, in this case from RSA Security Inc. Once the SecurID components have been
installed, the client specifies that it requires SecurID authentication services through an
entry in the sqlnet.ora file:

SQLNET.AUTHENTICATION_SERVICES=(SECURID)

At connection time, the user supplies the SecurID passcode as the Oracle password.
If you choose to implement SecurID, you should be aware that each passcode is a one-
time only code. So if your application spawns additional connections internally based
on the supplied password, then those other connections will fail. This is a design fea-
ture of SecurID and can’t be changed.

External Authentication with Single
Sign-On
To use single sign-on for Oracle access, an organization deploys authentication servers
to provide a one-off single point of authentication for a user within an organization’s
network environment. All services that subscribe to the single sign-on approach can
then be accessed by a user without requiring further authentication. This single sign-
on approach is enabled through a ticket passed to the client from the authentication
server before the initial Oracle connection request and authenticated by a password.
The ticket is then passed to a database server during all subsequent connections, and
the database server itself checks the ticket against the authentication server to validate
the user. This extra check is important because the ticket may have expired. In order
for the database to authenticate a user via a single sign-on service like Kerberos, the fol-
lowing needs to be set in the init.ora file:

remote_os_authent=false

os_authent_prefix=""

Creation of user accounts needs to be performed in an authentication method-
specific way, for example:

108 Chapter 5

create user "K5USER@UK.DBCOOL.COM" identified externally;

grant create session to "K5USER@UK.DBCOOL.COM";

Note the use of double quotes to allow nonstandard characters to appear in the user-
name. The username and database both need to be established separately as Kerberos
security principals using the Kerberos administration tools. For the authentication to
succeed, both Oracle and Kerberos need to agree on the names to be used for the client
user and the database instance. Use of a single sign-on service requires several modifi-
cations to the sqlnet.ora file, including a setting to identify the authentication method
used:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)

Single sign-on via Kerberos requires the installation of the separately licensed Ora-
cle Advanced Security option and Kerberos components on both client and server.
Oracle also provides single sign-on over secure sockets layer (SSL) by integration of the
sign-on process with a Lightweight Directory Access Protocol (LDAP) compliant direc-
tory such as Oracle Internet Directory (OID). Chapter 3 includes a brief overview of
LDAP. As in the Kerberos example, single sign-on enables users to be authenticated
once only. Further connections authenticate the user based on the user’s X.509v3 com-
pliant digital certificate, which is made available to subsequent connection requests,
following initial authentication. Oracle’s position on certificate-based security is that
it’s typically deployed where there is a requirement for end-to-end SSL. For most com-
panies running Oracle behind a firewall, there is no such requirement.

Using Password Management Policies

Most organizations, as part of their technology risk protection procedures, require
users to change their passwords on a regular basis and to choose their passwords to
meet a complexity requirement to prevent easy guessing. This complexity requirement
typically requires a minimum password length and a mixture of alpha and numeric
characters. Additional requirements may be specified to prevent the user recycling old
passwords within a certain time period or within a certain number of password
changes. Oracle enforces password management policies through the use of profiles,
an example of which can be installed by running the utlpwdmg.sql script as follows:

$ sqlplus "sys as sysdba" @utlpwdmg.sql

This script modifies the DEFAULT profile, so under no circumstances should you
run the script against a production database without understanding the implications.
The modifications to the DEFAULT profile result in the following additional attributes:

CREATE PROFILE DEFAULT LIMIT

.

.

.

Securing Your Database 109

FAILED_LOGIN_ATTEMPTS 3,

PASSWORD_LIFE_TIME 60,

PASSWORD_REUSE_TIME 1800,

PASSWORD_REUSE_MAX UNLIMITED,

PASSWORD_VERIFY_FUNCTION VERIFY_FUNCTION,

PASSWORD_LOCK_TIME .0006,

PASSWORD_GRACE_TIME 10

The PASSWORD_VERIFY_FUNCTION, in this case a function named VERIFY_
FUNCTION, is a SYS-owned object written in PL/SQL, and it takes the new and the
old password as arguments and checks that the new password meets the complexity
requirements before enabling it. You can write your own function to meet your organi-
zation’s naming standards. The requirement to provide the old password when setting
the new one is good from a security viewpoint and has long been used for the protec-
tion of UNIX system accounts. The downside is that the ALTER USER command can
no longer be used to set passwords in Oracle9i if a policy is in use. Attempts to run
ALTER USER give:

alter user scott identified by lion99#;

ERROR at line 1:

ORA-28003: password verification for the specified password failed

The situation in Oracle8i was different but had its own problems. In Oracle8i, you
could circumvent the verify function by using ALTER USER. So Oracle8i had pass-
word management policies that could be circumvented, and Oracle9i enforces them by
stopping the use of ALTER USER. This change has caused a lot of discontent in the
DBA community as DBAs are very much in favor of password management policies,
but don’t want to lose the ability to set passwords with ALTER USER. Oracle has stated
that the semantics of ALTER USER won’t be changed to enable the old password to
be included. As a kind of half-way house, SQL*Plus provides the SET PASSWORD
command:

SQL> password scott

Changing password for scott

Old password:

New password:

Retype new password:

ERROR:

ORA-28003: password verification for the specified password failed

ORA-20002: Password length less than 4

What a DBA needs is the ability to set a password using a SQL statement that can
apply the policy and allow the old password to be provided. It’s not easy or convenient
to embed SQL*Plus into an existing application to facilitate password changes.
Oracle’s alternative, requiring the DBA to call OCIPasswordChange, means Oracle
Call Interface (OCI) programming. That has its own set of problems and has not
proved popular either.

110 Chapter 5

Oracle’s password management policy features are straightforward to use and
include facilities for account locking, password aging and expiration, password his-
tory, and password complexity verification. You still need to provide a service for user
password resets because these features are more likely to cause users to forget pass-
words if you choose to enforce complexity. A grace period to warn users of imminent
password expiration is a good idea, to avoid support calls.

Simplifying User Management

You might wonder why Kerberos, SecurID, X.509v3, and all the other methods of
increasing Oracle security are not more widely used. The available evidence suggests
that the cost of the tools and the extra configuration and management overhead are not
justified. For most companies that operate their database behind a firewall, the extra
benefits of these additional services are not cost effective. As an example, how many
sites need data encrypted on the wire? The answer would appear to be not very many.
In the real world, there’s usually not much advantage to be gained from employees
sniffing Oracle data traffic on the wire. So, in general, encryption is an unnecessary
additional cost both up front, due to the need for the Advanced Security option and in
terms of operational overhead due to the increased network traffic and the increased
CPU usage required to encrypt and decrypt data. The exception is the use of infrared
rather than wire-based networks, which potentially open up data access in a way that
wouldn’t previously have been possible.

Before looking at how to simplify user management, it’s important to understand
the costs of traditional Oracle user management by focusing on the real problems. A
typical business user in a large company has access to several Oracle applications that
require database password authentication. The user may have several different
accounts with different names and possibly different passwords in each database. As a
result, the user forgets passwords from time to time and needs to follow a procedure to
get the password reset. The cost of this approach is the cost of the time for the DBA to
do the reset and the opportunity cost of the user’s time wasted while waiting for the
reset. When a user joins or leaves the company, or changes departments, there is the
extra cost of having to reconfigure the user’s privileges in all databases. What’s per-
haps more irritating than the cost of the password reset is the fact that a business user
typically doesn’t actually own any objects in the application database. In the most com-
mon application configuration, one schema owns all the application tables and objects,
and business users are granted access to the schema objects through roles, after logon.
So a business user typically owns no objects in any of the databases he or she uses and
yet requires a password to be maintained for each one.

Oracle9i has a solution to this problem by introducing the concept of Enterprise
User Security. This provides password-based authentication for a user through a sin-
gle, unique user identifier held in an LDAP-compliant directory. You might find it
helpful to review the discussion of LDAP in Chapter 3 before continuing with this sec-
tion. At connect time, the user is validated against the password for their LDAP enter-
prise account, and this enterprise account is mapped to a real schema in a database at
connection time. The database schema, which is usually shared across many enterprise

Securing Your Database 111

users, is known as a shared schema. The directory provides facilities for specifying enter-
prise users and enterprise roles. The major benefit is that instead of creating a user
schema in every database and maintaining a local database password, the user is cre-
ated as an enterprise user in an LDAP-compliant directory, such as OID, and can use
the centrally held password and user for access to all database accounts.

NOTE Before you consider implementing Oracle user administration based on
enterprise users, keep in mind that both SSL and Oracle wallets are required to
secure authentication between the database and the LDAP directory, and for
current user database links. Failure to configure SSL and Oracle wallets will
result in database connection attempts failing with an ORA-28030 message.
The Oracle Advanced Security Administrator’s Guide provides full details of how
to perform the configuration. Oracle 9i Release 2 includes the User Migration
Utility to ease bulk migration of database accounts into a directory where they
are known as password authenticated enterprise users.

Each enterprise user using the shared schema can have different roles. This leads to
the concept of enterprise roles. Enterprise users in the directory can be granted enter-
prise roles also held in the directory. Enterprise roles are mapped to real database roles
in the target database, known as global roles, at connect time, using mapping informa-
tion held in the directory. It’s not as complicated as it sounds. The essence of the con-
cept is that Oracle users and roles can exist as entities outside of an Oracle database
and can be mapped to real database roles and account names in different databases at
connect time, based on information in the directory.

In this example, we’ll create a shared schema called SHARED_SCOTT that will be
used by enterprise users to access the standard EMP and DEPT tables in SCOTT’s
schema. For maximum security, it’s best not to assign any local roles or create objects in
the shared schema to allow access to the data only via the enterprise roles. The shared
schema can be identified from DBA_USERS by a password of GLOBAL, and we create
it as follows:

create user shared_scott IDENTIFIED GLOBALLY as ''
temporary tablespace temp default tablespace tools;

select username,password
from dba_users where username='SHARED_SCOTT';

USERNAME PASSWORD
------------- ----------
SHARED_SCOTT GLOBAL

The use of IDENTIFIED GLOBALLY flags the account as a special type of account
that can be connected to using information from the directory. Next we create a global
database role that will be used to provide access to the EMP and DEPT tables in
SCOTT’s schema for enterprise users. The role is created as follows:

REM requires GRANT CREATE ROLE TO SCOTT privilege
create role global_empdept_modify IDENTIFIED GLOBALLY;

112 Chapter 5

grant all on emp to global_empdept_modify;

grant all on dept to global_empdept_modify;

The significance of the IDENTIFIED GLOBALLY clause on the role is that you can’t
grant it to a local user in the database. If you try GRANT GLOBAL_EMPDEPT_
MODIFY TO SYSTEM for example, you’ll get:

ORA-28021: cannot grant global roles

Now let’s turn to the LDAP configuration required to support this shared schema
and global role. This section uses a step-by-step approach, including several screen
shots to help you get the configuration right the first time. Oracle provides several
tools to do this that aren’t yet well integrated, so the process is somewhat fragmented,
which doesn’t make it easy to follow.

Before you can use the OID-based LDAP directory, you need to install OID using the
Oracle Installer. OID requires an Oracle database to store the LDAP directory informa-
tion tree (DIT), which holds directory entries that you create using Oracle Directory
Manager. Each entry in the DIT is identified by a unique name referred to as the dis-
tinguished name (DN).

During the OID installation, you can choose an existing database to hold the direc-
tory or let the installer create a new one. To install the Oracle9i version of OID, you first
choose Oracle9i Management and Integration from the Available Products list in Ora-
cle Installer, and then choose OID from the Installation types. The rest of the installa-
tion is straightforward, although you should be aware that the OID schema contains
many objects and may take a while to create.

After OID installation is complete, make sure your LDAP server is running by exe-
cuting the following commands on the UNIX server in the Oracle9i environment
where OID is installed:

$ oidmon start

$ oidctl server=oidldapd instance=1 start

The oidctl command requires a connect alias for the database that holds the LDAP
directory. In this case it’s not supplied, so the connection defaults to the current
ORACLE_SID set in the environment. The example in this section demonstrates enter-
prise user access to a database identified by the GLOBAL_NAME omfd1.uk.dbcool
.com. In order to create the directory entry to hold the DN related to this name, you
must first create an Oracle Context in the DIT. An Oracle Context is a special entry in the
DIT that contains Oracle subentries to support directory naming and enterprise secu-
rity. Based on the name we want to register (omfd1.uk.dbcool.com), an Oracle Context
is required under the DN dc�uk,dc�dbcool,dc�com. Note that the DN of the Oracle
Context in the directory (dc�uk,dc�dbcool,dc�com) bears a strong resemblance to the
domain component of the Transparent Network Substrate (TNS) alias (uk.dbcool.com).
In fact, the DN of the Oracle Context performs an identical function to the NAMES.
DEFAULT_DOMAIN value for TNS aliases. Chapter 3 covers NAMES.DEFAULT_
DOMAIN in detail. The difference is that TNS aliases are understood only by Oracle
Names and networking software, whereas the format of entries in an LDAP-compliant
directory is based on an open standard that can be understood by any client application

Securing Your Database 113

that is LDAP aware. The structure we have chosen for directory component names
(such as dc�uk,dc�dbcool,dc�com) is referred to as the domain component model. In
order to maintain entries in the DIT, you use Oracle Directory Manager.

NOTE For best performance, you should run Oracle Directory Manager from a
PC where the Oracle management tools have been installed. You run the
program from the Integrated Management Tools menu under the Oracle program
group. Alternatively, you can use the oidadmin program on a UNIX server, and
display the GUI on an X Window display. The default username and password
for connection to the directory are orcladmin and welcome. For security reasons,
you should change these before production deployment of OID.

It’s helpful to go through the LDAP registration process step by step, including the
creation of the Oracle Context. To create the part of the tree below on which the Oracle
Context will reside, log in as the OID administrator using Oracle Directory Manager
and navigate to Entry Management in the tree. Right click the node and choose Create.
Then create an entry with a DN of dc�com and an ObjectClass of domain. Next add an
entry in the same way, specifying a DN of dc�dbcool,dc�com, and then add a third
entry with a DN of dc�uk,dc�dbcool,dc�com. The Create Entry screen for this third
entry is shown in Figure 5.1.

114 Chapter 5

Figure 5.1 Adding dc�uk,dc�dbcool,dc�com to OID.

TE
AM
FL
Y

Team-Fly®

After adding this entry, an Oracle Context needs to be created below it, under which
we’ll add information about the databases that require enterprise user support. To add
the Oracle Context, start Net Configuration Assistant (a program named netca on
UNIX) and choose Directory Usage Configuration. Next, choose the option to create an
additional Oracle Context and then specify Oracle Internet Directory as the directory
type. Connect to OID and then enter the DN under which to create the Oracle Context
as dc�uk,dc�dbcool,dc�com. The final step is to supply the credentials for connect-
ing to OID to add the Oracle Context. If you are using the default credentials set for
OID at installation time, enter cn�orcladmin for the user and welcome for the pass-
word. If everything worked, you should get a message stating that the DN of your
default Oracle Context is:

cn=OracleContext,dc=uk,dc=dbcool,dc=com

The structure containing the newly created Oracle Context should look like Fig-
ure 5.2.

Securing Your Database 115

Figure 5.2 The DIT after adding the Oracle Context.

At this point you should check your ldap.ora file in $ORACLE_HOME/network/
admin to ensure that it contains the following:

DEFAULT_ADMIN_CONTEXT = "dc=uk,dc=dbcool,dc=com"

DIRECTORY_SERVERS= (srv1.uk.dbcool.com:389:636)

DIRECTORY_SERVER_TYPE = OID

The ldap.ora file identifies the LDAP server to use for resolving Oracle database
names. The DIRECTORY_SERVERS entry identifies the host where OID is running.
The default context DN is important because it determines where the next entries we
add are inserted in the DIT. In our case, we want entries inserted under the Oracle Con-
text below dc�uk,dc�dbcool,dc�com, and this is the one we just created. If you recall,
when OID is installed, a default Oracle Context is created at the root of the DIT, and we
don’t want to use that one.

Now we’ll register our database and a TNS entry for it under the default Oracle
Context in the DIT. To perform this operation, we use the Database Configuration
Assistant utility (a program named dbca on UNIX). After starting Configuration Assis-
tant, choose the Configure operation. Choose the instance you want to register from
the list of available instances, and then choose the option to register the database with
the LDAP server. You’ll need to supply the credentials for the LDAP server as before,
using cn�orcladmin for the user, and welcome for the password. Be warned that your
database will be restarted if you want to continue. Assuming that a database System ID
(SID) of omfd1 was registered, the init.ora file contains the following modification so
that the database and the LDAP server can agree on the DN of the registered database:

rdbms_server_dn="cn=omfd1,cn=OracleContext,dc=uk,dc=dbcool,dc=com"

You should see an entry in the DIT in Oracle Directory Manager with the DN given
previously. If you click on it and look in the right hand panel, you should see that the
DN belongs to the object class orclService and the object class orclDBServer, to identify
that the database has been registered as an Oracle service for TNS network addressing,
and as an Oracle database server for the purpose of enterprise security. However, the
TNS information doesn’t contain a connect description and so it isn’t useable yet. To
add this information you need to run yet another tool: Oracle Network Manager.
To run Oracle Network Manager on UNIX, execute the program netmgr and connect to
the LDAP directory using the usual credentials. Click on the Directory entry in the tree
and then Service Naming. An entry should exist for the service that was added by
Database Configuration Assistant, which for our example is omfd1. Click the � button,
specify the port and server where the database in located, and then choose Apply. If
you now refresh the subtree for omfd1 in Oracle Directory Manager, you should see
that a DESCRIPTION_O entry has appeared. Now you can connect to the database
from a remote client provided that the client contains an ldap.ora file as previously
described, and the sqlnet.ora file specifies that an LDAP server should be used to
resolve the database names through an entry:

names.directory_path = (LDAP)

116 Chapter 5

The following connect strings both work. The first example specifies the full DN of
the database, and the second relies on the DEFAULT_ADMIN_CONTEXT value in
ldap.ora in a similar way that the NAMES.DEFAULT_DOMAIN value in the sqlnet.ora
file can be used for resolving names from an Oracle Names server:

$ sqlplus sys/pwd@'cn=omfd1,cn=OracleContext,dc=uk,dc=dbcool,dc=com'

$ sqlplus sys/pwd@omfd1

The structure of the DIT containing the full Oracle service information for omfd1 is
shown in Figure 5.3.

Now that the LDAP information for the database has been configured, another util-
ity, the Oracle Enterprise Security Manager, can be used to map enterprise users to
shared schemas in a given database. On UNIX, Enterprise Security Manager is started
by executing:

$ oemapp esm

First, we need to create an enterprise user, and this is performed by choosing Create
Enterprise User . . . from the Operations menu and filling in the form shown in
Figure 5.4.

Securing Your Database 117

Figure 5.3 The DIT after adding the Oracle service description.

Next, we need to create an enterprise domain and an enterprise role in that domain,
and these operations are both performed via the Operations menu. For the purposes of
this example, the domain is left as OracleDefaultDomain, and the enterprise role in
that domain is named er_empdept_modify. Be sure to choose the correct Oracle Con-
text when creating the role and domain. This should not be the Default Oracle Context.
Now add the enterprise user to the enterprise role by displaying the enterprise user in
Users, by Search Base, editing the user details, displaying the enterprise roles in the
Oracle Context, and adding the user to the chosen role. Figure 5.5 shows the Enterprise
Security Manager view of the DIT after assigning the enterprise user to the enterprise
role. At this stage, there is no reference to a real database.

Using enterprise security has the potential for reducing user management over-
heads by defining users once in an LDAP directory and mapping them to real schemas
and roles at connection time. However, the choice of using OID should not be taken
lightly and requires considerable design and planning. Oracle doesn’t make things
easy for you by requiring you to use several different tools to manage the DIT. Hope-
fully in the future, Oracle’s tools will become more integrated. Oracle’s use of Java pro-
vides portable management tools across different platforms at the cost of high memory
usage. Responsiveness is very poor when running the tools against an X display over
a wide area network (WAN), so you should consider installing them locally on a Win-
dows PC to run against a remote LDAP server.

Use of a directory raises questions about 24 � 7 availability, supportability, and scal-
ability that need to be addressed. You might want to consider using Microsoft Active

118 Chapter 5

Figure 5.4 Creating an enterprise user.

Directory as your LDAP directory instead of OID. Oracle supports both. Whatever
LDAP directory you use, make sure you have a complete understanding of Oracle and
LDAP before you implement it for production systems: You can’t afford to get it wrong
if your enterprise relies on it.

Using SET ROLE for Application Security

Oracle has long recommended using the SET ROLE command to enforce application
security. In this case, a user logon typically has no privileges except the capability to
connect, based on the CREATE SESSION privilege. To set up security in this way, the
application schema owner first creates a password-protected role and assigns some
privileges to it:

create role password_protected identified by xxxxxxxxxxxxxxxx;

grant select on EMP to password_protected;

Securing Your Database 119

Figure 5.5 An enterprise user assigned to an enterprise role.

Oracle enforces security on the ROLE password by storing the password for the role
in the USER$ table in encrypted form. If you try to trace the CREATE ROLE statement,
Oracle truncates the SQL to hide the password:

PARSING IN CURSOR #8 len=42 dep=0 uid=5 oct=52 lid=5 ...

create role password2 ide

END OF STMT

This role is granted to a user in the usual way:

grant password_protected to business_user;

When BUSINESS_USER logs onto the application, the first action by the application
is to run the SQL:

set role password_protected identified by xxxxxxxxxxxxxxxx;

This has two obvious shortcomings from a security viewpoint: The application
needs to have the password embedded in it, and the application developer needs to
know the password. Most DBAs keep application passwords secure to avoid develop-
ers from making unauthorized changes on production systems. The application pro-
grammer can work around the embedding of the password in the application by
obfuscating the value, but a determined hacker with a binary file viewer might be able
decode it. Oracle protects the password from SQL trace snooping by truncating the SET
ROLE statement in the trace:

PARSING IN CURSOR #8 len=39 dep=0 uid=5 oct=55 lid=5 tim=...

set role password_protected identi

END OF STMT

Finally, let’s look at the network packet sent from the application using the SET
ROLE command:

64: 034a 1b01 0101 03ac a218 0001 3a00 0000 .J: . . .

80: 0000 eceb 1200 0101 0000 0000 0000 0000

96: 0000 0000 0000 0000 0000 003a 7365 7420 :set

112: 726f 6c65 2070 6173 7377 6f72 645f 7072 role password_pr

128: 6f74 6563 7465 6420 6964 656e 7469 6669 otected identifi

144: 6564 2062 7920 7878 7878 7878 7878 7878 ed by xxxxxxxxxx

160: 7878 7878 7878 0102 xxxxxx..

It’s clear that the SET ROLE command sends the password to the database server in
clear text, and the security implications are obvious. For this example, I chose a pass-
word with lots of x’s so that it would show up clearly in the network trace. In reality,
whatever password you choose, it’s sent to the database in clear text, and this repre-
sents a potential security hazard. Any user obtaining the password could set the role
using the tool of their choice, for example SQL*Plus, and gain free access to the data
that was only ever intended for access through the role-protected application. Enter-
prise User Security addresses this requirement to enable access to an application only

120 Chapter 5

through roles granted at connection time and does it in a way that avoids hard coding
or exposing the role password.

Preventing Application Access

For business-critical applications, you might want to prevent access to your database
from ad-hoc query tools such as SQL*Plus or Microsoft Access. If you allow ad-hoc
query tools to access your production database, then you allow the possibility that
business users will try to develop new reports against your production data, often
using very inefficient SQL that can impact the performance of the whole database.

Reports development should be run against your development database first, where
the DBA’s input can be used to ensure that the SQL is as efficient as possible. This sec-
tion presents techniques that are guaranteed to prevent access with SQL*Plus and
Microsoft Access from any user except the DBA accounts SYS and SYSTEM. Probably
the most simple way to prevent access from SQL*Plus and Microsoft Access is through
the use of an AFTER LOGON database trigger. AFTER LOGON database triggers are
something we’ll return to as they have many uses, especially for transparent collection
of session statistics. In this case, we check the name of the application program at logon
time, and if it’s SQL*Plus or Microsoft Access, we raise an exception. As there is no
exception handler the logon fails:

create or replace TRIGGER SYS.TRG_STOP_APPLICATIONS

AFTER LOGON

ON DATABASE

begin

FOR REC IN (SELECT USERNAME,PROGRAM

FROM V$SESSION

WHERE AUDSID = USERENV('SESSIONID')) LOOP

if rec.username not in ('SYS','SYSTEM') and

upper(rec.program) in ('MSACCESS.EXE','SQLPLUSW.EXE') then

RAISE_APPLICATION_ERROR(-20001,

'SQL*Plus and Microsoft Access not allowed');

end if;

end loop;

end;

/

There are two additional points of interest in this code. The first is the use of
AUDSID � USERENV('SESSIONID')) to identify the currently connected session
within the trigger. The second is the use of the FOR REC IN in the main loop of the
code. You might ask why a loop construct is used when we only expect the query to
return a single row containing the details of the connected session. The benefit of this

Securing Your Database 121

approach is that there’s no need to declare any local variables or cursors, which
reduces the code size considerably and makes coding easier. This trigger should foil
most people trying to use SQL*Plus and Microsoft Access. The more enterprising user
who discovers that this security is based on the program name can circumvent this by
renaming his program as follows:

C:\> copy sqlplusw.exe cant_stop_me.exe

It is possible to produce a solution that works in all cases. Even if you don’t choose
to use it, it raises some interesting possibilities for the customization of application
access that can be enforced in the database. The solution relies on the fact that
SQL*Plus queries its Product User Profile tables whenever you run it, immediately
after connection. The SQL*Plus Product User Profile tables are installed as SYSTEM by
the pupbld.sql script in the SQL*Plus product installation directory. Failure to run pup-
bld.sql is the cause of the following message after you log onto SQL*Plus, which you
may have seen before:

Error accessing PRODUCT_USER_PROFILE

Warning: Product user profile information not loaded!

You may need to run PUPBLD.SQL as SYSTEM

You can insert rows into the Product User Profile tables to restrict SQL*Plus access to
individual users. Instead of maintaining information in this table for perhaps hundreds
of individual users, you can prevent access to any SQL*Plus session, whatever the
name of the program, by dropping one of the Product User Profile views using DROP
VIEW SYSTEM.PRODUCT_PRIVS, and then creating a SYS-owned trigger on the Ora-
cle audit trail to detect the reference to this missing table when SQL*Plus starts up:

CREATE OR REPLACE TRIGGER SYS.TRG_STOP_SQLPLUS_AND_MSACCESS

AFTER INSERT ON SYSTEM.AUD$

FOR EACH ROW

BEGIN

-- MSYSCONF means client is Microsoft Access

-- PRODUCT_PRIVS means client is SQL*Plus

if :new.returncode=942 and

:new.obj$name in ('MSYSCONF','PRODUCT_PRIVS')

and user not in ('SYS','SYSTEM') then

for rec in (select s.sid,s.serial#

from v$session s

where s.audsid=userenv('sessionid')) loop

-- signal other session to kill me

dbms_alert.signal(

'KILL SESSION',rec.sid||','||rec.serial#);

end loop;

122 Chapter 5

end if;

EXCEPTION

WHEN OTHERS THEN

null;

END TRG_STOP_SQLPLUS_AND_MSACCESS;

/

This code works by checking the Oracle audit trail for 942 errors (table or view does
not exist), in order to identify users that run queries on nonexistent tables. SQL*Plus
queries the PRODUCT_PRIVS table at startup time, and Microsoft Access queries the
MSYSCONF table. When an audit record meeting the requirements is detected, a sig-
nal is sent to a watcher process running in another session, and the watcher session
kills the triggering session. This watcher process is required because it’s not possible
for a session to kill itself. The watcher process runs a loop that waits to receive session
identifiers from the trigger and kills the session given by the details that are passed in:

declare

v_message varchar2(100);

v_status integer;

begin

DBMS_ALERT.REGISTER('KILL SESSION');

loop

DBMS_ALERT.WAITONE('KILL SESSION', v_message, v_status, 1);

if v_status = 0 then

execute immediate

'alter system kill session '''||v_message||'''';

exit when v_message = 'END KILL SESSION';

else

null;

end if;

end loop;

DBMS_ALERT.REMOVE('KILL SESSION');

end;

/

Users whose sessions are killed receive a message, “ORA-00028: your session has
been killed.” To implement this in a production system, you would need to wrap the
trigger call to DBMS_ALERT in another procedure, otherwise you leave open the pos-
sibility that anyone with permission to execute DBMS_ALERT can send a signal to the
watcher and terminate any session.

If you are familiar with triggers, you’ll know that it’s not possible to create triggers
on SYS-owned objects like the Oracle audit trail, which is installed into SYS.AUD$.
This example uses an audit trail relocated in a different tablespace and owned by
SYSTEM, and requires that auditing is enabled in the init.ora file and for object access.
You can find more information on the audit trail in Chapter 11 on auditing.

Securing Your Database 123

Row-Level Access Control

Many applications have a requirement to control access to data at the row level. A tra-
ditional way to implement this in Oracle is through the use of views. For example,
SCOTT as the owner of the EMP table, might want to allow users to access their own
row in the EMP table. This could be done through the following view:

REM as SCOTT

create view v_me as

select * from emp where ename=user;

grant select on v_me to public;

The user ALLEN can connect and view his own data as follows:

select * from scott.v_me;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

------- ------- --------- ----- ---------- ----- ------ --------

7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30

More sophisticated approaches are possible that use a separate security table to map
the user access to specific rows. For example, SCOTT decides to allow users to access
rows for specific jobs. In this case, ALLEN is allowed to view information for people
with the job title CLERK through the use of a security table and view:

insert into authorization(ename,job) values ('ALLEN','CLERK');

create view v_others as

select * from emp where job in

(select job from authorization

where ename=user);

grant select on v_others to public;

The user ALLEN can connect and view information for people whose jobs he is
authorized to see:

select * from scott.v_others;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

------- ------- -------- ----- ---------- ----- ------ --------

7369 SMITH CLERK 7902 17-DEC-80 800 20

7876 ADAMS CLERK 7788 13-JUL-87 1100 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

7900 JAMES CLERK 7698 03-DEC-81 950 30

Oracle8i and later provides virtual private database (VPD) to enforce fine grained
access control without the necessity to create the views, and hence dependencies, on

124 Chapter 5

TE
AM
FL
Y

Team-Fly®

the target table. Through the use of a security policy, whenever a user executes the
query SELECT * FROM SCOTT.EMP, the query is rewritten transparently as

SELECT * FROM SCOTT.EMP

WHERE job in (select job from authorization

where ename=sys_content('userenv','session_user'))';

The predicate is generated by a function associated with a security policy on the
EMP table and silently added to every query on EMP. In this case, the function that
returns a predicate with equivalent functionality to the V_OTHERS view is

create function f_others(p_user varchar2,p_object varchar2)

return varchar2 is

l_where varchar2(2000);

begin

l_where:= 'job in (select job from authorization '||

'where ename=sys_context(''userenv'',''session_user''))';

return l_where;

end;

The policy itself can be created either through the Oracle Policy Manager compo-
nent of Enterprise Manager or by a direct call to the DBMS_RLS.ADD_POLICY pack-
age procedure as in this example:

begin

dbms_rls.add_policy(object_schema=>'SCOTT',

object_name=>'EMP',

policy_name=>'POLICY_OTHERS',

function_schema=>'SCOTT',

policy_function=>'F_OTHERS');

end;

ALLEN can now run a query against SCOTT.EMP that returns the same information
as the view through the enforcement of the policy:

select * from scott.emp;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

------- ------- ------ ----- ---------- ----- ------ --------

7369 SMITH CLERK 7902 17-DEC-80 800 20

7876 ADAMS CLERK 7788 13-JUL-87 1100 20

7934 MILLER CLERK 7782 23-JAN-82 1300 10

7900 JAMES CLERK 7698 03-DEC-81 950 30

This overview gives a flavor of the possibilities of VPD, which can be integrated
with security information held in an LDAP-compliant directory rather than a database
table. Developers can use the CREATE CONTEXT command to set application
contexts at run time for individual users, usually in an AFTER LOGON database trig-
ger. Application contexts are used in a similar way to SYS_CONTEXT in the example.

Securing Your Database 125

The SYS_CONTEXT contains fixed values that can’t be changed, whereas application
contexts can be populated at run time according to the security requirements.

Preventing Network Access

Oracle provides a facility to restrict client network access to a database by specifying a
list of invited or excluded client names or IP addresses. Before Oracle9i, these settings
were configured in the protocol.ora file. In Oracle9i, the sqlnet.ora file is used instead.
In order to enable the feature, you must make the following setting in sqlnet.ora:

TCP.VALIDNODE_CHECKING=yes

Once the setting is enabled, you can allow or exclude connections from clients using
TCP.EXCLUDED_NODES and TCP.INVITED_NODES. The TCP.EXCLUDED_NODES
setting prevents access from a named list of clients:

TCP.EXCLUDED_NODES=(devsrv1.dbool.com,169.243.27.55)

The TCP.INVITED_NODES setting enables connections only from the invited list:

TCP.INVITED_NODES=(prodsrv1.dbool.com,169.243.27.53)

If a server appears in both lists, the node is excluded. After making a change to
sqlnet.ora, you must reload or restart the Oracle network listener for the settings to
take effect. The capability to prevent network access from certain clients can enhance
your ability to protect production data from accidental access when you have two or
more production databases connected by database links, and you periodically restore
those databases onto a development server. This scenario represents a potential hazard
to your production data because immediately after a physical restore of the production
databases onto the development server, the database links in the development data-
base point to the production databases. This situation is shown in Figure 5.6.

In a situation like this, the DBA’s first task after restore is to fix the links on the devel-
opment server and passwords. If this task is delayed or accidentally overlooked, then
the production data is at risk. The use of TCP.EXCLUDED_NODES on the production
server can protect against accidental access from the development server.

Roles versus GRANT and REVOKE

Most professional DBAs take for granted that Oracle’s role-based security is a flexible
and easy-to-manage model for enforcing security on objects. One subject that contin-
ues to cause confusion is the difference between role-based security and explicit
GRANT and REVOKE statements. Roles can be toggled on and off for sessions,
whereas grants are stored persistently in the Oracle data dictionary on completion of
the GRANT or REVOKE statement that was executed.

All roles are disabled during DDL statements that create objects such a packages,
stored procedures, stored functions, database triggers, and views. For the case of

126 Chapter 5

named PL/SQL objects, the object exists but remains invalid after creation. The view
creation fails. This Oracle behavior is by design, but still catches all Oracle DBAs and
developers at some stage in their careers. Here’s an example of what can happen based
on a scenario where SCOTT has permission to create roles, owns the standard EMP
table, and grants privileges on EMP to user JOHN through a role:

REM connect as SYSTEM

grant create role to scott;

create user john identified by john;

grant create session to john;

Securing Your Database 127

database link:
prod2.dbcool.com

database
prod1

Production server
prodsrv1.dbcool.com

database link:
prod1.dbcool.com

database
prod2

Before Production
Restore to Development

Immediately after Production
Restore to Development

database link:
dev2.dbcool.com

database
dev1

Development server
devsrv1.dbcool.com

database link:
dev1.dbcool.com

database
dev2

database link:
prod2.dbcool.com

database
prod1

Production server
prodsrv1.dbcool.com

database link:
prod1.dbcool.com

database
prod2

database link:
prod2.dbcool.com

database
dev1

Development server
devsrv1.dbcool.com

database link:
prod1.dbcool.com

database
dev2

Production server sqlnet.ora to protect production from
development access:

TCP.VALIDNODE_CHECKING=yes
TCP.EXCLUDED_NODES=(devsrv1.dbcool.com)

Figure 5.6 Use of TCP.EXCLUDED_NODES.

grant create procedure to john;

grant create view to john;

REM connect as SCOTT

create role role_emp_select;

grant select on emp to role_emp_select;

grant role_emp_select to john;

The user JOHN then executes the following SQL with the given results, based on the
prerequisite that SCOTT has granted JOHN the role ROLE_EMP_SELECT:

REM this works:

select count(*) from scott.emp;

REM this PL/SQL block works:

begin

for rec in (select count(*) the_count from scott.emp) loop

dbms_output.put_line(rec.the_count);

end loop;

end;

REM fails, because view requires role privilege

create view v_scott_emp as select * from scott.emp;

REM function is invalid after creation

create or replace function count_emp return integer as

begin

for rec in (select count(*) the_count from scott.emp) loop

return rec.the_count;

end loop;

end;

The view creation fails with an “ORA-01031: insufficient privileges” error because
the ROLE_EMP_SELECT privileges are required to create it and are disabled. The pro-
cedure creation succeeds, but the function is invalid because the grant on SCOTT.EMP
is through a database role, which is turned off. When JOHN investigates the reason for
the invalidation, the error “ORA-00942: table or view does not exist” occurs on the line
referencing SCOTT.EMP.

JOHN can identify this issue in advance by using SET ROLE NONE, and then run-
ning SELECT * FROM SCOTT.EMP. This SELECT gives an ORA-00942 because JOHN
can’t access SCOTT.EMP without the role. If JOHN can’t access an object after SET
ROLE NONE, then he won’t be able to access it in any named PL/SQL that he creates
or any view creation statements.

To fix the invalid function and allow the view creation, SCOTT needs to perform an
explicit grant on the EMP table to JOHN using GRANT SELECT ON EMP TO JOHN.
However, this explicit grant works against the management benefits of roles, even
though it’s required to avoid potential ambiguities caused by the dynamic nature of
roles. In general, this behavior of roles is not a problem if an application is accessed
through a single schema, and all stored application PL/SQL and views reside in the

128 Chapter 5

same schema as the tables. If an application contains multiple schemas, and those
schemas contain named PL/SQL objects and views that run against tables in a differ-
ent schema, the issue is likely to manifest itself.

Using a Password File

It’s recommended that you use a password file to allow remote SYSDBA and remote
SYSOPER connections to your database. Password files are required to access many of
the features of Oracle Enterprise Manager (OEM). We’ll also be using them to support
Legato Networker server initiated backups and for checking the status of standby
databases. To create a password file at any time, set the environment to your Oracle
SID, and then:

$ cd $ORACLE_HOME/dbs

$ orapwd file=orapwd${ORACLE_SID} password=sys-password

Next, add the following entry to your init.ora file and restart the database:

remote_login_passwordfile=EXCLUSIVE

Once you have a password file in place, you can perform remote SYSDBA connec-
tions from SQL*Plus (started with the /nolog command-line option) as follows:

connect sys/pwd@orad2.standby.dbool.com as SYSDBA

Connections using AS SYSDBA are enabled even if the remote database is in a
mounted rather than open state, making them essential for checking the status of a
standby database. Without using AS SYSDBA, connections against a mounted data-
base will fail.

Protecting the Data Dictionary

Protecting the data dictionary should be high on the list of the DBA’s priorities because
loss of the data dictionary means loss of the database, and the loss of the dictionary
prevents database logins from taking place. By default, Oracle9i implements extra data
dictionary protection through the init.ora parameter:

O7_DICTIONARY_ACCESSIBILITY = FALSE

This setting prevents users with ANY privilege from performing ANY privilege
operations against the data dictionary. For example, a user with DROP ANY TABLE is
prevented from dropping data dictionary tables. Other protection arising from this
setting means that any user connecting to the SYS account must connect as SYSDBA
or SYSOPER only, or the connection will be refused. Any user with the DBA role,
including SYSTEM, by default no longer has access to the dictionary tables such as
USER$, LINK$, and so on.

Securing Your Database 129

Oracle considers it acceptable to grant the SELECT_ANY_CATALOG role to an
account to enable read access to the dictionary tables, but strongly recommends that
O7_DICTIONARY_ACCESSIBILITY � FALSE remains in force in all cases. In Oracle9i,
FALSE is the default setting. In Oracle8i, the default setting is TRUE, and you are rec-
ommended to change it.

If you use database links that are password authenticated, then anyone that can
view SYS.LINK$ can view the passwords in clear text. With O7_DICTIONARY_
ACCESSIBILITY�FALSE enabled, this access is restricted to users with SYSDBA or
SYSOPER privilege. This is another reason you should take advantage of the extra dic-
tionary protection.

Oracle Names Security

Your Oracle Names servers are part of your enterprisewide Oracle infrastructure, and
privileged operations should be protected against unauthorized use through an
encrypted password. To create an encrypted password, you need to run Oracle Net
Manager on the Names host, click the local Names server, and then choose Configure
Server. Once you have confirmed the password, choose Exit from the File menu, and
save the configuration. You should have an entry in the names.ora containing the
encrypted password that looks like the following:

NAMES.PASSWORD = 77B9DDF30AF483C9

The password takes effect from the next restart of the Names server and applies to
all STOP, RESTART, and RELOAD operations, but not START operations. When you
need to stop a Names server, you must provide the password in response to the
prompt from the SET PASSWORD command, or you’ll receive an error:

NNL-00013: not performed, permission denied for supplied password

You should set a different password on each site to ensure that the DBA shuts down
the correct server. For example, if you run two Names servers and the local one is
already shut down, NAMESCTL will connect you to the remote one transparently. Any
command you run, such as SHUTDOWN, will run against the remote Names server.
Use of a site-specific password prevents accidental shutdown of the wrong server. One
side effect of using a password is that you need to hardcode the password in a file
somewhere so that it’s available to the dbcool_ora_startup.pl script at server boot time.
That raises security considerations of its own, and you need to protect any file holding
a password at the UNIX level so that only the DBA group can view the contents.

Oracle Listener Security

Your Oracle listeners must be up and running at all times to allow client network con-
nections. Oracle’s network architecture enables a listener to be shut down remotely.
This can happen accidentally if you copy a listener.ora file from an existing server onto
a newserver and stop the listener. For example, if you copy this listener.ora file from

130 Chapter 5

oldserver onto newserver, forget to modify the host to newserver and run lsnrctl stop,
then the listener on oldserver will stop.

LISTENER =

(DESCRIPTION_LIST =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)

(HOST = oldserver)

(PORT = 1521))

)

)

)

Using such a technique, all nonpassword-protected listeners could be shut down
maliciously, compromising availability. Therefore, privileged operations, like RELOAD
and STOP, should be protected against unauthorized use through an encrypted pass-
word, which is unique to the listener on each server. To create an encrypted password,
you need to run Oracle Net Manager on the listener host, click Local, and then Listeners
to display the named listeners, click the required listener, and choose General Parame-
ters from the poplist. Next, choose the Authentication tab and set a password. On exit,
save the configuration. If you are using the default listener named LISTENER, you
should see an entry in your listener.ora file containing the encrypted password that
looks like this:

PASSWORDS_LISTENER= (AF7FFD1C595F23FE)

You need to restart the listener for the password to take effect. When you need to
stop the listener, you must provide the password at the prompt in response to the SET
PASSWORD command. You should set a different password on each site to ensure that
the DBA always shuts down the correct listener. One side effect of using a password is
that you need to hardcode the password in a file somewhere so that it’s available to the
dbcool_ora_startup.pl script at server boot time. As for the Name server, that raises
security considerations of its own: You need to protect any file holding a password at
the UNIX level so that only the DBA group can view the contents.

NOTE It’s worth mentioning at this point that providing UNIX account access
on your database servers to non-DBAs should be considered very carefully. If
you allow this and UNIX privilege, settings on the database datafiles enable
non-DBAs to read the file contents, any passwords held as clear text can be
identified and potentially abused. Remember that database links in the
SYS.LINK$ table store passwords in clear text.

Performing a Database Security Audit

Performing a security audit is an important process that provides visibility that
your security procedures are working. You can perform a quick security audit of your

Securing Your Database 131

database by running the dbcool_audit.pl script, which is downloadable from the com-
panion Web site, as follows:

$ dbcool_audit.pl userid=system/password tns=omfd1.uk.dbcool.com

This searches your database for potential security problems, such as accounts hav-
ing passwords matching the account name, accounts having the default password,
and accounts that have potentially dangerous privileges such as UNLIMITED
TABLESPACE, or ANY. As the source code is provided, you can customize the checks.
Here’s some sample output, where lines that indicate potential problems contain “!”.

PASSED: userid=SCOTT password different from account name

WARNING!: SCOTT has default password TIGER

System privs:

CREATE ROLE NO

! UNLIMITED TABLESPACE NO

Table privs:

Role privs:

CONNECT NO

RESOURCE NO

PASSED: userid=SYS password different from account name

PASSED: SYS has non-default password

PASSED: userid=SYSTEM password different from account name

WARNING!: SYSTEM has default password MANAGER

WARNING!: userid=ODS password same as account name

System privs:

! CREATE ANY SYNONYM NO

CREATE TABLE NO

! DROP ANY SYNONYM NO

! UNLIMITED TABLESPACE NO

The list of privileges checked by the script is given by the following Perl pattern
matches:

SWITCH:

{

if ($priv =~ m/FORCE/) { $warning='!'; last SWITCH;}

if ($priv =~ m/RESTRICTED/) { $warning='!'; last SWITCH;}

if ($priv =~ m/UNLIMITED/) { $warning='!'; last SWITCH;}

if ($priv =~ m/DROP USER/) { $warning='!'; last SWITCH;}

if ($priv =~ m/CREATE USER/) { $warning='!'; last SWITCH;}

if ($priv =~ m/ALTER USER/) { $warning='!'; last SWITCH;}

if ($priv =~ m/TABLESPACE/) { $warning='!'; last SWITCH;}

if ($priv =~ m/ADMIN OPTION/) { $warning='!'; last SWITCH;}

if ($priv =~ m/ANY /) { $warning='!'; last SWITCH;}

132 Chapter 5

if ($priv =~ m/PUBLIC /) { $warning='!'; last SWITCH;}

if ($priv =~ m/DBA /) { $warning='!'; last SWITCH;}

}

You can modify the list to add new privileges or change the existing ones. These are
the privileges that I look for as a starting point. The UNLIMITED TABLESPACE privi-
lege, which is granted separately as a side effect of granting RESOURCE, is often over-
looked. This privilege enables the grantee to potentially fill up the SYSTEM tablespace
and halt the database, and should be revoked immediately after RESOURCE has been
granted to a user. Finally, the script is also Web enabled, so you can call it from a URL
in a browser as follows, after you have copied it to your cgi-bin directory:

http://site.com/cgi-bin/dbcool_audit.pl?userid=system/

pwd&tns=omfd1.world

Summary

Oracle security has many different aspects, and you need to consider them all in order
to deliver the performance and availability that your business users require. Security
considerations need to take into account the complete end-to-end infrastructure of
your Oracle systems, including user authentication, the network and name resolution,
data and dictionary protection, and more. Oracle provides most of the features
required to enforce the required degree of protection, but considerable effort and dili-
gence is required to cover all of them.

User security administration has long been an issue in the Oracle world because
security requirements used to mean that users had to remember many different pass-
words for different systems. Such an approach often works against security by causing
users to choose memorable (and therefore easy to crack) passwords. Enforcing secure
(therefore unmemorable) passwords often leads to a need for expensive administrative
procedures to perform password resets for users on demand. Oracle9i provides the
solution to this longstanding problem through the introduction of enterprise users
stored in an LDAP directory. Use of enterprise users requires the separately licensed
Advanced Security Option.

Securing Your Database 133

TE
AM
FL
Y

Team-Fly®

Designing Fast and
Supportable
Applications

PA R T

Two

137

What exactly does making an application supportable mean? It means that when a
running application encounters a problem, the exact location in the code can be located
immediately, and the root cause identified as quickly as possible. It means that an
application reports back on its status in a format that can be easily assimilated by sup-
port staff and automated monitoring processes. It means that an application needs to
be written in a way that is robust against various types of failures and takes advantage
of available features to mitigate the effects of those failures. Many factors influence
supportability, and this chapter covers the following topics to address them:

■■ Tips for supportable SQL

■■ How to provide tracing facilities

■■ How to enable error reporting and logging

■■ Run-time application configuration

■■ The importance of restartability

■■ How to use resumable operations in Oracle9i

This chapter is intended for both the database administrator (DBA) and developer.
If you’re a developer, consider implementing the suggestions to aid supportability.
Supportability translates directly to increased availability through reductions in out-
ages and faster problem resolution. If you’re a DBA, then you can put forward the
information in this chapter as a blueprint for the developers in your organization, with
a goal of reducing support costs.

Designing Supportable
Applications

C H A P T E R

6

Creating Supportable SQL

This section contains four simple tips for SQL layout and naming that are frequently
missing from Oracle code yet can provide significant benefits to supportability with
minimal effort.

SQL Layout for Readability
Professional DBAs can spend a significant amount of time inspecting resource-
intensive SQL statements and investigating ways to improve them in order to improve
application response times for end users. It might surprise developers how much this
process can be expedited if SQL is written in a way that makes the SELECT list
columns, tables in the FROM clause, and WHERE predicates clear in the statement.
This is easily seen with an example. Consider this free formatted SQL statement:

SELECT Deal_Type, Deal_Num, Thin_Pack FROM TT_FX_OTC d WHERE

(((DEAL_STATE not in ('DLTD', 'MTRD', 'EXCD','ABND') or

EOD_REALISED_PREMIUM <> 0.0 or EOD_REALISED_PREMIUM_REVERSED <> 0.0) and

ALLOCATION_STATUS<>'ALLOC') or (DEAL_STATE in ('DLTD', 'MTRD','MTDL')

and d.DEAL_NUM in (select dt_vals.DEAL_NUM from DT_VALUES dt_vals where

dt_vals.DEAL_NUM = d.DEAL_NUM and dt_vals.PL_INC_SUR <> 0.0))) and

DEAL_ROLE <> 'BACK'

A DBA attempting to make sense of this SQL has a real challenge on his hands. As a
contrast, consider the same SQL formatted for readability:

SELECT Deal_Type, Deal_Num, Thin_Pack

FROM TT_FX_OTC d

WHERE

(

(

(DEAL_STATE not in ('DLTD', 'MTRD', 'EXCD','ABND')

or EOD_REALISED_PREMIUM <> 0.0

or EOD_REALISED_PREMIUM_REVERSED <> 0.0

) and ALLOCATION_STATUS<>'ALLOC'

)

or

(DEAL_STATE in ('DLTD', 'MTRD','MTDL')

and d.DEAL_NUM in

(select dt_vals.DEAL_NUM

from DT_VALUES dt_vals

where dt_vals.DEAL_NUM = d.DEAL_NUM

and dt_vals.PL_INC_SUR <> 0.0

)

)

)

and DEAL_ROLE <> 'BACK'

138 Chapter 6

The reformatted version shows the tables involved clearly and more importantly
shows that the query result set depends on two OR clauses, where the second has a
dependency on another table. The structure of the query often relates directly to the
appearance of the query explain plan. The more closely the two match, the easier it is
to identify the part of the query on which to concentrate tuning efforts. The query
explain plan for the previous query is given in Figure 6.1 and shows that the first part
of the query requires a full table scan of the TT_FX_OTC table, identified by the excla-
mation mark. Tuning efforts could therefore concentrate on that part. Using the unfor-
matted statement, the relationship between the query plan and the SQL is not evident.

Most developers would never consider laying out code—be it Java, C, or PL/SQL—
in an unformatted way. The same rule should apply to SQL statements.

Use Table Aliases
Another simple SQL fix that can make tuning efforts easier is to always use table
aliases in SQL statements, in order to make explicit the table from which a SELECT list
column originates. Identification of the underlying table for each SELECT list column
is required during SQL tuning in order to check whether appropriate indexes on the
table are being used. The process can be appreciably slower when a query contains one
or more joins, and columns in the SELECT list don’t identify the table in the join. The
following SQL contains a SELECT list column that could originate from any of three
underlying tables:

SELECT SUM(PREMIUM_REVAL)

FROM TT_FX TT,DT_VALUES DT,SD_LIVE_DEAL_STATES LDS

WHERE DT.DEAL_NUM = TT.DEAL_NUM

AND TT.TRADING_BOOK = :b2 AND TT.DEAL_STATE = LDS.NAME AND

LDS.LIVE = 'Y'

In this case, a simple change to the SELECT list to include the table alias, DT, means
the DBA no longer needs to query the Oracle dictionary to identify the underlying
table, as shown:

SELECT SUM(DT.PREMIUM_REVAL)

FROM TT_FX TT,DT_VALUES DT,SD_LIVE_DEAL_STATES LDS

Designing Supportable Applications 139

Figure 6.1 Explain plan structure.

WHERE DT.DEAL_NUM = TT.DEAL_NUM

AND TT.TRADING_BOOK = :b2 AND TT.DEAL_STATE = LDS.NAME AND

LDS.LIVE = 'Y'

When used together with the previous tip on layout, the speed with which DBAs
can analyze queries can be increased significantly, even for the simple examples
shown. The gains are much higher for longer and more complicated SQL.

Use Explicit Constraint Names
Explicit names should be used for Oracle constraints in DDL statements, rather than
allowing Oracle to generate them. Oracle-generated names always begin with the pre-
fix SYS_C. Constraint names are used in error messages generated by Oracle when
constraints are violated. The more meaningful the name, the quicker the DBA can iden-
tify the cause of the underlying problem. The following example shows the Oracle-
generated constraint names for a primary key and foreign key on the EMP table:

create table emp

(empno number(4) primary key,

ename varchar2(10),

deptno number(2) references dept);

select constraint_name,constraint_type

from user_constraints where table_name=’EMP’;

CONSTRAINT_NAME CONSTRAINT_TYPE

----------------- -----------------

SYS_C002402 P

SYS_C002403 R

The existence of system-generated constraint names can be avoided by explicit nam-
ing of the constraints. The previous example can be rewritten using the following SQL:

create table emp

(empno number(4) constraint pk_emp primary key,

ename varchar2(10),

job varchar2(9)

deptno number(2) constraint fk_deptno references dept);

Using explicit names has an extra benefit when the DBA needs to compare schema
objects during schema upgrade procedures, such as using Oracle Change Manager. If
you allow Oracle to choose the names, the chances are that a constraint with the same
purpose will have different names in different databases. Choosing explicit names
avoids that possibility and makes change management less complicated. Reduction in
complexity for any process generally leads to higher availability.

In Oracle9i, the data dictionary views that display constraint information include
an extra column named GENERATED to make it easy to identify constraints that use
system-generated (as opposed to user-generated) names, as shown in the following
example:

140 Chapter 6

select constraint_name,constraint_type,generated

from all_constraints

where table_name like 'EMP%' and constraint_type='P';

CONSTRAINT_NAME CONSTRAINT_TYPE GENERATED

----------------- ----------------- ---------------

PK_EMP P USER NAME

SYS_C001898 P GENERATED NAME

Use Meaningful Object Names
A consistent naming scheme for objects helps the DBA to identify the types of objects
used in SQL statements more quickly by enabling the types to be identified from the
name. For example, many development teams use a V_ prefix or _V suffix to identify
views, an SP_ prefix to identify stored procedures, and _SEQ to identify sequences. The
use of IX prefixes or suffixes for indexes also helps to make sense of explain plans.

The ability to directly identify the underlying objects in SQL speeds up the tuning
process. Proponents of naming standards fall into two camps, those who use prefixes
and those who prefer suffixes. Prefixes are easier to identify in SQL because they
appear on the front of names, whereas suffixes make for easier identification of groups
of related objects by enabling the use of a wildcard on the end of the base object name
during queries of the Oracle data dictionary tables. The exact details of the standard
are not as important as having one and adhering to it at a company level.

Trace Facilities

All applications—whether interactive graphical user interface (GUI) or batch—should
provide built-in features for enabling and disabling Oracle SQL trace, including stan-
dard SQL tracing, tracing with bind variables, and tracing with event waits.

NOTE SQL tracing is used for the performance profiling of SQL statements
submitted to the database server and is covered in more detail in Chapters 9
and 28.

The options can be set using the SET_EV procedure, as shown in the following
examples for a session identified by SID�8 and SERIAL�149:

REM identical to ALTER SESSION SET SQL_TRACE TRUE, level 1

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>1,NM=>'');end;

REM trace SQL with bind variables, level 5

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>5,NM=>'');end;

REM trace SQL with event waits, level 9

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>9,NM=>'');end;

Designing Supportable Applications 141

REM trace SQL with bind variables, event waits, level 13

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>13,NM=>'');end;

REM trace off for one session, level 0

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>0,NM=>'');end;

Although the DBA can set SQL trace for any session, it’s better for developers to pro-
vide facilities to set the trace within applications themselves, as this provides finer
granularity over the traced sections of code. For example, it’s possible to create a map-
ping table of procedure names and trace levels in a table, and have the procedure read
and set the trace settings at the top of the procedure, and unset them at the end. That
enables tracing to be turned on and off for individual procedures. In general, it’s better
to concentrate tracing efforts on the smallest code section possible because tracing can
generate massive amounts of trace information in a short time. In the case of batch
applications, tracing may need to be turned on at the start of processing, in which case
the DBA will not be able to allow tracing early enough during execution by calling
SET_EV from a separate session. Command-line utilities should enable tracing to be
set through command-line arguments.

The ability to trace the values of bind variables and values is especially important
when diagnosing the causes of obscure Oracle error messages in PL/SQL code, especially
triggers. It’s surprising how often code fails with incorrect values that, according to the
developer, couldn’t possibly be passed into subroutines. By building extensive tracing
facilities into an application, the causes of such problems can be definitively identified
more quickly. The inclusion of tracing facilities in code adds an overhead to the software
development process. It usually pays off quickly. Chapter 28 shows more examples.

It’s necessary for the application code to have access to the System ID (SID) and
SERIAL# values that identify the current session in order to pass the values to the
SET_EV procedure parameters SI and SE. One way to facilitate that is for the DBA to
provide a wrapper around the SET_EV procedure that has the relevant privileges
required to access the session settings. Chapter 25 on auditing shows three different
ways for identifying the SID and SERIAL# for the current session.

Error Reporting and Logging

All application error messages should provide sufficient information to identify unam-
biguously the exact location at which an error occurred in code and the cause. Too
often, applications use a single error number as a cover-all for several possible causes,
and this makes root cause diagnosis more difficult than it needs to be for support staff.
Oracle itself has been guilty of this. If you’ve ever reported an error message to Oracle
worldwide support (WWS) and it has taken a long time to identify the root cause,
that’s probably because the developer of the underlying code could have provided a
more specific cause for the error but chose not to in order to get the code completed
quicker. Error-handling code is tedious for the developer to implement, but that’s a
poor excuse for not implementing in a way that can minimize support requirements. If
error handling is not complete, then the onus is on the customer and WWS to try and

142 Chapter 6

work out which of the range of possible causes is the real one. In such cases, most of the
effort to resolve the problem needs to be made by the customer.

For the developer, incomplete error handling makes application delivery slightly
quicker, but it’s a completely false economy from a business point of view. For exam-
ple, an extra couple of minutes spent by a developer adding code to identify the loca-
tion of an error and to specify the exact cause can translate into savings in terms of
hours when an error manifests itself in the code at run time. It’s not necessary to report
locations in a way that is meaningful to users but to report information in a way that is
meaningful to support. The following is a PL/SQL code fragment showing the use of
a simple numeric variable whereami and string, the_location, that can be used to iden-
tify the precise code location of errors in error messages:

...

the_location:='update_procedure';

whereami := 6;

cursor_name := dbms_sql.open_cursor;

whereami := 7;

dbms_sql.parse(cursor_name,update_sql,dbms_sql.v7);

whereami := 8;

ret := dbms_sql.execute(cursor_name);

whereami := 9;

dbms_sql.close_cursor(cursor_name);

whereami := 10;

cursor_name := dbms_sql.open_cursor;

whereami := 11;

dbms_sql.parse(cursor_name,update_last_check_sql,dbms_sql.v7);

whereami := 12;

ret := dbms_sql.execute(cursor_name);

whereami := 13;

dbms_sql.close_cursor(cursor_name);

EXCEPTION

when others then

dbms_output.put_line(location||':'

whereami||':'||

sqlerrm||':'||sqlcode);

An example of error message reporting in one of Oracle’s own products is quite
enlightening. If you’ve set up Oracle Real Application Clusters (RAC), as described in
Chapter 22, you’ll be aware that Oracle uses the UNIX remote copy (rcp) command to
enable the delivery of the Oracle software to each node in the cluster during installa-
tion using the Oracle Installer. Chapter 1 covers the basic configuration requirements
for rcp. These days, other Oracle products use rcp also.

If you’ve failed to configure rcp correctly, then the Oracle Installer will report on a
failure to connect to the other nodes in the cluster at install time. The developer could
have taken the trouble to report that an rcp connection failed but chose not to. If he or
she had, you could have addressed the problem in a couple of minutes. Instead, you,
as the customer, are left to work out what failure to connect to the other nodes means.
Eventually, through a process of trial and error, you’ll probably discover that the

Designing Supportable Applications 143

remote shell (rsh) configuration is incorrect and that resolving this fixes the install
problem, but you shouldn’t have to. The developer, with a little extra diligence, could
have saved you the effort by being more specific on the cause of the problem when
reporting the error. Who knows how many other problems will result in that same
error message and cause the whole process to be repeated?

The mechanism used to report errors is just as important as the content of the
messages themselves. Three main techniques are typically used for reporting errors,
in addition to message dialogs typically returned by interactive GUI applications:
files, tables, and email. Use of email is covered in Chapter 24 on monitoring and
health checks. Files and tables have an advantage in that records of problems and sta-
tus information are stored persistently to enable historical information to be searched
easily.

The format used to log information should be designed to be easy for search tools to
scan and follow a standard format. For example, log output might contain a fixed for-
mat date as the first field, then a severity indication in the second field, then the data-
base instance in the third, and so on. If logging information has a poorly thought out
format, it can add complexity to the processing performed by monitoring tools that
need to raise alerts based on the logged information. Oracle’s own alert log informa-
tion does not follow a standard published format. As a result, it’s sometimes necessary
to join lines together to pull out the times that events occurred. Performing pattern
matching on various parts of the message information is less complex if all messages
follow a standard, predefined format and fit into a single line.

Error Logging Using Files
Oracle provides the UTL_FILE package to provide developers with a facility to log
messages in server side files. In order to use the facilities of the UTL_FILE package, the
DBA needs to make sure the UTL_FILE_DIR initialization parameter is set to the direc-
tories in which the file creation is to be enabled.

NOTE Sometimes DBAs choose to use the wildcard “*” as the UTL_FILE_DIR
parameter. This requires less effort than choosing an explicit list of directories
but represents a major security loophole because it enables any file owned by
the UNIX oracle account to be accessed by UTL_FILE, including files that are part
of the database. As a result, * should never be used for a production system.

Whenever you use UTL_FILE, great care needs to be taken to ensure that exceptions
raised during logging via UTL_FILE don’t affect the behavior of the application. In
general, error and status logging failures should be transparent to the application. For
example, you wouldn’t expect an Oracle application to stop working if the disk on
which the Oracle alert log is located became filled. The following example shows a pro-
cedure that can be used to log errors to a file /tmp/logfile.txt:

procedure sp_error_log(vtext in varchar2) is

fhandle utl_file.file_type;

location varchar2(16) := 'sp_error_log';

144 Chapter 6

TE
AM
FL
Y

Team-Fly®

begin

fhandle := utl_file.fopen(‘/tmp’,’logfile.txt’,’a’);

utl_file.put_line(fhandle,vtext);

utl_file.fclose(fhandle);

exception

when utl_file.invalid_path then

sp_mail_log_error(location||': invalid path');

when utl_file.invalid_mode then

sp_mail_log_error(location||': invalid mode');

when utl_file.invalid_operation then

sp_mail_log_error(location||': invalid operation');

when utl_file.invalid_filehandle then

sp_mail_log_error(location||': invalid filehandle');

when utl_file.write_error then

sp_mail_log_error(location||': write error');

when utl_file.read_error then

sp_mail_log_error(location||': read error');

when utl_file.internal_error then

sp_mail_log_error(location||': internal error');

when others then

utl_file.fclose(fhandle);

end;

Errors during logging itself still need to be notified because valuable information is
potentially lost while logging is failing. In this case, SP_MAIL_LOG_ERROR uses
SMTP mail to notify the DBA team of logging failures. Chapter 24 contains a procedure
SP_SENDMAIL that could be used as the basis for such a procedure.

It’s worth pointing out that the procedure doesn’t cache the file handle between calls
and instead opens it every time. This means that the log file can be removed or com-
pressed between calls and the logging will continue to work. The Oracle alert log
behaves in a similar way. Opening files in append mode, as indicated by “a,” creates
the named file if it doesn’t exist already. The procedure also reports all the possible
causes of failures to write to the log file. It would be easier to simply use a single
WHEN OTHERS exception to handle all the possible errors, but, as explained earlier,
this makes it more difficult to identify the actual cause of the problem if logging fails.
So the error handler mails the specific cause of any problem with logging so it can be
resolved more quickly.

Error Logging Using Tables
Error logging using tables rather than files makes it significantly easier to report on
error and status information because SQL can be used to perform the process and
present the information. However, the need to commit error and status information in
log tables in order to view it from other sessions can interfere with the transaction units
of processing that failed. Oracle provides a feature known as autonomous (or nested)
transactions to enable persistent logging to tables to be performed in a way that doesn’t

Designing Supportable Applications 145

have side effects on the transactions from which the log message is generated.
Autonomous transactions are enabled using the AUTONOMOUS_TRANSACTION
pragma in a PL/SQL procedure as shown in the following example:

create table log_table(msg varchar2(10));

create procedure log_record(p_msg in varchar2) is

pragma autonomous_transaction;

begin

insert into log_table values(p_msg);

commit;

end;

You can demonstrate the behavior by inserting rows into LOG_TABLE from within
the same session both directly via SQL INSERTS and using the autonomous transac-
tion. Subsequent viewing of the contents of LOG_TABLE from another session will
confirm that inserts performed via the autonomous transaction will be present, and
those performed via INSERTS won’t be visible until you commit them. This shows that
the autonomous transaction has taken place without side effects on the main transac-
tion in the other session.

Run Time Configuration

Application performance and supportability can benefit from the capability to set ses-
sion attributes at run time. The attributes might include the optimizer goal for the ses-
sion, the sort area size, trace settings, and resumable space allocation, among others.
The following example shows a database logon trigger, which is an appropriate point
at which to configure session-specific parameters:

create trigger session_config after logon on database

declare

begin

configure_session_for_user(user);

exception

when others then

null;

end;

The session-specific settings might be held in a table containing name value pairs for
each username and parameter, and be activated through the configure_session_
for_user procedure. Some possible settings are shown in the following:

select * from user_parameters;

USERNAME NAME VALUE

---------- --------------- ---------

BATCH optimizer goal ALL ROWS

146 Chapter 6

BATCH resumable YES

BATCH sort area 10000000

ONLINE optimizer goal FIRST ROWS

ONLINE sort area 65536

ONLINE resumable NO

By providing mechanisms for influencing session behavior through data held in
tables, the developer makes it possible for code behavior to be enhanced without re-
quiring more risky changes to application code.

Reporting on Application Status

Oracle provides a package, DBMS_APPLICATION_INFO, that contains procedures to
enable developers to build facilities into their applications to report on the status of
application processing. Each procedure call updates a related column in the V$SES-
SION table. The three package procedures and the related column in V$SESSION are
shown in Table 6.1.

The DBA can then query the columns in V$SESSION using SQL to determine the
application status, for example, if users report that the application appears to be stalled.
Although the procedures can be used in any way the application developer chooses, the
names are intended to suggest the usage. So the SET_CLIENT_INFO might be called
once, at application connection time, to identify the application as follows:

begin dbms_application_info.set_client_info('DbCool'); end;

The SET_MODULE routine is typically used to identify a business process, which
itself might map to a single PL/SQL stored procedure in the application. The ACTION_
NAME, used to identify the current action within the module, can be set at the time of
the call to SET_MODULE or be passed as an empty string at the top of a procedure and
set separately using the SET_ACTION procedure as in the following example:

procedure sp_process_trades is
begin
-- identify the module to V$SESSION
dbms_application_info.set_module(

module_name=>'Trade Processing',
action_name=>'');

for rec in (select trade_id from all_trades where processed='N') loop

-- identify the current trade to V$SESSION
dbms_application_info.set_action('Processing Trade '||trade_id);

-- process the trade..
sp_process_one_trade(rec.trade_id);

end loop;

Designing Supportable Applications 147

-- MUST UNSET THE VALUES when processing complete

-- don’t forget to unset in exception handlers also

dbms_application_info.set_module(

module_name=>'',

action_name=>'');

end;

The use of DBMS_APPLICATION_INFO has a very beneficial side effect on perfor-
mance management as well as supportability. The ability to identify business transac-
tions is a critical success factor for efficient performance management. As you might
expect, the best performance management tools can present information based upon
time spent in business transactions, rather than individual microscopic SQL state-
ments. The ability to do this relies on the application setting values for MODULE_
NAME and ACTION_NAME at appropriate points in the code and unsetting them
when processing is complete.

In effect, DBMS_APPLICATION_INFO provides a facility for developers and
designers to instrument the performance of business transactions using a few simple
procedure calls. If all Oracle applications were designed up front to include calls to
DBMS_APPLICATION_INFO, then performance problems would be identified faster
and solved faster. Chapter 16 on using performance management tools shows how the
power of DBMS_APPLICATION_INFO can be unleashed using a suitable tool that
takes advantage of the information.

It’s worth noting that an additional procedure present in DBMS_APPLICATION_
INFO, SET_SESSION_LOGOPS, can be used to log status information about long-
running operations into the V$SESSION_LONGOPS table. Several of Oracle’s own
tools, such as RMAN, make use of this feature, and Oracle designers can do the same.
The specification of the package is shown in the following code:

procedure set_session_longops(rindex in out pls_integer,

slno in out pls_integer,

op_name in varchar2 default null,

target in pls_integer default 0,

context in pls_integer default 0,

sofar in number default 0,

totalwork in number default 0,

target_desc in varchar2

default 'unknown target',

units in varchar2 default null);

148 Chapter 6

Table 6.1 DBMS_APPLICATION_INFO Procedures

PROCEDURE NAME V$SESSION COLUMN

SET_CLIENT_INFO CLIENT_INFO

SET_MODULE MODULE

SET_ACTION ACTION

Restartability

Restartability is a term I use to define the behavior of applications that can continue to
function when Oracle database management system (DBMS) errors occur during pro-
cessing. For example, if a tablespace space shortage occurs during a batch insert, an
application can either exit and report an error, or report an error and attempt to repeat
the failed operation on a timer until the underlying problem is fixed. Programmers
using Oracle’s precompiler interfaces, such as Pro*C, can take advantage of features in
the language to identify the array index at which an array insert fails and restart the
insert from that point. In general, making programs robust against database errors of
any kind adds complexity to the code, and it can be difficult to balance the cost and
complexity of extra coding against the benefits that result.

The consequences of aborting a long-running operation, rather than suspending it,
can be very significant in terms of resource usage. For example, if a long-running batch
job fails due to a space shortage, then the transaction needs to be rolled back and resub-
mitted. Both operations cause large amounts of redo generation. Prior to Oracle9i, it
was the responsibility of the programmer to build features to work around space prob-
lems. For some situations like rollback segments filling up during a long transaction,
there was often no practical alternative other than to roll back the transaction and
restart. By their very nature, transactions that cause space problems tend to be long
running and costly to repeat.

Resumable Operations in Oracle9i
Oracle9i provides resumable space management features that can be used to suspend
sessions at the database level when space problems are encountered, until the DBA
adds more space. Oracle’s own products take advantage of these features. For exam-
ple, Oracle’s import utility includes a resumable�y option. Using features in the data-
base rather than providing similar features at the application is preferable because it
reduces application-coding complexity.

Three classes of spaces errors are resumable: those resulting from out-of-space
errors on data segments and rollback segments, those resulting from maximum
extents-reached conditions, and those resulting from space quota-exceeded errors.
Even long-running queries that perform sorts that exceed temporary space availability
can be resumed. Be aware that space allocation errors for rollback segments in dictio-
nary managed tablespaces are not resumable. This should not be an issue, as you
should be using the automatic undo features of Oracle9i in any case (as covered in
Chapter 2). In the simplest case, making an operation resumable means adding the fol-
lowing SQL statement to a section of code:

alter session enable resumable;

Because suspended statements can lock system resources, possibly for an extended
period, the RESUMABLE privilege is required in order to execute resumable opera-
tions. The following statement disables resumable operations:

alter session disable resumable;

Designing Supportable Applications 149

Resumable operations that are suspended are shown in the DBA_RESUMABLE
view, and if resumable operations are in use, it’s essential that the DBA group performs
monitoring for the early detection of such errors. Here is an example of a transaction
that has suspended due to lack of undo space, which could be resolved by extending
the undo tablespace datafile:

select error_msg from dba_resumable where status <> 'NORMAL';

ERROR_MSG

--

ORA-30036: unable to extend segment by 16 in undo tablespace 'UNDOTBS2'

After a timeout period, which by default is set to 7,200 seconds and configurable
through the ALTER SESSION ENABLE RESUMABLE TIMEOUT seconds statement,
the suspended statement returns an error to the application. The DBMS_RESUMABLE
package contains routines to enable resumable parameters to be set and to read named
sessions, and it includes an ABORT procedure to enable a suspended operation to be
aborted by a DBA, if necessary.

Constraining Undo Requirements
Long-running batch jobs, such as data load and purge operations, can exhaust the
available undo space. Although Oracle9i provides resumable operations to provide the
potential for space shortages to be fixed, it’s not always a good idea to do that. Devel-
opers can take steps to constrain undo requirements by performing operations in
batches, rather than in a single large transaction. In general, Oracle performs the same
bulk DML operation faster when undo requirements are constrained within limits by
performing the operation across several transactions. Chapter 19 contains an example
showing that a reduction in import time can result from placing an upper limit on
transaction size.

For simple purge operations using the DML DELETE operation, the ROWNUM
pseudocolumn can be used to constrain transaction size to a fixed number of rows. For
example, the following statement has unbounded undo requirements that are deter-
mined by the number of rows in the ALL_TRANSACTIONS table in the given state:

delete from all_transactions where processed='Y';

The following PL/SQL does the same job but commits after each batch of 10,000
rows deleted, which means that the undo requirements are limited to the space
required to delete 10,000 rows, independent of the size of the ALL_TRANSACTIONS
table:

while true loop

delete from all_transactions where processed=’Y’

and rownum <=10000;

150 Chapter 6

exit when SQL%NOTFOUND;

commit;

end loop;

Summary

In some large organizations, the development and DBA teams often work in isolation
without a clear understanding of each other’s roles. By making the developer and DBA
more aware of the requirements of the other, both performance and availability can be
enhanced. Apparently mundane development practices, such as adherence to well-
thought-out naming standards, code layout, and error reporting, can pay off signifi-
cantly in production environments. The use of the procedures in the DBMS_APPLI-
CATION_INFO package systematically throughout the development cycle for all
Oracle applications can pay off significantly in terms of earlier problem diagnosis and
an enhanced capability for performance management. The DBA can enhance availabil-
ity by ensuring that organizations make use of the resumable space operations avail-
able in Oracle9i. The potential for reducing outages through these features is a very
compelling reason to upgrade to Oracle9i, and the DBA has an important role to play
as an evangelist for Oracle9i within the development community.

Designing Supportable Applications 151

153

Every organization needs to purchase software applications to meet their business
requirements. The application may be enterprise-wide, such as Oracle Financials, or a
simple application that employees use to submit their timesheets. From my experience,
all too often companies purchase third-party software based on functional require-
ments alone. In this case, the requirements are far too narrow in scope to ensure suc-
cessful deployment of the software.

This chapter is essentially a checklist that you can use when your company asks
third-party software developers to develop an Oracle-based application or supply an
off-the-shelf product for your company. This will help you avoid situations where pur-
chased software doesn’t deliver the benefits that were expected. Although it’s easier to
blame the software producer, the company purchasing the software needs to have a
clear list of requirements in order to ensure that the software meets the requirements
for supportability and performance, not just functionality. If things go wrong, the pur-
chaser suffers. The fact that a software producer goes out of business because it didn’t
deliver what it said it could is no consolation to the purchaser. The degree to which the
criteria in this chapter should be applied depends on the product being purchased and
how likely it is to affect the purchaser’s bottom line.

The following checklist is the basis of the contents of this chapter and is designed to
help you purchase or acquire software that meets your requirements:

■■ Check the vendor’s financial health.

■■ Meet with the vendor to establish a working relationship.

■■ Request and follow up on reference sites.

■■ Evaluate the application development environment used by the vendor.

Choosing Third-Party
Software

C H A P T E R

7

■■ Request performance benchmarks from the vendor and perform some of
your own.

■■ Evaluate high availability solutions proposed by the vendor.

■■ Check the quality of the install processes, documentation, and supportability
features.

■■ Perform a formal evaluation of your requirements against the vendor features
that are available.

Perform Vendor Health Checks

Before purchasing software, you should start with an analysis of the vendor com-
pany’s financial health. This is the kind of thing that takes place implicitly when a com-
pany chooses to purchase software from Oracle or Microsoft, for example. Everyone
knows that these companies make announcements on future directions and that the
promises on those announcements are usually fulfilled within the stated timeframes.
Research analysts call this the ability to execute. Basically, ask yourself the following:
Has the company delivered on its claims in the past and is it likely to continue to do so
in the future?

The financial strength of Microsoft and Oracle is considerable, and there is a high
probability that they will be around in the future. When buying software from a
smaller company, you should never take this for granted. If a company from which
software was purchased goes bust, the purchaser must spend funds to find a replace-
ment and face a business risk due to the possible nonavailability of support.

The Web is a good place to start when researching a company’s health. For example,
stock exchange filings are available for U.S. quoted companies. These provide useful
insight into a company’s past and future performance. Most company Web sites con-
tain an investor’s section, which provides details of past and present revenue streams.
If you have access to research information from companies like Gartner Group (www
.gartner.com), this can be invaluable for comparing a company with its peers under
various categories. A comparison of the vendor’s market position and technology
strength to their competitors is important for determining whether a company will
likely be around in the future.

Meet with the Vendor

You should arrange informal meetings with vendors in order to view their technology.
These meetings can reveal many things about a company, particular how seriously
they treat you as a potential customer and how they treat customers in general. Do
they arrange for senior or junior technical people to meet with you? What is the qual-
ity of the presentation? Are they open about the weaknesses as well as the strengths of
their technology? Do they ask about your own expertise and take the trouble to really
understand your requirements? What are the qualifications and backgrounds of the
people involved?

154 Chapter 7

TE
AM
FL
Y

Team-Fly®

My experience is that some vendors find this kind of questioning impertinent, but
because you’re a potential customer, possibly with millions of dollars to spend, then
you are entitled to ask anything you like. As a potential customer, you should never be
afraid to ask questions. Other vendors use such questions as an opportunity to
impress. The difference in those attitudes can set a stake in the ground for how you
might envisage an ongoing relationship with the vendor.

It’s always useful to seek a vendor’s view of their strengths and weaknesses com-
pared to their competitors. Too often vendors position functionality gaps in their own
products, not as weaknesses, but as features that aren’t required, simply because they
don’t have them.

Ask for Reference Sites

References sites should always be requested. A satisfied customer that is prepared to
share its satisfaction on the record is worth its weight in gold, although you need to
recognize that any decision to purchase is yours alone. It is always possible that a ref-
erence site has some kind of financial inducement for such positive responses. This is a
difficult question to ask directly, but it’s certainly something that you would like to
know. It’s interesting how often research documents on various technologies are spon-
sored by companies that the research shows in the best light. That doesn’t mean the
company that comes out on top isn’t the best, but you should not make a purchase
decision based solely on such research.

If you can see a product in action at a customer’s site, it’s worth much more than any
slick demonstration performed by a salesperson who has done it many times before.
I’ve often requested demonstrations at existing customer sites and have sometimes
been refused. I’ve also had salespeople ask me to demonstrate their products. You
shouldn’t shy away from asking. If you are responsible for the procurement of a prod-
uct that fails, then you’ll probably wish you did more research up front and asked the
difficult questions sooner.

Interestingly, I received a personal email from Ken Jacobs, VP of DBMS at Oracle
Corporation, during the writing of this book, asking for customer success stories
regarding Oracle9i. Although I am quite sure that Ken Jacobs has never heard of me
and that the mail-shot was directed to everyone who downloaded the first patch
release of Oracle9i, the point is that Oracle and everyone that sells software knows that
just about nothing helps sell a product as well as glowing reviews from current
customers.

Evaluate the Application Development
Environment

The strength of the software-engineering development environment in any company
that develops Oracle-based solutions has a significant effect on the quality of the end
product. When you purchase software, how do you know that it’s fit for its purpose,

Choosing Third-Party Software 155

aside from the vendor’s own claims? How can you be sure that claims for perfor-
mance, scalability, and robustness will be delivered?

If you check the first page in the Oracle documentation, you’ll see a paragraph con-
taining a legal disclaimer that states the following: “This software was not developed
for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications.” In other words, Oracle considers its software fit for the purpose of man-
aging data, but not for something like aviation, where a software bug in flight control
software could potentially lead to fatalities. However, when you board an aircraft that
uses computer software to control movements to the flight control surfaces such as the
wing flaps (known as fly-by-wire), how do you know that the computer system is fit for
its purpose, especially when Oracle keeps out of that market?

The key is to investigate and understand the development process used by the air-
line to create the flight control software. The knowledge you gain provides the infor-
mation that leads you to trust that the software is fit for its purpose. In the case of
fly-by-wire, the approach used was to create the entire flight control system software
multiple times using different development teams working in complete isolation from
each other based on the same specification. The independently created systems were
deployed on each aircraft. By developing multiple ways of producing the same result,
the arbitration software can decide which value to use if the multiplexed systems don’t
agree on a calculation. The goal is for all of the independent systems to produce the
same result and ensure that a bad result from one system (due to a software bug) is
overruled by the correct result from one of the other systems based on the premise that
the same bugs won’t be duplicated in all systems because they were developed inde-
pendently by different teams.

Based on this knowledge, you probably wouldn’t buy flight control software from
Oracle as it uses a single code base. In any case, they don’t want to sell it to you for that
purpose because they are honest about the purpose for which their software should be
used. However, you can’t be so sure of the credentials of third-party software vendors.
This section covers some of the questions you should ask about the development
process and software-engineering practices used by any third-party vendor before you
purchase their software or services. You can check the vendor’s techniques against
those used within your organization and those suggested in Chapter 6.

Choosing the Oracle Version
and Features
The nature of the development process of the software within a third-party vendor can
be very revealing. For example, the version of Oracle used for the current version of the
product and a roadmap for future Oracle versions can tell you something about the
company’s Oracle expertise and the importance placed on the database management
system (DBMS) of their product.

If a company proposes to sell you a product that requires Oracle version 8.0.6 when
that version is long out of support, then you could rightly question that company’s
level of Oracle expertise and judgement. Also, a requirement for an old version of Ora-
cle doesn’t demonstrate a focus on customer requirements, which definitely includes
using a supported version of Oracle.

156 Chapter 7

Older versions of Oracle also fail to take advantage of potential performance
and manageability features that could benefit the customer and vendor alike. Some
vendor products use Oracle as a relational data store and don’t use Oracle-specific fea-
tures in order to enable their products to run against multiple relational DBMSs
(RDBMSs) from the same code base. This is definitely better from the vendor’s point of
view as it potentially lowers development cost, but it might not be so beneficial for the
customer.

Choosing a Development Language
The choice of language that the vendor uses to develop its Oracle software should be
considered. For example, a company that chooses Oracle Call Interface (OCI) for its
programming interface, as compared to Pro*C, might be harboring potential support-
ability problems. This is because the difficulty of programming in OCI and the avail-
ability of skills in the marketplace may make the company dependent on one or two
gurus for development and support. If those people are no longer around, then the
support as well as the company’s ability to execute in the future might be at risk. In
addition, any language that places the responsibility of allocating and freeing memory
onto the programmer’s shoulders (such as OCI) presents an increased risk of problems
such as memory leaks and corruption at run time.

Regression Testing
You should also inquire about the nature of the regression testing performed on the
product. Regression testing is the testing performed against a product’s feature set
using known inputs and outputs in order to confirm that the product is working as
intended. For something like a batch process, it might mean running a list of Struc-
tured Query Language (SQL) statements against known data, running a report, send-
ing the output to a text file, and comparing the output with a known result. For
products based on a graphical user interface (GUI), it’s more difficult, but products are
available that will do it.

Regression testing is something that you take for granted when purchasing prod-
ucts from successful vendors of software products such as Microsoft and Oracle. When
I was a developer at Oracle, it was necessary to instrument product code and certify
that regression testing covered a high percentage of the code before the code could be
certified as production status. It might seem like overkill to expect this of a third-party
software vendor. The vendor might even consider this to be commercially sensitive
information. But, as usual, if a company is happy to provide visibility of its develop-
ment process, it means the company is confident that its software-engineering stan-
dards are likely to provide products that work.

Something I read quite a while back sticks in my mind on this subject. In an early
release of Microsoft Visual C��, Microsoft produced a small magazine that basically
showed off their development process by highlighting the number of people involved
in development, quality assurance (QA), and documentation. What was striking was
that the number of people involved in each group was approximately the same, which
gave visibility to the seriousness with which Microsoft viewed, and still views, QA and

Choosing Third-Party Software 157

documentation compared to development. This kind of information can help when
deciding whether to purchase a product.

Naming Standards
Naming standards for Oracle objects in the product application schemas tell you some-
thing about whether the vendor uses a standards-based development process. If no
consistent naming standard exists, it might imply that developers in the organization
are left to get on with their own work without looking at the bigger picture.

Security
How seriously does the vendor treat database and application security? If the vendor
requires that the application schema have database administrator (DBA) privileges or
other potentially insecure privileges, then that needs to be addressed before a product
is purchased. A vendor that doesn’t build an appropriate security model into their
product immediately demonstrates a lack of customer focus, because security is an
important consideration for customers. For certain types of applications, it’s a regula-
tory requirement. Obviously, it’s easier (and cheaper) for a vendor to develop an appli-
cation without including a proper security model, but it certainly reflects poorly on the
vendor whichever way you consider it.

Request Application Benchmarks

Never take a vendor’s claims for application scalability at face value. Ask for evidence
of benchmarks or other metrics. Ask the vendor how performance is built in during the
development cycle, and what technologies and techniques the application uses to
ensure that performance is maintained during increases in the user base or database
size. Best of all, run some benchmark tests in house.

Find out what tools the vendor uses for Oracle performance management. The cri-
teria for choosing a performance management tool are covered in Chapter 16. How did
the vendor decide on which tools to use? If the vendor already uses a tool that you use
in your own organization, it’s a good sign that the vendor has a similar view on per-
formance and places the required emphasis on performance.

My experience of third-party Oracle software is that performance is often an issue
after purchase because the vendor didn’t really place much emphasis on it during
development and the customer didn’t ask the right questions before purchase. If the
vendor immediately points the finger at the customer and suggests that poor database
configuration is the root cause of performance problems on the customer’s site, it is a
bad omen for at least two reasons. The first is that the vendor doesn’t understand Ora-
cle performance management because the configuration of the database is not usually
the cause of dramatic performance degradation. The second is that the customer failed
to collaborate fully with the vendor to understand the performance requirements
before purchase.

158 Chapter 7

Ensure That Space Management
Procedures Exist

The subject of database space growth is often ignored during the early days of product
rollout and prior to purchase because the size of the database in the early days of
deployment is not likely to be an issue. However, it’s often extremely difficult to do
anything about it once the database reaches a certain size.

Before purchase, the vendor’s advice should be sought on how the database size can
be constrained during production deployment. The need to purge data for space and
performance reasons often conflicts with business requirements to keep data available.
As a result, archiving and purging strategies need to be considered and understood up
front before purchase and deployment. They can’t be bolted on afterwards without a
huge effort from both the business and technical staff. For that reason, products that
come with built-in data and archiving capabilities should receive extra credit during
any evaluation process because the vendor has recognized that space growth is an
important consideration for customers and has done the hard work to address it. Ora-
cle provides features such as partitioning and transportable tablespaces to facilitate
data archiving and purging, and the vendor should be aware of them.

Review the Vendor’s High
Availability Solution

The vendor’s solution for delivering high availability in their application, possibly
24�7, should be sought, if only to see whether it has been considered, in order to learn
the vendor’s understanding of customer requirements. Sometimes vendors go as far as
building availability features into a product at the application level. This can be a key
selling point, provided that the vendor isn’t duplicating features at the application
level that are provided by the DBMS.

Oracle has many features, including replication, standby databases, and Real Appli-
cation Clusters (RAC) to provide high availability. These are covered in Part Five of
this book (Chapters 20 through 23). It’s interesting to find out the vendor’s awareness
of these features and whether they are appropriate for their application.

Evaluate Product Installation

The installation of application schema objects and data should always take place using
SQL scripts. These SQL scripts should contain text headers indicating the version of the
script. If the vendor supplies schemas and data using an export dump, there is a dan-
ger that the vendor has simply provided you with whatever data was in their devel-
opment database on the day they shipped the product, including any junk. The use of
an export dump is easier, faster, and cheaper for the vendor in the short term, but in the
long term, it’s a false economy that is likely to lead to support issues. For example, the

Choosing Third-Party Software 159

vendor should allow you to choose the schema and tablespaces into which the appli-
cation schema tables and indexes are installed. However, this is much more compli-
cated than using an export dump.

PL/SQL package headers and bodies should be supplied as separate scripts to
enable the header to be installed before the body. This makes problems relating to the
installation order of objects less likely. An installation verification script should be pro-
vided so that the installation can be checked after completion. A deinstallation script is
useful if you discontinue use of the product in the future. All these suggestions are
used in varying degrees by Oracle’s own product installations and serve as good mod-
els for vendors’ as well.

The customer should be able to carry out installation from the supplied installation
documentation. If the vendor sees it as a requirement to provide staff to perform the
installation, it could be because the installation documentation is of poor quality, and
the procedure is complicated and requires manual intervention and customization. It
might also be used as an excuse to charge consultancy fees. All of these issues might
indicate signs of support problems to come. Oracle has an excellent tool, Oracle
Change Manager, for managing schema changes and creating installation scripts as
well as a package in Oracle9i for generating Data Definition Language (DDL). There is
no excuse for a vendor not to use these or similar tools.

Check Documentation Quality

If you recall the Microsoft Visual C�� example earlier in this chapter, it’s clear that
Microsoft places a high priority on documentation on a level that is comparable with
product development. Oracle takes a similar approach. This is not always the case for all
vendors. If product documentation is incomplete, then you’ll find yourself involved in
extended discussions with the vendor’s support staff on how to use the product. Their
time would be better spent addressing genuine problems with the use of the software.

Chapter 27 on working effectively with Oracle support shows that requests for tech-
nical assistance from Oracle worldwide support (WWS) are often due to requests for
information on how to use products. This could be due to the customer’s failure to read
the documentation, but in my experience, it’s more often due to incomplete documen-
tation. A high standard of product documentation saves time for both the vendor and
customer.

The other possible downside of poor documentation is that a vendor may interpret
customer requests for product information as requests for consultancy on how to use
their products, which can cost the customer a considerable expense. Before purchasing
any product, the evaluation stage should include a comprehensive evaluation of the
available documentation.

Check Supportability

If you’re a production Oracle DBA in a large organization, you’ve probably spent
countless hours of your career arguing with developers, system administrators (SAs),

160 Chapter 7

networking staff, and end users about the root cause of performance problems involv-
ing Oracle databases. To my mind, that’s a failure of the application to have built-in
supportability. Chapter 6 on designing supportable applications includes many simple
tips that developers can follow to make their applications easier to support. This
applies especially to providing continual feedback on what processing the application
is performing. You can check whether any application that you are considering pur-
chasing uses these techniques or others.

Supportability is even more critical for multitier applications, where it can be diffi-
cult to identify the tier at which a problem has occurred. In general, these kinds of
problems can only be solved by instrumentation and logging provided by the applica-
tion itself. If the application doesn’t do that, support overheads for everyone involved,
at both the customer and vendor end, are likely to be very expensive.

You should determine how the product can be monitored to check if it’s working.
More sophisticated products might include the ability to generate Simple Network
Management Protocol (SNMP) traps in order to interface with standard system man-
agement frameworks. If a product can’t be monitored easily, and started and stopped
via command-line tools that can be run via simple character terminals, supportability
might be compromised.

Before you purchase any software, you’ll need to have a support agreement in place.
You should ensure that service levels are included and that the vendor has sufficient
staff to meet the requirements. Support is a potentially thorny issue, as it won’t typi-
cally be put to the test until something goes wrong. It’s useful to preempt support
issues by asking the vendor to provide a list of bugs grouped by severity as reported
by customers in the last few months. If the vendor can’t provide this information, then
that should be a warning, as vendors that don’t track the occurrence of problems aren’t
likely to focus on efforts to address them. A list of recent maintenance and patch
releases can be useful for determining the frequency with which users experience
problems.

The vendor should provide an online support knowledge base via the Web. This can
be a useful source of past problems encountered by customers and how well the ven-
dor has addressed them. Both Microsoft and Oracle’s Web sites are fine examples of
how to provide online support. They make the support process more customer-centric,
and save time and effort for both the customer and vendor. Discussion forums are also
useful sources of information on how well a product works in practice and the level of
support that is actually provided compared to the marketing hype.

Formal Evaluation of Third-Party Software

Before you purchase third-party software, you should perform a formal evaluation.
The headings in this chapter can be used as a basis for that. It doesn’t need to be a very
time-consuming exercise if you make the effort to design a standard template that can
be reused. A formal evaluation is important because it gives visibility to the procure-
ment process and makes the requirements explicit. Both business and technology peo-
ple should be involved. The evaluation should be as quantitative as possible, which
means assigning weights to the relative importance of the various criteria and rating
the product in each category.

Choosing Third-Party Software 161

Table 7.1 shows part of a matrix used in the early stages of an evaluation of three
products proposed as possible solutions for a business requirement in an organization.
It’s not uncommon for products with similar functionality to be developed against dif-
ferent DBMS technologies (depending on the vendor’s preferences), in which case the
DBMS technology can strongly influence the choice of application because the features
available in the underlying DBMS can determine the performance and availability of
the application as a whole. If you are considering a nonmainstream DBMS technology,
such as an object database management system (ODBMS), then you should be aware
that performance gains for such technologies often come at the expense of the robust-

162 Chapter 7

Table 7.1 Sample Product Evaluation Matrix

PRODUCT PRODUCT PRODUCT
A B C NOTES

DBMS Technology JBase Oracle Progress

Performance
Considerations

Scalable to 1,000 users ? Yes Yes

Scalable to terabytes of data ? Yes Yes

Vendor benchmark ? Yes Yes

TPC benchmark available No Yes No

Tunable and configurable
OS resource usage ? Yes Yes

Availability Considerations

Transaction logging Yes* Yes Yes *Purchased
separately

Online full backup ? Yes Yes

Online incremental backup ? Yes Yes

Network backup to silo No Yes No No Legato
modules
available

Automatic crash recovery ? Yes Yes

Fast crash recovery ? Yes No

DBMS vendor HA solution Yes* Yes Yes *Purchased
separately

Wide availability of No Yes No
skills in job market

ness and availability features that you take for granted with Oracle and other main-
stream DBMSs. Security, for example, is something that you can’t turn off in Oracle, but
some ODBMSs consider it to be an application-level issue, which is implemented each
time as part of the application.

Summary

To successfully deploy third-party, Oracle-based software in your organization, you
must collaborate with the software vendor. Collaboration, through face-to-face meet-
ings and information exchanges, ensures that both the customer and vendor have a
clear understanding of the requirements and critical factors for successful deployment.
As the potential customer, you shouldn’t be afraid to ask difficult questions of the ven-
dor and you must ensure that the answers fully address the issues. Answers to the dif-
ficult questions may be the ones on which a project succeeds or fails.

If the evaluation process consists solely of a set of functionality requirements deter-
mined by the business people, then deployment is likely to fail. As the customer, you
need to be aware of the many factors, which were discussed in this chapter, that can
influence successful deployment. If the customer doesn’t have a clear set of require-
ments, failures are as much the customer’s responsibility as the vendor’s.

Choosing Third-Party Software 163

TE
AM
FL
Y

Team-Fly®

Performance
Management and

Tuning Techniques

Three

PA R T

167

Before jumping straight into the Oracle aspects of application performance, it’s essen-
tial to have a broad understanding of the challenge of end-to-end performance man-
agement. End-to-end performance management isn’t about tweaking the init.ora
parameters of your database, although that’s usually part of it at some stage. It’s actu-
ally about taking a usercentric view of application performance to deliver on the end-
user requirements for response times. This chapter covers important concepts that are
prerequisites for both tuning Structured Query Language (SQL) (see Chapter 9) and
using performance management tools (see Chapter 16). Both those chapters need to be
understood within the context of a clear set of requirements for performance manage-
ment, and this chapter sets out to provide them. The initial sections of this chapter con-
centrate on the requirements for performance management, and then cover the cost of
managing performance, including ways to measure the return on investment from any
tools that you purchase.

The list of topics covered is as follows:

■■ Why a usercentric view of performance management is necessary

■■ The technology challenges of implementing end-to-end performance manage-
ment based on end-user requirements

■■ The cost of identifying and fixing performance issues

■■ The measurement and collection of transaction times

■■ Estimating the return on investment from end-to-end performance
management

End-to-End Performance
Management

C H A P T E R

8

The Usercentric View of Performance

Consider an end-user view of a computer-based application. The end user typically
has no interest in the technology used behind the scenes and has no understanding of
terminology such as client/server or n-tier applications. The goal of the end user is to
service customer requests within a time acceptable to the customer. For Web-based
applications, the end user and the customer are one and the same. As far as the end
user is concerned, the complex multilayered software, hardware, and network infra-
structure behind the scenes and the challenge of managing it is irrelevant. The end user
typically fills in a few fields on a form, clicks a button, and results are returned, hope-
fully within a few seconds.

Sometimes the technologists involved in the development and management of
applications lose track of the end-user requirement. The Oracle database administrator
(DBA), attempting to ensure that the database buffer cache hit ratio exceeds some arbi-
trary value based on an alert from a third-party monitoring agent, is on the wrong
track. That’s doing things the wrong way around. The emphasis on performance man-
agement should start with the end-user requirements. The goal should be to ensure
that performance requirements for key transactions are defined in terms of simple
elapsed times at the outset of a project. Then it naturally follows that monitoring and
measurement of performance involves collecting performance information on those
key user transactions to ensure they stay within the allowed limits, as well as a collec-
tion of associated information that can identify the root cause of performance problems
that prevent the key transactions from completing within the agreed limits.

A simple example of an application with clear performance requirements is the
TPC-C Online Transaction Processing (OLTP) benchmark covered in Chapter 14. The
TPC-C benchmark defines five different transactions, four of which need to complete
within five seconds. If the benchmark can’t meet these requirements, it doesn’t meet
the TPC-C requirements. The TPC-C benchmark is designed to model the essential
characteristics of an OLTP system. It’s not unreasonable to suggest that many applica-
tions contain just a handful of time-critical transactions.

In summary, performance management means managing end-to-end performance
of the technology stack in order to ensure that response times for key end-user transac-
tions fall within a predefined limit. As is often the case, stating the requirements is not
that difficult; ensuring that the requirements are met is often much more challenging.

The Challenge of End-to-End
Performance Management

In the early 1990s, the nature of computer-based applications changed from hard-
wired terminals running character-based applications to graphical user interface (GUI)
applications running thin clients against a server, usually on a network based on Trans-
mission Control Protocol/Internet Protocol (TCP/IP). In terms of managing end-to-
end performance, client/server applications represented a bigger challenge. Whereas
hard-wired “dumb” terminals could be ignored in terms of performance impact,

168 Chapter 8

client/server applications meant that performance problems could potentially have a
root cause on the client, the server, or even the network. In 2001, Oracle CEO Larry Elli-
son was announcing the death of client/server computing in the computer press. In a
nutshell, he said that only multiple-tier applications using application servers could
meet the performance and scalability needs of modern applications at an acceptable
cost. The problem with multitier applications in reality seems to be that performance
management tools and techniques haven’t kept up with the complexity of the architec-
ture that needs to be managed. As a result, the identification of the root cause of a per-
formance management problem in multitiered applications takes on the difficulty of
looking for a needle in haystack. It seems to be a rule of multitiered applications that
when a performance problem occurs, the most difficult task is often identification of the
root cause quickly and with certainty: Fixing the problem, once identified, is often more
straightforward. Figure 8.1 actually shows four layers in order to demonstrate that per-
formance issues may be introduced in the network between the database server and the
disk storage in a modern infrastructure that uses a storage area network (SAN).

For a single-user transaction, multiple roundtrips are usually required between the
middleware layer, the database layer, and the physical storage, as indicated by the
bidirectional arrows, before results are returned to the client. The situation is actually
more complicated than it appears at first sight because the middleware, database, and
storage all provide features to cache data, so that it’s never obvious how far down the

End-to-End Performance Management 169

User submits business
transaction from PC
application screen

Middleware translates
business transaction to SQL

database requests

Database server translates
SQL request to physical data

request

Storage array locates and
returns physical disk blocks

1

2

3

4

TCP/IP network

TCP/IP network

Fiber storage
area network

Figure 8.1 End-to-end transactions in a three-tier application.

stack a single end-user transaction reaches. In fact, the same transaction executed at a
later time may complete faster because data is cached from the previous invocation.

Although a simple client/server application certainly doesn’t provide the scalability
and modularity of a multitier application, when viewed from the performance man-
agement space, it’s a lot simpler to address. On the other hand, when a performance
problem occurs in a multitier application, the complexity of the stack typically makes it
difficult to identify the root cause of the problem. In theory, the problem can be due to
issues with the software or hardware components at any of (1), (2), (3), or (4) in Figure
8.1, or the network paths between them. If performance management isn’t designed
either through instrumentation in code or through the use of appropriate tools (usually
both), then meeting the agreed performance requirements can be a very expensive busi-
ness. These costs can be exacerbated by company culture. It’s not uncommon for the
network, development, DBA, and system administration groups in an organization to
exist as islands of technology that don’t communicate well. This is the worst scenario
for implementing a multitier application because when performance is an issue, prob-
lems tend to circulate between each group without anyone prepared to take ownership.
Even when one group is prepared to take ownership, a lack of quantitative perfor-
mance metrics to drive the resolution results in blame storming. The end result is that
problem resolution is a painful, iterative, slow, and expensive process.

A Sample Three-tier Transaction
The following example shows the end-to-end transaction processing that could take
place for an online trading application when the user submits a simple transaction,
“Get my portfolio value.” Although the transaction is simple from the end user’s view-
point, the underlying processing is quite complex. The indentation shows the order of
nested operations as processing passes between the layers shown in Figure 8.1.

■■ The end user clicks an application button on the screen that says “Get my port-
folio value.”

■■ The end-user transaction “Get my portfolio value” is submitted to the middle-
ware, identifying the user who made the request.

■■ The middleware translates the end-user request into two low-level transac-
tions: a database transaction, “Get my stocks,” and a request, “Get stock
prices,” that returns stock prices from a network feed provided by an exter-
nal service.

■■ The middleware sends database transaction “Get my stocks” to the
database.

■■ The database sends a request to the storage to return the stock list from
disk.

■■ The storage locates the required blocks on disk and returns them to the
database.

■■ The database returns the list of stocks to the middleware.

170 Chapter 8

■■ The middleware sends the second request, “Get stock prices,” to the exter-
nal service and collects the results.

■■ The middleware calculates the portfolio values based on the lists of stocks
and prices.

■■ The middleware returns the portfolio value to the end-user application.

■■ The end-user application updates the portfolio value item on the screen.

In a real-world application, as mentioned previously, each layer typically caches
data in memory from previous transactions. As a result, the same transaction, executed
at a different point in time, can pass through all the layers on first execution and be sat-
isfied from a cache in the middle tier on the second execution.

The Cost of Performance Problems

There are two main costs incurred when addressing a performance problem:

■■ Time spent identifying the root cause

■■ Time spent deploying a solution to address the root cause

We will examine both of these costs in the following sections.

The Costs of Identifying a
Performance Problem
The personnel involved in root cause analysis of a performance problem at each layer
of a multitier stack includes:

■■ End users, client application developers, and network analysts

■■ Middleware application developers and network analysts

■■ DBA and UNIX system administrator (SA) and network analysts

■■ Storage management experts (for SAN environments)

Without the right tools, the process of root cause analysis can take many hours.
Potential solutions are often based on guesswork rather than facts, due to a lack of
detailed performance information at the time a problem occurred. When the root cause
can’t be identified with certainty, custom-based monitoring usually needs to be devel-
oped to try to identify the cause of the problem the next time it occurs. This cycle might
need to be repeated many times to identify the root cause. Solutions based on guess-
work often result in the proposal of more than one possible solution for fixing a prob-
lem. Guesswork typically means that more than one of the proposed solutions needs to
be implemented to actually fix the problem based on a trial and error approach. This is
especially bad news for a production application because any change, however small,
tends to require a significant effort (and therefore cost) to implement. For a third-party
application, the cost tends to be even higher.

End-to-End Performance Management 171

The Cost of Fixing a
Performance Problem
The cost of deploying a solution to a performance problem is related to the stage in the
application lifecycle in which the problem is addressed. For any firm that spends sig-
nificant amounts on third-party applications, the cost of fixing performance problems
can be very high. Table 8.1 shows the states in the process of fixing performance prob-
lems, depending on the stage of the lifecycle at which the problem is found and
whether the application is developed in house or by a third-party vendor.

The cost of fixing a performance problem is clearly much lower when it takes place
at the development stage of the lifecycle because less work is involved. Once an appli-
cation is deployed in production, much more extensive quality assurance (QA) and
testing is required, and change management effort is required to coordinate the work.
For a third-party application, QA needs to be performed both by the vendor before the
product release and by the customer that uses the application. Often, considerable time
and effort is required to convince the vendor that the problem lies with their software.
It’s not unusual for the vendor to blame performance problems with database config-
uration issues on the client site. Without quantitative evidence on the root cause of the
performance problem, customer-vendor disagreements can waste a lot of time. In the
worst case, the vendor may not accept ownership of the problem or choose not to
release a new version in the timeframe required by the customer.

Keep in mind that this scenario would never have occurred if performance require-
ments were specified at the outset and that instrumentation was built into the applica-
tion by the vendor to measure and monitor the performance of key transactions. On
rare occasions, in order to meet business performance requirements and address other
problems, the original application might be written off and replaced with a different
one. Chapter 7 contains suggestions to avoid this scenario by focusing on the tech-
niques used by a third-party vendor to develop and deliver software. Sometimes con-
tracts with third parties include performance requirements that enable the buyer to
withhold payment until requirements are met. Ultimately, these don’t have much real
value if the vendor can’t actually deliver on the promises due to a lack of resources.

172 Chapter 8

Table 8.1 Performance Problem Resolution Process During the Lifecycle

DEVELOPMENT PRODUCTION PRODUCTION
(IN-HOUSE (IN-HOUSE (THIRD-PARTY
APPLICATION) APPLICATION) VENDOR APPLICATION)

Developer code fix, Developer code fix, Problem notification to
Limited QA and test Full QA and test, vendor,

Change management Vendor code fix,
implementation Vendor QA and test,

Vendor patch release

Full QA and test,
Change management
Implementation

Everyone loses in this situation. Whether software is developed in house or by a third
party, the same techniques need to be applied to build in end-to-end performance man-
agement capabilities.

Instrumenting Middle-tier Code

Instrumentation of code in the middle tier to include performance metrics is the
responsibility of developers. In simple terms, instrumentation takes the form of extra
code to measure and record the elapsed times for key transactions. The middle tier con-
tains business logic that consists of high-level transactions that are usually a mixture of
code that performs both low-level database and nondatabase processing, as shown in
the earlier step-by-step example. As another example, in a banking environment, com-
plex financial analytics may be performed in the middle tier based on information read
from the database at an earlier point in the transaction. All too often, the processing
split between database and nondatabase processing isn’t clear. For example, if a par-
ticular transaction spends only 5 percent of the total processing time on database pro-
cessing, then reducing this to near 0 will still lead to only a 5 percent reduction in
elapsed times. In this situation, the tuning effort needs to target middle-tier code that
doesn’t involve database access. If the split in the processing load between the tiers is
not known, then the tuning effort starts with guesswork, and this inevitably leads to
wasted time and effort. The instrumentation of code is required to measure transaction
performance. Instrumentation may be a manual coding task if the middle tier is writ-
ten using a 3GL (third-generation language) like C or C��, requiring the developer to
embed calls that measure elapsed times of business transactions and save the results.

With the use of appropriate performance management software on the database
server, the database can be eliminated or confirmed as the root cause of a performance
problem with minimal effort. As a result, if it can be shown that the database is not the
cause, then by a process of elimination, other processing performed in the middle tier
is very likely to be the cause. The existence of high-quality performance management
software on the database tier can actually drive performance management resources to
where they are most required by rapidly eliminating the database as the root cause. In
this case, if the middle tier is not well instrumented, then the database is a good place
to start looking for problems. My experience is that when multitiered applications
don’t perform well, people always look to the database first, not necessarily because
the problem exists there, but because it’s possible to confirm whether the database is or
isn’t the cause and thereby direct the next steps of the investigation.

The split between database and nondatabase processing on the middle tier can be
inferred from an analysis of the Oracle wait states (as described in Chapter 9) of the
middleware client sessions that connect to the database. For example, based on the
information described in Chapter 9, when an Oracle session is idle and waiting for
client requests from the middle tier, then it’s in a state waiting for the event “SQL*Net
message from client.” Therefore, if an end-user performance problem is experienced
and all Oracle sessions are in an idle state, then the database isn’t the problem. Either
the problem has occurred because the middle tier is overloaded and SQL requests
aren’t being submitted to the database tier, or a network problem means that middle-
ware requests aren’t reaching the database.

End-to-End Performance Management 173

The Oracle view V$SESSION_WAIT shows the wait states of all Oracle sessions
instantaneously at the present time. This information can change several times a sec-
ond, as existing SQL statements complete and new ones begin. In order to obtain the
required level of detail to identify a performance problem on the database, the view
needs to be queried several times a second. This isn’t possible without impacting the
performance of the database server. In general, monitoring loses much of its value if
it’s so intrusive that it causes performance problems of its own.

Tools are available to provide high-precision Oracle monitoring alongside low CPU
and I/O consumption. For example, Precise/Indepth from Precise Software, which is
covered in Chapter 16, is a tool that enables Oracle performance problems to be rapidly
identified by highlighting SQL statements that spend the longest time executing in the
database based on capture of Oracle wait state information at high sample rates. It
needs to be emphasized that statements that spend a long time in a wait state aren’t
necessarily high consumers of the central processing unit (CPU) or input/output
(I/O), so tools based solely on Oracle statistics (rather than wait states) can miss impor-
tant information.

A classic illustration of this is the “user gone to lunch” syndrome. In this scenario, a
data entry operator starts a business transaction that locks an underlying database row
and then goes to lunch, leaving the row locked. Other data entry operators that need to
change the same row either receive a “transaction locked” message or their session
blocks waiting for the first operator to commit or rollback the original transaction. The
actual behavior is determined by the application designer. In the latter case, the end user
typically sees an hourglass, and the application hangs. The end result is that processing
can’t proceed. When a user session blocks waiting for a row lock to free, it doesn’t actu-
ally consume much resources because it’s waiting and therefore idle. Viewed from the
end user’s perspective, this scenario is a disaster, especially if a customer is on the phone
waiting for a response. The Oracle wait event that can be seen in V$SESSION_WAIT in
this case is an enqueue, which is simply the Oracle kernel term for a lock. Only tools
based on Oracle events rather than statistics can identify such problems.

In addition to inferring information about the middle-tier performance, a collection
of Oracle session wait information can provide useful information on the performance
of the storage subsystem. As the database sits above the storage tier, if the database is
the root cause of performance problems, wait events can indicate whether the problem
lies with CPU shortages on the database server or is due to I/O waits from overload-
ing of the underlying storage subsystem. However, for the most complete picture of
performance, there is a need to correlate performance metrics provided by an operat-
ing system with Oracle statistics, and this is another key requirement for an Oracle per-
formance management tool.

Although monitoring database performance can provide an insight into the perfor-
mance of the tiers above and below the database, what’s really required is a framework
that can associate the performance of business transactions in the middle tier with per-
formance information on the tiers below. Products exist to add performance instru-
mentation to middle-tier code without developer effort. The Quantify product from
Rational Software can produce executable images with modified code. The modified
code includes embedded instructions that measure the time spent on each line of code.
Quantify is a product that Oracle Corporation has used in the past during develop-

174 Chapter 8

TE
AM
FL
Y

Team-Fly®

ment. However, the modified code has a significant performance overhead and is
typically stripped out before products are shipped: It’s intended for development and
QA only. If the middle tier runs the J2EE platform, then it’s possible to run applications
using a special Java class loader that automatically includes special byte codes to
instrument the time spent in each Java application component.

This is a similar approach to Quantify but applies to Java rather than native exe-
cutable programs. Precise/Indepth for the J2EE platform extracts CPU resource usage
data from the underlying operating system to provide a correlated view of CPU usage
with Java application components and specific end-user requests. When used in con-
junction with Precise/Indepth for Oracle on the database server, it then becomes pos-
sible to correlate the performance of middle-tier transactions with Oracle database
SQL statements. This leads to an interesting question: Should the requirement to pro-
vide end-to-end performance management actually drive the development environ-
ment for in-house applications and be considered when purchasing third-party
applications? Precise/Indepth for J2EE requires that you develop and deploy applica-
tions on specific application servers, such as BEA WebLogic or IBM Websphere. If your
organization doesn’t use these environments today but requires end-to-end perfor-
mance management, then you might even consider switching in order to gain the ben-
efits of end-to-end performance management that these environments provide. It is
clear that performance instrumentation needs to be provided, whether manually or
automatically, in order for the root cause of performance problems to be identified
quickly.

Instrumenting Database Code

Oracle provides package procedures to enable performance information for a single
middle-tier transaction to be collected as a group by tagging the underlying SQL state-
ments that make up the transaction using a specified name. As Figure 8.1 shows, a sin-
gle end-user transaction can result in the execution of several SQL statements on the
database tier. The challenge is to group these together and measure the performance of
the collection of SQL statements as a whole. This can be done by embedding code on
the middle tier explicitly to measure performance.

A different approach that provides useful information with less effort involves
embedding calls to routines in DBMS_APPLICATION_INFO. Chapter 6 includes a
complete example of how to use the SET_MODULE and SET_ACTION routines in
DBMS_APPLICATION_INFO. Here’s a summary of how it works. Consider a middle-
tier transaction that processes a stock trade with ID 9503. The complete transaction per-
forms two database SELECT statements followed by an UPDATE based on processing
the results of the two SELECT statements. The first action of the middle-tier transaction
is to call DBMS_APPLICATION_INFO to set the ACTION column in V$SESSION to
identify the trade being processed in the Oracle session as follows:

-- identify the current trade to V$SESSION

dbms_application_info.set_action('Trade 9503');

End-to-End Performance Management 175

After the middle-tier transaction has started, the following SQL can be executed sev-
eral times to show the events waited for and the action set by SET_ACTION during
execution:

select /*+ RULE */ s.sid||','||s.serial# o_sid,sq.executions

execs,w.event,s.action,

sql_address||','||sql_hash_value o_sql_address

from v$session_wait w,v$session s,v$process p,v$sqlarea sq,audit_actions

a

where w.sid = s.sid

and s.command = a.action

and sq.address =s.sql_address and sq.hash_value = s.sql_hash_value

and S.PADDR = P.ADDR (+)

and event not in ('rdbms ipc message','smon timer','pmon timer',

'SQL*Net message from client','pipe get');

O_SID EXECS EVENT ACTION O_SQL_ADDRESS

------- ------- ----------------------- ----------- -------------------

28,67 1 direct path write Trade 9503 90DF6670,772587599

28,67 1 db file sequential read Trade 9503 70AF6581,992346510

28,67 1 db file scattered read Trade 9503 81A74391,500247891

Running the monitoring SQL three times after the transaction starts shows that the
ACTION value hasn’t changed. This information indicates that the same business
transaction is still executing for Oracle session 28,67 in each case. On the other hand,
the O_SQL_ADDRESS column is different in each sample, showing that a different
SQL statement is executing at each point in time.

In short, the use of SET_ACTION enables the different statements that run on behalf
of Trade 9503 to be grouped together for monitoring purposes. Oracle provides
SET_ACTION and SET_MODULE specifically to enable performance-monitoring soft-
ware to collect the information. Precise/Indepth collects wait information several
times a second, including the ACTION and MODULE columns in V$SESSION. As a
result, the top SQL in any time interval can be presented in order of the top ACTION
or MODULE values to identify the most expensive business transactions rather than
just the top individual statements. Figure 8.2 shows the Precise/Indepth chart for some
transactions instrumented using SET_ACTION that are ordered by the time spent con-
suming resources in Oracle.

Once Precise/Indepth has been used to chart to in-Oracle resource consumption by
transaction, the next stage is to drill down and analyze the performance of each indi-
vidual statement within the transaction. More examples can be found in Chapter 16.

Some lower-cost options are available for providing insight into performance on the
database. The Diagnostics Pack component of Oracle Enterprise Manager (OEM)
includes Performance Overview, which presents an overview of database server per-
formance memory, CPU, I/O, and event waits in chart form that is sampled every few
seconds. The presentation is split between overall server metrics and the database. Fig-
ure 8.3 shows disk performance information as presented in OEM Performance
Overview for the host and the database.

176 Chapter 8

OEM Performance Manager is a very useful addition to the performance manage-
ment arsenal of an Oracle DBA. If you use Oracle STATSPACK to collect Oracle per-
formance metrics, as discussed in Chapter 27, then Performance Manager can chart the
collected information. In order to identify the top SQL where tuning effort needs to be
concentrated, tools are required that can identify those statements with a high degree
of accuracy and minimum effort. Ultimately, I/O and CPU statistics and rates, how-
ever interesting, guide you toward the SQL you need to investigate. I prefer tools that
try to take you straight to the SQL, and these are covered in Chapter 16.

End-to-End Performance Management 177

Figure 8.2 Precise/Indepth resource consumption by ACTION.

A free option for the Oracle server performance information collection is the
DBCOOL_MON package referred to later in Chapter 14. DBCOOL_MON saves statis-
tics and events either for all sessions, the current session, or the system as a whole, and
it optionally enables you to provide a name to associate with each collection. I like to
use it to save all statistics and event waits for every database session with minimal
effort. The package is written to minimize the space required for the sampled data by
using event and statistic ID numbers rather than names. It can be downloaded from
the companion Web site. This is an example of a trigger that collects all statistics and
event waits for every session at logoff time using DBCOOL_MON:

create or replace TRIGGER SYS.dbcool_on_logoff before logoff on database

declare

begin

dbcool_mon.logoff_sample;

exception

when others then

null;

end;

/

178 Chapter 8

Figure 8.3 EM Performance Overview.

Quantifying the Return on Investment

End-to-end performance management tools are expensive. Given the potential to save
your organization money, it’s not surprising. Before your organization invests in such
a tool, it’s essential to try to quantify the benefits. This section uses Precise/Indepth
as an example, but the approach is generically applicable to any tool. Traditional Ora-
cle performance management techniques usually don’t provide sufficient details on
the cause of Oracle performance problems to identify the root cause at any point in
time accurately and quickly. This results in the following costs in terms of personnel
hours:

■■ The analysis of traditional performance metrics, often resulting in failure to
determine the root cause

■■ The development of bespoke monitoring targeted at the specific problem
in hand

■■ Information collection, possibly causing performance degradation on the moni-
tored system

■■ The presentation and reporting of results

Precise/Indepth for Oracle solves these problems through the following features:

■■ Automated collection of data 24�7

■■ High accuracy on the determination of the root cause

■■ Very low impact on the target system

■■ Automated presentation of results

The end result is that time spent on traditional approaches to root cause analysis of
Oracle performance problems can be reduced to almost zero using Precise/Indepth.
These savings arise because the process of collection, analysis, and presentation is com-
pletely automated. At a high level, the time spent on root cause analysis of Oracle per-
formance problems per database instance per year (based on a requirement to present
production and nonproduction costs separately) is as follows:

(Number of production systems) � (average hours per system per year)
� (cost per hour)

(Number of nonproduction systems) � (average hours spent per system per year)
� (cost per hour)

Time spent needs to include time for all support and development staff, including
time spent liaising with vendors of third-party applications to address performance
problems. Keep in mind that performance problems in a multitier application often
require analysis from personnel at all levels in the technology stack, not just Oracle.
Use of Precise/Indepth means the database can be definitively eliminated or con-
firmed as the root cause immediately, enabling resources to be directed to where the

End-to-End Performance Management 179

problem actually resides. Many other potential savings can be demonstrated from the
deployment of an end-to-end performance management framework, including the
following:

■■ Reductions in staff due to higher transaction rates, enabling fewer staff to per-
form the same workload

■■ Reductions in overtime payments due to processing completion within busi-
ness hours

■■ Savings in costs of third-party software due to making the right purchase the
first time

■■ Reductions in performance management consultancy fees

■■ Savings through performance enhancements via software code changes rather
than hardware expansion

Summary

It’s easy to lose sight of your primary goal: to deliver an application that meets end-
user requirements in terms of functionality, performance, and availability. A typical
end-user transaction in a multitier application translates to multiple roundtrips
between the middle tier, the database tier, and the storage, with a network dependency
between each layer. Due to the complexity of the infrastructure, it’s often difficult to
identify the root cause of a performance problem unless performance instrumentation
is built into code at development time. Lack of instrumentation can cause efforts to
identify the root cause of a performance problem to begin at the wrong tier. A product
like Precise/Indepth for Oracle can identify performance problems on the database tier
with minimal effort. As a result, the database can immediately be eliminated or con-
firmed as the source, leading to the most cost-effective deployment of resources.

End-to-end performance management can’t be solved at the database tier alone. It’s
a complex subject in its own right. It requires a framework that can correlate end-user
transactions with activity at all the other tiers. Today, solutions require a lot of time,
effort, and expense, but they are usually cost effective when compared to the extra
costs of hardware, software, and people incurred when end-to-end performance is
treated as an afterthought.

180 Chapter 8

181

Application performance issues are common, judging by the volume of postings on the
Oracle Metalink forums (metalink.oracle.com) and on the Web concerning Oracle tun-
ing and performance. As you’re probably aware, there are many books on Oracle tun-
ing. This chapter won’t tell you how to tune every single Structured Query Language
(SQL) statement on the planet. However, it does provide techniques for determining
why your SQL isn’t performing as you would like it to perform. You can’t fix SQL per-
formance problems until you understand them. This chapter concentrates on how to
understand performance.

The chapter starts with a discussion of how opportunities for tuning change during
the application lifecycle. No matter when performance tuning takes place, you need to
have an understanding of Oracle’s internal performance metrics based on waits and
events. Once you understand how to measure the performance of SQL, you need the
tools to help you do it. If you don’t have the tools that make performance measurement
easy and systematic during the development process, then it’s unlikely that you will
place sufficient emphasis on creating optimal SQL. SQL tuning requires a clear set of
goals that includes identifying table scans and the SQL that causes them. After you
have tuned your SQL, you can further improve performance by controlling the lifetime
of data in the Oracle buffer cache and through parallel operations. Caching and
reusing Oracle’s internal representation of SQL statements (cursors) can also speed up
performance, so you to need to understand how cursors work and how you can con-
trol them. Even the network can influence your SQL performance for client-server
applications, and you need to understand Oracle’s array-processing interface to ensure
that network data transfers make the most of available bandwidth.

Fundamentals of
SQL Tuning

C H A P T E R

9

Performance tuning doesn’t stop when a system goes live. During the production
lifecycle, it’s still necessary to identify the most expensive SQL and provide improve-
ments for the development cycle. Once a system is in production, SQL code changes
may not be possible, due to the risks of side effects. As a result, it’s important to be
aware of techniques that influence SQL performance without changing the SQL.

This chapter covers the following topics:

■■ Tuning and the application lifecycle

■■ Oracle statistics and events

■■ Tools for measuring statistics and events

■■ Viewing the Oracle buffer cache and controlling its contents

■■ Detecting full table scans

■■ Goals for SQL tuning

■■ SQL execution plans

■■ Parallel operations

■■ Identifying which SQL to tune

■■ Making SQL faster with and without code changes

■■ Performance and cursors

■■ Tuning SQL for the network

■■ Defining server memory requirements

Tuning and the Application Lifecycle

This chapter places an emphasis on tuning during the development stage of the appli-
cation lifecycle where it’s easiest to make changes. Everyone seems to agree on that
approach. Nearly every book on Oracle tuning contains a graph showing how the cost
of tuning rises during the production stage of the lifecycle. However, there’s a huge gap
between stating a problem, which is typically easy, and fixing it, which typically isn’t.

In order to succeed in SQL tuning during the development stage, the approach of
measuring everything all the time needs to be in place. Usually, the goal is to minimize
the elapsed time to completion for each and every statement. When this doesn’t hap-
pen, performance problems manifest themselves during the production stage when it’s
often too late to address them meaningfully without incurring a delay and additional
expense.

For example, if your company purchases a software package from a third party and
performance problems show up in the production environment, then fixing the prob-
lem becomes orders of magnitude more complex than having the vendor fix it at the
development stage before the product’s release. First, your in-house database admin-
istrators (DBAs) need to convince the vendor that there’s a real problem. Often the ven-
dor blames the database configuration on the client site. Once this hurdle has been
overcome, the vendor must, but maybe doesn’t, regression test the new code. Then

182 Chapter 9

change management is required to implement the solution, possibly involving busi-
ness downtime. Chapter 7 contains ways to avoid this scenario, but doing so is not
easy. It would be much better if you knew that the vendor had designed performance
into the application.

Consider how this measure-everything-all-the-time approach is put in place. First,
the developer or DBA needs information on how to measure performance. Once that’s
in place, he or she needs the tools to measure SQL performance and compare this with
previous results to see if changes have had positive effects. In order to encourage sys-
tematic use, these tools should be easy to use.

At the production stage of the lifecycle, when the live application is running, the
problem space is somewhat different. Even if you’ve done everything you can to
ensure that SQL was designed for best performance during development, the possibil-
ity of contention for limited server hardware resources arises. This is difficult to simu-
late during development or testing and requires a different approach.

This chapter covers the bottom-up approach to Oracle SQL development. The
bottom-up approach is based on the reasonable premise that if you ensure that each
and every SQL statement is developed to minimize the elapsed execution time, then
any system where you put together all those statements will perform reasonably well.

Chapter 8 on end-to-end performance management takes a systemcentric top-down
approach to the subject of performance management. Both approaches are required to
deliver scalable systems that perform well from day one and into the future.

Statistics and Events

It is pointless to try tuning SQL statements until you fully understand how to measure
performance. To facilitate this measurement, Oracle provides performance metrics that
are available through SQL views. These metrics exist in the form of counters (known as
statistics) and wait times (known as events). In Oracle9i, there are over 200 different sta-
tistics and events. You can see a complete list of names using the following SQL:

select * from v$statname;

select * from v$event_name;

The statistics are incremented continually from database startup, beginning at zero,
and are provided databasewide in the V$SYSSTAT view and for individual sessions in
the V$SESSTAT view. The special view V$MYSTAT can also be used to show the sta-
tistics for the currently connected session. The V$SYSSTAT view includes the statistic
name from V$STATNAME, whereas the V$SESSTAT view doesn’t. Identifying statis-
tics for the current session can be performed using the following SQL:

select st.*,n.name

from v$sesstat st,v$statname n,v$session se

where st.statistic# = n.statistic#

and st.sid=se.sid

and se.audsid = (select userenv(‘sessionid’) from dual);

Fundamentals of SQL Tuning 183

The wait times behave slightly differently and appear in V$SYSTEM_EVENT and
V$SESSION_EVENT. In order for the event times to appear, the parameter TIMED_
STATISTICS�TRUE must be in place. This can be set in the init.ora file or for individual
sessions using ALTER SESSION SET TIMED_STATISTICS�TRUE. The recommenda-
tion is to always enable the setting at the database level. It incurs a small performance
overhead—one that is so small I’ve never been able to isolate it. Information on events
includes the number of waits as well as wait times. If an event never incurs a wait, it
won’t appear in the relevant view, unlike statistics, which are always present, even if the
value is zero. This SQL shows the wait information for the current session:

select ev.*

from v$session_event ev, v$session se

where ev.sid = se.sid

and se.audsid = (select userenv('sessionid') from dual);

Due to the huge number of metrics that Oracle makes available via SQL, it’s not sur-
prising that there is such a large number of Oracle performance management tools on
the market. Most tools sample the various statistics over time (and sometimes the wait
events), save the values, and plot graphs of the values over time. When the statistics
are available, the next stage is to understand what they mean, identify the ones that
have the most effect on performance, and take steps to reduce them.

Essential Statistics and Events
Disk input/output (I/O) is typically at least three orders of magnitude slower than
memory access no matter what the application. As a general rule, if you can reduce
physical disk I/O by caching more of the frequently used data in memory, then per-
formance should improve. How do you determine which of the 200� statistics to focus
on when tuning SQL during development? Oracle’s own chosen statistics, as displayed
using the SET AUTOTRACE ON STATISTICS feature in SQL*Plus, are a good place to
start. SQL*Plus AUTOTRACE is covered in the next section. Some of the statistics it
produces are shown in Table 9.1.

184 Chapter 9

Table 9.1 Selected SQL*Plus AUTOTRACE Statistics

NAME MEANING

db block gets The number of blocks fetched in current mode

consistent gets The number of blocks fetched in read-consistent mode

physical reads The number of physical blocks read

redo size The redo generated in bytes

sorts (disk) The disk sorts performed

TE
AM
FL
Y

Team-Fly®

If you do any tuning at all, writing SQL that minimizes or reduces the statistics in
Table 9.1 will go a long way toward producing an efficient application that meets end-
user performance requirements with the lowest possible central processing unit (CPU)
and I/O cost. Note that blocks fetched in current mode are those modified by the cur-
rent session. For example, during a query, blocks are usually fetched in read-consistent
mode. However, if the current session has modified some of the blocks without a com-
mit (via an insert, update, or delete), then those blocks are fetched in current mode for
the session that made the changes. This list omits some other statistics that can be use-
ful when analyzing SQL performance. Some additional statistics are shown in Table 9.2.

Ultimately, the only way you won’t miss any information is to inspect all the statis-
tics that have changed after the execution of each SQL statement during development.
In the same spirit, Table 9.3 shows the most common event waits and their possible
causes from a survey of several large production databases of various sizes and appli-
cation types.

Wait events have parameters that can provide more information on the nature of the
wait. For example, “latch-free” events identify the number of the latch waiting to be
freed. The related name of the latch can be identified from the V$LATCHNAME view.
Enqueue events can contain information about the object and session holding a row-
level lock. Oracle ships a script called catblock.sql (located in $ORACLE_HOME/
rdbms/admin on UNIX systems) to display a lock dependency tree for the sessions
involved. DbCool provides a lock viewer utility that does the same thing graphically.
Oracle’s script requires the creation of temporary tables to display the tree, and the
Data Definition Language (DDL) can cause further lock contention. DbCool’s lock
viewer uses in-memory information only and isn’t subject to the same restrictions. The
parameter information for both the “db file scattered read” and “db file sequential
read” events contains the Oracle file and block that the read request has waited for.

Fundamentals of SQL Tuning 185

Table 9.2 Other Useful Statistics

NAME DESCRIPTION

CPU used by this session The time in tens of milliseconds of a second

data blocks consistent reads—undo The blocks fetched from undo to provide a
records applied read-consistent view of data

db block changes The count of blocks changed

physical writes The count of physical write operations

table fetch by rowid The rows fetched using a ROWID value (the
fastest way to identify a row)

table scan blocks gotten The blocks fetched via a full table scan

table scan rows gotten The rows fetched via a full table scan

table scans (long tables) The count of table scans of long tables

These file and block values can be decoded into a database object name, as shown in an
example later in the chapter in the section Detecting Full Table Scans. Some events indi-
cate idle sessions and can generally be ignored. These are shown in Table 9.4.

If a user logs onto a database via SQL*Plus (either locally or via a network connec-
tion) and does nothing, the session remains in a “SQL*Net message from client” state.
The view V$SESSION_WAIT shows the event that each session is waiting for at the
time the view was queried. V$SESSION_WAIT is a good place to start looking for per-
formance problems if users report that the system is running slow. On a system under

186 Chapter 9

Table 9.3 Common Event Waits

NAME CAUSE

buffer busy waits Wait for a buffer to become available, due to a buffer
being read into the cache by another session or a
buffer being held in an incompatible mode because
another session is changing it.

change write item Elapsed redo write time for changes made to current-
mode blocks, in tens of milliseonds.

db file scattered read Wait for a multiblock read on a specified Oracle file
and block, which is often during a full table scan.

db file sequential read Wait for a single block read on a specified Oracle file
and block, which is often during an index lookup or
table access by ROWID.

direct path read Wait for a read that bypasses the buffer cache to
complete, which is often caused by a disk sort or
character large object (CLOB) read.

direct path write Wait for a write that bypasses the buffer cache to
complete, which is often caused by a disk sort.

enqueue Wait for an enqueue (lock) to free, which is sometimes
due to a row-level lock held by another session.

latch free Wait for a latch held by another process to become
free based on the given latch number. Latch names
“cache buffer lru chain” and “cache buffers chains”
indicate a busy buffer cache.

log buffer space Wait for space in log buffer because log writer process
(LGWR) can’t write redo to disk fast enough.

log file switch completion Wait for a log switch to complete.

log file sync Wait for session redo to flush to the redo log file during
a commit.

redo synch writes Elapsed time of all synchrnous writes that take place
during COMMIT operations, in tens of milliseconds.

stress, you might expect to see several sessions simultaneously in a nonidle wait state.
These are usually waiting on one of the events listed in Table 9.3.

Tools for Measuring Events and Statistics

If it was possible to display the event waits and statistics for each SQL statement run
during a session, then the developer or DBA would receive immediate feedback and
potentially take action at the development stage to address any problems. The ability
to provide immediate feedback is essential when using this systematic approach. In
order to provide this functionality, it’s necessary to sample the statistics and events
before running every SQL statement, sample them afterwards, and then present the
differences. Features that show the changes in waits and statistics between different
statements are also very useful. This section describes three different tools that provide
those features to varying degrees.

SQL*Plus
Oracle’s SQL*Plus tool, when running with the SET AUTOTRACE ON STATISTICS
option enabled, can provide immediate feedback on a few selected statistics after the
execution of each SQL statement. Because only a subset of the available statistics is pro-
vided, information that could help to identify the root cause of a performance problem
may be missing. The PLUSTRACE role is required for non-DBA accounts to use this

Fundamentals of SQL Tuning 187

Table 9.4 Idle Event Waits

NAME CAUSE

SQL*Net message from client Idle user session awaiting SQL request from
client

pipe get Idle session waiting for message on database
pipe

rdbms ipc message Idle events for background process
pmon timer
smon timer
wakeup time manager

dispatcher timer
virtual circuit status Idle events for shared server

PX Idle Wait Idle events for parallel query
PX Deq Credit: need buffer
PX Deq Credit: send blkd

ges remote message Idle events for a Real Application Clusters
lock manager wait for remote (RAC) configuration
message

feature. The SET TIMING ON option can be used to provide elapsed time. The follow-
ing is sample output for a SELECT statement on a table without a primary key:

SQL> /

COUNT(*)

5000

Elapsed: 00:00:01.07

Statistics

0 recursive calls

225 db block gets

5054 consistent gets

0 physical reads

0 redo size

202 bytes sent via SQL*Net to client

89 bytes received via SQL*Net from client

2 SQL*Net roundtrips to/from client

0 sorts (memory)

0 sorts (disk)

1 rows processed

A short time later, the same SQL runs, producing the same result. The elapsed time
hasn’t changed, and some of the statistics have increased:

Elapsed: 00:00:01.04

Statistics

0 recursive calls

225 db block gets

20053 consistent gets

0 physical reads

260000 redo size

203 bytes sent via SQL*Net to client

191 bytes received via SQL*Net from client

3 SQL*Net roundtrips to/from client

0 sorts (memory)

0 sorts (disk) 1 rows processed

Something strange is going on due to the amount of redo, but the statistics don’t
provide many clues. SQL*Plus doesn’t show event waits at all, and because the results
are presented in a simple text format, inline with the SQL, the number of statistics pre-
sented needs to be much less than the total available in order to fit the screen. As a
result, some additional information that could give the SQL designer on insight into
what’s happened is missing.

188 Chapter 9

In particular, it would be useful to perform a side-by-side comparison of the
results in each case to identify exactly which statistics have changed between the two
statements. If you can identify all the statistics and events that change as a result of
your SQL, then you’re well on your way to understanding how to fix performance
problems. This usually involves nothing more complicated than taking whatever
action is necessary to reduce the use of resources identified by the statistics and event
waits. At the simplest level, it means doing whatever is necessary to reduce physical
I/O caused by physical reads and logical I/O caused by reading blocks from the
buffer cache.

A tool is required that can capture all the necessary information and present it in a
format that’s easy to use. SQL*Plus is a good starting point, but it doesn’t go far
enough. For example, it doesn’t provide statistics for DDL or PL SQL; it only provides
statistics for Data Manipulation Language (DML).

DbCool
DbCool was designed partly to provide the functionality that encourages systematic
tuning by taking a measure-everything-all-the-time approach. By default, DbCool
maintains a history of the elapsed time, the rows fetched, the SQL statement text, and
the results grid (for SELECT statements) for every statement executed in a session. The
results grid means that query results can be recalled without the expense of rerunning
a query.

By selecting the Monitoring menu, Events (Choose Session), and then Statistics
(Choose Session), the SQL history additionally stores all statistics and event wait times
for every statement executed in the session. By right-clicking any statement in the his-
tory, which is accessible from the main toolbar, statistics and event times can be com-
pared with any other statement executed in the session. Figure 9.1 shows the complete
set of statistics in DbCool’s SQL history in exactly the same scenario as the SQL*Plus
example.

Now there is plenty of evidence as to what’s going on, as shown in the following
statistics:

5000 => cleanouts and rollbacks - consistent read gets

5000 => CR blocks created

9999 => data blocks consistent reads - undo records applied

5000 => db block changes

5000 => immediate (CR) block cleanout application

5000 => redo entries

The line “data blocks consistent reads - undo records applied” indicates that the
SELECT is causing many undo records to be applied from the rollback segments (or
automatic undo tablespace in Oracle9i). This occurs when a session needs to read
changed but uncommitted data from another session in order to create a read-consistent
view. The line “immediate (CR) block cleanout application” means that data blocks are
being changed during the consistent view generation, and such changes result in the
generation of redo information. If you have ever wondered why Oracle can generate

Fundamentals of SQL Tuning 189

redo during query execution, access to the full statistics provided by an appropriate tool
can help you find the answer.

The capability of one session to read preupdate versions of blocks that have been
changed in another session but not yet committed is part of Oracle’s multiversion read-
consistency model. This model, which provides concurrent access to changing data
from multiple sessions by maintaining multiple versions of the same block, is a unique
and powerful Oracle feature. However, the benefits can come at considerable I/O cost
in the wrong circumstances, as shown in the previous example. Even if you don’t have
the expertise at this stage to determine the cause of the problem from the statistics, col-
lecting all of the relevant statistics is an important first step. For the record, in this
example, another session deleted all the rows from MY_OBJECTS and didn’t yet com-
mit the changes, causing the results shown.

190 Chapter 9

Figure 9.1 DbCool SQL history.

TKPROF
TKPROF is an Oracle command-line tool that runs on the database server. It processes
a trace file created by using ALTER SESSION SET SQL_TRACE�TRUE in the current
session or through the execution of the other trace options described in Chapter 28.

TKPROF needs to be an integral part of the tuning process. Unlike EXPLAIN PLAN,
which shows a theoretical execution plan for a SQL statement, TKPROF can generate
the plan that was actually used to execute a statement after running it, along with log-
ical and physical I/O information as well as CPU and elapsed times for the parse, exe-
cute, and fetch phases of the execution. Table 9.5 shows some of the more useful
command-line arguments.

Recursive SQL is generated when Oracle needs to perform additional system-level
SQL resulting from the user-executed SQL. For example, an insert might generate recur-
sive SQL if extents need to be allocated for the table, resulting in the modification of var-
ious dictionary tables—for example, EXT$. As another example, the following recursive
SQL might be generated by an INSERT statement that needs more space, leading to a
search of the Oracle free space list (fet$) to find an extent of the required size:

select length from fet$ where file#=:1 and block#=:2 and ts#=:3

During queries, recursive SQL might be required to look up table and column defi-
nitions from the data dictionary during the parse phase if the information is not in the
object cache. The section in this chapter titled Cursors and the Shared Pool contains more
information on the object cache and processing performed during the various stages of
a SQL statement. Recursive SQL can make a trace file seem exceedingly verbose. You
can disable recursive SQL from the trace using SYS�NO. If you do this, be aware that
recursive SQL statistics are not included in the user statement that caused them. If you
ignore them and they use significant resources, you might miss something important.
Care needs to be taken to ensure that the EXPLAIN connect string used is the one that
actually ran the trace session, using the correct database; otherwise, misleading results
can be generated.

The following example reads the trace file D1_ora_1l.trc (based on the first argu-
ment) and creates the profile file D1_ora_11.prf (based on the second argument). The
output is sorted by the sum of the CPU time for each statement, and the top five state-
ments appear in the output file:

$ tkprof D1_ora_11 D1_ora_11 sort=prscpu,execpu,fchcpu print=5 sys=no

Fundamentals of SQL Tuning 191

Table 9.5 Useful TKPROF Parameters

NAME PURPOSE

SYS�NO|YES Include recursive SQL, default YES.

SORT�options Sort output in various ways according to options.

PRINT�n Show only n statements in output.

EXPLAIN�user/password Generate EXPLAIN PLAN .

Table 9.6 shows some of the most useful combinations of SORT arguments.
Because a trace file needs to be created on the server and the file can be quite large,

running TKPROF causes an execution overhead on the session being traced. From my
testing, this can be as high as 10 percent of the elapsed time. As a result, TKPROF
should be used with care. If necessary, tracing can be turned on databasewide for all
sessions by using SQL_TRACE�TRUE in the init.ora file. This option should only be
used in extreme circumstances, because it requires a database restart to enable and dis-
able it, among other things. Note that if you enable tracing for wait events as well as
SQL, as described in Chapter 28, a new Oracle 9i TKPROF parameter, WAITS�YES,
summarizes wait times for each cursor in the profiled output.

TKPROF profile output shows the information for the parse, execute, and fetch (for
queries) phases of the execution along with the rows processed at each stage of the exe-
cution. The values of DISK (statistic “physical reads”), QUERY (statistic “consistent
gets”), and CURRENT (statistic “db block gets”) in the profiled output show the phys-
ical and logical I/O performed in blocks. The ratio rows/fetches shows the size of any
arrays, as discussed later in this chapter in Tuning SQL for the Network, and provides
evidence of efficient SQL. This is an example of TKPROF output for a simple query:

select tx_name,tx_type,count(*)

from tx,tx_hist h

where tx.tx_id = h.tx_id

group by tx_name,tx_type

call count cpu elapsed disk query current rows

------- ------ -------- ---------- ----- -------- ---------- ----------

Parse 1 0.01 0.01 0 0 0 0

Execute 2 0.00 0.00 0 0 0 0

Fetch 7 0.22 0.22 34 191 33 88

------- ------ -------- ---------- ----- -------- ---------- ----------

total 10 0.23 0.23 34 191 33 88

Misses in library cache during parse: 1

Optimizer goal: CHOOSE

Parsing user id: 5 (SYSTEM)

192 Chapter 9

Table 9.6 Useful TKPROF SORT Parameters

RESOURCE USED SORT PARAMETER STRING

Longest elapsed time PRSELA, EXEELA, FCHELA

Most CPU consumed PRSCPU, EXECPU, FCHCPU

Most physical I/O PRSDSK, EXEDSK, FCHDSK

ROWS ROW SOURCE OPERATION

------- ---

88 SORT GROUP BY

14841 HASH JOIN

20000 TABLE ACCESS FULL TX_HIST

24680 TABLE ACCESS FULL TX

When used with the EXPLAIN command-line argument, an execution plan is
included, showing the number of rows fetched at each stage of the execution, the opti-
mizer mode, and the processing operation, as shown in the following example:

ROWS EXECUTION PLAN

------- ---

0 SELECT STATEMENT GOAL: CHOOSE

88 SORT (GROUP BY)

14841 HASH JOIN

20000 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'TX_HIST'

24680 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'TX'

There is a fairly subtle difference between “row source operation” and “execution
plan” information in the profiled output. The row source operation shows the order
that rows were fetched in during the actual run-time execution of the query. On the
other hand, the execution plan shows the plan that was generated at TKPROF execu-
tion time based on the available information. Usually, you would expect them to
match. However, if database objects or other data relevant to the plan generation
change between query execution and TKPROF execution, then the row source opera-
tion and execution plan may be different. The following example of TKPROF output
shows a situation where the row source operation shows INDEX UNIQUE SCAN
while the execution plan shows a full table scan:

select count(*) from my_objects where object_id=234

ROWS ROW SOURCE OPERATION

------- ---

1 SORT AGGREGATE

1 INDEX UNIQUE SCAN (object id 7146)

ROWS EXECUTION PLAN

------- ---

0 SELECT STATEMENT GOAL: CHOOSE

1 SORT (AGGREGATE)

1 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'MY_OBJECTS'

In this example, the statement was executed using a primary key during the trace
session. The primary key was later dropped. TKPROF was executed after the drop,
causing the execution plan to generate an inaccurate plan based on the information

Fundamentals of SQL Tuning 193

that was available at the time TKPROF was run. The row source operation shows
actual processing at execution time.

Trace Filename Location

In order to run TKPROF on a trace file, the trace file for a session needs to be located on
the database server. You can determine the filename in advance using SQL, as it’s
based on the value of the user_dump_dest parameter, the Oracle System ID (SID) value
from V$INSTANCE, and the dedicated server process ID from V$PROCESS. The fol-
lowing SQL shows an example for a UNIX Oracle SID called ORAD1:

select udd.value||'/'||i.instance_name||'_ora_'||p.spid||'.trc'

trace_file

from

(select value from v$parameter where name='user_dump_dest') udd,

(select instance_name from v$instance) i,

v$process p, v$session s

where p.addr = s.paddr

and s.audsid = (select userenv('sessionid') from dual);

TRACE_FILE

/u01/app/oracle/admin/ORAD1/udump/ORAD1_ora_29582.trc

The following SELECT list can be used to show the location of the trace file for a
dedicated server session on Microsoft Windows 2000:

select udd.value||'\Ora'||lpad(p.spid,5,'0')||'.trc' trace_file

.

.

.

TRACE_FILE

--

c:\apps\ora901\admin\prod1\udump\Ora01536.trc

If you don’t specify an explicit value for user_dump_dest in the init.ora file, the
directory as selected from V$PARAMETER contains the character ? in place of the
$ORACLE_HOME value.

TKPROF and Shared Server Configurations

The use of TKPROF on shared server configurations (covered in Chapter 3) presents
problems because the trace for a particular session can be spread across several differ-
ent trace files, depending on which shared server executed the SQL. Also, each trace
file can contain a trace for several different sessions. The AGGREGATE�NO

194 Chapter 9

TE
AM
FL
Y

Team-Fly®

command-line option can be used to ensure that TKPROF keeps statistics separate for
different users executing the same SQL.

The best solution is to ensure that during TKPROF profiling all sessions use dedi-
cated servers to guarantee a unique trace file for each session. This can be enforced by
using the (SERVER�DEDICATED) option in the CONNECT_DATA section of the con-
nect alias, as follows:

prod1.dbcool.com =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = srv1.dbcool.com)(PORT = 1521))

)

(CONNECT_DATA = (service_name=prod1.dbcool.com)(SERVER = DEDICATED))

)

Running TKPROF from the Client

TKPROF is an essential tool that developers should use throughout the development
cycle, and it’s present in all Oracle server software installations. In order to encourage
developers to use it as much as possible, it needs to be easily accessible and easy to use.
Accessibility presents a potential problem because TKPROF needs to run on the data-
base server using trace files from the server user_dump_dest directory. For two secu-
rity reasons, I prefer not give access to developers on the database server machine. The
first reason is that developers running the UNIX ps command have the ability to see
passwords that are used to connect to command-line utilities such as SQL*Plus and
middleware running on the server. In the case of SQL*Plus, passwords can be hidden
by using the /nolog command-line option, but it’s difficult to enforce. The second rea-
son is that commands are available to fetch strings out of files, such as the UNIX strings
command. If a developer runs this on the SYSTEM tablespace datafile on the server,
then it’s possible to view passwords in database links held in the SYS.LINK$ table.
Usability is also an issue because TKPROF is a command-line tool. As such, it’s easy to
forget the available options, and you need to identify the trace file name and user_
dump_dest before you run it. In any case, non-DBA UNIX accounts don’t have the
privilege to view the file contents by default.

These drawbacks are likely to prevent the kind of developer buy-in that TKPROF
needs in order to become an integral part of the development cycle. To repeat the
mantra, it’s easy to state that a continual emphasis on performance is required during
the development cycle. However, making it happen requires work. If the required tools
are not freely available and easy to use, then it won’t happen.

To reconcile these conflicting requirements, you can download and install a package
DBCOOL_TKPROF from this book’s companion Web site. The purpose of DBCOOL_
TKPROF is to initiate TKPROF on the server from PL/SQL on any client machine with
network access to the database server. For example, the procedures can be called from
SQL*Plus or DbCool.

After you’ve enabled tracing for your session using ALTER SESSION SET SQL_
TRACE TRUE or one of the other options discussed in Chapter 28, then the Oracle trace

Fundamentals of SQL Tuning 195

file should be created on the server. You can use the CHECK_TRACE_FILE_
EXISTS procedure to check this as follows before running the TKPROF procedure to
generate the trace profile output:

begin dbcool_tkprof.check_trace_file_exists; end;

/

If the trace file doesn’t exist, then an exception is raised. You can check the trace file-
name that the DBCOOL_TKPROF package attempts to open using the GET_TRACE_
FILE_NAME function as follows:

select dbcool_tkprof.get_trace_file_name from dual;

GET_TRACE_FILE_NAME

--

/u01/app/oracle/admin/ORAD1/udump/ORAD1_ora_2673.trc

After the trace file has been checked to ensure that it exists, the following PL/SQL
block runs TKPROF on the server for the current session and displays the contents of
the profiled trace file using DBMS_OUTPUT.PUT_LINE:

set serverout on

declare

r integer;

l_line varchar2(512);

l_end varchar2(512);

begin

dbms_output.enable(1000000);

r:=dbcool_tkprof.tkprof; -- run tkprof and create a .prf file

-- fetch lines from the .prf file on the server until done

while true loop

dbcool_tkprof.get_next_line(l_line,l_end); -- fetch next line

exit when l_end=-1; -- no more lines

dbms_output.put_line(l_end||':'||l_line);

end loop;

end;

/

The Buffer Cache

Oracle maintains a cache of the most recently used (MRU) data blocks requested by
SQL statements. This cache, referred to as the database buffer cache, is held in the System
Global Area (SGA). Given that reading cache data from memory is orders of magni-
tude faster than physical file reads, understanding the behavior of the cache with
respect to individual statements is likely to benefit SQL performance by ensuring that
the most frequently accessed blocks remain in the cache for the longest time.

196 Chapter 9

In previous versions of Oracle, this buffer cache size was fixed at database startup
time using the DB_BLOCK_BUFFERS setting (in blocks), which is specified in the
init.ora file. In Oracle9i, this static technique is not recommended and the DB_BLOCK_
BUFFERS parameter is deprecated. In Oracle9i, the preferred approach is to use the
SGA_MAX_SIZE parameter to specify the maximum SGA size and use the dynamic
DB_CACHE_SIZE setting to control the size of the buffer cache for the database default
block size. When used with a server parameter file (covered in Chapter 2) rather than
an init.ora file, the value can be modified permanently while the database is up, which
is limited by SGA_MAX_SIZE. Oracle9i supports the use of different block sizes at
tablespace creation time, and each block size requires its own cache. These additional
caches must be specified using the following init.ora parameters:

■■ db_2k_cache_size

■■ db_4k_cache_size

■■ db_8k_cache_size

■■ db_16k_cache_size

■■ db_32k_cache_size

Viewing the Buffer Cache Contents
The V$BH view can be used to display the contents of the buffer cache at any point in
time. The following SQL statements show objects using most cache blocks, including
blocks from the data dictionary, and cached blocks for a single table and its index:

REM whole cache...

select name,objd,cnt blocks from

(select objd,count(*) cnt from v$bh group by objd) cnt,

(select object_id,owner||'.'||object_name||' ('||object_type||')' name

from dba_objects) obj

where cnt.objd = obj.object_id (+)

union select 'total blocks',to_number(null),count(*) from v$bh

order by 3 desc;

NAME OBJD BLOCKS

-- ----------- --------

total blocks 20000

O.TT_FX_OTC (TABLE) 28096 7750

SYSTEM.MY_OBJECTS (TABLE) 28137 4996

SYS.SOURCE$ (TABLE) 64 3210

SYS.I_SOURCE1 (INDEX) 109 1339

REM one table and index...

select name,objd,cnt from

(select objd,count(*) cnt from v$bh group by objd) cnt,

(select object_id,owner||'.'||object_name||' ('||object_type||')' name

from dba_objects

Fundamentals of SQL Tuning 197

where object_name in ('MY_OBJECTS','PK_MY_OBJECTS')) obj

where cnt.objd = obj.object_id

order by cnt;

NAME OBJD CNT

----------------------------- ------ -----

SYSTEM.PK_MY_OBJECTS (INDEX) 28138 11

SYSTEM.MY_OBJECTS (TABLE) 28137 4985

Many other reports are possible. For example, V$BH contains a STATUS column to
indicate how many blocks are free and in use. For the serious DBA or developer, the
X$BH view contains information that can be used to identify which cache a block
resides in and determine whether multiple buffer pools are in use and whether a block
is in the least recently used (LRU) list.

The Buffer Cache Hit Ratio
The cache hit ratio is an often-used Oracle performance metric, derived from other sta-
tistics, that shows the percentage of Oracle data block requests that are satisfied from
Oracle’s buffer cache compared to those that require a physical read from Oracle’s
datafiles. Keep in mind that physical read requests are requests made to the operating
system by Oracle. If the operating system keeps its own file system cache, like Sun
Solaris, for example, or your disk storage uses a controller cache, the Oracle physical
read may not require a genuine physical read. As a result, identical SQL statements that
perform the same number of Oracle physical reads may differ in elapsed time. If you
run two of these statements close together, the second is more likely to benefit from file
system or disk controller caching.

The cache hit ratio value can be measured systemwide and for specific sessions
using statistics in V$SYSSTAT and V$SESSTAT. It can also be derived for queries in the
shared SQL cache, V$SQLAREA, by using the DISK_READS and BUFFER_GETS
columns. The classical Oracle cache hit ratio, which is based on buffer cache statistics,
is given by the following:

hit ratio = 1-[physical reads/(db block gets+consistent gets)]

The following SQL presents the value as a percentage for the whole system since
startup:

select sum(decode(name,'db block gets',value,0)) "db block gets",

sum(decode(name,'consistent gets',value,0)) "consistent gets",

sum(decode(name,'physical reads',value,0)) "physical reads",

round(

100*(1 -(sum(decode(name,'physical reads',value,0)))/

((sum(decode(name,'db block gets',value,0)))+

sum(decode(name,'consistent gets',value,0))))) "hit %"

Due to the possibility of direct path reads that bypass the buffer cache in Oracle8i
and later (for example, those due to reads of CLOB columns), this figure isn’t com-

198 Chapter 9

pletely accurate in all cases. The situation is further complicated by the possibility of
multiple buffer caches. The following SQL shows the hit ratio expressed as a percent-
age for all connected user sessions:

select s.sid,se.username,

sum(decode(n.name,'db block gets',value,0)) "db block gets",

sum(decode(n.name,'consistent gets',value,0)) "consistent gets",

sum(decode(n.name,'physical reads',value,0)) "physical reads",

round(

100*(1-(sum(decode(n.name,'physical reads',value,0)))/

((sum(decode(n.name,'db block gets',value,0)))+

sum(decode(n.name,'consistent gets',value,0))))) "hit %"

from v$sesstat s,v$statname n,v$session se

where s.statistic# = n.statistic#

and s.sid = se.sid

and n.name in ('physical reads','db block gets','consistent gets')

and s.value > 0

and se.username is not null

group by s.sid,se.username

order by 6 desc;

Although the cache hit ratio is interesting, I rarely find that it’s actually useful for
tuning purposes. Addressing tuning issues requires statistics for individual statements
rather than session or instance cache ratios. In particular, absolute values of statistics
and wait information times are much more useful.

The LRU Algorithm and Default
Cache Behavior
Oracle uses an LRU algorithm to try keeping the most frequently used blocks in the
buffer cache. If a block is not available in the cache, a more expensive physical disk
read is required. It’s useful to look into the LRU algorithm more closely because correct
configuration of the cache and an understanding of the available options can signifi-
cantly improve performance. The cache can be viewed logically as a list containing a
fixed number of blocks with an MRU end and an LRU end.

During a sequential read operation, which reads a single block from the cache, the
block is placed at the MRU end of the list. When a block is added, the existing blocks
are shifted toward the other LRU end, where the LRU block is removed from the cache.
As a result, frequently accessed blocks tend to shift toward the MRU end and stay in
the cache. Rarely used blocks tend to age out of the cache.

The LRU Algorithm and Table Scan
Cache Behavior
By default, Oracle treats blocks fetched as a result of a full table scan in a different
way from the default behavior just explained. It’s important to understand why and
how Oracle does this. Consider a buffer cache containing 10,000 blocks and a table

Fundamentals of SQL Tuning 199

containing 20,000 blocks. According to the normal caching rules, any SQL on that table
requiring a full table scan would flush all those 10,000 blocks from the cache, including
those that are frequently used or hot. This would have a disastrous effect on perfor-
mance because future reads of those hot blocks will require physical I/O.

Oracle does two things to avoid scans from flushing the buffer cache completely. The
first is that rows from a scan are placed on the LRU end of the cache. This has no use in
our example because 20,000 data blocks will flush 10,000 cache blocks no matter which
end of the cache is used. Oracle imposes an additional restriction that states that the
number of blocks placed on the LRU end during a scan is limited to the value of the
init.ora parameter DB_BLOCK_MULTI_READ_COUNT. This parameter typically has a
value from 8 to 32. As a result, the excess flushing of the cache that might result from
scans is avoided. The downside is that scans typically need to perform physical I/O on
each execution, which harms performance. For some types of scanned data, such as
small lookup tables, it would be advantageous to try keeping their blocks in the cache
for as long as possible. Oracle provides several options for overriding the default behav-
ior of block caching to enable fine-grained control of the lifetime of blocks in the cache.

Controlling the Cache
Although table scans don’t affect the buffer cache unduly because their impact is lim-
ited by DB_BLOCK_MULTI_READ_COUNT, segments accessed using large or un-
bounded index range scans can flush out hot blocks from the cache. In this case, the
multiple buffer pools feature can be enabled to more closely control the lifetime of
blocks in the cache through the creation of two additional pools: the KEEP and RECY-
CLE pool. These can exist in addition to the default cache. Both KEEP and RECYCLE
need to be specified in blocks in the init.ora file at database startup in a way that’s
Oracle version dependent:

8i parameters

db_block_buffers = 20000 # deprecated in 9i

buffer_pool_keep=3000 # deprecated in 9i

buffer_pool_recycle=1500 # deprecated in 9i

db_block_lru_latches=6 # obsolete in 9i

9i parameters for multiple buffer pools

db_cache_size=200971520 # bytes

db_keep_cache_size=1000 # blocks

db_recycle_cache_size=2000 # blocks

The use of the RECYCLE buffer cache means that blocks resulting from large index
range scans can be assigned to a separate pool, so they don’t affect hot blocks in the
default cache. Alternatively, hot blocks can be moved to the KEEP cache, so they
remain unaffected by large flush operations on the default cache. The allocation of seg-
ment blocks to a specific buffer cache is controlled by the segment STORAGE clause
either at creation time or through the ALTER command. The following is an example
of a storage clause that will cache a segment’s blocks to the RECYCLE pool:

storage (initial 10k buffer_pool recycle)

200 Chapter 9

The number of blocks in each pool can be determined using this SQL:

select id,name,buffers from v$buffer_pool;

ID NAME BUFFERS

---- -------- ---------

1 KEEP 501

2 RECYCLE 501

3 DEFAULT 2505

The lifetime of blocks in the cache can also be influenced using the CACHE option
for tables and large object (LOB) columns. When you use the ALTER TABLE tablename
CACHE option, blocks fetched as a result of a table scan are placed on the MRU end of
the cache rather than the LRU end. The CACHE option has no effect on blocks in the
KEEP pool.

LOB columns present special problems due to their size. For example, a single LOB
column of several hundred megabytes read into the buffer cache could flush out many
existing hot blocks. As a result, CACHE and NOCACHE can be provided at the col-
umn level for LOB columns. By default, LOBs are created using NOCACHE. When
NOCACHE is used, requests for LOB column out-of-line blocks are read directly from
the database files using direct path reads, thus passing the buffer cache to avoid flush-
ing it. If most LOBs are actually of a fairly small size that is comparable to regular
columns, then the CACHE option can be enabled as follows to ensure that the LOB col-
umn contents are cached:

alter table trade_q modify lob (message_data) (cache);

This option must be used with great care because a fetch of an LOB column, unlike
a table scan, can flush the whole buffer cache. This is because LOBs are loaded onto the
MRU end of the cache without the DB_BLOCK_MULTI_READ_COUNT block limit
imposed on scans.

Full Table Scans and the High
Watermark (HWM)
In a full table scan operation, all blocks in the table are read up to the table high water-
mark (HWM). The HWM marks the last block in the table that has ever had data writ-
ten to it. Even if all rows in the table have been deleted, those empty blocks will still be
processed up to the HWM during a scan. As a result, table scans can result in higher
physical I/O requirements than those required based on the actual data available. The
TRUNCATE command can be used to reset the HWM back to the start of the table. If
this is not possible, Chapter 13 contains instructions on how to rebuild a table to reduce
the HWM while maintaining existing data. The following SQL can be used to show
allocated and empty (that is, never used) blocks in the table, following an ANALYZE
command:

select blocks,empty_blocks from dba_tables where

table_name='MY_OBJECTS';

Fundamentals of SQL Tuning 201

The DBMS_SPACE.UNUSED_SPACE procedure can be used to return the HWM for
a segment into the parameters LAST_USED_EXTENT_FILE_ID, LAST_USED_
EXTENT_BLOCK_ID, and LAST_USED_BLOCK.

Detecting Full Table Scans

When the optimizer decides that there is no appropriate index available to execute a
SQL statement to meet the optimizer goal, Oracle performs a full table scan to execute
the statement. Typically, table scans involve a lot of physical I/O. Physical I/O is the
primary resource that needs to be minimized, or parallelized, if you want your SQL to
run faster. For some types of applications, such as data warehouses, table scans take
place by design. For index-driven applications, such as Online Transaction Processing
(OLTP) applications, table scans should be avoided for best performance. Often, if they
do take place, it wasn’t intended. During the application development stage of the life-
cycle, query execution plans from TKPROF and the EXPLAIN PLAN command can be
used to show DML that performs a full table scan. The string TABLE ACCESS (FULL)
identifies such queries. DbCool EXPLAIN PLAN output displays full table scans with
a red exclamation mark to draw attention to them.

On a running production system, the first step to take when users report a perfor-
mance problem is to run a few queries on the V$SESSION_WAIT view a few seconds
apart to identify any sessions that are waiting for the event “db file scattered read.”
Those sessions are waiting for data accessed by a multiblock read associated with a full
table scan. Although it’s not guaranteed that a session performing a scan will experi-
ence a wait for a scattered read, it’s almost certain, given that scans usually perform a
lot of physical I/O. The full process of identifying a scan and the SQL causing it is as
follows:

1. Detect sessions from V$SESSION_WAIT waiting on event “db file scattered
read.”

2. Find the SQL executing in the waiting session using SQL_ADDRESS and
SQL_HASH_VALUE columns.

3. Run EXPLAIN PLAN on the SQL to see the query plan and identify the scan.

The following describes the various SQL and information that’s required to perform
the process. The following SQL returns sessions waiting on a “db file scattered read”
event and presents the event parameters in a user-friendly format:

select /*+ RULE */ s.username,

decode(p1text,NULL,NULL,p1text||'='||p1)||' '||

decode(p2text,NULL,NULL,p2text||'='||p2)||' '||

decode(p3text,NULL,NULL,p3text||'='||p3) params,

sql_address,sql_hash_value

from v$session_wait w,v$session s,v$process p,v$sqlarea

sq,audit_actions a

where w.sid = s.sid

and s.command = a.action

202 Chapter 9

and sq.address =s.sql_address and sq.hash_value = s.sql_hash_value

and S.PADDR = P.ADDR (+)

and s.audsid <> userenv('SESSIONID')

and event= 'db file scattered read';

REM.. here’s one...

USERNAME PARAMS SQL_ADDRESS SQL_HASH_VALUE

-------- ------------------------------ ----------- --------------

SYSTEM file#=27 block#=39596 blocks=8 8C84760C 2855390177

In order for the output to fit the screen, several other useful columns such as S.PRO-
GRAM (program running), P.SPID (server process ID), and SQ.EXECUTIONS (total
execution count for the SQL) are not shown in the SELECT list.

The values in the PARAMS column contain a lot of useful information. The BLOCKS
value in PARAMS shows the number of database blocks read during the scattered read
operation. This equals the DB_BLOCK_MULTI_READ_COUNT init.ora parameter.
Oracle uses this parameter as part of the process to determine when to use a full table
scan in a plan when other options are available. Larger values are more likely to bias
the plan toward performing a scan because the more blocks read during the multiblock
read operation, the more efficient the operation. The other event parameters in the
PARAMS column display enough information at this stage to identify the object that is
being scanned, because the FILE# and BLOCK# parameters identify a database file and
block. These values can be transformed to show the scanned object using the following
SQL based on the event parameters:

select owner||'.'||segment_name segment,segment_type

type,tablespace_name

from dba_extents where

(file_id=27 and 39596 between block_id and (block_id + blocks -1));

SEGMENT TYPE TABLESPACE_NAME

------------ ------ -----------------

APP.FX_HIST TABLE FX_TABLES

Given the address and hash value for the SQL executed by the session at the time of
the wait, which was taken from the ADDRESS and HASH_VALUE column in
V$SQLAREA, the following SQL can be used to generate the full text of the SQL state-
ment from the Oracle dictionary:

select sql_text

from v$sqltext_with_newlines where address='8C84760C' and

hash_value+0=2855390177

order by piece;

SQL_TEXT

select count(*) from app.fx_hist where hist_state='OPEN';

Fundamentals of SQL Tuning 203

The addition of �0 onto HASH_VALUE is deliberate and prevents this SQL from
causing a server session spin in some versions of Oracle8i. The EXPLAIN PLAN for the
statement can be generated by running something like the following:

explain plan set statement_id='s519_1' for

select count(*) from app.fx_hist where hist_state='OPEN'

Finally, the plan can be displayed using the following:

select lpad(' ', 2*level)||operation||decode(id,0,'cost =

'||position) op,

options,object_name

from plan_table

where statement_id='s519_1'

connect by prior id = parent_id start with id = 0

order by id;

Performing this sequence of operations is a chore, although the results are invalu-
able. This type of manual operation is tailor-made for a graphical user interface (GUI)
application. DbCool provides features that enable you to perform these steps much
more easily by using just a few key clicks:

1. Choose Session Waits Detector from the Monitoring menu. This polls V$SES-
SION_WAIT on a user-selected time interval and stores a full history of each
nonidle wait (not just scattered reads) into the grid.

2. When you see a wait you are interested in, press the Stop Autorefresh (square)
button on the toolbar.

3. Click the grid row you are interested in.

4. Right-click the grid cell containing the file and block, and choose Show Wait
Object Name to see the scanned object. This is optional.

5. Right-click the grid row, choose Grid SQL . . . , and then choose Send Grid Row
to Explain Plan to pop up an Explain Plan form to show the SQL that generated
the wait.

6. In the Explain Plan form, generate the plan using the Generate Plan button on
the toolbar. If the user who executed the SQL, as shown in the wait event, does-
n’t match your Oracle logon, choose the user who ran the SQL by using the
popup list.

If you want to see plans for more than one grid row, change the grid selection mode
to List, select multiple grid rows, and choose Send Grid Row to Explain Plan. This cre-
ates one Explain Plan form for each grid row selected.

SQL Tuning Goals

Even before you begin tuning, you need to determine the goals for your SQL perfor-
mance. Oracle provides two fundamentally different approaches to the generation of
an execution plan for SQL: cost based and rule based. The cost-based approach uses

204 Chapter 9

TE
AM
FL
Y

Team-Fly®

table and column statistics that need to be explicitly generated and information based
on actual sizes of objects stored in the Oracle dictionary. If the available statistics don’t
match the actual data, then a nonoptimal plan can be generated. Chapter 10 provides
details of the required data, how to collect it, and how often to collect it. Table 9.7 pro-
vides a summarized list of the available optimizer modes. To specify the optimizer
mode, do the following:

■■ Use OPTIMIZER_MODE in init.ora to set it databasewide.
■■ Use ALTER SESSION SET OPTIMIZER_MODE mode at the session level.
■■ Use /*� ALL ROWS */, /*� FIRST_ROWS */, /*� CHOOSE */, /*� RULE */

HINTs in SQL.

Note that the ALTER SESSION SET OPTIMIZER MODE statement does not affect
SQL within PL/SQL blocks. To modify the optimizer mode for that SQL, you need to
use a HINT.

The difference between CHOOSE and FIRST_ROWS or ALL_ROWS is quite subtle
and is best seen with an example that demonstrates many of the subtleties of the opti-
mizer at one time. This requires an example table with a primary key that contains a
few thousand blocks as follows:

create table my_objects tablespace tools pctfree 99 pctused 1

as select * from all_objects where rownum <=5000;

alter table my_objects add constraint pk_my_objects

primary key(object_id);

REM sizes...

select segment_name,segment_type, blocks from dba_segments

where segment_name like '%MY_OBJECTS';

Fundamentals of SQL Tuning 205

Table 9.7 Oracle SQL Optimizer Modes

NAME PURPOSE

CHOOSE Choose between rule- and cost-based optimization. If statistics
exist for any table in the SQL, use cost-based optimization with
a goal to minimize total resource consumption. Otherwise, use
the rule-based optimizer.

ALL_ROWS Minimize the total resource consumption using the cost-based
optimizer.

FIRST_ROWS(n) Minimize the time to return first n rows using the cost-based
optimizer.

RULE Ignore statistics and choose the execution plan according to a
set of rules.

SEGMENT_NAME SEGMENT_TYPE BLOCKS

-------------- -------------- --------

MY_OBJECTS TABLE 5120

PK_MY_OBJECTS INDEX 24

Consider how the SQL SELECT COUNT(*) FROM MY_OBJECTS runs under each of
the optimizer modes. This is shown in Table 9.8.

Based on the presence of the primary key, it seems reasonable that the fastest way
for Oracle to return the results for this query is to count the entries in the index rather
than in the table by using an optimization known as an index FAST FULL SCAN. The
index is much smaller than the table, containing far fewer blocks, so reading the index
causes less logical and physical I/O, resulting in a shorter elapsed execution time. In
the example, only ALL_ROWS and FIRST_ROWS use FAST FULL SCAN.

CHOOSE fails to use the primary key index because the table hasn’t been analyzed
yet, so no statistics exist. This causes CHOOSE to fall back to the rule-based optimizer.
The rule-based optimizer is provided for historic reasons only and generally shouldn’t
be used. RULE isn’t aware of many of the optimizations available in newer Oracle ver-
sions, such as a FAST FULL SCAN, which appeared in Oracle8.

Therefore, both CHOOSE and RULE execute using a full table scan. Even though the
table hasn’t been analyzed, both ALL_ROWS and FIRST_ROWS can take advantage of
information other than analyzed statistics in order to use the cost-based optimizer. As
a result, they both perform a much more efficient FAST FULL SCAN of the index.

You need to be aware of the OPTIMIZER_FEATURES_ENABLE init.ora setting that
lets you change the behavior of the Oracle optimizer based on an Oracle release num-
ber. If you’ve just performed an upgrade, then leaving this value at its previous setting
can mean that newer optimizer features are not available. On the other hand, increas-
ing the value can cause query behavior to change if new optimizer features are incor-
porated into existing DML and do not necessarily have the best results.

Generating Execution Plans

Before executing a DML statement, Oracle generates a query execution plan that deter-
mines how a SQL statement will execute. The plan-generation process uses various
information including the following:

206 Chapter 9

Table 9.8 Query Plans Using Different Optimizer Modes

ELAPSED
NAME PLAN USED (SECONDS)

CHOOSE FULL TABLE SCAN 3.8

ALL_ROWS FAST FULL SCAN of index PK_MY_OBJECTS 0.4

FIRST_ROWS FAST FULL SCAN of index PK_MY_OBJECTS 0.4

RULE FULL TABLE SCAN 3.8

■■ The generated statistics

■■ The object sizes

■■ The presence of indexes

■■ The optimizer mode

■■ The presence of HINTs

■■ The existence of a stored outline

The execution plan typically consists of several steps. Each step in the plan physi-
cally fetches blocks from the datafiles or buffer cache and then processes the table rows
or index data in each block in preparation for the next step. The final stage is the cre-
ation of the result set. It’s helpful to think of an execution plan in terms of a hierarchy,
or tree, where the leaf nodes perform physical data access, the intermediate nodes
process the physical data, and the raw data eventually passes up to the root node,
which represents the result set presented to the user.

Oracle provides the EXPLAIN PLAN command to write the execution plan infor-
mation for a SQL statement into a table, which can then be queried to produce a hier-
archical view of the execution order of the statement. It’s important to note that the
SQL is not executed by EXPLAIN PLAN. As a result, there’s always an uncertainty,
however small, that the plan generated by EXPLAIN PLAN is not the same as the plan
that would actually be used when the SQL runs. The actual plan used to execute SQL
can be found in the V$SQL_PLAN view, which is new in Oracle9i.

EXPLAIN PLAN requires the existence of a table named PLAN_TABLE. This can be
created using the Oracle utlxplan.sql script, which is part of the server software distri-
bution. EXPLAIN PLAN works best when all users share the same plan table. To share
a single table systemwide, the PLAN_TABLE can be created as SYSTEM, for example.
The following commands enable all users to access the table using the unqualified
name PLAN_TABLE:

create public synonym plan_table for plan_table;

grant all on plan_table to public;

If a shared plan table is in use, it’s essential that plans written to the plan table are
identified by a unique STATEMENT_ID so that subsequent queries to fetch the plan
don’t accidentally fetch rows for other sessions or previous queries for the same ses-
sion. The following is an example of a plan-generation statement that writes informa-
tion to PLAN_TABLE using a statement ID of s591_1, followed by a query that fetches
the generated plan in an indented format to give the appearance of a tree:

explain plan set statement_id='s519_1' for

select count(*) from app.fx_hist where hist_state='OPEN';

REM select the plan, present as a tree...

select lpad(' ',2*level)||operation||decode(id,0,' cost = '||position)

op,

options,object_name

from plan_table

Fundamentals of SQL Tuning 207

where statement_id='s519_1'

connect by prior id = parent_id start with id = 0

order by id;

The PLAN_TABLE actually contains many more columns containing information
relevant to the plan than the ones shown in this query. The output is constrained by the
need to display in a text window. As a result, information is lost on presentation. For
plans involving parallel execution or more complex joins, this method of display is not
adequate for presenting the plan information. The following shows a plan generated
and queried using the technique just outlined:

OP OPTIONS OBJECT_NAME

-------------------------------- --------------- ---------------

SELECT STATEMENT cost = 21444

FILTER

NESTED LOOPS

INDEX FAST FULL SCAN ML_I1_TT_FX_OTC

TABLE ACCESS BY INDEX ROWID TT_FX_OTC

INDEX UNIQUE SCAN FX_OTC_PK

FILTER

TABLE ACCESS BY INDEX ROWID DT_VALUES

INDEX RANGE SCAN DT_VALUES_UK

Although this output is useful, lots of available information is missing, such as the
cost associated with each stage of processing, the object owner, and the order of execu-
tion steps. In addition, the effort required to get the output to fit the page width in
SQL*Plus is considerable and varies depending on the SQL. DbCool can display an
execution plan with all the missing information as well as the extra information gener-
ated for parallel execution. Figure 9.2 shows the same plan in DbCool’s Explain Plan
form.

The DbCool version includes all the available information in the PLAN_TABLE. The
plan can be printed and stepped through in the order of statement execution. Execu-
tion order is displayed using the # character followed by a number. Different icons are
used to display table and index access operations for easy visual assimilation. Scans,
such as full table scans and fast full scans of indexes, are shown with a red exclamation
mark.

The status bar contains a statement ID that is automatically generated for each plan.
The toolbar also enables the optimizer mode to be changed to any of CHOOSE, RULE,
ALL_ROWS, and FIRST_ROWS prior to regenerating the plan. The form maintains a
history of the last 50 statements and their plans, so you can review a previous state-
ment and its plan without regenerating the plan using options on the View menu. If
you’re serious about Oracle SQL tuning, then you need a tool that presents all of the
relevant information. DbCool has the added advantage of being free. Just to recap,
EXPLAIN PLAN doesn’t execute the SQL. For that reason, the number of rows fetched
at each stage, as provided by TKPROF, can’t be shown.

The SQL*Plus AUTOTRACE facility can be used to automate the plan-generation
process in SQL*Plus by generating a plan automatically after the execution of each
statement. This requires an existing PLAN_TABLE, which is like that required for a

208 Chapter 9

manual EXPLAIN PLAN. For non-SYSTEM users, AUTOTRACE requires the PLUS-
TRACE role. Here’s an example:

SQL> set autotrace on explain

SQL> select count(*) from my_objects;

COUNT(*)

5000

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE

1 0 SORT (AGGREGATE)

2 1 TABLE ACCESS (FULL) OF 'MY_OBJECTS'

Oracle9i provides a significant new feature compared to previous releases of Oracle
through the V$SQL_PLAN view. This view provides the plan that was actually used to
execute a SQL statement present in the shared SQL area, given by the V$SQL view.
Other columns in the table have a similar meaning to those in the PLAN_TABLE, with
three additional columns that indicate the run-time resources that were used:

CPU_COST NUMBER

IO_COST NUMBER

TEMP_SPACE NUMBER

Fundamentals of SQL Tuning 209

Figure 9.2 A query plan in DbCool.

The following SQL shows how to generate the execution plan from V$SQL_PLAN
for a SQL statement currently in the shared SQL area: V$SQL. Each SQL statement in
the shared SQL area is uniquely identified by values in the ADDRESS, HASH_VALUE,
and CHILD_NUMBER columns, and these values must be specified in the query
against V$SQL, as shown in the following SQL:

select lpad(' ',2*level)||operation||decode(id,0,' cost =

'||position) op,

options,object_name

from v$sql_plan

where address='address'

and hash_value=hash_value

and child_number=child_number

connect by prior id = parent_id start with id = 0

order by id;

Oracle9i Release 2 extends the information available for tuning SQL by significantly
extending the level of available performance-related information. The information in
presented in V$SQL_PLAN and PLAN_TABLE execution plans is enhanced through
two additional columns that show access and filter predicates within the each plan for
steps that perform those operations:

ACCESS_PREDICATES VARCHAR2(4000)

FILTER_PREDICATES VARCHAR2(4000)

In order to match this additional predicate information with the operation to which
it relates in the SQL statement execution plan you need a tool that can present it, such
as DbCool. The following SQL statement results in an execution plan that includes
both an access predicate and a filter predicate, but EXPLAIN PLAN output in
SQL*Plus doesn’t display the access and filter predicates in the execution plan:

select count(*) from my_objects where object_id=1

having count(*) > 1;

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE

1 0 FILTER

2 1 SORT (AGGREGATE)

3 2 INDEX (UNIQUE SCAN) OF 'PK_MY_OBJECTS' (UNIQUE)

In the previous SQL query, the access predicate “MY_OBJECTS”. ”OBJECT_ID”�1
is associated with the INDEX (UNIQUE SCAN) operation in the execution plan, and
the filter predicate COUNT(*)�1 is associated with the FILTER operation. This infor-
mation is available from the PLAN_TABLE and V$SQL_PLAN.

Further enhanced tuning information available in Oracle9i Release 2 includes
detailed statistics on physical and logical I/O at each stage of the execution plan, through
the view V$SQL_PLAN_STATISTICS. For this information to be made available, the

210 Chapter 9

dynamic STATISTICS_LEVEL database parameter must be set at either the system
level, or at the session level as follows:

alter system set statistics_level=all;

Finally, Oracle9i Release 2 provides I/O statistics for individual objects. This infor-
mation is made available through a set of “Top Objects” charts in OEM, and also
through the V$SEGMENT_STATISTICS view, as shown in the following query:

select statistic_name,value

from v$segment_statistics

where object_name='MY_OBJECTS' and value>0

order by 2 desc;

STATISTIC_NAME VALUE

----------------------- -------

logical reads 6720

physical writes 5160

physical reads 5000

physical writes direct 5000

db block changes 352

Using Parallel Operations

Recall that the performance goal of our SQL is to reduce elapsed execution time. In cer-
tain circumstances, table scans are unavoidable or even desirable for data-warehouse—
type applications. For example, index creation often requires a full table scan in order
to identify all the data to the index. Consider a scan that requires 10 seconds of CPU
resource to complete on a single CPU. On a server with two (or more) CPUs, the total
available CPU resource is wasted during the execution on a single CPU.

Using an Oracle feature known as parallel query, the scan can be split into two
processes that each scan half of the data concurrently, one per CPU. In the best case, the
10-second CPU load, split concurrently across two processes, each on a single CPU,
means the scan can complete in 5 seconds. The original server session in this case is
referred to as the query coordinator, and the two sessions that perform the scan are
referred to as parallel query slave processes. The slaves pipe results to the query coordi-
nator, which then processes them by serializing them into a single stream to form a
result set to return to the client.

When used carefully, parallel query facilities can demonstrate significant reductions
in elapsed time by utilizing the maximum available CPU and disk I/O resource on a
multi-CPU server or RAC configuration. In order for Oracle to generate a plan for a par-
allel operation, the operation must involve a table scan for a SELECT statement, and the
optimizer needs to be explicitly directed to use parallelism with a given number of par-
allel streams. The parallel operations that are supported are shown in Table 9.9.

Fundamentals of SQL Tuning 211

The maximum and minimum numbers of parallel servers per instance are specified
by the PARALLEL_MAX_SERVERS and PARALLEL_MIN_SERVERS parameters in
the init.ora file. It’s important to emphasize that the number of parallel servers is avail-
able per instance, not per query. So although it’s possible to specify that all appropriate
operations on a given table or index are to be run in parallel by default, it’s probably
better to use HINTs or stored outlines (which are covered later) to control parallelism
on a statement-by-statement basis.

If the optimizer has determined that a query should run in parallel, but at execution
time there are insufficient resources available to meet the desired parallel degree, then
the query will run in serial mode by default. This silent serialization of execution could
cause the operation to take much longer than required. For example, a scan intended
to run on eight CPUs could take eight times as long when serialized on a single CPU.

The PARALLEL_MIN_PERCENT init.ora parameter can be used to turn off this
default serialization and abort the SQL instead. If PARALLEL_MIN_PERCENT is set
and the required minimum resources aren’t available at execution time, then an ORA-
12827 message is returned to the client application. The following options set a default
parallelism on a table or index and correspond to the DEGREE column in DBA_
TABLES and DBA_INDEXES, respectively:

alter index pk_my_objects parallel 2;

alter table my_objects default parallel 2;

You can check to see that parallel query is being used for the queries and DML state-
ments in the current session by using the following SQL:

select * from v$pq_sesstat;

STATISTIC LAST_QUERY SESSION_TOTAL

--------------------- ------------ ---------------

Queries Parallelized 1 11

DML Parallelized 0 0

212 Chapter 9

Table 9.9 Parallel Operations

TYPE ENABLED USING EXAMPLE USAGE

Query Parallel attribute on table or HINT Any table scan

DLL PARALLEL clause CREATE TABLE AS SELECT
CREATE INDEX
ALTER INDEX REBUILD
ALTER TABLE MOVE
(partitioned table)

DML ALTER SESSION insert into trades_hist
ENABLE PARALLEL DML select * from trades;

The CPU resource used for a particular parallelized statement can be calculated by
the differences in the CPU_SECS_TOTAL column before and after the statement by
using the following SQL:

SELECT slave_name,status, cpu_secs_total

FROM v$pq_slave;

SLAVE_NAME STATUS CPU_SECS_TOTAL

------------ -------- ----------------

P000 IDLE 5

P001 IDLE 5

P002 IDLE 5

P003 IDLE 5

When the number of slaves significantly exceeds the number of CPUs, contention
between the slave processes at the UNIX level for fixed CPU resources can actually
cause parallel operations to increase the elapsed times for a given SQL statement com-
pared to single CPU operation. The following SQL statements show an example of an
explicit parallel operation requested via a HINT:

REM 2 parallel slaves...

select /*+ parallel(x,2) */ count(*) from acctlog_accessed x;

REM 3 parallel slaves...

select /*+ parallel(x,3) */ count(*) from acctlog_accessed x;

REM RAC provides a third value in the HINT (4 in this example) to

REM specify the number of instances to distribute the query over . . .

select /*+ full(x) parallel (x,3,4) */ count(*) from acctlog_accessed x;

Extra information is produced in the PLAN_TABLE during EXPLAIN PLAN execu-
tion for a parallel operation. In this case, the OTHER_TAG column gives details of the
select that is being performed by the query slave referenced in the OBJECT_NODE col-
umn. In particular, the existence of PARALLEL_TO_SERIAL tags needs to be investi-
gated. These tags indicate a parallel operation that has been serialized. Of course, at
some stage in the execution plan, results do have to be serialized before being returned
to the client. For example, results from slaves performing a parallel scan need to be
serialized in order to be counted by a COUNT(*) operation. DbCool produces a plan
that displays the parallel query information in the plan tree using an Information icon
to indicate the operations. Figure 9.3 shows the EXPLAIN PLAN for a parallel query
using DbCool.

The same information can be provided by Oracle’s SQL Analyze tool, but it’s not
displayed in a tree, so you could miss it unless you scroll the window to view the extra
information. Figure 9.4 shows the same plan using SQL Analyze.

Oracle’s parallel features can be hard to manage if you choose to use HINTs or spec-
ify the PARALLEL attribute explicitly in segment definitions along with a value for
parallelism. In these cases, you need to consider changing the values if you upgrade

Fundamentals of SQL Tuning 213

your server with additional CPUs. From a usability standpoint, why should the
designer need to specify parallelism at all? Shouldn’t the database management sys-
tem (DBMS) decide when to use it automatically based on the operation being per-
formed and the CPU available? Oracle believes this is the case, and since Oracle8i,
Oracle recommends that you set the initialization parameter parallel_automatic_
tuning�true. When set, Oracle determines the default values for parameters that con-
trol parallel execution. To take advantage of this feature, you must set the PARALLEL
clause on tables for which you require parallel operations. Oracle then tunes all subse-
quent parallel operations automatically. Closely tied to parallel_automatic_tuning is
the parallel_adaptive_multiuser setting, which is set to true automatically when auto-
matic tuning is enabled. This option switches on an adaptive algorithm that automati-
cally reduces the degree of parallelism based on the system load when a query starts.
The actual parallelism used is based on the default degree of parallelism, or the value
specified as a table attribute or used in a HINT, reduced by an internally computed
scale factor.

214 Chapter 9

Figure 9.3 DbCool EXPLAIN PLAN for a parallel query.

Figure 9.4 Oracle SQL Analyze EXPLAIN PLAN for a parallel query.TE
AM
FL
Y

Team-Fly®

Identifying Which SQL to Tune

If you have an Oracle system that didn’t use the measure-everything-all-the-time
approach during the development of the SQL, then you’ll need to identify the most
expensive SQL after it has executed on a production system. It’s a good idea to do this
anyway. The good news is that Oracle caches the MRU statements in the shared SQL
area of the shared pool along with the physical and logical I/O and execution count.
The following SQL can be used to identify the most expensive SQL in the shared pool:

select /*+ RULE */ executions Execs,

disk_reads reads,

decode(executions,0,null,round(disk_reads/executions))+0

"R/EXEC",

buffer_gets gets,

decode(executions,0,null,round(buffer_gets/executions))+0

"G/EXEC",

sorts,

rows_processed rowsproc,

decode(parsing_schema_id,0,'?',username) parsed_by,

decode(optimizer_mode,

'MULTIPLE CHILDREN PRESENT','CHILDREN',optimizer_mode) o_mode,

sql_text,

address,hash_value

from v$sqlarea,dba_users

where parsing_schema_id = user_id and lower(sql_text) like '%' and

executions >= 0 and buffer_gets >= 0 and disk_reads >=0

and username like '%';

The metric you use to identify the most expensive SQL is a matter of taste and cir-
cumstances. For example, you might choose total physical I/O using the PHYSICAL_
READS column or logical reads indicated by the BUFFER_GETS column. Both of these
values are in blocks. If you consider the most expensive SQL per execution, then you can
use the PHYSICAL_READS and BUFFER_GETS divided by the EXECUTIONS col-
umn. Yet another approach is to use the I/O per row processed because SQL that per-
forms huge amounts of I/O for a few rows processed may be wasting many resources.
The V$SQLAREA view only shows the first 1,000 characters of each SQL statement.
The ADDRESS and HASH_VALUE columns can be used to identify the full SQL state-
ment from the V$SQLTEXT_WITH_NEWLINES view as follows:

select sql_text

from v$sqltext_with_newlines where address='8C84760C' and

hash_value+0=2855390177

order by piece;

Once you have the full SQL text, the next step is to look at the execution plan to see
if any low-risk ways to improve performance can be identified, such as the creation of
indexes to avoid table scans. DbCool has features to automate this process and make it
easy. The SQL Statistics option from the Tuning menu of DbCool can query

Fundamentals of SQL Tuning 215

V$SQLAREA according to the criteria of your choice and send results to the grid. Once
in the grid, you can click the grid column headers to sort the data according to your
chosen method for identifying expensive SQL. Once you have identified one or more
statements of interest from the grid, you can send them straight to the Explain Plan tool
by right-clicking on the grid and making the appropriate choice from the Grid SQL
menu option. The section Detecting Full Table Scans earlier in this chapter shows you
how to do it. The SQL Analyze component of the Oracle9i Enterprise Manager Tuning
Pack provides these features and more as a separately licensable option from Oracle.

The column PARSING_SCHEMA_ID in V$SQLAREA identifies the user who origi-
nally parsed the SQL statement. Use of this column is required to guarantee correct
results from EXPLAIN PLAN, because the plan for a given statement must be gener-
ated in the same schema that parsed the statement. For example, the statement
SELECT COUNT(*) FROM EMP could generate any number of different plans if the
database contains many different EMP tables in different schemas containing different
numbers of rows. Oracle provides a statement (which works in all versions including
Oracle9i) that enables you to become another user for the purpose of generating a plan
or executing a statement. The following is an example:

alter session set current_schema=scott;

After executing this statement, all subsequent statements in the session resolve
object names in SQL statements as if the current user was SCOTT. As a result, the SQL
statement SELECT COUNT(*) FROM EMP generates a plan as if the SCOTT.EMP table
was used in the query and returns results from the SCOTT.EMP table. This doesn’t
mean that Oracle security is circumvented because the privileges available remain
those of the original user at logon time, not the user in the ALTER SESSION statement.
If the logon user didn’t have privileges to select from the SCOTT.EMP table, the usual
ORA-0942 error would result. This command is invaluable for DBAs who need to gen-
erate execution plans for statements in V$SQLAREA that were parsed by other
accounts.

Oracle actually provides two views of the shared SQL area. In addition to
V$SQLAREA, the view V$SQL can be used. The difference between the two is worth
understanding and is best seen by an example. Consider a situation where two differ-
ent sessions execute the same SQL statement: one using the CHOOSE optimizer goal
and the other using ALL_ROWS:

select /* XX */ count(*) from system.my_objects;

In this example, the comment /* XX */ has no purpose other than to make the SQL
easy to identify in the shared SQL area during the rest of the discussion. Even though
both sessions execute exactly the same SQL against the same object, a separate cursor,
known as a child cursor, is required to distinguish that the runtime behavior in each
case is different because each session uses a different optimizer goal. In such situations,
the V$SQLAREA column VERSION_COUNT contains a value greater than 1 to indi-
cate that multiple child cursors exist, and V$SQL maintains a separate row for each
child cursor, as shown by the following two SQL statements:

216 Chapter 9

select address,sql_text,version_count

from v$sqlarea where sql_text like '%XX%';

ADDRESS SQL_TEXT VERSION_COUNT

-------- --- -------------

81D06664 select /* XX */ count(*) from system.my_objects 2

REM V$SQL contains one row for each child cursor...

select address,child_address,sql_text

from v$sql where sql_text like '%XX%';

ADDRESS CHILD_ADDRESS SQL_TEXT

--------- --------------- --

-

81D06664 81D06148 select /* XX */ count(*) from system.my_objects

81D06664 81D05E5C select /* XX */ count(*) from system.my_objects

Note that related child cursors in V$SQL have the same value in the ADDRESS col-
umn indicating that they originate from the same parent cursor. Oracle provides an
additional view called V$SQL_SHARED_CURSOR, which can be used to identify the
reason for the existence of multiple child cursors for a statement. It’s usually worth fol-
lowing up on these because they are probably not intended. In this example, the dif-
ference results from uniqueness in the optimizer mode for each session, but there are
many other possible reasons, such as the use of a stored outline in one session and not
in another. The following SQL shows that in this example the child cursors of the par-
ent cursor (identified by the column KGLHDPAR) result from an optimizer mismatch,
which is indicated by values in the OPTIMIZER_MISMATCH column:

select address,KGLHDPAR,optimizer_mismatch from V$SQL_SHARED_CURSOR

where KGLHDPAR='81D06664';

ADDRESS KGLHDPAR OPTIMIZER_MISMATCH

--------- ---------- --------------------

81D06148 81D06664 N

81D05E5C 81D06664 Y

Making SQL Faster

This section contains tips for making SQL faster. Severe restrictions are likely to exist on
the scope of changes depending on the stage of the application lifecycle where the
change needs to be made. The Oracle Enterprise Manager (OEM) has some great tools to
help you make SQL faster. Of these, Oracle Expert and SQL Analyze were only available
on Windows on the first release of Oracle9i, although they can run against Oracle data-
bases on any platform.

Fundamentals of SQL Tuning 217

Rewriting SQL
SQL is a declarative language. A SQL SELECT statement specifies what results are
required rather than how to fetch them, which is left to Oracle to decide during the
generation of an execution plan. As a result, a particular result set can usually be
obtained by several equivalent SQL statements, each with a potentially different cost
and elapsed time. The most significant reductions in elapsed time for SQL statements
often involve rewriting SQL statements so that they are semantically identical to the
original statement and use fewer memory, CPU, and I/O resources. The earlier parts of
this chapter have provided an extensive background on how to measure performance
using statistics and event waits.

Rewriting SQL is a low-cost, low-risk option only during the development cycle.
That’s the basis of the mantra for this chapter, which is to measure everything all the
time when writing SQL. Writing a complex SQL statement can take quite a while, and
it makes sense to change it while the requirements are fresh in the designer’s mind.
Rewriting SQL later can be difficult and risky because you need to guarantee that the
new SQL is semantically identical to the original. This requires extensive regression
testing for a production system. If SQL changes actually requires a client application
upgrade, it becomes even more risky due to the challenge of change management.

This chapter strongly recommends the use of REF CURSOR data types to return
result sets from the database to your application rather than coding SQL inline. The use
of REF CURSORS at least limits the scope of your changes to the database rather than
the client application; therefore, it reduces change complexity and risk. The use of REF
CURSORS means you can place a HINT in a statement on the server without affecting
the client in any way.

Although it’s difficult to provide general rules for efficient SQL in a meaningful way,
there is one general rule to keep in mind. If you recall the discussion on execution plans
earlier in the chapter, you can think of the execution plan for a SELECT statement as a
tree where the leaf nodes perform fetches of index and table data blocks, which are
passed up the tree for processing by joins, sorts, and filters, eventually producing the
result set at the root of the tree. The client receives the result set.

The more you minimize the low-level requirements for data blocks at the leaf node
in the plan (whether from logical or physical I/O), the less data is required, and the less
data is required for processing as the data passes up the tree. Whenever your SQL
requires a scan of a large table, you break the rule of minimizing the data requirements.
Indexes can also make a significant difference to performance by reducing the logical
and physical I/O required to execute the SQL.

The use of inline views in place of a table in the FROM clause of a query is a useful
and often overlooked technique for providing the SQL designer with explicit control of
the order of executing a statement. If the execution order can be driven so that the
number of rows passed toward the root of the execution plan is reduced early in the
execution order, fewer rows need to be processed at later stages, reducing resource
requirements and elapsed times. Consider two tables containing trades (TX) and a his-
tory of trades (TXHST). Each trade has a name, numeric ID, and type. To save database
space, the history contains only the ID. The use of a numeric ID as the foreign key is
standard practice. The two statements shown in Table 9.10 show the counts for trades
in the history grouped by name and type.

218 Chapter 9

Both queries return identical result sets containing 88 rows. The right-hand version
groups trades in the history before the join using an inline view named c. As a result,
only 88 rows need to be joined at the HASH JOIN stage because the inline view has
already reduced the rows to process later in the query. The standard join version on the
left needs to process 14,841 rows at the HASH JOIN stage and performs the group
operation after the join. The plan for the inline view is much more likely to produce a
plan that runs faster. Another effect of inline views is that they usually make the pur-
pose of queries easier to understand.

In order to write efficient SQL, you need to be familiar with the capabilities of Ora-
cle’s SQL implementation. Oracle includes an exceptionally powerful set of functions
referred to as the analytic functions, which were designed for use in data warehouse
applications, but have many general uses. They enable you to perform operations in
SQL that in the past would have required procedural processing using PL/SQL or
another procedural language. The analytic functions provide the following capabilities:

■■ Rankings and percentiles

■■ Sliding window calculations

■■ Lag/lead analysis

■■ First/last analysis

■■ Linear regression statistics

The following example demonstrates the power of the analytic functions by taking
a simple list of candy bar sales and presenting the information grouped by type along
with a running total:

Fundamentals of SQL Tuning 219

Table 9.10 A Join with and without Using an Inline View

STANDARD JOIN SAME JOIN USING INLINE VIEW

select tx_name,tx_type,count(*) select tx_name,tx_type,c.cnt

from tx,txhst h from tx,

where tx.tx_id = h.tx_id (select tx_id,count(*) cnt

group by tx_name,tx_type from txhst group by tx_id) c

where tx.tx_id = c.tx_id

Rows Row Source Operation Rows Row Source Operation

------ ------------------------- ------ ----------------------

88 SORT GROUP BY 88 HASH JOIN

14841 HASH JOIN 93 VIEW

20000 TABLE ACCESS FULL TXHST 93 SORT GROUP BY

24680 TABLE ACCESS FULL TX 20000 TABLE ACCESS FULL TXHST

24680 TABLE ACCESS FULL TX

REM the original list of items...

ITEM QUANTITY

---------- ----------

Mars 5

Mars 3

Mars 1

Snickers 2

Snickers 3

Milky Way 4

Milky Way 6

REM the analytic SQL...

select item ,sum(quantity) item_total,

sum(sum(quantity)) over

(order by item rows unbounded preceding) as running_total

from sales group by item;

ITEM ITEM_TOTAL RUNNING_TOTAL

---------- ------------ ---------------

Mars 9 9

Milky Way 10 19

Snickers 5 24

SQL Rewrite Tools
Third-party tools exist that claim to rewrite your SQL to make it more efficient. They
are usually expensive. My experience with these tools is that they fail to add value to
anything but the most basic SQL statements. Often they simply reexecute your state-
ment multiple times in its original form using the various optimizer modes and differ-
ent HINTs, and then measure the cost in each case. You don’t need to spend large
amounts of money to do that, although the ability to automate the process can poten-
tially save you a lot of time in processing all the possibilities. Oracle’s SQL Analyze tool
can also assist you with HINT creation and provides a limited rewrite capability. Ulti-
mately, for the best-performing SQL, there is no substitute for an Oracle designer with
the following:

■■ A clear set of performance requirements

■■ An awareness of the performance metrics

■■ Tools to measure and influence performance metrics

■■ SQL expertise

Adding or Changing Indexes
Sometimes a DML statement can clearly benefit from the use of an index. For example,
an OLTP system that executes DML using a table scan can often benefit from the cre-

220 Chapter 9

ation of an index on a column used in the WHERE clause. In this example, provided
that the OBJECT_ID column contains many distinct values, the following SQL will
benefit from an index on OBJECT_ID:

select * from my_objects where object_id=22;

The addition of the index changes the access path to the data to use the index instead
of the full table scan. Don’t forget that when running in CHOOSE mode, the optimizer
won’t detect the index until the ANALYZE command has been executed.

You should remember that indexes slow down inserts, updates, and deletes, and
generate extra redo. The benefits of additional indexes for speeding up SELECT state-
ments need to be balanced with the cost of data modifications. An additional consider-
ation is that the existence of a new index may affect the execution plan of other existing
statements—and not always beneficially. The addition of an index has a lower risk than
a SQL statement change, but it still requires an impact analysis. Chapter 12 contains
more information on managing indexes.

Chapter 16 on using performance management tools discusses the use of Oracle
Expert for providing a top-down analysis of your whole database performance. Oracle
Expert provides an Index Tuning Wizard to recommend and optionally implement
additional indexes for performance.

Changing the Optimizer Mode
Changing the optimizer mode can make a massive difference in the performance of
SQL by modifying the execution plan. It has the added advantage that no changes to
the SQL are needed. Although the optimizer mode can be changed at the database or
session level, the changes could have detrimental side effects on the performance of
other statements. Changes to the optimizer mode are better made through explicit
HINTs. You can place HINTs in the code itself. For example, the following HINT causes
the optimizer to generate an execution plan using the ALL_ROWS goal. This results in
an appropriate index being used without requiring the table to be analyzed after index
creation when compared to CHOOSE, which requires the ANALYZE command:

select /*+ ALL_ROWS */ count(*) from my_objects;

It’s not unheard-of for the rule-based optimizer to produce the lowest elapsed time
for a SQL statement. The use of RULE should never be ruled out. Oracle has been
threatening to remove it for years. It seems likely that until the Oracle cost-based opti-
mizer is perfect, RULE mode will continue to be available. Changing the optimizer
mode at the session level can be performed without requiring an application code
change. For example, if you create this trigger on your database, you may find that the
RMAN LIST BACKUPSET command runs up to 10 times faster because it avoids table
scans of the RMAN.BS table that the Oracle optimizer considers the best way to run the
statement:

create or replace TRIGGER rman_after_logon after logon on database

begin

Fundamentals of SQL Tuning 221

-- assume RMAN runs as RMAN user

-- if RMAN running, change to RULE...

if user='RMAN' then

execute immediate 'alter session set optimizer_goal=rule';

end if;

exception

when others then

null;

end;

Modifying Statistics
The cost-based optimizer uses table and column statistics information during plan
generation. The DBMS_STATS package, which is covered in Chapter 10, can be used to
modify statistics manually and generate them automatically in order to influence the
query execution plan.

Using SQL HINTs
Sometimes Oracle doesn’t generate a plan that minimizes the elapsed time for state-
ment execution, assuming that’s the requirement. This occurs for a number of reasons.
For example, the optimizer mode in use may have the goal of minimizing resource
usage, such as ALL_ROWS. Usually, minimizing resource usage (cost) reduces elapsed
time—but not always. If you use EXPLAIN PLAN to compare the cost of two semanti-
cally identical SELECT statements using the cost-based optimizer, you’ll see that Ora-
cle chooses one plan over the other based on the calculated cost, even if the query
actually executes slower. Sometimes the generated plan may be based on inadequate
or out-of-date statistics that don’t reflect the actual size and distribution of the data in
the tables and indexes. The generation of optimizer statistics is covered in Chapter 10.
In rare circumstances, the optimizer may contain a bug. Sometimes a human is supe-
rior to a computer because the human has a more complete understanding of the prob-
lem. In any of these situations, a HINT can be used to make suggestions to the
optimizer on the best plan to generate. The HINT can take many forms, for example

■■ Specify the optimizer mode: select /*� ALL_ROWS */ count(*) from
my_objects;

■■ Request the use of an index: SELECT /*� INDEX(t pk_trades) */ count(*) from
trades t;

You must use the string "/*�" to introduce a HINT and "*/" to terminate it. If you
make a mistake with the syntax, the optimizer will ignore it. Also, the optimizer may
decide to ignore the value in any case because it’s only a suggestion. Due to the sheer
number of different types of HINTs, it can be difficult to get the syntax right and set in
the correct position in the query. The Hint Wizard component of SQL Analyze, which

222 Chapter 9

is part of the Oracle9i Enterprise Manager Tuning Pack, contains a GUI to help you add
HINTs. SQL Analyze is highly recommended, but remember that the Tuning Pack is a
separately licensable component.

Stored Outlines
Oracle introduced plan stability features in Oracle8. Plan stability guarantees that your
SQL will always execute using the same plan based on a persistent representation of
the plan stored in the database. The persistent representation, known as a stored outline,
is stored across three tables (OL$, OL$HINTS, and OL$NODES) in the OUTLN
schema. The views USER_OUTLINES and DBA_OUTLINES present the information
from the underlying tables in a user-friendlier format. The following privilege is
required to create outlines, in this case, for the user SCOTT:

grant create any outline to scott;

Outlines can then be created for all statements in a session in named categories or
for individual statements, as shown in the following examples:

REM create stored outlines for all session SQL into the DEFAULT category

alter session set created_stored_outlines=true;

REM created stored outlines for all session SQL into the ALLMYSQL

category

alter session set created_stored_outlines=allmysql;

REM create a named outline onesql

create stored outline onesql on

select count(*) from my_objects;

The OUTLINE_CATEGORY and OUTLINE_SID column in the V$SQL view indi-
cates whether a stored outline was used at execution time. The use of stored outlines
takes place when the cost-based optimizer is used and when the SQL text provided by
an application matches exactly with the SQL text of a stored outline. As a result, the cre-
ation of named outlines requires care to ensure that the statement in the outline
matches whatever is provided by the application. Two settings are required to enable
the use of existing outlines; these can be set databasewide in the init.ora file or at the
session level as follows:

alter session set query_rewrite_enabled=TRUE;

alter session set use_stored_outlines=TRUE;

Stored outlines were originally designed to provide plan stability. However, it’s
clear that the appropriate modifications of stored outlines can change the execution
plan for statements without requiring SQL changes. Here’s an example of how to swap
stored outlines for two statements that return identical results, where one causes a
table scan and the other is fast when using an index provided with a HINT. Following
the change, the slow SQL can execute with the fast plan, provided that outlines are in

Fundamentals of SQL Tuning 223

use. The technique is unsupported because it changes the underlying outline tables
directly, but it works:

REM create outline for slow statement...

create or replace outline slow on

select count(*) from my_objects o;

REM create outline for fast version, using index HINT...

create or replace outline fast

select /*+ index(o pk_my_objects) */ from my_objects o;

REM associate plan for fast version with slow version...

update outln.ol$hints

set ol_name=decode(ol_name,'FAST','SLOW','SLOW','FAST')

where ol_name in ('SLOW','FAST');

REM drop fast version (which now has slow plan)...

drop outline fast;

REM now "select count(*) from my_objects o" can use the index

Oracle has officially recognized the usefulness of this technique, and the Tuning
Pack option of Oracle9i Enterprise Manager includes a GUI to manage and edit stored
outlines—for example, by adding HINTs. The Oracle9i version also enables the effects
of changes to a stored outline to be tested before publishing the plan for global use.

Editing outlines has great potential for improving the performance of some SQL
statements when you don’t have access to the application code. For example, if a third-
party application performs badly, then the stored outline editor is a useful tool for fix-
ing performance without requiring a new application release from the vendor. Figure
9.5 shows the generated outline for the inline view join query earlier in the chapter.

Performance and Cursors

A typical Oracle database application usually executes a limited range of SQL state-
ments many times. For multitier applications, the complete list of SQL ever executed
by the application may be completely determined in advance by the designer. Some-
times these statements differ only in the literal values used in the WHERE clause of
DML statements. For example, the following statements differ only in the literal values
23 and 24:

select * from trades where trade_id=24;

select * from trades where trade_id=34;

The performance of SQL statements can be influenced by factors not related to the
resource consumption of the SQL statement itself, such as how well Oracle can reuse
information from previous executions of the statement. Execution of a SQL statement

224 Chapter 9

TE
AM
FL
Y

Team-Fly®

actually passes through several distinct stages within the DBMS itself. If you only use
a tool like SQL*Plus to execute SQL, these stages are hidden from you. On the other
hand, if you use a low-level Oracle programming interface like Oracle Call Interface
(OCI) or Pro*C, or submit your SQL statements from PL/SQL, you have a high degree
of control over each stage. Whatever Oracle interface you use, information created at
some of the execution stages can potentially be reused on subsequent executions. In
general, the more information you can reuse, the better the performance. Reuse leads
to reduced I/O and CPU requirements, in the same way that caching data blocks in the
block buffer cache can reduce resource requirements for subsequent statements that
require the same data.

This section considers SQL performance in terms of cursor usage and SQL parsing,
and describes how these can be reduced in order to provide more efficient use of hard-

Fundamentals of SQL Tuning 225

Figure 9.5 Outline management using the OEM Tuning Pack.

ware resources for the Oracle instance as whole, leading to better performance. Table
9.11 shows the stages of processing for a SQL query statement executing for the
first time.

NOTE For other DML statements like INSERT, DELETE, and UPDATE, some of
the stages in Table 9.11, such as DESCRIBE, DEFINE, and FETCH don’t apply.

Cursors and the Shared Pool
A cursor is a name, which is also referred to as a handle, for the private SQL area allo-
cated at the parse stage. A private SQL area is an area of memory containing runtime
state information for the query, such as SELECT LIST memory locations, bind variable
locations and values, and the stage that processing has reached in the session running
the query. Although you hear the term cursor often in the Oracle world, it’s helpful to
understand exactly what it means because a comprehensive understanding of cursors
can lead to applications that perform better through the choice of appropriate pro-
grammatic interfaces and cursor management. The maximum number of cursors that
can be opened in a single session at any time is controlled by the OPEN_CURSORS
init.ora parameter.

The shared SQL area contains the parse tree for the statement and the execution
plan. As the name suggests, it has the potential to be reused by other users executing
the same statement against the same objects at a later time. Therefore, if many users
execute the same SQL, each invocation has a separate, private SQL area and a common,
shared SQL area.

226 Chapter 9

Table 9.11 Query Processing Stages

OPERATION PURPOSE

OPEN Allocate memory for data structures.

PARSE Check syntax, generate parse tree, check privileges, and create
execution plan. Allocate private SQL area. Allocate shared SQL
area.

DESCRIBE Return the types and length of query SELECT LIST columns. Only
required for queries provided by an application at run time.

DEFINE Define program memory location, type, and size of variables for
SELECT LIST columns.

BIND Specify the memory location and value of bind variables.

EXECUTE Execute the statement using all of the information provided so far.

FETCH Fetch the results into the DEFINE values.

CLOSE Free up resources and deallocate memory.

You’ll notice that the Purpose column in Table 9.11 doesn’t state who performs the
operation. This is because the choice of programmatic interface determines who per-
forms the operation. For example, if you use PL/SQL or Microsoft’s ActiveX Data
Objects (ADO), those interfaces perform the memory allocation for the DEFINE and
BIND stage. If you use Pro*C or OCI, then the programmer performs those operations.
If you use SQL*Plus as the application for processing, then everything is taken care of
for you. SQL*Plus is simply an OCI program that Oracle provides to abstract the full
complexities of SQL statement execution away from the user. However, SQL*Plus code
needs to manage all the intricacies of DESCRIBE, DEFINE, and BIND so that you, as a
user, don’t have to.

It’s important to highlight that the parse stage is relatively expensive. During pars-
ing, the Oracle server needs to lexically scan and parse a SQL statement to make sure
that it’s syntactically correct. If that SQL is several tens of kilobytes long and contains
several objects, then Oracle needs to read information from the Oracle dictionary to
check that the tables, views, columns, and possibly stored PL/SQL objects used in the
SQL exist and that the caller has appropriate access rights to use them. Once that stage
has completed, memory needs to be allocated to hold the SQL text in the SGA. If the
client accesses the database over a WAN, then the actual cost of simply transmitting a
large SQL statement over the network can be significant.

The next most important point to note is that if the SQL uses bind variables, then
repeated execution of the SQL can take place simply by supplying new values for bind
variables and re-executing. In this case, all of the preceding processing doesn’t need to
be repeated. This is one situation where the microscopic control of cursor allocation in
OCI can provide benefits. If you are writing a three-tier application, where all the SQL
that needs to run is fixed within the middle tier, cursors can be opened only once for
the lifetime of the session. All subsequent executions need to provide values for bind
variables. In this case, SQL execution becomes a matter of sending bind variables from
the middleware to the Oracle server and returning the results using simple remote pro-
cedure calls. This approach minimizes the number of cursors required, memory usage
on the server, and network traffic.

The shared SQL areas have to be stored in the SGA. The location of private SQL
areas depends on the type of connection. If the connection uses a dedicated server con-
nection, the private SQL area is located in the shadow process for the session. If the
connection uses a shared server, some of the private SQL area information is located in
the SGA.

The resources required to parse SQL include Oracle metadata information held in
the Oracle dictionary, which might require physical I/O to fetch. Oracle caches both
types of information in the shared pool. The shared pool is the area of the SGA that
contains the dictionary cache and library cache. The dictionary cache stores reference
data for the Oracle data dictionary, such as object privileges, user privileges, and meta-
data descriptions of objects including column descriptions. Some of this information is
required by Oracle when parsing SQL statements, so it makes sense for Oracle to cache
this information in memory to avoid rereading it from the SYSTEM tablespace. The
library cache stores parse and compile information about recently executed SQL and
PL/SQL statements.

As the amount of memory required to hold all the necessary information may exceed
the memory available in the shared pool, Oracle uses a least recently used (LRU) algo-

Fundamentals of SQL Tuning 227

rithm to age objects out of the shared pool when space is required for current requests.
At times of space shortage, dictionary cache information takes precedence over library
cache information. The following SQL shows the breakdown of the SGA shared pool
memory into some of the categories related to the library cache and dictionary cache:

select /*+ RULE */ * from v$sgastat;

POOL NAME BYTES

------------ -------------------------- ----------

shared pool free memory 16869732

shared pool trigger source 848

shared pool table columns 18052

shared pool dictionary cache 221984

shared pool sql area 1149416

It’s very important to emphasize that a large value for free memory in this case is not
actually a good thing because it implies that too much memory has been allocated to
the shared pool and that memory is left unused. Once memory is allocated to the
shared pool, it can’t be used by anything else, and if it remains unused, it’s wasted. The
goal should be for the shared pool to be sized appropriately to cache as much infor-
mation as possible without needing to age objects out of the cache too frequently. If an
application makes an execute call for a SQL statement whose execute-state information
has been aged out of the library cache to make room for another statement, then Ora-
cle implicitly needs to reparse and create a new shared SQL area for the statement
before execution. As shown earlier, parsing should be kept to a minimum for perfor-
mance reasons.

It’s important to emphasize the difference between a soft parse and hard parse. A
hard parse occurs when the parsing stage of a statement needs to start from scratch,
including checking the syntax and privileges. The failure to find a parsed representa-
tion of a statement in the library cache during the parse stage (which results in the hard
parse) is referred to as a library cache miss. Library cache misses can occur at both the
parse and execute stage of SQL processing. If information for a statement exists in the
library cache in a shared SQL area, the existing parse tree and execution plan can be
reused. This is a soft parse. The following SQL statements show how to identify the
number of total parse requests and hard parse requests from the system and session
statistics:

REM system parse statistics...

select name,value

from v$sysstat

where name in ('parse count (total)','parse count (hard)');

NAME VALUE

-------------------- ---------

parse count (total) 42976921

parse count (hard) 11145360

228 Chapter 9

REM session parse statistics...

select s.sid,n.name,s.value

from v$sesstat s,v$statname n

where n.name in ('parse count (total)','parse count (hard)')

and s.statistic# = n.statistic#;

The precise memory allocation and execution count for all objects in the shared pool
can be shown using the following SQL:

select owner, sharable_mem shr_mem, type, kept, executions exec, name

from v$db_object_cache;

OWNER SHMEM TYPE KEPT EXEC NAME

------- ------- --------- ------ ------ ---------------------------

SYS 7516 LIBRARY NO 0 DBMS_SPACE_ADMIN_LIB

9900 CURSOR NO 2 SELECT PL FROM HD WHERE TX=12356

8345 CURSOR NO 2 SELECT PL FROM HD WHERE TX=94567

SYS 2484 TABLE YES 0 OBJ$

For cases where the shared pool is sized too small to meet the current space require-
ments, an ORA-04031 error results. The SQL statement ALTER SYSTEM FLUSH
SHARED_POOL can be used by the database administrator (DBA) at any time in order
to flush objects that aren’t currently used from the shared pool. This should only be used
in an emergency because statements that were cached previously will require a hard
parse upon the next execution, possibly causing a noticeable degradation in response
time. To avoid the fragmentation caused when frequently used objects are aged out of
and reloaded into the shared pool, the DBMS_SHARED_POOL.KEEP procedure can be
used to pin objects into the shared pool, as shown in the following example. Note that
cursors can also be pinned if required. Cursor pinning is useful if the same statement is
being executed very frequently, and reduces CPU usage. The following trigger pins the
SP_INDEX_REBUILD package into the shared pool at database startup time, and the
SQL that follows shows all of the pinned objects in the SGA object cache:

create or replace trigger tr_pin_plsql

after startup on database

begin

sys.dbms_shared_pool.keep('SYS.SP_INDEX_REBUILD','P');

end;

/

REM This SQL shows objects pinned in the shared pool...

select /*+ RULE */ owner, sharable_mem shr_mem, type, kept , loads,

executions exec, name

from v$db_object_cache where kept='YES';

OWNER SHR_MEM TYPE KEPT LOADS EXEC NAME

------- --------- ---------- ------ ------- ------ -----------------

SYS 23192 PROCEDURE YES 4 4 SP_INDEX_REBUILD

Fundamentals of SQL Tuning 229

It’s possible for memory used in the shared pool to be close to the limit without
resulting in an ORA-04031 error. This is manifested by large numbers of objects being
aged out of the cache in a short period of time. The following SQL, run as SYS, can be
used to show the size of requests and the number of objects aged out of the cache in
order to satisfy current requests:

select KSMLRCOM,KSMLRSIZ,KSMLRNUM,KSMLRHON from x$ksmlru;

KSMLRCOM KSMLRSIZ KSMLRNUM KSMLRHON

------------------ --------- -------- -------------------------------

kafco : qkacol 4116 8 SELECT /*+NESTED_TABLE_GET_R . . .

BAMIMA: Bam Buffer 4132 1592 SELECT "A1"."OWNER"||'.'||"A . . .

ckydef : kkdlcky 236 8 SELECT Transaction_Num, XTR_ . . .

qsmksol : qsmg_all 244 8 SELECT Transaction_Num, XTR_ . . .

frodef : prstnm 444 8 SELECT Transaction_Num, XTR_ . . .

Results are displayed only once and don’t persist. So, for a system where an insignif-
icant aging-out activity is occurring, you would expect the output to be empty on the
second execution a few seconds after the first. For a system where shared pool memory
thrashing is taking place due to the need to continually find space for large-sized
requests, you would expect to see new entries appearing every few seconds with large
values for the KSMLRSIZ and KSMLRNUM columns.

Reducing Parse Calls by SQL Sharing
on the Server
Based on the information in the previous sections, the optimal approach for the best
performance of any programmatic interface is to share as much information as possi-
ble between all sessions to avoid hard parsing and make the best use of available mem-
ory in the SGA. These two requirements are very closely related and can be controlled
in different ways. One way to reduce hard parsing is to write code so that the SQL can
be shared in the Oracle server.

When a session submits a SQL statement to the server for execution, Oracle first
checks whether a shared SQL representation of the statement already exists in the
shared pool so that the parse tree and execution plan can be reused. This sharing takes
place independently of the programmatic interface being used, but requires statements
to be written in a way that takes advantage of it. Statements must be identical (includ-
ing whitespace) to enable sharing. The previous output from v$db_object_cache con-
tains the following two statements, which have the potential to be shared:

OWNER SHMEM TYPE KEPT EXEC NAME

----- ----- --------- ------ ------ --------------------------------

9900 CURSOR NO 2 SELECT PL FROM HD WHERE TX=12356

8345 CURSOR NO 2 SELECT PL FROM HD WHERE TX=94567

Various Oracle data dictionary tables contain information that can be used to iden-
tify statements that could potentially be shared by replacing hard-coded values in
the WHERE clause with bind variables. These include V$SQLAREA and V$OPEN_

230 Chapter 9

CURSOR. Queries on these tables can be quite expensive. DbCool enables you to query
these tables and then sort the results afterwards on the client as required. This avoids
the need to repeat queries on the dictionary in order to sort the output in a different
order. Both of the previous statements can be replaced with a single statement using a
bind variable, although it should be emphasized that the application needs to be
recoded to provide the TX value at run time:

SELECT PL FROM HD WHERE TX=:transaction_id

Keep in mind that there is a risk and effort required to make any kind of application
change, so the cost and benefits of changes need to be carefully considered. The best
approach is to build awareness of such issues into standard programming practices so
that developers take the best approach at design time when it’s less expensive.

You should also be aware that Oracle generates a query plan at parse time before
bind values are known. In order for the Oracle cost-based optimizer to choose the
lowest-cost execution plan for tables where data distributions are skewed in some of
the columns, the actual column values are required at parse time. Using bind variables
instead loses this information, which might result in a degradation of performance for
some SQL due to the generation of an execution plan that is nonoptimal.

For statements that are identical except for the values used in the WHERE clause,
Oracle provides cursor-sharing features within the Oracle server to allow you to share
SQL without requiring application changes. You should consider cursor sharing exclu-
sively in situations where many statements differ only in the values of literals in the
WHERE clause, many library cache misses are evident, and those misses are degrading
performance. Cursor sharing has no effect on SQL statements in PL/SQL.

The use of cursor sharing has a slight overhead compared to a regular soft parse
because Oracle needs to transform the original statement containing the literal values
into one containing bind variables. Cursor sharing can be set systemwide using
CURSOR_SHARING�SIMILAR or CURSOR_SHARING�FORCE in the init.ora file.
It’s probably safer to set the value on a per-session basis as required in order to avoid
unwanted side effects, for example, using the following:

ALTER SESSION SET CURSOR_SHARING=SIMILAR;

The FORCE option forces similar SQL to share an existing plan, even if it involves
the generation of a suboptimal plan, and should be used with the greatest care. In
Oracle8i, only the FORCE option is available. The result of executing similar state-
ments in Oracle9i using SIMILAR cursor sharing is shown in the following example:

REM run two statements differing in literal values...

select * from emp where empno=7521;

select * from emp where empno=7369;

REM check the object cache to show the shared cursor which

REM contains the literal values replaced with a generated bind value

select name,executions

from v$db_object_cache

where name like 'select * from emp%';

Fundamentals of SQL Tuning 231

NAME EXECUTIONS

--- ------------

select * from emp where empno=:"SYS_B_0" 2

The shared SQL area is invalidated after any change to any object in the SQL state-
ment or after the ANALYZE command has been used to modify the statistics of any
object used in the SQL. In both cases, the statement will be reparsed on the next execu-
tion. The use of ALTER SYSTEM FLUSH SHARED_POOL has the same effect. Modi-
fying a database’s global name causes the shared pool to be flushed. Even shared SQL
areas related to open cursors could be flushed if the LRU algorithm determines that the
cursor hasn’t been used for some time. Once again, the reparse and creation of a new
shared SQL area takes place on the next execution.

Using Cursor Variables
One of the many benefits of PL/SQL is that it enables the developer to encapsulate
DML statements in packages so that the implementation is hidden from the client
application. In addition to providing benefits in terms of reducing network traffic, this
enables the server implementation to change without affecting the client, provided that
the external interface of the package remains unchanged. This clear separation of the
client and server code enables much easier development.

Although most client applications take advantage of server-side PL/SQL packages,
they often contain embedded SQL statements. As a result, changes to the SQL require
application changes along with all the hard work and risk that this process entails. Ora-
cle provides cursor variables through the REF CURSOR type to allow server-side pro-
cedures to return result sets in order to enable SQL statements to be encapsulated on
the server. Executing SELECT statements through cursor references can have several
potential benefits for your client application:

■■ The details of the SQL are hidden from the caller.

■■ The SQL is already parsed on the server and ready to run.

■■ Network traffic is minimized.

■■ Hints can be added to SELECT without changing the calling code.

■■ Statements can be parameterized.

In programming terms, the client application needs to perform an extra execute
operation in order to open the cursor reference returned before results can be fetched.
This is performed in similar ways, regardless of the client language. This section con-
tains an example using ADO to show how easy it is to use cursor references. For a long
time, it wasn’t possible to return Oracle result sets into a Visual Basic application and
this was a major drawback for Oracle compared to Microsoft SQL Server. Thankfully,
that hasn’t applied for quite a while now.

Once you start using cursor references in your code, you should find that perfor-
mance improves and that the application is easier to maintain. All queries become a
result set rather than a SQL statement as far as the client is concerned. In order to return
a result set, a package needs to contain a procedure with an OUT variable of type REF
CURSOR, as shown in the following example:

232 Chapter 9

create or replace package mycursor as

type t_cursor is ref cursor;

procedure myobjects(p_cursor out t_cursor,

p_name in varchar2);

end mycursor;

create or replace package body mycursor as

procedure myobjects(p_cursor out t_cursor,

p_name in varchar2) is

begin

OPEN p_cursor FOR

select object_name,created from all_objects

where object_name like p_name and rownum <=3;

end myobjects;

end mycursor;

There’s no reason why a package can’t return more than one cursor variable and
therefore execute multiple SQL statements within the server from a single call from the
client. This is actually more efficient in terms of reducing network traffic. In order to
return the result set in the example, the programmatic interface needs to open the
returned reference and fetch the results. Depending on the interface, the open opera-
tion is either explicitly performed by the programmer or managed by the interface. At
the OCI level, once the cursor is opened, fetching takes place in exactly the same way
as it does for a regular SQL SELECT statement.

Displaying a Result Set with SQL*Plus

It’s possible to display the result set for a cursor variable in SQL*Plus. The following
example uses the MYCURSOR package created previously and passes in a parameter
to return the first three user objects beginning with the letter E:

SQL> variable c1 refcursor

SQL> exec mycursor.myobjects(p_name=>'E%',p_cursor=>:c1);

SQL> print c1

OBJECT_NAME CREATED

------------------------------ ---------

ERROR$ 14-AUG-01

ERROR_SIZE 14-AUG-01

EXISTSNODE 14-AUG-01

Fundamentals of SQL Tuning 233

In this case, SQL*Plus knows that C1 is a cursor variable because it is explicitly
stated in the VARIABLE C1 statement. The PRINT command can be used to open the
cursor and return the results. In SQL*Plus, the actions required to return a result set
from a stored procedure are very different from those required to execute a SELECT
statement, although both have the same end result.

Displaying a Result Set with ADO

By using ADO and Oracle’s OLE DB provider for ODBC, result sets can be returned
more easily. With ADO, the provider detects that the package procedure returns a vari-
able of type REF CURSOR by querying the Oracle data dictionary first and opens the
returned cursor automatically. The following Visual Basic subroutine includes a com-
plete, self-contained example of how to populate an Oracle result set into a Microsoft
grid control:

Sub ResultSetToGrid()

Dim conOra As New ADODB.Connection

Dim rsOra As New ADODB.Recordset

Dim cmdOra As New ADODB.Command

Dim prmObject As New ADODB.Parameter

conOra.ConnectionString = "DSN=prod1;UID=system;PWD=manager;"

conOra.Open

cmdOra.ActiveConnection = conOra

cmdOra.CommandText = "{ CALL mycursor.myobjects(?) }"

' create a parameter to hold the object_name value...

Set prmObject = cmdOra.CreateParameter(Type:=adVarChar, _

Direction:=adParamInput, _

Size:=30, _

Value:="E%")

cmdOra.Parameters.Append prmObject

Set rsOra = cmdOra.Execute ' execute the stored procedure

' send result set to the grid

Set Me.MSHFlexGrid1.DataSource = rsOra

End Sub

There are several points to note in this code. The call to the package procedure uses
the escape syntax {} for specifying database vendor-specific functionality. This is
required because ODBC doesn’t recognize Oracle’s PACKAGE.PROCEDURE nota-
tion. ODBC assumes that names of the form X.Y refer to OWNER.OBJECT. To circum-
vent this, many ODBC drivers require that you create a procedural wrapper around a
package procedure. This means that you should choose an ODBC driver at the outset

234 Chapter 9

TE
AM
FL
Y

Team-Fly®

of a project because different drivers handle Oracle-specific functionality differently,
and if you try to change a driver midway through a project, your application will prob-
ably break. Not surprisingly, Oracle’s driver is the best for interfacing with an Oracle
database.

The next point to note is that only one parameter is supplied, even though the pro-
cedure requires a REF CURSOR variable as well. ADO simplifies the process because
Oracle’s OLE DB provider detects that the other variable is a cursor variable and
processes it for you under the covers. This is a nice improvement compared to
SQL*Plus and other interfaces, which require you to process the cursor explicitly. A
server trace of the session shows that the following SQL is actually parsed by the
server, clearly showing the existence of the cursor variable, even though it wasn’t set in
the client code:

BEGIN MYCURSOR.MYOBJECTS(:P_CURSOR,:1); END;

Populating the grid is as simple as assigning the ADO result set to the grid Data-
Source. If you actually run this example, you’ll find that the column data overflows the
grid columns, so you need to resize the columns manually to see the complete
contents.

Tuning SQL for the Network

For the majority of GUI applications based on an Oracle server and connected over a
local area network (LAN), most of the time for any SQL statement is spent on process-
ing within the DBMS server. However, in some cases the performance of components
in your GUI application can affect response time. For example, if your application
needs to display thousands of rows in a grid on the client, then the time to render the
grid can be significant compared to the time spent processing a query on the server. In
this case, a GUI application designer might question the usability of an application that
needs to display thousands of rows. The exact version of the ODBC driver that you
choose to access the server usually doesn’t matter. If your client and server compo-
nents are connected across a wide area network (WAN), then the network latency can
become a factor in client application responsiveness. In this case, it’s necessary for the
client application to try to batch up requests in order to minimize the number of
roundtrips to the server.

Using Bulk Operations in PL/SQL
Oracle8i introduced the BULK COLLECT feature to enable array operations to be per-
formed in PL/SQL for the first time. Although PL/SQL runs in the database server,
when PL/SQL code contains references to a database link, the code block acts as a
client application for the remote database referenced in the link. This is a suitable envi-
ronment to demonstrate the potential for many more performance improvements due
to a reduction in network roundtrips for applications that are constrained by network
performance. Table 9.12 shows a complete code example that is used to test the BULK

Fundamentals of SQL Tuning 235

COLLECT performance compared to standard code across an international WAN link
with a 400-millisecond latency.

In each case, 1,000 rows are selected from the DBA_OBJECTS table at the remote
database. In the BULK COLLECT code, the LIMIT ROWS qualifier on the FETCH is
used to request that rows be returned in batches of 1,000 into the table variables based
on the ROWS variable setting. This ensures that the network packets passed from the
remote server are completely filled with rows. In the standard case, each row is sent
from the remote server in a separate network packet because standard scalar variables
rather than tables are used to request the results. You can see this by comparing the def-
initions of L_OO and L_ON in each case. If necessary, you can view the network pack-
ets using the techniques in Chapter 28.

Table 9.13 shows session statistics for the categories of interest in each case. The Sta-
tistics (Choose Session) option from the Monitoring menu of DbCool was used to col-
lect the statistics.

It’s interesting to compare the amount of network traffic sent back to the client from
the database link compared to the actual size of the data in the result set. The result set
consists of the OWNER and OBJECT_NAME columns in the DBA_TABLES view. The

236 Chapter 9

Table 9.12 PL/SQL BULK COLLECT Benchmark Code

BULK COLLECT CODE STANDARD CODE
declare declare

type t_oo is table

of dba_objects.owner%type;

type t_on is table

of all_objects.object_name%type;

l_oo t_oo; l_oo dba_objects.owner%type;

l_on t_on; l_on dba_objects.object_name%type;

cursor c1 is select cursor c1 is select

owner,object_name owner,object_name

from dba_objects@d1.jp.dbcool.com from dba_objects@d1.jp.dbcool.com

where rownum <=1000; where rownum <=1000;

rows natural :=1000;

begin begin

open c1; open c1;

loop loop

fetch c1 bulk collect fetch c1

into l_oo,l_on limit rows; into l_oo,l_on;

exit when c1%notfound; exit when c1%notfound;

end loop; end loop;

close c1; close c1;

end; end;

/ /

raw length of column data that needs to be transferred over the link can be obtained
using the following SQL:

select sum(length(owner)),sum(length(object_name))

from dba_objects@d1.jp.dbcool.com

where rownum <=1000;

SUM(LENGTH(OWNER)) SUM(LENGTH(OBJECT_NAME))

-------------------- --------------------------

3000 14485

In this example, the raw data in the result set is approximately 17KB. You would
expect the data returned via the database link to be larger than this because of the vari-
ous headers on the network packets, but the scale of the overhead can be compared in
each case. The results table shows the massive network overhead resulting from fetch-
ing rows one at a time across the network compared to performing the same operation
using bulk arrays. What’s perhaps most striking is the amount of data that needs to be
sent via the database link to the remote server in order to request the next row for the
standard case. The elapsed time to complete the operation shows a very close correla-
tion with the number of network roundtrips. Therefore, any techniques that can be used
to batch up requests and reduce network roundtrips are likely to improve performance.

As a general rule, Oracle operations work faster when arrays are used to process
multiple rows together in bulk rather than a single row at a time. For DML operations,
PL/SQL includes the FORALL operation to enable arrays rather than scalar values to
be used for inserts.

Defining Server Memory Requirements

It should be clear from the preceding discussions in this chapter that the availability of
Oracle data blocks in the Oracle block buffer cache and cursors in the shared pool can
improve SQL performance. The existence of previously accessed data and metadata
from cache memory avoids the overhead of data and metadata access from disk. A key
DBA design decision is therefore the sizing of these caches. The goal is to set the cache

Fundamentals of SQL Tuning 237

Table 9.13 PL/SQL BULK COLLECT versus Scalar Performance

BULK
STATISTICS COLLECT STANDARD

bytes received via SQL*Net from dblink 25115 226562

bytes sent via SQL*Net to dblink 792 177330

SQL*Net roundtrips to/from dblink 9 2013

Elapsed Seconds 4 750

sizes sufficiently large so that the effects of data reuse will provide maximum benefit
without oversizing them so that memory is wasted. The caches include:

■■ The block buffer cache (including the KEEP pool and RECYCLE pool)
■■ The shared pool
■■ The java pool (for systems using Oracle’s Java virtual machine)

For some applications where initial memory requirements were undersized,
increasing the cache sizes will continue to increase performance up to a point. How-
ever, because physical memory is a finite server resource, excessive memory paging
will cause performance of all processes on the server to degrade at the point where the
total memory required approaches the physical memory available. Excessive paging
can be identified using the UNIX vmstat command, as shown in Chapter 28.

While Oracle9i provides increased flexibility to allow the cache settings to be
changed dynamically, the DBA continues to have responsibility for setting the total
maximum size available to the various caches through the SGA_MAX_SIZE initializa-
tion parameter.

As well as the caches, Oracle needs to allocate private session memory for work
areas that are used to perform sorting, hashing, bitmap creation and merging, and
other operations for a user session. For dedicated server environments, this memory is
allocated from the Program Global Area (PGA), which is a private memory region con-
taining data and control information for each server process. For shared server envi-
ronments, this memory is allocated from another pool in the SGA controlled by the
setting of the LARGE_POOL_SIZE initialization parameter. The large pool is also used
by shared server systems for allocation of message buffers for parallel execution when
PARALLEL_AUTOMATIC_TUNING is set to TRUE. Dedicated and shared server
configurations are covered in Chapter 3.

The choice of appropriate cache sizes and memory allocation for PGAs to make best
use of the available server memory is an iterative process. Oracle has recognized this
through the provision of Advisories for sizing the block buffer cache, shared pool, and
the aggregate target memory size of all PGAs for dedicated server sessions. The Advi-
sories for the buffer cache and shared cache are intended to answer questions like
“how many more cache hits would be achieved if the cache was twice as big” or
“would reducing the cache size by 30 percent cause a significant reduction in cache
hits?” The effects on performance predicted by the Advisories are contained in the fol-
lowing views, and the information can be used to iteratively modify the values:

REM new for Oracle9i

select * from v$db_cache_advice;

REM these two are new for Oracle9i Release 2

select * from v$pga_target_advice;

select * from v$shared_pool_advice;

The population of V$DB_CACHE_ADVICE requires that the DB_CACHE_ADVICE
parameter is enabled as follows:

alter system set db_cache_advice = on;

238 Chapter 9

Memory allocation in the PGA prior to Oracle9i was controlled through the use of
database initialization parameters such as SORT_AREA_SIZE. To enable automatic
management of PGA memory in Oracle9i, you need to set the initialization parameter
PGA_AGGREGATE_TARGET to a target value for the total amount of PGA memory
available to all dedicated server sessions in the instance. Once enabled, Oracle takes
over management of all parameters named type_AREA_SIZE (such as SORT_AREA_
SIZE) for each user session that connects via a dedicated server connection, and the
original parameter settings are ignored. The views V$SQL_WORKAREA and V$PGA_
STATS contain detailed information to help determine the aggregate size required to
ensure that work areas for cursors make best use of available memory.

NOTE Through integration with OEM in Oracle9i Release 2, it’s possible to
modify database initialization parameters directly from information provided by
the Advisories.

Summary

Tuning SQL requires a continuous emphasis on the measurement of Oracle statistics
and events for each statement executed beginning at the start of the development
cycle. This measurement can be performed using SQL Analyze in the OEM Tuning
Pack, which is a separately licensable option. DbCool is a free tool that provides sev-
eral of the same functions.

In general, reductions in logical and physical I/O lead to reductions in elapsed time
for SQL execution. Physical I/O takes orders of magnitude longer than logical I/O,
and it’s important to be able to detect full table scans, which can cause excessive I/O.
The Oracle buffer cache can be tuned to reduce physical I/O by caching hot data in
memory for as long as possible.

In cases where table scans are unavoidable, the use of parallel query options can be
used to execute a DML statement across multiple CPUs simultaneously to reduce
elapsed time. Parallel query must be used with care because SQL statements intended
for parallel execution may be serialized transparently if insufficient CPU resource is
available at execution time. The alternative option, to abort parallel SQL when the
required CPU resource is not available, is not especially attractive either. The solution
is to use Oracle’s automatic parallel tuning capabilities.

During development, several techniques are available for tuning SQL including
rewriting the SQL embedding HINTs. Rewriting SQL usually shows the most dramatic
improvements in performance. For production systems, the scope of SQL tuning is
usually limited to changes that don’t involve changing the SQL. The use of stored out-
lines and the Stored Outline Manager and Editor in Oracle9i Enterprise Manager make
it possible to modify DML statement execution plans (for example, to include HINTs)
without changing the SQL.

Identification of resource-intensive SQL is made easier than ever before in Oracle9i.
For the first time, it’s possible to view the actual plan that was used to execute any SQL
statement that’s present in the shared pool, and view detailed information on the per-
formance of cursors. Oracle9i Release 2 takes tuning capabilities to a new level by

Fundamentals of SQL Tuning 239

including features to present detailed performance information at each stage in a DML
execution plan, and I/O access statistics for individual segments.

Memory sizing for database caches and PGAs is critical for optimal SQL perfor-
mance. Oracle9i provides Advisories to help predict the effects of different cache sizes
on performance, and Oracle9i Release 2 takes things a step further by allowing infor-
mation produced by the Advisories to modify database cache sizes directly, through
integration with OEM.

240 Chapter 9

241

The Oracle optimizer determines the most efficient way to execute a Structured Query
Language (SQL) statement and generates a query execution plan during the early
stages of Data Manipulation Language (DML) processing. The query execution plan
determines which data is accessed, the order it is accessed, and how it is processed.
Because SQL is a declarative language, there are many ways that Oracle could process
the underlying data to produce the same results. Chapter 9 gave an overview of how
the designer can specify the Oracle optimizer mode, which the optimizer uses when
generating an execution plan.

Assuming that the cost-based optimizer is used, and this is strongly recommended
by Oracle, then the plan chosen relies heavily on the availability of accurate statistics
on the tables, columns, and indexes used in the query. In order to make best use of sta-
tistics, it’s important to understand the statistics available and where to find their val-
ues in the data dictionary. For column statistics, an appreciation of data skew—and
how to identify it—is required to avoid generation of nonoptimal plans.

The collection of statistics can be performed in two different ways. Traditionally, the
ANALYZE method has been used for statistics collection. The DBMS_STATS package
represents a different approach, and it’s important to understand how the two differ
and to be aware of the extensive enhancements to DBMS_STATS in Oracle9i. As well as
enhancements to DBMS_STATS, a new approach to optimization is introduced in Ora-
cle9i based on the system central processing unit (CPU) and input/output (I/O) statis-
tics collected during execution to enable plans to adapt dynamically to resource usage
patterns. Whatever approach for collection is used, considerable host resources are
usually required, and it pays to be aware of techniques for migrating and restoring pre-
viously captured statistics to ensure that previous efforts can be reused.

Collecting and Using
Optimizer Statistics

C H A P T E R

10

This chapter covers the following topics:

■■ Basic table and index statistics

■■ Column statistics and skewed data

■■ The ANALYZE command

■■ Statistics collection with DBMS_STATS

■■ System statistics in Oracle9i

■■ Statistics tables

Basic Table and Index Statistics

The cost-based optimizer uses any available table and index statistics during the gen-
eration of an execution plan for a DML statement. Basic table and index statistics can
be viewed through DBA_TABLES and DBA_INDEXES. Other views are used to hold
information at the partition level and column statistics. Table 10.1 shows columns in
DBA_TABLES that hold statistical information collected by either the ANALYZE com-
mand or the DBMS_STATS package.

Standard indexes are stored in a data structure called a B*tree. A B*tree index has
two different types of blocks: data blocks and leaf blocks. Leaf blocks contain ROWID
values that indicate real table rows that the index points to. Data blocks hold index
structure information on ranges of key values that are searched by index lookups to
identify leaf blocks that hold ROWID values. Table 10.2 shows columns in DBA_
INDEXES that hold statistical information on indexes.

Note that for indexes that are used to implement UNIQUE and PRIMARY KEY con-
straints, AVG_LEAF_BLOCKS_PER_KEY is always 1, and the DISTINCT_KEYS value
is equal to the NUM_ROWS value in DBA_TABLES. Higher values of CLUSTER-
ING_FACTOR mean the optimizer is less likely to choose to use that index when gen-
erating a plan. When the ANALYZE command is used to collect statistics, the BLOCKS
and EMPTY_BLOCKS table statistics and the BLEVEL index statistic are always calcu-
lated exactly.

242 Chapter 10

Table 10.1 Columns in DBA_TABLES Holding Statistics

COLUMN NAME MEANING

NUM_ROWS Number of table rows, often referred to as cardinality

BLOCKS Number of used data blocks in the table (blocks that
ever held data)

EMPTY_BLOCKS Number of empty blocks (blocks that never held data)

AVG_ROW_LEN Average length of a row in bytes

Column Statistics and Data Skew

In order to determine whether to use an index lookup in the query plan for a DML
statement containing a WHERE clause, the cost-based optimizer can use any available
statistics on columns referenced in the predicate. The column needs to be referenced
using an equality, range, or like operator. The statistics are collected during a standard
table ANALYZE command. Available columns statistics can be displayed as follows:

select column_name,num_distinct,density

from dba_tab_columns where table_name='table';

The availability of additional column value information related to frequency distri-
butions is likely to lead to better execution plans, especially when the distribution of
values is skewed. This extra frequency information is held in a histogram. A simple
example can be used to demonstrate skewed data and how it can lead to nonoptimal
execution plans unless column histogram statistics are present. This example requires
a table, MY_OBJECTS, with an index, I0_MY_OBJECTS, created as follows:

REM use PCTFREE 99 to spread the table across a few thousand blocks

create table my_objects tablespace tools pctfree 99 pctused 1

as select * from dba_objects where rownum <=5000;

create index i0_my_objects on my_objects(object_id) tablespace tools;

analyze table my_objects compute statistics;

Collecting and Using Optimizer Statistics 243

Table 10.2 Columns in DBA_INDEXES Holding Statistics

COLUMN NAME MEANING

BLEVEL Number of blocks traversed from the root node of
the B*tree to a leaf node

LEAF_BLOCKS Number of leaf blocks in the tree

DISTINCT_KEYS Number of distinct combinations of the index
columns

AVG_LEAF_BLOCKS_PER_KEY Average number of leaf blocks in which each
distinct value in the index appears

AVG_DATA_BLOCKS_PER_KEY Rounded average number of data blocks in the
table that are pointed to by a distinct value in the
index

CLUSTERING_FACTOR A measure of the likelihood that rows in the same
leaf block point to rows in the same table block

In the table MY_OBJECTS, the average number of rows per key in the index can be
shown using the following SQL:

select avg(rows_per_key),stddev(rows_per_key) from

(

select count(*) rows_per_key from my_objects

group by object_id

);

AVG(ROWS_PER_KEY) STDDEV(ROWS_PER_KEY)

------------------- ----------------------

1 0

In this example, the average number of rows per key is 1. The standard deviation
function STDDEV is a measure of fluctuations in the average value of rows per key and
is a mathematical measure of data skew. Every key value occurs once in this case
because there is no data skew. As a result, the standard deviation is 0 because every key
value occurs the same number of times. Data skew can be introduced into
MY_OBJECTS as follows, by setting 4,500 of the 5,000 rows in the table to have the
same value:

update my_objects set object_id=0 where rownum <=4500;

Rerunning the previous SQL to display the distribution of the OBJECT_ID values
now gives different results:

AVG(ROWS_PER_KEY) STDDEV(ROWS_PER_KEY)

------------------- ----------------------

34.7 404.7

The average number of rows per key is now 34.7. However, the standard deviation
of rows per key has a high value relative to the average number of rows per key. This
is clear evidence of skewed data because the average value of rows per key contains
signification fluctuations, caused in this case because one key value (0) occurs 4,500
times. Without the standard deviation (that is, without a measure of the distribution of
the key values), there’s no evidence of a problem. Note that the previous query using
STDDEV can be modified to show the skew in any set of columns by replacing GROUP
BY OBJECT_ID with the list of columns to investigate. The effect of data skew on a
query execution plan can be disastrous. The following SQL statements both generate
the same query execution plan (shown after the SQL) because the optimizer has no
knowledge that the data is skewed at this stage:

select count(object_type) from my_objects where object_id=100;

select count(object_type) from my_objects where object_id=0;

REM... plan for both queries:

Execution Plan

244 Chapter 10

TE
AM
FL
Y

Team-Fly®

SELECT STATEMENT Optimizer=CHOOSE (Cost=3 Card=1 Bytes=8)

SORT (AGGREGATE)

TABLE ACCESS (BY INDEX ROWID) OF 'MY_OBJECTS'

INDEX (RANGE SCAN) OF 'I0_MY_OBJECTS' (NON-UNIQUE)

Based on the available statistics, the optimizer decides that on average, each key will
return around 35 rows. As a result, the most efficient way to execute both queries is to
look up the OBJECT_ID in the index, and then use the ROWID values in the index
blocks to locate the rows for that OBJECT_ID in the table. Of course, that’s fine when
OBJECT_ID is 100. In this case, only three block reads are required to execute the query.

When OBJECT_ID is 0, that’s definitely not the case. It’s actually considerably more
efficient to execute the query by a scan of MY_OBJECTS because the index-based plan
actually requires nearly all the table blocks and index blocks to be read. This results in
a higher cost and a longer elapsed execution time compared to a table scan, which
needs to read the table blocks only. The optimizer can only make decisions based on
the available information, and as things stand, there is no evidence of data skew avail-
able in the statistics held in the data dictionary.

The solution to this problem is to create a histogram of the distribution of occur-
rences of OBJECT_ID values so the optimizer can determine whether the OBJECT_ID
provided in the SQL has a skewed distribution. Information on histograms can be
found in DBA_HISTOGRAMS. In this case, the following ANALYZE commands can
be used to create the histogram:

analyze table my_objects compute statistics for columns object_id;

analyze table my_objects compute statistics for all indexed columns;

The ALL INDEXED COLUMNS option generates distribution information for all
indexed columns in a table, based on the reasonable assumption that columns used in
a simple WHERE clause are likely to be indexed in order to provide faster access paths
to the data. As a result, the availability of histograms on those columns is likely to lead
to the generation of more suitable execution plans. One of the problems when creating
histograms is to determine when they are appropriate. Oracle9i provides additional
features to enable the database management system (DBMS) rather than the user to
determine columns that would benefit from histograms, through DBMS_STATS using
the AUTO and SKEWONLY options discussed later in the chapter. These new options
represent a major step forward in the design of the optimizer and another reason to use
DBMS_STATS in preference to ANALYZE.

It must be emphasized that the use of bind variables rather than literal values in the
WHERE clause of a DML statement prevents histograms from being used. With a lit-
eral value, the optimizer can compare the supplied value with the data distribution in
the histogram at parse time and generate a plan based on the value. With a bind vari-
able, the actual value is supplied at execution time after the plan has already been gen-
erated. This issue is covered in more detail in Chapter 9, including a discussion of the
CURSOR_SHARING initialization parameter, which enables the Oracle DBMS to
transform end-user SQL containing literals into queries using bind variables automat-
ically. In general, the use of bind variables increases the possibilities for sharing cursors
in the shared SQL area and is a good idea. If this results in suboptimal plans being

Collecting and Using Optimizer Statistics 245

generated because the optimizer requires literal values to take advantage of his-
tograms when data is skewed, then bind variables are a bad idea.

The ANALYZE Command

In the past, the ANALYZE command was used to generate statistics for cost-based
optimization. However, Oracle no longer recommends the use of ANALYZE and
instead recommends the use of the DBMS_STATS package. From a performance per-
spective, a major drawback of ANALYZE is that it always runs serially. DBMS_STATS,
on the other hand, has the capability to run a parallel query to gather statistics on a
table using a specified degree of parallelism. If parallelism isn’t available, a serial
query of the ANALYZE statement is used instead. Parallel ANALYZE only applies to
tables and not indexes. This is an example of a simple analyze command that generates
statistics on a table, FX_TRADES, based on a sample of 10 percent of the data:

analyze table fx_trades estimate statistics sample 10 percent;

ANALYZE has particular limitations when it’s run against partitioned objects. Par-
titioned objects can contain multiple sets of statistics because statistics can be gener-
ated at the object, partition, or subpartition level. Global statistics are those that refer to
the entire object. For partitioned tables and indexes, ANALYZE gathers statistics for
the individual partitions and then calculates the global statistics from the partition sta-
tistics. For composite partitioning, ANALYZE gathers statistics for the subpartitions
and then calculates the partition statistics and global statistics from the subpartition
statistics. The optimizer uses the global statistics unless the WHERE clause in a query
restricts the result to a particular partition. As a result, the accuracy of global statistics
is paramount when Oracle needs to generate a plan for DML involving a partitioned
object. The technique that ANALYZE uses to generate global statistics from partition-
level statistics can lead to inaccuracies in global statistics. For example, if a particular
column value exists in multiple partitions, it’s not possible to calculate the number of
distinct values of the column globally with any certainty based on deriving it from the
number of distinct values for the column in each partition. For partitioned objects,
DBMS_STATS is highly recommended because it can calculate statistics at each level
separately. A value of YES in the GLOBAL_STATS column for a partitioned table in
DBA_TABLES indicates that statistics were collected for the object as a whole and not
derived from the partitions.

Note that the ANALYZE command does not overwrite or delete some of the values
of statistics that were gathered by DBMS_STATS. For those statistics, DBMS_STATS is
the only way to modify them. Most importantly, ANALYZE will not collect statistics
needed by the cost-based optimizer in the future. For that reason, you should start to
use DBMS_STATS today, even if you are not yet running Oracle9i.

There is a subset of ANALYZE functionality that is not provided by DBMS_STATS.
For example, the number of chained rows, average free space, and number of unused
data blocks returned by ANALYZE are not set by DBMS_STATS. Strictly speaking,
these are not statistics used by the optimizer, but it seems likely that Oracle will pro-
vide a procedural interface for collecting the values in the future.

246 Chapter 10

From a performance perspective, any statistics generation can potentially have a
detrimental effect on the whole system. That’s not surprising when you consider that
huge numbers of blocks need to be read for large tables and indexes, and that sorting
(potentially to disk) may be required to calculate data distributions and distinct values.
These operations may be I/O, memory, and CPU intensive.

Statistics Collection with DBMS_STATS

In the past, a brute-force approach to collecting statistics was often taken through use
of the ANALYZE_SCHEMA procedure to gather statistics for the cost-based optimizer.
As the name suggests, ANALYZE_SCHEMA analyzes all objects in a schema. The fol-
lowing example shows an example that analyzes all tables and indexes in SCOTT’s
schema based on a sample of 10 percent of the existing data:

begin

dbms_utility.analyze_schema(schema=>'SCOTT',

method=>'ESTIMATE',

estimate_percent=>10)

end;

/

The ANALYZE_SCHEMA procedure generates statistics for all tables and indexes in
the schema, including those that haven’t changed since the last execution. Therefore,
ANALYZE_SCHEMA potentially wastes resources by recalculating statistics for data
that hasn’t changed since the last calculation. Prior to Oracle 8i, no method was avail-
able at the database level to identify tables that had changed in order to identify can-
didates for statistics recalculation. It was necessary to store change history information
by adding triggers to tables in order to maintain a reference count of updates, deletes,
and inserts in a separate table. Oracle8i took the first step toward automatic identifica-
tion of DML changes to tables through the MONITORING attribute. This can be spec-
ified at table creation time or through ALTER TABLE. The following PL/SQL block
enables monitoring on all tables except those owned by SYS and SYSTEM, and you are
strongly recommended to use it in order to allow table monitoring on all application
schemas in your Oracle8i databases:

declare

l_mon varchar2(128);

begin

for r in (select 'alter table '||owner||'.'||table_name||

'monitoring' s

from dba_tables where owner not in ('SYS','SYSTEM') loop

l_mon := r.s;

execute immediate l_mon;

end loop;

end;

/

Collecting and Using Optimizer Statistics 247

The MONITORING column in DBA_TABLES and USER_TABLES shows a value
YES for all tables that have monitoring enabled. Oracle9i provides new procedure calls
in DBMS_STATS to provide shortcuts for enabling monitoring on all existing tables in
a schema and for all existing non-SYS-owned tables in the database as whole, as shown
in the following example:

REM enable monitoring for all SCOTT’s tables

begin

sys.dbms_stats.alter_schema_tab_monitoring(ownname=>'SCOTT',

monitoring=>true);

end;

/

REM enable monitoring for all non-SYS tables

begin dbms_stats.ALTER_DATABASE_TAB_MONITORING; end;

/

These new procedures are especially useful to enable monitoring for all tables in an
application purchased from a third-party vendor. Based on experience, the require-
ment to collect accurate statistics is often not a priority for such applications. It needs
to be emphasized that tables added after the procedure execution don’t have monitor-
ing enabled automatically: The procedure needs to be repeated. Once monitoring is
enabled, changes to tables can be viewed through the DBA_TAB_MODIFICATIONS
view and the equivalent user view. The following SQL shows changes to the SCOTT
table immediately after an INSERT statement:

insert into scott.emp select * from scott.emp;

commit;

select table_name,inserts,updates,deletes from sys.dba_tab_modifications

where table_owner='SCOTT';

TABLE_NAME INSERTS UPDATES DELETES

------------ --------- --------- ---------

EMP 14 0 0

delete * from scott.emp where rownum <=5;

commit;

select table_name,inserts,updates,deletes from sys.dba_tab_modifications

where table_owner='SCOTT';

TABLE_NAME INSERTS UPDATES DELETES

------------ --------- --------- ---------

EMP 14 0 0

In the previous example, the results of the DELETE statement are not available
immediately. Prior to Oracle9i, it wasn’t possible to predict with any certainty when

248 Chapter 10

table modifications were actually flushed out to DBA_TAB_MODIFICATIONS. Oracle
simply flushed out the information according to its own internal rules. Oracle9i
addresses this issue through a new procedure in DBMS_STATS, which makes all change
information available immediately after execution, as shown in the following example:

REM flush out all monitoring statistics now

begin sys.dbms_stats.flush_database_monitoring_info; end;

/

An equivalent function for flushing schema-monitoring information was docu-
mented in Oracle9i Release 1, but the procedure itself was not supplied. Once table
monitoring is in place, statistics can be collected using the GATHER_SCHEMA_STATS
procedure in DBMS_STATS rather than the ANALYZE_SCHEMA procedure in
DBMS_UTILITY. The GATHER_SCHEMA_STATS has a significant advantage over
ANALYZE_SCHEMA because it can use information on monitored table changes in
order to determine which tables need to have their statistics refreshed, as shown in the
following example:

begin

sys.dbms_stats.gather_schema_stats(

ownname=>'SCOTT'

,estimate_percent=>dbms_stats.auto_sample_size

,method_opt=>'FOR COLUMNS SIZE (SKEWONLY)'

,cascade=>TRUE

,degree=> dbms_stats.default_degree

,options=>'GATHER STALE');

end;

/

As well as the GATHER STALE option, which causes Oracle to query table modifi-
cations to identify tables to analyze, Oracle9i provides the GATHER AUTO option,
which gathers all necessary statistics automatically. Using GATHER AUTO, Oracle
implicitly determines which objects need new statistics and how to gather those statis-
tics. How it does this isn’t explained, but as it exists as a separate option to GATHER
STALE, it seems reasonable that it will be the choice to use in the future. Other options
include GATHER, which unconditionally gathers all statistics in a way similar to
ANALYZE and GATHER EMPTY; they collect statistics for objects that don’t have any.
It’s possible to show objects that would be analyzed without actually performing the
collection using the LIST STALE and LIST AUTO options as shown in the following
PL/SQL block for a schema MDS (Multipoint Distribution Service):

set serverout on

declare

objlist dbms_stats.objectab;

begin

dbms_stats.gather_schema_stats(

ownname=>'MDS',options=>'LIST STALE',objlist=>objlist);

dbms_output.put_line('stale count='||objlist.count);

Collecting and Using Optimizer Statistics 249

for i in 1..objlist.count loop

dbms_output.put_line(objlist(i).objname);

end loop;

dbms_stats.gather_schema_stats(

ownname=> 'MDS',options=>'LIST AUTO',objlist=>objlist);

for i in 1..objlist.count loop

dbms_output.put_line(objlist(i).objname);

end loop;

end;

/

Both the GATHER STALE and GATHER AUTO options can take an optional argu-
ment that returns a list of analyzed objects. You may find that GATHER STALE and
GATHER AUTO (and the corresponding LIST STALE and LIST AUTO) options don’t
identify any objects to analyze even when changes exist in DBA_TAB_MODIFICA-
TIONS. In this case, a SQL TRACE created during execution of the GATHER_
SCHEMA_STATS procedure call shows why. The GATHER STALE option runs the fol-
lowing test to identify a stale object that requires statistics regeneration:

(INSERTS + UPDATES + DELETES) > 0.1 * ROWCOUNT

In other words, if the sum of changes to the table doesn’t exceed 10 percent of the
rows in the table, GATHER STALE doesn’t regenerate the statistics because the statis-
tics aren’t considered to be stale. Initial releases of Oracle9i used the identical calcula-
tion for GATHER AUTO, although this is likely to be enhanced in future. From the
observed behavior, GATHER AUTO appears to detect changes to tables immediately,
even before change details are flushed from the SGA to appear in DBA_TAB_MODIFI-
CATIONS. Based on that evidence, GATHER AUTO should be used in preference to
GATHER STALE. The LAST_ANALYZED column in DBA_TABLES can be checked to
determine if an analyze actually took place.

The METHOD_OPT argument provides two new SIZE options for Oracle9i: SKE-
WONLY and AUTO. These enable the DBMS to generate column histograms based on
usage. This is a major step forward, especially if you ever wondered why the database
administrator (DBA) should be responsible for detecting skewed data and column
usage. The SKEWONLY setting means that Oracle only stores histograms persistently
in the dictionary for skewed data distributions, having first collected and analyzed the
data in memory. With the SIZE option set to AUTO, the DBMS collects histogram data
in memory and persists them in the dictionary only for those columns referenced at
parse time in statements involving an equality, range, or like operator.

In the interest of simpler administration, GATHER_SCHEMA_STATS can be called
without arguments, in which case statistics are collected for the current schema using
the COMPUTE option. The use of AUTO_SAMPLE_SIZE, as shown in the example, is
a new feature for Oracle9i that enables Oracle to decide on the sample size required to
generate statistically significant results. The sample size starts at approximately 5,000
rows and is increased as required to provide the required level of confidence. As a

250 Chapter 10

result, the sample size can differ for each table and column, and for different partitions
in a partitioned object. The distinct value in a column is one statistic that tends to
require a higher number of samples, especially when each distinct value repeats a rel-
atively small number of times. Collection is executed in parallel through the DEGREE
parameter. The DEFAULT_DEGREE uses the default parallelism specified in the
init.ora file. A NULL value uses the degree specified for the table currently being
processed.

Three other parameters are of interest. The GRANULARITY parameter (not used in
the example) determines the level of information collected for partitioned tables. By
default, information is collected at the global and partition level but not the subparti-
tion level. The CASCADE option is set to FALSE by DEFAULT, and a value of TRUE
causes statistics collection on indexes. Index statistics collection always runs serially.
The NO_INVALIDATE argument (not used in the example) is set to FALSE by default.
This setting determines whether cursors in the shared SQL area are invalidated by the
statistics generation. By default, invalidation takes place, which results in a hard parse
on the next use of the statement. Setting NO_INVALIDATE to TRUE avoids the inval-
idation. Chapter 9 contains a detailed discussion of cursors. In addition to gathering
statistics at the schema level, DBMS_STATS provides similar procedures for gathering
statistics for individual tables and indexes, as well as for the entire database through
the following procedures:

■■ GATHER_INDEX_STATS

■■ GATHER_TABLE_STATS

■■ GATHER_DATABASE_STATS

System Statistics in Oracle9i

Oracle9i includes a significant new method of collecting statistics. For the first time,
Oracle provides features for the collection of both system CPU and I/O information for
use in query execution plans. The new routines that provide this functionality in
DBMS_STATS are listed in the following:

■■ GATHER_SYSTEM_STATS

■■ DELETE_SYSTEM_STATS

■■ EXPORT_SYSTEM_STATS

■■ IMPORT_SYSTEM_STATS

■■ GET_SYSTEM_STATS

■■ SET_SYSTEM_STATS

Note that the plan table used by EXPLAIN PLAN in Oracle9i Release 1 contains
three additional columns compared to the Oracle8i version. Two of these are used by
EXPLAIN PLAN to show an estimate of the I/O cost and CPU cost of the statement
based on information collected by GATHER_SYSTEM_STATS. The plan table is created

Collecting and Using Optimizer Statistics 251

through the utlxplan.sql script on UNIX Oracle installations. The new-for-9i columns
are shown here:

cpu_cost numeric

io_cost numeric

temp_space numeric

The presence of system statistics enables the optimizer to consider both the system’s
I/O and CPU resource availability and utilization when considering candidate execu-
tion plans. As a result, it’s crucial that this information is as accurate as possible at the
time the execution plan is generated. The collected information includes the following:

■■ Single-block read time in milliseconds for sequential reads

■■ Multiblock read time in milliseconds for scattered reads

■■ Average number of blocks read in a scattered read

■■ CPU speed in MHz

The server statistics information must be present in the SYS.AUX_STAT$ table in
order for the cost-based optimizer to use it. An example of the stored information that
corresponds to the values listed previously can be displayed by the following SQL:

select pname,pval1

from sys.aux_stats$ where sname='SYSSTATS_MAIN';

PNAME PVAL1

--------- -------

CPUSPEED 220

MBRC 5

MREADTIM 5.143

SREADTIM 2.003

Recall from the discussion in Chapter 9 that waits for single-block reads result from
index block access and table block access by ROWID. The event “db file sequential
read” is evident when contention for single-block reads takes place. When table scans
take place, blocks are read using scattered reads up to the value of DB_FILE_MULTI-
BLOCK_READ_COUNT blocks each time. The event wait “db file scattered read” is
evidence of contention for these requests. One of the benefits of making accurate sys-
tem statistics available to the optimizer is that high values for the init.ora parameter
DB_FILE_MULTIBLOCK_READ_COUNT no longer cause the optimizer to bias exe-
cution plans in favor of full table scans. Instead, based on the statistics available for
both single-block and multiblock reads and the average number of blocks read in a
multiblock read, the optimizer can make a better decision based on the requirement to
minimize the elapsed time according to the actual resource usage.

The system statistics management routines in the DBMS_STATS package enable
DBAs to capture statistics over a specified period of time and store them as a named set
in a specified database table. Typically, the name is chosen to associate it with the

252 Chapter 10

workload that took place during a monitored interval. For example, a named OLTP
might be chosen for the system statistics collected during the OLTP workload in busi-
ness hours and BATCH for the overnight batch jobs.

Once statistics have been collected that are representative of the workloads in the
chosen periods, the IMPORT_SYSTEM_STATS procedure is used to copy the collected
statistics into the dictionary table SYS.AUX_STATS$ where they are available to the
optimizer. The decision regarding which statistics to import and when to do it is under
the control of the DBA. Typically, a database job would be used to automatically sched-
ule the import of different sets of statistics at different times of day, depending on the
workload.

Note that the availability of server statistics does not invalidate existing statements
in the shared SQL area. This is different than the behavior of the optimizer when table,
index, or column statistics are modified, in which case statements using those objects
are reparsed at next use. Instead, the optimizer uses system statistics only for state-
ments newly parsed after the statistics are made available. The following is a step-by-
step example of how to generate and activate system statistics. First, a table is required
to hold the collected statistics:

begin

dbms_stats.create_stat_table(ownname=>'SYSTEM',stattab=>'APPST');

end;

Next, the collection of statistics needs to be performed, and this requires the Oracle
job queue system to be enabled:

REM ensure that at least one job queue is started...

REM GATHER_SYSTEM_STATS will fail if it’s not

alter system set job_queue_processes = 1;

/*

gather statistics using DBMS_STATS.GATHER_SYSTEM_STATS

this should be a one-off run started at the beginning of the OLTP

workload period for INTERVAL minutes, then during the BATCH. The times

should not overlap.

*/

begin

dbms_stats.gather_system_stats(

interval =>720,

statown =>'SYSTEM',stattab=>'APPST',statid=>'OLTP');

end;

/

begin

dbms_stats.gather_system_stats(

interval =>720,

statown =>'SYSTEM',stattab=>'APPST',statid=>'BATCH');

end;

/

Collecting and Using Optimizer Statistics 253

While collection is in progress, the C1 column in APPST has the value AUTOGATH-
ERING. After the collection completes successfully, the APPST table contains informa-
tion about system statistics that were collected successfully during the monitored period:

select STATID,C1,C2,C3 from appst;

STATID C1 C2 C3

-------- ---------- ----------------- -----------------

OLTP COMPLETED 01-26-2002 07:30 01-26-2002 19:30

BATCH COMPLETED 01-26-2002 19:30 01-26-2002 07:30

The final step is to copy the appropriate statistics collection into the Oracle data dic-
tionary table SYS.AUX_STATS$, where the information can be used by the cost-based
optimizer. The best approach is to take the following two routines and schedule them
using the DBMS_JOB procedure so that the correct statistics are in place at the appro-
priate periods:

REM schedule this to set OLTP stats at 07:30...

begin

dbms_stats.import_system_stats(

statown =>'SYSTEM',stattab=>'APPST',statid=>'OLTP');

end;

/

REM schedule this to set BATCH stats at 19:30...

begin

dbms_stats.import_system_stats(

statown =>'SYSTEM',stattab=>'APPST',statid=>'BATCH');

end;

/

Changing Statistics Manually

Given that the cost-based optimizer uses statistics in the generation of a query execu-
tion plan, it follows that by modifying the statistics manually using DBMS_STATS, you
potentially modify the execution plan of a DML statement without changing the SQL.
This can be useful when you know that a statement would execute faster with a differ-
ent plan than the one that the optimizer generates. The following is a simple example
of how table statistics can be changed manually to modify the execution plan. The
example requires a table to be created as follows:

REM use PCTFREE 99 to spread the table across a few thousand blocks

create table my_objects tablespace tools pctfree 99 pctused 1

as select * from dba_objects where rownum <=5000;

alter table my_objects add constraint pk_mo primary key(object_id)

using index tablespace tools;

254 Chapter 10

TE
AM
FL
Y

Team-Fly®

alter session set optimizer_goal=ALL_ROWS;

select count(*) from my_objects;

In this case, the optimizer mode is set to ALL_ROWS to enable the COUNT(*) query
to use an optimization known as an index FAST FULL SCAN. You can use EXPLAIN
PLAN, as described in Chapter 9, to demonstrate this. Note that the same optimization
would not take place using COST mode unless table statistics were generated first.
Even without statistics available, the ALL_ROWS optimizer mode can use the size of
objects referenced in the query to calculate that a scan of the index has a lower cost than
a scan on the table based on the actual size of each object held in DBA_SEGMENTS, as
shown in the following code:

select segment_name,blocks from dba_segments

where segment_name in ('MY_OBJECTS','PK_MO');

SEGMENT_NAME BLOCKS

-------------- --------

MY_OBJECTS 5120

PK_MO 16

At this stage, the BLOCKS column in DBA_TABLES is still set to NULL because no
statistics have been generated yet. It’s interesting to investigate the effects on the query
execution plan if the statistic holding the number of blocks is modified manually using
the SET_TABLE_STATS procedure in DBMS_STATS as follows:

begin

sys.dbms_stats.set_table_stats(

ownname=>'SYSTEM',numblks=>5,tabname=>'MY_OBJECTS');

end;

/

The Oracle cost-based optimizer will now use the available statistics during plan
generation. As a result of the manual change, the optimizer now calculates that a scan
of MY_OBJECTS has a lower cost than a FAST FULL SCAN of the index, based on the
statistic that MY_OBJECTS contains five blocks. Physically, it still comprises 5,120
blocks, but the statistic now states 5, and this is the value used by the optimizer to gen-
erate the cost. The execution plan confirms the effect of changing BLOCKS by indicat-
ing a full table scan:

Execution Plan

--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=1)

1 0 SORT (AGGREGATE)

2 1 TABLE ACCESS (FULL) OF 'MY_OBJECTS' (Cost=1 Card=2000)

The cardinality (or number of rows) in the table is set to 2,000 by default because
whenever you set one of the table statistics using SET_TABLE_STATS, any others not

Collecting and Using Optimizer Statistics 255

supplied are assigned default values. The default number of rows is set to 2,000, and
the default average row length is set to 100. The following SQL shows the statistics
from DBA_TABLES resulting from the call to SET_TABLE_STATS, including the
USER_STATS column that is used to indicate whether Oracle or the user (as in this
case) is generating the values:

select blocks,num_rows,avg_row_len,user_stats

from dba_tables where table_name='MY_OBJECTS';

BLOCKS NUM_ROWS AVG_ROW_LEN USER_STATS

-------- ---------- ------------- ------------

5 2000 100 YES

Using Dynamic Statistics

Oracle9i Release 2 includes a new feature called dynamic sampling, which is enabled
through the dynamic database parameter OPTIMIZER_DYNAMIC_SAMPLING. The
parameter takes a range of values from 0 to 10. By default, the parameter is set to 0 (dis-
abled) unless the OPTIMIZER_FEATURES_ENABLE parameter is set to 9.2.0 or
higher, in which the value defaults to 1. Dynamic sampling is designed to reduce
resource costs for DML statements by determining more accurate selectivity and car-
dinality estimates than those available. For example, existing statistics may be out of
date, inaccurate, or simply nonexistent. On-the-fly generation of dynamic statistics in
these situations may lead to the generation of more resource-efficient execution plans
for DML that would otherwise result in resource-intensive full table scans of large
tables.

Dynamic sampling works by generating recursive SQL to scan a small random sam-
ple of a table’s blocks at query compile time. Higher values of OPTIMIZER_
DYNAMIC_SAMPLING lead to more extensive sampling. Due to the I/O overhead
introduced, dynamic sampling produces maximum benefits for SQL statements that
have a significant elapsed time compared to the sampling time and are executed
frequently.

Statistics Tables

The Oracle optimizer only uses statistics present in the data dictionary. The
DBMS_STATS package lets you store collections of statistics in a statistics table, and
then transfer statistics between the table and the data dictionary, and vice versa. This is
useful, for example, when you want to take statistics from your production system
onto your development system to ensure that query execution plans match on both,
even if the volumes of data on development are significantly smaller than production.
Oracle’s Import and Export command-line tools can be used to transfer the contents of
statistics tables between databases. A single statistics table can store multiple named
collections of statistics, or alternatively, multiple tables can be used. Statistics can be

256 Chapter 10

imported and exported at the column, index, table, schema, database, and system
levels. The following procedures in DBMS_STATS are used to create and drop statistics
tables:

■■ CREATE_STAT_TABLE

■■ DROP_STAT_TABLE

The following procedures are used to export statistics from the dictionary into user
tables and import them from user tables into the data dictionary:

■■ EXPORT_COLUMN_STATS

■■ EXPORT_INDEX_STATS

■■ EXPORT_TABLE_STATS

■■ EXPORT_SCHEMA_STATS

■■ EXPORT_DATABASE_STATS

■■ EXPORT_SYSTEM_STATS

■■ IMPORT_COLUMN_STATS

■■ IMPORT_INDEX_STATS

■■ IMPORT_TABLE_STATS

■■ IMPORT_SCHEMA_STATS

■■ IMPORT_DATABASE_STATS

■■ IMPORT_SYSTEM_STATS

Summary

Accurate statistics on table, index, and column information are required by the Oracle
optimizer to generate query execution plans that meet the designer’s requirements. In
the past, statistics were generated by the ANALYZE command. Today, Oracle recom-
mends that all statistics collections use the DBMS_STATS package. DBMS_STATS has
many advantages over ANALYZE, including parallel execution and the capability to
automatically regenerate only those statistics that are out of date.

Enhancements to DBMS_STATS in Oracle9i include features to collect system CPU
and I/O statistics for use in plan generation. The new SKEWONLY and AUTO options
enable the Oracle DBMS rather than the DBA to make decisions on when column his-
tograms are required, and system-generated sample sizes are available to produce sta-
tistically significant results automatically. Oracle has stated that in the future, the
optimizer will generate plans based only on information generated by DBMS_STATS.

The increasing power and complexity of DBMS_STATS makes using it a challenge.
Oracle has addressed this in part through the Analyze Wizard component of Oracle
Enterprise Manager (OEM), which exposed only a small subset of DBMS_STATS func-
tionality in early releases of Oracle9i but promises to be the interface of choice in the
future.

Collecting and Using Optimizer Statistics 257

259

Oracle introduced partitioning in Oracle8 to address performance and availability
issues associated with large tables and indexes. By splitting large tables and indexes
into smaller pieces (called partitions), finite bounds can be placed on resource require-
ments for operations that would otherwise grow in step with the size of the table
or index.

A good example to illustrate this point is an index rebuild. When a table grows over
time, the sort space required to create or rebuild the index grows along with it. When
partitioning is used to split the index into smaller pieces of a finite size, the maximum
sort space required for the rebuild is constrained to the size of the largest partition
instead. In this case, availability is enhanced because rebuilds can be done partition by
partition and in parallel, reducing the time that the index is not available. However, if
partitions are implemented without careful consideration, then availability can actu-
ally be compromised. This chapter covers the following topics:

■■ An overview of partitioning performance and availability features

■■ Partition creation examples using range, list, hash, and composite methods

■■ Partition indexing techniques

■■ Availability and global indexes

Partitioning

C H A P T E R

11

Partitioning Overview

It’s quite easy to become overwhelmed by the sheer number of partitioning options.
This is not helped by the complex syntax that often appears when creating partitioned
objects. It’s important to keep in mind a few key features of partitioning:

■■ All partitions in a table or index must have the same column names, data types,
and constraints.

■■ All partitions may optionally have different physical storage attributes, such as
PCTFREE and PCTUSED, and reside in different tablespaces.

■■ Partitioning is transparent to Data Manipulation Language (DML) statements.
■■ DML statements can continue to run against a partitioned table even when a

subset of partitions is unavailable due to maintenance, provided that the DML
doesn’t refer to data in the unavailable partitions.

Because Oracle backup and recovery can be performed at the tablespace level, it’s
worth emphasizing that a decision to store each partition (or subpartition) in its own
tablespace means that backup and recovery become possible at the partition level. As
a result, the impact of restores resulting from logical data corruption or physical media
failure can be limited to the partition level. Availability is enhanced as a result. For
backups, the use of separate tablespaces enables backups to take place in smaller
chunks and minimizes the performance impact of a full database backup. In this case,
the performance hit resulting from the input/output (I/O) resource demands of the
backup impacts performance for a much shorter time. For systems that maintain his-
torical data in a fixed time window (for example, the last 12 months), the ability to
purge or archive data through a simple partition-level operation can reduce archiving
or purge times by several orders of magnitude as compared to a DELETE statement
that performs the same function. A massive reduction in redo generation occurs with
the partition-based approach. Partitioning can cause dramatic reductions in elapsed
time for DML statements in the right circumstances through the following features:

■■ Partition elimination
■■ Partition-wise joins
■■ Parallel DML

For example, when the optimizer generates a query execution plan that accesses a
small subset of available partitions (referred to as partition elimination), the reduction
in I/O that results can reduce elapsed times by orders of magnitude. When tables are
partitioned on the join column used in a query predicate, an optimization referred to
as a partition-wise join is available to the query optimizer. Partition-wise joins enable
the join to be decomposed into smaller joins that can be performed sequentially or in
parallel. When the operations are performed in parallel, elapsed times for queries are
typically reduced by decreases in I/O from the partition-wise join. DML such as bulk
inserts can be performed at the partition level, leading to the possibility of multiple
concurrent, parallel insert streams and associated reductions in data load times for
data-warehousing applications.

260 Chapter 11

Table-Partitioning Methods

Oracle provides four different methods for partitioning tables:

■■ Range partitioning

■■ List partitioning (new for Oracle9i)

■■ Hash partitioning

■■ Composite partitioning

The different behavior of each partitioning option is most easily understood by using
examples, which are provided in this chapter. Indexes can also be partitioned in the
form of global and local indexes. Global indexes can only use the range-partitioning
method, whereas local index partitions are determined by the table-partitioning
method. It’s difficult to have a discussion on table partitioning that avoids all references
to index partitioning since the two are related. As a result, partitioned indexes are cov-
ered in the section after this one, Partitioned Indexes, where you will find full descrip-
tions of index-partitioning terminology.

Range Partitioning
Consider a scenario where a database holds a sales table that needs to be updated in
real time in an Online Transaction Processing (OLTP) application. After 12 months,
sales data is no longer required in the production database and can be removed. In this
situation, range partitioning on the SALES_DATE column is appropriate because it
enables the old data to be removed with a simple partition drop operation rather than
a much more expensive DELETE operation. Provided that any indexes are partitioned
(using the LOCAL option) on the same column as the table, the index partition is auto-
matically dropped along with the table partition. As a result, the removal of old data
benefits from the lower cost of both the table and index maintenance on the partitioned
objects when compared to the same operations on a standard table using DELETE. The
following Structured Query Language (SQL) creates the SALES table partitioned on
the SALES_DATE column for the first 6 months of 2002:

create table sales (sale_id number,

item integer,

qty integer,

store varchar(30),

dept number,

empno number,

sale_date date)

partition by range (sale_date)(

partition p200201 values less than(to_date('01/02/2002','dd/mm/yyyy')),

partition p200202 values less than(to_date('01/03/2002','dd/mm/yyyy')),

partition p200203 values less than(to_date('01/04/2002','dd/mm/yyyy')),

partition p200204 values less than(to_date('01/05/2002','dd/mm/yyyy')),

Partitioning 261

partition p200205 values less than(to_date('01/06/2002','dd/mm/yyyy')),

partition p200206 values less than(to_date('01/07/2002','dd/mm/yyyy')));

In this example, the partition names have been chosen so that sorting on the parti-
tion name shows the date-of-creation order for each partition. This can be useful when
the list of partitions for a table needs to be displayed:

select partition_name

from dba_segments where segment_name='SALES'

order by 1 desc;

Even though the SALES_DATE column is specified to allow NULL values, an
attempt to insert a row with a NULL SALES_DATE value will fail with an ORA-01440
error because Oracle can’t determine which partition to store the row in. To allow
NULL values to be inserted as part of the partition key, a special range value called
MAXVALUE must be used. When MAXVALUE is used, NULL values in the partition
key sort greater than all other range values except MAXVALUE. The following SQL
adds a partition to SALES that allows NULL values for SALES_DATE to be inserted:

alter table sales add partition p999999 values less than (maxvalue);

REM... now this works:

insert into sales store('LEEDS');

The ALL_TAB_PARTITIONS view can be used to show the number of rows in each
partition after the table has been analyzed. The following example demonstrates that
the previous insert has added a row to the P999999 partition that holds all rows that
include NULL as part of the partition key:

select partition_name,num_rows from all_tab_partitions

where table_name='SALES';

PARTITION_NAME NUM_ROWS

---------------- ----------

P200201 0

P200202 0

P200203 0

P200204 0

P200205 0

P200206 0

P999999 1

Although partitioning is designed to be transparent to application DML, it’s possi-
ble to select rows from partitions explicitly if required by using a PARTITION clause to
qualify the table. Oracle’s Import and Export tools also support partition-level opera-
tions. The following SQL shows how to use a PARTITION clause in a SELECT
statement:

262 Chapter 11

select count(*) from sales partition(p999999);

COUNT(*)

1

Rather than simply dropping the partition, data can be also be moved from the table
with a simple near-instantaneous Data Definition Language (DDL) operation on the
partition. For example, if the sales data needs to be kept for the long term, then the old-
est monthly partition can be exchanged with a table or exported using a transportable
tablespace (provided that each partition is located in its own tablespace) rather than
simply dropped. Chapter 19 contains an example that shows how to move data be-
tween systems using transportable tablespaces. Partition exchange operations do not
involve any movement of the rows and have a very low cost.

If the SALES table is used in a Decision Support System (DSS)—rather than an OLTP
—application, partition exchange is also useful for bulk loading sales data one month
at a time. For a DSS application, bulk loading monthly sales data would typically take
place on a table using SQL*Loader with the direct path option for maximum speed.
Next, indexes would be created on the table, and the table and index would be
exchanged with a precreated partition to move the monthly data and index into the
SALES table instantaneously. The following SQL shows how to add the partition for
July 2002 to the SALES table created earlier and how to exchange data in a preloaded
table into it:

REM add partition for next month...

alter table sales add partition p200207

values less than(to_date('01/08/2002','dd/mm/yyyy'));

REM table rows ready to exchange into partition...

select count(*) from tab_200207;

COUNT(*)

28161

/*

* assume table tab_200207 exists loaded with data for July 2002

* and with an index on SALE_DATE

*/

alter table sales exchange partition p200207

with table tab_200207 including indexes with validation;

REM confirm rows in tab_200207 moved out...

select count(*) from tab_200207;

Partitioning 263

COUNT(*)

0

The EXCHANGE PARTITION command adds the contents of table TAB_200207 as
the new partition, P200207. Keep in mind that EXCHANGE PARTITION is a logical
operation that doesn’t physically move any data; it operates by remapping extents
associated with the table to become part of the partition. As a result, EXCHANGE
PARTITION completes almost instantaneously. If the SALES table has a local parti-
tioned index defined on the SALE_DATE column, an existing index on the same col-
umn on TAB_200207 can be exchanged along with the table as part of EXCHANGE
PARTITION. Partitioned indexes and terminology are covered in the following section.
The index on SALES, when partitioned on the same key as the table, is said to be
equipartitioned with the table. The INCLUDING INDEXES option causes the table
index to become the partition index for the new table partition. The WITH VALIDA-
TION option ensures that rows in the table meet the range limits for the partition with
which the table is exchanged. The following SQL can be used to ensure that the added
index is in a USABLE state after the exchange:

select partition_name,status

from user_ind_partitions where index_name='I0_SALES';

PARTITION_NAME STATUS

---------------- --------

P200201 USABLE

P200202 USABLE

P200203 USABLE

P200204 USABLE

P200205 USABLE

P200206 USABLE

P200207 USABLE

List Partitioning
Oracle9i provides a new partitioning model called list partitioning. List parti-
tioning enables the designer to provide complete control of the mapping between
rows and partition keys by specifying a list of values for the partitioning key. This
is useful for situations where there is a requirement to partition data on values that
are not related to the collating sequence of the key values. Based on the SALES table,
list partitioning could be used to partition data based on explicit lists of STORE names
in order to distribute data equally across each partition. A few restrictions exist
with the use of list partitions: A single column must be used as the partition key, each
key value must be used in a single partition list only, and partitions can’t be empty.
Partition elimination, partition-wise joins, and parallel DML are all supported by list
partitions. The following SQL shows an example of list partitioning using the values in
the STORE column:

264 Chapter 11

TE
AM
FL
Y

Team-Fly®

create table sales (sale_id number,

item integer,

qty integer,

store varchar(30),

dept number,

empno number,

sale_date date)

partition by list (store)(

partition range1 values ('BRISTOL','GLASGOW','LEEDS'),

partition range2 values ('LONDON'));

NOTE In Oracle9i Release 2, list partitioning now supports the concept of a
default partition, into which rows that don’t match the list values can be stored.
In Oracle9i Release 1, attempts to insert such values resulted in an error, and
required special handling in applications. Oracle9i Release 2 also provides
composite range-list partitioning for the first time.

Hash Partitioning
Hash partitioning enables data to be distributed evenly between different partitions
based on the results of a built-in hashing function provided by Oracle. If you choose to
deploy hash partitioning, you’re implicitly making the following assumptions:

■■ Associating each partition with a separate tablespace is the best way to distrib-
ute Oracle I/O.

■■ Even distribution of data across partitions is required for the best performance.

It’s important for you to make sure those assumptions are correct, in order to bene-
fit from hash partitioning. If you intend to follow the recommendations put forward in
this book for Oracle layout (as covered in Chapter 2), then the first assumption proba-
bly doesn’t apply; therefore, a decision to deploy hash partitioning based on that
assumption should be reconsidered. Setting aside performance considerations for a
moment, the use of many different tablespaces across many file systems fragments
disk space and leads to labor-intensive and complex Oracle database management.
Complex database management usually leads to reduced availability. Although this
approach may also result in better performance, this book proposes a different
approach to deliver performance and availability at the same time for the Oracle physi-
cal layout through the following practices:

■■ Database layout across large file systems so that all databases on a server can
use all available space

■■ AUTOEXTEND and LOCAL UNIFORM space allocation for 100 percent usage
of available disk space and database growth on demand

■■ High I/O throughput due to the performance of the storage underlying the
filesystems rather than database administrator (DBA) placement of many table-
spaces across many file systems

Partitioning 265

It’s fair to say that hash partitioning does enable parallel index scans across all par-
titions, in which case the use of hash partitioning to ensure the even distribution of
data across partitions is worth considering. For a system with many central processing
units (CPUs) that is not I/O bound, the even distribution of data across many parti-
tions may lead to a reduction in elapsed time when hash partitioning is used and par-
allel index scans take place, because the DBMS can reduce processing time by making
use of multiple CPUs at the same time.

The hash-partitioning method requires the number of partitions allocated to be a
power of 2 in order to ensure a uniform distribution of data in the different partitions.
It’s not possible to provide different storage attributes for each partition explicitly.
However, each partition inherits storage attributes from the tablespace in which it
resides. As a result, storage attributes for each partition can be specified individually
by ensuring that each partition is located in its own tablespace. The original SALES
table in this chapter was partitioned by SALE_DATE in order to enable historical data
to be removed at very low cost. However, as sales are typically higher in January, the
data in each partition may not be evenly distributed, as shown by the following SQL:

select partition_name,num_rows

from user_tab_partitions where table_name='SALES';

PARTITION_NAME NUM_ROWS

---------------- ----------

P200201 44379

P200202 10222

P200203 11005

P200204 10979

P200205 11217

P200206 10910

The table can be created using hash partitioning to evenly distribute the same data
across eight partitions as follows:

create table sales (sale_id number,

item integer,

qty integer,

store varchar(30),

dept number,

empno number,

sale_date date)

partition by hash (sale_id)

partitions 8

store in (ts01, ts02, ts03, ts04, ts05, ts06, ts07, ts08);

In this example, partition names are not specified explicitly (although they can be)
and Oracle generates them automatically. The distribution of rows across partitions is
shown in the following code, demonstrating how data is evenly distributed across par-
titions with names generated by the system:

266 Chapter 11

PARTITION_NAME NUM_ROWS

---------------- ----------

SYS_P1 12444

SYS_P2 12410

SYS_P3 12404

SYS_P4 12351

SYS_P5 12169

SYS_P6 12220

SYS_P7 12472

SYS_P8 12224

Although hash partitioning enables data to be evenly distributed across partitions,
the benefits of historical data management from range partitioning are not available.

Composite Partitioning
Oracle introduced composite partitioning in Oracle8i in order to provide the historical
data management features of range partitioning alongside the parallel DML and data
placement features of hash partitioning in the same table. When using composite par-
titioning, data is partitioned using the range method, and then subpartitioned within
each partition using the hash method. Range partitioning is a logical division of data
that supports the use of partition-level operations using range values. The physical
distribution of data is determined by the subpartitions that provide enhanced perfor-
mance through parallel DML and the fine control of data placement at the tablespace
level. The following SQL shows the SALES table partitioned by range on SALE_DATE,
and then subpartitioned by STORE, with rows distributed across four tablespaces:

create table sales

partition by range (sale_date)

subpartition by hash(store)

subpartitions 4

store in (ts01, ts02, ts03, ts04)(

partition p200201 values less than(to_date('01/02/2002','dd/mm/yyyy')),

partition p200202 values less than(to_date('01/03/2002','dd/mm/yyyy')),

partition p200203 values less than(to_date('01/04/2002','dd/mm/yyyy')),

partition p200204 values less than(to_date('01/05/2002','dd/mm/yyyy')),

partition p200205 values less than(to_date('01/06/2002','dd/mm/yyyy')),

partition p200206 values less than(to_date('01/07/2002','dd/mm/yyyy')));

REM show row distribution per tablespace for first three partitions . . .

select partition_name,subpartition_name,num_rows,tablespace_name

from user_tab_subpartitions where table_name='SALES';

PARTITION_NAME SUBPARTITION_NAME NUM_ROWS TABLESPACE_NAME

---------------- ------------------- ---------- -----------------

P200201 SYS_SUBP63 13652 TS01

P200201 SYS_SUBP64 15373 TS02

Partitioning 267

P200201 SYS_SUBP65 8523 TS03

P200201 SYS_SUBP66 6831 TS04

P200202 SYS_SUBP67 3186 TS01

P200202 SYS_SUBP68 3580 TS02

P200202 SYS_SUBP69 1924 TS03

P200202 SYS_SUBP70 1532 TS04

P200203 SYS_SUBP71 3328 TS01

P200203 SYS_SUBP72 3808 TS02

P200203 SYS_SUBP73 2173 TS03

P200203 SYS_SUBP74 1696 TS04

In this example, where four STORE values exist, the subpartitions identify the dis-
tribution of sales across the stores for each month. Each subpartition can take part in
parallel DML and enables partition elimination. Equality, range, and IN predicates are
considered by the optimizer for partition elimination with range partitioning, and
equality and IN predicates are considered for partition elimination with hash parti-
tioning. Note that although range partitioning has a logical meaning when combined
with subpartitions, Oracle is able to map the logical range partition to the underlying
subpartitions so that the following operation works in the same way as the original
range-partitioned example and avoids unusable indexes, provided that indexes on
SALES are local:

REM drop partitions (and sub-partitions) for Jan 2002...

alter table sales drop partition p200201;

Partitioned Indexes

Some of the most challenging aspects of partition management involve the choice and
use of partitioned indexes. Partitioned indexes can be created as either local or global.
A local index is partitioned using the same range values as the underlying table. The
local index is said to be equipartitioned with the table. The best way to think of a local
index is to first consider the partitioned table as a collection of independent tables. The
local index is a collection of indexes created on each individual table. As a result of the
equipartitioning, an operation on a table partition affects only the associated index par-
tition. For example, when a partition is dropped, the index partition is dropped auto-
matically. Before considering which columns to index in the SALES table, it’s worth
restating that in the original example, the overriding requirement was to maintain the
contents of the SALES table on a sliding window so that the previous 12 months of data
were available. Any indexing strategy must be considered with that in mind.

Indexes are created for either performance reasons (to speed up access paths to data)
or integrity reasons (to enforce primary key and unique key constraints). The same
rules apply to indexes on the partitioned SALES table. When running reports on the
SALES table, it’s likely that grouping on the SALE_DATE column will be required.
Therefore, an index on SALE_DATE is appropriate in order to provide a fast access

268 Chapter 11

path to SALES data by sale date. The equipartitioned local index on SALE_DATE is
created using the following SQL:

create index i0_sales on sales(sale_date) local;

REM show that index partition names are the same as the table

partitions . . .

select partition_name from all_ind_partitions where

index_name='I0_SALES';

PARTITION_NAME

P200201

P200202

P200203

P200204

P200205

P200206

P999999

When an index partition key matches the leftmost columns in the index, the index is
said to be prefixed. In this case, the index column is SALE_DATE and the index parti-
tion key is also SALE_DATE because local indexes use same the partition key as the
table on which the index exists. Therefore, our I0_SALES index is prefixed. Figure 11.1
shows a representation of the SALES table and the equipartitioned index I0_SALES.
For each table partition, there is an identically named index partition (as shown in the
previous SQL output), which is indicated by the arrows in Figure 11.1. Each indexed
SALE_DATE value in a given table partition has an entry in the associated index parti-
tion, as shown by the matching date and part of the ROWID value.

Consider the benefits of a local partitioned index on the SALE_DATE column. When
a query such as SELECT COUNT(*) FROM SALES WHERE SALE_DATE BETWEEN
'01-JAN-2002' AND '31-JAN-2002' is executed, the table partitioning on SALES_DATE
means that Oracle optimizer can eliminate all partitions except P200201 from process-
ing immediately. As the index is equipartitioned with the table, a range scan of the
index partition P200201 associated with the table will be sufficient to produce the
query results. If the table contained millions of rows representing 12 months’ worth of
data, a nonpartitioned table and index would require an index 12 times as big to be
scanned (assuming that each month has an equal number of sales). If it was later
decided to keep data for 24 months online, then the index would be around 24 times as
big as the single index partition for 1 month. By using partitions, the I/O requirement
to satisfy the query is bounded by the size of a single partition compared to the non-
partitioned case where the I/O grows with the size of the table. By placing finite
bounds on processing requirements, partitions enable scalability. Figure 11.2 shows the
DbCool EXPLAIN PLAN for the previous statement, where steps #2 and #3 in the plan
indicate the use of the partition key on SALES_DATE, and step #3 indicates the use of
the equipartitioned I0_SALES column.

At this point, it’s worth considering the processing that would take place for the
same SQL if the index I0_SALES did not exist. In this case, a full scan of the partition

Partitioning 269

P200201 alone would produce the results because partition elimination is still avail-
able. On the other hand, a nonpartitioned table would require a full table scan of all the
data for every month. Therefore, scalability is still improved even without the exis-
tence of the index. Figure 11.3 shows the DbCool EXPLAIN PLAN for the previous

270 Chapter 11

P200201
(Jan 2002)

P200202
(Feb 2002)

P200203
(Mar 2002)

 SALE_DATE STORE EMPNO
----------- -------- -----
 14-JAN-02 BRISTOL 4
 14-JAN-02 LONDON 12
 18-JAN-02 BRISTOL 10
 19-JAN-02 GLASGOW 13
 22-JAN-02 LONDON 9
 22-JAN-02 LONDON 9

 SALE_DATE STORE EMPNO
----------- -------- -----
 04-FEB-02 LONDON 11
 05-FEB-02 LEEDS 2
 07-FEB-02 LEEDS 2
 10-FEB-02 GLASGOW 3
 22-FEB-02 LONDON 8
 28-FEB-02 GLASGOW 14

 SALE_DATE STORE EMPNO
----------- -------- -----
 03-MAR-02 LEEDS 2
 11-MAR-02 LONDON 8
 19-MAR-02 GLASGOW 13
 22-MAR-02 GLASGOW 3
 27-MAR-02 LEEDS 2
 28-MAR-02 LONDON 8

SALES Table Partitions

 SALE_DATE ROWID
----------- -------
 14-JAN-02 E6KAAD
 14-JAN-02 E6KAAE
 18-JAN-02 E6KAAB
 19-JAN-02 E6KAAC
 22-JAN-02 E6KAAA
 22-JAN-02 E6KAAF

 SALE_DATE ROWID
----------- -------
 04-FEB-02 E6MAAD
 05-FEB-02 E6MAAA
 07-FEB-02 E6MAAC
 10-FEB-02 E6MAAF
 22-FEB-02 E6MAAB
 28-FEB-02 E6MAAE

LOCAL Index I0_SALES(SALE_DATE) Partitions

 SALE_DATE ROWID
----------- -------
 03-MAR-02 E6OAAE
 11-MAR-02 E6OAAF
 19-MAR-02 E6OAAB
 22-MAR-02 E6OAAD
 27-MAR-02 E6OAAC
 28-MAR-02 E6OAAA

Figure 11.1 Equipartitioned index I0_SALES.

Figure 11.2 EXPLAIN PLAN with a partitioned index.

statement without an index. The plan indicates that without the index, a full scan of
SALES is required, but that partition elimination restricts the scan to a single partition.

Now consider another requirement. In this case, it’s required to group output by the
name of the store using a query like SELECT COUNT(*) FROM SALES WHERE
STORE�'GLASGOW'. Leaving aside partitioning for the moment, it would be reason-
able to create an additional index on the STORE column. It’s possible to create another
local index on the STORE column. The use of LOCAL means that the index is parti-
tioned on the partition key of the table as before, which is SALE_DATE. In this case, the
index partition key is no longer a leftmost match with the index columns, so the index
is said to be nonprefixed. The following SQL creates the I1_SALES index on column
STORE, partitioned by SALE_DATE (based on the underlying table partitioning):

create index i1_sales on sales(store) local;

Figure 11.4 shows the index entries for the local index I1_SALES table showing only
the store value GLASGOW in order make the behavior of queries that use the index
easier to understand.

It’s clear from Figure 11.4 that if the index I1_SALES is to be used in a query execu-
tion plan such as the COUNT(*) example used previously, each partition of the index
will need to be searched in order to identify rows where the STORE�'GLASGOW'.
This is because the index key (STORE) doesn’t match the partition key (SALE_DATE).
The operation of searching each index partition in this scenario is referred to as an index
probe. The more partitions that exist, the more probes are required. The use of a local
index on STORE means that the availability advantages of equipartitioning apply to
I1_SALES. For example, if the table partition P200201 is dropped, then both index par-
titions on SALE_DATE and STORE for that date range are dropped automatically and
the index remains in a useable state.

If LOCAL is not specified for an index, then the index is a global index. A global index
doesn’t have to be partitioned and can be created on a nonpartitioned table. The fol-
lowing two statements create the same nonpartitioned global index on SALES(STORE):

create index i2_sales on sales(store) global;

REM GLOBAL is the default so this is the same...

create index i2_sales on sales(store);

Partitioning 271

Figure 11.3 EXPLAIN PLAN without a partitioned index.

The major difference between a local and global index is that the global index can
use a different partition key from the table partition key. So in order to gain the maxi-
mum performance from SELECT COUNT(*) FROM SALES WHERE STORE�

'GLASGOW', it makes sense to create a global index on SALES and partition on the
STORE column to enable partition elimination in the query execution plan. The defini-
tion of a global index partitioned on STORE looks like this:

create index i2_sales on sales(store)

global

partition by range (store)(

partition store_d values less than('D'),

partition store_i values less than('I'),

partition store_n values less than('N'),

partition store_s values less than('S'),

partition store_max values less than(maxvalue));

Figure 11.5 shows the index partitions and how they map to data in the partitioned
table. The dashed lines indicate that all table rows matching STORE�'GLASGOW' are

272 Chapter 11

P200201
(Jan 2002)

P200202
(Feb 2002)

P200203
(Mar 2002)

 SALE_DATE STORE EMPNO
----------- -------- -----
 14-JAN-02 BRISTOL 4
 14-JAN-02 LONDON 12
 18-JAN-02 BRISTOL 10
 19-JAN-02 GLASGOW 13
 22-JAN-02 LONDON 9
 22-JAN-02 LONDON 9

 SALE_DATE STORE EMPNO
----------- -------- -----
 04-FEB-02 LONDON 11
 05-FEB-02 LEEDS 2
 07-FEB-02 LEEDS 2
 10-FEB-02 GLASGOW 3
 22-FEB-02 LONDON 8
 28-FEB-02 GLASGOW 14

 SALE_DATE STORE EMPNO
----------- -------- -----
 03-MAR-02 LEEDS 2
 11-MAR-02 LONDON 8
 19-MAR-02 GLASGOW 13
 22-MAR-02 GLASGOW 3
 27-MAR-02 LEEDS 2
 28-MAR-02 LONDON 8

SALES Table Partitions

 SALE_DATE ROWID
----------- -------
 ...
 ...
 ...
 GLASGOW E6KAAC
 ...
 ...

 SALE_DATE ROWID
----------- -------
 ...
 ...
 ...
 GLASGOW E6MAAF
 ...
 GLASGOW E6MAAE

LOCAL Index I1_SALES(STORE) Partitions

 SALE_DATE ROWID
----------- -------
 ...
 ...
 GLASGOW E6OAAB
 GLASGOW E6OAAD
 ...
 ...

Figure 11.4 Equipartitioned index I1_SALES.

located in the same index partition for the global index. This contrasts with Figure 11.4,
which shows that for a local index on the same column (STORE), rows for STORE�

'GLASGOW' can be located in different index partitions. For the global index scenario,
when the query SELECT COUNT(*) FROM SALES STORE�'GLASGOW' executes, the
optimizer can determine that a partitioned global index exists on the STORE column
and can use partition elimination to generate the query results from a FAST FULL
SCAN operation on the STORE_I partition of the I2_SALES index.

Clearly, global indexes provide performance benefits. However, the drawback of
global indexes stems from the fact that the table and index are not partitioned on the
same key. As a result, maintenance dependencies are introduced that don’t exist when
local indexes are used. Consider what happens in Figure 11.5 when table partition
P200201 is dropped. The existence of the global index on STORE means that index
entries exist in all index partitions for rows in P200201, as shown by the lines from the
rows in P200201 to the index partitions that hold the index entries. As a result, when

Partitioning 273

P200201
(Jan 2002)

P200202
(Feb 2002)

P200203
(Mar 2002)

 SALE_DATE STORE EMPNO
----------- -------- -----
 14-JAN-02 BRISTOL 4
 14-JAN-02 LONDON 12
 18-JAN-02 BRISTOL 10
 19-JAN-02 GLASGOW 13
 22-JAN-02 LONDON 9
 22-JAN-02 LONDON 9

 SALE_DATE STORE EMPNO
----------- -------- -----
 04-FEB-02 LONDON 11
 05-FEB-02 LEEDS 2
 07-FEB-02 LEEDS 2
 10-FEB-02 GLASGOW 3
 22-FEB-02 LONDON 8
 28-FEB-02 GLASGOW 14

 SALE_DATE STORE EMPNO
----------- -------- -----
 03-MAR-02 LEEDS 2
 11-MAR-02 LONDON 8
 19-MAR-02 GLASGOW 13
 22-MAR-02 GLASGOW 3
 27-MAR-02 LEEDS 2
 28-MAR-02 LONDON 8

SALES Table Partitions

 STORE ROWID
----------- -------
 BRISTOL E6KAAD

 STORE ROWID
----------- -------
 GLASGOW E6KAAC
 GLASGOW E6MAAF
 GLASGOW E6MAAE
 GLASGOW E6OAAB
 GLASGOW E6OAAD

GLOBAL Index I2_SALES(STORE) Partitions

 STORE ROWID
----------- -------
 LEEDS ...
 LEEDS ...
 LONDON ...

STORE_D STORE_I STORE_N

Figure 11.5 Global index I2_SALES.

the partition is dropped, one or more index partitions contain entries for rows that no
longer exist. To ensure that this index can’t be used, Oracle marks the global index as
UNUSABLE:

alter table sales drop partition p200201;

REM now check the state of I2_SALES partitions...

select partition_name,status

from user_ind_partitions where index_name='I2_SALES';

PARTITION_NAME STATUS

---------------- ---------

STORE_I UNUSABLE

STORE_D UNUSABLE

STORE_N UNUSABLE

STORE_S UNUSABLE

STORE_MAX UNUSABLE

During the time that the index is in an unusable state, DML that requires the use of
the index produces errors. Therefore, if partition maintenance operations are carried out
without careful consideration, availability can be compromised. For example, the pre-
vious query using the predicate STORE�'GLASGOW' produces the following error:

ORA-01502: index 'SYSTEM.I2_SALES' or partition of such index is in

unusable

The solution to this problem is to rebuild the index. Rebuilding a partitioned index
requires rebuilding each partition separately, as shown in the following example,
which rebuilds the index partitions rendered unusable by the previous partition drop
command:

begin

for rec in (select partition_name p from

user_ind_partitions where index_name='I2_SALES'

and status='UNUSABLE')

loop

execute immediate

' alter index I2_SALES rebuild partition '||rec.p;

end loop;

end;

Using the unusable index can be skipped by enabling ALTER SESSION SET
SKIP_UNUSABLE_INDEXES�TRUE in the session before executing a query that
would require the index. This approach just works around the problem and enables the
query to complete by using a full scan of the table, typically with a large increase in
elapsed time as compared to the execution when the index is usable. The use of global
indexes can therefore reduce both performance and availability.

Oracle9i introduces the UPDATE GLOBAL INDEXES option for various partition
maintenance functions, such as DROP PARTITION. The use of UPDATE GLOBAL

274 Chapter 11

TE
AM
FL
Y

Team-Fly®

INDEXES means that global indexes are updated in step with the DDL operation on
the partition in order to prevent the index from becoming unusable. The following
DROP PARTITION statement enables the global index I2_SALES to remain usable at
all times and doesn’t require an explicit rebuild of the index:

alter table sales drop partition p200202

update global indexes;

The use of UPDATE GLOBAL INDEXES increases availability at the cost of slower
partition maintenance operations. For example, partition operations such as DROP
and EXCHANGE now require partition scans to identify the affected rows, and the
index changes for the affected rows generate redo and rollback. For large indexes, con-
sideration should be given to the use of the index rebuilds if a maintenance window is
available, due to the increased efficiency of an index rebuild compared to an index
update.

In general, global indexes are required for performance, and they introduce the pos-
sibility of reduced availability. The use of local indexes enables partition maintenance
operations to be carried out without resulting in unusable indexes. The requirement
for unique indexes of type LOCAL places additional constraints on how the index
must be created. In this case, the index key must contain the partitioning key. In other
words, the index must be prefixed. This requirement guarantees that a unique index
key is unambiguously located in a single partition. If this is not the case, then the fol-
lowing error message is returned when trying to create an index that fails to meet the
requirement:

ORA-14039: partitioning columns must form a subset of key columns of a

UNIQUE index

In general, it’s desirable to create local indexes because they support partition
administration operations without producing unusable indexes. However, sometimes
the requirements for a unique index take precedence and a local unique index isn’t
possible. In this scenario, it’s necessary to create a global index and manage the possi-
bility of unusable indexes. For example, the creation of a primary key on a table parti-
tioned on a date range (such as SALES) presents problems that can only be solved
using global indexes. In the SALES table example, the SALE_ID column is a value that
uniquely identifies each sale. Therefore, SALE_ID is the primary key. In general, a pri-
mary key constraint can be based on an existing index, if the index was created on the
same columns as the primary key. Here’s a simple example for a nonpartitioned table:

create table junk(x number, y number);

create index i0_junk on junk(y,x);

alter table junk add constraint pk_junk primary key (x,y);

It’s important to note that the index IO_JUNK is not UNIQUE, and the order of
columns in the index doesn’t match the order of columns in the primary key. However,
the ALTER TABLE . . . ADD CONSTRAINT operation still works. The operation suc-
ceeds because Oracle checks to see if the values in the index are unique before enabling
the index to be used in the primary key. Oracle also changes the column attributes for

Partitioning 275

the table to NOT NULL. The same processing is possible whether the index is a global
or local partitioned index. For the SALES table example, the equivalent statements
would be as follows:

create index i3_sales on sales(sales_id) local;

alter table sales add constraint pk_sales primary key(sales_id);

In this case, the ALTER TABLE . . . ADD CONSTRAINT operation fails with ORA-
01408: such column list already indexed, whereas it succeeded for the simple nonpar-
titioned example on the JUNK table. In order for the ADD CONSTRAINT to succeed,
the underlying index must be unique. If this index is a local partition index, the parti-
tioning imposes the additional requirement that the index key must contain the parti-
tion key, as explained previously. In this case, it doesn’t.

Even though the I3_SALES index is not specified using UNIQUE, it must be checked
for uniqueness in order to be used as a primary key. When the ALTER TABLE . . .
ADD CONSTRAINT operation is specified, Oracle attempts to use the I3_SALES index
to enforce the primary key because the primary key column matches the index column.
The uniqueness constraint can’t be satisfied for the local index, and the operation fails.
The only way to create the primary key for the partitioned SALES table is to create the
underlying index as a global index, leading to the possibility of reduced availability or
performance when partitions are dropped. The following SQL statements create the
primary key based on a global index:

create index i3_sales on sales(sales_id) global;

alter table sales add constraint pk_sales primary key(sales_id);

Summary

Partitioning can provide significant performance and availability benefits for large
databases by dividing large tables and indexes into smaller pieces that can be managed
independently and processed in parallel. Applications that need to keep a fixed win-
dow of historical data online benefit significantly from partitioning. The ability to man-
age data at the partition level means that data can be removed by simple partition-level
operations rather than the much more expensive DELETE statements. To experience
the benefits of low-cost administrative operations in this case, tables need to be parti-
tioned on date columns by using the range method, and indexes need to be equiparti-
tioned on the same columns by using the LOCAL option. In many cases, the use of
LOCAL is not compatible with best performance or primary key integrity require-
ments. This leads to the requirement for global indexes.

Although they often enhance performance, using global indexes can lead to avail-
ability issues. Many partition maintenance operations, such as DROP, cause global
indexes to become unusable. Oracle9i provides a new option called UPDATE GLOBAL
INDEXES to prevent global indexes from being rendered unusable by partition main-
tenance operations. However, this operation can cause significant performance degra-
dation because global indexes need to be updated in synch with the table data and
should be used with care.

276 Chapter 11

Oracle provides the hash-partitioning method in order to distribute data evenly
across partitions. However, the hash method loses the advantages of the range method
when historical data needs to be managed. The composite-partitioning method,
whereby data is logically partitioned by range and then physically subpartitioned by
hash, is available to provide the advantages of both methods.

Partitioning 277

279

Oracle uses indexes for two main purposes. The first is to enforce integrity through pri-
mary key and unique constraints. The second is to provide faster access paths to table
data during Data Manipulation Language (DML) statements. The downside of indexes
is that they can incur considerable input/output (I/O) and central processing unit
(CPU) resources to maintain.

This chapter will help you manage indexes to provide maximum benefit at mini-
mum cost. It covers the following subjects:

■■ The cost of index management

■■ Understanding index types

■■ Identifying which columns to index

■■ Identifying unused indexes

■■ Determining when to rebuild indexes

■■ Building function-based indexes

Managing Indexes

C H A P T E R

12

The Cost of Index Management

You should ensure that you index the minimum number of columns in any table in
order to meet integrity and performance goals. Indexes typically provide faster access
paths to data, at the cost of more expensive DELETE, INSERT, and UPDATE state-
ments. The extra expense consists of additional overhead from the following:

■■ The extra disk space needed to store the indexes

■■ The extra processing needed to maintain the index data structure in synch with
the table data

■■ The extra redo that needs to be generated to store changes to the index data
structure

A simple example can be used to demonstrate the overhead needed to maintain
indexes during an INSERT statement, by inserting 5,000 rows into a table without
indexes, and then comparing performance with the same insert when indexes are in
place. The following SQL runs the test:

REM create empty table...

create table my_obj tablespace tools as

select * from dba_objects where 1=2;

REM - INSERT 5000 rows without index...

insert /*#1*/ into my_obj select * from dba_objects where rownum <=5000;

truncate table my_obj;

REM - repeat INSERT with 2 indexes in place...

alter table my_obj add constraint pk_mo primary key(object_id)

using index tablespace tools;

create index i0_mo on my_obj(owner,object_name) tablespace tools;

insert /*#2*/ into my_obj select * from dba_objects where rownum <=5000;

A comment /* . . . */ is used in each INSERT statement to more easily identify the
statement in V$SQL. The Oracle9i version of V$SQL contains CPU_TIME and ELAPSED
_TIME columns to provide high-level metrics about the performance of each statement.
The following SQL displays information from V$SQL for each insert:

select substr(sql_text,1,12) sql ,executions execs,elapsed_time,cpu_time

from v$sql where sql_text like 'insert /*%';

More detailed information about the statistics and event waits for each insert can be
displayed using DbCool (as shown in Chapter 9) by sampling the V$SESSTAT and
V$SESSION_EVENT views before and after each insert. In this example, the elapsed
time for the insert is more than doubled when the indexes are in place. The following
list shows the output from the DbCool History display, where the values shown indi-
cate the increase in statistics from the insert performed with the indexes in place:

280 Chapter 12

1328244 => redo size

3183 => session logical reads

3030 => db block changes

2948 => db block gets

1557 => redo entries

1128 => enqueue releases

1128 => enqueue requests

235 => consistent gets

135 => consistent gets - examination

129 => change write time

46 => leaf node splits

It’s clear that the presence of the indexes causes a large increase in redo along with
large increases in the number of block changes and enqueue requests and releases. In a
real application, it’s not unusual for a table with many columns to have several
indexes. Each index contributes extra cost to inserts, updates, and deletes, especially
through increases in redo generation. In order to reduce the cost of changes, index
columns should be chosen so that they are used to speed up access paths to table data.
If indexes are required to enforce data integrity through primary key and unique con-
straints, they can’t be avoided.

Understanding Index Types

The purpose of an index is to store pointers to the rows in a table that contain a given
key value. Recall that every row in a database can be uniquely identified by its ROWID
value, which comprises the following components:

■■ The database file where it resides

■■ The block offset in the file

■■ The record offset in the block

These ROWID values can be stored in an index in two fundamentally different
ways, using either B*trees or bitmaps. As well as indexes, Oracle provides index orga-
nized tables (IOTs), which provide table-like data access with less maintenance over-
head than a traditional table.

B*tree Indexes
In a B*tree index, the ROWID values are stored as a binary encoding of the file, block,
and record values. A B*tree index, fundamentally, is very similar to the index at the
back of a book. When you need to find the page where a word is located in a book, you
typically scan the list of alphabetic headings until you find the one your word begins
with. Then you look down the list and find the word. Associated with the word are the
pages where the word can be found. An Oracle B*tree index contains two types of
blocks: branch blocks and leaf blocks. The branch blocks are like the alphabetic head-
ings in a back-of-book index: They help you to quickly narrow down the scope of your

Managing Indexes 281

search. The leaf blocks are like the word entries in a back-of-book index: They point to
blocks that hold the data that was indexed. B*tree indexes are designed to stay bal-
anced so that the number of branch blocks that need to be checked before locating the
leaf block is kept to a minimum. For a unique index, each leaf entry contains a single
key value and ROWID. For nonunique indexes, the key value may be repeated several
times. In this case, the ROWID value itself is used as part of the key to ensure unique-
ness of the key value.

Bitmap Indexes
In a bitmap index, a bitmap is maintained for each key value. Bit offsets in the bitmap
correspond to ROWID values in the table. A bit value of 1 in the bitmap means that the
key exists at the ROWID value represented by that particular bit in the bitmap. During
the execution of a query plan, Oracle uses an internal function to convert a given bit
offset in a bitmap to a real ROWID value. A simple example demonstrates that bitmap
indexes have the potential for massive space savings compared to B*tree indexes in the
right circumstances. The following SQL creates a table called gender where 10,000
rows contain the value MALE and 10,000 contain the value FEMALE:

create table gender as

select decode(mod(rownum,2),1,'MALE','FEMALE') mf

from all_tab_columns where rownum <=20000;

Using this simple example, a B*tree index on GENDER, created using the following
SQL, is more than 20 times as large as a bitmap index (57 blocks compared to 2 blocks)
because the bitmap index only needs to maintain 2 bitmaps for the values MALE and
FEMALE, whereas the B*tree index needs to store a ROWID value for all 20,000
instances of MALE and FEMALE:

create bitmap index i0_gender on gender(mf);

In terms of space savings, the previous example presents a bitmap index in the best
possible light compared to a B*tree index. When key values in a B*tree index repeat so
frequently, then space can be saved by using the COMPRESS option at index creation
time. The COMPRESS option results in the repeated key values being stored separately
as a prefix that needs to be applied to the index entries when they are required during
a DML execution. This requirement to regenerate the key using the prefix adds an
overhead during query processing. The following SQL creates a compressed B*tree
index, resulting in an index 37 blocks in size, compared to 2 blocks for the bitmap index
and 57 blocks for the uncompressed B*tree index:

create index i0_gender on gender(mf) compress;

Bitmap indexes are most suitable for query-intensive applications, where queries
use combinations of low cardinality columns in predicates containing equality, AND,
OR, and NOT operations. Data warehouse applications are a good fit with these re-
quirements. Queries that use range operations can’t take advantage of bitmap indexes

282 Chapter 12

on columns. The cardinality of a column is a measure of the number of distinct values
in the column compared to the total number of rows in the table. Low cardinality
columns are candidates for a bitmap index where Oracle defines low cardinality as
follows:

■■ The number of distinct values of a column is less than 1 percent of the number
of rows in the table.

■■ The values in a column are repeated more than 100 times.

When bitmap indexes are present, AND, OR, NOT, and equality predicates can be
implemented during completion of the execution plan through simple binary arith-
metic on the bitmaps. This can lead to stunning improvements in response times.

Bitmap indexes have another benefit compared to B*tree indexes because NULL val-
ues are indexed. In a B*tree index, they aren’t. Parallel query and parallel DML work
with bitmap indexes in exactly the same way as B*tree indexes. Bitmap indexes on par-
titioned tables are enabled, but they must be local indexes. Partitioning is covered in
Chapter 11. Parallel create index generation and concatenated indexes are also sup-
ported for bitmap indexes.

There’s always a strong caveat that bitmap indexes shouldn’t be used with Online
Transaction Processing (OLTP) type applications. Based on the earlier example, the
bitmap index is only two blocks in size. This suggests that the index blocks could
become a source of contention if bitmaps need to be updated simultaneously by dif-
ferent sessions. As there are only two blocks, any concurrent updates on the bitmap
index columns are likely to lead to contention. It’s interesting to investigate this more
closely. The techniques in Chapter 14 can be used as the basis for a benchmark to study
the effects. Before the benchmark runs, a column needs to be added to identify each
row uniquely, as would be the case for a table in an OLTP-type application. The fol-
lowing SQL adds a primary key ID column to GENDER:

alter table gender add (id number);

update gender set id=rownum;

alter table gender add constraint pk_g0 primary key(id);

The procedure SP_TEST_INDEX used to test the bitmap versus B*tree index perfor-
mance is shown in the following:

create or replace procedure sp_test_index as

cursor c1 (p_in number) is

select mf,rowid from gender where id=p_id;

l_gender varchar2(6);

l_rowid rowid;

l_id number;

i number;

begin

for i in 1..1000 loop

l_id := round(dbms_random.value(1,20000));

Managing Indexes 283

open c1(l_id);

fetch c1 into l_gender,l_rowid;

-- change the gender

if l_gender='MALE' then

l_gender:='FEMALE';

else

l_gender:='MALE';

end if;

close c1;

update gender set id=l_id where rowid=l_rowid;

commit;

end loop;

end;

The procedure generates a random number between 1 and 20,000 and uses this
value to select a row from GENDER, which contains 20,000 rows identified by a unique
value from 1 to 20,000 in the ID column. The query is typical of an index-driven row
selection from a table in an OLTP application. Next, the gender value in the MF column
is switched from MALE to FEMALE or vice versa and is written back to the same row.
This transaction is repeated 1,000 times. A comparison of the performance of the same
routine executed in two concurrent sessions on a 2-CPU Sun Solaris server (using
DbCool StressTester) shows evidence of nonscaleable behavior when the GENDER
table uses a bitmap index compared to a B*tree index. In a simple test, elapsed time to
complete the test with a bitmap index in place increases by 100 percent for two sessions
compared to one. In effect, the bitmap index results in changes to the table being seri-
alized rather than concurrent. With a B*tree index, the elapsed time increased by 10
percent for two sessions compared to one.

Due to contention on the two bitmap index blocks as a result of frequent changes to
the blocks caused by the index update, events such as buffer busy waits, enqueues, and
latch free are evident. These are described in Chapter 9. The bitmap index generates
large amounts of redo (70 percent more than the B*tree index), which results in waits
for the log buffer space event. This evidence confirms that bitmap indexes are not suit-
able for OLTP applications due to the increased possibly of multiple sessions contend-
ing for the bitmaps in the blocks at the same time.

Bitmap Join Indexes (BJIs)
Oracle9i introduces a new type of index called a BJI that enables a table index to
include values from a column in another table that previously required a join operation
to fetch. The goal is to avoid potentially expensive join operations, leading to reduced
I/O during query processing and reduced elapsed times for DML execution.

284 Chapter 12

TE
AM
FL
Y

Team-Fly®

BJIs are designed for use in data warehouse applications to eliminate join operations
between that fact and dimension tables typically used in a data warehouse schema.
Consider a data warehouse containing a fact table, SALES, and a dimension table,
PRODUCTS, which are related by a primary key and foreign key relationship on the
PRODUCT_ID column. Ignoring the presence of other dimension tables that would be
expected (such as CUSTOMERS), the two tables might look like the following:

create table products

(product_id number primary key,

product_name varchar2(30),

category varchar2(30));

create table sales

(amount number,

product_id number references products);

A query to identify the amount of sales for a particular category requires a join
between SALES and PRODUCTS that looks like this:

select sum(s.amount)

from sales s, products p

where s.product_id = p.product_id

and p.category = 'Sporting Goods';

If the category information for the product were stored in an index on the SALES
table, there would be no need for the join because the required information would be
available from the index. In Oracle9i, you can create a BJI for this purpose:

create bitmap index i1bj_product_sales

on sales (p.category)

from sales s, products p

where s.product_id = p.product_id;

Figure 12.1 shows a query execution plan for the previous SQL, which confirms that
no access to the PRODUCT table is taking place.

Index-Organized Tables (IOTs)
Consider a scenario where you need to store a lookup table containing millions
of name/value pairs and access the value by a query on the name. Oracle’s own
V$PARAMETER table is an example of a lookup table. The obvious way to implement
the requirement is to create a table, along with a primary key value based on the name.
For performance reasons, you might create an additional unique index on the name
and value columns. The unique index means that queries of the form SELECT VALUE
FROM LOOKUP WHERE NAME�'key' can be satisfied from the index alone. This
approach has some inefficiencies because the NAME is stored three times: in the table,
in the primary key, and in the unique index.

Managing Indexes 285

An IOT provides the solution to this problem by storing the table data itself in a
B*tree index structure rather than using separate table and index structures. As a
result, the primary key value is physically stored once only. This leads to more efficient
access with reduced I/O for an IOT compared to a standard table and index approach,
which in turn can reduce the elapsed time for DML execution. The key to the usability
of an IOT is that it behaves like a regular table in terms of DML operations because the
underlying storage implementation as a B*tree is hidden.

The data in a regular table is stored as an unordered collection, known as heap
ordered. Unlike heap-ordered tables (where ROWID is used to physically identify
rows), IOTs must have a primary key to enable unique row identification. Primary keys
on heap-ordered tables are optional. Whereas a primary key on a heap-ordered table
stores ROWID values in the index entries, the B*tree entries in an IOT store the primary
key value along with nonkey column values. Because rows in an IOT are stored in pri-
mary key order, the use of key compression (as described previously) can lead to sig-
nificant space savings.

Just like heap-ordered tables, IOTs have an associated ROWID pseudocolumn. For
an IOT, the ROWID represents a logical row identifier. The presence of the ROWID in
an IOT enables additional indexes (referred to as secondary indexes) to be created on
nonkey columns in the table, for performance. As well as enabling secondary indexes,
the presence of logical ROWIDs, rather than physical ROWIDs, means that IOTs can be
relocated using the ALTER TABLE MOVE command without causing the IOT B*tree
index to become unusable. This can lead to higher data availability compared to using
a table and primary key to hold the same data. Using a table and primary key, the
physical relocation of the MOVE command on the table renders all the ROWID values
in the primary key invalid, requiring a rebuild of the primary key.

In a B*tree index on a heap-ordered table, as many index entries as will fit are stored
in each index block. This leads to index lookups that require the minimum I/O. On the
other hand, with an IOT potential performance issues arise when the IOT contains
many columns that aren’t part of the primary key. Because these columns need to be
stored in each index entry, they increase the space used in each B*tree block, and the
resulting index lookups in the B*tree are less efficient. In effect, the nonkey columns

286 Chapter 12

Figure 12.1 EXPLAIN PLAN for BJI.

work against the requirement to store as many keys as possible in each B*tree block. To
solve this problem, you can create an IOT using the optional OVERFLOW clause to
store infrequently accessed columns that are not part of the key in a separate overflow
area with a heap-organized structure.

Associated with the OVERFLOW clause are options to specify a physical or logical
threshold (or both) for splitting the contents of a row into two parts that are stored in
the B*tree section of the IOT and the heap-organized overflow area:

■■ The PCTTHRESHOLD clause is a physical threshold, where the part of a row
that exceeds a percentage of the block size is placed in the overflow heap.

■■ The INCLUDING clause specifies a column name, such that any nonkey
columns that appear in the CREATE TABLE statement after that specified col-
umn will be stored in the overflow heap.

The PCTTHRESHOLD value may cause additional columns other than those fol-
lowing INCLUDING to be stored in the overflow heap. The following SQL shows how
to create an IOT using both overflow thresholds, where the B*tree part is stored in
tablespace TS_DATA, and the overflow is stored in TS_OVERFLOW:

create table lookup

(name varchar2(30) primary key,

value varchar(30),

comment$ varchar(128))

organization index

including value

pctthreshold 30

tablespace ts_data

overflow tablespace ts_overflow;

Identifying Columns to Index

In the simplest case, DML statements involving an equality, range, or like operator can
use an index to provide faster access to table data. Here are some simple examples
based on the MY_OBJ table created previously:

REM these two can use an index on OBJECT_ID

select /* equality */ * from my_obj where object_id=42;

select /* range */ * from my_obj where object_id between 1 and 100;

REM this can use an index on OWNER

select /* like */ * from my_obj where owner like 'SYS%';

In reality, application DML statements are usually nowhere near this simple. The
Index Tuning Wizard component of the Oracle Enterprise Manager Tuning Pack is
designed to address the challenge of deciding on the optimal indexes and index types
for best performance. The Index Tuning Wizard uses the same technology as Oracle
Expert to identify the best indexes. Chapter 16 contains examples of how to use Oracle
Expert.

Managing Indexes 287

A less automated approach, but a perfectly acceptable one, is to identify expensive
SQL (using the techniques in Chapter 9), create the candidate index to improve perfor-
mance based on a visual inspection of the query, and then analyze it and check whether
the query now results in a plan that uses the index and has a lower cost than the origi-
nal. DbCool and the SQL Analyze component of Oracle Enterprise Manager both pro-
vide features to facilitate the comparison of execution plans before and after a new
index is available.

Indexing SELECT List Columns
A very useful technique to reduce I/O for DML statements is to index the columns in
the SELECT list such that query results can be satisfied from the index alone, without
requiring a table lookup. This technique is especially useful for tables with only a few
rows per block. When tables have only a few rows per block (often because the table
has long rows), then a requirement to fetch just a few rows can result in significant
block I/O. This technique can be demonstrated with a simple example based on the
MY_OBJ table shown earlier. The following SQL counts the number of object types for
objects in the range of 1 to 100:

select count(object_type) from my_obj where object_id between 1 and 100;

Execution Plan

Order SELECT STATEMENT

3 SORT (AGGREGATE)

2 TABLE ACCESS (BY INDEX ROWID) OF 'MY_OBJ'

1 INDEX (RANGE SCAN) OF 'PK_MO' (UNIQUE)

The query execution plan shows the order of processing when the query is executed.
First, the primary key index is scanned to identify ROWID values in the MY_OBJ table
for rows having an OBJECT_ID between 1 and 100. This action is identified by the
INDEX (RANGE SCAN) operation. Next, for each ROWID value in the index,
the related MY_OBJ table block holding the row is located using the ROWID value. The
ROWID value identifies the datafile, block, and row in the block where the row can be
located, as indicated by the TABLE ACCESS operation. The OBJECT_TYPE in the row is
then read from the table block. Finally, the list of OBJECT_TYPE values is sorted to iden-
tify unique values, and the count of the unique values is returned. Each ROWID identi-
fied in the index requires a table block lookup. This query execution plan can be
improved by creating an index to avoid the TABLE ACCESS operation on MY_OBJ.
Consider the plan for the original SELECT statement when a new index is added on the
OBJECT_ID and OBJECT_TYPE columns as shown in the following example:

create index i1_mo on my_obj(object_id,object_type) tablespace tools;

Execution Plan

Order SELECT STATEMENT

288 Chapter 12

2 SORT (AGGREGATE)

1 INDEX (RANGE SCAN) OF 'I1_MO' (NON-UNIQUE)

When the I1_MO index exists, the execution plan no longer requires the TABLE
ACCESS operation because the OBJECT_TYPE used in the select list is available from
the index block containing the OBJECT_ID. Using this approach, it’s possible to end up
with several indexes containing the same columns but in a different order. That’s fine
if the goal is to speed up queries, at the cost of more expensive inserts, updates, and
deletes. For applications that are read intensive, query response times are of para-
mount importance. As a result, the overhead of inserting each row is counted once,
whereas the benefits of the extra index are obtained each time the query runs. When
OLTP applications run queries that require full table scans of large tables, this tech-
nique can sometimes be used to avoid the full table scan by ensuring that all select list
columns can be satisfied from the index using an index scan. If the index is smaller
than the table on which it is based, a scan of the index is usually faster than a scan of
the table because fewer blocks need to be processed.

Using Index Scans
The Oracle optimizer sometimes chooses index scans in execution plans for DML that
would otherwise result in a full table scan. An index scan is usually chosen in prefer-
ence to a full table scan if the index is much smaller than the table it indexes. In this
case, a scan of all keys in the index will cost much less in terms of I/O than a table scan,
and complete faster. Three types of index scans are available:

■■ Full scans

■■ Fast full scans

■■ Skip scans (Oracle9i only)

In order for an index scan to be chosen during the generation of an execution plan for
a DML statement, at least one index column of the index table must have the NOT NULL
constraint. However, it’s not required that the WHERE clause reference the leading index
column using an equality, range, or like operator. This is in contrast to a standard B*tree
index search. In fact, some DML can take advantage of index scans when there is no
WHERE clause. To understand the benefits of index scans, consider a SALES table con-
taining millions of rows, and an index on two NOT NULL columns as follows:

create index i0_sales on sales(region_id,product_id);

The execution of the query SELECT COUNT(*) FROM SALES can take advantage of
an index fast full scan on I0_SALES. An index fast full scan is similar to an traditional
index scan with two important differences: The fast full scan performs multi-block
rather than single block reads, and can execute in parallel. The EXPLAIN PLAN out-
put for the query identifies that a fast full scan took place:

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=4 Card=1)

Managing Indexes 289

1 0 SORT (AGGREGATE)

2 1 INDEX (FAST FULL SCAN) OF 'I0_SALES' (NON-UNIQUE)

Because at least one of the index columns refers to a NOT NULL table column, all
rows are guaranteed to have entries in the index. As a result, Oracle can compute the
number of rows in the table by scanning all the index blocks, and counting the index
entries. The index used in this example is around 60 times smaller than the table, so an
index scan results in less I/O than a full table scan of SALES and returns the result
quicker.

When a query such as SELECT SUM(AMOUNT) FROM SALES WHERE PRODUCT_
ID�1567 executes, it’s not possible for Oracle to identify rows that match the query
using a standard B*tree search because the WHERE clause doesn’t contain the leading
index column (REGION_ID). One way to identify the matching rows is via a full table
scan. However, due to the fact that the REGION_ID column is NOT NULL, all PROD-
UCT_ID values will be present in the index as the second part of a two-part composite
key, with REGION_ID as the first part. Given a complete list of all index keys resulting
from an index fast full scan, Oracle can determine the PRODUCT_ID component of each
key, and then use it to determine ROWID values that match PRODUCT_ID�1567. The
ROWID values are then used to fetch table rows from which the AMOUNT column is
read, leading to the SUM(AMOUNT).

Rather than executing the previous SQL using an index fast full scan, Oracle9i can
provide a more optimal execution plan by using an index skip scan instead, as shown
by the following EXPLAIN PLAN:

0 SELECT STATEMENT Optimizer=CHOOSE (Cost=14 Card=1 Bytes=6)

1 0 SORT (AGGREGATE)

2 1 TABLE ACCESS (BY INDEX ROWID) OF 'SALES'

3 2 INDEX (SKIP SCAN) OF 'I0_SALES' (NON-UNIQUE)

The index skip scan reduces I/O during execution by eliminating the need to read
all index blocks, as compared to a fast full scan that always reads all blocks. For tables
where the leading column has a few distinct values and the nonleading column has
many distinct values, the optimizer is more likely to choose an index skip scan. All
three scan types can be requested by using SQL HINTs in the SELECT list as shown in
the following examples, based on the SALES table and I0_SALES index:

/*+ index(sales i0_sales) */

/*+ index_ffs(sales i0_sales) */

/*+ index_ss(sales i0_sales) */

NOTE Always keep in mind that the optimizer may choose to ignore a HINT.

Identifying Unused Indexes

If indexes aren’t being used, then the database takes all of the cost of maintaining the
indexes without any of the benefits of faster DML statements through faster access

290 Chapter 12

paths. Such indexes are candidates for removal. The capability to detect indexes that
are being used (and by implication those that aren’t) has improved very significantly
in Oracle9i compared to Oracle8i. This section provides step-by-step details on how to
detect index usage in both versions.

Indexes and Foreign Keys
It should be noted that indexes sometimes have uses that can’t be identified from state-
ment execution plans alone. In particular, Oracle8i uses nontransactional locks (often
referred to as pins) on foreign key indexes to avoid the need for share locks on the child
table when enforcing foreign key constraints. The standard DEPT and EMP tables are
examples of a parent and child related by a foreign key. The existence of referential
integrity without an index on the foreign key column means that:

■■ Attempts to delete rows in the parent table result in a table-level share lock on
the child.

■■ Attempts to update rows in the parent result in a table-level share lock on the
child, if the update affects any columns referenced by the child.

The share lock means that no insert, update, or delete statements are permitted on
the child until the parent transaction executes COMMIT or ROLLBACK. Some DBAs
create indexes on all foreign keys as standard procedure to avoid the possibility of such
locks occurring. This is generally accepted as best practice for all versions of Oracle
including Oracle9i. As a result, it’s not unusual for these foreign key indexes to remain
unused by query execution paths. In this situation, removal could have disastrous side
effects on application response times. Therefore, all decisions to remove indexes must
take a broad view of how indexes are used.

Oracle9i no longer requires a share lock on unindexed foreign keys when doing an
update or delete on the parent. It still obtains the table-level share lock, but then
releases it immediately after obtaining it. If multiple primary keys are updated or
deleted, the lock is obtained and released once for each row. Oracle9i also provides the
ALTER table DISABLE TABLE LOCK statement to disable table locking. This can be
used on the child table. In this case, no share lock is taken on the child table even if the
child table has no index on the foreign key. If this approach is used, it’s important to
reenable locking afterwards, or Data Definition Language (DDL) against the table will
fail. DbCool contains a built-in script accessible via Script Manager to display all unin-
dexed foreign keys in the current schema.

Determining Index Usage in Oracle8i
The Oracle8i approach to determining which indexes are used means running
EXPLAIN PLAN (see Chapter 10) on all statements in the shared SQL area, and then
querying the OPERATION column in the plan table to identify index access on the
index identified by the OBJECT_OWNER and OBJECT_NAME columns. Consider the
EXPLAIN PLAN for the simple index-driven statement used previously:

explain plan set statement_id='!!' for

select count(object_type) from my_obj

Managing Indexes 291

where object_id between 1 and 100;

select object_owner,object_name,operation,options

from plan_table where operation='INDEX'

and statement_id='!!';

OBJECT_OWNER OBJECT_NAME OPERATION OPTIONS

-------------- ------------- ----------- -----------

SYSTEM I1_MO INDEX RANGE SCAN

The PLAN_TABLE output shows the index access. Whenever an index would be
used during execution, the plan contains a value INDEX in the OPERATION column,
and the values in the OBJECT_OWNER and OBJECT_NAME columns identify the
index. This approach can be extended to the cover all the statements in the shared SQL
area. A complete solution involves fetching the ADDRESS and HASH_VALUE of each
statement, fetching the associated full SQL text of the statement, and then generating a
plan for the statement. On completion, a query on the plan table, similar to the previ-
ous one, can be used to identify all the indexes used by all statements current in the
shared SQL area. Because the shared SQL area is dynamic, the procedure needs to be
repeated sufficiently often that all SQL is explained before it is aged out of the cache.
The following PL/SQL block implements the procedure:

declare

l_sql varchar2(32000);

l_id number;

begin

-- run this as SYSTEM, with a single system-wide PLAN_TABLE

execute immediate 'truncate table system.plan_table';

l_id := 1;

-- for each statement in shared SQL area except those owned by SYS

for rec1 in (

select s.address,s.hash_value,u.username usr

from v$sql s,dba_users u

where s.parsing_schema_id=u.user_id and username <> 'SYS'

and lower(sql_text) not like '%explain plan%') loop

l_sql:='';

-- fetch the full SQL statement text into l_sql . . .

for rec_sql_text in (select sql_text from v$sqltext_with_newlines

where address=rec1.address and

hash_value=rec1.hash_value

order by piece) loop

l_sql:=l_sql||rec_sql_text.sql_text;

end loop;

292 Chapter 12

if length(l_sql) > 0 then

-- set the schema to the user that parsed it originally . . .

execute immediate 'alter session set current_schema='||rec1.usr;

l_id := l_id + 1;

-- generate the plan...

l_sql := 'explain plan set statement_id=''s'||l_id||

''' for '||l_sql;

begin

execute immediate l_sql;

exception

when others then

null;

end;

end if;

end loop;

exception

when others then

dbms_output.put_line(sqlerrm);

dbms_output.put_line('sql='||l_sql);

end;

/

There are some important points to note about the routine, which can impose a sig-
nificant performance overhead, so it should be run on a busy production system only
after careful consideration. The EXPLAIN PLAN statement is executed in its own
nested block, which ignores errors. That’s because the shared SQL area may contain
PL/SQL blocks and DDL statements that EXPLAIN PLAN does not understand, as
well as DML statements that are of interest for identifying index usage. Statements to
which EXPLAIN PLAN can’t be applied cause an ORA-00905 error (missing keyword)
if EXPLAIN PLAN is executed against them, and these can be silently ignored.

The use of ALTER SESSION SET CURRENT SCHEMA just before the execution of
EXPLAIN PLAN is critical to the success of the routine. For example, if two schemas
contain a table with the same name and columns and identical SQL is executed against
each, then EXPLAIN PLAN needs to resolve the table names in the schema that was
used when the SQL was executed. The PARSING_SCHEMA_ID in V$SQL contains the
schema used to resolve the name when the statement executed, and ALTER SESSION
SET CURRENT SCHEMA enables a DBA to effectively become that user for the pur-
pose of generating a plan. A PL/SQL restriction limits the length of the explained state-
ment to 32,000 bytes. That’s definitely not large enough for all systems, and any
requirement to explain longer statements needs a 3GL solution using Pro*C, for exam-
ple. Once execution is complete, the indexes used by all statements in the shared SQL
area can be found in the plan table. This example shows indexes, the number of state-
ments that use them, and the type of index operation used:

select object_owner,object_name,options,count(*)

from plan_table where operation='INDEX'

and object_owner<>'SYS'

Managing Indexes 293

group by object_owner,object_name,operation,options

order by count(*) desc

OBJECT_OWNER OBJECT_NAME OPTIONS COUNT(*)

-------------- --------------------- --------------------- ----------

FXTRADER REP_HUB_QUEUE_UK2 UNIQUE SCAN 76

FXTRADER REP_HUB_DATA_PK UNIQUE SCAN 38

FXTRADER FX_PK UNIQUE SCAN 14

FXTRADER SETTLEMENTS_PK UNIQUE SCAN 10

FXTRADER FX_HOLDING_PK UNIQUE SCAN 7

FXTRADER DT_VALUES_UK RANGE SCAN 6

FXTRADER FXDLT_LN1 RANGE SCAN 5

FXTRADER FXDLT_LN1 RANGE SCAN (MIN/MAX) 5

Determining Index Usage in Oracle9i
The situation is much more straightforward in Oracle9i because a new dictionary view
V$SQL_PLAN stores the actual plan used to execute the statement in the shared SQL
area. The V$SQL_PLAN view has a very close resemblance to the plan table, but uses
ADDRESS and HASH_VALUE columns to identify statements, rather than the user-
supplied STATEMENT_ID column used by the plan table. The following SQL shows
all the indexes used by statements present in the shared SQL area in an Oracle9i
database:

select object_owner,object_name,options,count(*)

from v$sql_plan where operation='INDEX'

and object_owner<>'SYS'

group by object_owner,object_name,operation,options

order by count(*) desc

All approaches to identifying index usage based on information in the shared SQL
area leave open the possibility that collected information is incomplete. The shared
SQL area is a dynamic structure, and unless it can be sampled with sufficient fre-
quency, then SQL statements may be aged from the cache before information on index
usage has been collected. Oracle9i provides the solution to this problem by providing
a MONITORING USAGE clause for ALTER INDEX. When MONITORING USAGE is
enabled, Oracle records a simple YES or NO value to indicate whether an index was
used during the monitored interval. The subsequent sequence of SQL statements per-
forms the following actions:

■■ Enables index usage monitoring for a single index

■■ Runs a query that uses the indexes

■■ Runs a query to show that the index has been used

■■ Disables the monitoring

■■ Runs a query to display usage in the monitored interval

294 Chapter 12

TE
AM
FL
Y

Team-Fly®

REM enable monitoring for one index...

alter index SYSTEM.I1_MO monitoring usage;

REM execute SQL that uses the index...

select count(object_type) from my_obj

where object_id between 1 and 100;

COUNT(OBJECT_TYPE)

99

REM check that monitoring has detected use of the index...

select index_name,monitoring,used,start_monitoring,end_monitoring

from v$object_usage;

INDEX_NAME MONITORING USED START_MONITORING END_MONITORING

------------ ------------ ------ -------------------- ----------------

I1_MO YES YES 01/29/2002 19:43:07

REM now disable monitoring, and display the monitored interval

alter index SYSTEM.I1_MO nomonitoring usage;

select index_name,monitoring,used,start_monitoring,end_monitoring

from v$object_usage;

INDEX_NAME MONITORING USED START_MONITORING END_MONITORING

----------- ----------- ------ -------------------- --------------------

I1_MO NO YES 01/29/2002 19:43:07 01/29/2002

19:43:38

The following PL/SQL block enables monitoring for all indexes in the database
except those owned by SYS and SYSTEM:

declare

l_sql varchar2(128);

begin

for rec in

(select 'alter index '||owner||'.'||index_name||

' monitoring usage' mon from dba_indexes

where owner not in ('SYS','SYSTEM') and index_type='NORMAL') loop

l_sql:= rec.mon;

execute immediate l_sql;

end loop;

end;

/

Managing Indexes 295

One anomaly of the V$OBJECT_USAGE view is that it only enables information to
be displayed for indexes owned by the connected user. Oracle is likely to address this
in the future. If your database only shows object usage information for the connected
user, the following view (which must be created as SYS) can be used to provide infor-
mation on all monitored indexes from any account:

create or replace view

V$ALL_OBJECT_USAGE (INDEX_NAME, TABLE_NAME, MONITORING, USED,

START_MONITORING, END_MONITORING) as

select io.name, t.name, decode(bitand(i.flags, 65536), 0, 'NO', 'YES'),

decode(bitand(ou.flags, 1), 0, 'NO', 'YES'), ou.start_monitoring,

ou.end_monitoring

from sys.obj$ io, sys.obj$ t, sys.ind$ i, sys.object_usage ou

where i.obj# = ou.obj# and io.obj# = ou.obj# and t.obj# = i.bo#;

grant select on v$all_object_usage to public;

create public synonym v$all_object_usage for v$all_object_usage;

When to Rebuild Indexes

When tables are subject to large volumes of deletes or inserts, the indexes on those
tables can become disorganized. Disorganization manifests itself as empty space in the
index. The existence of empty space means that scans of the index are less efficient
because the empty space leads to wasted I/O operations during index lookups. The
empty space can be eliminated by rebuilding the index. Due to the overhead imposed
by index rebuilds, only indexes that would be benefit from a rebuild should be rebuilt.
The ANALYZE command can be used to identify indexes with a large proportion of
wasted space. The following SQL shows the results of ANALYZE on an index:

analyze index I0_MY_OBJ validate structure;

select lf_rows,del_lf_rows,btree_space,used_space,pct_used

from index_stats;

LF_ROWS DEL_LF_ROWS BTREE_SPACE USED_SPACE PCT_USED

--------- ------------- ------------- ------------ ----------

4686 0 263900 223271 85

Statistics on the index are available through the INDEX_STATS view immediately
after the ANAYLZE . . . VALIDATE STRUCTURE completes. The values in it are over-
written by the next ANALYZE INDEX command executed by any session. The output
in the example shows that 4,686 rows are represented in the leaf blocks of the index and
that no entries represent deleted rows (because DEL_LF_ROWS is 0). The amount of
space used to hold index data relative to the total space allocated for the B*tree struc-
ture is quite high at 85 percent. Together, the information suggests that this index isn’t

296 Chapter 12

wasting much space. The picture changes when all rows are deleted from the indexed
table. After deletion and ANALYZE, the statistics show that all index entries referred
to deleted rows:

select lf_rows,del_lf_rows,btree_space,used_space,pct_used

from index_stats;

LF_ROWS DEL_LF_ROWS BTREE_SPACE USED_SPACE PCT_USED

--------- ------------- ------------- ------------ ----------

4686 4686 263900 223271 85

Although the data in the index is held quite efficiently because PCT_USED remains
at 85 percent, the data in the index is effectively wasted because it refers to deleted
rows. The index can be rebuilt to free up the wasted space as follows:

alter index I0_MY_OBJ rebuild;

One major advantage of a rebuild, compared to an index drop and re-create, is that
the original index data can be used in the rebuild, which leads to faster completion of
the operation. The ANALYZE command following the rebuild shows that the 260KB
space used to hold the B*tree is now reduced to a mere 8KB as a result of the rebuild:

LF_ROWS DEL_LF_ROWS BTREE_SPACE USED_SPACE PCT_USED

--------- ------------- ------------- ------------ ----------

0 0 7996

If you enable table monitoring on all your tables, as recommended in Chapter 10, then
tables subject to deletes and inserts can be identified in ALL_TAB_MODIFICATIONS.
The indexes on these tables are candidates for a rebuild because they are likely to contain
wasted space. The following SQL and output show the index statistics for an index on a
table subject to both deletes and inserts:

select inserts,updates,deletes from all_tab_modifications;

where table_name='REP_TRANSACTIONS';

INSERTS UPDATES DELETES

--------- --------- ---------

147559 0 310372

LF_ROWS DEL_LF_ROWS BTREE_SPACE USED_SPACE PCT_USED

--------- ------------- ------------- ------------ ----------

159238 3461 50646276 12743204 26

The number of entries representing deleted leaf rows is quite small as a percentage
of the total leaf rows. However, due to the combination of repeated inserts and deletes,

Managing Indexes 297

the index structure has become inefficient in its use of space: Only 26 percent of the
total B*tree space is used. This index is a strong candidate for a rebuild. Note that when
rebuilding, the PCTUSED storage parameter can’t be specified for an index. The
PCTFREE parameter can be used to specify the percentage of free space to leave for
inserts and updates to index blocks. Keep in mind that the location of index key values
inserted after the index creation is determined by the key value of the row being in-
serted. As a result, PCTFREE for an index doesn’t provide the same level of control of
space usage as it does for a table.

The following stored procedure, SP_INDEX_REBUILD, automates the process of
rebuilding indexes for a schema APP, whose PCTUSED value is less than a threshold
value passed as an argument. If no argument is passed, all indexes are checked. A fur-
ther test is made to ensure that only indexes with more than one extent are considered,
to avoid rebuilding small indexes. The extent test assumes that you are using fixed size
extents of a few megabytes at the most, as recommended throughout this book:

Procedure SP_INDEX_REBUILD (p_in_rebuild_threshold_pct integer default

0) AS

l_sql varchar2(32000);

BEGIN

execute immediate 'alter session set sort_area_size=10000000';

-- consider rebuild of all indexes owned by APP with > 1 extent

for rec in (

select 'alter index '||owner||'.'||index_name||

' rebuild unrecoverable' rebuild_sql,

'analyze index '||owner||'.'||index_name||

' validate structure' validate_sql

from dba_indexes where owner='APP'

and index_type='NORMAL'

and (owner,index_name) in

(select owner,segment_name from dba_segments where extents >

1)

) loop

-- create the index stats...

l_sql := rec.validate_sql;

execute immediate l_sql;

-- only rebuild indexes where pct_used < threshold

for rec2 in (select pct_used from index_stats) loop

if (100-rec2.pct_used) < p_in_rebuild_threshold_pct then

l_sql := rec.rebuild_sql;

execute immediate l_sql;

end if;

end loop;

end loop;

END SP_INDEX_REBUILD;

298 Chapter 12

The SP_ INDEX_REBUILD procedure uses a large sort area to ensure that as much
sorting as possible takes place in memory during the index creation. As shown in the
analysis of Import performance in Chapter 19, avoiding disk sorts is a key requirement
for ensuring that index builds take place as quickly as possible. To ensure that an index
build for a large index succeeds the first time, sufficient sort space must also be avail-
able on disk. This can be guaranteed by enabling AUTOEXTEND on the temporary
tablespace datafiles or creating another large temporary tablespace specifically for the
purpose of the rebuild. You should aim to extend the size of the temporary tablespace
in advance to avoid possible performance degradation caused by dynamic growth of
the file. Two other techniques are available to speed up index builds. These involve
using parallel operations and the NOLOGGING option to avoid the generation of
redo, as shown in the following examples:

alter index i0_my_source rebuild parallel 2;

alter index i0_my_source rebuild nologging;

alter index i0_my_source rebuild parallel 2 nologging;

If you increase the SORT_AREA_SIZE for a session before an index rebuild, keep in
mind that the same sort area will be allocated for each parallel stream if PARALLEL is
used. The PARALLEL option should only be used when multiple CPUs are available.
Using a large sort space and PARALLEL should lead to significant reductions in index
rebuild time. The NOLOGGING option can also reduce the elapsed time and needs to
be used with care if you are running a standby database. Indexes rebuilt using
NOLOGGING will be in the UNUSABLE state when a standby is activated. By default,
these indexes need to be rebuilt in order for DML (including queries that use the index
in an execution plan) on the table to succeed. The V$DATAFILE view provides the
UNRECOVERABLE_CHANGE# and UNRECOVERABLE_TIME columns to indicate
datafiles with unrecoverable changes in the primary database. Standby databases are
covered in Chapter 23. Don’t forget that you can continue to execute DDL statements
when UNUSABLE indexes exist by setting SKIP_UNUSABLE_INDEXES to TRUE at
the session level as follows:

alter session set skip_unusable_indexes=true

Remember that after a rebuild, statistics on the index should be regenerated. This
can be done inline with the rebuild, if required:

alter index i0_my_source rebuild compute statistics;

For situations where availability rather than performance is the driver, indexes can
be rebuilt online using the ONLINE option. In this case, changes can be made to the
indexed table while the index build takes place, but DDL operations are not permitted,
and parallel support is not available. Bulk inserts should be avoided during an index
build if possible, due to the increased likelihood of lock contention between the rebuild
process and regular end-user block changes caused by DML. Online rebuilds are sup-
ported for more types of indexes in Oracle9i compared to Oracle8i, which is consistent
with Oracle’s philosophy of providing features in Oracle9i to enhance availability.

Managing Indexes 299

Building Function-Based Indexes

Function-based indexes enable the creation of indexes on values returned from a func-
tion. The function must be created using the pragma DETERMINISTIC. The use of
DETERMINISTIC indicates that the function return value for a given input value must
always be the same. There are many possible situations where a function-based index
can reduce the cost of a SELECT statement.

One of the most useful situations for a function-based index involves date handling,
using an index on the truncated part of a date value. For a given date like 04-JUN-2001
15:44:57, the truncated part identifies only the date with the time set to 0, for example,
04-JUN-2001 00:00:00. Often, applications require dates to be stored in the full format
to identify the exact time an event occurred, whereas reports against the same data
often need to group activities by day. That involves stripping off the time part. The fol-
lowing SQL reports all the stocks in a trading system where the settlement date was
04-JUN-2001. Because the SETT_TIMESTAMP column holds the exact time that settle-
ment occurred, the TRUNC function needs to be used to strip off the time part:

select count(*) from settlements

where trunc(sett_timestamp)=to_date('04-JUN-2001','DD-MON-YYYY');

In this example, the SETT_TIMESTAMP column is indexed, but the existence of the
function TRUNC on the column means that the index on the column can’t be used. In
general, the use of a function on a column value used in a predicate prevents an index
on that value from being used in a query execution plan. This can lead to some obscure
performance problems. For example, if you store numbers in a VARCHAR2 column by
accident, the use of a predicate like WHERE TRADEID�99 causes Oracle to convert
the number to a string, using an internal function call. This function prevents an index
on TRADEID from being used because the index contains strings and not numbers. In
this example, you would have to use '99' to force the number to be treated as a string
value.

One approach to this problem on the SETT_TIMESTAMP column is to store the date
twice in the row (as both the exact and truncated version), index the truncated version,
and use the truncated version in the WHERE clause. This duplicates data. Another
approach is to rewrite the SQL to use BETWEEN instead of TRUNC to identify all the
hours in the day. This makes the SQL less readable. The most appropriate solution in
this case is to create a function-based index on the TRUNC value of the SETT_
TIMESTAMP column. That way, an index can be used to identify rows processed on a
particular day. The required function and the index on it are created as follows:

create or replace function trunc_date(d date) return date deterministic

as

begin

return trunc(d);

end trunc_date;

/

create index i1_settlements on settlements(trunc_date(sett_timestamp));

300 Chapter 12

Once the index is in place, session settings need to be enabled in order for the
function-based index to be used, as follows:

alter session set query_rewrite_enabled=true;

alter session set query_rewrite_integrity=trusted;

select count(*) from settlements

where trunc_date(sett_timestamp)=to_date('04-JUN-2001','DD-MON-YYYY');

The EXPLAIN PLAN command can be employed to confirm that the index is used
in the plan for the new query, although a massive reduction in elapsed time is usually
enough evidence. Care must be taken not to change the stored function on which the
index is based. If that occurs, DML, attempting to use the index (for example, in a
query execution plan), will fail. If the change to the function did affect return values,
the index needs to be rebuilt, as shown in the previous section. The index can be reen-
abled if the change made to the function did not affect return values, as follows:

alter index i1_settlements enable;

If it is not appropriate to either rebuild or enable the disabled index, then it can be
marked unusable as follows, to allow DML against the table to continue by ignoring
the index:

alter index i1_settlements unusable;

alter session set skip_unusable_indexes=true;

Summary

Indexes can provide performance benefits for queries by enabling lower-cost access
paths to data. However, this comes at an increased cost for INSERT, UPDATE, and
DELETE performance. Much of the additional cost results from extra redo generation
related to the index. The Index Tuning Wizard component of the Oracle Enterprise
Manager Tuning Pack can help automate the process of choosing appropriate columns
to index, but the tried and tested method of identifying expensive queries and trying
out additional indexes for cost reductions is perfectly valid. The technique of adding
select-list columns to indexes can avoid expensive table data lookups in cases where
table data can be located from the index.

B*tree indexes (including IOTs) are most suitable for OLTP-type applications and
the use of the COMPRESS option can save significant amounts of space for nonunique
indexes that contain key values that repeat many times. Bitmap indexes can produce
orders-of-magnitude savings in index space. For OLTP-type applications, they aren’t
appropriate, due to the increased likelihood of contention on blocks in the index.
Bitmap indexes work best for data-warehouse–type applications that use equality,
AND, OR, and NOT operations in predicates, especially for combinations of low car-
dinality columns.

Managing Indexes 301

Unused indexes lead to overheads without any benefits and should be removed.
Oracle9i, through the existence of the V$SQL_PLAN view and the MONITORING
USAGE option, provides vastly superior facilities for identifying unused indexes
compared to previous versions. Indexes that waste space are likely to increase the cost
of the DML that uses them in execution plans. These indexes can be identified by
the ANALYZE command and rebuilt. The SORT_AREA_SIZE parameter and the
PARALLEL and NOLOGGING options on REBUILD can be used to speed up index
builds. The NOLOGGING option needs to be used with care, due to side effects on
standby databases.

302 Chapter 12

303

The appropriate management of space growth results in the most cost-effective use of
disk space for Oracle databases. If disk space in your organization is provided as a
managed service from a third party via a storage area network (SAN), then you can
directly reduce the financial cost of the databases you manage by ensuring that no
space is wasted and that databases use space on demand. In order to manage space
growth efficiently, it’s necessary to measure it first and identify where it’s being
wasted.

This chapter discusses how to manage space growth for tables; indexes are covered
in Chapter 12. This chapter covers the following subjects:

■■ Collecting space growth information

■■ Presenting space growth information

■■ Identifying space waste

■■ Minimizing space waste

■■ The effects of row migration and chaining

■■ Correcting space waste

Managing Space
Growth

C H A P T E R

13

Collecting Space Growth Information

This section describes a simple approach to the collection of space growth information
for all Oracle databases in an organization. The approach involves the following:

■■ The creation of a schema and tables to hold space information for all databases
in a centralized warehouse

■■ The installation of stored procedures in the warehouse to collect the data

■■ The creation of database links in the warehouse to each monitored database

■■ The execution of the stored procedures using scheduled database jobs to pull
information for each monitored database into the centralized warehouse across
a database link

■■ The recording of when the last collection took place

This enables you to present information on Oracle database space usage at the fol-
lowing levels:

■■ The total Oracle used and free space for the whole organization, which is split
between production and nonproduction instances

■■ The total used and free space for each database and tablespace

■■ The space growth for individual tables and indexes in each instance

Presentation involves plotting graphs based on the collected information using
Microsoft Excel. Of course, you can use any charting package you like. Excel provides a
low-cost solution based on Visual Basic. It produces great-looking charts, using easy-to-
follow code, and you can deploy charts for Web publication with minimal effort. You
can also use this technique to plot session and instance statistics and events. The collec-
tion of information alone has minimal value unless the information can be published so
that everyone can see it. All too often, the presentation of information is left as an after-
thought. By publishing Oracle space growth information on the company intranet using
charts, anyone who is interested can see how much database space is managed by the
Oracle database administrator (DBA) group and how efficiently it is managed in terms
of used and free space in each database. The visibility of such information makes the
estimation of future disk requirements for each application trivial for situations where
database growth is linear. If growth is nonlinear, then the tablespace- and object-level
information can help identify which objects are growing most rapidly, and these can be
matched to business requirements to see if the nonlinear growth has a sound business
basis. Perhaps most important of all, the presentation of information split between used
and free space highlights those systems where disk space is overallocated.

In the past, it was traditional to overallocate space for Oracle databases to avoid the
dynamic growth of the database datafiles during inserts. My personal experience is
that the performance overhead of dynamic growth is very much overstated on mod-
ern disk architectures when the EXTENT MANAGEMENT LOCAL option is used for
tablespaces. The use of the EXTENT MANAGEMENT LOCAL option means that
extent information is held in bitmaps within the tablespace rather than the data dic-

304 Chapter 13

TE
AM
FL
Y

Team-Fly®

tionary in the SYSTEM tablespace. This typically reduces contention on the SYSTEM
tablespace during dynamic extension. A simple exercise tests this theory: Perform a
CREATE TABLE AS on a large table into a new one using preallocated space in the
tablespace to avoid dynamic extension. Next, repeat the test into a small tablespace
that extends dynamically during the insert and compare the elapsed time in each case.

NOTE Oracle9i Release 2 allows EXTENT MANAGEMENT LOCAL to be used for
the SYSTEM tablespace, which was not possible in earlier releases.

A much more efficient use of disk space, especially when space is rented from a disk
farm and made available via a SAN, is to run databases in AUTOEXTEND mode on
large file systems. This leads to the allocation of space automatically on demand,
exactly where and when it is needed, and enables all the available space to be used.
This is fundamentally different from the traditional approach of overallocation, based
on multiple smaller file systems. The AUTOEXTEND approach leads to systems that
grow into the available space on demand and require less day-to-day management.

Mapping Oracle Segments to Disk
Storage Locations
According to Chapter 2, modern storage architectures such as SAN insulate the DBA
from details of the exact location of database objects on physical disk. Oracle has rec-
ognized that microscopic details on disk storage layout for objects can still be useful for
DBAs, by providing a file mapping feature in Oracle9i Release 2. The file mapping fea-
ture provides a framework to enable Oracle to map the locations of database objects in
the file system down through the I/O stack to locations in logical volumes, storage
arrays and physical disks.

Responsibility for providing Oracle with mapping information lies with the storage
and volume manager vendors, who provide mapping libraries for their products. At
the time of the initial announcement of Oracle9i Release 2, mapping was available for
directly attached EMC storage arrays. Once a mapping library is available and in-
stalled for your storage stack, you need to enable mapping through the database
initialization parameter file_mapping�true. The DBMS_STORAGE_MAP package
includes procedures for generating mapping information, which can then be presented
through views such as V$MAP_FILE and V$MAP_FILE_EXTENT.

Tablespace Space Collection
This approach to space collection involves pulling data from remote databases accessed
via database links into a centralized Oracle warehouse database. The advantage of this
approach is that no change is required on the monitored databases. As a result, it can be
implemented on all databases in an organization with minimum risk and effort. The
table that holds the database instance and tablespace-level space information for each

Managing Space Growth 305

instance in the warehouse can be created with the following Structured Query Lan-
guage (SQL):

create table ora_instances

(global_name varchar2(30)

constraint pk_ora_instances primary key

using index tablespace tools,

system_pw varchar2(30),

db_status varchar2(15)

constraint status check

(db_status in ('Production','Non-Production')),

link_status varchar2(128),

last_ts_collection date,

last_seg_collection date

) tablespace tools;

create table ora_ts_space

(global_name varchar2(30)

constraint fk_ts_space references ora_instances,

timestamp date not null,

tablespace_name varchar2(30),

bytes_alloc number not null,

bytes_free number not null

) tablespace tools;

NOTE The examples use the TOOLS tablespace to store collected information,
which you can change. You might also consider creating additional indexes to
speed up queries. All the tables can be created using the DBCOOL_SPACE_
TABLES.SQL script downloadable from this book’s companion Web site.

The DBA needs to populate the GLOBAL_NAME, SYSTEM_PWD and DB_STATUS
columns in ORA_INSTANCES for each database that needs to be monitored. The
ORA_INSTANCES table uses the database GLOBAL_NAME value to uniquely iden-
tify each database in the organization. GLOBAL_NAME is designed for this purpose.
However, it’s up to the DBA to enforce correct use of the value and ensure that the
GLOBAL_NAME value is actually unique in all databases. Chapter 3 recommended
strict naming standards for both the internal and network names of Oracle databases.
To recap, the naming standard dictates the following:

■■ The database GLOBAL_NAME matches the external Transparent Network
Substrate (TNS) alias.

■■ The database GLOBAL_NAME is a concatenation of DB_NAME and
DB_DOMAIN init.ora parameters.

■■ The GLOBAL_NAME value in init.ora is set to TRUE.

306 Chapter 13

These naming standards pay off many times in various situations, including space
collection. Some methods of information collection (for example, Oracle STATSPACK)
use the DBID column from V$DATABASE to identify each database uniquely. You
might choose to use DBID instead of GLOBAL_NAME because it takes up less storage
space. If you do, keep in mind that if you copy a database to another server, it will have
the same DBID as the original, even if you rename the database. As a result, informa-
tion from two different databases may be collected and presented as if it belongs to the
same database. I prefer to use GLOBAL_NAME. It requires more space than DBID, but
it’s the true primary key of the database (or should be if used as intended), and it’s usu-
ally self-evident when it’s set incorrectly.

In order to collect the growth information into the warehouse for each monitored
database in ORA_INSTANCES, a database link needs to be created in the warehouse
database. The database link definition uses the following information:

■■ The SYSTEM password held in the SYSTEM_PW column

■■ The GLOBAL_NAME value

Provided that the naming standard in Chapter 3 has been followed, the TNS alias for
the remote database matches the GLOBAL_NAME, and the database link can be cre-
ated using the GLOBAL_NAME value. The DB_STATUS column identifies whether
the database is a production database in order to enable collected information to be
presented in terms of production and nonproduction database space.

Before collection can take place, the database links need to be created and validated.
The SP_CREATE_LINKS procedure in the DBCOOL_SPACE package (which is down-
loadable from this book’s companion Web site) is provided to automate the link cre-
ation and test process. After SP_CREATE_LINKS has run, the LINK_STATUS column
in ORA_INSTANCES holds the status of the database link used to reference the moni-
tored database. The SP_CREATE_LINKS procedure is as follows:

procedure sp_create_links as

l_global_name varchar2(128);

l_err varchar2(256);

l_sql varchar2(256);

begin

-- set NULL for status to indicate test not run yet . . .

execute immediate 'update ora_instances set link_status=null';

-- create link and test, for each instance in ORA_INSTANCES

for rec in (select * from ora_instances) loop

if rec.system_pw is null then

update ora_instances set link_status='null: SYSTEM password'

where global_name=rec.global_name;

goto next;

end if;

-- drop existing link, ignore error if it doesn’t exist

begin

Managing Space Growth 307

execute immediate 'drop database link '||rec.global_name;

exception

when others then null;

end;

-- create database link

begin

l_sql:='create database link '||rec.global_name||

' connect to system identified by '||rec.system_pw||

' using '''||rec.global_name||'''';

execute immediate l_sql;

exception

when others then

l_err := sqlerrm;

update ora_instances set link_status='create: '||l_err

where global_name=rec.global_name;

goto next;

end;

-- test link by SELECT on it

begin

execute immediate 'select 1 from global_name@'||rec.global_name

into l_global_name;

update ora_instances set link_status='ok'

where global_name=rec.global_name;

exception

when others then

l_err := sqlerrm;

update ora_instances set link_status='test: '||l_err

where global_name=rec.global_name;

end;

<<next>>

null;

end loop;

commit;

end sp_create_links;

NOTE The privilege CREATE DATABASE LINK needs to be explicitly granted to
the account that owns the links and table in order for link creation to work
within the procedure.

On execution, the SP_CREATE_LINKS procedure attempts to create a database
link using values previously inserted into the GLOBAL_NAME and SYSTEM_PW
columns. The following is an example of a statement generated to create a link:

308 Chapter 13

create database link ORAD1.DBCOOL.COM

connect to system identified by manager using 'ORAD1.DBCOOL.COM'

After execution, an ok value in the LINK_STATUS column means that the link was
created and tested successfully. A non-NULL value indicates that an error occurred for
one of three reasons:

■■ The SYSTEM password that needed to create the link is NULL.

■■ The CREATE DATABASE LINK command failed.

■■ The link test failed.

The following output shows an example of the contents of ORA_INSTANCES after
the execution of SP_CREATE_LINKS, indicating that two links failed to be created
because of a missing SYSTEM password and a failure to resolve the TNS alias (based
on the value of GLOBAL_NAME) while testing the link:

GLOBAL_NAME SYSTEM_PW DB_STATUS LINK_STATUS

------------------- ----------- --------------- ------------------------

NOSUCHDB.COM XXX Production test: ORA-12154: TNS:

ORAD1.DBCOOL.COM MANAGER Non-Production ok

ORAP1.DBCOOL.COM TEST1T Production ok

TEST1.DBCOOL.COM Non-Production null: SYSTEM password

To save space, the sample output doesn’t show the LAST_TS_COLLECTION and
LAST_SEG_COLLECTION columns, which show the time when the last data collec-
tion executed successfully. Once the database links have been created and tested suc-
cessfully, the procedure SP_COLLECT_ONE_DB_SPACE can be executed from the
data warehouse against each remote database via its database link to collect used and
free space information into ORA_TS_SPACE from each database in ORA_INSTANCES.
The procedure uses a SELECT statement like the following to collect the used and free
space for each database:

select gn.global_name,sysdate timestamp,

alloc.tablespace_name,alloc.bytes alloc,free.bytes free from

(

select tablespace_name,sum(bytes) bytes

from dba_data_files

group by tablespace_name

union all

select tablespace_name,sum(bytes)

from dba_temp_files

group by tablespace_name

) alloc,

(

select t.tablespace_name,nvl(sum(bytes),0) bytes

from dba_free_space f,dba_tablespaces t

where t.tablespace_name = f.tablespace_name (+)

group by t.tablespace_name

) free,

Managing Space Growth 309

(select global_name from global_name) gn

where alloc.tablespace_name=free.tablespace_name;

REM a sample of output from the SELECT list for one database . . .

GLOBAL_NAME TIMESTAMP TABLESPACE_NAME ALLOC FREE

----------------- ----------- ----------------- ------------ ----------

ORAP1.DBCOOL.COM 31-JAN-02 RBS 524288000 419422208

ORAP1.DBCOOL.COM 31-JAN-02 SYSTEM 419430400 70909952

ORAP1.DBCOOL.COM 31-JAN-02 TEMP 209715200 0

ORAP1.DBCOOL.COM 31-JAN-02 TOOLS 264437760 48529408

ORAP1.DBCOOL.COM 31-JAN-02 USERS 261095424 260825088

The actual SQL used is slightly more complex than the previous example because it
runs from the warehouse against each remote database. This requires the use of
dynamic SQL to append the database link name to each object in the SQL statement,
followed by EXECUTE IMMEDIATE to execute it. Full details can be found in the
DBCOOL_SPACE package, which is downloadable from this book’s companion Web
site. Collection takes place through two routines. SP_COLLECT_ONE_DB_SPACE col-
lects data from one database, where the GLOBAL_NAME of the database is passed as
a parameter. SP_COLLECT_ALL_DB_SPACE collects data from each database in
ORA_INSTANCES that has a validated database link by calling SP_COLLECT_
ONE_DB_SPACE:

procedure sp_collect_all_db_space as

begin

for rec in (select global_name from ora_instances

where link_status='ok' and

trunc(last_ts_collection)<> trunc(sysdate)) loop

sp_collect_one_db_space(rec.global_name);

end loop;

end sp_collect_all_db_space;

The use of TRUNC(LAST_TS_COLLECTION)�� TRUNC(SYSDATE) in the main
loop means that the procedure only collects statistics once each day for a particular
database, no matter how many times the procedure is executed. This is useful if you
discover that some of your databases are down during the collection, and you want to
collect space information from only those databases without re-collecting from data-
bases where the collection has already succeeded. As a result, you can execute the pro-
cedure as many times as required on a particular day in order to build up a complete
view of the space usage on that day. Complete information is required in order for the
overall split of used and free space between production and nonproduction databases
to be accurate each day. The procedure SP_COLLECT_ONE_DB_SPACE uses the fol-
lowing code at the end to save the time of a successful collection into ORA_
INSTANCES for a single database:

-- save time if collection successful

update ora_instances set last_ts_collection=sysdate

310 Chapter 13

where global_name=p_link;

commit;

If the collection fails for any reason, no exception is raised in order to allow the
process to continue for other databases. However, you can test to see if the procedure
worked for a given database by checking the LAST_TS_COLLECTION time in ORA_
INSTANCES after the collection process completes.

Segment Space Collection
The collection of segment (that is, table and index) space takes a similar, but more
sophisticated approach. Information is gathered into the following table:

create table ora_seg_space

(global_name varchar2(30)

constraint fk_seg_space references ora_instances,

timestamp date not null,

tablespace_name varchar2(30),

owner varchar2(30),

segment_name varchar2(30),

segment_type varchar2(30),

partition_name varchar2(30),

bytes number not null,

extents number not null

);

You might choose to collect additional information on NEXT_EXTENT, MAX_
EXTENTS, and PCT_INCREASE if these values are likely to change for segments in
your databases. However, if you use UNIFORM extent allocation, as recommended,
then these values will never change; therefore, collecting them is pointless. For data-
bases that contain many thousands of objects, most of which don’t change in size on a
day-to-day basis, it makes sense for information to be collected only for objects that
have changed from the previous sample. This approach saves collection time and
space in the warehouse into which information is collected and means that growth
charts can be plotted faster because fewer points need to be displayed.

Oracle Financials is an example of an application that contains many thousands of
objects, of which only a few change daily. Both SAP and Siebel are similar. One impor-
tant feature of this approach is that when collection runs against an instance for the
first time, all segment information is collected because none exists in the warehouse
yet. On subsequent invocations, only changes are collected. The changes comprise
either new objects that appeared since the last collection or objects for which the BYTES
or EXTENTS value has changed. The collection procedure uses the V_ORA_
SEG_GROWTH_LAST view to identify the objects in the most recent collection of seg-
ment statistics for each instance. The view definition is as follows:

create view v_ora_seg_growth_last

(global_name,timestamp,owner,segment_name,segment_type,partition_name)

Managing Space Growth 311

as

select global_name,max(timestamp)

timestamp,owner,segment_name,segment_type,partition_name

from ora_seg_space

group by global_name,owner,segment_name,segment_type,partition_name;

The SQL to collect segment space information for each instance can be described in
pseudocode as follows:

select all segment information for the remote database

minus

select information in the most recent sample in the warehouse

The following statement shows an example of the SQL that runs against a remote
database ORAD1.DBCOOL.COM to determine the changes from the previous sample.
Although it may look complicated at first sight, it does nothing more than implement
the previous pseudocode:

select global_name,sysdate,owner,

segment_name,segment_type,partition_name,tablespace_name,bytes,extents

from

(

select global_name,owner,segment_name,

segment_type,partition_name,tablespace_name,bytes,extents

from dba_segments@ORAD1.DBCOOL.COM,global_name@ORAD1.DBCOOL.COM db

where segment_type not in ('ROLLBACK','TEMPORARY','CACHE') and

lower(db.global_name)=lower('ORAD1.DBCOOL.COM')

minus

select db.global_name,g.owner,g.segment_name,

g.segment_type,g.partition_name,tablespace_name,bytes,extents

from ora_seg_space g,

v_ora_seg_space_last gl,global_name@ORAD1.DBCOOL.COM db

where lower(db.global_name)=lower('ORAD1.DBCOOL.COM')

and g.global_name=gl.global_name

and g.global_name=db.global_name

and g.owner=gl.owner

and g.segment_name=gl.segment_name

and g.segment_type=gl.segment_type

and nvl(g.partition_name,' ')=nvl(gl.partition_name,' ')

group by db.global_name,g.owner,g.segment_name,

g.segment_type,g.partition_name,tablespace_name,bytes,extents);

Like the tablespace space data collection methodology, the SQL in the DBCOOL
_SPACE package is parameterized to run against a single database or all databases in
ORA_INSTANCES through two stored procedures:

■■ SP_COLLECT_ONE_DB_SEG_SPACE

■■ SP_COLLECT_ALL_DB_SEG_SPACE

312 Chapter 13

To recap, only new segments or those that have changed size are collected on each
execution. If none has changed, then no information is collected, even if the procedures
are run several times each day. The following SQL shows the last time that segment
information was collected for each instance and the number of segments that have
changed from the previous collection:

select global_name,timestamp,count(*) segments

from v_ora_seg_space_last

group by global_name,timestamp;

After multiple samples have been taken, ANALYTIC functions such as LEAD and
LAG can be used to display changes between consecutive samples. The following out-
put from the SQL*Plus script DBCOOL_SPACE_CHANGES.SQL (which can be down-
loaded from this book’s companion Web site) shows a segment that has changed today
and the differences compared to the last time the segment changed, which was three
days earlier:

SINCE_LAST SEG BYTES_K PREV_K DELTA_K DELTA_PCT EXT DELTA_EXT

---------- ------- -------- -------- ------- --------- ------- ---------

3 EQ_SETT 164880 164760 120 0 1374 1

NOTE The DBCOOL_SPACE_CHANGES.SQL script requires that you pass the
database GLOBAL_NAME as a parameter, for example ORAD1.DBCOOL.COM.

Sampling should typically take place on a daily basis, and the list of changes can be
incorporated into your daily database health checks to show the segments responsible
for the most space growth. The output shows both the percentage change in the size of
the object (0 percent in this case), the absolute increase in size (120KB), and the change
in the number of extents (1). Both the absolute and percentage change values are use-
ful in order to display objects that have grown by the largest amount of space and those
that have grown at the largest rate.

Presenting Space-Growth Information

Simple Excel macros can be used to display Oracle space-usage information in an orga-
nization based on the collected data. This section describes macros for different levels
of space usage along with sample charts that are suitable for display on the intranet site
of the Oracle DBA group.

Production and Nonproduction Space
The stored procedure SP_COLLECT_ONE_DB_SPACE collects information for each
database in ORA_INSTANCES at the tablespace level, possibly multiple times per day.
Although SP_COLLECT_ALL_DB_SPACE is designed to collect information once per

Managing Space Growth 313

day for each database, nothing stops a DBA from running a collection multiple times for
a single database on the same day by calling SP_COLLECT_ONE_DB_SPACE directly.

In order to present the free and used space totals for all databases daily (split
between production and nonproduction), it’s necessary to ensure that information for
each database is counted only once each day, although it may have been sampled mul-
tiple times. The following SQL can be used to show the latest collection time daily for
each database, even when multiple collections have taken place in a day:

select global_name,max(timestamp)

from ora_ts_space

group by global_name,trunc(timestamp)

The daily total of Oracle allocated, used, and free space at the organization level can
be displayed using information from the following view, which groups and presents
information in a format that is suitable for display with a stacked chart in Microsoft
Excel, using megabytes as the unit of space:

create view v_ora_db_space as
select timestamp,db_status,
round(bytes_alloc/(1024*1024)) mb_alloc,
round((bytes_alloc-bytes_free)/(1024*1024)) mb_used,
round(bytes_free/(1024*1024)) mb_free
from
(
select trunc(space.timestamp)timestamp,db_info.db_status,
sum(bytes_alloc) bytes_alloc,
sum(bytes_free) bytes_free
from ora_ts_space space,

(select global_name,max(timestamp) timestamp
from ora_ts_space
group by global_name,trunc(timestamp)) last,

(select global_name,db_status from ora_instances) db_info
where space.timestamp=last.timestamp
and space.global_name=last.global_name
and space.global_name=db_info.global_name
group by trunc(space.timestamp),db_status);

REM display some output from the view...
select * from v_ora_db_space
order by timestamp desc;

TIMESTAMP DB_STATUS MB_ALLOC MB_USED MB_FREE
--------------------- --------------- ---------- --------- ---------
03-FEB-2002 00:00:00 Non-Production 12007 8585 3423
03-FEB-2002 00:00:00 Production 3041 2049 991
02-FEB-2002 00:00:00 Non-Production 12007 8585 3423
02-FEB-2002 00:00:00 Production 3041 2049 991
01-FEB-2002 00:00:00 Non-Production 12007 8597 3411
01-FEB-2002 00:00:00 Production 3041 2049 991

314 Chapter 13

TE
AM
FL
Y

Team-Fly®

Charting Space Usage with Excel
A simple Excel macro (or subroutine) can be used to generate charts for production and
nonproduction space usage over time based on the V_ORA_DB_SPACE view. The
source code for this macro is contained in a spreadsheet: DBCOOL_SPACE.XLS, which
is available for download from this book’s companion Web site. The sheet contains
subroutines that create space charts at the organization, database, and segment level.
This section shows a complete step-by-step example of displaying the total Oracle
space in an organization. The following prerequisites are required in order for the
macro to run successfully:

■■ An Open Database Connectivity (ODBC) Data Source Name (DSN) to identify
the connection to the database containing V_ORA_DB_SPACE. The example
uses a DSN called Oracle Warehouse.

■■ Oracle Net software installed on the PC running Excel.

■■ An Excel spreadsheet containing two worksheets named Production and Non-
Production.

A top-level macro, Generate_Db_Space_By_Status, is defined to create charts for
both production and nonproduction databases:

Sub Generate_Db_Space_By_Status()

Generate_Space_Chart "Production"

Generate_Space_Chart "Non-Production"

End Sub

The macro Generate_Space_Chart fetches rows from V_ORA_DB_SPACE via ODBC.
Fetched rows are stored in cells in the worksheet, and a chart is plotted based on the cell
contents. Finally, the chart is saved in Graphics Interchange Format (GIF) (which is
suitable for display on the Web) in the same directory as the workbook holding the
macro. The strDbConnection variable in Generate_Space_Chart holds the ODBC con-
nection string of the database that contains the collected space information. You need to
modify this to identify your database. The full source code for Generate_Space_Chart is
as follows:

Sub Generate_Space_Chart(strDbStatus As String)

Dim strDbConnection As String

strDbConnection = "ODBC;DSN=Oracle Warehouse;UID=SYSTEM;PWD=MANAGER"

' Requires two worksheets named Production and Non-Production

' Clear worksheets from previous execution first...

Application.DisplayAlerts = False

For Each w In Worksheets

If w.Name = strDbStatus Then

w.Activate

w.Cells.Select

Managing Space Growth 315

Selection.Clear

Dim mychart As ChartObject

For Each mychart In w.ChartObjects

w.ChartObjects(1).Delete

Next

End If

Next

Application.DisplayAlerts = True

For Each w In Worksheets

If w.Name = strDbStatus Then

w.Activate

strSql = "select timestamp,mb_used,mb_free " & _

"from v_ora_db_space " & _

"where db_status='" & strDbStatus & "' order by 1"

' return query results into current sheet, at cell A1 . . .

With ActiveSheet.QueryTables.Add(_

Connection:=strDbConnection, _

Destination:=Range("A1"), Sql:=strSql)

ActiveSheet.QueryTables(1).BackgroundQuery = False

.Refresh ' run the query

End With

' Create a chart based

Set ch = ActiveSheet.ChartObjects.Add(10, 10, 400, 300).Chart

ch.ChartType = xlAreaStacked

ch.SetSourceData ActiveSheet.QueryTables(1).ResultRange, _

PlotBy:=xlColumns

ch.Location Where:=xlLocationAsObject, Name:=w.Name

ch.HasTitle = True

ActiveChart.ChartArea.Select

ActiveChart.ChartTitle.Select

Selection.AutoScaleFont = True

With Selection.Font

.Name = "Arial"

.Size = 10

End With

ch.ChartTitle.Characters.Text = _

"Oracle " & w.Name & " Space " & Format(Date, "Short Date")

' Set Y axis title

ch.Axes(xlValue, xlPrimary).HasTitle = True

With ch.Axes(xlValue, xlPrimary).AxisTitle

.Characters.Text = "Space (Mb)"

.HorizontalAlignment = xlCenter

316 Chapter 13

.VerticalAlignment = xlCenter

.Orientation = xlUpward

End With

ch.Legend.Position = xlBottom

End If

Next

' create a GIF from chart in spreadsheet directory

For Each w In Worksheets

If w.Name = strDbStatus Then

w.Activate

FilePath = ActiveWorkbook.Path & _

"\Oracle_" & w.Name & "_Space.gif"

' save the chart as a GIF

w.ChartObjects(1).Chart.Export FilePath,

FilterName:="GIF"

End If

Next

End Sub

The use of Visual Basic in Excel produces code that is easy to understand and cus-
tomize. Figure 13.1 shows the chart of used and free space resulting from the execution
of the subroutine Generate_Space_Chart "Production".

The spikes in the chart result from incomplete collections that took place on days
when one or more databases were not available. This information can be cleared by
deleting the rows collected on those days from the underlying table ORA_TS_SPACE
and reexecuting Generate_Db_Space_By_Status() to generate the charts without the
spikes. Alternatively, monitoring can be used to detect the number of instances avail-
able for collection on a given day using the LAST_TS_COLLECTION time in
ORA_INSTANCES to enable the DBA to investigate which databases were unavailable
and provide the opportunity to reexecute SP_COLLECT_ALL_DB_SPACE on the same
day. The DBCOOL_SPACE.XLS spreadsheet contains other macros that display used
and free space for the following:

■■ A single database

■■ Individual tablespaces within each database

■■ Individual segments within each database

The following subroutine call in the spreadsheet generates a space chart for the seg-
ment APPUSER.TRADE_HIST in the database ORAP1.DBCOOL.COM based on the
SQL that follows:

Generate_Segment_Chart "ORAP1.DBCOOL.COM","APPUSER","TRADE_HIST"

.

.

.

Managing Space Growth 317

select timestamp,round(bytes/(1024*1024))bytes_mb

from ora_seg_space

where global_name='ORAP1.DBCOOL.COM'

and owner='APPUSER' and segment_name='TRADE_HIST'

order by 1;

Figure 13.2 shows the resulting chart of the table growth for a 10-month period,
demonstrating that the table is growing in a linear fashion.

Identifying Excessive Free Space

Space wastage manifests itself in two ways: an excess of free space in DBA_FREE_
SPACE and an excess of free space in table blocks, which is often due to inappropriate
use of the PCTFREE and PCTUSED segment attributes at segment creation time. Space
can appear in DBA_FREE_SPACE for two reasons:

■■ Datafiles were oversized at creation time. This can be addressed by using the
ALTER DATABASE DATAFILE 'file' RESIZE command to reduce the physical
size of the file. If the RESIZE command fails, it means that some of the blocks
above the specified resize value have contained data at some stage.

318 Chapter 13

Figure 13.1 Oracle used and free space charted with Excel.

■■ A mixture of segments with different extent sizes in the same tablespace. Over
time this usually results in holes in the free space that are too small to hold
extents for some of the segments stored in the tablespace. As a result, when one
of those segments needs to extend, additional space with the required extent
size needs to be allocated in the tablespace so that the segment can grow.

The space collection procedures described previously can identify excessive free
space in DBA_FREE_SPACE. Based on the information in the chart in Figure 13.1, it’s
evident that the production databases are running with 30 percent free space because
3GB are allocated and only 2GB are used based on the most recent sample. This free
space could waste money if it is never used. This also prevents other databases on the
same server from using it. The following SQL can be used to identify which databases
and tablespaces have the largest allocation of free space based on the most recent
sample:

select sp.global_name,sp.tablespace_name,bytes_free

from ora_ts_space sp,

(select global_name,max(timestamp) timestamp

from ora_ts_space

group by global_name) last

where sp.global_name=last.global_name

and sp.timestamp=last.timestamp

order by bytes_free desc;

Managing Space Growth 319

Figure 13.2 Space growth for a table charted with Excel.

GLOBAL_NAME TABLESPACE_NAME BYTES_FREE

----------------- ----------------- ------------

ORAD1.DBCOOL.COM ROLLBACK 943714304

ORAD1.DBCOOL.COM APP_INDEXES 655126528

ORAD1.DBCOOL.COM SYSTEM 190167040

ORAD1.DBCOOL.COM APP_TABLES 153923584

ORAP3.DBCOOL.COM SYSTEM 118845440

The output indicates that ORAD1.DBCOOL.COM has several tablespaces with a lot
of free space. The name ROLLBACK suggests that the tablespace probably holds roll-
back segments. Rollback segments often result in transient requirements for significant
amounts of space when large transactions are underway. After these large operations
are completed, the space is freed when the rollback segments shrink back to the opti-
mal value. Therefore, it’s possible that the large amount of free space in the
ROLLBACK tablespace is justified based on further investigations. For APP_INDEXES
and APP_TABLES, space can possibly be freed up by resizing the database files belong-
ing to those tablespaces.

Identifying Wasted Space in Tables

In order to identify wasted space in tables, it’s necessary to understand the concept of
the high watermark (HWM) for a table. A table may contain empty blocks for two rea-
sons. The first is that data was inserted into the blocks and then deleted. In this case,
the resulting blocks are effectively empty, but they don’t show up in the EMPTY_
BLOCKS column in DBA_TABLES after an ANALYZE TABLE command. This is
because they lie below the table HWM. Only blocks that never had data in them are
included in the EMPTY_BLOCKS statistic. These blocks lie above the HWM. Space in
empty blocks above the HWM can be returned to the pool of free space using SQL like
the following:

alter table system.my_objects deallocate unused;

Previously used blocks that no longer contain rows aren’t affected by DEALLOCATE
UNUSED because they lie below the HWM. One side effect of this behavior is that a full
scan of a table that once contained millions of rows but now contains zero rows (due to
deletes) requires blocks to be read up to the HWM of the table. As a result, the existence
of many empty blocks can cause an increase in elapsed time for Data Manipulation Lan-
guage (DML) that needs to process the blocks. The DELETE command has no effect on
the HWM. The TRUNCATE command needs to be used to reset the HWM of a segment
to 0 and returns the space back into the pool of free space.

If many table blocks below the HWM contain no rows, you can potentially reduce
the space used by a segment. It’s possible to find the number of table blocks that con-
tain row data by counting the number of distinct block ID values from the ROWID of
each row in the table. Blocks that no longer contain rows (due to deletes) won’t contain
any ROWID values. The following SQL counts all blocks in the table SYSTEM.MY_
OBJECTS that contain at least one row:

320 Chapter 13

select count(distinct substr(rowid,1,15)) "Blocks with 1 or more

rows . . . "

from system.my_objects;

The difference between this value and the BLOCKS statistic from DBA_TABLES (fol-
lowing ANALYZE on the same table) is that it shows the number of blocks below the
HWM that do not contain rows. Another situation that can result in wasted space at the
table level is the use of inappropriate PCTFREE and PCTUSED values at table creation
time. The PCTFREE value sets aside free space in each block in the table for updates.
When block fullness falls below the PTCUSED threshold, the block becomes a candidate
for new row inserts. If PCTUSED is never reached, inserts will require new extents to be
allocated. Based on information about optimizer statistics in Chapter 10, it’s possible to
enable table monitoring in order to identify tables that never experience updates or
deletes. In an ideal world, these tables would be identified in advance by the application
designer. If they aren’t, then the default PCTFREE value of 10 percent means that 10 per-
cent of space can be wasted in every block. If you use DBCOOL_SPACE.XLS to create
used and free space charts and notice tablespaces where free space is running at around
10 percent of the total allocated, then you might be experiencing this problem. The solu-
tion required to free up the space is to use the ALTER TABLE . . . MOVE command to
re-create the table with a PTCFREE value of 0. The following SQL re-creates the insert-
only table MY_OBJECTS with a PCTFREE value of 0, in its original tablespace:

REM table...

alter table my_objects move pctfree 0;

REM note that LOB columns need to be handled explicitly...

alter table my_tab move

pctfree 0

lob (my_lob_col) store as lobsegment (pctfree 0);

Keep in mind that the table MOVE command physically moves data between
blocks. As a result, indexes based on the table become unusable until they are rebuilt
after the move. Chapter 12 contains the code to rebuild unusable indexes in batch. In
addition to the MOVE command, Oracle9i introduces the DBMS_REDEFINITION
package to enable tables to be reorganized while online. This operation requires a pri-
mary key on the table in order to proceed, and the precreation of a table with the
required modified storage parameters to hold the reorganized data. The table that
holds the reorganized data is referred to as the interim table, which is required for the
duration of the reorganization only. It can be dropped when the operation is complete.
The three procedures listed need to be called in order:

1. CAN_REDEF_TABLE. Checks that the source table has a primary key or
raises an exception.

2. START_REDEF_TABLE. Copies the source table to the interim table.

3. FINISH_REDEF_TABLE. Swaps the interim table with the original table.

Before the final stage of redefinition using FINISH_REDEF_TABLE, any triggers,
indexes, and constraints must be created on the interim table first. Also, any grants on

Managing Space Growth 321

the interim table should be defined as they replace the grants on the original table
when the procedure call is complete.

With regard to PCTUSED, for a given table, the DBMS_SPACE.FREE_BLOCKS pro-
cedure can be used to show the number of blocks below the table HWM with a fullness
threshold below PCTUSED. These blocks are candidates for new row inserts. If
PCTUSED is set too low, then it’s possible for blocks to become relatively empty, yet
never be made available for inserts. Table MOVE or reorganization can be used to
address the problem.

Given the possibility of empty blocks above the HWM and empty or sparsely filled
blocks below the HWM due to deletes or inappropriate use of PCTFREE and PCTUSED,
it can be a challenge to quickly identify tables that potentially waste space. My preferred
approach is to try identifying tables that don’t use space efficiently using a single SQL
statement that takes all the previous factors into account. A prerequisite for running this
SQL is the use of ANALYZE on tables under consideration to ensure accurate values for
the AVG_ROW_LEN and NUM_ROWS values in DBA_TABLES. The SQL is based on
the comparison between two values for each table:

■■ BLOCKS from DBA_SEGMENTS

■■ AVG_ROW_LEN*NUM_ROWS/DB_BLOCK_SIZE from DBA_TABLES

The first value shows the actual space allocated to the table. The second value shows
the number of blocks that would be required based on the actual size of existing row
data, if each block could be packed 100 percent full with data. Of course, the difference
between the two values might be large deliberately due to design decisions such as
large PCTFREE values or low PCTUSED values. Then again, large differences might be
due to accidental space wastage that results from the overallocation of extents for a
small table or accidental use of a nonzero PCTFREE attribute for insert-only tables. The
SQL presents a list of tables for further investigation based on the difference between
the actual number of allocated blocks and the theoretical minimum number of blocks
required calculated from ACG_ROW_LEN*NUM_ROWS/DB_BLOCK_SIZE:

select wasted.*,act_blocks-th_blocks blocks_wasted

from

(

select tab.owner,tab.table_name,

seg.blocks act_blocks,

round(tab.avg_row_len*tab.num_rows/bs.value) th_blocks

from

(select owner,table_name,avg_row_len,num_rows

from dba_tables) tab,

(select owner,segment_name,blocks

from dba_segments where segment_type='TABLE') seg,

(select value

from v$parameter where name='db_block_size') bs

where seg.owner=tab.owner

and seg.segment_name=tab.table_name

and seg.owner not in ('SYS','SYSTEM')

322 Chapter 13

and avg_row_len is not null

) wasted

order by 5 desc;

Be aware that this SQL requires slight modification if multiple block sizes are in use
as supported by Oracle9i. Negative numbers for BLOCKS_WASTED indicate an inac-
curate value for TH_BLOCKS caused by incorrect row statistics. This problem can be
addressed by analyzing the data with a larger sample size.

NOTE Oracle Enterprise Manager (OEM) Tuning Pack provides the Tablespace
Reorg Wizard to help automate the process of efficient space management. The
Reorg Wizard also analyzes data for excessive row chaining and migration,
which are covered in the following section.

The Effects of Row Chaining and Migration

Row chaining and migration are common subjects for this discussion with respect to
both performance and space. Row chaining occurs when a row is too large to fit into a
single block during an insert. Typically, this occurs in large rows associated with large
object (LOB) or LONG columns and is unavoidable. To reduce row chaining, the data-
base block size can be enlarged to increase the likelihood that a row will fit in a single
block. However, the same amount of data needs to be fetched irrespective of the block
size. As a result, the time spent on eliminating row chaining doesn’t always result in
significant reductions in elapsed times for DML.

Row migration occurs when a row is updated and grows in size in such a way that
the row can’t fit in the original block. In this case, Oracle migrates the entire row into a
new block and stores a reference to the new block from the original block. The ROWID
of the row does not change. After migration, when the row contents are required dur-
ing DML, two blocks rather than one are now required to satisfy input/output (I/O).
This leads to higher resource requirements for I/O on migrated rows. Once again, the
time spent eliminating row migration needs to be balanced with the performance ben-
efits anticipated. If necessary, the PCTFREE value can be increased to provide suffi-
cient space for updates to fit the existing block.

Row chaining and migration can be identified using ANALYZE TABLE tablename
LIST CHAINED ROWS. This writes the ROWID values of chained and migrated rows
into a table (by default, this is named CHAINED_ROWS). Oracle provides the
UTLCHAIN.SQL script to create the table. Note that Oracle does not distinguish
between row chaining and migration in CHAINED_ROWS. The ALTER TABLE . . .
MOVE command can be used to rebuild tables to avoid chaining and migration. If you
are considering table rebuilds, make sure you measure the benefits they have on DML
performance afterwards. You may find that a lot of time is being wasted solving a prob-
lem that doesn’t actually manifest itself in terms of performance degradation.

Index-organized tables (IOTs) present special challenges for space management
due to the need to balance the size of the B*tree with the size of overflow data. More

Managing Space Growth 323

information on IOTs can be found in Chapter 12. The following procedure can be used
to identify row chaining in an IOT:

begin sys.dbms_iot.build_chain_rows_table('owner','iot tab'); end;

/

analyze table iot_tab list chained rows into iot_chained_rows;

select * from iot_chained_rows;

Avoiding Wasted Space

The fragmentation of free space due to holes caused by different extent sizes can be
avoided by ensuring that all segments in the same tablespace use the same sized
extents. As a result, no space is wasted, and little free space needs to be allocated up
front. Instead, datafiles can start small and grow according to demand. The following
SQL can be used as a template for all tablespace creation in Oracle9i databases based
on the recommendations made in Chapter 2:

create tablespace users

datafile

'/u02/oradata/linuxd1/users01.dbf' size 100m

autoextend on next 1280k maxsize unlimited

online permanent extent management local uniform size 128k

segment space management auto;

Using AUTOEXTEND enables datafiles to grow on demand up to the maximum
Oracle file size allowed. The maximum file size is a fixed number of blocks and is
therefore related to the block size of the tablespace to which the datafile belongs. For
example, the maximum file size for an 8KB block size is 32GB. Using LOCAL
UNIFORM extent management ensures that all segments have extents of the fixed size
128KB. It’s worth restating the basis for the use of uniform extents based on Oracle’s
recommendations, as described in Chapter 2:

■■ The performance of DML is largely independent of the number of extents in the
segment.

■■ Segments smaller than 128MB should be placed in 128KB extent tablespaces.
■■ Segments between 128MB and 4GB should be placed in 4MB extent table-

spaces.
■■ Segments larger than 4GB should be placed in 128MB extent tablespaces.

When autoextension is required due to a space shortage, the extension is set to 10
times the extent size in the example through the NEXT 1,280KB setting to avoid exces-
sive dynamic extension in small chunks. To enable easier segment space management,
Oracle9i introduces the concept of automatic segment space management for locally
managed tablespaces as indicated by the SEGMENT SPACE MANAGEMENT AUTO

324 Chapter 13

TE
AM
FL
Y

Team-Fly®

clause. This feature removes the need for the DBA to specify the FREELIST, FREELIST
GROUPS, and PCTUSED settings for tablespace objects. Instead, through information
stored in a bitmap, Oracle maintains the free space available in blocks. The bitmap
determines the blocks that are available for insert. As a result, Oracle can manage the
space efficiently without DBA assistance.

NOTE If you witness a lot of recursive SQL on the Oracle free extent list (FET$)
at times when the database is slow, you may have a problem that can be fixed
by changing your tablespace to use local extent management alongside
automatic segment space management.

If you are considering migrating from a dictionary-managed tablespace to a locally
managed one, you need to be aware that the MIGRATE_TO_LOCAL procedure in
DBMS_SPACE_ADMIN used to perform the migration does not result in a tablespace
with the same behavior as a locally managed tablespace created from scratch. Migrated
tablespaces are not subject to the UNIFORM or SYSTEM policy of newly created
locally managed tablespaces, although the benefits from reduced contention are avail-
able. For tablespaces migrated to locally managed tablespaces, the ALLOCATION_
TYPE in DBA_TABLESPACES is displayed as USER rather than UNIFORM or
SYSTEM. The best approach for migrating to locally managed tablespaces with uni-
form extents is to:

1. Create a scratch tablespace with the required locally managed and uniform
properties.

Managing Space Growth 325

A NOTE ON ARCHIVING AND PURGING

If your application runs DML that requires table scans, then you can expect performance
to degrade as the database size increases. In order to guarantee the performance of DML
requiring scans, data archiving and purging operations are required to constrain the
database to a limited size. On the other hand, the need to keep data available online is
usually driven by business requirements. For financial systems, regulatory requirements
may be the driver that determines when data can be removed.

It should not be overlooked that archiving and purging facilities need to be built in at
the design stage of a project because the need to maintain performance and data
availability can result in conflicting requirements that can’t be met at the same time. It
can be an extremely risky and time-consuming process to add archiving and purging
facilities after go-live, when it’s difficult to test whether business data integrity is
compromised after data removal. Oracle partitioning (as covered in Chapter 11) provides
simple techniques for rapid purging and archiving by enabling partitions to be dropped
and optionally transported to another database. In the real world, the complex
relationships between data in different tables mean that such simplistic solutions are
usually not workable. Consideration also needs to be given to the requirement to
reinstate archived data back into the production database at a later date.

2. Use ALTER TABLE . . . MOVE to move all tables out of the original tablespace.

3. Drop and re-create the original tablespace using locally managed and uniform
properties.

4. Use ALTER TABLE . . . MOVE to move the tables back into the original table-
space.

If you are prepared to use new tablespace names, you can choose to perform steps 1
and 2 only. Afterwards, all indexes related to the moved tables need to be rebuilt.
Chapter 12 explains the options for the index rebuild. Although this migration and
rebuild is a time-consuming process, it’s worth the effort in the long term for low-cost
management and better performance. The best approach of all is to use locally man-
aged tablespaces with uniform extents and automatic segment management from the
outset. For the end result, you should see the free space in all your databases practi-
cally disappear as datafiles grow to meet space demands as they occur.

NOTE Oracle9i Release 2 provides the COMPRESS table attribute, which is a
brute force way to make your tables take up less space. Using COMPRESS,
Oracle compresses data before storing on disk. The space savings come at a
considerable cost in extra CPU needed to compress data before writing, and
decompress before reading. Therefore, COMPRESS should be used with care for
tables with significant insert, update, and delete activity, but can benefit read-
only applications very significantly.

Summary

In order to manage space effectively, information on space growth needs to be collected
on a regular basis and presented in a form that’s easy to understand. This can be achieved
with a few simple stored procedure calls followed by the generation of charts. Microsoft
Excel provides a low-cost, sophisticated, and easy-to-program charting solution. The col-
lected information can be used to identify databases with large amounts of free space.

In most cases, there is no need to allocate large amounts of free space in advance. For
existing databases with large amounts of free space, datafiles can be downsized to
return the space to the file system for use elsewhere. If free space is fragmented, the
ALTER TABLE . . . MOVE command can be used to pack existing data more efficiently
into a different tablespace and ensure that no space is wasted. At the table level, appro-
priate values for PCTFREE and PCTUSED should be set and be consistent with the use
of the data. For example, for tables that are insert only, PCTFREE can be set to 0
because no space overhead needs to be allocated for updates.

An easy-to-administer, low-waste approach to space management means using
AUTOEXTEND, local extent management, uniform space allocation, and automatic seg-
ment space management. When such an approach is taken, databases typically run with
minimal free space overhead. The result is that space is allocated on demand, exactly
where and when it’s required. When used in combination with the RESUMABLE space
allocation features in Oracle9i (as described in Chapter 6), application outages from
space shortages should become a thing of the past.

326 Chapter 13

327

Chapter 9 covered the fundamentals of Structured Query Language (SQL) tuning and
recommended a measure-everything-all-the-time approach to SQL development. The
premise here is that if you ensure—from the bottom up—that each and every SQL
statement is written to minimize memory, input/output (I/O), central processing unit
(CPU), and network resources, then when you put those statements together in a com-
plete system, your system will have a reasonable chance of performing well.

This chapter introduces the basics of stress testing and discusses some benchmark-
ing techniques. The purpose of stress testing is to understand how the system behaves
when the workload imposed on the system exceeds the available hardware resources.
Benchmarking plays several possible roles in an organization. It might be used to com-
pare one version of Oracle with another, Oracle on one operating system with Oracle
on another, or even Oracle with another database management system (DBMS) such as
Microsoft SQL Server. Benchmarks are useful when an organization needs to make key
technology decisions based on factors such as the benefits that can be gained from
upgrading to Oracle9i from a previous version, and the potential costs and benefits of
extending the organization’s strategic range of hardware platforms to include new
architectures. This chapter covers the following topics:

■■ How to run a basic stress test

■■ An overview of the Transaction Processing Council (TPC-C) benchmark

■■ Using a simple benchmark to compare Oracle on two operating systems

Stress Testing
and Benchmarks

C H A P T E R

14

Basic Stress Testing

Consider a situation where a developer has written some SQL for the middleware com-
ponent of an application. The SQL has been optimally written to minimize resource
usage. The business analysts have decided that the SQL might need to execute concur-
rently in four sessions to service the likely demand. A simple stress test can be created
by running the SQL four times concurrently in different sessions, followed by an inves-
tigation of the CPU used by each session and the Oracle events waited for by each ses-
sion, as shown in Chapter 9.

In the best case, if the statement took 10 seconds for a single execution, then it would
continue to take 10 seconds for four concurrent executions. Such a result depends on
the available hardware resources and the nature of the resource usage of the statement.
For example, in this scenario, if the SQL statement in question is CPU intensive (requir-
ing I/O from the buffer cache rather than physical disk reads) and the server has four
CPUs, then it’s theoretically possible for the four concurrent streams to complete in 10
seconds. On other hand, if the SQL results in intensive physical I/O, then the elapsed
time depends more on how fast the I/O subsystem can service the concurrent I/O
requests.

What happens if the peak system load indicates that, in the worst case, eight ses-
sions might actually execute the query concurrently? Some simple arithmetic can esti-
mate the expected elapsed time based on the fact that for each second of wallclock
time, 4 seconds of CPU resource are available (1 second per available CPU).

For the CPU bound example, the total CPU requirement is now 80 CPU seconds,
which is calculated from eight sessions each requiring 10 seconds of CPU. Because 4
seconds of CPU are available per elapsed second, the elapsed time for each session
might be estimated as 80/4 � 20 seconds. In other words, by adding twice the load for
a fixed CPU resource, the elapsed time for each session has doubled compared to the
four-session example.

The trouble with real-world systems is that they don’t always degrade in a linear
fashion like this because of factors such as how efficiently the operating system can
schedule eight running processes on four available CPUs. One of the benefits of an
industrial-strength operating system, such as Sun Solaris, is that it can demonstrate
linear increases in elapsed times in these kinds of scenarios. On the other hand, an oper-
ating system such as Linux—due to its less-widespread deployment for enterprise-wide
commercial applications—may be more likely to hit the wall when stressed and demon-
strate a stepwise rather than graceful linear degradation.

Like SQL tuning, easy-to-use tools are needed to try out some stress testing during
the development phase of the lifecycle in order to encourage everyone to do it. This
doesn’t require a full-blown benchmarking suite. It simply requires you to run multi-
ple SQL statements (possibly different ones) across multiple sessions at the same time
and present the results. Some useful information to present would include the CPU
used by each session and the event wait times for Oracle events. Event waits indicate
sessions waiting for a resource to become available and provide strong evidence of
contention for resources. As shown in Chapter 9, Oracle provides this information for
each session in the V$SESSTAT and V$SESSION_EVENT tables.

328 Chapter 14

A tool like SQL*Plus is quite difficult to use for basic stress testing because it wasn’t
designed for that purpose. A shell script that spawns multiple SQL*Plus sessions and
waits for them to complete could possibly be created. An alternative to this approach
is DbCool’s Stress Tester. Stress Tester provides a user interface that enables simple
stress testing to be performed with minimal effort. Stress Tester is launched from the
File menu on the main window of DbCool. After launching Stress Tester, the Connect
tab is used to create the desired number of concurrent sessions. The next step is to
execute a simple statement in those sessions at the same time. Figure 14.1 shows the
Execute tab after running the statement SELECT SUM(LENGTH(LINE)) FROM SYS
.SOURCE$ in eight sessions concurrently.

Stress Tester provides the following features at execution time to enable a simple
stress test:

■■ Multiple iterations of a statement to provide an average value

■■ The capability to run statements in selected sessions only using Windows mul-
tiple selection keys

■■ The capability to cancel all or selected executing statements

■■ Separate elapsed times for the execute and fetch phases of a statement

■■ A count of the rows fetched in each session

Stress Testing and Benchmarks 329

Figure 14.1 DbCool Stress Tester Execute tab.

■■ The overall elapsed time for all sessions (displayed in the status bar)

■■ The UNIX server process ID (SPID) of the server session doing the work

All times and row counts are updated in real time while the statements are execut-
ing. In Figure 14.1, the server in question contains two CPUs and the SQL statement
takes approximately 2.25 seconds on a single CPU. Based on the previous calculations,
the total CPU requirement for eight sessions is 18 CPU seconds (8 � 2.25). Given that 2
seconds of CPU are available for each second of wallclock time, an estimate of the
elapsed time for eight sessions would be approximately 18⁄2 � 9 seconds. The results in
Figure 14.1 correspond quite closely with this estimate. After the test is complete, the
Timings tab in Stress Tester presents Oracle event waits and CPU that are used for each
session during execution, either in a grid or chart format. Figure 14.2 shows the times
in chart format for each Oracle session on the server (not just those user sessions shown
in Figure 14.1). The ability to show information for all sessions is useful because it
includes Oracle background sessions that perform work on behalf of the client sessions
running the stress tests.

As expected, Figure 14.2 shows that each session requires approximately 2.25 sec-
onds of CPU. The value of 2.25 CPU seconds is fixed for each execution. The elapsed
time is longer because only two CPUs are available and the operating system needs to

330 Chapter 14

Figure 14.2 DbCool Stress Tester timing chart.

schedule the processes to share the available CPU between all the sessions. In this
example, the operating system is Sun Solaris, and Figure 14.1 shows how the elapsed
time is fairly constant across each session, demonstrating that the operating system
scheduler is doing a good job of allocating available resources fairly to each session.
The control file parallel write event shown actually occurred for a very small time dur-
ing one session, but it is too small to show in the chart. The system ID (SID) values on
the X axis in Figure 14.2 correspond to the Oracle session ID values in the SID column
in Figure 14.1 to enable the performance of individual sessions to be related to the SQL
being executed. This example runs the same SQL in each session. By modifying the
value of the Script column for each session in the Execute tab shown in Figure 14.1,
each session can run a different statement. The statement can be any valid SQL, includ-
ing an anonymous Procedure Language/Structured Query Language (PL/SQL) block
or a call to a stored procedure. Figure 14.3 shows a more interesting chart for a state-
ment that performs SELECT COUNT(*) on a 2-million-row table in eight sessions con-
currently. In addition to CPU usage, this SQL results in I/O waits caused by a full table
scan (as shown by the db file scattered read event) and buffer cache contention (as
shown by the buffer busy waits event) due to multiple sessions attempting to access
the same blocks at the same time.

In order to introduce some random aspects of testing (for example, to simulate a sys-
tem where transactions are split between five different transaction types in different
ratios), the DBMS_RANDOM package can be used. This is shown in an example in the
section A CPU Performance Comparison at the end of the chapter.

The TPC-C Benchmark

Every database administrator (DBA), developer, and IT manager responsible for appli-
cation procurement should have a basic familiarity with the TPC, its aims, and its
benchmarks. The TPC is a not-for-profit organization that was founded in 1988 and
included eight vendors from the outset. Nowadays, all of the major software and hard-
ware players are members. This section discusses the TPC-C benchmark, which is one

Stress Testing and Benchmarks 331

Figure 14.3 DbCool Stress Tester charting a stressed system.

of several made available by the TPC. The TPC-C benchmark models a moderately
complex Online Transaction Processing (OLTP) system, comprising nine tables. It took
around 2 years to develop, and the specification was approved in 1992.

The TPC’s stated goal for its benchmarks is to define a set of functional requirements
that can be run on any transaction-processing system. These requirements are indepen-
dent of hardware, operating systems, and database software. As a result, benchmark
results allow a like-for-like comparison between throughput on different hardware plat-
forms, operating systems, processor architectures, and DBMS software vendors.

The benchmark test sponsor is required to submit proof (in the form of a full disclo-
sure report) that all TPC requirements have been met. In the past, the test sponsor was
typically a hardware vendor (such as IBM or HP) that would run a TPC benchmark to
present their latest go-faster hardware in the best light. Interestingly, Oracle mounted
a major advertising campaign in 2001 against IBM based on the fact that IBM had used
Oracle rather than DB2 in a benchmark. Over time, Microsoft SQL Server has come to
dominate the TPC-C benchmark both in terms of absolute performance on clustered
architectures and price performance.

Oracle maintains a strong showing in nonclustered configurations. In January 2002,
Oracle had a single entry in the top-10 TPC-C clustered performance list, 6 in the non-
clustered list, and no entries in the top-10 price performance list. It’s worth pointing
out that Oracle TPC benchmarks (and other DBMS vendor benchmarks) typically exe-
cute in an environment that uses a transaction-processing monitor such as BEA Tuxedo
from BEA Systems Inc. A straw poll of experienced Oracle DBAs suggests that real-
world Oracle systems running on transaction-processing monitors are relatively rare.
That’s not surprising because supportability and ease of development are very impor-
tant requirements to take into account when considering the business benefits of an
Oracle system. On the other hand, a TPC benchmark aims to achieve best performance
at the cost of practically everything else because the hardware vendor (as the sponsor)
is looking to sell hardware units based on publicity from the benchmark. In the real
world, best performance is never the only goal of any end-user application.

This doesn’t mean that the TPC-C benchmark has no relevance to a real-world Ora-
cle system. The TPC-C benchmark was designed, as far as possible, to model a com-
pany in the real world. Although all benchmarks cost a considerable amount of money
to run and this will likely prevent you from running a full TPC-C benchmark in house,
the design goals of TPC-C can be applied to varying degrees in any benchmark that
you decide to run yourself. TPC-C is the OLTP benchmark of the TPC and measures
the throughput of a system in terms of maximum sustained performance. TPC-C runs
five different transactions as defined in the following list:

New-Order. A new order entry at a terminal.

Payment. An update of a customer order on payment.

Delivery. A batch transaction of delivered orders.

Order-Status. The retrieval of a customer’s most recent order.

Stock-Level. The monitoring of warehouse inventory.

Throughput in TPC-C is defined as the maximum sustained number of New-Order
transactions per minute that the system can generate while the system is currently exe-

332 Chapter 14

cuting the other four transaction types. All of these transactions have a minimum
response time, which is set at less than or equal to 5 seconds for everything except for
the Stock-Level warehouse query, which has a limit of 20 seconds. The TPC-C unit of
throughput is tpmC, which represents the number of New-Order transactions per
minute. The price performance metric is in dollars per tpmC. In order to provide max-
imum real-world relevance, the price performance figure attempts to take into account
the total cost of ownership, which includes things like software cost (including the
DBMS), terminals, communications equipment, and three years of maintenance. The
total cost divided by the tpmC figure gives the price performance in dollars per tpmC.
The following list contains some of the most desirable attributes that an internal bench-
mark has over a TPC-C benchmark:

■■ Is relevant and meaningful to the problem domain

■■ Produces understandable results

■■ Doesn’t oversimplify the target environment

The first two attributes conflict to some degree with the TPC-C benchmark. By its
very nature, the TPC-C benchmark needs to be organization independent and utilizes
a generic order entry system. This doesn’t mean that it’s not relevant to your organiza-
tion; it just means that a different approach might be more relevant. For an internal
benchmark, if possible, it’s preferable to use transactions that run against a real busi-
ness application using real business data. This provides results that business users
within an organization can relate to better. However, such an approach makes the
benchmark more domain specific, which is something the TPC-C benchmark tries to
avoid in order to provide generic results.

One of the most important aspects of the TPC-C benchmark, which is applicable to
any benchmark, is that it sets clearly defined goals based on measurable and repeat-
able objectives. The TPC-C benchmark is careful not to oversimplify an OLTP system
by performing all of the processing on the server. Instead, TPC-C recognizes that a typ-
ical OLTP system has user terminals and real human users who select menu choices
based on the list of five TPC-C transactions, key in requests, and then inspect and
assimilate the results before repeating the process. In other words, the end-to-end time
taken by a transaction is not simply the database response time: It also includes human
factors that need to be incorporated into the model. The workflow of a TPC-C transac-
tion passes through the following states, which can be modeled on a computer system
using random number generation to provide a distribution of responses or response
times in each state:

■■ The choice of transaction type (A New-Order transaction is 45 percent, a Pay-
ment transaction is 43 percent, and Order-Status, Delivery, and Stock-Level
transactions are each 4 percent.)

■■ The menu response time

■■ The input screen keystroke entry time

■■ The database transaction response time

■■ The time for a visual inspection of database output

Stress Testing and Benchmarks 333

In the past, both Oracle and Microsoft have been accused of technical stunts in order
to produce better TPC benchmark results. Oracle’s original delivery of materialized
views led to accusations that the effective precalculation of results rendered TPC
results less meaningful. On the other hand, the real-world value of materialized views
is beyond question. Microsoft’s federated clustering approach, which now dominates
all high-end tpmC results, led to accusations of trophy hunting; however, if the tech-
nology provides benefits to genuine business applications, then such accusations lose
meaning. TPC-C states that data partitioning must be transparent to application code,
and if DBMS software meets those requirements, it’s allowed. More generally, TPC
requires Data Manipulation Language (DML) to have the capability to execute against
any data, regardless of its physical location.

In the final analysis, using TPC-C benchmarks for marketing purposes is not the
fault of the TPC organization. The TPC has developed a rigorous set of requirements to
help customers of hardware and software make meaningful comparisons between dif-
ferent systems. Those requirements are invaluable as a starting point for any bench-
mark, TPC or otherwise, and an awareness of them can help organizations develop
their own.

If you are considering a TPC-C-style benchmark in house, then you need to invest
in a tool that can manage such a comprehensive requirement and have the capability
to simulate client terminals. The clear market leader for some years in this area is
LoadRunner from Mercury Interactive. The effort required to set up a fully fledged
TPC-C-style benchmark is considerable, and LoadRunner is relatively expensive.
LoadRunner is typically not available as a trial download for prepurchase evaluation,
so you need to have a well-defined set of requirements before you go ahead with it. In
many cases, the rigor of a TPC-C-style benchmark is not actually required. Often,
within an organization, the requirement is simply to compare what you already have
with something new in a way that’s meaningful to your organization.

Comparing Two Hardware Platforms

From time to time, this book has supported Linux as an appropriate platform for con-
sideration when choosing the hardware environment for running Oracle technology.
On the plus side, Linux on Intel processors appears to provide some attractive
price/performance possibilities. The preconception regarding Linux is that it won’t
perform as well as Solaris on a comparable platform. In a real-world comparison like
the one in this section, the goal is to get a stake in the ground regarding performance.
It’s not necessarily designed to show that one hardware platform is better than the
other. In any case, the definition of “better” needs to take a broader range of require-
ments into account, not just performance. In terms of reliability, and hence availability,
Solaris is an excellent platform for running Oracle. It has been shown that Solaris can
do the job many times. The same applies to other mainstream platforms on which Ora-
cle runs, such as HP-UX and others. Linux, on the other hand, is unproven. This
doesn’t mean that Linux can’t do the job. It just means that Linux requires further eval-
uation. It’s interesting that Oracle CEO Larry Ellison announced the death of large
server computing in the computer press in February 2002 along with a statement

334 Chapter 14

TE
AM
FL
Y

Team-Fly®

claiming that Oracle was moving to Real Application Clusters (RACs) for internal sys-
tems, although he subsequently claimed that the statements were taken out of context.

In this case, the goal is to obtain some data points to see how the claims of enterprise
readiness for Linux match the reality. This is not a very quantitative goal, but if you are
designing an internal benchmark, then it needs to meet your own requirements and
not necessarily those of the TPC. When performing such a benchmark, a good
approach is to ensure as a baseline that the Oracle configuration matches on both sys-
tems. This means checking that the init.ora parameters such as SORT_AREA_SIZE and
DB_BLOCK_BUFFERS (or DB_CACHE_SIZE in Oracle9i) match on both systems. It’s
not necessary to ensure that both platforms use the same storage at the same Redun-
dant Array of Independent Disks (RAID) level. What’s probably more relevant is that
both platforms are configured in a way that is typical in your organization. As a result,
the Solaris storage may be configured using RAID 5 on an A1000, and the Linux server
may be configured using a Compaq RAID array configured with RAID 0�1. If these
configurations represent the way you would deploy these platforms in a production
environment, then the comparison has meaning within your organization, which is the
main goal of the benchmark. Compare this approach with the TPC-C results. If your
organization standardizes on Sun Solaris, for example, the fact that an HP-UX solution
produces unprecedented TPC-C performance has nothing more than academic inter-
est. You’ll probably never deploy that because your hardware and support infrastruc-
ture are based on Sun, and your primary motivation is improved price/performance.

A Baseline Performance Comparison
Using Import
I like to perform a data import—using Oracle’s Import utility—of a production schema
of a reasonable size (say, a few gigabytes) to get a feeling for system performance. Ora-
cle Import and Export are covered in Chapter 19. In this situation, I run Import in a sin-
gle stream for the maximum likelihood of success the first time, based on the same
technique that would probably be used for a database migration of a production data-
base over a weekend. As Chapter 19 demonstrates, Import can be run in multiple
stages with the goal of increasing performance at the cost of increasing the complexity
of the process. In this case, the requirement is to run Import in a typical configuration
that would be used to produce success the first time without the benefits of multiple
runs in advance to fine tune performance.

Import actually runs a good mix of Oracle DML and Data Definition Language
(DDL), which in turn are I/O and CPU intensive. As such, it’s an excellent test driver
for a simple Oracle benchmark of a batch Oracle operation running on a single CPU.
For a given table, during the batch insert phase, the Import process is I/O intensive as
it reads the dump file and writes data to the tables. After the table insert, Import is CPU
and I/O intensive as table indexes are created. Indexing requires full table scans of the
table, which provides I/O loading and sorting, which is CPU intensive provided that
the sort can take place in memory. At the end of the schema import, foreign keys need
to be enabled. This operation is typically both CPU and I/O intensive at various times
as the DML used to check the foreign key constraints executes. Once you have a set of
statistics for a sizeable import containing many different tables of varying row lengths,

Stress Testing and Benchmarks 335

you can use that as a baseline to compare performance with a different system in the
future. After Import completes, the following SQL can be used to show the elapsed
time for each imported table and index:

select ao.object_name,ao.object_type,

round((ao.next_created-ao.created)*24*60,1) ela

from

(

select object_name,object_type,created, lead(created,1) over

(order by object_id) next_created

from dba_objects o where owner='APP' and object_type in

('TABLE','INDEX')

order by object_id asc) ao;

The SQL uses the LEAD analytical function and relies on the fact that a table’s
indexes are created immediately after the table and that the difference between the
CREATED value for two consecutive objects ordered by OBJECT_ID provides the
elapsed time to create that object during Import. By comparing this information side
by side for two different systems running the same fixed Oracle workload (based on
the same Oracle dump file with the same database and Import parameters), significant
differences in time can be identified for closer analysis. Assuming that the previous
information is written into the table SOLARIS for the Solaris run and the table LINUX
for the Linux run, the following SQL shows the side-by-side differences in elapsed
times in each case, which is ordered by the largest absolute difference:

select s.object_name,s.object_type,s.ela solaris,l.ela linux,s.ela-l.ela

delta

from (select * from solaris) s,

(select * from linux) l

where l.object_name = s.object_name

and l.object_type = s.object_type

order by 5 desc;

OBJECT_NAME OBJECT_TYPE SOLARIS LINUX DELTA

--------------------------- ------------- --------- ------- -------

I1_TRADING_BOOK INDEX 96.8 67.6 29.2

I1_VALUE_DATE INDEX 92.6 66.7 25.9

The source of significant differences in this example is worthy of further study. The
DBCOOL_MON package discussed in Chapter 8 provides some simple ways to collect
Oracle statistics and event wait information (as covered in Chapter 9) for every session
all the time to identify the underlying reasons for differences in performance. The rea-
sons for differences in elapsed time for a fixed workload on two different systems can
often be determined by comparing event and statistic differences for the two sessions,
side by side, and seeing which values differ most significantly between them. This is
similar to determining the reasons for the previous Import times.

336 Chapter 14

A CPU Performance Comparison
In any discussion on the relative merits of Intel versus Reduced Instruction Set Com-
puter (RISC) processors, a performance test is required that’s CPU intensive. The
Import test is interesting, but differences in elapsed times may be due to I/O considera-
tions as well as CPU because in this example, the storage used is different in each case.
If the goal is to try comparing CPU alone, I/O must be taken out of the equation. A sim-
ple test in this case involves identifying some real business transactions that require I/O
from the buffer cache memory rather than physical I/O from disk. The technique for
identifying such SQL in the shared SQL area is covered in Chapter 9. In this case, rather
than measuring transaction rates, it’s easier to choose a fixed workload based on a fixed
predetermined list of transactions, and then see how fast the total workload can be com-
pleted, depending on the number of concurrent sessions used to process the fixed work-
load and the number of available CPUs. Chapter 9 shows how to query the buffer cache
to check that the blocks cached for various objects remain constant. It’s important that
workload is run through a single time before running the benchmark in order to ensure
that all table and index blocks accessed by the test are present in the block buffer cache
memory, having already been read from the physical disk. A simple benchmark can be
created quite easily based on PL/SQL, SQL*Plus, and the Korn shell (ksh) (or bash
under Linux). The goal is to compare performance for the same CPU-intensive work-
load between a workgroup-sized Solaris SPARC and Linux Intel system.

In the following example, the fixed workload comprises 35,000 executions of a busi-
ness query transaction taken from a production system. Each execution of the state-
ment takes place using a different value for the bind variable that is used to identify the
transaction ID in the query. An Oracle sequence is used to serialize access to the bind
variable values between multiple sessions that execute concurrently to process the
workload. A separate table, referred to as the transaction list throughout the rest of this
discussion, holds 35,000 rows where each row contains:

■■ A sequence number between 1 and 35,000

■■ A transaction ID to use as the bind variable value

■■ The number of rows fetched by each transaction after it completes

The value in the third column is summed at the end of each benchmark run to make
sure that the benchmark carries out the same processing in each run. The following
pseudocode describes the sequence of flow during the benchmark:

reset sequence to 1

reset row count to NULL in transaction list

spawn n concurrent SQL*Plus sessions

in each session, execute procedure SP_BENCHMARK which does the

following:

-- SP_BENCHMARK

loop

Stress Testing and Benchmarks 337

get next value from sequence.

if no more values in sequence exit procedure

lookup transaction ID in transaction list for the sequence

execute the transaction based on the transaction ID

count the rows returned and write back to transaction list

end loop

-- end SP_BENCHMARK

wait until all sessions complete

save elapsed time

sum the rowcount in the transaction list and check against known value

The following shell script runs the benchmark described previously for 1 session,
2 concurrent sessions, and up to 20 concurrent sessions. It additionally saves the Oracle
system statistics and events before and after each run using the DBCOOL_MON
package:

(

for sessions in 1 2 3 4 5 6 7 8 9 10 15 20 ; do

reset the sequence and rowcount in the transaction list table

sqlplus -s "/ as SYSDBA" @benchmark_reset

sample system events and stats before...

sqlplus -s "/ as SYSDBA" @benchmark_stats "$sessions begin"

run benchmark for number of sessions shown, time it

time do_benchmark.sh $sessions

sample system events and stats after...

sqlplus -s "/ as SYSDBA" @benchmark_stats "$sessions end"

check results are correct

sqlplus "/ as SYSDBA" @benchmark_status

done

) | tee -a benchmark.log

The do_benchmark.sh script spawns the required number of concurrent sessions
that run SP_BENCHMARK and waits for them to complete:

:

do_benchmark.sh

sessions=$1

session=1

while : ; do

sqlplus -s "/ as SYSDBA" @benchmark_run &

session='expr $session + 1'

338 Chapter 14

if [$session -gt $sessions] ; then

break

fi

done

echo "************ " 'date'

echo "running $sessions..."

wait # wait for all spawned sessions to complete

The body of the SP_BENCHMARK procedure is shown in the following code with-
out the actual business transaction (which is represented by the cursor c1) in order to
save space:

create or replace procedure sp_benchmark is

cursor c1 (p_transaction_id number) is

your SQL here;

c1_rec c1%rowtype;

l_seq number;

cursor c2(p_seq number) is

select transaction_id

from transaction_list where seq=p_seq;

c2_rec c2%rowtype;

l_rows number:=0;

begin

while true loop

-- loop exits with exception when sequence exhausted

-- sequence maxval is 35000 (number of deals to process)

select benchmark_seq.nextval into l_seq from dual;

open c2(l_seq); -- c2: get transaction ID for sequence

fetch c2 into c2_rec;

open c1(c2_rec.transaction_id); -- run the business transaction

close c2;

l_rows :=0;

-- fetch transaction results, count rows fetched

while true loop

fetch c1 into c1_rec;

exit when c1%notfound;

l_rows := l_rows+1;

end loop;

close c1;

-- save rows fetched, to check benchmark worked

Stress Testing and Benchmarks 339

update transaction_list set rowcount=l_rows where seq=l_seq;

end loop;

end;

/

Figure 14.4 shows benchmark results when running the previous example on a two-
processor Sun E450 running Solaris as compared to a four-processor Compaq DL580
running Linux. For a CPU-intensive Oracle workload, you would expect the elapsed
time for a fixed workload to decrease until all of the processing power was used. In this
case, the E450 bottoms out at two sessions (using both processors at 100 percent) and
the DL580 bottoms out at four sessions (using all four processors at 100 percent). As the
servers are overloaded by running more sessions than available CPUs, performance
degrades slightly and even more significantly in the Linux case. Based on hardware
and maintenance list prices, which are available from the Sun and Compaq Web sites,
for a two-processor configuration with the same amount of memory, disk, and network
cards, the Sun server was twice as expensive as the Compaq.

In the previous example, the processing order was determined in advance. The
DBMS_RANDOM package can be used to choose transaction IDs at random or branch
between different paths in the benchmark code based on the likelihood of such a split
in the workload of the real system. This is similar to the way in which the TPC-C
benchmark simulates the operator choice from among the five TPC-C transactions
based on the relative percentage of each transaction type in a typical OLTP system.

340 Chapter 14

Figure 14.4 Elapsed time comparison chart.

Keep in mind that DBMS_RANDOM operates in the database server, whereas the
choice is made by an operator on the client in the TPC-C benchmark.

The following example uses DBMS_RANDOM to return a random number between
1 and 100. The random number is assigned to a TPC-C transaction according to the fol-
lowing rules:

■■ Values in the of range 1 to 45 (representing 45 percent of the returned values)
execute a New-Order transaction.

■■ Values in the range of 46 to 88 (representing 43 percent of the returned values)
execute a Payment transaction.

■■ Values in the range of 89 to 92 (representing 4 percent of the returned values)
execute an Order-Status transaction.

■■ Values in the range of 93 to 96 (representing 4 percent of the returned values)
execute a Delivery transaction.

■■ Values in the range of 97 to 100 (representing 4 percent of the returned values)
execute a Stock-Level transaction.

declare

-- TPC-C workload split

-- New-Order 45%, Payment 43%, Order-Status/Delivery/Stock-Level 4%

l_random number;

l_sleep number;

begin

while true loop -- infinite loop...

l_random :=DBMS_RANDOM.VALUE(LOW=>1,HIGH=>100);

if l_random between 1 and 45 then

-- do New-Order transaction

end if;

if l_random between 46 and 88 then

-- do Payment transaction

end if;

if l_random between 89 and 92 then

-- do Order-Status transaction

end if;

if l_random between 93 and 96 then

-- do Delivery transaction

end if;

if l_random between 97 and 100 then

-- do Stock-Level transaction

end if;

-- now wait for a random time from 5 to 11 secs

-- to simulate user think time

l_sleep :=DBMS_RANDOM.VALUE(LOW=>5,HIGH=>11);

dbms_lock.sleep(l_sleep);

end loop;

end;

/

Stress Testing and Benchmarks 341

Summary

The effects of stress on a system need to be understood as early as possible in the devel-
opment cycle in order to address any possible problems before production. A simple
stress test can be performed by submitting multiple SQL statements to concurrent ses-
sions at the same time and analyzing the Oracle event waits for each session afterward
as the loading exceeds the available hardware resources. The DbCool Stress Tester util-
ity provides a simple and free way to do this.

For a more extensive performance test, a benchmark is required. The TPC-C bench-
mark is an excellent model for any benchmark as it sets down all of the important
requirements for a benchmark. However, TPC-style benchmarks are expensive to per-
form, take a long time, and require expensive tools such as LoadRunner. One of the
major challenges for any benchmark is to decide the exact goal of the benchmark.
Unlike a TPC-C benchmark, which sets out to be domain independent, an internal
benchmark needs to have a goal that has value within your organization. As such, you
should run it on typical hardware and Oracle configurations that you would deploy in
your production systems.

An Oracle Import of real business data can provide a meaningful baseline of the
single-threaded performance of an Oracle system as it provides a good mixture of Ora-
cle DML and both CPU- and I/O-intensive operations. A simple and low-cost bench-
mark can be created fairly easily using a mixture of SQL*Plus and UNIX shell scripts.

342 Chapter 14

343

During the 1990s, many companies experienced an explosive growth in the number of
servers in their organizations. Each server usually had its own locally allocated stor-
age. It became clear that this was an inefficient way to manage storage, which needs to
be available on demand and used to full capacity. This led to the deployment of disk
farms, in which storage is made available over a storage area network (SAN) or net-
work attached storage (NAS). Compared to locally attached storage—where the addi-
tion of storage space on a host typically requires purchase orders for disks, rack space
in a machine room, and downtime for installation—SAN storage creates extra disk
space easily from a centralized pool via a network. SAN storage also avoids the waste
of disk space that occurs when an application doesn’t use as much local storage as
planned.

In theory, the same inefficiencies apply to the central processing unit (CPU) and
memory. The result of deploying these locally on each server means that resources are
wasted because servers that experience CPU and memory shortages can’t take advan-
tage of CPU and memory from a centralized pool or other servers with spare capacity.
One solution to this problem is to consolidate servers and run many applications on
the same server, although it’s worth mentioning that Intel’s emerging Infiniband bus
technology takes a different approach by enabling all resources to be shared across a
network. Server consolidation can cause availability issues unless it is implemented in
the appropriate environment.

Server Consolidation and
Resource Management

C H A P T E R

15

The right server consolidation environment requires the resource management of
CPU and the input/output (I/O), memory, and network resources on the consolidated
server in such a way that

■■ A single badly behaved application doesn’t affect the availability of other appli-
cations on the server.

■■ Full use is made of available resources.

This chapter discusses resource management solutions, keeping in mind that the
goal is to deliver the benefits of cost savings from server consolidation without com-
promising availability or performance. The solutions range from resource control at
the Oracle session level and instance level to resource management across the entire
server. The following subjects are covered in this chapter:

■■ An overview of server consolidation

■■ Oracle profiles for the resource limiting of a single Oracle session

■■ Oracle Resource Manager for the resource control of an Oracle instance

■■ Solaris Resource Manager (SRM) for the resource control of a Sun server

■■ Server consolidation using IBM zSeries mainframes

Server Consolidation Overview

In its simplest form, server consolidation for Oracle databases involves taking your
existing Oracle instances from several servers and placing them on a single larger
server. In theory, there’s no reason why the scope of consolidation should be restricted
to Oracle databases. For example, there’s no technical reason why Oracle and Sybase
databases can’t coexist. You might expect the total cost of ownership to reduce for sev-
eral reasons in a consolidated server environment:

■■ Fewer system administrators are required to manage the system.

■■ Floor space requirements are lower, due to the reduced footprint of the consoli-
dated server.

■■ Power requirements are lower.

■■ CPU, memory, and I/O resources can be used nearer to capacity (more
efficiently).

However, unlike disk farms (which are universally accepted as good things), busi-
ness groups within an organization often view server consolidation with trepidation.
Most business groups want their own applications to run on their own servers. This is
actually not unreasonable because the best way to protect an application from the
resource demands and side effects of other applications is to run it on its own server.

One example of the challenge presented by server consolidation is the use of virtual
memory on a server. On a standard UNIX server, disk utilization can be controlled
through UNIX privileges on file systems. However, virtual memory is a shared

344 Chapter 15

TE
AM
FL
Y

Team-Fly®

resource for all applications. If one application decides to overload the system with
many processes running concurrently, then virtual memory can be exhausted. This can
lead to situations where processes can’t be created for other applications (in the worst
case). Excessive paging due to a memory shortage can also lead to performance degra-
dation for all applications on the server. In this case, server consolidation impacts both
performance and availability.

Another possible problem is the allocation of CPU resources. Standard UNIX allows
processes to be prioritized in an unsophisticated way to enable some processes to run
with a higher priority than others. Oracle doesn’t recommend the use of such tech-
niques for Oracle databases. As a result, the operating system doesn’t distinguish
between an Oracle batch process that needs to complete before the start of the next
business day and an Online Transaction Processing (OLTP) transaction that needs to
complete within a few seconds.

Solutions to the resource management challenge are provided by Oracle at the data-
base session level and instance level, and at the operating system level by systems that
originated in the mainframe world. Resource management is a feature that is built into
most mainframe operating systems to ensure availability through the fine-grained con-
trol of resource usage.

Oracle provides profiles to throttle resources at the Oracle session level and Oracle
Database Resource Manager at the database instance level. Using Oracle Database
Resource Manager—rather than an operating system resource manager—is typically
an either-or choice because Oracle doesn’t support running both at the same time on
the database. If both are in use and neither is aware of the other’s existence, then the
competing behavior of both can lead to unpredictable behavior and database instabil-
ity. Oracle recommends using Resource Manager to control resource usage within a
single instance and an operating system resource manager for the resource manage-
ment of multiple instances on the same server.

Oracle Profiles

Before Oracle8i, Oracle only provided login profiles to control resource usage. Profiles
are named collections of basic hardware resource limits that can be associated with ses-
sions. The following list shows the configurable resource settings associated with the
DEFAULT profile that Oracle installs at database creation time:

■■ CPU_PER_SESSION

■■ CPU_PER_CALL

■■ LOGICAL_READS_PER_SESSION

■■ LOGICAL_READS_PER_CALL

In order for resource limits in profiles to be enabled, the RESOURCE_LIMIT�TRUE
parameter needs to be enabled in the init.ora file (or spfile) or while the database is up
by using the following:

alter system set resource_limit = true;

Server Consolidation and Resource Management 345

The following Structured Query Language (SQL) shows how to create a profile with
a CPU limit in order to set bounds on the CPU usage for individual SQL statements:

create profile cpu_limit limit cpu_per_call 100;

alter user scott profile cpu_limit;

After the CPU_LIMIT profile has been set for SCOTT, the SQL that exceeds the limit
fails with an error:

select sum(length(text)) from all_source;

ORA-02393: exceeded call limit on CPU usage

Using profiles to limit end-user workloads is very user-unfriendly and probably has
no place in a usercentric application. In most cases, users execute SQL because they
need the results to carry out their jobs. The act of aborting statements means that those
statements typically need to be reexecuted some other way until they complete. As a
result, the use of profile settings to abort SQL simply wastes resources. Overall, profiles
are not sophisticated enough solutions to meet the requirements of resource manage-
ment, which in turn enables server consolidation.

Using Oracle Database Resource Manager

Oracle Database Resource Manager provides a more sophisticated approach to Oracle
resource management by providing the database administrator (DBA) with facilities to
allocate resources to sessions or groups of sessions (consumer groups) based on busi-
ness performance requirements. For example, OLTP users can be allocated more CPU
resources than batch sessions because response times for OLTP transactions must com-
plete in a predictable time, allowing small variations.

It’s important to emphasize that Resource Manager controls resource usage within a
single instance when the CPU load runs close to 100 percent. As such, it’s not practical
to use it for resource management across multiple instances on the same server. How-
ever, it’s useful to understand its behavior for two reasons. The first is that Resource
Manager features can be contrasted with operating system resource managers, which
are discussed later in the chapter in the sections on SRM and IBM zSeries. The second
reason is that it seems like a small step for Oracle to extend the concept of a resource
consumer group to groups of users across multiple databases and therefore manage
resources across multiple instances at the same time. The concept of an enterprise user
(held in a directory) that isn’t tied to an instance already exists. The same approach can
easily be applied to consumer groups.

Database Resource Manager is designed to manage system throughput in a such a
way that business performance requirements are met when CPU is loaded at 100 per-
cent and all available CPU resources can be made available where needed when the
CPU is not fully loaded. Specifically, Database Resource Manager addresses the fol-
lowing problems stemming from operating system behavior:

346 Chapter 15

■■ The overhead of the operating system context switching between many Oracle
server processes when the number of server processes is high

■■ Descheduling the Oracle server processes that hold time-critical database
resource (such as latches), leading to longer-than-necessary latch waits

■■ The inability of the operating system to prioritize database tasks according to
business requirements

■■ Operating system nonawareness of the parallel processing capabilities of the
database

It’s important to understand that Resource Manager is not designed to keep CPU
usage within fixed bounds at all times for particular groups of users. Resource Man-
ager enables available CPU resources to be overallocated to a group of users if no other
group requires it.

Users are assigned an initial resource consumer group at logon time, as shown by
the DBA_USERS view. Resource consumer groups are named collections of sessions
that the DBA wants to group together based on resource requirements. Users are
assigned a default group at logon time, although this can be changed dynamically dur-
ing processing. The following SQL shows that DBA accounts are assigned to
SYS_GROUP and regular user accounts are assigned to DEFAULT_CONSUMER_
GROUP:

select username,initial_rsrc_consumer_group from dba_users

where username in ('SCOTT','SYSTEM');

USERNAME INITIAL_RSRC_CONSUMER_GROUP

---------- -----------------------------

SYSTEM SYS_GROUP

SCOTT DEFAULT_CONSUMER_GROUP

Users who are not assigned explicitly to a group are assigned to DEFAULT_
CONSUMER_GROUP. The DBA_RSRC_CONSUMER_GROUPS view lists all resource
consumer groups in the database, including the CPU resource allocation method for
the consumer group, as shown by the following SQL:

select consumer_group,cpu_method from DBA_RSRC_CONSUMER_GROUPS;

CONSUMER_GROUP CPU_METHOD

----------------------- ------------

OTHER_GROUPS ROUND-ROBIN

DEFAULT_CONSUMER_GROUP ROUND-ROBIN

SYS_GROUP ROUND-ROBIN

LOW_GROUP ROUND-ROBIN

A resource plan contains information that specifies the method used to allocate
resources to resource consumer groups that use the plan. The DBA_RSRC_PLAN view
lists all of the resource plans in the database. As installed, Oracle contains a plan

Server Consolidation and Resource Management 347

named SYSTEM_PLAN in both Oracle8i and Oracle9i. Additional resource plans can
be created using the DBMS_RESOURCE_MANAGER package. The V$RSRC_PLAN
view can show the systemwide active resource plans at any time. Keep in mind that, by
default, Resource Manager is disabled. An active plan can be enabled through the
init.ora parameter RESOURCE_MANAGER_PLAN or it can be set using ALTER
SYSTEM when the database is up, as follows:

REM set the active resource plan to SYSTEM_PLAN...

alter system set resource_manager_plan=SYSTEM_PLAN;

REM this disables Resource Manager...

alter system set resource_manager_plan='';

The association between resource consumer groups and resource plans is shown
through the DBA_RSRC_PLAN_DIRECTIVES view:

select plan,group_or_subplan,cpu_p1,cpu_p2,cpu_p3

from dba_rsrc_plan_directives;

PLAN GROUP_OR_SUBPLAN CPU_P1 CPU_P2 CPU_P3

------------ ------------------ -------- -------- --------

SYSTEM_PLAN SYS_GROUP 100 0 0

SYSTEM_PLAN OTHER_GROUPS 0 100 0

SYSTEM_PLAN LOW_GROUP 0 0 100

This SQL shows a subset of the columns in DBA_RSRC_PLAN_DIRECTIVES
related to levels associated with the CPU resource allocation method. This method
enables the administrator to specify how CPU resources are to be allocated among con-
sumer groups or subplans and the priority of allocations. Eight levels of CPU alloca-
tion are available, and three are shown. Levels provide a way to prioritize CPU
allocation across consumer groups. The total at each level cannot exceed 100 percent.
Level 2 gets resources only after level 1 is unable to use all its resources. Level 3 gets
resources only after level 2 is unable to use all its resources.

The values for CPU_P1, CPU_P2, and CPU_P3 for SYSTEM_PLAN in the example
represent the levels that determine the allocation of CPU resources to consumer groups
on a system where the CPU is fully loaded. In this case, users in resource consumer
group SYS_GROUP take 100 percent of the CPU resources, as determined by the value
100 for CPU_P1. As a result, sessions for the SYS and SYSTEM accounts, which reside
in SYS_GROUP, take priority when the system is heavily loaded to ensure that DBA
tasks have priority. Of course, if the CPU usage is not loaded 100 percent, then the
remaining CPU resources fall through to the next level (CPU_P2) where they can be
used by OTHER_GROUPS. Finally, unused CPU is available to LOW_GROUP. This
allocation of CPU resources means that in a fully CPU-loaded system, sessions in
OTHER_GROUPS or LOW_GROUP could wait forever because 100 percent of the
CPU resources is made available to SYS_GROUP.

Usually, the procedures in DBMS_RESOURCE_MANAGER are used by the DBA to
create additional resource consumer groups and resource plans that enable CPU

348 Chapter 15

resources to be split between different groups. This process requires the following
steps:

1. Create a resource plan using the CREATE_PLAN procedure in
DBMS_RESOURCE_MANAGER.

2. Create resource consumer groups using the CREATE_CONSUMER_GROUP
procedure in DBMS_RESOURCE_MANAGER.

3. Create resource plan directives using the CREATE_PLAN_DIRECTIVE
procedure in DBMS_RESOURCE_MANAGER.

4. Grant privileges to allow the use of resource groups using the
GRANT_SWITCH_CONSUMER_GROUP procedure in
DBMS_RESOURCE_MANAGER_PRIVS.

5. Enable the resource plan to be used by the instance using ALTER SYSTEM
SET RESOURCE_MANAGER_PLAN.

For example, the following information from DBA_RSRC_PLAN_DIRECTIVES
indicates that CPU resources should be allocated 80 percent to the OLTP group when
OLTP_PLAN is active and 90 percent to BATCH when BATCH_PLAN is active:

PLAN GROUP_OR_SUBPLAN CPU_P1 CPU_P2 CPU_P3

------------ ------------------ -------- -------- --------

OLTP_PLAN OLTP 80 0 0

OLTP_PLAN BATCH 20 0 0

BATCH_PLAN BATCH 90 0 0

BATCH_PLAN OLTP 10 0 0

The ALTER SYSTEM SET RESOURCE_MANAGER_PLAN command can be used
to enable different resource manager plans at different times of day. This simplistic
approach is somewhat inflexible if the allocation of CPU to OLTP for OLTP_PLAN
needs to be increased. Because percentages at each level can’t exceed 100 percent, it fol-
lows that any increase in CPU for OLTP requires a reduction in the value for BATCH in
OLTP_PLAN.

A multilevel approach, which is similar to that used by SYSTEM_PLAN, enables
resource allocation to be changed at the first level for a single group without requiring
other changes at the same level for other groups. The following example passes at least
20 percent of the available CPU to BATCH (which will use all [100 percent] that
remains) while enabling the overall percentage of CPU used by OLTP to be increased
independently, if required:

PLAN GROUP_OR_SUBPLAN CPU_P1 CPU_P2 CPU_P3

------------ ------------------ -------- -------- --------

OLTP_PLAN OLTP 80 0 0

OLTP_PLAN BATCH 0 100 0

Resource Manager also enables the use of subplans (plans within plans) to provide
more fine-grained control of resource allocation between consumer groups. Subplans

Server Consolidation and Resource Management 349

allow the further subdivision of resources among different users of an application. In
addition to controlling CPU resource allocation, Resource Manager enables a parallel
degree limit to be associated with a consumer group to control the maximum degree of
parallelism for any operation within the group. Oracle9i extends the functionality of
Resource Manager in the following areas:

■■ An active session pool can be created to control the number of concurrent ses-
sions allowed within a consumer group. Above the limit, sessions queue until
existing sessions in the group complete.

■■ Users can be switched automatically between groups based on rules provided
by the DBA.

■■ An UNDO pool can be created to control the undo space used by a consumer
group.

■■ The MAX_EST_EXEC_TIME directive is available to limit the execution time of
a session.

To summarize, Oracle Database Resource Manager provides extensive features for
managing Oracle resource usage within a single instance. The Oracle Enterprise Man-
ager (OEM) provides additional features in Oracle9i to make resource management
easier to use, including a Resource Manager Wizard to automate the creation of
resource plans and consumer groups and enable the setting of resource plans to be
scheduled. The features are available under the Instances node for each database reg-
istered with the OEM repository, as shown in Figure 15.1.

350 Chapter 15

Figure 15.1 Resource Manager features in OEM Oracle9i.

DbCool’s Stress Test (which is covered in Chapter 14) is a tool that can be used to
demonstrate resource management for consumer groups. A simple CPU-intensive
PL/SQL procedure can be run in two sessions at the same time. Provided that the ses-
sions are logged on as two different users and each user is in a different consumer
group, the elapsed time to complete the same task should be split according to the CPU
levels specified in the resource plan directives.

Using SRM

SRM is a software product from Sun Microsystems that enables the control of various
server resources between applications. It’s a component of the Solaris 8 Operating
Environment. The facilities provided by SRM are based on methods that have existed
on mainframes for a long time. SRM aims to provide mainframe levels of resource
management and control without the expense of a fully fledged mainframe server.
SRM is a key enabling technology for facilitating the server consolidation of Oracle
database instances on Sun Solaris.

SRM enables the administrator to control server resources so that multiple users,
groups, and applications can be guaranteed a consistent level of service on a single
server. When CPU resources are in short supply, policies guarantee that the allocation
of resources is based on predefined business requirements. At the same time, unused
CPU capacity can be allocated dynamically to active applications to ensure that
resource utilization is maximized. By dynamically allocating unused CPU capacity to
active users and applications, resource utilization is increased. The use of policies to
control resource usage leads to simpler and easier systems management. The following
lists the resources that SRM can manage:

■■ CPU

■■ Virtual memory per process

■■ Virtual memory for the whole system

■■ The number of processes

■■ The number of logins

■■ Connection time

Based on the list of resources that SRM can manage, the next step is to decide which
of those are relevant to the management of Oracle instances. The goal of SRM in the
Oracle domain is to manage resource allocation across multiple Oracle instances run-
ning on a single server. The final three resources in the list can be controlled directly by
Oracle at the instance level, so there’s no requirement for SRM to manage them.

Sun only recommends the use of SRM to manage CPU allocation across Oracle
instances. However, it’s not uncommon for badly behaved code to exhaust virtual
memory on an Oracle database server. This can easily be achieved by writing a
PL/SQL procedure that accidentally calls itself using infinite recursion. In this case, a
virtual memory per-process limit would ring fence the effects of the fault and prevent
virtual memory on the server as a whole from being exhausted. It’s important to
remember that when virtual memory is in short supply, excessive paging takes place,

Server Consolidation and Resource Management 351

and this usually causes a degradation of performance on the entire system. This is still
better than running out of virtual memory completely. The exhaustion of virtual mem-
ory at the server level causes more serious problems, such as preventing new processes
from spawning and UNIX administration commands from working.

Under SRM, resources are allocated to a UNIX lnode (or process group). By default,
each UNIX user account, including the Oracle account, has an associated lnode. As
SRM resources are allocated to lnodes, it’s clear that each Oracle database instance
needs to be associated with a different lnode, if resources are to be allocated specific to
each instance. At first sight, it appears that each Oracle instance therefore needs to run
under a different UNIX account in order to be associated with a different lnode. This
would be a disaster in terms of manageability because it’s standard practice to run all
Oracle instances on a single server under the same UNIX account, which is typically
named oracle. Fortunately, multiple UNIX accounts are not required under SRM. The
UNIX account and the lnode are actually loosely coupled. This means that two differ-
ent Oracle instances can have file access privileges associated with the UNIX oracle
account and resource allocation associated with different lnodes, such as oracle1 and
oracle2. In this way, multiple Oracle instances can be assigned different CPU alloca-
tions according to their lnode, yet still be owned by the same UNIX account (oracle).
SRM includes an administration tool to link lnodes to UNIX accounts. As a result, each
instance can start under user ID (UID) oracle by using a different linked lnode that is
specific to the instance.

It’s important to understand the behavior of the Oracle listener with respect to
lnodes. Once a process is started within an lnode, all of its children inherit the same
lnode. On a multiple instance Oracle server without SRM, a single listener process is
typically used to service remote client connect requests for all instances. When a con-
nection request is received, the listener spawns an Oracle process under the $ORACLE_
HOME of the instance specified in the connection request. However, when SRM
resource management is required, the spawned process must be spawned under the
lnode associated with the instance. This is required to ensure that all shadow processes
for each instance can be identified by SRM and treated as a group for resource man-
agement purposes.

Therefore, each instance in an SRM configuration must have a separate listener
started under the lnode associated with the instance. This is a considerable manage-
ment overhead compared to a non-SRM configuration. Recall from Chapter 3 that
dynamic listener registration means that from Oracle8i on, it’s possible to run an Ora-
cle network listener without a listener.ora file at all. Dynamic registration relies on the
use of a standard Transmission Control Protocol/Internet Protocol (TCP/IP) port
(1521) for servicing Oracle connection requests. On the other hand, each listener in an
SRM configuration needs to listen on a different TCP/IP port, and each listener
requires an explicit name if each one is required to be stopped and started indepen-
dently of the others. So, the benefits of resource management through SRM add con-
siderable complexity to the startup and shutdown of Oracle instances and network
listeners.

To allocate CPU resources to lnodes, SRM introduces the concept of CPU shares. The
most significant difference between CPU allocation in SRM and Oracle Database
Resource Manager is that the use of shares means that shares do not have to add up to
100 percent. For example, if the Equities instance is allocated 10 CPU shares and the

352 Chapter 15

Foreign Exchange instance is allocated 10 CPU shares, then both are entitled to 50 per-
cent of the resources. If you decide to increase the allocation of shares for Equities to 15,
then Equities now has a 15/(10�15) share of the total CPU. It’s not necessary to mod-
ify the Foreign Exchange allocation in any way. It’s possible to subdivide an lnode into
other lnodes to provide multilevel resource allocation in a similar way to the CPU-level
approach of Resource Manager. Using CPU shares, it’s trivial to add a new Oracle
instance to the list of resources managed by SRM. Virtual memory can be limited at the
lnode level. For individual processes, it can be used to prevent a runaway process from
grabbing all virtual memory on a server. SRM provides command-line tools to manage
applications and lnodes. The most frequently used tools are as follows:

■■ srmuser lnode_name command is used to start the named command from the
same UNIX account (for example, oracle) under a specified lnode. This com-
mand is used to ensure that Oracle instances and network listeners are started
under different lnodes.

■■ limit -p pid returns the lnode ID of the specified process and can be checked to
ensure that processes are started under the right lnode.

■■ lminfo -v lnode_name shows the resource allocation settings (for example, CPU
shares) associated with a specific lnode.

Security in an SRM environment needs to be considered carefully because the capa-
bility to start an application under a different lnode (as required by the oracle account)
requires additional SRM privileges that must be granted explicitly. It’s helpful to con-
sider lnode dependencies as a tree representation to understand what’s possible. For
example, the oracle account and its two lnodes—oracle1 and oracle2 (to manage two
different instances)—can be represented as a tree with the oracle UID as the root and
the oracle1 and oracle2 lnodes as children. This representation is appropriate for a
single-level approach to resource allocation. In its simplest form, SRM security can be
configured to enable a user to start applications under the lnodes of any of its children.
A single-level resource allocation approach fits in well with this security model. If mul-
tilevel lnodes are required, then SRM security needs to be configured to enable a user
to start applications under any lnode in the tree, whether or not it’s related to Oracle
databases. This scenario is open to abuse. As a result, a single-level representation is
recommended for security reasons, and in most cases, it provides acceptable resource
management capabilities between multiple Oracle instances on the same server.

Using IBM zSeries

SRM is designed to bring the benefits of mainframe-style resource management to
nonmainframe (and therefore less expensive) environments. IBM zSeries is a main-
frame computing environment designed to deliver the benefits of a mainframe run-
ning many (perhaps hundreds) virtual instances of popular operating system
environments, such as Linux, on a single mainframe. This book has already recom-
mended that you consider the price performance benefits of Linux on Intel as a suitable
environment for running Oracle in an organization. In this context, it is interesting to
report that at the end of January 2002, Oracle CEO Larry Ellison predicted the

Server Consolidation and Resource Management 353

“inevitable” demise of large server systems and a move to clustered Real Application
Cluster (RAC) environments on Intel within Oracle Corp.

Although the zSeries environment is fairly new, the ability to run many virtual
Linux kernels on the same mainframe, with each potentially running a different Oracle
instance, leads to some exciting possibilities. The zSeries mainframe can run Linux in
two different ways. The first involves running standard 32-bit versions of Linux, such
as those from Red Hat or SuSE on a zSeries in 32-bit emulation mode. Oracle is certi-
fied on those versions of Linux. The zSeries hardware can be logically partitioned into
a maximum of 15 separate partitions. Each logical partition (LPAR) can run Linux or
one of the other operating systems that IBM provides. Resources can be controlled at
the LPAR level.

IBM also produces a 64-bit version of Linux based on a Linux kernel modified
specifically for zSeries. Using the z/VM Guest Support option, Linux can run as a vir-
tual machine using z/VM. The advantage of z/VM is that it provides the virtualization
of CPU processors, I/O subsystems, and memory. While running in z/VM Guest Sup-
port mode, potentially hundreds of Linux virtual machines can run concurrently on
the same server, each with an Oracle instance. A single server could potentially support
most (possibly all) production and development Oracle instances on a server, with
each ring fenced in its own Linux virtual machine.

As a modern mainframe operating system, the resource management capabilities of
z/VM provide very sophisticated CPU, I/O, and memory usage control. In addition,
the support for multiple Oracle instances, each in its own Linux virtual machine, leads
to the possibility of Real Application Clusters (RAC) between the virtual machines.
Although certification of Oracle on zSeries Linux needs to be confirmed, the potential
lowered cost of ownership and resource sharing of Oracle on zSeries along with the
mainframe levels of reliability definitely merit further investigation. This configura-
tion looks to have genuine possibilities in the enterprise after Oracle announced its
commitment to delivering a production release in mid 2002.

It’s worth restating that mainframes provide potential reductions in total cost of
ownership (TCO) due to lower floor space and power consumption requirements. In
the Linux-on-Intel world, new architectures such as Egenera’s BladeFrame (www
.egenera.com) set out to provide similar benefits as mainframes, based on widely used
hardware such as Intel CPUs. These blade architectures provide significant potential
for Oracle server consolidation.

Summary

The availability of a resource manager is a critical success factor for server consolida-
tion, leading to the ability to run many Oracle instances on the same server. Without
the presence of a resource manager, it is possible that a single badly behaved applica-
tion can affect the performance and availability of all the applications on the server. For
example, a single process can theoretically use all of the available virtual memory,
effectively shutting down the entire server and applications on it.

Oracle Resource Manager is not designed to manage multiple instances of Oracle on
a single server. It’s designed to ensure that CPU resources can be allocated fairly

354 Chapter 15

TE
AM
FL
Y

Team-Fly®

between groups of users on a single instance when CPU usage runs at 100 percent. The
model used to implement Resource Manager based on resource consumer groups
leads naturally to a situation where consumer groups could be defined in a directory
outside of a specific database. Should Oracle choose to take this approach in the future,
it would appear to be a small leap to implement resource management across multiple
instances.

SRM has the capability to share CPU and virtual memory resources on a single Sun
server across multiple Oracle instances on the server. This capability comes with an
increased cost and complexity of Oracle instance and network listener management on
the server, due to the need to run each Oracle instance and listener in its own process
group (lnode).

IBM zSeries is a mainframe solution that offers potential price-performance and
high-availability features by running each Oracle database on the mainframe in its
own virtual Linux environment. The zSeries includes the very sophisticated resource
management capabilities typically associated with mainframes, leading to the poten-
tial for the full use of all CPU, memory, and I/O resources on the server between vir-
tual environments without compromising availability.

Server Consolidation and Resource Management 355

357

Choosing the right performance management tools is a critical part of meeting perfor-
mance and availability requirements. One thing that enterprisewide Oracle perfor-
mance management tools have in common is that they are expensive, so the choice of
tools is one that you want to get right the first time. You should keep in mind that an
ever-increasing range of freeware (including DbCool) can provide some of the func-
tionality that you need. The term management emphasizes that performance is some-
thing you should manage, rather than something that manages you.

It’s important to separate the requirements from the evaluation stage because data-
base administrators (DBAs) tend to have a fixed view of what’s in scope when dis-
cussing Oracle performance management tools. As a result, key requirements might be
overlooked at the outset because they are considered technically impossible to meet.
The premise of this chapter is that you should focus on the requirements of an ideal
Oracle performance management tool first, and then perform an evaluation of real-
world tools against these requirements in a separate exercise. The flow of the topics is
designed to take you from the requirements’ definition stage to an evaluation of can-
didate tools, and on to making comparisons. The flow of topics for this chapter is pre-
sented in the following list:

■■ Roles and responsibilities for those involved in performance management

■■ Setting performance goals

■■ Standardization of approach

■■ Tool requirements

■■ Using Oracle Expert

Selecting and Using
Performance Management Tools

C H A P T E R

16

■■ Using Precise/Indepth

■■ A comparison of Oracle Expert with Precise/Indepth

NOTE Before purchasing Oracle performance management software, you
should also consider the recommendations in Chapter 7. Although those
recommendations are intended for the prospective purchaser of Oracle-based
end-user business applications, the requirements apply equally to Oracle
performance management software purchased for internal use within the
DBA team.

Performance Management Roles

During the design stage, the business analyst, DBA, and developer all need to be
involved in performance management. The business analyst should set down the per-
formance requirement goals of critical parts of the system, and the DBA and developer
should work together to ensure that the appropriate Oracle features and technologies
are used to meet these goals. Steps should also be taken to ensure that appropriate
instrumentation is included in the application to measure performance.

Hardware is often purchased at the early stages of a project, without requiring much
input from the DBA or developer. Often, the limiting factor is the availability of funds
for the project. This isn’t such bad news in reality because Oracle application perfor-
mance is chiefly determined by application design and, in many cases, poor database
performance results from poor performance of a few Structured Query Language
(SQL) statements. The DBA and developer can save the effort needed for a time-
consuming, capacity-planning exercise and instead work together to design a system
that meets the performance goals within the known constraints of the hardware.

In an ideal world, the server platform would be chosen based on the capacity
requirements of a model of the production system. In reality, it’s difficult to predict the
likely performance of the system when information on load requirements is incom-
plete, which it usually is. Even if information on database size, projected growth, and
the user base is available, it’s extremely difficult to model the performance of a system
up front with any certainty, due to the complexity of the interacting parts, and it can
take a lot of effort to produce results that turn out to have limited value.

During development, the DBA and developer both have a responsibility for manag-
ing performance. The developer needs to be able to view the cost and understand the
resource consumption of each and every SQL statement written during development
so that they can be minimized. Suitable tools are required to make it as easy as possi-
ble for the developer to do this. The DBA should be monitoring performance on a reg-
ular basis through performance-related information collection and cross-checking
with the developers on any performance issues.

During production, the responsibility for performance management lies with the
DBA. Effort spent preventing performance issues early in the lifecycle pays off because
business applications stand or fail by their production performance. However, a pro-
duction system typically has different load profiles and usage patterns that can’t be

358 Chapter 16

simulated earlier in the lifecycle, so you can expect performance issues to occur. Dur-
ing production, the DBA needs to identify the root cause of each and every perfor-
mance problem reported by business users as soon as possible, and work with the
developers to provide solutions. In addition to this reactive performance management,
the DBA needs to identify long-term trends in performance to proactively address
them before they impact business users. Reactive performance management should
not be taken as a sign that the performance management process has failed: It’s a fact
of life.

Who Is Responsible for Performance
Management?
Let’s consider who is responsible for Oracle performance management. In some orga-
nizations, performance is not considered until production rollout. After production
rollout, performance usually becomes an issue and the DBAs become involved in fire-
fighting performance issues. The end result is overworked DBAs and dissatisfied
users. To address this situation, it’s clear that performance management must be built
into the development lifecycle and not simply left until production. At this point, it’s
traditional to produce some graphs to express the cost and benefit of tuning during the
application lifecycle and I’ll do the same. Figure 16.1 shows the cost and benefits of
performance tuning during the application lifecycle.

What’s important is the general form of the two curves, rather than the lack of any
units on the Y axes. The information presented by such graphs is best regarded in a
qualitative sense only. You can summarize the information in the graphs by saying that
performance management should begin as early as possible during the application
lifecycle, and that the earlier you do it, the more likely you are to deliver an application
that meets performance requirements. DBAs and developers have the major responsi-
bility for ensuring that requirements are met.

Selecting and Using Performance Management Tools 359

Time

Benefit Cost

Design Development Production

Figure 16.1 Cost and benefits of performance tuning.

Setting Performance Goals

Any performance management that you carry out should be done with a clear under-
standing of the performance you are trying to achieve. That means the application per-
formance requirements should be set down and agreed upon with the business
analysts at the time of the project requirements definition, or close to it.

The terminology used to specify performance goals needs be in a form that every-
one can understand. Low-level metrics such as database cache hit ratios are meaning-
less in this context because the relationship between such low-level metrics and the
users’ experience of performance is not always closely related. In any case, business
users have no interest in such jargon. Goals are usually best expressed in terms of the
response times of application screens for interactive applications, or elapsed times for
batch completion. Developers can build performance instrumentation into their appli-
cations without much extra coding effort if the requirement is raised early enough in
the development cycle. If there are no performance goals, you never know whether the
application is meeting them. Without clear goals, you’re likely to be notified of perfor-
mance problems by users when performance has become business critical rather than
just irritatingly slow.

Standardization of Approach

Every DBA and developer recognizes the importance of performance management.
However, in the real world, the quality of Oracle performance management is often
determined by the skill level of an individual DBA or developer on a project. The lack
of a consistent approach leads to failures when determining the root cause of perfor-
mance problems. Often, the delay in addressing Oracle performance problems is
caused by the failure to understand the true cause, rather than difficulties in imple-
menting a solution. The key to overcoming this problem is the standardized use of
tools and techniques that work.

By standardizing, all DBAs have a common understanding of what’s involved in
performance management and can apply those techniques to all databases in the same
way. The result is that the performance profile of a production application is no longer
determined by the luck of the draw. If you run databases as part of a global organiza-
tion, standardization is essential to provide a consistently high level of service across
all your sites.

Tool Requirements

This section lists the requirements for a performance management tool, against which
candidate tools can be evaluated. The requirements are grouped into mandatory
requirements and optional requirements.

360 Chapter 16

Mandatory Requirements
These mandatory requirements are the bottom line for identifying the real cause of per-
formance problems in your Oracle database.

Monitor Performance in Near-Real Time

Production problems often need a fine-grained view of performance over a short time
period to identify the root cause. This requires the sampling of performance metrics on
a subsecond time interval. Some performance methodologies take a view that because
it’s not considered practical or even possible to do such high sampling rates, it’s not a
requirement. That seems to be the wrong way around. The Oracle performance infor-
mation is changing on a subsecond basis, and if you want to truly understand perfor-
mance issues, you need a tool that can sample on a subsecond interval. Whether it’s
possible or not is another question. As a requirement, it’s valid.

Monitor Performance with Low Impact

It’s not possible to monitor a database without impacting performance. Traditional
Oracle performance monitoring involves running SQL queries against the various Ora-
cle performance counters in the X$ or V$ tables. This traditional approach is both a
strength and a weakness. It’s a strength because the openness of Oracle’s performance
counters means that information can be collected via SQL queries. As a result, many
tools on the market can carry out this kind of monitoring, some commercial and some
free. DbCool is one such free tool. (Also, it’s quite straightforward to develop your
own.) The weakness of these tools stems from the performance hit involved in running
the collection SQL statements at very small time intervals. These statements have all
the parsing and execution overhead of regular SQL statements. In a very busy system,
these statements are subject to waits like any regular statement and can cause waits for
business-related SQL. Storage of the low-level sampled information in Oracle database
tables is likely to be incompatible with a requirement for high sampling rates and low
impact: If the SQL queries themselves have a significant impact, inserts are likely to
have an even higher impact.

To summarize, we want to monitor performance at subsecond intervals and with a
sufficiently low impact that it doesn’t cause a noticeable performance degradation on
the whole database. Maybe this sounds like the Holy Grail of Oracle performance, but
it’s still a valid requirement.

Correlate Oracle and Operating System
(OS) Statistics

According to Chapter 9, Oracle provides many internal counters that provide perfor-
mance information through wait events and statistics. One of the key statistics is “CPU
used by this session.” Because Oracle only updates this statistic at the end of a SQL

Selecting and Using Performance Management Tools 361

statement, a long-running statement (such as CREATE INDEX on a large table) might
appear not to be using the central processing unit (CPU). The CPU usage is then
reported by Oracle as a huge CPU spike when the statement completes. As a result,
using Oracle’s statistics to measure CPU use over time can be misleading. To address
this, CPU can be measured accurately in near-real time from the UNIX process statis-
tics for the Oracle session. This requires the performance management tool to collect
and correlate both Oracle and OS statistics for accurate results.

Identify Top SQL

This appears to be a very obvious requirement. When you have an Oracle performance
problem, you know that it’s caused either by a single SQL statement with excessive
resource requirements, or possibly many SQL statements running at the same time and
contending for resources—causing other user sessions to wait for service. By my defi-
nition, the top SQL is the application SQL that spends the most time executing in the
Oracle database management system (DBMS).

At this point, you might be expecting a discussion of buffer cache hit ratios, latch
miss rates, data and rollback segment input/output (I/O) rates, and other low-level
Oracle performance metrics. If so, you’ll be disappointed. It’s not very straightforward
to find the top SQL using traditional Oracle performance-monitoring techniques. As a
result, there’s an understandable obsession with the collection of I/O statistics on
tablespaces, I/O statistics on datafiles, and measurements of various ratios and rates.
Let’s take the buffer cache hit ratio as an example: Some experts say that the buffer
cache hit ratio (a measure of the percentage of data block reads satisfied from the Ora-
cle System Global Area [SGA] buffer cache in memory rather than physical disk) must
be greater than 95 percent; otherwise, you have a de facto performance problem. Other
experts say that a hit ratio as high as 99 percent might actually be a bad thing, and that
a ratio in the 60s is perfectly acceptable. I haven’t found such rules to be helpful in solv-
ing performance problems. All these numbers do is direct you toward your top SQL. It
would be better to end the discussion and instead identify the top SQL directly and
reduce its resource usage. That’s a nice, simple, easy-to-understand requirement.

It’s important to recognize that some performance problems are not caused by con-
tention for OS resources, but by application design. The classic scenario is user gone to
lunch. In this case, a user locks a row and updates it, and then goes to lunch. All users
who need to update the same row have to wait. If they’re lucky, the application is
designed so that they can cancel the wait. If not, the end user experiences increased
response times.

Traditional Oracle performance metrics, such as cache hit ratios or I/O rates, give no
insight into such problems because the waiting session is actually idle and consuming
little I/O, CPU, or memory. Based on traditional methods, the SQL experiencing the
lock doesn’t show up in any list of top SQL. However, an approach based on wait times
clearly shows the SQL waiting for the lock. If you can see that a SQL statement spent a
long time executing in Oracle, and that it waited on a row lock, you can probably work
out what caused the lock, and how to fix it.

It’s important to have the ability to display top SQL over time intervals of various
sizes, say, from 5 minutes up to an hour, and to display the database sessions, pro-

362 Chapter 16

grams, and OS accounts that ran the SQL. After you have identified the SQL, you need
to understand its significance to the application. Knowing the program that ran it, and
the user, is a fast track for getting that information without having to consult the devel-
oper or business analyst.

Collect Performance Information
All the Time

Any tool that collects performance information needs to be able to collect it all the time,
24�7 if necessary, without requiring human intervention or management, apart from
the initial startup. If the database goes down for any reason, the collection should
restart automatically as soon as the database is up. You don’t want to find that you
have no performance information available for a time window when users were expe-
riencing performance problems. Any information not collected at the time is lost for-
ever. By collecting all the time, with a high sampling rate, you can check for
performance problems that occurred at any hour of the day or night on your 24�7
global application. You don’t need to be there at the time to find out what caused the
performance problem. You don’t need to wake up at 3:00 A.M. to manually enable the
bespoke monitoring you’ve written specially to analyze that batch job that has started
to overrun its window.

Optional Requirements
The facilities in this section are nice to have. Some of them might actually belong in the
mandatory section, but I’ve deliberately kept that section as small as possible to give
some focus to the requirements.

Provide Comparison with Baselines

Performance can degrade in a gradual and imperceptible way over time. Performance
can also degrade in a sudden stepwise fashion. The ability to store performance base-
lines enables you to answer queries like “Show me which SQL has changed in execu-
tion time most significantly between this month and last month.”

Provide Oracle Statistics for
SQL Statements

The Oracle statistics referred to are those held for individual user sessions in the
V$SESSTAT table. This requirement to provide statistics is subtly different from the
requirement to show top SQL. During the development stage, developers need to
check the cost of their SQL as soon as they execute it, so they can minimize resource
usage. This checking needs to be carried out systematically for all SQL whether or not
it eventually shows up in the top SQL list in the production system. The availability of
statistics can provide additional insight into the performance of an SQL statement in
the top SQL list in production.

Selecting and Using Performance Management Tools 363

Show Oracle Execution Time
versus Idle Time

It’s not unusual for a perceived database problem to actually have nothing to do with
database performance. An example would be a middleware server that spent some of
its time processing data feeds from the network, and some of its time storing the data
in an Oracle database. In this case, the database could be eliminated as the source of the
performance problem if it can be shown that the time spent executing code in the data-
base is actually a small percentage of the elapsed time in a given interval. If you start
with an assumption that an application performance problem is database related, and
it’s actually not, you’re heading for a lot of wasted effort.

Aggregate Data Permanently into an SQL Database

Although frequent sampling of performance metrics (many times a second) is required
for accurate identification of performance problems, it’s not practical to store the
results directly in a SQL database because attempts to do this affect the performance of
the database being monitored.

It can be useful to aggregate the frequently sampled data into longer time periods
for trend analysis. This also allows the large amounts of disk space required to hold the
frequently sampled data to be reused in a circular fashion. In this case, a SQL database
is the best solution for maintaining a warehouse of all performance statistics. Using
this approach, for example, hourly statistics can be rolled up into days, days into
weeks, and weeks into months. As a result, the most detailed information is kept for
the most recent time periods.

Provide Open Access to Performance Data

Access of raw performance data through standard interfaces such as Open Database
Connectivity (ODBC) and Java Database Connectivity (JDBC) enables the presentation
of data through reporting tools of the user’s choice. This is especially important if the
tool’s built-in presentation capabilities are weak. The ability to leverage this data
requires that the tool vendor publish information on the database entity model used to
store performance metrics.

Provide a Query Rewrite Facility

In database utopia, a performance management tool would not only identify the top
SQL, but rewrite it in a semantically identical form to produce the same query result set
at a much lower resource cost.

Provide Database Growth Trend Analysis

In some cases, performance problems can result from unanticipated growth of the
database. The collection of space metrics for the database at the tablespace and object
level can be used to cross-check performance trends against database size.

364 Chapter 16

TE
AM
FL
Y

Team-Fly®

Provide Schema Change Tracking

Schema changes without a full change impact analysis can result in unexpected per-
formance degradation. This applies especially to the inclusion or removal of new
indexes. If schema changes are tracked by the performance management tool, it’s pos-
sible to relate schema changes to performance degradation—enabling such changes to
be identified quickly and backed out, restoring performance.

Perform an Impact Analysis of Index Changes

Indexes can have a severely detrimental impact on insert and update performance.
Any modification or dropping of an index needs to come with a guarantee that it won’t
have side effects that impact the performance of existing queries.

Present Results in Charts Using
Popular Formats

The tool should be able to present information in the form of charts using popular for-
mats such as GIF and JPEG, and for use in reports and publications on the Web. The
ability to report and present the results of performance management information to all
levels of the business is essential for the DBA group, mainly for the purpose of increas-
ing visibility of the proactive nature of performance management and the resulting
benefits to the users.

Demonstrate Alliance with Database Vendor

The tool vendor must have a technology alliance with the database vendor and pro-
vide a roadmap for future releases of its own tools and synchronization with database
vendor releases. This requirement is designed to avoid a situation where Oracle pro-
vides a new release and you can’t roll it out because your performance management
tool won’t be available for several more months on your chosen platform.

Demonstrate a Clear Upgrade/Migration Path

Captured information must either be compatible with future releases of the product, or
a migration tool for collected data must be provided. The situation to be avoided is the
one where existing performance data needs to be thrown away due to incompatibilities
with the new version of the tool.

Summary of Requirements for a
Performance Management Tool
This section has set out requirements for choosing an Oracle performance management
tool and discussed the roles and responsibilities of DBAs and developers in the perfor-
mance management process. A performance management tool should at least analyze

Selecting and Using Performance Management Tools 365

Oracle performance information over both very short and long time periods, with low
impact, and present the top SQL. The importance of setting performance goals for
applications in simple terms can’t be overemphasized. Without these goals, it’s hard to
know where to start performance tuning and when to stop.

The following sections in this chapter provide an analysis of two different tools
(Oracle Expert and Precise/Indepth from Precise Software Solutions) against some of
the criteria defined earlier. Oracle Expert is part of the separately licensed Tuning Pack
component of Oracle Enterprise Manager (OEM) and is a popular choice for Oracle
performance management in the DBA community. The version covered in this chapter
is the one bundled with Oracle9i. Precise/Indepth is the Oracle component of an end-
to-end performance management framework from Precise Software Solutions and con-
tains some unique features that make for a better match with the requirements.

Using Oracle Expert

Oracle Expert is an Oracle-supplied graphical user interface (GUI) tool that facilitates
the Oracle Expert tuning methodology. The goal of the tuning methodology is to
present the DBA with a list of suggestions for improving instance performance, based
on data collected during a tuning session and analyzed afterward. The scope of poten-
tial changes is limited to instance parameters, indexes, and database structures. Within
that scope, the DBA can selectively narrow the scope of the data collection. For exam-
ple, data can be collected for particular schema objects or for the most poorly perform-
ing SQL statements. When collection and analysis is complete, Oracle Expert generates
tuning recommendations and reports that identify the rationale behind the sugges-
tions. The tuning recommendations take the form of scripts that can be executed to
implement the suggestions. The basic flow of processing for an Oracle Expert tuning
session proceeds through the following stages:

■■ Scope

■■ Collection

■■ Review

■■ Recommendations

■■ Scripts

Setting the Scope
To begin a tuning session, the DBA first needs to provide some information on the type
of application to be analyzed, and the scope of the tuning session. Figure 16.2 shows
the information that the DBA needs to provide after creating a new tuning session and
before starting the analysis.

Oracle Expert uses the DBA-specified tuning session characteristics to help drive the
post-collection analysis of the data. For example, the database application type deter-
mines the post-analysis recommendation of appropriate init.ora settings. Some of the
information requested might seem unusual. For example, you might expect a perfor-

366 Chapter 16

mance analysis tool to identify the database application type by the workload it finds
on a running database during information collection. Instead, Oracle Expert requires
that you provide information such as the application type and peak logical write rate
yourself, in advance.

Given that you might choose an inappropriate value, and this might affect Oracle
Expert’s recommendations, you need to do some work up front to ensure that your
choice is correct. Even then, it’s still difficult to know for sure that you provided accu-
rate information. If your database has a mixed workload, such as OLTP-type transac-
tions during the day and batch runs at night, you need to perform multiple tuning
sessions, each with a different scope to identify the type of workload at the time the
collection was performed. Oracle Expert also requires you to specify whether Oracle
Forms Applications are used against the database. This information could be identified
automatically for existing database sessions using information in the PROGRAM col-
umn from V$SESSION as shown by the following SQL, which lists all current database
sessions along with some other useful information (such as the server process ID of the
session):

SELECT /*+ RULE */ s.username,s.osuser,s.sid||','||s.serial# o_sid,

to_char(logon_time,'DD-MON-YY HH24:MI:SS') logon,

s.terminal,s.machine,s.process client_pid,p.spid server_pid,

s.program client_prog,p.program server_prog,

s.sql_address||','||s.sql_hash_value o_sql_address

from v$session s, v$process p, audit_actions a

where s.command = a.action and s.paddr = p.addr (+)

order by s.username ,s.sid;

Selecting and Using Performance Management Tools 367

Figure 16.2 Oracle Expert tuning session scope definition.

Figure 16.3 shows the workload collection options that the DBA can specify before
starting collection.

The table statistics collection option needs to be considered carefully. By default,
Oracle Expert bases its recommendations on existing database statistics collected from
the most recent ANALYZE command. These need to be correct; otherwise, the recom-
mendations might be invalid. Additionally, options to let Oracle Expert run ANALYZE
to regenerate statistics before collection, or to gather statistics based on existing data,
need to be used with care because running these options on a production system can
increase business-user response times. If you delete statistics on any table to modify
the query execution plan, it presents the problem of how to make the correct statistics
available for that table when Oracle Expert requires it. The number of worst perform-
ing SQL statements to analyze can be modified from the default of 20 at this stage. The
techniques used by Oracle Expert to identify the worst-performing SQL statements are
similar to those presented in Chapter 9.

368 Chapter 16

Figure 16.3 Workload collection options.

Collection
Before starting collection, the DBA needs to provide the following system parameters,
as Oracle Expert uses this information when making its recommendations:

■■ Total physical memory (RAM)

■■ Total RAM available for instance (%)

■■ Average memory utilization (%)

■■ Maximum memory utilization (%)

■■ CPU use over time (%)

■■ Maximum CPU utilization (%)

■■ OS page size (bytes)

It needs to be emphasized that for Oracle Expert to generate appropriate results,
these numbers must be accurate. Information on memory and CPU utilization needs to
be collected via an external tool. You might find it surprising that the DBA is required
to provide memory size information when that information is available for the data-
base instance via the V$SGA view and for the database server via an OS-specific rou-
tine. On Sun Solaris 2.6, the memory page size and total server RAM are returned by
the following OS-dependent commands:

$ /usr/bin/pagesize

$ prtconf|grep Memory

Recommendations
After collection is completed, recommendations can be generated and viewed under
the Recommendations tab. It’s important that you are aware of the disclaimer on the
recommendations:

Both collected and user-provided data significantly impact index tuning

analysis. If the data is incomplete or inaccurate, Oracle Expert may

recommend changes that reduce rather than increase database performance.

Two Oracle Expert recommendations, based on Oracle Expert analysis, for the
init.ora file of a production system are provided in the following code, along with
some comments on likely improvements to be gained from the suggestions:

Oracle Expert recommends changing the parallel_automatic_tuning instance

parameter from :

FALSE --> TRUE

Significant usability improvements were made in the Oracle8i parallel

execution system, formerly know as Parallel Query. It can now perform

fully automatic self tuning and management with the instance parameter

PARALLEL_AUTOMATIC_TUNING set to TRUE. The tremendous benefits of

Selecting and Using Performance Management Tools 369

parallel execution can be realized without a significant investment of

time by a DBA, or knowledge on the part of the user. Implementing this

recommendation will enable parallel execution on this database instance.

This suggestion looks promising, but it should be kept in mind that the suggestion
is based on CPU average utilization figures that you need to provide. If you don’t pro-
vide any, the value defaults to 0, which is likely to result in recommendations for oper-
ations that utilize more CPU, such as parallel operations. This recommendation
doesn’t need a running database. It can be provided from a static analysis of init.ora
parameters. It would be helpful if Oracle Expert could provide recommendations sep-
arately for settings that don’t actually require any data collection on a running data-
base. That would save time. The “tremendous benefits of parallel execution” need to
be considered in the light of the discussion of parallel operations in Chapter 9. This
might be overstating the case, although the ability to provide parallelism without sig-
nificant time spent by the DBA or user is important to make the best use of available
CPU and disk resources all the time. The second recommendation concerns the
DB_BLOCK_LRU_LATCHES parameter:

Oracle Expert recommends increasing the db_block_lru_latches instance

parameter from :

2 latches --> 4 latches

The current number of buffer cache LRU latches is below the minimum

recommended value for the database instance. The recommended value is

based on the number of CPUs in the host system. When there are fewer

LRU latches than CPUs, a condition may arise where processes are waiting

for LRU latches held by other processes.

Implementing this recommendation will increase the number of

database buffer cache LRU latches on this instance. This will allow a

higher degree of transaction concurrency among processes/CPUs.

Once again, this recommendation is based on a static analysis of init.ora parameters
that don’t require a running database. In this case, the database instance is version Ora-
cle8i. It’s certainly worth investigating the change. Although there is no quantitative
measure of the expected benefits, you wouldn’t expect changing the setting to be
harmful. If you’re wondering why Oracle doesn’t choose latches automatically, based
on the available CPUs on the server, you’ll be pleased to know that Oracle9i addresses
this, and that the parameter is obsolete. Based on the existing SQL analyzed during
workload data collection, Oracle Expert can recommend the addition of extra indexes
or the removal of unused indexes, both for performance reasons. Here’s an example:

Table name: APP.FXOTC

Index type: B*-tree

Status: Existing, Unused

Cardinality: Table: 44565 Index: 368

Workload: oltp

Columns

370 Chapter 16

BOOK

DTYPE

DSTATE

DDATE

Oracle Expert could find no evidence of necessity, and therefore,

recommended removal. Either the collected workload is incomplete or the

represented applications no longer execute SQL that would benefit from

this index.

The crucial point to note in this recommendation (once again on an Oracle8i
instance) is that the index is determined to be unused by any SQL discovered in the col-
lected workload. In general, before you remove an index, you need to be absolutely
sure it’s never used at any time, and that means collecting information on every state-
ment executed during a complete business cycle. One way to achieve that more
quickly is to make sure all the SQL in the shared SQL area is chosen for analysis by Ora-
cle Expert, rather than the limited number actually chosen earlier (as shown in Figure
16.3). Chapter 12 shows the pre-Oracle9i and Oracle9i methods of identifying which
indexes are being used. Oracle Expert also recommends a new index where informa-
tion on collected SQL indicates that a statement could benefit from one, as shown in the
following example:

Due to its calculated high relative importance, this change

recommendation is considered a high impact adjustment. High impact

refers to the relative performance enhancement that may be achieved by

implementing the suggested change.

Table name: APP.SETTLEMENTS

Index type: B*-tree

Status: New

Cardinality: Table: 437391 Index: 526

Workload: oltp

Recommended columns

ENTITY_ID

There was at least one reference by an equality operator.

In this case, the recommended change is noted as having a high impact, where high
impact is defined in the recommendation itself. Additional indexes can cause a signif-
icant increase in insert, update, and delete elapsed times, as shown in Chapter 12, and
the cost/benefit of such changes needs to be factored into any final decision. Oracle
Expert does this analysis automatically, as shown in its recommendations:

The following requests are used to calculate the threshold by which

index solutions are formed. Because table update performance is

directly influenced by the index maintenance, Oracle Expert limits the

number of indexes by comparing the relative access method gain to the

cost of updating index keys.

Selecting and Using Performance Management Tools 371

As usual, it’s most important that the collected workload reflects all the relevant
statements that could be impacted by the index, both positively and negatively. Col-
lections can be added to over time by storing collection results persistently in the OEM
Repository, using the SQL History option in the Workload Collect Options dialog box
(displayed in Figure 16.3). A different approach, which gives a more complete col-
lection than the one created in this example, would be to collect information for all
source statements at several different times during the business lifecycle of the data-
base, and use “Merge source workload with existing SQL history” to build up a com-
plete picture.

Oracle Expert can optionally produce SQL scripts to implement changes. In addi-
tion, Oracle Expert Analysis reports can be used to track changes in resource usage for
a database over time. By comparing a current Oracle Expert Analysis report to analy-
sis reports produced during earlier tuning sessions, changes in resource usage can be
identified, and then trend analysis can be used to determine when shortages might
cause performance problems in the future.

Using Precise/Indepth

Before considering how Precise/Indepth works, a brief review of Chapter 9 on the fun-
damentals of SQL tuning is useful. At any given point in time, an Oracle session is
either idle, executing on CPU, or waiting for an event to complete. The following
statement shows sessions that are active at any time, including the ADDRESS and
HASH value of the statement that identifies the full SQL text of the statement in
V$SQL_TEXT_WITH_NEWLINES:

select * from v$session where status='ACTIVE';

Consider an Oracle session, for example, running SQL*Plus that is waiting for a user
to submit some SQL. A query on V$SESSION_WAIT shows that the session is idle,
waiting on the following event:

SQL*Net message from client

After the request is received on the network, the SQL statement needs to be checked
for existence in the shared SQL area. The session needs to obtain the library cache latch
for a short time to perform this action, causing a wait for an event:

latch free

Next, the statement is parsed (only if it’s not found in the shared SQL area), and then
executed. Results are returned to the client during execution or after execution is com-
plete, depending on the type of SQL statement. Statement processing requires CPU.
Oracle maintains CPU used by the session in the V$SESSTAT table. If, during execu-
tion, the SQL needs to wait for I/O to complete or to read blocks from the buffer cache,
the following waits take place (with some example event parameters shown):

372 Chapter 16

db file scattered read file#=5 block#=3749761 blocks=8

db file sequential read file#=5 block#=3735560 blocks=1

buffer busy waits file#=5 block#=3729185 id=130

Recall from Chapter 9 that event waits include parameters that in some cases iden-
tify the object whose blocks were waited for. In these examples, FILE# and BLOCK#
information identifies the object required by the SQL during execution. To summarize,
Oracle provides microscopic detail on the state of each session, whether it’s idle or
doing work, along with the resources and events for any executing SQL at any point in
time. This information can provide details down to the individual datafile that is busy.
Additional information such as the Oracle account, client program, and OS account is
also available from V$SESSION.

If the relevant V$ tables could be sampled at a high enough rate, a complete profile
of every executing statement could be produced to provide the time that each and
every statement spent executing within the DBMS, what resources it waited for, how
long it waited, the user and program that executed the statement, and the CPU used.
This approach is exactly what’s required to provide a top-down view of overall Oracle
instance performance, based on the most expensive SQL. It’s important to remember
that even when the bottom-up approach of Chapter 9 has been followed during devel-
opment to ensure that each and every SQL statement performs as well as possible, per-
formance issues still occur in production systems due to contention between many
Oracle sessions for finite CPU, I/O, memory, and network resources. Contention man-
ifests itself within Oracle and the OS through queuing and waiting, which increases
elapsed times for the completion of SQL execution.

The major drawback to monitoring the V$ tables at very high sample rates is the
database overhead that results. One of the most important requirements for an Oracle
performance management tool is for any monitoring to be nonintrusive. Queries on
the V$ tables are treated by Oracle just like any other and can cause a noticeable
increase in response times for the whole system if executed too frequently.

Precise/Indepth takes a different approach to this problem by reading V$ informa-
tion directly from the SGA rather than via a SQL interface. Keep in mind that the V$
tables are actually memory structures that exist in the SGA only while an instance is
running. They actually require very little space (probably a few tens of kilobytes at the
most), so any tool that can scan their contents directly from memory without using
SQL can also do it at a high frequency (for example, 10 times per second) and just as
important, do it with very low impact on the database or system as a whole. This is
what Precise/Indepth does. In addition, the Precise/Indepth architecture includes an
agent that runs with root privileges on UNIX so that OS performance metrics can be
collated with Oracle performance metrics to provide a true picture of SQL perfor-
mance, with a fine level of time granularity. To avoid the overhead of inserting rows
into tables to store the sampled information, Precise/Indepth first stores the informa-
tion in its own shared memory segments, and then writes it to its own proprietary file
format. As you can imagine, large volumes of data can be generated quite quickly. To
address this, Precise/Indepth includes a Performance Warehouse component. The Per-
formance Warehouse enables detailed performance information to be rolled up over
time in an automated manner, such that more detailed information is available for

Selecting and Using Performance Management Tools 373

more recently executed SQL, while keeping all the most important data for the long
term to support performance trend analysis.

Time Intervals
Precise/Indepth includes three configurable time intervals. The sample interval deter-
mines how often Oracle and OS statistics are sampled by the Precise collector agent.
Five or ten times per second usually provides accurate results with low impact. Within
the Precise/Indepth GUI, sampled performance information is rolled up into an inter-
val that is referred to as a time slice. This is the lowest level of granularity over which
performance information can be presented. A value of 5 minutes is usually adequate. If
you know in advance that a performance problem occurred at a certain time, you can
view exactly what was the most expensive SQL (in terms of time spent executing in the
DBMS) down to a 5-minute interval. Finally, for a top-down analysis of performance,
information can be rolled up and presented over an interval that is referred to as a his-
torical time unit. A value of 1 hour gives good results. The historical time unit is useful
if you want to perform a proactive tuning study. In this case, you view historical time
units first and inspect performance over hourly time intervals. The most expensive
hourly intervals stand out clearly. When a relatively expensive interval has been iden-
tified, you can drill down to 5-minute intervals using the time slice. Then, within a 5-
minute interval, you can see a list of the most expensive SQL statements.

From my experience, the main challenge of Oracle performance management is the
identification of the root cause of performance problems. Any performance manage-
ment tool needs to do that, with high precision and low impact. Precise/Indepth is a
tool that provides an excellent match with those requirements. Figure 16.4 shows his-
torical time units for an Oracle instance based on a historical unit of 1 hour.

The X-axis scale is in hours, minutes, and seconds. The legend shows the proportion
of time spent consuming CPU, or waiting for Oracle or OS resources (as displayed by
the color-coded bars). Clearly, most time spent executing in the DBMS occurred in the
hours beginning 06:35 and 21:35. In a proactive top-down performance study, these
two time units might be a good place to start looking for SQL to improve. Figure 16.5
presents information on the programs that spent the most time-consuming Oracle
resources in that hour beginning 06:35.

The SNP0 database background process indicates a database job in progress, and the
presence of rman (Oracle’s Recovery Manager program) indicates that a database
backup is running within this interval. Figure 16.6 presents performance over 5-minute
time slices for this hour using an alternative display format, showing the busiest inter-
vals to be 06:40 and 06:45.

Finally, Figure 16.7 shows the most expensive SQL statements in the 5-minute inter-
val beginning at 06:40. On the evidence, one or two statements are the cause of most of
the resource consumption. This is typical of many, if not most, database applications. If
you focus performance-tuning efforts on the top few most resource-intensive SQL
statements and reduce their resource consumption, overall response times improve.
Usually, the challenge is to identify what those statements are. Precise/Indepth makes
identification trivial, so effort can instead be spent on finding solutions. Note that the

374 Chapter 16

TE
AM
FL
Y

Team-Fly®

actual text of each SQL statement (identified by a unique string in Figure 16.7) is avail-
able in an alternative Precise/Indepth view and is not shown in this example.

Comparing Oracle Expert
and Precise/Indepth

Oracle Expert collections need to be initiated explicitly. The precision of recommenda-
tions made by Oracle Expert needs to be treated with care because there is a consider-
able burden on the DBA to describe the system parameters accurately in advance so

Selecting and Using Performance Management Tools 375

Figure 16.4 Precise/Indepth historical time unit display.

that recommendations are valid. In particular, information on OS memory and CPU
utilization is required. Oracle Expert has a potentially high impact on the performance
of the target system being managed. As this is difficult to determine in advance, a deci-
sion to run Oracle Expert on a production system requires careful consideration. For
Oracle Expert recommendations to be valid, extensive information collection is
required. The more extensive the collection information, the higher the likelihood of
performance impact on the managed instance. Oracle Expert can generate scripts to
implement recommended changes related to instance parameters and data access
methods, stemming from the addition and removal of indexes. Oracle Expert can iden-
tify significant performance changes over time to enable proactive analysis.

Precise/Indepth can provide information on the most expensive SQL statements in
any Oracle system with very high precision and low impact on the target system. Col-

376 Chapter 16

Figure 16.5 Precise/Indepth’s most expensive programs.

lection takes place automatically all the time, without requiring hands-on day-to-day
management. Both Oracle and OS information is collated to provide an accurate pic-
ture. As a result, performance issues in Oracle client applications that are related to
non-Oracle aspects of the application can be distinguished from database-related
aspects by considering the percentage of time the application spends performing Ora-
cle processing. All too often, performance issues in Oracle middleware applications
stem from nondatabase processing. Information in Precise/Indepth can be presented
in many different dimensions (such as time, program, and user). This enables the exact
source of problematic SQL to be identified rapidly, right down to file I/O waits on indi-
vidual database files. Precise/Indepth can proactively identify SQL statements that
significantly increase in expense over time through historical information stored in its
Performance Warehouse.

Selecting and Using Performance Management Tools 377

Figure 16.6 Precise/Indepth time slice display.

Summary

The most fundamental requirements for an Oracle performance management tool are:

■■ Low impact of collection
■■ 24�7 collection of information
■■ Precision of results
■■ Ability to identify trends in performance over long periods
■■ Powerful user interface for the presentation of results

■■ Ease of installation, configuration, and management

378 Chapter 16

Figure 16.7 Precise/Indepth’s most expensive SQL.

Although you might not agree with these requirements, it is critically important that
you have a defined set of your own before you invest in such a tool, which is likely to
be very expensive. After you have defined a set of criteria, you should perform a com-
parative analysis of several tools from different companies to ensure that you select the
one that best meets your needs. Based on the study of Oracle Expert and Precise/
Indepth in this chapter, it’s quite likely that you might need more than one perfor-
mance management tool to meet all the requirements.

Many tools on the market take the traditional approach to Oracle performance man-
agement, which is based on the collection of Oracle performance metrics from the V$
and X$ views using SQL. In general, traditional Oracle performance management tools
are still useful, but they don’t meet the requirements as comprehensively as a more
modern tool like Precise/Indepth does and, as a result, it can be difficult to identify the
top SQL quickly when using them.

Selecting and Using Performance Management Tools 379

Backup, Restore,
and Recovery

Four

PA R T

383

Over the years I’ve seen various descriptions of how Oracle performs recovery. The
Web site of a very high-profile company comes to mind, where their description stated
that during an online backup, no changes were made to the database datafiles. This
description is not correct. However, I don’t believe that Oracle’s recovery process is
complex or difficult to understand. On the contrary, the simplicity of the process is one
reason for its robustness and reliability.

This chapter takes you through the concepts and terminology you need to be famil-
iar with in order to understand Oracle recovery and it covers some associated areas of
interest, including how to view the data that Oracle requires to perform recovery. A
step-by-step example of how to use Oracle9i to view data at an earlier point in time
without incurring the overhead of a restore and recovery operation is also included.
The following topics are covered:

■■ Understanding the Oracle System Change Number (SCN)

■■ Recovering from an instance crash

■■ Recovering from a media failure

■■ Using and viewing Oracle redo with LogMiner

■■ Using Oracle9i Flashback Query to recover without a restore

Fundamentals of
Oracle Recovery

C H A P T E R

17

Understanding the SCN

In order to understand how Oracle performs recovery, it’s first necessary to under-
stand Oracle’s SCN in terms of the various places where it can be stored and how it’s
used for instance and media recovery.

The SCN is an internal number maintained by the database management system
(DBMS) to log changes made to a database. The SCN increases over time as changes are
made to the database by Structured Query Language (SQL). By understanding how
the SCN is used, you can understand how Oracle recovery works. Oracle9i enables you
to examine the current SCN using the following SQL:

select dbms_flashback.get_system_change_number from dual;

Whenever an application commits a transaction, the log writer process (LGWR)
writes records from the redo log buffers in the System Global Area (SGA) to the online
redo logs on disk. LGWR also writes the transaction’s SCN to the online redo log file.
The success of this atomic write event determines whether your transaction succeeds,
and it requires a synchronous (wait-until-completed) write to disk.

NOTE The need for a synchronous write upon commit is one of the reasons
why the online redo log can become a bottleneck for applications and why you
should commit as infrequently as is practical. In general, Oracle writes
asynchronously to the database datafiles for performance reasons, but commits
require a synchronous write because they must be guaranteed at the time
they occur.

SCN and Checkpoints
A checkpoint occurs when all modified database buffers in the Oracle SGA are written
out to datafiles by the database writer (DBWn) process. The checkpoint process (CKPT)
updates all datafiles and control files with the SCN at the time of the checkpoint and
signals DBWn to write out the blocks. A successful checkpoint guarantees that all data-
base changes up to the checkpoint SCN have been recorded in the datafiles. As a result,
only those changes made after the checkpoint need to be applied during recovery.
Checkpoints occur automatically as follows:

■■ Whenever a redo log switch takes place

■■ Whenever the time set by the LOG_CHECKPOINT_TIMEOUT initialization
parameter is reached

■■ Whenever the amount of redo written reaches the number of bytes associated
with the LOG_CHECKPOINT_INTERVAL

Typically, LOG_CHECKPOINT_INTERVAL is chosen so that checkpoints only
occur on log switches. Oracle stores the SCN associated with the checkpoint in four
places: three of them in the control file and one in the datafile header for each datafile.

384 Chapter 17

TE
AM
FL
Y

Team-Fly®

The System Checkpoint SCN

After a checkpoint completes, Oracle stores the system checkpoint SCN in the control
file. You can access the checkpoint SCN using the following SQL:

select checkpoint_change# from v$database;

CHECKPOINT_CHANGE#

292767

The Datafile Checkpoint SCN

After a checkpoint completes, Oracle stores the SCN individually in the control file for
each datafile. The following SQL shows the datafile checkpoint SCN for a single
datafile in the control file:

select name,checkpoint_change#

from v$datafile where name like '%users01%';

NAME CHECKPOINT_CHANGE#

----------------------------------- --------------------

/u02/oradata/OMFD1/users01.dbf 292767

The Start SCN

Oracle stores the checkpoint SCN value in the header of each datafile. This is referred
to as the start SCN because it is used at instance startup time to check if recovery is
required. The following SQL shows the checkpoint SCN in the datafile header for a sin-
gle datafile:

select name,checkpoint_change#

from v$datafile_header where name like '%users01%';

NAME CHECKPOINT_CHANGE#

----------------------------------- --------------------

/u02/oradata/OMFD1/users01.dbf 292767

The Stop SCN

The stop SCN is held in the control file for each datafile. The following SQL shows the
stop SCN for a single datafile when the database is open for normal use:

select name,last_change#

from v$datafile where name like '%users01%';

Fundamentals of Oracle Recovery 385

NAME LAST_CHANGE#

----------------------------------- ------------

/u02/oradata/OMFD1/users01.dbf

During normal database operation, the stop SCN is NULL for all datafiles that are
online in read-write mode.

SCN Values while the Database Is Up

Following a checkpoint while the database is up and open for use, the system check-
point in the control file, the datafile checkpoint SCN in the control file, and the start
SCN in each datafile header all match. The stop SCN for each datafile in the control file
is NULL.

SCN after a Clean Shutdown
After a clean database shutdown resulting from a SHUTDOWN IMMEDIATE or
SHUTDOWN NORMAL of the database, followed by STARTUP MOUNT, the previ-
ous queries on v$database and v$datafile return the following:

select checkpoint_change# from v$database;

CHECKPOINT_CHANGE#

293184

select name,checkpoint_change#,last_change#

from v$datafile where name like '%user%';

NAME CHECKPOINT_CHANGE# LAST_CHANGE#

----------------------------------- -------------------- --------------

/u02/oradata/OMFD1/users01.dbf 293184 293184

select name,checkpoint_change#

from v$datafile_header where name like '%users01%';

NAME CHECKPOINT_CHANGE#

----------------------------------- --------------------

/u02/oradata/OMFD1/users01.dbf 293184

During a clean shutdown, a checkpoint is performed and the stop SCN for each
datafile is set to the start SCN from the datafile header. Upon startup, Oracle checks the
start SCN in the file header with the datafile checkpoint SCN. If they match, Oracle
checks the start SCN in the datafile header with the datafile stop SCN in the control
file. If they match, the database can be opened because all block changes have been

386 Chapter 17

applied, no changes were lost on shutdown, and therefore no recovery is required on
startup. After the database is opened, the datafile stop SCN in the control file once
again changes to NULL to indicate that the datafile is open for normal use.

SCN after an Instance Crash
The previous example showed the behavior of the SCN after a clean shutdown. To
demonstrate the behavior of the checkpoints after an instance crash, the following SQL
creates a table (which performs an implicit commit) and inserts a row of data into it
without a commit:

create table x(x number) tablespace users;

insert into x values(100);

If the instance is crashed by using SHUTDOWN ABORT, the previous queries on
v$database and v$datafile return the following after the database is started up in
mount mode:

select checkpoint_change# from v$database;

CHECKPOINT_CHANGE#

293185

select name,checkpoint_change#,last_change#

from v$datafile where name like '%users01%';

NAME CHECKPOINT_CHANGE# LAST_CHANGE#

----------------------------------- -------------------- --------------

/u02/oradata/OMFD1/users01.dbf 293185

select name,checkpoint_change#

from v$datafile_header where name like '%users01%';

NAME CHECKPOINT_CHANGE#

----------------------------------- --------------------

/u02/oradata/OMFD1/users01.dbf 293185

In this case, the stop SCN is not set, which is indicated by the NULL value in the
LAST_CHANGE# column. This information enables Oracle, at the time of the next
startup, to determine that the instance crashed because the checkpoint on shutdown
was not performed. If it had been performed, the LAST_CHANGE# and CHECK-
POINT_CHANGE# values would match for each datafile as they did during a clean
shutdown. If an instance crashes at shutdown, then instance crash recovery is required
the next time the instance starts up.

Fundamentals of Oracle Recovery 387

Recovery from an Instance Crash
Upon the next instance startup that takes place after SHUTDOWN ABORT or a DBMS
crash, the Oracle DBMS detects that the stop SCN for datafiles is not set in the control
file during startup. Oracle then performs crash recovery. During crash recovery, Oracle
applies redo log records from the online redo logs in a process referred to as roll forward
to ensure that all transactions committed before the crash are applied to the datafiles.
Following roll forward, active transactions that did not commit are identified from the
rollback segments and are undone before the blocks involved in the active transactions
can be accessed. This process is referred to as roll back. In our example, the following
transaction was active but not committed at the time of the SHUTDOWN ABORT, so it
needs to be rolled back:

insert into x values(100);

After instance startup, the X table exists, but remains empty. Instance recovery hap-
pens automatically at database startup without database administrator (DBA) inter-
vention. It may take a while because of the need to apply large amounts of outstanding
redo changes to data blocks for transactions that completed and those that didn’t com-
plete and require roll back.

Recovery from a Media Failure
Up until this point, the checkpoint start SCN in the datafile header has always matched
the datafile checkpoint SCN number held in the control file. This is reasonable because
during a checkpoint, the datafile checkpoint SCN in the control file and the start SCN
in the datafile header are both updated, along with the system checkpoint SCN. The
following SQL shows the start SCN from the datafile header and datafile checkpoint
SCN from the control file for the same file:

select 'controlfile' "SCN location",name,checkpoint_change#

from v$datafile where name like '%users01%'

union

select 'file header',name,checkpoint_change#

from v$datafile_header where name like '%users01%';

SCN location NAME CHECKPOINT_CHANGE#

-------------- ----------------------------------- --------------------

controlfile /u02/oradata/OMFD1/users01.dbf 293188

file header /u02/oradata/OMFD1/users01.dbf 293188

Unlike the v$datafile view, there is no stop SCN column in the v$datafile_header
view because v$datafile_header is not used at instance startup time to indicate that an
instance crash occurred. However, the v$datafile_header does provide the Oracle
DBMS with the information it requires to perform media recovery. At instance startup,
the datafile checkpoint SCN in the control file and the start SCN in the datafile header
are checked for equality. If they don’t match, it is a signal that media recovery is

388 Chapter 17

required. For example, media recovery is required if a media failure has occurred
and the original datafile has been replaced with a backup copy. In this case, the start
SCN in the backup copy is less than the checkpoint SCN value in the control file,
and Oracle requests archived redo logs—generated at the time of previous log switches
—in order to reapply the changes required to bring the datafile up to the current point
in time.

NOTE In order to recover the database from a media failure, you must run
the database in ARCHIVELOG mode to ensure that all database changes from
the online redo logs are stored permanently in archived redo log files. In order
to enable ARCHIVELOG mode, you must run the command ALTER DATABASE
ARCHIVELOG when the database is in a mounted state.

You can identify files that need recovery after you have replaced a datafile with an
older version by starting the instance in mount mode and running the following SQL:

select file#,change# from v$recover_file;

FILE# CHANGE#

---------- ----------

4 313401

In this example, file 4 is the datafile in the USERS tablespace. By reexecuting the pre-
vious SQL to display the datafile checkpoint SCN in the control file and the start SCN
in the datafile header, you can see that the start SCN is older due to the restore of the
backup datafile that has taken place:

select 'controlfile' "SCN location",name,checkpoint_change#

from v$datafile where name like '%users01%'

union

select 'file header',name,checkpoint_change#

from v$datafile_header where name like '%users01%';

SCN location NAME CHECKPOINT_CHANGE#

-------------- ----------------------------------- --------------------

controlfile /u02/oradata/OMFD1/users01.dbf 313551

file header /u02/oradata/OMFD1/users01.dbf 313401

If you were to attempt to open the database, you would receive errors like the fol-
lowing:

ORA-01113: file 4 needs media recovery

ORA-01110: datafile 4: '/u02/oradata/OMFD1/users01.dbf'

You can recover the database by issuing RECOVER DATABASE from SQL*Plus
while the database is in a mounted state. If the changes needed to recover the database

Fundamentals of Oracle Recovery 389

to the point in time before the crash are in an archived redo log, then you will be
prompted to accept the suggested name:

ORA-00279: change 313401 generated at 11/10/2001 18:50:23 needed for

thread

ORA-00289: suggestion : /u02/oradata/OMFD1/arch/T0001S0000000072.ARC

ORA-00280: change 313401 for thread 1 is in sequence #72

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

If you respond to the prompt using AUTO, Oracle applies any archived redo logs it
needs, followed by any necessary changes in the online redo logs, to bring the database
right up to the last committed transaction before the media failure that caused the
requirement for the restore.

So far, we’ve considered recovery scenarios where the goal is to recover the database
to the most recent transaction. This is known as complete recovery. The RECOVER DATA-
BASE command has several other options that enable you to recover from a backup to
a point in time before the most recent transaction by rolling forward and then stopping
the application of the redo log changes at a specified point. This is known as incomplete
recovery. You can specify a time or an SCN as the recovery point. For example,

recover database until time '2001-11-10:18:52:00';

recover database until change 313459;

Before you perform incomplete recovery, it’s recommended that you restore a com-
plete database backup first. After incomplete recovery, you must open the mounted
database with ALTER DATABASE OPEN RESETLOGS. This creates a new incarnation
of the database and clears the contents of the existing redo logs to make sure they can’t
be applied.

Recovery from a Media Failure Using
a Backup Control File
In the previous example, we had access to a current control file at the time of the media
failure. This means that none of the start SCN values in the datafile headers exceeded
the system checkpoint SCN number in the control file. To recap, the system checkpoint
number is given by the following:

select checkpoint_change# from v$database;

You might be wondering why Oracle needs to maintain the last system checkpoint
value in the control file as well as checkpoint SCNs in the control file for each datafile
(as used in the previous example). There are two reasons for this. The first is that you
might have read-only tablespaces in your database. In this case, the database check-
point SCN increases, and the checkpoint SCN for the datafiles in the read-only table-
space remains frozen in the control file. The following SQL report output shows a

390 Chapter 17

database with a read-write tablespace (USERS) and read-only tablespace (TEST). The
start SCN in the file header and the checkpoint SCN in the control file for TEST are less
than the system checkpoint value. Once a tablespace is read only, checkpoints have no
effect on the files in it. The other read-write tablespace has checkpoint values that
match the system checkpoint:

SCN location NAME CHECKPOINT_CHANGE#

-------------------- ---------------------------------- ----------------

controlfile SYSTEM checkpoint 355390

file header /u02/oradata/OD2/users01.dbf 355390

file in controlfile /u02/oradata/OD2/users01.dbf 355390

file header /u02/oradata/OD2/test01.dbf 355383

file in controlfile /u02/oradata/OD2/test01.dbf 355383

The second reason for the maintenance of multiple checkpoint SCNs in the control
file is that you might not have a current control file available at recovery time. In this
case, you need to restore an earlier control file before you can perform a recovery. The
system checkpoint in the control file may indicate an earlier change than the start SCN
in the datafile headers. The following SQL shows an example where the system check-
point SCN and datafile checkpoint SCN indicate an earlier change than the start SCN
in the datafile header:

select 'controlfile' "SCN location",'SYSTEM checkpoint'

name,checkpoint_change#

from v$database

union

select 'file in controlfile',name,checkpoint_change#

from v$datafile where name like 'users01%'

union

select 'file header',name,checkpoint_change#

from v$datafile_header where name like '%users01%';

SCN location NAME CHECKPOINT_CHANGE#

------------------- ------------------------------ ------------------

controlfile SYSTEM checkpoint 333765

file header /u02/oradata/OD2/users01.dbf 355253

file in controlfile /u02/oradata/OD2/users01.dbf 333765

If try you to recover a database in the usual way in this situation, Oracle detects that
the control file is older than some of the datafiles, as indicated by the checkpoint SCN
values in the datafile headers, and reports the following message:

SQL> recover database

ORA-00283: recovery session canceled due to errors

ORA-01610: recovery using the BACKUP CONTROLFILE option must be done

Fundamentals of Oracle Recovery 391

If you want to proceed with recovery in this situation, you need to indicate to Ora-
cle that a noncurrent control file—possibly containing mismatches in the SCN values
identified by the previous error messages—is about to be specified for recovery by
using the following command:

recover database using BACKUP CONTROLFILE;

How Oracle Applies Changes
during Recovery
During recovery, data and redo blocks are read and compared. In order for Oracle to
identify which blocks of redo to apply during recovery, each redo block and database
block is versioned. A higher version number indicates a more recent change. If the block
version in the datafile is less than the block version in the redo, then the redo block is
applied to the datafile. This process continues during the application of the archived
redo logs until the required SCN is set in the datafile (you’ll recall that the SCN of each
transaction is stored in the redo so Oracle knows when to stop applying it).

Setting Bounds on Instance
Recovery Time
If your instance uses very large online redo logs, sized at 100MB, for example, then in
the worst case the instance could crash just before a log switch, which means that a
large amount of redo needs to be applied at instance recovery time if you have config-
ured checkpoints to take place only at a log switch. As checkpoints are expensive,
fewer checkpoints are good for online performance, but they increase instance recov-
ery time. Rather than configuring your database service to meet online performance
requirements alone, you might instead have a requirement to return the database to
service within a guaranteed time, such as in the case of an instance crash. If you need
to meet a service requirement like this, you should consider using the FAST_START_
IO_TARGET parameter in Oracle8i, which was replaced by FAST_START_MTTR_
TARGET in Oracle9i.

The purpose of these parameters, which are available only in the Oracle Enterprise
Edition, is to set an upper bound on the number of inputs/outputs (I/Os) that will be
performed during instance crash recovery. Smaller values cause DBWn to write dirtied
blocks from the SGA more frequently. As a result, faster instance recovery comes at the
cost of higher I/O during normal operation.

In addition to these new parameters, the more traditional LOG_CHECKPOINT_
INTERVAL and LOG_CHECKPOINT_TIMEOUT can influence recovery performance
because they influence the frequency of checkpoints, which also cause dirty buffers to
be written to disk. You can query the TARGET_REDO_BLOCKS parameter in the
V$INSTANCE_RECOVERY view to see which of the parameters that influence recov-
ery time is actually in effect. The TARGET_REDO_BLOCKS column is the minimum
value of the columns that affect recovery time.

392 Chapter 17

Fast-Start On-Demand Rollback
If a database crashes during a very large transaction, the rollback phase of recovery can
take a very long time. From Oracle8i on, Oracle has enabled the database to open
immediately after the rollforward phase using the fast-start on-demand rollback feature,
which is enabled automatically. The rollback operation is performed in the back-
ground, and Oracle rolls back on demand for any transactions that would lock new
transactions. This fast-start recovery feature is only available in the Enterprise Edition.
You can monitor the progress of recovery through the following SQL:

select * from v$session_longops where time_remaining > 0;

SCN Values during Online Backup
How does this discussion of SCN relate to an online backup? If you perform a user-
managed online backup, you need to use the Oracle7-style ALTER TABLESPACE
tablespace_name BEGIN BACKUP command on each tablespace before you use an
external operating system utility to back up the files in the tablespace. After you run
this command, Oracle no longer updates the SCN on the datafile headers during a
checkpoint. Any SQL Data Manipulation Language (DML) statements on objects in
that datafile continue to cause block changes just as before. By freezing the SCN dur-
ing the backup, Oracle is simply recognizing that any process that backs up data in the
file may or may not find blocks in the state they were in before the backup. Some
blocks may not change, some may be backed up before being changed, and some may
change before being backed up, depending on the order in which the backup process
scans the file. This uncertainty in the data means that during the recovery of such a
“fuzzy” file, Oracle will assume nothing about the state of blocks, except that the data
has been known to be changed up to the last checkpoint SCN stored in the header. It’s
possible, and even likely, that some of the blocks were changed while the backup was
executing and have higher versions than those associated with the SCN. During the
recovery process for such a file, Oracle checks each block to see if its version has
changed. The only guarantee is that all blocks will at least have the version associated
with the last checkpoint SCN before the backup started. The ALTER TABLESPACE
tablespace_name END BACKUP command simply unfreezes the SCN in the datafile
header after the file backup is completed so that checkpoints can update the SCNs
as usual.

Using and Viewing Oracle Redo

Oracle change logging, which is referred to as redo, is fundamental to Oracle’s recovery
behavior. An understanding of redo and how it is used is essential for a complete
understanding of recovery behavior. For example, consider a transaction, such as a
bulk update, that generates sufficient redo that causes several log switches but is never

Fundamentals of Oracle Recovery 393

committed. The redo is generated by changes to the datafiles and changes to the undo
tablespace or rollback segment for each update to each row. In this case, redo genera-
tion takes places as follows for each row:

1. The rollback segment transaction table is updated to create an undo entry. This
is a datafile block change and generates redo.

2. The prechange value of the updated row is written to the rollback segment.
This is a datafile block change and generates redo.

3. The datafile block is changed to hold the updated values identified by SQL.
This is a datafile block change and generates redo.

By now, you should be gaining insight into why Oracle can generate so much redo.
Redo information is generated by all changes to data blocks. These blocks include:

■■ Changes to database datafiles caused by end-user SQL statements

■■ Changes made to rollback segments by the Oracle DBMS as a result of end-user
SQL statements

DBAs and developers sometimes overlook the fact that changes to rollback seg-
ments themselves generate redo. In this case, if the database crashes before a bulk data
update operation is committed, the recovery process needs to undo the large transac-
tion that was active at the time of the crash. This involves applying the rollback infor-
mation to the datafile blocks—a process that generates redo. This is why it’s possible to
generate many archived redo logs during instance startup after a crash in the middle
of a large transaction.

Using LogMiner to View Redo
In Oracle8i, Oracle introduced LogMiner to enable you to view the contents of
archived redo log files. Oracle9i takes the usability of LogMiner a step further by pro-
viding a graphical user interface (GUI) to make the interrogation of redo information
even easier, including the capability to view the online redo logs. Prior to Oracle8i, you
needed expensive third-party products to view redo information. LogMiner is useful if
you need to understand what is causing the apparent excessive amounts of redo. If you
understand the cause, then you can probably take steps to reduce the generation. Log-
Miner is also useful as a teaching aid for understanding how redo works. This is how
it will be used in this section. In this example, Data Definition Language (DDL) and
DML changes are made to an Oracle9i database, and the redo is investigated to see
how it relates to the changes. The following SQL is required to set up the example:

alter system switch logfile;

create table emp_redo

(empno number(4),ename varchar2(10),job varchar2(9),

mgr number(4),sal number(7,2),comm number(7,2));

insert into emp_redo values(7369,'SMITH','CLERK',7902,800,NULL);

394 Chapter 17

TE
AM
FL
Y

Team-Fly®

create index i0_emp_redo on emp_redo(ename)

insert into emp_redo values(7499,'ALLEN','SALESMAN',7698,1600,300);

update emp_redo set ename='JONES' where ename='SMITH';

delete from emp_redo where ename='ALLEN';

commit;

alter system switch logfile;

Table 17.1 shows the redo generated by each SQL statement. You can use the AUTO-
TRACE STATISTICS feature in SQL*Plus to find the redo size for the DML statement. I use
the Session Statistics facility in DbCool because SQL*Plus only shows the redo size for
DML statements, whereas DbCool shows the redo size for all statements, including DDL.

What immediately stands out in Table 17.1 is the amount of redo generated by DDL
commands such as CREATE TABLE and CREATE INDEX. The next step is to take a
detailed look at the redo log contents using LogMiner.

Running LogMiner Manually

Before you run LogMiner, you need to make a decision about which database you are
going to use to view the redo. Redo data contains Oracle identification numbers for
objects (such as tables and columns) and the users that own them, rather than the
names themselves. In order to resolve the numeric information into meaningful
names, it’s necessary to have Oracle data dictionary information available to map the
ID numbers to the names. If you use the same database to view the redo log informa-
tion as the one in which the redo information was generated, then the Oracle data dic-
tionary for that database can be used in place.

You can optionally view redo log contents in a different database than the one in
which the redo was generated. This is a good idea if you intend to inspect a large

Fundamentals of Oracle Recovery 395

Table 17.1 Redo Size Generated for SQL

SQL STATEMENT REDO SIZE (BYTES)
create table emp_redo 14264

(empno number(4),ename varchar2(10),

job varchar2(9),mgr number(4),

sal number(7,2),comm number(7,2));

insert into emp_redo

values(7369,'SMITH','CLERK',7902,800,NULL); 624

create index i0_emp_redo on emp_redo(ename); 7592

insert into emp_redo

values(7499,'ALLEN','SALESMAN',7698,1600,300); 648

update emp_redo set ename='JONES' where ename='SMITH'; 728

delete from emp_redo where ename='ALLEN'; 484

commit; 84

amount of redo log information because it avoids loading on the source database. If
you take this option, you need to create a dictionary file containing mappings of the ID
numbers to names in the source database where the logs were generated and transfer
this across to the database you intend to use to mine the logs, along with the redo logs.
The following PL/SQL block creates a dictionary file /tmp/dic.lgmr, where the direc-
tory /tmp is in the UTL_FILE_DIR list in the init.ora file:

begin

sys.dbms_logmnr_d.build(

dictionary_filename=>'dic.lgmr',

dictionary_location=>'/tmp');

end;

/

For an Oracle9i data dictionary, the file can be several megabytes in size. The
dic.lgmr file is actually a SQL script containing INSERT statements to create dictionary
information in the LogMiner tables in the destination database where LogMiner runs.
This example views the redo logs in place in the source Oracle9i database where they
were generated without a dictionary file—a feature that is not available in Oracle8i.
The next step is to build up a list of the redo log files to mine. This example uses only
one, but you can call the procedure repeatedly before beginning searches:

begin

sys.dbms_logmnr.add_logfile(

logfilename=>'/u02/oradata/OMFD1/arch/T0001S0000000080.ARC');

end;

/

The final step is to start LogMiner on the list of redo log files that were added. In this
example, the procedure is executed without any parameters except OPTIONS :

begin

sys.dbms_logmnr.start_logmnr(

options=>sys.dbms_logmnr.dict_from_online_catalog);

end;

/

The START_LOGMNR procedure takes several other optional parameters that
aren’t used in this example. One of the parameters, DICTFILENAME, can be used to
specify the name of the dictionary file that was created in the source database in situa-
tions where LogMiner runs on a different database or Oracle8i is being used. As we’re
mining the logs in the Oracle9i source database, the Oracle data dictionary can be used

396 Chapter 17

as indicated by the OPTIONS parameter, and no separate dictionary file is needed.
This represents a major enhancement of LogMiner in Oracle9i. If you’re using Oracle8i,
you always need to create and load a dictionary file. Other parameters allow a time or
SCN range to be supplied in order to restrict the range of the log information to mine.
The following SQL shows some useful information about the redo that was generated:

select scn,cscn,commit_timestamp,sql_redo,sql_undo

from v$logmnr_contents;

This is the undo generated for the SQL DELETE statement for the employee ALLEN:

insert into

"SYSTEM"."EMP_REDO"("EMPNO","ENAME","JOB","MGR","SAL","COMM")

values ('7499','ALLEN','SALESMAN','7698','1600','300');

Because the generated undo needs to undo the delete, the undo is actually an
INSERT statement. Some of the SQL contained in the undo for the EMP_REDO table
creation statement is as follows:

Update "SYS"."OBJ$" set "OBJ#" = '1', "DATAOBJ#" = '27933', "TYPE#" =

Insert into "SYS"."OBJ$"("OBJ#","DATAOBJ#","OWNER#","NAME","NAMESPACE"

Insert into "SYS"."FET$"("TS#","FILE#","BLOCK#","LENGTH") values ('0',

Update "SYS"."FET$" set "LENGTH" = '2' where "TS#" = '0' and "LENGTH"

Insert into "SYS"."SEG$"("TS#","FILE#","BLOCK#","TYPE#","BLOCKS","EXTE

Insert into "SYS"."UET$"("TS#","SEGFILE#","SEGBLOCK#","EXT#","FILE#","

Update "SYS"."TSQ$" set "GRANTOR#" = '0', "BLOCKS" = '613', "MAXBLOCKS

Delete from "SYS"."FET$" where "TS#" = '0' and "FILE#" = '1' and "BLOC

Insert into "SYS"."TAB$"("OBJ#","DATAOBJ#","TS#","FILE#","BLOCK#","BOB

Insert into "SYS"."COL$"("OBJ#","COL#","SEGCOL#","SEGCOLLENGTH","OFFSE

During table creation, and within DDL in general, SQL is generated internally by the
database to store the following information in the Oracle dictionary:

■■ Object name and owner details

■■ Segment name and owner details

■■ Details of the extents allocated

■■ Column information

This recursive SQL is what causes the several thousand bytes of redo to be generated
from the CREATE TABLE statement. When you’ve finished, the following procedure
call should be used to end the LogMiner session:

begin

sys.dbms_logmnr.end_logmnr;

end;

/

Fundamentals of Oracle Recovery 397

Running the LogMiner GUI

Oracle Enterprise Manager (OEM) provides the LogMiner Viewer to take the monot-
ony out of viewing the redo log contents. By using the viewer, you request the redo
logs you want to interrogate and specify values to limit the search, all within the GUI.
There is no need to call the procedures in the manual example. The cost of using the
viewer is the one-off cost of setting up OEM with a Management Server and an OEM
repository database. To start the viewer on the database server, you must set your X
Windows DISPLAY environment variable to a valid X screen and enter the following:

$ oemapp lmviewer

The connection you use requires SYSDBA privileges, whereas the manual process
requires less restrictive DBA privileges. Figure 17.1 shows the redo information for the
CREATE TABLE statement in the LogMiner Viewer.

One nice usability feature of the viewer is the capability to specify a file on the server
containing a list of redo logs to load. This is much easier compared to the effort
required to add redo logs individually using the ADD_FILE procedure in the manual
process. To load up a redo log from a file, you need to choose the Redo Log Files tab,
press the Change Redo Log File . . . button, and enter information into the form, as
shown in Figure 17.2.

In this example, the file /tmp/logs.list on the database server would contain a list of
log names as follows:

398 Chapter 17

Figure 17.1 Redo displayed in the LogMiner Viewer.

/u02/oradata/OMFD1/arch/T0001S0000000082.ARC

/u02/oradata/OMFD1/arch/T0001S0000000083.ARC

/u02/oradata/OMFD1/arch/T0001S0000000084.ARC

/u02/oradata/OMFD1/arch/T0001S0000000085.ARC

/u02/oradata/OMFD1/arch/T0001S0000000086.ARC

Using Flashback Query to Recover
without a Restore

Flashback Query is a fantastic feature of Oracle9i that enables you to see data as it was
at an earlier point in time in an open database without doing any recovery. For example,
you can view data as it was before a user made an error that modified data incorrectly
or recover data to the point in time before a known business transaction, provided that
you stored the current system SCN in a table just before the business transaction started
along with a string that you can use to identify the transaction. The Flashback Query
features are accessed through procedures in the DBMS_FLASHBACK package. For
example, to find the current SCN, you would run the following SQL statement:

select dbms_flashback.get_system_change_number from dual;

GET_SYSTEM_CHANGE_NUMBER

417153

Once you have the SCN, you can reset it back to this saved value at a later time—
after changes have been made to the data—in order to see the data as it was before. The

Fundamentals of Oracle Recovery 399

Figure 17.2 Addling a log list in the LogMiner Viewer.

previous point to which the data is displayed can be specified by SCN or time, as in the
following examples:

begin

dbms_flashback.enable_system_change_number (417153);

end;

/

begin

dbms_flashback.enable_at_time(

to_date('10-NOV-2001 13:15:00','DD-MON-YYYY HH24:MI:SS'));

end;

/

You need to be aware that the time you specify in ENABLE_AT_TIME is mapped to
an SCN value through data recorded in the SYS.SMON_SCN_TIME table. These times
are recorded every 5 minutes, so you may see unexpected results in your queries as a
result of the time apparently being rounded down by up to 5 minutes. The following
query shows the information held in SMON_SCN_TIME:

select * from sys.smon_scn_time where trunc(time_dp)=trunc(sysdate);

THREAD TIME_MP TIME_DP SCN_WRP SCN_BAS

-------- ----------- --------------------- --------- ---------

1 1005613204 10-NOV-2001 00:00:06 0 355525

1 1005613512 10-NOV-2001 00:05:13 0 355528

1 1005613820 10-NOV-2001 00:10:20 0 355531

If you receive the error “ORA-01466: unable to read data—table definition has
changed” during a Flashback Query, this is a result of the time-to-SCN mapping. The
error can be avoided by using SCNs rather than times as the flashback point, although
the restriction also applies if you perform a Flashback Query to an SCN just after a
DDL operation such as CREATE TABLE. As an example of Flashback Query, consider
a situation where the EMP table contains zero rows at the SCN identified by 417153,
and a user inserts and commits a row:

select count(*) from EMP;

COUNT(*)

0

insert into emp(ename,empno) values ('ALLEN',2000);

400 Chapter 17

COUNT(*)

1

commit;

The following SQL can be used to view the data at the earlier point in time associ-
ated with SCN 417153:

select count(*) from EMP;

COUNT(*)

1

begin

dbms_flashback.enable_at_system_change_number(417153);

end;

/

select count(*) from EMP;

COUNT(*)

0

If you want to convince yourself that the feature works, be sure to leave at least 5
minutes after any DDL you run to set up the demonstration—such as CREATE TABLE
—before you make DML changes to data. If you don’t, you’ll probably get the ORA-
01466 error. Oracle9i maintains 5 days of SCN mappings in the mapping table, where
the number of days corresponds to database uptime rather than wallclock time. To run
Flashback Queries against earlier transactions, you need to use SCNs rather than times.

NOTE Oracle 9i Release 2 significantly extends the scenarios in which you can
use Flashback Query to include generation of flashback information within a
single SQL statement rather than just within a session. It’s also possible to
select data differences between two points in time and to restore deleted rows
and previous table versions.

Summary

Understanding Oracle’s use of an internal SCN is the key to understanding the Oracle
recovery process. By using checkpoint SCNs stored in datafile headers and the control
file, Oracle is able to identify which redo blocks need to be applied to datafiles during
recovery and where to find the changed blocks. Depending on the point in time at

Fundamentals of Oracle Recovery 401

which recovery is required, the changed blocks may exist in the online redo log files or
archived redo log files.

The redo generated to protect the database from failures can be a source of consid-
erable space and performance overhead. Oracle provides the LogMiner tool through
both a procedural interface and a GUI in OEM to provide a fine-grained presentation
of redo information. This enables the DBA to determine the exact cause of redo gener-
ation, leading to the possibility for reducing it.

Guaranteed recovery times may be a requirement for some Oracle applications. In
these cases, it becomes business critical to reduce the time it takes to make the database
available after an instance crash in the middle of a long transaction. Oracle Enterprise
Edition can use fast-start features to enable the database to open before all active trans-
actions are rolled back to make the instance available for use sooner than previous ver-
sions of Oracle. The time required for a recovery resulting from an application coding
error—or DBA mistake such as an accidental DROP TABLE command—can be consid-
erable when database and archived redo log restores from tape are needed. Through
the use of a Flashback Query, Oracle enables data to be viewed at previous points in
time in an open database without requiring any recovery. This feature alone and the
potential for higher availability are compelling reasons for upgrading to Oracle9i.

402 Chapter 17

403

You need to perform regular backups of your Oracle databases to provide protection
from storage media failures and human errors that require database recovery to a pre-
vious point in time. Human errors include database administrator (DBA) mistakes
such as accidental DROP TABLE commands and logical errors in applications. Before
you decide on a backup strategy, it’s important to understand the requirement that lies
behind the need for backups. You create backups because you might need to perform restore
and recovery. If you are not using Oracle’s Recovery Manager (RMAN) tool to perform
the backup and recovery of your Oracle database management system (DBMS), this
chapter sets out to convince you to start using it. For the systematic backup and recov-
ery of databases, no other tool will do.

This might seem obvious to you, but that’s not the case everywhere. I like RMAN
because I can create a command script as a one-off operation, run the command script
on demand, and check the RMAN return code. No programming is involved. If the
RMAN command returns 0, I know that the entire database and archived redo logs (if
any exist) were backed up and stored offsite to tape on a remote server, and the details
of the backup were cataloged in the control file of my database, and, optionally, in
another Oracle database. As a result, I can sleep easily because I know that if I need to
restore that database to any point in time from within its agreed retention period, I can
get it back on any other machine on the network—no ifs or buts. I can monitor those
database backups daily for failures. Other considerations, such as backup performance,
are important, but the ability to recover the database in an emergency is paramount.
Too many backup and restore procedures place all the emphasis on the backup part of
the process. If you do that, you’re likely to identify flaws in your backup procedures at
restore and recovery time. By then, it’s too late—you have lost your database.

Backup and Recovery Using
Recovery Manager (RMAN)

C H A P T E R

18

This chapter takes you step by step through the process of performing RMAN back-
ups and restores. The Perl scripts in Chapter 4 are instrumental in making the imple-
mentation as simple as possible. You don’t need to use them, but if you do, everything
falls into place much more quickly. In its most powerful configuration, RMAN can
interface to a tape library at a remote site through third-party media management soft-
ware. This chapter covers such a configuration using Legato’s NetWorker for Oracle as
an example.

RMAN is a specialist DBA subject in its own right these days, as you can tell from
the size of the manuals. To restrict the scope of the discussion, I’ll assume that you buy
into the approach that RMAN should manage your backups and restores for you. You
can still continue performing so-called user-managed backups via RMAN (those based
on synchronizing ALTER DATABASE BEGIN BACKUP and ALTER DATABASE END
BACKUP commands with operating system file backup utilities), but this chapter
assumes that you want to give that up for something more powerful, flexible, robust,
and easy to manage. The chapter starts with an overview of backup and recovery
requirements—including the risks of scripts developed in house—and then moves on
to basic RMAN backup and recovery techniques, followed by an enterprisewide
RMAN backup and recovery solution based on Legato NetWorker. The following top-
ics are covered:

■■ Backup and recovery requirements: how RMAN addresses the risks of in-
house scripts

■■ A simple backup using RMAN

■■ Checking that a backup succeeded

■■ A backup using a backup catalog

■■ Using Oracle Net to connect to the target database

■■ Cloning a database with the RMAN DUPLICATE command

■■ Managing archived redo logs on disk

■■ Interfacing to Legato NetWorker

■■ Performing an RMAN restore

■■ Disaster recovery restore with Legato

■■ Backup and restore troubleshooting

Oracle Backup and Recovery Requirements

As a DBA, you need the ability to back up and recover Oracle databases as quickly as
possible with the maximum reliability. At restore time, you need the ability to restore a
backup taken from one server onto a different server to cope with disaster recovery
scenarios. This section explains some of the problems of in-house-developed Oracle
backup and recovery solutions that can be identified when a clear set of backup and
recovery requirements are put in place. A solution based on RMAN overcomes all
these problems.

404 Chapter 18

TE
AM
FL
Y

Team-Fly®

It’s worth keeping in mind that if you use RMAN you get a database block corrup-
tion check free because RMAN checks blocks for corruption as a matter of routine dur-
ing backups. If you already use the DBVERIFY command-line utility or a full database
export to perform this function, they are no longer necessary.

NOTE The database itself can perform block corruption checking when the
dynamic db_block_checksum initialization parameter is set to true. In Oracle8i
the default value is set to false, and in Oracle9i the default value is set to true.

The Risks of In-House Scripts
Some people still use in-house-crafted backup solutions, which represent a risk to your
business compared to using RMAN solutions. I can’t quantify the risk for you, but it
depends on things like a programmer’s ability to detect all possible errors in a script
and handle them appropriately. A single failure to handle an error correctly in the code
in any situation could result in a failed backup being marked as successful. When
do you find out the backup problem? If you’re unlucky, you discover the problem
too late when the restore and recovery of a production system fails. Let me give you
three real-world examples of problems that result from these types of Oracle backup
solutions.

In the first example, an Oracle DBA wrote a script to back up an Oracle 8.0.5 database
online using the BEGIN BACKUP and END BACKUP commands. The Oracle docu-
mentation stated that the SYSTEM tablespace could not be taken offline to perform an
offline backup while the database was up, which was unlike regular tablespaces. Some-
how the DBA misinterpreted this to mean that the SYSTEM tablespace could not be
backed up online. As a result, the SYSTEM tablespace was not backed up for several
months. If a media failure had occurred, the entire database would have been lost, cost-
ing the company millions of dollars. The backup code was never validated, and the suc-
cess of the backup was fundamentally untestable without performing a full-scale
restore of the very large database. The resources weren’t available to do this.

In the second example, an Oracle DBA wrote an online backup for an Oracle 8.1.7
database that read the list of database files for each tablespace to a single record in a
separate file, with one record per tablespace. In theory, this meant that the backup
script didn’t need to change when datafiles were added to a tablespace. In this sce-
nario, there was a limit on the operating system file record length, and the backup pro-
gram code wrote all datafiles in a tablespace to a single record. The database grew over
time and eventually a datafile was added that caused the record containing the list of
datafiles for a tablespace to overflow. The program didn’t detect the overflow, and for
a time, the new datafile was never backed up.

In the third example, a UNIX system administrator (SA) wrote a script that shut
down an Oracle database, copied all of the files to tape, and then restarted the data-
base. On one occasion, the database shutdown operation failed, but the files were
copied to tape anyway while the database was up. The database SHUTDOWN com-
mand was never checked. When the backup was restored, it was unusable because the
datafiles were in use at the time of the backup.

Backup and Recovery Using Recovery Manager (RMAN) 405

Of course, Oracle can back up a database while it’s open, which leads to another
important point: If you use Oracle’s RMAN tool, you can back up your database while
it’s open with no additional effort because you can use an RMAN backup command
script that is identical to the one you used for your closed backup. You don’t need to
shut down. This immediately removes the risk of a shutdown failing and being unde-
tected. Some DBAs have an unreasonable paranoia about open database backups: They
are somehow deemed to be less robust than closed backups. Oracle has provided them
for many years and they have been proven to work. If you understand the basic opera-
tion of Oracle redo and undo (which are covered in Chapter 17), you can see that it’s not
really a big deal to back up a database while it’s open. Finally, the old Oracle7 technique
of BEGIN BACKUP and END BACKUP is no longer required for open database back-
ups with Oracle8 and later, although it is still useful for creating standby databases.
Standby databases are covered in Chapter 23, which discusses Oracle Data Guard.

Years ago, you could have made the excuse that there was no other option than writ-
ing these Oracle backup scripts, but that hasn’t been the case for many years. I found
myself in a similar position when I decided give up writing backup code (it was too
scary!) and decided to try Oracle’s Enterprise Backup Utility (EBU) tool for Oracle7.
EBU is the Oracle7 predecessor to RMAN. My expectations were low, as I had tried an
earlier incarnation of EBU without much success. That particular version (EBU v2.2)
worked great and still does, without writing any code. RMAN replaces EBU for Ora-
cle8 and Oracle9, and is a huge leap forward in terms of functionality.

Don’t rely on a programmer’s ability and diligence for your Oracle backups. Backup
and restore procedures are definitely not a game of chance. Switch to RMAN. Oracle’s
position on RMAN has changed since Oracle8, and the product has a much higher pro-
file, which augurs well for the future. For some Oracle configurations, such as Real
Application Clusters (RAC), which are covered in Chapter 22, the complexity is such
that RMAN represents the only practical solution.

You still need to check your backup and recovery procedure from time to time and
at least before go-live. However, there’s a much lower chance of things going wrong at
recovery time if you use RMAN, and you can check your backups as part of your data-
base healthchecks.

Less-Than-Optimal Performance
In general, the reasons for the less-than-optimal backup and restore performance
include the inability to stream to multiple physical devices simultaneously and utilize
high-performance devices to maximum capacity.

Also, due to the typical DBA technique of sizing databases for future growth, the use
of disk image backups indicates that physical files are frequently backed up for data-
bases that may contain a few hundred megabytes of actual data. Such empty space
consisting of initialized but empty Oracle data blocks is highly compressible, but few
backup tools take advantage of this.

It is always possible to identify the exact set of files required for an Oracle backup
using SQL queries against the Oracle data dictionary. However, due to the difficulty of
writing robust scripts to perform this function, a brute-force approach of backing up all
disks is sometimes taken, resulting in more backup space requirements and longer
backup and restore times than necessary.

406 Chapter 18

Lack of Automation
Backups sometimes rely on the explicit issuance of instructions by operations person-
nel. Even when scheduling tools are used to automate the initiation of backup proce-
dures, human intervention may be required for tape labeling, changing, and tracking,
due to the lack of a tape autochanger.

As a result of this lack of automation, backup runs may be omitted by accident, and
those problems during backups are not identified as early as possible and sometimes
are not identified at all. The identification of problems may be difficult for operators,
especially when the management console in the operations center contains a lot of
other information. Problems with labeling and tracking often only come to light when
a restore is required.

High Maintenance
It may be possible to write a custom-built Oracle backup script that is robust, detects
changes to the physical structure of the database automatically, and is portable across
different operating systems rather than using RMAN. However, this is an exercise that
is best left to the database vendor, and there’s no reason to duplicate it. Solutions that
were developed in house may leave the business at risk if the original developer leaves.
In any case, there are likely to be long-term maintenance issues with in-house code.

Writing in-house restore procedures and tools is even more problematic than back-
ups. Complex and time-consuming restore procedures make it more difficult to orga-
nize the periodic testing of the end-to-end backup and restore process that should be
performed for any production system. If you use RMAN, you restore using informa-
tion in a command script. The script contains the system change number (SCN) or date
and time you want to restore to, and RMAN works out the details of which files are
required and where they are stored. In reality, it’s not even necessary to provide the
SCN or time because RMAN assumes that you wish to restore the most recent backup
by default.

Lack of Standards
To provide a uniformly high level of service in an organization, standards need to be
put in place to develop a consistent approach to Oracle backups. This standard should,
as much as possible, be independent of the host location and database platform in use.
A global application might require support from personnel in different countries
depending on the time of day. Standards are paramount in making such a requirement
workable, and RMAN is a good tool on which to base standardization efforts.

A Simple Backup Using RMAN

RMAN can be configured in many different ways. It’s an extremely flexible tool that
can be used for performing an on-demand backup to disk or a scheduled backup to the
corporate Legato backup server at a remote site. Oracle catalogs all successful backups

Backup and Recovery Using Recovery Manager (RMAN) 407

in one or two places. Information always appears in the control file of the database
being backed up and optionally appears in a backup catalog database. If you need
guaranteed accessibility to your Oracle backups, perhaps going back several months
or even years, you must use a catalog database.

The init.ora parameter CONTROL_FILE_RECORD_KEEP_TIME, which has a
default of 7 (days), determines how long backup information is kept in the control file.
If backup records (including the records of archived redo log backups) are newer than
this retention period, then the control file expands to retain the information. This
explains why control files can grow to be quite large from Oracle8 on.

In this example, we back up the database OMFD1 to disk while it’s up and running
without using a backup catalog. The purpose of this script is to show you how easy it
is to run an RMAN backup even if you have never run one before. The RMAN docu-
mentation is very comprehensive and long, which can intimidate new users. It’s not
necessary to understand the full potential of RMAN before using it. In many ways, it’s
a typical Oracle tool: It provides a fantastic amount of flexibility that in most cases you
don’t need to use at all, and the apparent complexity may put you off from using it in
the first place.

NOTE The keywords in the RMAN command language are case insensitive like
SQL keywords and database initialization parameter names. Within script code
examples, I prefer to use lowercase for readability.

In the most simple case, a backup script allocates a disk channel (to indicate that a
backup to disk is required), and then specifies a full database backup. This disk channel
is associated with a database server session that streams data to disk. To perform an
open backup, the database (OMFD1 in the example) must be running in ARCHIVELOG
mode. Various RMAN parameters can be used to determine the name of the backup file
on disk, which contains data in Oracle RMAN proprietary format. Backing up a data-
base using RMAN format means that RMAN must be used to perform any subsequent
restores. The script OMFD1.open.disk.rman looks like the following:

run {

allocate channel c1 type disk;

backup full (database format '/u02/OMFD1/ORA_O_%d_%t%s%p%u');

}

NOTE The script can be made even simpler by using the BACKUP FULL
DATABASE command without the FORMAT option, which creates the backup file
in $ORACLE_HOME/dbs using an Oracle-generated file name. This is probably
too inflexible for most organizations. Also, the Oracle9i version of RMAN
allocates a disk channel by default, so you don’t need to specify one. If you do
specify one, your scripts will work unchanged with Oracle8i and Oracle9i.

To perform the backup, a SYSDBA connection is required. In this case, we connect as
SYSDBA using the target�/ command-line option to connect to the Oracle instance

408 Chapter 18

identified by $ORACLE_SID, using the set_env alias from Chapter 4 to set the Oracle
environment first:

$ set_env OMFD1

$ rman nocatalog target=/ cmdfile=OMFD1.open.disk.rman log=backup.log

After the backup has completed successfully, you can see information about the
backup held in the control file by querying the v$backup_piece view:

select device_type,handle from v$backup_piece;

DEVICE_TYPE HANDLE

------------- ---

DISK /u02/OMFD1/backup/ORA_O_OMFD1_4359431202102cvntmg

The v$backup_piece view holds a lot of other useful information such as the elapsed
time of the backup and the start time. Only the backups that succeeded will be present.
You can use this information to track the performance of your backups over time and
compare the actual backups with the scheduled backups to identify failures. The
DEVICE_TYPE column holds either DISK or SBT_TAPE, and is useful if you are run-
ning both disk and tape backups and need to distinguish between them.

It’s very helpful to define a naming standard for the backup pieces. The convention
used in the example is ORA_ followed by the type of backup (O for open database, C
for closed database, and A for archived redo log), followed by the name of the data-
base, followed by other information guaranteed to make the name of the piece unique.
Structuring the names of your backup pieces might not seem so important now, but it
becomes much more significant when you send your backups to a Legato server and
you need to distinguish between the different types of backups held on the corporate
server, such as NT and UNIX file backups, and Microsoft SQL Server database back-
ups. The chosen naming convention immediately identifies the backup piece as
belonging to an Oracle database named OMFD1 that is backed up using RMAN.

NOTE RMAN in Oracle9i includes a new command to back up archived redo
logs and the database in the same command: BACKUP DATABASE PLUS
ARCHIVELOG. Keeping the command separate provides more flexibility on the
backup piece names.

Performing a closed database backup isn’t much more difficult. In fact, we could use
the previous OMFD1.open.disk.rman script, but instead we will create a different one
to identify that the backup piece was created by a closed backup rather than an open
one. In this case, the OMFD1.closed.disk.rman script contains the following, where the
only difference from the open backup script is that ORA_O changes to ORA_C to iden-
tify the type of backup in the name of the piece:

run {

allocate channel c1 type disk;

backup full (database format '/u02/OMFD1/ORA_C_%d_%t%s%p%u');

}

Backup and Recovery Using Recovery Manager (RMAN) 409

The major difference between an open and closed backup is that the database must
be in a mounted rather than open state before the closed backup script begins. This
could be done manually using SQL*Plus, but it’s not necessary because we already
have a script that can do that, as shown in Chapter 4. The dbcool_ora_shut.pl script can
perform a clean SHUTDOWN and then a STARTUP MOUNT to prepare for the closed
backup:

$ dbcool_ora_shut.pl sid=OMFD1 startup=mount

At this stage, the benefits of a standard set of scripts should be evident. The
dbcool_ora_shut.pl script returns 0 if it succeeds and 1 if it fails, and logs its actions.
This behavior will become useful when we eventually run our script scheduled from a
Legato server. Legato enables you to specify a prebackup command before executing
an RMAN backup and expects it to return 0 or 1. So if we want to perform a closed
backup via Legato, we simply specify the previous command as the Legato prebackup
command: It meets the Legato requirements exactly. Once the database is in a mounted
state, we can execute the closed backup using the following:

$ set_env OMFD1

$ rman nocatalog target=/ cmdfile=OMFD1.closed.disk.rman log=backup.log

At this stage, we haven’t backed up any archived redo log files. This draws attention
to an important feature of RMAN: You need to tell it exactly what you want to back up.
You actually get a control file backup free without requesting it explicitly, but if you
want to back up archived redo log files, you must place a command in the backup
script. In our case, we indicate that the backup piece contains archived redo log files by
prefixing ORA_A on the name:

run {

allocate channel c1 type disk;

backup full (database format '/u02/OMFD1/ORA_O_%d_%t%s%p%u');

backup archivelogs as well...

backup (archivelog all format '/u02/OMFD1/ORA_A_%d_%t%s%p%u');

}

The ARCHIVELOG ALL command backs up all archivelogs found in the log desti-
nation. Other options are possible such as backing up only the most recently created
logs based on a specified time limit and removing archived redo logs from disk as soon
as they are backed up. We’ll be taking a different approach to managing archived redo
logs on disk.

Checking That a Backup Was Successful

Various techniques are available to check that an RMAN backup was successful. You
can query the v$backup_piece view at any time, as shown in the previous section. Only
backups that completed successfully will cause output to appear in this view. The exis-

410 Chapter 18

tence of naming standards for the pieces makes it easy to identify the backup that was
performed, but doesn’t provide visibility of exactly which datafiles or archived redo
logs are present in each piece.

As an alternative, you can check the return code from the RMAN command imme-
diately after it completes. If the code is 0, then the backup was successful and other
values represent failure. Keep in mind that UNIX provides the return code of the last
command executed in the environment symbol $?. This approach has the drawback
that it doesn’t contain any information on exactly what was backed up.

A third technique can be used to check how many days of archived redo logs would
be required to recover the database from the most recent backup. For example, if you
perform a daily RMAN full database backup, then you would expect no datafiles to
need 2 or more days of archived redo logs for recovery from the most recent backup,
assuming that all backups have worked. On the other hand, if yesterday’s backup
failed, then you would expect the datafiles to require more than 1 day of archived redo
logs to be applied during recovery. RMAN provides the REPORT NEED BACKUP
COMMAND to display datafiles that need more than a specified number of days of
archived redo logs for recovery:

$ rman target=/

RMAN> report need backup days=2 database;

using target database controlfile instead of recovery catalog

Report of files whose recovery needs more than 2 days of archived logs

File Days Name

---- ----- ---

1 24 /u02/oradata/ORAD1/system01.dbf

2 24 /u02/oradata/ORAD1/undotbs01.dbf

3 24 /u02/oradata/ORAD1/tools01.dbf

In this example, the ORAD1 database was created 24 days ago and has never been
backed up using RMAN. On the other hand, if the most successful backup had taken
place today, the list of output files would be empty. This approach is the most reliable
for checking that backups have been successful.

Using a Backup Catalog

So far, we’ve kept backup information only in the control file of the database being
backed up. If you want to keep information on your Oracle RMAN backups all the time,
then you should use a backup catalog database. Using a backup catalog is recom-
mended by Oracle. Some features of RMAN are only available by using a backup cata-
log, and a backup catalog can track incarnations of your database. New incarnations of
your database are created whenever you open a database with the RESETLOGS option.
If you might need to restore to a point in time before a RESETLOGS operation, then you
must use a catalog database.

You should choose a database with high availability to hold the catalog because if
you choose to use a backup catalog and it’s not available, then the backup will fail. The
use of a backup catalog database can be specified in your RMAN command script. The

Backup and Recovery Using Recovery Manager (RMAN) 411

default option is nocatalog. You should keep a single backup catalog for all your Ora-
cle databases. If you need to perform backups of Oracle8i and Oracle9i databases, cre-
ate the catalog in an Oracle9i database using the Oracle9i catalog format. This
discussion assumes that you need to back up Oracle8i and Oracle9i databases, so you
create the catalog in an Oracle9i database.

When you choose to use a catalog database, naturally you want to back up that data-
base as well. Although Oracle EBU for Oracle7 contained a backup catalog command,
RMAN doesn’t. To back up the backup catalog database itself, you can:

■■ Perform regular exports of the backup catalog using the Oracle Export utility
and back up the dump files using a file backup utility.

■■ Back up the catalog database using RMAN, and use another database to act as
the catalog for the catalog database backup. This can get complicated because
then you need to decide how to back up the second catalog database.

■■ Perform nocatalog backups of the catalog database, and rely on information
held in control file backups to restore the catalog.

The third option becomes more attractive in Oracle9i because RMAN includes a
new feature to automate the backup of the control file, described in the section Using
the CONTROLFILE AUTOBACKUP Command later in this chapter.

Keep in mind that should you lose the catalog database and can’t restore the origi-
nal contents, all is not lost. In this case, you can create a new catalog database from
scratch, reregister all your Oracle databases back into the catalog, and synchronize
their control file contents back into the catalog. Because each database control file
keeps seven days’ worth of backup details by default, you still have access to informa-
tion for the most recent backups, which can potentially be used to perform a restore.
However, you have lost information on all backups prior to the previous week, and
these can’t be restored.

Creating the Catalog
After you have chosen the database that will hold the catalog, create a tablespace to
hold the RMAN catalog schema and create a user to own the tables. In our example,
the catalog database is RMANP1, the tablespace is RMAN_DATA, and the schema
owner is RMAN. These operations must be performed from a SYSDBA connection:

REM requires tablespace rman_data to exist

create user rman identified by xyz123

temporary tablespace temp

default tablespace rman_data

quota unlimited on rman_data;

REM grant privileges to rman

grant recovery_catalog_owner to rman;

grant connect, resource to rman;

revoke unlimited tablespace from rman;

412 Chapter 18

You might consider not granting CONNECT to the RMAN user for security reasons.
It’s not actually required in order to run backups that use a catalog. Once you’ve cre-
ated the RMAN account, you need to create the backup catalog itself. To do this, set the
environment to that of the catalog database, connect to the RMAN account using the
RMAN command utility, and then run the CREATE CATALOG command:

$ set_env RMANP1

$ srv1.dbcool.com:RMANP1 >rman catalog=rman/xyz123

Recovery Manager: Release 9.0.1.1.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

connected to recovery catalog database

recovery catalog is not installed

RMAN> create catalog

recovery catalog created

Specifying the Catalog for Backups
If you want to store database backup information in a catalog, then you need to regis-
ter it in the backup catalog. The database that you want to back up is referred to as the
target database. In order to register the target database, you need to run RMAN and
connect to the target database and the catalog at the same time, and then run the
REGISTER DATABASE command. The REGISTER command stores the physical struc-
ture of the database into the backup catalog.

In this example, we’ll register the database OMFD1. You can specify connections to
the catalog and target database using any valid Transparent Network Substrate (TNS)
connect strings. These will be required when we run Legato backups. For now, we set
the environment to that of the target database and connect to the target using a local,
non-TNS connection. The catalog database, which usually resides on a remote
machine, uses a TNS connect string. The target database account must have SYSDBA
privileges. The complete sequence looks like this:

$ set_env OMFD1

srv2.dbcool.com:OMFD1 >rman target=/

catalog=rman/xyz123@rmanp1.dbcool.com

Recovery Manager: Release 9.0.1.1.0 - Production

(c) Copyright 2001 Oracle Corporation. All rights reserved.

connected to target database: OMFD1 (DBID=3159171023)

connected to recovery catalog database

Backup and Recovery Using Recovery Manager (RMAN) 413

RMAN> register database;

database registered in recovery catalog

starting full resync of recovery catalog

full resync complete

Now that OMFD1 is registered in the catalog database, we can make a small change
to the original script and rerun the backup from the OMFD1 environment to store
information about the backup into the backup catalog as well as the OMFD1 control
file. In addition to adding a reference to the catalog connection, we can move the target
connection details into the script, which enables the script to be run from a very simple
command line:

$ rman @OMFD1.disk.open.rman

In this case, OMFD1.disk.open.rman contains the following:

connect target /

connect catalog rman/xyz123@rmanp1.dbcool.com

run {

allocate channel c1 type disk;

backup full (database format '/u02/OMFD1/ORA_O_%d_%t%s%p%u');

backup (archivelog all format '/u02/OMFD1/ORA_A_%d_%t%s%p%u');

}

NOTE The RMAN commands CONNECT CATALOG and CONNECT RCVCAT can be
used interchangeably to connect to a backup catalog. Some third-party backup
libraries mandate the use of CONNECT RCVCAT.

Connecting to the Target Using Oracle Net

Up until this stage, all of the examples have connected to the target database using a
local database connection. RMAN is not so restrictive. Using RMAN, you can specify
both the catalog connection and the target database connection at backup time using
TNS connect strings. Legato backups rely on this functionality, so the next step is to
configure the target database to allow remote connections as SYSDBA. In order to do
this, you need to create a password file for your database, as described in Chapter 5 in
the section Using a Password File. Once the target database is up and running with a
password file, create an account called RMAN in the target database and grant
SYSDBA privileges to it:

GRANT SYSDBA to RMAN;

It’s not necessary to grant CONNECT to the account. To see if the remote SYSDBA
connection is working, set the Oracle environment to one that doesn’t include the Sys-

414 Chapter 18

TE
AM
FL
Y

Team-Fly®

tem ID (SID) of the target database, and then use RMAN to test to make sure you can
connect to the target database and catalog at the same time using TNS connect strings:

$ srv2.dbcool.com:OMFD1 >set_env 9.0.1

$ srv2.dbcool.com:9.0.1 >rman

rman> connect target rman/abc123@omfd1.dbcool.com

rman> connect catalog rman/xyz123@rmanp1.dbcool.com

If you have configured the password file correctly, both commands should work.
Now the configuration is suitable for use with a Legato server.

Duplicating a Database

As a DBA, you’ve almost certainly been in a situation where you need to set up a new
database and the easiest way to accomplish the task is to clone the database files from
an existing database. You might do this simply by shutting down the source database,
making a tar image, and unpacking it on the new machine. If you’re likely to require
RMAN backups for the cloned database, then you first need to understand how
RMAN uniquely identifies databases in the backup catalog; if you don’t understand
this, you’re likely to run into problems with RMAN backups of your cloned database.

Understanding DBID and Catalog
Uniqueness
When you use the REGISTER DATABASE command to register your database in the
backup catalog, RMAN uses the database ID (DBID) column from V$DATABASE as a
unique identifier for your database. The DBID column is set for your database at cre-
ation time and is guaranteed to be unique. Historically, it hasn’t been possible to
change it. If you are an Oracle7 EBU user, this is fundamentally different. EBU uses a
combination of the hostname and SID to uniquely identify a database in the EBU cata-
log, whereas RMAN uses no external identifiers; it simply uses the DBID in the data-
base. If you clone an Oracle8 or later database onto another server, change the SID, and
even rename the database by recreating the control file, the DBID remains the same. If
you try to register the cloned database, you’re likely to receive the following error:

RMAN-20002: target database already registered in recovery catalog

Of much greater concern is the potential for confusion if you use OPEN RESETLOGS
for your cloned database before attempting to register it with REGISTER DATABASE. In
this case, RMAN thinks your cloned database is actually a new incarnation of the origi-
nal database! There are situations where you use OPEN RESETLOGS for a database (for
example, after incomplete recovery following a media failure), but this isn’t one of them.

Backup and Recovery Using Recovery Manager (RMAN) 415

RMAN registers your cloned copy quite happily, and then your original database back-
ups fail because RMAN detects that a later incarnation of the database exists.

Here’s an example of how you can get into this situation and how you can fix it. Say
you have a database called OMFD1 that you have been backing up for some time using
RMAN with a backup catalog. You decide to take a copy to a different server, rename
the database to OMFD2, and register it with the backup catalog after opening it with
OPEN RESETLOGS. At this point, you actually have two databases. RMAN thinks you
have one database, with the OMFD2 version being a later incarnation of OMFD1. If
you connect to the RMAN catalog as the RMAN account, you can identify what’s hap-
pened using the following SQL:

select db_key,dbid,dbinc_key,name,resetlogs_time,

current_incarnation current

from rc_database_incarnation where name in ('OMFD1','OMFD2');

DB_KEY DBID DBINC_KEY NAME RESETLOGS_TIME CURRENT

-------- ---------- ----------- ------- --------------------- ----------

1326013 849152607 1544963 OMFD1 18-JUN-2001 17:45:03 NO

1326013 849152607 2212174 OMFD2 11-OCT-2001 14:02:12 YES

The output of the query clearly shows that there are two incarnations for the data-
base with DBID 849152607, and the later one that is dated 11-OCT-2001 is the current
one. The fact that the database has been renamed might appear to be significant, but as
far as RMAN is concerned, it’s incidental. The information available shows two incar-
nations of the same database. Attempts to back up the incarnation corresponding to
OMFD1 will fail. This problem can be addressed by resetting the incarnation of the
database back to the previous one, which is indicated by the DBINC_KEY given by
1544963. To do this, you need to connect to the target database and the backup catalog
using RMAN, and then run the following RMAN command:

reset database to incarnation 1544963;

RMAN-03022: compiling command: reset

RMAN-03023: executing command: reset

RMAN-08066: database reset to incarnation 1544963 in recovery catalog

Reexecuting the previous query confirms that the previous incarnation is now cur-
rent and backups of OMFD1 can continue as before. However, this doesn’t solve the
issue of how to back up OMFD2 using a backup catalog:

DB_KEY DBID DBINC_KEY NAME RESETLOGS_TIME CURRENT

-------- ---------- ----------- ------- --------------------- ----------

1326013 849152607 1544963 OMFD1 18-JUN-2001 17:45:03 YES

1326013 849152607 2212174 OMFD2 11-OCT-2001 14:02:12 NO

This problem has two solutions. One uses the RMAN DUPLICATE command and
the other uses a command-line utility to reset the DBID, which is available in Oracle9i
Release 2. The utility is called DBNEWID and Chapter 23 contains an example of how
to use it.

416 Chapter 18

Using the RMAN DUPLICATE Command
You can use the RMAN DUPLICATE command to clone a database. This does two use-
ful things compared to cloning a database yourself using operating system commands
like rcp or tar. First, the database is renamed as an integral part of the process, and sec-
ond, a new DBID is created automatically for the cloned database, so it can be backed
up using an RMAN catalog.

The RMAN DUPLICATE command has the capability to clone a database with
almost no effort. The DUPLICATE command restores and recovers a backup of one
database to a database with a different name through a single RMAN command script.
You can clone a database onto the same machine or a different machine. You can use a
tape or disk backup as the basis for your restore and recovery, but it should be empha-
sized that you need to have a backup of the source database available, otherwise the
duplication will fail. The source database needs to be in ARCHIVELOG mode, which
means that you can clone the source database while it’s up and running.

In this example, for simplicity, we’ll duplicate a database onto another database
with a different name on the same server. Oracle refers to the cloned database as the
auxiliary database. We will use this terminology from this point on.

RMAN provides the flexibility to restore backup files from one name to a different
name using the SET NEWNAME command. If possible, we want to avoid the over-
head of having to specify the restored file name for each file in the source database
when we create the duplicate database. If you’ve followed the earlier recommenda-
tions of this book for Oracle physical layout using a large file system, then RMAN
DUPLICATE can be performed with the maximum simplicity by specifying the names
for the restored files in the init.ora file of the cloned database using a simple rule. In
this case, the only difference between the file names in the source database and the
auxiliary database is the SID in the file name, which in this example is OD1 for the
source database and OD2 for the auxiliary database, as shown in Table 18.1.

Before running the DUPLICATE command, you need to make sure that the Optimal
Flexible Architecture (OFA) structure for the OD2 database (cdump, udump, bdump,

Backup and Recovery Using Recovery Manager (RMAN) 417

Table 18.1 Source and Auxiliary Files for Database Duplication

SOURCE FILE AUXILIARY FILE
/u02/oradata/OD1/cntrl01.ctl /u02/oradata/OD2/cntrl01.ctl

/u02/oradata/OD1/cntrl02.ctl /u02/oradata/OD2/cntrl02.ctl

/u02/oradata/OD1/redog1m1.log /u02/oradata/OD2/redog1m1.log

/u02/oradata/OD1/redog1m2.log /u02/oradata/OD2/redog1m2.log

/u02/oradata/OD1/redog2m1.log /u02/oradata/OD2/redog2m1.log

/u02/oradata/OD1/redog2m2.log /u02/oradata/OD2/redog2m2.log

/u02/oradata/OD1/rbs01.dbf /u02/oradata/OD2/rbs01.dbf

/u02/oradata/OD1/system01.dbf /u02/oradata/OD2/system01.dbf

/u02/oradata/OD1/temp01.dbf /u02/oradata/OD2/temp01.dbf

/u02/oradata/OD1/users01.dbf /u02/oradata/OD2/users01.dbf

and so on) and all database file directories and archived redo log directories are created
in advance. If you don’t, the duplication will fail. It would be nice if RMAN had an
option to create directories for you as needed, but as of today it doesn’t. You also need
to make sure that an init.ora file and password file exist for the auxiliary database. The
differences between parameters that exist in both the auxiliary and source database
init.ora files are shown in Table 18.2.

Perl is a great language for automating processes that modify strings in scripts, and
it would be fairly straightforward to write a Perl script to create the directories and
init.ora file for the auxiliary database. The init.ora file for the auxiliary database has
two very important additional parameters that are not present in the init.ora file of the
source database. These parameters (DB_FILE_NAME_CONVERT and LOG_FILE_
NAME_CONVERT) are used by the DUPLICATE command to determine how the
source database backup files are to be restored from backup to create the database files
and redo logs for the auxiliary database:

DB_FILE_NAME_CONVERT=(/OD1/,/OD2/)

LOG_FILE_NAME_CONVERT=(/OD1/,/OD2/)

As Table 18.1 shows, the only difference between the file names for each database is
the SID in the paths. The CONVERT parameters provide the information that RMAN
needs to change OD1 to OD2 for both database file names and redo logs on restore. You
also need to create a password file for the auxiliary database, as shown in Chapter 5, and
ensure that the TNS alias for the auxiliary database exists in your Oracle Names server
(or your tnsnames.ora file, which hopefully you’re no longer using). The following is a
checklist you should use before running the RMAN DUPLICATE command:

■■ Perform an RMAN backup of source database.

■■ Make sure a backup is available.

418 Chapter 18

Table 18.2 Source and Auxiliary init.ora Differences

SOURCE FILE AUXILIARY FILE
db_name=od1 db_name=od2

instance_name=od1 instance_name=od2

service_names=od1.dbcool.com service_names=od2.dbcool.com

control_files= (control_files= (

"/u02/oradata/OD1/cntrl01.ctl", "/u02/oradata/OD2/cntrl01.ctl",

"/u02/oradata/OD1/cntrl02.ctl") "/u02/oradata/OD2/cntrl02.ctl")

background_dump_dest = background_dump_dest =

/u01/app/oracle/admin/OD1/bdump /u01/app/oracle/admin/OD2/bdump

Core_dump_dest = core_dump_dest =

/u01/app/oracle/admin/OD1/cdump /u01/app/oracle/admin/OD2/cdump

User_dump_dest = user_dump_dest =

/u01/app/oracle/admin/OD1/udump /u01/app/oracle/admin/OD2/udump

log_archive_dest log_archive_dest

=/u03/oradata/OD1/arch =/u03/oradata/OD2/arch

■■ Create the OFA structure for auxiliary.

■■ Create an oratab entry for auxiliary.

■■ Create init.ora for auxiliary with CONVERT parameters.

■■ Create a password file for auxiliary.

■■ Create TNS alias for auxiliary.

■■ STARTUP NOMOUNT the auxiliary database.

After the prerequisites are in place, you need a script to create the auxiliary, for
example, create_od2.rman:

run {

sql "alter system archive log current"; # flush out the most recent log

allocate auxiliary channel c1 type disk;

duplicate target database to od2;

}

To create the auxiliary, set the Oracle environment to that of the source database and
run the create_od2.rman script while connected to the auxiliary database (which must
be running in the NOMOUNT state) as follows:

$ set_env OD1

$ rman nocatalog target=/ auxiliary=od2.dbcool.com

cmdfile=create_od2.rman

With only three commands, this script restores your source database to SID OD2
and recovers it to the change in the most recent archivelog from OD1 without any DBA
intervention. It couldn’t get much simpler. In this example, the auxiliary has been
restored to the change in the most recent archived redo log from the source database,
and this log was flushed out by the first line of the create_od2.rman script. This high-
lights that the duplication process applies the actual archived redo logs from the source
database: There is no need to have backups of archived redo log files available in this
case. RMAN DUPLICATE is much more flexible than this simple example shows. For
example, rather than applying all the archived redo log files from the primary during
the recovery, you can restore the auxiliary to an earlier point in time by specifying a
date or SCN before the DUPLICATE command in the script. For example,

set until scn 40120815949;

If your physical layout is fragmented and you can’t restore the auxiliary by chang-
ing the SID in each file name in the source database, you can still run the DUPLICATE
command. In this case, the process becomes more manual because you can’t use a sim-
ple rule to map the source files to the auxiliary file on restore, as performed by the
CONVERT parameters in the init.ora file of the auxiliary database. Instead, you need
to remove the CONVERT parameters and specify the restore file names in the
create_od2.rman script file by file using SET NEWNAME. If you use large file systems
for your Oracle databases, you can do this easily using CONVERT.

Backup and Recovery Using Recovery Manager (RMAN) 419

The DBNEWID Utility
The Oracle DBNEWID command-line utility solves the problem of the duplicated
DBID following a manual database copy operation by enabling you to change the
DBNAME, the DBID, or both. The utility is shipped with Oracle9i Release 2 and runs
against all database versions from Oracle8 and later.

Generating Backup Scripts

Several types of backups require the following options:

■■ Backup to tape or disk

■■ Backup with or without a backup catalog

■■ Backup of the database open or closed

■■ Backup of the database with and without an integral archived redo log backup

■■ Backup of archived redo logs only

There are minor differences between the scripts in each case. This is a situation that
can benefit from the excellent text-processing capabilities of Perl. To automate the
creation of RMAN backup command scripts compatible with Oracle8i and Oracle9i
databases, a Perl script is available on this book’s companion Web site to generate
a selection of RMAN scripts for the previous cases. The script is dbcool_rman_
generate.pl and it has the following command line:

dbcool_rman_gen.pl sid=sid target=targ [catalog=cat] {dir=dir|tape=srv}

[pool=poolname] [overwrite=y|n]

sid: ORACLE_SID of target database to be backed up

target: user/pwd@tns for the target database SYSDBA connection

cat: user/pwd@tns for the catalog database connection

dir: path for disk backups

srv: name of Legato server

pool: optional Legato tape Pool name

overwrite: force overwrite of existing scripts

Both dir� and tape� can be specified if you have to perform both disk and tape
backups. This is an example of command-line arguments for the Oracle SID OMFD1
that lead to generation of scripts for both disk and Legato server backups:

sid=OMFD1

target=rman/abc123@omfd1.dbcool.com

catalog=rman/xyz123@rmanp1.dbcool.com

dir=/u03/backups

tape=lg1.dbcool.com

pool=Ora

420 Chapter 18

The script produces 21 RMAN scripts in $ORACLE_BASE/admin/OMFD1/scripts
to cover all the possible combinations. The names of the scripts are structured to clearly
identify the type of backup performed. Here are two examples:

OMFD1.tape.catalog.archlogs.open.rman

OMFD1.disk.nocatalog.noarchlogs.closed.rman

The first script performs an open database backup to tape, using a backup catalog
and including archived redo logs. The second performs a closed database backup to
disk without a backup catalog and without including archived redo logs. It needs to be
emphasized that RMAN doesn’t include commands to modify the database state.
Therefore, if a closed backup is required, the DBA is responsible for ensuring that the
database is in a mounted state before the script executes. To place the database in a
mounted state, suitable for a closed backup, you run the following SQL*Plus
commands:

REM run these before a closed backup

shutdown immediate;

startup mount;

REM run this to open database after backup completes

alter database open;

It’s helpful to compare the contents of two of the scripts to see the effect of the
command-line arguments on the generated output. The OMFD1.tape.catalog.archlogs.
open.rman script performs an open database backup (including archived redo logs) to
a Legato server using a backup catalog with the following commands:

connect target rman/abc123@omfd1.dbcool.com

connect rcvcat rman/xyz123@rmanp1.dbcool.com

run {

set command id to 'OMFD1.tape.catalog.archlogs.open.rman';

allocate channel c1 type 'SBT_TAPE'

parms 'ENV=(NSR_SERVER=lg1.dbcool.com,NSR_DATA_VOLUME_POOL=Ora)';

backup full (database format 'ORA_O_%d_%t%s%p%u');

sql "alter system archive log current";

resync catalog;

change archivelog all crosscheck;

backup (archivelog all format 'ORA_A_%d_%t%s%p%u');

}

NOTE RMAN in Oracle9i automatically performs ALTER SYSTEM ARCHIVE LOG
CURRENT to flush the current online redo log to disk whenever an archived
redo log backup command is executed. Leaving the command in the script
enables it to work unchanged for both Oracle8i and Oracle9i databases.

Backup and Recovery Using Recovery Manager (RMAN) 421

The OMFD1.disk.nocatalog.noarchlogs.closed.rman script performs a closed backup
to disk without using a backup catalog and without archived redo log backup by using
the following commands:

connect target rman/abc123@omfd1.dbcool.com

run {

set command id to 'OMFD1.disk.nocatalog.noarchlogs.closed.rman';

allocate channel c1 type disk;

backup full (database format '=/u03/backups/ORA_O_%d_%t%s%p%u');

}

The OMFD1.disk.nocatalog.noarchlogs.closed.rman script has the capability to per-
form a backup without requiring the database to be in ARCHIVELOG mode. This is
useful for development databases that need to be backed up from time to time, but
don’t run in ARCHIVELOG mode. If such a script included archived redo log backup
commands, like those from the previous script, the backup would fail.

For a production system, you’re likely to use only three of the scripts on a regular
basis. These scripts all back up to tape on a remote Legato server using a backup cata-
log for robustness:

OMFD1.tape.catalog.arch.rman

OMFD1.tape.catalog.archlogs.closed.rman

OMFD1.tape.catalog.archlogs.open.rman

In all scripts, the initial SET COMMAND ID command causes the client_info col-
umn of v$session to be populated with the supplied string. This enables the Oracle
session performing the backup to be identified easily by a DBA using a SQL query,
which can be useful if you need to kill a backup, as shown in the section Backup and
Restore Troubleshooting later in this chapter. Keep in mind that there is nothing to
prevent you from running a closed backup script while the database is open. In this
case, the backup will still work, but the value reported in the client_info column will be
misleading.

As an alternative to running command-line scripts explicitly, you can use the
RMAN integration provided with Oracle Enterprise Manager (OEM) to run backups.
I prefer to run backups from scripts on disk because it provides immediate visibility on
exactly what commands the scripts execute without having to depend on a graphical
user interface (GUI) tool.

NOTE RMAN in Oracle9i includes new options for storing persistent values for
backup channels using the CONFIGURE CHANNEL command rather than the
ALLOCATE CHANNEL command. I still prefer to use ALLOCATE CHANNEL as it
enables each script to stand alone without requiring previous configuration.

422 Chapter 18

Managing Archived Redo Logs on Disk

Archived redo logs are required to recover a database to a point in time. If any one of
those logs is removed without a backup, then you cannot recover to that point in time.
So archived redo log backups are mission critical and the management of archived
redo log removal needs to be integrated with the backup procedures. Although RMAN
can optionally remove archivelogs that have been backed up during script execution
and can back up a given archived redo log more than once in a single script, I prefer to
manage the removal of archivelogs from disk with a separate process and allow
RMAN to deal only with backups. If you wish to delete archived redo logs immedi-
ately after backup, you can add the DELETE INPUT option to the archived redo log
backup command:

backup (archivelog all format 'formatstring' delete input);

My requirement for archived redo log backups is to only remove an archived redo
log from disk when it has been backed up twice to different tapes on a backup server.
As result, there is no dependency on a single tape in order to recover the database to a
particular point in time. This can be implemented in different ways.

One way is to back up the archived redo logs through RMAN once a day through a
scheduled backup and ensure that your Legato administrator allocates a new tape for
Oracle backups on a daily basis. This way, you can check the RMAN backup catalog for
a given number of backups, and if the number is 2 or more, you know you can safely
remove the archived redo log because it’s on different tapes.

Checking Archivelog Backups
RMAN provides a reporting facility that enables you to check how many times an
archived redo log has been backed up, among many other features, which is useful if
you wish to manage the removal of archived redo logs from disk yourself rather than
let RMAN do it for you. For example, if you wanted to check how many times the
archived redo log with sequence number 17 had been backed up, you would run an
RMAN command like the following after connecting to the target and catalog database:

rman> list backupset of archivelog low logseq = 17 high logseq = 17;

List of Backup Sets

===================

BS Key Device Type Elapsed Time Completion Time

------- ----------- ------------ ---------------

35 DISK 00:00:10 03-NOV-01

BP Key: 36 Status: AVAILABLE Tag:

Piece Name: /u02/omfd1/ORA_A_OMFD1_4448356603103d879qc

List of Archived Logs in backup set 35

Thrd Seq Low SCN Low Time Next SCN Next Time

---- ------- ---------- --------- ---------- ---------

Backup and Recovery Using Recovery Manager (RMAN) 423

1 17 285873 28-OCT-01 291407 03-NOV-01

BS Key Device Type Elapsed Time Completion Time

------- ----------- ------------ ---------------

42 DISK 00:00:02 03-NOV-01

BP Key: 43 Status: AVAILABLE Tag:

Piece Name: /u02/omfd1/ORA_A_OMFD1_4448361304104d87a92

List of Archived Logs in backup set 42

Thrd Seq Low SCN Low Time Next SCN Next Time

---- ------- ---------- --------- ---------- ---------

1 17 285873 28-OCT-01 291407 03-NOV-01

By searching the output for instances of backup pieces specific to the instance (in
this case, ORA_A_OMFD1) and counting the pieces (in this case, 2), you can confirm
that the requisite number of backups exists before removing the archived redo log. The
ability to perform this check is made easier by the choice of a standard format for
backup pieces, enabling you to search the output more easily. In general, if you use a
naming standard for anything having to do with Oracle, then writing scripts to man-
age the database becomes easier.

Synchronizing Archived Redo Log
Backup Information
All the generated backup scripts assume that removal of archived redo logs from disk
is managed externally to RMAN, rather than allowing RMAN itself to remove them
immediately after backup through a script command. As a result, it’s necessary to
include commands in the backup script to inform RMAN that archived redo logs on
disk may no longer be present due to removal by the external process as follows:

sql "alter system archive log current";

resync catalog;

change archivelog all crosscheck;

backup (archivelog all format 'ORA_A_%d_%t%s%p%u');

The CHANGE ARCHIVELOG ALL CROSSCHECK command causes RMAN to
check the archived redo log files present on disk with those it expects to find and resyn-
chronizes the control file to update the status of any files that have been removed by
the external archived redo log management process. RMAN is notoriously strict about
what it expects to find on disk. This is one reason its backups are so reliable.

If you simply remove archived redo log files from disk without notifying RMAN in
this way, your backups will fail. After you remove an archived redo log file you must
use the DELETE EXPIRED ARCHIVELOG COMMAND as shown in the following
example, or you will receive “validation failed for archived log” messages when the
CHANGE ARCHIVELOG ALL CROSSCHECK is executed during a backup:

delete noprompt expired archivelog

'/u02/oradata/ORAD1/arch/T0001S0000000611.ARC';

424 Chapter 18

TE
AM
FL
Y

Team-Fly®

Archived Redo Log Naming Standards
Using a well-thought-out naming scheme and location for your archived redo log files
on disk can make it easier to write scripts to manage them: If you do that, your script
will be able to locate the logs without needing to look up the location from the data-
base, and you’ll be able to use pattern matching to identify the individual file names
easily. You should always be able to locate your archived redo log files on disk in the
OFA-compliant location, which for an instance named OMFD1 is:

$ORACLE_BASE/admin/OMFD1/arch

This doesn’t mean that you need to use this location in the init.ora file. It’s better to
be explicit about the real location of the archived redo log files in the init.ora file, which
might specify the real archived redo log destination as:

log_archive_dest_1= "location=/u05/oradata/OMFD1/arch MANDATORY"

You can have the best of both worlds by creating a symbolic link from the OFA direc-
tory to the real location:

$ cd $ORACLE_BASE/admin/OMFD1

$ ln -s /u05/oradata/OMFD1/arch arch

After you’ve done this, you can take advantage of the UNIX CDPATH implemented
by the set_env (as described in Chapter 4) alias to locate your archived redo log direc-
tory for a given instance simply by entering:

$ cd arch

In terms of a naming standard for individual archived redo log names, the follow-
ing file specification in the init.ora file is recommended:

log_archive_format = "T%TS%S.ARC"

This results in names like T0001S0000000017.ARC for individual files, where the
name contains both the log thread and sequence number in the thread. The advantage
of using the log thread in the file name (identified by the %T) is that exactly the same
format can be used for multiple instances in an Oracle Parallel Server or RAC configu-
ration. Some DBAs like to include the instance name in the format, and this can
be achieved in a non-instance-specific way, resulting in names like OMFD1_
T0001S0000000017.ARC, by using the following:

log_archive_format = "@_T%TS%S.ARC"

Interfacing to Legato

Legato has a long established relationship with Oracle for providing interfaces from
RMAN to an autochanger tape library storage device attached to a Legato server. The

Backup and Recovery Using Recovery Manager (RMAN) 425

autochanger device is sometimes referred to as a tape library. Oracle ships Legato Stor-
age Manager (LSM) with the Oracle DBMS product set. This is a cut-down version of
Legato that only allows backups to a locally attached tape drive on the same server as
the database. This section describes the fully fledged Legato product that you use if
you want enterprisewide Oracle backups of your Oracle database directly to tape on a
remote server. The examples in this section use Legato NetWorker for Oracle 3.0 on
Sun Solaris (32-bit SPARC). The configuration on other UNIX platforms, including
Linux, is very similar.

If you use Legato NetWorker Module for Oracle with a tape library on a remote site,
your database data is streamed by RMAN directly to tape, giving a guaranteed offsite
backup of your data, all from a single RMAN command script. Depending on the con-
figuration of the Legato server, a single database backup can stream to multiple tape
devices permitting database backup throughput of hundreds of gigabytes per hour. It’s
also possible to run several different database backups and restores at the same time. It
should be emphasized that when you use Legato NetWorker for RMAN backups, Ora-
cle streams data—not operating system files—from the database to the Legato server.
This is different from a UNIX file system backup, which explicitly backs up UNIX files.
If you use Legato NetWorker for Oracle for your Oracle backups, then you should pre-
vent your regular Legato file system backups from backing up the database files. If you
continue to back up these files, you’re just wasting space on the server. This section
explains how to do that.

Installing Legato NetWorker 3
for Oracle
Legato NetWorker 3 for Oracle on Solaris is delivered as a Solaris package that must be
installed by the SA as the root account on the Oracle database server that requires
Legato backups. For example, using the tar file downloaded from Legato’s Web site,
installation proceeds as follows, assuming that the tar file has been unpacked into the
/tmp directory and the SA is logged on as root:

$ cd /tmp

$ pkgadd -d /tmp LGTOnmo

The key components that are installed are

/usr/lib/libnwora.so.1

/usr/lib/libnwora.so

/usr/sbin/nsrnmostart

The nsrnmostart executable is required to run RMAN backups scheduled by the
Legato server, as described later in this section. The shared library libnwora.so.1 is
the glue that directs the Oracle server to stream backup data to a Legato server, and
libnwora.so is a symbolic link to it. In order to link the Legato shared library into the
Oracle DBMS, you need to change the default libobk.so shared library shipped by Ora-
cle and replace it with libnwora.so. You can see which libobk.so is linked into the Ora-
cle8i DBMS executable on Solaris as follows:

426 Chapter 18

$ cd $ORACLE_HOME/bin

$ ldd oracle|grep libobk.so

libobk.so => /u01/app/oracle/product/8.1.7/lib/libobk.so

The previous output shows that the Oracle executable is using the default libobk.so
that was shipped with Oracle. This isn’t Legato aware. You need to replace it with the
Legato-aware version as follows:

$ cd $ORACLE_HOME/lib

$ mv libobk.so libobk.so.default

$ ln -s /usr/lib/libnwora.so libobk.so

Legato Client Resource Definitions
After you’ve Legato-enabled your Oracle executable, you need to have a Legato Client
resource definition configured in the Legato server in order to permit Oracle backups
to the server. The Client resource identifies the Oracle server as the NetWorker backup
client and specifies the policies that the NetWorker server uses for backup data man-
agement. Client definitions are saved persistently through the Legato NetWorker
server administration tool, nwadmin. The ability to add and modify Client definitions
through nwadmin requires Legato server administrator rights.

Most organizations are likely to have a dedicated team for managing an enterprise-
wide resource such as a Legato server. Legato actually states in its documentation that
the Oracle UNIX account (usually oracle) needs to be in the Legato server administra-
tor list in order to have access to the full Legato Oracle functionality for backups and
restores. This raises potential security concerns as your Legato administrators may not
want Oracle DBAs to have Legato administrator rights. In this case, you should refer
them to the Legato documentation. Having Legato administrator rights means that
Oracle DBAs can potentially modify any backup on any client machine, including non-
Oracle backups. My experience has been that professional Oracle DBAs can be trusted
to manage their own Oracle backups on a Legato server without impacting other back-
ups. In any case, the configuration of Oracle-backup-specific Client resource defini-
tions requires information that is specific to Oracle, which is beyond the scope of what
a Legato administrator deals with. For that reason, the Oracle DBA can reasonably
expect to have Legato administrator rights.

There are two distinct types of Client resources as far as we are concerned. If your
company uses Legato for standard UNIX file system backups on your Oracle server,
then a Client resource definition already exists. This Client resource doesn’t contain
information about Oracle databases, but it does enable the DBA to initiate Oracle back-
ups from the client to the Legato server using RMAN. For example, if the Oracle data-
base server srv1.dbcool.com already has a Client definition on the Legato server
lg1.dbcool.com through the use of UNIX file system backups, then it enables the DBA to
initiate an Oracle backup from the client, for example, using a script like the following:

connect target rman/abc123@omfd1.dbcool.com

connect catalog rman/xyz123@rmanp1.dbcool.com

run {

set command id to 'OMFD1.tape.catalog.archlogs.open.rman';

Backup and Recovery Using Recovery Manager (RMAN) 427

allocate channel c1 type 'SBT_TAPE'

parms 'ENV=(NSR_SERVER=lg1.dbcool.com)';

backup full (database format 'ORA_O_%d_%t%s%p%u');

sql "alter system archive log current";

resync catalog;

change archivelog all crosscheck;

backup (archivelog all format 'ORA_A_%d_%t%s%p%u');

}

The channel definition in the script specifies that a backup to tape on the Legato
server lg1.dbcool.com is needed. In addition to client-initiated backups, we need to run
backups scheduled and initiated from the Legato server. This leads to a requirement
for Oracle-specific Client resource definitions.

As we’ll configure it, each database backup and backup type on a particular Oracle
server will have its own Client resource definition. For example, if there are two
instances—OD1 and OD2—on an Oracle server, the following backups will all have a
separate Client resource definition:

■■ OD1 open backup

■■ OD1 closed backup

■■ OD1 archivelog-only backup

■■ OD2 open backup

■■ OD2 closed backup

■■ OD3 archivelog-only backup

The Client resource definitions all have the same name (the hostname of the Oracle
server) and typically differ only in the contents of two of the Client properties, which
are used to identify the type of backup:

■■ Saveset field

■■ Backup command

The Saveset field in the Client resource identifies the name of the RMAN script to
run. As we’ve already generated the required scripts using dbcool_gen_rman.pl, we
can enter the script name right away. For example, for the OD1 open backup, we spec-
ify the following as the value for Saveset:

\u01\app\oracle\admin\OD1\scripts\OD1.tape.catalog.open.rman

The Backup command in the Client resource is the name of a script run by the
Legato client daemon (nsrexecd) on the client machine during a scheduled backup.
The client daemon is contacted by the Legato scheduler on the server, passing it infor-
mation about the Saveset and the name of the Backup command script to run. The
Backup command script in the Client resource is used to set up the environment for
running the Saveset script. The Backup command script must be in the same directory
as the Legato executables (/usr/sbin for Solaris), and it must start with the string nsr.
It’s clear that for each RMAN script, we need an equivalent nsr script to call it. For that

428 Chapter 18

purpose, you can download dbcool_legato_gen.pl from this book’s companion Web
site and run it as follows:

$ dbcool_legato_gen.pl sid=SID

To save on the number of scripts generated, it is assumed that all backups to your
Legato server will use a backup catalog and the database being backed up is in
ARCHIVELOG mode. This results in the creation of three Legato backup scripts in the
scripts directory for the SID. For example, the OD1 database has three files generated
in $ORACLE_BASE/admin/OD1/scripts:

■■ nsr_ora_closed_OD1

■■ nsr_ora_open_OD1

■■ nsr_ora_arch_OD1

The dbcool_legato_gen.pl script can’t write directly into /usr/sbin because it
requires root privileges that the Oracle DBA should not have. The best way to get the
scripts into /usr/sbin is to ask your SA to create symbolic links from /usr/sbin to the
script directory.

Creating a Save Group
Save Group is the name of a Legato resource that you create using nwadmin to initiate
a Legato scheduled backup from the backup server. It’s simply a text string that you
create, and then associate with a Client resource definition. You create the named Save
Group and then modify the related Client resource definition by checking a box with
the name of the group in the Client resource. As usual, it’s best to use a standard for-
mat for the names of groups related to Oracle backups so that they stand out clearly in
the list. One way is to use the Legato server script name without the nsr prefix leading
to group names like the following:

ora_closed_OD1

ora_open_OD1

ora_arch_OD1

By specifying a separate group for each type of Oracle backup for each database,
you can run the scheduled backup of each type independently. After you have created
the group name, you need to select the time at which to start backups of the associated
Client resource each day, and then click Enable in the Save Group definition screen.

It’s conceivable that you might not want your scheduled backup to run every day.
This is fine because the Save Group start time doesn’t determine whether the associ-
ated Client resource actually runs the backup. The start time determines when the
backup process begins. This is a fairly subtle point. The named schedule in the Client
resource determines whether the backup in the Client resource actually runs.

For example, you might configure the group ora_open_OD1 to start at 03:00 each
day. This means at 03:00 each day, the Legato scheduler checks the backup schedule for
the Client resource associated with the group ora_open_OD1. Legato only runs the

Backup and Recovery Using Recovery Manager (RMAN) 429

backup if the schedule requires it. If the schedule specifies that backups run Monday
through Friday only, the scheduler still attempts to initiate the backup at 03:00 on Sat-
urday and Sunday. Once the Client resource schedule is checked, Legato determines
that the backup runs only Monday through Friday. As a result, the backup returns
immediately with a success code without actually running the RMAN backup.

Legato-Scheduled Backup Scripts
So far, we’ve created a Client resource using nwadmin to support a scheduled open
backup of our database instance OD1 by specifying the following in the Client resource
definition:

Saveset. \u01\app\oracle\admin\OD1\scripts\
OMFD1.tape.catalog.open.rman

Backup command. nsr_ora_open_OD1

In addition to these settings, it’s necessary to check a Group and choose a Schedule
from the list in the Client resource definition. This is an appropriate point at which to
consider the contents of the nsr script set as the property of the Backup command. All
of the generated nsr scripts are based on the Legato-supplied template in /usr/sbin/
nsrnmo. The purpose of the nsr_ora_open_OD1 script is to set up an appropriate UNIX
environment before running RMAN with the Saveset command script. As a minimum,
the nsr script must set the following environment variables:

ORACLE_HOME. The $ORACLE_HOME of the database to be backed up.

PATH. This must include the location of the nsrnmostart executable (for
example, /usr/sbin).

Optionally, the following environment symbols can be set:

■■ LD_LIBRARY_PATH

■■ NSR_RMAN_ARGUMENTS

■■ NSR_SB_DEBUG_FILE

■■ PRECMD

■■ POSTCMD

■■ TNS_ADMIN

The POSTCMD and PRECMD symbols can be used to specify scripts to be executed
before and after the backup. For an open backup, the PRECMD simply checks to make
sure the database is up:

PRECMD="su oracle -c \"/u01/app/oracle/perl/dbcool_db_up.pl sid=OD1\""

For a closed backup, the database must be in STARTUP MOUNT mode, so the
nsr_ora_closed_OD1 script contains the following as the PRECMD:

PRECMD="su oracle -c \"/u01/app/oracle/perl/dbcool_ora_shut.pl \

sid=OD1 startup=mount\""

430 Chapter 18

If the PRECMD fails (that is, if it doesn’t return the value 0), then the RMAN backup
doesn’t take place. The NSR_RMAN_ARGUMENTS symbol can be used to pass addi-
tional command-line arguments to RMAN. In our case, we want to log the RMAN
actions to a $ORACLE_SID-specific directory, which is consistent with our usual stan-
dard for logging SID-specific script information. We can do this by setting the value as
follows:

NSR_RMAN_ARGUMENTS="msglog \

/u01/app/oracle/admin/OD1/log/OMFD1.tape.catalog.open.rman.log \

append"

To actually execute the RMAN command script, the nsr_ora_open_OD1 script calls
the nsrnmostart executable (which locates the RMAN executable), passes the Saveset
value from the Client resource as the name of the RMAN script to execute (along with
any other RMAN command-line arguments), and runs RMAN (as shown by the fol-
lowing lines):

#

Export all necessary environment variables

#

export_environment_variables

#

Call nsrnmostart to do the backups.

#

#print $BACKUP_COMMAND_LINE

${BACKUP_COMMAND_LINE} &

Pid=$!

wait $Pid

nsrnmostart_status=$?

if [$nsrnmostart_status != 0] ; then

echo "nsrnmostart returned status of "$nsrnmostart_status

echo $0 "exiting."

exit 1

fi

exit 0

NOTE Legato’s scheduler only provides scheduling for Legato backups. If your
organization uses an enterprisewide cross-platform scheduler such as Autosys
from Computer Associates, an add-on module is available to enable Legato
Save Groups to be scheduled from Autosys instead.

Backup and Recovery Using Recovery Manager (RMAN) 431

Full Sequence of Operations for a
Scheduled Backup

It is useful to list the sequence of operations for a scheduled Legato backup as it may
seem confusing at first:

1. The Legato server periodically checks the UNIX server clock for Save Groups
that start now.

2. The Legato server runs any Save Group set to start at the current time.

3. The group identifies a Client resource definition.

4. The Client resource specifies a backup schedule.

5. If the backup is not scheduled to run, exit now; otherwise, continue.

6. The Client resource BACKUP command specifies an nsr script to run on the
client.

7. The Client resource Saveset identifies an RMAN script to run on the client.

8. The Client resource BACKUP command and Saveset are passed to the nsrexecd
daemon on the client.

9. nsrexecd runs the BACKUP command nsr script located in /usr/sbin.10.
The nsr script identifies the RMAN executable to run.

10. The RMAN script identified by the Saveset value is passed to RMAN, which
executes it.

11. The RMAN script streams data back to the RMAN server.

Miscellaneous Legato
Environment Symbols
The example backup scripts have used a single environment symbol in the Legato tape
channel allocation command to identify the backup server:

parms 'ENV=(NSR_SERVER=lg1.dbcool.com)'

The following are some other settings that you can enable through the ENV
variable:

NSR_CHECKSUM=TRUE

NSR_DATA_VOLUME_POOL=Oracle

NSR_COMPRESSION=TRUE

NSR_DEBUG_FILE=/tmp/nsr.debug

The NSR_CHECKSUM is used to perform a checksum on backup data to give the
highest degree of confidence that what is stored on tape is exactly what was streamed
from RMAN. It has a slight performance cost, but is recommended. NSR_DATA_
VOLUME_POOL requires the Legato administrator to configure a volume pool named
Oracle explicitly for the purpose of holding Oracle-related backups. The use of a vol-
ume pool enables tape devices on the backup server to be associated with the named

432 Chapter 18

pool and enables a group of tape devices allocated solely for Oracle backups. If you
want the best possible service guaranteed for your Oracle backups and restores, you
need to be able to guarantee that one or more tape devices will be available at all times.
If a nonexistent pool name is supplied, the default pool is used. The NSR_COMPRES-
SION setting causes the RMAN data stream to be compressed on the backup client
before it transmits across the network to the backup server. This saves network band-
width, but may slow the writes to tape on the server, if the tape devices use hardware
compression and attempt to compress data that is already compressed. The
NSR_DEBUG_FILE setting is described in the section Backup and Restore Troubleshooting.

Querying the Media Manager
Legato provides the mminfo command-line utility to enable you to see exactly what’s
been stored on the backup server. This is another situation where a naming standard
pays off. Because the Oracle backup pieces all contain the string ORA_, it’s easy to find
them. This enables the actual storage space on tape for all your Oracle backups to be
identified easily. This simple example shows all Oracle backup pieces for the backup
client srv1 on the backup server lg1 in the last 24 hours:

$ mminfo -s lg1 -c srv1 |grep ORA_

6023 srv1 11/06/01 224 MB full ORA_A_OMFD1_44506804644491b1d

6023 srv1 11/06/01 2000 MB full ORA_O_OMFD1_44506804719921u8d

Increasing Backup Throughput
If you have multiple devices allocated to your Oracle pool, you can reduce the time it
takes for a large database backup to complete by streaming the backup to multiple tape
devices at the same time. You need to do this very carefully because you don’t want to
tie up all of the tape devices at once. That would prevent other backups and restores
from running at the same time. A setting for each tape device in the Legato server con-
trols the number of target sessions allowed per device at the same time. Each channel
allocation command in the backup script requires a target session on the device. As an
example, if your tape devices are configured to allow a maximum of two target ses-
sions and you have four devices available, then allocating five channels in the backup
script results in three devices being streamed simultaneously:

allocate channel c1 type 'SBT_TAPE' parms 'ENV=(NSR_SERVER=lg1);

allocate channel c2 type 'SBT_TAPE' parms 'ENV=(NSR_SERVER=lg1);

allocate channel c3 type 'SBT_TAPE' parms 'ENV=(NSR_SERVER=lg1);

allocate channel c4 type 'SBT_TAPE' parms 'ENV=(NSR_SERVER=lg1);

allocate channel c5 type 'SBT_TAPE' parms 'ENV=(NSR_SERVER=lg1);

RMAN provides cumulative and differential backups to reduce the amount of
backup data and conserve backup tape space and minimize the network bandwidth re-
quirements during backup. If restore performance is the most important consideration,
cumulative backups are preferable to differential backups because fewer incremental
backups need to be applied during recovery. The introduction to this chapter empha-
sized that you back up data because you might need to perform restores. Options to

Backup and Recovery Using Recovery Manager (RMAN) 433

reduce backup times, such as Legato parallel streaming and RMAN cumulative and
differential backups, make backup and restore more complex. Consider making suffi-
cient capacity available to perform full backups all the time. This is likely to provide
the simplest and, therefore, most reliable backups and restores. Keep in mind that your
end users are interested in end-to-end recovery time (which is the sum of tape restore
time plus archived redo log application time) and this is what should drive the fre-
quency of your backups and the techniques you use.

Saving Backup Space
If you run Legato NetWorker in your organization for file system backups and you also
use Legato NetWorker for Oracle for your database backups, then you should avoid
backing up Oracle database files through Legato file system backups. Such backups
represent wasted space: You would never use them for an Oracle restore because you
couldn’t guarantee that they weren’t being modified at the time of the backup. You can
place a .nsr file in any directory to inform Legato file system backups that some files
can be skipped recursively in the current directory and subdirectories. The following
command ignores database files, control files, and online redo logs:

�skip: *.dbf *control *.ctl *redo*.log

You could also include archived redo logs, although some DBAs like to have file
backups of those files (which are perfectly fine) to give additional robustness to
backups.

NOTE Another approach to save space is to selectively back up named
tablespaces and database files rather than the entire database, using the
BACKUP command in the RMAN script. Although this saves space, it adds
complexity to the backup procedure because you need to manage which files
and tablespaces are backed up and when to do it.

Performing RMAN Restore

This section covers the basics of the RMAN restore and recover functionality. It’s just
as simple to perform RMAN restores as it is to perform RMAN backups. In this case,
you create an RMAN command script, specify whether your original backup was to
tape or disk, along with any datafiles, control files, and archived redo logs you want to
restore, and RMAN does the hard work of locating and restoring the files, and, option-
ally, recovering the database. By default, RMAN restores the most recent versions of all
files required.

A Simple Restore and Recovery
For the sake of example, let’s say that you have just created a database in ARCHIVE
LOG mode, backed it up, and done some processing that has caused a few archived

434 Chapter 18

TE
AM
FL
Y

Team-Fly®

redo logs to be generated. Next, you back up the archivelogs and remove them from
disk. Now you want to test the restore and recovery of your database and archived
redo logs to ensure that the backups worked. For the test, you keep the current control
file and online redo logs, shut down the database, and physically remove datafiles
belonging to all tablespaces except for your TEMPORARY tablespace named TEMP.

NOTE Oracle never backs up TEMPORARY tablespaces that use tempfiles
because by definition they contain transient data that never needs to be
restored. However, the definition of the TEMPORARY tablespace and its datafile
still exists in the Oracle data dictionary after a restore. If the tempfile is not
present on disk, you can simply add a new one or drop and recreate the
tablespace.

Before you recover the database, run STARTUP MOUNT. The following is an exam-
ple of a restore and recover script that can get the database back to the current point in
time based on the described scenario:

connect target /

connect catalog rman/xyz123@rmanp1.dbcool.com

run {

allocate channel c1 type disk;

restore database;

recover database;

}

Not only does the restore fetch the missing database files from the most recent
backup, but it also restores any archived redo log files needed to recover the database
to the current point in time without you requesting them. When RMAN is complete,
you open the database in the usual way, for example, in SQL*Plus:

alter database open;

Now everything is back exactly the way it was. The previous example specified the
use of the backup catalog during the restore and recovery. Using a backup catalog is
highly recommended in general, but you need to have a fallback position for situations
where the backup catalog is not available or where the use of a backup catalog can cause
some undesired side effects after a restore. In these cases, rather than using a backup
catalog, you can use backup information in the control file to restore your database.

Using the CONTROLFILE
AUTOBACKUP Command
The previous example used the backup catalog to identify the files to restore. What
happens if you lose your backup catalog and the disk with your control files crashes?
In this case, you need to perform a restore and recovery, but you don’t have a backup
catalog or control file with a complete list of recent backups. Oracle9i has a new RMAN
feature referred to as control file autobackup to help resolve this problem. By default, the

Backup and Recovery Using Recovery Manager (RMAN) 435

feature is turned off. To turn it on, connect to the target database and the backup cata-
log using RMAN, and run the following command:

configure controlfile autobackup on;

You only need to do this once and the setting persists for all future backups. After
you’ve turned autobackup on, whenever a run block in an RMAN backup script con-
tains a backup command as the last command in the block, RMAN automatically backs
up the control file, which contains the most recent backup information, to either disk
or tape, depending on what type of backup is running. If you lose your current control
file and your backup catalog database, you can restore the control file autobackup
using a simple command:

restore controlfile from autobackup;

After you restore and mount the control file, you can use it to restore the rest of the
database files from backup. How does the RESTORE CONTROLFILE know where to
find the autobackup control file in the first place? At first sight, it seems like magic. The
reason that the autobackup control file can be found is that it has a fixed name and
location that Oracle chooses. For example:

/u01/app/oracle/product/9.0.1/dbs/c-3159171023-20011105-01

You can change the location and format of the control file autobackup name, but that
defeats the purpose. The purpose of the autobackup control file name is that RMAN
can find it for you without requiring you to provide the path of the file. The previous
example shows the autobackup control file name and location for a disk backup.
RMAN also chooses an appropriate name for tape backups that enables the control file
to be restored without a name. Incidentally, if you happen to know the backup piece
name (for example, by querying the media manager or because the piece is on disk),
then you can specify the piece name explicitly using the following command instead:

restore controlfile from 'filename';

The autobackup file name actually comprises the DBID of the database, and a time-
stamp and sequence number. The DBID is crucial in enabling the control file backup to
be identified. To see a test of how the control file backup can be used, SHUTDOWN
IMMEDIATE the target database, and then remove the datafiles as before and the con-
trol files used by the database. Then STARTUP NOMOUNT the target database: It’s
not possible to mount it because there is no control file. Now run RMAN without any
arguments and use the SET DBID command to set the DBID of the target database,
which we know from the autobackup has the file name 315917102:

set DBID 3159171023

connect target

restore controlfile from autobackup;

436 Chapter 18

The RESTORE CONTROLFILE command restores the control file to all the names
specified in the init.ora file. Now that we have a control file, we can mount the target
database and gain access to the list of database backups in it, and then restore and
recover them. At no stage has the backup catalog been referenced because this exam-
ple assumes it’s not available. The RMAN log of the operation looks like the following,
where the database has a single OMF control file:

channel ORA_DISK_1, looking for controlfile autobackup on day: 20011105

channel ORA_DISK_1, controlfile autobackup found: c-3159171023-20011105-02

channel ORA_DISK_1, controlfile autobackup restore complete

replicating controlfile

input filename=/u02/oradata/OMFD1/ora_xwrk4zgp.ctl

The following commands can be used to complete the restore and recovery by using
exactly the same run block as before:

sql "alter database mount";

run {

allocate channel c1 type disk;

restore database;

recover database;

}

As a noncurrent control file has been used for the recovery, the database needs to be
opened using:

alter database open resetlogs;

The use of CONTROLFILE AUTOBACKUP should be the default for all your data-
base backups.

Restoring Noncurrent Files
You can restore and recover files to noncurrent versions by providing commands in the
restore script to identify the point in time required before running the restore com-
mand. For example:

set until time 'OCT 15 2001 09:00:00'; # use a specific time . . .

set until scn 123749; # or an scn...

set until sequence 21; # ...or a log sequence

restore database;

If you use UNTIL TIME to specify the point in time without an explicit TO_DATE
conversion, then you must set NLS_DATE_FORMAT in the UNIX environment before
running RMAN to ensure that dates and times are matched correctly in the backup cat-
alog or control file as follows:

$ export NLS_DATE_FORMAT='MON DD YYYY HH24:MI:SS'

Backup and Recovery Using Recovery Manager (RMAN) 437

Although RMAN automatically restores all of the archived redo logs required by
your restore, you might need additional logs in some situations. You can restore spe-
cific archived redo logs in several different ways. For example, you can specify an
explicit sequence of archived redo logs to restore as follows:

restore archivelog from logseq=10983 until logseq=11012 thread=1;

Restoring Files to Different Names
and Locations
RMAN provides the SET NEWNAME FOR DATAFILE command for restoring backup
files to a different location. After restoring the datafiles but before recovering them,
you must run a SWITCH command in the control file to permanently change the
names of the datafiles renamed. The SWITCH command is equivalent to the SQL state-
ment ALTER DATABASE RENAME FILE. The SWITCH DATAFILE ALL is shorthand
that you can use to switch all files for which SET NEWNAME was issued in a single
operation:

run

{

restore the datafiles to a new location

set newname for datafile '/u02/oradata/OMFD1/system01.dbf' to

'/emergency/system01.dbf';

set newname for datafile '/u02/oradata/OMFD1/users01.dbf' to

'/emergency/users01.dbf';

set newname for datafile '/u02/oradata/OMFD1/rbs01.dbf' to

'/emergency/rbs01.dbf';

set newname for datafile '/u02/oradata/OMFD1/temp01.dbf' to

'/emergency/temp01.dbf';

restore database;

switch datafile all; # updated control file with new filenames

recover database;

}

There are several possible reasons you might be restoring files to a different location.
For example, you might have an emergency where you have lost a file system and need
to get your production database back as soon as possible onto any file system with
space. In this case, your restored and recovered database continues to operate as the
production database. On the other hand, you might be restoring the database to a dif-
ferent server to test your restore procedures. In this case, avoid using a backup catalog
during the restore and use a control file instead. If you use a backup catalog and SET
NEWNAME during the restore, the catalog will assume that the changes to the file
locations are permanent for your production database on the other server. This is due
to the behavior of DBID and the fact that the production database has the same DBID
as the test restore database. In addition to relocating database files on restore, you can
relocate archivelogs, as shown in the following example:

438 Chapter 18

run

{

set a new location for logs 1 through 10.

set archivelog destination to '/tmp/arch';

restore archivelog from sequence 100 until sequence 110;

}

Managing Disk Backups
You shouldn’t remove backups from disk without notifying RMAN. If RMAN expects
to find a disk backup and it’s not present, then the restore will fail: RMAN won’t ignore
a missing file and simply look for an earlier one. You can notify Oracle of the removal
of a backup piece on disk using the CROSSCHECK command as follows:

allocate channel for maintenance type disk;

change backuppiece '/u02/OMFD1/backup/ORA_O_OMFD1_4450296051510fd8d775'

crosscheck;

You can check Oracle’s view of what is currently on disk through the following SQL,
where a value of A in the status column means that the backup piece should be present
on disk and a value of X means that it has been removed and Oracle is aware of it:

select handle,status from v$backup_piece

where handle like '%ora02%' order by handle;

Running the CROSSCHECK command changes the status of a backup piece from A
to X if the piece has been removed. When the file has a state of X, it will be searched for
during restores. If you have problems with archived redo logs on disk that have been
removed out of sequence, your backups will fail with the following message:

RMAN-06089: archived log 'log name' not found or out of sync with

catalog

In this case, as a last resort you can use the CHANGE ARCHIVELOG . . . DELETE
command, which removes references from the control file and recovery catalog, and
physically deletes the file from the operating system if it exists:

change archivelog '/u02/oradata/OMFD1/arch/T0001S0000004451.ARC' delete;

Disaster Recovery Restore
with Legato
If you use Legato NetWorker for Oracle for your backups and take your backups
straight to tape on a remote site, you’re in a great position for getting your databases
restored as quickly as possible in a disaster recovery situation. You can prepare for
this scenario before it happens by ensuring that your disaster recovery server has the
same file system layout as your production server. If you use large file systems as

Backup and Recovery Using Recovery Manager (RMAN) 439

recommended, then you can restore all the files to their original locations without hav-
ing to remap them, thus reducing the complexity of the restore process and making it
faster.

NOTE Part Five of this book contains other Oracle disaster recovery options,
such as Oracle Data Guard, which is discussed in Chapter 23.

Prerequisites

Before you begin the restore on the disaster recovery server, you need to have an
init.ora file and password file created in advance, along with all the directories where
the restored database will be located. RMAN does not back up the init.ora file or the
password file. You can recreate the password file, and if you’re using Legato, you
should have a regular file system backup from which you can restore the init.ora file.

NOTE Oracle9i Release 2 provides new RMAN features to back up a server
parameter file via the command BACKUP (SPFILE), and implicitly through the
CONTROLFILE AUTOBACKUP command described previously. The ability to back
up a server parameter file using RMAN is yet another reason you should start
using server parameter files in preference to init.ora files.

If your production server is srvr1.dbcool.com and your disaster recovery server is
dr1.dbcool.com, a Legato Client resource needs to exist for dr1 before you can restore
srv1 data to it. If dr1 UNIX files are backed up using Legato, this will already exist.
Legato provides a simple authentication facility, which means you need to explicitly
register dr1 as an allowed restore client for srv1 backups. To do this, modify the Legato
Client resource for srv1 and add the following to the Remote Access property:

Remote access: oracle@dr1.dbcool.com

Setting the Environment

You need to indicate to Legato before you begin the restore that although you are on
the server dr1.dbcool.com, you want to restore backup data from srv1.dbcool.com:
This is done through the NSR_CLIENT environment variable, which indicates the
original server on which the backup was taken:

$ export NSR_CLIENT=srv1

Other environment variables are required to indicate the Legato backup server, the
timestamp format if you are restoring to a point in time, and the NLS_LANG setting
for the target database:

export NSR_SERVER=lg1.dbcool.com

export NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1

export NLS_DATE_FORMAT='Mon DD YYYY HH24:MI:SS'

440 Chapter 18

Running the Restore Script

The RESTORE.RMAN command script, shown in the following code, can be used as a
template for any Oracle restore. It restores control files, archived redo logs, and the
database to a point in time. If you want the most recent versions, leave out the SET
UNTIL command:

connect target
connect catalog rman/xyz123@rmanp1.dbcool.com
run {

allocate channel c1 type disk;
allocate channel c2 type 'SBT_TAPE';

set until time 'Nov 11 2001 19:00:00';

restore controlfile;

restore archivelog from time 'Nov 11 2001 14:00:00';

restore database;

sql "alter database mount";

recover database;
}

To perform the restore and recovery, STARTUP NOMOUNT the database first, set
the environment for the target database using set_env, and then run the following
script:

$ rman @restore.rman

After you have completed the restore and opened the database using ALTER
DATABASE OPEN RESETLOGS, the database is ready for use. However, before you
open it for use, you should make a backup immediately. Before you make the backup,
you must connect to the target and catalog with RMAN and run the RESET
DATABASE command to indicate to RMAN that this is a new incarnation of the data-
base. If you don’t do that, any backups after the OPEN RESETLOGS will fail with the
following error:

RMAN-20003: target database incarnation not found in recovery catalog

Backup and Restore Troubleshooting

This section contains hints and tips for troubleshooting your backups and restores:

■■ Monitoring the backup progress

■■ Stopping a backup

Backup and Recovery Using Recovery Manager (RMAN) 441

■■ Testing RMAN backups and restores

■■ Debugging a Legato backup

Monitoring the Backup Progress
Use the following SQL to monitor the progress of your backups for both Oracle8i and
Oracle9i:

select totalwork,elapsed_seconds,time_remaining,opname

from v$session_longops where time_remaining > 0

and opname like '%RMAN%';

TOTALWORK ELAPSED_SECONDS TIME_REMAINING OPNAME

----------- ----------------- ---------------- -------------------------

110876 66 4027 RMAN: full datafile

backup

Stopping a Backup
If your Oracle RMAN backup hangs, you can stop it by identifying the Oracle
processes corresponding to your RMAN backup channels and killing them. We’ve
already allowed for this possibility by using the SET COMMAND ID command in all
of the backup scripts to enable easy identification of the Oracle server processes. For
example, the following SET COMMAND ID command causes the supplied string to
show up in the client_info column in v$session:

set command id to 'rman_noarchivelog_closed_OMFD1';

You can run the following SQL to identify the operating system processes corre-
sponding to your RMAN backup channels as follows:

select spid, client_info

from v$process p, v$session s

where p.addr=s.paddr and client_info like 'id=rman%';

When you have a list of processes, you can kill them as follows using the UNIX kill
command:

$ kill -9 pid1 pid2 pid3 ...

NOTE You could try UNIX kill without -9 first, but it doesn’t usually terminate
a process waiting on an RMAN command.

442 Chapter 18

Testing RMAN Backups and Restores
You can run your backup and restore commands with the VALIDATE option to test
backup and restore operations without running them. For backup, VALIDATE causes
RMAN to check files for physical and logical corruption, and confirms that all files
exist in the correct locations without producing backup sets. For restore, RMAN checks
that all the files for the requested restore are available without running the restore.
Both options are recommended to ensure that backups and restores work the first time,
especially for situations like business-critical disaster recovery. This example validates
the database files and archived redo logs without backing them up:

run {

allocate channel c1 type disk;

backup full validate (database format '/u02/OMFD1/ORA_O_%d_%t%s%p%u');

backup validate (archivelog all format '/u02/omfd1/ORA_A_%d_%t%s%p%u');

}

Debugging a Legato Backup
By default, Legato creates a log on the client called dmo.messages. This should always
be checked first if any Legato backup problems are experienced. On Solaris, it is
located in /nsr/applogs. It’s recommended that DBAs also have a read-only UNIX log
on the Legato server itself. This can be useful in diagnosing Oracle backup problems.
On the Legato server, logs are located in /nsr/logs. You can obtain detailed debug
information from the Legato media management software layer through use of the
NSR_DEBUG_FILE command in the tape channel allocation command, as shown in
the following example:

allocate channel c1 type 'SBT_TAPE'

parms 'ENV=(NSR_SERVER=lg1.dbcool.com,

NSR_DEBUG_FILE=/tmp/nsrdebug.log)';

The debug information in the file should be sufficient to diagnose any Legato issues.

Summary

If you’re not using RMAN to perform Oracle backups, you should start using it.
RMAN is simply the most reliable and flexible tool for performing mission-critical
Oracle backups to guarantee restore success. RMAN provides a wide range of com-
mands for backing up and restoring individual components of the database to both
disk and tape, and has the capability to test backups and restores without running
them. It also provides corrupt block checking as an integral part of the backup process.

You can keep a permanent record of all backups and restores in a backup catalog.
Should you lose the catalog, or should it become unavailable, you can still perform

Backup and Recovery Using Recovery Manager (RMAN) 443

restores through information held in the control file. If you use the CONTROLFILE
AUTOBACKUP feature of Oracle9i, RMAN can even restore control file backups for
you without requiring you to provide the name and location. Be aware of the require-
ments imposed on database cloning by the database unique identifier DBID. Oracle
has addressed this issue by providing the DBNEWID command-line utility in Oracle9i
Release 2 to enable you to change the DBID manually.

If you are prepared to invest in the extra expense of media management software,
then a solution like Legato can increase your RMAN throughput with parallel tape
streaming and provide you with instant offsite tape backups, which represent an excel-
lent disaster recovery facility for your Oracle databases.

Before you choose RMAN, you may need to be convinced that Oracle is committed
to the long-term future of the product. Evidence of Oracle’s commitment to RMAN is
provided by the new features in Oracle9i. This chapter has covered the control file
autobackup feature, but there are several others worthy of mention. For example,
Oracle9i RMAN has the capability to perform media recovery on individual blocks in
a datafile while the datafile remains online. The block media recovery feature is only
available with RMAN. Oracle9i RMAN also includes the new NOT BACKED UP
SINCE TIME option on the backup command to enable a partially completed backup
(that failed) to be restarted without repeating previous work. Although any book on
Oracle should always be read alongside the Oracle documentation because Oracle is
continually changing, it’s fair to say that RMAN is evolving more rapidly than some
other products. Although that might not be such good news for this book, it’s good
news for Oracle customers.

444 Chapter 18

TE
AM
FL
Y

Team-Fly®

445

Every database administrator (DBA) uses Oracle export and import command-line
utilities. The goal of this chapter is to provide best practices for running export and
import in order to get the best out of both tools in terms of functionality and perfor-
mance. Export and import both have some exciting new features for Oracle9i that
make the tools much more powerful. For example, export to a point in time is sup-
ported through Oracle9i Flashback Query (covered in Chapter 17) and the resumable
space allocation features of Oracle9i (refer to Chapter 6) enable import to suspend,
rather than abort, when a space shortage exists. Best performance has always been a
key requirement for both import and export. In the past there’s been a shortage of
information on which factors affect import performance, and this chapter aims to rem-
edy that, based on a quantitative analysis.

This chapter covers the following topics:

■■ Using pre-export checks to reduce the chance of import errors

■■ Using parameter files for export

■■ National Language Considerations for export and import

■■ Exporting to a point in time using Oracle9i Flashback Query

■■ Maximizing export performance using direct path

■■ Limitations and security considerations for direct path

■■ Controlling the size of export files using UNIX file compression

■■ Using transportable tablespaces to speed up restore

■■ Running import for maximum performance

Backup and Restore Using
Export and Import

C H A P T E R

19

Running Pre-Export Checks

Before you carry out an export, make sure that all objects, triggers, and constraints that
you intend to export have a status of VALID. You can check the STATUS column in
DBA_OBJECTS, DBA_TRIGGERS, and DBA_CONSTRAINTS to confirm this. The
check avoids a situation where the subsequent import fails because of problems origi-
nating with the objects in the database that were exported. My personal preference
before running export is to create copies of dictionary tables to identify the objects to
be exported and export those copies along with the rest of the data. This is useful for
post-import checks to confirm that all the required objects were actually imported.
Here are some examples:

create table exp_triggers as

select owner,trigger_name,status

from dba_triggers;

create table exp_constraints as

select owner,constraint_name,constraint_type,table_name

from dba_constraints;

create table exp_objects as

select *

from dba_objects;

Using Parameter Files for Export

I find myself frequently consulting the export documentation due to the sheer number
of command-line options that export provides and the need to understand which are
compatible and how they relate to each other. Here’s a selection of some export error
messages, and due to the number of arguments and possibility of conflicts, you’ve
probably seen many more:

EXP-00044: must be connected 'AS SYSDBA' to do Point-in-time Recovery

. . .

EXP-00035: QUERY parameter valid only for table mode exports

EXP-00026: conflicting modes specified

EXP-00048: Tablespace mode not supported for normal export

ORA-29341: The transportable set is not self-contained

The first tip for getting the best out of export is to always use parameter files for run-
ning exports, rather than passing parameters on the command line. This has two main
advantages. First, the parameter files serve as a record of what you did and are avail-
able for reuse in future exports when you have difficulty in remembering the exact
combination of parameters to use. Second, the arcane and operating-system-specific
translation of single quotes in the command-line argument list can be avoided by using
a parameter file. The following examples compare the specification of the USERID and

446 Chapter 19

QUERY parameter arguments on the command line with a parameter file, indicating
how much easier it is to specify parameters using a file:

Command line: userid=\'sys/syspass as sysdba\'

Parameter file: userid="sys/syspass as sysdba"

Command line: query=\"where ENAME=\'SCOTT\'\"

Parameter file: query="where ename='SCOTT'"

Export Modes
Export can dump data based on the following different modes that are not compatible
with each other. The top-level command-line options that distinguish the main fea-
tures are in the following list:

■■ FULL�Y dumps a full export of all users and objects.

■■ USERS dumps a named list of users.

■■ TABLES dumps a named list of tables or table partitions.

■■ TABLESPACES dumps a list of tablespace metadata, used with
TRANSPORT_TABLESPACE�Y.

You can run both the import and export command-line utilities with the HELP�Y
option to list all the available options. The TABLES parameter supports the use of the
SQL wildcard % and can be combined with the QUERY parameter to restrict both the
number of tables dumped and the subsets of rows dumped. For example, the follow-
ing export parameter restricts the objects dumped to those in the schema of SCOTT
and ALLEN matching the supplied patterns:

tables=scott.%N%,allen.E%

You apply a WHERE clause to all the tables in the export list through the QUERY
parameter. The parameter is applied to all tables in the list, and export fails for any
tables where the QUERY column would raise an error, such as those tables without an
ENAME column in the following example:

tables=scott.%N%,allen.E%

query="WHERE ENAME='SCOTT'"

Using the Compress Option
The default setting, COMPRESS�Y, causes the table creation statements in the export
dump file to specify a single, large extent for use at import time, based on the total size
of allocated extents in the export database. Compress is a somewhat misleading term
because no actual compression of data takes place. Coalesce would probably be a bet-
ter choice.

The use of COMPRESS�Y stems from the days when DBAs spent a lot of time ex-
porting and importing data to defragment extents. This practice is no longer necessary

Backup and Restore Using Export and Import 447

provided that you use the UNIFORM extent allocation in your tablespace creation state-
ments, as recommended in Chapter 2 and throughout this book. If you do need to
defragment, consider using the MOVE command covered in Chapter 13 instead.

One side effect of using COMPRESS�Y is that you increase the chances of import
failing if there isn’t sufficient space available to allocate the large extent resulting from
the use of COMPRESS�Y at export time. A better approach is to use uniform extent
allocation for object storage allocation as shown in the following tablespace creation
statement:

create tablespace ind

datafile '/u02/app/oracle/oradata/OMFD1/ind01.dbf' size 1m

extent management local uniform size 128k;

Provided that you use COMPRESS�N at export time, and the import database uses
the same uniform extent allocation and has the same physical file space as the export
database, then your exported data is guaranteed to fit the destination database without
a time-consuming pre-import analysis of available space. This is the recommended
approach if you want to ensure that your exported data will fit into your import data-
base the first time.

Exporting to a Point in Time
By default, Oracle provides read-consistency at the SQL statement level only. So if you
were to SELECT * FROM DEPT and then later perform SELECT * FROM EMP, the pos-
sibility exists for the employees in the EMP table to refer to departments that were
added after the SELECT * FROM DEPT took place. If an export dump were based on
such inconsistent data, the import would fail because the integrity constraint on EMP
would cause a constraint violation at import time, due to missing departments in
DEPT.

Oracle provides transaction-level, rather than statement-level, read-consistency
through the use of the SET TRANSACTION READ ONLY statement. When you run
export with CONSISTENT�Y, export runs SET TRANSACTION READ ONLY as the
first statement of the session to guarantee that all data exported is consistent to the
point in time at the start of the export. The CONSISTENT�Y setting is the default, and
there aren’t many cases when you’ll want to turn it off.

Oracle9i provides a major leap forward in export functionality by enabling you to
specify that you want to export data consistent with any point in time in the past, not
simply the current point in time, through the use of two new parameters related to
Flashback Query:

FLASHBACK_SCN SCN used to set session snapshot back to

FLASHBACK_TIME time used to get the SCN closest to specified time

In the past it was necessary to carefully synchronize exports with business process-
ing when there was a requirement to export business data to a particular point in time.
For example, if a bank required an export of data at the close of business, it would be
necessary to run the export at exactly the right time to ensure the correctness of the

448 Chapter 19

data. Using 9i and Flashback Query, the business can run a process to create a transac-
tion marker to save the system change number (SCN) at the time of close of business,
and the export can run any time afterwards using the SCN in the transaction marker.
The export and the business process no longer need to be so tightly coupled, which is
much more flexible and easier to manage.

One side effect of the new approach is that the undo needed to regenerate the data
at the earlier point in time needs to remain available in exactly the same way it’s
required for a CONSISTENT�Y export. The difference is that undo requirements may
increase, because undo is required for an earlier point in time, instead of just the cur-
rent point in time. Through the use of automatic undo management and ALTER SYS-
TEM SET UNDO_RETENTION, undo can be kept for a guaranteed period of time in
Oracle9i to ensure that it’s available to meet the export requirements. This extra undo
requirement is the cost of the increased flexibility.

Here’s an example to demonstrate the functionality, based on the existence of the
standard 14-row EMP table in the SCOTT schema. The first step is to determine the
current system SCN through the following SQL:

select dbms_flashback.get_system_change_number from dual;

GET_SYSTEM_CHANGE_NUMBER

41515551378

The dbms_flashback.get_system_change_number function is used to fetch the cur-
rent system SCN to use as a transaction marker. An application could store this value
in a table, along with a timestamp and a string to identify a key transaction-processing
event such as “End-of-day batch complete.” For simplicity, we simply fetch the value.
The next step is to remove some rows from EMP and commit. The following SQL
removes five rows from EMP:

select count(*) from emp;

COUNT(*)

14

delete from emp where rownum <=5;

commit;

select count(*) from emp;

COUNT(*)

9

Backup and Restore Using Export and Import 449

The final step is to export the table SCOTT.EMP using the prechange SCN to specify
that we wish to export the data consistent with the predelete state using the following
parameter file:

userid=system/manager

tables=scott/tiger

file=emp.dmp

direct=y

flashback_scn=41515551378

Flashback Query requires the EXECUTE privilege on the DBMS_FLASHBACK pro-
cedure, which isn’t granted to SCOTT, so SYSTEM is used to perform the export in this
example. The export log confirms that the data exported is the predelete version con-
taining 14 rows, rather than the current 9 rows, based on the predelete SCN value of
41515551378 used in the parameter file:

Connected to: Oracle9i Enterprise Edition Release 9.0.1.1.0 - Production

With the Partitioning option

JServer Release 9.0.1.0.0 - Production

Export done in US7ASCII character set and AL16UTF16 NCHAR character set

About to export specified tables via Direct Path ...

Current user changed to SCOTT

. . exporting table EMP 14 rows exported

Export terminated successfully without warnings.

Maximizing Export Performance
Using Direct Path

The best way to speed up exports is to use the following parameter:

direct=y

The use of direct�y causes Oracle to bypass the Oracle SQL processing engine to
read data directly from the database files before writing them to your export dump file.
Tables containing certain data types, such as large objects (LOBs) and objects, can only
be exported using the conventional path exports. Oracle export using direct path auto-
matically switches into conventional path mode for such objects, which are clearly
indicated in the export log output, for example:

EXP-00067: Table DEF$_AQCALL will be exported in conventional path.

If you choose to use conventional path exports instead of direct path you should
ensure that the BUFFER parameter (in bytes) is set to a high value, such as 1,000,000, to
ensure that the SQL SELECT operations performed during export to fetch rows take
maximum advantage of the Oracle Call Interface (OCI) array-processing interface. A

450 Chapter 19

larger buffer reduces the number of OCI execute calls required to fetch the same num-
ber of rows. The default buffer size is 64K.

It’s not unusual to see a 30 to 50 percent reduction in export time through the use of
direct path export compared to a conventional path export of the same data. The
RECORDLENGTH parameter can be used to tune the performance of direct path
export. The maximum value is 64K. Experiments indicate that changing the setting
doesn’t make a very significant difference to export performance, maybe giving an
extra 5 to 10 percent reduction in elapsed time.

Some parameters are not compatible with the use of direct�y. For example, you
can’t do direct path exports for transportable tablespaces or use the QUERY parame-
ters to export subsets of row data.

NOTE When using direct�y, you need to ensure that the RECORDLENGTH
parameter is set to the same value on import and export when the databases
involved run on different operating systems. If you still experience import
problems in this case, avoiding direct�y for export should fix the problem.

Security Considerations for
Direct Path
If you use direct�y to export data protected by Virtual Private Database (VPD), as cov-
ered in Chapter 5, then the security provided by VPD is not enforced, because the Ora-
cle SQL interface is bypassed in this case, and the SQL interface is required to apply the
VPD security function. Oracle label security implemented through fine-grained access
control (covered in Chapter 25) is also not enforced. When these options are used with
conventional path export, then protected data is not exported and export completes
with the following warning message:

EXP-79 "Data in table %s is protected. Conventional

path may only be exporting partial table."

NOTE The SYS user and other Oracle9i users granted the EXEMPT ACCESS
POLICY privilege (either through a role or directly) are exempt from VPD and
Oracle label security enforcement in both direct and conventional path exports.

Controlling the Size of Export Files

You can control the size of your export dumps by splitting the output into files of fixed
size using the FILESIZE argument or by using a UNIX pipe in place of the real file and
compressing off the pipe. You can use these two techniques together. In order to create
dump files larger than 2GB, your operating system may require large file support. Your

Backup and Restore Using Export and Import 451

operating system documentation will provide this information. This parameter file
splits the export into four files.

userid=sys/pass

direct=y

recordlength=65535

full=y

filesize=1M

file=/u02/full1.dmp,/u03/full2.dmp,/u04/full3.dmp,/u04/full4.dmp

volsize=0

This splits the export across files of 1MB in size. You can specify the size in units of
bytes K, M, or G. Unfortunately, if your export data requirement is larger than the total
size of the files you specify, import will prompt you for the name of the next file. This
is very inconvenient, as a large export is definitely the type of job that you want to run
in unattended mode and have work the first time. You can protect yourself against this
possibility by ensuring you provide sufficient files and space to cope with the total
space requirements. The following SQL will give you an overestimate of the space
requirements of your export file:

select sum(bytes)

from dba_segments

where segment_type <> 'INDEX'

and owner <> 'SYS';

There’s no need to include the index data size, because the export file contains the
SQL needed to recreate the indexes rather than the index data. Many of the SYS-owned
objects are not exported so you can ignore them. The space is overestimated because
the SQL includes space allocated to segments other than indexes, whereas export actu-
ally writes out the row data, which is typically less (sometimes a lot less) than the allo-
cated space. Alternatively, you could ANALYZE the main schemas being exported and
get a better estimate based on the row data actually present using the following:

SELECT SUM(NUM_ROWS*AVG_ROW_LEN)

FROM DBA_TABLES;

You can get a pretty exact estimate of the space requirements if you’re prepared to
take the time to export the data to a UNIX pipe and read the pipe to get the size of the
data streamed through it. To accomplish this, you need to do the following:

1. Create a pipe.

2. Export to the pipe.

3. Read data from the pipe and measure the size of it.

Here’s an example:

$ mknod /tmp/pipe p

$ wc -c </tmp/pipe >/tmp/size.log &

$ imp parfile=size.par

452 Chapter 19

This relies on the existence of the UNIX word count (wc) utility to count the bytes
read from the UNIX pipe /tmp/pipe that must also be specified in the export parame-
ter file size.par as the FILE parameter as follows:

userid=sys/pass
direct=y
recordlength=65535
full=y
file=/tmp/pipe
volsize=0
log=full.log

After the export is complete, the file /tmp/size.log contains the size of the export in
bytes. Given that a full export is likely to be a long and time-critical task, you need it to
work the first time. This pipe-based method is recommended for ensuring that you can
correctly size your dump file requirements in advance.

Having demonstrated the use of a pipe to measure the likely dump file size, it’s
straightforward to write to the pipe and use a UNIX command-line utility to compress
the export data stream instead of counting the bytes. This is recommended if the first
thing you typically do after creating an export dump is to compress it. You can elimi-
nate the separate compression stage and compress the data on-the-fly instead, which
means you don’t need to have sufficient disk space to hold the dump file, just the com-
pressed dump file. Given that a typical export dump is highly compressible, especially
if it contains many unused blocks, you can easily save 50 percent or more of your
uncompressed space requirements.

You have two main options for compression of your export data. You can use the
UNIX compress utility or, better still, the Free Software Foundation gzip utility. The
gzip utility typically provides greater compression for the same elapsed time com-
pared to UNIX compress. You can also tune gzip minimize space or completion time
requirements. UNIX compress requires a parameter file specifying a precreated pipe,
such as compress.par:

userid=system/manager
direct=y
recordlength=65535
full=y
file=/tmp/pipe.compress
volsize=0

To create the pipe and execute export using the pipe, the following commands are
required:

$ mknod /tmp/pipe.compress p

$ compress -c </tmp/pipe.compress >full.dmp.Z &

$ exp parfile=compress.par

The gzip utility can be used in a similar way to UNIX compress. This method also
requires a parameter file, such as gzip.par, specifying a precreated pipe:

userid=system/manager
direct=y

Backup and Restore Using Export and Import 453

recordlength=65535

full=y

file=/tmp/pipe.gzip

volsize=0

To create the compressed dump file using gzip, a pipe followed by export is
required, as follows:

$ mknod /tmp/pipe.gzip p

$ gzip -c </tmp/pipe.gzip >full.dmp.gz &

Table 19.1 contains some figures showing space savings using compression, based
on a small export and a single-processor Solaris server. It shows that gzip gives a
higher-compression ratio than compress, and that both save a lot of space, compared to
the noncompressed case.

Compression can provide a significant space savings for your export dumps.
Because compression is a highly central processing unit (CPU)-intensive activity, it’s
possible that the elapsed time may increase compared to a standard file export,
depending on the power of your processors and the speed of your disks. In order to
import using a pipe, you specify a pipe in the parameter file, reverse the direction of
data flow into the pipe, and use decompression instead of compression. Here is an
example:

$ mknod /tmp/pipe.uncompress p

$ uncompress -c >/tmp/pipe.uncompress <full.dmp.Z &

$ exp parfile=compress.par

National Language Considerations
for Export and Import

Consider a situation where your database was created with an 8-bit character set, such
as WE8ISO8859P1, and the data you intend to export actually contains 8-bit characters
such as those found in French or Spanish. Chapter 2 contains more information on
database character sets. If you don’t set the NLS_LANG symbol appropriately in the
UNIX environment before the export, it’s possible that some of your 8-bit characters

454 Chapter 19

Table 19.1 Export Compression Performance

COMPRESSION SPACE SAVING TIME
METHOD (BYTES) PERCENTAGE (SECONDS)

None 3473355 0 177

Compress 992987 72 193

Gzip 508350 85 183

TE
AM
FL
Y

Team-Fly®

will be exported as 7-bit characters, which means that data is actually modified and
won’t match the original database when you import it. If you see the warning message
“possible charset conversion” at either export or import time, that’s a clear indication
that character set conversion may be taking place. Here are the export messages you
receive in the previous example:

Export done in US7ASCII character set and AL16UTF16 NCHAR character set

server uses WE8ISO8859P1 character set (possible charset conversion)

You can avoid the conversion by making sure the national language support (NLS)
environment is set correctly before you run export and before you import the same
data into another database. If the environment is set correctly, you won’t receive a
warning message. This sets the correct environment for the previous example in the
Bourne or Bash shell:

$ NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1; export NLS_LANG

Keep in mind that export doesn’t actually store the character set name used at
export time in the dump file. Instead a numeric ID is used to represent the character
set. You can use a UNIX utility like “od” to dump out the header of an export dump in
hexadecimal format to determine the character set if you aren’t sure which NLS set-
tings were used at the time of the export. The third byte value in the dump contains the
numeric character set ID. In the following example, us7ascii.dmp was exported using
character set ID 1 (US7ASCII) and we8iso8859p1.dmp was exported using character
set ID 1f (WE8ISO8859P1), as shown in a hexadecimal dump of the first few bytes of
each file:

$ od -x us7asii.dmp | head -1

0000000 0300 0145 5850 4f52 543a 5630 392e 3032

$ od -x we8iso8859p1.dmp | head -1

0000000 0300 1f45 5850 4f52 543a 5630 392e 3032

The Oracle8 functions NLS_CHARSET_NAME and NLS_CHARSET_ID can be
used to map character set IDs to character set names.

Using Transportable Tablespaces

Before using import to restore exported data into a database, you should first consider
transportable tablespaces as a much faster way to achieve the same thing. Trans-
portable tablespaces are a feature of Oracle8i and later that enable you to move data
physically between different databases running on the same operating system by
transferring tablespace data in the form of datafiles. Prior to 8i, such an operation
required a conventional export and import of row data. The operation would typically
incur large input/output (I/O) and CPU overheads due to the redo generation from
data insertion and index creation on the destination database during import, as well as
constraint validation. The export on the source database would itself incur consider-
able I/O and CPU overhead. Transportable tablespaces address these problems.

Backup and Restore Using Export and Import 455

Transportable tablespaces are particularly well suited to the migration of historical
partitioned data from a production database into a data warehouse. Previously, the
movement of data to the warehouse would have required a purge operation in the pro-
duction database using a SQL DELETE, with all the attendant redo generation from
data and index block changes. With suitable partitioning in place, the production table-
space can be unplugged from the production database and plugged in to the data
warehouse with minimal overhead on both databases.

To use this feature, you simply export the tablespace metadata (rather than the row
data of a traditional export) and use an operating system utility to copy the datafiles in
the tablespace to the destination database. Then you plug in the source datafiles into
the destination database by importing the metadata. You should be aware of some
restrictions, however. The tablespaces being exported must be read only for the export
to succeed, and the destination database must not have an existing tablespace of the
same name. For transportation between databases of version 8i, the database block
sizes must match. In Oracle9i, this restriction is lifted and 9i destinations can plug in
tablespaces with any block size from another 9i database or even an 8i database. The
source and target database must use the same character set and national character set.
The final restriction is that the data in the exported tablespaces must be self-contained.
This last restriction is easiest to understand with a simple example.

A Simple Example
This section describes the configuration for a simple transportable tablespace example.
It assumes you already have a schema SCOTT containing the regular EMP table. Next,
create two tablespaces, which are required to demonstrate the requirement for the data
to be self-contained, and grant SCOTT a quota on them, as SYSTEM:

create tablespace ind
datafile '/u02/app/oracle/oradata/OMFD1/ind01.dbf' size 1m
extent management local uniform size 128k;

create tablespace tab
datafile '/u02/app/oracle/oradata/OMFD1/tab01.dbf' size 1m
extent management local uniform size 128k;

alter user scott quota unlimited on tab;
alter user scott quota unlimited on ind;

Next, create a copy of EMP, EMP_TRANS, to be used in the example, and create a
primary key constraint and an index on EMP_TRANS in the IND tablespace:

create table emp_trans tablespace tab as select * from emp;

alter table scott.emp_trans
add constraint pk_emp_trans primary key
(
empno
) using index tablespace ind;

create index i0_emp_trans on emp_trans(ename) tablespace ind;

456 Chapter 19

Understanding the Self-Contained
Data Requirement
Before you attempt to perform a transportable tablespace export, you can perform an
analysis in advance to check that your export data is self-contained. In our case, we
have a table, EMP_TRANS, in the TAB tablespace that has dependencies on two objects
in the IND tablespace, the index I0_EMP_TRANS and the primary key constraint
index PK_EMP_TRANS. That means the data in the TAB tablespace that we want to
export is not self-contained. You can see issues that affect the self-contained data
requirement by querying the SYS.PLUGGABLE_SET_CHECK view:

select reason from sys.pluggable_set_check

where ts1_name='TAB';

REASON

--

Tables and associated indexes not fully contained in the pluggable set

Table and Index enforcing primary key/Unique constraint not in same

tablespace

In fact, only the existence of the constraint (the second REASON) will prevent the
export of the TAB tablespace from running. The statement about the index is a warn-
ing that if you export TAB only, then an index, which is probably present to increase
performance, will not exist in the destination tablespace after TAB is plugged in. You
can distinguish between self-contained data warnings and violations by executing the
transport_set_check procedure in the dbms_tts package to find violations:

begin sys.dbms_tts.transport_set_check('TAB',true); end;

/

select violations from sys.transport_set_violations;

VIOLATIONS

--

--

Index SCOTT.PK_EMP_TRANS in tablespace IND enforces primary constraints

of table SCOTT.EMP_TRANS in tablespace TAB

The result of the query shows that the table TAB tablespace has a dependency on the
IND tablespace through the existence of the PK_EMP_TRANS primary key index on
EMP_TRANS. In order for your transportable tablespace export to succeed, you must
either export both TAB and IND tablespaces to meet the self-contained data require-
ment or specify the parameter constraints�n at export time, which works around the
problem by not exporting the constraint. If you decide to use constraints�n, you
should be fully aware of the impact of not having integrity constraints in place on the
destination database. For the purpose of this example, we decide to transport both TAB

Backup and Restore Using Export and Import 457

and IND to keep the index and primary key in the destination database, resulting in an
export parameter file, trans_exp.par, that looks like this:

userid="sys/syspass as sysdba"

tablespaces=tab,ind

transport_tablespace=y

log=trans_exp.log

file=trans.dmp

Before the export, performed in this example using “exp parfile�trans_exp.par,” be
aware that a SYSDBA connection is mandatory for transportable tablespace exports,
and that all tablespaces exported must be in read-only mode as follows:

alter tablespace TAB read only;

alter tablespace IND read only;

Once the export dump, trans.dmp, has been created, everything is now in place to
copy the TAB and IND tablespace datafiles to the destination database, which is ready
to plug in the TAB and IND tablespaces. It’s your responsibility to copy the source
database datafiles to the appropriate names and locations for the destination database,
using whatever tools you choose. In this example, we copy to the following names,
using a destination database with a system ID (SID) of OMFD2:

Source: /u02/oradata/OMFD1/ind01.dbf

Destination: /u02/oradata/OMFD2/ind01.dbf

Source: /u02/oradata/OMFD1/tab01.dbf

Destination: /u02/oradata/OMFD2/tab01.dbf

To import the tablespaces, set the environment to OMFD2 and use a parameter file,
trans_imp.par, which contains the destination datafiles copied from the source
database:

userid="sys/sysomfd2 as sysdba"

tablespaces=tab,ind

transport_tablespace=y

datafiles=(/u02/oradata/OMFD2/ind01.dbf,

/u02/oradata/OMFD2/tab01.dbf)

log=trans_imp.log

file=trans.dmp

You can use any order for the database files in the DATAFILES parameter, because
import works out the correct order in the destination database by using metadata in
the export file and information in the file header. After running the import into
OMFD2, you can check which tablespaces are plugged in using the following SQL:

select tablespace_name,plugged_in

from dba_tablespaces where plugged_in='YES';

458 Chapter 19

TABLESPACE_NAME PLUGGED_IN

----------------- ------------

TAB YES

IND YES

Running Import for Maximum Performance

This section contains tips and techniques for getting the best import performance. The
import example is based on a production database schema export with 200MB of index
data and 400MB of table data. Importing a production database schema into a test
database is a typical DBA task, which gives the example some real-world relevance.
The schema used has the following object types, constraint types, and counts:

Tables 50

Indexes 137

Check 134

Primary Key 50

Foreign Key 50

Unique 2

The import parameter file uses the following settings to import from the production
schema PROD to the development schema DEV:

userid=system/manager

fromuser=prod

touser=dev

file=prod.dmp

grants=n

log=prod.log

The GRANTS�N parameter is set to prevent the production database grants from
being imported. In this case, the development database has a different set of usernames
from the production database, and GRANTS�N prevents lots of warning messages
that would occur from attempts by import to assign privileges to nonexistent users.

Untuned Import Performance
Although the performance statistics reported are interesting, the purpose of this sec-
tion is not to set rules in stone for getting the best import performance. Instead, the goal
is to demonstrate how to relate the statistics to the causes of performance problems and
demonstrate how to make changes to the database and import configuration to speed
things up. The first import takes 22 minutes, and the test database is configured with
the DBCOOL_MON package (downloadable from the companion web site) to collect
all events and statistics for the session. To identify the session, it’s necessary to search
the DBCOOL_SESSION_LOGOFF table that contains the program name and session

Backup and Restore Using Export and Import 459

identifier of the import session in the AUDSID column. An analysis of the wait event
times for this session shows the following waits:

select time_waited,event from

DBCOOL_SESSION_EVENT_V

where audsid=10 order by 1 desc;

TIME_WAITED EVENT

------------- --

31545 direct path read

17883 direct path write

9131 log file switch (checkpoint incomplete)

8274 log file switch completion

5066 db file sequential read

3008 db file scattered read

2598 log buffer space

As an experienced DBA, familiar with the contents of Chapter 9, you should be
aware that the cause of direct path read and write events is disk sorts, due to the bulk
index creation performed by import after the row data has been inserted. To confirm
your suspicions, you can check the sort statistics for the session in DBCOOL_SES-
STAT_V:

select name,value from DBCOOL_SESSTAT_V

where audsid=10

and name ='sorts (disk)';

NAME VALUE

--------------- --------

sorts (disk) 15

Avoiding Disk Sorts
Sure enough, the presence of disk sorts is evident. To avoid disk sorts, you need to
increase the sort area size database parameter to a large enough value to ensure that all
sorts take place in memory. Memory speed is much faster than disk speed. Check the
database parameter sort_area_size and you’ll find that it’s set to 65K. That’s fine for the
production database, but no good for the test database import. However, you only
want to change the setting for the import session, not for all database sessions, because
that could potentially waste a lot of memory. To meet this requirement, you create an
AFTER LOGON database trigger, which sets the sort_area_size to a large value for
import sessions only. You can determine the approximate sort_area_size by checking
the maximum index size in the import schema using the following SQL:

SELECT MAX(BYTES)

FROM DBA_SEGMENTS

WHERE SEGMENT_TYPE='INDEX'

WHERE OWNER='DEV';

460 Chapter 19

Having determined the sort_area_size, a trigger is created as SYSTEM that looks for
sessions running import and sets the sort_area_size to a large value for those sessions.
In this example, the largest index is 80MB, so the sort_area_size is set to that value, plus
an extra 50 percent, to ensure that the sort takes place in memory using the following
trigger:

create trigger trg_sort_area_size after logon on database

declare

begin

for rec in (select program from v$session

where audsid=userenv('sessionid')

and program like 'imp%') loop

execute immediate 'alter session set sort_area_size=120000000';

end loop;

exception

when others then

null;

end;

/

It’s important that the trigger uses an exception handler to ignore errors. It’s a bad
idea in this case for a SQL error in the trigger to raise an unhandled exception, as that
will prevent any session from connecting to the database whether or not it’s running
import. A rerun of the import after first dropping all the objects in the DEV schema
reduces the elapsed time to 13 minutes and 15 seconds, a 40 percent reduction from the
original. An inspection of the wait events shows that no direct path reads or writes
have taken place:

select time_waited,event from

DBCOOL_SESSION_EVENT_V

where audsid=20 order by 1 desc;

TIME_WAITED EVENT

------------- --

11112 log file switch completion

10491 log file switch (checkpoint incomplete)

5101 db file sequential read

2415 log buffer space

2318 db file scattered read

Avoiding Log Switch Waits
There is more potential room for reducing the log switch wait times, because the “log
file switch (checkpoint incomplete)” event indicates that we don’t have sufficient redo

Backup and Restore Using Export and Import 461

log groups, causing log switches to wait while the next log in the sequence is in use.
The total redo size generated by the import is given by:

select name,value from DBCOOL_SESSTAT_V

where audsid=20

and name like 'redo size';

NAME VALUE

---------- ----------

redo size 624535100

An inspection of the redo logs shows two groups, each with a single 5MB log. We
add another 8 log groups of the same size to make 10 total, using SQL like this:

ALTER DATABASE ADD LOGFILE GROUP 3 ('/u02/oradata/ORAD1/redo03.log')

SIZE 5M;

Another rerun of the import, after dropping all the objects in the DEV schema,
reduces the time elapsed time to 11 minutes, nearly half of the original 21 minutes. An
inspection of the wait events shows that events related to log file switch completion
have been much reduced:

select TIME_WAITED,EVENT

from DBCOOL_SESSION_EVENT_V

where audsid=32 order by 1 desc;

TIME_WAITED EVENT

------------- --

6564 log buffer space

4955 db file sequential read

2271 log file switch (checkpoint incomplete)

2124 db file scattered read

1153 log file switch completion

It’s worth noting at this point that the traditional SQL tracing often used for Oracle
performance management and enabled using ALTER SESSION SET SQL_TRACE
TRUE has not been required. We are simply looking at the events that the import ses-
sion spends the most time waiting for and taking steps to reduce the time. It’s now
worth considering increasing the size of the log buffer from which data is flushed into
the online redo log files as a result of data block changes during import. However, at
this point, you should be considering stopping your tuning, based on your original
goals. Even eliminating the log buffer space wait is only going to gain another 10 per-
cent of savings. It useful to include the CPU used by the session along with the event
wait times, and this can be done using the following SQL:

select TIME_WAITED,EVENT

from DBCOOL_SESSION_EVENT_V

462 Chapter 19

where audsid=32

union

select VALUE,NAME

from DBCOOL_SESSTAT_V

where audsid=32

and name = 'CPU used by this session'

order by 1 desc;

TIME_WAITED EVENT

------------- --

39889 CPU used by this session

6564 log buffer space

4955 db file sequential read

2271 log file switch (checkpoint incomplete)

2124 db file scattered read

1153 log file switch completion

Tuning the Log Buffer
It’s clear that use of the CPU is the main cause of elapsed time, and this is where efforts
to further reduce the elapsed time should be directed. It’s worth trying to reduce the
log buffer space wait by increasing the log buffer size by a factor of 10 from 163840 to
1638400. This requires a database restart. Rerunning import now eliminates the log
buffer space wait, and reduces the elapsed time to 10 minutes and 10 seconds, down
from 11 minutes, with the event list now containing the following:

TIME_WAITED EVENT

------------- --

38895 CPU used by this session

5219 db file sequential read

3608 log file switch (checkpoint incomplete)

1903 db file scattered read

1503 log file switch completion

Using Array Inserts and Commits
So far, we haven’t taken full advantage of Oracle’s array-processing features. During
imports, Oracle fills up a buffer of a size specified by the BUFFER parameter with rows
before insert. The default size of this buffer is operating system dependent. A large
buffer reduces the number of OCI execute operations that need to be performed. By
increasing the buffer size and using commit�y to specify that a commit should take
place after each buffer insert, we can speed up import by making the process more
efficient.

By default, commit�n is used, and Oracle commits after each table has been popu-
lated. Using commit�y means more commits are executed, but it places a limit on roll-
back requirements, because each commit is guaranteed never to insert more than a
buffer-size amount of data. This improves import performance if your dump file

Backup and Restore Using Export and Import 463

contains any large tables. Keep in mind that array inserts are not performed for tables
containing certain data types such as LOB and LONG. In these cases, the use of com-
mit�y causes a commit after each row. Commit is a relatively expensive operation, so
the import of tables containing LONG and LOB columns needs special care where
commit�y is concerned. In our example, we don’t have any LONG or LOB columns,
and the following parameters can be added to the existing import parameter file:

buffer=5000000

commit=y

The import now completes in 9 minutes and 14 seconds, another 10 percent im-
provement on the previous results. Table 19.2 shows some of the most significant dif-
ferences in session statistics between this run and the previous one.

Table 19.3 shows the stepwise improvements made at each stage of the import
process.

464 Chapter 19

Table 19.2 Import Statistics Using commit�y

DEFAULT BUFFER �
BUFFER 5000000

STATISTIC COMMIT � N COMMIT � Y

SQL*Net roundtrips to/from client 39708 1110

bytes sent via SQL*Net to client 4176748 61963

execute count 53645 14493

immediate (CR) block cleanout 44529 1
applications

user calls 39708 1110

Table 19.3 Import Performance Improvements

ELAPSED TIME PERCENT OF
CHANGE (SECONDS) ORIGINAL

None (untuned) 1,322 100

Increase sort_area_size 795 60

Increase redo log groups 659 50

Increase log buffer size 610 46

Increase import buffer and use COMMIT�Y 554 42

TE
AM
FL
Y

Team-Fly®

Using NOLOGGING to Reduce
Redo Size
If your redo write performance is having a detrimental effect on your import perfor-
mance, you can reduce the amount of redo generated by performing import with
indexes�n and creating the indexes afterwards from a SQL script that specifies the
NOLOGGING option on all the index creation statements. This adds complexity to the
import process but may be worth considering if the reduction in import time can be
justified. First, you need to create the index creation script by running import using the
INDEXFILE parameter. In this case, import actually inserts no data, but it instead cre-
ates a script containing index creation SQL for all the indexes in the dump file. This
script doesn’t include indexes used to implement primary and unique constraints.
These constraint-related indexes are still created by the import process. To create an
index script, add the following parameter to the parameter file and run import:

indexfile=indexes.sql

The index file contains index creation statements like the following one:

CREATE INDEX "SCOTT"."I0_EMP" ON "EMP" ("ENAME")

TABLESPACE "IND" LOGGING ;

You can modify the indexes.sql script and change TABLESPACE “IND” LOGGING
to TABLESPACE “IND” NOLOGGING globally. Next, replace the indexfile�indexes
.sql parameter in the parameter file with indexes�n and rerun the import to import the
data without the indexes. After the import has completed, run the indexes.sql script to
create all the indexes. This avoids redo generation from the index creation statements
in the export dump file.

You can actually create all the indexes, including those generated from primary key
and unique constraints, without generating redo. If you want to consider this option,
then another level of complexity is added to the import process. The capability to per-
form this operation relies on the behavior of Oracle and import. Oracle enables you to
turn an existing index into a primary or unique key constraint, and import enables you
to import constraints in a separate operation using the CONSTRAINTS parameter,
which by default is set to Y. This can be seen using an example based on a primary key
on the EMP table. In this case, the export dump file actually contains two statements,
one to create the index on which the primary key is based, and another run afterwards
to create the primary key constraint based on the index, as follows:

CREATE UNIQUE INDEX "PK_EMP" ON "EMP" ("EMPNO") TABLESPACE "IND"

LOGGING;

ALTER TABLE "EMP" ADD CONSTRAINT "PK_EMP" PRIMARY KEY ("EMPNO")

USING INDEX TABLESPACE "IND" ENABLE;

If you generate a script, cons_indexes.sql, to precreate the constraint indexes using
NOLOGGING, then you can run import in the following order to create all indexes,
including those belonging to constraints, with NOLOGGING. In the final import run,

Backup and Restore Using Export and Import 465

you import no data or indexes, but import constraints to turn the existing indexes into
constraints:

1. imp indexfile=indexes.sql # generate index SQL

2. imp indexes=n constraints=n # data without indexes/constraints

3. sqlplus @indexes.sql # use NOLOGGING

4. sqlplus @cons_indexes.sql # use NOLOGGING

5. imp rows=n indexes=n constraints=y ignore=y

The fifth step executes the ADD CONSTRAINT command like the one shown for
the EMP table. This step converts existing indexes, created at step four, into constraints.
Our original import had a single step. Now we need to use five steps. Each extra step
introduces the possibility of an error that may require a complete rerun of the whole
process. If you intend to increase the performance of import at the cost of process com-
plexity, make sure that you perform a dry run first. One additional challenge of this
approach is the requirement to generate the index creation statements for the con-
straints in advance. A document on the companion Web site titled “Using Oracle
Change Manager” shows you how to reverse engineer the SQL required to do this.

NOTE Unrecoverable data resulting from NOLOGGING has implications for
standby databases that you should be aware of. Standby databases are covered
in Chapter 23.

Importing when Objects Exist
Sometimes you need to refresh the data contents in a schema by truncating the existing
table data and leaving all the schema objects in place, rather than recreating all the
object definitions from scratch from the dump file. Never import data into a database
where the indexes are already in place unless you fully understand the performance
implications. The performance degradation, compared to creating the indexes in bulk
after all table data is inserted, can make the import take many times longer. Chapter 12
quantifies the overhead of making bulk changes to data when indexes exist on the data
being modified.

It’s usually quicker in this case to set all the schema indexes to be unusable, import
the data using the parameter SKIP_UNUSABLE_INDEXES�Y, and then rebuild the
indexes afterwards using a large sort_area_size and the NOLOGGING option. This
shows an example for one index, which would need to be applied to all the schema
indexes in a real situation:

REM ...works for all indexes including primary key and unique

constraints

alter index i0_trades unusable;

REM imports the data in another session using SKIP_UNUSABLE_INDEXES=Y

REM now rebuilds using a large sort area, without redo generation

alter session set sort_area_size=10000000;

alter index i0_trades rebuild nologging;

466 Chapter 19

If you need to import data into an existing schema after truncating all the tables in
the schema, you need to disable all referential integrity first before the TRUNCATE can
succeed. After disabling all foreign keys, you need to use the ignore�y import param-
eter to cause import to ignore errors from table and index creation statements due to
the existence of those objects. Without ignore�y in this case, import would terminate.
Finally, you need to remember to enable all the foreign keys after the completion of the
data import.

Handling Import Space Errors
In the early days of Oracle, if you experienced a space shortage for one of the import
tables during an import, the process terminated with an error, and you were left in the
difficult position of having to decide to rerun from the start or having to understand
the implications of trying to restart the import from the failure point. Because a large
import of a production schema can take several hours, it’s worth making an effort to
ensure that a space shortage can’t occur and that the import works first time. With the
advent of Oracle8i, you can use the same EXTENT MANAGEMENT LOCAL UNI-
FORM option for your import data tablespaces on both the source and destination to
guarantee that if the data fits in the source database, and the destination database is
physically the same size, then the data will also fit in the destination.

Oracle9i takes import space management to another level of robustness by allowing
import to suspend, rather than terminate, whenever a space error is encountered, and
then resume when the problem has been fixed. For example, consider a situation where
you perform an import, which exits because it reaches the maximum extents on the
imported object:

IMP-00058: ORACLE error 1631 encountered

ORA-01631: max # extents (1) reached in table SCOTT.TRADES

IMP-00028: partial import of previous table rolled back...

To ensure that import doesn’t terminate when space errors occur, you add the addi-
tional import parameter:

resumable=y

When you run import with resumable�y, space errors appear in a database view to
warn you of the problem. Provided that you fix the problem before a user-configurable
timeout occurs, import will suspend rather than terminate. You can change the default
timeout (two hours) using the resumable_timeout parameter and optionally specify a
name to identify the problem through the resumable_name parameter. The ability to
specify a name is useful if you want to poll the database and send an alert that identifies
the business process that is experiencing the problem. In this example, no name is spec-
ified, and the following error appears in the Oracle dictionary:

select error_msg from dba_resumable;

ERROR_MSG

Backup and Restore Using Export and Import 467

--

ORA-01631: max # extents (1) reached in table SCOTT.TRADES

The DBA, once alerted about the problem, can run some SQL to fix the problem and
enable the import to complete without errors. In this example, the following SQL fixes
the problem:

alter table scott.trades storage (maxextents unlimited);

ANALYZE Considerations
You have the option to import the statistics from the source database using various
options for the STATISTICS parameter, which by default has a value of ALWAYS.
Other options are NONE, SAFE, and RECALCULATE. If you used the compress�y
option on your export, you should consider using the RECALCULATE option to
ensure that the statistics in the destination database reflect the data storage layout after
import. Be aware that this recalculation of statistics at import time may cause the
elapsed time for your import to increase considerably.

Post-Import Checks
After you have completed an import, always check that all the objects and constraints
that were exported are present in the imported database. In theory, you shouldn’t have
to do this, but it protects you from possible bugs in Oracle’s import and export utilities
that might result in missing objects after import. If you followed the suggestions in the
Pre-Export Check section, you have some tables available that you can use to check the
imported objects against those that were exported. Always check that objects are valid
post-import with the following SQL, and fix any that aren’t before using the imported
data:

select * from dba_objects where status <> 'VALID';

Summary

Oracle import and export utilities are standard parts of the core DBA skill set. Both
tools include an enormous number of parameters than can make them difficult to use.
By using parameter files rather than command-line arguments, the DBA can store the
most frequently used combinations of parameters for future reuse. Parameter files also
avoid issues associated with escape sequences for quote characters that are required in
some of the arguments.

Export performance can be considerably enhanced using the direct path option, and
there aren’t many compelling reasons for not using it. Direct path export exposes a
security loophole if VPD is used to provide application security, and DBAs should be
aware of this. The use of compress�y is no longer recommended due to the improve-
ments in space management afforded by UNIFORM space allocation. The use of UNIX
compression utilities should be considered for saving export dump file space. These

468 Chapter 19

can provide very significant space savings at the cost of increased complexity in the
export process due to the use of UNIX pipes.

Understanding the factors that affect import performance and how to manage them
is essential in order to reduce elapsed times for import. The recommended approach is
to measure statistics and event waits for the import session and act on the results. This
can result in dramatic reductions in import elapsed time with minimal DBA effort.
Import provides a lot of flexibility for importing data, and it’s possible to import data
in stages to reduce factors that influence performance, such as redo generation. How-
ever, additional complexity in the import process may introduce errors, and dry runs
of complex, multistage import processes are essential for procedures that need to com-
plete in a fixed, business-critical time window. The use of Oracle’s resumable features
for handling space errors, introduced in Oracle9i, is strongly recommended. These fea-
tures in themselves are a compelling reason for upgrading to Oracle9i, due to the
potential for the increased system availability that they deliver.

Backup and Restore Using Export and Import 469

High Availability
(HA) Solutions

Five

PA R T

473

VERITAS Software Corporation is the leading provider of storage management soft-
ware for data protection, application availability, and disaster recovery. The VERITAS
product set includes offerings specifically to provide HA facilities for Oracle databases.
The Oracle suite of products from VERITAS is based on core components such as VER-
ITAS File System (VxFS) and Volume Manager, and an overview of these is provided in
this chapter. Offerings specifically for the Oracle database management system
(DBMS) are layered on top of the core components. These include VERITAS Storage
Rollback, which can provide lightning-fast Oracle restores, and FlashSnap, which pro-
vides similar performance for backups. In addition to these Oracle-specific products,
VERITAS Cluster Server (VCS) enables a standby facility to minimize application out-
ages in the case of server loss. Using VCS, Oracle databases can be failed over to a
standby server in a short time.

If you are considering purchasing software from VERITAS, you might like to revisit
the criteria in Chapter 7 that can help you choose third-party software that is likely to
meet your requirements. One factor in favor of any third-party software vendor is evi-
dence of a strong corporate partnership between the vendor and Oracle. VERITAS and
Oracle enjoy a very close relationship, both at the corporate and technical level, that
makes VERITAS worth investigating as a software solution.

VERITAS High Availability
(HA) for Oracle

C H A P T E R

20

This chapter discusses various VERITAS technologies that can provide Oracle HA
and the way in which they interoperate with Oracle technology. The technologies cov-
ered include:

■■ Oracle Disk Manager (ODM), an Oracle-specified application programming
interface (API) that storage vendors can implement, enabling Oracle to take
best advantage of their storage features

■■ VxFS and VERITAS Volume Manager

■■ VERITAS Storage Rollback

■■ VCS

■■ VERITAS FlashSnap

■■ VERITAS Volume Replication Facility (VVRF)

VERITAS and ODM

At a technical level, probably the best evidence to date of the collaboration between
Oracle and VERITAS is the announcement of ODM. ODM is a disk management API
defined by Oracle and designed to provide enhanced file management and disk
input/output (I/O) throughput by enabling vendors of storage management software
to manage Oracle I/O, by leveraging detailed storage information available only to the
storage management software.

VERITAS is the first company to implement the ODM API, which is delivered
through a dynamic load library and kernel driver as part of the VERITAS Extension for
ODM. ODM support is provided by VERITAS for Oracle9i only. It’s helpful to under-
stand what types of I/O Oracle DBMS needs to support, and how ODM helps storage
management software to control it. Oracle I/O requirements typically include concur-
rent requests for single and scattered block reads on tables, indexes, and TEMPORARY
tablespaces. Asynchronous I/O—where Oracle DBMS performs write operations
without waiting for a success or fail code—is used during writes to database datafiles
to increase throughput. However, redo log I/O is performed using sequential writes
when the next read takes place where the last one finished. During a commit, the write
operation of the commit record to the redo needs to be performed synchronously.

In the past, it was traditional for the Oracle database administrator (DBA) to micro-
manage database space across multiple file systems with different underlying storage
attributes to provide the best physical layout to meet the performance requirements of
different types of Oracle I/O. To insulate the DBA from the need to address low-level
storage performance issues, and at the same time enable Oracle I/O to take best advan-
tage of the underlying storage, ODM provides a single API call: odm_io(). This
replaces the many system calls traditionally required to perform different types of I/O
on the various kinds of Oracle database files. The existence of odm_io() enables a stor-
age management vendor, such as VERITAS, to provide suitable storage to meet the I/O
requirements specified in the call to odm_io(). Using ODM, all types of I/O are
enhanced on both filesystem files and raw partitions because the underlying storage
management software can control it. For example, ODM enables the underlying stor-

474 Chapter 20

TE
AM
FL
Y

Team-Fly®

age management software to choose blocks on disk that are actually contiguous when
allocating an Oracle file using the Oracle-Managed File (OMF) facilities in Oracle9i,
and also when increasing the size of a file using the AUTOEXTEND option. Contigu-
ous blocks can reduce the elapsed time for full table scans.

It’s important to understand the roles and responsibilities of both Oracle and the
vendor with respect to the certification of storage and sophisticated value-added stor-
age facilities discussed in the rest of this chapter. Oracle has created the Oracle Storage
Compatibility Program (OSCP) to address storage certification considerations through
an audited testing program, designed to ensure interoperability between the database
and the storage features. The OSCP facilitates the development of storage solutions for
Oracle. Through the OSCP, third-party vendors (such as VERITAS) receive the tools
and resources they need to build Oracle-compatible storage solutions. Certification is
the responsibility of the vendor based on requirements defined by Oracle. VERITAS
certifies all its Oracle-compatible storage products based on the requirements of the
OSCP. Detailed information can found in the OSCP area of Oracle’s corporate Web site.

VxFS and VERITAS Volume Manager

VxFS is one of the basic building blocks of the VERITAS HA edition for Oracle. The key
features of VxFS are raw device performance and the ease of management associated
with traditional UNIX filesystems (UFSs). VxFS provides storage virtualization capa-
bilities. These capabilities enable the administrator to manage logical pools of space
(volumes) rather than physical devices, providing very large filesystems. This is one of
the critical success factors for the low-cost, flexible, and automated administration of
Oracle databases.

Management of virtualized storage is performed through a graphical user interface
(GUI) called VERITAS Volume Manager. VERITAS Volume Manager runs as an oper-
ating system (OS) layer between I/O drivers and the file system or DBMS. As such, it
provides features to enhance storage availability, performance, and manageability by
presenting parts of disks, entire disks, or groups of disks as logical volumes. The abil-
ity to present physical disks as logical volumes leads to storage virtualization. Storage
virtualization means that VxFS file systems can be expanded online. The presence of
online maintenance operations in general leads to higher availability through avoiding
the downtime that is traditionally required to expand UFS when the underlying stor-
age device can’t be expanded online. By using VxFS and Volume Manager, database
file systems aren’t limited to the size of underlying physical devices. VERITAS Volume
Manager provides the following basic features:

■■ Protection of data against loss or loss of access due to disk media or channel
hardware failures, typically through mirroring and Redundant Array of Inde-
pendent Disks (RAID)

■■ Mapping of volume block address spaces to disk blocks for optimal data access
performance, typically using data striping

Volume Manager also provides additional features, such as three-way (or more)
mirroring of volumes. By breaking off the third mirror (typically based on low-cost

VERITAS High Availability (HA) for Oracle 475

network attached storage [NAS]) for backup, testing, or reporting, higher performance
on production systems can be maintained without compromising failure tolerance,
which continues to be provided by the first mirror. Volume Manager also facilitates
local on-disk snapshots to provide rapid rollback to prefailure states through VERITAS
Storage Checkpoint and Storage Rollback.

VxFS provides other features that enhance the performance and availability of Ora-
cle databases. For example, Quick I/O provides levels of performance comparable
with raw partitions for write-intensive applications by avoiding the file system locking
that causes I/O for traditional UFS to be serialized. VxFS is a journaling file system and
provides fast recovery after a server crash to reduce downtime, unlike a default UFS
that often requires a time-consuming full file system check (fsck) operation. Due to the
presence of journaling, post-crash integrity checks on VxFS typically require just a few
seconds.

VERITAS Storage Rollback

VERITAS Storage Rollback enables a quick restore from an on-disk backup and enables
a DBA to recover an Oracle database from logical database failures rapidly. Logical
errors can occur, for example, as a result of the accidental dropping of a table, removal
of a database datafile, or a batch processing error. It’s important to keep in mind that
protection from media failures still requires backups to secondary storage (usually
tape), or the use of disaster recovery techniques that ensure data is copied off site as
soon as it’s changed. Of course, the use of Recovery Manager (RMAN) tape backups
can provide point-in-time recovery of Oracle, and RMAN disk backups provide the
same capabilities more quickly because restores from disk are nearly always faster
than restores from tape. Use of RMAN, therefore, provides protection from logical
errors. You need to judge whether VERITAS products provide the required benefit
when compared to cost.

The key benefit of VERITAS Storage Rollback is the ability to restore Oracle database
filesystems to the preerror state in the fastest possible time, thereby increasing avail-
ability by minimizing the outage caused by the logical error. After the file systems have
been restored to the required state, regular Oracle commands are needed to roll the
database forward to a transactionally consistent state by performing recovery to a
specific point in time or system change number (SCN). VERITAS Storage Rollback can
be used in tandem with standard Oracle techniques for identifying the state of the
database. For example, by embedding calls to the GET_SYSTEM_CHANGE_NUM-
BER procedure in the DBMS_FLASHBACK package in Oracle9i (which is covered in
Chapter 17), key stages in the transaction processing stream can be identified. Recov-
ery can then be performed to return the database to the exact state required to reexe-
cute transactions from that point, based on a restore provided by VERITAS Storage
Rollback. VERITAS Storage Rollback technology relies on the existence of a VERITAS
Storage Checkpoint. The VERITAS Storage Checkpoint capability is the key to speed-
ing the restoration of the file system to the preerror state.

476 Chapter 20

Storage Checkpoints
The ability to perform a Storage Checkpoint requires the use of a VERITAS filesystem
(type VxFS) for physical layout of the Oracle database. A Storage Checkpoint provides
an instant, complete, and exact image of a file system. During a checkpoint, the pri-
mary file system to which the checkpoint relates is frozen. The freeze operation enables
pending and current I/O operations to complete while temporarily suspending new
I/O operations. The ability to control the I/O behavior in this way requires features
available through VxFS. While I/O is suspended, a block map of all the blocks in the
original file system is created. The block map is initially empty and typically requires
around 1 percent of the space in the original file system. Each block in the block map
contains a link to a block in the filesystem. Because the Storage Checkpoint performs
only the I/O necessary to create the empty block map, it usually completes within a
few seconds. When the block map of the file system is complete, regular I/O to the file
system can begin again. The write order of I/O requests submitted during the freeze
operation is maintained.

For write operations that take place after the checkpoint, VERITAS stores a
prechange image of the changed block and records the change in the block map created
at the time of the checkpoint. As a result, the operation of reinstating the file system
data to the state at the time of the checkpoint simply means applying only those blocks
that have changed. These are stored in the block map. The operation of reinstating
changes is referred to as Storage Rollback. If a block has changed since the Storage
Checkpoint, it’s not necessary to store subsequent prechange images. Therefore, the
overhead of the prechange block copy is triggered after the first post-checkpoint block
change only. The Storage Checkpoint accumulates the capture of prechange data block
images either until it is removed, or until the next Storage Checkpoint is taken. It’s
even possible to create multiple Storage Checkpoints. Each checkpoint requires a com-
plete empty block map to be created. Before-image blocks are saved to the most recent
block map only, relating to the current checkpoint. In this way, VERITAS can restore an
on-disk image to any required checkpoint using the smallest possible disk I/O, result-
ing in the fastest performance.

If a Storage Checkpoint is required while an Oracle database is open for normal use,
it’s necessary for the tablespaces that contain the checkpointed file system to first be
placed into online backup mode using ALTER TABLESPACE tspace BEGIN BACKUP.
After the Storage Checkpoint is completed, the tablespaces must be taken out of backup
mode using ALTER TABLESPACE tspace END BACKUP. If the database is in a cold state
(resulting from a SHUTDOWN IMMEDIATE operation), all file systems holding the
Oracle control files, online redo logs, and datafiles can be checkpointed. This collection
of checkpointed file systems is equivalent to a full offline backup. Unlike UFS snapshot
facilities, Storage Checkpoints are persistent across a system reboot.

VxDBA
To lower the administration cost of creating Storage Checkpoints and performing Stor-
age Rollback, VERITAS provides the VxDBA utility. This tool can be used to ensure that

VERITAS High Availability (HA) for Oracle 477

the database is in the appropriate state before performing a Storage Checkpoint, and to
automate the process of performing Storage Rollback. When a Storage Checkpoint rep-
resenting a cold backup image is requested, VxDBA performs a clean shutdown before
the checkpoint, performs the checkpoint, and then restarts the database. When a Stor-
age Checkpoint is required without shutting the database down, VxDBA ensures that
database integrity on rollback is guaranteed by placing tablespaces into backup mode
before the checkpoint, and taking them out of backup mode afterward. VxDBA auto-
matically saves a backup copy of the control file during a Storage Checkpoint.

VxDBA also automates the process of a Storage Rollback. This requires the database
to be shut down. Storage Rollback restores all datafiles in the chosen checkpoint (not
including online redo logs or control files) and can restore the whole database, specific
tablespaces, or individual datafiles. The DBA then needs to perform recovery manu-
ally to the required point in time or SCN, using the techniques covered in Chapter 17.

VCS

VCS is a HA cluster solution. In its simplest form, a cluster consists of two servers
that share a set of mount points and that are both running a single application. At
any point in time, the application runs on one server or the other. Only the server
currently running the application has the file systems mounted and online. It’s criti-
cal that the file systems are mounted only on the server running the application. This
is in contrast to cluster-aware applications like Oracle RAC (which is covered in Chap-
ter 22 that have built-in locking and synchronization facilities to enable two or more
database instances on different servers to concurrently access the shared disk at the
same time. In a VERITAS cluster, simultaneous access to the disk by two non—cluster-
aware applications leads to application data corruption and behavior referred to as
split brain. Not surprisingly, the cluster software does everything it can to prevent this
from occurring.

When a server failure occurs in a two-node VCS configuration, agents running on
the cluster detect the failure, mount the file systems on the other server, and restart the
application. The application might be an Oracle database. In the VERITAS Database
Edition/HA for Oracle, VERITAS provides additional Oracle-aware agents that can
restart an Oracle database instance and listener on the other node in a cluster automat-
ically, providing high Oracle availability in the case of server loss. VCS minimizes the
outage through two facilities provided as part of the cluster configuration: a private
interconnect between the nodes in the cluster and a virtual (floating) IP address to pro-
vide a single address that client applications use to connect to the application. The
floating IP address is independent of the actual server where the application is cur-
rently online. Figure 20.1 shows the components of a two-node cluster running an
application on VCS.

In Figure 20.1, the server eq2.dbcool.com is currently hosting the Oracle database
application. The file systems containing the Oracle software and database are mounted
only on that server, which is said to be active. The server eq1.dbcool.com is currently
idle (or passive). To enable the client applications to use the same Oracle Net alias to
locate the database, regardless of which node in the cluster is current hosting it, the Net

478 Chapter 20

alias makes use of the virtual (floating) address of the machine (eq.dbcool.com), as
shown in the following alias description:

eq.dbcool.com =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = eq.dbcool.com)(PORT = 1521))

)

(CONNECT_DATA =(service_name=eq.dbcool.com))

)

The interconnect is a low-latency private network connecting the nodes in the clus-
ter. The interconnect runs the VCS Low-Latency Transport (LLT) mechanism, which
carries the heartbeat that the VCS Global Broadcast (GAB) mechanism uses to commu-
nicate information about servers that are members of the cluster and about which
servers are active. It’s important to be aware that LLT replaces the functions in TCP/IP
with low-latency equivalents to identify failures more quickly and reliably. GAB is
responsible for ensuring that information about the state of nodes in the cluster is
transmitted atomically between nodes. Failure to do this could result in two active
nodes at the same time, causing split brain.

When eq2.dbcool.com fails, the eq1.dbcool.com takes on the role of hosting the data-
base application. Typically, end-user applications experience only a small outage while
file systems are mounted and recovered on the new active node, and while the data-
base and listener are started. Part of the failover process involves the transfer of the

VERITAS High Availability (HA) for Oracle 479

End User System

Oracle Database Server
eq2.dbcool.com

Shared Storage Oracle Database Server
eq1.dbcool.com

End User System End User System

Virtual address
eq.dbcool.com

Active Passive

Access path before
failover

Access path after
failover

Interconnect on private
network

Figure 20.1 A two-node VCS cluster.

floating IP address associated with the name eq.dbcool.com onto eq1.dbcool.com.
After the virtual address associated with the cluster is assigned to eq1.dbcool.com, the
file systems can be mounted. After the file systems are mounted, the database and lis-
tener can be started on eq1.dbcool.com, and end-user access can continue as before.
Table 20.1 shows the server names and addresses in the cluster, and their purpose.

The UNIX netstat -rn command can be used to display the network routing table on
UNIX, which identifies real and virtual network interfaces. Based on the example shown
in Figure 20.1 and Table 20.1, the output of the command shows that the virtual address
of the cluster (hostname eq.dbcool.com) is currently active on node eq2.dbcool.com:

Destination Gateway Flags Ref Use Interface

-------------------- -------------------- ----- ----- ------ ---------

169.243.210.0 169.243.210.115 U 4 312 hme0

169.243.210.0 169.243.210.120 U 4 0 hme0:1

127.0.0.1 127.0.0.1 UH 0 159246 lo0

The failover process is conceptually simple to understand. It requires a collection of
resources, such as disks, network interface cards (NICs), applications, and databases to
be restarted on a different server. However, implementation is more complex because
the order of resource failover is critical to the success of the operation. For example,
disks must be mounted before Oracle databases can be restarted. In VCS terminology,
the collection of resources that needs to be automically restarted in the correct order on
another node during failover is referred to as a service group. VERITAS provides a
GUI, VCS Manager, for the purpose of creating service groups and dependencies on
the resources within those groups. Figure 20.2 shows a complete service group based
on an Oracle database application, as represented in VCS Manager.

In Figure 20.2, the application is comprised of an end-user application with a back-
end Oracle database. The application depends on programs located on a mount point
resource named ibk_apps_mount. The Oracle database depends on three mount
points: The ibk_ora01_mount holds the Oracle software distribution, and the
ibk_ora02_mount and ibk_ora03_mount resources hold the database files. Each mount
point requires a VERITAS volume, and all volumes depend on the disk group
ibk_oradg.

The Oracle Net listener resource ibk_listener_sql depends on the existence of the
database instance (resource ibk_db_ora), which itself depends on the mount points
listed previously. When failover occurs, resources are started in order from the bottom
to the top of the dependency network. A service can’t start until all its dependents are

480 Chapter 20

Table 20.1 Sample Network Configuration for a VCS Cluster

SERVER NAME ADDRESS PURPOSE

eq1.dbcool.com 169.243.210.114 Physical network address

eq2.dbcool.com 169.243.210.115 Physical network address

eq.dbcool.com 169.243.210.120 Virtual (floating) network address

present. The NIC resource is started first. In Figure 20.2, a second physical NIC is
present on the server because RMAN backups are used to back up the database to a
centralized Legato server across a private backup—data-only network. Through the
GUI, the complex process of configuration and the management of service groups is
made as user-friendly as possible.

VCS protects against network failures (usually referred to as network partitions) by
requiring that all systems be connected by two or more communication channels. If
only a single path is available, and two nodes exist in the cluster, it’s not possible to tell
whether the failure to contact the other server is due to server loss or network loss. In
a VCS cluster, all systems send heartbeats to each other across the available communi-
cation channels. If a system’s heartbeats are not received across one channel, VCS
detects that the channel has failed. If a system’s heartbeats are not received across any
channels, VCS detects that the system has failed. The services running on that system
are then failed over to another node. The heartbeats use a broadcast mechanism, which
can create significant unwanted traffic across a public network. To address this, it’s

VERITAS High Availability (HA) for Oracle 481

Figure 20.2 A VCS service group.

possible to configure heartbeats to use the public network only when the heartbeats
fail across the private interconnect.

VCS includes a collection of command-line utilities to stop and start Oracle database
services. It’s critical that these cluster-aware utilities are used to start and stop Oracle
services, rather than using SQL*Plus STARTUP and SHUTDOWN commands. Use of
SQL*Plus commands is likely to lead to VCS detecting an unscheduled outage, leading
to the initiation of failover. To provide a consistent interface for Oracle service stop and
start operations in both VCS and nonclustered environments, it’s fairly straight-
forward to take the Perl-based tools in Chapter 4 and reimplement them as wrappers
around the cluster-aware commands. Based on the information in Figure 20.2, the fol-
lowing commands would be required to stop and start the Oracle services in a cluster-
aware manner:

■■ hactl ibk_db_ora online (start Oracle)

■■ hactl ibk_db_ora offline (stop Oracle)

■■ hactl ibk_listener_sql online (start Oracle Net listener)

■■ hactl ibk_listener_sql offline (stop Oracle Net listener)

VERITAS FlashSnap

VERITAS Database Edition for Oracle integrates with another VERITAS technology
called FlashSnap. FlashSnap provides features that enable administrators to create
point-in-time copies of data with a minimal impact on applications or users through
the use of a VERITAS volume snapshot. If you are familiar with third-mirror break-off
techniques, FlashSnap provides a similar but more easily managed and flexible facility
at the VERITAS volume level.

The volume snapshot created with FlashSnap can be accessed from the same server
or be imported to a different server. The snapshot has several useful purposes. For
example, it can form the basis of an Oracle backup or enable the resource-intensive
reporting requirements of a typical DSS system to be redirected to a separate server,
enhancing performance on the production server. VERITAS provides FastResync tech-
nology, enabling split volume snapshots to be synchronized with the original volume,
if required, by applying changes made to the original volume since the split. For orga-
nizations that are migrating away from locally attached storage, NAS servers can be
configured to provide a low-cost option for making good use of the old disk through
FlashSnap.

VVRF

VCS is designed to protect applications from prolonged outages due to loss of a single
server. Typically, all servers in the cluster are located in the same computer room on the
same subnet. Disaster recovery, however, sets out to provide data protection in the face

482 Chapter 20

of natural or man-made disasters such as flooding or terrorist attacks. Disaster recov-
ery requires taking copies of production data and data changes to remote sites so that
the data is available for disaster recovery procedures on the remote site. This book cov-
ers disaster recovery solutions based on the following technologies:

■■ VVRF
■■ Oracle multimaster replication (see Chapter 21)
■■ Oracle standby database functionality in Oracle9i Data Guard (see Chapter 23)

One theme common to all approaches is the requirement to trade performance for
availability. To maintain the availability of data at the remote site, it’s necessary to per-
form remote writes of replicated data synchronously with local writes. It’s useful to
understand the data protection capabilities of replication compared to data protection
provided by RAID at the storage hardware level. Data protection via hardware RAID
mirroring replicates data across a disk and its mirror using I/O channels to both the
disk and mirror that are local, reliable, and fast. In this case, both writes typically take
the same amount of time. For disaster recovery purposes, the write operation used to
replicate data to the remote site typically takes place over a link that is less reliable and
has lower throughput than disk I/O channels. The use of synchronous writes in this
case can significantly throttle performance on the local site, due to the reduced
throughput available, and potentially cause outages on the local server due to transient
(though recoverable) network delivery failures.

Data replication based on VVRF (and Oracle standby in 9i) can be configured to per-
form remote replication synchronously if possible, or to buffer data for asynchronous
transfers if the link becomes overloaded or unavailable. The ability to switch into asyn-
chronous mode improves performance on the local database by avoiding the need to
wait for the remote site to confirm that a write operation has completed. Whenever an
outage is experienced by a local site while the transfer is in asynchronous mode, the
possibility exists for loss of data at the replicated site if the local site is permanently lost.
Asynchronous replication is often a requirement purely for performance reasons.
Although it does not guarantee absolute data currency, asynchronous replication might
work in situations where a synchronous replication solution would not be feasible. The
behavior of VVRF in synchronous mode can be tailored for different data availability
requirements at both the remote and local sites. The following options are available for
cases when synchronous writes to the remote site fail, leading to the possible divergence
of data between the local and remote site in the last two cases:

■■ Write failure can be signalled to the application, preventing changes to the local
site when the remote site is not available.

■■ Replication can be abandoned, leading to permanent data divergence between
the local and remote sites.

■■ Replication can switch temporarily to asynchronous mode, leading to tempo-
rary data divergence between the local and remote sites.

VVRF can be used to replicate Oracle databases to remote sites by placing all Oracle
database datafiles, control files, and online redo logs into a VERITAS-replicated
volume. If asynchronous mode is used, instance recovery might be required at the

VERITAS High Availability (HA) for Oracle 483

remote site to bring the database to a transactionally consistent state before opening it
for regular use. If synchronous mode is used, no recovery is necessary. For the case
where an unrecoverable disaster occurs at the local site, the database at the remote site
can be brought online through the following operations:

■■ Termination of the replication process

■■ Change of mode for replication volumes from secondary mode to primary, fol-
lowed by mount

■■ Oracle crash recovery to roll forward committed changes from redo and roll-
back uncommitted changes from undo

Summary

VERITAS provides several HA software solutions for Oracle that rely on the underly-
ing functionality of the VxFS and VERITAS Volume Manager. VCS can provide failover
capabilities in the face of server loss, through VCS, which includes Oracle-aware
agents. VVRF provides remote data replication services to protect against site disasters.

VERITAS solutions for Oracle HA don’t come cheap. As a result, you might want to
consider the merits of Oracle solutions such as multimaster replication (see Chapter
21), RAC (see Chapter 22), and Data Guard (see Chapter 23) before making any deci-
sion to purchase. It’s also possible to use the solutions in combination. What is clear is
that Oracle and VERITAS enjoy a close corporate relationship, and that VERITAS is a
market leader in its field. As a result, a decision to purchase VERITAS is likely to
deliver significant availability benefits for Oracle in both the short and long term.

484 Chapter 20

TE
AM
FL
Y

Team-Fly®

485

Oracle provides different types of replication to meet different requirements. For
example, materialized views are often used to provide read-only copies of remote data
in a local database. In this case, the existence of materialized views is designed to
improve performance by avoiding expensive remote Structured Query Language
(SQL) operations that would be required if the local database referenced the remote
data in place, via a database link. For databases that need access to data from several
sites connected via a wide area network (WAN), materialized views against remote
data can significantly improve performance. Oracle multimaster replication can be
used for similar purposes, resulting in data being found in close physical proximity to
where it’s used.

As well as enhancing performance, replication provides the possibility of enhanced
availability. However, before you consider implementing a high availability solution,
you need to be clear on the types of failures your chosen solution protects against. For
example, to protect an application against the loss of a single host, you might choose to
deploy Oracle Real Application Clusters (RACs), which are covered in Chapter 22.
RAC doesn’t provide protection against site disasters because it requires storage to be
shared between all nodes and a high-speed interconnect between them. These require-
ments typically mean that all nodes in a RAC configuration need to be located on the
same site. If you require protection against a site disaster, a different approach is
required.

The configuration in this chapter uses Oracle multimaster replication to maintain
database availability in the face of a site disaster on the primary site. Under normal
operation, the replicated site isn’t accessible to clients. It only becomes accessible when
the primary site is lost in a disaster.

Oracle Replication

C H A P T E R

21

Topics covered in this chapter include:

■■ Comparison of multimaster replication and a standby database for disaster
recovery

■■ Comparison of synchronous and asynchronous propagation

■■ Conflict resolution and notification

■■ Issues associated with sequences in a replicated environment

■■ Prerequisites for a multimaster configuration

■■ Setting up a multimaster configuration

■■ Running a multimaster configuration

Multimaster versus Standby Databases

When choosing between multimaster replication and standby databases to implement
an Oracle disaster recover solution, several differences should be considered.

Like standby databases, multimaster replication enables a replica of a database to be
maintained at a geographically remote location. Because data is transferred via SQL,
the replicated sites can be running different releases of Oracle or even different operat-
ing systems. This is in contrast to physical standby databases provided as part of Ora-
cle Data Guard. Physical standby databases require the primary and standby sites to
match exactly, both in terms of the Oracle version and operating system. Using a phys-
ical standby, redo is applied to the standby such that the data in the primary and
standby is binary identical. As a result, standby databases require tighter control of the
Oracle runtime environments on the servers involved. However, once the standby con-
figuration is up and running, standby databases require less management than multi-
master replication, and failover requires a few commands. Data Guard is covered in
detail in Chapter 23. Using multimaster replication, some administrative procedures
may be necessary to recover transactions at the failed site and to prevent data incon-
sistencies if a decision is made to fail over back to the original site.

Whereas physical standby databases require the whole of the primary to be physi-
cally copied and maintained on the standby site, multimaster replication enables data-
base administrator (DBA)-controlled subsets of data to replicated. For example, a
single schema only can be replicated, or even a few tables in a schema.

Synchronous and Asynchronous
Data Propagation

Changes between multimaster replicated sites can be propagated in fundamentally
different ways, known as synchronous and asynchronous propagation. Synchronous
propagation occurs when a change to a local database is made to the remote replica in

486 Chapter 21

the same transaction, using Oracle’s two-phase commit mechanism. When two (or
more) Oracle sites take part in a transaction involving changes on all sites, this is re-
ferred to as a distributed transaction. This contrasts with a local transaction, which
involves changes only on the local node, and a remote transaction where all changed
objects are limited to the same remote node.

The use of synchronous propagation requires distributed transactions. Synchronous
propagation requires that all sites involved in the distributed transaction are available
at all times, or the transaction (including the part on the local node) will fail and roll
back. For example, the loss of the network connection to a remote site will cause local
transactions to fail. When sites in a synchronous configuration change the same data at
the same time, there is a possibility that deadlocks can occur because Oracle locks the
local row first, and then locks the remote row on an AFTER ROW trigger. As usual,
locks aren’t released until a commit or rollback takes place.

Oracle multimaster propagation actually propagates changes to remote sites using
Remote Procedure Calls (RPCs) rather than changing the remote tables directly using
SQL statements. When changes are made to a local replicated table, internal database
triggers create the RPCs that replicate the changes. Usually, each row change generates
an RPC. In synchronous mode, multimaster replication executes the RPC call that
changes the remote data within the same transaction as the local data change made by
the client application. As this represents a distributed transaction, changes must be
made to all sites or none. Failures result in a rollback, which loses the local part of the
transaction. Using synchronous replication, all sites contain identical replicated data at
all times.

When multimaster replication is configured to use asynchronous propagation, the
same RPCs are generated as in synchronous mode. The difference is that the RPCs are
recorded in a local queue (actually implemented using database tables) within the
same local transaction. Therefore, asynchronous changes require sufficient space in the
local queue for the transaction to succeed. Once the local transaction commits, the local
queue table records the remote sites against which the RPC needs to run, along with
the RPC parameters that identify the values to change. At a later time, and typically
using scheduled database jobs, the changes are propagated from the local queue to
each remote site, using a distributed transaction. If the remote site is unavailable, then
the transaction fails and can be retried later. Asynchronous propagation may be per-
formed serially or in parallel. During serial transmission, transactions are propagated
one at a time in the commit order of the originating site. During parallel propagation,
replicated transactions are transmitted in concurrent parallel streams leading to higher
throughput. Oracle orders the execution automatically in a way that ensures the global
integrity of data. Parallel propagation uses the same underlying mechanism used by
all parallel operations in Oracle.

Keep in mind that all sites in a multimaster configuration are peers. Therefore, they
can all make local changes to the same data at the same time, and these changes need
to be propagated to all other sites. Asynchronous propagation leads to the possibility
that data on different sites can diverge. For example, if two sites change the same row
at the same time and specify different values, a fundamental conflict arises when each
site needs to propagate changes to the other.

Oracle Replication 487

Conflict Resolution and Notification

This chapter covers an Oracle disaster recovery solution based on multimaster replica-
tion. As such, the possibility for data conflicts is minimal because clients don’t access
the standby multimaster-replicated database until the primary is unavailable.

However, as an aside, conflict resolution is worth discussing, as it presents one of
the biggest challenges for running Oracle multimaster replication when all sites are
peers that can be updated at the same time. Oracle provides two methods for resolving
conflicts automatically. For example, consider a situation where each table contains a
column that identifies the last time a change was made to each row. If a conflict occurs,
Oracle can apply a rule whereby the values in the row that changed most recently take
precedence. Any such automatic resolution needs to take into account possible time
zone differences between sites so that the conflict resolution rule is applied correctly.
The solution to this time problem is to ensure that each table contains a trigger that
updates the time column with a universal time (such as GMT) each time a change is
made on the local site. Obtaining a universal time value on each site is not straightfor-
ward, and care must be taken to ensure that clocks on all servers are synchronized, for
example through the use of the xntpcl service on UNIX. An external C procedure can
be used to obtain the local server time in GMT. An easier method is to create a Java
stored procedure for use within the trigger, where the procedure returns the local time
in GMT through the Java class java.util.Date. An example of Java source code to accom-
plish this task is shown here:

import java.text.*;
import java.io.*;
import java.util.*;
import java.util.Date ;

public class DbCoolGmt
{
public static String GmtTime()
{

DateFormat df = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss");
Date currentDate= new Date();
System.out.println("GMT is " + df.format(currentDate));
df.setTimeZone(TimeZone.getDefault());
System.out.println("LOCAL time is " + df.format(currentDate));
df.setTimeZone(TimeZone.getTimeZone("GMT"));
return ((new String(df.format(currentDate))).toUpperCase());

}
}

Once the class has been compiled, the following SQL script can be used to create a
binding to the Java class to enable the function to be called from PL/SQL within a
trigger:

CREATE OR REPLACE FUNCTION DBCOOL_GMT_TIME RETURN VARCHAR2
AS LANGUAGE JAVA
NAME 'DbCoolTime.GmtTime() return java.lang.string';
/

488 Chapter 21

Another automatic conflict resolution approach involves the creation of a column in
every table to store the site name where the change was made. Using this approach,
each replicated table contains a trigger that updates a site column upon each row
change. The site column can be populated from the database GLOBAL_NAME value,
which should uniquely identify each site. The conflict resolution routine needs to be
configured with the order of site precedence. Then, if a conflict occurs, Oracle can
apply the values from the site with the highest priority in order to resolve the conflict.

The biggest problem with automatic conflict resolution is that it applies a technol-
ogy solution to a business problem. My personal preference is never to implement
automatic conflict resolution routines. I prefer to notify end users regarding conflicts
and let them decide how to resolve them. It’s feasible to implement extensive conflict
notification routines without implementing automatic conflict resolution routines.

Whatever the approach to conflict resolution, all the solutions require intrusive
changes to the replicated schema (through extra columns and tables) or extra effort
from business users to ensure that procedures are in place to deal with conflicts that
occur. However unlikely the possibility of a conflict appears, procedures need to be
tested before production. These issues all have a common root cause, due to the under-
lying asynchronous propagation of changes. The best approach is to avoid conflicts in
the first place, and that’s difficult to guarantee. Synchronous operation avoids these
requirements but imposes high availability requirements for all networks and servers
in the replicated configuration.

Replication Prerequisites

A replication configuration can be created and managed using either the replication
application programming interface (API), which is a collection of packages or the
Replication Manager component of Oracle Enterprise Manager (OEM). Replication
Manager is a graphical user interface (GUI) that manages the interface to the API. In
order to run a replicated configuration in a production environment, you’ll probably
use the GUI, as it provides day-to-day administration at a much lower cost. However,
when things go wrong, you may need to resort to the API. If a GUI doesn’t expose all
the functionality in the underlying API, then this is the case. The downside of using the
API is that it requires an advanced level of DBA skills. Therefore, to run a production
multimaster configuration, you need sufficient DBAs with advanced-level DBA skills
to provide 24 � 7 coverage for the application. This is a cost you need to keep in mind
before you deploy a multimaster configuration.

At the technical level, in order to implement multimaster replication, rows in all
tables to be replicated need to be uniquely identifiable. This guarantees that changes
on one site can be propagated correctly to all other sites during RPCs. The best way to
guarantee this is to ensure that all tables have primary key constraints or unique con-
straints where all columns are NOT NULL. If a table doesn’t have such a constraint,
then a set of columns that can be used to guarantee uniqueness must be nominated
during the initial replication configuration. If such a set of columns exists, another
approach is to add a primary key to the table in a RELY DISABLE state, such as:

alter table no_pk add primary key (keycol1, keycol2) rely disable;

Oracle Replication 489

This statement identifies a set of columns that could be used as a primary key, with-
out requiring the overhead of maintaining the underlying index, which is not created.
It’s important to understand that a primary key in DISABLE state doesn’t prevent the
insertion of duplicate keys. Therefore, you need to be sure that any columns supplied
form a genuine primary key and that NULL values aren’t inserted if the columns
enable NULL values.

Initialization parameters need to be set with care in order to ensure that the repli-
cated configuration will operate correctly. Table 21.1 shows initialization parameters to
be set on both sites to support replication. These are used later in an example to
demonstrate a multimaster replication configuration based on two Oracle9i databases.

The use of parallelism is required to ensure the parallel propagation of changes
for replication configurations with high change volumes. By setting PARALLEL_
AUTOMATIC_TUNING to TRUE, Oracle can dynamically adjust the degree of paral-
lelism according to the current workload. Note also that the JOB_QUEUE_INTERVAL
parameter is missing. This is obsolete in Oracle9i, where the job queue has been
redesigned to start jobs on demand and to support a dynamic number of jobs up to the
value of JOB_QUEUE_PROCESSES.

Replication and Sequences

Before you decide to use multimaster replication, you need to be aware that replicating
sequences is not supported. Sequences are typically used in the generation of primary
key values. Most often, a BEFORE INSERT trigger is defined on a table, and the trigger
selects the next value from the sequence to use as the primary key. Using this tech-
nique, primary keys can be generated automatically, transparently to the end user. This

490 Chapter 21

Table 21.1 Initialization Parameters for Multimaster Replication

PARAMETER NAME VALUE

compatible 9.0.0

distributed_transactions 5

global_names TRUE

job_queue_processes 3

open_links 4

parallel_automatic_tuning TRUE

parallel_min_servers 2

processes Add 12 to existing value

replication_dependency_tracking TRUE

shared_pool_size Add 50MB to existing value

simple approach using numeric primary keys won’t work in a replicated environment
when multiple sites can potentially generate the same key value based on a local
sequence. This will lead to replication conflicts.

Two solutions to this problem are possible. One uses a different value for the
INCREMENT BY sequence property for the same sequence on different sites to ensure
that no overlap in sequence values can occur across sites. The other approach involves
changing an existing primary key to include an extra column that uses a unique prop-
erty of each database (for example, GLOBAL_NAME, DBID, or STANDARD.SYS_
GUID) as a tiebreaker to guarantee a unique value when used in combination with the
value generated by the local sequence.

Keep in mind also that the BEFORE INSERT trigger used to generate the primary
key value can be fired in two ways. The first is through a local insert by an end-user
application. The second is through an insert propagated by a replication RPC from a
remote site where the end-user insert was originally performed. In this second case,
where the key has been generated at the remote site, the trigger must not change the
value. The following PL/SQL test can be used in any trigger to identify only those
changes resulting from an end-user action on the local site:

if (dbms_reputil.from_remote = false and

dbms_snapshot.i_am_a_refresh = false) then

-- this is end-user application change...

The use of INCREMENT BY is shown in the following code (based on the
SCOTT.EMP table) where the trigger is identical on both sites, but the generated
sequences can’t overlap:

REM site 1 trigger, values 1,3,5,7...

create sequence seq_pk_emp

increment by 2 start with 1 nocache;

REM site 2 trigger, values 2,4,6,8...

create sequence seq_pk_emp

increment by 2 start with 2 nocache;

REM Site 1 and 2:

create or replace trigger trg_pk_emp

before insert on emp

for each row

begin

if (dbms_reputil.from_remote = false and

dbms_snapshot.i_am_a_refresh = false) then

select seq_pk_emp.nextval into :new.empno from dual;

end if;

end;

/

The second approach means that the same sequence definition can be used on each
site. However, an extra column is required to store the site-unique value that must be
used as a tiebreaker along with the sequence value to form the primary key. The

Oracle Replication 491

following example shows the second approach, where the EMPNO column is used in
combination with a GUID column to form the primary key, where GUID is the value
returned from STANDARD.SYS_GUID:

alter table emp add (guid raw(2000));

alter table emp add constraint pk_emp primary key(empno,guid);

create or replace trigger trg_pk_emp

before insert on emp

for each row

begin

if (dbms_reputil.from_remote = false and

dbms_snapshot.i_am_a_refresh = false) then

select seq_pk_emp.nextval into :new.empno from dual;

:new.guid := sys.standard.sys_guid;

end if;

end;

/

Creating a Replication Configuration

This section describes a mixed mode multimaster configuration where changes
between the primary and standby are performed using synchronous propagation, and
changes between the standby and primary are performed using asynchronous propa-
gation. The assumption is made that the primary and standby sites are geographically
remote such that the loss of both sites at the same time, due to disaster, is very unlikely.

The system designed is such that during normal operation of the primary, the
standby is not available for end-user activity, although it’s up and running normally.
The standby exists simply to provide a failover if the primary site is lost due a site dis-
aster. Keep in mind that the use of synchronous propagation relies on the fact that both
the network between the sites and the servers on which the primary and standby data-
bases run deliver high availability. If not, the possibility exists that standby server
problems or network outages can reduce the availability of the primary. This is defi-
nitely a situation that must be avoided, as it defeats the whole purpose of the configu-
ration, which is to increase the availability of the primary.

Creating the Standby Database
During initial setup of replication between the primary and standby sites, the DBA cre-
ates a named group of objects to be replicated between sites. This is known as a master
group. During the creation of the master group, data can optionally be copied between
sites to ensure that all tables on all sites contain the same rows as an initial starting
point before replication begins. In order to create the standby more quickly for cases
where large numbers of rows are involved, the standby can be copied from a cold
backup of the primary. Chapter 23 contains instructions for setting up a standby data-
base that can be followed to clone the multimaster standby from the primary. After the

492 Chapter 21

standby is opened, the GLOBAL_NAME value must be changed to a unique value dif-
ferent from the primary. If the primary uses TEMPORARY tablespaces that include
tempfile files, these need to be created on the standby if they don’t exist already.

Network Configuration
Based on a server name, “primary” for the primary database and “standby” for the
standby database, three Oracle Net aliases need to be created. Note that both databases
must use the initialization setting service_names�orad2.dbcool.com in order to
dynamically register with the local database listener on the local server. The use of
dynamic registration means that no listener.ora file is required on either server. Chap-
ter 3 provides full details. If a listener.ora file is used, then GLOBAL_DBNAME values
must not be used to statically register a database with a listener. The use of GLOBAL_
DBNAME disables the transparent application failover capabilities of Oracle Net.

The first alias, orad2.dbcool.com, is the one used by end-user applications. This uses
the transparent application failover capabilities of Oracle Net to attempt a connection
to the primary database first, and then connect to the standby if the primary is not
available. Therefore, if the primary is lost, connections will be transparently redirected
to the standby. As a result, the standby is never used by end-user connections while the
primary is available. The alias definition for end-user connections is provided in the
following code:

orad2.dbcool.com =

(description =

(address_list =

(address = (protocol = tcp)(host = primary)(port = 1521))

(address = (protocol = tcp)(host = standby)(port = 1521))

(failover = true)

(load_balance = false)

)

(connect_data =

(service_name = orad2.dbcool.com)

)

)

The other two aliases are used explicitly to identify each database for the purpose of
replication and should be registered as the names of each database in OEM. These are
shown in the following code:

orad2.primary.dbcool.com =

(description =

(address_list =

(address = (protocol = tcp)(host = primary)(port = 1521))

)

(connect_data =

(service_name = orad2.dbcool.com)

)

)

Oracle Replication 493

orad2.standby.dbcool.com =

(description =

(address_list =

(address = (protocol = tcp)(host = standby)(port = 1521))

)

(connect_data =

(service_name = orad2.dbcool.com)

)

)

The GLOBAL_NAME of each database must be set to the Oracle Net alias in order
to ensure that Replication Manager can differentiate between them and to ensure the
names meet the requirements for naming enforced by the use of GLOBAL_NAMES�

TRUE in the initialization files on each site. The GLOBAL_NAME can be set using the
following commands:

REM run this on primary database...

alter database rename global_name to orad2.primary.dbcool.com;

REM run this on standby database...

alter database rename global_name to orad2.standby.dbcool.com;

Using Replication Manager
Replication Manager is a component of OEM. To manage a replicated configuration
using OEM, the following prerequisites are necessary:

■■ An OEM Management Server must be running. This requires an OEM Reposi-
tory Database. Chapter 24 contains more information on installing and running
OEM.

■■ The Oracle Intelligent Agent must be running on each site.

■■ The primary and standby databases must be discovered by the agent and regis-
tered in the OEM repository. In this example, the names are
orad2.primary.dbcool.com and orad2.standby.dbcool.com.

■■ Operating system and Oracle-preferred credentials must be registered in the
OEM repository for the primary and standby server machines and the primary
and standby databases. Oracle credentials require SYSDBA privileges, which in
turn require the use of a password file on the primary and standby database.

■■ The Oracle listeners on each site must be configured to enable connections to
the local database.

Database links between all sites are required and are authenticated using a DBA
account. The Replication Management tool can create the required links. Replication
requires named database accounts to perform administration. Although it’s possible to
use separate Oracle accounts for the administrator, change propagator, and change
receiver functions on each site, administration is considerably easier if the same Oracle
account is used to perform all roles, and this is strongly recommended.

494 Chapter 21

TE
AM
FL
Y

Team-Fly®

Traditionally, the username REPADMIN is used, and there’s no reason to change it.
The easiest way to create the required administration accounts and links on each repli-
cation master site is to use the Setup Wizard. The Setup Wizard can be started by right
clicking the Multimaster Replication node under the Database node for one of the can-
didate replication master sites and choosing Setup Master Sites. Figure 21.1 shows the
node in the OEM object tree for the primary database.

Before setting up the master sites in Setup Wizard, the chosen sites need to be added
to the list of master sites. Figure 21.2 shows the Add Site screen after the two sites in the
example have been added.

Oracle Replication 495

Figure 21.1 The Multimaster Replication node in OEM.

Figure 21.2 The Add Sites screen.

Once the master sites have been added, Setup Wizard performs the following tasks
on each master site to create the configuration:

■■ Creates a database account to serve as a replication administrator, propagator,
and receiver. By default, the REPADMIN can be used for all three functions.

■■ Grants the necessary privileges to the replication administrator account.

■■ Creates database links to correspond to new replication administrator accounts
at each replication site.

■■ Schedules a job to push changes from the master site to each other master site.

■■ Schedules a job to purge the deferred transaction queue of completed transac-
tions for all sites in the system.

After the master site configuration is complete, each master site should contain a
database link that refers to the other site. For example, the primary site has a link to the
standby site that can be tested as follows:

select * from global_name@orad2.standby.dbcool.com;

The next step is to create a master group that contains a group of objects to replicate
between sites. Before this can be performed in Replication Manager, it’s necessary to
disconnect from the database and reconnect as REPADMIN. This can be performed by
right-clicking the database node, and then choosing Disconnect followed by Connect.
A master group is created by right-clicking the Master Groups node and choosing Cre-
ate. Tables, indexes, views, synonyms, and PL/SQL can all be replicated by adding
them to a master group. Figure 21.3 shows the Add Objects screen, where all SCOTT’s
objects have been added to the group.

Next, the master sites to replicate to must be added under the Master Sites tab. In
this example, the other master site is orad2.standby.dbcool.com. Figure 21.4 shows the
options for replication to the standby site, indicating that synchronous propagation is
to be used for replication to the standby from the primary and that existing rows in the
primary objects don’t need to be copied because the standby in this example is based
on a cold backup of the primary, and therefore the rows already exist in the standby.

Immediately after creation, the master group is in a quiesced state until replication
support has been added to all objects in the group. That means the replication is not yet
active between objects in the group. The group name and contents are displayed in the
object tree in OEM as shown in Figure 21.5.

The status of a master group can be viewed in the DBA_REPGROUP view. In this
example, the group SCOTT1 is in a quiesced state:

select gname,status from dba_repgroup;

GNAME STATUS

------- ---------

SCOTT1 QUIESCED

496 Chapter 21

Oracle Replication 497

Figure 21.3 Adding objects to a master group in OEM.

Figure 21.4 Adding a destination to a master group in OEM.

One of the master sites in a master group is designated as the master definition site.
The master definition site must be used to perform administration functions. By default,
the master definition site is the site from which the master group was created. In this
example, it is ORAD2.PRIMARY.DBCOOL.COM, as shown by the following SQL:

select gname,dblink,masterdef,master

from dba_repsites

where gname='SCOTT1';

GNAME DBLINK MASTERDEF MASTER

------- ------------------------- ----------- --------

SCOTT1 ORAD2.STANDBY.DBCOOL.COM N Y

SCOTT1 ORAD2.PRIMARY.DBCOOL.COM Y Y

At this stage, replication propagation in both directions is synchronous. This can be
shown by querying the DBA_REPROP view on the standby site, which shows that syn-
chronous propagation is configured for the connection to the primary site and therefore
doesn’t meet our original requirement for synchronous propagation between the pri-
mary and standby, and asynchronous propagation between the standby and the primary:

REM on the standby...

select * from dba_repprop

where dblink='ORAD2.PRIMARY.DBCOOL.COM';

498 Chapter 21

Figure 21.5 A master group defined in OEM.

SNAME ONAME TYPE DBLINK HOW

------- ------- ------ ------------------------- -----------

SCOTT DEPT TABLE ORAD2.PRIMARY.DBCOOL.COM SYNCHRONOUS

SCOTT EMP TABLE ORAD2.PRIMARY.DBCOOL.COM SYNCHRONOUS

The replication propagation mode between the standby and the primary can be
modified by a call to the Replication API using the ALTER_MASTER_PROPAGATION
procedure in DBMS_REPCAT once the master group is an quiesced state. Many repli-
cation administration operations require the group to be quiesced first. The following
PL/SQL block quiesces the group before making the change, which must be run under
the REPADMIN account on the master definition site:

REM !! run as REPADMIN from masterdef site

begin

dbms_repcat.suspend_master_activity(gname=>'SCOTT1');

end;

/

REM wait for the STATUS in DBA_REPGROUP to say QUIESCED then . . .

begin

dbms_repcat.alter_master_propagation(

gname=>'SCOTT1',

master=>'ORAD2.STANDBY.DBCOOL.COM',

dblink_list=>'ORAD2.PRIMARY.DBCOOL.COM',

propagation_mode=>'ASYNCHRONOUS';

end;

/

One side effect of configuration changes, such as these, is the need to regenerate
replication support for objects in the master group affected by the change. In this case,
the EMP and DEPT tables need to have replication support regenerated so that asyn-
chronous propagation is performed between the standby and primary. The contents of
the ALL_REPOBJECT view show objects that need regeneration of replication support,
including the status of the internal packages generated by Oracle to perform RPC calls,
as shown by the following SQL:

select sname,oname,type,status,generation_status

from all_repobject where gname='SCOTT1';

SNAME ONAME TYPE STATUS GENERATION_STATUS

------- -------- ------------- -------- -------------------

SCOTT DEPT TABLE VALID NEEDSGEN

SCOTT DEPT$RP PACKAGE VALID

SCOTT DEPT$RP PACKAGE BODY VALID

SCOTT EMP TABLE VALID NEEDSGEN

SCOTT EMP$RP PACKAGE VALID

Oracle Replication 499

SCOTT EMP$RP PACKAGE BODY VALID

SCOTT PK_DEPT INDEX VALID

SCOTT PK_EMP INDEX VALID

The regeneration of replication support requires repeated calls to the GENERATE_
REPLICATION_SUPPORT procedure in DBMS_REPCAT for each object in the group.
This can be somewhat tedious. It’s easier to perform in Replication Manager: The
objects can be selected from a list and pressing the Generate Replication Support but-
ton does the rest. Don’t forget that you must be connected as REPADMIN to manage a
master group in Replication Manager. Replication administration requests are queued
for execution and can be viewed in the DBA_REPCATLOG view. The following SQL
shows pending requests during regeneration or replication support:

select status,request from dba_repcatlog;

STATUS REQUEST

-------------- -----------------------------

AWAIT_CALLBACK GENERATE_INTERNAL_PKG_SUPPORT

READY GENERATE_INTERNAL_PKG_SUPPORT

READY END_GEN_INTERNAL_PKG_SUPPORT

REM manually push outstanding admin queue requests if you can’t wait

begin

dbms_repcat.do_deferred_repcat_admin(gname=>'SCOTT1',all_sites=>TRUE)

end;

/

The replication properties from the standby to the primary should now show that
asynchronous propagation is active and that synchronous propagation is active
between the primary and the standby. This can be shown using the following SQL on
either site:

select oname,global_name from_, dblink to_,how

from dba_repprop@orad2.standby.dbcool.com,

global_name@orad2.standby.dbcool.com

where dblink='ORAD2.PRIMARY.DBCOOL.COM'

union

select oname,global_name from_, dblink to_,how

from dba_repprop@orad2.primary.dbcool.com,

global_name@orad2.primary.dbcool.com

where dblink='ORAD2.STANDBY.DBCOOL.COM'

order by 2;

ONAME FROM_ TO_ HOW

----- ----------------------- ------------------------- -------------

DEPT ORAD2.PRIMARY.DBCOOL.COM ORAD2.STANDBY.DBCOOL.COM SYNCHRONOUS

EMP ORAD2.PRIMARY.DBCOOL.COM ORAD2.STANDBY.DBCOOL.COM SYNCHRONOUS

DEPT ORAD2.STANDBY.DBCOOL.COM ORAD2.PRIMARY.DBCOOL.COM ASYNCHRONOUS

EMP ORAD2.STANDBY.DBCOOL.COM ORAD2.PRIMARY.DBCOOL.COM ASYNCHRONOUS

500 Chapter 21

Once replication support has been regenerated successfully, replication between
sites can proceed using the Submit Start Request from the GUI or the following SQL in
the API:

begin

dbms_repcat.resume_master_activity(gname=>'SCOTT1');

end;

/

Scheduled Link and Scheduled
Purge Operations
A scheduled link determines how a master site propagates its deferred transaction
queue to another master site. Scheduled links are created during the initial replication
configuration using the Setup Wizard. When a scheduled link is created, Oracle creates
a job in the local job queue to push the deferred transaction queue to another site in the
system. When Oracle propagates deferred transactions to a remote master site, it does
so within the security context of the replication propagator, which is REPADMIN by
default. This is the purge job created on the standby site in the example described pre-
viously:

REM push local deferred transactions to the primary...

declare

rc binary_integer;

begin

rc := sys.dbms_defer_sys.push(

destination=>'ORAD2.PRIMARY.DBCOOL.COM',

stop_on_error=>FALSE, delay_seconds=>0, parallelism=>0);

end;

/

A scheduled purge determines how a master site purges applied transactions from
its deferred transaction queue. The Replication Manager tool’s Setup Wizard creates a
job in each master site’s local job queue when a master site is defined. It’s a good idea
to purge the local deferred transaction queue on a regular basis to stop it filling up the
database. This is the default purge job created by Setup Wizard:

REM purge applied transactions from the queue...

declare

rc binary_integer;

begin rc := sys.dbms_defer_sys.purge(delay_seconds=>0);

end;

/

Because the primary in the example propagates synchronously to the standby site,
the deferred transaction queue is always empty; that is, synchronous propagation
doesn’t queue transactions. As a result, the database jobs that are created on the pri-
mary to perform the purge and push operations never have any work to process. On

Oracle Replication 501

the standby end, asynchronous propagation is operating, which means that the de-
ferred transaction queue could contain transactions. However, because the standby
should be closed to end-user access during normal operation, the deferred transaction
queue should be empty at the standby end also. To protect the primary, the purge and
push jobs can be set to BROKEN on the standby to prevent changes made by end users
on the standby from accidentally propagating to the primary while the primary is run-
ning. Keep in mind that end-user connections to the standby database should never
occur while the primary database is running, provided that the Oracle networking
configuration is set up correctly.

If the primary server is lost, then the standby database takes over the role of the pri-
mary database automatically as a result of the Oracle network configuration. In this
case, changes made on the standby are queued until the primary becomes available
due to the use of asynchronous propagation. In order for changes made on the standby
to propagate back to the primary after it’s fixed, the BROKEN purge and push jobs on
the standby need to have their state changed so that they can run. The following shows
how to change a BROKEN job so that it can run:

begin

sys.dbms_ijob.broken(job=>:jobid,broken=>FALSE);

end;

/

Change Management for Replication
Database change management presents some special challenges in a replicated envi-
ronment. For example, if you make a change to a table by adding a column, this DDL
change must be propagated to all other sites. In the past it was necessary to quiesce the
replication master group in order to stop replication activity during administration
tasks. The quiesce operation itself requires all deferred transactions to complete first.
As a result, administration changes in a replicated environment introduce the possibil-
ity of reduced availability by requiring scheduled outages. Oracle9i makes it possible
to carry out more administration operations than previously without requiring a qui-
esce operation.

Summary

Multimaster replication provides a potentially powerful Oracle disaster recovery facil-
ity by propagating changes to a standby site synchronously. Because data changes
between sites are propagated using RPCs, it’s not required for sites to be running the
same operating system or the same version of Oracle. The use of the Replication Man-
ager GUI in OEM makes replicated groups easier to manage than ever before. How-
ever, the GUI doesn’t expose all the features of the underlying replication API, which
is implemented in the DBMS_REPCAT package. As a result, management of a fully
fledged production replication configuration requires advanced-level DBA skills.
Before you choose to implement multimaster replication for a disaster recovery solu-

502 Chapter 21

tion, it’s essential to ensure that sufficient DBAs with advanced skills are available to
provide 24�7 support. Before choosing multimaster replication for disaster recovery,
it’s a good idea to first consider using standby databases instead. Standby databases
can provide no-data-loss disaster recovery using the features in Oracle9i Data Guard
with a lower administration cost. Data Guard is covered in Chapter 23.

Oracle Replication 503

TE
AM
FL
Y

Team-Fly®

505

Oracle has long supported the idea of clustered databases. In an Oracle clustered data-
base configuration, a single set of database files resides on a disk that is shared in read-
write mode between several servers at the same time. Each server contains an Oracle
instance, which consists of background processes that access the database files on the
shared disk at the same time, and shared memory holding the Oracle System Global
Area (SGA). The goal of clustered Oracle databases is to provide:

■■ Higher availability

■■ Better performance

■■ Scalability

Higher availability is enabled through the existence of other instances should one
fail. Sharing the database workload across multiple instances enhances performance,
and scalability is enabled by allowing additional servers to be added to the cluster
(known as scale-out) to handle increased workloads.

Compared to a single-instance configuration, a cluster database requires additional
components. For example, in order to ensure integrity between the Oracle caches, such
as the database block buffer cache, in each instance additional distributed lock man-
agement services are required compared to a nonclustered configuration.

The original implementation of Oracle clustered databases was Oracle Parallel
Server (OPS). OPS first appeared on the VMS operating system, which is often
regarded as a legacy operating system today. OPS never really took off on UNIX due to
the additional complexities of managing the clustered configuration that are listed in
the next section.

Oracle Real
Application Clusters

C H A P T E R

22

In Oracle9i, OPS is replaced by Oracle Real Application Clusters (RACs). This chap-
ter explains how RAC addresses the issues associated with OPS while continuing to
provide the performance, availability, and scalability for which Oracle clustered data-
bases were originally designed. Oracle’s networking capabilities to enable both con-
nection- and statement-level failover are covered in detail, as RAC is the only
environment that can make full use of all the available facilities.

This chapter begins with a discussion of the gaps in OPS, followed by a comparison
of the fundamental differences in the Oracle configuration for a clustered environment
compared to a traditional single-instance configuration. At the highest level, these dif-
ferences apply to both RAC and OPS. The improvements in RAC, as compared to OPS,
are analyzed, and Linux is considered as a suitable operating system for RAC deploy-
ment. The high profile of RAC on Linux is food for thought as it’s impossible to con-
sider it without also considering the key factors that determine the hardware platform
on which any organization chooses to deploy Oracle today. Given the evidence avail-
able, it’s quite possible that Linux may be the platform of choice for deploying Oracle
in the not too distant future. The following topics are covered:

■■ Functionality gaps in OPS that RAC solves

■■ Components of an RAC configuration

■■ Description of cache fusion and improvements

■■ Installation improvements and manageability enhancements of RAC

■■ Interconnect configuration

■■ Parameter differences between RAC and single-instance configurations

■■ A complete set of initialization parameters for a two-node cluster

■■ Client network configuration for load balancing and failover

■■ Considerations for choosing your Oracle operating system

■■ Choosing to run RAC on Linux

Missing Features in OPS

Oracle OPS on UNIX never really entered the mainstream due to the additional com-
plexities of managing the clustered configuration in order to justify the performance,
availability, and scalability benefits that clustered databases were intended to deliver.
These additional complexities include the following:

■■ Manual configuration of the locking configuration parameters.

■■ The requirement to use raw partitions for the database datafiles.

■■ The need to maintain a separate parameter file for each instance.

■■ The need to manage resource affinity manually. Resource affinity is the ability
to move database resources around the cluster into the SGA of the instance
where they are most frequently used in order to improve performance.

506 Chapter 22

■■ The requirement to install Oracle software on each node and perform patches
separately to each.

■■ The lack of cluster-aware management tools to start and stop Oracle services.

Oracle RAC sets out to address all these gaps. As a result, it’s reasonable for Oracle
to state that RAC isn’t simply a rebadged OPS. The rest of this chapter explains how
these deficiencies have been addressed.

Components of an RAC Configuration

An Oracle database consists of a set of files and a set of background processes and
shared memory called the database instance. In a traditional Oracle configuration, there
is a one-to-one correspondence between the instance and the database files. In an Ora-
cle clustered environment, the database is deployed on disks that are shared between
multiple nodes in the cluster, and each node runs its own Oracle instance.

NOTE Disk sharing based on Small Computer Systems Interface (SCSI) is
usually not suitable. You need to use fiber-connected storage based on Oracle-
certified configurations. More information is available at www.oracle.com.

The capability to share processing between nodes in the cluster means that process-
ing capacity in the configuration can be increased simply by adding additional nodes
to the cluster, each containing an additional Oracle instance. This is referred to as scale-
out, as compared to the more traditional ways to increase capacity by adding hardware
resources to an existing server or buying a larger one, which is referred to as scale-up.

Database Components in an RAC
Configuration
Figure 22.1 shows the components of an Oracle RAC configuration, including those
parts that are present on the shared disks and those that reside on local disks based on
a Linux installation of RAC.

Cache Fusion Described
In order to present each Oracle SGA cache on each instance as a single clusterwide
global entity, Oracle needs to synchronize data between the database block buffer
cache of each instance. This happens through cache fusion, which works by transfer-
ring data between the nodes over the interconnect, on demand. The interconnect is
simply a high-bandwidth, low-latency connection between the nodes used for inter-
process communication, based on asynchronous messaging and queuing.

Enhancements to cache fusion are one of the main improvements in RAC compared
to older versions of OPS. In older versions, if a second database instance required a

Oracle Real Application Clusters 507

block that was held in the buffer cache of another, the block had to be written to disk
by the first instance, a process known as pinging. This requirement for block writes to
synchronize caches often lead to performance degradation. The solution to this prob-
lem was typically to partition workloads between instances to avoid the issue, along
with a careful manual configuration of an initialization parameter called gc_files
_to_locks. This parameter was used to control the allocation of distributed lock man-
ager resources to database blocks. RAC solves these problems, leading to a configura-
tion where Oracle can decide how to balance client sessions across nodes automatically
without requiring pinging, database administrator (DBA) workload balancing, or lock
manager configuration.

NOTE Oracle refers to the RAC enhancements that void the need for manual
lock management configuration as resource affinity.

It’s worth mentioning that pinging behavior could be mitigated in OPS to some
extent by associating groups of database blocks in a given table with a specific instance
through the FREELIST GROUPS parameter set at table creation time. This is followed
by the careful distribution of processing between the nodes in the cluster specifically to

508 Chapter 22

UNIX Server 1

Control Files

racp1 Database Files

Redo Logs

Shared Disk (raw)

Parameter
File

Oracle
Software

UNIX Server 2

SGA

LGWR DBWR

Instance racp12

High-Speed
Interconnect

Fiber
Switch

Oracle
Software

Archive
Logs

SGA

LGWR DBWR

Instance racp11

Archive
Logs

Figure 22.1 An RAC configuration on Linux.

avoid pinging. So OPS in some cases requires the physical partitioning of data at the
instance level.

As a side effect, this situation makes it possible for a table insert to fail when per-
formed by one instance, because there are no free blocks in the FREELIST group asso-
ciated with that instance, while the insert can succeed from another instance. As soon
as you use such features, your application becomes tied to specific nodes in the cluster.
This negates the potential for scale-out simply by adding extra nodes to the cluster.

The physical partitioning of data, and the micromanagement of databases that it
requires, is totally opposite to the ethos of this book, which places the emphasis on
deploying Oracle using features that provide manageability. Manageability translates
to availability. Oracle9i provides LOCAL extent management and the AUTO setting
for segment space management to provide ease of space management. Used together,
these two options cause the FREELIST GROUPS setting to be ignored. Although
Oracle asks you to consider the use of FREELIST GROUPS for data partitioning in RAC
environments to avoid block contention associated with contention for cache fusion
resources, I think that’s a bad idea. It’s much easier and more flexible to manage space
in an Oracle database based on LOCAL extent management and AUTO segment space
management.

If you can’t get acceptable performance in a RAC environment, it might be better to
consider other approaches to meeting your performance and availability require-
ments. However, with the upcoming increased bandwidth for the interconnect
through technologies such as Intel’s InfiniBand , you’re likely to get the performance
you require from RAC without resorting to the data partitioning provided by
FREELIST GROUPS.

Configuring the Interconnect
The requirement for the interconnect is one of the key features that distinguishes an
Oracle RAC configuration from a standard configuration. During Oracle RAC installa-
tion using the Oracle Installer, you must provide the interconnect names as the node
names, rather than the regular host names.

It’s important to set up the interconnect so RAC cache fusion traffic alone is carried
over it. The volumes of traffic can be quite high, so it’s essential to involve your net-
working group in order to ensure that the network interfaces are set up properly. The
interconnect for a two-node cluster can comprise two standard Ethernet cards con-
nected by a simple crossover cable. For a four-node cluster, Oracle has demonstrated a
configuration with a low-cost, high-performance Myrinet switch (www.myrinet.com).
In the future, Intel’s InfiniBand bus technology promises massively increased band-
width availability on the interconnect. The bandwidth of the interconnect can act as a
throttle on the performance of the cluster as a whole, so it’s important to make suffi-
cient bandwidth available. Oracle can’t enforce the requirement to place the intercon-
nect on a separate network, but if you don’t, performance is likely to suffer. The UNIX
netstat command can be used to show the data traffic on the interconnect, as shown in
a following example.

To recap, during RAC installation using the Oracle Installer, you need to provide the
node names as they are referenced on the interconnect, rather than the names by which
the nodes are known on the corporate data network. It’s a good idea to include the

Oracle Real Application Clusters 509

string “interconnect” or an abbreviation of it, such as “ic,” in the names of the nodes as
they appear on the interconnect. For example, if you have two servers in the cluster
that are known as rac1 and rac2 on the regular corporate network, then the names rac1-
ic and rac2-ic would be suitable names to identify the network names on the intercon-
nect. In most flavors of UNIX, you can use the ifconfig command to view the existing
network interfaces. The following output shows the sort of network configuration that
needs to be in place to support RAC, showing two network interfaces, eth0 and eth1,
on a single node in the cluster:

$ ifconfig -a

eth0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 169.243.69.107 netmask ffffff00 broadcast 169.243.69.255

eth1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500

inet 172.21.17.29 netmask ffff0000 broadcast 172.21.255.255

In this example, eth0 and eth1 are on separate physical network interfaces, where
eth0 is the regular corporate network (associated with hostname rac1) and eth1 is the
interconnect interface (associated with hostname rac1-ic). The netstat command can be
used to show the packet volumes on each interface and is a good way to confirm that
networking is configured correctly for RAC, because only interconnect traffic should
travel on the eth1 interface identified by hostname rac1-ic:

$ netstat -i

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis

Queue

eth0 1500 rac1 srv1 18092533 0 10569475 0 0 0

eth1 1500 rac1-ic rac1-ic 5626199 0 1184462 0 0 0

Installation Notes
This section assumes you are installing RAC into a two-node cluster on Linux using
raw partitions. In order to install Oracle on Linux, the raw partitions need to be con-
figured by the system administrator (SA) in advance. This section assumes that this has
already taken place. Oracle provides facilities to simplify the mapping of database
datafiles to raw partitions in order to make this process as simple as possible. How-
ever, it’s still not simple enough for my liking and is much more complicated than con-
figuring Oracle to run on a UNIX file system. If you use raw partitions for an Oracle
database, great care needs to be taken so that a given partition is not used twice, which
would result in a corrupt database. That’s another reason why I prefer not to use raw
partitions for a production Oracle system.

The raw partitions for the RAC database need to be located on a shared disk avail-
able to all nodes in the cluster. This disk is likely to be attached using fiber channel
connectivity. Manufacturers such as Compaq and Dell provide certified RAC configu-
rations that come with the Oracle software preinstalled and shared storage to bypass
this setup stage, which is probably the most difficult part of installation and the most
likely to go wrong. Installing RAC requires that you run a regular installation session
from the Oracle Installer using runInstaller and you select the Custom option, which
presents an option to install Oracle RAC.

510 Chapter 22

Oracle RAC installation is easier to manage than Oracle OPS configuration, because
Oracle installs the Oracle software on all nodes on the cluster as part of the RAC instal-
lation process. This relies on rcp connectivity being in place between the nodes. Before
you begin, you must ensure that the node names of the servers in the cluster, as they
appear on the interconnect network interface, can be accessed via rsh. Chapter 2
contains information on rsh configuration. In order to test rsh, you can run rsh
interconnect-hostname from the installation node to check connectivity to other nodes in
the cluster. If rsh connects to the remote server without prompting for a password, then
it’s set up correctly. If not, then you need to configure the .rhosts file in the $HOME
directory of the remote node. Be sure to test rsh connectivity to each node in the clus-
ter before you begin installation.

Parameter File Configuration
The database initialization parameters for each instance in an RAC configuration typi-
cally differ only in the following values:

■■ instance_name

■■ instance_number

■■ undo_tablespace

■■ thread

The thread parameter identifies the thread of redo, which is unique to each instance.
The db_name is the same for each instance, and the instance_name is simply the
db_name name suffixed with a numeric value, instance_number, that Oracle generates
in order to identify the instance on each node of the cluster at install time. When you
install Oracle for RAC using the Oracle Installer, Oracle requires that you enter a pre-
fix for the instance name. The db_name value is recommended. For example, if you
enter racp1 as the prefix, Oracle generates the instance names racp11 and racp12 for
each instance in a two-node cluster. It needs to be emphasized that this differs from a
standard single-instance, non-RAC installation, where you enter the actual instance
name, rather than a prefix for the instance name. Table 22.1 shows the relevant parts of
the init.ora configuration related to instance names for a two-node cluster.

If you’ve installed OPS in the past, you’ve probably configured it so that each
instance in the cluster has the same name and differs only by instance_number. As each
instance resides on a physically separate server, that’s perfectly reasonable. In fact, it
gives the cluster configuration a pleasing symmetry. For RAC, Oracle requires that
each instance has a different name to allow the cluster management software to identify
each instance in the cluster independently of the host name. That’s a design decision
taken by Oracle that you have no control over.

Each instance requires its own thread of redo. If you’ve followed the earlier recom-
mendations for naming archived redo logs, then you can use the same log_archive_for-
mat parameter for each instance. This is because the presence of %T in the name means
that Oracle provides the thread number in each archived log name based on the value
of instance_number. It’s important to be aware that if you are not using a shared disk
to enable archived redo logs for each instance to reside in a shared directory (such as

Oracle Real Application Clusters 511

using Network File System [NFS] or a clustered file system), then you must choose a
different directory name for each redo thread.

Each instance also requires its own undo space. The automatic undo features in Ora-
cle9i make this easy to configure. The initialization parameters in the following exam-
ple show how to set a different tablespace for two instances:

*.undo_management='AUTO'

racp11.undo_tablespace='UNDOTBS'

racp12.undo_tablespace='UNDOTBS2'

As well as the differences, it’s worth highlighting the init.ora settings that are com-
mon between the instances. For example, the service_names parameter, db_name, and
db_domain are identical for each instance. The DBA needs to decide if each node in the
cluster should be considered identical for processing purposes or whether instance-
specific configuration differences should be introduced. For example, you might allo-
cate one node on a four-node cluster specifically for data warehousing and three for
Online Transaction Processing (OLTP) processing. In this case, you might specify that
the database block caches are allocated differently on the data warehouse instance in
order to better match the processing requirements. I prefer to configure the instances
on each node the same, because that allows maximum advantage from the Oracle-
provided load balancing and failover features of the cluster. If you need to configure
clients to connect to a specific node and instance, then you take away the node trans-
parency of the configuration by associating specific processing with specific instances.

In an RAC configuration, the use of a server parameter file (spfile), rather than an
init.ora file is recommended to hold values that are common between the instances of
the cluster. This can be achieved by locating the shared settings, such as the size of the
shared pool and buffer cache, in an spfile on a raw partition on the shared disk and
including a reference to the spfile in the init.ora file of each instance, such as through
an init.ora entry like the following:

spfile=/dev/raw_racp1_spfile

512 Chapter 22

Table 22.1 init.ora Files for a Two-Node RAC Configuration

INITRACP11.ORA ON INITRACP12.ORA ON
RAC1.DBCOOL.COM RAC2.DBCOOL.COM
instance specific settings # instance specific settings

instance_number=1 instance_number=2

instance_name=racp11 instance_name=racp12

some common settings... # some common settings...

db_name=racp1 db_name=racp1

service_names=racp1.dbcool.com service_names=racp1.dbcool.com

db_domain=dbcool.com db_domain=dbcool.com

log_archive_format = "T%TS%S.ARC" log_archive_format = "T%TS%S.ARC"

Oracle also enables instance-specific settings to be held in the same parameter file on
a shared disk and to be shared by all instances in the cluster by prefixing each param-
eter with the instance number to which it relates. For example, the following section of
a server parameter file shows an instance-specific setting for the sort_area_size param-
eter. Here the 1 prefix refers to the value used by instance number 1, 2 refers to the
value used by instance number 2, and * refers to a generic value used by all instances
that don’t have an explicit instance-specific value set:

1.sort_area_size=200000000

2.sort_area_size=50000000

*.sort_area_size=65536

To serve as a reference, the contents of a complete server parameter file for a two-
node cluster are as follows, where instance names rather than numbers are used to
refer to instance-specific parameters:

*.background_dump_dest='/u01/app/oracle/admin/racp1/bdump'

*.cluster_database_instances=2

*.cluster_database=true

*.compatible='9.0.0'

*.control_files='/dev/oracle/racp1/control01_110m'

*.core_dump_dest='/u01/app/oracle/admin/racp1/cdump'

*.db_block_size=8192

*.db_cache_size=52428800

*.db_domain='dbcool.com'

*.db_name='racp1'

*.fast_start_mttr_target=300

racp11.instance_name='racp11'

racp12.instance_name='racp12'

racp11.instance_number=1

racp12.instance_number=2

*.java_pool_size='52428800'

*.job_queue_processes=2

*.large_pool_size='1048576'

racp11.log_archive_dest_1='LOCATION=/u02/oradata/racp1/arch/1'

racp12.log_archive_dest_1='LOCATION=/u02/oradata/racp1/arch/2'

*.log_archive_format='T%TS%S.ARC'

*.log_archive_start=true

*.open_cursors=300

*.processes=150

*.remote_login_passwordfile='exclusive'

*.resource_manager_plan='SYSTEM_PLAN'

*.service_names='racp1'

*.shared_pool_size=52428800

*.sort_area_size=524288

racp11.thread=1

racp12.thread=2

*.timed_statistics=TRUE

*.undo_management='AUTO'

Oracle Real Application Clusters 513

racp11.undo_tablespace='UNDOTBS'

racp12.undo_tablespace='UNDOTBS2'

*.user_dump_dest='/u01/app/oracle/admin/racp1/udump'

Note that the following parameters identify the configuration as that of a clustered
database:

*.cluster_database_instances=2

*.cluster_database=true

The Cluster Manager
The Cluster Manager (CM) software provides a clusterwide view of the nodes in the
cluster and cluster membership. It includes a Node Monitor (NM) component that con-
tinually polls nodes, interconnect hardware and software, shared disks, and Oracle
instances in the cluster to ensure that the cluster as a whole is working as intended. The
Global Services Daemon (GSD) works in conjunction with CM to service srvctl
requests to start and stop Oracle database and listener services in the cluster.

The CM terminates all processes on a node if it determines that the node is not func-
tioning correctly. For example, aborting GSD or NM will cause a server reboot on
Linux by default. On a Linux RAC cluster node, the CM and related software must be
started in the following order at machine boot time:

$ watchdogd -g dba

$ oranm &

$ oracm &

$ gsd

NOTE Oracle provides a script, ocmstart.sh, to start all but GSD. This example
refers to Oracle 9i Release 1. In Release 2, fewer daemons need to be managed
and they need to run as the UNIX root account; further manageability
improvements are likely to follow.

Starting and Stopping Instances
After installation, the oratab file contains an entry for the RAC database, not the
instance name on the node. This is a very significant difference in the configuration
compared to a single instance. For the previous example, oratab would contain the
following:

racp1:/u01/app/oracle/product/9.0.1:N

The racp1 value identifies the cluster database name and not the instance name on
the node. The presence of the N at the end of the entry is important, because it prevents

514 Chapter 22

TE
AM
FL
Y

Team-Fly®

Oracle’s dbstart and dbshut scripts from attempting to startup and shutdown an
instance named racp1. To reiterate, racp1 is not the name of an instance; it’s the name
of the RAC database. In order to start and stop instances and network listeners, RAC
instead provides the srvctl utility to perform the operations clusterwide where the -p
parameter is the name of the database and -i is the name of an instance. Here are some
examples of usage:

start listeners and instances on all nodes

$ srvctl start -p racp1

stop the instance racp11 only

$ srvctl stop -p racp1 -i racp11

show the status of instances and listeners on all nodes

$ srvctl status -p racp1

Before you start and stop the databases and listeners, the CM software needs to be
up and running on each node. One significant advantage of choosing to run Oracle
RAC on Linux is that the CM software is provided by Oracle and bundled with the
Database Management System (DBMS) software. Due to the open source requirements
for Linux, Oracle can provide all the required software components for RAC them-
selves. On other operating systems for which RAC is available, the operating system
vendor provides the CM software.

It’s important to use the srvctl command-line utility for stopping and starting Ora-
cle database instances in an RAC configuration to avoid the CM software interpreting
the disappearance of the database processes as a node failure. Although you can still
use the STARTUP command to start an instance manually and use SHUTDOWN or
SHUTDOWN IMMEDIATE to stop an instance, using the SHUTDOWN ABORT com-
mand to close your instance on Linux causes a node reboot by default. Although you
can disable this behavior, Oracle recommends that you don’t unless you are running
on a certified RAC configuration.

The srvctl utility has many other functions, including features to add and remove
instances from the cluster. Also, Oracle Enterprise Manager (OEM) auto-discovery
uses output from the srvctl config command to determine the database configuration
for registration into the OEM repository.

Networking Configuration for RAC
Oracle Net is a key technology for leveraging the performance and availability fea-
tures of RAC. Provided that the behavior of applications is transparent to the node on
which the application runs, RAC clustering makes it possible for sessions to failover
to other nodes if the local session or node fails. RAC provides the capability to per-
form session failover during a SELECT statement and enables the SELECT to com-
plete on another node without returning a failure message to the application. Oracle
refers to this functionality as Transparent Application Failover (TAF). You might want
to review the information in Chapter 3 at this point for more information on Oracle
networking.

Oracle Real Application Clusters 515

Listener.ora Configuration

In terms of network listeners, dynamic registration of the database with the listener is
required in order to make available the full range of TAF features. Dynamic registra-
tion takes place through the services_names setting in the database initialization
parameter file. This should be a common value for each instance in the node. Here’s an
example:

service_names=racp1.dbcool.com

If the instance is started after the network listener, then PMON will register the
instance with the listener after approximately 60 seconds. If you can’t wait that long,
the SQL command ALTER SYSTEM REGISTER DATABASE can be used to register the
instance with the listener on demand. OEM can discover and manage RAC cluster
instances. You should be aware that the use of GLOBAL_DBNAME to statically regis-
ter a database with a listener disables the TAF features of RAC, so you shouldn’t use
GLOBAL_DBNAME in a listener.ora file in an RAC configuration.

Because a node in RAC typically contains two physical network interfaces, you need
to ensure that the listener listens on the interface on the corporate data network, and
not the private interconnect between the nodes. In the latter case, you’ll probably find
that all connections from external client applications fail with a “host unreachable”
message. To provide an example, if a server is known as rac1 on the corporate network,
and rac1-ic on the interconnect, you need to ensure that the listener listens for connec-
tions on rac1. Assuming that rac1 is the name of the host as returned by the UNIX host-
name command, the easiest-to-manage approach is to remove any listener.ora file on
each node and allow the Oracle defaults to take effect. So when a listener starts on the
local node, it listens for Oracle network connections on TCP/IP port 1521 on the net-
work associated with the hostname, in this case rac1.

Client Configuration

There are typically two main requirements for client connectivity using an RAC con-
figuration. The first is the requirement for a client to connect to the least heavily used
node in a cluster, as determined by the load-balancing monitoring provided by the CM
software. The second is for a client to connect to a specific instance in the cluster. To
facilitate load balancing, a generic, noninstance-specific alias is used to provide con-
nectivity to the instance with the lowest utilization. Based on the earlier example, the
alias might look like this:

racp1.dbcool.com=

(description=

(load_balance=on)

(failover=on)

(address_list=

(address=(protocol=tcp)(host=rac1.dbcool.com)(port=1521))

(address=(protocol=tcp)(host=rac2.dbcool.com)(port=1521))

)

(connect_data=

516 Chapter 22

(service_name=racp1.dbcool.com)

)

)

The presence of the address_list and the load_balance and failover settings provide
Oracle with a list of potential instances to connect the client to, depending on the load
and availability of each instance. Note that the service_name matches the services_
names parameter used by each instance to register with the local Oracle listener on
each node and that there is no reference to a specific instance in the description. Table
22.2 shows the aliases that would be used to provide connectivity to a specific instance.

In this case, the service_name is qualified with a specific instance name on the node,
and the host used in the address description identifies the node.

Transparent Application Failover
Configuration
It should be emphasized that not all Oracle applications and programmatic interfaces
could take advantage of TAF features in early releases of 9i. For example, in the initial
release, TAF was restricted to applications using SQL*Plus, Oracle Call Interface (OCI),
or the OCI-based Java Database Connectivity (JDBC) interface. Prior to 9i, the Multi-
threaded Server option was required, but 9i provides TAF for both dedicated server
and shared server connections.

Having specified the network aliases for the generic database service name and spe-
cific instance connectivity, both can be used to provide failover in different ways
through the addition of a failover_mode section within the connect_data section of the
connect description. It’s important to be aware that when referring to TAF, the failover
takes place after a connection is established, as opposed to failover provided at connect
time by failover�on in the address list; post-connection TAF failover is a separate fea-
ture from connection time failover. To provide failover for SELECT statements in

Oracle Real Application Clusters 517

Table 22.2 TNS Aliases for Instance-Specific RAC Connections

CONNECTION TO INSTANCE CONNECTION TO INSTANCE
ON RAC1.DBCOOL.COM ON RAC2.DBCOOL.COM
racp11.dbcool.com= racp12.dbcool.com=

(description= (description=

(address= (address=

(protocol=tcp) (protocol=tcp)

(host=rac1.dbcool.com) (host=rac2.dbcool.com)

(port=1521) (port=1521)

))

(connect_data= (connect_data=

(service_name=rac1.dbcool.com) (service_name=rac1.dbcool.com)

(instance_name=racp11) (instance_name=racp12)

))

))

progress at the time of instance failure, the connect_data section for the racp1.-
dbcool.com example given previously can be modified as follows to include the high-
lighted failover_mode section:

racp1.dbcool.com=

(description=

(load_balance=on)

(failover=on)

(address_list=

(address=(protocol=tcp)(host=rac1.dbcool.com)(port=1521))

(address=(protocol=tcp)(host=rac2.dbcool.com)(port=1521))

)

(connect_data=

(service_name=racp1.dbcool.com)

(failover_mode=(type=select)(method=basic))

)

)

Alternatively, the second instance can be specified as a fallback for the first, and vice
versa, by specifying the preconnect method in the failover_mode section, as opposed
to the basic method used in the first example. In this second case, failover is faster
because the session on the failover instance is already in place at the time of any fail-
ure. However, preconnect has a runtime overhead for the regular session before
failover takes place. It also introduces a requirement to name specific instances on the
cluster for connections (which breaks instance transparency for applications) and
doesn’t provide automatic failover back to the original instance if and when it becomes
available again. The following example extends the racp11.dbcool.com entry that con-
nects to the first instance in the cluster to provide a preconnect failover to the second
instance through the highlighted failover_mode section:

racp11.dbcool.com=

(description=

(address=

(protocol=tcp)

(host=rac1.dbcool.com)

(port=1521)

)

(connect_data=

(service_name=rac1.dbcool.com)

(instance_name=racp11)

(failover_mode=

(backup=racp12.dbcool.com)

(type=select)

(method=preconnect))

)

)

The following SQL can be used to show the failover options in use by all current
database connections:

518 Chapter 22

select username,failover_type,failover_method,failed_over

from v$session

where failover_method <> 'NONE';

Identifying Active Instances
The view V$ACTIVE_INSTANCES can be queried from any node in the cluster to dis-
play all the currently active instances as follows, where the interconnect host name pre-
fixes the instance name in the INST_NAME column:

select * from v$active_instances;

INST_NUMBER INST_NAME

------------- -----------

1 rac1:racp11

2 rac2:racp12

In a RAC configuration, Oracle provides a duplicated set of the V$ views, prefixed
with a G (for global) to enable such things as dynamic performance information to be
viewed clusterwide from a single instance. The global views are identical to the single-
instance views, with the addition of an INST_ID column to specify the instance num-
ber to which the information applies. This is shown here for V$SYSSTAT and
GV$SYSSTAT:

REM single instance view...

desc v$sysstat

STATISTIC# NUMBER

NAME VARCHAR2(64)

CLASS NUMBER

VALUE NUMBER

REM RAC equivalent, including instance number...

desc gv$sysstat

INST_ID NUMBER

STATISTIC# NUMBER

NAME VARCHAR2(64)

CLASS NUMBER

VALUE NUMBER

Choosing an Oracle Operating System

The following are some factors that influence which operating system you may choose
to deploy Oracle on:

Oracle Real Application Clusters 519

■■ Robustness and reliability

■■ Standardization

■■ Performance

■■ Price

■■ Support

It’s interesting to consider OPS in light of these requirements. OPS was first avail-
able on VMS at Oracle release 6.2. This was because VMS had the most advanced clus-
tering technology for many years and Oracle developed OPS to take advantage of that.
In many ways, VMS still has the most advanced clustering technology. For example,
UNIX vendors have struggled to make both OPS and RAC available on a clustered
UNIX file system, and typically raw partitions are required. From a manageability per-
spective, raw partitions are diametrically opposite file systems. I never implement
Oracle on raw partitions because the drawbacks outweigh the benefits, which means
that I wouldn’t deploy OPS or RAC in a production environment without careful con-
sideration. A common theme running through this book is a requirement to deploy
Oracle in a way that minimizes day-to-day management to reduce support costs and
make the best use of people and hardware resources: you simply can’t do that with raw
partitions.

VMS has supported OPS on standard files since the early days. That means you can
allow your Oracle database files to auto-extend on demand wherever space is
required. Does that mean VMS is a suitable platform to deploy Oracle? To answer that,
you need to consider the whole equation. If you choose to deploy Oracle on VMS, how
does that fit in with your organization’s strategic IT hardware platform? How does
VMS integrate with your backup technology, with your storage technology, and with
other infrastructure components? What standard of support can you expect from Ora-
cle when you encounter problems? How likely are you to encounter problems in the
first place? If the user base is small, you are much more likely to encounter problems
before other customers, which in turn makes problem resolution slower, representing
a potential risk to your business from outages. What is the cost of support staff? What
is the cost of licenses for the operating system? Is the operating system being devel-
oped to take advantage of new processor and other hardware technologies in the
future? Does the operating system vendor actively market it? What is the view of
research analysts on its long-term viability? What is the cost of the hardware, and how
will it change in the future?

Taking all these factors into account, I would guess that your organization is
unlikely to deploy OPS on VMS simply because VMS has superior clustering technol-
ogy. The clustering technology is part of the equation, but the bigger picture is more
important. In any discussion on the suitability of an operating system for deploying
your Oracle technology, the fact is that RAC represents huge potential for high avail-
ability and scalability. In that case, it’s impossible to ignore the claims of Linux for
delivering the price performance benefits of Oracle RAC because most if not all of the
factors that influence your choice are likely to be covered.

520 Chapter 22

Why Linux?
Linus Torvalds developed Linux in 1991 while a student at the University of Helsinki
in order to make UNIX available on PCs based on the Intel architecture. A key factor in
the popularity and growth of Linux was Torvald’s decision to make the source code
available for free. It needs to be emphasized: Linux is free. Of course, you can purchase
Linux CDs from commercial organizations such as Red Hat and SuSE, along with sup-
port. You can also purchase commercial products to run on Linux, but the bottom line
is that the operating system itself is free, and the source is available. That’s a rule of
open source.

Although open source is sometimes positioned as a strength because it allows any
programmer to tinker with operating system code and customize it, personally I don’t
find that compelling as a selling point. What’s more compelling is the fact the operat-
ing system is under the scrutiny of hundreds of thousands of potential developers, all
with the capability to improve it and fix problems. Research analysts Gartner Group
made a recommendation in late 2001 for Microsoft Windows users to consider replac-
ing Microsoft’s IIS web server with Apache, the most popular open source version,
after yet another security hole in IIS was discovered. Although Microsoft can afford the
best software engineers in the world, even Microsoft can’t compete with the sheer mass
of talent available in the open source world. It’s also interesting that since Oracle8i,
Oracle bundles Apache Web Server with the DBMS.

Oracle And Linux
Oracle’s commitment to Linux is absolutely clear. Oracle was one of the first vendors
to embrace the grass-roots phenomenon of the open source movement and Linux oper-
ating system. In the summer of 1999, Oracle announced Oracle8i for Linux. Linux is
now a strategic operating system for the company, treated on par with Sun Solaris, HP-
UX, and Microsoft Windows in terms of release availability.

Since 1999, Oracle has reported well over 500,000 downloads of Oracle8i on Linux.
Oracle has released their complete Oracle9i product set on at least two implementations
of Linux, including Red Hat and SuSE. In December of 2001, Oracle released a 64-bit
developer release of Oracle for Intel IA64 processors during Oracle OpenWorld. Speak-
ing from hands-on experience, I can say that the Oracle developer release, running on a
64-bit developer release of SuSE Linux, performed flawlessly for two weeks during a
benchmarking exercise in late 2001. The robustness of such an experimental configura-
tion is worth highlighting. The direct involvement of Oracle Corporation in the world of
open source is likely to result in beneficial spin-offs for Linux itself. For example, Linux
releases based on the 2.5 kernel can leverage asynchronous input/output (I/O) facilities
in the same way as operating systems like Solaris. Oracle is likely to help address this
and other performance issues in Linux in the near term, and the improvements will be
available as open source, because Linux is open source. The announcement by Red Hat
of Linux Advanced Server, positioned as the first enterprise-ready version of Linux, is
the first evidence of Oracle’s influence on the future direction of Linux.

Oracle Real Application Clusters 521

As Linux runs on Intel processors, the volume discounts in pricing that home PC
users experience over time manifest themselves in the commercial world also for appli-
cations running on Intel processors. Intel is the world leader in processor design, with a
clear roadmap for processor architecture improvements in the future, which is difficult
for other processor designers to match. As a result, Oracle is likely to leverage Linux
increasingly in the future to take advantage of the price and performance benefits of
Intel processors. The large-scale takeup of early releases of Linux by developers also
means that new versions of the operating system, based on new processor architectures,
are likely to be in a production-ready state sooner, allowing Oracle to release their prod-
ucts on them earlier.

At this point you might be wondering why I haven’t mentioned Oracle on Windows
as a solution for taking advantage of Intel processors. The first is that Linux is free and
will remain so, whereas Windows isn’t. Secondly, and more importantly, my experience
is that Oracle on UNIX is fundamentally more supportable than Oracle on Windows. For
example, UNIX comes bundled with tools for performance management. These days all
UNIX variants have much in common, particularly those that are POSIX compliant. So
one UNIX system administrator (SA) can pretty much adopt to any UNIX in a short time.
UNIX also enables you to trace the behavior of the system yourself. You might want to
look at Chapter 28 for some examples. My experience of Oracle on Windows is that when
something doesn’t work, you have no option but to call support. Even support basics
that you take for granted on UNIX, such as the ability to log in remotely via telnet to
check out a system via command-line utilities, can’t be taken for granted on Windows.
It’s true that in the open-source world it’s not uncommon for people to be anti-Microsoft
on ethical grounds. I try to steer clear of such discussions. However, if you are consider-
ing deploying a database on Windows, I would recommend Microsoft SQL Server most
of the time. If you want to deploy Oracle on Intel, choose Linux.

For technologies like clustering, Linux seems to be very much on the leading edge
from Oracle’s perspective. For example, the open source nature of the operating sys-
tem enables Oracle to bundle the cluster management tools with the Oracle DBMS on
Linux and own the development of the tools. Both factors are likely to make for a bet-
ter support experience if and when problems are found. This compares favorably with
other operating systems when the vendor needs to supply the tools. The support of the
Intel world for Oracle RAC is shown by the availability of certified RAC configuration
on Linux from Compaq and the emphasis placed on RAC by big names in the indus-
try. For example, Craig Barrett, CEO of Intel, provided a keynote speech at Oracle
OpenWorld in December 2001 on the benefits of macroprocessing. This was no coinci-
dence, because Oracle RAC on Linux represents macroprocessing in action.

Oracle on Linux is not perfect. For example, Oracle RAC on Linux still required raw
partitions as of late 2001. With the commitment of major players like VERITAS (cov-
ered in Chapter 20), the ability to run Oracle RAC on Linux over a file system will be
resolved and open up RAC to a whole new world of potential customers. Once again,
the open source nature of Linux proves to be an advantage, as it enables smaller com-
panies to engineer file systems on which to run RAC clusters. For example, PolyServe
Inc. (www.polyserve.com) demonstrated Oracle9i RAC on Linux over a clustered file
system at Oracle OpenWorld in December 2001, for production release in 2002. One
thing you can bank on is that technology issues such as clustered file systems will be
solved in the Linux community due to the sheer numbers and talent of the engineers

522 Chapter 22

available to work on problems, which itself results from open source. It’s worth noting
that one way you can mitigate some of the problems of raw partitions is to use a vol-
ume manager. Both SuSE and Red Hat Linux come bundled with a free commercial-
quality volume manager. In addition, Linux provides logging file systems (reiserfs and
ext3) for fast startup after a machine crashes. These kinds of features are usually extra
cost options for commercial operating systems.

NOTE Oracle announced support for clustered file systems on Windows and
Linux in Oracle9i Release 2.

Robustness and reliability are ultimately the operating system and hardware attrib-
utes required above all others when you choose a platform to run Oracle. If you run
Oracle on Sun Solaris, for example, the database can run for months without a prob-
lem. In fact, you take that for granted. However, it would be a mistake to think that
because something is free, as Linux is, then it’s flawed in some way. Perl, for example,
is free software and has a huge community of users and developers in the open source
world.

My personal experience with Linux is that it is ready to run commercial applications
such as Oracle. Over time, the complete set of tools that you need to run your complete
Oracle infrastructure on Linux will be available. In reality, you may find that some
third-party software you need has already been released on Linux. Legato’s Networker
Module for Oracle backups is one example. As Linux really takes off for commercial
applications, then this trend for Linux to be at the leading edge of release strategies for
software vendors looks set to continue.

Summary

RAC, combined with Oracle9i manageability features, has the potential to provide
almost unlimited scalability with high availability. High availability results from
improved session and query failover facilities. Unlike OPS, RAC provides the DBA
with the tools needed to manage all Oracle services in the cluster from any node. One
major drawback of OPS is the requirement to physically partition data across nodes
using FREELIST GROUPS. This is still possible but is not recommended for RAC. RAC
provides scalability transparently to applications: if you need more performance, or
need to support a large user base, it’s as simple as adding a node to the cluster.

Linux is at the forefront of Oracle RAC technology and some big industry names
such as Intel and Compaq are raising the profile of RAC. Linux is a key-enabling tech-
nology for providing high performance at low cost, based on Intel processors, includ-
ing 64-bit architectures. On Linux, raw partitions are still a requirement until clustered
file systems become widely available and mature enough for use in the enterprise. A
careful consideration of the cost and benefits is always required before deploying Ora-
cle on raw partitions, with or without RAC. However, clustered file systems for Linux
will be available in a short timeframe. Once the manageability benefits of clustered file
systems are available on Linux, Oracle RAC on Linux will likely become the Oracle
architecture of the future.

Oracle Real Application Clusters 523

TE
AM
FL
Y

Team-Fly®

525

Probably the most effective Oracle disaster recovery solution is the standby database.
All Oracle standby databases work by applying changes contained in redo, generated
at the primary database, to one or more databases known as standby databases. Typi-
cally, the primary and standby databases are on different sites to provide recovery
from a site disaster on the primary. Oracle9i provides two types of standby: physical
and logical. Prior to Oracle9i, only physical standby was available and it was based on
the transfer and application of archived redo logs from the primary database onto the
standby. The transfer and application process needed to be managed by the database
administrator (DBA). Oracle9i Data Guard enhances disaster recovery capabilities
through:

■■ Automation of the creation, monitoring, and management of a standby data-
base configuration.

■■ Increased options for transport and application of redo, including the ability to
allow redo generated on the primary to be applied synchronously on the
standby, leading to no-data-loss operation.

This additional functionality results in a more complex configuration to be managed
by the DBA. To provide ease of management alongside the new features, Oracle9i pro-
vides Data Guard broker. This component enables you to configure your primary and
standby databases into a single, managed entity either via a command-line interface or
the Data Guard Manager graphical user interface (GUI). The standby database features
in Oracle9i Data Guard provide a complete and comprehensive disaster recovery capa-
bility far more advanced than that in earlier versions. This chapter covers a subset of
the available options. There are many more. For example, a standby server can operate

Protecting Data Using
Standby Databases

C H A P T E R

23

as an off-site store for archived redo logs on the primary, without requiring the exis-
tence of a full database on the standby.

This chapter covers the following topics:

■■ An overview of physical and logical standby databases

■■ Creating and running a physical standby database in Oracle8i

■■ Creating and running a physical standby database using Oracle9i Data Guard

■■ Creating and running a logical standby database using Oracle9i Data Guard

■■ Improving standby management using Oracle9i Data Guard Manager and
broker

Running a Physical Standby Database

Prior to Oracle9i, only the physical standby option was available. When physical
standby is operational, data changes are applied to the standby in such a way that its
binary is identical to the primary. In fact, it’s even possible to run Recovery Manager
(RMAN) backups on the standby because it’s identical to the primary. If you run your
RMAN backups on the standby, you avoid a backup on the primary database server
that can impact the performance of the primary database. Using physical standby,
the standby database is in a continual state of recovery and changes are applied to the
standby through redo blocks, exactly as if a database recovery was in progress on
the primary. Recovery is covered in Chapter 17. The database’s physical layout on the
standby must be identical to the primary in terms of the number of datafiles and their
sizes. A physical standby database can be opened in read-only mode for reporting pur-
poses. Redo can’t be applied when in the read-only state. If both the primary and
standby databases are available, it’s possible for the primary and standby to switch
roles. If the primary is lost, the standby can be activated in read-write mode, but it can’t
be switched back to a standby state.

The transfer of redo log information to the standby server in Oracle8i required the
transport of complete archived redo log files from the primary database, leading to
possible loss of transactions on the standby after a disaster on the primary. Oracle9i
makes it possible to run standby databases with lower levels of data loss, by transfer-
ring redo log information to standby redo logs on the standby immediately after gen-
eration on the primary, without waiting for a log switch on the primary. In no-data-loss
mode, the redo from the primary can be kept in exact synchronization with the
primary.

Prerequisites for Running a Physical
Standby Database
Before you create a physical standby database, you should configure the primary so
that it’s suitable for running as a standby, both in manual mode using Oracle8i and in
Oracle-managed mode using Oracle9i Data Guard. If you set up all your databases
according to the following rules, they will be in a suitable state for running in standby

526 Chapter 23

mode at a later time, should you choose to do that. In fact, the rules are generic for con-
figuring all your Oracle databases, whether or not you run them in standby mode.

TEMPORARY Tablespaces

If you choose to run a standby database and subsequently need to open the standby
database in read-only mode (possibly for reporting purposes), the standby must oper-
ate without generating redo for sort operations. Keep in mind that sort operations
potentially generate redo unless any TEMPORARY tablespaces are created using
tempfile files. Therefore, you should make sure that any TEMPORARY tablespaces in
the primary database use tempfile files before setting up that database in standby
mode. This is an example of a TEMPORARY tablespace created using a tempfile:

create temporary tablespace temp

tempfile

'/u02/oradata/ORAD2/temp01.dbf' size 41943040

autoextend on next 655360 maxsize 33554416k

extent management local uniform size 1048576

/

Oracle Password Files

To check whether a standby database is in synch with its primary, you can check the
current archived redo log sequence in both and compare the values. To do that from the
primary server, it’s necessary to create a remote Oracle connection to the standby. As
the standby is not running in regular open mode, a remote connection to the standby
requires a SYSDBA connection, which is only possible if the standby uses an Oracle
password file. Both the primary and standby databases should be configured to use
an Oracle password file, which requires the following setting in the database parame-
ter file:

remote_login_passwordfile=EXCLUSIVE

The following command can be used to create an Oracle password file for the spec-
ified Oracle System ID (SID), where the SYS password, SYSpassword, is required to
authenticate SYSDBA connections:

$ cd $ORACLE_HOME/dbs

$ orapwd file=orapwSID password=SYSpassword

NOTE The use of password files is also required to take advantage of the
standby management automation features of Data Guard Manager.

Format for Archived Redo Log Locations

If you choose to let Oracle manage the redo log transfer to the standby (as shown later
in the chapter), you need to specify the archived redo log destinations using the Oracle8

Protecting Data Using Standby Databases 527

format. The following example shows the archivelog location in Oracle8 format, com-
pared to the archive log location in the older format, which is still widely used:

Oracle8 format

log_archive_dest_1 = "location=/u02/oradata/ORAD2/arch MANDATORY"

pre Oracle8 format

log_archive_dest =/u02/oradata/ORAD2/arch

Oracle8 (and later versions) provides features to specify multiple archived redo log
locations, and to indicate whether the archiving operation must complete (for example,
MANDATORY) before processing can continue. These additional options are required
to enable the full range of features for Oracle Data Guard.

Oracle Net Aliases for the Primary
and Standby

You should ensure that Oracle Net aliases exist for the primary and standby databases
in advance, and that these can be resolved from both primary and standby servers. If
you are using Oracle Names, as strongly recommended in Chapter 3, you need to add
entries to the Names server only once, and the names will be available across your
whole network. In terms of naming conventions, it’s helpful to choose Oracle Net
aliases for the standby and primary that identify the relationship between them. For
example, given a primary database with the alias orad2.primary.dbcool.com, you
might choose the alias for the standby to be orad2.standby.dbcool.com.

If you’re running a physical standby, the design goal is usually to ensure that the
database is available on either the primary or standby site at any time, but not on both
sites simultaneously. In this case, clients can connect to the database using an Oracle
Net alias that directs them to whichever database is available at the time, using the
Oracle Net failover capabilities. The following Oracle Net alias (orad2.dbcool.com)
directs clients to the database service orad2.dbcool.com located on the server “pri-
mary,” or to the server “standby,” whichever is currently available:

orad2.dbcool.com =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = primary)(PORT = 1521))

(ADDRESS = (PROTOCOL = TCP)(HOST = standby)(PORT = 1521))

(FAILOVER = true)

(LOAD_BALANCE = false)

)

(CONNECT_DATA =

(SERVICE_NAME = orad2.dbcool.com)

)

)

528 Chapter 23

Using this approach, clients don’t need to know which server the database actually
runs on. The SERVICE_NAME value used in the alias also needs to be used as the ini-
tialization parameter SERVICE_NAMES, in both the primary and standby database
initialization parameter files. This is the name each database uses to dynamically reg-
ister with the Oracle network listener on each server. Chapter 3 provides full details.

After the standby database has been mounted, and before it runs in standby mode,
the following commands should be executed on both the standby and primary servers
from SQL*Plus (using the /NOLOG command-line option) to ensure that remote
SYSDBA connections are operational against both databases from both servers:

connect sys/change_on_install@orad2.standby.dbcool.com as SYSDBA

connect sys/change_on_install@orad2.primary.dbcool.com as SYSDBA

connect sys/change_on_install@orad2.dbool.com as SYSDBA

rcp Requirements

You can create the initial copy of the primary on which the standby is based either
automatically using Data Guard broker, or manually using the procedure described in
this chapter. Both approaches require that rcp is configured to allow remote file copy
between the primary and standby servers. You can test that rcp works by using the rsh
command on the primary to test that the correct authentication is in place, as follows:

$ rsh standby_host

If the login takes place without requesting a password, rcp works as well. If not, you
should consult Chapter 1 for rsh configuration details.

NOLOGGING Considerations
If you perform Data Definition Language (DDL) statements using the NOLOGGING
option, redo is not generated for those operations. As a result, objects in the standby
database might be unusable or missing when the standby database needs to be opened
in read-write mode following a disaster on the primary site, or read-only mode. These
are examples of commands that don’t generate redo:

create table EMP_NOLOG as select * from EMP nologging;

alter index PK_EMP rebuild nologging;

alter table EMP move tablespace tools nologging;

The V$DATAFILE view contains two columns, UNRECOVERABLE_CHANGE#
and UNRECOVERABLE_TIME, which can be used on the primary to identify datafiles
with unrecoverable changes that might impact the standby. It’s possible to transfer
new backup copies of files that contain unrecoverable changes to make sure that those
objects are present and complete in the standby. Information on NOLOGGING
changes is not available in V$DATAFILE on the standby, and the following errors
related to such changes might be reported while running Data Manipulation Language

Protecting Data Using Standby Databases 529

(DML) on the standby after activating it in read-write mode, or opening it in read-
only mode:

■■ ORA-1578: “ORACLE data block corrupted (file # %s, block # %s)”

■■ ORA-1110: “datafile %s: '%s'”

■■ ORA-26040: “Data block was loaded using the NOLOGGING option\n”

To keep problems due to NOLOGGING from manifesting themselves during busi-
ness operation, the ANALYZE TABLE . . . VALIDATE STRUCTURE CASCADE com-
mand needs to run on all tables, to check for bad objects resulting from NOLOGGING
operations. Any unusable indexes can be rebuilt, and tables need to be regenerated
either from a backup file, or from some other source. The lowest-risk approach is to
avoid all unrecoverable operations on the primary. All NOLOGGING operations
increase the elapsed time before the standby can be activated with a complete set of
valid database objects.

NOTE In later versions of Oracle9i, the ALTER DATABASE FORCE LOGGING
command can be used to force generation of redo log information required by
a standby database at all times.

Creating a Physical Standby Database
This section takes you through the process of creating a standby database from scratch,
manually. As an alternative, Oracle Data Guard Manager in Oracle9i provides features
for setting up a standby database automatically, using a GUI. However, the principles
are the same, and it’s useful to understand the fundamentals of standby databases by
setting one up by hand the first time. In addition, the manual approach copies files
between the primary and standby in parallel, and can therefore reduce the time needed
to get the standby up and running, as compared to early releases of Oracle Data Guard
in Oracle9i.

The following assumptions are made to create a real-world standby configuration:

■■ The primary and standby databases are on different servers.

■■ The databases aren’t clustered using Oracle Parallel Server (OPS) or Real
Application Clusters (RACs).

■■ The primary and standby conform to Oracle’s Optimal Flexible Architecture
(OFA) standard for database and software layout.

■■ The primary and standby servers have the same file systems and sizes.

■■ The primary and standby use the same log archive directory and run in
ARCHIVELOG mode.

■■ The primary and standby servers have the same version of Oracle and the
operating system installed.

It is often the case that when you enforce a standard file system layout for all your
Oracle servers, unanticipated benefits result. In this case, the decision to standardize

530 Chapter 23

servers makes the process of creating a standby database much easier because the same
physical layout can be used on the primary and standby servers for the Oracle software
and for the databases. Of course, Oracle provides facilities enabling a file on the pri-
mary to be relocated in a different directory on the standby, in case the physical layouts
don’t match on each server. However, if you standardize your database layout and dis-
tribute your databases across a few large file systems, the added complexity of relocat-
ing files on the standby is not necessary.

Creating the Oracle Environment
on the Standby

To run a standby database, the Oracle environment must exist on the standby server.
That means that a database parameter file, password file, OFA directory structure, and
archivelog directory must be in place (as well as the Oracle software). The following
commands, when run from the Oracle environment of the primary database on the pri-
mary server, copy the relevant files to the standby host named sb1 (in locations identi-
cal to those on the primary):

$ rcp -pr $ORACLE_BASE/admin/$ORACLE_SID sb1:$ORACLE_BASE/admin

$ rcp -p $ORACLE_HOME/dbs/*$ORACLE_SID* sb1:$ORACLE_HOME/dbs

Keep in mind that the rcp -p command doesn’t copy symbolic links, so you might
need to re-create links for your parameter file and OFA arch directory on the
standby server. If the standby database is likely to be opened in read-only mode, use of
a database-located audit trail for the standby prevents that. The following error
message is reported when an attempt is made to start the standby database in read-
only mode:

ORA-16006: audit_trail destination incompatible with database open mode

Using a database-located audit trail requires database changes, and these changes
are incompatible with running the standby database in read-only mode. To permit the
standby database to run in read-only mode, the AUDIT_TRAIL parameter for the
standby database needs to be set to either NONE or OS.

Creating the Standby Database

Creating the standby database means transporting a backup copy of the primary data-
base to the standby site. It’s not necessary to shut down the primary to perform this
copy. After the transport is complete, the standby database needs to be mounted using
a special type of control file, known as a standby control file. The standby control file
is created on the primary site, after the backup of the primary is taken. When the
standby has been mounted, the redo application process can begin.

There are two ways to take a backup copy of the primary and transport it to the
standby. The first involves taking an RMAN backup (either to tape or disk) followed
by a restore on the standby. RMAN is covered in Chapter 18. The second method uses
Oracle7-style online backup commands. This second method doesn’t require a backup

Protecting Data Using Standby Databases 531

to tape or disk in advance. Instead, after the primary files are in backup mode, they can
be copied to the standby using the UNIX rcp command or ftp. As a result, the backup
implicitly becomes the restore on the standby end, and is ready to use immediately.
Using the second method, it’s possible to compress the database files through a UNIX
pipe before sending them on the network, and decompress them at the standby. The
use of compression means that network transfer times are reduced, especially in WAN
environments, allowing the standby to be up and running sooner. The Data Guard
Manager GUI (covered at the end of the chapter) provides both methods for creating a
standby. Data Guard Manager refers to the rcp-based technique as the OS method.
However, Data Guard Manager only sends one database file at a time in early releases
of Oracle9i, which doesn’t take advantage of all the available network bandwidth or
I/O capacity on the standby or primary server.

As an alternative, the dbcool_gen_standby.pl script (downloadable from the com-
panion Web site) can be used to generate a shell script containing the sequence of com-
mands needed to create a backup copy of the primary on the standby, ready for use as
the standby database. The dbcool_gen_standby.pl script is run from the Oracle envi-
ronment of the primary database, and writes the sequence of instructions to UNIX
stdout, where it can be redirected to a file. The file can then be executed immediately
to create the standby database, or it can be customized by hand first, if required. The
following commands show how to create a script that copies a primary database with
Oracle SID ORAD2 to a standby server where pwd is the SYSTEM password of the
ORAD2 instance, and sb1 is the hostname of the standby server:

$ export ORACLE_SID=ORAD2

$ export ORACLE_HOME=/u01/app/oracle/product/9.2.0

$ dbcool_gen_standby.pl system_pwd=pwd mode=physical standby_host=sb1

The dbcool_gen_standby.pl checks that the server specified as the standby_host
parameter doesn’t match the name of the local server where the primary runs, by com-
paring the IP addresses of both machines. If the addresses match, the script exits. This
check protects the script from accidentally generating commands that would overwrite
the ORAD2 database on the local server, in case the local server name was accidentally
used as the value of the standby_host command-line option.

In the following example, the instance ORAD2 contains five tablespaces: SYSTEM,
UNDOTBS, TOOLS, USERS, and TEMP. The TEMP tablespace uses a tempfile (as rec-
ommended in the prerequisites) and can’t be placed in backup mode. As a result, it
isn’t transferred to the standby site. That’s not a problem because it doesn’t prevent the
standby from running in standby mode. However, if an attempt is made later to run
the standby in read-only mode, or run it as the primary after opening it in read-write
mode, any DML that needs to perform a sort operation fails with the error “ORA-
25153: Temporary Tablespace is Empty.” That message indicates that a TEMPORARY
tablespace definition exists in the Oracle data dictionary, but the tablespace has no
tempfile files associated with it. Before attempting a sort, a new tempfile must be
added to the tablespace, based on the following SQL:

alter tablespace temp

add tempfile '/u02/oradata/ORAD2/temp01.dbf' size 100m;

532 Chapter 23

For the sake of example, assume that the output of dbcool_gen_script.pl has been
redirected to a file (to_sb1.sh). The output in to_sb1.sh includes the following com-
mands in the following order, which when executed on the primary create a standby
database on the remote standby server. The script doesn’t check whether the files on
the standby server are already in use by another database. The DBA who runs the
script should check this in advance, as a matter of due diligence. This is an example of
the contents of to_sb1.sh:

place datafiles into backup mode...
sqlplus "/ as SYSDBA" <<!
whenever sqlerror exit 1

alter tablespace SYSTEM BEGIN BACKUP;
alter tablespace UNDOTBS BEGIN BACKUP;
alter tablespace TOOLS BEGIN BACKUP;
alter tablespace USERS BEGIN BACKUP;
!

transfer all primary datafiles to the standby server in parallel
and wait until all complete
(compress -c /u02/oradata/ORAD2/system01.dbf \
| rsh sb1 "uncompress -c >/u02/oradata/ORAD2/system01.dbf") &
(compress -c /u02/oradata/ORAD2/undotbs01.dbf \
| rsh sb1 "uncompress -c >/u02/oradata/ORAD2/undotbs01.dbf") &
(compress -c /u02/oradata/ORAD2/tools01.dbf \
| rsh sb1 "uncompress -c >/u02/oradata/ORAD2/tools01.dbf") &
(compress -c /u02/oradata/ORAD2/users01.dbf \
| rsh sb1 "uncompress -c >/u02/oradata/ORAD2/users01.dbf") &
wait

take datafiles out of backup mode...
sqlplus "/ as SYSDBA" <<!
whenever sqlerror exit 1

alter tablespace SYSTEM END BACKUP;
alter tablespace UNDOTBS END BACKUP;
alter tablespace TOOLS END BACKUP;
alter tablespace USERS END BACKUP;
!

create standby control file
sqlplus "/ as SYSDBA" <<!
whenever sqlerror exit 1

alter database create standby controlfile
as '/tmp/to_standby.ctl' reuse;

!

transfer standby control file from primary to standby server . . .
rcp -p /tmp/to_standby.ctl sb1:/u02/oradata/ORAD2/control01.ctl
rcp -p /tmp/to_standby.ctl sb1:/u03/oradata/ORAD2/control02.ctl

Protecting Data Using Standby Databases 533

The generated to_sb1.sh script performs the transfer of datafiles to the standby
across the network in parallel. Like Data Guard Manager, the data is compressed
before it is sent, and uncompressed at the standby server. The control files at the
standby server are copied from the standby control file created at the primary server.
The names of the control files to create on the standby are read from the data dictionary
of the primary instance. Not shown are the additional commands in to_sb1.sh that cre-
ate directories for the redo logs, control files, and datafiles at the standby server, based
on the file paths of those files on the primary server. Now, the standby server is ready
to run in standby mode, and apply redo logs from the primary server.

Running an Oracle8i Physical
Standby Database
At this stage, the standby server contains an image of the primary database instance,
with the same parameter file and password file as the primary. If you were running
Oracle9i, at this stage you could let Data Guard take over the complete operation of the
standby you have just created. Data Guard can manage redo log transfer and apply,
and propagate primary database structure changes onto the standby all without man-
ual DBA intervention.

This section assumes that you are running Oracle8i, in which case the redo log
transfer-and-apply process is managed by the DBA, and changes to the database struc-
ture on the primary require DBA manual intervention for the standby operation to
continue.

The standby control files are based on a standby control file created on the primary.
The standby is now ready to run. The following commands are required to start the
standby database:

startup nomount;

alter database mount standby database;

The following commands, which check network connectivity to the primary and
standby databases using network connections, should now work from both the pri-
mary and standby server using SQL*Plus, started with the /NOLOG command-line
argument:

connect sys/pwd@orad2.standby.dbcool.com as SYSDBA

connect sys/pwd@orad2.primary.dbcool.com as SYSDBA

REM transparent application failover alias...

REM this connection uses whichever of primary or standby is available

connect sys/pwd@orad2.dbcool.com as SYSDBA

Redo Log Application

A simple shell script on the standby can be used to apply redo logs transferred from the
primary in an infinite loop. It doesn’t matter if the redo log transfer process from the
primary isn’t running. If the next archived redo log file that needs to be applied hasn’t

534 Chapter 23

TE
AM
FL
Y

Team-Fly®

arrived yet, the RECOVER command simply returns an “ORA-00308: cannot open ar-
chived log” error until the file arrives. The following ksh script applies all available
archived redo logs copied from the primary server by using the RECOVER command
in SQL*Plus, exits SQL*Plus when no more logs are available or a problem occurs, and
then waits for 10 minutes before repeating the process:

#!/bin/ksh

export ORACLE_SID=ORAD2

export ORACLE_HOME=/u01/app/oracle/product/8.1.7

while true ; do

$ORACLE_HOME/bin/sqlplus "/ as SYSDBA" <<!

recover automatic standby database until cancel;

cancel

exit

!

sleep 600

done

In this simple example, the redo log transfer process from the primary is not syn-
chronized with the recovery process on the standby. The recovery process runs inde-
pendently of any archived redo log transfer process. That leads to two possible
problems:

■■ The standby might attempt to apply a redo log still in transit from the primary.

■■ The standby might attempt to apply an incomplete log transferred when the
primary archive log area was full.

The good news is that the Oracle recovery process is extremely robust in both cases.
In the first case, the RECOVER command detects that the physical size of the archived
redo log is less than the size of the file (as stored in the archived redo log file header),
and RECOVER stops with the following message:

ORA-00332: archived log is too small - may be incompletely archived

In the second case, Oracle uses a checksum on each redo block to determine whether
the archived redo log is complete. If it’s not, error messages are displayed in the alert
log and RECOVER stops. If appropriate file system monitoring of the archive log area
fullness is in place on the primary, this situation should never happen. If it does, it’s
useful to know that the original archived redo log can simply be resent from the pri-
mary, and RECOVER applies it the next time it runs, assuming that it’s now complete
because space was freed on the primary archive log area. The following code shows
some sample output from the alert log on the standby for the second case:

Media recovery buffers written to disk due to log corruption.

Some changes at scn 42312326367 may be on disk

Media Recovery failed with error 368

ORA-283 signalled during: ALTER DATABASE RECOVER automatic standby

database . . .

Protecting Data Using Standby Databases 535

It would be considered good design to synchronize the archived redo log transfer
and recovery process between the primary and server ends, but, strictly speaking, it’s
not necessary because the RECOVER command is robust enough to handle synchro-
nization issues gracefully. That leads to the possibility of complete independence
between the archived redo log transfer and apply processes, leading to a standby con-
figuration that’s exceptionally quick to implement and easy to manage, provided that
the database structure doesn’t change.

In some cases, there is a requirement to run the standby database a few hours (or
maybe a whole day) behind the primary to provide a contingency for logical applica-
tion errors, such as the failure of an overnight batch process. A gap between the
changes applied on the standby compared to the primary can be introduced by using
the following option of the RECOVER command on the standby, where a constant
string value is required for the time value:

recover automatic standby database until time '14-FEB-2002 22:43:38';

This simple example ensures that changes on the standby always lag a specific time
behind those on the primary, as long as the time used in RECOVER is generated rela-
tive to SYSDATE. For example, use of the time string equivalent to SYSDATE-1 in the
RECOVER command ensures that all changes applied to the standby are at least
24-hours old. Rather than base the lag on a time, a more sophisticated approach is to
explicitly determine the system change number (SCN) at a significant point in the
transaction processing stream on the primary (for example, immediately before the
batch starts) to identify the SCN that should be used in the RECOVER command on
the standby. In Oracle8i, the USERENV('COMMITSCN') function can be used to iden-
tify the current SCN value. By saving this value at the appropriate point in the pro-
cessing stream on the primary (into either a table or log file), the SCN value can be used
on the standby to determine the lag between the primary and standby in terms of busi-
ness transactions, rather than on a fixed time interval. The following example shows
how to recover the standby database using the SCN of a known change on the primary,
generated using USERENV('COMMITSCN'):

recover automatic standby database until change 4567890;

NOTE In Oracle9i, the GET_SYSTEM_CHANGE_NUMBER function in the
DBMS_FLASHBACK package can be used to find the current SCN.

Redo Log Transfer

The implementation of a manual process to transfer archived redo logs from the pri-
mary to the standby has three simple requirements:

■■ You should be able to guarantee that the transfer of each log is successful.

■■ Each archived redo log should be transferred to the standby one time.

■■ Logs should be generated at a predetermined interval.

536 Chapter 23

Keep in mind that if the log archive destination is the same for the primary and
standby, the destination can be read on the primary from the Oracle data dictionary. This
approach simplifies the configuration. In the example provided in this section, the
archived redo log files are pushed from the primary to the standby. They could be pulled
from the standby end. It doesn’t matter which server the transfer originates from. To
guarantee that the transfer of each log is successful, use the following pseudocode:

1. Transfer the archived redo log from the primary to the standby using
UNIX rcp.

2. Generate a checksum of the archived redo log on the primary and standby.

3. Compare the checksums; if they match, the transfer was successful.

4. If the transfer was successful, record the log sequence number in a log file.

This procedure uses a checksum to ensure that the archived redo logs on each end
are identical. Most UNIX operating systems use either the CKSUM or CHECKSUMCHECKSUM
command to generate a checksum on a file. Based on the preceding design, the exis-
tence of the sequence number in the log file after the transfer completes is the only
method guaranteeing that the log transfer was successful. When the log file contains
entries, the following pseudocode can be used to identify the archived redo logs to
transfer each time the procedure is called:

1. Get the log sequence of the last log transferred successfully to the standby from
the list of transferred logs.

2. Identify the next log to transfer by incrementing the last log sequence by 1.

3. Get the last archived redo log sequence using SELECT MAX(SEQUENCE#)
FROM V$LOG_HISTORY. This identifies the last log written on the primary
database.

4. Transfer all logs to standby in sequence based on the values in 2. and 3.

A script, dbcool_arch_to_standby.pl is available for download from the book’s com-
panion Web site. This script implements the end-to-end transfer process as defined by
the preceding list of requirements. The script runs on the primary and uses the generic
Perl routines described in Chapter 4. As a result, it logs useful information automati-
cally on each invocation, and prevents more than one instance of the script from run-
ning against a specific Oracle database at any time. This is an example command line
that transfers logs from the primary database ORAD2 (SYSTEM password pwd) to the
standby server sb1:

$ dbcool_arch_to_standby.pl sid=ORAD2 system_pwd=pwd standby_host=sb1

The log file that holds the list of transferred logs contains lines like those in the fol-
lowing code. The lines identify the log sequence number that was transferred and the
transfer completion time:

46232 Sat Feb 16 17:22:59 GMT 2002 OK

46233 Sat Feb 16 17:23:09 GMT 2002 OK

46234 Sat Feb 16 17:23:12 GMT 2002 OK

Protecting Data Using Standby Databases 537

To ensure that archived redo logs are created at regular intervals on the primary for
transfer to the standby, a database job can be used to switch the logs on a scheduled
interval. This is requirement 3. from the original list. The following job switches logs
every 15 minutes:

begin

sys.dbms_ijob.submit (

job=>100,

luser=>'SYSTEM',

puser=>'SYSTEM',

cuser=>'SYSTEM',

next_date=>to_date('2002-02-14:18:34:52','YYYY-MM-DD:HH24:MI:SS'),

interval=>'sysdate+15/(24*60)',

broken=>FALSE,

what=>'execute immediate ''alter system switch logfile'';',

nlsenv=>'NLS_LANGUAGE=''AMERICAN'' NLS_TERRITORY=''AMERICA'''||

'NLS_CURRENCY=''$'' NLS_ISO_CURRENCY=''AMERICA'''||

'NLS_NUMERIC_CHARACTERS=''.,'' NLS_DATE_FORMAT=''DD-MON-YYYY'''||

'NLS_DATE_LANGUAGE=''AMERICAN'' NLS_SORT=''BINARY''',

env=>'0102000200000000'

);

end;

/

commit;

NOTE In Oracle9i, you can automate the log switch process without a
database job. Oracle9i provides the ARCHIVE_LAG_TARGET initialization
parameter that allows you to force a log switch after a specified time (in
seconds).

Addition of Datafiles to the Primary

When running a standby in manual mode, changes to the structure of the primary
database need to be executed manually on the standby or the standby suspends the
application of redo. Primary database changes, such as the addition of datafiles to a
tablespace or the creation of a new tablespace, fall into this category. After addition of
a tablespace on the primary, a new datafile appears in the Oracle control file on the
standby, transmitted by the redo. However, the new file doesn’t physically exist in the
file system on the standby, and Oracle doesn’t create it automatically. As a result, redo
log application on the standby stops because there is no file to apply changes to, and
errors appear in the alert log of the standby database when the RECOVER command is
executed (see the following example):

ORA-01157: cannot identify/lock datafile 7 - see DBWR trace file

ORA-01110: datafile 7: '/u03/oradata/ORAD2/indexes01.dbf'

538 Chapter 23

For the standby redo log application to resume, the following things need to
happen:

1. The standby redo log application process needs to be stopped.

2. The new datafile needs to be created in the standby database.

3. The standby redo log application process needs to be restarted.

After creation, when the redo application starts again, all changes to the file since it
was created on the primary are applied. The following SQL can be used on the primary
to generate the SQL to add datafiles to the standby, in cases where datafiles are added
to an existing tablespace and in cases where datafiles are created as part of a new
tablespace:

REM example for file_id=7. Change this if you run it...

select 'alter database create datafile '||chr(10)||

' '''||file_name||''' as '||chr(10)||

' '''||file_name||''';' add_file

from dba_data_files where file_id = 7;

REM sample output from SQL...

alter database create datafile

'/u03/oradata/ORAD2/indexes01.dbf' as

'/u03/oradata/ORAD2/indexes01.dbf';

The DBA needs to provide the FILE_ID value (or values) for the datafile that has
been added to the primary. This value appears in the alert log on the standby, as shown
in the earlier error message. The generated ALTER DATABASE CREATE DATAFILE
statement can then be executed remotely against the standby using SQL*Plus from the
primary with a SYSDBA connection, or it can be transferred to the standby and exe-
cuted locally. The following example shows a SQL*Plus script to run remotely on the
primary against the standby, assuming that SQL*Plus on the primary has been started
using the /NOLOG command-line option:

connect sys/pwd@orad2.standby.dbcool.com as SYSDBA

alter database create datafile

'/u03/oradata/ORAD2/indexes01.dbf' as

'/u03/oradata/ORAD2/indexes01.dbf';

It’s important to emphasize that the original ORA-01157 error signifies that the new
datafile appears in the standby control file, but doesn’t physically exist on the standby
server. The datafile is added to the standby control file through transferred redo infor-
mation in the usual way. It’s not possible to execute CREATE DATAFILE on the
standby until the standby control file contains the new file. If the file doesn’t exist in the
standby control file yet, more redo needs to be applied until the new name appears. As
a result, if you add several new files to the primary at one time, it might be necessary
to run CREATE DATAFILE, and then apply redo on the standby more than once to
resynchronize the standby with the primary. You can view datafiles that exist in either

Protecting Data Using Standby Databases 539

the primary or standby control file using the following SQL, to determine which files
don’t yet exist in the standby control file:

select name from v$datafile;

Starting the Standby in Read-Only Mode

Before starting the standby database in read-only mode, all recovery operations should
be stopped. The following sequence of commands can be used to ensure that recovery
operations are stopped first before starting in read-only mode.

shutdown immediate;

startup nomount;

alter database mount standby database;

alter database open read only;

If a query requires a sort operation and the TEMPORARY tablespace doesn’t contain
a tempfile, the following error is reported: “ORA-25153: Temporary Tablespace is
Empty.” It’s quite safe to add a tempfile to any TEMPORARY tablespace on the
standby, as follows, so that read-only queries that require sorts can complete:

alter tablespace TEMP

add tempfile '/u02/oradata/ORAD2/temp01.dbf' size 100M;

If necessary, the database can be returned to standby mode so that more redo can be
applied from the primary. The capability to return to standby mode is not affected by
the addition of tempfile files to the standby while in read-only mode. The following
commands return the database to standby mode:

shutdown immediate;

startup nomount;

alter database mount standby database;

Activating the Standby

The standby can take over the role of the primary by activating it. When activated, the
standby can’t return to standby mode. The following commands activate and open the
standby database for normal use:

shutdown immediate;

startup nomount;

alter database mount standby database;

REM recover standby database until cancel;

alter database activate standby database;

alter database mount;

alter database open;

The commented command can be used to apply all available redo that has not yet
been applied before activating the standby. Before making the activated database avail-

540 Chapter 23

able to end users, remember to add any missing tempfile files to TEMPORARY table-
spaces, and ANALYZE tables and indexes that might cause errors on use (due to
NOLOGGING operations performed on them).

Running a Physical Standby Database Using
Oracle Data Guard

The manual approach is easy to implement, and it provides a standby capability. It
works in both Oracle8i and Oracle9i. However, it has several drawbacks. The most sig-
nificant drawback is that there is a potential for data loss when the standby takes over
the role of the primary. This is possible because only redo from complete archived redo
logs on the primary is available on the standby. Therefore, the standby data is only cur-
rent up to the last complete archived redo log, and committed data in the online redo
logs of the primary is not available if the primary is suddenly lost. The manual
approach is easy to manage as long as the primary database structure doesn’t change.
Manageability becomes an issue when the structure of the primary changes due to the
addition of datafiles. In this case, manual intervention on the standby is required to
ensure that redo can be applied after the changes. Finally, it’s not possible to switch
roles between the standby and the primary. This is potentially a very useful feature in
situations where the primary and standby sites experience scheduled outages at dif-
ferent times.

Data Guard in Oracle9i provides solutions to all these issues. If you need to provide
disaster recovery facilities for your Oracle databases, the features of Data Guard are a
compelling reason to move up to Oracle9i. This section covers the implementation of a
physical standby database using Data Guard. The configuration described assumes,
up front, that the standby database is used as the primary at some stage, and that the
primary might become the standby. As a result, the initial configuration on both sites is
implemented with this in mind.

Operating in No-Data-Loss Mode

Data Guard provides the capability to run a standby database in no-data-loss mode.
This capability is enabled through the use of standby redo logs. Oracle strongly rec-
ommends the creation of standby redo logs as a matter of routine in any primary data-
base that might be operated with a standby in the future. When created in the primary
database, standby redo logs are ignored. If present in the primary database when it’s
copied to the standby, they are available for use in the standby. Optionally, they can be
added to the standby when required.

When standby redo logs are in operation, redo changes are transferred directly to
them from the log writer process (LGWR) on the primary. The standby redo logs are
archived on the standby, and then applied. There’s no longer a requirement for the
standby to wait for a complete archived redo log from the primary before applying
redo. The old archived-redo-log-based approach is referred to as delayed mode in Data
Guard and is no longer a user-selectable option in later releases of Oracle9i. Standby
redo logs can be multiplexed in groups like regular online redo logs. There is no

Protecting Data Using Standby Databases 541

requirement for standby redo logs to exist in the same numbers, or the same size, as
redo logs. However, the simplest approach is to create the same number of groups and
members for standby redo logs. The following SQL shows the commands required to
create two online redo log groups (1 and 2) with a single member in each, and two
standby redo log groups (3 and 4) with a single member in each:

ALTER DATABASE ADD LOGFILE GROUP 1

(

'/u02/oradata/ORAD2/redog1m1.log'

) SIZE 10M;

ALTER DATABASE ADD LOGFILE GROUP 2

(

'/u02/oradata/ORAD2/redog2m1.log'

) SIZE 10M;

REM add sb_ prefix to standby logs to identify them clearly...

ALTER DATABASE ADD STANDBY LOGFILE GROUP 3

(

'/u02/oradata/ORAD2/sb_redog3m1.log'

) SIZE 10M;

ALTER DATABASE ADD STANDBY LOGFILE GROUP 4

(

'/u02/oradata/ORAD2/sb_redog4m1.log'

) SIZE 10M;

The use of standby redo logs alone doesn’t guarantee no-data-loss operation. It’s
necessary to set the appropriate Data Guard data protection mode before no-data-loss
operation can be guaranteed, and the use of standby redo logs is a prerequisite.

Data Guard Data Protection Modes

To guarantee that all changes made to the primary are available on the standby, Data
Guard can run in a configuration where changes to redo on the primary are synchro-
nized with redo changes on the standby. Before the primary writes its own redo, it
sends the same redo to the standby, and requests that the standby write it to disk. The
standby server sends an acknowledgement to the primary to notify it that redo was
written on disk. This is referred to as no-data-loss mode. When running in no-data-loss
mode, it’s possible for the network between the primary and standby to drop, or the
standby server to experience a failure. In this case, the primary needs to decide how to
proceed when the redo can’t be written to the standby in synch with the primary. The
two capabilities that Oracle provides in this case are referred to using terminology that
changed in later releases of Oracle9i:

■■ Maximize Protection mode (previously referred to as Guaranteed Protec-
tion mode)

■■ Maximize Availability mode (previously referred to as Instant Protection mode)

542 Chapter 23

In Maximize Protection mode, a failure by the standby to confirm the redo write
results in shutdown of the primary, unless more than one standby is in operation. No
data divergence is allowed. Oracle, therefore, recommends that for systems with high
availability (HA) requirements, multiple standby databases should be available in
Maximize Protection mode. Maximize Protection mode provides a high level of pro-
tection of primary database data should the primary be lost because all committed
transactions are available on the activated standby database.

In Maximize Availability mode, when the redo-write confirmation isn’t received from
the standby, the primary continues to operate without transferring redo to the standby
redo logs until the problem on the standby is resolved. In effect, redo application
switches from synchronous to asynchronous mode. When the standby becomes avail-
able, archived redo logs written on the primary during the outage are transferred to the
standby and applied. When the gap in archived redo logs between sites has been
resolved, redo is applied directly to the standby redo logs as before. The feature that
enables gaps in archived redo logs between the primary and standby to be resolved is
referred to as the Fetch Archive Logs (FAL) service. FAL services are enabled through ini-
tialization parameters, which will be described later in this chapter in the sections titled
Managed Standby Initialization Parameters and Logical Standby Initialization Parameters.

Like Maximize Protection mode, Maximize Availability mode waits for confirma-
tion from the standby before proceeding with its redo-write operation. Unlike Maxi-
mize Protection mode, Maximize Availability mode allows the primary to operate
when the standby is temporarily unavailable, so data divergence is allowed. However,
if the primary fails while the standby is unavailable, the activated standby might be
missing transactions from the primary. Oracle provides an overwhelming number of
options with respect to data protection modes. However, Maximize Protection and
Maximize Availability are probably the two you are most likely to use. A third mode,
known as the Maximize Performance mode (referred to as Rapid Protection in early
versions of Oracle9i) writes redo to the standby in synch with the primary, but doesn’t
wait for an acknowledgement from the standby. Therefore, Maximize Performance
provides less protection than the other two modes, but doesn’t impact the performance
of the primary to the same degree.

Both Maximize Protection and Maximize Availability increase the elapsed time of
operations on the primary because each redo write waits for confirmation from the
standby server. This overhead is the price to pay for enhanced data protection. Before
you implement standby databases in either mode, be sure to test that time critical busi-
ness transactions complete within the required times when standby databases are in
operation.

Implementation of Data Guard Protection Modes

At this stage, the discussion has been limited to qualitative descriptions of the
Data Guard features. This section describes how to specify log archive destinations
on the primary database to implement no-data-loss protection. For a database in
ARCHIVELOG mode running without a standby, a single archived redo log destina-
tion is often implemented. This is a typical initialization parameter in such a case:

log_archive_dest_1 = "location=/u04/oradata/ORAD2/arch MANDATORY"

Protecting Data Using Standby Databases 543

The view V$ARCHIVE_DEST presents information on all log archive destinations
in operation, which includes the following information for the preceding initialization
parameter:

select status,binding,target,archiver,destination

from v$archive_dest;

STATUS BINDING TARGET ARCHIVER DESTINATION

--------- ---------- -------- ---------- ----------------------------

VALID MANDATORY PRIMARY ARCH /u04/oradata/ORAD2/arch

The V$ARCHIVE_DEST view contains many other columns, most of which only
have meaning for standby databases. The MANDATORY parameter is relevant to both
primary and standby log archive destinations. It’s used to determine the policy for the
reuse of online redo logs. If the log archive destination specifies MANDATORY, and
archival of the online redo logs fails, the online log will not be overwritten. Instead, the
database suspends until the problem preventing archiving of the log is resolved. As
every DBA knows, if the local log archive area fills, Oracle suspends until space is
freed. The following log archive destination specifies a remote destination (to identify
the location of a standby database) based on the Oracle Net alias orad2.standby.
dbcool.com:

log_archive_dest_2=

'SERVICE=orad2.standby.dbcool.com MANDATORY REOPEN=10 SYNC AFFIRM

REGISTER LGWR'

This log destination contains the attributes required to implement no-data-loss
standby in Maximize Availability mode. The REOPEN attribute (which is optional)
specifies a time in seconds that Oracle waits before trying a failed log transfer to the
standby site again. The SERVICE attribute identifies the Net Alias of a remote database
instance running in standby mode. The use of SYNC and AFFIRM together mandate
that redo log writes on the standby take place using synchronous network transmis-
sion and synchronous disk I/O. As a result, when the primary receives notification of
the write, the redo is guaranteed to exist on at least one standby site. The REGISTER
attribute ensures that registration of archived redo logs takes place on the standby
database control file. The attribute LGWR indicates that redo transport takes place for
standby redo log files on the standby site, and is carried out by the primary LGWR. In
the LOG_ARCHIVE_DEST_1 example, shown at the start of this section, the archiver
process is not specified. It’s ARCH by default.

Maximize Protection mode requires the same style of log archive destination as
shown in LOG_ARCHIVE_DEST_2. To place the configuration into Maximize Protec-
tion mode, an additional command needs to be executed on the primary database:

alter database set standby database to maximize protection;

Recall that Maximize Protection shuts down the primary database if a MANDATORY
remote standby destination is not available. To prevent a single standby outage from

544 Chapter 23

TE
AM
FL
Y

Team-Fly®

shutting down the primary, it’s necessary to have more than one standby location, and
guarantee that at least one is available when running in Maximize Protection Mode.

Managed Standby Initialization
Parameters

To configure the initialization parameters for the primary and standby databases so
that each database can fulfill both the primary and standby roles after a switchover, it’s
necessary to ensure that specific parameters exist in both databases. Some of these
parameters are identical in both databases, and some have different values in each
database. Table 23.1 shows values common to both the primary and standby databases
in a Data Guard environment, based on the ORAD2 database instance used in the pre-
vious examples.

When running in no-data-loss mode, redo is transmitted from the primary to the
standby through standby redo logs when the standby is available. Before being
applied to the standby, the standby redo logs are archived into the location specified by
LOG_ARCHIVE_DEST_1. If the standby is not available, the archived redo log files
generated on the primary during the standby outage are transferred to the standby by
the FAL process, which resolves gaps in the log sequence between the primary and the
standby when the standby becomes available. These archived redo logs from the pri-
mary are transported to the STANDBY_ARCHIVE_DEST directory on the standby.

In theory, STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_DEST_1 can specify
the same directory. In practice, it can be useful to distinguish between them. For that
reason, it’s helpful to define a naming standard for the STANDY_ARCHIVE_DEST
location. In Table 23.1, the location is given by the “standby” subdirectory of
LOG_ARCHIVE_DEST_1.

The REMOTE_ARCHIVE_ENABLE setting of TRUE allows the standby database to
receive redo logs for archiving from the primary database. The STANDBY_FILE_
MANAGEMENT setting AUTO enables automatic creation of new datafiles on the
standby after they are added to the primary, which addresses one of the main draw-
backs of the manual approach. If either database changes roles from primary to standby,
or vice versa, the settings in Table 23.1 continue to work in all cases. It’s useful to know
which logs have been applied on the standby. In a standby database managed by Data

Protecting Data Using Standby Databases 545

Table 23.1 Initialization Parameters Common to Primary and Standby Databases

PARAMETER NAME VALUE

remote_archive_enable TRUE

log_archive_dest_1 /u04/oradata/ORAD2/arch

standby_archive_dest /u04/oradata/ORAD2/arch/standby

standby_file_management AUTO

compatible 9.0.0.0.0 (or higher)

Guard, the V$ARCHIVED_LOG view contains information about the archived redo
logs that have been applied on the standby from STANDBY_ARCHIVE_DEST. The fol-
lowing SQL statements show how to determine the applied logs on both a managed and
manual standby:

REM managed Data Guard standby, logs applied...

select * from v$archived_log;

REM ...compare with manual standby, logs applied...

select * from v$log_history;

If the primary and standby databases switch roles, the Oracle Net aliases used to
refer to them continue to refer to the original server. As a consequence, initialization
parameters that refer to aliases need to be switched around on each server, as shown in
Table 23.2.

Keep in mind that FAL parameters only apply to the database that is currently run-
ning in standby mode, and the log archive destination only applies to the primary
database. After the changes have been made to the primary and standby database
parameter files, the primary can be started. The V$ARCHIVE_DEST view can be uti-
lized to show the status of the standby log archive destination used to transfer redo
from the primary database to the standby database. The following example shows that
the standby archive log destination (identified by DESTINATION�'orad2.standby.
dbcool.com' and TARGET�'STANDBY') is not currently available because the Oracle
Net listener isn’t running on the standby server:

select status,archiver arch,fail_date,fail_sequence f_seq,error

from v$archive_dest where target='STANDBY'

and destination='orad2.standby.dbcool.com';

STATUS ARCH FAIL_DATE F_SEQ ERROR

------- ----- ------------------- ------ ---------------------------

ERROR LGWR 16-FEB-2002 18:37:44 2426 ORA-12541: TNS:no listener

546 Chapter 23

Table 23.2 Initialization Parameters Differing between Primary and Standby

STANDBY SERVER PRIMARY SERVER

fal_client=orad2.standby.dbcool.com fal_client=orad2.dbcool.com

fal_server=orad2.dbcool.com fal_server=orad2.standby.dbcool.com

log_archive_dest_25 log_archive_dest_2=

'service=orad2.dbcool.com 'service=orad2.standby.dbcool.com

mandatory reopen=10 sync mandatory reopen=10 sync affirm

affirm register lgwr' register lgwr'

The ARCHIVER column value 'LGWR' shows that the standby is configured to use
standby redo logs, and the FAIL_SEQUENCE column identifies the log sequence on
the primary where the transfer error occurred. This value is used by FAL to transfer
any archived redo logs generated on the primary while the standby database was
unavailable. The sequence of archived redo logs generated during the downtime of the
standby is known as a gap sequence.

Running Managed Recovery

To take advantage of the full range of Data Guard standby features, the standby data-
base must be mounted in standby mode (identical to the manual recovery approach),
and then recovery must be started in managed standby mode, as follows:

startup mount;

alter database mount standby database;

REM !! create standby redo logs now, if they don’t exist yet

alter database recover managed standby database disconnect from session;

REM alternative managed recovery command running 4 parallel streams

alter database recover managed standby database disconnect parallel 4;

Use of the DISCONNECT FROM SESSION option runs the recovery in the back-
ground, and allows the DBA to exit from SQL*Plus after starting managed recovery.
Managed recovery can be stopped with the following command:

alter database recover managed standby database cancel immediate;

The V$ARCHIVE_DEST view can be used on the primary database to confirm that
the standby is operational. It if is, the destination has a VALID status:

select status,archiver arch,fail_date,fail_sequence f_seq,error

from v$archive_dest where target='STANDBY';

STATUS ARCH FAIL_DATE F_SEQ ERROR

-------- ------ ----------- ------- -------

VALID LGWR 0

If the standby is unavailable and the standby log archive destination specified on
the primary database uses the MANDATORY attribute, the potential exists for the pri-
mary to suspend. This occurs when the current online redo log cycles back to the one
that couldn’t be archived to the standby site. To keep the primary from suspending, the
log archive destination state for the standby can be set to DEFER, as follows:

alter system set log_archive_dest_state_2 = 'DEFER';

The use of DEFER allows the primary to continue to operate, and changes the
STATUS of the destination in V$ARCHIVE_DEST to DISABLED. In general, the use of
DEFER is recommended to keep the nonavailability of the standby from impacting the

Protecting Data Using Standby Databases 547

primary. Using suitable monitoring, errors in V$ARCHIVE_DEST for standby log
archive destinations can be detected, and the status can be changed to DEFER auto-
matically until the standby is available. When the standby is available, the standby log
destination can be enabled using the following command (followed by a log switch to
manually initiate FAL to transfer logs in the gap immediately):

alter system set log_archive_dest_state_2 = 'ENABLE';

REM optional, but FAL only restarts on next switch, so force one now

alter system switch logfile;

The V$MANAGED_STANDBY view can be queried on the standby site to display
the status of the standby. The following SQL displays the process names, process iden-
tification numbers (PIDs), and status values for a standby database operating in man-
aged recovery mode:

select process,pid,client_pid,status from v$managed_standby;

PROCESS PID CLIENT_PID STATUS

------- ---------- ------------- ------------

MRP0 24490 N/A WAIT_FOR_LOG

RFS 24502 12906 WRITING

RFS 24504 12914 ATTACHED

The CLIENT_PID value for the remote file server (RFS) process on the standby con-
tains the UNIX PID of the ARCH process from the primary database (CLIENT_
PID�12914) and the UNIX PID of the LGWR on the primary database (CLIENT_PID�

12906). This output is good way to check that the standby redo logs are in use. If they
aren’t, the PID of the LGWR on the primary is missing. It’s worth noting that if standby
redo logs do not exist on the primary, or they aren’t configured correctly, no error is
reported. Instead, the standby runs in Deferred mode and applies redo from archived
redo logs on the primary. The use of standby redo logs should always be checked
because it’s a requirement to use them for no-data-loss operation. Another way to con-
firm that standby redo logs are in use is to run the UNIX fuser command on the
standby redo log files from the standby. This displays PIDs of standby database back-
ground processes that are accessing the logs. If no processes are accessing any of the
logs, they aren’t being used.

Switching Primary and Standby States

The managed physical standby configuration that has been presented in this chapter is
designed for two purposes:

■■ To allow the standby database to take on the role of the primary database in the
case of a disaster on the primary server site. This is referred to as a failover.

■■ To allow the standby and primary databases to switch roles under DBA control,
for example in the case of a planned outage on the primary site. This is referred
to as a switchover.

548 Chapter 23

The standby initialization parameters shown in Table 23.2 are designed for a
switchover scenario where the primary and standby switch roles. In a failover sce-
nario, those initialization parameters for the old standby (as shown in Table 23.2) refer
to a standby that no longer exists. These parameters should be removed before starting
the old standby as the new primary. Table 23.3 shows the operations required on the
primary and standby databases for failover and switchover.

Keep in mind that the managed standby example in this chapter assumes that the
configuration is running in Maximize Availability mode, and that standby redo logs are
in use. This ensures no data loss. It’s still possible to activate the standby database with
the manual method, using ALTER DATABASE ACTIVATE STANDBY DATABASE.
This should be avoided if possible because it leads to the possibility of data loss on the
standby when it’s activated as the new primary. After the failover operations have been
completed, a SHUTDOWN followed by a STARTUP starts the standby in normal oper-
ation as the new primary.

In order for switchover to succeed, there must be no active sessions on the primary
database, and the standby database must mounted and running in managed recovery
mode. If the error ORA-01903 is reported when running SWITCHOVER TO STANDBY
on the primary, the problem might be due to a session related to the database job
queue. If this is the case, set the parameter JOB_QUEUE_PROCESSES to 0, as follows,
before trying the switchover again:

alter session set job_queue_processes=0;

The execution of SWITCHOVER TO STANDBY on the primary is essential for the
switchover to succeed. This sends the End of Redo (EOR) record to the standby and
ensures that all redo from the primary is applied to the standby before the roles are
switched. If this step is omitted, it’s possible to end up with two standby databases per-
manently! The alert logs on the primary and standby indicate that the EOR record has
been generated on the primary and sent to the standby, where redo has been applied:

Incomplete recovery done UNTIL CHANGE 1165897

MRP0: Media Recovery Complete: End-Of-REDO

Protecting Data Using Standby Databases 549

Table 23.3 Failover and Switchover Operations

OPERATION PRIMARY DATABASE STANDBY DATABASE

Database alter database alter database

switchover commit to commit to

switchover to standby; switchover to primary;

Database None: the primary alter database

failover database is lost recover managed standby

database finish;

alter database

commit to

switchover to primary;

At this stage, the primary can be shut down and reopened as a physical standby
database. The old primary is now a standby. Next, the old standby needs to be
switched to the new primary using SWITCHOVER TO PRIMARY. For the operation to
succeed, all redo from the log stream on the old primary must have been applied. If the
error ORA-16139 is reported on the standby when you attempt SWITCHOVER TO
PRIMARY, it is an indication that the database has not been recovered through the end
of the log stream from the old primary, and graceful switchover is not possible. The
best way to avoid this is to ensure that standby redo logs are in use on the standby, and
that the EOR record appears in the standby alert log before switching states.

Running an Oracle9i Logical
Standby Database

The logical standby option in Oracle9i enables the standby database to remain open for
read-only use while redo transport and apply processing is in progress. This is not pos-
sible with a physical standby database. Additional indexes and materialized views can
be created on the logical standby database to speed the performance of reports. Logi-
cal standby databases are commonly used to provide the capability to run reports on
near-live data, without significantly impacting the performance of the primary data-
base. The initialization parameters for database buffer sizes and sort areas can be
increased on the standby if required.

Like physical standby, changes from the primary are still transported to the standby
via redo in logical standby. However, they are first converted to SQL transactions
before being applied to the standby. This contrasts with physical standby, where phys-
ical block changes are performed on the standby, based on ROWID values in the redo.
Chapter 17 contains an example of how to use Oracle’s LogMiner GUI tool to under-
stand the relationship between redo data and the SQL transactions contained in it, as
well as background information on the Oracle database recovery process.

Unlike a physical standby database, a logical standby database doesn’t propagate
data corruption from the standby. The standby is able to perform this check because it
has access to both the primary and standby data values prior to applying redo.

Prerequisites for Running
Logical Standby
Most of the prerequisite requirements for a physical standby still apply. Oracle Net
aliases should exist for the primary database, the standby database, and a service name
to enable transparent failover between the two for end-user applications. The primary
must be running in ARCHIVELOG mode with automatic archiving in operation, as
specified by the initialization parameter LOG_ARCHIVE_START�true.

Some types of primary database objects are not supported for logical standby data-
bases. Unsupported objects in the primary are automatically excluded from the redo-
apply process on the standby. These objects can be determined in advance on the
primary using:

550 Chapter 23

select * from dba_logstdby_unsupported;

All table rows in the primary for which log transport to the logical standby is
required must be uniquely identifiable. This can be guaranteed by ensuring that all
tables contain either a primary key constraint or a unique constraint based on NOT
NULL columns. Tables that don’t meet unique row requirements can be identified in
advance on the primary with the following SQL:

select owner, table_name, bad_column from dba_logstdby_not_unique;

A BAD_COLUMN value of Y means that the table contains a column with a poten-
tially unbounded size. Oracle doesn’t store the column width in the dictionary for such
types. For example, character large objects (CLOBs) are unbounded. In this case, rows
must be unique across columns (with the exception of unbounded columns) for the
table to be properly maintained on the standby.

A BAD_COLUMN value of N indicates that the table can be properly maintained on
the standby using a feature known as supplemental logging. Supplemental logging
adds extra column information to redo on the primary when table data is modified.
Supplemental logging is a mandatory prerequisite for running a logical standby, and
can be enabled explicitly on the primary with the following command:

alter database add

supplemental log data (primary key,unique index) columns;

REM use this SQL to check the values...

select supplemental_log_data_pk, supplemental_log_data_ui

from v$database;

For tables with primary keys or NOT NULL unique constraints, supplemental log-
ging is minimal. For tables with columns identified by BAD_COLUMN�'Y' supple-
mental logging causes all scalar values in the column to be added to the redo for the
purpose of uniquely identifying the row at the standby. This can result in a very sig-
nificant amount of extra redo generation for the row. The best way to resolve this is to
add a primary key or NOT NULL unique constraint to the table. If this isn’t possible,
another solution is to add a primary key to the primary table in a RELY DISABLE state,
for example:

alter table no_pk add primary key (keycol1, keycol2) rely disable;

Use of a RELY DISABLE primary key reduces the supplemental redo generated by
changes to the table, without incurring the cost of maintaining the underlying index on
the primary. It’s essential that the chosen columns represent a unique combination that
could form an enabled primary key. If they don’t, redo isn’t applied on the standby.

Finally, the logical standby uses segments owned by SYS and SYSTEM to maintain
the standby. By default, these are located in the SYSTEM tablespace. If it’s intended
that the logical primary and standby databases might switch roles in the future, these
segments should be relocated to a different tablespace on the standby, using the
SET_TABLESPACE procedure in the DBMS_LOGMNR_D package. This operation

Protecting Data Using Standby Databases 551

should be performed on the primary before it is cloned to make the standby. This is an
example:

create tablespace log_ts datafile '/u02/oradata/ORAD2/log_ts01.dbf'

size 100m autoextend on next 12800k maxsize unlimited

extent management local uniform size 128k;

begin sys.dbms_logmnr_d.set_tablespace('log_ts'); end;

/

Logical Standby Initialization Parameters
Probably the most significant difference between a logical and physical standby con-
figuration is that the FAL_CLIENT and FAL_SERVER parameters in the standby
parameter file are not specified. On the other hand, the use of ARCHIVE_LOG_
DEST_1, LOG_ARCHIVE_FORMAT, and STANDBY_ARCHIVE_DEST applies to
both logical and physical standby and can be set identically on both. Note that the
ARCHIVE_LOG_DEST_2 parameter used on the primary to identify the standby data-
base is enabled at the end of the configuration, after the logical standby is up and run-
ning in logical standby mode. If it’s enabled before that point, the configuration
doesn’t work.

It’s important to use server parameter files to hold database initialization parame-
ters for the primary and standby, so the Oracle database management system (DBMS)
can take control of changing and persisting any parameters needed to support logical
standby as and when required. The following SQL*Plus command can be used on the
primary to convert an existing init.ora file into a server parameter file (based on the use
of default file names) when the command is executed from the $ORACLE_HOME/dbs
directory:

REM in order to use the spfile afterwards, shutdown and restart dbms

create spfile from pfile;

The logical standby can be cloned from the primary either following a clean shut-
down of the primary or while the primary database is up and running. If the primary
is to remain up, the database Resource Manager must be running. This can be enabled
using the following SQL:

alter system set resource_manager_plan=system_plan scope=both;

shutdown immediate;

startup;

Note that even though the primary database can remain up during creation of the
logical standby, it’s necessary to place the primary into a quiesced state during the
process using ALTER SYSTEM QUIESCE. This requires that all existing transactions
complete and causes new transactions to hang, which might appear to end users as a
problem with the database. As a result, you might want to arrange for scheduled
downtime while the logical standby is being created to avoid the unpredictability asso-
ciated with waiting for existing transactions to complete.

552 Chapter 23

To ensure the fastest application of redo on the standby, log-apply services require
memory in the shared pool, and the use of parallel query. By default, 25 percent of SGA
memory on the standby is allocated for redo-apply operations. Therefore, considera-
tion should be given to increasing the SGA on the standby instance compared with that
on the primary. The APPLY_SET procedure in the DBMS_LOGSTDBY package is used
to control resource allocation. The following command restricts the SGA usage for redo
log application on the standby to the specified limit:

begin dbms_logstdby.apply_set('MAX_SGA',50000000); end;

/

In order for log-apply services to run in parallel, a minimum value of 5 is required
for the initialization parameter PARALLEL_MAX_SERVERS on the standby. By
default, all available servers are used. The number of servers used can be limited by
APPLY_SET:

begin dbms_logstdby.apply_set('MAX_SERVERS',7); end;

/

REM select * from DBA_LOGSTDBY_PARAMETERS show APPLY_SET values

REM unset the value if setting causes errors on the standby

begin dbms_logstdby.apply_unset('MAX_SERVERS'); end;

/

These changes can be carried out on the primary before cloning it to make the
standby. This ensures that the values are in effect at all times, including after any role-
switch operations between the primary and standby. They can be executed at any time
on the standby.

Creating the Logical Standby
The logical standby database must be based on a copy of the primary. This copy can be
taken either following a clean shutdown of the primary (using either SHUTDOWN or
SHUTDOWN IMMEDIATE) or while the primary database is up.

Datafiles only (not tempfile files, online redo logs, or control files) must be copied to
the standby. The following example makes the same assumptions as the physical
standby example earlier in the chapter, namely that the standby is located on a sepa-
rate server with an identical physical layout to the primary and uses the same database
name and SID. The OFA environment, initialization file, and password need to be
copied to the standby also, as before. The following SQL on the primary generates the
list of datafiles that need to be copied manually to the standby site:

select f.file_name from dba_data_files f;

Alternatively, the dbcool_gen_standby.pl script (discussed previously with respect to
physical standby creation) can be used to generate a script that transfers the database
across the network in parallel, using compression. This can help to expedite the process

Protecting Data Using Standby Databases 553

of creating the logical standby. This is an example of usage, which specifies mode�

logical as opposed to mode�physical during physical standby creation:

$ export ORACLE_SID=ORAD2
$ export ORACLE_HOME=/u01/app/oracle/product/9.2.0
$ dbcool_gen_standby.pl system_pwd=pwd mode=logical \
status=hot standby_host=sb1

The status�hot parameter specifies that the primary database is to remain up while
the logical standby is being created. Alternatively, status�cold can be used to generate
a script that performs a clean shutdown of the primary before copying the files to the
standby. The examples in the rest of this section assume that the primary database is
closed while the cloning of the logical standby takes place.

The Oracle Net listener for both the primary and standby should be running. After
the transfer of database files to the standby is complete, and assuming that the pass-
word, initialization file, and OFA structure is in place on the standby, the following
SQL*Plus commands must be executed on the primary:

startup mount

alter database backup controlfile to '/tmp/to_standby.ctl' reuse;

select checkpoint_change# from v$database;

select max(name) arch_start from v$archived_log
where standby_dest='NO';

alter database open;

begin dbms_logstdby.build; end;
/

alter system archive log current;

select max(name) arch_stop from v$archived_log
where dictionary_begin='YES' and standby_dest='NO';

It’s important to be aware that a logical standby database is based on a regular con-
trol file backup, rather than a standby control file as used by a physical standby data-
base. The BUILD procedure in the DBMS_LOGSTDBY package adds information to
redo logs generated on the primary so that the standby can interpret them, and enables
supplemental redo generation if it’s not already enabled. It’s critical that no DDL is
executed during the time interval after the opening of the primary and before the exe-
cution of BUILD.

When the SQL is executed, the following output values need to be recorded because
they are used subsequently in the initial processing on the logical standby, to synchro-
nize the initial state of the logical standby before redo can be applied:

CHECKPOINT_CHANGE#

261567

554 Chapter 23

TE
AM
FL
Y

Team-Fly®

ARCH_START

--

/u04/oradata/ORAD2/arch/T0001S0000000166.ARC

ARCH_STOP

--

/u04/oradata/ORAD2/arch/T0001S0000000168.ARC

The backup control file identified by '/tmp/to_standby.ctl' must be copied to all the
control file locations referenced in the server parameter file on the standby:

$ rcp -p /tmp/to_standby.ctl sb1:/u02/oradata/ORAD2/control01.ctl

$ rcp -p /tmp/to_standby.ctl sb1:/u03/oradata/ORAD2/control02.ctl

All archived redo logs in the range identified by ARCH_START and ARCH_STOP
need to be copied to the standby, using an operating system command, such as rcp.
When all file transfers are completed, processing switches to the standby where the
CHECKPOINT_CHANGE# and ARCH_STOP values, recorded previously at the pri-
mary, are used:

startup mount

REM clear all logfile groups, 2 in our example...

alter database clear logfile group 1;

alter database clear logfile group 2;

REM recover using the CHECKPOINT_CHANGE# saved from the primary

alter database recover automatic from

'/u04/oradata/ORAD2/arch' database until change 261567

using backup controlfile

/

REM ensure that no changes can be made to the logical standby . . .

alter database guard all;

alter database open resetlogs;

REM recreate the tempfile used in the primary TEMP tablespace

alter tablespace TEMP

add tempfile '/u02/oradata/ORAD2/temp01.dbf'

size 20M reuse autoextend on;

REM register the ARC_STOP file transferred from the primary

alter database register logical logfile

'/u04/oradata/ORAD2/arch/T0001S0000000168.ARC';

REM begin standby apply at CHECKPOINT_CHANGE# save on primary . . .

alter database start logical standby apply initial 261567;

Protecting Data Using Standby Databases 555

Applying Redo on the
Logical Standby
At this stage, the standby and primary are up and running. The standby is ready to
apply logs from the primary and has applied the initial logs transferred as part of the
initial configuration. The final step is to set and enable an archived redo log destination
on the primary to identify the location of the standby database for redo log transport:

alter system set log_archive_dest_2='service=orad2.standby.dbcool.com

lgwr'

scope=both;

alter system set log_archive_dest_state_2=enable scope=both;

The role of the standby database can be confirmed from the contents of
V$DATABASE after the process is complete, using the following SQL:

select database_role from v$database;

DATABASE_ROLE

LOGICAL STANDBY

Progress of redo log application on the standby can be found in the
LOGSTDBY_PROGRESS view using the following SQL:

select applied_scn,applied_time,newest_time
from dba_logstdby_progress;

APPLIED_SCN APPLIED_TIME NEWEST_TIME
------------- --------------------- ---------------------

72646 17-FEB-2002 16:37:41 17-FEB-2002 16:41:10

The status of logs that have been applied can be determined from DBA_
LOGSTDBY_PROGRESS. Any gaps in log sequences are resolved automatically by the
standby database. You need to be aware that a log switch on the primary is required
before changes can take effect on the logical standby. When the standby apply-redo
process is running, status information can be viewed in the V$LOGSTDBY view. This
view includes the UNIX PID values for the standby processes that are performing the
generation of SQL from the redo, and executing it against the standby. The following
SQL shows the contents of V$LOGSTDBY for a logical standby database in the process
of applying some redo:

select pid,type,status from v$logstdby;

PID TYPE STATUS
------ ------------ -----------------------------
28529 COORDINATOR ORA-16116: no work available

556 Chapter 23

28531 READER ORA-16117: processing

28533 BUILDER ORA-16117: processing

28535 PREPARER ORA-16116: no work available

28537 ANALYZER ORA-16116: no work available

28539 APPLIER ORA-16117: processing

Additional indexes and materialized views can be created on the logical standby
(for example, to speed up SQL reports) by preceding and following the DDL state-
ments in SQL*Plus with the following commands:

SQL> execute dbms_logstdby.guard_bypass_on

REM create an extra index here...

SQL> execute dbms_logstdby.guard_bypass_off

If required, redo can be applied to selected objects on the standby only, by skipping
the rest using the SKIP procedure in DBMS_LOGSTDBY.

Logical Standby Failover
Before failing over to the logical standby, all outstanding archived redo logs that need
to be applied to the standby must be manually copied from the primary to the standby
directory that is specified by the STANDBY_ARCH_DEST initialization parameter.
After stopping the logical redo-apply process, manually copied archived redo logs can
be registered and applied to the standby as follows:

alter database stop logical standby apply;

REM run this step for each archived redo log

REM manually copied from primary...

alter database register logical logfile 'filespec';

REM start apply

alter database start logical standby apply;

/*

* check V$LOGSTDBY view for idle processes at this point,

* to confirm all redo applied,then stop apply

*/

alter database stop logical standby apply;

REM now activate the standby as the primary

alter database activate logical standby database;

Like physical standby, logical standby also supports switchover operations (in a
similar way). This requires the previous creation of database links between the pri-
mary and standby.

Protecting Data Using Standby Databases 557

Enhancing Standby Management Using
Oracle9i Data Guard Manager

The extensive new Data Guard features in Oracle9i can make command-line manage-
ment of the configuration a challenge, whether physical or logical standby is used.
Data Guard broker is the component that reduces the complexity of creating and man-
aging standby database configurations when used in conjunction with the Data Guard
Manager GUI in Oracle Enterprise Manager (OEM). To use Oracle Data Guard Man-
ager for standby database configurations, you must first perform the following actions:

■■ Run an OEM Management Server. This requires an OEM Repository Database.
Chapter 24 contains more information on installing and running OEM.

■■ Run the Oracle Intelligent Agent on each site.
■■ Find and register the primary and standby databases in the OEM Repository,

using the Oracle Intelligent Agent. If you plan to create a new standby data-
base, Data Guard Manager can add it to the configuration automatically.

■■ Register the operating system and Oracle-preferred credentials in OEM for the
primary and standby server machines, and for the primary and standby data-
bases. Oracle credentials require SYSDBA privileges, which in turn require the
use of a password file on the primary and standby databases.

■■ Configure the Oracle listeners on each site to allow connections to the standby
and primary databases.

When this configuration is in place, the following commands run Data Guard
Manager:

$ export DISPLAY=your_X_display:0

$ oemapp dataguard

The manually performed examples (shown earlier in this chapter) become increas-
ingly difficult if any of the following apply:

■■ Database file locations differ between the primary and standby.
■■ A different database name is required for the logical standby.
■■ A different instance name is required for the logical standby.
■■ Different database initialization parameters are required for the logical standby.

Keep in mind that Oracle recommends that a different database name and DBID
value be generated for the logical standby database, to avoid the possibility of acci-
dentally applying redo directly to the logical standby. (The examples in this chapter
leave the name and DBID unchanged.) The recommended changes to DBID and the
database name can be accomplished from the command line using the DBNEWID
command. The following example uses DBNEWID (utility name nid on UNIX) to gen-
erate a new DBID for the ORAD2 database and changes its name to ORAD3:

$ nid target=sys/pwd dbname=ORAD3

558 Chapter 23

At this stage, command-line configuration gets even more difficult because the use
of DBNEWID requires re-creation of the password file, and additional database startup
and shutdown operations. The solution for managing the complexity is using Data
Guard Manager. Through the use of Data Guard Manager, all these changes to the log-
ical standby can be performed automatically, including the re-creation of password
files, listener.ora file changes, and oratab file changes. Data Guard Manager, therefore,
massively reduces initial administration overhead for logical standby database cre-
ation, especially for more complex configurations.

Using Data Guard Manager, the standby can take on the primary role with a couple
of mouse clicks; there’s no need to consult any documentation to find the right com-
mands to run and the order of execution. Data Guard Manager can create a standby
configuration from scratch, including a standby database. Alternatively, a primary and
standby configuration can be created manually (as shown in this chapter), and then
registered with Data Guard Manager, which then takes on the responsibility for man-
aging and monitoring the configuration. Data Guard Manager can also be started from
the OEM Console by choosing Tools from the main menu, and then choosing Database
Applications. If you add an existing standby database to a Data Guard Manager con-
figuration, the Manager makes all necessary changes to initialization parameters pro-
vided that you are using a server parameter file, as recommended previously.

Data Guard broker creates a log file in the BACKGROUND_DUMP_DEST directory
on both the primary and the standby, containing detailed status information about the
configuration. The file name contains the name of the instance. For example, the log file
for the instance OEM9ID2 is drcOEM9ID2.log. Figure 23.1 shows the Data Guard Man-
ager screen for a primary and standby configuration named ORAD2.

Summary

Oracle9i builds on the physical standby database available in previous versions by
adding logical standby and an increased number of options to balance data protection

Protecting Data Using Standby Databases 559

Figure 23.1 Data Guard Manager standby configuration.

on the standby with data availability on the primary. The physical standby functional-
ity in Oracle9i Data Guard, running in Maximize Availability mode, provides an ex-
tremely robust disaster recovery service that can be managed automatically by Oracle.
The Maximize Protection mode means that a standby can provide a guaranteed
no-data-loss solution.

Oracle9i provides enhanced automation of standby management by allowing
datafiles to be added to the primary database without manual intervention on the
standby. This is a major improvement compared to previous releases, where manual
intervention was required. In Maximize Availability mode, standby log transport ser-
vices can handle any outage on the standby with grace, and without impacting the pri-
mary availability. They can also automatically resolve gaps in the redo sequence
between the sites when the standby service is restored. For scheduled outages, the pri-
mary and standby can switch roles with a few simple commands.

Oracle9i also provides the long-awaited logical standby database. This allows a
standby database to remain open for reporting purposes while redo is applied from the
primary, after having been translated to SQL first. Unlike physical standby, logical
standby also provides protection from physical corruption on the primary. In addition,
extra indexes and materialized views can be created on the standby, to enhance the
performance of end-user reports.

With increasing functionality comes more complex administration. To address this,
the combination of Data Guard broker and Data Guard Manager in OEM allows the
Oracle9i primary and standby configurations to be managed as a single entity from a
GUI, enabling primary and standby roles to be switched easily. If you are using logical
standby, Data Guard Manager is probably the only way to set up and manage the sys-
tem without a high DBA administration overhead. Due to its tight integration with
OEM, Data Guard Manager can also generate events to identify runtime errors for both
physical and logical standby configurations.

560 Chapter 23

Maintaining the
Oracle System

Six

PA R T

563

Health checks and monitoring are required to prevent and detect database outages and
provide the highest availability for systems. Although several third-party products
perform these tasks—such as BMC Patrol and Compuware EcoTOOLS—they are all
extremely expensive. Oracle provides its own tools—the Oracle Intelligent Agent
(OIA) and Oracle Enterprise Manager (OEM), which can perform the same functions.
You should consider Oracle’s offerings if you want to save money and reduce the num-
ber of third-party vendors that you have to manage.

When you have identified a problem through monitoring or health checks, a notifi-
cation needs to be sent somewhere in order to alert the support person who needs to
fix the problem. The routing of problems to the right place in combination with moni-
toring is called a systems management framework. Although OIA and OEM can provide
the monitoring and notification, it’s possible that your company already has a systems
management framework in place based on an open standard such as the Simple Net-
work Management Protocol (SNMP). In this case, any alerts that your OEM monitor-
ing raises may need to be compatible with the framework. This doesn’t prevent you
from using OEM to raise alerts because OEM can raise standard SNMP traps against
your existing SNMP-based framework.

This chapter offers guidelines for implementing health checks and monitoring data-
bases. Health checks typically take the form of scripts that check to make sure data-
bases are built to conform with the best practices for avoiding unscheduled outages.
You can run them once a day.

Guidelines for Health Checks
and Monitoring

C H A P T E R

24

NOTE The Perl script dbcool_ora_healthcheck.pl, which automates the health
checks covered in this chapter, is available for download from this book’s
companion Web site.

Monitoring consists of checks that run frequently to make sure your database is pro-
viding the ongoing performance and availability that end-user applications require.
After providing a list of useful health checks, we will distinguish between monitoring
requirements and monitoring implementation techniques. Monitoring requirements
are covered in depth because understanding them is essential to avoid wasting valu-
able database administrator (DBA) time raising alerts that actually don’t indicate criti-
cal problems that require immediate attention. The following is a list of topics covered
in this chapter:

■■ Health checks for physical layout

■■ Health checks for tablespace and rollback segment definitions

■■ Defining monitoring requirements

■■ Implementing monitoring using database jobs

■■ Sending alerts from within the database using UNIX sendmail

■■ Implementing monitoring using OEM and OIA

■■ Creating customized monitoring scripts and Fixit Jobs in OEM

This chapter doesn’t cover performance monitoring. Performance monitoring is a
specialist subject with different requirements that requires specialized tools to achieve
the best results. This topic is covered in Chapter 8 and 16.

Defining and Implementing Health Checks

Oracle database management system (DBMS) health checks are scripted checks that
you can use to ensure that your Oracle databases conform to your organization’s Ora-
cle standards. The standards themselves are typically based on Oracle Corporation’s
own best practices for running an Oracle database. For example, Oracle provides the
Optimal Flexible Architecture (OFA) standard for laying out an Oracle database for
ease of management. If your organization bases Oracle physical layout on the Oracle
OFA standard, then you should proactively check to make sure your databases conform
to the standard. If they don’t, the failure to adhere to the standard may result in outages
that take longer to resolve than those in standards-based installations. All DBAs should
be familiar with OFA, which is covered in detail in Oracle documentation.

The difference between health checks and monitoring is that health checks can be
performed on a database with no connected users and are used to check database con-
figuration settings that don’t change frequently over time. In that respect, health
checks are a special case of monitoring with low execution frequency and do not fix the
detected problems automatically. You might consider running the health checks daily
or twice a day for each database instance. Health checks that fail are problems waiting
to happen rather than problems that will happen imminently or have already hap-

564 Chapter 24

TE
AM
FL
Y

Team-Fly®

pened. The Perl script dbcool_ora_healthcheck.pl is available for download from this
book’s companion Web site to run all of the checks in this section.

Physical Layout Checks
The physical layout is based on Oracle’s OFA standard (see Preface). Physical layout
checks ensure that the following requirements are met:

■■ File names (for both user-managed files and Oracle-Managed Files [OMF])
meet naming standards.

■■ Each log group has at least two members, and all groups have the same size.

■■ A minimum of two control files are present.

In general, only violations of the health checks need to be reported. This keeps the
amount of output generated to a minimum in order to draw attention to issues that
need to be addressed. Perl is well suited for reading the contents of the Oracle data dic-
tionary and matching the results against patterns to test for OFA naming-standard con-
formance. In addition, you might want to make sure that files are laid out in such a way
that control files and log group members are on separate disks and that the disks are
on separate disk controller interface cards. For the purposes of this chapter, the physi-
cal storage is assumed to be opaque to the DBA in the sense that the storage is provided
to match performance and availability requirements through a storage area network
(SAN), as discussed in Chapter 2. This means that issues related to the physical hard-
ware are beyond the scope and no longer the DBA’s responsibility. If this is not the case
in your organization, the source code for the checks is provided on the companion Web
site so you can modify them to meet your needs. In the examples in this section, data-
bases conform to the OFA standard and may contain user-managed files or OMF for
datafiles, redo logs, and control files. The following Structured Query Language (SQL)
forms the basis for all file name checks:

select name,filename,decode(group#,0,null,group#) log_group

from

(select 'redo' name,f.member filename,f.group#

from v$log l,v$logfile f Where l.group# = f.group#

union select 'control',name,0 from v$controlfile c

union select f.TABLESPACE_NAME,f.file_name,0 from dba_data_files f

union select tf.TABLESPACE_NAME,tf.file_name,0 from dba_temp_files tf);

The following output shows the results of the report for an Oracle9i database with a
mixture of user-managed files and OMF. If the NAME column is uppercase, it contains
the name of a tablespace. If it is lowercase, it specifies whether the file is a control file
or redo log member:

NAME FILENAME LOG_GROUP

----------- --- -----------

LONGTSNAME /u02/oradata/ORAD1/ora_longtsna_xzns8vj7.dbf

SYSTEM /u02/oradata/ORAD1/ora_system_xwrk5w6p.dbf

TABAUTO /u02/oradata/ORAD1/ora_tabauto_xwycbv70.dbf

Guidelines for Health Checks and Monitoring 565

TEMP /u02/oradata/ORAD1/ora_temp_xzno1knn.tmp

UNDO1 /u02/oradata/ORAD1/ora_undo1_xwrk7gx3.dbf

USERS /u02/oradata/ORAD1/users01.dbf

control /u02/oradata/ORAD1/ora_xwrk4zgp.ctl

redo /u02/oradata/ORAD1/ora_1_xwrk4zv2.log 1

redo /u02/oradata/ORAD1/ora_2_xwrk5c4k.log 2

redo /u03/oradata/ORAD1/ora_1_xwrk55gr.log 1

redo /u03/oradata/ORAD1/ora_2_xwrk5jqg.log 2

Datafile Names

To check whether a datafile name matches the standard, two patterns are required. One
pattern is required to check for user-managed files, and another is required to check for
OMF. OMF datafile names begin with ora_ or o1_mf_ followed by the first eight char-
acters of the tablespace name, and then by a unique string, followed by .dbf for
datafiles and .tmp for TEMPORARY tablespace tempfiles. User-managed files are
named using the tablespace name followed by a two-digit sequence number to
uniquely identify the file name followed by .dbf.

NOTE OMF names are internally generated by the DBMS and the naming
format is not published. As such, Oracle may choose to change the generated
names between releases.

The dbcool_ora_healthcheck.pl script uses the check_datafile() subroutine to check
datafiles for name conformance. The variable $omf holds the OMF pattern to compare
the file name against, and the $userf variable holds the user-managed pattern to com-
pare the file against. The routine is passed to the datafile name and tablespace name
from the previous query as follows:

check_datafile('TEMP','/u02/oradata/ORAD1/ora_temp_xzno1knn.tmp');

The complete definition of check_datafile() is:

sub check_datafile()

{

my($pn,$ts) = @_; # $pn is file path, ts is tablespace name

$fn=basename($pn); # pn is full pathname, $fn is filename

$tsl=lc($ts); # tablespace name in lowercase

$ts8 = substr $tsl,0,8;# 1st 8 chars of tablespace name for OMF

$SID is the ORACLE_SID, passed as a command line argument

define regular expression for file name standards

$omf="/u[0-9][0-9]/oradata/$SID/ora_". $ts8 . "_.*(\.dbf|\.tmp)\$";

$userf="/u[0-9][0-9]/oradata/$SID/" . $tsl . "[0-9][0-9]\.dbf\$";

if (is_omf($fn) eq 'Y')

566 Chapter 24

{

check file $pn against OMF pattern

e.g. /u02/oradata/ORAD1/ora_temp_xzno1knn.tmp

if ($pn !~ m/$omf/) { print "\nnon-standard OMF file: $pn"; }

}

else

{

check file $pn against user file pattern

e.g. /u02/oradata/ORAD1/users01.dbf

if ($pn !~ m/$userf/) { print "\nnon-standard datafile: $pn"; }

}

}

In our sample database list, all the datafile names, both OMF and user-managed
files, match the naming standard, so the output for the routine is empty. You can
change the file patterns quite easily to meet your organization’s naming standards.
This small, self-contained routine nicely demonstrates Perl’s powerful capability to
make sure your database matches your naming standards.

The file names themselves should also be checked for uniqueness. Nothing prevents
two files with identical names from belonging to the same tablespace. This can happen
if the DBA accidentally forgets to increase the file sequence number by one when
adding the second file. For example, the following two files with the same name could
both be part of the USERS tablespace:

/u02/oradata/ORAD1/users01.dbf

/u03/oradata/ORAD1/users01.dbf

The dbcool_ora_healthcheck.pl script reports duplicate file names. These duplicate
names don’t prevent the database from running, but they can lead to confusion, espe-
cially when you are remapping backup files into different directories while performing
a database restore. Uniqueness checks for OMF names are not required because Oracle
guarantees uniqueness.

Redo Log Groups

The redo logs in the sample database have been created using OMF. There are two
groups, with two member files in each group. The OMF names use the number after
the ora_ to identify the log group, followed by a unique string, followed by .log. The
names used in the example database all meet the naming standard:

/u02/oradata/omfd1/ora_1_xwrk4zv2.log

/u02/oradata/omfd1/ora_2_xwrk5c4k.log

/u03/oradata/omfd1/ora_1_xwrk55gr.log

/u03/oradata/omfd1/ora_2_xwrk5jqg.log

The check_redo() subroutine is used to perform the name conformance check for the
redo log files. The code uses a Perl hash variable named $log_file_exists to check
whether redo log file names are duplicated. The same test is not required for OMF redo

Guidelines for Health Checks and Monitoring 567

log names because Oracle guarantees uniqueness. The complete definition of check_
redo() is as follows:

sub check_redo()
{
my($pn,$group) = @_;

my($fn);

$fn=basename($pn); # pn is full pathname

$omf="/u[0-9][0-9]/oradata/$SID/ora_" . $group . "_.*(\.log)\$";
$userf="/u[0-9][0-9]/oradata/$SID/redo[0-9][0-9]" .

"_" . "[0-9]\.log\$";

if (is_omf($fn) eq 'Y')
{

if ($pn !~ m/$omf/) { print "\nnon-standard OMF file: $pn"; }
}
else
{

group 4 member 1/u03/oradata/ORAD1/redo04_1.log',

if ($pn !~ m/$userf/) { print "\nnon-standard datafile: $pn"; }

if ($log_file_exists{$fn}) { print "\nlog $fn already exists"; }
else { $log_file_exists{$fn} = 'Y'; }

}
}

In addition to meeting naming standards, redo log groups should also be identically
sized. The following SQL returns results only when groups of different sizes exist:

select count "DISTINCT LOG GROUP SIZES"
from
(select count(distinct(bytes)) count from v$log)
where count > 1;

Each redo log group should contain at least two members. Even when redo logs are
protected against loss through software- or hardware-based Redundant Array of Inde-
pendent Disks (RAID), multiplexed redo log groups can provide additional benefits by
protecting against file corruption and the accidental removal of a single file in a
duplexed group. The following SQL shows redo log groups that don’t contain at least
two members:

select group# "SINGLE MEMBER LOG GROUP"
from v$log where members=1;

Control Files

Control files store the structure of the database and various system change number
(SCN) values. The availability of the control file is required at all times in order for the
database to operate. Oracle can optionally maintain multiple copies of the control file,

568 Chapter 24

and this feature should always be implemented, regardless of any storage mirroring or
redundancy that is in place. The following SQL returns a result set only when the data-
base contains a single control file:

select count "SINGLE CONTROL FILE IN USE" from

(select count(*) count from v$controlfile)

where count=1;

The dbcool_ora_healthcheck.pl script checks the names of control files, in a similar
way as redo logs and datafiles, to ensure that naming standards are followed.

Tablespace Checks
The following tablespace checks are performed by dbcool_ora_healthcheck.pl to
ensure that tablespace definitions and usage meet the following requirements:

■■ Index and table data are in separate tablespaces.
■■ All application tablespaces use LOCAL extent allocation and uniform size.
■■ All datafiles for application tablespaces use the AUTOEXTEND option.
■■ Rollback segments are in a dedicated tablespace.
■■ Temporary tablespaces use tempfiles.
■■ All users use a tablespace with temporary contents as their temporary

tablespace.
■■ Only system administration accounts have a default tablespace of SYSTEM.
■■ Only authorized users own segments in the SYSTEM tablespace.

Tablespaces That Contain Indexes
and Tables

Indexes and tables should not be stored in the same tablespace as application data.
Although the need to separate tables and indexes for performance reasons is not rele-
vant to modern storage architectures like SAN, the tablespace is a basic unit of recovery,
which is a good reason to keep table and index data apart. If you separate your indexes
and tables into different tablespaces, you have the ability to offline the index data inde-
pendently of table data. In the event of a media failure or corruption to a datafile stor-
ing an index, you can keep the table data online while you rebuild the index data. The
following SQL shows application tablespaces that contain indexes and tables:

select * from

(

select tablespace_name,

sum(decode(segment_type,'INDEX',1,0)) IND,

sum(decode(segment_type,'TABLE',1,0)) TAB

from dba_segments where tablespace_name <> 'SYSTEM'

group by tablespace_name

)

where IND>0 and TAB>0;

Guidelines for Health Checks and Monitoring 569

DbCool makes it easy to relocate indexes from one tablespace to another, if you find
application tablespaces that contain tables and indexes. Consider OEM. OEM creates
all indexes and tables for the OEM repository schema by default in the same table-
space, which is called OEM_REPOSITORY. This breaks the rule that application table
and index data should not reside in the same tablespace. If you first create a tablespace
called OEM_INDEXES to hold the indexes, and run the following SQL in DbCool, the
index relocate statements are loaded into the grid:

select 'alter index '||owner||'.'||segment_name||

' rebuild tablespace OEM_INDEXES’ run_cool_sql

from dba_segments where segment_type='INDEX'

and tablespace_name='OEM_REPOSITORY';

The grid contents are shown in Figure 24.1.
Whenever you use RUN_COOL_SQL for a query in DbCool, the column contents in

the results grid can be treated as Data Definition Language (DDL) statements. If you
right-click the grid and choose Execute RUN_COOL_SQL column, then all the rebuild
statements will be executed in order. You can use the RUN_COOL_SQL alias for more
than one column, in which case the DDL in the columns is executed from left to right.
If you change the grid selection mode to List Style first, you can select individual rows
to run, rather than the whole grid, by using the standard Windows list selection keys.
Alternatively, you can relocate indexes using a server-based procedural approach
using the Procedural Language PL/SQL EXECUTE IMMEDIATE command, as in the
examples covered in Chapter 13.

Application Tablespaces without
LOCAL UNIFORM

The use of LOCAL extent management with uniform space allocation is a best practice
that is recommended throughout this book for Oracle tablespace creation. It provides
the following benefits:

■■ Avoids the Oracle data dictionary as a point of contention for tablespace space
management

■■ Makes a tablespace transportable
■■ Ensures that all free space can be used

The following SQL shows tablespaces that don’t use uniform extent allocation:

select tablespace_name from dba_tablespaces

where extent_management <>'LOCAL' and tablespace_name <> 'SYSTEM';

Using uniform extent allocation eliminates the fragmentation of tablespace free
space and avoids space wastage. The following SQL shows LOCAL tablespaces that
don’t use management extent:

select tablespace_name from dba_tablespaces

where allocation_type <> 'UNIFORM' and tablespace_name <> 'SYSTEM' and

contents='PERMANENT';

570 Chapter 24

Keep in mind that Oracle 9i Release 2 allows the SYSTEM tablespace to use LOCAL
extent management for the first time, which means that you can omit and tablespace
_name <> ‘SYSTEM’ from the WHERE clause.

Datafiles Not Using AUTOEXTEND

It’s possible for an application outage to occur when there is insufficient space allo-
cated in a tablespace to enable a table or index to grow, even when the underlying
UNIX file system holding the tablespace datafiles has plenty of free space available.
The AUTOEXTEND option on a datafile should be used to allow Oracle to add more
space to a tablespace on demand by increasing the size of the underlying datafile auto-
matically. Using AUTOEXTEND indicates that there is no reason for an object to fail to
extend, unless there is no disk capacity remaining on the underlying UNIX file system.
This doesn’t mean that you no longer need to monitor space, but it does mean that you
should monitor the space capacity on the UNIX file systems rather than the space
capacity on the database.

To take full advantage of the higher availability made possible by autoextend, you
need to use a few large file systems for your database so that all datafiles can take
advantage of the total pool of free space. The use of AUTOEXTEND for rollback, undo,
and temporary tablespaces needs more careful consideration. You might not want to
use AUTOEXTEND in these cases because an unusually large workload carried out
without careful planning can result in autoextended files filling the UNIX file system
to capacity. The following SQL shows database files containing regular data without
AUTOEXTEND enabled:

select file_name from dba_data_files

where autoextensible <> 'YES'

and tablespace_name in

(select tablespace_name from dba_tablespaces

where contents='PERMANENT'

);

Guidelines for Health Checks and Monitoring 571

Figure 24.1 Index relocation using DbCool RUN_COOL_SQL.

Rollback Segments Not in Dedicated Tablespaces

Oracle9i makes it possible to create an UNDO tablespace to enforce the use of a table-
space for undo data only. If you still use regular rollback segments, you should
make sure that rollback segments are in a dedicated tablespace to ensure that the space
available for undo data is predictable and under control. The following SQL shows
tablespaces that contain non-SYSTEM rollback segments and other segment types:

select tablespace_name,segment_type

from dba_segments where segment_type <> 'ROLLBACK'

and tablespace_name in

(select tablespace_name from dba_segments

where segment_type='ROLLBACK'

and segment_name <> 'SYSTEM'

group by tablespace_name

)

group by tablespace_name,segment_type;

Temporary Tablespaces That Don’t
Use Tempfiles

From Oracle8i on, Oracle has enabled tablespaces with temporary contents to use
tempfiles. The use of tempfiles is a more efficient way to create temporary tablespaces,
which are used to hold transient data during an Oracle sort operation performed dur-
ing SQL execution. For example, tempfiles are never backed up by Recovery Manager
(RMAN), which saves disk or tape space for the backup, and they never generate redo,
which makes them a prerequisite for standby databases that need to be opened in read-
only mode. The following SQL shows temporary tablespaces that don’t use tempfiles:

select tablespace_name from dba_tablespaces

where contents='TEMPORARY'

and tablespace_name not in

(select tablespace_name from dba_temp_files);

Users Not Using a Temporary Tablespace
for Sorts

Whenever an Oracle user account is created, a tablespace is assigned to the user through
the temporary tablespace option for the purposes of sorting. This sort tablespace should
always be a temporary tablespace. If a user is assigned the SYSTEM tablespace for sort
operations, then sorts can fill up the SYSTEM tablespace. By default, SYSTEM is used as
the sort tablespace if no tablespace is specified at user creation time. Oracle9i provides
a solution to this problem by permitting the creation of a default temporary tablespace
to be assigned to all users if no sort tablespace is specified for the user at the time of cre-
ation. This feature is strongly recommended. The following SQL shows users who don’t
use a tablespace with temporary contents as their sort tablespace:

select username,temporary_tablespace from dba_users

where temporary_tablespace not in

572 Chapter 24

(select tablespace_name from dba_tablespaces

where contents='TEMPORARY');

In Oracle9i, the following SQL can be used to create and display a default temporary
tablespace based on an existing tablespace that must have TEMPORARY contents:

alter database default temporary tablespace temp_default;

select property_name,property_value

from database_properties

where property_name = 'DEFAULT_TEMP_TABLESPACE';

PROPERTY_NAME PROPERTY_VALUE

------------------------ ----------------

DEFAULT_TEMP_TABLESPACE TEMP_DEFAULT

Users with a Default Tablespace of SYSTEM

Only Oracle-created administration accounts such as SYS, SYSTEM, and OUTLN
should have a default tablespace of SYSTEM. If user accounts have a tablespace of SYS-
TEM, the possibility exists for those users to fill up the SYSTEM tablespace and cause
an outage. The following SQL shows nonauthorized users who have a default table-
space of SYSTEM:

select username

from dba_users where default_tablespace='SYSTEM'

and username not in ('SYSTEM','SYS','OUTLN');

Users with UNLIMITED TABLESPACE
Privileges

It’s common practice for DBAs to grant the RESOURCE role to an Oracle account as a
shortcut to give a user permission to create segments in his or her own schema. One
side effect of granting RESOURCE is that the UNLIMITED TABLESPACE quota is
granted explicitly to the user. This is not usually what is required, but it provides com-
patibility with previous versions of Oracle. You need to be aware that UNLIMITED
TABLESPACE is a user attribute rather than a privilege. A user with an UNLIMITED
TABLESPACE quota can create an object in any data tablespace, including the SYSTEM
tablespace. This can result in outages if the SYSTEM tablespace or another application
fills. The following SQL generates SQL statements to turn off an UNLIMITED table-
space quota for non-DBA accounts:

select 'revoke unlimited tablespace from '||grantee

from dba_sys_privs

where privilege='UNLIMITED TABLESPACE'

and grantee in (select username from dba_users

where username not in ('SYSTEM','SYS','OUTLN'));

Guidelines for Health Checks and Monitoring 573

Nonauthorized Users Owning SYSTEM
Tablespace Segments

The SYSTEM tablespace holds the Oracle data dictionary and should not be used
to store user segments. Allowing user segments in the SYSTEM tablespace makes it
possible for user data to fill the SYSTEM tablespace and cause an outage. The follow-
ing SQL shows nonauthorized users who store segments in the SYSTEM tablespace:

select distinct(owner)

from dba_segments where tablespace_name='SYSTEM'

and owner not in ('SYSTEM','SYS','OUTLN');

Miscellaneous Configuration Information

The dbcool_ora_healthcheck.pl script includes other checks to ensure that your data-
base conforms to standards covered elsewhere in this book with respect to:

■■ Database and networking naming (Chapter 3)

■■ Auditing (Chapter 25)

■■ Recoverability (Chapter 17)

The following SQL checks to make sure that the database and network-naming stan-
dards described in Chapter 3 are followed and that the database is in ARCHIVELOG
mode with auditing enabled:

select name,upper(value) from v$parameter

where name in ('audit_trail','global_names','instance_name',

'service_names','db_name','db_domain','log_archive_start')

union

select 'global_name',global_name from global_name

union

select 'log_mode',log_mode from v$database;

The following output shows the results of the previous SQL for a database instance
called ORAP1 (which is accessed by end-user applications using the alias of orap1
.dbcool.com) that conforms to the standards:

NAME UPPER(VALUE)

-------------- --------------

audit_trail DB

db_domain DBCOOL.COM

db_name ORAP1

global_name ORAP1.DBCOOL.COM

global_names TRUE

instance_name ORAP1

log_archive_start TRUE

log_mode ARCHIVELOG

service_names ORAP1.DBCOOL.COM

574 Chapter 24

TE
AM
FL
Y

Team-Fly®

In order to meet the standard, db_name needs to match both the instance_name and
System ID (SID). The service_names value should match the Transparent Network
Substrate (TNS) alias, the global_name, and the concatenation of db_name and
db_domain. The global_names setting should be set to TRUE to enforce global data-
base naming, and the audit_trail should be set to use the database. The database is in
ARCHIVELOG mode, and automatic archiving is enabled. Finally, the activation of
audit options associated with AUDIT ALL needs to be confirmed. The following SQL
returns a result set only if AUDIT ALL has not been executed to enable a standard set
of auditing options:

select audit_opts "AUDIT ALL not run" from

(

select count(*) audit_opts from dba_stmt_audit_opts

) where audit_opts=0;

Defining Monitoring Requirements

Monitoring involves running checks repeatedly—sometimes on a fairly short time
interval such as every few minutes—to identify database-related problems that have
happened or will happen soon if no action is taken. After a problem has been identi-
fied, the DBA group is notified—typically via email, cell phone (via Short Message
Service [SMS]), or radio paging.

The Oracle-monitoring tools on the market have hundreds of options. They typi-
cally measure Oracle’s low-level performance counters and raise an alert when a value
falls or rises above a threshold. My experience is that such monitoring does not actu-
ally increase database availability. Often the contrary is true: If you overload a DBA
with alerts that don’t prove to be meaningful upon investigation over a period of time,
then there is a danger that the DBA will end up ignoring an important alert. As a result,
the monitoring covered in this section is restricted to those events that actually com-
promise availability or might compromise availability without immediate action.
These events apply unconditionally to all Oracle databases and should result in the
generation of alerts whenever the following conditions arise:

■■ The database is not available.

■■ Segments can’t extend or invalid objects exist.

■■ Datafiles are in recovery mode or offline.

■■ Database jobs are failing or broken.

■■ Constraints or triggers are disabled.

■■ In-doubt distributed transactions exist.

■■ Rollback segments are full.

■■ Resumable space allocation errors occur in Oracle9i.

■■ Severe errors are reported in the Oracle alert log.

This section describes each condition and how each affects availability.

Guidelines for Health Checks and Monitoring 575

Database Not Available
You should check periodically to make sure your database is up and running, which is
sometimes referred to as checking for the database heartbeat. There are various ways to
check if the database is available. For example, you can check for the existence of the
database processes and network listener. The simplest way to check if the database is
up is to try connecting to it from a remote client. If the connection succeeds, then you
implicitly confirm that the Oracle instance, the network listener, and all the required
Oracle processes are present. You can use the dbcool_db_up.pl script covered in Chap-
ter 4 to perform this check against a remote database as follows:

$ dbcool_db_up.pl tns=orap1.dbcool.com

The script returns 0 if the test succeeds.

Segments That Can’t Extend
If the database has insufficient room for a table or index to extend and more space is
required, an error is reported to the application and a message appears in the Oracle
alert log to identify what happened. This situation is to be avoided at all costs as it can
cause a very significant outage. For example, if the job in progress was a lengthy batch
run, then failure might require the job to be repeated, resulting in the system being
unavailable for business use.

Before Oracle8i, the identification of segments that didn’t have sufficient space to
extend was fairly straightforward. There are usually two reasons why a segment can’t
extend. Either there is no free extent of sufficient size to meet the segment’s next extent
or the segment has reached its maximum number of extents. These scenarios can be
identified with SQL.

When identifying the largest available free extent in a tablespace, it’s crucial that the
SQL used performs an outer join with the DBA_DATA_FILES view in order to make
sure that tablespaces having no free space are included in the result set. The following
SQL shows the largest free extent available in all tablespaces, including a tablespace S1
that has no free space, which is included as a result of the outer join (�) condition:

select d.TABLESPACE_NAME,nvl(max(f.bytes),0) largest_free_extent

from dba_free_space f,dba_data_files d

where f.tablespace_name(+) = d.tablespace_name

group by d.tablespace_name;

TABLESPACE_NAME LARGEST_FREE_EXTENT

----------------- ---------------------

LONGTSNAME 104792064

S1 0

S3 104792064

SYSTEM 174080

TABAUTO 104726528

UNDO1 63832064

USERS 5177344

576 Chapter 24

The following SQL builds on the previous statement to show segments that can’t
extend, either because there is no existing free extent of sufficient size or the maximum
extents limit has been reached, as determined by the OR clause predicate in the final
parenthesis in the statement:

select * from dba_segments seg,

(

select d.TABLESPACE_NAME,nvl(max(f.bytes),0) largest_free_extent

from dba_free_space f,dba_data_files d

where f.tablespace_name(+) = d.tablespace_name

group by d.tablespace_name

) ext

where seg.tablespace_name = ext.tablespace_name

and (seg.next_extent > ext.largest_free_extent or

seg.extents = seg.max_extents)

This approach is not complete for Oracle8i and later in situations where LOCAL
UNIFORM or LOCAL AUTOALLOCATE extent management options are used at
tablespace creation time. The use of LOCAL UNIFORM in particular is strongly rec-
ommended to avoid space wastage. When these options are used, the value seg.next_
extent is always NULL, so it’s meaningless to compare this to ext.largest_free_extent
because the condition will always fail.

For Oracle8i and later, the SQL needs to be changed to include a reference to the
ALLOCATION_TYPE column in DBA_TABLESPACES. If this column has the value
USER, then the old space management applies, as shown in the previous statement. If
ALLOCATION_TYPE contains the values SYSTEM or UNIFORM, then automatic
extent management options are in place and the MIN_EXTLEN column in DBA_
TABLESPACES can be used to provide the value of the next extent that needs to be allo-
cated for all segments in those tablespaces rather than each segment’s NEXT_EXTENT
value. The following SQL shows the changes required to enable space shortages to be
detected when the new space allocation options are in use:

select owner,segment_name,segment_type,seg.tablespace_name,

decode(ext.allocation_type,'USER',next_extent,ext.min_extlen) next,

ext.largest_free_extent,

extents,max_extents

from dba_segments seg,

(select d.TABLESPACE_NAME,nvl(max(f.bytes),0) largest_free_extent,

t.allocation_type,t.min_extlen

from dba_free_space f,dba_data_files d,dba_tablespaces t

where f.tablespace_name(+) = d.tablespace_name

and d.tablespace_name=t.tablespace_name

group by d.tablespace_name,t.allocation_type,t.min_extlen) ext

where seg.tablespace_name = ext.tablespace_name and

(decode(ext.allocation_type,'USER',next_extent,ext.min_extlen) >

ext.largest_free_extent

or seg.extents = seg.max_extents);

If you use large file systems, auto-extensible datafiles, LOCAL uniform space allo-
cation, and unlimited extents for your segments, you should never experience a space

Guidelines for Health Checks and Monitoring 577

shortage unless the underlying UNIX file system has run out of space. The health
checks described earlier in the chapter are designed to ensure that your database
implementation follows these recommendations. The monitoring of UNIX file system
capacity is a critical factor for this approach to succeed. This is usually a service pro-
vided by the UNIX SA group rather than the responsibility of the DBA because it’s
required for all file systems on a server, not just those holding the Oracle database.
With the advent of modern storage architectures such as SAN combined with volume
managers, it’s possible to grow file systems on demand without an outage, should file
system capacity thresholds be reached.

Invalid Objects
An object that is invalid may identify a genuine problem. For example, if a table has a
view that is based upon it and the table is dropped, then the view becomes invalid.
Any SQL that references the view will fail. Oracle tracks dependencies between objects
automatically, and these are available through the DBA_DEPENDENCIES view. When
an invalid is object is referenced, Oracle transparently attempts to recompile it on
demand. If the recompile is successful, because the cause of the invalidation has sub-
sequently been fixed, execution continues. If the recompile fails, the object remains
invalid. A production database should not contain invalid objects, as they are potential
or actual problems waiting to happen. The sudden appearance of invalid objects sug-
gests that changes are being made to the database to cause the invalidation. These
should be investigated as they occur. The following SQL displays invalid objects:

select * from dba_objects where status <> 'VALID';

Files in Recovery Mode
Files in recovery mode can appear suddenly—for example, due to a media failure or
corruption. They won’t necessarily prevent operation of the database until data is
requested from the file itself. If the requested data is in the System Global Area (SGA)
block buffer cache, then queries on objects stored in the missing or nonaccessible file
can succeed even when the underlying file is no longer accessible. It’s also possible to
start up the database when a datafile is missing without receiving any errors. Files in
recovery mode are always displayed in the V$RECOVER_FILE view after the next
checkpoint, which fails for files that can’t be checkpointed. The following SQL can be
used to identify files in recovery mode:

select * from v$recover_file;

Datafiles Offline
After a file has been restored and after media recovery has been performed to recover
the file, it’s still possible for the file to remain offline. Any queries that reference data in
the file will fail. The following SQL identifies the files that are offline:

select * from v$datafile where status='OFFLINE';

578 Chapter 24

After successful recovery, the following SQL can be used to place an offline file
online:

alter database datafile '/u02/oradata/ORAD1/ora_s1_xzobn3yj.dbf' online;

Failing and Broken Jobs
Many Oracle systems use the Oracle job queue subsystem implemented in the
DBMS_JOB and DBMS_IJOB packages to submit and execute scheduled procedures.
As these jobs execute asynchronously, errors are reported through the alert log and
trace files. Jobs can fail up to 16 times, after which they are marked broken. Failures
and broken jobs can be identified through the following SQL:

select * from dba_jobs

where broken='Y' or failures > 0;

It’s also worth checking for scheduled jobs not currently executing and whose next
execution date is in the past, as this indicates a problem with the job queue:

select * from dba_jobs

where broken='N'

and next_date < SYSDATE

and job not in (select job from dba_jobs_running);

Disabled Constraints and Triggers
Disabled constraints and triggers are problems waiting to happen. A production data-
base should not contain disabled constraints and triggers. If present, they should be
enabled or removed. If they are disabled temporarily for maintenance purposes and
the DBA accidentally forgets to enable them, this check will find them. Leaving dis-
abled objects in place leaves open the possibility that they will be accidentally enabled
for whatever reason, resulting in production data integrity being compromised. If trig-
ger behavior needs to be enabled and disabled during business processing, then it’s
better to make the process data-driven by having the trigger check data within the trig-
ger text to determine whether it should execute. In this case, the trigger can remain
enabled at all times. The following SQL statements identify triggers and constraints
that are disabled:

select * from dba_triggers where status='DISABLED';

select * from dba_constraints where status='DISABLED';

Distributed Transactions Awaiting
Recovery
If you use the Oracle transparent gateways (covered in Chapter 3) or database links to
connect your Oracle databases to other systems, then there is a possibility that remote

Guidelines for Health Checks and Monitoring 579

transactions can fail. These transactions can be identified from the DBA_2PC_PEND-
ING view as follows:

select * from dba_2pc_pending;

Full Rollback Segments
When a rollback segment is marked with a status of FULL, no new transactions can use
it. All transactions in the rollback segment must either commit or roll back before it can
be used by other transactions. If all rollback segments become full, the database is
effectively unavailable. The following SQL shows the IDs of full rollback segments:

select usn from v$rollstat where status='FULL';

Resumable Space Allocation Errors
in Oracle9i
Oracle9i provides resumable space allocation features to suspend rather than termi-
nate sessions that experience a space shortage, for example, due to the scenarios cov-
ered in the previous section on segments that can’t extend. Chapter 6 includes a
detailed discussion of resumable space allocation features. The following SQL identi-
fies sessions that are suspended, pending DBA action to address the space shortage so
that the session can resume:

select * from dba_resumable where status <> 'NORMAL';

Alert Log Monitoring
Monitoring the alert log helps you identify some database problems as soon as they
occur. From my experience, it doesn’t produce the expected availability benefits unless
the monitored messages are chosen very carefully so as not to create too many spurious
alerts. Alert log monitoring is recommended for the Oracle errors shown in Table 24.1.

The ORA-00600 covers a multitude of possible causes and doesn’t always indicate a
problem that can be addressed in a meaningful way. Neither does ORA-07445. They
should always be investigated and reported to Oracle Support if necessary.

Space shortages for rollback and temporary segments need to be treated differently
from data space shortages because the techniques used to avoid data shortages, such
as AUTOEXTEND, may not be considered appropriate in these cases. The ORA-1653
indicates that an actual data space shortage occurred during an index or table update.
If you use the recommended techniques for avoiding such shortages (based on
AUTOEXTEND and LOCAL uniform extent management), then this error should
never occur. You still need to check for the problem just in case. The final three mes-
sages should be trapped through the previous check for files in recovery mode, but
there’s no harm in checking for the same problem in more than one way if it leads to
problems being detected sooner. The same reasoning applies to ORA-00257, which will
also be detected by the dbool_db_up.pl test.

580 Chapter 24

Keep in mind that errors reported in the alert log do not follow strict formatting
rules. Some may indicate serious errors but not include the Oracle error number, such
as the following messages that indicate problems with an archived redo log destination
that may cause the database to suspend until fixed:

Archiving not possible: No primary destinations

I/O error 19502

Implementing Monitoring with
Database Jobs

It’s possible to carry out most of the monitoring in the previous section using database
jobs running within the database itself. In effect, the database becomes self-monitoring.
This approach has the advantage that the monitoring is completely controlled by the
DBA, and doesn’t require the additional complexity of managing and configuring
external agents such as OIA.

Creating and Scheduling Jobs
In order to run scheduled jobs, you need to ensure that the job_queue_processes
init.ora parameter is set. If it’s not set, then your jobs won’t run. You can set the param-
eter to use two queues without restarting the instance by using the following:

alter session set job_queue_processes=2;

Guidelines for Health Checks and Monitoring 581

Table 24.1 Alert Log Error Monitoring

ERROR STRING CAUSE

ORA-00257 archiver error. Connect internal only, until freed

ORA-00600 internal error code

ORA-00603 ORACLE server session terminated by fatal error

ORA-01157 cannot identify/lock datafile %s - see DBWR trace file

ORA-01578 ORACLE data block corrupted (file # %s, block # %s)

ORA-07445 exception encountered: core dump

ORA-01562 failed to extend rollback segment number %s

ORA-1650 unable to extend rollback segment

ORA-1652 unable to extend a temporary segment

ORA-1653 unable to extend table

ORA-27048 skgfifi: file header information is invalid

If you’re using a server parameter file, you can extend the setting so that it remains
in place after the next database restart. If you’re using the old-style init.ora file, then
you need to remember to set the value in the file manually. Several database proce-
dures are provided for submitting jobs to the job scheduler. In general, you are
restricted to managing jobs in your own schema unless you use the DBMS_IJOB.SUB-
MIT procedure. This gives you full control over all jobs, including those in the schemas
of other users. As a DBA, in general, I prefer to use the DBMS_IJOB interface for that
reason.

To illustrate this, let’s create a job to detect rows in DBA_2PC_PENDING. These
rows identify distributed transactions awaiting recovery. This is one of the monitoring
requirements described earlier. First, we need a stored procedure to schedule. This can
be created as SYS using the following SQL:

create procedure sp_dba_2pc_pending as

begin

for rec in (select * from dba_2pc_pending where rownum <=1) loop

null; -- rows found, add notification code here later

end loop;

end sp_dba_2pc_pending;

The simplest way to see how job submission works is to submit the job using the
simplest interface and then reverse engineer the full definition from the database. The
simplest interface for submitting a job is DBMS_JOB.SUBMIT, as shown in the follow-
ing example:

declare

job number;

begin

sys.dbms_job.submit(job=>job,

next_date=>SYSDATE,

interval=>'sysdate+20/(24*60)',

what=>'sp_dba_2pc_pending;');

end;

The WHAT parameter is the job execution procedure. The semicolon in the WHAT
parameter is required because the job queue executes the code in WHAT using an
anonymous PL/SQL block, so the stored procedure call must be terminated just like
any other PL/SQL procedure call. The NEXT_DATE value determines when the job
will next execute, and the INTERVAL parameter is used to calculate the value of
NEXT_DATE after execution completes. In this example, the job is scheduled to exe-
cute immediately and then every 20 minutes after it completes. For long-running jobs,
this can cause the start time to drift from what is required. For example, if the job is
intended to execute on the hour, at 20 minutes past the hour, and at 40 minutes past the
hour, the interval shown won’t meet the requirement because it’s calculated after the
previous execution completes. We address ways to avoid drift later.

NOTE You must execute a COMMIT after submitting your job in order for the
job to run as scheduled. This is easy to overlook. If you don’t commit, the job

582 Chapter 24

will appear in DBA_JOBS for your session only, which can give the impression
it’s available to run through the job queues.

If you use DBMS_JOB.SUBMIT, Oracle generates the job ID for you. If you intend to
run the same procedure on each server, it’s better to standardize the job numbers so
that a given function is performed using the same job ID on each database. To accom-
plish this, you have two options:

■■ Reverse engineer complete job definitions for existing jobs using the
DBMS_IJOB.FULL_EXPORT procedure and then resubmit the jobs using job
IDs of your choice.

■■ Use the DBMS_JOB.IJOB procedure to submit the job.

One way to accomplish this reverse engineering easily is to create a function around
the FULL_EXPORT procedure as follows and execute the function via a query:

create function sp_export_job(p_job number) return varchar2 as

l_job varchar2(4000);

begin

sys.dbms_ijob.full_export(p_job,l_job);

return(l_job);

end;

/

REM select full job definitions using function...

select sp_export_job(job)||chr(10)

from dba_jobs;

The full definition of the original job is then available in the SQL result set for the
query. The definition uses the full description specified by DBMS_IJOB.SUBMIT rather
than the less flexible DBMS_JOB.SUBMIT that was used to submit the original job. In
particular, the use of DBMS_IJOB.SUBMIT enables the DBA to specify the job number
through the JOB parameter and choose the schema in which to run the job—through
the LUSER, PUSER, and CUSER arguments.

To resubmit the job as the job number 1000, which we define to represent our stan-
dard job number for the DBA_2PC_PENDING check, it’s necessary to first remove the
original job using SYS.DBMS_IJOB.REMOVE(jobid) and resubmit the job with ID 1000,
as follows, based on the reverse-engineered description:

begin

sys.dbms_ijob.submit(

job=>1000,

luser=>'SYS',puser=>'SYS',cuser=>'SYS',

next_date=>SYSDATE,

interval=>'sysdate+20/(24*60)',

broken=>FALSE,what=>'sp_dba_2pc_pending;',

nlsenv=>'NLS_LANGUAGE=''AMERICAN'' NLS_TERRITORY=''AMERICA''

NLS_CURRENCY=''$'' NLS_ISO_CURRENCY=''AMERICA''

NLS_NUMERIC_CHARACTERS=''.,'' NLS_DATE_FORMAT=''DD-MON-RR''

Guidelines for Health Checks and Monitoring 583

NLS_DATE_LANGUAGE=''AMERICAN'' NLS_SORT=''BINARY''',

env=>'0102000200000000'

);

end;

/

Once you have a template for DBMS_IJOB.SUBMIT, you can use it for all future job
submissions. You can identify the cause of job failures through trace files in the back-
ground_dump_dest directory specified in the init.ora file. The trace files have names
that identify the job queue processes—for example, ORAP1_snp0_468.trc.

Customizing Job Intervals
It’s possible to be quite creative when providing the interval value in order to pre-

vent the start time from drifting. For example, the following interval setting causes a
job to start only on the next 20-minute interval past the hour:

interval=>'trunc(sysdate)+to_char(sysdate,''HH24'')/24+decode(mod(trunc(

to_char(sysdate,''M'')/20)+1,3),0,60/(24*60),1,20/(24*60),2,40/(24*60))'

This INTERVAL setting is somewhat difficult to follow. The requirement to escape
the quote characters adds to the DBA burden, making it time consuming to get the syn-
tax correct. Instead of specifying the NEXT_DATE using the INTERVAL parameter,
you can set the NEXT_DATE for job submission within the job procedure itself. This
enables the NEXT_DATE to be set in PL/SQL code, using complexity limited only by
PL/SQL. In this case, when you submit the job, you use an INTERVAL of NULL. Ordi-
narily, this causes jobs to remove themselves from the job queue immediately after exe-
cution. However, if you pass the NEXT_DATE into the job as an IN OUT parameter
and set the value within the procedure, it is used by the job scheduler to reset
NEXT_DATE after the job execution completes. The following example shows how to
submit a job that schedules itself to run only on Saturday or Sunday at 11:00. The
WHAT procedure executed by the job scheduler looks like the following:

procedure sp_sat_and_sun_only(next_date in out date) as

begin

-- do job processing

-- set next_date for SAT 11:00 or SUN 11:00 only

if TO_CHAR(sysdate,'DY') = 'SAT' then

next_date := trunc(NEXT_DAY(SYSDATE,'SUNDAY'))+11/24;

else

next_date := trunc(NEXT_DAY(SYSDATE,'SATURDAY'))+11/24 ;

end if;

end;

/

The call to DBMS_JOB.ISUBMIT requires the INTERVAL and WHAT parameters to
be passed as follows, where NEXT_DATE is passed in:

584 Chapter 24

TE
AM
FL
Y

Team-Fly®

.

.

.

next_date=>SYSDATE

interval=>NULL

what=>'sp_sat_and_sun_only(next_date);'

.

.

.

You can use a similar technique to pass in the job ID at job execution time. As a
result, you can specify the job ID in any alerts you raise from within the job itself. If you
use a standardized numbering scheme for all your jobs, then the job ID implicitly iden-
tifies the job that failed.

Alerting with Email
Once you have jobs up and running to monitor your database, the next step is to notify
support staff whenever a problem occurs. Historically, it would have been necessary to
write alert information to a file and have a process poll the file and raise alerts exter-
nally. If you are prepared to use email to raise alerts, then you can raise alerts from
within the job process using the UTL_SMTP package. UTL_SMTP uses the Simple Mail
Transfer Protocol (SMTP) to provide the facility to send email from within PL/SQL. If
you use UNIX servers to run Oracle databases in your organization, then an SNMP-
based mail program called sendmail is almost certainly running already. The sendmail
program provides the SMTP-based email service required by UTL_SMTP. The follow-
ing code provides a complete routine for sending email from PL/SQL:

procedure sp_sendmail

(p_sender in varchar2,p_recipient in varchar2,

p_subject in varchar2,p_message in varchar2,

p_mailhost in varchar2) as

l_mail_conn utl_smtp.connection;

l_open boolean := false;

procedure send_header(name in varchar2, header in varchar2) as

begin

utl_smtp.write_data(

l_mail_conn,name||':'||header||utl_tcp.CRLF);

end;

begin

l_mail_conn :=utl_smtp.open_connection(p_mailhost,25);

l_open:=true;

for rec in (select machine from v$session where sid=1) loop

utl_smtp.helo(l_mail_conn,rec.machine);

end loop;

utl_smtp.mail(l_mail_conn,p_sender);

Guidelines for Health Checks and Monitoring 585

utl_smtp.rcpt(l_mail_conn,p_recipient);

utl_smtp.open_data(l_mail_conn);

send_header('Subject',p_subject);

send_header('To',p_recipient);

utl_smtp.write_data(l_mail_conn, utl_tcp.CRLF||p_message);

utl_smtp.close_data(l_mail_conn);

utl_smtp.quit(l_mail_conn);

exception

when utl_smtp.transient_error or utl_smtp.permanent_error then

if l_open then

utl_smtp.quit(l_mail_conn);

end if;

raise_application_error(-20000,

'mail send error: mailhost='||p_mailhost||' '||sqlerrm);

when others then

raise_application_error(-20000,

'mail send error: mailhost='||p_mailhost||' '||sqlerrm);

end;

A call to the SP_SENDMAIL procedure from our original procedure might look like
this:

create procedure sp_dba_2pc_pending as

begin

for rec in (select * from dba_2pc_pending where rownum <=1) loop

-- send email alert when rows detected

sp_sendmail(

p_sender=>'OraAlert@dbcool.com',

p_recipient=>'OracleDba@dbcool.com',

p_subject=>'EMERGENCY in orad1.dbcool.com',

p_message=>'rows found in DBA_2PC_PENDING',

p_mailhost=>'srv1.dbcool.com');

end loop;

end sp_dba_2pc_pending;

SMTP can run over the unreliable User Datagram Protocol (UDP), where there is no
guarantee of delivery, or the Transmission Control Protocol/Internet Protocol
(TCP/IP). You should make sure that TCP/IP is used. Most UNIX implementations
use the file /etc/services to specify which port and protocol SMTP uses. The standard
port number is 25. To ensure that email alerts reach their destination, you need to make
sure that the P_MAILHOST server through which mail is delivered is available 24�7
and has monitoring in place to ensure that sendmail is operational at all times. To
increase reliability, a good approach is to create a wrapper procedure around
SP_SENDMAIL to send each email through two mail servers on different sites in order
to ensure that emails are still delivered in the case of a single site outage.

As an aside, you can see from the PL/SQL code that SMTP is a simple protocol that
is text based. This makes the protocol simple to use. The downside is that the
P_SENDER does not have to be a real email address, and the machine passed to the pro-
cedure UTL_SMTP.HELO as the originating host for the email does not have to exist.

586 Chapter 24

These are reasons why sendmail is so popular with senders of spam on the Internet
because sendmail enables email senders and servers to be forged in the email headers.

It’s worth mentioning that in some cases it’s possible to generate an alert as soon as
a problem occurs, without polling a database table or log file. The following trigger
sends an email alert whenever an Oracle resumable space error occurs for sessions run-
ning on behalf of database accounts that have RESUMABLE privilege and ALTER SES-
SION ENABLE RESUMABLE set:

create or replace trigger trg_resumable_alert

after suspend on database

declare

cur_sid number; cur_inst number;

error_txt varchar2(4000); global_name varchar2(4000);

begin

-- get session ID, instance ID (for RAC systems), global_name

select sid,userenv('instance'),global_name

into cur_sid,cur_inst,global_name

from v$mystat,global_name where rownum<2;

-- Identify space error

select error_msg into error_txt from dba_resumable

where session_id = cur_sid and instance_id = cur_inst;

-- email the error/session/instance/database

sp_sendmail(

p_sender=>cur_sid||'_'||cur_inst||'@'||global_name,

p_recipient=>’OracleDba@dbcool.com’,

p_subject=>'Resumable Space Alert',p_message=>error_txt,

p_mailhost=>'srv1.dbcool.com');

end;

/

In this example, the p_sender parameter identifies the session, instance, and
global_name of the database in which the problem occurred, rather than a real email
account. This is useful information for the DBA that receives the email.

Implementing Monitoring with OEM

Monitoring a system yourself as demonstrated in the previous section is fine as far as
it goes, but it doesn’t go far enough. For example, if your Oracle job queue processing
fails, then all of your monitoring is lost if you use database jobs to perform all of your
monitoring. In that case, you need to monitor the job queues through a scheduled job
that doesn’t rely on the job queue for scheduling. Also, file system capacity monitoring
is required, and this is something that is not typically performed within the database
itself, although it is possible through the use of external procedures, as shown in Chap-
ter 13.

An architecture is required for enterprise-wide monitoring, which is usually
referred to as a systems management framework, to monitor database conditions through-
out the network. There are several on the market, and they have similar architectures

Guidelines for Health Checks and Monitoring 587

comprising a centralized management console and agent processes running on the
monitored servers. The agent processes can be configured to run monitoring tests peri-
odically and if exceptions are encountered, alert messages are sent to the management
console to identify the location and nature of the problem. The management console
software, which typically runs on a workstation with a color display, may contact sup-
port staff automatically by radio paging or email, or require human intervention to
determine the escalation procedure. The escalation procedure often depends on
whether the problem occurs during or after business hours, in which case the com-
plexity of the process may require human intervention. The management console typ-
ically displays a graphical user interface (GUI), which provides a visual indication of
the severity of the problem as alerts arrive. Alerts are usually classified into informa-
tion, warning, and emergency severities, depending on the message content, source,
and time of day. Red is usually used to indicate emergencies. The visual severity indi-
cator remains in place until the problem is solved or acknowledged manually.

SNMP Frameworks
SNMP is an unreliable UDP-based open protocol that is used for the communication of
information such as alerts (known as traps in the SNMP world) between managed nodes
on an SNMP-based framework. The unreliability of the SNMP protocol has resulted in
many solutions that use proprietary protocols, based on TCP, for communication
between the managed nodes and the management console. Examples of such products
are BMC Patrol, IBM Tivoli, and Oracle’s OEM. These solutions also have the capability
to raise alert events using SNMP in order to allow their agents to integrate with existing
SNMP-based frameworks. The purchase of an enterprise-wide systems management
framework needs to meet the monitoring required of all technology groups in an orga-
nization, including the DBA group. The software, hardware, and people costs of any sys-
tems management framework is high, and the choice of technology is a critical success
factor for enabling support groups to meet service-level requirements.

The rest of this section describes the installation and use of the OIA as an example of
how to perform enterprise-wide Oracle monitoring within the OEM framework.
You’re likely to use OIA in the future, even if you don’t today, because it’s essential in
helping to automate the management of some of Oracle’s more sophisticated and com-
plex-to-manage products, such as Data Guard, which is covered in Chapter 23.

OIA Architecture
Figure 24.2 shows the processes and data flows for an OEM management framework
using OIA to monitor five different databases on two servers. Oracle’s framework
enables multiple management consoles to register with the middle tier running Oracle
Management Server (OMS). All process instances are shown as circles. One instance of
OIA is required per managed server node, and this monitors all Oracle instances on the
node. OEM can be used to connect directly from a console to an agent, but many fea-
tures are not available in this configuration. In order to make full use of all OEM fea-
tures, it is recommended that you use OMS and an OEM repository database to store
information on the complete Oracle topology.

588 Chapter 24

Installing and Running OMS
Running the OEM framework in the most powerful configuration requires that you
create an OMS and OEM Repository database. Before you begin, it’s best to have a
database already built to hold the repository. This database should be configured to
use a password file because the credentials that are stored in the repository for con-
necting to it from OMS require SYSDBA privileges. Oracle can create a database for
you as part of the installation process, but this won’t meet the recommended database-
naming standards proposed in this book.

To create a management server and OEM repository, you need to run the Enterprise
Manager Configuration Assistant program (emca). During the installation, you should
choose the options to configure a local management server and create a new repository,
using the Custom option to install the OEM repository into an existing database. The
schema takes a few minutes to install. Once the installation is complete, the manage-
ment server can be started using the following command:

$ oemctl start oms

If you didn’t configure an OEM repository first, you’ll receive the following mes-
sage: “Could not connect to the OMS: possible error in the configuration file.” The
default logon for the new management server is username system, password
oem_temp. The first time you connect to the management server, you are prompted to
change it.

Guidelines for Health Checks and Monitoring 589

UNIX Server 2
Desktop 1

OEM
Repository
Database

Oracle
Management

Server

Oracle
DBMS 1

Oracle
Intelligent Agent

Oracle
DBMS 2

Oracle
DBMS 3

OEM
Console

UNIX Server 1

Desktop 2

OEM
Console

UNIX Server 3 Oracle
DBMS 4

Oracle
Intelligent Agent

Oracle
DBMS 5

Figure 24.2 OIA framework.

The OraTcl Scripting Language
In order to take advantage of OIA’s capabilities, it’s necessary to have a basic under-
standing of Tool Control Language (Tcl) and OraTcl, an Oracle extension that provides an
Oracle query and execution capability within the language. The Tcl script—nmiconf.tcl—
is used to discover the Oracle services on a managed node. The version with the Oracle
capability built in is called OraTcl. Although both jobs and event routines use Tcl, they are
specified separately in the OEM console interface and are used for different purposes.
Whereas jobs typically run tasks that can take a significant amount of time and affect the
database state, such as the execution of a backup script or database shutdown, events
typically need to run more frequently so they tend to be of a short duration.

Both Perl (as described in Chapter 4) and Tcl perform similar functions, albeit using
a different syntax. If your heart is sinking at the thought of having to learn yet another
new language, you’ll find the move between Perl and Tcl, or vice versa, very straight-
forward. OEM also provides an interface for user-defined event procedures, so you can
continue to use Perl or other languages if you want.

Event scripts can pass return codes back to the agent to specify the severity of the
event, and it’s even possible to pass information to a Fixit Job to fix the error without
DBA intervention. Events have another significant difference from jobs in that they
need to maintain the state between invocations to prevent the same event from being
raised multiple times. This is provided through persistent global variables. The need to
maintain state is most easily understood by looking at an example, along with some
other code fragments to give a flavor of the Tcl language. The sample code leaves out
error handling for clarity. In the real world, you should never do that.

Consider an OraTcl script that monitors the alert log for errors like ORA-00600 or
ORA-00603. If an error has been detected and an alert has been raised, then on the next
invocation, the job needs to search the alert log starting from the point it reached last
time to avoid alerting the DBA of errors that were already detected. This requirement
is implemented by saving the size of the alert log in a persistent variable using an ini-
tial value of —1 as a flag to indicate the first invocation of the job as follows:

oraeventpersist last_alert_size -1

An array is used to hold the errors to search the alert log, as follows:

set alert_errors {ORA-00600 ORA-00603}

590 Chapter 24

OPTIONS FOR RUNNING OEM TOOLS

The examples in this section run the OEM tools from a UNIX server onto an X Windows
display. To improve the responsiveness of the GUI, especially across a wide area network
(WAN), you can install the tools onto a client such as a Windows PC and run them in
client-server mode or within a Web browser. The OEM documentation provides full
details.

One of the main benefits of OraTcl is that it has a built-in knowledge of Oracle data-
bases, how they work, and what configuration settings DBAs need to access most fre-
quently when writing event scripts. The alert log name is required in order to search
the contents. The name can be assigned to a variable with trivial ease by reading the
name from a preset array at the position given by ALERTFILE:

set alertfile [ALERTFILE]

OraTcl manages the population of the array completely transparently to the pro-
grammer. On the first invocation, the Tcl script detects that the file size is required,
checks for the existence of the alert log, and reads the size of the file into the
$last_alert_size variable using the following code:

if {$last_alert_size == -1}

{

if { [file exists $alertfile] }

{

set last_alert_size [file size $alertfile]

}

}

Tcl has many built-in commands, making it easy to access operating system routines
for file processing and other services. It can test for a file’s existence and size, open a
file, seek to an offset within a file, read lines one at a time, and search for strings in the
lines read. All these features are shown in the following code:

set fd [open $alertfile r] # open the alert log file

seek $fd $last_alert_size start # seek to byte offset from the start

while {[gets $fd line] >= 0} # read lines from the file

{

set alert_found 0

foreach error $alert_errors # for each error message in the array

{

if {[string first $error $line] >= 0} # is it in the line read?

{

set alert_found 1 # error found in log

set ret_code $ALERT_EVENT

incr number_of_errors # increment error count

}

}

}

Discovering Databases and Services
Once you have a management server in place, you can use the OEM console to com-
municate with the OIA on any node to discover the databases installed on the node
automatically. First, you need to start OIA on each node containing services that you
want to discover:

Guidelines for Health Checks and Monitoring 591

$ agentctl start agent # start 9i Intelligent Agent

$ lsnrctl dbsnmp_start # start 8i Intelligent Agent

In both cases, the process dbsnmp is started. The process name is somewhat mis-
leading because there is no requirement to have an SNMP agent running on the server.
In this case, we aren’t using an SNMP-based framework. Oracle9i has taken a signifi-
cant step forward by including a watcher daemon process called dbsnmpwd, which
starts at the same time as dbsnmp. The purpose of dbsnmpwd is to restart dbsnmp
immediately, typically within a second, if it terminates without being shut down
explicitly using agentctl stop agent. This guarantees that OIA runs at all times. If it ter-
minates unexpectedly, you have lost your monitoring capability so in Oracle8i you
need to monitor for the presence of an agent separately.

When the agent starts, it populates three files with information about discovered
services that can be managed by OEM: snmp_ro.ora, snmp_rw.ora, and services.ora.
They can be found in the TNS_ADMIN directory or in $ORACLE_HOME/net-
work/admin. The read-only file (snmp_ro.ora) is overwritten when the agent starts so
you shouldn’t change it. The read write file (snmp_rw.ora) is updateable and you can
add settings to it to enable tracing and logging through the following settings:

dbsnmp.trace_level = off # other values: user, admin,16

dbsnmp.trace_file = agent # default: dbsnmp.trc

dbsnmp.trace_directory = /tmp # default: $ORACLE_HOME/network/trace

nmi.trace_level = off # Tcl trace, values as dbsnmp.trace_level

nmi.trace_directory = /tmp # trace directory

The services.ora file contains all discovered services. The file contents are passed to
OEM by the agent when node discovery is run on the OEM console. The OEM console
is started up as follows and requires that you first set your UNIX DISPLAY environ-
ment variable to a valid X Windows display:

$ oemapp console

Errors and warnings encountered during the discovery process are written to the
nmiconf.log file, which is located in $ORACLE_HOME/network/log. Although it’s
possible to add services manually to OEM, Oracle recommends that you use autodis-
covery to let OIA find all the Oracle services on a node. In order to make the best use
of autodiscovery, it’s necessary to set up the Oracle configuration on the node explic-
itly to enable autodiscovery to take place.

One frustrating feature of the autodiscovery process—which is performed by the
nmiconf.tcl script on the managed node and logged to nmiconf.log—is that is doesn’t
use an Oracle Names server to identify Oracle services on the node. Using Oracle
Names to provide your Oracle name-to-address service is very strongly recommended
in Chapter 3. As a result, a TNS alias orap1.dbcool.com on server dbsrv1.dbcool.com is
likely to be identified in the OEM repository using the unique name orap1_dbsrv1
rather than the global name orap1.dbcool.com. The workaround to this problem is to
specify GLOBAL_DBNAME�orap1.dbcool.com in the listener.ora entry for the data-
base instance. Chapter 3 contains full details. It’s a shame that Oracle doesn’t integrate

592 Chapter 24

their own tools better to take advantage of their own naming services. Chapter 3 stated
that you don’t need a listener.ora file to connect to Oracle services. However, if you
want to use autodiscovery, then you do need one because autodiscovery requires the
static registration of the service name through GLOBAL_DBNAME. The dynamic reg-
istration features of the listener are not recognized by the registration process. If you
are an enterprising DBA, you might want to investigate how nmiconf.tcl can be modi-
fied to identify local databases by querying an Oracle Names server.

Once you have restarted your listener using GLOBAL_DBNAME, followed by a
restart of the agent, autodiscovery, performed through the Navigator main menu
option on the OEM console, uses the contents of oratab, listener.ora, and sqlnet.ora to
identify the Oracle services on the managed node. Once discovered, the names appear
in the OEM console in the Network tree.

TIP The oratclsh utility can be used to report some information about the
agent running on the local node by using the special Tcl orainfo verb at the
prompt.

Creating Events
Once the managed nodes containing your databases are available in the OEM console,
you can configure scheduled event tests on your database instances and raise alerts of
different severities when the test conditions fail. You have a choice of using Oracle’s
supplied events or creating your own. To create an event, choose Event from the OEM
console main menu and then choose Create Event. The Create Event tabbed dialog box
appears with the options shown in Table 24.2.

Event creation steps should be followed in order from the top to bottom of Table
24.2. If you perform the steps out of order, Oracle will alert you of missing information
when you attempt to register the event. After you have chosen a name for the event,

Guidelines for Health Checks and Monitoring 593

Table 24.2 Event Creation Steps

STEP NAME PURPOSE

General Choose event name and target database to run against.

Tests Choose an Oracle-supplied event test or define your own
SQL-based, on-script base test.

Parameters Choose thresholds at which alert severities are generated.

Schedule Choose how often the test runs.

Access Choose who gets notified of the event.

Fixit Jobs Choose an optional job to fix the problem that caused the
event.

you need to add the databases in which you want to run the test from the Available Tar-
gets to the Monitored Targets list. The event name you choose is used to identify the
event in email notifications and the OEM console alert list. Next, you need to choose
which test type to use under the Tests tab. The available tests are shown in Figure 24.3.

The built-in tests are available as Tcl scripts, some of which can be located under
$ORACLE_HOME/network/agent/events/oracle/rdbms. You can use these as tem-
plates for your own tests. In this example, the DBA_2PC_PENDING test used previ-
ously will be used to create a user-defined SQL test and a user-defined event test to
demonstrate how you can integrate your own tests within OEM. The built-in tests
probably won’t do exactly what you want. To recap, the monitor test fails and an alert
is required, if one or more rows exist in DBA_2PC_Monitoring, which is shown in the
following SQL:

select count(*) from dba_2pc_pending;

User-Defined SQL Test

To create a user-defined test using the SQL of your choice, you need to choose User
Defined SQL Test as the test type to use. Next, move to the Parameters tab and enter the
SQL and threshold test criteria, as shown in Figure 24.4.

The SQL you use must return a single-column, single-row result set. In the example,
if the column given by count(*) exceeds or matches the critical threshold of 1, a critical
severity event is raised. In other words, if any rows appear in DBA_2PC_PENDING, a
critical severity alert is generated. The Schedule tab schedules the test at 5-minute
intervals by default, which you can modify. Under the Access tab, you should check

594 Chapter 24

Figure 24.3 OEM event tests.

TE
AM
FL
Y

Team-Fly®

the Notify box to ensure that alerts are sent to the notification targets, which are typi-
cally email accounts. Notification is covered in more detail in the section Using Email
Notification. Finally, press Register, and the event is registered to run.

User-Defined Event Test

You can run scripts written in the language of your choice by selecting User Defined
Event as the test type in the Tests tab. You must be running the Oracle9i agent to exe-
cute user-defined events. In this example, we use the Perl script dba_2pc_pending.pl to
generate a critical severity alert whenever rows are found in DBA_2PC_PENDING.
The full script can be downloaded from the companion Web site. When you register a
script, you need to provide the script path and parameters in the Parameters tab, and
ensure that the script is available on the monitored node in the location you specify. For
example:

/u01/app/oracle/user_defined_events/dba_2pc_pending.pl sid=ORAD1

The script returns values back to OEM using a special tag containing the following
predefined values that are recognized by OEM as event severities:

$OEM_SCRIPT_FAILURE=-2; $OEM_CLEAR=-1; $OEM_WARNING=1; $OEM_CRITICAL=2;

In order to treat the values as event severities, the Event State button must be pressed
to identify the result as an event state in the Parameters tab. These severities are the
same values returned by the Oracle-supplied Tcl scripts. In order to pass the value back

Guidelines for Health Checks and Monitoring 595

Figure 24.4 A user-defined SQL test.

to the OEM console, they must be written to UNIX standard output using the tag
“�oraresult�returncode�/oraresult�.” The returncode must be one of the four listed.
The following code fragment shows the section of the script that returns the count(*)
values from the SQL select list along with severity information:

$the_sql="select count(*) from dba_2pc_pending";

get a cursor for selecting the values

$c_files = &ora_open($session, $the_sql);

if ($ora_errno) { print "<oraresult>$OEM_SCRIPT_FAILURE</oraresult>";

goto EXIT;}

@column_vals = &ora_fetch($c_files); # fetch SQL results

check if fetch failed...

if ($ora_errno) { print "<oraresult>$OEM_SCRIPT_FAILURE</oraresult>";

goto EXIT;}

check count(*) value

if ($column_vals[0] == 0)

{print "<oraresult>$OEM_CLEAR</oraresult>";}

else

{print "<oraresult>$OEM_CRITICAL</oraresult>";}

EXIT:

if ($ora_errno) {print "<oramessage>$ora_errstr</oramessage>";}

if ($session) {&ora_logoff($session);}

If any part of the script fails, the $OEM_SCRIPT_FAILURE code is returned, and this
value is treated by OEM as a critical event. If the count(*) value given by
$column_vals[0] is not 0, then the $OEM_CRITICAL value 2 is returned to OEM and
the event appears in the OEM event list as a critical event. If the count(*) value is 0, then
the code $OEM_CLEAR is returned. This causes a notification event indicating that the
problem is now fixed and causes any previous critical event to clear from the OEM
alert list.

The special tag “�oramessage�message�/oramessage�” can be executed multiple
times and causes any user-defined messages within the tags to be returned as addi-
tional information to appear in the OEM console along with the alert itself. In the code
example, the Oracle error message, if any, is returned.

Using Email Notification in OEM
If you perform your own problem notification using database jobs and UTL_SMTP,
then emails will continue to be sent while the error condition exists. This can result in
a flood of emails until the problem is fixed. OEM, on the other hand, sends a single
notification when a critical event occurs and sends another when the event is cleared
after the problem causing the event has been fixed. The body of the email can be cus-
tomized to provide additional information on top of the default values shown in the

596 Chapter 24

following example. The following email subject and body are sent when the critical
event is generated in the script dba_2pc_pending.pl:

Subject: OEM EVENT User Script DBA_2PC_PENDING CRITICAL

Name : User Script DBA_2PC_PENDING

Target Name : orap1.dbcool.com

Target Type : Database

Node Name : srv1.dbcool.com

Status : CRITICAL

User Defined Event

User Defined Event Execution has Current return value: 2

CRITICAL

The subject contains the event name (User Script DBA_2PC_PENDING) and sever-
ity (CRITICAL). The body contains details of the source of the event and node name,
which in this case is given by the database TNS alias and the server where the problem
occurred. The return value 2 corresponding to $OEM_CRITICAL in the script is also
included. When the problem is fixed, the following email is sent to notify that the prob-
lem no longer exists:

Subject: OEM EVENT User Script DBA_2PC_PENDING CRITICAL

Name : User Script DBA_2PC_PENDING

Target Name : orap1.dbcool.com

Target Type : Database

Node Name : srv1.dbcool.com

Status : CLEARED

User Defined Event

User Defined Event Execution has Current return value: -1

CLEARED

To configure email notification, you need to provide details of an SMTP gateway
(typically a UNIX server running sendmail) and an email account that appears to email
recipients as the sender of the message. These are set by choosing Configure from the
OEM console main menu and then choosing Configure Paging/Email. To set the recip-
ient for email notification, you need to choose Configure and then Preferences from the
main menu, followed by the Notification tab and then the Email node, and provide an
email account for Receiver’s Email. It’s a good idea to use an email prefix of OEM in
the email subject to make it easy for email-processing software to identify events gen-
erated by OEM. To ensure that notifications are generated, you need to choose the
hours in which email events can be generated by using the Schedule tab.

TIP If email notification doesn’t appear to be working, remember that by
default all notification is off.

Guidelines for Health Checks and Monitoring 597

Fixit Jobs
It’s possible to associate jobs with events in order to automate the process of fixing
problems. This jobs are known as Fixit Jobs. For example, in certain cases, transactions
in DBA_2PC_PENDING can be cleared using the PURGE_LOST_DB_ENTRY proce-
dure. The following PL/SQL block, run as SYS, generates procedure calls based on the
local transaction IDs of outstanding transactions and executes the generated calls to
clear them:

begin

for rec in (select 'begin sys.dbms_transaction.purge_lost_db_entry('''||

local_tran_id||'''); commit; end;' fix_sql

from dba_2pc_pending) loop

execute immediate rec.fix_sql;

end loop;

end;

By choosing the Fixit Jobs tab from Edit Event, you can create the previous PL/SQL
block as a SQL*Plus job to clear the transactions and then choose the job from the list to
associate it with the event. In order to identify Fixit Jobs in OEM, it’s a good idea to pre-
fix the names with a string, such as Fix, so that they stand out clearly in the list of jobs.

Summary

Database health checks should be performed regularly to ensure that all databases are
configured to meet the organizational standard. If you build your databases according
to the OFA standard, you can prevent many problems from occurring in the first place.

After the health checks are in place, you need to determine which events to monitor.
Generally, the fewer events, the better. If you raise alerts on too many events that don’t
actually indicate critical problems, the DBA is likely to miss events that are really criti-
cal. The good news is that only a few events need to be monitored. Although you can
perform monitoring yourself using database jobs and email notification, you should
use an enterprise-wide systems management framework for a production environ-
ment. Oracle OEM and OIA are examples of frameworks that provide the network
management and monitoring of all your Oracle resources. By using OEM, you can
write your own event tests in languages of your choice, create jobs to fix problems
automatically, receive events from external sources, and generate SNMP traps for
external frameworks.

598 Chapter 24

599

In my experience, auditing is often overlooked or neglected in an Oracle database. Rea-
sons given for not auditing usually include the presumed overhead of running it and
the difficulty in setting it up and interpreting the results. This chapter explains why
you should use auditing on all your Oracle databases, how to configure it, and how to
report on the audit trail. The audit trail can provide a wealth of information not neces-
sarily related to security, although that’s the primary use for the information.

Basic Oracle auditing using the database audit trail enables you to automatically
capture information on who is using your database and what operations they are per-
forming on the database. In the case of database misuse, either accidental or deliberate,
you have a record of who did what and when. For example, if a user accidentally drops
an object, you can find the exact time the drop occurred by searching the audit trail. If
necessary, you can restore the database and recover it by rolling forward to the point in
time just before the drop, in order to restore the object to its original state. If you are
using the Flashback Query feature in Oracle9i, you can access the table contents pre-
drop in the open database without performing a restore. In both cases, you need infor-
mation about the time that the drop occurred. You can also use the audit trail to detect
unauthorized use of the system to validate your organization’s security policies.

The facilities provided by the database audit trail are not sophisticated enough for
more advanced auditing requirements. For example, a common requirement is to audit
additional information for DELETE, INSERT, and UPDATE statements, such as the
capture of values in deleted rows. This can be accomplished using database triggers
and autonomous transactions. A long-requested feature required by database adminis-
trators (DBAs) to audit data access requests in SELECT statements has finally arrived
in Oracle9i through fine-grained auditing.

Auditing Techniques

C H A P T E R

25

This chapter begins with a discussion on the facilities provided by the database
audit trail and how to use them. Following from that, more sophisticated, trigger-
based auditing is shown that enables a complete history of data content changes to a
table to be tracked over time. Finally, the fine-grained auditing features in Oracle9i are
used to show how the auditing of access to data in tables and views—based on the con-
tent requested—can be performed. This chapter covers the following topics:

■■ Enabling the database audit trail

■■ Relocating the audit trail and changing ownership

■■ Understanding the audit session identifier

■■ Choosing audit options

■■ Identifying suspicious activity

■■ Using the audit trail to track input/output (I/O) trends

■■ Using triggers to audit data content changes

■■ Using fine-grained access control to audit SELECT statements in Oracle9i

Enabling the Database Audit Trail

You can store the audit trail in two places: the database or an operating system (OS)
file. I prefer to use the database because the audit information is stored in tables,
enabling you to run reports on the audit trail using the Structured Query Language
(SQL) tools of your choice. To allow auditing, you need to set one of the following in
your init.ora file and restart the database:

audit_trail=db # audit into the SYS.AUD$ table or . . .

audit_trail=os # ...audit to an Operating System file

audit_file_dest=directory # optional location of OS audit file

If you choose to use the OS to store the audit trail and don’t specify a directory, Ora-
cle chooses the default location:

?/rdbms/audit

The “?” in the path is a shorthand for the $ORACLE_HOME of the database
instance. The OS audit trail information for a CREATE TABLE statement that suc-
ceeded looks like this:

Sat Nov 10 18:47:28 2001

SESSIONID: "224" ENTRYID: "3" STATEMENT: "13" USERID: "SYSTEM" TERMINAL:

"PROTON2000" ACTION: "1" RETURNCODE: "0" OBJ$CREATOR: "SYSTEM" OBJ$NAME:

"Z" OS$USERID: "SmithJoh" PRIV$USED: 40

On Sun Solaris and most other UNIX systems, the Oracle audit information is writ-
ten to a file whose name is associated with the Oracle server process that performs

600 Chapter 25

operations on behalf of the connected client session that is being audited. For a dedi-
cated server process with PID 27790, the file might have a name like ora_27790.aud,
whereas for a shared server configuration (see Chapter 3), the file might have a name
like s000_27706.aud, where 27706 is the process ID (PID) of the shared server. This dis-
cussion of file names indicates how difficult it can be to find audit information using
the OS option when you have possibly hundreds of files to search in order to locate the
data. Finding information in a database-located audit trail is much easier, because you
can find it with SQL.

If your auditing file system location fills, you can simply remove some files. If you
hold audit trail information in the database and turn on auditing for connection
requests (which is recommended), then database logons fail when the SYS.AUD$ table
can’t extend due to a lack of space. You can protect yourself against this possibility
through appropriate monitoring. As a last resort, you can use CONNECT/AS SYSBA
and truncate the SYS.AUD$ table to free up space. In general, Oracle does not support
direct user modification of SYS-owned objects, but AUD$ is an exception.

Relocating the Audit Trail
It’s not uncommon for DBAs to require the relocation of the audit trail into another
tablespace. By default, the SYS.AUD$ table and its index reside in the SYSTEM table-
space, and they are probably the only objects in the data dictionary whose size is influ-
enced by users through application usage patterns rather than controlled directly by
the DBA. For that reason, it makes sense to relocate both objects into their own table-
spaces. The following SQL creates tablespaces for both the audit trail and its index,
using a storage layout based on the best practices covered earlier, and relocates them:

create tablespace audtab

datafile

'/u02/oradata/OMFD1/audtab01.dbf' size 1M autoextend on

next 128k maxsize unlimited extent management local;

create tablespace audind

datafile

'/u02/oradata/OMFD1/audind01.dbf' size 1M autoextend on

next 128k maxsize unlimited extent management local;

alter table sys.aud$ move tablespace audtab;

alter index sys.i_aud1 rebuild tablespace audind;

Be aware that moving the tablespace out of the SYSTEM tablespace is not supported
by Oracle because of potential restore issues. During my own personal testing, I have
not experienced any problems with restores of databases containing a relocated audit
trail using Oracle8i or Oracle9i. You need to make a call on the costs and benefits of
each approach.

Auditing Techniques 601

Changing Audit Trail Ownership
Changing the ownership of the audit trail is not supported by Oracle. You might con-
sider it if you want to put triggers in place on the SYS.AUD$ table to trap potentially
harmful system activities (for example, NOT EXISTS audit entries) as they occur. DBAs
often request this.

As it’s not possible to create triggers on SYS-owned objects, the ability to create trig-
gers on the audit trail requires that the ownership of the audit trail be changed from
SYS to SYSTEM, for example. The step-by-step process required to do this is shown in
Table 25.1, based on the separate auditing table and index tablespaces created in the
previous section.

Once you have changed the audit trail ownership, you have the ability to raise alerts
from SYS-owned triggers on the SYSTEM.AUD$ table to notify DBAs of security issues
as soon as they occur rather than polling the audit trail views and detecting problems
after they have occurred. The following trigger detects ORA-00942 “table or view does
not exist” errors as soon as they occur:

CREATE OR REPLACE TRIGGER SYS.TRG_DETECT_942

AFTER INSERT ON SYSTEM.AUD$

FOR EACH ROW

BEGIN

602 Chapter 25

Table 25.1 Steps for Changing Audit Trail Ownership

OPERATION CODE

Restart database with audit_trail=none in init.ora
auditing off

Re-create audit trail and connect / as sysdba;
index in SYSTEM schema create table system.aud$ tablespace AUDTAB
using SQL*Plus as select * from aud$;

create index system.i_aud1
on system.aud$(sessionid, ses$tid) tablespace
AUDIND;

rename aud$ to aud$_temp;
create view aud$ as select * from
system.aud$;

connect system/manager
grant all on aud$ to sys with grant option;
grant delete on aud$ to delete_catalog_role;

Restart the database with audit_trail=db in init.ora
auditing on

Re-create the data dictionary connect "/ as SYSDBA"
views for auditing using @?/rdbms/admin/cataudit.sql
SQL*Plus

For rec in

(select sys_context('USERENV','SESSIONID') id from dual) loop

if :new.returncode=942 and user not in ('SYSTEM') then

-- your alerting code here using rec.id to identify session

null;

end if;

end loop;

EXCEPTION

WHEN OTHERS THEN

null;

END SYS.TRG_DETECT_942;

This example doesn’t include details of the alerting mechanism to use. Chapter 24
on guidelines for monitoring and healthchecks includes a procedure, SP_SENDMAIL,
which you can use to send an email.

Understanding the Audit Session Identifier

The AUD$.SESSIONID column is used to identify the audited session. The audit ses-
sion identifier can be determined for the current session, to join with the audit trail, in
three ways:

REM -------------------

REM 9i Only

REM -------------------

select SYS_CONTEXT('USERENV','SESSIONID') from dual;

SYS_CONTEXT('USERENV','SESSIONI

346

REM ----------------------------

REM requires SELECT priv on view

REM ----------------------------

select audsid from v$session

where sid=

(select sid from v$mystat where rownum <=1);

AUDSID

346

REM ---------------------

REM works in all versions

REM ---------------------

Auditing Techniques 603

select userenv('sessionid') from dual;

USERENV('SESSIONID')

346

These values can be useful if you want to perform additional custom auditing at log-
on or log-off time, as shown later in the chapter, and if you need to relate the custom
information to the data in SYS.AUD$. You should be aware that sessions connecting as
SYSDBA have an AUDSID of 0, as do background database processes and processes
spawned by the Oracle job queue.

Choosing Audit Options

After starting the database with auditing enabled in the init.ora file, you need to run
some SQL to enable the auditing of database actions. The actions appear in the audit
trail. There is a lot of flexibility in the various levels of auditing and options that you
can allow. You can set auditing at the statement, option, and privilege levels. In order
to understand auditing, you need to understand what actions can be audited, how you
enable and disable them, and where audited information is stored. These prerequisites
definitely make it somewhat complicated to get auditing up and running, especially if
you are considering setting all the auditing levels individually. You can audit success-
ful operations and unsuccessful operations independently.

Audit Trail Views
Information in the SYS.AUD$ table is somewhat user unfriendly in format and denor-
malized. Actions that are audited appear as code numbers in the AUDIT# column
rather than names. The AUDIT_OPTIONS table holds a mapping of the codes to
strings. For example, the AUDIT# value 0 corresponds to CREATE TABLE. To make for
easier reporting, Oracle provides several views on top of the audit trail. For reference
purposes, Figure 25.1 shows the available views on the SYS.AUD$ trail using DbCool,
based on information on the DBA_DEPENDENCIES dictionary view.

The tree in Figure 25.1 shows that the SYS.AUD$ table has a view, DBA_AUDIT_
TRAIL, based upon it. The DBA_AUDIT_TRAIL decodes the numeric information into
string values that DBAs can easily understand. Additional views are available based
on DBA_AUDIT_TRAIL to show session, statement, and object audit information for
the DBA, through the DBA views. Users can view audit information relevant to them-
selves through the USER views.

Auditing BY ACCESS and BY SESSION
Oracle enables BY ACCESS or BY SESSION options to be specified when auditing is
activated through AUDIT statements. Using BY SESSION is designed to reduce the
auditing information generated by creating a single audit record for all statements of
the same type in a given session. The BY ACCESS option creates an audit record for

604 Chapter 25

TE
AM
FL
Y

Team-Fly®

each instance of the audited statement executed in a session. The default value is BY
SESSION. However, DDL statements, such as CREATE TABLE, don’t adhere to this
rule. When you set auditing on for a DDL statement, such as CREATE TABLE, then BY
ACCESS is used on whatever you specify. No error message is provided if you specify
an incompatible option: The specified option is simply ignored.

Statement and Privilege Auditing
The options available for enabling statement auditing are held in the STMT_AUDIT_
OPTION_MAP table, and the system privileges you can audit are held in the SYSTEM
PRIVILEGE_MAP table. There is a very close correspondence between the two tables.
The following SQL shows some of the statements you can audit:

select * from STMT_AUDIT_OPTION_MAP

where rownum <=4

order by option# asc;

OPTION# NAME PROPERTY

--------- ------------------- ----------

3 ALTER SYSTEM 0

4 SYSTEM AUDIT 0

5 CREATE SESSION 0

6 ALTER SESSION 0

Statement auditing can be performed at the user, session, and access level, or in a
combination. These options are most easily understood by activitating some auditing,

Auditing Techniques 605

Figure 25.1 Views on SYS.AUD$.

showing how the activation is recorded in the Oracle data dictionary, and reporting the
audit trail information that is created as a result. The following statement generates an
audit record for any CREATE TABLE statement executed by any user, for both suc-
cessful and unsuccessful attempts:

audit create table;

As this is a DDL statement, BY ACCESS is always used. The DBA_STMT_
AUDIT_OPTIONS view records the auditing action that was enabled as follows:

select USER_NAME,AUDIT_OPTION,SUCCESS,FAILURE

from DBA_STMT_AUDIT_OPTS;

USER_NAME AUDIT_OPTION SUCCESS FAILURE

----------- -------------- ---------- ----------

CREATE TABLE BY ACCESS BY ACCESS

Very similar information is recorded in the DBA_PRIV_AUDIT_OPTIONS view
because CREATE TABLE is both a privilege and a statement. The following informa-
tion is an example of information that appears in the audit trail after a successful CRE-
ATE TABLE operation. The audit information can be viewed in DBA_AUDIT_TRAIL
or DBA_AUDIT_OBJECT as follows:

select timestamp,action_name,owner,obj_name,returncode

from dba_audit_object;

TIMESTAMP ACTION_NAME OWNER OBJ_NAME RETURNCODE

--------------------- ------------- ------- ---------- ------------

10-NOV-2001 13:50:41 CREATE TABLE SYSTEM T2 0

Rather than generate audit records for all CREATE TABLE statements, you can audit
CREATE TABLE statements for nominated users only. The following SQL audits the
CREATE statements by SCOTT that are not successful, having turned off system-wide
CREATE TABLE auditing first:

noaudit create table;

audit create table by scott whenever not successful;

The activation of this audit option is recorded as follows to indicate that successful
statements by SCOTT are not audited, but failures are:

select USER_NAME,AUDIT_OPTION,SUCCESS,FAILURE

from DBA_STMT_AUDIT_OPTS WHERE AUDIT_OPTION='CREATE TABLE';

USER_NAME AUDIT_OPTION SUCCESS FAILURE

----------- -------------- ---------- ----------

SCOTT CREATE TABLE NOT SET BY ACCESS

606 Chapter 25

Subsequent CREATE TABLE statements for SCOTT that fail, for example, because
SCOTT has no quota on the tablespace specific in the statement (error ORA-01536) are
recorded along with the return code as follows:

select timestamp,action_name,owner,obj_name,returncode

from dba_audit_object where owner='SCOTT';

TIMESTAMP ACTION_NAME OWNER OBJ_NAME RETURNCODE

--------------------- ------------- ------- ---------- ------------

10-NOV-2001 15:23:30 CREATE TABLE SCOTT A 1536

So far, all auditing has been enabled BY ACCESS, which creates an audit record for
each operation in each session. The following statement creates audit records BY SES-
SION for DELETE statements executed by all users:

audit delete table;

For the sake of example, assume that SCOTT logs on after the previous auditing
command and runs the following operations:

delete from emp;

delete from emp;

delete from dept;

REM fails due to ORA-01031: insufficient privileges...

delete from all_users;

The DELETE statements result in the following entries in the audit trail, where the
SESSIONID for the audit session has been identified using one of the techniques
shown earlier in the chapter:

select action_name,owner,obj_name,ses_actions,statementid,entryid

from dba_audit_object WHERE sessionid=356;

ACTION_NAME OWNER OBJ_NAME SES_ACTIONS STATEMENTID ENTRYID

------------- ------- ---------- ----------------- ------------ -------

SESSION REC SYS TS$ ---F------------ 8 4

SESSION REC SYS USER$ ---F------------ 8 3

SESSION REC SYS ALL_USERS ---F------------ 8 5

SESSION REC SCOTT DEPT ---S------------ 7 2

SESSION REC SCOTT EMP ---S------------ 5 1

Because auditing by session is in operation by default, each statement executed has
a single audit entry for the whole session. For example, both DELETE statements on
the EMP table result in a single session audit record. The SES_ACTIONS column rep-
resents a string of action types in the first 14 characters. Each character represents an
action having the value S for success, F for failure, and B for both. The actions repre-
sented in order from left to right in SES_ACTIONS are ALTER, AUDIT, COMMENT,

Auditing Techniques 607

DELETE, GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, UPDATE, REFER-
ENCES, and EXECUTE. Therefore, the fourth character identifies the audited state-
ment as a DELETE. The DELETE FROM ALL_USERS, which failed, has actually
generated three audit failure records identified by F because ALL_USERS is actually a
view-based SYS.TS$ and a SYS.USER$. It is possible to audit DELETE statements by
individual users and by access. For example, the following statements audit deletes by
SCOTT only, by session (the default), and by access:

audit delete table by scott;

audit delete table by scott by access;

Object Auditing
Auditing can be enabled for actions on specific objects. For example, you can enable
the auditing of DELETE statements on SCOTT.EMP and SCOTT.DEPT only by using:

audit delete on scott.emp by access;

audit delete on scott.dept by session whenever not successful;

Every object in the database has a set of object audit options held in a rather unusual
format, accessible though the DBA_OBJ_AUDIT_OPTS view. For each object privilege,
a three-character string is used to represent the state of the auditing requirement on the
object. As usual, an example based on the previous audit statements demonstrates best
how Oracle records the state of the auditing. The following SQL shows all object audit-
ing that is enabled in the database:

select owner, object_name, object_type,

alt,aud,com,del,gra,ind,ins,loc,ren,sel,upd,ref,exe

from dba_obj_audit_opts

where

alt !='-/-' or aud !='-/-' or com !='-/-' or del !='-/-' or gra !='-/-'

or ind !='-/-' or ins !='-/-' or loc !='-/-' or ren !='-/-' or sel !='-

/-' or

upd !='-/-' or ref !='-/-' or exe !='-/-';

Selecting only the DELETE privilege identified by the DEL column in this case
shows the state of the DELETE statement auditing for our example:

select owner, object_name, object_type,del

from dba_obj_audit_opts

where del !='-/-';

OWNER OBJECT_NAME OBJECT_TYPE DEL

------- ------------- ------------- -----

SYSTEM EMP TABLE A/A

SCOTT DEPT TABLE -/S

The first character in the DEL column identifies whether auditing should take place
whenever the DELETE action on the table is successful, and the third character identi-

608 Chapter 25

fies whether unsuccessful deletes should be audited. For EMP, the two As show that
DELETE BY ACCESS auditing should take place on successful and unsuccessful
deletes on EMP. For DEPT, the S in the third character position shows that DELETE BY
SESSION should take place only on unsuccessful deletes on DEPT. To specify all audit-
ing options on an object, rather than setting them individually, you can use the AUDIT
ALL shortcut, for example:

audit all on scott.emp;

It’s possible to specify defaults for object audit options to take effect for newly cre-
ated objects through the use of the ON DEFAULT clause. For example, to enable the
DELETE statement auditing of all newly created objects, you would specify:

REM remember that BY SESSION is the default...

audit delete on default;

This has the effect of modifying the default object auditing options held in
ALL_DEF_AUDIT_OPTS as follows (where BY SESSION is indicated by S as before):

select ALT,AUD,COM,DEL,GRA,IND,INS,LOC,REN,SEL,UPD,REF,EXE

from SYS.ALL_DEF_AUDIT_OPTS;

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE

--- --- --- --- --- --- --- --- --- --- --- --- ---

-/- -/- -/- S/S -/- -/- -/- -/- -/- -/- -/- -/- -/-

Recommended Auditing Options
There’s no doubt that keeping track of audit options can be very difficult due to the
multitude of tables and views that you need to be aware of. The easiest way to enable
a meaningful set of auditing options is to use the following SQL shortcut:

AUDIT ALL;

Despite what the name might imply, this doesn’t actually enable every possible
auditing option available. For example, it actually doesn’t enable any object-level audit-
ing of data manipulation language (DML) statements. It does enable auditing for the
most commonly used options that a DBA would want to track. For example, DROP
USER, CREATE USER, and ALTER USER are all audited along with object DDL state-
ments, such as CREATE TABLE, DROP TABLE, ALTER TABLE, and TRUNCATE
TABLE, and session connection and disconnection. The full list can be found in the
Oracle documentation. Auditing does add an overhead to database performance, due
to the need to perform table inserts on the audit trail, but AUDIT ALL keeps the over-
head within sensible limits and adds significant benefits for database security and
potentially database availability by identifying the exact time of critical events that
could harm the system.

Oracle recommends that you set options individually. However, using AUDIT ALL is
much simpler. You need to be aware that after an Oracle upgrade, additional privileges

Auditing Techniques 609

may be included specific to the new version, so you should reexecute AUDIT ALL. To
undo AUDIT ALL, you run NOAUDIT ALL.

SYSDBA Auditing

Connections that use the AS SYSDBA option are audited into operating files in the
audit_file_dest location at all times, regardless of whether auditing is enabled in the
init.ora file or not. This behavior can’t be changed or turned off. It’s not possible to
audit any other actions performed as SYSDBA until Oracle9i Release 2 when SYSDBA
auditing can be enabled through the use of the database initialization parameter
AUDIT_SYS_OPERATIONS�TRUE. Even when SYSDBA auditing is enabled in
Release 2, the operating system audit trail is always used, rather than SYS.AUD$. This
is necessary because if SYSDBA connections and actions were audited into the data-
base and the SYS.AUD$ table became full and could not extend, it would not be possi-
ble for a DBA to log on to the database to clear some space or perform other actions
required to make the database available. The following examples show audit file out-
put for an attempted SYS connection that failed due to ORA-28009 (connection to sys
should be as sysdba or sysoper) and one that succeeded:

Sat Nov 10 10:33:05 2001

ACTION : 'connect SYS' OSPRIV : OPER

CLIENT USER: oracle

CLIENT TERMINAL: pts/3

STATUS: FAILED (28009)

Sat Nov 10 10:33:32 2001

ACTION : 'connect sys' OSPRIV : DBA

CLIENT USER: oracle

CLIENT TERMINAL: pts/3

STATUS: SUCCEEDED (0)

Identifying Suspicious Activity

Suspicious activities are easier to identify for a simple two-tier application because
each application user typically has its own Oracle account. For applications that share
Oracle accounts for multiple client application users, auditing is not so useful because
the audit trail typically doesn’t contain meaningful information about the client user.
In this case, the application needs to provide an application-managed audit trail. Ora-
cle Financials is a good example of an application that does this. For two-tier applica-
tions, account sharing is an example of suspicious activity. In this case, a given Oracle
account may have multiple client users, suggesting that client users are sharing pass-
words or that users have unauthorized access to other users’ accounts. The following
SQL statement shows operating system accounts that have used more than one Oracle
account and some results:

610 Chapter 25

select s.os_username,username

from dba_audit_session s,

(select os_username,count(distinct(username))

from dba_audit_session where returncode=0 and action_name='LOGOFF'

group by os_username

having count(distinct(username)) > 1) o

where s.os_username = o.os_username and returncode=0 and

action_name='LOGOFF' group by s.os_username,username order by 1,2;

OS_USERNAME USERNAME

-------------- -----------------

JonesSus ALAN_S

JonesSus BROWN_T

JonesSus HALL_T

Administrator HARMAN_S

Administrator ADAMS_C

Administrator TESTER

Administrator FALL_G

Administrator FLORENCE_S

In this case, the application is a two-tier Windows application, and OS_USERNAME
is the Windows client account name of the connected user. The audit trail from
DBA_AUDIT_SESSION shows that Windows user JonesSus has used three different
Oracle accounts. More worrying still, the Windows NT Administrator account, which
should not be accessible to business users, has been used to connect to Oracle accounts.
This suggests flaws in the Windows security in the organization. This SQL shows sim-
ilar information based on Oracle accounts using different Windows logons:

select s.username,os_username

from dba_audit_session s,

(select username,count(distinct(os_username))

from dba_audit_session where returncode=0 and action_name='LOGOFF'

group by username

having count(distinct(os_username)) > 1) o

where s.username = o.username

and returncode=0 and action_name='LOGOFF'

group by s.username,os_username

order by 1,2;

The use of AUDIT ALL enables the auditing of NOT EXISTS events, where a user
performs an operation that fails because a table or other object does not exist. Such
events can occur when a user tries to access an object for which he or she doesn’t have
access rights and may indicate an attempt to steal commercially sensitive information.
The following SQL shows how to view the NOT EXISTS information:

select * from dba_audit_exists;

Auditing Techniques 611

The next SQL statement shows AUDIT ALL activity for the user identified by the
account given by the bind variable :username. If a user has performed a questionable
activity, this report can be used to identify what happened from the audit trail:

select to_char(timestamp,'DY DD-MON-YY HH24:MI:SS')

timestamp,sessionid,logoff_time,username,os_username,action_name,obj_name,

terminal,returncode

from dba_audit_trail

where (username like upper(:username) or obj_name like upper(:username))

order by 1;

Other Uses of Audit Information

By using AUDIT ALL, you enable session connection and disconnection auditing that
is made available through the DBA_AUDIT_SESSION view. This provides valuable
security information, such as when a user logged on and off from the database, and the
account and network host name that was used on the client. As well as security infor-
mation, DBA_AUDIT_SESSION provides session I/O information that is extremely
valuable for performing trend analysis and identification of the top database users in
terms of I/O consumed. The following columns hold logical and physical I/O infor-
mation for each audited session:

LOGOFF_LREAD

LOGOFF_PREAD

LOGOFF_LWRITE

The following report shows I/O information for weekly sessions in a format suit-
able for plotting graphs with Microsoft Excel:

select to_char(timestamp,'YYYY WW') weekno,sum(LOGOFF_LREAD)

logical_reads,

sum(logoff_pread) physical_reads,

sum(LOGOFF_LWRITE) logical_writes

from dba_audit_session

group by to_char(timestamp,'YYYY WW') order by 1;

WEEKNO LOGICAL_READS PHYSICAL_READS LOGICAL_WRITES

-------- --------------- ---------------- ----------------

2001 35 6236489352 174220084 219597881

2001 36 6454573741 190871110 207994254

2001 37 6213423627 203738383 190392777

The next SQL report shows the top user for each week of the year in the following
categories: logical reads, physical reads, and logical writes. Such reports should be run
with care as they scan the underlying audit table and can be very resource intensive.
Output for week 43 is provided as an example:

612 Chapter 25

select username,to_char(timestamp,'YYYY WW')

weekno,logoff_lread,logoff_pread,logoff_lwrite

from dba_audit_session,

(select to_char(timestamp,'YYYY WW') weekno,

max(logoff_lread) max_lread,

max(logoff_pread) max_pread,

max(logoff_lwrite) max_lwrite

from dba_audit_session

group by to_char(timestamp,'YYYY WW')

) max_read

where (to_char(timestamp,'YYYY WW')=max_read.weekno

and logoff_lread = max_read.max_lread)

or (to_char(timestamp,'YYYY WW')=max_read.weekno

and logoff_pread = max_read.max_pread)

or (to_char(timestamp,'YYYY WW')=max_read.weekno

and logoff_lwrite = max_read.max_lwrite) order by 2;

USERNAME WEEKNO LOGOFF_LREAD LOGOFF_PREAD LOGOFF_LWRITE

-------------- -------- -------------- -------------- ---------------

BATCH 2001 43 37533830 896053 26071933

DAY_R 2001 43 294275064 10117 6

SYSTEM 2001 43 15194188 10893261 767368

Viewing I/O by the user can be very helpful for Oracle performance management,
as a follow-up study could identify why particular users consistently appear at the top
of the list. In this case, the users should not be blamed for using too many resources.
Instead, the focus should be on the business process being performed, along with an
investigation of alternative ways to perform the same function to lower I/O costs. In
some cases, where read-intensive reports are identified as the cause, the reports can
sometimes be moved outside the main online processing periods to mitigate the effects
of the I/O on other users. The information in the audit trail has other useful purposes.
For example, you can count the number of distinct named sessions weekly to give an
idea of the size of the database user base and how it changes over time, using the fol-
lowing SQL:

select to_char(timestamp,'YYYY WW') weekno,count(distinct(username))

from dba_audit_session

group by to_char(timestamp,'YYYY WW');

WEEKNO COUNT(DISTINCT(USERNAME))

-------- ---------------------------

2001 34 411

2001 35 408

2001 36 412

The previous report can be useful for showing that a system isn’t being used. Every
DBA should be aware of how usage patterns are changing over time in the databases
they manage, and this report is one way to do it. Considerable expenditure on hardware

Auditing Techniques 613

and personnel can be wasted when used to manage and support applications that are
not actually being used. It’s also possible to identify sessions that failed to log off cleanly
as follows:

select * from dba_audit_session

where action_name like 'LOGOFF BY CLEANUP';

Sessions that log off cleanly have an action name LOGOFF. Those that don’t have an
action name of LOGOFF BY CLEANUP, meaning that their resources were cleaned up
later by Oracle’s SMON process. Processes that don’t disconnect cleanly should be fol-
lowed up to identify the root cause. Sometimes sessions that terminate abnormally can
cause core dumps on the database server, resulting in disk space shortages and poten-
tial database outages.

Using Database Triggers for Auditing

From Oracle8i on, you can use database triggers with autonomous transactions to per-
form the detailed tracking of changes in the data content of tables for auditing pur-
poses. Using autonomous transactions guarantees that failed changes that were rolled
back are still recorded in the change history. Autonomous transactions are sometimes
referred to as nested transactions.

A simple trigger can be used to save rows deleted from the standard EMP table
along with a timestamp when the delete occurred and the Oracle account that per-
formed the deletion as follows:

/*

* create empty copy of EMP with extra timestamp and user columns

* to hold history of deletes

*/

create table emp_hist as

select sysdate timestamp, user who,e.*

from emp e where 1=2;

REM create a trigger to capture deleted rows...

create or replace trigger trg_emp_delete after delete on emp

for each row

declare

pragma autonomous_transaction;

begin

insert into emp_hist values(

sysdate,user,

:old.empno,:old.ename,:old.job,:old.mgr,:old.hiredate,

:old.sal,:old.comm,:old.deptno);

commit;

end;

/

REM delete a row...

delete from emp where ename='SMITH';

614 Chapter 25

TE
AM
FL
Y

Team-Fly®

Even though the row deletion has not yet been committed, the DELETE operation
will show up in a query on the EMP_HIST table from another session due to the
PRAGMA AUTONOMOUS_TRANSACTION statement in the trigger definition. The
following SQL confirms that the DELETE has been recorded already:

select timestamp,who,ename from emp_hist;

TIMESTAMP WHO ENAME

--------------------- ------- -------

05-APR-2002 18:21:47 SYSTEM SMITH

Another example of trigger-based auditing is the use of a LOGOFF ON DATABASE
trigger to capture all Oracle performance statistics and wait events in a table at session
logoff time, which is done to provide more complete information than the database
audit trail for use in performance trend analysis. The following example uses the
LOGOFF_SAMPLE in the DBCOOL_MON package (downloadable from the compan-
ion Web site) to capture the information:

REM run as SYS

create trigger on_logoff before logoff on database

declare

begin

sys.dbcool_mon.logoff_sample;

exception

when others then

null;

end;

Fine-grained Auditing in Oracle9i

Fine-grained auditing in Oracle9i provides a framework for the detailed capture and
notification of SELECT statements on tables and views based on the content requested.
For example, monitoring for the selection of specific columns and column values is
possible. The detailed information available during the audited event includes:

■■ The full text of the SQL

■■ Bind variable values

■■ The current system change number (SCN)

Value-based policies are administered through the DBMS_FGA package based on
an audit policy created by the DBA on the target table using the ADD_POLICY proce-
dure. The audit policy contains an audit_condition argument that is used to specify
rows that trigger an audit event when an end-user SQL statement returns rows that
match the condition and include the column specified by the audit_column parameter.
As part of the policy, an optional event handler—in the form of a PL/SQL procedure—
can be provided to process an audited event.

Auditing Techniques 615

The following SQL sets up a policy that audits SELECT statements on the SAL col-
umn of the EMP table for employees in the Sales department, and calls a procedure
SYSTEM.SP_SENDMAIL_ALERT as the event handler:

begin

dbms_fga.add_policy(

policy_name => 'scott_emp_sal',

object_schema => 'scott',

object_name => 'emp',

audit_condition => 'job = ''SALESMAN''',

audit_column => 'sal',

handler_schema => 'system',

handler_module => 'sp_sendmail_alert',

enable => true);

end;

/

The event handler routine SP_SENDMAIL_ALERT uses the SP_SENDMAIL proce-
dure (described in Chapter 24) to send an email alert whenever an audit event match-
ing the policy is generated. The definition of SP_SENDMAIL_ALERT is:

create procedure system.sp_sendmail_alert

(p_schema varchar2, p_object varchar2, p_policy varchar2)

as

begin

sp_sendmail(

p_sender=>'OraAlert@dbcool.com',

p_recipient=>'OracleDba@dbcool.com',

p_subject=>'FGA ALERT:'||p_policy||'/'||p_schema||'/'||p_object,

p_message=>'for your info',

p_mailhost=>'srv1.dbcool.com');

end;

After creating the policy and the stored procedure for the event handler, the follow-
ing statements generate audit events that result in the rows in the SYS.FGA_LOG$
table:

REM the * includes rows that match audit_condition and audit_column

select * from scott.emp;

REM use a value SALE% for bind variable :j to match audit_condition

REM Note: if you run this in DbCool, you can fill in the value in a form

select * from scott.emp where job like :j;

The following SQL shows some of the columns in the FGA_LOG$ for the two SQL
SELECT statements on SCOTT.EMP, including the value supplied for the bind
variable:

616 Chapter 25

SQLTEXT SQLBIND

-- -------------

select * from scott.emp

select * from scott.emp where job like :j #1(5):SALE%

The complete list of audited information available in SYS.FGA_LOG$ is:

SESSIONID NUMBER NOT NULL

TIMESTAMP# DATE NOT NULL

DBUID VARCHAR2(30)

OSUID VARCHAR2(255)

OSHST VARCHAR2(128)

CLIENTID VARCHAR2(64)

EXTID VARCHAR2(4000)

OBJ$SCHEMA VARCHAR2(30)

OBJ$NAME VARCHAR2(128)

POLICYNAME VARCHAR2(30)

SCN NUMBER

SQLTEXT VARCHAR2(4000)

SQLBIND VARCHAR2(4000)

COMMENT$TEXT VARCHAR2(4000)

Summary

In order to provide a basic security auditing capability, a minimum level of database
auditing can and should be enabled in all Oracle databases. This can be accomplished
with a minimum of effort by using the AUDIT ALL shortcut command. This command
provides a useful level of auditing without resulting in the overhead of thousands of
audit records daily. Excessive use of audit options, such as auditing on individual
objects, can have a significant overhead on database performance and must be consid-
ered carefully. Session auditing can help you identify I/O trends at no extra cost
because AUDIT ALL enables session auditing. The audit trail can be relocated, and
ownership of the underlying objects can be changed. Although unsupported, these
options provide the potential for more flexible and proactive auditing. For situations
where the database audit trail doesn’t provide enough detail, more sophisticated
auditing is available through trigger-based auditing from Oracle8i onwards and fine-
grained auditing in Oracle9i.

Auditing Techniques 617

619

Oracle Corporation uses the term migration for moving from Oracle7 to Oracle9i, and
the term upgrade for moving from Oracle8i to Oracle9i. Although the terms are some-
times used interchangeably, migration is intended to convey that the task involves
greater preparation than the simpler upgrade.

This chapter covers how to perform a migration or upgrade. Oracle provides Oracle
Data Migration Assistant (ODMA) to perform the migration itself, so our emphasis will
be on the migration prerequisites and post-migration checks. Failure to address all the
prerequisites is much more likely to cause problems than ODMA itself. Post-migration
checks are used to ensure that the migrated database is ready to run in a production
environment. Keep in mind that ODMA provides migration and upgrade from Oracle
7.3.4, Oracle 8.0.6, and Oracle8i. This chapter covers the following topics:

■■ Migration prerequisites checklist

■■ Using ODMA to perform migration

■■ Post-migration tasks

NOTE ODMA becomes Database Upgrade Assistant (DBUA) in Oracle9i
Release 2, although the functionality is essentially the same. You should also
be aware that from Oracle9i Release 2 onwards, the second digit, rather than
the third, in the version number now refers to the maintenance release.

Migration and Upgrade

C H A P T E R

26

Migration Prerequisites

A document titled “Using Oracle Change Manager” is available for download from the
companion Web site to this book. The document covers some generic and Oracle-
specific information about change management. These same principles apply to a
migration exercise, just like any other change. In particular, the implementation plan
should be fully documented, the change success test criteria should be clearly defined,
and the backout plan should be realistic.

Decision to Upgrade
Due to the risk of side effects resulting from the migration and upgrade process, the
decision to implement these procedures should be based on business reasons, rather
than the database administrator’s (DBA’s) requirement to get experience in the latest
Oracle release in a production environment. Upgrading because the current Oracle
release is out of its support life cycle is a sound reason for upgrading because it guar-
antees better levels of support. By definition, migration is performed against Oracle7.
There aren’t many valid reasons for running applications on Oracle7 when Oracle9i is
available, and Oracle7 has long been unsupported by Oracle.

Third-Party Software
Before migration, you need to check that all the software needed to support your Ora-
cle infrastructure is available and certified on the new version of Oracle. This might
include backup software, performance management software, and monitoring soft-
ware. If your Oracle database runs an application from a third-party vendor, then you
should check that their software is certified against the new Oracle release.

Oracle9i Installation
To save time, Oracle9i software should be preinstalled on the database server contain-
ing the database to be migrated, including all the options installed in the original data-
base. For example, if replication is installed in the original database, then replication
needs to be installed in the migrated database. The required set of products should be
confirmed by performing test runs of the complete end-to-end migration process,
including end-user application testing after completion. If you’ve followed the sug-
gestions in Chapter 1, then the Oracle software should be available already via a cen-
tralized Network File System (NFS) server.

Resolution of Alerts
All outstanding alerts, such as those due invalid objects, files in recovery mode, and
failed distributed transactions, should be fixed before migration begins. Even if you
don’t systematically execute the minimal recommended monitoring in Chapter 24, you
should refer to the checks in that chapter and run them manually.

620 Chapter 26

During a migration, the Oracle data dictionary catalog is rebuilt. This can poten-
tially invalidate objects. Before you begin a migration, you should ensure that no
invalid objects exist before migration. That way you can be sure that any invalid
objects after migration were introduced by the migration process and are not due to
some preexisting condition.

Replication
If you are using symmetric replication, then replication must be quiesced and disabled,
or migration will fail. The Oracle replication documentation should be consulted for
any special requirements imposed on migration by replication. After quiescing has
been completed, the DEF$_ERROR table needs to be checked for errors. These errors
need to be resolved before migration.

ARCHIVELOG Mode
Migration and upgrades generate lots of redo logging. One option for reducing the
need to manage the extra logs is to turn off ARCHIVELOG mode on the database fol-
lowing the premigration backup and restore it afterward, before the post-migration
backup.

Files in AUTOEXTEND Mode
In order to provide the highest chance of success, database files related to the SYSTEM,
undo, rollback, and temporary tablespaces should be placed into AUTOEXTEND
mode before migration. The Oracle dictionary typically grows to at least 250MB during
a migration and executes some large transactions.

Operating System Versions
Oracle’s Metalink Web site should be checked in order to ensure that the original and
migrated versions of Oracle are both supported on the operating system in place on the
server. If they aren’t, the operating system needs to be patched to the required release,
and existing testing repeated. Metalink also contains alert information on problems
involving migration. A thorough search of all the available information should be car-
ried out to preempt possible problems.

Hard-Coded Oracle Environments
Any scripts that hard code the $ORACLE_HOME variable need to be identified in
advance. These need to be changed to reflect the new $ORACLE_HOME setting after
migration. A better design approach is to set all script environments at run time using
the contents of the /var/opt/oracle/oratab (or /etc/oratab) file. That way scripts pick
up any changes in the environment automatically without needing to change the script
itself.

Migration and Upgrade 621

Plan Stability
When you migrate to a new version of Oracle, the Oracle release contains a new ver-
sion of the Oracle optimizer. That leads to the potential for application Structured
Query Language (SQL) Data Manipulation Language (DML) execution plans to
change silently after migration. Although you might expect that the new plans would
provide reduced elapsed times, that can’t be guaranteed. The safest way to guarantee
plan stability is to use stored outlines. Stored outlines are described in Chapter 9.

Database Character Set
The database character set needs to be set in the UNIX environment in which migra-
tion takes place. This should be saved for future reference and can be found using the
following SQL:

select value from nls_database_parameters

where parameter='NLS_CHARACTERSET';

Test Runs
Test runs should always be carried out in advance to ensure that the migration of a pro-
duction database is completed without problems and within the time available. The
test machine should be checked in advance to confirm that the operating system
release is identical to the production server and that UNIX kernel configuration para-
meters are large enough to meet requirements and are no larger than the production
server.

Compatibility and Parameters
Oracle enables the control of database compatibility with the COMPATIBLE initializa-
tion parameter. By default, if the COMPATIBLE initialization parameter is not set in
the init.ora parameter file, it defaults to the lowest possible setting for the release. For
Oracle9i Release 1, COMPATIBLE defaults to 8.1.0.

The decision on whether to change the COMPATIBLE setting is an important one. If
your decision to upgrade is based on a requirement to take advantage of new Oracle
features, then you need to change COMPATIBLE to the version number of the new
release. In this case, testing and QA procedures must have been carried out using the
new release. You should never change COMPATIBLE to a higher version during
migration unless you tested with that version.

If your migration is part of a regular maintenance cycle, possibly due to support
lapsing for your current version of Oracle, then you still need to perform QA and test-
ing of Oracle9i even if you don’t use the new features. In this case, the default behav-
ior is adequate. The bottom line is that you should ensure that COMPATIBLE at
migration time is set to whatever version you tested with.

Values should be set explicitly for the USER_DUMP_DEST, BACKGROUND_
DUMP_DEST, and CORE_DUMP_DEST parameters to avoid their location changing

622 Chapter 26

after migration, based on the new $ORACLE_HOME value. If the Optimal Flexible
Architecture (OFA) standard, which is recommended, is in use, then this isn’t an issue.

The JOB_QUEUE_PROCESSES parameter should be set to 0 to ensure that no jobs
start immediately or during migration. This needs to be reinstated after migration.

If a password file is in use, as discussed earlier, then it’s a good idea to disable its use
during migration by setting REMOTE_LOGIN_PASSWORD_FILE�NONE before
migration and re-creating it afterward. In this case, existing SYSDBA and SYSOPER
accounts will need to have their privileges regranted after migration. If you use Recov-
ery Manager (RMAN) to perform your Oracle backups, RMAN is probably one of the
accounts. The following SQL shows the accounts before migration:

select * from v$pwfile_users;

Timings
If your end-to-end migration needs to be completed in a fixed window, then you
should note the time taken for each stage of the process. This should include the time
for the following:

■■ Premigration checks

■■ Premigration backup

■■ Test restore of premigration backup

■■ Migration

■■ Post-migration backup and checks

■■ Application testing

Backup and Restore
A backup and restore is a prerequisite for a migration. If the migration goes wrong, your
fallback position is dependent on the validity of the premigration backup. The only
way to be 100 percent sure that your backup worked is to restore it onto another server
and open the restored database, all before you perform the migration itself. The ability
to open the database after the backup guarantees that you backed up every required
file. Oracle can, of course, use a previous backup to restore the old database in the
unlikely event that the premigration backup failed. If you include this in your contin-
gency plan, then you need to factor in the extra time to roll the earlier backup forward.

The most reliable tool to use when performing the database backup is RMAN,
which is covered in Chapter 18. Keep in mind that RMAN does not back up the online
redo logs because they are never required for a recovery to a previous point in time. If
you require the RMAN database incarnation to remain the same after a recovery fol-
lowing a failed migration, then you should back up the online redo logs separately. The
online redo log backup should take place while the database is in a mounted state dur-
ing the RMAN closed backup or after a clean shutdown. The following SQL can be
used to generate a list of files to back up manually:

Migration and Upgrade 623

select l.member from v$logfile l

union select name from v$controlfile c

union select f.file_name from dba_data_files f

union select tf.file_name from dba_temp_files tf;

The following additional files need to be backed up manually before migration:

The init.ora file. Some of the parameters used may be obsolete or deprecated in
the migrated version.

The database password file. This is backed up if database password files
are used.

You can check whether a password file is in use by attempting a remote connection
such as SYS using AS SYSDBA. If this works, the database uses a password file:

$ sqlplus /nolog

SQL> connect sys@orap1.dbcool.com as sysdba

As an alternative to using an RMAN backup and restore, if you use a standby data-
base, you can open it in read-write mode, having applied all the changes from your pri-
mary database before migration starts. The standby database serves as a ready-made
database that you can use to restore the primary to the premigration state if the migra-
tion goes wrong, thus saving the time for an RMAN backup and restore. Standby data-
bases are covered in Chapter 23.

Migration Using ODMA

The simplest way to perform a migration or upgrade is to use ODMA. It is possible to
perform manually the same steps that ODMA takes, although this is not recommended
due to the additional complexity introduced. In two specific situations, ODMA can’t be
used. ODMA does not support the migration of systems with Oracle Parallel Server
(OPS) installed. If you have OPS installed, then you must use another method to
migrate your database. Other methods include the command-line migration utility
(MIG) or export and import. Also, ODMA does not support the migration of systems
that use raw devices.

If you can’t use ODMA, you can perform a migration by taking a full premigration
export, followed by a full import into a database precreated using the Oracle version
you are migrating to. In the past, this approach was sometimes taken in order to
defragment the database as part of the migration process. If the requirement is to
defragment data, Chapter 13 shows how to do that with Oracle9i. It’s no longer neces-
sary to perform an export and import. If the export and import approach is required,
Chapter 19 contains the best practices for running import and export. It needs to be
emphasized that a full export does not include SYS-owned objects; the database cre-
ation process creates these. In the unlikely event that your application installs objects
into SYS, these need to be re-created manually after database creation.

624 Chapter 26

TE
AM
FL
Y

Team-Fly®

It is strongly recommended that you use ODMA. Before beginning the migration
process itself, ODMA will perform a SHUTDOWN IMMEDIATE of the instance. If the
database is already down, ODMA will start it first and then perform SHUTDOWN
IMMEDIATE. ODMA is a Java application and requires a valid X Windows display as
follows:

$ xhost +yourdisplay

$ DISPLAY=yourdisplay:0.0; export DISPLAY

The migration utility needs to be executed in the environment of the migrated ver-
sion. It’s not necessary to set the ORACLE_SID at this stage because ODMA asks for it.
The usual Oracle environment symbols can be set as follows, based on the set_env
command described in Chapter 4:

$ set_env 9.0.1

$ export NLS_LANG=american_america.US7ASCII

$ odma &

Figure 26.1 shows the ODMA screen from which the target database for migration is
selected.

Migration and Upgrade 625

Figure 26.1 ODMA instance selection screen.

After starting ODMA, choose a custom upgrade, choose PL/SQL modules to be val-
idated post-upgrade, and don’t request a backup if you have already performed one.
As recommended in the prerequisites, it’s better to perform a backup and validate it with
a restore before migration. Migration can modify the listener.ora file for the migrated
version automatically. I prefer to do that manually afterward to avoid unexpected
changes, and then only if necessary. If you are using dynamic listener registration, as
covered in Chapter 3, then no change to listener.ora will be required because the
migrated database will automatically register itself with the listener using the correct
(migrated) version.

After the migration is complete, the init.ora file for the migrated version is placed in
the $ORACLE_HOME/dbs directory. If you are using OFA for your software layout
(which is strongly recommended), then your init.ora file in the new $ORACLE_
HOME/dbs directory should be a link from the pfile directory. Before overwriting the
pfile version with the new version, it’s essential to compare them to check for any dif-
ferences in parameters. The new version may have parameters added by the migration
process, such as the following:

#Parameter added by Data Migration Assistant

shared_pool_size = 52428800

Once you have compared the old and new files and made any changes, you should
copy the new version over the pfile version and re-create the link from the pfile version
to $ORACLE_HOME/dbs. It’s easy to forget to do this and end up with two init.ora
files, one in the pfile directory and one in the $ORACLE_HOME/dbs directory. The
first sign that you’ve done this is that when you make changes to the pfile version, they
apparently have no effect when you restart the database because the one in $ORACLE
_HOME/dbs is actually being used.

Immediately after the migration is completed, it’s a good idea to remove or rename
the init.ora file or link in the old $ORACLE_HOME/dbs to make absolutely certain
that the database can’t be started under the old version by accident.

NOTE Later releases of Oracle9i use a directory called scripts in preference
to pfile.

Post-Migration Tasks

If ARCHIVELOG mode was turned off before migration, it should be turned on imme-
diately following migration. Any datafiles that were placed into AUTOEXTEND mode
specifically for the migration should have AUTOEXTEND turned off. Before any non-
DBA access is allowed after migration, the database should be checked for any invalid
objects. The causes of these need to be identified, and recompilations or fixes applied.
Any that can’t be fixed should be investigated at Metalink or reported to Oracle Sup-
port Services (OSS). The JOB_QUEUE_PROCESSES value should be reinstated to its
premigration setting, and REMOTE_LOGIN_PASSWORD_FILE should be reenabled
if required. This requires the creation of a new password file and the regranting of

626 Chapter 26

SYSDBA and SYSOPER privileges to those accounts that had the privileges before
migration. A remote SYSDBA test connection should be performed to ensure that the
password file is correct. The premigration checks contain an example of how to do this.

After migration to Oracle9i, connections using SYS must be performed using AS
SYSDBA or AS SYSOPER, or the connection will fail. This new behavior provides
enhanced protection of the data dictionary. The old-style behavior can be reinstated by
setting the init.ora parameter O7_DICTIONARY_ACCESSIBILITY�TRUE, although
this is not recommended for security reasons covered in Chapter 5.

The init.ora COMPATIBILITY setting, the oratab file, and the listener.ora file (if
you’re not using dynamic registration) should be checked to ensure that they reflect
the version of the migrated database. If dynamic registration is not in use, the post-
upgrade listener.ora file should contain an entry like this:

(SID_DESC =

(SID_NAME = ws817d1

(ORACLE_HOME = /ora01/app/oracle/product/9.0.1)

)

If you have multiple versions of Oracle on the server, and you run a single listener,
then you should run the listener executable associated with the latest version of Ora-
cle. This also applies when the listener is restarted on machine boot. If you’re using the
methods in Chapter 4 for standardization of your Oracle environment, then the listener
to start on machine boot can be changed to the new version simply by changing the
entry in the oratab file.

Application support personnel should perform the tasks specified in the change
implementation to check that the application is working correctly after migration is
completed. In particular, any application scripts that contain a hard-coded $ORACLE_
HOME setting need to be changed to reflect the new version, or they will fail. Testing
should include the following:

■■ Functionality testing

■■ Client connectivity testing, including testing database links

■■ Performance testing

The enforcement of plan stability through the use of stored outlines is probably the
best approach to guarantee similar levels of performance compared to premigration,
although generating them requires more preparation.

Once all testing is complete, a backup should be performed. This should take place
immediately after completion of the migration and before application testing.

If you intend to remove the old version of the Oracle software, you should ensure
that no files are currently in use by any existing database, and that no database files
themselves are located there. If you follow the OFA standard, there won’t be any, but
you need to be absolutely certain. It’s often best to leave the old software in place for a
few days. You can then use the UNIX find command to check for files accessed or mod-
ified within the last few days to confirm that the files under the old version are not in
use before you remove them.

Keep in mind that if you need to restore to a point in time associated with the old
version for any reason following an upgrade or migration, then you need to have the

Migration and Upgrade 627

old software release available. The following examples show how to check for files
modified and accessed within the last seven days:

$ find $ORACLE_HOME -type f -mtime -7 -print # modified . . .

$ find $ORACLE_HOME -type f -atime -7 -print # accessed . . .

Summary

ODMA makes the process of migration or an upgrade to Oracle8i or 9i a fairly simple
process. Migration failure is more likely to result from an incomplete premigration
checklist or failure to carry out a comprehensive post-migration analysis than from
ODMA itself. Using the pre- and post-migration checks in this chapter will increase the
odds of a successful migration.

628 Chapter 26

629

As a professional Oracle database administrator (DBA) or developer, you should be
familiar with the support provided by Oracle Support Services (OSS) through the
Metalink Web site (www.metalink.com). Metalink has some clearly stated goals from
Oracle’s point of view, and it’s useful to evaluate customer experiences against those
goals, and identify if and why they are not met. Oracle also publishes information on
how customers can work effectively with OSS, and this chapter discusses the OSS-
customer relationship both from the customer and the OSS analyst’s point of view. All
DBAs, developers, and managers should have a thorough understanding of the roles
and responsibilities in this relationship, in particular, Oracle’s expectation of cus-
tomers, in order to exploit it fully.

You should always consult the extensive information that is available at Metalink
and carefully read the documentation before requesting the services of an OSS analyst
to investigate your problem. According to recent figures available from OSS, around 50
percent of Technical Assistance Requests (TARs) relate to customer-caused issues and
requests for more information. If these could be reduced, then all customers could ben-
efit from the increased amount of analysts’ time available to solve real business prob-
lems. That doesn’t mean the customer is always at fault in such situations. The need to
request further information could relate to incompleteness or lack of clarity in Oracle’s
documentation, as well as customers’ failure to read what’s available.

Before you choose to deploy any Oracle technology, you need to take a look at all the
factors that affect supportability, such as the maturity of the technology and the likely
availability of OSS expertise. The implications are likely to influence the Oracle prod-
uct set you deploy in a production environment.

Working Effectively
with Oracle Support

C H A P T E R

27

This chapter covers the following topics:

■■ Using Metalink to meet customer requirements for support

■■ The benefits and drawbacks of problem reporting via the Web

■■ Oracle’s goal of single point of ownership for TARs

■■ The availability of 24�7 support on the Web

■■ The OSS view of the customer’s role in the support process

■■ The escalation process

■■ Using Oracle STATSPACK and Remote Diagnostic Agent to standardize
support

■■ Choosing your Oracle product set for supportability

Using Metalink to Meet Support
Requirements

Oracle Corporation is increasingly highlighting the availability of online support. If
you have an active support contract for your Oracle licenses, you can take advantage
of Oracle’s Metalink Web site at www.metalink.com for the provision of online sup-
port. The biggest benefit of using Metalink over traditional telephone-based support is
that it saves you time in the following ways:

■■ You avoid wasting time waiting for an analyst to take your call.

■■ Because the service is available 24�7, you can research issues yourself. The
electronic method for tracking TARs is referred to as iTAR.

Customer requirements for Oracle support—actually, support for any purchased
product—can probably be summarized in a single sentence: “Please fix my problem in
the shortest time possible.” It’s interesting to analyze the degree to which Metalink
meets its own stated goals and those of the customer.

Problem Reporting via the Web
Submission via the Web is the fastest way to report a problem because you don’t need
to wait for an analyst, and you can speed up TAR creation by cloning existing ones and
changing the contents. Despite these benefits, I sometimes choose to use the telephone
hotline to report a problem to OSS rather than submit one electronically via the Web.
Hotline calls always involve a couple of minutes of an analyst’s time spent telling me
that electronic submission gets results faster. This is usually followed by an explana-
tion from me on why a hotline call can get results faster (which is why I chose to make
the call instead).

Although it’s inconvenient to wait around for an analyst to take the call, the goal is to
fix the problem in the shortest time, not necessarily to report the problem in the shortest
time. The benefit of a phone call is that you can often avoid the long email thread that

630 Chapter 27

iTARs sometimes produce in the initial stages of problem resolution. This preamble
usually occurs when the OSS analyst is unfamiliar with the product you are using and
doesn’t actually understand the problem. In this scenario, you can expect to receive
potential solutions to your problem that actually aren’t relevant, and the use of iTAR
actually increases the time until problem resolution. Using a phone call, you can usually
determine the analyst’s level of knowledge and cut short the wasted time. The phone
call also helps the analyst to understand that you are an experienced Oracle user who
has already researched the problem, as a matter of due diligence, and not a beginner.

Single Point of Problem Ownership
The best support is provided when a problem has a single point of ownership, as this
minimizes the customer’s time spent having the problem directed to the right person.
That means that the routing of a problem to the appropriate point of expertise should
not be the customer’s responsibility, but the vendor’s. Oracle’s official position is that
Metalink is intended to provide this single point of ownership. To quote directly from
the Metalink Web site (www.oracle.com/support/metalink/index.html, April 2002),
“TARs submitted electronically are automatically matched to the right technical re-
source within Oracle Support Services.”

My experience of iTAR is that too often when a difficult problem could be related to
more than one Oracle technology area, the customer is deemed to be responsible for
submitting it to exactly the right group and is blamed for delays when it isn’t. Of
course, if you didn’t explain your problem clearly enough, then delays can’t be blamed
on the support analyst. But if the OSS analyst says something like “investigation was
delayed because you didn’t submit the problem to the correct support group” despite
your best endeavors, then that’s a sign that the support process is not meeting the goals
defined by Oracle. It’s a fact of life in the IT industry that users of graphical tools often
get blamed for deficiencies in the user interface design of the application. As a user, if
you think that the Web problem-reporting process could be improved, you can provide
feedback on Metalink through the feedback feature and your Oracle account manager.

24�7 Availability of Metalink
Another one of Oracle’s stated goals for Metalink is to provide 24�7 online access.
Metalink undoubtedly contains a fantastic knowledge base of Oracle resources and
access to highly skilled support staff through forums. Keep in mind that use of the
forums comes without guaranteed response times. Personally, I can spend up to sev-
eral hours a day on Metalink for research purposes, and rarely a day goes by without
requiring access at some stage. In this respect, Metalink delivers fantastic support
capabilities without requiring the input of an analyst and saves on both Oracle’s time
as well as the customer’s time.

However, this makes 24�7 availability even more important. During the fall of 2001,
Metalink suffered outages of several hours. One outage was apparently caused by a
lightning strike in California. As a customer, you should never experience a service
outage due to such a failure when the service states 24�7 availability as one of its

Working Effectively with Oracle Support 631

features. As a database company, you could reasonably expect that Oracle would use
its own technology to enhance the availability of its own services. During the writing
of this book, one weekend I decided to review several of the TARs I had submitted in
the past. This was the message I received:

Due to technical reasons TAR search for this country could not be

performed.

Here’s another error that resulted in a significant outage in April 2001:

ORA-04031: unable to allocate 2550012 bytes of shared memory ("large

pool","unknown object","session heap","bind var buf")

DAD name: plsql

PROCEDURE : ml2_gui.startup

USER : jsmith

URL :

http://metalink.oracle.com:80/metalink/plsql/ml2_gui.startup

As of early 2002, the necessary infrastructure to provide 24�7 availability for Met-
alink was not in place, although Oracle was planning to offer a new system to address
the problem.

From the error messages returned by Metalink in the second half of 2001, it would
seem that the database underlying Metalink was not monitored with the same dili-
gence that a customer would apply to an Oracle production system. Errors include fail-
ure to extend the database due to a lack of space, which demonstrates that inadequate
monitoring was in place.

Oracle does not publish service levels actually provided by Metalink. They would
certainly make for interesting reading. What’s obvious is that the levels of availability
provided by Metalink fall short of 24�7. The good news is that such availability issues
will be addressed in the near future. Oracle Corporation certainly has the tools to do
so, and many customers deploy them with success. For example, monitoring can be
provided by Oracle Enterprise Manager (OEM) and the Intelligent Agent (refer to
Chapter 24), and Oracle Data Guard (refer to Chapter 23) provides protection against
site disasters.

Oracle Expectations of Customers

An article that received widespread computer press coverage in December 2000 stated
that many, if not most, Oracle customers in the United Kingdom overstated the sever-
ity of their problems in order to receive the support they required.

Oracle publishes information on how to work effectively with OSS on the Metalink
Web site. According to Oracle’s own information published in “Working with Sup-
port” (Doc ID 166650.1), nearly 50 percent of TARs reported in a recent year fell into
two categories: those caused by customers themselves and those resulting from
requests for additional information. Customer-related problems include things like
misconfiguration of the server and database, incorrect installation, lack of training, and

632 Chapter 27

misunderstanding the documentation. This information highlights that working with
OSS should be viewed as a collaboration between Oracle and the customer.

Customers should always search the Web, Metalink, and the Oracle Metalink
forums before submitting a TAR and adhere to guidelines for all installations and con-
figurations. OSS works under the assumption that customers only request support
because the problem wasn’t easy to solve in the first place. Given the percentage of
TARs associated with customer-caused issues, the implication seems to be that cus-
tomers are not doing all they can to make the best use of Oracle support resources.

For a more proactive approach, OSS provides scripts that can preempt problems in
the first place. For example, OSS provides the InstallPrep.sh script to perform a check
of the environment before you attempt to create an Oracle9i database on the most pop-
ular flavors of UNIX such as Solaris, Linux, and HP-UX. If you run this first, you’re less
likely to experience problems that lead to support calls.

Role of the Support Analyst
and Escalation
According to Oracle, all OSS analysts undergo several weeks of boot-camp-style train-
ing to prepare them for support work, which consists of two mutually exclusive tasks:

■■ Taking new support calls

■■ Addressing existing issues from a prioritized queue of TARs owned by the
analyst

Given the analysts’ level of training, there’s a good chance that the support you
receive should meet your needs, but the job of the analyst is not without its challenges,
especially for cases when customers overstate problem severities. Unfortunately for
the customer, the support function is generally viewed as an overhead in many com-
panies, and support analysts tend to be less respected than consultants who generate
revenue income. However, none of those factors should be used as an excuse for poor
support.

If you are not satisfied with the attention your problem receives, you should follow
the official process for escalating the request. Almost by definition, the need to escalate
a TAR means that the support process has failed in some way, either because the OSS
analyst has not appreciated or accepted the severity of an issue, or because the cus-
tomer has not made the severity clear. If you’re not satisfied with the support you have
received, after a problem has been resolved—possibly because Oracle has not met their
stated support goals in some way—then there is no easy way today to indicate that
fact. The requirement to escalate a problem is different, and covered by an explicit
procedure.

Oracle’s evidence that 29 percent of total TARs were related to customer requests for
additional information suggests two possibilities: One is that customer’s don’t do suf-
ficient research or read the documentation first, and the other is that Oracle’s docu-
mentation and support infrastructure is not up to the job. Both definitely apply. My
own personal experience, as an Oracle user who researches every possibility before
reporting a TAR, is that incomplete documentation and how-to examples for new
products are the root cause of many TARs. Also, the OSS’s lack of knowledge of those

Working Effectively with Oracle Support 633

products is the reason those TARs often seem to take a long while to reach a conclusion.
Although both Metalink and the free Oracle Technology Web site (otn.oracle.com) con-
tain many how-to examples, it can take many months for articles to appear related to
new products. The Oracle forums can be a useful source for resolving such issues, but
not when you need a guaranteed response within a fixed timescale.

Given that so many requests are for additional information, it’s perhaps surprising
that Oracle’s iTAR system does not allow the customer to indicate such a request
explicitly in order to make it clear that the issue is in no way business critical.

Need for a Reproducible Test Case
When a customer reports a problem to OSS for which a ready solution does not exist,
the customer needs to provide OSS with a reproducible test case. The reproducible test
case is a precise set of instructions that the customer can use to demonstrate the
problem—on demand—on his or her own system. OSS can then follow the same
instructions in house to reproduce the problem. Because OSS analysts have access to
Oracle product development teams, the development teams can debug reproducible
problems at the source-code level, enabling code fixes to be made.

According to an ex-Oracle support colleague, the area that was a source of much
customer antagonism was the need to provide a reproducible test case. The issue from
the customer’s perspective is that the major part of the effort to identify the root cause
of a problem is down to the customer’s efforts in such a case. If the test case can only
be reproduced in a 40GB production database on the customer site, then it’s somewhat
impractical to expect Oracle to set up your production environment in house. That
said, it’s surprising how often OSS appears to scramble for hardware resources when
you need to send data of a reasonable size.

It’s beyond dispute that it can take several hours of customer effort to reduce a com-
plex situation to a simpler one of a manageable size that can be sent to OSS and repro-
duced at Oracle. Unfortunately for the customer, that’s life. For a complex problem
with myriad possible root causes, there is no shortcut. After the initial creation of a
TAR via phone or iTAR, all information should be logged via iTAR to ensure that both
the OSS analyst and customer have a common view of what’s been agreed on and the
progress to date.

As a customer, you have a right to expect OSS to formulate a plan at the outset of
your problem. That’s a stated goal of OSS. So if you experience a situation where the
OSS analyst appears to be reacting to a problem without a clear plan, such as request-
ing that you supply huge amounts of trace files with no apparent value, don’t be afraid
to ask where it’s leading. The analyst should always keep you in the picture regarding
the direction of any investigation, particularly if collecting the information makes
heavy demands on your time. Professional respect works both ways. If your problem
turns out to be the result of a software bug, be sure that any workarounds suggested by
OSS are practical and that your problem has a genuine business impact before request-
ing a code patch. Always be absolutely sure that the root cause of the problem is 100
percent solved by the patch. If any uncertainty as to the root cause remains, don’t take
the risk of installing a patch.

Don’t underestimate the effort required by Oracle to code and regression test a
patch: It’s huge. You also need to consider the regression-testing implications of any in-

634 Chapter 27

TE
AM
FL
Y

Team-Fly®

house applications that require the patch. Always keep in mind that installing any
patch on your site includes a risk of unwanted side effects. The introduction of faults
into the Oracle database management system (DBMS) as a result of such one-off
patches, and even as a result of major regression-tested patches, is definitely not
unknown. If you can avoid a patch in any way, even if it involves modifying applica-
tion code to work around it, consider that as a lower-risk option.

Using STATSPACK to Address
Performance Issues
Many TARs relating to DBMS performance issues for the root cause can be difficult to
identify. Too often performance problems on a database server are not related to the
configuration of the database at all. Instead, a hardware resource issue on a server (often
due to a CPU or memory shortfall) manifests itself as poor database performance.

If you’re a long-time Oracle user, you’re aware of the legendary utlbstat.sql and
utlestat.sql scripts that take a snapshot of Oracle performance metrics over a period of
time. In the past, you could expect OSS to ask you to run these scripts several times and
send output in any situation when you reported database performance problems. OSS
would then analyze the output for indicators of performance problems.

In order to formalize the method for collecting statistics on performance, OSS now
recommends that you install and run the STATSPACK package on your databases. This
package is compatible with Oracle 8.1.6 databases and later. You should install
STATSPACK as a standard on your systems in order to supply performance metrics to
OSS in a format familiar to them. The STATSPACK package, which you can download
from Oracle’s Web site, differs most fundamentally from utlbstat.sql and utlestat.sql in
the following ways:

■■ More statistics are collected.

■■ The level of detail can be controlled.

■■ Sampled data is stored in database tables.

The persistent storage of performance metrics makes it available for graphical pre-
sentation and Structured Query Language (SQL) reports using the tools of your choice.

Details on Oracle STATSPACK can be found at Metalink, and there is even a book
dedicated to it. The basic premise of STATSPACK is that Oracle performance metrics
are sampled on a timer interval, typically through a database job, and stored in tables
in the PERFSTAT schema, created when you install STATSPACK. Each collection is
assigned a SNAP_ID generated from an Oracle SEQUENCE. Here are a few:

STATS$LATCH

STATS$LATCH_CHILDREN

STATS$ROLLSTAT

STATS$SESSION_EVENT

STATS$SESSTAT

If you’re familiar with the Oracle data dictionary, then you’ll recognize these tables
as those found in the dictionary, along with a STATS$ prefix. In general, STATSPACK

Working Effectively with Oracle Support 635

tables contain the columns in the original Oracle dictionary table with three additional
columns, shown here, to identify the database, instance number (for collections on
Oracle Parallel Server [OPS] and Real Application Clusters [RAC]), and collection ID
for which the sample was collected:

SNAP_ID NUMBER(6) NOT NULL

DBID NUMBER NOT NULL

INSTANCE_NUMBER NUMBER NOT NULL

The STATS$SNAPSHOT table contains the complete list of snapshots taken, along
with the sample time. Generation of the standard STATSPACK performance report
requires that you run an Oracle-supplied SQL*Plus script, whose name depends on the
version of Oracle, and that you pass two collection IDs to identify the start and end
samples for the snapshot. The following output shows part of the report that displays
session statistics between two consecutive samples:

Instance Activity Stats for DB: ORAP1 Instance: orap1 Snaps: 667-668

Statistic Total per Second per Trans

---------------------------- ---------------- ------------ ------------

CPU used by this session 2,544 0.7 848.0

CPU used when call started 2,541 0.7 847.0

CR blocks created 138 0.0 46.0

Using the Remote Diagnostic Agent
Whenever you report a TAR to Oracle via phone or iTAR, you need to provide details
of your Oracle environment so that the analyst can ensure that any problem investiga-
tion is limited to the appropriate operating system, server platform, and Oracle ver-
sion. This is a necessary, though tedious, part of the process. If you report problems
using iTAR, then you can clone an existing TAR to save time on this stage. In the inter-
ests of proactive problem management, OSS released the Remote Diagnostic Agent
(RDA) towards the end of 2001. RDA is a set of UNIX shell scripts designed to gather
detailed information on the Oracle environment with a goal of collecting information
to aid in problem diagnosis for OSS. However, the information is generically useful
and will probably become a standard part of the DBA tool set in the future and run on
a regular basis. After downloading the RDA tar file from OSS, it’s installed by running
the setup.sh script. This prompts the installer for information about database
instances, including the following:

Enter your: Oracle Home to be Analyzed

Hit Return to Accept Default: /u01/app/oracle/product/8.1.7

============================>

Enter your: Oracle SID to be analyzed

Hit Return to Accept Default: ORAP1

============================>

636 Chapter 27

Enter your: Prefix for all the Files Generated

Hit Return to Accept Default: RDA

============================>

Enter your: OUT_DIR used for all the Files Generated

Hit Return to Accept Default: /opt/oracle/software/u01/app/oracle/rda

============================>

After the initial configuration, running the rda.sh script generates an output file that
can be sent to OSS for diagnostic purposes. Here’s an example:

/u01/app/oracle/rda/RDA.rda.tar.Z

The most detailed information can be gathered if the script runs under the UNIX
root account. At the very least, it should run as the Oracle DBA UNIX group (usually
dba). The simplest way for the customer to view the output is to open the file
RDA_Index.htm either by running a browser from the UNIX server or by making the
information available via a virtual directory if Apache Web Server is running. Basic
Apache configuration is covered in Chapter 4. Alternatively, the files can be copied to
a PC and viewed locally using a Web browser.

Choosing Your Oracle Product Set

You might be wondering what your choice of Oracle products has got to do with sup-
port. I believe there is a very close connection. If you choose to run a nonmainstream
Oracle product, then you’re likely to receive poor levels of support because OSS ana-
lysts that have experience with the product in question won’t be readily available.
Without support available, your outages will be longer, and depending on the exact
nature of the product and the circumstances of its use, the outage could become busi-
ness critical. Many examples from real life can be used to back up this view.

For example, if you’ve used Oracle standby database technology in the past, then the
superior features of Oracle Data Guard available in the Oracle9i version have probably
caught your eye. Oracle Data Guard is covered in depth in Chapter 23. An early prob-
lem with the technology of the production release showed up when the product failed
to create a standby database automatically based on a primary database containing redo
log groups with more than one member. In reality, most production databases would
contain more than one member per group. Oracle testing, performed by the develop-
ment team, had simply not covered this scenario, possibly because the development
team didn’t run the tool in a production configuration likely to be used by a customer.

Another problem manifested itself with LogMiner, which refused to mine logs for a
database containing standby redo log files; LogMiner simply didn’t understand them.
Finally, automatic standby registration was likely to fail on the standby site. This last
scenario took the local Oracle support organization a while to process because the sup-
port analyst had to learn about Oracle standby database technology from scratch and
then convince product development that there was a problem. In themselves, such

Working Effectively with Oracle Support 637

problems might appear insignificant, but reading between the lines, the message is that
Oracle Data Guard testing is not yet fully complete, and that support is not readily
available. These issues take on much more significance on a production system.

If you’ve experienced Oracle’s marketing for Oracle9i, then you’re aware that Ora-
cle Corporation’s stated goal is to run your end-to-end technology stack. If you’re like
me, this gives you cause to question whether or not Oracle can provide the support
required to back up this position. In reality, the answer is definitely “not yet.” If Oracle
is really serious about this proposition, then the infrastructure to support the tools
needs to be proactively put in place first, not as a result of customers experiencing
problems. The standby database scenario is one example. The smaller the customer
base for the product you use, the more likely you are to experience problems using it,
suffer from lack of documentation, and receive inadequate support. It can be difficult
to protect yourself from this kind of risk because Oracle doesn’t publish information
about users taking up specific technologies, but you can try other approaches.

You should always approach Oracle for reference sites when considering using new
Oracle technology, as reference sites can give you a good view of supportability issues
experienced, and the frequency of problem occurrence. If no information is available,
you need to draw your own conclusions from that. IBM famously used the lack of ref-
erence sites on OPS to question the viability of that product in press advertising in
2001. Although it might simply appear to be clever marketing, it has a basis in reality
from my own experience.

On the other hand, Oracle RAC, the successor of OPS, appears to have a real and
exciting future. Although cynics have said that RAC is simply a rebadging of OPS as
part of an image makeover, RAC is actually a different entity that addresses the prob-
lems of OPS and adds much more. The evidence is clear that RAC has a different
future. For example, when the CEO of Intel cites Oracle RAC as a key technology for
delivering the benefits of macroprocessing to an organization, clearly RAC is some-
thing that has a big future. Intel CEO Craig Barrett did just this during a keynote
speech at Oracle OpenWorld in December 2001. If RAC support is not of the highest
quality today, the stated support for the technology from major industry players sug-
gests that it will be in the near future. Oracle RAC is covered in Chapter 22.

The lesson is that before you take up a new Oracle technology in your organization,
you should do extensive research in as many areas as possible before you deploy it.
Supportability is a critical success factor for deployment; you need to look into sup-
portability today and probable improvements in the future, and understand why those
improvements are likely to take place. In some cases, such as the Oracle Intelligent
Agent, it’s clear that the product is becoming a must-have in order to simplify the man-
agement of some of Oracle’s more complex technologies, such as the standby database
covered in Chapter 23. As such, you need to make a call on when, rather than if, you
should deploy it. The old saying that you should avoid deploying the point zero
release of a product seems to be a good one, although it’s a continual source of irrita-
tion for early adopters who want to take advantage of new features immediately.

The support part of the equation is critical and ultimately determines the availabil-
ity of your Oracle systems. Oracle positions the single point of ownership available
from Oracle9i as an advantage from a support perspective because you only have to
deal with one company for all your needs. But this needs to be balanced against the

638 Chapter 27

likelihood of experiencing problems in the first place, and the real availability of sup-
port if you do.

The alternative approach that many companies take is to invest in best-of-breed
technologies for all parts of the technology infrastructure. For example, you might
choose to implement queuing based on the IBM MQ Series rather than Oracle
Advanced Queuing. Or you might choose to use Microsoft’s Active Directory as your
Lightweight Directory Access Protocol (LDAP)-compliant enterprisewide directory,
rather than Oracle Internet Directory (OID).

The challenge in this best-of-breed scenario becomes one of integrating technologies
from different vendors into one seamless whole. As technologies become standards
driven over time, these integration issues diminish, but they are certainly significant.
The question you need to answer is whether problems are more likely from integration
of the technology with the rest of the infrastructure or the technology itself. Integration
problems can be a nightmare to manage, where the many companies involved simply
pass the buck from one to another. On the other hand, if the problem is the technology
itself, is better support likely to come from a world leader focused on that technology
or from a company where the technology has a lower profile and competes for
resources with many others?

In the real world, the problems you experience with a technology appear to correlate
closely with whether you are an early adopter and how many other users are using the
same technology. If you are an early adopter of a product with a small user base, then
the chances are that when you experience a problem, you are the first one to hit it, and
any fix will have to be created from scratch within the product development team. This
poses a risk to the business using the technology because a fix could take too long to
organize before money is lost. Implementing the fix itself can be risky because you
need to be sure that a full regression test of the product has been performed with the
fix in place. The opposite approach means that if you experience a problem, then a fix
is likely to be available already because someone has experienced the problem before
you have. Being an early adopter has some advantages as well as drawbacks. If you
can deploy the technology successfully, then you may gain a business advantage over
your competitors. As an early adopter, it’s also likely that Oracle will be interested in
your view of the product, potentially providing you with the opportunity to influence
its future design.

If you are a user of Microsoft’s Office suite of products, then you probably haven’t
experienced many bugs with those products for several reasons. These include the high
quality of Microsoft’s software engineering, the extensive Beta programs for the prod-
ucts, and, last but probably most important, the existence of millions of users around
the world, any one of which has probably hit an individual problem before you did.

Sometimes you need to make a judgment call to use an Oracle technology in spite of
an apparently small user base, where the alternatives introduce risks of their own and
the Oracle benefits outweigh the risks. I would place Oracle Names and Recovery
Manager (RMAN) in this category. Several years ago, neither was considered main-
stream, and a decision to deploy them required a careful analysis of costs and benefits
alongside extensive testing. Today they are both robust and mainstream. RMAN in
particular has a bright future and has gained an increasingly high profile over time
with the need to back up and recover increasingly large databases.

Working Effectively with Oracle Support 639

Once a product reaches a critical mass in terms of its user base, then you can feel com-
fortable deploying it because the support infrastructure at Oracle is likely to be in place.
Unfortunately, that’s no guarantee that the product will be viable in the long term. For
example, Oracle Names will no longer exist after Oracle9i. However, that doesn’t mean
you should necessarily use the alternative product OID, now or in the future. Today I
would place OID into the high-risk category due to supportability issues and the enter-
prisewide nature of any deployment. Oracle Names will continue to run for some time
to come, and Microsoft’s Active Directory should be carefully evaluated as an alterna-
tive solution. If your organization runs Windows 2000, or plans to, you potentially have
an LDAP-compliant directory available already that is certified compatible by Oracle.
Active Directory is a business-critical and central part of Windows 2000, with a large
user base and the might of Microsoft behind it.

Summary

Oracle Metalink is a fantastic resource for Oracle support and troubleshooting.
Although 24�7 availability has not yet been delivered, the service is due to improve as
Oracle implements its own high-availability features on Metalink.

Oracle views the support relationship with the customer as one of collaboration, and
this is certainly the best way to get results. As a customer, you need to understand Ora-
cle’s requirements of you to get the most from the relationship. If you understand the
OSS analyst role, that can help. Don’t forget that it works both ways: OSS also needs to
proactively check that your needs are being met and what your requirements are as the
customer. Always make sure that an analyst provides a clear plan of action at the out-
set of any problem you report, and that recommendations to apply patches are based
on facts and not hunches. Consider following OSS recommendations for the installa-
tion of add-on packages that enable Oracle to provide support in a more standard way,
such as through STATSPACK and RDA.

Always keep in mind that Oracle Corporation’s goal is for Oracle9i to provide your
whole technology stack through its ever-expanding product set. Inevitably, some of the
newer—and therefore less mature and less widely used—products may be less stable
and trouble free than long-standing products like the relational DBMS (RDBMS). Prob-
lems with these newer products are likely to take longer to fix due to a smaller OSS
knowledge base and lesser availability of analyst expertise to support them. If you use
early releases of such products, then you might find the support infrastructure is not in
place to meet your requirements.

640 Chapter 27

641

As a database administrator (DBA), you’ll be expected to identify and solve all kinds
of problems quickly: database configuration, server configuration, application logic,
and network issues, to name a few. As the person with the broadest knowledge of the
end-to-end system, you will probably be best suited to start investigations. This chap-
ter provides some techniques and tools for troubleshooting different types of Oracle
problems and covers the following topics:

■■ Understanding the UNIX system log

■■ Identifying Oracle shared memory

■■ Using UNIX kernel tracing

■■ Using Oracle and operating system network tracing

■■ Using Oracle event tracing

■■ Operating system performance diagnostics

Understanding the UNIX System Log

The UNIX system log should always be checked by the DBA whenever a database
problem is reported. The system log contains messages that indicate UNIX server
problems that might affect the operation of the database. Here are some examples:

Nov 10 08:19:12 dbcoolsrv1 unix: NOTICE: alloc: /var: file system full

Nov 10 15:06:50 dbcoolsrv1 unix: NOTICE: /u01: out of inodes

Troubleshooting Oracle
DBMS Problems

C H A P T E R

28

The location of the log file is operating-system dependent. For example, on Solaris
the log file is /var/adm/messages and on Linux the file is /var/log/messages. On a
production server, you might expect the UNIX system administrator (SA) group to be
responsible for generating alerts based on the contents of the log. However, any infor-
mation that the DBA can provide to expedite the problem-resolution process can only
reduce potential and actual outages.

Identifying Oracle Shared Memory

If you are running many database instances on a consolidated server, it’s sometimes
necessary to be able to identify the shared memory segment associated with the Sys-
tem Global Area (SGA) of each instance. This is useful if your server is short of mem-
ory or a shutdown has failed to remove the shared memory segment preventing the
database from restarting. The following command shows all the shared memory seg-
ments currently allocated on a Solaris server, along with their owners and size:

$ ipcs -mb

IPC status from <running system> as of Sat Nov 10 11:38:29 2001

T ID KEY MODE OWNER GROUP SEGSZ

Shared Memory:

m 0 0x50000ff7 --rw-r--r-- root root 68

m 201 0x6605adb8 --rw-r----- oracle dba 54714368

m 202 0x5ebba7d8 --rw-r----- oracle dba 252207104

In the past, it was difficult to associate the shared memory IDs with each Oracle
instance. Oracle has recognized this problem and now provides a command-line util-
ity, sysresv, in recent versions to display the shared memory segment ID and sema-
phores allocated for each instance. If you have multiple versions of Oracle on your
server, you need to run sysresv for that version. You can use a Korn shell alias as fol-
lows to generate a list of Oracle System IDs (SIDs) that appear to be up on the server,
and pass them to sysresv to give the following results:

$ alias sids='ps -deaf|grep dbw0|grep -v grep|sed s=.*dbw0_==|xargs'

$ sids

ORAD1 ORAD2

$ sysresv -d on -l 'sids'

IPC Resources for ORACLE_SID "ORAD1" :

Shared Memory:

ID KEY

201 0x6605adb8

Semaphores:

ID KEY

196608 0x1fd35560

1 0x1fd35561

2 0x1fd35562

Oracle Instance alive for sid "ORAD1"

642 Chapter 28

IPC Resources for ORACLE_SID "ORAD2" :

Shared Memory:

ID KEY

202 0x5ebba7d8

Semaphores:

ID KEY

196611 0x372bd3e0

4 0x372bd3e1

5 0x372bd3e2

Oracle Instance alive for sid "ORAD2"

Using UNIX Kernel Tracing

UNIX kernel tracing enables you to log all UNIX system calls made by a process. Sys-
tem calls are the low-level operating system kernel calls that program code makes to
access operating system services, such as those required to open files and read their
contents. Kernel tracing can be used at program startup time or act on an existing
process. For the case of the Oracle executable itself, system calls include those used to
allocate operating system resources such as shared memory and semaphores that are
required to start up an Oracle instance.

For obscure Oracle startup problems, tracing can be very useful. It’s also useful
when Oracle doesn’t seem to be locating files where you expect, such as sqlnet.ora. In
this case, file open() calls can be traced to show you exactly what files Oracle searched
for, in what order, and what was found.

Finally, tracing can be very useful for situations where access to an underlying Ora-
cle service passes through several layers of code, possibly even in different processes.
Code that uses Oracle’s external procedures is a good example. This section shows
examples of all three cases, but there are many other potential uses. The examples are
all real-world problems solved by tracing system calls on Solaris, which uses the
TRUSS command for this purpose. Other UNIX systems have similar utilities. For
example, HP-UX 11 uses TUSC, and Linux provides STRACE.

Tracing Database Startup Problems
During startup of an Oracle instance, the following error occurred:

SQL> startup

ORA-24323: value not allowed

ORA-03113: end-of-file on communication channel

Whenever an Oracle error is reported, your first action should be to check the cause
and action provided by the Oracle oerr utility:

$ oerr ora 24323

24323, 00000, "value not allowed"

// *Cause: A null value or a bogus value was passed in for a mandatory

// parameter.

Troubleshooting Oracle DBMS Problems 643

// *Action: Verify that all mandatory parameters are properly

initialized.

In this case, no trace files were produced in the trace directory identified by the
user_dump_dest initialization parameter, and no additional information was found in
the Oracle alert log, which is located in the directory given by the background_
dump_dest initialization parameter. Oracle database management system (DBMS)-
generated trace information can often identify the cause of a problem immediately.

The challenge in this case was to identify the parameter causing the problem when
no additional trace or alter log information was available. A search of Metalink sug-
gested a problem with some UNIX limits in the kernel without being specific about
which and without pinpointing the init.ora parameter causing the problem. At this
point, the STARTUP command was reexecuted using the following TRUSS command
to trace the SQL*Plus command that was used to start up the instance:

$ truss -wall -rall -o /tmp/truss.log -f sqlplus "/ as sysdba"

Truss output can be very verbose, especially when used with the -rall and -wall com-
mands that display the first few hundred bytes read and written by every read() and
write() system call. Reads and writes include those on network interfaces, not just files.
In the example, truss output is logged to the file /tmp/truss.log. The -f option causes
any forked processes to be traced also. In this case, -f is crucial to identifying the prob-
lem because SQL*Plus doesn’t actually start the database. In fact, the $ORACLE_
HOME/bin/oracle executable is spawned by SQL*Plus, and the spawned process
starts the database.

Based on Metalink information about possible causes, the system calls reported in
the truss output can be searched for lines that identify a possible UNIX kernel resource
shortage. System calls return errors from a standard set, which on most UNIX systems
can be found in the file /usr/include/sys/errno.h. Additional information can be
found in the UNIX manual pages using man errno. For example, the return code that
identifies a resource shortage related to disk space, semaphores, and shared memory
has the following from /usr/include/sys/errno.h:

#define ENOSPC 28 /* No space left on device */

Conveniently, the truss output reports the same #define string as the one defined in
the header file. A search of the truss output for the string ENOSPC shows the follow-
ing, where the string of digits followed by a colon at the start of each line is the process
ID of the process being traced:

9120: semget(-224336631, 77, 0640|IPC_CREAT|IPC_EXCL) Err#a28 ENOSPC

9120: semctl(3145728, 0, IPC_RMID, 0) = 0

9120: close(9) = 0

9120: shmctl(3001, IPC_RMID, 0) = 0

9120: shmdt(0x80000000) = 0

9120: Incurred fault #6, FLTBOUNDS %pc = 0xEF5D8AA0

9120: siginfo: SIGSEGV SEGV_MAPERR addr=0xEF7FFDB4

9120: Received signal #11, SIGSEGV [caught]

644 Chapter 28

TE
AM
FL
Y

Team-Fly®

9120: siginfo: SIGSEGV SEGV_MAPERR addr=0xEF7FFDB4

9120: *** process killed ***

The startup problem appears to be related to a failure to allocate a semaphore
because the semget() system call has failed, returning an ENOSPC error, with the result
that the oracle process has been killed instead of starting up the database as planned.
Semaphores are data structures (provided by the UNIX kernel) that applications can use
to synchronize access to data. The number of semaphores required is related to the
PROCESSES parameter in the init.ora file, which in this case is 500. The number of avail-
able semaphores that can be created is limited by settings in the /etc/system file that
control the total number of semaphores that the UNIX kernel can allocate systemwide.

In this example, the UNIX kernel settings did not follow the recommendations in
Chapter 1, and two other database instances were already started, causing some of the
available semaphores to be allocated already. Rather than increasing the available sem-
aphores, which would require a server reboot, the PROCESSES parameter was reduced
to 30 in the init.ora file and the database started without a problem. Resolving this
problem required expertise in understanding the relationship between the init.ora
PROCESSES parameter and UNIX semaphore allocation. You might reasonably expect
a professional Oracle DBA to have such expertise, but the problem would not have been
solved quickly without the ability to identify the underlying cause through system call
tracing. Once you have analyzed a few traces, inspecting the output is straightforward.

Locating the Legato Media Interface
in Oracle9i
In Oracle8i on Solaris, if you wanted to stream backup data from Recovery Manager
(RMAN) to a Legato tape library, it was necessary to remove the Oracle-supplied test
library $ORACLE_HOME/lib/libobk.so and re-create it as a link to the Legato media
management interface in /usr/lib/libobk.so. This is covered in Chapter 18.

In Oracle9i, no such instructions are provided, and no test library is installed into
$ORACLE_HOME/lib/libobk.so. On the face of it, it might appear that the Legato
interface is no longer available. This is, of course, not the case. Oracle has actually
improved the design of the DBMS so that the default location of the Legato interface is
searched by default, without the need to create the link.

Oracle provides the sbttest program to enable a simple backup of a named file to a
Legato server through the media management software interface, without the need for
a full database backup. This is useful for confirming that your Oracle-to-Legato inter-
face is working correctly. The following SBTTEST command can be traced with TRUSS
to show exactly where and how Oracle locates the Legato media management software:

$ truss -wall -rall -o /tmp/truss.log -f $ORACLE_HOME/bin/sbttest

symfind

.

.

.

9816: open("/u01/prod/9.0.1/lib/libobk.so", O_RDONLY) Err#2 ENOENT

9816: open("/opt/SUNWcluster/lib/libobk.so", O_RDONLY) Err#2 ENOENT

Troubleshooting Oracle DBMS Problems 645

9816: open("/u01/prod/9.0.1/lib/libobk.so", O_RDONLY) Err#2 ENOENT

9816: open("/usr/lib/libobk.so", O_RDONLY) = 4

.

.

.

In this case, the trace output shows exactly the order in which Oracle searches for
the Legato library libobk.so in Oracle9i. The library is first searched for under
$ORACLE_HOME/lib. The return code ENOENT from the file open() system call indi-
cates that the file couldn’t be found there, as shown from the description of the error
code in errno.h:

#define ENOENT 2 /* No such file or directory */

After searching in the default Solaris SUNWcluster directory, the file is eventually
found in /usr/lib, where it is opened in read-only mode. The return code 4 is the file
handle used to reference the library in any subsequent read() system calls. A similar
approach can be useful when determining the search path for Oracle’s network soft-
ware configuration files. This example demonstrates that Oracle attempts to locate a
Lightweight Directory Access Protocol (LDAP) server first in the ldap.ora file, which in
this case isn’t present, and then searches for sqlnet.ora, which is found in /var/opt/
oracle:

9119: access("/u01/prod/8.1.7/network/admin/ldap.ora", 0) Err#2 ENOENT

9119: access("/var/opt/oracle/sqlnet.ora", 0) = 0

9119: open("/var/opt/oracle/sqlnet.ora", O_RDONLY) = 8

Tracing External Procedures
This final example shows a failed attempt to call an external procedure in a shared
library, and uses tracing to identify where the error occurred. You can see a complete
example of linking external procedures into the Oracle DBMS using dbcool_utl.so,
which can be downloaded from the companion Web site for this book. The following
Structured Query Language (SQL) was used to create the library reference:

create or replace library LIB_DBCOOL_UTL as

'/u01/app/oracle/lib/dbcool_utl.so';

Next, the following SQL was run to call routines in the shared library in order to dis-
play the UNIX mount point and free disk space on the mount point for all the database
files:

select file_name,

dbcool_utl.disk_free(file_name),

dbcool_utl.mount_point(file_name)

from dba_data_files;

646 Chapter 28

An error, “ORA-28576: lost RPC connection to external procedure agent,” was
returned. This error has several possible causes. To identify the root cause, the first step
is to trace the call from the SQL executed in the client session through to the shared
library on the server. In this case, you need to trace an existing process, the Transpar-
ent Network Substrate (TNS) listener, and any processes it spawns by providing the
process ID after the -p argument. The listener process, PID 2162, contacts the external
procedure via the external process listener, and it can be traced as follows, with some
trace output provided:

$ truss -wall -rall -o /tmp/truss.log -f -p 2162

2162: poll(0x00127B64, 5, -1) (sleeping...)

13410: execve("/u01/app/oracle/product/9.0.1/bin/extproc", 0x00146580,

0x001835C0) argc = 2

13410: open("/u01/app/oracle/lib/dbcool_utl.so", O_RDONLY) = 5

13412: execve("/bin/sh", 0xEFFFE4E0, 0xEFFFFC28) argc = 3

13414: execve("/usr/sbin/df", 0x000386B4, 0x00038784) argc = 3

The trace output shows that the listener was originally in a sleeping state awaiting
connection requests. Upon receiving the call to the external procedure dbcool_utl.
disk_free, the listener then spawned the extproc process, which opened the shared
library dbcool_utl.so. The shared library ran a shell to execute the UNIX df command
to find the mount point and the disk for the first file name returned from dba_
data_files. In this example, the df command should have executed once for each file in
dba_data_files, and the failure to display subsequent calls to df indicates that the
shared library contains a code bug that caused the process to crash. This problem needs
to be fixed by the developer of the shared library. Incidentally, because Oracle runs
external procedures in a separate address space from the database shadow process (as
shown), any crashes that occur in external procedure calls can’t cause the database or
even the client session to crash.

Using Network Tracing

Network tracing is an extremely useful technique for investigating both Oracle con-
nectivity and performance issues. Oracle provides an extensive tracing capability built
in to Oracle Net. To analyze performance issues, it can be useful to view the actual
Transmission Control Protocol/Internet Protocol (TCP/IP) network packet. This can
be achieved through the use of an operating system network trace tool.

Operating System Network Tracing
All Oracle DBAs on UNIX should familiarize themselves with the tools in this section.
With the increasing prevalence of multitiered applications that include Oracle in the
technology stack, it’s essential that the DBA has a basic understanding of how to trace
network problems.

Troubleshooting Oracle DBMS Problems 647

The Netstat Utility

Netstat displays the contents of various network-related data structures in various for-
mats, depending on the command-line options chosen. For example, “netstat -a”
shows the state of all TCP/IP sockets. If you want to confirm that the Oracle network
listener is operating on the default listener port of 1521, you can check the status of it
using the following command:

$ netstat -an|grep LISTEN |grep 1521

*.1521 *.* 0 0 0 0 LISTEN

The wildcard *.* shows that the listener will accept connections from any client, and
LISTEN shows that the port is in a listening state. It’s a good idea to always use the -n
argument in combination with -a. The -n argument ensures that any named network
services in the /etc/services file are displayed by port number rather than name. So, if
the following appeared in /etc/services, then the oracle listener would appear in the
netstat -a output by name rather than by port if the -n option was not provided:

$ grep listen /etc/services

listener 1521/tcp # Oracle Listener V2

$ netstat -a|grep LISTEN

*.listener *.* 0 0 0 0 LISTEN

If you are running any product, not just Oracle related, that listens on a network
port, then netstat is useful for checking if the port is already in use by another applica-
tion. One limitation of netstat is that it can show whether a port is in use, but it doesn’t
show the UNIX process that has opened the port. If a port is in use by another applica-
tion, you probably need to know what that is. To find the process holding a port open,
you need lsof.

The lsof Utility

Lsof is a UNIX utility that lists open files. It’s available free for many UNIX systems,
such as HP, Solaris, and Linux. However, the name doesn’t do justice to its full capabil-
ities. Lsof includes network ports in its list of open files. So if you discover that another
process appears to be holding a port open according to netstat, you can use lsof to find
the process. Lsof can identify if a port is in use on its own. However, as it can take a
while to run, it’s best to use netstat first to confirm that the port is in use. The following
command shows all TCP open sockets, and the process ID owning the socket:

$ lsof -i tcp

648 Chapter 28

Sometimes netstat and lsof output don’t match. This is because lsof retrieves its
information from open file system objects, such as sockets, while netstat usually gets
its output from kernel lookup tables. Occasionally, netstat may report on sockets that
don’t exist in lsof if those sockets are open at the network level but closed at the appli-
cation level. For example, sockets reported in the FIN_WAIT_1 and FIN_WAIT_2 state
in netstat can occur after an application has closed a socket. As result, the socket dis-
appears from the lsof list. However, if the FIN packet sent to the remote machine dur-
ing the close-socket procedure has not been acknowledged because the remote
machine has crashed, for example, the UNIX kernel will hold the sockets in
FIN_WAIT_1 and FIN_WAIT_2 states and retransmit for a few minutes. The sockets
will only disappear from the netstat output after a timeout period has elapsed. It is
possible to modify TCP/IP settings to change the timeout values, but this is not rec-
ommended without a complete understanding of the side effects of any changes.

The Snoop Utility

Solaris snoop is a command utility that captures packets from the network and dis-
plays their contents in real time or saves them to a file for later inspection. Other UNIX
variants (including Linux) have similar utilities, such as tcpdump. Snoop is a very use-
ful program, but at the same a very dangerous program because it can run in what is
referred to as promiscuous mode, which reports on all TCP/IP traffic, not just traffic
intended for the host where it runs. Running “snoop -P” can disable promiscuous
mode. By default, snoop requires root privileges to run. The following command cap-
tures all traffic passing in or out of the current server into the file net.text:

$ snoop -o net.txt

After a period of time, the command can be cancelled and the file contents inspected
using the following command:

$ snoop -i net.txt -V -x 0 -t a >net.text.snoop

The -V and -x 0 arguments cause the full contents of each packet to be saved to the
file net.text.snoop along with the wallclock time reported by -t a. The following output
from net.text.snoop shows the first part of the TCP/IP packet resulting from the SQL
query SELECT * FROM EMP. This shows the result set exactly as it appears in the net-
work packet, along with the TCP/IP header that identifies the source and destination
machine addresses, and the wallclock time:

106 21:51:29.26136 dbcoolpc1 -> 198.231.35.23 ETHER Type=0800 (IP),

size = 1010 bytes

106 21:51:29.26136 dbcoolpc1 -> 198.231.35.23 IP D=198.231.35.23

S=172.28.142.128 LEN=996, ID=36272

106 21:51:29.26136 dbcoolpc1 -> 198.231.35.23 TCP D=2857 S=1521

Ack=202482359 Seq=3406210470 Len=956 Win=9520

0: 0000 0c07 ac02 0800 2089 653f 0800 4500e?..E.

16: 03e4 8db0 4000 ff06 b4b6 ac1c 9f91 c6e7@

Troubleshooting Oracle DBMS Problems 649

32: 2317 05f1 0b29 cb06 a5a6 0c11 a2b7 5018 #)P.

48: 2530 dc10 0000 03bc 0000 0600 0000 0000 %0

64: 0602 0108 0001 d700 0000 0704 3733 3639 7369

80: 0000 0553 4d49 5448 0000 0543 4c45 524b . . . SMITH . . . CLERK

96: 0000 0437 3930 3200 0009 3137 2d44 4543 . . . 7902 . . . 17-DEC

112: 2d38 3000 0003 3830 3000 0000 8101 0205 -80 . . . 800

128: 7d02 3230 0000 0704 3734 3939 0000 0541 }.207499 . . . A

144: 4c4c 454e 0000 0853 414c 4553 4d41 4e00 LLEN . . . SALESMAN.

Chapter 9 shows how Oracle network performance can be improved by the appro-
priate choice of array size.

Oracle Net Tracing
Oracle provides a sophisticated and extensive network tracing facility for diagnosing
Oracle connectivity problems on both the client and server. For example, consider a sit-
uation where a company has suffered a site disaster, resulting in the relocation of data-
bases to different servers on a disaster recovery (DR) site. An old application that has
been running for years is no longer able to connect, and connection attempts return
“ORA-12535 TNS:operation timed out” errors. In this case, the challenge is to identify
the database that the application is attempting to connect to because the Oracle TNS
alias used to connect to the database is embedded in the application executable rather
than supplied by the user at logon time. The client’s sqlnet.log file always contains suf-
ficient information to identify the server and database instance to which the connec-
tion was attempted, through the HOST� and SID� log information. Connection
attempts that fail always log information to sqlnet.log, as in this case:

Fatal OSN connect error 12203, connecting to:

(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)

HOST=dbcoolsrv1.dbcool.com)(PORT=1521)))(CONNECT_DATA=(SID=ORAD1)(CID=

(PROGRAM=OraApp.exe)(HOST=DBCOOLPC1)(USER=IngramG))))

VERSION INFORMATION:

TNS for 32-bit Windows: Version 2.3.4.0.0 - Production

Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows: Version

2.3.4.0.0 - Production

Time: 29-OCT-01 13:08:28

Tracing not turned on.

Tns error struct:

nr err code: 12203

TNS-12203: TNS:unable to connect to destination

ns main err code: 12535

TNS-12535: TNS:operation timed out

650 Chapter 28

As recommended in Chapter 3 on network configuration, you should always pro-
vide an explicit path for the location of the sqlnet.log file on the client PC from where
the connection request originates through the use of the following setting in the sqlnet
.ora file:

log_directory_client=C:\temp

If you fail to set the directory explicitly, the sqlnet.log file is created in the directory
from which the application is launched, which can make locating the log a chore when
a client PC uses many different Microsoft network shares to launch applications. As
well as logging data on simple connectivity problems, Oracle Net can log and trace
information on network name resolution and client-server data traffic through the fol-
lowing parameters in sqlnet.ora:

trace_level_client=16 # values USER|ADMIN|OFF|16

trace_directory_client=c:\trc # use an explicit directory for files

trace_unique_client=true # create a new file for each session

The next section on Oracle event tracing shows a nice example of how you can use
the client trace information to identify the location of PL/SQL code errors. Oracle9i has
an enhancement that means you can determine the TNS alias resolution method used
for Oracle network names by running tnsping, which now reports the name resolution
method. In previous versions of the Oracle client, it was necessary to enable client-side
tracing to determine if a name was resolved locally through tnsnames.ora or through
an Oracle Names or LDAP server. The tnsping output in Oracle9i reports the location
of the sqlnet.ora file used and the resolution method as follows:

Used parameter files:

/var/opt/oracle/sqlnet.ora

Used ONAMES adapter to resolve the alias

The 9i tnsping program provides an additional benefit by reporting on the
CONNECT_DATA component of the service name. In previous versions, the
CONNECT_DATA value wasn’t provided, meaning that you had to search your
tnsnames.ora file or query the full details from the Names server. On the server, simi-
lar trace and logging facilities are provided to help diagnose connectivity issues at the
server end through the following settings in the listener.ora file:

log_directory_listener = /tmp/trc

trace_directory_listener = /tmp/trc

trace_level_listener=16

Unlike the client settings, the server log and trace settings can be displayed and
modified while the listener is running, as shown in the following examples:

$ lsnrctl show trc_directory # or trc_level or trc_file

$ lsnrctl show log_directory # or log_status or log_file

Troubleshooting Oracle DBMS Problems 651

$ lsncrtl set trc_level 4 # set level 4 trace

$ lsnrctl set trc_directory /tmp

$ lsnrctl set log_status off

$ lsnrctl save_config_on_stop # save dynamic settings on stop

Using Oracle Event Tracing

Oracle event tracing can be used both for determining the code location of errors and
for additional performance tracing of SQL statements above and beyond the basic trace
you get with ALTER SESSION SET SQL_TRACE TRUE. Basic SQL tracing is covered in
Chapter 9.

Event Tracing for Errors
Oracle event tracing enables you to trigger the dumping of trace information into text
files in the user_dump_dest directory when specific Oracle errors occur in order to
identify exactly what caused an Oracle error. Here’s a real-life example, with a few
details changed to protect the guilty, that demonstrates the power of Oracle event trac-
ing. In this example, a developer has created an application that doesn’t follow the rec-
ommendations made in Chapter 6 on designing supportable applications. The
application calls an Oracle procedure that generates an error, “ORA-06502: PL/SQL:
numeric or value error,” along with an error stack that provides the procedure name
that caused the problem and the exact line in the code.

Unfortunately, the Oracle error reported to the user by the application is simply
“ORA-06502: a serious error occurred” without identification of the routine and line
number where the error occurred. In this case, the developer decided to report only on
the error code. The challenge is to find out exactly where in the code the error
occurred, what SQL caused it, and why. Given that a typical application may call
many different packages and procedures, and execute thousands of lines of code, at
first sight this problem is akin to finding a needle in a haystack. An example follows
that simulates the real-world problem based on a procedure that takes a single param-
eter as follows:

procedure my_procedure(p_in number) as

l_number number(3);

begin

l_number := p_in;

end;

One way to identify the error is to enable Oracle Net tracing on the client, as demon-
strated earlier in the chapter. Oracle always returns unhandled errors to the client
application, even if the application chooses not to report the complete message passed
back from the server. The error information can be viewed in the network trace on the
client. When MY_PROCEDURE is called with parameter 12345, the level-16 network
trace on the client contains the following:

652 Chapter 28

nsprecv: 87 4F 52 41 2D 30 36 35 |.ORA-065|

nsprecv: 30 32 3A 20 50 4C 2F 53 |02: PL/S|

nsprecv: 51 4C 3A 20 6E 75 6D 65 |QL: nume|

nsprecv: 72 69 63 20 6F 72 20 76 |ric or v|

nsprecv: 61 6C 75 65 20 65 72 72 |alue err|

nsprecv: 6F 72 3A 20 6E 75 6D 62 |or: numb|

nsprecv: 65 72 20 70 72 65 63 69 |er preci|

nsprecv: 73 69 6F 6E 20 74 6F 6F |sion too|

nsprecv: 20 6C 61 72 67 65 0A 4F | large.O|

nsprecv: 52 41 2D 30 36 35 31 32 |RA-06512|

nsprecv: 3A 20 61 74 20 22 53 59 |: at "SY|

nsprecv: 53 54 45 4D 2E 4D 59 5F |STEM.MY_|

nsprecv: 50 52 4F 43 45 44 55 52 |PROCEDUR|

nsprecv: 45 22 2C 20 6C 69 6E 65 |E", line|

nsprecv: 20 34 0A 4F 52 41 2D 30 | 4.ORA-0|

nsprecv: 36 35 31 32 3A 20 61 74 |6512: at|

nsprecv: 20 6C 69 6E 65 20 35 0A | line 5.|

So far, so good. This output in the network trace clearly identifies the exact location
of the problem as line 5 in the procedure MY_PROCEDURE. This approach is fine for
a two-tier client server application, when the user and client PC details are known in
advance. The problem becomes several degrees more difficult to trap when the appli-
cation is a three-tier application, the database client middleware runs on an NT server,
and the middleware uses connection pooling. Through connection pooling, the mid-
dleware routes all client requests through one of several application queues that all use
an Oracle account named APPWARE.

In this case, the DBA can’t access the sqlnet.ora file to add tracing because the mid-
dleware server is on a remote site without remote access available. Also, the actual
middleware connection to the database for a given client user can’t be identified in
advance due to the use of connection pooling. Connection pooling shares Oracle re-
sources for a single server process between several end-user sessions at once. This has
the advantage of making better use of server resources, at the cost of making it more
difficult to trace the flow of data from an end-user request through to the database ses-
sion that executed it. Even in complex scenarios like this, the DBA can dump Oracle
trace information to identify the code location through the use of event tracing. Oracle
states that event tracing should only be enabled on the instructions of Oracle Support.
Of course, you can do it yourself if you understand the implications. The following
SQL statements show how to trigger trace dumps whenever the error 6502 occurs in
the current session:

REM smaller trace than systemstate level 10...

alter session set events '6502 trace name errorstack level 3';

REM more detailed trace...

alter session set events '6502 trace name systemstate level 10';

This solution is inadequate in our example because our requirement is to set the
event trace in all sessions owned by the account APPWARE because we don’t know the

Troubleshooting Oracle DBMS Problems 653

problematic session in advance. The unsupported procedure SYS.DBMS_SYSTEM.
SET_EV allows the DBA to enable event tracing for other sessions. As usual, unsup-
ported doesn’t mean the procedure doesn’t work. It actually means that Oracle Sup-
port won’t answer questions on the procedure behavior or provide support if it doesn’t
work. It works fine for Oracle8i and 9i. The following SQL generates PL/SQL calls to
set 6502 tracing on sessions with the owner APPWARE:

select ‘begin dbms_system.set_ev('||sid||','||serial#||','

||6502||','||3||','||

'''ERRORSTACK''); end;' run_cool_sql

from v$session where username='APPWARE';

RUN_COOL_SQL

--

begin dbms_system.set_ev(7,1069,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(8,160,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(9,87,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(10,10,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(11,30,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(12,6,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(13,9,6502,3,'ERRORSTACK'); end;

begin dbms_system.set_ev(14,7,6502,3,'ERRORSTACK'); end;

The PL/SQL blocks need to be executed as SYS to enable the trace. If you use
DbCool, you can execute the SQL to deliver results to the grid, then right-click the grid,
and use the RUN_COOL_SQL feature to execute all the generated calls with minimal
effort. Here are two fragments of the trace information in one of the generated trace
files in the server trace file directory (identified by the user_dump_dest initialization
parameter) that identify exactly where the ORA-06502 error occurred, and the value of
the bind variable passed in that caused the overflow:

*** SESSION ID:(13.25) 2001-11-10 10:15:49.529

*** 2001-11-10 10:15:49.529

ksedmp: internal or fatal error

ORA-06502: PL/SQL: numeric or value error: number precision too large

Current SQL statement for this session:

declare

begin

SYSTEM.MY_PROCEDURE(P_IN=>:P_IN);

end;

----- PL/SQL Call Stack -----

object line object

handle number name

81c3e30c 4 procedure SYSTEM.MY_PROCEDURE

81c459ec 5 anonymous block

.

654 Chapter 28

TE
AM
FL
Y

Team-Fly®

.

.

Cursor 13 (25d8790): CURBOUND curiob: 25ef0cc

curflg: 44 curpar: 0 curusr: 0 curses 82dbc0bc

cursor name: declare

begin

SYSTEM.MY_PROCEDURE(P_IN=>:P_IN);

end;

child pin: 8278c554, child lock: 8277aaa8, parent lock: 827950c4

xscflg: 110664, parent handle: 81c4726c, xscfl2: d100000

lng hand: 25d9e00

nxt: 1.0x000000f8

Cursor frame allocation dump:

frm: -------- Comment -------- Size Seg Off

bind 0: dty=1 mxl=4000(4000) mal=00 scl=00 pre=00 oacflg=01 oacfl2=0

size=4000 offset=0

bfp=025ebdf0 bln=4000 avl=05 flg=05

value="12345"

This information should be sufficient to identify the root cause of the problem and
fix it. In this simulation, we know the value passed was 12345. In the real-world sce-
nario that this example simulates, the procedure call actually took place several levels
down the call stack from the procedure executed by the user, and the input value
wasn’t known until the trace was generated. The tracing technique enables the under-
lying problem to be identified in all cases. Chapter 6 contains tips on how to prevent
such problems occurring in the first place. It’s interesting to analyze how such prob-
lems are caused. In the real-world problem that this example simulates, the application
generated internal numeric IDs for user accounts. Over a period of years, the IDs grew
from two digits in length to eventually require five digits, resulting in the value
extending beyond a four-digit PL/SQL number variable used in the code, causing the
ORA-06502. As a result, the application continued to work for older users and stopped
working for users created after a certain date. Bizarre problems like this usually have a
perfectly simple explanation once you find where the problem occurred. Finding the
location of the problem is the hard part.

It’s absolutely critical that any trace is disabled as soon as possible after information
has been collected. The trace files can grow very large, very quickly, and impact the
performance of the DBMS. Disabling the trace for a session can be achieved by passing
a value of 0 for the error level and reexecuting the call to SET_EV as follows:

select ‘begin dbms_system.set_ev('||sid||','||serial#||','

||6502||','||0||','||

'''ERRORSTACK''); end;' run_cool_sql

from v$session where username='APPWARE';

Alternatively, the SID and SERIAL# arguments can be passed as NULL values to
disable trace for all sessions.

Troubleshooting Oracle DBMS Problems 655

Event Tracing for Performance
Problems
You’re no doubt familiar with using standard SQL trace to enable the tracing of SQL
statements for performance analysis as shown in Chapter 9. You can use SET_EV to
trace the values of bind variables and session waits, in addition to the standard trace
that is generated with ALTER SESSION SET SQL_TRACE TRUE. This is enabled
through the 10046 event. The following example shows PL/SQL calls to SET_EV using
the event 10046 and various trace levels for the session identified by SID 8 and
SERIAL# 149:

REM identical to ALTER SESSION SET SQL_TRACE TRUE, level 1

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>1,NM=>'');end;

REM trace SQL with bind variables, level 5

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>5,NM=>'');end;

REM trace SQL with event waits, level 9

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>9,NM=>'');end;

REM trace SQL with bind variables, event waits, level 13

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>13,NM=>'');end;

REM trace off for one session, level 0

begin SYS.DBMS_SYSTEM.SET_EV(SI=>8,SE=>149,EV=>10046,LE=>0,NM=>'');end;

Don’t forget that you must disable the trace as soon as possible, as the files can grow
very large, very quickly, slowing DBMS performance and filling the user_dump_dest
directory. To disable trace manually, you need to repeat the original calls for each ses-
sion using a value of LE��0. Alternatively, the SID and SERIAL# arguments can be
passed as NULL values to disable trace for all sessions. DbCool provides a user-
friendly interface for enabling and disabling trace levels, accessible from the Debug
main menu, as shown in Figure 28.1.

Determining Which Events
Are Enabled
In order to turn trace off for all those events you have enabled, it would be useful if
Oracle provided a procedure to report on this information, in case you accidentally for-
get to turn it off. Unfortunately, it’s only possible to report on enabled events in the cur-
rent session, which has limited use in the real world, as you’ll probably be using the
facility to trace other sessions. The following is a widely published method to report on
events enabled in the current session using SQL*Plus:

set serveroutput on

declare

event_level number;

begin

656 Chapter 28

-- for each possible event

for i in 10000..10999 loop

sys.dbms_system.read_ev(i,event_level);

if (event_level > 0) then

dbms_output.put_line('Event '||to_char(i)||' level '||

to_char(event_level));

end if;

end loop;

end;

/

DbCool can disable event tracing for the 10046 event, as shown in the previous sec-
tion, by generating calls to disable the trace, which the user can apply in all sessions via
the graphical user interface (GUI). This approach could be extended to generate calls to
disable all events in all sessions by iterating over each possible event for each session
and executing a SET_EV cal using a level (LE parameter) value of 0.

Operating System Performance Diagnostics

Strictly speaking, host performance management and monitoring should be a service
provided by the UNIX SA group in your organization using procedures and tools to
meet a set of requirements. As a DBA, it’s useful to have at least a basic understanding

Troubleshooting Oracle DBMS Problems 657

Figure 28.1 Setting event tracing using DbCool.

of how to diagnose server performance problems and their relationship with database
performance. This section covers tools—some are Solaris specific—that enable the
DBA to identify server resource usage in terms of central processing unit (CPU),
input/output (I/O), memory, and network utilization. These tools are typically used to
diagnose the cause of problems in response to a report that the system is running slow.

Identification of Top CPU Processes
The UNIX top utility is a free program (available for all popular UNIX systems) that
displays a process list ordered by top CPU consumption typically over the previous
few seconds. To report CPU usage for each process on Solaris, a percentage value is
displayed, where the total CPU capacity on a server is 100 percent. This means that on
a four-processor machine, a single process may consume up to 25 percent of the CPU,
or 50 percent on a two-processor machine. For each Oracle process, the RES column
(indicating the memory resident set size of a process) should be viewed with care as
the value includes the size of the SGA shared memory segment, which is actually allo-
cated once only and attached to each Oracle process as a shared resource. Figure 28.2
shows a top snapshot for a two-processor server during an Oracle import.

Memory Utilization
All modern UNIX systems use virtual memory to enable a server to provide more
memory to applications than is physically available. Blocks are paged in and out to
disk on demand, using the swap partition as a backing store. When excessive paging
takes place, the I/O demands on the system can cause a severe performance degrada-
tion because disk blocks are orders of magnitude slower than memory to access. On

658 Chapter 28

Figure 28.2 Output from the UNIX top utility.

many UNIX systems, the vmstat command-line utility is available to report on virtual
memory usage as shown in the following example on Solaris:

$ vmstat 5

procs memory page disk faults cpu

r b w swap free re mf pi po fr de sr s0 s1 s2 s3 in sy cs us sy id

0 0 0 11456 4130 1 41 19 1 3 0 2 0 4 0 0 48 112 130 4 14 82

0 0 1 10132 4200 0 4 44 0 0 0 0 0 23 0 0 211 230 144 3 35 62

0 0 1 10132 4610 0 0 20 0 0 0 0 0 19 0 0 150 172 146 3 33 64

A high value in the sr column, representing the page scan rate in pages per second,
is usually accepted to be the best indicator of excessive paging. If the sr column con-
tains values on the order of thousands, then the server may be experiencing a real
RAM shortage that is impacting overall server performance. This awk script displays
the scan rate every five seconds:

$ vmstat -S 5 | awk '{ print $12 }'

sr

73

1351

1041

1000

1516

Excessive paging is caused by a shortage of real memory required by applications
running on the server. Real memory shortages can be caused by applications, includ-
ing Oracle’s own, that leak memory over time, causing a gradual increase in memory
requirements on the system. Memory leaks are usually caused by code bugs where a
programmer allocates memory dynamically at run time, doesn’t free the memory, and
then overwrites the original pointer. This dynamic memory is allocated from what is
referred to as the heap, or the total pool of available memory on the server. Memory
leaks may individually be small, as little as a few hundred bytes at a time. For a mid-
dleware server process that remains up and running for weeks at a time, these small
wasted allocations can grow into hundreds of MB of wasted memory. On Solaris, the
SZ column in the output of the ps -l command shows the total virtual memory size of
each process in machine pages. The top command can provide similar information.
Solaris also provides a suite of extremely useful programs in /usr/proc/bin (Solaris
2.6) and /usr/bin (Solaris 2.8) to report on detailed process information. The pmap
program produces a detailed map of process memory, showing the type of memory
allocated to the process in various categories. The following output shows pmap infor-
mation from the Oracle Java Runtime Engine (JRE) used by Oracle Enterprise Manager
(OEM), which includes a dynamic memory allocation of 11MB out of a total of 30MB:

/usr/proc/bin/pmap 14658

14658: /jre/1.1.8/bin/../bin/sparc/native_threads/jre -nojit

00010000 16K read/exec

Troubleshooting Oracle DBMS Problems 659

/jre/1.1.8/bin/sparc/native_threads/jre

00022000 16K read/write/exec

/jre/1.1.8/bin/sparc/native_threads/jre

00026000 11304K read/write/exec [heap]

.

.

.

total 30112K

Linux also provides a very similar facility through /proc, which is a pseudo file sys-
tem used as an interface to kernel data structures related to per-process memory, file,
and CPU use. For example, to display status information for the process with PID you
would run:

$ cat /proc/20552/status

Disk I/O
The iostat command-line utility reports disk read and write rates as well as service
times, and it is very useful for the diagnosis of disk performance problems. It can be
found on Solaris and Linux amongst others. The following example shows some sam-
ple output:

iostat -xc 10

extended device statistics cpu

device r/s w/s kr/s kw/s wait actv svc_t %w %b us sy wt id

md0 0.1 0.2 0.8 1.6 0.0 0.0 39.8 0 0 8 1 2 89

md1 1.2 0.2 9.8 7.4 0.0 0.0 21.6 0 1

md5 0.0 0.0 0.0 0.0 0.0 0.0 36.1 0 0

md10 0.0 0.2 0.4 1.5 0.0 0.0 26.7 0 0

md11 0.6 0.2 4.9 7.4 0.0 0.0 24.1 0 1

md20 0.0 0.2 0.4 1.5 0.0 0.0 20.4 0 0

md21 0.6 0.2 4.9 7.4 0.0 0.0 16.2 0 1

The average service time in milliseconds, svc_t, is probably the best indicator of the
performance of your disks. The previous example indicates a possible disk-bound sys-
tem, although the exact interpretation of values is system dependent.

Network Performance
The netstat utility referenced earlier in the chapter can report on many low-level UNIX
performance counters. For example, the -i option can report on network packet trans-
fer information along with collisions and errors, as shown in this example:

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue

lo0 8232 loopback localhost 838440 0 838440 0 0 0

hme0 1500 dbcools1 dbcools1 31550446 0 2532080 0 0 0

660 Chapter 28

SymbEL
I strongly believe that the power and usability of the available performance manage-
ment tools have a massive influence on the ability to deliver Oracle production sys-
tems that meet performance and availability requirements. You can usually fix any
problem once it has been identified, but the hardest challenge is actually to identify the
problem in the first place. This is made more difficult if you only have access to a col-
lection of command-line tools and need to analyze their output yourself. Root cause
analysis requires great tools.

In the Solaris environment, Adrian Cockcroft and Rich Pettit approach legendary
status for creating an expert system to report on Solaris performance issues. Rich Pet-
tit is the creator of se, which is the interpreter and runtime for the SymbEL language.
SymbEL is an interpreted language based on C and was created to address the need for
simplified access to data residing in the Solaris kernel. The Solaris kernel contains all
the UNIX performance counters that are required to identify performance problems.
Adrian Cockcroft is the author of an essential book on Solaris performance tuning
“Sun Performance and Tuning.” The zoom component of se presents a color-coded
GUI based on Adrian Cockcroft’s tuning rules to provide alerts on CPU, I/O, RAM,
and network resource shortages for a user-defined time interval. The software is free
and available for download from the Internet. Just like an Oracle database, UNIX pro-
vides many performance counters, and as usual the challenge is to interpret them cor-
rectly. The zoom.se component does just that. Be sure to read the disclaimers carefully
before you run zoom on a production system. The software is unsupported, but in use
at thousands of sites. The main screen is shown in Figure 28.3.

When resource usage exceeds thresholds, the user interface components change
color, and as usual, red indicates a severe resource shortage. You can click the resource
to find more details. Figure 28.4 shows the detailed information reported for a RAM
shortage.

The software is delivered as a Solaris package, RICHPse. It requires an X server dis-
play to run and is started using the following command line:

/opt/RICHPse/bin/se zoom.se

If you try and run the utility without root privileges, you’ll receive an error:

Fatal: cannot open /dev/ip

DBA Access to Server
Performance Metrics
Many UNIX performance counters are accessible to root only, as are the tools required
to access them. The primitive UNIX security model doesn’t provide fine-level access to
the counters, so DBAs are typically prevented from accessing them. This need not be a
problem because the sudo utility exists to solve it. Sudo is a free program available
on all popular UNIX systems, including Linux and Solaris, to enable secure access to

Troubleshooting Oracle DBMS Problems 661

662 Chapter 28

Figure 28.3 Rich Pettit’s zoom utility.

Figure 28.4 A RAM shortage identified with zoom.

root-privileged programs that are required to access the data structure such as
/dev/ip. In the previous example, the UNIX SA would configure sudo to enable the
Oracle UNIX account to run /opt/RICHPse/bin/se zoom.se as the root user. Configu-
ration is trivially simple, and the user can be forced to provide the regular account
password if necessary to enforce security on each execution.

Summary

This chapter provides a sample of the potential problems that can occur when using
Oracle. Often the first view the DBA has of such problems is an end-user report of a
slow database or a complete lockup. In order to resolve problems fast, the DBA needs
to use all the available tracing and monitoring techniques to identify whether the prob-
lem is related to server hardware problems or resource shortages, the network, the
Oracle database itself, or a combination of them. This means that DBAs must have a
basic understanding of server performance metrics, as the DBA is often the first port of
call when performance degrades or obscure problems occur.

If the basic techniques covered in this chapter don’t identify the root cause of your
problem, the Web is a fantastic source of tips, tools, and techniques for troubleshooting
Oracle DBMS problems. My first port of call is Oracle’s Metalink Web site, followed by
a Web search using the Google search engine at www.google.com. In many cases,
you’re not the first person to experience a particular problem, and the fantastic knowl-
edge base that is the Web can often provide the cause and the solution.

Troubleshooting Oracle DBMS Problems 663

TE
AM
FL
Y

Team-Fly®

SYMBOLS
$HOME/.profile file, login

environment, 86
$ORACLE_BASE

environment
variable, 87

$ORACLE_BASE value,
6–8

/tmp directory, Oracle
memory require-
ments, 7

24x7 availability, Metalink,
631-632

3rd party software. See

third-party software,
153

A
access control, row-level,

124
access option, audits, 604
accounts

authentication, local
password files, 6

UNIX, Oracle install, 6
active instances, viewing,

519
ADO, result sets, 234
alert events, SNMP traps,

588
alert log, monitoring, 580
aliases. See also TNS

aliases.

SQL tables, 139
TNS, 54

ANALYZE command,
statistics for cost-
based optimization,
246

ANALYZE_SCHEMA
procedure, statistics
collection, 247

Apache Web Server
cloned server

ServerName
setting, 13

configuration, 100
CGI, 101
security, 103
virtual directories, 101
Web-enabled Perl

scripts, 102
Oracle OS, 521
processes,

starting/stopping,
101

applications
access prevention,

121–123
benchmarks, third-party

software, 158
design, 137

SQL, 138
lifecycle, tuning SQL, 182
performance, session

attributes, 146

processing status
reports, 147–148

security, SET ROLE
command, 119

restartability, 149
archive logs, 29
archived redo logs, 25

backups
checking with RMAN,

423
synchronizing with

RMAN, 424
managing, 423
naming standards, 425

array inserts, import, 463
asynchronous

propagation,
multimaster
replication, 487

audits, 599
access/session options,

604
data usage, 612
database audit trails, 600

ownership, 602
relocating, 601

database security,
131–132

database trigger options,
614–615

fine-grained, 615–616
I/O data, 612
objects, 608

665

Index

audits (Continued)
privileges, 605–607
recommended options,

609
session identifiers, 603
statements, 605–607
suspicious activity,

610–611
SYSDBA, 610
top users, 612
trail views, 604
weekly named sessions,

613
authentication

database logins, 106
external OS, 106
external single sign-on,

108
external token, 107
local password files, 6

password-encrypted,
106

autodiscovery, 592
AUTOEXTEND option, 28
automatic file remove

facility. See OMF, 30
automatic segment space

management, locally
managed table-
spaces, 34

availability of Oracle, 28

B
B*tree indexes, 242, 281
backup catalogs, RMAN, 5,

411–414
DBIDs, 415–416

backup control files,
media failure
recovery, 390–391

backup scripts, 420–422
backups

archived redo logs
checking with RMAN,

423
synchronizing with

RMAN, 424
export/import options,

445
high maintenance, 407
in-house script issues,

405–406

lack of automation, 407
lack of standards, 407
less than optimal

performance, 406
migration, 623
online, SCN values, 393
requirements, 404
RMAN, 403–404, 408–410

verifying, 411
space saving, Legato, 434
throughput options,

Legato, 433
troubleshooting,

441–443
benchmarking, 327

Solaris versus Linux,
334–335

TPC-C benchmark,
331–334

bitmap indexes, 282–284
BJIs, (bitmap join

indexes), 284–285
boot sequence, adding

services, 100
broken jobs, monitoring,

579
buffer cache, 197

control options, 200
hit ratio, 198–199
LRU algorithm, 199
viewing contents, 197

building, Perl inter-
preter, 92

bulk operations,
PL/SQL, 235

C
C compiler, Perl

interpreter, 91
cache fusion, RACs,

507–509
catalogs of RMAN

backups, 411–414
CGI, Apache Web

Server, 101
chaining rows, 323
change logs. See redo.
channel failure detection,

VCS clusters, 481
charting space usage,

315–317

checking for database
heartbeat, 576

checkpoints, SCN, 384–385
Citrix ICA (Independent

Computing
Architecture), 20

Citrix Metaframe,
Microsoft Windows
Terminal Server,
20–21

CKPT (checkpoint
process), 384

clean shutdown SCN, 386
client configuration,

Microsoft SQL Server
transparent
gateway, 82

client environments, 88
client requests, listener

process, 54
client software installs,

SMS, 16–17
clients

Legato, resources, 427–429
RAC configuration,

516–517
TKPROF, 195

cloning installed Oracle
software, 13–14

clustered databases, 505
clusters, VCS, 478

channel failure detection,
481

split brain, 478
CM (Cluster Manager), 514

instances, starting or
stopping, 515

NM (Node Manager), 514
collecting data, space

management, 304
collecting statistics

columns/data skew, cost-
based optimizer,
243–245

cost-based optimizer, 241
DBMS_STATS package,

247–251
dynamic sampling, 256
tables and indexes, 242

collecting system
statistics, 251–254

666 Index

collection, Oracle Expert
tuning sessions, 369

columns
collecting statistics, cost-

based optimizer,
243–245

indexing, 287
indexing SELECT list,

288–289
command-line arguments,

Perl scripts, 95
commits, import, 463
composite partitions,

267–268
compress option, export,

447–448
compressing export data,

453
configuring

Apache Web Server, 100
CGI, 101
security, 103
starting/stopping

processes, 101
virtual directories, 101
Web-enabled Perl

scripts, 102
connection pooling, 80
dispatchers, 79–80
listener.ora file, 516
listener process, 54
RACs, 507

cache fusion, 507–509
clients, 516–517
database components,

507
interconnect, 509

replication
network, 493
standby databases, 492

TAF, 517–518
conflict resolution,

multimaster
replication, 488–489

connecting to databases,
Oracle Names server,
71–72

connection pooling, 80
connections to network,

troubleshooting, 650

consolidating servers. See

server consolidation.
constraining undo

requirements, 150
constraints

disabled, monitoring, 579
explicit names, SQL, 140

continuous replication,
Oracle Names
server, 75

control file autobackup,
RMAN, 435–437

control files, 24
backup recovery,

390–391
health checks, 568
OMF, 31

control options, buffer
cache, 200

cost-based optimizer
basic table and index

statistics, 242
collecting statistics, 241
column statistics,

243–245
costs of performance

problem
identification, 171

costs of performance
problem repair, 172

CPU process usage
reporting, 658

CPU resource allocation,
resource consumer
groups, 348

CPUs, baseline
performance, Solaris
versus Linux, 337–341

crash of instance recovery,
388

cursors, SQL tuning, 225
shared pool, 227–230
variables, 232

customizing intervals,
database jobs, 584

D
data blocks, recovery

change application,
392

data collection, space
management, 304

data dictionary protection,
129

Data Guard Manager,
standby database
management, 558–559

data protection modes,
physical standby
databases, 542

data protection. See

standby databases.
data replication, VVRF, 483
data skew, collecting

statistics, cost-based
optimizer, 243–245

database audit trails, 600
ownership, 602
relocating, 601

database autodiscovery,
OIA, 592

database backups, 29
database buffer cache, 196
database components,

RACs, 507
Database Configuration

Assistant
creating databases, 50
registering databases, 116

database connections,
Oracle Names server,
71–72

database discovery, OIA,
591–592

database duplication,
RMAN, 415

database exports, 29
database instances, 507
database job monitoring,

581
customizing intervals, 584
email alerts, 585–586
resubmitting jobs, 583
scheduling jobs, 581–582

database links, TNS
aliases, 72, 83

Database Resource
Manager, 346

resource consumer
groups, 347

Index 667

Database Resource
Manager (Continued)

resource plans, 348
subplans, 349

database restores, 29
database security, 105

database login
authentication, 106

external OS
authentication, 106

external single sign-on
authentication, 108

external token
authentication, 107

password management
policies, 109–110

password-encrypted
authentication, 106

simplified user
management,
111–113

database security audits,
131–132

database triggers, audits,
614–615

databases
checking for heartbeat,

576
clustered, 505
connection pooling, 80
creating, 50
db_block_size value, 48
duplicates, 29
dynamic registration,

56–57
TAF, 516

excess free space,
318–319

failover scenarios, 61
failover to different

server, 59
global links, 72
holding TNS aliases, 73
link info, querying

SYS.LINK$ table, 70
naming standards, 65–67
replication, 485. See also

replication.
self-registration, 56

standby, 525. See also

standby databases.
static registration, 56
storage character sets, 49
tracing startup problems,

643–645
viewing

production/nonprod-
uction space, 314

datafile checkpoint SCN,
385

datafile names,
datafiles

health checks, 566–567
not using

AUTOEXTEND,
571

offline monitoring, 578
DBA group cluster, Oracle

install, 5
DBAs (database

administrators),
install requirements, 3

dbca
creating databases, 50
registering databases,

116
DbCool

database connections, 72
statistics measurement,

189
Stress Test, 351

Dbcool_db_restart.pl
script, 98

Dbcool_db_shut.pl
script, 98

Dbcool_db_start.pl
script, 98

Dbcool_db_up.pl script, 97
Dbcool_ora_healthcheck

.pl script, health
checks, 574

Dbcool_ora_shutdown.pl
script, 99

Dbcool_ora_startup.pl
script, 99

DBD module, Perl, 93
DBI module, Perl, 93
DBIDs, RMAN backup

catalogs, 415–416
DBMS_APPLICATION_

INFO package,
application processing
status reports,
147–148

DBMS_STATS package
statistics collection,

247–251
statistics for cost-based

optimization, 246
statistics tables, 256
system statistics

collection, 251–254
DBNEWID utility, 420
dbshut script, 85
dbstart script, 85
DBUA (Database Upgrade

Assistant), 619
DBWn (database writer

process), 384
db_block_size value, 48
db_domain parameter, 68
DDL, table range

partitions, 263
dedicated server

connections, 79–81
default temp tablespaces,

health checks, 572
delayed write caching, 16
delegation configuration,

Oracle Names
server, 75

deleting
tablespaces, 33
TNS aliases, 77

designing supportable
application, 137–138

development environment
evaluation, third-party
software, 156

development languages,
third-party software,
157

direct path parameter,
export, 450–451

directories
home, 6
/tmp, 7

668 Index

LDAP, OID connections,
113

mimicking OFAlayout, 47
software install, 7–8

directory services, LDAP,
77

disabled constraints,
monitoring, 579

disaster recovery, 483
Legato NetWorker 3,

439–440
replication, 486
VVRF, 483

disk backups, RMAN, 439
disk I/O troubleshooting,

660
disk sorts, avoiding during

import, 460
dispatchers, configuring,

79–80
DISPLAY environment

variable, X Windows
display, 12

displaying, 519. See also

viewing.
distributed transactions,

awaiting recovery,
monitoring, 579

DIT (directory information
tree), LDAP, 113

DML (Data Manipulation
Language)

indexes
adding or changing, 221
columns, 287
SELECT list columns,

288–289
object allocation over

extents, 44
DNs (distinguished

names), LDAP DIT,
113

documentation, third-party
software, 160

domains,
names.default, 70

DR (disaster recovery), 5
dropping tablespaces, 33
DSS (Decision Support

System), application
characteristics, 44

dual server Oracle
install, 5

DUPLICATE command,
RMAN, 417–418

duplicate databases on
same server, 29

dynamic registration,
databases, 56–57, 516

dynamic sampling,
statistics, 256

E
elimination of partitions,

260
email alerts, database job

monitoring, 585–586
email problem notices,

OEM, 596
encryption, database

passwords, 106
end-to-end performance

management. See

performance
management.

entering TNS aliases, 77
enterprise security, 118
Enterprise Security

Manager, mapping
users to shared
schemas, 117

Enterprise User Security,
111

environment settings,
UNIX, 86

building Perl
interpreter, 92

C compiler for Perl
interpreter, 91

client environments, 88
command-line

arguments, 95
logging Perl script

output, 95
login, 86-88
oratab file, 94
Perl interpreter, 90
Perl script return

codes, 97
Perl script stop files, 96
Perl scripts, 90

running single instances,
95–96

set_env alias, 88
verifying Perl inter-

preter, 93
environment symbols,

Legato, 432–433
equipartitions, 268
error logging via tables,

SQL layout, 145
error messages, export,

446
error reporting/logging,

SQL layout, 142–144
error tracing, 652–655
errors, resumable space

allocation,
monitoring, 580

escalating support service
requests, 633

etc/init.d/dbora file, 100
event scripts, OraTcl, 590
event tracing, 652–656
events

monitoring, 575
SQL tuning, 183–185
testing, 593
user-defined tests, 595

Excel, charting space
usage, 315–317

excessive free space,
318–322

excessive paging, 659
execution plans, 206–210
explicit constraint names,

SQL layout, 140
export

compress option,
447–448

direct path parameter,
450–451

error messages, 446
file size control, 452–454
language support issues,

454
modes, 447
parameter files, 446
pre-export checks, 446
transportable

tablespaces, 455–457

Index 669

export to point in time,
448–450

exporting databases, 29
external OS

authentication, 106
external procedures,

tracing, 646
external single sign-on

authentication, 108
external token

authentication, 107

F
fabric of SANs, 45
failing jobs, monitoring,

579
failover

to different server, 59–60
to instance on same

server, 62
with load balancing,

63–64
logical standby

databases, 557
scenarios, 61
TAF, 517
VCS, 479

failure of media recovery,
388–391

fast-start on-demand
rollback, 393

file types, 24
archived redo log

files, 25
control files, 24
online redo log files, 25
rollback segments, 26–27
tablespaces, 24–25
temporary segments, 27

files
AUTOEXTEND option,

28
automatic remove

facility, 30
control files, OMF, 31
export, size control,

452–454
naming standards, 47–48
in recovery mode,

monitoring, 578

fine-grained audits,
615–616

fixit Jobs, 598
Flashback Query

audits, 599
export to point in time,

448–450
recovery without restore,

399–401
FlashSnap, point-in-time

data copies, 473, 482
floating IP addresses, VCS,

478
foreign keys, indexes, 291
formal evaluations, third-

party software, 161
fragmentation,

tablespaces, 43
free space, avoiding,

324–325
free space excess, 318–319
full rollback segments,

monitoring, 580
full table scans, 201–204
function-based indexes,

300–301

G
global database links, 72
global index partitions,

268, 272
global indexes, 271

unusable, 274
updating, 275

global roles, 112
GLOBAL_DBNAME

parameter, 59
global_name setting, 68–69
global_names setting, 69
goal setting, performance

management, 360
groups, resource

consumer, 347
GUI, LogMiner, 398

H
HA (High Availability), 473

third-party software, 159
VCS clusters, 478

hash partitions, tables,
265–266

HBA cards, SAN
storage, 45

health checks, 563–564
control files, 568
datafile names, 566–567
datafiles not using

AUTOEXTEND, 571
dbcool_ora_health-

check.pl script, 574
default temp tablespaces,

572
indexes, 569–570
nonauthorized SYSTEM

tablespace users, 574
Physical Layout, 565
redo log groups, 567–568
rollback segments not in

dedicated
tablespaces, 572

SYSTEM default
tablespaces, 573

tables, 569–570
tablespaces, 569
tablespaces without local

uniform extent
management, 570

temp tablespaces not
using tempfiles, 572

unlimited tablespace
privileges, 573

heartbeat, databases,
checking, 576

hit ratio, buffer cache,
198–199

home directory, Oracle
account, 6

htaccess files (.ht), 103
HWM (high watermark),

201

I
IBM zSeries, mainframe-

style resource
management, 353–354

import
array inserts, 463
avoiding disk sorts, 460
avoiding log switch

waits, 461–462

670 Index

baseline performance,
Solaris versus Linux,
335

commits, 463
language support issues,

454
performance, 459
post-import checks, 468
redo size reduction, 465
skipping unusable

indexes, 466
space errors, 467
statistics options, 468
tuning log buffer, 463
untuned performance,

459
in-house scripts,

backup/recovery
issues, 405–406

Indepth option, tuning
sessions, 372–374

index rebuilds, partitions,
259

index scans, 289–290
indexes, 281

adding or changing in
DML, 221

B*tree. See B*tree
indexes.

bitmap, 282–284
BJIs (bitmap join

indexes), 284–285
collecting statistics, cost-

based optimizer, 242
foreign keys, 291
function-based, 300–301
global, 271

unusable, 274
updating, 275

health checks, 569–570
IOTs (index-organized

tables), 285–287
local, unique, 275
management costs, 280
Oracle8i usage, 291, 293
Oracle9i usage, 294–296
partitions, 268

global, 272
local, 269
prefixed, 269

probes, 271
rebuilding, 274

rebuilding, 296–299
unused, 290

indexing
columns, 287
SELECT list columns,

288–289
init.ora file

db_domain parameter, 68
spfiles, 36

initialization parameters
logical standby

databases, 552
physical standby

databases, 545, 547
inodes, Oracle install

files, 8
install evaluation, third-

party software, 159
install requirements for

Oracle, 3
Installer

Oracle install, 13
silent installs, 14–15
temporary space for

install, 12
installing

Legato NetWorker 3, 426
OID, 113
OMS, 589
Oracle, 5, 13–15
RACs, 510

parameter file
configuration, 511

raw partitions, 510
spfiles, 512

SMS, 16–17
instance crash SCN, 387
instances, 507

active, viewing, 519
recovery from crashes,

388
recovery time

boundaries, 392
running singly, 95–96
starting or stopping via

CM, 515
instance_name

initialization
parameter, 57

instrumentation of middle-
tier performance
metrics code, 173–178

interconnect, RACs, 509
interpreters, Perl, 90

building, 92
C compiler, 91
verifying, 93

interval options, database
jobs, 584

invalid objects,
monitoring, 578

iostat command-line
utility, 660

IOTs (index-organized
tables), 285–287

iTAR, tracking TARs
electronically, 630

J–K
jobs

failing or broken,
monitoring, 579

Fixit Jobs, 598
joins, partition-wise, 260
Kerberos, 109
kernel

Oracle parameters, 7
tracing, troubleshooting,

643
ksh (Korn shell), 6

L
language support issues,

export/import, 454
layout of SQL

error logging via tables,
145

error reporting/logging,
142–144

explicit constraint
names, 140

meaningful object
names, 141

readability, 138–139
table aliases, 139
trace facilities, 141–142

LDAP
directories, OID

connections, 113

Index 671

LDAP (Continued)
directory services, 77
DIT (directory

information tree)
DNs (distinguished

names), 113
registering databases,

116
registration process, 114
shared schema, 113
TNS aliases

migrating from Names
server, 78

resolving, 77
ldap.ora file, resolving

database names, 116
Legato

backup space saving, 434
backup throughput

options, 433
client resources, 427–429
environment symbols,

432–433
Save Groups, 429
scheduled backup

scripts, 430–431
scheduled

backupsequence,
432

Legato media interface,
645

Legato NetWorker 3, 426
disaster recovery restore,

439–440
install, 426

LGWR (log writer
process), 384

link info, databases, 70
linking databases, global

database links, 72
links, scheduled,

replication, 501
Linux

baseline CPU
performance versus
Solaris, 337, 339, 341

baseline import
performance versus
Solaris, 335

Oracle OS, 521–523
stress testing against

Solaris, 334–335

list partitions, tables, 264
listener process

client requests, 54
statically registering

databases, 56
listener.ora file,

configuration, 516
listeners, security, 130–131
load-balancing, 59
load-balancing, failover,

63–64
local index partitions,

268–269
local indexes, unique, 275
local password files, 6
locally managed

tablespaces,
automatic segment
space management, 34

log buffer, tuning, 463
log switch waits, avoiding

during import,
461–462

logging
alerts, monitoring, 580
SQL, 142, 144

logging Perl script output,
95

logical standby databases,
550–551, 553–555

failover, 557
initialization parameters,

552
redo, 556

login authentication, 106
login environment, 86–88

C compiler for Perl
interpreter, 91

client environments, 88
Perl interpreter, 90

building, 92
verifying, 93

Perl scripts, 90
set_env alias, 88

LogMiner
GUI, 398
redo, viewing, 394–395
running manually,

395–397
support issues, 637

LRU algorithm, buffer
cache, 199

LSM (Legato Storage
Manager), 426

lsof utility, identifying
open ports, 648

M
mainframe style resource

management, IBM
zSeries, 353–354

managed recovery,
physical standby
databases, 547–548

managing archived redo
logs, 423

managing performance,
167–170

managing resources, 344
managing server

resources, SRM,
351–352

managing space growth.
See space
management.

managing standby
databases, Data Guard
Manager, 558–559

manual statistics change,
254–255

mapping users to shared
schemas, 117

Maximize Availability
mode, physical
standby databases,
543

Maximize Protection
mode, physical
standby databases,
543

meaningful object names,
SQL layout, 141

media failure recovery,
388–391

memory requirements for
servers, 237–238

memory utilization, 658
message logging in

server–side files,
UTL_FILE package,
144

672 Index

Metalink Web site
24x7 availability, 631–632
OSS (Oracle Support

Services), 629
support services, 630

Microsoft Access,
application access
prevention, 121

Microsoft SQL Server,
transparent gateway,
81–82

Microsoft Windows
Terminal Server,
20–21

middle-tier performance
metrics code, 173, 175

migrating rows, 323
migrating TNSA aliases to

LDAP, 78
migration, 619

alert resolution, 620
AUTOEXTEND mode

options, 621
backups, 623
ceasing replication, 621
compatibility, 622
database character sets,

622
deactivating

ARCHIVELOG
mode, 621

ODMA, 624, 626
Oracle9i preinstall, 620
OS support, 621
parameters, 622
plan stability, 622
post-migration tasks, 626
prerequisites, 620
restores, 623
test runs, 622
third-party software, 620

mirroring volumes,
Volume Manager, 475

missing features of OPS,
506–507

modes, export, 447
monitoring, 563–564

alert log, 580
checking for database

heartbeat, 576
constraints, disabled, 579

database jobs, 581
customizing intervals,

584
email alerts, 585–586
resubmitting, 583
scheduling, 581–582

defining requirements,
575

distributed transactions
awaiting recovery,
579

events, 575
failing jobs, 579
files in recovery mode,

578
full rollback segments,

580
health checks, 564

control files, 568
datafile names, 566–567
datafiles not using

AUTOEXTEND,
571

dbcool_ora_health-
check.pl script, 574

default temp
tablespaces, 572

indexes, 569–570
nonauthorized SYSTEM

tablespace users,
574

redo log groups,
567–568

rollback segments not
in dedicated
tablespaces, 572

SYSTEM default
tablespaces, 573

tables, 569–570
tablespaces, 569
tablespaces without

local uniform
extent
management, 570

temp tablespaces not
using tempfiles,
572

unlimited tablespace
privileges, 573

invalid objects, 578

non-extensible segments,
576–578

OEM, 587
offline datafiles, 578
Physical Layout checks,

565
resumable space

allocation errors, 580
triggers, 579

multimaster databases,
replication, 486

multimaster replication
asynchronous

propagation, 487
configuration

network, 493
standby databases, 492

conflict resolution,
488–489

prerequisites, 489
sequences, 490–491
synchronous

propagation, 486

N
name resolution methods,

troubleshooting via
tnsping, 651

Names server, 65
building on two hosts, 73
continuous replica-

tion, 75
database connections,

71–72
delegation configura-

tion, 75
periodic dumps, 77
repository database

configuration, 75
TNS alias manage-

ment, 77
names.default_domain, 70
naming standards

archived redo logs, 425
databases, 65–67
OFA, 47–48
third-party software, 158
TNS aliases, 64

NAS (network-attached
storage), 23, 45-46

Index 673

Net Configuration
Assistant, Oracle
Contexts, 115

netca, Oracle Contexts,
115

netstat
OS network tracing, 648
performance counter

reports, 660
network access

prevention, 126
network configuration

listener process, 54
RACs, 515

network connection
problems, 650

network dependencies, 16
network tracing, 647
NFS

delayed write caching, 16
network dependen-

cies, 16
Oracle software install,

9–10
remote file system

access, 12
running Oracle

software, 15
time synchronization, 16

NM (Node Manager), 514
nmiconf.tcl script, 590
no-data-loss mode,

physical standby
databases, 541,
543–544

NOLOGGING option
reducing import redo

size, 465
standby database issues,

529
non-extensible segments,

monitoring, 576–578
nonauthorized SYSTEM

tablespace users,
health checks, 574

nonpartitioned global
indexes, 271

nonproduction space,
viewing, 314

O
objects

audits, 608
invalid, monitoring, 578

ODM (Oracle Disk
Manager), 474

ODMA (Oracle Data
Migration Assistant),
619, 624, 626

odm_io() call, 474
OEM (Oracle Enterprise

Manager)
email problem

notification, 596
event testing, 593
Fixit Jobs, 598
LogMiner, GUI, 398
monitoring, 587
password files, 129
Replication Manager,

489, 494–500
user-defined event tests,

595
user-defined SQL tests,

594
OFA (Optimal Flexible

Architecture), 6
automount directory, 11
naming standards, 47–48
physical layout, 47
software install

directory, 7–8
offline datafiles,

monitoring, 578
OIA (Oracle Intelligent

Agent), 588
architecture, 588
database autodiscovery,

592
database discovery,

591–592
OraTcl, 590
service autodiscovery,

592
service discovery,

591–592
OID (Oracle Internet

Directory), 109
install, 113

LDAP directory
connections, 113

OMF
automatic file remove

facility, 30
control files, 31
online redo logs, 32
SYSTEM tablespace, 33
undo1 tablespace, 36

OMS (Oracle Management
Server), 589

online backup, SNC
values, 393

online redo log files, 25, 32
open port identification,

lsof utility, 648
OPS (Oracle Parallel

Server), 505–507
Optimizer, 241

cost-based, 241. See also

cost-based optimizer.
index scans, 289-290

Optimizer mode,
improving SQL, 221

Oracle. See specific

listings for

components and

items.
Oracle accounts, UNIX

home directory, 6
Oracle Contexts, DNs, 113
Oracle Data Guard

physical standby
databases

no-data-loss mode,
541–544

protection modes,
542–543

support issues, 637
Oracle Database Resource

Manager, 346
Oracle event tracing,

652–655
Oracle Expert

Precise/Indepth
comparison, 376

tuning methodology, 366
tuning sessions

collection, 369

674 Index

TE
AM
FL
Y

Team-Fly®

recommendations,
369–371

scope, 366–368
Oracle install, 5, 13
Oracle Names server, 65

building on two hosts, 73
continuous replica-

tion, 75
database connections,

71–72
delegation configura-

tion, 75
periodic dumps, 77
repository database

configuration, 75
security, 130
TNS alias manage-

ment, 77
TNS alias migration, 78

Oracle Net aliases,
standby databases,
528

Oracle Operating System
documentation,
patches, 7

Oracle password files,
standby databases,
527

Oracle Transparent
Gateway for Microsoft
SQL Server

client configuration, 82
server configuration, 81

Oracle Windows clients,
SMS packages,
17–18, 20

Oracle8i, index usage, 291,
293

Oracle9i, index usage,
294–296

oratab file
environment basis, 94
RAC database entry, 514
services at startup, 87

OraTcl, event scripts, 590
OSCP (Oracle Storage

Compatibility
Program), 475

OSs (Operating Systems)
Apache Web Server, 521
external authentication,

106
Linux, 521–523
migration support, 621
network tracing, netstat,

648
performance diagnostics,

657
Red Hat Linux Advanced

Server, 521
selection, 519
SuSE Linux, 521
VMS, 520
Windows, 522

OSS (Oracle Support
Services), 629, 633

output, Perl scripts,
logging, 95

P
packages. See also specific

name of package.
SMS, Oracle Windows

clients, 17–20
UTL_FILE, message

logging in server-side
files, 144

packets, viewing contents,
snoop, 649

parallel queries, 211–213
parameter files

export, 446
RAC configuration, 511

parameters. See also

specific parameter

name.
shmsys:shminfo_

shmmax, 7
UNIX kernel, 7

partition elimination, 260,
272

partition-wise joins, 260
partitioned indexes, 268

global, 272
local, 269

prefixed, 269
probes, 271
rebuilding, 274

partitions, 259–260
composite, 267–268
index rebuilds, 259
raw, using in place of

UNIX file systems,
41, 43

subpartitions, 260
tables, 261

hash, 265–266
lists, 264
ranges, 261–264

password files, 129
standby databases, 527

password management
policies, 109–110

password-encrypted
authentication, 106

password-protected
virtual directories, 103

patches, Oracle Operating
System
documentation, 7

performance, import, 459
performance counter

reporting, 660
performance diagnostics

for OS, 657
performance layout, 38

RAID, 38, 41
RAID 0, 40
RAID 0+1, 40
RAID 4, 40
RAID 5, 40

performance management,
167–170

goal setting, 360
quantifying ROI, 179
responsibility, 359
roles of those involved in

project, 358
standardized

approaches, 360
three-tier transactions,

170
usercentric view, 168

Index 675

performance management
tools, 357

index change impact
analysis, 365

popular format results
charting, 365

requirements
baseline comparisons,

363
constant data

collection, 363
correlating Oracle and

OS statistics, 361
database growth trend

analysis, 364
database vendor

alliance proof, 365
low-impact monitoring,

361
near real-time

monitoring, 361
open data access, 364
permanent SQL

database
aggregation, 364

providing Oracle SQL
statistics, 363

query rewrite facilities,
364

showing execution
versus idle time,
364

top SQL identification,
362

upgrade/migration
paths, 365

schema change tracking,
365

performance metric
access, 661

performance metrics code,
173–178

performance problem
identification costs,
171

performance problem
repair costs, 172

performance problems,
event tracing, 656

performance problems
with Solaris, 661

performance statistics,
STATSPACK package,
635

periodic dumps, Oracle
Names server, 77

Perl interpreter, 90
building, 92
C compiler, 91
DBD module, 93
DBI module, 93
verifying, 93

Perl scripts, 90
command-line

arguments, 95
environment setttings, 94
logging output, 95
return codes, 97
running single instances,

95–96
standard reference, 97

dbcool_db_restart.pl
script, 98

dbcool_db_shut.pl
script, 98

dbcool_db_start.pl
script, 98

dbcool_db_up.pl
script, 97

dbcool_ora_shut-
down.pl script, 99

dbcool_ora_startup.pl
script, 99

stop files, 96
Web-enabled, 102

physical layout, 28
availability, 28
manageability, 28
OFA, 47

Physical Layout checks,
565

physical standby
databases, 526, 530,
541

adding datafiles to
primary, 538–539

creating Oracle
environment, 531

initialization parameters,
545, 547

managed recovery,
547–548

moving primary copy to
standby, 531, 533

no-data-loss mode, 541,
543–544

protection modes,
542–543

read-only mode, 540
redo log transfer, 534,

536–537
starting, 534
switching primary and

standby states,
548–549

taking over primary role,
540

pinging, 508
PL/SQL, bulk operations,

235
plan stability, 223
point-in-time data copies,

FlashSnap, 482
policies, password

management, 109–110
postimport checks, 468
postmigration, 626
pre-export checks, 446
Precise/Indepth, Oracle

Expert comparison,
376

tuning sessions, 372–373
time intervals, 374

prefixed index partitions,
269

preventing application
access, 121–123

preventing network
access, 126

primary databases
adding datafiles, manual

standby additions,
538–539

Oracle Net aliases, 528
redo log transfer to

standby, 536–537
standby database

activation, 540
private interconnect, VCS,

478–479
privileges, audits, 605–607
probes, index partitions,

271
problem reporting via

Web, 630
problems. See

troubleshooting.

676 Index

procedures, external,
tracing, 646

processes
Apache Web Server,

starting/stopping,
101

CPU usage reporting, 658
spawning, 55

production space, viewing,
314

profiles, 345
protecting data

dictionaries, 129
protection modes,

physical standby
databases, 542–543

purges, scheduled,
replication, 501

Q
quantifying performance

management ROI, 179
queries, parallel, 211–213
query execution plans,

206–210, 272
quick I/O, VxFS, 476

R
RACs (Real Application

Clusters), 506
active instances, viewing,

519
client configuration,

516–517
configuration, 507–509
install

parameter file
configuration, 511

raw partitions, 510
spfiles, 512

network configuration,
515

RAID, 38–40
advantages, 41
stripes, 39

range partitions, tables,
261–264

raw partitions
RACs, 510
using in place of UNIX

file systems, 41–43

rcp command, 4
RDA (Remote Diagnostic

Agent), gathering
problem diagnosis
data, 636

read-only mode, standby
databases, 540

readability, SQL layout,
138–139

rebuilding indexes,
296–299

rebuilding partitioned
indexes, 274

recommendations, Oracle
Expert tuning
sessions, 369–371

recovery, 383
data and redo block

change application,
392

datafile checkpoint SCN,
385

fast-start on-demand
rollback, 393

Flashback Query,
399–401

high maintenance, 407
in-house script issues,

405–406
instance crashes, 388
instances, time

boundaries, 392
lack of standards, 407
less than optimal

performance, 406
lack of automation, 407
media failures, 388–390
redo, 393–394
requirements, 404
RMAN, 403–404, 435
SCN (System Change

Number), 384
after clean

shutdown, 386
after instance

crash, 387
checkpoints, 384

start SCN, 385
stop SCN, 385
system checkpoint SCN,

385

recovery mode files,
monitoring, 578

Red Hat Linux, 521
Red Hat Linux Advanced

Server, Oracle OS, 521
redo, 393–394

logical standby
databases, 556

LogMiner, running
manually, 395–397

reducing for import, 465
viewing, LogMiner,

394–395
redo blocks, recovery

change application, 392
redo log groups, health

checks, 567–568
redo log transfer, physical

standby databases,
534, 536–537

redo log transfers, standby
databases, 528

reducing parse calls, SQL
tuning, 230–231

reference sites, third-party
software, 155

registering databases,
dynamic, 56–57

registering service names
statically, 59

registration process,
LDAP, 114

regression testing, third-
party software, 157

remote file system access,
NFS, 12

removing files
automatically, 30

removing TNS aliases, 77
replication, 485

change management, 502
configuration

network, 493
standby databases, 492

multimaster. See

multimaster
replication.

prerequisites, 489
scheduled links, 501
scheduled purges, 501
sequences, 490–491

Index 677

Replication Manager, 489,
494–500

reporting problems via the
Web, 630

repository database
configuration, Oracle
Names server, 75

reproducible test cases,
support services, 634

requirements for
monitoring, 575

requirements for Oracle
install, 3

resolving TNS aliases, 77
resolving conflicts. See

conflict resolution.
resource consumer

groups, users, 347
CPU resource allocation,

348
resource plans, 347

resource management, 344
Database Resource

Manager, 346
mainframe style, IBM

zSeries, 353–354
profiles, 345
subplans, 349

resource plans, 347
responsibility and

performance
management, 359

restartability, 149
restore

export/import options,
445

migration, 623
RMAN, 434

noncurrent files, 437
to other names or

locations, 438
troubleshooting, 441–443

resubmitting jobs,
monitoring, 583

result sets
ADO, 234
SQL*Plus, 233

resumable space
allocation errors,
monitoring, 580

resumable space errors,
149

return codes, Perl
scripts, 97

RICHPse, 661
RMAN (Recovery

Manager), 5
backup catalogs, 411,

413–414
DBIDs, 415–416

backups, 403–404,
408–410

verifying, 411
checking archivelog

backups, 423
control file autobackup,

435, 437
database duplication, 415
disk backups, 439
DUPLICATE command,

417–418
failover

to different server,
59–60

to instance on same
server, 62

with load balancing,
63–64

scenarios, 61
Legato media interface,

645
recovery, 403–404, 435
restore, 434

noncurrent files, 437
to other names or

locations, 438
synchronizing archivelog

backups, 424
target connections, 414

ROI, performance
management, 179

role-based security, 126,
128

rollback, fast-start on-
demand, 393

rollback segments, 26–27
row chaining, 323
row migration, 323
row-level access control,

124

rsh command, 4
runtime session

attributes, 146
running LogMiner

manually, 395–397

S
SANs (Storage Area

Networks), 23, 45
SAs, Oracle configuration

support, 4
Save Groups, Legato, 429
sbttest program, Legato

server file backups,
645

scans, indexes, 289–290
scheduled backup scripts,

Legato, 430–431
scheduled backup

sequence, Legato, 432
scheduled links,

replication, 501
scheduled purges,

replication, 501
scheduling jobs,

monitoring, 581–582
SCN (System Change

Number), 384
after clean shutdown,

386
after instance crash, 387
check points, 384
datafile checkpoints, 385
start, 385
stop, 385
system checkpoints, 385
values

online backup, 393
scope, Oracle Expert

tuning sessions,
366–368

scripts
backups, 420–422
dbcool_ora_healthcheck

.pl, 574
dbshut, 85
dbstart, 85
Legato scheduled

backups, 430
nmiconf.tcl, 590

678 Index

Perl, 90
command-line

arguments, 95
dbcool_db_restart.pl

script, 98
dbcool_db_shut.pl

script, 98
dbcool_db_start.pl

script, 98
dbcool_db_up.pl

script, 97
dbcool_ora_shut-

down.pl script, 99
dbcool_ora_startup.pl

script, 99
environment settings,

94
logging output, 95
return codes, 97
running single

instances, 95–96
standard reference, 97
stop files, 96
Web-enabled, 102

se interpreter, 661
security

Apache Web Server, 103
application, SET ROLE

command, 119
application access

prevention, 121–123
data dictionary

protection, 129
database audits, 131–132
listeners, 130–131
network access

prevention, 126
Oracle Names server, 130
password files, 129
role-based, 126, 128
row-level access control,

124
third-party software, 158

security of databases, 105
database login

authentication, 106
external OS

authentication, 106
external single sign-on

authentication, 108
external token

authentication, 107

password management
policies, 109–110

password-encrypted
authentication, 106

simplified user
management,
111–113

segment space
management, locally
managed table-
spaces, 34

segments
full rollback, monitoring,

580
mapping to disk storage

locations, 305
nonextensible,

monitoring, 576–578
space collection, 311–313

self-registration,
databases, 56

sequences, replication,
490–491

server configuration,
Microsoft SQL Server
transparent
gateway, 81

server connections, TNS
aliases, shared or
dedicated, 81

server consolidation,
343–344

server memory
requirements, 237–238

server performance
metrics, 661

server resource
management, SRM,
351–352

servers
duplicate database, 29
Oracle Names, 65

building on two
hosts, 73

continuous replica-
tion, 75

database connections,
71–72

delegation
configuration, 75

periodic dumps, 77

repository database
configuration, 75

TNS alias manage-
ment, 77

service autodiscovery,
OIA, 592

service discovery, OIA,
591–592

service groups, VCS
Manager, 480

service-name-based
failover, 59

services
adding to UNIX boot

sequence, 100
registering names

statically, 59
service_names

parameter, 57
session attributes,

runtime, 146
session identifiers, audits,

603
session option, audits, 604
SET ROLE command,

application security,
119

set_env alias, environment
settings, 88

SGA, troubleshooting, 642
sh (Bourne shell), 6
shadow processes, 79
shared memory,

troubleshooting, 642
shared pool, SQL cursors,

227–228, 230
shared schema, 112

mapping users, 117
shared server, 79

configuring dispatchers,
79–80

connection pooling, 80
shared server

configurations,
TKPROF, 194

shared server connections,
TNS aliases, 81

shmsys:shminfo_shmmax
parameter, 7

Index 679

silent installs, 14–15
simplified user

management, security,
111–113

single point of problem
ownership, support
services, 631

size control, export files,
452–454

slave processes, parallel
queries, 211

SMS (Systems
Management Server)

installing client software,
16–17

packages, Oracle
Windows clients,
17–18, 20

SNMP traps, 588
snoop utility, viewing

packet contents, 649
software

install directory, 7–8
NFS install, 9-10
third-party options, 153

application
benchmarks, 158

development
environment
evaluation, 156

development languages,
157

documentation, 160
formal evaluations, 161
high availability

solutions, 159
install evaluation, 159
meeting with vendor,

154–155
naming standards, 158
reference sites, 155
regression testing, 157
security, 158
space management

procedures, 159
supportability, 160
vendor health checks,

154
Solaris

baseline CPU
performance versus
Linux, 337, 339, 341

baseline import
performance versus
Linux, 335

performance issues, 661
stressing testing against

Linux, 334–335
sorts, avoiding during

import, 460
space collection

segments, 311–313
tablespaces, 305–310

space errors, import, 467
space management, 303

data collection, 304
resumable errors, 149
segment mapping to disk

storage locations,
305

segment space
collection, 311–313

tablespace space
collection, 305–310

space management
procedures, third-
party software, 159

space usage charting,
315–317

space usage data, viewing,
313

sparse files, 37
spawning processes, 55
spfiles (server

parameter), 34
creating, 36
RAC configuration, 512
undo tablespaces, 35

split brain, VCS clusters,
478

SQL
error logging via tables,

145
error reporting/logging,

142–144
explicit constraint

names, 140
layout for readability,

138–139
meaningful object

names, 141
table aliases, 139

trace facilities, 141–142
user-defined tests, 594

SQL Hints, improving SQL,
222

SQL Server, database
links, TNS aliases, 83

SQL tuning, 181
application lifecycle, 182
events, 183–185
goals, 205
identifying most

expensive SQL,
215–217

improving speed, 217
network, 235
optimizer mode, 221
performance and

cursors, 225
shared pool, 227–230
variables, 232

plan stability, 223
reducing parse calls,

230–231
rewriting, 218–220
server memory

requirements,
237–238

SQL Hints, 222
statistics, 183–185
statistics measuring

tools, 187
SQL*Plus

application access
prevention, 121

displaying result sets,
233

reporting on enabled
events, 656

statistics measurement,
187, 189

sqlnet.log file, network
connection
troubleshooting, 650

SRM (Solaris Resource
Manager), 344,
351–352

standard build, 5
standard Perl scripts, 97

dbcool_db_restart.pl
script, 98

680 Index

dbcool_db_shut.pl
script, 98

dbcool_db_start.pl
script, 98

dbcool_db_up.pl
script, 97

dbcool_ora_shutdown.pl
script, 99

dbcool_ora_startup.pl
script, 99

standardized performance
management
approaches, 360

standby databases, 525
archived redo log

destinations, 528
copying primary

database via rcp, 529
Data Guard Manager,

558–559
logical, 550–557
NOLOGGING issues, 529
Oracle Net aliases, 528
Oracle password files,

527
physical, 526, 530

adding data to primary,
538–539

creating Oracle
environment, 531

initialization
parameters,
545–547

managed recovery,
547–548

moving primary copy to
standby, 531–533

Oracle Data Guard,
541–544

read-only mode, 540
redo log transfer,

534–537
starting, 534
switching primary and

standby states,
548–549

taking over primary
role, 540

replication, 486
temporary tablespaces,

527

start SCN, 385
starting

instances, CM, 515
physical standby

databases, 534
startup problems,

databases, 643–645
statements, audits,

605–607
static registration,

databases, 56
static service name

registration, 59
statistics

changing manually,
254–255

import options, 468
SQL tuning, 183–187

statistics collection
cost-based optimizer, 241

columns/data skew,
243–245

tables and indexes, 242
DBMS_STATS package,

247–251
dynamic sampling, 256

statistics tables, 256
statistics tools

DbCool, 189
SQL*Plus, 187–189
TKPROF, 191–193

STATSPACK package,
performance
statistics, 635

status reports, application
processing, 147–148

stop files, Perl scripts, 96
stop SCN, 385
stopping instances, CM,

515
storage character sets, 49
Storage Checkpoints,

VxFS, 477
Storage Rollback,

VERITAS, 476
storage virtualization,

Volume Manager, 475
stored outlines, 223
Stress Test, 351
stress testing, 327–331

Solaris versus Linux,
334–335

stripes, RAID, 39
subpartitions, 260
subplans, resource

management, 349
sudo program, server

performance metrics,
661

Sun Solaris, Oracle
standard build, 5

support services
escalating requests, 633
Metalink, 630
Metalink 24x7

availability, 631–632
Oracle customer

expectations, 632
Oracle product set

selection, 637–639
OSS analyst roles, 633
reproducible test cases,

634
single point of problem

ownership, 631
supportability, third–party

software, 160
supportable application

design, 137–138
SuSE Linux, 521
suspicious activity audits,

610–611
switching primary and

standby states,
physical standby
databases, 548–549

SymbEL, 661
synchronous propagation,

multimaster
replication, 486

SYSDBA, audits, 610
system checkpoint SCN,

385
SYSTEM default

tablespaces, health
checks, 573

system statistics
collection, 251–254

SYSTEM tablespace, 33
systems management

framework, 563, 587

Index 681

T
table aliases, SQL layout,

139
tables

changing statistics
manually, 254–255

collecting statistics, cost-
based optimizer, 242

composite partitions,
267–268

full scans, 202–204
hash partitions, 265–266
health checks, 569–570
list partitions, 264
partitions, 261
range partitions, 261–264
SQL error logging, 145
statistics, 256
wasted space, 320–322

tablespaces, 24–25
avoiding wasted space,

324–325
dropping, 33
fragmentation, 43
health checks, 569

without local uniform
extent manage-
ment, 570

locally managed, 34. See

also locally managed
tablespaces.

partitions, 260
space collection, 305–310
SYSTEM, 33
temporary tablespace

feature, 35
transportable, 455–457
undo, 35
undo1, 36

TAF (Transparent
Application Failover),
515

configuration, 517–518
dynamic database

registration, 516
target connections, RMAN,

414
TARs (Technical

Assistance Requests),
629

Tcl (Tool Control
Language), 90

temp tablespaces, not
using tempfiles, health
checks, 572

tempfiles, tracking block
usage, 37

temporary segments, 27
temporary space for

install, 12
temporary tablespaces, 35

standby databases, 527
terminal server

applications, 20
testing events, 593
third-party software, 153

application benchmarks,
158

development
environment
evaluation, 156

development languages,
157

documentation, 160
formal evaluations, 161
HAsolutions, 159
install evaluation, 159
meeting with vendor,

154–155
migration, 620
naming standards, 158
reference sites, 155
regression testing, 157
rewriting SQL, 220
security, 158
space management

procedures, 159
supportability, 160
vendor health checks,

154
three-tier transactions,

performance
management, 170

time boundaries for
instance recovery, 392

time intervals,
Precise/Indepth
tuning sessions, 374

time synchronization, 16
TKPROF

running from clients, 195

shared server
configurations, 194

statistics measurement,
191–193

trace filename location,
194

TNS aliases (Transparent
Network
Substrate), 54

backup client
connections, 60

client database
connections, 66

client service
connections, 63

database links, 72
entering or removing, 77
failover to different

server, 60
holding in databases, 73
LDAP, 77
migrating to LDAP, 78
naming, 64–65
Oracle Names server, 77
OracleContext entries, 78
resolving, 77
resolving by client

applications for
database
connection, 71

server connections,
shared or
dedicated, 81

SQL Server database
links, 83

TNS names, 58
tnsping, troubleshooting

name resolution
methods, 651

TNS_ADMIN environment
variable, 54

top utility, CPU process
usage, 658

TPC-C benchmark
(Transaction
Processing Council),
327, 331–334

trace facilities, SQL layout,
141–142

trace filename location,
TKPROF, 194

682 Index

tracing database startup
problems, 643–645

tracing events, 652–655
tracing external

procedures, 646
tracing UNIX kernel,

troubleshooting, 643
tracking block usage in

tempfiles, 37
trail views, audits, 604
transactions

distributed, monitoring,
579

three-tier. See three-tier
transactions.

transparent gateways,
Microsoft SQL Server

client configuration, 82
server configuration, 81

transportable tablespaces,
455–457

triggers
audits, 614–615
monitoring, 579

troubleshooting, 641
backups, 441–443
disk I/O, 660
error tracing, 652–655
identifying open ports,

lsof utility, 648
identifying shared

memory, 642
identifying top CPU

processes, 658
Legato media interface,

library searches, 645
memory utilization, 658
name resolution method,

tnsping, 651
network connection

problems, 650
network tracing, 647
Oracle event tracing,

652–655
OS

network tracing,
netstat, 648

performance
diagnostics, 657

performance counters,
660

performance problems,
event tracing, 656

reporting on enabled
events, SQL*Plus,
656

restore, 441–443
snoop, viewing packet

contents, 649
Solaris performance

problems, 661
tracing database startup

problems, 643–645
tracing external

procedures, 646
UNIX kernel tracing, 643
UNIX system log, 641

tuning log buffer, 463
tuning methodologies,

Oracle Expert, 366
tuning sessions

Oracle Expert
collection, 369
recommendations,

369–371
scope, 366–368

Precise/Indepth options,
372–374

tuning SQL, 181
application lifecycle, 182
events, 183–185
goals, 205
identifying most

expensive SQL,
215–217

improving speed, 217
network, 235
optimizer mode, 221
performance and

cursors, 225
shared pool, 227–228,

230
variables, 232

plan stability, 223
reducing parse calls,

230–231
rewriting, 218–220
server memory

requirements,
237–238

SQL Hints, 222

statistics, 183–185
statistics measuring

tools, 187

U
undo, 397

constraining require-
ments, 150

tablespaces, 35
Undo1 tablespace, 36

unique local indexes, 275
UNIX

adding services to boot
sequence, 100

dbca, creating
databases, 50

DISPLAY environment
variable, X Windows
display, 12

environment settings, 86
command-line

arguments, 95
logging Perl script

output, 95
oratab file, 94
Perl script return

codes, 97
Perl script stop files, 96
running single

instances, 95–96
file systems, using raw

partitions instead,
41, 43

home directory, Oracle
account, 6

inodes, Oracle install
files, 8

kernel
parameters, 7
tracing, trouble-

shooting, 643
login environment, 86–88

building Perl
interpreter, 92

C compiler for Perl
interpreter, 91

client environments, 88
Perl interpreter, 90
Perl scripts, 90
set_env alias, 88

Index 683

UNIX (Continued)
verifying Perl

interpreter, 93
Oracle

accounts, 6
install, dual servers, 5
memory require-

ments, 7
software install, NFS, 9
standard build, system

requirements, 5
rcp command, 4
rsh command, 4
SAs, Oracle

configuration
support, 4

UNIX system log,
troubleshooting, 641

unlimited tablespace
privileges, health
checks, 573

untuned import
performance, 459

unusable global indexes,
274

unused indexes, 290
updating global indexes,

275
upgrades, 619–620
user-defined event tests,

595
user-defined SQL tests, 594
usercentric performance

management, 168
users, resource consumer

groups
CPU resource allocation,

348
resource plans, 347

UTL_FILE package,
message logging in
server-side files, 144

V
V$ACTIVE_INSTANCES

view, 519

variables, SQL cursors,
232

VCS (VERITAS Cluster
Server), 473

clusters, 478
channel failure

detection, 481
split brain, 478

failover process, 479
floating IP addresses, 478
private interconnect,

478–479
VCS Manager, service

groups and
dependencies, 480

vendor health checks,
third-party software,
154

vendor meetings, third-
party software,
154–155

verifying Perl
interpreter, 93

verifying backups, 411
VERITAS

FlashSnap, point-in-time
data copies, 482

ODM, 474
Storage Rollback, 473,

476
Volume Manager, 475
VxDBA, 477
VxFS, 475

version dependencies, side
effects, 15–16

viewing
active instances, 519
audit trails, 604
buffer cache contents,

197
packet contents, snoop,

649
redo, LogMiner, 394–395
space usage data, 313

views, row-level access
control, 124

virtual directories
Apache Web Server, 101
password-protected, 103

virtualized storage
management, Volume
Manager, 475

VMS, Oracle OS, 520
vmstat, memory

utilization, 659
Volume Manager, 473

virtualized storage
management, 475

volume mirroring, 475
volume mirroring, Volume

Manager, 475
VPD (virtual private

database), 124
VVRF, disaster recovery,

483
VxDBA, 477
VxFS (VERITAS File

System), 473–475
Quick I/O, 476
Storage Checkpoints, 477

W–Z
wasted space

avoiding, 324–325
tables, 320–322

Web-based problem
reporting, 630

Web-enabled Perl scripts,
Apache Web Server,
102

Windows
Oracle OS, 522
Terminal Server, 20–21

X Windows display for
Oracle, 12

ZSeries, mainframe-style
resource
management, 353–354

684 Index

TE
AM
FL
Y

Team-Fly®

	sample.pdf
	sterling.com
	Welcome to Sterling Software

