

Michael L. Gonzales

IBM® Data Warehousing
with IBM Business
Intelligence Tools

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies – The fun and easy way to learn

• The Weekend Crash Course –The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you now hold, IBM Data Warehousing: With IBM Business Intelligence Tools, is the first
comprehensive guide to the complete suite of IBM tools for data warehousing. Written by a leading
expert, with contributions from key members of the IBM development teams that built these tools, the
book is filled with detailed examples, as well as tips, tricks and workarounds for ensuring maximum
performance. You can be assured that this is the most complete and authoritative guide to IBM data
warehousing.

Our commitment to you does not end at the last page of this book. We’d want to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to
review our complete title list and explore the other resources we offer. If you have a comment,
suggestion, or any other inquiry, please locate the “contact us” link at www.wiley.com.

Finally, we encourage you to review the following page for a list of Wiley titles on related topics.
Thank you for your support and we look forward to hearing from you and serving your needs again
in the future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

more information
on related titles

0471202436

The official guide,
written by the
authors of the
Common Warehouse
Metamodel

Available at your favorite bookseller or visit
www.wiley.com/compbooks

IN
T
E

R
M

E
D

IA
T
E

/A
D

V
A

N
C

E
D

B
E

G
IN

N
E

R
The Next Step in Data Warehousing

Available from Wiley Publishing

0471219711

The comprehensive
guide to implement-
ing SAP BW

0471200522

An introduction to
the standard for data
warehouse
integration

0471384291

Create more
powerful, flexible
data sharing
applications using a
new XML-based
standard

Advance Praise for IBM Data
Warehousing

“This book delivers both depth and breadth, a highly unusual combination
in the business intelligence field. It not only describes the intricacies of var-
ious IBM products, such as IBM DB2, IBM Intelligent Miner, and IBM DB2
OLAP, but it also sets the context for these products by providing a com-
prehensive overview of data warehousing architecture, analytics, and data
management.”

Wayne Eckerson
Director of Research, The Data Warehousing Institute

“Organizations today are faced with a ‘data deluge’ about customers, sup-
pliers, partners, employees and competitors. To survive and to prosper
requires an increasing commitment to information management solutions.
Michael Gonzales’ book provides an outstanding look at business intelli-
gence software from IBM that can help companies excel through quicker,
better-informed business decisions. In addition to a comprehensive explo-
ration of IBM’s data warehouse, OLAP, data mining and spatial analysis
capabilities, Michael clearly explains the organizational and data architec-
ture underpinnings necessary for success in this information-intensive
age.”

Jeff Jones
Senior Program Manager, IBM Data Management Solutions

“IBM leads the way in delivering integrated, easy-to-use data warehous-
ing, analysis and data management technology. This book delivers what
every data warehousing professional needs most: a thorough overview
of business intelligence fundamentals followed by solid practical advice
on using IBM’s rich product suite to build, maintain and mine data
warehouses.”

Thomas W. Rosamilia
Vice President, IBM Data Management (DB2) Worldwide Development

Michael L. Gonzales

IBM® Data Warehousing
with IBM Business
Intelligence Tools

Publisher: Joe Wikert
Executive Editor: Robert M. Elliott
Assistant Developmental Editor: Emilie Herman
Managing Editor: Micheline Frederick
Media Development Specialist: Travis Silvers
Text Design & Composition: Wiley Composition Services

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where Wiley Publishing, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the appro-
priate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper. ∞

Copyright © 2003 by Michael L. Gonzales.

Copyright © 2003 IBM. Some text and illustrations.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Pub-
lisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc.,
10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail:
permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with respect
to the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with
a professional where appropriate. Neither the publisher nor author shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-13305-1

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To AMG2.

Acknowledgments xx

Introduction xxiii

Part One Fundamentals of Business Intelligence
and the Data Warehouse 1

Chapter 1 Overview of the BI Organization 3
Overview of the BI Organization Architecture 4
Providing Information Content 10

Planning for Information Content 10
Designing for Information Content 13
Implementing Information Content 15

Justifying Your BI Effort 18
Linking Your Project to Known Business Requirements 18
Measuring ROI 18

Applying ROI 19
Questions for ROI Benefits 21

Making the Most of the First Iteration of the Warehouse 22
IBM and The BI Organization 22

Seamless Integration 23
Data Mining 24
Online Analytic Processing 24
Spatial Analysis 25
Database-Resident Tools 25

Simplified Data Delivery System 26
Zero-Latency 27

Summary 28

Contents

vii

Chapter 2 Business Intelligence Fundamentals 29
BI Components and Technologies 31

Business Intelligence Components 31
Data Warehouse 31
Data Sources 32
Data Targets 32

Warehouse Components 36
Extraction, Transformation, and Loading 37

Extraction 38
Transformation/Cleansing 39
Data Refining 39

Data Management 40
Data Access 40
Meta Data 41

Analytical User Requirements 42
Reporting and Querying 43
Online Analytical Processing 43

Multidimensional Views 44
Calculation-Intensive Capabilities 45
Time Intelligence 45

Statistics 46
Data Mining 46

Dimensional Technology and BI 47
The OLAP Server 48

MOLAP 49
ROLAP 50

Defining the Dimensional Spectrum 50
Touch Points 52
Zero-Latency and Your Warehouse Environment 53
Closed-Loop Learning 53
Historical Integrity 54
Summary 58

Chapter 3 Planning Data Warehouse Iterations 59
Planning Any Iteration 61

Building Your BI Plan 62
Enterprise Strategy 63
Designing the Technical Architecture 64
Designing the Data Architecture 66
Implementing and Maintaining the Warehouse 69

Planning the First Iteration 70
Aligning the Warehouse with Corporate Strategy 71
Conducting a Readiness Assessment 71
Resource Planning 74

Identifying Opportunities with the DIF Matrix1 77
Determining the Right Approach 78
Applying the DIF Matrix 78

Antecedent Documentation and Known Problems 80

viii Contents

IT JAD Sessions 80
Select Candidate Iteration Opportunities 80
Get IT Scores 81
Create DIF Matrix 81
User JAD Session and Scoring 81
Average DIF Scores 82
Select According to Score 82
Submit to Management 82

Dysfunctional 82
Impact 83
Feasibility 84
DIF Matrix Results 84

Planning Subsequent Iterations 87
Defining the Scope 87
Identifying Strategic Business Questions 87

Implementing a Project Approach 89
BI Hacking Approach 90
The Inmon Approach 90
Business Dimensional Lifecycle Approach 91
The Spiral Approach 91

Reducing Risk 92
The Spiral Approach and Your Life Cycle Model 93
Warehouse Development and the Spiral Model 94
Flattening Spiral Rounds to Time Lines 98

The IBM Approach 100
Choosing the Right Approach 103

Summary 103

Part Two Business Intelligence Architecture 105

Chapter 4 Designing the Data Architecture 107
Choosing the Right Architecture 110

Atomic Layer Alternatives 113
ROLAP Platform on a 3NF Atomic Layer 116
HOLAP Platform on a Star Schema Atomic Layer 117

Data Marts 118
Atomic Layer with Dependent Data Marts 120
Independent Data Marts 121
Data Delivery Architecture 122

EAI and Warehousing 126
Comparing ETL and EAI 126

Expected Deliverables 127
Modeling the Architecture 129

Business Logical Model 130
Atomic-Level Model 132
Modeling the Data Marts 133
Comparing Atomic and Star Data 137

Contents ix

Operational Data Store 138
Data Architecture Strategy 140
Summary 143

Chapter 5 Technical Architecture and Data Management Foundations 145
Broad Technical Architecture Decisions 148

Centralized Data Warehousing 148
Distributed Data Warehousing 152
Parallelism and the Warehouse 154
Partitioning Data Storage 157

Technical Foundations for Data Management 158
DB2 and the Atomic Layer 158

Redistribution and Table Collocation 158
Replicated Tables 160
Indexing Options 161
Multidimensional Clusters as Indexes 161
Defined Types, User-Defined Functions, and DB2 Extenders 162
Hierarchical Storage Considerations 162

DB2 and Star Schemas 164
DB2 Technical Architecture Essentials 166

SMP, MPP, and Clusters 166
Shared-Resource vs. Shared-Nothing 168

DB2 on Hardware Architectures 169
Static and Dynamic Parallelism 170
Catalog Partition 172
High Availability 172

Online Space Management 172
Backup 172
Parallel Loading 174
OnLine Load 174
Multidimensional Clustering 174
Unplanned Outages 175

Sizing Requirements 179
Summary 181

Part Three Data Management 183

Chapter 6 DB2 BI Fundamentals 185
High Availability 186

Multidimensional Clustering 187
Online Loads 188
Load From Cursor 189
Batch Window Elimination 190
Elimination of Table Reorganization 190
Online Load and MQT Maintenance 190
MQT Staging Tables 191
Online Table Reorganization 192

x Contents

Dynamic Bufferpool Management 194
Dynamic Database Configuration 195
Database Managed Storage Considerations 195
Logging Considerations 196

Administration 197
eLiza and SMART 197
Automated Health Management Framework 198
AUTOCONFIGURE 198
Administration Notification Log 199
Maintenance Mode 199
Event Monitors 200

SQL and Other Programming Features 200
INSTEAD OF Triggers 200
DML Operations through UNION ALL 201
Informational Constraints 202
User-Maintained MQTs 203

Performance 203
Connection Concentrator 203
Compression 204
Type-2 Indexes 204
MDC Performance Enhancement 206
Blocked Bufferpools 206

Extensibility 206
Spatial Extender 207
Text Extender and Text Information Extender 208
Image Extender 208
XML Extender 208
Video Extender and Audio Extender 209
Net Search Extender 209
MQSeries 209
DB2 Scoring 209

Summary 211

Chapter 7 DB2 Materialized Query Tables 213
Initializing MQTs 219

Creating 219
Populating 219
Tuning 221
MQT DROP 221

MQT Refresh Strategies 221
Deferred Refresh 221
Immediate Refresh 226

Loading Underlying Tables 227
New States 228
New LOAD Options 228

Using DB2 ALTER 231

Contents xi

Materialized View Matching 232
State Considerations 232
Matching Criteria 233

Matching Permitted 234
Matching Inhibited 240

MQT Design 243
MQT Tuning 244

Refresh Optimization 245
Materialized View Limitations 247
Summary 249

Part Four Warehouse Management 251

Chapter 8 Warehouse Management with IBM DB2 Data
Warehouse Center 253
IBM DB2 Data Warehouse Center Essentials 254

Warehouse Subject Area 254
Warehouse Source 254
Warehouse Target 255
Warehouse Server and Logger 255
Warehouse Agent and Agent Site 255
Warehouse Control Database 256
Warehouse Process and Step 257

SQL Step 258
Replication Step 258
DB2 Utilities Step 259
OLAP Server Program Step 259
File Program Step 260
Transformer Step 260
User-Defined Program Step 260

IBM DB2 Data Warehouse Center Launchpad 261
Setting Up Your Data Warehouse Environment 261

Creating a Warehouse Database 261
Browsing the Source Data 261
Establishing IBM DB2 Data Warehouse Center Security 262

Building a Data Warehouse Using the Launchpad 262
Task 1: Define a Subject Area 264
Task 2: Define a Process 264
Task 3: Define a Warehouse Source 266
Task 4: Define a Warehouse Target 267
Task 5: Define a Step 268
Task 6: Link a Source to a Step 270
Task 7 Link a Step to a Target 270
Task 8: Define the Step Parameters 272
Task 9: Schedule a Step to Run 274

Defining Keys on Target Tables 274
Maintaining the Data Warehouse 275
Authorizing Users of the Warehouse 276
Cataloging Warehouse Data for Users 276

xii Contents

Process and Step Task Control 277
Scheduling 278
Notifying the Data Administrator 282
Scheduling a Process 283
Triggering Steps Outside IBM DB2

Data Warehouse Center 286
Starting the External Trigger Server 287
Starting the External Trigger Client 287

Monitoring Strategies with IBM DB2 Data Warehouse Center 289
IBM DB2 Data Warehouse Center Monitoring Tools 289

Monitoring Data Warehouse Population 291
Monitoring Data Warehouse Usage 298

DB2 Monitoring Tools 299
Replication Center Monitoring 300

Warehouse Tuning 303
Updating Statistics 303
Reorganizing Your Data 304
Using DB2 Snapshot and Monitor 304
Using Visual Explain 305
Tuning Database Performance 307

Maintaining IBM DB2 Data Warehouse Center 307
Log History 308
Control Database 308

DB2 Data Warehouse Center V8 Enhancements 308
Summary 312

Chapter 9 Data Transformation with IBM DB2 Data Warehouse Center 313
IBM DB2 Data Warehouse Center Process Model 316

Identify the Sources and Targets 317
Identify the Transformations 318
The Process Model 320

IBM DB2 Data Warehouse Center Transformations 322
Refresh Considerations 327
Data Volume 328
Manage Data Editions 328
User-Defined Transformation Requirements 329
Multiple Table Loads 329
Ensure Warehouse Data Is Up-to-Date 329
Retry 333

SQL Transformation Steps 333
SQL Select and Insert 335
SQL Select and Update 337

DB2 Utility Steps 338
Export Utility Step 338
LOAD Utility 339

Warehouse Transformer Steps 340
Cleansing Transformer 340
Generating Key Table 343

Contents xiii

Generating Period Table 344
Inverting Data Transformer 346
Pivoting Data 348
Date Format Changing 351
Statistical Transformers 352

Analysis of Variance (ANOVA) 352
Calculating Statistics 355
Calculating Subtotals 357
Chi-Squared Transformer 359
Correlation Analysis 362
Moving Average 364
Regression Analysis 366

Data Replication Steps 369
Setting Up Replication 371
Defining Replication Steps in IBM DB2 Data Warehouse Center 373

MQSeries Integration 379
Accessing Fixed-Length or Delimited MQSeries Messages 380
Using DB2 MQSeries Views 382
Accessing XML MQSeries Messages 384

User-Defined Program Steps 385
Vendor Integration 388

ETI•EXTRACT Integration 388
Trillium Integration 396
Ascential Integration 398

Microsoft OLE DB and Data Transformation Services 399
Accessing OLE DB 400
Accessing DTS Packages 401

Summary 401

Chapter 10 Meta Data and the IBM DB2 Warehouse Manager 403
What Is Meta Data? 404
Classification of Meta Data 406

Meta Data by Type of User 407
Meta Data by Degree of Formality at Origin 408
Meta Data by Usage Context 409

What Is the Meta Data Repository? 409
Feeding Your Meta Data Repository 410
Benefits of Meta data and the Meta Data Repository 411
Attributes of a Healthy Meta Data Repository 413
Maintaining the Repository 414
Challenges to Implementing a Meta Data Repository 415
IBM Meta Data Technology 416

Information Catalog 416
IBM DB2 Data Warehouse Center 417

Meta Data Acquisition by DWC 418
Collecting Meta Data from ETI•EXTRACT 420
Collecting Meta Data from INTEGRITY 425
Collecting Meta Data from DataStage 429

xiv Contents

Collecting Meta Data from ERwin 431
Collecting Meta Data from Axio 433
Collecting Meta Data from IBM OLAP Integration Server 434

Exchanging Meta Data between IBM DB2 Data Warehouse
Center Instances 437

Maintaining Test and Production Systems 438
Meta Data Exchange Formats 438

Tag Export and Import 439
CWM Export and Import 441

Transmission of DWC Meta Data to Other Tools 441
Transmission of DWC Meta Data to IBM Information Catalog 442
Transmission of DWC Meta Data to

OLAP Integration Server 445
Transmission of DWC Meta Data to IBM DB2 OLAP Server 447
Transmission of DWC Meta Data to Ascential INTEGRITY 448

Transferring Meta Data In/Out of the Information Catalog 448
Acquisition of Meta Data by the Information Catalog 450

Collecting Meta Data from IBM DB2 Data Warehouse Center 450
Collecting Meta Data from another Information Catalog 450
Accessing Brio Meta Data in the Information Catalog 450
Collecting Meta Data from BusinessObjects 451
Collecting Meta Data from Cognos 453
Collecting Meta Data from ERwin 454
Collecting Meta Data from QMF for Windows 455
Collecting Meta Data from ETI•EXTRACT 457
Collecting Meta Data from DB2 OLAP Server 459

Transmission of Information Catalog Meta Data 460
Transmitting Meta Data to Another Information Catalog 460
Enabling Brio to Access Information Catalog Meta Data 461
Transmitting Information Catalog Meta Data to BusinessObjects 462
Transmitting Information Catalog Meta Data to Cognos 463

Summary 463

Part Five OLAP and IBM 465

Chapter 11 Multidimensional Data with DB2 OLAP Server 467
Understanding the Analytic Cycle of OLAP 472
Generating Useful Metrics 474
OLAP Skills 476
Applying the Dimensional Model 477

Steering Your Organization with OLAP 478
Speed-of-Thought Analysis 478

The Outline of a Business 479
The OLAP Array 483

Relational Schema Limitations 484
Derived Measures 485

Implementing an Enterprise OLAP Architecture 486

Contents xv

Prototyping the Data Warehouse 488
Database Design: Building Outlines 488

Application Manager 489
ESSCMD and MaxL 490
OLAP Integration Server 493

Support Requirements 495
DB2 OLAP Database as a Matrix 496

Block Creation Explored 498
Matrix Explosion 498

DB2 OLAP Server Sizing Requirements 499
What DB2 OLAP Server Stores 499
Using SET MSG ONLY: Pre-Version 8 Estimates 500
What is Representative Data? 501
Sizing Estimates for DB2 OLAP Server Version 8 501

Database Tuning 502
Goal Of Database Tuning 503
Outline Tuning Considerations 503
Batch Calculation and Data Storage 504
Member Tags and Dynamic Calculations 504
Disk Subsystem Utilization and Database File Configuration 506
Database Partitioning 506
Attribute Dimensions 507

Assessing Hardware Requirements 509
CPU Estimate 511
Disk Estimate 511
OLAP Auxiliary Storage Requirements 512

OLAP Backup and Disaster Recovery 512
Summary 513

Chapter 12 OLAP with IBM DB2 Data Warehouse Center 515
IBM DB2 Data Warehouse Center Step Types 516
Adding OLAP to Your Process 518

OLAP Server Main Page 519
OLAP Server Column Mapping Page 520
OLAP Server Program Processing Options 520
Other Considerations 520

OLAP Server Load Rules 521
Free Text Data Load 521
File with Load Rules 522
File without Load Rules 523
SQL Table with Load Rules 526

OLAP Server Calculation 527
Default Calculation 527
Calc with Calc Rules 528

Updating the OLAP Server Outline 530
Using a File 530
Using an SQL Table 531

Summary 533

xvi Contents

Chapter 13 DB2 OLAP Functions 535
OLAP Functions 537

Specific Functions 537
RANK 537
DENSE_RANK 538
ROWNUMBER 538
PARTITION BY 539
ORDER BY 539
Window Aggregation Group Clause 540

GROUPING Capabilities: ROLLUP and CUBE 542
ROLLUP 542
CUBE 543

Ranking, Numbering, and Aggregation 544
RANK Example 545
ROW_NUMBER, RANK, and DENSE_RANK Example 546
RANK and PARTITION BY Example 546
OVER clause example 548
ROWS and ORDER BY Example 548
ROWS, RANGE, and ORDER BY Example 549

GROUPING, GROUP BY, ROLLUP, and CUBE 552
GROUPING, GROUP BY, and CUBE Example 552
ROLLUP Example 553
CUBE Example 555

OLAP Functions in Use 560
Presenting Annual Sales by Region and City 560

Data 560
BI Functions 561
Steps 561

Identifying Target Groups for a Campaign 562
Data 563
BI Functions 563
Steps 564

Summary 566

Part Six Enhanced Analytics 567

Chapter 14 Data Mining with Intelligent Miner 569
Data Mining and the BI Organization 570

Effective Data Mining 575
The Mining Process 575

Step 1: Create a Precise Definition of the Business Issue 577
Describing the Problem 578
Understanding Your Data 579
Using the Results 580

Step 2: Map Business Issue to Data Model and
Data Requirements 580

Step 3: Source and Preprocess the Data 582
Step 4: Explore and Evaluate the Data 582

Contents xvii

Step 5: Select the Data Mining Technique 583
Discovery Data Mining 583
Predictive Mining 584

Step 6: Interpret the Results 585
Step 7: Deploy the Results 586

Integrating Data Mining 586
Skills for Implementing a Data Mining Project 587
Benefits of Data Mining 588

Data Quality 589
Relevant Dimensions 589
Using Mining Results in OLAP 590

Benefits of Mining DB2 OLAP Server 591
Summary 593

Chapter 15 DB2-Enhanced BI Features and Functions 595
DB2 Analytic Functions 596

AVG 597
CORRELATION 598
COUNT 598
COUNT_BIG 599
COVARIANCE 599
MAX 600
MIN 600
RAND 601
STDDEV 602
SUM 602
VARIANCE 602
Regression Functions 603
COVAR, CORR, VAR, STDDEV, and Regression Examples 606

COVARIANCE Example 606
CORRELATION Examples 607
VARIANCE Example 609
STTDEV Examples 609
Linear Regression Examples 610

BI-Centric Function Examples 612
Using Sample Data 612
Listing the Top Five Salespersons by Region This Year 615

Data Description 615
BI Functions Showcased 615
Steps 616

Determining Relationships between Product Purchases 617
Data Description 617
BI Functions Showcased 617
Steps 617

Summary 619

xviii Contents

Chapter 16 Blending Spatial Data into the Warehouse 621
Spatial Analysis and the BI Organization 623
The Impact of Space 625
What Is Spatial Data? 628

The Onion Analogy 628
Spatial Data Structures 628

Vector Data 629
Raster Data 629
Triangulated Data 630

Spatial Data vs. Other Graphic Data 631
Obtaining Spatial Data 632

Creating Your Own Spatial Data 632
Acquiring Spatial Data 632

Government Data 633
Vendor Data 633

Spatial Data in DSS 634
Spatial Analysis and Data Mining 635
Serving Up Spatial Analysis 637

Typical Business Questions Directed at the Data Warehouse 639
Where are my customers coming from? 640
I don’t have customer address information-can

I still use spatial analysis tools? 641
Understanding a Spatially Enabled Data Warehouse 644

Geocoding 644
Technology Requirements for Spatial Warehouses 646
Adding Spatial Data to the Warehouse 647

Summary 649

Bibliography 651

Index 653

Contents xix

xx Acknowledgments

Acknowledgments

I would like to give special thanks to Gary Robinson for all his effort,
guidance, and assistance. Without his help we never would have been able
to identify and secure the resources necessary to put this book together.

About the Contributors

Nagraj Alur is a Project Leader with the IBM International Technical
Support Organization in San Jose. He has more than 28 years of experience
in DBMSs, and has been a programmer, systems analyst, project leader,
consultant, and researcher. His areas of expertise include DBMSs, data
warehousing, distributed systems management, and database perfor-
mance, as well as client/server and Internet computing.

Steve Benner is currently Director of Strategic Accounts for ESRI, Inc.
He has been involved in the geographic information systems (GIS) indus-
try for 13 years in a variety of positions. Steve has led classes on GIS and
data warehousing at TDWI and authored an article on GIS integration with
SAP for the SAP Technical Journal.

Ron Fryer is with IBM Data Management. He has over 20 years experi-
ence in the design and construction of decision support environments as a
data modeler and database administrator, including over 10 with data
warehouses. He has worked on some of the largest data warehouses in the
world. Ron’s publications include numerous articles on database design
and DBMS architecture. He was a contributing author to Understanding
Database Management Systems, Second Edition (Rob Mattison, McGraw-Hill,
1998).

Jacques Labrie has been a team lead and key developer of multiple IBM
products since 1984. He was also the architect for the IBM DB2 Data Ware-
house Center and Warehouse Manager. Jacques has over 15 years of expe-
rience leading and managing the development of data management
products including large mainframe ETL tools like IBM’s Data Extract
product, workstation-based meta data management like IBM’s Data Guide
and Information Catalog Manager, and warehouse management tools like
IBM Visual Warehouse and DB2 Warehouse Center. He received his Bache-
lor of Arts in Mathematics from California State University, San Jose.

About the Contributors xxi

Gregor Meyer has worked for IBM since 1997, when he joined the product
development team for DB2 Intelligent Miner in Germany. He is currently at
IBM at the Silicon Valley Laboratory in San Jose, where he is responsible for
the integration of data mining and other BI technologies with DB2. Gregor
studied Computer Science in Brunswick and Stuttgart, Germany. He
received his doctorate from the University of Hagen, Germany.

Wendell B. Mitchell is currently working as a Senior Data Architect for
The Focus Group, Ltd. He has provided lab instruction on data mining,
extraction transformation and loading (ETL), business intelligence, and
OLAP at numerous TDWI conferences. Wendell received his bachelor’s
degree in math and computer science from Western Michigan University
in Kalamazoo, Michigan.

Roger D. Roles is the current architect for the Information Catalog meta-
data management application. He is a veteran software developer with 27
years development experience, from computer aided design and manufac-
turing applications in Fortran to UNIX kernel development in C and
assembly language. He has been with IBM since 1993, working in various
organizations on micro-kernel, file system, and application development.
For the last 6 years he has been a team lead and a key developer in devel-
oping business intelligence applications in Java.

Richard Sawa has worked for Hyperion Solutions since 1998. He is cur-
rently working out of Columbus, Ohio as Hyperion Solutions’ Technology
Development Manager to IBM Data Management. He was a key contribu-
tor to the IBM Redbook DB2 OLAP Server Theory and Practice (April 2001).
Formerly an independent consultant, Mr. Sawa has 10 years experience in
relational decision support and OLAP technologies.

William Sterling has worked with OLAP since 1992, when he started
with Arbor Software, the inventor of ESSBASE. He specializes in tuning
OLAP databases, and emphasizes business systems modeling, quantitative
analysis, and design. He joined IBM in 1999 as a technical member of the
worldwide BI Analytics team.

Phong Truong is a key warehouse server developer in the IBM DB2 Data
Warehouse Center and Warehouse Manager and is the team lead for Tril-
lium, MQ Series and OLE DB integration. He has over 13 years of extensive
development and customer service experience in various DB2 UDB com-
ponents. He received his Bachelor of Science degree from the University of
Calgary, Alberta Canada.

xxii About the Contributors

Paul Wilms has worked at IBM on distributed databases and business
intelligence for over 20 years. He authored and co-authored several
research papers related to IBM’s R* and Starburst research projects. For the
last ten years, he has provided technical support and consulting to IBM
customers on business intelligence and ETL tools. Paul has also been giv-
ing many lectures at international conferences both in the US and overseas.
He earned his doctorate in Computer Science from the National Polytech-
nic Institute of Grenoble, France.

Cheung-Yuk Wu is the current architect for the IBM DB2 Data Ware-
house Center and Warehouse Manager. She has over 15 years of relational
database tools development experience on DB2, Oracle, Sybase, Microsoft
SQL Server and Informix on Windows and UNIX platforms. She also
developed products including Tivoli for DB2, IBM Data Hub for UNIX,
and QMF, and she was also a DBA for DB2, CICS and IMS at the IBM San
Jose Manufacturing Data Center. She received her Bachelor of Science
degree in Computer Science from the California Polytechnic State Univer-
sity, San Luis Obispo.

Chi Yeung is a key GUI developer in the IBM DB2 Data Warehouse Cen-
ter and Warehouse Manager, and is the current team lead for multiple
Warehouse GUI components including warehouse sources, targets,
import/export/publish, User Groups, Agent Sites, and Replication steps.
He has over 13 years of extensive GUI and object oriented design and
development experience on various IBM products including Intelligent
Miner, Content Management, QMF integration with Lotus Approach, and
Visualizer. He received his Bachelor of Science degree from Cornell Uni-
versity, Master of Science degree from Stanford University, and Master of
Business Administration degree from University of California Berkeley.

Calisto Zuzarte is a senior technical manager of the DB2 Query Rewrite
development group at the IBM Toronto Lab. His expertise is in the key
query rewrite and cost-based optimization components that affect complex
query performance in databases.

Vijay Bommireddipal is a developer with the IBM DB2 Data Warehouse
Center and Warehouse Manager development team and has been working
in the warehouse import/export utilities for both tag and CWM formats,
warehouse sample, ISV toolkits for warehouse metadata exchange. He
joined IBM in July of 2000 with a Masters degree in Electrical and Com-
puter Engineering from the University of Massachusetts, Dartmouth.

Architects, project planners, and sponsors are always dealing with multi-
ple technologies, conflicting techniques, and competing business agendas.
This combination of issues gives rise to many challenges facing business
intelligence (BI) and data warehouse (DW) initiatives. The question you
need to ask yourself is this: “Do I have the information needed to make the
right decisions about what technology and technique to use in order to
address a business requirement at hand?”

We can certainly label the technologies into big classes like data acquisi-
tion software, data management software, data access software, and even
hardware. But these classes often mislead the decision maker into thinking
the choices are simple, when in fact the technology offered under any one
of the classes can be overwhelming, with a confusing array of product fea-
tures and functionality. The myriad of choices is only exacerbated when
you add the notion of technique to the decision-making process.

The numerous choices created by the combination of technologies and
techniques leave many decision makers looking like a deer caught in the
headlights. They are stymied by such questions as:

�� Do I build dependent data marts or allow independent data marts?
�� Why build either?
�� What’s the difference?

�� Should my warehouse environment be centralized or distributed?
�� What type of hardware technology would be required in either

case?

Introduction

xxiii

�� What is SMP, MPP, and clustering; and why does the technology
matter to my warehouse efforts?

�� How would this architecture affect the atomic layer of the ware-
house and any data marts being considered?

�� How should I serve up dimensional data to user communities across
my enterprise?
�� Do I build stars or cubes?
�� What’s the difference?
�� Why would I choose one over the other—or are they even mutu-

ally exclusive?
�� What is MOLAP, ROLAP, and HOLAP? How does it affect my

architecture? How does it affect my user communities?
�� How do I enhance, complement, and supplement the data being

poured into my warehouse to support BI?
�� How do I blend data from third party suppliers like Dunn &

Bradstreet with my data using techniques like geocoding?
�� What is spatial analysis, and how does it build informational

content for the organization?
�� What is data mining, and how can my user communities benefit

from its use?

This book helps you answer these types of questions within the domain
of IBM technology, which in itself is considerable. IBM offers a broad array
of mature technologies designed to support enterprise-level BI environ-
ments and warehouse initiatives. From SMP and MPP technical architec-
tures to DB2 Universal Database and DB2 OLAP Server data management
technology to Intelligent Miner and Spatial Extender, IBM’s suite of prod-
ucts are the pylons necessary on which to build your BI environments and
establish your enterprise warehousing needs.

This book focuses only on business intelligence and data warehousing
issues and how those issues are addressed using IBM technology. Data
architectures, technical architectures, OLAP, data mining, spatial analysis
and, extraction, transformation, and loading (ETL) represent some of the
core topics covered in this book.

It is our perspective that when the topic is warehousing, the content cov-
ered should only be related to warehousing. To that end, you will not find
exhaustive coverage of SQL syntax in this book. DB2 SQL books are plenti-
ful and readily available for anyone interested. Only SQL specifically
addressing issues related to BI or warehousing is examined in this book.

Moreover, the technologies studied in this book will not be covered in
their entirety, either. For example, we do not discuss all the features and

xxiv Introduction

functionality of DB2 V8. You can find scores of books that cover all the
generic functionality of the database engine. Instead, this book emphasizes
only those aspects of the technology that are relevant to BI and data ware-
house initiatives.

So, what you will find in this book is coverage of IBM products, where
each of these technologies impacts BI and warehousing only. For instance,
Part 5 of this book is entitled “OLAP and IBM.” Here you will find three
chapters: Chapter 11 focuses on DB2 OLAP Server, Chapter 12 defines
those aspects of Data Warehouse Center supporting DB2 OLAP Server, and
Chapter 13 defines OLAP functions of DB2 V8.

The reason for such a focused approach is simple: It cuts out the noise
and provides solid content that pertains only to the issues critical to BI and
warehousing efforts. That’s it. The goal is to make your reading time a pro-
ductive experience.

How the Book Is Organized

This books contains 16 chapters organized into six parts as follows:

Part One: Fundamentals of Business Intelligence and the Data Ware-
house. This part focuses on building a common language and
understanding of the fundamental concepts of BI and warehouse ini-
tiatives. If you are new to this area, you should make sure to read
through these first chapters. On the other hand, if you are a seasoned
“warehouser,” you can simply move on to the next part. The chapters
covered here are as follows:

�� Chapter 1: Overview of the BI Organization
�� Chapter 2: Business Intelligence Fundamentals
�� Chapter 3: Planning Data Warehouse Iterations

Part Two: Business Intelligence Architecture. This is a critical sec-
tion, since it covers the two architectural areas of warehousing: data
architecture and technical architecture. This is must-reading for
someone just starting to work with warehouses and should be even
reviewed by seasoned individuals to ensure their understanding of
IBM’s latest technology on these core architectures. There are only
two chapters to this section:

�� Chapter 4: Designing the Data Architecture
�� Chapter 5: Technical Architecture and Data Management

Foundations

Introduction xxv

Part Three: Data Management. Although the features and functional-
ity of DB2 V8 are broad, we only want to present to the reader those
aspects of DB2 V8 that are pertinent to BI and warehouse efforts.
There are two chapters in this section, both regarding DB2.

�� Chapter 6: DB2 BI Fundamentals
�� Chapter 7: Materialized Query Tables

Part Four: Warehouse Management. Here we examine technology
from IBM that facilitates the management of your warehouse. There
are three chapters included in this section, covering mainly the IBM
DB2 Data Warehouse Center:

�� Chapter 8: Warehouse Management with IBM DB2 Data
Warehouse Center

�� Chapter 9: Data Transformation with IBM DB2 Data
Warehouse Center

�� Chapter 10: Meta Data and the IBM DB2 Warehouse
Manager

Part Five: OLAP and IBM. This section focuses solely on the topic of
OLAP with regard to IBM technology. There are three chapters to this
section, each covering a different technology, including DB2 OLAP
Server, DB2 V8 and IBM DB2 Data Warehouse Center:

�� Chapter 11: Multidimensional Data With DB2 OLAP Server
�� Chapter 12: OLAP with IBM DB2 Data Warehouse Center
�� Chapter 13: DB2 OLAP Functions

Part Six: Enhanced Analytics. Finally, the book addresses IBM tech-
nology that truly enriches your warehoused data, transforming it
into informational content. Here we examine technology and tech-
niques for data mining and spatial analysis. There are three chapters:

�� Chapter 14: Data Mining with Intelligent Miner
�� Chapter 15: DB2 Enhanced BI Features and Functions
�� Chapter 16: Blending Spatial Data into the Warehouse

All of the sections can be independently read, as long as you have a per-
spective of where and how the technology or technique being covered fits
into the overall architecture of the BI organization.

xxvi Introduction

Who Should Read This Book

Two audiences will gain value from the content in this book: decision mak-
ers and implementers. If you are the decision maker regarding tools and
techniques to be applied in your company’s warehouse or BI initiatives
and you are adopting (or considering to include) IBM technology, then you
should read this book to have a clear understanding of the salient issues
addressed by this technology. Also, if you influence the decision-making
process because of your role as a data architect, project planner, or sponsor,
you also should study the content of this book. It will arm you with perti-
nent information regarding IBM technology and how to apply specific fea-
tures and functionality of that technology to meet the needs of your BI or
warehouse efforts.

Additionally, if you are in charge of implementing IBM technology into
your environment, this book is for you. It cuts out all the fluff and takes
you right to only those features and functionality that support your BI and
warehouse projects. You will not be spending time reviewing irrelevant
syntax or features that do little to advance your BI projects.

What’s on the Web Site?

The companion Web site (www.wiley.com/compbooks/gonzales) pro-
vides links to the latest technical information, reference material, and soft-
ware updates available for the products mentioned in the book, as well as
other BI-related technology. We plan to include not only IBM products but
also an array of partner solutions that complement an IBM BI environment.

Summary

Business intelligence and data warehouse environments require constant
monitoring and tuning to ensure you are meeting the needs of your enter-
prise. The technologies change quickly. From one day to the next, there is
always some feature improvement, some software advancement that one
vendor has over another, or a new product version or release. This means
that, when you are the person responsible for selecting or implementing
the right technology for your shop, the pressure to keep up with the change
can be considerable. It is our hope that this book provides you with spe-
cific, pertinent information you need to keep up with the evolution of BI.

Introduction xxvii

PA R T

One

Fundamentals of
Business Intelligence

and the Data Warehouse

3

Key Issues:

■■ Information silos run contrary to the goal of the business intelligence
(BI) organization architecture: to ensure enterprisewide informa-
tional content to the broadest audience.

■■ Corporate culture and IT may limit the success in building BI
organizations.

■■ Technology is no longer the limiting factor to the BI organizations.
The question for architects and project planners is not whether the
technology exists, but whether they can effectively implement the
technology available.

For many organizations, a data warehouse is little more than a passive repos-
itory dutifully doling out data to the ever-needy user communities. Data is
predictably extracted from source systems and populated into target ware-
house structures. The data may even be cleansed with any luck. However, no
additional value, no informational content is added to or gleaned from the
data during this process. Essentially, the passive warehouse, at best, only

Overview of the BI Organization

C H A P T E R

1

provides clean, operational data to user communities. The creation of infor-
mation and analytical insight is entirely dependent on the users.

Judging whether the warehouse is a success is a subjective business. If
we judge success on the ability to efficiently collect, integrate, and cleanse
corporate data on a predictable basis, then yes, this warehouse is a success.
On the other hand, if we look at the cultivation, nurturing, and exploitation
of the information the organization as a whole enjoys, then the warehouse
is a failure. A data warehouse that acts only as a passive repository pro-
vides little or no information value. Consequently, user communities are
forced to fend for themselves, causing the creation of information silos.

This chapter presents a complete vision for rolling out an enterprisewide
BI architecture. We start with an overview of BI and then move to discus-
sions on planning and designing for information content, as opposed to
simply providing data to user communities. Discussions are then focused
on calculating the value of your BI efforts. We end with defining how IBM
addresses the architectural requirements of BI for your organization.

Overview of the BI Organization Architecture

Powerful transaction-oriented information systems are now commonplace
in every major industry, effectively leveling the playing field for corpora-
tions around the world. To remain competitive, however, now requires
analytically oriented systems that can revolutionize a company’s ability to
rediscover and utilize information they already own. These analytical sys-
tems derive insight from the wealth of data available, delivering informa-
tion that’s conclusive, fact-based, and actionable.

Business intelligence can improve corporate performance in any infor-
mation-intensive industry. Companies can enhance customer and supplier
relationships, improve the profitability of products and services, create
worthwhile new offerings, better manage risk, and pare expenses dramat-
ically, among many other gains. Through business intelligence your com-
pany can finally begin using customer information as a competitive asset
with applications such as target marketing, customer profiling, and prod-
uct or service usage analysis. Having the right intelligence means having
definitive answers to such key questions as:

■■ Which of our customers are most profitable, and how can we
expand relationships with them?

■■ Which of our customers provide us profit, or cost us money?

■■ Where do our best customers live in relation to the stores/branches
they frequent?

4 Chapter 1

■■ Which products and services can be cross-sold most effectively, and
to whom?

■■ Which marketing campaigns have been most successful and why?

■■ Which sales channels are most effective for which products?

■■ How can we improve our customers’ overall experience?

Most companies have the raw data to answer these questions. Opera-
tional systems generate vast quantities of product, customer, and market
data from point-of-sale, reservations, customer service, and technical sup-
port systems. The challenge is to extract and exploit this information.
Many companies take advantage of only a small fraction of their data for
strategic analysis. The remaining untapped data, often combined with data
from external sources like government reports, trade associations, analysts,
the Internet, and purchased information, is a gold mine waiting to be
explored, refined, and shaped into informational content for your organi-
zation. This knowledge can be applied in a number of ways, ranging from
charting overall corporate strategy to communicating personally with
vendors, suppliers, and customers through call centers, kiosks, billing
statements, the Internet, and other touch points that facilitate genuine, one-
to-one marketing on an unprecedented scale.

Today’s business environment dictates that the data warehouse (DW)
and related BI solutions evolve beyond the implementation of traditional
data structures such as normalized atomic-level data and star/cube farms.
What is now needed to remain competitive is a fusion of traditional and
advanced technologies in an effort to support a broad analytical landscape,
naturally serving up a rich blend of real-time and historical analytics.
Finally, the overall environment must improve the knowledge of the enter-
prise as a whole, ensuring that actions taken as a result of analysis con-
ducted are fed back into the environment for all to benefit.

For example, let’s say you classify your customers into categories of high
to low risk. Whether this information is generated by a mining model or
other means, it must be put into the warehouse and be made accessible to
anyone, using any access tool, such as static reports, spreadsheet pivot
tables, or online analytical processing (OLAP). However, currently, much
of this type of information remains in the data silos of the individuals or
departments who generate the analysis and act upon it, essentially creating
information silos. The organization, as a whole, has little or no visibility to
the insight. Only by blending this type of informational content into your
enterprise warehouse can you eliminate information silos and elevate your
warehouse environment and BI effort to a level called the business intelli-
gence organization.

Overview of the BI Organization 5

There are two major barriers to building a BI organization. First, we have
the problem of the organization itself, its corporate culture, its discipline
(or lack thereof) to rein in rogue executives, and its dedication to IT as a
facilitator of the information asset. Although we cannot help with the polit-
ical challenges of an organization, we can help you understand the compo-
nents of a BI organization, its architecture, and how IBM technology
facilitates its development. The second barrier to overcome is the lack of
integrated technology and a conscious approach that addresses the entire
BI space as opposed to just a small component. IBM is meeting the chal-
lenge of integrating technology. It is your responsibility to provide the con-
scious planning.

This architecture must be built with technology chosen for seamless inte-
gration, or at the very least, with technology that adheres to open stan-
dards. Moreover, your company management must ensure that enterprise
business intelligence is implemented according to plan and that you do not
allow the development of information silos that result from self-serving
agendas, or objectives. That is not to say that the BI environment is not
responsive to the individual needs and requirements of user communities;
instead, it means that the implementation of those individual needs and
requirements is done to the benefit of the entire BI organization.

An overview of the BI organization’s architecture can be found on page 9
in Figure 1.1. The architecture demonstrates a rich blend of technologies
and techniques. From the traditional view, the architecture includes the fol-
lowing warehouse components:

Atomic layer. This is the foundation, the cornerstone to the entire
data warehouse and therefore strategic reporting. Data stored here
will preserve historical integrity, data relationships, and include
derived metrics, as well as be cleansed, integrated, static, geocoded,
and scored using mining models. All subsequent usage of this data
and related information is derived from this structure. It is an excel-
lent source for data mining and advanced structured query language
(SQL) reporting, and it is the wellspring for data to be used in OLAP
applications.

Operational data store (ODS) or reporting database. These are data
structures specifically designed for tactical reporting. The data stored
and reported on from these structures may ultimately be propagated
into the warehouse via the staging area, where it could be used for
strategic reporting.

6 Chapter 1

Staging area. The first stop for most data destined for the warehouse
environment is the staging area. Here data is integrated, cleansed, and
transformed into useful content that will be populated in target data
warehouse structures, specifically the atomic layer of the warehouse.

Data marts. This part of the architecture represents data structures
used specifically for OLAP. The presence of data marts, whether the
data is stored in star schemas that superimpose multidimensional
data in a relational environment or in proprietary data files used by
specific OLAP technology, such as DB2 OLAP Server, is not relevant.
The only constraint is that the architecture facilitates the use of multi-
dimensional data.

The architecture also incorporates critical technologies and techniques
that are distinctively BI-centric, such as:

Spatial analysis. Space is an information windfall for the analyst and
is critical to thorough decision making. Space can represent informa-
tion about the people who live at a location, as well as information
about where that location physically is in relation to the rest of the
world. To perform this analysis, you must start by binding your
address information to longitude and latitude coordinates. This is
referred to as geocoding and must be part of the extraction, transfor-
mation, and loading (ETL) process at the atomic layer of your ware-
house.

Data mining. Data mining permits our companies to profile cus-
tomers, predict sales trends, and enable customer relationship man-
agement (CRM), among other BI initiatives. Mining must therefore
be integrated with the warehouse data structures and supported by
warehouse processes to ensure both effective and efficient use of the
technology and related techniques. As shown in the BI architecture,
the atomic layer of the warehouse as well as data marts are excellent
data sources for mining. Those same structures must also be recipi-
ents of mining results to ensure availability to the broadest audience.

Agents. There are various “agents” for examining customer touch
points, the company’s operational systems, and the data warehouse
itself. These agents may be advanced neural nets trained to spot
trends, such as future product demand based on sales promotions,
rules-based engines to react to a given set of circumstances, or even
simple agents that report exceptions to top executives. These agent
processes generally occur in real time and, therefore, they must be
tightly coupled with the movement of the data itself.

Overview of the BI Organization 7

All these data structures, technologies, and techniques guarantee that
you will not create a BI organization overnight. This endeavor will be built
incrementally—in small steps. Each step is an independent project effort
and is referred to as an iteration in your overall warehouse or BI initiative.
Iterations can include implementing new technologies, initiating new tech-
niques, adding new data structures, loading additional data, or expanding
the analysis to your environment. This topic is discussed in greater depth
in Chapter 3.

In addition to the traditional warehouse structures and BI-centric tools,
there are other aspects of your BI organization for which you must plan,
such as:

Customer touch points. As with any modern organization there exist
a number of customer touch points in which to influence a positive
experience for your customers. There are the traditional channels
such as dealers, telephone operators, direct mail, multimedia, and
print advertisement, as well as more contemporary channels such as
email, and the Web. Data produced at any touch point must be
acquired, transported, cleansed, transformed, and then populated to
target BI data structures.

Operational databases and user communities. At the opposite end of
the customer touch points lies a firm’s application databases and user
communities. Existing here are traditional data that must be gathered
and blended with data flowing in from the customer touch points in
order to create the necessary informational content.

Analysts. The principal beneficiary of the BI environment is the ana-
lyst. It is this person who benefits from the timely extraction of oper-
ational data, integrated with disparate data sources, enhanced with
features such as spatial analysis (geocoding), and presented in BI
technology that affords mining, OLAP, advanced SQL reporting, and
spatial analysis. The primary interface for the analyst to the reporting
environment is the BI portal. However, the analyst is not the only one
to benefit from the BI architecture. Executives, broad user communi-
ties, and even partners, suppliers, and customers can and should
share in the benefits of enterprise BI.

Back-feed loop. By design, the BI architecture is a learning environ-
ment. A principle characteristic of the design is to afford the persis-
tent data structures to be updated by the BI technology used and the
user actions taken. An example is customer scoring. If the marketing

8 Chapter 1

department implements a mining model that scores customers as
likely to use a new service, then the marketing department should
not be the only group that benefits from that knowledge. Instead, the
mining model should be implemented as a natural part of the data
flow within the enterprise, and the customer scores should become
an integrated part of the warehouse informational content, visible to
all users.

IBM’s suite of BI-centric products—including DB2 UDB, DB2 OLAP
Server, Intelligent Miner, and the Spatial Extender—encompasses the vast
majority of important technology components, defined in Figure 1.1. We
use the architecture shown in this figure throughout the book to give us a
level of continuity and to demonstrate where each IBM product fits in the
overall BI scheme.

Figure 1.1 The BI organization.

ACTION

ACTION

ACTION

3rd-
Party
Data

Sales

STAGING AREA

TableTable

Table
Table

Table

Table

Table

Table

Table

OPERATIONAL DATA STORE

Operations Raw
Data

Finance

CUSTOMER

C
U

ST
O

M
ER

 T
O

U
C

H
 P

O
IN

TS

META DATA

GEOCODING ATOMIC LEVEL
NORMALIZED DATA

DATA MARTS
DIMENSIONAL DATA

MARKET FORECAST
TREND ANALYSIS
BUDGETING

DATA CLEANSING
DATA INTEGRATION

DATA TRANSFORMATION

TRAFFIC ANALYSIS
CLICKSTREAM ANALYSIS

MARKET SEGMENTATION
CUSTOMER SCORING

CALL DETAIL ANALYSIS

OPERATIONS
DATABASES

USER
COMMUNITIES

DATA
MINING

DATA
MINING

CUSTOMER AGENTS

DW AGENTS

AGENT NETWORK

OPERATIONS AGENTS PERCEPTS

PERCEPTS
PERCEPTS

PERCEPTS

PERCEPTSPERCEPTS

DECISION MAKERS

SPATIAL
ANALYSIS

Back-Feed Loop

Ba
ck

-F
ee

d
Lo

opBack-Feed Loop

ADVANCED QUERY &
REPORTING

OLAP

DATA MINING $

Vendor

WEB

Customer or
Partner

Raw Data

CONCEPTUAL NETWORK

E-MAIL

MULTIMEDIA

PRINT

WEB

Direct Mail

In-Store Purchase

Thank you for
your patience.

INTERNET

$$$

BI DASHBOARD AND
REPORTING PORTAL

DASHBOARD
User Profile

BI DASHBOARD AND
CONTROL PANEL

DASHBOARD
Analyst Profile

Back-Feed Loop

Overview of the BI Organization 9

Providing Information Content

Planning, designing, and implementing your BI environment is an ardu-
ous task. Planning must embrace as many current and future business
requirements as possible. The design of the architecture must be equally
comprehensive in order to include all conclusions found during the plan-
ning phase. The implementation must remain committed to a single pur-
pose: building the BI architecture as formally presented in the design and
founded on the business requirements.

It is particularly difficult to maintain the discipline and political will to
ensure its success. This is simply because building a BI environment is not
done all at once, but by implementing small components of the environ-
ment iteratively over time. Nevertheless, being able to identify BI compo-
nents of your architecture is critical for two reasons:

■■ It will drive all subsequent technical architecture decisions.

■■ You will be able to consciously plan a particular use of a technology
even though you may not get to an iteration needing the technology
for several months.

Sufficiently understanding your business requirements will, in turn,
affect the type of products you purchase for your technical architecture.
Planning and designing your architecture ensures that your warehouse is
not a haphazard event, but rather a well-thought-out, carefully crafted
mosaic of blended technology.

Planning for Information Content
All initial planning must focus on identifying critical or core BI compo-
nents that will be necessary to the overall environment, present and future.
The rationale for even starting a BI effort is driven by known business
requirements. Even before any formal planning begins, the architect or
project planner is often able to identify one or two components right away.
The balance of the components that might be necessary for your architec-
ture, however, may not be as easily identified.

During the planning phase, architects lead joint application design (JAD)
sessions on a quest to identify business requirements. Sometimes these
requirements can be addressed with little more than querying and report-
ing tools. For example, users state they want to automate a report they cur-
rently have to create manually by integrating two existing reports and

10 Chapter 1

adding derived calculations of the combined data. Although this require-
ment is straightforward, it does define some feature functionality that you
must include when purchasing the reporting tool for the organization. The
project planner or architect must also pursue additional requirements to
gain a complete picture. Do the users want to subscribe to this report? Are
subsets of the report to be created and emailed to various users? Do they
want to see this report over the corporate portal? All of these requirements
are part of the simple need to replace a manual report as requested by
users. The benefit of these types of requirements is that everyone, users
and project planners, is familiar with the concept of reports. And the archi-
tects are well versed on the type of technology that exists to support these
efforts.

There are other types of business requirements, however, that we must
plan for. When business requirements are stated in the form of strategic
business questions, it is easy for the experienced architect to discern
dimensional and measure/fact requirements. Figure 1.2 illustrates the
dimensional and measure components of a business question. If JAD par-
ticipants don’t know how to state their requirements in the form of a busi-
ness question, architects will often give examples to jump-start the
requirements-gathering session. The experienced architect is able to help
user communities to not only understand what strategic business ques-
tions look like but also how to form them. Requirement-gathering
approaches are discussed in Chapter 3; for now we merely want to point
out the need to plan for all types of requirements as early in your BI effort
as possible.

Figure 1.2 Dimensional business question.

Dimensions

Dimensional Business Question

Measure

We need monthly sales by customer, product, and store.

Overview of the BI Organization 11

A strategic business question is not only a business requirement but also
an architectural clue. If you need to answer a multidimensional question,
then you need to store and present data dimensionally. And if you need to
store multidimensional data, you need to decide what type of technology
or technique you are going to employ. Do you implement a Star schema, a
proprietary cube, or both?

As you can see, even a simple business question can drive considerable
planning. But these types of business requirements are commonplace and
well understood, at least by experienced architects and project planners.
There has been sufficient debate on OLAP technologies and support, and a
wide range of solutions are available.

So far we have mentioned the need to gather simple reporting and
dimensional business requirements and how these requirements drive
technical architecture decisions. But what about requirements that are not
readily understood by either the user communities or warehouse team
members?

Will you ever need spatial analysis? Will data mining models be a neces-
sary part of your future? Who knows? It is important to note that these
types of technologies are less widely known to general user communities
and warehouse team members. In part, this may be because they are typi-
cally left to a few in-house technical geeks or outside third parties. It is the
limited exposure of these types of technologies that creates the problems.
Consider the impact. If users cannot describe the business requirement or
frame it in such a way as to provide clues to planners, it may go unnoticed
or, worse, simply ignored. More troubling is when the architects and proj-
ect planners themselves cannot recognize the application of one of these
advanced but critical technologies. How often have we heard project plan-
ners say, “Well, why don’t we put that off until we get this other stuff
done?” Are they really concerned about priorities, or are they simply
avoiding requirements that they do not understand? Most likely it is the
latter.

Let’s say your marketing group has communicated a business require-
ment as stated in Figure 1.3. As you can see, the requirement is framed in
the form of a business question. The difference between this question and
typical dimensional questions is distance. In this case, the marketing group
wants to know, on a monthly basis, the total sales by products, stores, and
customers who live within 5 miles of the store they shop. It’s a great ques-
tion and business requirement.

12 Chapter 1

Figure 1.3 Multiple technology business question.

Sadly, uninitiated project planners or architects may simply ignore the
spatial component by saying, “We have the customer, product, and store
data. Let’s hold off on the driving distance until another iteration.” Wrong
response. This type of business question is what BI is all about. It repre-
sents a deeper understanding of our business and a robust analytical land-
scape for our analysts. BI is beyond simple querying or standard reporting,
or even OLAP. That is not to say that these technologies are not important
to your overall BI effort. But by themselves, they do not represent the BI
environment.

Designing for Information Content
Now that we have identified business requirements that distinguish sev-
eral core components, we need to include them in an overall architectural
design. Some of the BI components are part of our initial efforts, while
some will not be implemented for several months. Nevertheless, all known
requirements are reflected in the design so that when we need to imple-
ment a particular technology, we are prepared to do so.

Some of the design will reflect traditional thinking. For instance, Figure
1.1, earlier in the chapter, shows a data mart farm that maintains dimen-
sional data. This farm is used to support subsequent uses of dimensional
data driven by the business questions we identified. As additional docu-
ments are created, such as the data architecture design, we will begin for-
malizing how data is propagated throughout the environment. For

Dimensions

Multiple Technology Business Question

Spatial Measure

We need montly sales by customer, product, and store who
live within five miles of the store.

Overview of the BI Organization 13

instance, we have identified the need for dimensional data and therefore
have planned for data marts. The next question to answer is how these
data marts will be implemented. Do you build stars to support cubes, or
just cubes, or just stars? Do you create the architecture for dependent data
marts that require an atomic layer for all source data? Do you allow inde-
pendent data marts that can source data directly from operational systems?
Whose cube technology will you try to standardize on? Do you have mas-
sive amounts of data required for dimensional analysis or do you need to
email cubes to your national sales force on a weekly basis or both? Do you
implement a powerful tool like DB2 OLAP Server for finance or Cognos
PowerPlay cubes for your sales organization or both? These are big archi-
tectural design decisions that will impact your BI environment going for-
ward. Yes, you have identified a need for OLAP. Now how will you
implement that type of technique and technology?

How do some of the more advanced technologies affect your designs?
Let’s assume you have identified a spatial need in your organization. Now
you need to address the architectural design issues even if you do not plan
to implement spatial components for several months. The architect must
plan for its inclusion today. Anticipating the need for spatial analysis dic-
tates that you create, store, maintain, and provide access to spatial data.
This in turn should serve as a constraint regarding the type of software
technology and platform specifications you may be currently considering.
For example, the relational database management system (RDBMS) you
implement for your atomic layer must have a robust spatial extension
available. This would ensure maximum performance when you use the
geometry and spatial objects in your analytical applications. If your
RDBMS cannot handle the spatial-centric data internally, then you will
need to establish an external spatial-centric database. This complicates
your administration issues and compromises your overall performance,
not to mention the additional problems created for your DBAs, since they
probably have little understanding of pure spatial databases. On the other
hand, if your RDMBS engine handles all the spatial components and its
optimizer is aware of the special needs (for example, indexing) of spatial
objects, then your DBAs can more readily handle administration issues,
and you can maximize performance.

Moreover, you need to scale the staging area and atomic layer environ-
ment to include the cleansing of addresses (a key element to spatial analy-
sis), as well as the subsequent geocoding and storage of spatial objects. The
cascade of design issues continues now that we have introduced the notion
of address cleansing. For one thing, this application will dictate the type of
software necessary for your ETL effort. Do you need products such as

14 Chapter 1

Trillium to provide you with a clean address, or will the ETL vendor you
select provide that functionality?

Chapters 4 and 5 address architectural design issues in more detail, and
spatial data is covered in Chapter 16. For now it is important that you
appreciate the level of design that must be completed before you begin
implementing your warehouse environment. The preceding examples
should demonstrate the cascade of design decisions that must follow the
identification of any particular business requirement. If done correctly,
these design decisions promote interdependency among the physical
structures of your environment, the selection of technology used, and the
propagation flow of information content. Without this formal encompass-
ing BI architecture, you will subject your organization to a chaotic mix of
detached technologies that are, at best, loosely coupled to provide some
semblance of stability.

Implementing Information Content
Bringing information value to your organization is a very difficult task.
Without sufficient insight and experience, or proper planning and design,
even the most disciplined teams will fail. On the other hand, if you have
great insight and detailed planning but no discipline for the implementa-
tion, you have just wasted your money and time because your effort is sure
to fail. The message should be clear: If you are missing any of these core
competencies, insight/experience or planning/design or implementation
discipline, it can cripple or crater the building of a BI organization.

Does your team have sufficient insight? Is there someone on your BI
team who understands the broad analytical landscape available in BI envi-
ronments and the techniques and technologies necessary to implement
that landscape? Is there someone on your team who can recognize the
application difference between advanced, static reporting and OLAP, or
the difference between ROLAP and OLAP? Does one of your team mem-
bers clearly recognize the application of mining and how it might impact
the warehouse or how the warehouse can support the mining efforts? Does
a team member understand the value of spatial data or agent-based tech-
nology? Do you have someone who appreciates the unique application of
ETL tools versus message broker technology? If not, get someone. BI is
much bigger than a normalized atomic layer, OLAP, star schemas, and an
ODS.

Having the insight and experience to recognize BI requirements and
their solutions is critical to your ability to correctly formalize user require-
ments and plan and implement their solutions. If your user communities

Overview of the BI Organization 15

have a difficult time describing requirements, then it is up to the ware-
house team to provide that insight. But if the warehouse team cannot even
recognize specific BI applications—for example, data mining—then it is no
wonder that BI environments often limit themselves to being passive
repositories. However, ignoring these technologies does not diminish their
importance and impact on both the business intelligence capability of your
organization, as well as the informational asset you plan to foster.

Planning must encompass the notion of design, and planning and
design both require an individual with insight. Additionally, planning
requires a warehouse team philosophy with respect for standards. For
example, if your company has established a platform standard or identi-
fied a particular RDBMS it wishes to standardize throughout the enter-
prise, it is incumbent on the warehouse team to adhere to those standards.
Too often a warehouse team espouses the need for standardization to user
communities, but the team itself is unwilling to adhere to established stan-
dards of other areas in the company or perhaps the parent company. Not
only is this hypocritical, but it ensures the enterprise will not be able to
leverage existing resources and investments. That is not to say that there
do not exist situations that warrant a nonstandardized platform or tech-
nology; nevertheless, warehouse efforts should jealously protect standards
of the enterprise until business requirements dictate otherwise.

The third core component necessary to building a BI organization is dis-
cipline. It is equally dependent on individuals and the enterprise as a
whole. Project planners, sponsors, architects, and users must all appreciate
the discipline necessary to build the corporate informational asset. Plan-
ners must steer their project efforts so as to complement other necessary
efforts in the company. For example, suppose your company is imple-
menting an ERP application that has a warehouse component. Then it is
the responsibility of the ERP planners to work with the enterprise ware-
house team so as not to compete with or duplicate the work already under-
way. It serves little purpose for the enterprise to have two competing
warehouses. If possible, one should feed the other and each should play
specific roles supporting the enterprise warehouse requirements.

Discipline is also an issue that must be dealt with by the entire organiza-
tion, and it is typically established and mandated at the executive level.
Are executives willing to adhere to an engineered approach? An approach
that promises to create information content that will eventually bring value
to all areas of the enterprise, but perhaps compromises current individual
or departmental agendas? Remember the saying, “The whole is more

16 Chapter 1

important than the one.” That saying is true for BI organizations. Unfortu-
nately, many warehouse efforts focus on addressing and bringing value to
a particular department or even specific users, with little regard to the
overall organization. The rogue executive who has his or her own agenda,
business objectives, and budget is a perfect example of this problem. Sup-
pose the executive requests assistance from the warehouse team. The team
responds with a 90-day effort that includes not only delivering the report-
ing requirements defined by the executive but ensures that all sourced data
is blended into the atomic layer before being fed into the proposed cube
technology. This added engineering ensures that the enterprise warehouse
will grow and benefit from the data necessary for this executive. However,
the executive has been talking with outside consulting firms who have pro-
posed accomplishing a similar reporting application delivered in less than
4 weeks. Assuming that the internal warehouse team is a competent group,
the executive has a choice. He or she can either support the extra engineer-
ing discipline necessary to grow the enterprise informational asset or can
choose to implement his or her own solution quickly. The latter seems to be
chosen far too often and only serves to create information silos benefiting
the few or the one.

Overview of the BI Organization 17

LONG- AND SHORT-TERM GOALS

Architects and project planners must formalize a long-term vision of the overall
architecture and plans for growing into a BI organization. And yet the
warehouse itself is evolved an iteration at a time. This combination of short-
term gain and long-term planning represent the two faces of BI efforts.

Short-term gain is the facet of BI that is associated with iterations of your
warehouse. It is here where planners, architects, and sponsors focus on
addressing specific business requirements. It is at this level where physical
structures are built, technology is purchased, and techniques are implemented.
All are done in order to tackle specific requirements as defined by particular
user communities.

Long-term planning, however, is the other facet of BI. It is here where plans
and designs have ensured that any physical structures built, technologies
selected, and techniques implemented are done so with an eye toward the
enterprise. It is the long-term planning that provides the cohesion necessary to
ensure that the enterprise benefits from all the subsequent short-term gains
found.

Near-term gain and long-term planning is discussed more in Chapter 3.

Justifying Your BI Effort

A data warehouse alone has no inherent value. In other words, there is no
inherent value to the warehouse technologies and techniques imple-
mented. The value of any warehouse effort is found in the actions taken as
a result of the warehouse environment and the informational content
grown over time.

This is a critical point to understand before you ever attempt to estimate
the value of any warehouse initiative. Too often, architects and project
planners attempt to apply value to the physical, technical warehouse com-
ponents when in fact the value lies with the business processes that are
positively impacted by the warehouse and the information asset acquired.

And there lies the challenge for funding BI-centric initiatives: How do
you justify the investment? If the warehouse itself has no intrinsic value,
project planners must investigate, define, and formalize the benefits gained
by those individuals who will use the warehouse to improve specific busi-
ness processes or the value of the information asset secured or both.

To complicate matters, any business processes affected by warehouse
efforts might provide “hard” or “soft” benefits. Hard benefits provide tan-
gible metrics for measuring return on investment (ROI)—for example,
turning the inventory one additional time during a specific period or
decreasing freight costs per shipment. Soft benefits, such as improved
access to information via a customer facing portal, are more difficult to
define in terms of tangible value.

Linking Your Project to Known Business Requirements
Too often, project planners attempt to link the value of a warehouse to
amorphous goals of the enterprise. Stating that the “value of the ware-
house is found in our ability to address strategic requirements” is a nice
opening statement. But in itself it is not sufficient for determining whether
an investment in the warehouse makes sense. It is best to link warehouse
iterations to specific, known business requirements.

Measuring ROI
Calculating ROI in a warehouse setting can be particularly difficult. It is
especially difficult if the primary benefit of a particular iteration happens
to be something that is not tangible or easy to measure. One study1 found
that users perceive the top two benefits of BI initiatives to be:

18 Chapter 1

1 “Vendors and Users Agree: Business Intelligence Needed for Better Decisions,” Gartner, April 2,
2002.

■■ Improved ability to make informed decisions

■■ Improved access to information

These benefits are soft benefits. It is easy to see how we can calculate ROI
based on a hard benefit like reduced freight cost, but how do we measure
the ability to make better decisions?

This is definitely a challenge for project planners when attempting to
convince the company to invest in a particular warehouse effort. Increasing
sales or decreasing costs are no longer the central themes driving the BI
environment. Instead, we find ourselves addressing business requirements
such as better access to information so that a particular department can
make faster decisions. These are strategic drivers that happen to be equally
important to the enterprise but are more ambiguous and more challenging
to characterize into tangible metrics. In this case, calculating ROI can be
misleading, if not irrelevant.

Project planners must be able to demonstrate tangible value for execu-
tives to decide whether the investment in a particular iteration is worth it.
However, we will not propose a new method for calculating ROI, nor will
we make any argument for or against it being done. Plenty of articles and
books are available that discuss the fundamentals of calculating ROI. There
are even special value propositions such as value on investment (VOI),
offered by groups like Gartner, that you can research. Instead, we will con-
centrate on core aspects of any ROI, or other value propositions that you
must consider.

Applying ROI

Aside from the issue of soft versus hard benefits associated with BI
efforts, there are other problems to consider when applying ROI. For
example:

Attributing too much savings to DW efforts that would come anyway.
Let’s say your company was moving from a mainframe architecture
to a distributed UNIX environment. Then any savings that may (or
may not) be realized by that effort should not be attributed solely, if
at all, to the warehouse.

Not accounting for all costs. And there are many. Consider the
following list:

■■ Cost of startup, including feasibility.

■■ Cost of dedicated hardware with related storage and communi-
cations requirements.

Overview of the BI Organization 19

■■ Cost of software, including data management and client/server
extensions, ETL software, DSS technologies, visualization tools,
scheduling and workflow applications, and monitoring software,
just to name a few.

■■ Cost of data structure design, including implementation, aggre-
gate definition, and query optimization.

■■ Cost of software development directly associated with the BI
effort.

■■ Cost of ongoing support, including performance optimization,
software version control, and help desk operations.

Applying “Big-Bang” ROI. Just as the implementation of the ware-
house as a single, gigantic effort is destined to fail, so too is calculat-
ing the ROI for an enterprisewide initiative. What is amazing is that
planners continue making feeble attempts at estimating the value of
the entire effort. Why would planners attempt to put a dollar value
on the enterprise initiative if it is widely known and accepted that
estimating specific iterations is difficult? How is that possible? With
few exceptions, it isn’t. Don’t do it.

Now that we have established what not to do when calculating ROI, here
are some pointers that will help in establishing a reliable process for esti-
mating the value of your BI efforts:

Getting consensus of ROI. Whatever your choice of technique for
estimating the value of your BI efforts, it must be agreed to by all rel-
evant parties, including project planners, sponsors, and company
executives.

Reduce ROI into identifiable parts. A necessary step to calculating a
reasonable ROI is to focus that calculation on a specific project. This
lets you then estimate value based on specific business requirements
being addressed.

Define costs. As mentioned, numerous costs must be considered.
Moreover, the costs must not only include those associated with the
individual iteration but also the costs of ensuring the adherence to
the enterprise standards.

Define benefits. By clearly binding the ROI to specific business
requirements, we should be able to identify the benefits that address-
ing the requirements will bring.

Reduce costs and benefits into today’s dollars. It is best to make
your estimates based on net present value (NPV) as opposed to
attempting to predict future value in future dollars.

20 Chapter 1

Keep the time frame of your ROI to a minimum. It is well docu-
mented that the longer the time period used in your ROI, the more
difficult it is to prove.

Use more than one ROI formula. There are several methods for esti-
mating ROI, and you should plan to use one or more of them, includ-
ing net present value, internal rate of return (IRR), and payback.

Define repeatable process. This is central to any long-term value calcu-
lation. There should be a single, documented, repeatable process for
all subsequent projects to follow.

The problems listed are the most common ones experienced in the ware-
house arena. The insistence by some management that we provide a “Big-
Bang” ROI is most mystifying. If you start all your ROI calculations by
reducing them into identifiable, tangible parts, you have a good chance at
providing an accurate ROI estimate.

Questions for ROI Benefits

Whether your benefits are soft or hard, you can use some fundamental
questions to determine their value. Using a simple scale system, for exam-
ple, 1 to 10, you can survey the impact of any effort using the following
questions:

■■ How would you rate your company’s understanding of the data as a
result of this project?

■■ How would you estimate process improvements as a result of this
project?

■■ How would you measure the impact of new insights and inferences
now made available from this iteration?

■■ What has been the impact of newer and more effective computer
environments as a result of what was learned?

If answers to these questions are low, the undertaking may not be worth
the investment made. Questions with a high score point to significant
value gains and should serve as guides for further investigation. For exam-
ple, a high score for process improvements should lead planners to exam-
ine how the processes were improved. You may find that some or all of the
improvement gains are tangible and therefore a dollar value can readily be
applied.

TI P These questions are used after the project. If you need to calculate
expected ROI, you could rephrase some of the questions and have user
communities provide estimations.

Overview of the BI Organization 21

Making the Most of the First Iteration of the Warehouse
The greatest return of your enterprise effort is often found in the first few
iterations. These first efforts traditionally establish the most useful infor-
mational content for the broadest audience and help establish a technology
foundation for subsequent BI applications. Each subsequent data ware-
house project will typically bring less and less additional value to the
enterprise as a whole. This is especially true if the iteration does not add
new subject areas, or address the needs of new user communities. This
characteristic of warehousing also applies to the growing piles of historical
data. As subsequent efforts call for more data and as more data is poured
into the warehouse over time, more of the data becomes less relevant to the
analysis at hand. This data is often referred to as dormant data, and it is
always expensive to keep since it is almost never used.

What does this mean to project sponsors? Essentially, the first sponsors
carry more than their fair share of investment costs. This is primarily
because they are the impetus for laying foundational, enterprisewide tech-
nology and warehouse resources, including staffing. But these first steps
bring the highest value, and therefore project planners can often justify the
investment. Comparatively, projects done later in your BI initiative may
have lower, direct costs, but they bring less overall value to the enterprise.
And the enterprisewide patrons must start considering how to clear out
the accumulation of less relevant data and technologies.

IBM and The BI Organization

IBM has dedicated significant resources and sustained the needed disci-
pline to mature several products that cover a wide spectrum of BI technol-
ogy. These products include DB2 UDB V8, Data Warehouse Center, DB2
OLAP Server, Intelligent Miner, and Spatial Extender. These represent
many of IBM’s enterprise analytic solutions that allow executives, man-
agers, and business analysts to react rapidly to trends and changes in the
marketplace.

IBM focuses on three core BI objectives:

Creating seamless integration between DB2 and BI analytics. DB2
UDB forms the center of IBM’s BI strategy. Along with its scalable,
parallel database technology, you get extensions for data mining,
OLAP, and portal and geospatial technologies. Seamless integration
means that your database engine is aware of, and optimized for, mul-
tiple BI objects and technologies. For example, instead of maintaining

22 Chapter 1

a separate database for spatial objects, DB2 UDB V8 Spatial Extender
expands the UDB engine to readily import, store, maintain, and serve
up spatial data. There is no need for separate database technologies
and administration. Another example of seamless integration is the
ability in UDB V8 to execute mining models from anywhere you can
execute SQL. Integration points such as these give architects and
project planners significantly more implementation and architecture
options. Moreover, they afford a broader range of BI solutions to
address business requirements.

Simplifying the BI analytics delivery system through integrated
technology. A simplified data delivery system requires two ele-
ments: the ability to address different data types and the efficient
propagation of the different data from its source to your target BI
structure. Through DB2’s XML support, heterogeneous distributed
query capabilities, integrated data replication services, DB2 Exten-
ders for spatial, text, or multimedia data, and MQSeries technology, a
company can efficiently move virtually any data type from source to
target. But we should not confuse simplified BI analytics and data
delivery with extraction, transformation, and loading. Where ETL is
excellent for large, batch processing of data into the warehouse, data
delivery is concerned with nimble data propagation within your
entire organization, including your warehouse. This book provides
discussions on how IBM is addressing both ETL and data delivery.

Providing zero-latency analytics. Real-time (or zero-latency) analyt-
ics is a prerequisite for enterprise BI efforts. Building a zero-latent BI
environment requires seamless integration between the database
engine and your choice of analytic tools, as well as an efficient data
delivery system. In other words, to build in zero-latency requires
that you address the two previous objectives. IBM has consciously
blended their technology to afford user communities the opportunity
to offer zero-latency analytics.

Seamless integration, simplified data delivery, and zero-latency are tac-
tical approaches for building your BI architecture. Let’s look at each goal in
detail.

Seamless Integration
There are numerous integration links between DB2 UDB V8 and your BI
environment. Let’s isolate specific technologies in the BI architecture to
show how BI functions are being integrated in DB2.

Overview of the BI Organization 23

Data Mining

Several architectural components require variations of data mining tech-
nologies and techniques—for example, the various “agents” for examining
customer touch points, the company’s operational systems, and the data
warehouse itself. These agents may be advanced neural nets trained to
spot trends, such as future product demand based on sales promotions;
rules-based engines to react to a given set of circumstances, for example,
medical diagnosis and treatment recommendations; or even simple agents
that report exceptions to top executives. These data mining processes gen-
erally occur in real time; therefore, they must be tightly coupled with the
movement of the data itself.

DB2 Intelligent Miner Scoring Services provides database engine mining
extensions that allow mining models to be database-resident. This trans-
lates to the dynamic scoring of mining models in DB2 and allows the mod-
els to be implemented on any UDB environment and executed using
simple SQL. Also, the mining model supports the industry-standard XML-
based Predictive Model Markup Language (PMML), which translates to
broader compatibility and your ability to support your environment.

Mining products currently offered by IBM include:

■■ DB2 Intelligent Miner for Data

■■ DB2 Intelligent Miner for Text

■■ DB2 OLAP Server Analyzer

■■ DB2 Intelligent Miner

More information on these products is provided in Chapters 14 and 15.

Online Analytic Processing

The ability to slice, dice, roll up, drill-down, and perform what-if analysis
is well within the scope of the IBM technology suite. For example, online
analytical processing (OLAP) functions exist for DB2 that bring dimen-
sional analysis into the database engine itself (refer to Chapter 13). The
functions add dimensional utility to SQL while exploiting all the benefits
of being a natural part of DB2. Another example of OLAP integration is the
mining tool, DB2 OLAP Server Analyzer. This technology lets DB2 OLAP
Server cubes be quickly and automatically analyzed to spot and report on
unusual or unexpected data values throughout the cube to the business
analyst. And, finally, the Data Warehouse Center functions provide a
means for architects to control, among other things, the outline of a DB2
OLAP Server cube as a natural part of ETL processes.

24 Chapter 1

Spatial Analysis

Space represents half of the analytical anchors needed for a broad analyti-
cal landscape (time represents the other). The atomic-level warehouse
depicted in Figure 1.1 includes the fundamentals for both time and space.
Timestamps anchor analysis by time, and address information anchors
analysis by space. The diagram shows geocoding—the process of convert-
ing addresses to points on a map or points in space so concepts like dis-
tance and inside/outside can be used in analysis—conducted at the atomic
level and spatial analysis being made available to the analyst. IBM pro-
vides spatial extensions, developed with the Environmental Systems
Research Institute (ESRI), to the DB2 database so that spatial objects may
be stored as a normal part of the relational database. DB2 Spatial Extenders
also provide all the SQL extensions to exploit spatial analysis. For example,
SQL extensions to query on distance between addresses or whether a point
is inside or outside a defined polygonal area are standard analytics with
the Spatial Extender. Refer to chapter 16 for more information.

Database-Resident Tools

DB2 has many BI-resident SQL features that assist in the analysis effort.
These include:

■■ Recursion functions to perform analysis, such as “find all the possi-
ble flight paths from San Francisco to New York.”

■■ Analytical functions for ranking, cumulative functions, cube, and
rollup to facilitate tasks that normally occur only with OLAP tech-
nology are now a natural part of the database engine.

■■ The ability to create tables that contain precomputed results.

Leading database vendors are blending more of the BI functionality into
the database itself. This provides better performance and more implemen-
tation options for BI solutions. DB2 V8 features and functions are discussed
in detail in the following chapters:

■■ Technical Architecture and Data Management Foundations
(Chapter 5)

■■ DB2 BI Fundamentals (Chapter 6)

■■ DB2 Materialized Query Tables (Chapter 7)

■■ DB2 OLAP Functions (Chapter 13)

■■ DB2-Enhanced BI Features and Functions (Chapter 15)

Overview of the BI Organization 25

Simplified Data Delivery System
The architecture depicted in Figure 1.1 includes several physical data struc-
tures. One is the operational data store. Generally, an ODS is subject-
oriented, integrated, and current. You would build an ODS to support, for
example, the sales department. The sales ODS would integrate data from
several disparate systems but only maintain, for example, today’s transac-
tions. The ODS may even be updated several times a day. At the same time,
processes push the integrated data into other applications. This structure is
designed specifically to integrate current, dynamic data and would be a
likely candidate to support real-time analysis, like providing customer ser-
vice agents with the current sales information of a customer (from the
ODS) while extracting sales trend information from the warehouse itself.

Another structure shown in Figure 1.1 is a formal staging area for the
data warehouse. Not only is this the place for performing the necessary
integration, data quality, and transformation of incoming warehouse data,
but it is also a reliable, temporary storage area for replicated data that
could be used in real-time analysis.

Whether you decide to use an ODS or a staging area, one of the best tools
for populating these data structures using disparate operational sources is
DB2’s heterogeneous distributed query. This capability is delivered by the
optional DB2 feature called DB2 Relational Connect (query only) and
through DB2 DataJoiner (a separate product that delivers query, insert,
update, and delete capability to heterogeneous distributed RDBMSs).

This technology allows data architects to bind production data with ana-
lytical processes. Not only can the technology adapt to virtually any of the
replication requirements that might arise with real-time analysis, but it can
also connect to a wide variety of the most popular databases, including
DB2, Oracle, Sybase, SQL Server, Informix, and others. DB2 DataJoiner can
be used to populate a formal data structure like an ODS or even a perma-
nent table staged in the warehouse designed for snapshot updates or rapid
wholesale refresh. Of course, these same data structures can be populated
using another important technology designed for data replication, IBM
DataPropagator Relational. (DataPropagator is a separate product for
mainframes. DB2 UNIX, Linux, Windows, and OS/2 include data replica-
tion services as a standard feature.)

Another method for moving operational data around the enterprise is an
enterprise application integrator otherwise known as a message broker. This

26 Chapter 1

unique technology affords unparalleled control for targeting and moving
data around the enterprise. IBM has the most widely used message broker,
MQSeries, or a variation of the product that incorporates e-commerce
requirements, IBM WebSphere MQ.

For more discussion on how to exploit MQ to support a warehouse and
BI environment, visit this book’s companion Web site. For now, suffice it to
say that this technology is an excellent means for seizing and transforming
(using MQSeries Integrator) targeted operational data recruited for BI
solutions. The MQ technology has been integrated and bundled in UDB
V8, which means that message queues can now be managed as if they are
DB2 tables. The notion of welding message queuing and the relational
database universe makes for a powerful data delivery environment.

Zero-Latency
The final strategic objective for IBM is zero-latency analysis. As defined by
Gartner, a BI system must be able to gather, assimilate, and provide infor-
mation for analysts on demand. The challenge, of course, is how to blend
current, real-time data with necessary historical information, such as rele-
vant trend/pattern data, or mined insight, such as customer profiling.
Such information includes, for example, identifying high- or low-risk cus-
tomers or which products customers will most likely purchase if they
already have cheese in their shopping carts.

Achieving zero-latency is really dependent on two fundamental mecha-
nisms:

■■ Tightly coupling the data being analyzed with the BI techniques
established and tools being implemented

■■ An efficient data delivery system to ensure that the data needed for
the real-time analysis is actually available

These prerequisites for zero-latency are not unlike the two objectives
established by IBM and outlined previously. The tight coupling of data is
part of the seamless integration agenda set forth by IBM. And creating an
efficient data delivery system is completely dependent on technology
being available that simplifies the data delivery process. Consequently,
two of the three IBM objectives are fundamental to achieving the third.
IBM is consciously evolving its technology to ensure that zero-latency is a
reality for warehouse efforts.

Overview of the BI Organization 27

Summary

The BI organization provides a road map to implement your environment
iteratively. It must be tuned to reflect the needs of your business, both
present and future. Without a broad architectural vision, warehouse itera-
tions are little more than haphazard warehouse-centric implementations
that do little to create an enterprisewide, informational asset.

The first hurdle project managers face is how to justify the investments
necessary for building a BI organization. Although calculating ROI has
remained a mainstay for warehouse implementations, it is becoming more
difficult to accurately predict. This has led to other methods for determin-
ing whether you are getting your money’s worth. Value on investment2

(VOI), for example, is being touted as one solution.
It is incumbent on data architects and project planners to deliberately

create and provide information content to user communities and not sim-
ply serve up data. There is a huge difference between the two. Information
is anything that makes a difference in decision-making processes and effec-
tiveness; comparatively, data is building blocks to derive that information.
Albeit critical to source data to address business requirements, the BI envi-
ronment should serve a greater role in creating information content. We
must take the extra steps to cleanse, integrate, transform, or otherwise cre-
ate information content that users act upon, and then we must make sure
that those actions and decisions, where reasonable, are fed back into the BI
environment. If we relegate the warehouse to merely serving up data, rest
assured that user communities will create the necessary information con-
tent to act upon. This ensures their community will be able to make better
decisions, but the enterprise suffers from the lack of knowledge they used.

As architects and project planners initiate specific projects in the BI envi-
ronment, they remain responsible to the enterprise as a whole. A simple
example of this two-faced characteristic of BI iterations is found in sourc-
ing data. All data sourced for specific business requirements must be pop-
ulated into the atomic layer first. This guarantees the evolution of the
corporate information asset, as well as addresses the specific user require-
ments defined in the iteration.

2 Gartner.

28 Chapter 1

29

Key Issues:

■■ Understanding traditional warehouse-centric technologies and tech-
niques is no longer sufficient. Data architects and project planners
must arm themselves with a broader understanding of lesser-known
BI tools that add incredible information content to the warehouse, as
well as broaden the analytical landscape.

■■ The architecture of the business intelligence (BI) organization sup-
ports a natural flow of data as it propagates from source to target
usage, with net actions fed back into the source and warehouse-
centric data stores.

A BI organization fully exploits data at every phase of the BI architecture
as it progresses through various levels of informational metamorphosis.
The raw data is born in operational environments, where transactional
data pours in from every source and every corner of the enterprise. While
some operational data is staged for warehouse-centric application, other
data is propagated into integrated pools of operational content for tactical
use called operational data stores (ODSs). During the warehouse staging

Business Intelligence
Fundamentals

C H A P T E R

2

process, raw operational data is cleansed, integrated, and transformed
into warehouse-centric content, prepped for assimilation into the atomic
level of the warehouse. It is this structure that serves as the foundation of
your BI environment.

The atomic layer is an ocean of informational content, at the natural
grain of your business, encompassing the breadth of the enterprise. It
evolves into a deep, wide body of content unlike any found elsewhere in
the organization. And, like all oceans, it is not for the faint of heart or the
weekend adventurer. Advanced BI applications are found filtering, sifting,
and probing the content for enterprisewide insight. From this ocean, all
other BI applications are fed.

It is by design that data marts represent the principal consumer of
atomic-level data. This engineered approach ensures information integrity
and audit ability. Irrelevant of who extracts information from which BI
structure, atomic layer, star schema, or online analytical processing
(OLAP) cube utilizing any number of tools including batch reports,
spreadsheets, or BI dashboards, the basis of that insight is founded from a
single, controlled source: the atomic layer.

Finally, any actions taken, or analytical fodder generated, based on the
informational insight gleaned from the natural flow of data, is formally
blended back into the relevant areas of the BI organization. This ensures
continuity, a natural evolution to the raw data, and it accentuates the infor-
mation asset.

So, that is the business intelligent organization vision: A natural flow of
data, from genesis to action. And at each step in the flow, the data is fully
exploited to ensure the increase of information value for the enterprise.
The challenge, of course, is to build your vision.

Several chapters in this book will help you build your vision by detailing
the specific elements of data warehousing and business intelligence. The
main challenge for this chapter is to lay out the fundamentals of the ware-
house and BI environment without being redundant with in-depth cover-
age of each topic in subsequent chapters.

We start this chapter by examining the general components of business
intelligence and of the warehouse architecture itself. The chapter continues
by defining specific roles of BI technology, techniques, and structures. The
different user types are then presented to readers, as well as the types of
analytic technology from which user requirements are addressed. The lat-
ter part of this chapter provides detailed discussions regarding dimen-
sional data and related analysis. The chapter ends with discussions
regarding critical concepts such as user touch points, zero-latency, closed-
loop learning, and historical integrity.

30 Chapter 2

BI Components and Technologies

Business intelligence encompasses the process of transforming data from
your various data sources into meaningful information content. There are
two objectives. The first is to provide you and your company with insights
into where your business has been, is today, and is likely to be tomorrow.
The second is to help you put that information content into action by mak-
ing it accessible when and where you need it most.

BI allows you to improve your decision making at all levels by giving you
a consistent, valid, and in-depth view of your business by consolidating data
from different systems into a single accessible source of information—a data
warehouse. Depending on user requirements, there are different types of
tools to be used to analyze and visualize the data from the warehouse. These
tools range from query and reporting to advanced analysis by data mining
or spatial analysis.

Several components comprise BI, from technologies to techniques, from
the movement of data to the analysis of information content. This section
describes BI and its relevant components.

Business Intelligence Components
Traditionally, information systems have been designed to process discrete
transactions in order to automate tasks such as order entry or account
transactions. These systems are not designed to support users who wish to
extract data at different aggregation levels and utilize advanced methods
for enterprisewide data analysis. These systems tend to be isolated to sup-
port a single business system, function, or process such as Human
Resources or Accounting. All of this results in a great challenge when you
require a consolidated view of the state of your business.

Data Warehouse

The data warehouse is only one component of business intelligence, albeit a
significant one. Too often, architects and project planners assume that if they
implement a data mart, for instance, they have achieved BI. Not even close.
That does not mean that the data structures of the warehouse do not support
BI. By themselves, however, they are only a part of the BI environment.

The data warehouse supports the physical propagation of data as it
moves from source to target to access tool. Typical processes include:

■■ Extraction

■■ Transformation/cleansing

Business Intelligence Fundamentals 31

■■ Transportation

■■ Loading

■■ Data refinement

The tasks performed on the data warehouse typically require batch per-
formance to handle the numerous records for integration, cleansing, aggre-
gation, pre calculation, and query tasks.

Data Sources

Data sources can be operational databases, historical data (usually
archived on tape), external data (for example, from market research com-
panies or from the Internet), or information from the already existing data
warehouse environment. The data sources can be relational databases or
any other data structure that supports the line of business applications.
They also can reside on many different platforms and can contain struc-
tured information, such as tables or spreadsheets, or unstructured infor-
mation, such as plaintext files or pictures and other multimedia
information.

Data Targets

Under the umbrella of warehousing, there are three distinct data struc-
tures: atomic layer, star schema, and multidimensional cube. Moreover,
there is another data structure often considered a part of an overall ware-
house solution: the operational data store. We defined these data structures
generally in Chapter 1. In this section we outline some of the traditional
characteristics of each structure.

Staging Area

The staging area can be considered your “whiteboard” for raw source data
that is to be transformed into the information content destined for the ware-
house. There are no special data structure requirements for your staging
area, since it must be flexible to accommodate all types of source data. Nor
are there any real guidelines to follow for setting up your staging area,
except to make sure that it has sufficient capacity to handle any data prepa-
ration processing for your largest data set or your most complex transfor-
mations. Most of the requirements to set up your staging area will be
dictated by your extraction, transformation, and loading (ETL) tool of choice.

Another important point about staging areas is that there is no rule that
says you can only have one. It is not unusual to have a permanent staging

32 Chapter 2

area on a specific platform for most of the raw source data for the ware-
house. But what if, for example, you have some source data residing on a
mainframe, and the mainframe folks are willing to give you resource time
to perform some of your staging transformation on the mainframe itself?
You should definitely take advantage of the situation. It is always best to
perform as much transformation as possible on the same platform as the
source data. The rationale is simple. First, the source system simplifies
some of the transformation processes such as changing from EBCIDIC to
ASCII. Second, the source system platforms are often larger than the plat-
form of your staging area, and therefore you get better performance for
sorting, identifying delta records, and so forth.

Atomic Layer

The atomic layer of the warehouse is the foundation of all BI content. It
represents the basis for all data necessary for strategic analysis. To do so,
the atomic layer generally incorporates the following capabilities and
characteristics:

It maintains historical integrity (time-variant data). This is discussed
in detail in the Historical Integrity section of this chapter.

It represents the lowest level of detail (granularity) for the ware-
house. This is a critical point. The data stored at the atomic layer is
the lowest grain of data available for all subsequent data structures
of the warehouse and BI analysis.

It is built in iterations. As described in Chapter 3, you will build
your warehouse one step at a time. With each step, you will often
add more source data to the atomic layer. This is in contrast to
attempting to build your atomic layer in one big-project effort.

It is the source of enterprisewide data. Over the course of time, the
atomic layer will become the source of enterprisewide data for BI. As
you add data iteratively, you grow the scope and breadth of the sub-
ject areas covered at the atomic layer. This is unique to this data
structure. Conversely, data marts, either star schemas or cubes, are
almost always focused on a particular subject area.

It is integrated. The atomic layer is a data structure that provides
an integrated source for your enterprise. That means that the most
impactive and useful atomic layers are those that have multiple, dis-
parate operational data sources that require integration for an enter-
prise view.

Business Intelligence Fundamentals 33

It is static. Although the technology exists to increase the frequency at
which a warehouse is updated with new source data, the environ-
ment as a whole remains static versus dynamic in nature. The origi-
nal notion of a dynamic environment meant that data is capable of
being constantly updated—including users literally changing and
adding data directly. By this very definition, a dynamic warehouse is
not possible. The idea of having end users update, add, and other-
wise change warehoused data directly compromises the integrity of
the data. So the idea of a dynamic data warehouse is really only in
terms of the frequency with which data elements of the warehouse
are refreshed.

Data Mart

A data mart sources its data from the atomic layer of the warehouse and
is tailored to support the specific requirements of a given business unit,
business function, or application. The main purposes of a data mart are as
follows:

■■ To store pre-aggregated information

■■ To control end-user access to the information

■■ To provide fast access to information for specific analytical needs or
user groups

■■ To represent the end user’s view and data interface of the data ware-
house

■■ To create the multidimensional/relation view of the data

The most common database format is either multidimensional or rela-
tional. Of course, there are other possibilities for data marts including a
SAS dataset. However, we will focus our discussion on relational or dimen-
sional technology. When building data marts, keep the following in mind:

■■ Data marts should always be implemented as an extension of the
data warehouse, not as an alternative. This is referred to as a depen-
dent data mart as opposed to an independent data mart. The depen-
dent environment ensures data integrity throughout the warehouse
environment. This is not true for independent data marts, which
can go directly to operational systems for source data. The problem
with independent data marts is that there is no control of the meta
data used to manage how the data mart is built and maintained.
Consequently, it is not unusual for executives with two independent
data marts of the same subject area to have different reported results.

34 Chapter 2

■■ Data marts are typically constructed to address the requirements
within a single subject area. However, you should be aware of the
trade-off between the simplicity of design (and performance bene-
fits) and the cost of administrating and maintaining a large number
of data marts.

Data marts are essential for serving up dimensional data for OLAP. For
more information refer to the Dimensional Technology and BI section later in
this chapter.

Operational Data Store

The operational data store can be defined as an updateable set of inte-
grated data used for enterprisewide tactical decision-making of a particu-
lar subject area. It contains live data, not snapshots, and retains minimal
history. Following are some features of an ODS:

It is subject-oriented. It is designed and organized around the major
data subjects of a corporation, such as “customer” or “product.” They
are typically not organized around specific applications or functions,
such as “order entry” or “accounts receivable.”

It is integrated. It represents a collectively integrated image of subject-
oriented data that is pulled in from potentially any operational sys-
tem. If the “customer” subject is included, then all of the “customer”
information in the enterprise is considered as part of the ODS.

It is current-valued. It reflects the “current” content of its legacy
source systems. “Current” may be defined in various ways for differ-
ent ODSs depending on the requirements of the implementation. An
ODS should not contain multiple snapshots of whatever “current” is
defined to be. That is, if “current” means one accounting period, then
the ODS does not include more than one accounting period’s data.
The history is either archived or flushed into the data warehouse for
analysis.

It is volatile. Because an ODS is current-valued, it is subject to change
on a frequency that supports the definition of “current.” That is, it is
updated to reflect the systems that feed it in the true OLTP sense.
Therefore, identical queries made at different times will likely yield
different results because the data has changed.

It is detailed. The definition of “detailed” also depends on the busi-
ness problem that is being solved by the ODS. The granularity of
data in the ODS may or may not be the same as that of its source
operational systems.

Business Intelligence Fundamentals 35

An ODS is a viable option for tactical reporting.

Warehouse Components

Project managers, architects, and sponsors face a wide array of issues that
complicate the warehouse effort. These issues range from project scope to
technology choices and from data quality problems to the ever-present
end-user expectation. While it is true that the fundamental choices of data
architecture—for example, establishing an atomic layer with dependent
data marts—remain constant, you will adapt to new issues and technology
with each iteration of the warehouse. For instance, you may have DB2
OLAP Server identified as the “approved” OLAP tool, but an organization
within your enterprise may rightfully demand the use of MicroStrategies
or Business Objects. Or, while some project iterations might be bogged
down in dealing with the scope creep, others might be uncovering more
data-quality problems than they anticipated. But no matter how many and
what variety of issues you face in warehouse iterations, one thing is cer-
tain: you will always have to address the four core components shown in
Figure 2.1:

■■ Extraction, transformation, and loading (ETL)

■■ Data management

■■ Data access

■■ Meta data

Figure 2.1 Components of a data warehouse.

Transformation

Data Extraction,
Transformation, and Loading

Data Access

Data Management

Meta Data Management
Source
Data

Transformation

36 Chapter 2

Whether the source data is in operational systems or already resident in the
warehouse, the data must be extracted. If you need to propagate the data to
another structure, then transformation and loading also become issues. On the
other hand, you might simply need to extract data for an advanced SQL report.
In either case, what remains true is that for virtually all warehouse efforts you
must plan for and address some source data acquisition, and possibly transfor-
mation and loading. Moreover, as the data moves throughout the warehouse
landscape, it must be stored, indexed, backed up, and otherwise managed. The
data management can be through the use of a relational database management
system (RDBMS) or OLAP technology. Of course, once the data has been
acquired and stored in target structures, it must be made accessible. Data access
can be achieved in a number of ways, from simple spreadsheets to ad hoc
reporting to complex mining. And, consistent with all we do in warehouse and
BI efforts, there must be some aspect of meta data to be addressed. Whether we
need to collect and formalize business rules or gather process and usage statis-
tics, meta data must be considered an anticipated component of every iteration.

Extraction, Transformation, and Loading
A traditional part of warehouse iterations is the need for data acquisition.
This typically entails the following steps:

■■ Identification of the source data relevant to the subject area being
examined

■■ Development of an extraction strategy

■■ Transformation of the source data to target specifications

■■ Loading the sourced data into the predefined target

This acquisition process is referred to as extraction, transformation, and
loading. As shown in Figure 2.1, a warehouse environment has multiple
ETL opportunities. The most common ETL layer is between the actual raw
source data from operational systems and the warehouse atomic level.
However, there are other ETL layers to bear in mind when you consider
your acquisition strategy. There are ETL requirements between the atomic
layer and each data mart, whether the data mart is implemented as a star
schema or cube. Moreover, ETL exists between the implementation of star
schemas and cube technologies.

When building an ETL strategy for a particular subject area, the data
architect must consider the following issues:

■■ When should a business rule be applied?

■■ How should the chosen business rules be applied?

■■ What technology will be used to apply the defined rules?

Business Intelligence Fundamentals 37

There are two important points to remember about ETL processes. First,
you only want to bring into the warehouse data that will lend itself to effec-
tive analysis. Second, warehouse builders must ensure the completeness
and accuracy of all data brought into the warehouse.

All too often project planners or user communities insist on bringing
every column of a record into the warehouse, as opposed to targeting only
those columns that provide analytical value and whose data can be effec-
tively transformed and scrubbed into informational content.

As an example, let’s suppose the data architect had ETL specifications
for sales order number, date, and customer code from a sales order header
record. These specs were given to project sponsors for approval. But users
insisted in bringing in all the columns of the sales order header, including
a column called “Special Instructions.” Here is the problem: No one is con-
sidering whether the added data lends itself to analysis or whether the
data can be made complete and accurate. Addressing these two points can
greatly expand your ETL project with potently little benefit.

In our example it may be that contract codes are often entered into the
Special Instructions field. However, there are no application screen edits or
processes to ensure the contract codes are entered consistently or accu-
rately. This means that your ETL process would have to parse the field
looking for potential patterns of contract codes. Moreover, since there are
no application requirements to enter contract codes into the sales order,
you can be sure that the information is sporadically and inconsistently
input by data entry clerks. Now, is it worth the dramatic increase in your
ETL development budget to bring in this Special Instructions field? Will
you consistently be able to glean out of the free-form text the contract codes
you need for analysis?

Some argue that it doesn’t matter if the field has consistent codes. This
begs the question, then how is it going to be used for strategic analysis?
Strategic analysis is primarily based on statistical aggregations, including
sum, min, max, mean, variance, average, moving average, and percent of
total, just to name a few. If the field on which you plan to perform statisti-
cal aggregations (or use as a constraint for that function) is of poor quality,
rest assured the results will be dubious at best. And, if the results cannot be
relied upon, they why have the data in the warehouse in the first place?
These are important questions to answer before you decide to bring any-
thing into the warehouse.

Extraction

Data extraction and data propagation are processes for collecting data from
various sources and different platforms and moving it into the data ware-
house. Data extraction in a warehouse environment is a selective process to

38 Chapter 2

import only relevant information that supports analysis and decision mak-
ing. This is a critical point often overlooked by acquisition programmers.

Data extraction/data propagation is much more than mirroring or copy-
ing data from one database system to another. Architects and ETL pro-
grammers must identify the specific data to extract, the trigger that causes
the extraction to take place, and the target for the data being extracted.
Also, depending on the technique, this process is either referred to as
pulling (extraction of data) or pushing (propagation of data).

Transformation/Cleansing

Transformation of data usually involves code resolution with mapping
tables, for example, changing the variable gender to:

■■ 0 if the value is female

■■ 1 if the value is male

It involves changing the resolution of hidden business rules in data
fields, such as account numbers. Also, the structure and the relationships
of the data are adjusted to the analysis domain. Transformations occur
throughout the population process, usually in more than one step. In the
early stages of the process, the transformations are used more to consoli-
date the data from different sources; whereas in the later stages, data is
transformed to satisfy a specific analysis problem or a tool requirement.

Data warehousing turns data into information; on the other hand, data
cleansing ensures that the data warehouse will have valid, useful, and
meaningful data from which to create the information. Data cleansing can
also be described as standardization of data. Through careful review of the
data contents, the following criteria are matched:

■■ Replace missing values.

■■ Normalize value ranges and units (for example, sales in the euro or
dollar).

■■ Use valid data codes and abbreviations.

■■ Use consistent and standard representation of the data.

■■ Use domestic and international addresses.

■■ Consolidate data (one view), such as house holding.

Data Refining

The data stored at the atomic level of your warehouse represents the low-
est level of detail for the entire warehouse environment. This information

Business Intelligence Fundamentals 39

often must be aggregated, summarized, or otherwise modified to ensure
query performance and minimize the amount of data that is transmitted
over the network to the end-user query or analysis tool. This data refining
process is often associated with data marts that:

■■ Create a subset of the data in the star schema

■■ Create calculated or virtual fields

■■ Summarize the information

■■ Aggregate the information

Data Management
Data management, the physical handling and control of data, is necessary
in each warehouse iteration. Whether you need to store the data in a rela-
tional database or a proprietary file management system, the data must be
stored somewhere. And, once stored, it must be managed in terms of stor-
age, indexing, backups, and so on. Consequently, data management is a
core requirement for any warehouse effort and must be understood and
integrated into the overall warehouse strategy.

The important point to understand about data management is that it
covers more than just a relational database. If you are implementing OLAP,
it will be necessary to address the management needs of multidimensional
data stored in cube format as well. Refer to Chapter 5 for more information
regarding DB2 data management considerations.

Data Access
All warehouse efforts will implement and maintain one or more methods
to access the data being collected, transformed, and stored. These data
access applications provide business users at various levels within an orga-
nization with an easy-to-use interface for not only accessing the data but
also performing analysis in the pursuit of better business decision support.

Simply put, front-end data access tools and technologies allow users to
get to the data for analysis. And the variety of data access tools is indicative
of the diversity of users and their decision support requirements. Today’s
access tools target knowledge workers across the organization, including:

Executives. Often this group requires summarized information and
key performance indicator monitoring. However, these same users,
when confronted with information that requires further investiga-
tion, will expand their requirements to include detailed interrogative
technology and even ad hoc analysis.

40 Chapter 2

Business analysts. These users may require detailed analysis and
exception reporting, as well as powerful statistical capabilities.

Operational managers. This user group requires trend analysis and
forecasting capabilities.

Casual end users. These users may require static reports.

Data access usually provides a graphical interface to the data ware-
house, allowing direct access to tables or access through a layer of abstrac-
tion. Common access technologies include:

■■ Query and reporting tools

■■ Desktop OLAP tools

■■ Relational OLAP tools

■■ MDBMS technology with integrated user interface such as DB2
OLAP Server with Excel plug-in

■■ Data mining tools

■■ Custom decision support interfaces such as portal dashboards and
agent-based technology

Meta Data
Meta data is arguably the only ubiquitous warehouse component covering
the entire landscape of core components and issues. Even though it touches
virtually everything, it is probably the least understood and most
neglected component. Often more difficult to implement then to talk
about, meta data is a constant challenge for data architects. Even so, a
warehouse is rich with important information on the data being acquired,
transformed, stored, accessed, and analyzed.

There are two general categories of meta data:

Technical. If any meta data is captured by your organization, it will
likely be this category. This is primarily because technical meta data
is generated by the CASE (computer-aided software engineering)
tools used in warehouse efforts, as well as the data definition lan-
guage (DDL) associated with relational databases. Examples of tech-
nical meta data include table names, column types and sizes, indexes,
and system names.

Business. A layer of meta data that we should gather and keep in
repositories has to do with the business-related aspects of the data
being stored and processed in the warehouse. Some samples of busi-
ness meta data include hierarchies, derived data calculations, and

Business Intelligence Fundamentals 41

business names; for example, p_id may be the technical name of the
product key in the product table, but the business name of the same
column could be Product ID, which is easier for a user to understand.

Meta data is discussed in detail in Chapter 10. For now, it is important to
understand that the warehouse is meta data. The BI informational content
is meta data. What we use and how we use it and when we choose to use it
is meta data.

Analytical User Requirements

From the end user’s perspective, the presentation and analysis layer is the
most important component in the BI architecture. Depending on the user’s
role in the business, his or her requirements for information and analysis
capabilities will differ. Typically, the following user types are present in a
business:

The “nonfrequent user”. This user group consists of people who are
not interested in data warehouse details but need to get access to the
information from time to time. These users are usually involved in
the day-to-day business and do not have time or any requirements to
work extensively with the information in the data warehouse. Their
skill in handling reporting and analysis tools is limited.

Users requiring up-to-date information in predefined reports. This
user group has a specific interest in retrieving precisely defined num-
bers in a given time interval, such as, “I have to get this quality-sum-
mary report every Friday at 10:00 A.M as preparation for our weekly
meeting and for documentation purposes.”

Users requiring dynamic or ad hoc query and analysis capabilities.
Typically, this is the business analyst. All the information in the data
warehouse may be of importance to these users at some point in
time. Their focus is related to availability, performance, and drill-
down capabilities to “slice and dice” through the data from different
perspectives at any time.

The advanced business analyst—the “power user”. This is a profes-
sional business analyst. All the data from the data warehouse is
potentially important to these users. They typically require separate
specialized data marts for doing specialized analysis on preprocessed
data. Examples of these are data mining analysts and advanced
OLAP users.

42 Chapter 2

Different user types need different front-end tools, but all can access the
same data warehouse architecture. Also, the different skill levels require a
different visualization of the results, such as graphics for a high-level pre-
sentation or tables for further analysis.

In the remainder of this chapter, we introduce the different types of tools
that are typically used to leverage the information in a data warehouse.

Reporting and Querying
Creating reports is a traditional way of distributing information in an orga-
nization. Reporting typically involves static figures and tables that are pro-
duced and distributed with regular time intervals or for a specific request.
Using an automatic reporting tool is an efficient way of distributing the
information in your data warehouse through the Web or emails to the large
number of users, internal or external to your company, that will benefit
from information.

Users that require the ability to create their own reports on the fly or
wish to elaborate on the data in existing reports will use a combined query-
ing and reporting tool. By allowing business users to design their own
reports and queries, a big workload on IT can be removed while valuable
information becomes accessible to a large number of nontechnical employ-
ees and customers. In contrast to traditional reporting, this also allows
your business users to always have access to up-to-date information about
your business.

Because the reports are based on the data in your data warehouse, they
supply a 360-degree view of your company’s interaction with its customers
by combining data from multiple data sources. An example of this is the
review of a client’s history by combining data from ordering, shipping,
invoicing, payment, and support history.

Query and reporting tools are typically based on data in relational data-
bases and are not optimized to deliver the “speed of thought” answers to
complex queries on large amounts of data that is required by advanced
analysts. An OLAP tool will allow this functionality at the cost of increased
load time and management effort.

Online Analytical Processing
During the last 10 years, a significant percentage of corporate data has
migrated to relational databases. Relational databases have been used
heavily in the areas of operations and control, with a particular emphasis
on transaction processing (for example, manufacturing process control and

Business Intelligence Fundamentals 43

brokerage trading). To be successful in this arena, relational database ven-
dors place a premium on the highly efficient execution of a large number of
small transactions and near fault-tolerant availability of data.

It is important to distinguish between the capabilities of a relational
database and those of an online analytical processing system. In contrast to
relational technology, OLAP uses a multidimensional view of aggregate
data to provide quick access to strategic information for further analysis.

OLAP enables analysts, managers, and executives to gain insight into
data through fast, consistent, interactive access to a wide variety of possi-
ble views of information. OLAP transforms raw data so that it reflects the
real dimensionality of the enterprise as understood by the user.

While OLAP systems have the ability to answer the who? and what?
questions, it is their ability to answer what if? and why? questions that sets
them apart from the other data structures of warehouses. OLAP comple-
ments other warehouse structures and expands the analytic offering of
your BI environment.

OLAP applications span a variety of organizational functions. Finance
departments use OLAP for applications, such as budgeting, activity-based
costing (allocations), financial performance analysis, and financial model-
ing. Sales analysis and forecasting are two of the OLAP applications found
in sales departments. Among other applications, marketing departments
use OLAP for market research analysis, sales forecasting, promotions
analysis, customer analysis, and market/customer segmentation. Typical
manufacturing OLAP applications include production planning and defect
analysis.

Although OLAP applications are found in widely divergent functional
areas, they all require the following key features:

■■ Multidimensional views of data

■■ Calculation-intensive capabilities

■■ Time intelligence

The section Dimensional Technology and BI in this chapter provides more
information.

Multidimensional Views

Multidimensional views are inherently representative of an actual business
model. Rarely is a business model limited to fewer than three dimensions.
Managers typically look at financial data by scenario (for example, actual
versus budget), organization, line items, and time; and at sales data by
product, geography, channel, and time.

44 Chapter 2

A multidimensional view of data provides more than the ability to slice
and dice; it provides the foundation for analytical processing through flex-
ible access to information. Database design should not prejudice which
operations can be performed on a dimension or how rapidly those opera-
tions are performed. Managers must be able to analyze data across any
dimension, at any level of aggregation, with equal functionality and ease.
OLAP software should support these views of data in a natural and
responsive fashion, insulating users from complex query syntax. After all,
managers should not have to understand complicated table layouts, elabo-
rate table joins, and summary tables.

Whether a request is for the weekly sales of a product across all geo-
graphical areas or the year-to-date sales in a city across all products, an
OLAP system must have consistent response times. Managers should not
be penalized for the complexity of their queries in either the effort required
to form a query or the amount of time required to receive an answer.

Calculation-Intensive Capabilities

The real test of an OLAP database is its ability to perform complex calcula-
tions. OLAP databases must be able to do more than simple aggregation.
While aggregation along a hierarchy is important, there is more to analysis
than simple data rollups. Examples of more complex calculations include
share calculations (percentage of total) and allocations (which use hierar-
chies from a top-down perspective).

Key performance indicators often require involved algebraic equations.
Sales forecasting uses trend algorithms, such as moving averages and per-
centage growth. Analyzing the sales and promotions of a given company
and its competitors requires modeling complex relationships among the
players. The real world is complicated; the ability to model complex rela-
tionships is key in analytical processing applications.

Time Intelligence

Time is an integral component of almost any analytical application. Time is
a unique dimension because it is sequential in character (January always
comes before February). True OLAP systems understand the sequential
nature of time. Business performance is almost always judged over time,
for example, this month versus last month, this month versus the same
month last year.

The time hierarchy is not always used in the same manner as other hier-
archies. For example, a manager may ask to see the sales for May or the
sales for the first 5 months of 1995. The same manager may also ask to see

Business Intelligence Fundamentals 45

the sales for blue shirts but would never ask to see the sales for the first five
shirts. Concepts such as year-to-date and period-over-period comparisons
must be easily defined in an OLAP system.

In addition, OLAP systems must understand the concept of balances
over time. For example, if a company sold 10 shirts in January, 5 shirts in
February, and 10 shirts in March, then the total balance sold for the quarter
would be 25 shirts. If, on the other hand, a company had a head count of 10
employees in January, only 5 employees in February, and 10 employees
again in March, what was the company’s employee head count for the
quarter? Most companies would use an average balance. In the case of
cash, most companies use an ending balance.

Statistics
Statistical tools are typically used to address the business problem of gen-
erating an overview of the data in your database. This is done by using
techniques that summarize information about the data into statistical mea-
sures that can be interpreted without requiring every record in the data-
base to be understood in detail (for example, the application of statistical
functions like finding the maximum or minimum, the mean, or the vari-
ance). The interpretation of the derived measures requires a certain level of
statistical knowledge.

Following are typical business questions addressed by statistics:

■■ What is a high-level summary of the data that gives me some idea of
what is contained in my database?

■■ Are there apparent dependencies between variables and records in
my database?

■■ What is the probability that an event will occur?

■■ Which patterns in the data are significant?

To answer these questions, the following statistical methods are typically
used:

■■ Correlation analysis

■■ Factor analysis

■■ Regression analysis

These functions are detailed in Chapter 15.

Data Mining
In contrast with statistical analysis, data mining (covered in greater depth
in Chapter 14) analyzes all the relevant data in your database and extracts

46 Chapter 2

hidden patterns. Data mining is to some extent based on the techniques
and disciplines used in statistical analysis. However, the algorithms used
in data mining automate many of the tedious procedures that you would
need to go through to obtain the same depth of analysis using traditional
statistical analysis.

Dimensional Technology and BI

Business intelligence encompasses a variety of techniques and technolo-
gies, for instance, techniques for building and using persistent data stores
such as normalized structures for atomic-level data and dimensional mod-
els for both star schemas and multidimensional cubes. Even operational
data is considered a potential target for specific BI efforts. Technologies
such as data mining, querying and reporting, OLAP, portals, and agent-
based processing all play a role in the range of BI solutions as well. With
their distinctive features, each of these technologies and techniques repre-
sents a slice of the BI continuum. For this section, our focus is on the role
played by dimensional techniques and technologies in BI solutions, specif-
ically OLAP.

OLAP has found a willing audience because it reflects the natural data
exploration patterns we employ. It is instinctive for users to consider many
dimensions when seeking answers to business questions. This notion of
using multiple dimensions in analysis is cornerstone to OLAP. The tech-
nology allows users to evaluate business questions based on time, prod-
ucts, vendors, channels, and other factors to gain insight. These
dimensions emulate the varied perspectives of a business environment.
Moreover, the technology allows users to analyze combinations of these
business perspectives, complete with hierarchies and aggregations so that
summary information is quickly scanned, while detailed data is readily
available for deeper inspection.

OLAP provides a broad landscape of analysis, allowing users to start
with simple questions like “What was our revenue?” As the analysis natu-
rally expands, the business questions evolve, spreading across multiple
dimensions and different grains of detail. Users travel through the analyti-
cal landscape by slicing and dicing the data to learn which products are
selling best through which channels and pivoting the data to learn which
channels are showing consistent growth.

As the dimensional technology of business intelligence, OLAP continues
to be one of the most compelling data delivery technology available. It has
quickly spread from the privileged financial analysts, finding its place in the
majority of today’s data warehouses, delivering reports and ad hoc analysis
across the enterprise from the balanced scorecard in the boardroom to the

Business Intelligence Fundamentals 47

bottom line in the sales office. And, as we change the way we run the mod-
ern enterprise, we look toward OLAP servers to meet a more diverse set of
requirements. The most striking change in recent years has been the
increased focus on customers. Our business questions are no longer focused
on the business, but on the business in relation to its customers.

The term OLAP is generically used throughout the industry to describe
the structure of stored data and the methods we use to access it. The term
represents several types of varied technology that tackle the method of
access. There are four core adaptations of OLAP:

MOLAP. Multidimensional OLAP refers to proprietary, multidimen-
sional database OLAP technology. MOLAP is the technology that is
built for complex, what-if analysis at the speed-of-thought. One
word that best describes this particular technology is performance.

ROLAP. Relational OLAP is a technology that provides sophisticated
multidimensional analysis that is performed on open relational data-
bases and other nonproprietary file structures. ROLAP is not bound
by the constraints of other OLAP technology. For example, ROLAP
can scale to large data sets in the terabyte range, covering a wide
array of informational content. The word that best describes ROLAP
technology is scalability.

HOLAP. Hybrid OLAP is an attempt to combine some of the features
of MOLAP and ROLAP technology. The technology provides solid
performance even while analyzing large data sets, which happen to
be specific strengths of MOLAP and ROLAP, respectively. However,
HOLAP has met with varying degrees of success, since it is not a full
implementation of all the strengths indigenous to MOLAP and
ROLAP. One word that best describes HOLAP technology is
compromise.

DOLAP. Desktop OLAP is a technology that is probably the most
common in OLAP user communities. DOLAP represents those OLAP
tools that are inexpensive and easy to deploy and use. However, the
price and ease of use translate to limited functionality, especially with
regard to the entire dimensional spectrum that we will be discussing
later in this chapter. A word that best describes this technology is
deployable.

The OLAP Server
The success of OLAP has resulted in a large number of vendors offering
OLAP products and a range of technologies that aim to meet the needs of

48 Chapter 2

the growing number of businesses that are deploying OLAP. Despite the
diversity of the OLAP marketplace, two architectures are dominant:
MOLAP and ROLAP. These architectures are characterized primarily by
their approach to OLAP data storage.

MOLAP

MOLAP servers employ dedicated OLAP database engines optimized to
manage sparse matrices of data. The OLAP engine generally has a calcu-
lation function that supports complex calculations within and across
dimensions.

MOLAP storage management maintains the physical storage of OLAP
cubes. These cubes are loaded with source data; then a calculation is trig-
gered to aggregate the input data along the hierarchies across each dimen-
sion. At the same time, the calculation engine carries out the more complex
functions, which might include financial calculations, statistics, and alloca-
tions.

Calculating MOLAP cubes is typically a complex and time-consuming
operation. All cells at all intersection points across all dimensions are cal-
culated and stored. It is not unusual for a complete cube to require 10 or
more times as much storage as the input data, so for every megabyte of
data we supply, the MOLAP engine might create 10 MB or more. To com-
bat this problem, most MOLAP servers now offer the administrator some
control over how much of the cube is aggregated as part of the calculation
operation, and how much of the cube is calculated dynamically in response
to queries.

When users query a MOLAP cube, the query operation is usually no
more than a simple lookup. When the entire cube is pre-aggregated, no cal-
culations or rollups are required to provide query results. Query process-
ing is simply a matter of determining which data is needed, and whether
the data resides in cache or on disk. The required data is retrieved, format-
ted, and returned to the client. Server-side caching and smart indexing
result in consistently fast query response times, which encourage users to
continue their analysis and maintain the analytical train of thought.

Pre-aggregation is an expensive operation that usually limits scalability.
Unlimited dimensions and aggregation levels is beyond the reach of
today’s MOLAP servers, and many will struggle to handle 15 to 20 dimen-
sions while maintaining support for other criteria such as consistent query
times. More importantly, the time required to build large cubes may exceed
the available batch processing time.

Business Intelligence Fundamentals 49

MOLAP servers dominate today’s OLAP market. Their strength is con-
sistent high-speed data delivery to large populations of users from OLAP
cubes that model bounded business processes with suitable dimensional-
ity and levels of detail.

ROLAP

ROLAP technology accesses data stored in a data warehouse to provide
OLAP analyses without the requirement to store and calculate data in a
multidimensional cube. Relational databases serve as the database layer
for data storage, access, and retrieval processes.

ROLAP relies on middle-tier logic to generate structured query language
(SQL). End users submit multidimensional analyses to the ROLAP engine
that dynamically transforms the request into SQL execution plans. The
SQL is submitted to the relational database for processing, the relational
query result is cross-tabulated, and a multidimensional result set is
returned to the end user. This dynamic SQL transformation allows users
access to transaction-level detail data because the source is a relational
database, allowing analysis to be performed at any data depth. Moreover,
the logical query flow from the user is uninterrupted because analysis can
occur over as many dimensions as the data itself provides.

The middle-tier ROLAP engine leverages the database layer for all
applicable analytic functionality and processing. For more complex calcu-
lations not supported by the database, the necessary data can be manipu-
lated in the ROLAP tool’s analytical engine. Advanced analytical
functionality is accomplished by accessing stored metrics if available or
calculating metrics if necessary.

Performance often presents the largest challenge with ROLAP solutions.
Transaction-level calculations are not always necessary and rolling up of
data for each query can be time-consuming. To improve performance, you
can build summary tables for higher-level data requests.

The ability to depend solely on the relational database itself makes
ROLAP well suited to scale to large numbers of dimensions and to support
analysis against large atomic data sets. The database, which is leveraged
for storage and processing, can accommodate terabytes or more of data.

Defining the Dimensional Spectrum
The application of dimensional technology runs the gamut from MOLAP,
best suited for fast, complex multidimensional analysis, to ROLAP, for per-
forming multidimensional analysis over extremely large, constantly changing

50 Chapter 2

data volumes. The solution domain of dimensional BI is as boundless as the
permutations of BI requirements themselves; consequently, most BI strate-
gies will embrace OLAP technology. The question that you must ask your-
self is this: “Have I sufficiently planned for addressing the range of
business requirements of my enterprise?”

Figure 2.2 illustrates the diversity and wide range of OLAP-centric fea-
tures. Although not all-inclusive, the features identified on the spectrum
are specifically selected to draw clear distinctions between the two pri-
mary technologies of online analytical processing: ROLAP and MOLAP. As
shown, there are two extremes of the spectrum, each representing a specific
technology. ROLAP is on the left side, with characteristics that are arguably
the technology’s most widely acknowledged strengths. On the right side is
MOLAP and characteristics indigenous to that technology, equally well
known and accepted. That is not to say that ROLAP and MOLAP do not
have other strengths. However, those identified afford an excellent means
for demonstrating the breadth of the solution domain that these two tech-
nologies provide.

The spectrum identifies eight characteristics, outlined in Table 2.1. It
should be apparent that to perform all the advanced features of multidi-
mensional analysis, you must plan to implement both MOLAP and
ROLAP technology.

Figure 2.2 Dimensional spectrum.

MOLAP

Simplistic
Dimensional Features

Dimensional Spectrum
Fast

Response

Complex
Calculations

Complex
Hierarchies

Automatic
Feedback

Advanced
MOLAP

Dimensional
Features

ROLAPExtensive
Number of
Attributes

Extensive
Number of
Dimensions

Constantly
Changing Data

Extremely Large
Data Volumes

Advanced
ROLAP

Dimensional
Features

Limited Attributes and Dimensions
Small Amount of Static Data

Mediocre Response
Simple Calculations and Hierarchies

Manual or No Feedback

Business Intelligence Fundamentals 51

Table 2.1 Dimensional Spectrum Characteristics

TECHNOLOGY CHARACTERISTICS DESCRIPTION

ROLAP Extensive number of The use of numerous descriptive
attributes attributes during analysis.

Extensive number of Being able to perform analysis
dimensions against numerous dimensions

simultaneously, as well as to add and
exchange dimensions on demand.

Constantly changing Analysis that is performed against
data source data that is constantly

changing.

Extremely large data The capacity to perform dimensional
volumes analysis against data sources in the

terabyte range.

MOLAP Fast response Being able to maintain “speed-of-
thought” performance during
analysis.

Complex calculations1 Analysis requiring calculations based
on complicated dependencies and
derived measures.

Complex hierarchies Analysis performed against multiple,
asymmetrical hierarchies.

Automatic feedback2 OLAP tools that provide an
automated closed-loop feedback to
operational systems.

1. The implicit axis nature of OLAP formulas creates unique challenges, because the derived value of any
one particular cell is dependent on the combination of dimensions queried. This means that precedence
must be established to assign formulas for any given query combination.

2. The business intelligence cycle is not complete until all informational understanding and insight is
applied to current business processes for the purpose of improved efficiencies.

Touch Points

For larger organizations, the number of possible touch points between
your company and its customers is increasing. Core touch points in today’s
business climate not only include the traditional advertisements, coupons,
stores, and kiosks, but also email, Web, consumer-to-consumer (C2C), and
business-to-consumer (B2C) portals.

52 Chapter 2

It has always been a challenge to determine the success of advertising
campaigns given media such as direct mailings, print, television, or radio
(multimedia). But in addition to those issues, we now have to demonstrate
success and decipher trends and market demand from banners and other
Web-centric activity. Exacerbated by the Internet is not only the volumes of
data being generated that require examination, but also the time span now
necessary to adjust to and accommodate for the success or failure of banner
or Web store fronts. What used to be a lag between the advertisement get-
ting people into the stores to make their purchase has now shrunk to vir-
tually a real-time cause-and-effect situation. This means that we no longer
have the luxury of closing the store and regrouping. Customer touch
points have created a situation where real-time analysis must become a
natural part of the overall BI effort. The BI environment must be capable of
blending real-time and historical analysis for both tactical and strategic
purposes.

Zero-Latency and Your Warehouse Environment

Traditional warehouses store integrated, time-variant, static data that is
regularly refreshed and used for, among other things, trend analysis, pat-
tern recognition, and forecasting. It was inevitable that the traditional
warehouse would ultimately lead to an analytical gap between the data
stored in warehouse structures and that contained and maintained in oper-
ational systems or that data being created by e-business environments.
This is especially true in light of the growing demands for analysis in large
organizations.

So, if we agree there is a need for zero-latency analysis, how do we
implement the concept? Regarding the data itself, a real-time or zero-
latency warehouse does not mean that the entire warehouse is dynamically
updated. It simply means that the warehouse environment embraces tech-
nologies and techniques necessary to incorporate targeted operational and
e-business data to be used and made available in BI, real-time analysis with
or without other warehoused data.

Closed-Loop Learning

There is only one objective that is missing from all leading BI vendors,
including IBM: closed-loop learning. Achieving this objective is fundamental
to the information organization. Much of the current information floating

Business Intelligence Fundamentals 53

about warehouse-centric circles defines a closed-loop environment as
requiring an action to be taken as a result of the analysis. Albeit an impor-
tant step, it is not representative of the entire “loop.” A BI organization
takes a broader view, one that is representative of the information manage-
ment cycle. Not only must you act on the analysis, but the enterprise as a
whole must grow as a result of the information content, analysis, and sub-
sequent actions taken. Essentially, the BI organization is a closed-loop,
learning environment.

Let’s use a hotshot marketing person from your firm for illustration.
Suppose this person wants to extract data from the warehouse for analysis
to make decisions on an advertising campaign or customer relationship
management (CRM) effort. A question you need to ask yourself is this:
How does the enterprise benefit from the analysis and subsequent decisions
of this hotshot? We certainly hope the organization benefits from a better-
tuned campaign. But what if the hotshot decided to leave the company?
Would we have benefited from his analysis and processes that he took
offline? What about all the fancy models and mining stuff the hotshot prob-
ably was doing to the data while it was in the marketing information silos?
How does the organization benefit from any of that? Simply put, it doesn’t.

That is the problem with many warehouse and BI environments. They
are designed as passive repositories of data to be doled out on demand of
corporate hotshots for further analysis. All this “black-box” stuff happens
on concealed systems and runs as clandestine operations. Alternatively, the
hotshot should build and test mining models and other statistical processes
of discovery with the direct involvement of the warehouse team, on ware-
house development platforms. Then, when a mining model or statistical
process is ready for production, it should be made a part of the natural flow
of data through the warehouse environment. At this point, any great mod-
els or processes built by the hotshot are now an established component of
the warehouse. The hotshot gets all the kudos for a wonderful model, and
the enterprise gains in intellectual and proprietary assets as well.

Historical Integrity

One of the constant mistakes made in warehousing is building history. All
too often when asking warehouse builders what is meant by the term history
in the warehouse, you get a traditional response. History, to many, is
reflected by the age of the data stored in the warehouse. Essentially, history
means that you have, for example, 5 years’ worth of sales transactions or cus-
tomers or other entities you’ve chosen to store. Well, certainly if you have 5
years’ worth of sales transactions, you have history—or, at least one form of
history. Unfortunately, this is not what is considered time-variant history.

54 Chapter 2

Figure 2.3 Poor design.

The best way to describe time-variant history is by using an example.
Figure 2.3 shows a poorly designed dimension and related fact table. The
dimension table uses the Social Security number (SSN) of the customer as
the primary key. This was probably inherited from operational applica-
tions where the use of this type of value for referential integrity is common.
So why is this a problem for warehouses?

To answer this question, we have to examine the rows stored. Let’s
assume that we captured sales transaction information about a particular
customer. Table 2.2 shows a couple of sales transactions. We need to focus
on the SSN as shown in the dimension and fact tables.

Table 2.2 Sales Transactions

DIMENSION.SSN CR_LIMIT FACT.SSN SALE_NUM DATE AMOUNT

123-12-1234 $2,500 123-12-1234 1001 01/01/02 $1,200

123-12-1234 $2,500 123-12-1234 2301 02/25/02 $400

Customer Dimension

SSN (PK)
F_Name
L_Name
CR_LIMIT
...
Update_Date

SALES

SALE_NUM (PK)
SSN (FK)
Date
Product_ID
Amount

Business Intelligence Fundamentals 55

Table 2.3 Credit Limit Increase Impact

DIMENSION.SSN CR_LIMIT FACT.SSN SALE_NUM DATE AMOUNT

123-12-1234 $5,000 123-12-1234 1001 01/01/02 $1,200

123-12-1234 $5,000 123-12-1234 2301 02/25/02 $400

123-12-1234 $5,000 123-12-1234 4594 03/13/02 $2,100

From these sales transactions we can calculate a variety of values for cus-
tomer 123-12-1234. For example, we can sum the total sales ($1,600), we can
calculate the average sales ($800), among other statistics. Now let’s say we
have a business rule that requires us to capture the credit limit value if it
changes in the production systems. If the credit limit for customer
123-12-1234 is increased from $2,500 to $5,000, the rows would look like
those outlined in Table 2.3.

So, what has happened? Well, simply put, we’ve restated history. When
the credit limit increased to $5,000, the only option available to the ware-
house is to update the CR_LIMIT column of the customer dimension. That
means all statistical value and trending that might have been available to us
is lost. For example, can we answer what the average amount of sales is for
each of the credit limits given to the customer? No. The second we updated
the customer dimension column CR_LIMIT, we eliminated all previous vis-
ibility to previous credit limits. As far as the warehouse knows, there has
always been only one credit limit for customer 123-12-1234: $5,000.

Now let’s examine how the tables should have been designed to address
the business rule of recording credit limit changes while maintaining his-
torical integrity. Figure 2.4 shows a well-designed set of tables.

As illustrated in Figure 2.4, the major design difference between this set
of tables and the previous example is the addition of a surrogate key for the
customer primary key. The surrogate should adhere to the rules originally
established for primary keys: specifically, that they be data-less. That
means that the primary key should do nothing more than maintain the ref-
erential integrity between the tables. By establishing a surrogate key, we
can now implement a process of recording a second row in the customer
dimension for the same customer. So now when a credit limit is changed,
we can take a complete snapshot of the customer record, with the new
credit limit, and insert it into the customer dimension table while main-
taining the original customer record. Let’s see how that affects our histori-
cal integrity as demonstrated in Table 2.4.

56 Chapter 2

Figure 2.4 Time-variant design.

What should be apparent is that the surrogate key now provides the ref-
erential integrity between the tables. Consequently, we now can create a
new record for customer 123-12-1234 to capture the new credit limit while
keeping the original record. Furthermore, all the sales transactions associ-
ated with the original record are still intact and all new sales transactions
are associated with the new customer record. Thus, historical integrity is
maintained. Now we can answer questions like “What is the trend in aver-
age sales for each credit limit increase provided customer 123-12-1234?”

Table 2.4 Historical Integrity

DIMENSION FACT
CUST_ CUST_
SURROGATE_ SURROGATE SALE_
ID SSN CR_LIMIT _ID NUM DATE AMOUNT

91101 123-12- $2,500 91101 1001 01/01/02 $1,200
1234

91101 123-12- $2,500 91101 2301 02/25/02 $400
1234

111211 123-12- $5,000 111211 4594 03/13/02 $2,100
1234

Customer Dimension

CUST_Surrogate_ID (PK)
SSN
F_Name
L_Name
CR_LIMIT
...
Create_Date

SALES

SALE_NUM (PK)
CUST_Surrogate_ID (FK)
Date
Product_ID
Amount

Business Intelligence Fundamentals 57

Fundamental to maintaining historical integrity is creating surrogate
keys to be used as primary keys in the warehouse and life-stamping the
records themselves. By simply adding these two components to ware-
housed records, you dramatically increase the analytical capability of the
environment by ensuring historical integrity of the data as opposed to sim-
ply restating history.

Summary

BI is bigger than a star schema, cube, or atomic-level data. It represents the
successful culmination of the implementation of techniques, technologies,
and, of course, data structures. Business intelligence is the informational
content derived from sourced data that is integrated, transformed, and
cleansed. This content represents the corporate information asset. But BI is
more than just content; it is also the analysis conducted on the content. The
ad hoc query capability, advanced SQL reporting, data mining, OLAP, and
portal dashboards that present key performance indicators all enable bet-
ter decision making.

If the typical BI environment fostered better decision making, most peo-
ple would uncork the champagne and toast to a successful implementa-
tion. However, BI must go two steps further. The decision making must
lead to actionable steps that improve the organization’s performance. And,
finally, BI must feed all that knowledge gleaned from the content, analyzed
and acted upon, back into the enterprise. This means that your organiza-
tion learns from its own data and actions taken.

58 Chapter 2

59

Key Issues:

■■ Iterations of your warehouse must focus on addressing the immedi-
ate requirements of specific user communities while ensuring adher-
ence to enterprise guidelines and growing your corporate
information asset.

■■ The first iterations are unique because of the investment necessary
to establish the fundamental data and because they provide the
technical architecture on which most subsequent iterations will be
based. You will, of course, continue to invest in technology and
implement other data designs over time, but only the first iterations
normally carry the brunt of technology investment and implement
the core architectural data designs.

■■ The Dysfunction, Impact, and Feasibility (DIF) Matrix is an excellent
tool for defining and prioritizing BI iterations based on statistically
valid methods. Prioritizing the competing business requirements
across your enterprise can be a daunting task, peppered with politi-
cal landmines. This approach establishes a statistically valid method
for user communities to rank their own business requirements.

Planning Data
Warehouse Iterations

C H A P T E R

3

■■ The spiral approach to implementing BI iterations is an excellent
means of reducing risk. It is the only project approach that addresses
risk, by design. You can use the spiral approach with a simple itera-
tion task list you define, or you can combine the approach with your
favorite life cycle development methodology.

Architects and project sponsors frequently relate BI and warehouse efforts
to particular technologies. Too often, the notion of implementing an OLAP
tool or building a star schema overshadows the rationale and purpose for
these tools and techniques. It was a business requirement, hopefully, that
drove an architect or project sponsor to recommend the use of OLAP or
building a star schema.

Even though we agree that business requirements drive the actual ware-
house iterations, the data architect or project planner must recognize when
a particular technique or technology will be necessary. Moreover, he must
plan the overall BI architecture in advance of any iteration being imple-
mented. This includes considering any data structures required to support
the plan, as well as predicting the types of technologies to implement.
Project planners thus have a dual role: defining an agenda for virtually any
combination of BI applications that might be necessary in their particular
enterprise while simultaneously focusing the attention of iterations on the
business requirement itself. Iterations are selfish by nature, driven by a self-
serving agenda. The project must address the requirements at hand and do
so without compromising the enterprise BI objectives.

It is easy to lose sight of the enterprise requirements in favor of the
immediate iterations, which results in effective warehouse-centric applica-
tions for specific communities at the expense of the enterprise. The reverse
is also true. Some architects and project planners have established
well-defined enterprise architectures but provide little leeway for user
communities to participate. This can severely handicap the warehouse
environment, driving the users to become self-sufficient by creating their
own variation of a warehouse. In the end, the enterprise suffers as well.

This chapter discusses the elements of a good project plan, as well as
how a specific project plan fits within the overall BI framework you estab-
lish. Moreover, we examine the differences between the first iterations of a
warehouse effort and subsequent iterations. This distinction in critical for
project planners, since it provides a sense of project scope that affects
investment cost, resources, and time lines. The chapter also details an
approach to identify your BI iterations called the DIF Matrix, which repre-
sents a proven technique to methodically define, document, and prioritize

60 Chapter 3

multiple warehouse iteration opportunities. The goal is to identify those
opportunities with the most impact to the organization.

Planning Any Iteration

The project iteration itself is driven by a business requirement to address a
specific need. This need is typically for a focused audience, for example, a
department. This, of course, means that the iteration is likely to be spon-
sored by the department for its own use. The notion of enterprise architec-
ture or corporate warehouse standards is not necessarily on the minds of
these project sponsors. But it should be on the radar screen of the data
architect. This is where the enterprisewide BI vision comes in. It provides a
guide for architects to follow and a menu of techniques and technologies
from which to select in order to deliver the BI applications being sponsored
by disparate user communities.

Implementing the warehouse as a big-bang effort has long since been
deemed a formula for disaster. Instead, warehouses and BI initiatives are
grown iteratively, addressing business requirements one at a time (see Fig-
ure 3.1). On the other hand, iterations of the warehouse must be assimi-
lated into the long-term vision of the enterprise BI initiative. You can
interpret iterations as being schizophrenic because they are driven by spe-
cific requirements but guided by the broader, enterprisewide road map.
The conceptual model of the business-intelligent organization shown in
Figure 1.1 serves as the basis for such a road map.

Figure 3.1 Business intelligence is iterative.

“Can you build a financial analysis solution to
reconcile accounts across subsidiaries?“

“Fantastic...now that finance is cooking, how
about building a solution to analyze sales?“

“We've come a long way...now, let's
tackle corporate budget and forecasting!!“

“Wow...now that we've got all this
information, can we broadcast sales and

finance info to all our offices?“

Planning Data Warehouse Iterations 61

Architects and project planners therefore must target for near-term gains
with each iteration but establish long-term plans to guarantee the overall
information asset of the enterprise. Architects and planners are often not in
control of the order or even the selection of BI iterations, as the iterations
themselves must be organically grown from user communities to ensure
that the warehouse is useful.

If planners do not control the order of iterations being implemented,
how can they guarantee cohesiveness among them? How can planners
deliver what users want and yet use the iterations themselves as building
blocks to the larger goal of creating an enterprisewide asset?

In a nutshell, a successful iteration requires careful planning. When
building an “architected” data warehouse, the idea is to source all raw data
into an atomic-level data structure. From this structure, all subsequent
warehouse-centric data is sourced, including data for star schemas and
OLAP cubes. How can we guarantee that rogue departments will not use
their own checkbooks to fund their own warehouse agendas and not wait
for IT to blend the data into the atomic layer? Technically, nothing can stop
them from building data silos and compromising the enterprise asset.
However, adhering to the concept of an architected data warehouse starts
at the top level of the organization. The same holds true for protecting the
overall BI vision from maverick executives or divisions. Irrelevant of which
iteration is done first, or how many times the strategic direction of your
company changes, there must be a high-level plan for how BI will be rolled
out in your enterprise.

Building Your BI Plan
There is often confusion regarding the content required in a BI project plan.
Several competing methodologies are used for building data warehouses
and supporting BI initiatives. Numerous industry leaders and vendors
offer some approach that has proven successful. But all of these approaches
and methodologies agree that the following building blocks should be
included in your BI plan:

■■ Strategy

■■ Data architecture

■■ Technical architecture

■■ Implementation and maintenance

The BI organization diagram in Figure 1.1 provided a road map of your
enterprise initiative and an opportunity for architects and project planners

62 Chapter 3

to define and described, in some detail, the individual components. Let’s
say your BI conceptual diagram includes the use of data marts. In your BI
plan you will want to define and describe these data marts. Are they going
to be implemented as star schemas, with each distributed on an NT plat-
form dedicated to a specific department? Or, are the data marts DB2 OLAP
cubes, centrally implemented on a UNIX server configured for serving up
dimensional data to a broad audience of users? As you can see, there is
plenty of detail to explain in a BI plan even if we do not know any specifics
about the first iteration of a data mart.

Since your BI plan is a “living” document, you will be able to continu-
ously refine your enterprise road map with subsequent iterations of your
warehouse. You should update your enterprise plan after each iteration.
For example, let’s assume that we know data mining will be needed at
some time in the future. We need to emphasize that fact and establish the
standard for its use. But we probably do not have any other detail about
the mining tool or technology necessary. Consequently, we will wait to
document the exact software to be implemented until we have a specific
iteration that would trigger such a decision.

The following sections further detail each component of your BI plan.

Enterprise Strategy

When defining your enterprise strategy, you should address at least five
subjects:

Architecture goals and constraints. This provides a means for archi-
tects and planners to set overall goals and objectives for the BI initia-
tive. Constraints that impact the BI effort must be defined as well.
For example, the BI initiative may not be able to start until the new
data center is complete or the overall BI effort needs to begin with
finance, or it needs to start with offices in the Pacific Rim.

Conceptual view. The information organization conceptual diagram
is the type of view expected in this section, along with a brief discus-
sion of each component illustrated.

Use case view. A use case can be developed to formalize the intention
of the BI initiative. As with all use cases, you can start with a high-
level perspective, like those shown in Figures 3.2 to 3.4.

Architecturally significant design components. There may be any
number of significant components that are part of your overall archi-
tecture design. Perhaps you are planning for extensive spatial data
and analysis. That is the level of design significance that should be

Planning Data Warehouse Iterations 63

mentioned here. Or, your enterprise may need an ODS for tactical
reporting, or you may be planning to implement a message broker or
XML server as a data delivery mechanism for the warehouse. These
are all examples of significantly important design components.

Standards. This applies to any standards that warehouse participants
must adhere to. For instance, a standard may be to use a BI commit-
tee to give final approval to any particular iteration sought.

Each of these subjects builds upon another, starting from overall archi-
tectural goals and ending with the establishment of formal standards. This
provides project planners and sponsors with a strategic vision of the BI
environment and a formal definition of its use and direction.

Designing the Technical Architecture

When you first lay out your technical architecture, it may be limited. You
may know that you want to implement star schemas in a relational data-
base. What you may not know by the time the first draft of your BI plan is
published is whose RDBMS you are going to use or on what platform it
will be implemented. That’s okay. What’s important is to start designing
your architecture, including detail where possible, and leaving placehold-
ers where subsequent decisions will provide more information. The BI
plan is a living document. You will revisit the technical architecture many
times and publish updated versions as necessary to ensure communication
to your audience of project sponsors and user communities.

Figure 3.2 High-level use case.

ACQUIRE DATA

ACQUIRE TACTICAL DATA

ACQUIRE WAREHOUSE DATA

ACQUIRE META DATA

MANAGE DATA

DATA MANAGER

MANAGE TACTICAL DATA

MANAGE WAREHOUSE DATA

MANAGE META DATA

REPORT DATA

REPORT TACTICAL DATA

REPORT WAREHOUSE DATA

REPORT META DATA

64 Chapter 3

Figure 3.3 Generalization use case.

An example of this situation is shown in Figure 3.5. We’ve identified
workstations and warehouse-centric servers for the atomic layer, data
marts, and staging area. Because it is an initial draft of the technical archi-
tecture components, we’ve left placeholders for vendors, models, operat-
ing systems, and even locations. Figure 3.5 provides a general sense of the
architecture as it is currently known and yet ensures a place for additional
information as it becomes available.

Figure 3.4 Realization use case.

ACCESS REPORTS

High-Level Realization of the User

USER

DATA MANAGER

TACTICAL
MANAGER

WAREHOUSE
MANAGER

META DATA
MANAGER

Planning Data Warehouse Iterations 65

As with the overall strategy, the technical architecture should address
certain issues, including:

Technical architecture goals and constraints. The technical architec-
ture focuses on hardware, software, and communication components
of the warehouse effort. Therefore, the goals, objectives, and con-
straints outlined in this section should be specific to those topics. An
example might be the implementation of a specific relational data-
base management system over the entire BI initiative.

Technical architecture. Figure 3.5 illustrates how technical compo-
nents of a warehouse are represented in diagram form. It specifically
identifies the hardware, software, and network/communication com-
ponents. Components in the BI conceptual model must be found
somewhere in a technical architecture diagram, and as more detail
becomes available, the technical architecture diagrams can become
more specific. For example, if you have a large effort with regard to
data marts, you may have a diagram that focuses only on that com-
ponent of your architecture.

Architecturally significant design component. Any significant tech-
nical component of your architecture must be identified in this sec-
tion. For example, you may require a 24x7 implementation and
therefore must establish mirroring across two distinct data centers.

It should be noted that each diagram is associated with sufficient narra-
tive to describe the components identified. This often means that your
technical architecture documentation includes several technical diagrams
and many pages of related narrative.

Designing the Data Architecture

The data architecture provides designers a venue to convey what data
structures will be implemented, how that data is stored in each, and how
the data will propagate throughout the warehouse environment. It is obvi-
ously a critical section for any warehouse-centric initiative. Just like the
technical architecture, you will often start at a high level and grow the
details of data architecture as successive iterations of the warehouse are
undertaken. Following are core topics to consider for a data architecture
design document:

66 Chapter 3

Figure 3.5 High-level technical architecture.

Data architecture goals and constraints. All the goals, objectives, and
constraints to your strategy should be documented in this section. For
example, the goal might be data integrity in the sense of creating an
architecture that maintains a single version of the truth. As one of the
objectives to achieve such a goal, planners might identify the follow-
ing: All warehouse-centric data must be incorporated into the atomic
layer first. All subsequent use of that data will be sourced from this
data structure. This objective may even serve as a constraint. Other
constraints might include three-party data or technologies.

Production
Environment

Data Mart
Departmental Server
Vendor:
Model:
OS:
Location:

Data Mart
Database

Ethernet

Atomic Level Warehouse
and Staging Area
Disk Storage
Vendor:
Model: (RAID Level-5)
Location:

Atomic Level Warehouse
Central Server
Vendor:
Model:
OS:
Location:

Data Warehouse
DBA Workstation
Vendor:
Model:
OS:
Location:

Data Warehouse
Developer Workstation
Vendor:
Model:
OS:
Location:

Planning Data Warehouse Iterations 67

Logical data architecture. This is your opportunity to provide logical
models that support your data architecture goals. Remember that ini-
tially you will be limited in the models that you can provide, since
you are not addressing a specific warehouse iteration yet. Therefore,
you could provide a subject area model of your enterprise or a series
of subject area models that describe core subjects within your enter-
prise (see Figure 3.6). You can include rules for mutating raw source
data into atomic-level data and even guidelines defining how and
when to use star schemas and OLAP cubes. You will want to update
this document as subsequent iterations of your warehouse rollout.

Architecturally significant design components. The establishment of
an atomic layer is a significant architect component, along with an
ODS and an enterprise cube farm. These are traditional design com-
ponents; however, there are others, such as geo-spatial data struc-
tures, specialized data staging, and living warehouse databases, just
to name a few.

Figure 3.6 Specific subject area used as part of a series.

Party

Product Subject Area High-Level Model

Product Package Party

describes
role for

is described by

is described by

describes

describes

is part of

is offered byProduct

Feature

Product Package

Product Feature

Product Package Feature

68 Chapter 3

Test plans. A component of the overall road map that is often over-
looked is how iterations will be tested before rollout. This section
provides planners an opportunity to establish a standard to follow
for all subsequent warehouse iterations with regard to testing and
acceptance. Topics should include test templates to be completed by
future project sponsors and planners, criteria for enterprise adher-
ence and approval, criteria for test data selection, and performance
testing (including unit, suite, and stress testing), to name just a few.

Chapter 4 discusses in greater detail the data architecture and related
models.

Implementing and Maintaining the Warehouse

Here designers and project planners establish the guidelines necessary for
building and maintaining the purposed warehouse structures and related
technologies. The implementation of core processes and sequence of estab-
lishing data structures are detailed in this section. As with the previous sec-
tions, the implementation view can start from a high-level perspective,
with details added as they become known. Generally the implementation
view contains three distinct perspectives:

Strategy. The implementation view might cover a time span or dis-
cuss when resources will be available for warehouse-centric projects.
Here is also the place to define how iterations will be selected.
Describing, for instance, the use of the DIF Matrix defined later in
this chapter is excellent content for this perspective. Finally, this sec-
tion should outline how funding will be addressed. For example,
funding might be the responsibility of the requesting department, or
there may be some form of shared funding between corporate and
individual departments.

Architecture. This perspective includes topics such as size and perfor-
mance requirements, data quality issues, meta data control, and
retention policies. Decisions made on retention, for instance, will
impact data architecture issues such as partitioning of the data, as
well as technical architecture considerations regarding disk storage.

Process. Here the architect must outline, at a high level, process issues
such as refresh rates, backup/recovery, archive, workflow, and secu-
rity. Again, you will address as many of these topics as possible even
though no particular iteration of the warehouse is being discussed.

Planning Data Warehouse Iterations 69

Your BI plan should start with high-level diagrams, broad policy state-
ments, and general definitions. As your warehouse matures, so, too, will
the formal documentation and depth of detail identified in your BI plan.

Planning the First Iteration

When warehouse participants speak of 90-day iteration cycles, you can bet
that they are talking about subsequent iterations, because the first iteration
of a warehouse effort invariably takes longer than 90 days. The reason is
simple: During your first iteration you will go through the process of iden-
tifying and defining your BI and warehouse strategies, your data and tech-
nical architecture, meta data strategy, and data access method. You will
identify the tools of choice for extraction, transformation, and loading
(ETL), data management, meta data, and data access, and you will have to
work through what can become a lengthy procurement process. Finally,
you will be training your internal people on the new tools. For all of these
reasons, it is very difficult for most companies to implement their first data
warehouse effort within a 90-day window.

Project planners and sponsors must be aware of the significant difference
between the first iteration and subsequent cycles. The first iteration is
where you will make and implement virtually all the strategic decisions
about your warehouse. The time frame is obviously based on scope and
budget, but it is safe to say that the first iteration can take 6 or more
months.

Often your first warehouse iteration is actually two warehouse iterations
in one. The first part of the effort is spent on identifying and defining ware-
house strategies, selecting and purchasing tools of choice, and training
internal staff. The second half of the first iteration is usually represented by
the impetus for the warehouse effort getting started. This puts a great deal
of strain on the initial project team, the first sponsor, and every other spon-
sor in the organization paying for the warehouse infrastructure. As the
project starts, the planners begin to understand the size and scope of issues
that must be considered and addressed. This can sometimes translate into
budget overruns and time delays. The sponsors only want a business
requirement to be met and never expect that it will require a slew of strate-
gic decisions to be made and potentially expensive technical foundations
to be obtained—including tools to be selected and implemented—before
they can even get started toward addressing their business requirement.
Therefore, it is critical that warehouse planners understand the unique char-
acteristics of the first iteration and set sponsor expectations accordingly.

70 Chapter 3

Aligning the Warehouse with Corporate Strategy
A data warehouse is designed primarily to address strategic business ques-
tions and planning. That does not mean a data warehouse cannot answer
tactical questions, but if that is the rationale for the warehouse effort, there
are less expensive and less challenging ways to deal with that type of
reporting.

There are four principles on which to focus your warehouse efforts:

Identify executive sponsorship. The best individuals to target for
warehouse iterations are company executives. The rationale is sim-
ple: Executives are responsible for planning the business as opposed
to doing the business. Since the warehouse should primarily focus on
strategic analysis, it is logical for executives to define the iterations.
By doing so, you guarantee that the warehouse will be aligned with
the corporate strategy.

Focus on strategic requirements. Build the data warehouse primarily
to address strategic requirements and not to address tactical issues.

Business requirements drive warehouse iterations. This is a critical
point that is discussed in more detail in the following section. For
now it is important to understand that business requirements will
afford your greatest chance of a widely accepted warehouse. To use
anything else to scope, define, and determine your warehouse itera-
tions is to invite unnecessary risk.

Consider the data warehouse as an evolving asset. The actual infor-
mation content collected, derived, and maintained in the warehouse
evolves into an important corporate asset. And, like all assets, it is
vital to recognize its value and protect it as successive iterations are
layered into the BI environment.

When project planners perform the tasks outlined they guarantee that
the warehouse and BI environment is designed and implemented as a cor-
porate asset, addressing relevant business requirements of strategic impor-
tance to the organization.

Conducting a Readiness Assessment
Readiness assessment serves as a formal method for project planners to
profile the corporation and help identify potential problem areas. Planners
are then able to determine the company’s chance for success in a ware-
house effort. A readiness assessment should:

Planning Data Warehouse Iterations 71

■■ Identify historical successes and failures of warehouse projects

■■ Highlight problem areas for the organization and identify deficien-
cies that need to be addressed

■■ Understand the company’s technical capabilities

■■ Examine the corporate culture

■■ Pinpoint areas of organizational or resource deficiencies

Formal readiness assessments will vary to accommodate individual
organizational, technical, and practical characteristics of a company with
regard to the warehouse effort. The net outcome of an assessment can even
help planners with budget estimates. For instance, if the assessment finds
the organization is lacking in its ability to implement a warehouse, then
planners can determine the necessary investment to shore up the areas of
weakness. Although no survey tool can guarantee your success or failure
for a particular effort, the readiness assessment improves your chance for
success. Table 3.1 shows sample questions that have been used to survey
technical and organizational aspects of a firm.

Table 3.1 Readiness Assessment

LEAST MOST
CATEGORY TOPIC DESIRABLE AVERAGE DESIRABLE

Organizational Do you have a No. Sponsor has Yes. Well-
strong, well- limited say in respected and
positioned corporate affairs. active in
executive corporate
sponsor? strategy.

Has the Only a general They are actively Yes. The
warehouse idea of what debating and project scope
project scope they see the drafting the and success
been defined warehouse scope and factors are
and success doing is known success factors. defined.
factors at this time.
identified?

Is funding Funding is a Some funds are Cost is not an
available? problem. available. issue.

Is the sponsor Not at all. Limited Sponsor
actively involved? involvement. actively

participates
with the team.

72 Chapter 3

Table 3.1 (Continued)

LEAST MOST
CATEGORY TOPIC DESIRABLE AVERAGE DESIRABLE

What are the Completely Expectations Realistic
expectations? unreasonable. are expectations

The sponsor unreasonable are set.
wants but sponsor is Sponsor wants
everything, willing to listen a planned,
now. and adjust. methodical

rollout.

Technical Do the source Little or no Meta data exists Compre-
systems have meta data for most of the hensive and
current, accurate exists. systems. current meta
meta data? data exists for

all relevant
source
systems.

What portion of Most of the Some of the Most source
the source data source data source data is data is clean
suffers from is inaccurate inaccurate or and complete.
inaccuracy or or incomplete. incomplete.
incompleteness?

Is the Yes. For only a few No.
warehouse of the data
viewed as a problems.
place to clean
up source data?

Do the target None. A few users Most users
users have any have experience. have some
experience with experience or
warehouse- exposure.
centric tools?

Does there exist No. The Some system A robust,
a warehouse- project would components warehouse-
centric require exist, while centric
infrastructure? purchasing others will environment

all new need to be exists.
technology. purchased.

The bibliography of this book lists sources for more information on
readiness assessment.

Planning Data Warehouse Iterations 73

Resource Planning
For small data warehouse efforts and small IT shops, a team of two or three
may need to play multiple roles and yet be quite successful. For larger proj-
ect efforts, however, more team members with specialized skills are
needed. Table 3.2 lists roles common to warehouse efforts.

Table 3.2 Data Warehouse Roles

ROLE DESCRIPTION

Executive sponsor This individual is responsible for ensuring the
project has the necessary resources, as well as
for eliminating potential barriers that might be
encountered by team members as they source
data and build warehouse content.

Project manager (PM) The project manager is responsible for planning
as well as managing the entire warehouse
iteration.

Any warehouse iteration, small or large, for any
size of IT department should maintain a full-time,
dedicated PM.

Business requirements analyst This role is focused on translating the business
requirements for the technical team. They often
serve as the communication link between the end
users and IT.

Subject matter expert (SME) An SME is typically from the end-user community
and provides the DW project team with a wealth
of information regarding the business
requirement side of the project effort.

Data architect To a large extent, the success or failure of a
warehouse iteration is on the shoulders of the
data architect. It is this individual who must
understand the business requirements and design
the warehouse to address the requirements,
while at the same time maintaining the long-term
viability and integrity for the overall warehouse.

For small or large shops it is recommended that
you invest in an experienced data architect.

Technical architect The evaluation and selection of software,
hardware, operating system(s), networking, and
so on, will involve the technical architect. This role
is responsible for ensuring a warehouse
environment/platform accomplishes the strategic
direction of the warehouse.

74 Chapter 3

Table 3.2 (Continued)

ROLE DESCRIPTION

Technical architect (continued) Very large shops may have an individual who is
referred to as the technical architect. However, for
smaller IT departments, the architect may be an
experienced networking or systems engineer.

Meta data administrator An administrator of the meta data requirements,
processes, and tools might be necessary.
However, this role is typically only found in large
IT shops.

Database administrator (DBA) Since performance and extremely large database
size is a real concern in warehouse environments,
DBAs are required.

Data warehouse administrator For enterprise warehouse initiatives, it is not
unusual to have someone dedicated to the
loading, archiving, and general administration of
warehouse activity. This role differs from a DBA in
the sense that a DW administrator is concerned
with the overall operation of the warehouse, as
opposed to the designing and tuning of, say, table
indexes.

Data extract developer The process of identifying required source data, its
extraction and transformation to be loaded into
target data structures is assigned to the extraction
developer. This role is best filled by individuals
with knowledge of the source systems.

Data access developer Access developers are focused on the design and
development of the established data access
strategies, using the tools identified.

A typical warehouse team would have at least four full-time individuals
and two or three part-time participants. Table 3.3 shows the makeup of a
typical project team. Part-time members such as DBAs would not be nec-
essary until there exist content or physical structures to implement and
manage. Even then, for small shops, their role may remain part-time. BAs
or SMEs are also potential part-time team members. Although they are not
absolutely required during development, they do play a critical role in
requirements gathering, design, and testing. Larger projects will require
their expertise. It is common for large warehouse environments to have
someone dedicated to the management of the warehouse, as well as an
individual focused on meta data.

Planning Data Warehouse Iterations 75

Table 3.3 A Typical Project Team

FULL-TIME PART-TIME

Project manager DBA

Data architect Business analyst

Extract developer Subject matter expert

Access developer

When planning your team, it is important to remember that a single
DW iteration will probably not require a team of more than four to six
full-time members. If your project has many members on a single team
for a single iteration, then perhaps you have too large a scope and
should consider redefining the effort into smaller, incremental steps.
Additionally, keep in mind that the value of your team increases as they
work together and become a seasoned, cohesive group. If you find yourself
constantly working with new team members, you may compromise the
effort and negatively impact the time it takes to complete subsequent
iterations.

Figure 3.7 illustrates how to grow your data warehouse teams as you
expand your project iterations. As shown, you will probably start your
warehouse effort with a team of inexperienced members. To compensate
for this lack of experience, it is recommended that you hire consultants to
temporarily fill that gap and provide your group with the necessary men-
toring. Make sure that there is a knowledge transfer clause and a knowl-
edge transfer plan in your agreement with the consulting firm. Once the
first iteration is complete, you will have four members with warehouse
experience. To handle subsequent iterations, divide the experienced crew
in half, with each pair providing the experienced leadership for two new
teams. You should assign new, inexperienced members with each experi-
enced pair and give each team a new project assignment. The goal is to
methodically grow your warehouse team members as you take on more
warehouse iterations. By doing so, you ensure that your group has the suf-
ficient controls and management experience in place to take on multiple,
simultaneous projects.

76 Chapter 3

Figure 3.7 Team building.

Identifying Opportunities with the DIF Matrix1

All senior IT professionals have found themselves in situations where the
conduct of executives, from within IT or the surrounding user communi-
ties, compromised the success of a project. Personally, I recall once vigor-
ously trying to persuade the executive sponsor (from IT) that building a
data warehouse without involving end users was not the best approach.
My argument was that we should get feedback from the user community
to identify potential warehouse iterations; consequently, the warehouse
would be built based on relevant business requirements instead of assum-
ing that IT knows what is best for the users. After several minutes of ban-
ter, the executive sponsor simply turned to me and said: “. . . it may not be
the best way, but don’t we have the right to be wrong . . . ?” Well, you can’t
argue with that logic! Yes, you are the client and ultimately, I suppose, you
do have the right to be wrong.

1st Iteration

2nd Iteration 3rd Iteration

7th Iteration6th Iteration5th Iteration

Experienced Team Members

New Team Members
Consultants

4th Iteration

Planning Data Warehouse Iterations 77

1 This material was taken with permission from “Fear and Loathing in Project Management,” Michael
L. Gonzales, Intelligent Enterprise, June 2001. Copyright CMP Media LLC. All rights reserved.

In these cases it is important to remove—or at the very least insulate—
the project team from the potentially devastating decision making that
often accompanies misguided or inexperienced executives. To that end, the
Dysfunction, Impact, and Feasibility (DIF) Matrix1 was implemented to
provide a statistically valid method for quantifying and prioritizing the
project’s iterations, thus eliminating emotion or political intrigue. The tech-
nique was originally developed to deal with process redesign efforts
whose projects may contain numerous potential starting points and itera-
tion opportunities. However, data warehouse efforts exhibit similar project
characteristics and therefore can also benefit from the methodological
approach. The original approach was modified to accommodate the
nuances of BI efforts.

It is best to use the DIF Matrix when you are charged with the task of rec-
ommending where to begin a project and in what order the subsequent
project iterations should be implemented. It allows decision makers to set
the project direction based on empirical evidence, removing emotion from
the decision-making process and empowering executives to debate
amongst themselves if they choose to follow the recommendations or set a
different direction. Of course, a quantifiable recommendation often has the
affect of neutralizing even a heated political climate.

Determining the Right Approach
The first question you need to ask is whether or not the project you are
leading has multiple starting points and iterations. For instance, in data
warehousing there may be many projects queued and waiting to get
started. And, once you “open the doors” for business, the warehouse team
may be besieged by user community requests. Marketing might be
explaining that their project is more important than sales, while sales may
be arguing that theirs takes priority over manufacturing. The DIF Matrix
will help you deal with environments having multiple starting points. Pro-
jects that are less suitable for the approach are those with essentially a sin-
gle iteration. For example, writing a report or adding a feature to an
application are essentially single iteration projects with obvious starting
points.

Applying the DIF Matrix
As mentioned earlier, it is important to establish a conscious method to
identify and prioritize the iterations necessary to achieve the overall goal.
To that end, there are 10 steps necessary to identify, define, quantify, and
rank the project iteration opportunities:

78 Chapter 3

1. Identify and gather antecedent documentation and known
problems.

2. Set up JAD (joint application development) sessions for IT subject
matter experts.

3. Select candidate iteration opportunities.

4. Have IT SMEs score candidate opportunities.

5. Create a DIF Matrix with IT candidates.

6. Set up JAD session for User Community (UC) SMEs.

7. Have UC SMEs score opportunities.

8. Average the scores from IT and UC.

9. Prioritize scores based on highest score to lowest.

10. Submit to management.

These steps are illustrated in Figure 3.8 and are detailed in the following
sections.

Figure 3.8 Ten steps of the DIF Matrix.

Dysfunction,
Impact &
Feasibility

Matrix

Get IT SME
scores

User
workshop

Get user
scores

Average IT
and user
scores

Select
candidate
processes

IT SME
workshop

Select
according to

final scoreSubmit to
senior

management

Antecedent
documentation

and known problems

Planning Data Warehouse Iterations 79

Antecedent Documentation and Known Problems

Generally speaking, much of what IT needs to do for users is already well
known and documented. Too often, new consultants or IT personnel
charge ahead assuming nothing has been done. Consequently, users often
become frustrated because they are continually explaining to different IT
people the problem at hand. To avoid adding unnecessary aggravation to
any situation, we first fully investigate existing documentation and inter-
view IT subject matter experts.

IT JAD Sessions

We always begin with the IT perspective. IT SMEs often have the advan-
tage of knowing what is happening “under the hood.” In other words,
users may see one area as being of significant concern, but the real issues
may be the result of other, less obvious components to the process not vis-
ible to the user. So, we conduct a joint application development session
with IT SMEs to get their perspective on what iteration opportunities exist.
Participants are invited by the facilitator to nominate candidate processes,
giving a very brief explanation for the reasons they are nominating a par-
ticular iteration opportunity. You may even allow IT SMEs to propose ten-
tative solutions. A limited amount of brainstorming should be allowed to
motivate the nomination process. However, at no time are participants
allowed to shut down or attempt to discredit any candidate nominated.

Select Candidate Iteration Opportunities

All the candidate opportunities are formally documented in the JAD ses-
sions. One method for documenting the opportunities identified is to write
them on flip chart paper that can be taped around the room for everyone to
see. Figure 3.9 is an example of what you can include. If the session gener-
ates too many candidate processes, you have the option to add a filter in
order to reduce the number. For example: Can this candidate opportunity
be completed within 90 days? Using this type of filter is a means to focus
the candidate list to only those project iterations consistent with your
immediate, achievable needs. It is important to remember that although
candidates may be filtered out for this cycle, they may be resurrected in
future planning cycles. For each candidate process, it is recommended that
you gather additional information, such as the most significant features
(i.e., a reporting cycle or data quality assessment).

80 Chapter 3

Figure 3.9 Candidate nomination sample.

Get IT Scores

Once a candidate list has been formalized, IT SMEs are invited to complete
the set of three surveys described in the next sections of this chapter. The
level of dysfunction (how ineffective and inefficient the process is), impact
(how many other processes/applications/user groups are affected by the
candidate), and feasibility (how likely we are to succeed in implementing
the process) of a particular candidate are the three topics covered in the
survey set. Participants are asked to complete the survey. Answers to
the survey require the application of a simple scale from 0 to 5, with 5 being
the most dysfunctional, having the greatest impact, or being the most
feasible.

Create DIF Matrix

The core to the model is the matrix, which accounts for the survey results
of candidate processes from each participant. The scores are summed per
participant and averaged based on the number of respondents. Those can-
didate processes that have the highest overall DIF score are considered to
be potential starting points for the executive committee to review.

User JAD Session and Scoring

After the IT SMEs have made and scored their candidates, the User Com-
munity SMEs are invited to a JAD session. The session begins with the

#1 Candidate:
Weekly sales trend report. The sales
dept. currently must put this report
together manually using weekly sales
data and performing trending in
spreadsheets.

Proposed Solution:
Expand sales data mart reports to
calculate trends.

Planning Data Warehouse Iterations 81

candidates suggested by IT SMEs. The users are asked to add their own
candidates and to complete DIF surveys for IT, as well as for their own
candidate processes. IT SMEs are also invited to score the UC recommen-
dations. By having UC and IT SMEs score each other’s candidates, we bal-
ance the perspectives for each candidate and ensure that only those
opportunities that best represent the needs of the organization are ranked
highest.

Average DIF Scores

When IT and UC SMEs have completed DIF surveys for all candidate
processes, the scores are averaged. The result is that each candidate
process, whether introduced by IT or users, will have a single, overall DIF
score.

Select According to Score

It is a straightforward process to rank candidate processes based on their
overall DIF score. At this point, the project leader can add a weight based
on extenuating factors. For example, extra weight is applied to all candi-
dates that only require known, available resources to complete. This is a
critical feature of our implementation since it empowers project leaders to
have input into the entire process.

Submit to Management

This is the final step in the process—submitting a recommendation based
on quantifiable, statistically valid scoring. However, in addition to using
the overall weighted score, recommendations should include any process
interdependencies as well. The combination of statistically valid scoring,
weight accommodation and process interdependencies provides manage-
ment a conscious approach for identifying the starting point of a project as
well as laying out the subsequent iteration cycle.

Dysfunctional
Dysfunctional refers to how bad the processes are in terms of effectiveness
and efficiency. To measure each process objectively, use questions such as:

■■ To what degree does the time to accomplish the process exceed the
industry benchmark (or the time it takes similar companies to get it
done)?

82 Chapter 3

■■ Is the net result of the process actually being used?

■■ How would you grade the quality (or reliability) of data in the end
product of the process?

■■ Are re-do’s necessary in order to produce an acceptable report or
end product?

■■ Is there duplicate or redundant data in the reports or end products?

■■ Does the end product or report need significant data to be manually
typed in?

■■ Is the data consistently available?

■■ Just how dependent are user communities on information technol-
ogy in order to get at their data (i.e., to do ad hoc reports)?

■■ Is the stored data that is used in the process normalized?

■■ Are there data integrity problems in the stored data?

On a scale from 0 to 5, a zero would mean that a process is considered to
be least dysfunctional, whereas a five would mean that it is considered to
be most dysfunctional.

Impact
Impact refers to how many other processes, applications, and user groups
can be affected by making changes to the process under consideration, and
it can be measured by answering the following questions:

■■ If this particular process was completely redesigned or a new one
was implemented, what percentage of the overall process flow
would be simplified or reduced?

■■ How many applications would be simplified or reduced?

■■ What would be your rough estimate of user community pain (family
time or personal appointments missed; “I must get a life” sort of
complaints; non-motivating work. . .) that can be reduced?

■■ In terms of percentages, what would be a rough estimate of cost
reduction that could be achieved?

■■ What would be your rough estimate of how much reduction in
person-hours devoted to this process could be achieved?

With the same scale as before, a zero grading would mean that a process
has the least impact, whereas, a five would mean that it has the most impact.

Planning Data Warehouse Iterations 83

Feasibility
Feasibility specifically attempts to quantify how likely we are to succeed in
simplifying a particular process or process flow given the following:

■■ What is the probability of successfully carrying out a complete
redesign of the process within three months?

■■ Do you consider that the business rules to carry out the process are
well defined?

■■ Do you consider that the necessary technology to carry out a signifi-
cant improvement exists?

■■ Do you believe we have the knowledge and understanding to com-
plete a redesign or implement a new process?

A zero would mean that redesigning this particular process or creating a
new one has the least feasibility, whereas a five would mean that it has the
most feasibility.

DIF Matrix Results
Once you have identified and prioritized all the opportunities, you can use
a model like that in Figure 3.10 to establish a formal procedure to complete
the analysis of candidate processes. As illustrated, the model incorporates
all the traditional means to flesh out and document requirements, includ-
ing use case, class diagrams, and interaction diagrams. The purpose of the
documentation is to understand the process under consideration and to
determine how best to implement a solution.

This model results in one of three outcomes per candidate:

Quick fix. The candidate process can be quickly addressed.

Redesign. The candidate process will require a full redesign or new
implementation plan, including analysis, design, and implementation.

Gradual improvement. Even after analysis there is still much
unknown about the process, and consequently, the candidate process
must be approached via a pilot project.

Once all the DIF values are collected from both IT and the User Commu-
nity, then an average score is calculated and published in the DIF Matrix
(see Figure 3.11).

84 Chapter 3

Figure 3.10 Candidate process analysis.

Figure 3.11 DIF Matrix.

Candidate
Process

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

Dysfunction Impact

Score

Feasibility

Candidate
Process

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

IT Avg.: ##.#
UC Avg.: ##.#

Average: ##.#

Use Cases

BEHAVIOR USER STRUCTURAL TECHNOLOGY

Package
Solutions

Reusable
Elements

Interaction
Diagrams

Class
Hierarchies

Class
DiagramBusiness

Rules

Prototype

Quick Fix Redesign

Object life cycle and state

Business Process

Activity

Platform and SW
Alternative

Gradual
Improvement

Preliminary
Architecture

Data
Transformation
Requirements

Planning Data Warehouse Iterations 85

Figure 3.12 Adding weights to the DIF calculation.

For additional control over the procedure, we have provided for a
weighted average to be applied. The project leaders should reserve the ulti-
mate decision on what those values will be. Figure 3.12 shows one example.

The following example illustrates the proposed calculation. Let’s say
that for a specific process, the sum of DIF scores provided by five UC SMEs
is 19, 10, and 20. The average DIF is then calculated and the appropriate
weights are applied. As shown in the following, the Overall Average
Weighted Compound Score in this case is 4.93. The range of scores will be
largely dependent on the number of SMEs and the applied weight factors.
However, in order to constrain the range, we have opted to include only 0
through 5 as the scoring scale:

Dysfunction: 19 sum score / 5 UC SMEs = 3.8 avg. *
1.0 weight = 3.8

Impact: 10 sum score / 5 UC SMEs = 2.0 avg. *
1.5 weight = 3.0

Feasibility: 20 sum score / 5 UC SMEs = 4.0 avg. *
2.0 weight = 8.0

Overall Average Weighted 4.93
Compound Score

This approach successfully identifies, defines, and quantifies candidate
processes. We were able to clearly establish criteria for the executive steer-
ing committee to base their decisions on regarding a work schedule. This is
quite a coup since there are always many BI opportunities to address
within a highly disparate environment with several different agendas,
business requirements, data, and technologies. The DIF Matrix allows you
to keep the team above the fray.

Dysfunctional
Weight

Impact
Weight

Feasibility
Weight

#

#

#

86 Chapter 3

Planning Subsequent Iterations

After the first iteration of your warehouse, all subsequent iterations become
more focused on addressing the business requirements and less on laying
out technical and data architecture foundations. This means there can be a
significant difference in terms of time, costs, and resources. Where the first
iteration may take 6 months, subsequent iterations of the BI environment
may take as little as 6 to 9 weeks. The following sections highlight some of
the key processes that you need to consider for subsequent iterations.

Defining the Scope
While it seems simple, defining the scope for warehouse iterations is prob-
lematic. With competing demands from user communities and the propen-
sity for warehouse teams to want to accommodate requirements, it is not
unusual for project planners to find themselves tackling a larger project
than would be recommended.

There are at least three ways to scope data warehouse iterations:

Source availability. When planners use this to scope warehouse
efforts, they are essentially saying, “We will start here because this is
the best, most reliable source of data.” It is certainly not the best way
to scope an effort, but it is not uncommon.

Subject area. Another approach is to scope the iteration by subject
area. For example, planners may simply point to Finance or Sales or
Marketing and ask the warehouse team to start addressing their par-
ticular requirements. And just like using available data sources to
scope your effort, this approach is less than desirable.

Strategic business question. This is the best way to scope any ware-
house iteration. It is a rifle approach when compared to the first two
methods. A good, strategic business question not only provides busi-
ness requirement precision but also serves as an excellent analysis
and design guide.

Although we will address the strategic business questions in this section,
that does not mean you cannot or should not consider using the other
approaches. You may even apply more than one approach to scope your
efforts.

Identifying Strategic Business Questions
There is an endless supply of business questions that must be addressed in
any enterprise. The endless supply is good for warehouses, since it means

Planning Data Warehouse Iterations 87

there is always some aspect of the business that must be dealt with. Project
planners, however, must identify those questions that are most suitable for
a warehouse. One quick technique is to categorize business questions into
one of two groups: strategic or tactical.

Strategic business questions deal with issues such as forecasting and
trend analysis. These types of questions embrace integrated data with his-
torical perspectives and analysis not readily available in operational sys-
tems. Strategic questions include:

■■ What is the sale trend for Ford car parts over the past six quarters?

■■ What is the expected gross profit for each sales region over a 3-
month period?

■■ What monthly premium should we charge for high-risk drivers?

Conversely, tactical questions focus on the day-to-day operations of a
business and are handled in traditional applications such as inventory con-
trol, accounting, or sales order processing. Examples of tactical questions
might be:

■■ What is the total dollar amount in Ford car parts in stock?

■■ How much gross profit did I make last month?

So why should warehouse planners focus on strategic business ques-
tions? As suggested earlier, there are several reasons:

■■ Warehouses maintain significant historical data and perspectives.

■■ Warehouses maintain complete and cleansed data.

■■ Warehouse information is based on integrated source data.

■■ Warehouses are aligned with the corporate strategy.

Answering tactical questions does not exploit the historical perspectives
of a warehouse, nor do they represent corporate strategies. There is, how-
ever, a temptation by user communities and project planners to take
advantage of the integrated, cleansed data of the warehouse for tactical
purposes. And even though a warehouse can address some tactical ques-
tions, it is recommended that you refrain from committing warehouse
resources to do so. If you have a serious tactical reporting problem, there
are far less expensive ways to deal with them on the operational side. Or,
you can build an ODS or reporting platform for this purpose.

Elements of good business questions are pointed out in Figure 3.13.
From the example, an experienced architect readily detects constraints of
analysis such as date (monthly), customers, products, and stores, as well as

88 Chapter 3

Figure 3.13 Business question components.

the measures/metrics/facts to be analyzed. A good business question
serves to define the fundamental scope of the warehouse iteration. It
describes much of the data needed and the potential analytical landscape
to be considered.

Implementing a Project Approach

There are several formal, well-documented approaches for implementing
warehouse projects. In this section we will review the following:

■■ BI hacking approach

■■ Bill Inmon’s approach

■■ Business Dimensional Lifecycle approach (Ralph Kimball)

■■ The spiral approach

■■ IBM’s approach

The list is not exhaustive. We have only selected a few approaches in
order to illustrate the variety available to project planners. Of all the
approaches we’ve listed, the spiral approach will be covered in more detail
for three reasons. First, there is very little information about applying this
approach to warehouse and BI efforts. Second, this approach is the only
one that can be used to complement any of the other approaches men-
tioned, as well as others not listed. Finally, there exists mountains of read-
ily available information on the Inmon and Kimball approaches that
readers can research. We conclude this section with an overview of choos-
ing the right approach.

Dimensions

Measure

We need monthly sales by customer, product, and store.

Planning Data Warehouse Iterations 89

BI Hacking Approach
In traditional software application development, hacking software means
developing applications without sufficient planning and management.
This is similar to the hacking found in warehouse efforts, which, unfortu-
nately, is alive and well.

There are many opportunities in BI efforts to hack your way through
development. Following are a few of the most common scenarios:

■■ No formal, permanent plan for effectively cleansing source data is
implemented before moving forward with loading and access tasks.

■■ Rogue departments willing to sponsor their own warehouse efforts,
usually under the guise of wanting to help IT. A telling signal of this
is when the sponsor says, “IT is very busy, so we want to get this
going ourselves. When IT has time, we will let them take it over.”

■■ No executive sponsorship exists, and the warehouse team finds
itself meandering from one iteration to the next, hoping the funding
will not dry up.

Hacking is frowned upon by most professional developers, but too often
is implemented by rogue or inexperienced individuals.

The Inmon Approach
Bill Inmon is often referred to as the father of data warehousing. It is his
design that we follow for the atomic layer of the data warehouse. Inmon (like
Kimball, in the next section) suggests that the warehouse be built iteratively—
in small, fast bursts of development.2 To do so, Inmon believes that you need
to use a development life cycle that is essentially the reverse of the Systems
Development Life Cycle (SDLC). Its name, CLDS, simply emphasizes that it
represents the reverse of the SDLC. Where SDLC starts with requirements,
the CLDS starts with data. Table 3.4 highlights the components of each.

Table 3.4 Comparison of Life Cycles

SDLC CLDS

Requirements gathering Implementation

Analysis Integrate data

Design Test for bias

Programming Program against data

90 Chapter 3

2 Inmon, W.H. Building the Data Warehouse, 3rd Edition (New York: Wiley Publishing, Inc., 2002).

Table 3.4 (Continued)

SDLC CLDS

Testing Analyze results

Integration Understand requirements

Implementation

Business Dimensional Lifecycle Approach
Ralph Kimball is the leading voice for techniques and technologies related
to dimensional data and its subsequent analysis. As such, it is not surpris-
ing that Kimball’s project management perspective is referred to as The
Business Dimensional Lifecycle3 (TBDL) model. As with other develop-
ment approaches, TBDL begins with the definition and scope of the project
effort. This usually includes readiness assessment, business justification,
resource planning, task assignments, duration, and sequencing. The result-
ing plan is then used to drive three tracks of effort:

Data track. This path is focused on dimensional modeling, physical
design, and the design and development of data staging.

Technology track. There are two areas of concentration in this track.
First, the architect formalizes the technical architecture. Then the
technology is selected, purchased, and installed.

Application track. The tasks of this track are focused on the specifica-
tion of the end-user application and the subsequent development of
that application.

The three tracks are run in parallel with each other, and once completed,
they converge into a deployment phase. The Business Dimensional Lifecy-
cle approach ends with a Maintenance and Growth stage. Of course, it is
important to remember that Ralph Kimball views the warehouse as being
developed in iterations, and therefore the model is used over and over
with each new warehouse effort.

The Spiral Approach
The spiral approach is a unique risk mitigation tool that can be used to
drive the entire project iteration or overlaid with your in-house life cycle
development steps. The spiral approach contains four sections:

Planning Data Warehouse Iterations 91

3 Kimball, Ralph, The Data Warehouse Lifecycle Toolkit (New York: Wiley Publishing, Inc., 1998).

Quadrant 1—Determine objectives and constraints. This quadrant is
designed for project planners to examine the objectives of the particu-
lar round, along with any constraints that might be associated with it.

Quadrant 2—Risk analysis, alternatives, and prototypes. Here is
where risk is explicitly addressed. The quadrant is formally defined
in order to ensure project planners identify the means by which risk
can be mitigated specific to the round being implemented. For exam-
ple, if we have known data quality issues that will confront us on a
particular warehouse iteration, we can define and initiate a spiral
round to address just that issue. Perhaps we know that integrating
sales data from 20 disparate locations is going to be difficult. To
address the integration risks, we would conduct a quality analysis
and build an ETL prototype to see if we can achieve the level of inte-
gration necessary or come up with alternative solutions.

Quadrant 3—Develop the solution. This is where we would blend
the results of our risk analysis with development requirements in
order to create the needed solution. In the preceding example, we
may have identified an alternative approach to integrating sales data,
which in this stage is being developed into a formal ETL process.

Quadrant 4—Plan the next phase. As you conduct the risk analysis
and adapt those results into your formal development, you poten-
tially change how the next tasks of your overall project may be con-
ducted. Let’s say our initial plans called for nightly updates of
integrated sales. After we conduct a test of the integration, we deter-
mine that updates could only be done weekly. This new information
changes how subsequent tasks of the overall project iteration may be
approached. This is the quadrant where you adjust your next steps.

A detailed discussion of the spiral approach goes beyond the scope of
this book. The bibliography lists additional reading material. Next we dis-
cuss a recommended format to follow while using the spiral approach for
your warehouse iterations.

Reducing Risk

The best process model for implementing warehouse iterations is the spiral
approach. The rationale is simple: The spiral approach is the only process
model that is risk-driven. All other process models and software develop-
ment methods are document-driven. What’s the difference? Document-
driven processes assume that complete, formal documentation can be

92 Chapter 3

obtained. Unfortunately, to obtain clear, concise documentation, the solu-
tion must be clearly understood and defined. Therein lies the problem. Any-
one with experience in warehouse-centric iterations knows that having a
clear solution accurately defined prior to development is seldom the case.

How many times have warehouse planners asked users what type of
strategic analysis or reporting they require only to have users respond,
“Well, I need a weekly report that tells me this or that.” And, the minute
you deliver that report, the users say, “Good. But can you summarize this
column or add another column?” Why does this happen? It’s because users
are not entirely sure of the decision support requirements until they see
something. Then and only then will they be better able to clarify their
requirements. This has always been the problem with analytical applica-
tions. Users are never sure of what they need until they have something in
front of them to work with. Therefore, planners are never 100 percent sure
that what they are building addresses the requirements until it is already
built. This characteristic of analytical applications creates a significant
amount of project risk. And it is the project risk that must be addressed, as
opposed to naively attempting to build detailed, formal documentation
based on a best guess. In general, the spiral approach:

■■ Fosters the development of specifications that are not necessarily
uniform, exhaustive, or formal.

■■ Incorporates prototyping as a natural part of risk reduction.

■■ Encourages rework in the early development stages as better alter-
natives are discovered.

The flexibility of the spiral model to accommodate your requirements is
one of its strengths.

The Spiral Approach and Your Life Cycle Model

The power of the spiral approach is not just the fact that it is risk-driven.
The flexibility of the spiral approach is in its ability to be adapted for vari-
ous iterations, as well as to accommodate your preferred life cycle devel-
opment method. For example, your company may have spent thousands
of dollars building its own in-house development life cycle. You can simply
use those exact life cycle tasks, except implemented using the spiral
approach. This means you get a double benefit. First, you are using a life
cycle model you and your team are most comfortable with. Second, you
are controlling the project iteration with an approach that explicitly
addresses risk.

Planning Data Warehouse Iterations 93

Warehouse Development and the Spiral Model

N5 DW Spiral is a standard format that you can follow for data warehouse
iterations. Figure 3.14 illustrates the components of the approach. In it,
there are four quadrants to each spiral, as well as five recommended core
spiral rounds that can be planned, including a feasibility study or readi-
ness assessment, an ETL prototype, an access prototype, complete first iter-
ation, and all subsequent iterations. Each of these core spiral rounds are
covered in the following sections.

Round 0: Feasibility Study

The entire spiral effort starts with a feasibility study. This provides an
opportunity for project planners and sponsors to evaluate the organiza-
tion’s ability to take on a warehouse effort. It can be used to examine such
issues as iteration priority, data quality, access alternatives, and cultural
aspects of the organization, as well as the skill of IT and user communities.
It also gives the organization a chance to better understand its warehouse
requirements and the relevant impact on costs and other resources. (See
Figure 3.15.)

Figure 3.14 A data warehouse spiral.

ROUND 0: Feasibility Study

ROUND 1: ETL Prototype

ROUND 2: Access Prototype

ROUND 3: 1st Iteration

ROUND N: Subsequent Iterations

Determine
Objectives and Constraints

Q1

Risk Analysis,
Alternatives, and Prototypes

Q2

N5 DW Spiral

Plan Next Phase

Q4
Development

Q3

94 Chapter 3

Figure 3.15 Round 0.

Round 1: ETL Prototype

This spiral round is designed as a discovery effort to clarify the most chal-
lenging issues regarding the extraction, transformation, and loading of
source data. This prototype might take the form of detailed data quality
evaluation and identification of alternative sources or cleansing strategies.
On the other hand, you may have decided that loading large data sets
within a limited window might be of greater concern, and therefore, ETL
process chains might be tested for providing an optimum load time. Irrele-
vant of the type of ETL prototype, its range must be kept within the scope
agreed to by planners. (See Figure 3.16.)

Figure 3.16 Round 1.

Q2-0.2: Risk Analysis, Alternatives, and Prototypes
• Identify Critical Source Data
• Determine Alternative Sources
• Build Extraction and Transformation Prototype Chains

Q4-0.4: Plan for Next Phase
• Data Access Prototype

Round 1
An ETL Prototype

Q3-0.3: Development
• Create Formal Refresh Strategies
• Create Source-to-Target Maps
• Create Data Flow Diagrams
• Establish Staging Area Requirements

Q1-0.1: Objectives and Constraints
• Adjust Preliminary Scope
• Commit to Prototype Effort

• Provide People
• Secure Resources

• Establish Objectives
• Outline Issues and Constraints

Q2-0.2: Risk Analysis, Alternatives, and Prototypes
• Readiness Assessment
• Data Quality Audit
• GAP Analysis

Q4-0.4: Plan for Next Phase
• ETL Prototype Effort
• Data Quality Strategies
• Establish Requirement Priorities

Round 0
The Assessment

Spiral START
Q3-0.3: Development

• DIF Assessment
• DW Strategy
• High-Level WBS
• Training Plan

Q1-0.1: Objectives and Constraints
• Create Preliminary Scope
• Commit to Feasibility Study
• Establish Objectives
• Outline Issues and Constraints

Planning Data Warehouse Iterations 95

Figure 3.17 Round 2.

Round 2: Data Access Prototype

A spiral round dedicated to data access ensures that end users are given a
chance to understand the technology and the type of decision support they
can expect. Moreover, it affords users active participation in the require-
ments and design process, which is critical in analytical applications. This
risk mitigation ensures that project planners do not deliver a solution unac-
ceptable to the target user community. (See Figure 3.17.)

Round 3: The First Iteration

The first iteration of a warehouse effort deserves a unique spiral round of
its own. In this iteration, planners and architects are required to lay the
foundation for all future warehouse iterations. Here is where fundamental
strategies and architectures are implemented. This includes identifying the
hardware and software, procuring and implementing the technologies,
and training staff. Because of all the extra work required during the first
iteration of a warehouse, this round will most likely be the longest one to
implement. (See Figure 3.18.)

Q2-2.2: Risk Analysis, Alternatives, and Prototypes
• Identify Specific Data Access Requirements
• Examine Data Access Alternatives
• Build Access Pilots for Critical Requirements

Q4-2.4: Plan for Next Phase
• Create Final Scope Document
• Create First Iteration Development WBS
• Create Technical Architecture
• Create Data Architecture

Round 2
An Access Prototype

Q3-2.3: Development
• Create Formal Access Strategies
• Create Formal Access Paths
• Establish Meta Data Requirements

Q1-2.1: Objectives and Constraints
• Commit to First Iteration

• Provide People
• Secure Resources

• Establish Objectives
• Outline Issues and Constraints

96 Chapter 3

Figure 3.18 Round 3.

Round N: Subsequent Iterations

This round should be considered the most common spiral of your ware-
house effort. This is the round that is designed to deal with all subsequent
iterations once the foundation of the technology is implemented, data
architecture has been adopted, and warehouse strategies defined. That is
not to say that you will never implement other technology nor want to exe-
cute a pure access or ETL prototype round if necessary. However, the Nth
round is designed for short delivery cycles to ensure that users are able to
quickly gain benefit from the warehouse efforts. (See Figure 3.19.)

Figure 3.19 Round N.

Q2-N.2: Risk Analysis, Alternatives, and Prototypes

Q4-N.4: Plan for Next Phase
• Create Formal Scope for Nth Iteration
• Create Nth Iteration WBS

Round N
Subsequent Iterations Q3-N.3: Development

Q1-N.1: Objectives and Constraints
• Commit to Nth Iteration

• Provide People
• Secure Resources

• Establish Objectives
• Outline Issues and Constraints

Q2-3.2: Risk Analysis, Alternatives, and Prototypes
• Evaluate Software Vendors
• Conduct Proof of Concept

Q4-3.4: Plan for Next Phase
• Create Formal Scope for Nth Iteration
• Create Nth Iteration WBS

Round 3
First Iteration

Q3-3.3: Development
• Procure Hardware
• Procure Software
• Build Required Process Chains
• Build Required Access Code
• Suite Test
• Load Initial Data
• Implement/Rollout

Q1-3.1: Objectives and Constraints
• Commit to First Iteration

• Provide People
• Secure Resources

• Establish Objectives
• Outline Issues and Constraints

Planning Data Warehouse Iterations 97

The most important thing to remember when implementing the spiral
approach is to be flexible and creative and to adapt the approach to the cir-
cumstance. The spiral approach is a process model. Its purpose is to help
you define the entry and exit criteria between tasks and phases. Most
importantly, it consciously blends risk assessment into the process before
you develop or create anything. But beyond defining criteria and integrat-
ing risk assessment, the model is flexible. Exploit it.

Flattening Spiral Rounds to Time Lines

A question that invariably arises with project planners is how to apply the spi-
rals to a time line. Although there are several approaches, one is simple and
effective: V-W staging.4 There is not much documentation on the technique,
but Figure 3.20 gives you an example for placing spiral rounds onto a time line.

Figure 3.20 shows how a single round of a spiral is represented over a time
line. The round is a 12-week effort, with the objectives covered in 2 weeks,
risk analysis conducted in 4 weeks, development completed in 5 weeks, and
next-round planning done in 1 week. You can scale the time line and the
quadrants as necessary. In Figure 3.21, we see how multiple rounds are laid
onto a time line. In this case, four rounds are planned over a 12-month period.
As you lay each round of the spiral, you see where the name V-W comes from.

Figure 3.20 The V.

WK-1 WK-2 WK-3 WK-4 WK-5 WK-6 WK-7

VW Staging a Spiral Round

WK-8 WK-9 WK-10 WK-11 WK-12

Risk Analysis
and Prototyping

Objectives
and Constraints

Plan for Next
Round

Development

98 Chapter 3

4 Cockburn, Alistair, “Using ‘V-W’ Staging to Clarify Spiral Development,” Salt Lake City, Utah:
MethodJournal.com - http://www.methodjournal.com, 2001.

V-W staging is simply a method to address the notions of iterative, spi-
ral, and prototyping strategies. The technique allows project planners to
uncurl each spiral, arrange the spirals onto a time line to ensure continuity
and manage deliverables. Following are the core benefits of implementing
V-W staging:

Uncurl. Each spiral round and its activities can lie flat against the
project time line.

Arrange. Iterations, including risk-reducing activities (i.e., proto-
types), are formally tracked without sacrificing the notion of continu-
ous progress.

Derive. Progress is measured by delivered function as opposed to just
“phase deliverables.”

Manage. Delivered increments and not just phase deliverables can be
managed.

Get. In the words of Alistair Cockburn, “. . .get the value of ‘gestalt
round-trip’ without having to study Zen.”

There is obviously more to V-W staging, but only a general understand-
ing is necessary for our purposes.

Figure 3.21 Staging multiple rounds.

MTH-1 MTH-2 MTH-3 MTH-4 MTH-5 MTH-6 MTH-7

VW Staging Multiple Rounds

MTH-8 MTH-9 MTH-10 MTH-11 MTH-12

Round 1 Round 2 Round 3 Round 4

Planning Data Warehouse Iterations 99

The IBM Approach
The IBM approach to data warehouse and BI efforts is based on the experi-
ence of IBM’s Global Services. BI engagements may encompass the entire
model known as BI Solution Delivery. As shown in Figure 3.22, the model
can be broken down by BI solution components, such as:

■■ Strategy, design, and planning

■■ Data warehouse development

■■ Decision optimization

The model starts with a Strategy engagement. This is designed to assist
the client and IBM in developing an understanding of the fundamental
business issues before embarking on a business intelligence project. It
incorporates complete problem and solution definition, impact analysis,
cost/benefit analysis, and high-level planning. Objectives concentrate on
determining the requirements and focus areas, both for the short-term and
longer-term. This BI engagement proposes alternative solutions to help
address the priority areas including recommendations for the next steps
for further, more comprehensive BI projects. The BI Strategy engagement
combines activities from the IGS Method Business Intelligence Engage-
ment Model phases of Business Discovery, Infrastructure Planning, and
Solution Outline. It provides the structure to conduct the initial analysis of
business requirements and then to outline plans of how business intelli-
gence can address those requirements. It identifies the business challenges
or opportunities and sets the objectives for subsequent business intelli-
gence iterations. The main steps of the engagement plan are to:

1. Perform a high-level analysis of the business areas appropriate for
the business challenge proposed.

2. Review client’s business, data, and technical environments.

3. Develop an understanding of the background of the business to gain
an appreciation of what the business is, what it does, and how it can
be improved.

4. Identify and prioritize business opportunity focus areas.

5. Develop alternative solutions, along with a set of recommendations
to address the business challenges identified.

This provides the client with a list of clearly defined business issues and
solution focus areas and a recommended solution approach, including busi-
ness impact, value, and cost estimates. The final deliverable is an outline
plan for the next steps of designing and developing the proposed solution.

100 Chapter 3

Figure 3.22 The IBM project model.

A business intelligence design and planning engagement is usually the
second engagement type performed for a client. This engagement plays an
important role in fully defining and planning business intelligence solu-
tions before the implementation stage. The scope of the solution should be
based on the following requirements of the organization:

■■ Availability

■■ Quality

■■ Accessibility

■■ Consistency

A Design and Planning engagement produces a high-level design for the
data mart/data warehouse environment and the initial business user
applications, and it defines the data needs that must be addressed. This
engagement is specifically limited to the creation of a high-level system
design and project plan. The work is preparatory to the implementation of
a business intelligence solution based on a data warehouse infrastructure.
Engagement plan steps include:

1. Develop the solution requirements, including user profiles, business
rules, business terms, meta data strategy, use cases, and nonfunc-
tional requirements.

2. Design the solution logical data model, the architecture model, and
the meta data design.

Data Warehouse
DevelopmentDesign and planning

Plan Architect Construct Operate

Solution Delivery

Decision
Optimization

Application
Proof of
Concept

Infrastructure
Proof of
Concept

Skills Development

Pr
o

ce
ss

O
ut

so
ur

ci
n

g

St
ra

te
g

y

Planning Data Warehouse Iterations 101

3. Assess data quality, infrastructure impact, and organizational
impact.

4. Develop data map and data migration plan, and design extract,
transform, verification, and load processes.

5. Specify the initial release, training, testing, and deployment plans.

The third engagement is usually a Business Intelligence Data Warehouse
Development engagement. It typically follows the strategy engagement
and an associated design and planning. During a BI Data Warehouse
Development engagement, practitioners design, build, and implement a
scalable, enterprisewide data warehouse environment that might include
any combination of the following components: an operational data store, a
centralized data warehouse, one or more departmental data marts, and the
supporting data warehouse infrastructure. The main steps of the engage-
ment plan are to:

1. Complete the detail design specifications for the application, the
data, the user interface, and the architecture.

2. Build the solution application, data, and infrastructure components.

3. Design test specifications, build the test environment, and perform
all levels of testing.

4. Define the training and user support requirements, build training
and support materials, and conduct training.

5. Deploy the solution.

Often organizations want to explore the benefits of data mining by
undertaking a feasibility workshop, a trial, proof of concept, or a data min-
ing quick start. These result in a Business Intelligence Decision Optimiza-
tion consulting engagement, which can help you:

■■ Leverage industry-specific and business-specific techniques in order
to provide actionable business information.

■■ Unearth previously unknown connections between related records
and small clusters that contain unusual or suspicious records.

■■ Solve a variety of business issues, such as target marketing, cus-
tomer segmentation, attrition prevention, churn management,
loyalty management, cross-selling, product bundling, payment
delinquency, fraud detection, claims prediction, defect prediction,
yield maximization, channel prediction, and customized advertising.

Business Intelligence Proof of Concept engagements are often employed
to test a technical aspect of a solution or to get buy-in to a solution concept.

102 Chapter 3

Business Intelligence Solution Delivery engagements are typically an itera-
tive packaging of Business Intelligence Design and Planning activities with
the Business Intelligence Data Warehouse Development activities for
delivering data marts and their associated applications after the data
warehouse and infrastructure are in place.

Choosing the Right Approach
There are as many project approaches to data warehouse iterations as there
are tools to choose from. Choose the approach that fits your requirements
and level of skill. For small shops, stick to project management plans that
don’t require a highly skilled project management team to administer. For
large shops with large project efforts, choose a project planning approach
and dedicate resources to learn, implement, and administer the approach.
Then establish the use of the approach to ensure consistency of application
over successive iterations of your warehouse.

If you have the skill and project management resources available, con-
sider implementing your life cycle model of choice with the spiral
approach. It is a sure method for directly addressing and minimizing the
risk ubiquitous to all BI efforts.

Summary

Project planners must always be aware of how a specific iteration affects
the overall BI vision and how the overall vision must guide each iteration.
When creating your plans and designs, consider lessons from the object-
oriented crowd. There are valuable procedures and tools matured by this
group that lend themselves to warehouse-centric applications. For exam-
ple, use case, realization, or swim lane diagrams are a few of the well-doc-
umented techniques that communicate high-level requirements and yet
serve as the basis and framework for further requirements detail and meta
data gathering. Architects and planners should not constrain themselves to
minimally effective techniques for requirements definition like source-to-
target maps.

The DIF Matrix is one of those rare tools that, with a little practice, will
become invaluable to any BI iteration. It provides a statistically valid
method to prioritize iterations, which means that you and your team are no
longer caught between competing interests and political agendas when
determining where to start your warehouse effort or in which sequence to
address the iterations. It is a method that users, project planners, and spon-
sors can use to understand how iterations will be prioritized and

Planning Data Warehouse Iterations 103

addressed. The approach can be implemented at a high level for the enter-
prise, allowing all the executives to determine the priority of the business
requirements across your organization. Or, the approach can be imple-
mented for a specific functional or business unit, where senior manage-
ment of that unit contribute to the business requirements list, and by their
own scoring, determine the priority of those business requirements in
terms of dysfunction, feasibility, and impact. Moreover, the approach
allows you to periodically reshuffle the business requirements deck. For
example, a business requirement that is 4 months old may not be as critical
to the company or even the requesting user community. The DIF Matrix
can become a routine procedure conducted periodically in your organiza-
tion to ensure the right business requirements are being addressed.

Analytical applications by their very nature deliver solutions that will
require changes as soon as they arrive on the user’s desk. Why? Because it
is extremely difficult to clearly define all the requirements for an applica-
tion where users cannot clearly describe to you all they need until they can
see and use the application. BI applications are often considered “killer
apps”—not because they represent the next technology wave, but because
they are impossible to fully specify. Consequently, reducing risk is critical
and should be your top priority. By experimenting and practicing with the
spiral approach, you can customize a project process to your warehouse
iterations that increases the likelihood of success.

104 Chapter 3

PA R T

Two

Business Intelligence
Architecture

107

Key Issues:

■■ Several architectural design choices are available. The challenge is to
select the one that best represents your requirements, corporate cul-
ture, skills, and available resources.

■■ Building an atomic layer is critical to most enterprisewide efforts,
and there are a few alternatives to choose from. Although the tradi-
tional atomic layer is implemented in third normal form (3NF), there
are successful sites implementing the atomic level in relational stars
or MOLAP cubes.

■■ Creating an atomic layer with normalized structures with a dimen-
sional server on top—and essentially covering the enterprise need
for multidimensional data—has some tantalizing benefits.

Do not underestimate the importance of the architectural design. Your
choice will dictate the future success of your warehouse. It will determine

Designing the Data Architecture

C H A P T E R

4

how well your warehouse can adapt to ever-changing business require-
ments, the scalability your environment can tolerate, the manageability of
your environment, and its capability to deliver the necessary information
content for user analysis.

Making a poor architectural choice early in your implementation will
lead to a rigid environment that may, at best, serve the needs of the origi-
nal project sponsor, but little else. You can readily identify poor architec-
tural choices because they often lead to:

Project failures. These are projects that never achieved what was
originally intended for the sponsor and were essentially stopped.
From the perspective of data architecture, project failures occur
because of too much or too little complexity. Either the architect
attempted a complex architecture for which the organization had lit-
tle skill or resources to implement or there was no architecture con-
sidered except for buying into vendor hype about their
implementation solution.

Data silos. We all understand what a data silo is, but from an archi-
tectural point of view, the silo is not a failure to the specific user
community it services. The architectural failure is apparent when
attempting to share informational content or perform analysis across
the silos.

Orphaned structures. These structures or platforms are implemented
for a particular project, with specific technology and techniques. The
project met with minimal or even great success, but now the ware-
house planners find that they must change direction for successive
iterations. Perhaps the group learned so much during the iteration
that they now realize the shortcomings of their architectural choices.
Or, it may simply be that new management has arrived and the
direction has suddenly shifted. Any previous efforts are left as-is to
continue supporting user communities while the warehouse team
moves toward new architectures. Of course, the plan is always to re-
engineer those orphaned applications back into the new warehouse.
But there is an old saying that applies to warehouses: There is
nothing as permanent as a temporary solution.

108 Chapter 4

Warehouse architects are challenged to build a warehouse environment
that addresses the requirements outlined by executive sponsors while
dealing with the realities of source systems, corporate culture, existing
resource skill levels, and technical architecture limitations. Because of these
many issues, an architect will typically rely on established and proven
architectures to serve as the foundation of his solution.

The right data architecture must fit your organization. You cannot
assume that reading this book, or any other, and implementing exactly
what the author outlined is the right approach for your company, its goals,
and its objectives. Instead, your data architecture must be personalized,
customized to your world. This means that requirements identified by cor-
porate sponsors, corporate culture, risk management, implementation
time lines, and available resources must be factored into the architecture
design. At the same time you must protect the information asset that will
be created over the life of the warehouse.

Considering the variations of warehouse architectures being imple-
mented, there are only a few viable architectural templates to consider
when building your BI organization, all of which are born of literally
decades of hard-won experience. The data architecture of the BI organiza-
tion found in Figure 4.1 is considered a traditional, engineered approach to
data warehousing. It includes all the important data structures used in
warehousing:

■■ Operational data store (ODS)

■■ Staging area

■■ Atomic layer

■■ Data dart

We’ve discussed the characteristics of each data structure in Chapters 1
and 2. Here we want to explore the blending of relational and multidimen-
sional structures, as well as varied data delivery alternatives. The chapter
starts with a broad discussion of traditional data architectures from which
project planners can choose, including different types of atomic layers,
data marts, and combinations of the two. We then examine the data mod-
els necessary to design your choice of architecture, as well as the expected
deliverables of that design effort. The chapter ends with a recommenda-
tions matrix to help you decide which data architecture is right for your
organization.

Designing the Data Architecture 109

Figure 4.1 The BI organization data architecture.

Choosing the Right Architecture

As technology advances it presents us with new architectural opportunities.
In the past there were clear choices driven mainly by the technology. You
could implement your warehouse as a centralized data warehouse in a rela-
tional database, or you could implement a MOLAP warehouse using
RDBMS mainly for staging and ETL efforts. And, of course, you could blend
the two technologies into a single, cohesive solution for your organization.
But as technology marches on, the variations of architectures change as
well. Leading database vendors continually siphon off the technological
advantages of niche players, and this practice serves as a catalyst for niche
players to relentlessly pursue other differentiators. The data architect is
left to decipher the vendor hype and the real technology benefits from its
shortcomings.

ACTION

ACTION

ACTION

3rd-
Party
Data

Sales

STAGING AREA

TableTable

Table
Table

Table

Table

Table

Table

Table

OPERATIONAL DATA STORE

Operations Raw
Data

Finance

CUSTOMER

C
U

ST
O

M
ER

 T
O

U
C

H
 P

O
IN

TS

META DATA

GEOCODING ATOMIC-LEVEL
NORMALIZED DATA

DATA MARTS
DIMENSIONAL DATA

MARKET FORECAST
TREND ANALYSIS
BUDGETING

DATA CLEANSING
DATA INTEGRATION

DATA TRANSFORMATION

TRAFFIC ANALYSIS
CLICKSTREAM ANALYSIS

MARKET SEGMENTATION
CUSTOMER SCORING

CALL DETAIL ANALYSIS

OPERATIONS
DATABASES

USER
COMMUNITIES

DATA
MINING

DATA
MINING

CUSTOMER AGENTS

DW AGENTS

AGENT NETWORK

OPERATIONS AGENTS PERCEPTS

PERCEPTS
PERCEPTS

PERCEPTS

PERCEPTSPERCEPTS

DECISION MAKERS

SPATIAL
ANALYSIS

Back-Feed Loop

Ba
ck

-F
ee

d
Lo

opBack-Feed Loop

ADVANCED QUERY &
REPORTING

OLAP

DATA MINING $

Vendor

WEB

Customer or
Partner

Raw Data

CONCEPTUAL NETWORK

E-MAIL

MULTIMEDIA

PRINT

WEB

Direct Mail

In-Store Purchase

Thank you for
your patience.

INTERNET

$$$

BI DASHBOARD AND
REPORTING PORTAL

DASHBOARD
User Profile

BI DASHBOARD AND
CONTROL PANEL

DASHBOARD
Analyst Profile

Back-Feed Loop

110 Chapter 4

An extract of the fundamental data structures for our BI organization is
in Figure 4.2, which shows an atomic layer implemented in a relational
database in third normal form. The diagram also includes data marts that
can be implemented as star schemas, MOLAP cubes, or stars with cubes.
The first step in the data propagation is from the operational systems
(production systems as well as the ODS) into the staging area. Once
staged, all necessary data is first populated into the atomic layer of the
warehouse. From the atomic layer, data is distributed to all subsequent BI
applications and data structures, such as the data marts pictured in Figure
4.2. Reporting and analysis is conducted against either the atomic layer or
the data marts.

Figure 4.2 Traditional high-level data architecture.

OPERATIONS ODS

STAGING AREA

DATA MARTS
CUBE/STAR FARMS

ADVANCED SQL REPORTS

DOLAP

BI STATIC REPORTS

ATOMIC LEVEL

CLICK STREAM ANALYSIS
MARKET SEGMENTATION

CUSTOMER SCORING

COTS ETL
COTS ETL

COTS ETL

MARKET FORECAST
TREND ANALYSIS

BUDGETING

Table Table

Table Table

Table Table

COTS ETL

Designing the Data Architecture 111

This is probably the most common form of enterprisewide data architec-
ture for warehousing. It is often referred to as an “architected” data ware-
house with dependent data marts. The basis of enterprisewide data is
found in the atomic layer. All multidimensional content is found at the
data mart level in star schema data structures or MOLAP cubes or both.
These structures represent the transformation point from normalized
atomic data to dimensional data. And, if that data transformation is at the
natural grain of the organization, then multidimensional analysis will be
capable to the lowest meaningful level, within the scope of the subject area
covered by that star or cube. Moreover, these structures can serve as the
source of multidimensional data for subsequent OLAP-centric uses.

This traditional structure of a normalized, enterprisewide atomic layer
and subject-area-specific data marts creates a data dependency. As the data
cascades from one structure to another, it mutates, evolving toward the
informational content suited for that structure. From staging to atomic to
dimensional data and ultimately to user reporting and analysis, there
exists a dependency among the data structures themselves and the data
they serve up. (See Figure 4.3.)

As effective as this architecture is for enterprise deployment of BI, it is
not the only viable architecture available. In Chapter 2 we discussed the
characteristics of each data structure. Here we want to explore the blending
of relational and multidimensional structures, as well as data delivery
alternatives that might better support your efforts.

Figure 4.3 Data structure dependency.

Table Table

Table Table

Table

Table

Table

Table

Table

Vendor

Financial

Data Structure Dependency

Desktop Slice

112 Chapter 4

Atomic Layer Alternatives
For many, the only architecture for an enterprise atomic layer is a normal-
ized model implemented in an RDBMS. There does exist a significant his-
tory of success with this type of architecture. However, multidimensional
atomic layers have also met with success. Investigating this option includes
multidimensional data stored in either relational technology using star
schemas or MOLAP cubes using technology such as DB2 OLAP Server.

Figure 4.4 shows an atomic layer implemented using proprietary cube
technology in a pure MOLAP environment or a farm of relational data
structures implemented as stars with conformed dimensions and fact
tables. In this structure the cubes/stars themselves represent the scope of
subject areas covered by the warehouse. They can be physical cubes as well
as cube views of physical cube data. As for the stars, they can be imple-
mented in classical structures and snowflakes. They can include aggre-
gated tables, SQL views, and any number of techniques used in relational
environments to improve performance and functionality. The technologies
and techniques in both stars and cubes provide significant flexibility and
coverage of your multidimensional data.

Figure 4.4 Dimensional atomic layer.

STAGING AREA

BI STATIC REPORTS

DOLAP

COTS ETL

DIMENSIONAL ATOMIC LAYER

This is an atomic layer
implemented as a pure
MOLAP environment
such as DB2 OLAP
Server or a Star farm in
a RDBMS.

Spreadsheet

Designing the Data Architecture 113

Implementing your atomic level in MOLAP does not preclude you from
implementing OLAP technology further downstream, nor does it elimi-
nate the possibility of building departmental data marts, as shown in Fig-
ure 4.4. As a matter of fact, a MOLAP atomic layer implemented with DB2
OLAP Server makes an obvious foundation of multidimensional analysis
by any variety of leading data access techniques and technologies. DB2
OLAP Server has native driver support in leading OLAP-centric technolo-
gies such as Cognos, Business Objects, Brio, and Microsoft Excel. It is
arguable that such an atomic layer can actually enhance and facilitate
OLAP usage.

A multidimensional atomic layer can also be implemented as stars in a
relational database using the “bus” architecture of conformed dimensions
and fact tables. Properly implemented, this architecture, purposed by
Ralph Kimball, can be a successful alternative to multidimensional data
implemented in proprietary structures. Of course, star schemas are not
MOLAP or ROLAP. Instead, a star schema superimposes multidimen-
sional data in a relational database. Consequently, you still need OLAP-
centric technology to fully benefit from the structures themselves and the
multidimensional data they serve.

There is another alternative for creating your atomic layer, which is a
combination of atomic layer data with a dimensional engine that sits on
top—a dimensional cap, if you will, for the atomic layer as illustrated in
Figure 4.5. This cap is more than a data mart farm implemented in persis-
tent data structures like star schemas or pure MOLAP technology that is
fed warehoused data from your atomic level. This cap is established specif-
ically to serve up multidimensional data to the enterprise by exploiting the
actual data stored at the atomic layer, thus minimizing, if not eliminating,
the need for data propagation from atomic data stores to multidimensional
data stores.

At first glance you might be thinking we are recommending two atomic
layers. That’s not so. We are recommending only a single atomic layer in
3NF or star schemas (depending on the vendor you select to implement for
your dimensional cap) with a multidimensional server on top. This server
can be a platform implemented as ROLAP or HOLAP technology. Why?
Well, having an atomic level is a proven, widely accepted technique to
ensure enterprisewide warehouse data at the natural grain of your busi-
ness. Furthermore, OLAP is a critical component to your analytical land-
scape. Implementing the two is not an option for many organizations. The
only issue remains how to optimize the process to ensure atomic-level data
across the enterprise while serving up timely dimensional data to a broad
and hungry audience.

114 Chapter 4

Figure 4.5 A dimensional cap.

Atomic data provides a solid foundation and is an excellent source of
informational content for many BI-centric applications, but often further
processing must be done to ready the data for dimensional analysis. To that
end, we usually implement physical star schemas or MOLAP cubes (or
both) to serve as a middle layer of persistent data structures to address the
transition from atomic data to OLAP analytics. We build ETL processes
that take the atomic data and propagate it into these structures and attempt
to make the disparate data stores (atomic and data marts) act as one syn-
chronized environment.

STAGING AREA

BI STATIC REPORTS

DOLAP

COTS ETL

This is a server that functions
as an enterprisewide source of
multidimensional data. This is
implemented with a pure
ROLAP or HOLAP technology.

Traditional atomic
layer in 3NF or
dimensional.

ATOMIC LEVEL

Spreadsheet

Table Table

Table
Table

Table
Table

Designing the Data Architecture 115

There are several inefficient and inherent problems with this traditional
architecture, as well as several benefits. You can argue that the physical
movement of data from one structure to another may introduce potential
problems to the data. This issue is not likely for the professional architect.
Nevertheless, some vendors like to feed this fear to clients. In reality, the
single biggest issue with multiple data structures is the batch window nec-
essary to keep them all effectively updated. It is the necessary size of this
batch window that constrains the time lines of available data for final BI
applications.

Until recently, technology to support an enterprisewide dimensional cap
was not in place. There have been technologies that served up multidi-
mensional data to a wide audience, but the data was typically handi-
capped with performance and scale problems. That is not the case with
today’s technology, which provides:

■■ Support for a full range of BI applications

■■ A robust development environment

■■ Support and administration for potentially thousands of users

■■ Centralized, enterprisewide administration of the entire multidi-
mensional implementation

■■ A seamless integration for OLAP-centric applications and the data
on which they are based

Note that this technology is not the brainchild of a single company or the
next killer application. Instead, it represents an industry trend, migrating
from BI tools and applications toward BI, enterprisewide platforms.

You have two primary alternatives to creating a dimensional cap to your
atomic layer data: a ROLAP platform on a 3NF atomic layer and a HOLAP
platform on a star Schema atomic layer. We describe these approaches in
the following sections.

ROLAP Platform on a 3NF Atomic Layer

The first option is exemplified by technology from MicroStrategy. In its
current release, the MicroStrategy Intelligent Server provides ROLAP func-
tionality to a broad array of OLAP-centric and standard reporting tools
and dynamically facilitates the transition from normalized atomic-level
data to OLAP analysis without having to implement, maintain, and sup-
port interim persistent data structures.

A MicroStrategy implementation involves a combination of ROLAP and
MOLAP-centric technology. It has earned its reputation as a strong ROLAP
engine; however, with their concept of caching the requested data once a

116 Chapter 4

report is requested, it can afford similar performance of MOLAP technol-
ogy for popular requests. It is reasonable for users to assume that the
analysis will often remain within the domain of the original report
requested even though data pivoting, slicing and dicing, and rollup/drill-
down are being conducted. So even though the implementation of Micro-
Strategy is often associated with a pure ROLAP solution, in fact, the
Intelligent Server exploits sufficient technologies that resemble the func-
tionality found in HOLAP solutions.

Although MicroStrategy can work with either normalized or denormal-
ized data, it is often best implemented on top of a normalized data source.
Therefore, it is recommended that MicroStrategy be on your short list of
dimensional cap technology if you plan a 3NF atomic layer.

HOLAP Platform on a Star Schema Atomic Layer

The second option is to use HOLAP technology to serve up multidimen-
sional data to your enterprise. Under this scenario, the data architect
implements a dimensional cap that provides a blend of MOLAP and
ROLAP-centric technology. This option provides the same functionality as
found with the ROLAP cap, except here we have a blended approach
between the best of MOLAP characteristics with the scalability of ROLAP-
centric capability.

The technology for this platform is DB2 OLAP Server Version 8.1, using
hybrid analysis that sits on a dimensional source of atomic data. Architects
can define how much of the data is stored in MOLAP form and how much
analysis will be left for the star schema tables, using ROLAP to access the
required data. DB2 OLAP Server will retrieve the “cells” from the rela-
tional database (star schema tables) as if they physically resided on the
cube storage. Hybrid analysis eliminates the need to load and store mem-
bers and their data with the physical cube itself, combining the efficiency
of mass data scalability with the sophisticated data analysis and rapid
reporting of a MOLAP server.

Similar to the way MicroStrategy is often typecast as only a ROLAP solu-
tion, DB2 OLAP Server is too often associated with only MOLAP technol-
ogy. In fact, both MicroStrategy Intelligent Server and DB2 OLAP Server
are migrating toward an enterprisewide solution for dimensional data. The
only difference is that MicroStrategy relies on the strength and experience
of ROLAP, and IBM relies on the MOLAP strength of DB2 OLAP Server. In
either case, DB2 OLAP Server or MicroStrategy Intelligent Server provide
a means to fully exploit atomic layer data, with no use of additional persis-
tent structures in the case of MicroStrategy or minimal use of additional
persistent structures in the case of DB2 OLAP Server.

Designing the Data Architecture 117

Data Marts
Data marts are yet another area of dispute among warehouse practitioners.
There seems to be constant debate regarding the implementation of star
schemas in an RDBMS versus proprietary cube technology. Certainly, the
star structure makes up for the shortcomings of cubes such as scalability.
However, cubes are the solution to the single most glaring issue with stars
because they actually provide you with OLAP functionality (the
slicing/dicing, rollup/drill-down functionality that everyone gets all
excited about). Stars by themselves are not OLAP. If implemented cor-
rectly, a star will serve up denormalized, symmetrical data that is out-
standing for OLAP analysis, but you still need some means for performing
the online, analytical processing. This can be achieved to some extent with
SQL; however, the most robust OLAP environments employ OLAP tech-
nology from leaders like Cognos, Business Objects, and IBM.

So, we know that for OLAP-centric applications, we need OLAP tech-
nology if we implement star schemas. But if we are implementing OLAP
technology, why would we need to implement stars? Actually, stars bring
exceptional value to architectures. Some of the primary benefits found in
staging data in a star schema for supporting OLAP applications include
the following:

Integrated. Data stored in star schemas is already integrated, either as
a result of being imported from the atomic-level data warehouse or
from ETL processes directly from staged data. Once the data is cor-
rectly populated in the stars, all subsequent SQL extractions for data
headed to cubes will be valid. This eliminates the potential problems
of using SQL generated by report writers, for example, to make the
jump from atomic layer source data, or worse, operational systems.

Summarized/precalculated/derived. Much of the aggregation, precal-
culation, and derived data requirements of the subsequent OLAP
applications can be completed within a star data mart. For example,
if your OLAP tool does not allow you to implement limited prequery
calculations to the cube, you can use a SQL statement to extract and
precalculate data from the star and put the results in a launch table or
file for loading into the cube. Another illustration of a star’s value
has to do with aggregation flexibility. If the cube analysis normally
works from monthly data and requires daily-level granularity only
once in a while, using a star could facilitate the flexibility required.
You can have SQL statements that extract and pre-aggregate your
monthly data and place it in aggregated fact tables or launch
tables/files as needed.

118 Chapter 4

Adjusted for business rules. The star is a perfect environment to
implement security access, accountancy issues (for example, cur-
rency), or organizational/operational/legal structures. That does not
mean that this functionality is not available in OLAP technology.
However, each OLAP vendor addresses these issues with varying
degrees of success. The architect can adjust the dimensional data for
business rules at the star level and not worry about the limitations of
the various OLAP technologies that might be implemented in their
environment.

Extensive attribution. MOLAP cubes frequently contain less attribute
information about members than that found in star schemas. There is
a technical reason for this: Cubes suffer from inflation. Consequently,
cubes will refrain from heavily attributed data to ensure a minimum
cube size. That does not mean that the attributes are not important to
OLAP analysis. A star schema can maintain all the attributes required
for OLAP applications, which means that the OLAP technology can
select attributes as necessary.

Historical integrity. When properly designed, star schemas can deal
extensively with historical data, whereas MOLAP cube technology
differs greatly in its ability to address history. For example, if you
have built a cube for analyzing monthly sales and you want to add a
new month, you may need to drop and re-create your cube with the
new data. DB2 OLAP Server does the best job of incrementally
updating the cubes. But there are many other vendors whose OLAP
tools do a very poor job at handling incremental updates—if they
handle them at all. Stars can readily be designed for incremental
updates.

Drill-through/Drill-down. A star facilitates the use of dimensional
analysis even if a drill-through is required from a cube application
into the relational data store or drill-down is necessary for more
granular, dimensional analysis. DB2 OLAP Server with Hybrid Inte-
gration Services is one such example of this technique.

Of course, one of the greatest advantages for exploiting stars is that the
architect must go through the challenge of correctly building and loading
the star itself. This effort ensures that the data stored is symmetrical,
equally available, cleansed, and complete. Consequently, this guarantees
that all subsequent uses of the data are based on a solid foundation. More-
over, the star will provide a “single version of the dimensional truth,” irrel-
evant of the variety of OLAP technology that might be implemented across
your organization.

Designing the Data Architecture 119

Atomic Layer with Dependent Data Marts
Building an atomic layer with dependent data marts is most effective for
an enterprisewide effort. Often referred to as an enterprise data warehouse,
the design creates an environment that exploits the flexibility and scalabil-
ity of a normalized atomic layer founded on principles espoused by
Inmon, while establishing an effective analytical landscape afforded by
data marts based on star schemas defined by Kimball. This structure epit-
omizes the blend of best-of-breed strategies for data warehousing.

Together, Inmon’s and Kimball’s methods provide an effective means for
enterprises to methodically tackle the volumes of potentially disparate
source data while remaining nimble to strategically adjust the warehouse
direction. Figure 4.6 illustrates the elements of this design. As shown, the
foundation of the entire warehouse is the atomic layer, which serves as the
wellspring from which all data in the warehouse will be propagated and
made available for reporting and analysis. The data flows from the atomic
layer into departmental data marts, either Star schemas or proprietary
cube technology. From there, slices of dimensional data are served up to
the user communities.

This architecture ensures a centralized, persistent data structure (atomic
layer) that grows by iterations, essentially becoming a “sum of its parts,”
where advanced SQL reporting can be applied across the enterprise—as
opposed to merely a subject area. It is an engineered approach that ensures
historical integrity, referential integrity, and central control of meta data.

Figure 4.6 Atomic layer with dependent data marts.

Enterprise Servers with Data Marts (Cubes/Stars)

Transformation

Department Servers with Data Marts (Cubes/Stars)

Atomic Layer
(Dimensional Model/3NF)

Source Data

Client
Community

120 Chapter 4

Each data mart iteration requires that source data be loaded into the
atomic layer first. Then that data becomes available for use at the data mart
level. This requires not only additional work and sufficient time for imple-
mentation but also corporate discipline. The organization must be pre-
pared to adhere to the engineering discipline in order to fully exploit the
benefits of this structure—a task that is often easier said than done.

Organizations drive executives to BI building agendas that may not tol-
erate the time frames required to implement a more methodical warehouse
structure, even though that structure would best serve the enterprise as a
whole going forward. Consequently, executives too often decide to build
“interim” solutions in order to get the results they seek quickly and avoid
the disciplined approach. They rationalize this strategy by describing their
solution as only “interim” with the idea that they will allow IT to incorpo-
rate the permanent solution in the future. This, of course, creates the poten-
tial for orphaned structures discussed at the beginning of this chapter.

Independent Data Marts
For those warehouses with only one or two well-defined and constrained
subject areas, perhaps independent data marts are appropriate. The obvi-
ous difference between this approach and the dependent data mart strat-
egy described previously is the lack of an atomic layer as illustrated in
Figure 4.7.

The single most influential factor for selecting independent data marts is
implementation speed. These types of warehouse structures can be imple-
mented very quickly and, therefore, generally at a cost savings when com-
pared to the atomic layer with dependent data mart strategy described
previously.

This warehouse approach principally suffers from a lack of meta data
control and, therefore, integrity. This may not be much of an issue if there
is only one small data mart. However, when another data mart is built,
they do not share a centralized pool of precleansed and integrated data
with consistently applied business rules. Instead, each data mart extracts,
integrates, cleanses, and maintains its own business rules. This creates
an environment where reports from each data mart containing similar
elements—for example, profit—may have completely different values.
This leads to another problem with independent data marts: stovepipes.
Each data mart built in this manner is essentially a disparate data silo dis-
jointed from every other data mart.

Designing the Data Architecture 121

Figure 4.7 Independent data marts.

It may have been widely known to warehouse architects that Inmon is
against building independent data marts. However, what many may not
be aware of is that Kimball is equally critical of this type of architecture.
The warehouse, according to Kimball, is a union of data marts organized
around a bus architecture made of conformed dimensions and fact tables.
This bus allows queries to traverse multiple data marts, and it therefore
eliminates the problem of stovepipes.

Data Delivery Architecture
Message broker technology—like MQSeries from IBM—is another data
architecture component that you should have in your arsenal and must be
considered for enterprisewide reporting architecture design. This is the
technology that enables enterprise application integration (EAI). Whether
you called it EAI or message brokering, this is a core data delivery mecha-
nism for your enterprise BI efforts.

The basic premise for considering the implementation of a message bro-
ker is to eliminate the classic spaghetti code challenge of developing and
maintaining point-to-point integration. Spaghetti code is just one symptom
of disparate data. Other effects include the following:

■■ Disparate data makes ad hoc reporting difficult, if not impossible.
This is indigenous to environments where applications are imple-
mented without an enterprise reporting strategy.

Enterprise Servers with Data Marts (Cubes/Stars)

Transformation

Department Servers with Data Marts (Cubes/Stars)

Independent Transformation Flows

Source Data

Client
Community

Transformation

122 Chapter 4

■■ Disparate data creates system complexity and therefore prohibits the
fostering of power users, since programmers may be the only means
for performing the reporting tasks.

■■ The lack of integrated and accurate data sources complicates man-
agement reporting.

■■ Disparate data creates a heavy reliance on IT for reporting require-
ments and consequently creates a bottleneck for user communities.

■■ IT projects never seem to reach closure, since disparate data creates
hidden complexities that are often overlooked during project
planning.

Highly disparate data leads to complex integration. When you consider
that each application has to share some type of data with every other sys-
tem in the network, your integration points and problems grow geometri-
cally as you add applications. To further complicate matters, consider
integration issues such as operating systems, file structures, and network
communications, as well as the fact that each integration point probably
contains several individual subcomponents. To hard-code programs to
deliver specific data between two applications, a strategy known as point-
to-point integration is an unsupportable endeavor destined to fail.

Ultimately, any successful approach to resolving data integration among
disparate sources must adhere to one simple objective: reducing the com-
plexity. The most efficient means to reduce complexity is to implement an
infrastructure that replaces hard-coded, point-to-point solutions with a
standardized messaging system that transports data from application to
application and from data sources to target databases. Establishing this
foundation cuts the integration requirements in half. Instead of writing
code for each point-to-point requirement, you only need to attach a candi-
date application to the message system. Therefore, each application in the
enterprise requires one integration point with all other applications. That
integration point establishes the application’s connectivity with the enter-
prise instead of to a particular application. Applications gain indepen-
dence from each other, but the architecture provides the conduit for data to
flow freely between applications. IT staff can now readily fit new applica-
tions into the message broker environment by focusing only on the integra-
tion requirements to the message queue. By the same token, they can easily
remove applications from the broker environment without compromising
the movement of enterprise data. This is known as single-point integration.

There are additional benefits of a message broker environment that go
beyond eliminating point-to-point complexity. This type of technology
establishes a centralized meta data repository that ensures information

Designing the Data Architecture 123

about the data being transported around the enterprise is formally docu-
mented and centrally administered. If there are any changes to business
rules, IT staff can go to a single place to make that adjustment, rather than
searching lines of spaghetti code.

The centralized control of meta data, coupled with the capability to
move, cleanse, and transform data through the enterprise, makes an EAI
architecture a perfect launch site for both tactical data structures and the
data warehouse itself. You simply attach the necessary components (such
as the staging area for the warehouse or the ODS or reporting database) to
the message queue as you would any other application. All of the estab-
lished meta data and queuing technology is exploited by the warehouse
effort. For example, a warehouse team would normally have to collect and
document the business rules that define how to handle the application
data; the message broker architecture provides this information in a cen-
tralized meta data repository.

Figure 4.8 shows a single-point integration model for data delivery. As
shown, the message broker technology serves as a data delivery platform,
servicing the applications of the enterprise, as well as all the enter-
prisewide reporting, both tactical and strategic. The warehouse ODS can
enjoy a simple single-point integration with the balance of the enterprise
community.

In essence, the message broker can be divided into four distinct
components:

Network. This is the tangible hardware needed to ensure that the
data can be accessed from one point and populated at a target
destination.

Message. A message is similar to a data record except that the
message contains not only the data but also instructions on what
to do with the record in hand.

Connectors. Message brokers typically maintain a wide array of
native driver support for connecting data sources to the message
broker environment.

Administrator. An advantage of a message broker environment is
that it is centrally controlled. From a single command station, IT per-
sonnel can define a message and the relevant process chain, includ-
ing transformations and target destinations. Consequently, a single
meta data repository is established that documents the source data
that impacts enterprise reporting.

124 Chapter 4

D
A

TA
 M

A
R

TS

A
TO

M
IC

 L
EV

EL

ST
A

G
IN

G
 A

R
EA

SA
LE

S
D

A
TA

O
PE

R
A

TI
O

N
A

L
D

A
TA

 S
TO

R
E

D
A

TA
 D

EL
IV

ER
Y

 A
R

C
H

IT
EC

TU
R

E
—

 S
IN

G
LE

 P
O

IN
T

IN
TE

G
R

A
TI

O
N

R
EP

O
R

TI
N

G
D

A
TA

B
A

SE

B
U

SI
N

ES
S

R
U

LE
S

O
PE

R
A

TI
O

N
A

L
M

ET
A

 D
A

TA

M
ES

SA
G

E
B

R
O

K
ER

D
A

TA
B

A
SE

S

M
A

N
U

FA
C

TU
R

IN
G

O
FF

-S
H

O
R

E
FA

C
IL

IT
IE

S

FI
N

A
N

C
IA

L
D

A
TA

TE
LE

PH
O

N
Y

 D
A

TA

IN
TE

R
N

ET

3r
d

-
Pa

rt
y

D
at

a

C
R

M

Fi
gu

re
 4

.8
D

at
a

de
liv

er
y

ar
ch

ite
ct

ur
e.

EAI and Warehousing

From a pure warehouse perspective, there are plenty of benefits to using
EAI technology. For instance, you can capture and move data at the event
level. This means that the warehouse can stage data using the “drip
method,” such that as the message queue moves data, data tagged for the
warehouse is placed into a staging area one record at a time. Data needed
to refresh the warehouse is collected at the time of the event; consequently,
there is no need to batch volumes of data across the enterprise. This is an
important aspect of EAI that can help you establish zero-latency in your BI
environment.

Another reason to consider this technology is its ability to move atomic
data. Refer to the following section, Comparing ETL and EAI. With this gran-
ular data you create a perfect place to determine whether the data being
moved is different from the data already recorded in the warehouse. This
process is referred to as “finding the delta.” It can be a resource-intensive
task, but the EAI structure becomes that front line of technology that can
assist without adding much overhead to the movement of data.

Finally, EAI can perform light transformation and cleansing. This is a
boon for those concerned with batch windows. The message queue can
capture data, tag delta data, do light transformation, and stage the data for
the warehouse refresh programs, taking a considerable load off your
nightly batch processes and therefore expanding your window.

Comparing ETL and EAI

ETL and EAI solutions differ considerably in their functionality and
approach to moving and transforming data. ETL tools are set-oriented
technology; they are primarily designed to take source data and integrate,
transform, reorganize, and ultimately populate this evolved data set into
target structures—for example, an atomic-level warehouse. These tools are
designed to work on large sets of data that require complex integration and
transformation. ETL is typically characterized as affording a synchronous
one-way movement of data in a batch process.

EAI tools, on the other hand, represent technology designed to provide
automated and seamless data movement. The objective of EAI technology
is to guarantee acquisition, distribution, and delivery of data from a source
to target. And, because message (data set) acquisition can be controlled at a
granular level, the implementation of EAI can ensure minimal data latency.
In other words, the movement of data can be driven by time or events. If
you choose event-driven movement of data, your EAI implementation can

126 Chapter 4

monitor specific events in your enterprise that trigger the technology into
action. EAI tools are essentially built to deal with random, singular business
events.

The difference between these two technologies is not trivial. It is impor-
tant to refrain from making the message broker your ETL tool and vice
versa.

Expected Deliverables

Several deliverables are expected when you design your data architecture.
Not only must you decide on the overall data architecture of your ware-
house environment, but then you must begin creating and compiling all
the necessary models to support your decision and subsequent iterations.
This section examines the modeling techniques and diagrams employed to
support the effort. We start by outlining the expected deliverables.

You will notice that the vast majority of deliverables are models or dia-
grams used to assist the data architect’s understanding of the subject area
and to provide unique views of the target data. The major purpose of mod-
eling is to communicate the end users’ view of the organization’s data to
those who will design the system. Models answer questions such as:

■■ How fast and how frequently do users want to access the data?

■■ Where does the source data come from?

■■ With what frequency is the source data being updated?

■■ What transformations will be required to the source data to meet the
requirements of the target structure?

■■ What calculations and derived data will be required?

■■ What are the capacity requirements on the target systems?

■■ What are the relationships between business entities?

■■ What checks and constraints are in place to enforce known business
rules?

Although the models should not be tied to a particular technology, or
product, the types and number of models you use in warehouse efforts will
nevertheless be dictated by the target architecture.

It is recommended that you utilize a combination of the models pre-
sented. Each model builds upon the other, giving the architect more and
more layers of detail. Your modeling effort culminates with a formal foun-
dation that demonstrates a design that meets user requirements.

Designing the Data Architecture 127

Table 4.1 Core Models Required

MODELS ARCHITECTURES
ATOMIC
LEVEL WITH

CENTRALIZED INDEPENDENT DEPENDENT
ATOMIC LEVEL DATA MARTS DATA MARTS

Business logical model X X X

Atomic-level model X X

Dimensional model X X

Star schema X X

At the very least, there are two distinct assets that are a necessary result
of your data architecture:

Atomic-level model. The atomic level is the front line of your ware-
house. Therefore, the model is used to describe and define the core
set of data structures that will be utilized to store and manage the
most fundamental data, cornerstone to all subsequent warehouse-
centric uses of that data.

Data mart models. If you choose an architecture that uses data marts,
you will generally want to create two models that support the data
mart: dimensional models and the star schema. A matrix in Table 4.1
illustrates the models necessary.

Another model that may or may not be required is the business logical
model (BLM). It is discussed later in the chapter; however, for now, it is
important to recognize that this may also be necessary as a deliverable. All
models that directly relate to the atomic or data mart levels are discussed
in the following sections of this chapter.

In addition to the traditional models describe previously, there are several
information assets that are helpful to the architect and project planners:

Metric map. Building a metric map provides designers with meta
data and insight into the calculation of derived data. Architects often
find that users differ on how derived data is calculated. For example,
“cost” might be calculated one way for the finance department and
another way to compute sales commissions. Going through the exer-
cise of developing metric maps will isolate those inconsistencies.
Figure 4.9 is an example of a metric map.

128 Chapter 4

Figure 4.9 Metric map.

Source-to-target map. Here is a common method to document the
extraction and transformation required to go from source to the tar-
get data store. Typically implemented in a spreadsheet, it is used to
show the transformation requirement to extract and source data ele-
ments and load them into a target data structure.

Data flow diagram (DFD). Unlike the source-to-target mapping
method, a DFD is actually a modeling technique as well as a data dic-
tionary. This model is explicitly designed to address data issues at the
design level as opposed to leaving it up to developers during the
actual construction of the code.

Metric maps, source-to-target maps, and DFDs all provide a formal
understanding of the source data required and transformed into the target
data structures defined by the chosen architecture.

Modeling the Architecture

During the mid to late 1980s, there was considerable debate over the two
data warehouse architectures prescribed by Bill Inmon and Ralph Kimball.
Many believed that Inmon was a proponent of building an atomic layer
and Kimball emphasized independent data marts. In fact, both Inmon and
Kimball believe that an atomic layer is critical to the long-term viability of
any warehouse effort. The difference between the two approaches is in
terms of how that atomic layer would be implemented. Inmon is a propo-
nent of a normalized atomic layer, whereas Kimball believes in an atomic
layer implemented as a denormalized model consisting of conformed
dimensions and fact tables.

Unit Price

Gross Sales

Total Sales

Discount
% Applied

Qty Sold

Discount Level

Multiplied by

Compared to

Multiplied by

Designing the Data Architecture 129

We will use the Inmon approach to the atomic layer in this chapter. It is
characterized as follows:

■■ The atomic layer contains the lowest level of granularity of the
entire data warehouse and subsequently dictates the lowest possible
level of analysis.

■■ The atomic-layer data is often at the transactional level.

■■ The atomic layer initiates and maintains historical integrity for the
entire warehouse.

■■ Data architecture is normalized to ease data integration and provide
extensibility and flexibility for future warehouse iterations.

■■ The atomic layer represents the front line of source data integration,
transformation, and cleansing for the entire warehouse.

■■ The atomic layer maintains static data that is refreshed according to
business requirements.

The atomic-layer model is derived from a business logical model for the
subject area defining the warehouse iteration at hand. Consequently, when
modeling your atomic level, the best place to start is with a BLM. This begs
the question, where do you get one?

Business Logical Model
The BLM is considered a composite of two subordinate diagrams: high-
level diagram and attributed relational diagram. Although the high-level
diagram is considered optional, it does help a data architect go through the
discovery process in order to document an organization’s entities and their
relationships based on business rules. If the organization has an enterprise
model, the high-level diagram can be derived from that body of work. If no
enterprise model exists, the data architect has three alternative strategies:

■■ Build the high-level BLM by reverse engineering production sys-
tems relevant to the subject area.

■■ Conduct modeling sessions with subject area experts and business
analysts to identify entities pertinent to the subject area.

■■ Use business forms (order, invoices) and reports relevant to the sub-
ject area to discern the business entities for the BLM.

Generally, there are two steps to building a high-level BLM diagram.
First, the architect must identify the high-level business entities that fall
under the scope area for the warehouse iteration. Usually these entities are

130 Chapter 4

business objects of importance, for example: customers, orders, products,
and so on. It is common to collapse entities together when creating the dia-
gram from existing production models. For example, the CONTACT table
may become part of the CUSTOMER entity in the BLM. The second step is
to define the relationship between the business entities, for example, one-
to-one, one-to-many, and so on.

A fully attributed BLM, also referred to as a mid-level relational dia-
gram, is your real goal (see Figure 4.10). This model requires the architect
to expand the high-level diagram in the following ways:

■■ Identify all relevant entities for the subject area.

■■ Add entities that help resolve many-to-many relationships, if
necessary.

■■ Identify primary key and foreign key relationships.

■■ Normalize the content and include supertype/subtype and domain
entities.

■■ Include all attributes for each entity.

Figure 4.10 An attributed business logical model.
Copyright 1999. The Focus Group, Ltd.

order_num(PK)
line_num(PK)
line_type(FK)
line_stage(FK)
item_code(FK)
item_desc
qty_ordered
item_price

orderdetail

order_unit(PK)
order_unit_desc

itemordunit

order_num(PK)
order_type(FK)
order_stage(FK)
order_date
cust_code(FK)
cust_order_num
billto_code(FK)
shipto_code(FK)
order_amount
ship_method
terms

orders
order_stage(PK)
order_stage_desc

orderstage

state(PK)
state_code

state

order_type(PK)
order_type_desc

ordertype

sell_unit(PK)
sell_unit_desc

itemsellunit

cust_code(PK)
cust_name
address_1
address_2
city
state(FK)
zip
phone
fax
credit_limit
territory(FK)

customer

shipto_code(PK)
cust_name
address_1
address_2
city
state(FK)
zip
phone
fax
cust_code(FK)

custshipto

vend_code(PK)
vend_name
address_1
address_2
city
state(FK)
zip
phone
fax
prime_contact
second_contact

vendor

billto_code(PK)
cust_name
address_1
address_2
city
state(FK)
zip
phone
fax
cust_code(FK)

custbillto

contact_code(PK)
cust_code(FK)
first_name
last_name
full_name
title
phone
cell
contact_type

contact

territory(PK)
territory_desc

territory

line_type(PK)
line_type_desc

line_type

line_stage(PK)
line_stage_desc

line_stage

item_class(PK)
item_class_desc

itemclass item_code(PK)
item_class(FK)
item_desc
vend_code(FK)
vend_item_code
qty_on_hand
item_price
sell_unit(FK)
item_cost
ord_unit(FK)

item

Designing the Data Architecture 131

Atomic-Level Model
Once you have created the BLM for the subject area, you are now ready to
develop the atomic-level model (see Figure 4.11). This process consists of
the following steps:

1. Include all data necessary to exploit the warehouse iteration effort.

2. Remove operational data.

3. Add time to entity key values as well as non-key attributes.

4. Collapse nonhistorical entities.

5. Include derived data.

6. Include aggregated data.

Dealing with derived and aggregated data may entail additional dia-
grams typically associated with data marts, including the dimensional
model and metric maps.

Of data necessary for the atomic layer, you should consider loading only
data that adds analytical value for the warehouse effort. This seems obvi-
ous, but invariably ETL jockeys tend to bring over more data than needed
for the task at hand. And, of course, this introduces all sorts of issues, such
as data quality, cleansing, and integration. Moreover, your warehouse will
grow disproportionately between the data actually being used and data
being stored. When thinking about data to pull into the atomic layer, con-
sider the following:

■■ All required data for the project scope should be included.

■■ Supplemental data should be considered only if the cost of inclusion
is minimal and lack of data would result in compromised usability.

■■ If cost of supplemental data is high and lack of data would result in
compromised usability, consider expanding the project scope.

■■ Remove operational data that provides no analytical value to the
data warehouse. For example, a login may be useful for the produc-
tion system, but it would normally not provide analytical fodder.

■■ Add time-variant data in order to maintain historical integrity. Time
must be incorporated as part of the key structure as well as a non-
key attribute. (See Chapter 2.)

■■ Consider geocoding address data. Refer to Chapter 16 for more
information regarding spatial data and analysis.

132 Chapter 4

Figure 4.11 Atomic-level data warehouse model.

Modeling the Data Marts
The atomic-layer model neutralizes the complexities of the source feeder
systems and serves as the front line for data integration and preparation.
However, it is the dimensional model that formalizes the target data struc-
tures that will support the analysis necessary to address many of the strate-
gic business questions brought forward by user communities. Ralph
Kimball dominates the strategy, structure, and technique for implementing
a data mart.

order_num(PK)
line_num(PK)
item_code(FK)
item_desc
qty_ordered
item_price
line_type
line_type_desc
line_stage
line_stage_desc
extract_id
snapshot_date(PK)

orderdetail

order_num(PK)
order_type
order_type_desc
order_date
cust_code(FK)
cust_order_num
billto_code(FK)
shipto_code(FK)
order_amount
ship_method
terms
order_stage
order_stage_desc
extract_id
snapshot_date(PK)

orders

cust_code(PK)
cust_name
address_1
address_2
city
state
zip
phone
fax
credit_limit
territory(FK)
state_code
extract_id
snapshot_date(PK)

customer

cust_code(FK)
shipto_code(PK)
cust_name
address_1
address_2
city
state
zip
phone
fax
state_code
extract_id
effective_date(PK)

custshipto

vend_code(PK)
vend_name
address_1
address_2
city
state
zip
phone
fax
prime_contact
second_contact
state_code
extract_id
snapshot_date(PK)

vendor

cust_code(FK)
billto_code(FK)
cust_name
address_1
address_2
city
state
zip
phone
fax
state_code
extract_id
effective_date(PK)

custbillto

territory(PK)
territory_desc
extract_id
effective_date(PK)

territory

Add
Meta Data

Collapse
Non-Historical

Entities

Add
Time

item_code(PK)
item_desc
vend_code(FK)
vend_item_code
qty_on_hand
item_price
item_cost
item_class
item_class_desc
sell_unit
sell_unit_desc
order_unit
order_unit_desc
extract_id
effective_date(PK)

item

Designing the Data Architecture 133

Experienced architects will start with a dimensional model when build-
ing data marts (see Figure 4.12). This is true whether the ultimate data mart
is a star schema or a proprietary cube or both. The conceptual model is best
created in a top-down manner. In other words, the data architect should
conduct sessions with subject matter experts and business analysts.
Together, session participants attempt to define entities from which to con-
duct multidimensional analysis. It is a perfect tool for architects to perform
walk-through reviews with users, demonstrating the various data interro-
gation paths available within the scope of the subject area.

In addition, top-down modeling should be based on strategic business
questions. This ensures that the design of the target data structure reflects
the business requirements of the sponsoring user communities. The alter-
native approach is to use bottom-up modeling, where existing production
models such as entity relationship diagrams are used to discern the dimen-
sional requirements. This is an important choice for the architect. It is
entirely possible that a dimensional model from a top-down design will
differ significantly from a bottom-up approach.

Figure 4.12 Dimensional model.

Year

Quarter

Month

Week

ordertype

orderstage

orders

order_type

order_stage

order_num

line_type

line_stage

orderdetail

line_type

line_stage

line_num

Measures/Facts

order_num
line_num
item_code
cust_code
order_date
qty_ordered
item_price

territory

state

customer

territory

state

cust_code

itemclass

vendor

item

item_class

vend_code

item_code

Date

date_id

134 Chapter 4

Figure 4.13 A good business question.

The approach for building an effective dimensional model starts by cre-
ating a conceptual or high-level dimensional model. This effort is best
implemented in front of a user audience. The architect quickly diagrams a
high-level model by exploding the documented business questions from
the users. Figure 4.13 shows the components of a business question.

A good business question contains clues for the type of dimensions that
will be required, as well as the measures/facts to be analyzed. For exam-
ple, the business question in Figure 4.13 suggests that a date dimension
will be required because of the reference to “monthly” values. Addition-
ally, customer, product, and store are all likely candidates for dimensions.
The measure to be analyzed seems to be “sales” dollars, but it could also be
referring to units sold. In either case, the data architect has many clues to
the type of data mart or cube necessary to answer the business question.

A dimensional model starts at a conceptual view and develops into a
logical view. As a conceptual diagram, relevant entities that constitute a
particular dimension are defined, as well as the root measurements/facts
to be analyzed. This provides a high-level understanding of the dimen-
sions, their hierarchies, and required measurements. At this stage, the
dimensional diagram can serve as a means to communicate and confirm
the analytical landscape users expect. The steps include the following:

1. Define dimensions for the subject area.

2. Add hierarchical entities.

3. Identify measurements/facts.

4. Identify entity relationships.

Dimensions

Business Question Components

Measure

We need monthly sales by customer, product, and store.

Designing the Data Architecture 135

Figure 4.14 Attributed dimensional diagram.

To evolve the conceptual model into a logical model like that shown in
Figure 4.14, the architect simply adds notation such as indexes for each
dimension involved. He or she would then perform the following steps:

1. Add descriptions to each entity.

2. Add all candidate attributes to each entity represented.

3. Identify and define derived data.

4. Define the overall granularity.

Once a fully attributed dimensional model has been defined, it is a
straightforward process to create the logical star schema. Figure 4.15 shows
the results of the following steps:

1. Collapse dimensional entities into a single table. For example, Terri-
tory, State, and Customer entities are all represented in the dimen-
sional model as being a part of the same hierarchy. These entities
must be collapsed into a single entity and table when you are
designing the star schema.

2. Eliminate duplicate dimensional attributes. The architect must decide
if any duplicate attributes can be removed as part of the process of
collapsing entities into a single dimension. For example, the entities
CUSTSHIPTO and CUSTBILLTO both have a CUST_CODE (cus-
tomer code). Only one is needed for the final, single-dimension table.

3. Add time to dimensions.

4. Add extraction meta data.

Year

Quarter

Month

Week

year_id(PK)

quarter_id(PK)

month_id(PK)
name_of_month
month_of_year

week_id(PK)
week_of_month
week_of_year

custbillto

custshipto

cust_code
billto_code(PK)
city
state
zip

cust_code
shipto_code(PK)
city
state
zip

ordertype

orderstage

order_type(PK)
order_type_desc

order_stage(PK)
order_stage_desc

orders

order_num(PK)
order_type
order_stage
billto_code
shipto_code
ship_method
terms

territory

state

customer

territory(PK)
territory_desc

state(PK)
state_code

cust_code(PK)
cust_name
address_1
address_2
city
state
zip
credit_limit
territory

Measures/Facts

order_num(PK)
line_num(PK)
order_date(PK)
cust_code(PK)
item_code(PK)
line_type
line_stage
qty_ordered
item_price
extended_price

itemclass

vendor

item

item_class(PK)
item_class_desc

vend_code(PK)
vend_name
city
state
zip

item_code(PK)
item_class
item_desc
vend_code
vend_item_code
sell_unit
order_unit

itemordunit

Itemsellunit

order_unit(PK)
order_unit_desc

sell_unit(PK)
sell_unit_desc

Date

date_id(PK)
day_of_week
name_of_day
weekend
holiday

136 Chapter 4

Figure 4.15 A star schema.

Comparing Atomic and Star Data
The preceding sections focused on modeling atomic and star structures. So,
what is the net difference between them? This section examines how the
data is stored in these two structures by using Figure 4.16 as an example.

On the left side of the exhibit are two tables: orders and orderdetail.
These tables reflect the process used to build target data structures for an
atomic level. As illustrated, the orders table has a one-to-many relationship
with orderdetail, and the information stored in each contains denormal-
ized domain entities of the BLM. For example, the orderdetail table has col-
lapsed entities such as line_type and line_stage into the orderdetail table
itself, as opposed to creating and maintaining the data in distinct tables at
the atomic level. The same is true for the orders table, where the order_type
and order_stage domains have been collapsed into orders. This partial
denormalization of atomic-level data is generally done to keep complexity
to a minimum while still maintaining much of the flexibility afforded by
normalization rules.

order_num(PK)
order_type
order_type_desc
order_stage
order_stage_desc
shipto_code
shipto_city
shipto_state
shipto_zip
billto_code
billto_city
billto_state
billto_zip
ship_method
terms
order_amount
extract_id
snapshot_date(PK)

orders

date_id(PK)
day_of_week
name_of_day
weekend
holiday
week_of_month
week_of_year
name_of_month
month_of_year
quarter
year
extraction_id

Date

order_num(PK)
line_num(PK)
order_date(PK)
cust_code(PK)
item_code(PK)
line_type
line_stage
qty_ordered
item_price
extended_price
extract_id
snapshot_date(PK)

Measures/Facts

Managed
Redundancy

cust_code(PK)
cust_name
address_1
address_2
city
state
state_code
zip
territory
territory_desc
credit_limit
extract_id
snapshot_date(PK)

customer

item_code(PK)
item_desc
item_class
item_class_desc
vend_code
vend_item_code
vend_name
vend_city
vend_state
vend_zip
order_unit
order_unit_desc
sell_unit
sell_unit_desc
extract_id
snapshot_id

item

Primary
Key

Designing the Data Architecture 137

Figure 4.16 Comparing target schemas.

The orders dimension table and the related fact table of the star schema
are shown on the right side of the exhibit. The star schema offers even more
denormalization than that found in the atomic layer. For example, examin-
ing the orders dimension reveals that all customer ship-to and bill-to infor-
mation has been collapsed into the single table. Ship-to and bill-to data
found in the atomic level are still maintained in separate tables, with only
a shipto_code and billto_code used to join the tables together. As for the
fact table, it resembles the orderdetail table of the atomic level. In the exam-
ple, the descriptions for line_stage and line_type have been removed. This
is done for scale issues, since the fact table can and often does grow to con-
tain millions of records. For efficiency’s sake, the architect would use a sim-
ple, lookup table to reference the line_type and line_stage descriptions.
This technique could also be applied at the atomic layer.

Operational Data Store

The operational data store is another data structure often associated with
data warehouse efforts that requires some discussion. Architects and other
warehouse practitioners are often confused regarding its application. Fig-
ure 4.17 shows the typical architecture of an ODS. This section attempts to
distinguish the ODS from traditional warehouse efforts.

An ODS can be characterized as follows:

order_num(PK)
order_type
order_type_desc
order_stage
order_stage_desc
shipto_code
shipto_city
shipto_state
shipto_zip
billto_code
billto_city
billto_state
billto_zip
ship_method
terms
order_amount
extract_id
snapshot_date(PK)

orders

order_num(PK)
order_type
order_type_desc
order_date
cust_code(FK)
cust_order_num
billto_code(FK)
shipto_code(FK)
order_amount
ship_method
terms
order_stage
order_stage_desc
extract_id
snapshot_date(PK)

orders

order_num(PK)
line_num(PK)
order_date(PK)
cust_code(PK)
item_code(PK)
line_type
line_stage
qty_ordered
item_price
extended_price
extract_id
snapshot_date(PK)

Measures/Facts

order_num(PK)
line_num(PK)
item_code(FK)
item_desc
qty_ordered
item_price
line_type
line_type_desc
line_stage
line_stage_desc
extract_id
snapshot_date(PK)

orderdetail

Atomic-Level
Data Store

Star Schema

138 Chapter 4

It is subject-oriented. An ODS is designed to address the specific
requirements of a subject area.

It contains integrated data. One of the primary purposes of the ODS
is to serve up integrated data.

It is current. There is essentially no history maintained in an ODS.

It is dynamic. ODS data is dynamic.

Given the preceding characteristics, it should be obvious to architects
that the ODS has a different agenda than that of the data warehouse. Yes,
an ODS contains integrated data just like that found in a DW. For that rea-
son an ODS is a potential supply for source data fed into the warehouse.
But that is where the similarity ends.

An ODS is also subject-oriented. Now it is true that the warehouse grows
by iterations constrained by subject areas, but each subject area is layered
into the atomic layer, and over the course of time, the atomic layer can
potentially represent the entire enterprise. This is not true for an ODS. You
may build an ODS to show current sales figures across the enterprise, but
its application will be to publish sales figures—that’s it. The goal of the
ODS is not to be the wellspring of tactical data for the entire warehouse.

Another difference is history. The warehouse is designed to handle his-
torical data and lots of it. This is completely different from an ODS, whose
data is only maintained as long as it is considered current. What is “cur-
rent” depends on the application, but it is often not more than 30 days. In
other words, there is no such thing as history in an ODS.

Figure 4.17 An operational data store.

Data Marts (Cubes/Stars)

ODS

Source
Data

Transformation

Data Marts (Cubes/Stars)

Atomic Level
Client

Community

Designing the Data Architecture 139

A final difference between the warehouse and an ODS has to do with
dynamic versus static data. An ODS is designed to deal with data that is
constantly being updated and changed. This is not true for a warehouse,
where static data is maintained and refreshed as part of a known cycle.

So why build an ODS? It is built to provide tactical information based on
integrated sources of current data given a particular subject area. If you
have several sources of disparate sales data, an ODS might be a great solu-
tion to integrate and make available current sales data.

And why is an ODS important to a warehouse effort? There are only two
reasons that an ODS should be considered under the umbrella of ware-
housing:

■■ It is a great source of integrated data. If the warehouse is consider-
ing a sales iteration and an ODS already exists for sales, using the
ODS as a source of data makes sense. It is likely that the ODS has
done much of the integration work already.

■■ It is not unusual for users to require extensive tactical reporting as
well as strategic analysis. Data architects cannot design the ware-
house to address all tactical reporting without compromising the
characteristics of the warehouse structures. Therefore, two project
efforts may be initiated. The first is an ODS for integrating the data
for tactical purposes. Once complete, a warehouse effort follows to
use that current, integrated data stored in the ODS as a source for
the warehouse requirements to address the strategic analysis.

Data Architecture Strategy

Given the variety of data architecture components and the combinations in
which they can be implemented, how do you choose what is appropriate
for your organization? This is not an easy question to answer. We propose
a simple matrix that might help to guide you in your decision process. The
operative words are “simple,” “might,” and “guide”. The data architecture
matrix in Table 4.2 associates core characteristics of warehouse initiatives
with established, formal data architectures.

First, you need to understand the characteristics and the architectures
being linked. The characteristics are listed down the right side of the
matrix, while the architectures are identified across the top. In the follow-
ing, we define each characteristic and architecture outlined in the matrix:

Scope. Is the BI effort an enterprisewide initiative or a department
project?

140 Chapter 4

Integration. Are there numerous, disparate data sources that must be
integrated, or is the source data from a single source system?

Cleansing and transformation. Will you need to perform intensive
cleansing and transformation of the sourced data, or is it relatively
clean and ready for the target warehouse applications being
addressed?

OLAP. Does the environment expect OLAP applications?

Latency. How critical is it that your data quickly be made available
for analysis? Is nightly batch processing acceptable, or do you need
the data ASAP?

Data architectures include the following:

Atomic. A centralized, atomic-level warehouse with no other struc-
tures necessary

Atomic with cap. An atomic-level warehouse with a dimensional cap

Atomic with DDM. An atomic-layer with dependent data marts

IDM. Independent data marts with no atomic layer

EAI. Specialized data delivery

Table 4.2 Data Architecture Matrix

ATOMIC ATOMIC
CHARACTERISTICS OF WITH WITH
INITIATIVE ATOMIC CAP DDM IDM EAI

Scope Enterprise X X X X

Department X

Integration Light X

Complex X X X X

Cleansing and Light X
transformation

Complex X X X

OLAP required None X

Light X X

Advanced X X X

Latency Batch X

Near zero X X

Designing the Data Architecture 141

Now that we know what the edges of the matrix represent, let’s review
the associations themselves. You should consider starting from a central-
ized atomic-level architecture only if the scope of the warehouse effort is
enterprisewide, the integration of data is complex, the cleansing and trans-
formation required is complex, and most importantly, no OLAP is
required. This is not unusual. For as much mind-share as OLAP receives in
our industry, static, advanced SQL reporting is still king.

An atomic-level warehouse with a dimensional cap is a viable option if
your effort is enterprisewide, with complex integration and cleansing
required and advanced OLAP solutions expected. The atomic layer will
address the issues of integration, cleansing, and transformation across the
enterprise. The dimensional cap can deal directly with an enterprisewide
need for advanced OLAP applications. By placing a single dimensional
server on top of your atomic data, you can ensure a single source of the
truth for dimensional data applications, irrelevant of the user’s tool of
choice—of which you will find many. It is not unusual to find DB2 OLAP
Server geeks who swear by the sophistication of the tool, as well as the
users who have grown to know and love spreadsheets, and still others who
live and die by Business Objects or Cognos, all under the same roof of your
enterprise. The dimensional cap provides a single administrative environ-
ment to apply complex aggregation and hierarchy structures, thus buffer-
ing individual user communities from these issues and eliminating the
burden of IT attempting to deal with these issues within each OLAP tech-
nology used.

The dimensional cap is a solid approach to deal with data latency. Since
the dimensional server works directly from data found in the atomic level,
there are no additional ETL steps necessary to propagate data from the
atomic layer to persistent dimensional structures. This minimizes latency
of the data.

An atomic layer with dependent data marts should always be evaluated
as a potential architecture, given the same characteristics that trigger the
consideration of a dimensional cap. Although dependent data marts repre-
sent a proven, traditional approach, they do entail more effort to maintain
than dimensional caps. This is especially true when you are expecting to
implement many data marts. However, the flexibility to implement data
marts on an as-needed basis avoids complex implementation of server
technology that must be considered an initial part of a dimensional cap.
This means that dependent data marts can be implemented even for light
use of OLAP across an enterprise. The light use of OLAP might be from the
perspective of only one department requiring the technology. Or light use
can be defined by requiring simple OLAP applications published in a sin-
gle technology—even to a large audience.

142 Chapter 4

The persistent data structures, atomic layer, and data marts (star/cubes)
require additional batch processing to maintain and keep current the data.
This translates into a larger batch window for propagating data into the
atomic layer first and then to the dependent data marts affected by the
data. Therefore, this architecture is best for those environments where
batch processing of data on a nightly basis is not a problem.

Independent data marts are those OLAP-centric structures that are not
dependent on atomic-level data. This means you do not have the benefit of
a single source of integrated, cleansed data. This can result in a disparity
between reports from different data marts. Consequently, you should only
consider this architecture for initiatives constrained to a department with
nominal integration and cleansing requirements.

Finally, let’s review the EAI architecture. For warehouse efforts, EAI rep-
resents a specialized data delivery mechanism that can minimize the com-
plexity of moving data between disparate source systems. As such, EAI
should always be considered when you are dealing with an enterprisewide
initiative with complex integration requirements and the need for mini-
mizing the latency of the data.

The data architecture matrix is a simple guide. It should be used to give
the reader a general sense of when and why to apply specific architectures.
There are, of course, many other issues to consider when examining the
best architecture for a particular environment, including skill resources,
budget, project time lines, executive-level commitment, and existing tech-
nologies, just to name a few.

Summary

A variety of architectural designs are available. To fully appreciate the
alternatives, you must completely understand what each data structure is
used for and when to implement it. Once you feel comfortable with the
architectural components, you can apply the components or combination
of components to your BI efforts. This is an important point. As sad as it
sounds, it is not unusual to see warehouse planners confused because they
still don’t understand the difference between star schemas and cubes, for
example.

That said, it is not enough to be a great DBA with normalizing skills.
Warehouse environments are not OLTP data structures. Each warehouse
data structure is uniquely designed for a particular function, so you will
need to accommodate those structure characteristics in your modeling
efforts. The atomic layer is often normalized with the exception of domain
entities for which you require no history. Stars or cubes require dimensional

Designing the Data Architecture 143

models to ensure granularity and symmetry of your structure. Data flow
diagrams are the real modeling approach to ETL, not enormous source-to-
target spreadsheets.

Like other vendors, IBM likes to remain nimble. If the client chooses to
build an enterprisewide solution complete with atomic layer and depen-
dent data marts, then IBM can respond with DB2 UDB V8 for both the
atomic level and star schemas for the data marts, as well as DB2 OLAP
Server as the dimensional cap for the enterprise. On the other hand, if a
client runs to IBM saying, “Help! I need a quick OLAP solution,” IBM can
rush in with just DB2 OLAP Server and quickly create an independent
data mart.

Of course, it is one thing to be nimble, but quite another to be completely
naive or unaware of the future consequences given the architectural
design. It is fair to conclude that IBM’s preference is a fully engineered, tra-
ditional enterprise approach to data warehousing with a normalized
atomic layer and dependent data marts.

144 Chapter 4

145

Key Issues:

■■ The technical architecture implemented for any warehouse effort is
as critical to the success of your warehouse effort as the data archi-
tecture chosen and the approach taken.

■■ The skills required to research and define your proper technical
architecture encompass the selected RDMBS, OS, computer hard-
ware (CPU, memory), disk storage, and networking. Consequently,
a formal technical architecture often requires the talents of many
individuals. This is substantially different from the data architecture,
where the skills required can be found in one seasoned individual.

■■ Any warehouse of scale will exploit technical advances in data parti-
tioning at both a hardware and software level, as well as the techni-
cal advances in parallelism, both at a system level and with regard
to software utility.

Technical Architecture and Data
Management Foundations

C H A P T E R

5

■■ Creating the technical architecture is an iterative process that grows
as your BI environment unfolds. However, the first iteration of the
warehouse will probably require a disproportionate investment in
the technical architecture.

We defined and described the persistent data structures of your data archi-
tecture in the previous chapter. This chapter explores the technical consid-
erations for implementing that data architecture and to support your
overall BI and warehouse goals. We review the numerous technical com-
ponents necessary to create a formal technical architecture that comple-
ments and supplements your data architecture. Figure 5.1 is an example of
a diagram created to illustrate components of the design.

Let’s assume, for example, that your data architecture requires a central-
ized atomic layer with dependent data marts distributed onto platforms spe-
cific to the departments they serve. This data architecture provides much of
the guidance to the technical design. In this case, you will need one platform
as a server for your atomic level. This server must scale to the predicted size
of your central atomic layer. Symmetric multiprocessing (SMP), massively
parallel processing (MPP), and cluster technology are all viable hardware
options to consider. Data partitioning and techniques to implement fast
loads and ensure high availability will drive your architecture requirements.

Another type of platform will probably be necessary to support the indi-
vidual data marts being implemented. This set of servers (potentially one
for each data mart) will be sized and tuned differently than that of the
atomic level. Additionally, the type of data mart implemented will further
dictate the design requirements. If you are planning to build a star with
large dimensions (10 million rows or more) and a large fact table (500 mil-
lion rows), then partitioned tables and indexing will be critical. On the
other hand, if you are planning to implement a large cube (50 GB or more),
memory may be of greater concern.

Then there are the technical aspects of staging areas, development, and
test platforms that must be a natural part of your overall architecture. The
point is this: Each structure of your data architecture will directly impact
the type of technical architecture you need to implement. You must be able
to answers questions like:

■■ What technology is required for your overall effort?

■■ How much of this technology is required for your first iterations?

■■ How do you plan to integrate the technology into a synchronized
data delivery system for BI analysis?

146 Chapter 5

Figure 5.1 Technical architecture diagram.

10/100 Mbps NIC

10/100 Mbps NIC

1000 Mbps NIC

1000 Mbps NIC

10 Mbps NIC

10 Mbps NIC

100 Mbps NIC

10/100/1000 Mbps NIC

SAN, NAS

10/100/1000 Mbps NIC

10/100/1000 Mbps NIC

1000 Mbps NIC

Windows NT Platform

Li
fe

 K
ee

p
er

Tw
o

 C
h

an
n

el
 C

o
n

n
ec

ti
o

n

C
h

an
n

el
 C

o
n

n
ec

ti
o

n

High Availability

Fiber Connection

One 100 Mbps NIC

One Channel Connection

Fiber Connection

Fi
b

er
 C

o
n

n
ec

ti
o

n

Three 100 Mbps NIC

Fiber Connection

SQL
Server

Disk array

DW TeraData Development

ETL Sun V880

DW TeraData NCR4700

DW Test TeraData NCR4700

MainFrameIBM390

FiberSwitch

UNIXPlatforms

EMCSymmetrix

NovelPlatforms

WindowsPlatforms

L700E
Tape Drive

VSS Server
BackupScheduler

ICIS1

ICIS2

DataPartition
MainFrameData
UNIXData
WindowsData
NovelData

Technical Architecture and Data Management Foundations 147

Finally, the technical architect is not just hardware. It includes the oper-
ating systems, network middleware, RDBMS, cube technology vendor,
make and version of the report writer, and any other software layer
required to support your environment. Since the technical architecture is a
broad, diverse topic, we will only focus on the customary components that
must be evaluated. Unfortunately, the components can warrant a book’s
worth of discussion, so we recommend that readers use the following con-
tent to conduct deeper research where appropriate to your efforts.

This chapter begins with an examination of broad technical architecture
decisions that project planners must make, including whether to build a
centralized or distributed environment, whether to implement parallelism,
and what data partitioning might be required. Next, the chapter reviews the
technical architecture issues to consider for atomic-layer and star schema
implementations using DB2 V8. We then detail the architectural essentials
for DB2 that cover SMP, MPP, static, and dynamic parallelism and other
technology for building high-availability warehouse environments.

Broad Technical Architecture Decisions

In this section we examine broad technical considerations for your envi-
ronment. Following are discussions regarding centralized warehousing to
distributed environments and the introduction of concepts such as paral-
lelism and data partitioning. Each of the four topics covered in this section
are done so from the technical perspective. And all have a direct impact on
your architecture of choice.

Centralized Data Warehousing
DB2 offers a number of features that are critical to the centralized ware-
housing model. A centralized warehouse can grow to tens, potentially hun-
dreds, of terabytes, supporting thousands or tens of thousands of queries
per day. In a centralized warehouse, user demands and the related service
level agreements (SLAs) are often in conflict with one another. DB2 pro-
vides a number of features to allow the support of conflicting, frequently
shifting user requirements with a minimum of administrative effort. To
understand how DB2 supports data warehouses, we must first understand
some basic DB2 architectural concepts.

A single copy of DB2 running on a hardware platform is called an
instance. Each instance can have one or more databases. This hardware
platform can consist of one or more physical servers (or nodes). Each node
can contain one or more processors. DB2 supports single-processor, SMP,
cluster (shared disk), and shared-nothing (MPP) hardware architectures.

148 Chapter 5

Combined with DB2’s ability to support a true shared-nothing software
model, this ensures scalability from the smallest to the largest implementa-
tions, with linear query performance, high user concurrency, and high
query throughput. In every case, DB2 is managed as a single system image,
making administration of the largest environments as simple as the small-
est. When multiple nodes (including very large SMP nodes, such as IBM’s
Regatta class machines) are run using one of IBM’s interconnects (SP
switch or Colony), the operating system and physical server settings are
also controlled as a single system image.

A database consists of multiple schemas, physical collections of database
objects (tables, indexes, etc.). Schemas can be used to simplify administra-
tion, application development, and user access. As an example, consider a
case with a single schema for the core, highly normalized atomic level
warehouse tables. This model can contain hundreds of tables with myriad
relationships between them. While some power users may be able to navi-
gate this data maze, for most users this complexity is daunting. So a second
schema may be used to represent a collection of views and summary tables
for a specific group of users or applications. These views would then access
the normalized tables, but present to the users and application developers
a consistent, simple-to-understand view of the business. Another advan-
tage of this approach is that as changes are required to the underlying table
structures (such as adding a new data element), they can be made to the
base tables, with the user views and aggregates updated but existing appli-
cations and queries left untouched. If we have users that demand access to
multiple views of the data, single queries or user views can always access
data from multiple schemas.

Summary tables, as noted earlier, make sense when a query is frequently
repeated. While summaries reduce the amount of processing power and
memory required (by executing all or part of repeated queries exactly
once), they do increase storage requirements. In general, the business
impact of having faster answers and the saving in processor and memory
requirements will more than make up for the summaries. But in a tradi-
tional environment, the administrative overhead required to create and
maintain the summaries and rewrite queries to utilize them can cause the
expected cost savings to quickly evaporate. To address this problem, DB2
introduced a concept called materialized query tables (MQTs). An MQT is
a summary table, or a projection of one or more underlying tables. As such,
it may contain joins and aggregates.

The advantage to this approach is in the automatic portion. Once cre-
ated, the optimizer will automatically redirect queries to the summary
when the query can leverage it. Suppose we notice we have a lot of queries
that aggregate sales by week. We create an MQT on sales by week. Now all

Technical Architecture and Data Management Foundations 149

queries are eligible to use the new structure without rewrite. The optimizer
will determine if it makes sense for each application. The optimizer can use
the MQT as it would any other table—in other words, it can join it to addi-
tional tables, aggregate it further, and even combine multiple MQTs in a
single query. So, our sales-by-week MQT could be used as an intermediate
step to sales by month. In other words, a materialized view does not have
to contain the entire answer set for a particular query to be of value to that
query.

The other part of the automatic portion regards maintenance. DB2
understands when data is added, changed, or deleted in one or more base
tables, and it can automatically update the impacted MQT. So if we added
another day of transactions to our sales table, our sales-by-week material-
ized view would automatically be updated to reflect these changes. There
are two options for this: delta change or full refresh. At creation time, the
DBA can determine if it makes more sense to propagate only the changed
rows to the MQT or to clear it and reload the entire MQT. This is strictly a
performance decision.

Of course, some environments require certain tables be updated in real
time (or near real time). Users of the summary tables may not require this
up-to-the-minute currency of data, and updating their MQT could intro-
duce performance problems or transient inconsistencies. To allow for this,
DB2 offers both refresh-immediate and refresh-deferred options for MQTs.
With refresh-immediate, all changes to any base table are immediately
reflected in the materialized view. With refresh-deferred, the updates are
queued until a refresh command is received (through a DBA command, a
daemon process, a batch trigger, or other mechanism).

In an MPP or cluster environment, you may not want multiple schemas
running on the same collection of nodes. Or within a schema, you may
want to isolate one or more summaries. Isolation of specific portions of a
database to specific nodes is generally done to ensure SLAs can be met.
While MPP architectures often force you to group all tables into the same
“big bucket” of partitions, DB2 supports a concept called partition groups.
A partition group is a collection of logical data partitions. A single partition
can be part of one or more partition groups.

Again, let’s consider an example where this might be used. DB2 always
has a default partition group that contains all nodes in the configuration.
Normally, this is where your centralized warehouse’s data structures are
stored. Now assume we create a summary (generally an MQT) table that
supports a specific user community, say, the CEO’s office. By default, this
summary table would be on the same partition group as the underlying
table structures. But the CEO is likely to have very specific reporting
requirements and an SLA that demands immediate access. If a power user

150 Chapter 5

executes a long-running, ad hoc query, it can consume tremendous system
resources. Even with the lowest possible prioritization setting, this can dis-
rupt time-critical SLAs, such as our CEO’s. With partition groups, we can
“carve out” a specific set of partitions for this summary. Let’s say we
decide to add a physical node (or an LPAR on a Regatta-class system) for
this purpose. While other queries, including the ad hoc requests, run on the
larger partition group, the CEO’s office can run its queries in isolation. We
can meet both SLAs simultaneously, with no manual intervention beyond
the original table specification.

Partition groups offer us a number of advantages to a traditional shared-
nothing environment. If we place all the tables the CEO’s office is likely to
require on the same partition group, we can assign a logon point directly to
this partition group to further improve performance.

Because multiple partition groups can exist in the same database, they
are all administered as a single database image, greatly reducing the
administrative effort required. Also, even though we default them to a spe-
cific partition group through table assignment and login point, the users
are free to access any and all structures they have security rights to, across
the entire database.

We can place multiple summaries or user groups on the same partition
group. To simplify administration, schemas can be set to a default partition
group. Thus, we could develop a schema specifically for the CEO’s sum-
maries and default it to the required partition group. All summaries we
create in this schema would then go to the nodes we wanted. Again, the
goal is to simplify long-term administration. If we require more computing
power to support our isolated summaries, we simply increase the size of
our SMP node or increase the number of nodes in the partition group.

Using MQTs to define these summaries also makes administration sim-
pler. The MQT concept means that the summaries can be automatically
updated or refreshed whenever data in the base tables is changed, even
though the data is on separate partition groups. And, as with all MQTs, the
optimizer is able to automatically pass through requests to the underlying
tables, if it determines the available summaries cannot meet the new
request.

Sometimes it makes sense to have the summaries located on a server
closer to the user—in other words, as a traditional dependent data mart.
This can be done in a variety of ways, one of which is to again leverage the
concept of MQTs. In Version 7, IBM introduced a concept called nicknamed
MQTs. A nicknamed MQT is a materialized view that contains data from
one or more tables in one or more separate databases. For a centralized
data warehouse, nicknamed MQTs allow us to build a summary on a sep-
arate physical server and have it automatically maintained as the base

Technical Architecture and Data Management Foundations 151

tables are updated. For our CEO summary, we could locate a dedicated
server close to the CEO’s office for reduced communication costs and
improved performance. The local users could then be given exclusive
access to this server. The only restriction on nicknamed MQTs over tradi-
tional MQTs is that delta updates are not allowed. Nicknamed MQTs can
only be updated through a complete refresh.

Key to the success of any data warehouse is the optimization capabilities
of the DBMS. In the 1990s, IBM undertook a massive project to develop the
most sophisticated database optimizer in the world, one capable of sophis-
ticated optimization of complex queries and complex, extensible data
structures. Called Starburst, this optimizer has the ability to examine every
possible alternative that could be used to satisfy a query. DB2’s Starburst
optimizer will examine queries, looking for ways to make it more efficient
before analyzing any possible paths. Queries can be entirely rewritten to
take advantage of more effective (but equivalent) constructs.

The DB2 optimizer takes into account table and index cardinality
through statistics collected after the load process. It also accounts for the
types of processors used and the speed of the disk subsystem. Some opti-
mizers rely on hints from the DBA to function properly. Others use a com-
bination rules/cost approach but do not allow any alterations: If you come
up with a bad query plan, you have no choice but to live with it or redesign
your database. DB2 does not require, nor in fact even allow, hints. Nor does
it force you to live with a sub-par plan. DB2 has a tunable parameter, set at
the database level for the amount of effort put into the optimization. The
lower the number (valid numbers are between 0 and 9), the faster the opti-
mization itself will occur. The higher the number, the more plans that DB2
will consider, hence the longer it may take to produce an optimal plan. In a
data warehouse environment, most clients set the default optimization
level from 5 to 7. At 5, all possible paths are evaluated and costed. For trou-
blesome queries, the level can be raised (for that query only) to 9 by adding
the runtime parameter “OPTLVL = 9” to the SQL statement. With level 9
optimization, Starburst will invoke advanced statistical predictive heuris-
tic methods developed by IBM Research to develop the best plan possible.
While other optimizers may sometimes produce a good plan, DB2 can
always produce the best plan.

Distributed Data Warehousing
Distributed data warehousing can arise from a variety of technical or polit-
ical situations within a company. Recognizing this, IBM has built a number
of features into DB2 to support this approach.

152 Chapter 5

There are several ways to implement distributed data warehousing
under DB2. The simplest model is to have the individual subject areas (star
schemas, domain segmented tables, or other departmental structures)
stored on a single copy of DB2. The partitioning keys (see the next section,
Parallelism and the Warehouse) can then be used to collocate data and mini-
mize redistribution, improve performance, and improve throughput. This
model makes the most sense if the underlying subject areas are frequently
joined together.

Another approach is to store the data in the same database, but maintain
each of the independent subject areas in separate schemas. MQTs can then
be used to present more integrated views of the data to those users who
require them. This makes the most sense when the subject areas are under
conflicting SLAs, as each can be isolated to a unique partition group for
performance.

The third approach is through truly distributed databases, where each
subject area resides on a separate server. In this case, nicknamed MQTs
may be used to present a consistent view of the data where required, with
minimal data transfer (data transfer is required only when the nicknamed
MQTs are loaded). This approach makes the most sense when the data can-
not be collocated, but there are users who require frequent access to large
volumes of data from multiple data marts.

Alternatively, DB2 provides a feature called DB2 Relational Connect.
With DB2 Relational Connect, a copy of DB2 can catalog data from remote
databases and use these data in queries. A single query can access data
from a variety of servers. User views can be created that rely on data ele-
ments from different sources.

Consider the case where a large organization has offices in multiple
states (or other jurisdictions), each of which develops its own suite of prod-
ucts and prices based on its local regulations. This organization is likely to
have local analysts within each organization, local reporting requirements
for the regulators, and possibly a localized data warehouse. At the corpo-
rate headquarters, however, are higher-level users (finance, risk manage-
ment, product planning, etc.) who need to analyze the same data across
various jurisdictions. DB2 Relational Connect allows each local office to
maintain independence while providing seamless access for those users
who require it.

DB2 Relational Connect provides read and update access to DB2 data-
bases under UNIX, Linux, Windows, OS400, and OS390. It also provides
read access to Oracle databases, and can optionally be ordered to provide
update access to Oracle, as well as read access to SQL Server or other
ODBC-compliant DBMSs.

Technical Architecture and Data Management Foundations 153

But DB2 Relational Connect is more than simply pass-through access. It
will take queries that were designed for DB2 and convert the SQL to a form
compatible with the source DBMS. In many cases, it can recognize certain
SQL constructs that may cause performance problems for the source and
rewrite them into better-performing constructs. For those requiring addi-
tional data sources, DataJoiner, a standalone product that works in
conjunction with DB2, provides access to a wider variety of database
platforms.

Another place to consider using DB2 Relational Connect or DataJoiner is
when a specific application requires data that would not normally be part
of the data warehouse. Take a customer-facing call center application,
which could reasonably require data from the data warehouse and the
operational data store (i.e., up-to-the-minute data that has not yet been put
through any significant cleansing or transformation processes). DB2 Rela-
tional Connect can access these data sources seamlessly, providing a single,
timely view of the customer.

Obviously, some degree of performance and capacity planning is
required when using this feature, as it would be very costly to move ter-
abytes of data from platform to platform for various queries. However,
DB2 Relational Connect is a very powerful tool when used appropriately.

Parallelism and the Warehouse
As data volumes grow, user communities expand, and query demands
increase, parallelism has become the method of choice for ensuring perfor-
mance and scalability. But everyone implements parallelism differently.
DB2 implements parallelism on a variety of levels simultaneously.

The first level of parallelism is achieved through data partitioning.
Tables (and by implication their associated indexes) can be partitioned in
DB2. A single physical node (server) can contain one or more partitions,
but a partition can exist on exactly one node.

DB2 uses a shared-nothing partitioning model, meaning each database
partition has exclusive control of its data. Thus, if Partition 0 contains Row
A, and Partition 5 needs to read Row A, it must be read by Partition 0 and
passed to Partition 5. If Row A is to be altered in any way, it can only be
done by Partition 0. This model eliminates the control/locking problems
the shared data model encounters as data volumes grow. It also has signif-
icant impact on how we choose our partitioning keys.

To partition a table, DB2 uses a hash map, that translates hash buckets into
controlling partitions. A partitioning key is determined for each table. The
value of this key is divided by a large prime number, and the resulting

154 Chapter 5

remainder (residue class) is used to determine which hash bucket the row
falls into, and, consequently, which partition will own the row. The partition-
ing key may be chosen independently of any physical index considerations.

Choosing the partitioning key is a matter of three primary factors. First,
we need a key that has reasonably even data distribution across its domain.
Date of sale is likely not a good candidate, as most companies experience
considerable variance in their sales volumes from day to day. As all sales
from a single day would end up on the same partition, we would have
poor, or “lumpy,” data distribution. Second, we need a key that allows a
high degree of uniqueness. Even though it has a reasonably even distribu-
tion, sex, with a maximum of two values, is not a good candidate, as all the
rows would end up in only two partitions. Third, we need a key that takes
into consideration how the tables are used together. Queries demand that
rows be joined together. But the only way you can match rows (or some-
times determine if there even is a match) is to have them on the same par-
tition. In a shared-nothing model, this means data must be moved based
on some common criteria—specifically, the join columns. This means at
least some of the rows of one or both tables in a join may have to be physi-
cally sent to another partition. If the rows are already partitioned based on
the join columns, however, we can eliminate this relatively expensive step.
This can be found by examining the primary/foreign key relationships of
various tables and considering how frequently they will be used, the data
volumes involved, and the criticality of the join. The first thing to consider
is how data is loaded into the partitions, and how parallelism impacts load
performance. We will discuss the DB2 Autoloader process, although it
should be noted that third-party load products also exist for DB2. Data is
collected at the source and, usually, put through an ETL process.

To speed loading, DB2 splits the transformed data into multiple load
files, with each load file matching a specific partition. This is done through
a utility called DB2SPLIT. DB2SPLIT can be run on the source (mainframe,
UNIX, or Windows) or target (UNIX or Windows) platforms. For faster
performance, multiple DB2SPLIT processes can be run in parallel against a
single load source. Next, the load files are sent to the load utility. This load
utility works against empty files and files that already contain data. All
partitions are loaded in parallel. Autoloader automates this process by
invoking the split and load utilities in sequence and managing the data
movement between them.

Suppose we find ourselves in a situation where we have a candidate par-
titioning key that is perfect in almost every respect. We have a large table,
and our candidate partitioning key has a high degree of uniqueness. In
addition, it is frequently used to access smaller tables, but it is somewhat

Technical Architecture and Data Management Foundations 155

lumpy in its distribution. With most shared-nothing systems, you would
have to accept the lumpy distribution or choose an alternative partitioning
key, even if it did not match the business model as well. DB2 has a unique
way to deal with this. By running the large table through the DB2SPLIT
process using the CREATE MAP option, we can create a unique hash map
that better reflects the reality of our business environment. The advantage
is we can use the partitioning key that makes the most business sense. The
disadvantage is we may need to occasionally monitor the data distribution
to ensure our demographics have not significantly changed.

Now that our tables have data in them, let’s look at how parallelism is
applied to a query. DB2’s Starburst optimizer will determine the level of
parallelism to be applied in any given circumstance. There is no DBA or
user intervention required. With queries, DB2 may choose to invoke multi-
ple simultaneous levels of parallelism.

Frequently, a query requires the manipulation of multiple rows from a
table or intermediate workspace. If these rows are spread across multiple
partitions, DB2 requests that each partition retrieve the requested rows
they own in parallel. This is known as inter-partition parallelism. Thus, for
an N-partition system, we could have up to N inter-partition parallel
processes running for a single query. Note that DB2 can execute parallel
requests for a variety of operations, including table scans, direct index
retrievals, index range scans, joins, and aggregations.

Within a partition, DB2 can also assign “degrees of parallelism” for cer-
tain operations. This is known as intra-partition parallelism. For example, if
a specific partition was doing a full table scan, DB2 might detect that this
query would become I/O bound based on the expected number of quali-
fied rows. DB2 could then direct that query step to use additional scans in
parallel against subsets of its partition. If DB2 instructed every partition in
an N partition configuration to use X degrees of parallelism, we could now
have N × X parallel tasks running to satisfy this single request.

While intra-partition parallelism can speed up a variety of queries, it has
another purpose as well: workload balancing. Even if we have created a per-
fectly balanced system, imbalances will occur as queries are executed. For
example, earlier we said date of sale was not a good candidate partitioning
key, as sales volumes are very uneven from day to day. However, users still
need to report on daily sales. This means data will be redistributed to group
by day, and the temporary work files will become imbalanced. DB2 can rec-
ognize these dynamic imbalances and compensate for them by assigning the
appropriate number of parallel tasks to each partition.

Of course, some queries rely on indexes to satisfy their queries. Consider
a star schema, where the fact table is accessed through a variety of indexes
around the dimension tables. Traditionally, a DBMS would look at the most

156 Chapter 5

selective index, followed by the next most selective, and so on to generate
an access plan to the fact table. But these indexes are often unrelated to one
another, except they happen to intersect in the fact table. DB2 can access
multiple indexes for the same table in parallel. And, of course, these
indexes can be accessed using both inter-partition and intra-partition
parallelism.

Another parallelism feature can be found in the way DB2 treats multiple
query steps. Consider the query “Select t from A, B, C, where A.y = C.x and
C.y = B.z. ”For simplicity, suppose DB2 has decided to scan all three tables
and do two merge joins. Traditionally, a DBMS would scan one table, then
a second. Next, it would run the merge join, then scan the third table, and
finally run the second merge join. DB2 can choose a variety of alternatives
here. It may choose to scan A and C at the same time, then scan B while the
A:C merge join is running. Or it may decide the most efficient method is to
scan all three tables at once. Of course, these operations can be done using
inter-partition and intra-partition parallelism.

DB2 also makes extensive use of pipeline parallelism. Consider the pre-
ceding simple query. Assume DB2 had decided to scan all three tables at
once, then do the merge join on A:C. The results of this merge join could
then be pipelined to the B merge join as rows were qualified. In other
words, because the final join step does not require the previous join to be
completed before it can begin, DB2 can run them in parallel.

Finally, DB2 supports parallelism at the I/O level. Modern RAID (redun-
dant array of independent disks) controllers support parallel I/Os across
their platters, and DB2 fully leverages this feature.

Partitioning Data Storage
At the physical level, DB2 is a set of tablespaces. One or more tables are
assigned to each tablespace.

Tablespaces consist of containers. A container is a directory within the
operating system’s file system, a file under the OS’s file system, or a phys-
ical device. Containers are made up of extents, the lowest level of space
allocation.

DB2 provides two types of storage management: system-managed stor-
age (SMS) and database-managed storage (DMS). The use of SMS or DMS
tablespaces is not mutually exclusive within a database; SMS and DMS can
be mixed within the same environment.

SMS relies on the OS’s file management system and is the simplest to cre-
ate and manage. When using SMS, each container is a directory within the
OS’s file structure. This space is not pre-allocated to any single tablespace
(hence table) but grows and shrinks as the database requires. When using

Technical Architecture and Data Management Foundations 157

SMS, all objects associated with a given table must be stored in the same
tablespace. SMS offers excellent performance, and its simple administration
makes it the space management method of choice for many installations.

DMS provides the maximum in performance and control, but it requires
some knowledge of the hardware, database, and operational environment.
With DMS, containers are either physical files or a storage device (logical
or physical). If the container is specified as a file, the file is of a fixed size
and is pre-allocated to the tablespace. If the container is a storage device, it
must use the entire device.

One of the advantages of using DMS is it provides the ability to split cer-
tain portions of a file structure from one another. For example, if we fre-
quently can satisfy queries using indexes (with or without INCLUDE
columns), or if we want to effectively lock a frequently used index in mem-
ory, with DMS we can place these indexes in a separate tablespace and
dedicate a bufferpool to them. Similarly, we can create a separate table-
space and bufferpool for large objects. This provides DB2 with additional
optimization options to avoid reading or carrying large data objects
through the query.

As mentioned previously, a single database is not limited to either SMS
or DMS. It is possible to use SMS for the majority of your tables and use
DMS for a table that has a number of large objects in it or other unique per-
formance characteristics.

Technical Foundations for Data Management

Data management is much more than simple building and table mainte-
nance. There is a significant amount of effort that must go into how data is
propagated and stored throughout your environment. Here we will exam-
ine the various functions and features of the DB2 Universal Database with
regard to the persistent data structures you plan to implement.

DB2 and the Atomic Layer
In this section we address the physical storage of atomic-level data struc-
tures. Examined are several storage techniques with related technical
aspects as they pertain to implementation and performance.

Redistribution and Table Collocation

You must remember to keep a number of things in mind when implement-
ing the atomic-level physical model with DB2. Foremost is the relationship

158 Chapter 5

between the various tables. For rows from two tables to be joined, they
must first be located on the same partition. In many cases, this means the
data must be moved from the owning partition to the processing partition.
This process is called redistribution.

Redistribution occurs in a relationship between two tables, specifically:

■■ When two tables are being joined but they are not partitioned the
same. For example, when they use the same partitioning key.

■■ When two tables are partitioned the same but are joined using a dif-
ferent set of columns.

Let’s say we have a table called Customer, partitioned by Customer_
Number, and another table called Sales, partitioned by Transaction_
Identifier. Now we want to run the following query:

SELECT Customer.Customer_Name, Sales.Sale_Date, sum(Sales.Sale_Amount)

FROM Customer, Sales

WHERE Customer.Customer_Number = Sales.Customer_Number

AND Customer.Customer_State = -CA

GROUP BY Customer.Customer_Name, Sales.Sale_Date

For Customer and Sales to be joined, corresponding rows must first be
located on the same partition. In this case, they must first be collocated
according to Customer_Number. There are a number of ways to accom-
plish this task:

■■ The Sales table could be redistributed based on Customer_Number.

■■ The Customer table could be read based on Customer_State = “CA”,
and the qualified rows redistributed to every partition.

■■ The qualified rows, once distributed, could be used to drive an
indexed read of Sales.

Luckily for us, the DB2 optimizer will choose the most effective one.
Only the columns required to satisfy the join are moved using any of the

preceding methods. The rows are then qualified and the remaining
columns are picked up at the end of the query. This is likely to happen if the
size of reported nonqualified columns is high and the join will result in rel-
atively few rows remaining at the end.

The redistribution process must read the row from the owning partition,
pass the data to the requesting partition, store it temporarily locally, and,
depending on the query and current workload, possibly move it to virtual
memory and back out for processing. As illustrated in Figure 5.2, this is
obviously inefficient and costly.

Technical Architecture and Data Management Foundations 159

Figure 5.2 The redistribution of data.

One objective of the atomic-level physical model, then, is to reduce the
frequency of required redistributions. To do this, the DBA must not only
map the primary and foreign key relationships but also understand
how frequently those relationships will be used in the course of a day. In
our example it might make more sense to partition the Sales table by
Customer_Number. In this case, the table would be collocated by
Customer_Number. The caveat here is that the Sales table is likely to be
very large. In that situation, the partitioning by Customer_Number may
result in uneven data distribution, at which point you, as the architect,
must choose between the lesser of the two evils, or determine if a system-
generated customer hash map is in order.

Replicated Tables

An additional partitioning option exists when you are dealing with smaller
tables. A state lookup table is an example, albeit a small one. In the case of
the state table, we have few realistic choices but to partition according to
the state lookup code. This table is likely to be used in two ways: as an
indexed lookup table for a handful of reported states or as a full table
lookup to report all states. In the latter case, the optimizer is likely to sim-
ply redistribute all rows of the table to all partitions, so every partition
ends up with a complete copy of the table. While simple and effective for a
single query, it quickly becomes a major waste of resources to do this for
thousands of queries a day. A DB2 replicated table maintains a complete
copy of the entire table on every partition within the partition group. This
way, the tables can always be accessed locally. Figure 5.3 is a simple illus-
tration of this replication.

160 Chapter 5

Figure 5.3 Replicated state table within partition group.

Indexing Options

The next thing to determine is which columns make suitable indexes.
DB2’s index structure is an effective dual-chained B*Tree. This means the
indexes can be traversed in either ascending or descending order, reducing
the need for redundant indexes.

In a partitioned environment, the index entry for any row will be on the
same partition as the row. This eliminates the need for redistribution or
other cross-partition communication to locate the actual row.

If data are frequently accessed in the same order as a specific index, a
clustering index may be in order. A clustering index tells DB2 to store the
underlying data in the same sequence as the index. In addition to improv-
ing query performance, this can also reduce or eliminate the need for data
reorganization.

In some cases, the entire row may not be retrieved frequently with an
index, but selected columns might be. For example, the state lookup table
might contain more than simply the state code and state name, such as a
state flower, state bird, an image of the state flag, or an image of the state
seal. In this case, the state name is far more likely to be the item used in a
query than a graphic of the state seal. We can create an index on the state
abbreviation but specify that a copy of the state name is to be stored with
the index. The extra columns do not impact the organization of the index.

Multidimensional Clusters as Indexes

Multidimensional clusters (MDCs) not only define how data is stored, but
because the DB2 optimizer is aware of these block structures, they can also
be used as effective indexes. DB2 can quickly locate data when only spe-
cific times or dates are required. This is achieved by addressing only the
potentially relevant blocks within each hash partition.

State State State State State State State State

Technical Architecture and Data Management Foundations 161

Defined Types, User-Defined Functions, and DB2 Extenders

We must also consider if we will be using only traditional data types, or if
special data types are to be used. Special data types may be defined types
or part of a DB2 Extender (see Chapter 6). Defined types, also known as
user-defined types (UDTs), are generally designed by a particular user and
implemented for a specific use. User-defined functions (UDFs) are stored
processes that allow the data to be processed in a consistent manner. DB2
Extenders are developed by IBM or partners and packaged for sale with
DB2. DB2 Extenders include the specialized data types and the specialized
functions to effectively process them. For example, the DB2 Image Exten-
der allows you to store image data and run advanced queries on them
using Query By Image Content (QBIC). A discussion of the available DB2
Extenders can be found in Chapter 6.

UDTs can enforce specific business rules on a column. We could define a
UDT called Customer_Number to ensure that the definitions within our
Customer and Sales tables are identical. We can also make certain that two
customer numbers can be compared, but not allow arithmetic operations
to be performed against them.

Having the same column definitions is a great way to enforce consis-
tency, but more is needed to guarantee consistency of functional domains
between tables. For this, we must consider what referential integrity (RI)
constraints will be applied. For example, we might choose to allow a cus-
tomer number to be entered in the Sales table only if the same customer
number exists in the Customer table, or we may choose to automatically
update all pertinent transactions in the Sales table if we should alter a cus-
tomer number in the Customer table.

RI constraints can have a performance impact when running large loads,
as every loaded row might have to be checked against multiple reference
points. To allow referential constraints to be applied but still have guaran-
teed batch windows, DB2 allows the restrain checks to be deferred until
after the load process is complete.

Hierarchical Storage Considerations

The traditional way to store data that is managed by an RDBMS is on mag-
netic disk drives. In the BI environment, there are situations where some
data might be of value, but infrequently used or simply difficult to justify
maintaining from a return-on-investment perspective. DB2 has an alterna-
tive in these situations, and it impacts how we implement our physical
model.

162 Chapter 5

DB2 offers tight integration with IBM’s Tivoli Storage Manager through
a feature called Hierarchical Storage Management (HSM). HSM allows us
to place data that is most critical or most frequently used on traditional
disk drives and place less critical data on alternative, less expensive
devices, such as optical media or tape. (See Figure 5.4.)

There are a variety of ways we could use HSM. Following are three
examples:

■■ Let’s say you own a property and casualty insurance company.
Records of claims are kept; in addition, audio, graphics, video, or
document data are stored with each claim. Using HMS, we allocate
magnetic storage for the data and indexes. For the table that con-
tains the large objects, we define the containers on optical jukeboxes.
We present a single view of the data back to the user through a view.
Now we can store large volumes of these critical but ancillary data
at a fraction of the traditional cost and retain full relational access to
them.

■■ Suppose you deal in antiquarian books. There are certain things
about your inventory that are analyzed and queried on a regular
basis, for example, book title, condition, and publication date. The
information is stored as non-index columns, but with the index as
INCLUDE columns. There is a lot more data on the book such as
history and authentication that is infrequently reported or analyzed.
We define the index and primary data tablespace containers as mag-
netic and the ancillary data tablespace containers as optical. This
places the most frequently used and time-critical data on the fastest
devices.

Figure 5.4 Hierarchical Storage Management.

Table

Technical Architecture and Data Management Foundations 163

■■ Suppose you are a retailer selling everything from videotapes to
washers and dryers. For most items we want to keep 1-year-plus-1-
quarter of sales history, considered a standard for most retailers.
However, for appliances we want to keep 10 years of history. For
this example, you would develop HSM rules for DB2 that create
containers for the 10-year history on a tape device. Then you can
define the functional domain for appliances to DB2 for HSM migra-
tion after the standard retention time has passed, at which point
DB2 automatically moves the appliance history to tape.

DB2 recognizes the nature of the underlying device type and optimizes
accordingly. DB2 knows that some data is on disk, some on optical media,
and some on tape and understands the performance characteristics of each.
Entirely new classes of applications become financially viable with HMS.

DB2 and Star Schemas
When DB2 encounters a star schema structure, it has a variety of optimiza-
tion options. It can use any of the standard optimization and parallelism
techniques available, as well as an exclusive approach called STARjoin.

The STARjoin optimization method accesses the dimension tables and
fact table indexes to drive the final result. This option is generally chosen if
the fact table has secondary indexes corresponding to at least some of the
dimension tables and the selectivity into the fact table is reasonably high.
STARjoin selects an appropriate dimension table, qualifies the rows to be
used, and does a “semi-join” with the fact table. A semi-join accesses only
the index columns in the fact table and returns only the qualified row IDs
from the fact table. The row IDs are then hashed into memory, and a
dynamic bitmap index is built. The next dimension table is then accessed,
and a semi-join done. The row IDs are again hashed, and another dynamic
bitmap is constructed. When DB2 has generated the bitmaps it wants, they
are joined using an AND construct. The resulting row IDs are then used to
gather information from the fact table for the final report. Figure 5.5
demonstrates the STARjoin process.

The use of STARjoin is completely up to the optimizer. Moreover, the
DBA does not have to specify anything unique to indicate a star schema is
present. The optimizer will make its decision based solely on the cost of the
query plans.

164 Chapter 5

Figure 5.5 The STARjoin.

Nevertheless, you do have some choice in the physical implementation
of a star schema. The most straightforward physical model approach is to
store the fact and dimension tables as you would store other data ware-
house tables, using standard partitioning. When this approach is used
there is likely to be some redistribution, since the dimension tables may
have far less information available for effective partitioning than the fact
table. If we have a dimension table that is quite large in comparison to the
other dimensions, and the dimension is frequently used to access the fact
table, you might consider co-locating these tables by partitioning the fact
table using the same partitioning key as the large dimension table. This
would eliminate many of the larger redistributions.

A number of other options exist that might be of use for star schemas.
For smaller dimension tables, consider using the replicated table option.
This stores copies of the entire dimension table on every partition, thus
improving performance and throughput. If the star schema is relatively
contained—for instance, the queries accessing the star do not generally join
the star to other database objects—then consider isolating it onto a separate
nodegroup. This provides more consistent performance for the star users
by isolating them from other users of the system.

Dimension 3 Fact Table

Dimension 2

Dimension 1

1. Partial
 Join

RIDs

4. Retrieve Qualifying Rows

2. Generate Bitmap
1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1

1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1

1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1

1 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1

3. AND Bitmaps (loop to next join)

Partial
Joins

Technical Architecture and Data Management Foundations 165

DB2 Technical Architecture Essentials

As with any DBMS, there are some essential facts on the architecture and
features to keep in mind during implementation. DB2 Universal Database
is no exception. In this section we address the following:

■■ SMP, MPP, clusters

■■ Shared-resource versus shared-nothing

■■ Static and dynamic parallelism

■■ Catalog partition

■■ High availability

■■ Extensibility

SMP, MPP, and Clusters
Symmetric multiprocessing, massively parallel processing, and clusters are
hardware architectures. Each is illustrated in Figure 5.6.

Figure 5.6 SMP, MPP, and clusters.

MPP

ClusterSMP

166 Chapter 5

SMP systems consist of multiple processors sharing common resources,
for instance, memory, bus, and operating system. The advantages of SMP
systems are simplicity of administration and price/performance. Disad-
vantages are limited high-end scalability, diminishing improvements (non-
linear scalability) as processors are added (depending on the application,
operating system, hardware architecture, and underlying DBMS), and lim-
ited recoverability/availability options.

Clusters consist of multiple systems (sometimes called servers, some-
times called nodes) sharing disk resources. The nodes communicate with
one another using an interconnect technology that can be as simple as an
Ethernet network or as complex as IBM’s Colony Switch. Each of these
nodes is generally an SMP system. Clusters are often implemented to
increase the overall system throughput by allowing more queries to run on
separate processors. Moreover, they provide additional recoverability and
availability alternatives. For example, if one node goes down, the others in
the cluster may be able to take over its workload. Clusters provide excel-
lent data and performance scalability, but only when used with a shared-
nothing DBMS architecture.

Finally, MPP systems consist of multiple systems (usually called nodes)
that do not share resources. As with clusters the nodes are generally SMP
systems. Modern MPP systems often use collections of clusters to ensure
high availability. (This topic is covered in more detail later in this section.)
The primary advantage of an MPP system is that it promises and, with an
effective shared-nothing DBMS, can deliver linear scalability to a practi-
cally unlimited number of nodes. There are disadvantages, however:

■■ They are relatively expensive when compared to large SMPs in that
they require additional cabinetry, interconnect points, and operating
system copies.

■■ Without the proper management software, MPP systems can be dif-
ficult to effectively administer. Modern MPP systems come with
built-in cross-node management software that make all nodes
appear as a single system image.

■■ MPP systems have an inherent reliability problem. If the mean time
between failure (MTBF) of the underlying SMP system is X hours,
then the MTBF of an N node MPP environment is X/N hours.

The most modern systems combine the price/performance of large-scale
SMP systems with the unlimited scalability of MPP systems. IBM’s Regatta
and its kin provide an excellent building block to construct powerful MPP
systems. When multiple large SMP systems are planned to be connected by

Technical Architecture and Data Management Foundations 167

a single IBM switch, the large systems can still be managed and controlled
as though they were a single AIX system. This greatly simplifies manage-
ment of the largest environments.

In addition to providing better price performance for large MPP sys-
tems, using large SMPs as the building blocks also reduces the need for
MPP environments. Many traditional MPP systems have less power than a
single 32-way Regatta class machine. These customers could easily move
their environments to a single SMP server. There are several benefits to this
strategy:

■■ Increased reliability, as fewer parts equal higher MTBF

■■ Reduced cost by:

■■ Reducing the number of O/S copies

■■ Reducing the need for an interconnect

■■ Reducing the need for additional utility license fees

■■ Simplified administration

To ensure maximum scalability on large SMPs, DB2 uses database parti-
tions to effectively treat the hardware as a logical collection of smaller
nodes.

The critical piece of knowledge here is that DB2 effectively supports all
of these hardware types, and it has special features to overcome many of
their inherent limitations.

Shared-Resource vs. Shared-Nothing
Shared-resource and shared-nothing represent forms of software architec-
tures. In a shared-resource model various processes in the DBMS have
access to all the system resources, including the data. In the shared-nothing
environment, separate DBMS resources divide up the workload, each
responsible for its own data, memory locations, and other resources.

DB2 UDB follows a shared-nothing model. Data is partitioned according
to a partitioning key. Rows are assigned to a partition, and each partition
has total control of that row. If another partition wants to read or update a
row, it must send the request to the owning partition. The owning partition
then executes the command on behalf of the requestor.

The shared-nothing model greatly simplifies things like resource con-
tention, including memory, locks, and processors. Implemented properly,
it offers unlimited scalability. As new rows or data sources are added, more
partitions can be added. The workload on any individual partition remains
the same.

168 Chapter 5

DB2 on Hardware Architectures

Figure 5.7 illustrates the three hardware architectures with DB2 instances,
including SMP, MPP, and clusters. For SMP servers, DB2’s shared-nothing
approach allows more linear scalability than a shared-resource DBMS. DB2
can treat the SMP server as a collection of smaller servers, dividing the
workload among multiple concurrent processes.

For clusters, DB2 treats the servers and storage as though they are MPP
components; in other words, even though they may share physical connec-
tions, each partition controls its own segments of the disk subsystem. This
avoids the contention, locking, and ownership problems associated with
shared resources. DB2 also works closely with standard high-availability
clustering software, like High Availability Cluster Multi-Processing
(HACMP). (More on HA options is provided later in the chapter.)

Figure 5.7 Hardware with DB2 instances.

DB2 on MPP

DB2 on SMP
DB2 on Clusters

Technical Architecture and Data Management Foundations 169

In an MPP environment, DB2 exploits the shared-nothing hardware
environment completely. Because DB2 is fault-tolerant, it can continue run-
ning even if underlying components, including complete servers, fail.
Many shared-nothing DBMSs are fault-resilient, meaning if a node in an
MPP or cluster is lost, the entire environment shuts down and then restarts,
and all work must start over.

In both a cluster and MPP environment, DB2 is a single system image, no
matter how large the environment grows.

Static and Dynamic Parallelism
In a traditional MPP model, parallelism is achieved when the various data-
base partitions work on pieces of the same problem, at the same time. This
model, called inter-partition parallelism, is completely dependent on the
number of partitions available to the DBMS. In other words, it represents
static parallelism.

While DB2 employs static parallelism across its partitions, it also uses
intra-partition, or dynamic, parallelism. Dynamic parallelism allows the
optimizer to assign a specific number of parallel tasks within each parti-
tion, based on individual query requirements.

This approach has a number of implications. Fewer partitions are
needed because parallel query performance is not constrained by the num-
ber of partitions. Consider the impact on a simple query:

SELECT A.x

FROM A, B

WHERE A.y = B.y

Assume no indexes can help this query. Each table has 1 million rows,
and they are not partitioned on “y.” In an environment that relies solely on
static parallelism, a vendor may recommend as many as 16 partitions per
processor. In an environment with 16 processors this means 256 partitions.
Each partition will have to send at least one message to each of the other
partitions for each table. Consequently, the minimum number of messages
sent is 65,280. With dynamic partitioning, we can assign far fewer parti-
tions per processor. While it varies with the workload, IBM often recom-
mends 1 partition for every processor pair. In our 16-processor example,
this would leave us with 8 partitions and a minimum number of messages
of only 56. Figure 5.8 emphasizes this difference.

170 Chapter 5

Figure 5.8 Static and dynamic parallelism.

In addition to reducing the overall workload, there is a dramatic differ-
ence in the join processing between static and dynamic parallelism. It is
very likely that the partitions in each case will end up with uneven distrib-
ution. With static partitioning, each partition will process the join at the
same speed. The partition with the largest number of rows to compare will
end up with the most work, and the others will wait for it to complete.
Conversely, dynamic parallelism with DB2, as illustrated in Figure 5.9, can
dynamically assign additional parallel tasks to assist the partitions with
more data.

Figure 5.9 Dynamic parallelism after redistribution.

Minimum messages required for one partition to
redistribute rows from one table (256 partitions)

Minimum messages required for one partition to
redistribute rows from one table (8 partitions)

Technical Architecture and Data Management Foundations 171

Catalog Partition
The meta data about the database objects is stored in the system catalog.
While traditional shared-nothing DBMSs distribute the catalog objects
across all partitions, DB2 uses an exclusive partition for the catalog. Cata-
logs are small, rarely exceeding 5 GB of data. It’s simply not rational to
have the overhead of the cross-partition messages for all queries. For per-
formance, DB2 does keep some frequently used portions of the catalog
locally on all partitions.

High Availability
Today’s BI systems are mission-critical environments. Recognizing this,
IBM has constructed DB2 as part of a high-availability environment. When
considering high availability, you need to define outages. There are essen-
tially two types of outages: planned and unplanned. While the unplanned
get the most attention, planned outages are rarely less disruptive. To mini-
mize the number of required planned outages, DB2 offers a number of fea-
tures, discussed in the following sections.

Online Space Management

In addition to improving performance for certain types of queries, cluster-
ing indexes also reduce the need for reorganizations by keeping the data in
the same order as a sequenced index. If you find you need additional space
in an SMS tablespace, it will be automatically allocated online. If you find
you need more space with a DMS tablespace, you can add additional con-
tainers while the environment is online. Index and data defragmentation
(reorganization) can be done while the system remains online. For space
recovery, containers can be dropped while the system remains online.

MDC’s block index structure can also eliminate the need for reorganiza-
tions, as data will be loaded into the proper sequence from the beginning.

Backup

Backups are a critical part of the overall batch window. To reduce the time
required for backups, DB2 offers a number of options, including incremen-
tal backups, as demonstrated in Figure 5.10. Incremental backups allow
you to only back up the data that has changed since the last backup. DB2
backups can also be defined to a fine granularity, down to the partition or
individual tablespace. This reduces the amount of time required to make a
backup and yet ensures that the critical data is stored. In addition, backups
can be run while the system remains online.

172 Chapter 5

Figure 5.10 Incremental backup.

DB2 also supports the ability to keep multiple mirrored copies of the
data. (See Figure 5.11.) When a disk mirror is used, the mirror can be split
from the primary copy to create an immediate backup copy. The mirror
image can then be used to create a complete backup without impacting the
production environment. Using Tivoli Storage Manager, DB2 can also cre-
ate copies of data structures on secondary storage devices.

Every once in a while a mistake happens. One of the most damaging can
be the accidental dropping of a production table. Rather than requiring the
table be rebuilt and the data recovered from backups, DB2 allows you to
recover dropped tables if you have not reused the space.

Figure 5.11 Mirrored copies.

Master
Copy

Active
Database

Mirrored
Copy

Sunday Sunday

Full Full

Mon Tue Wed

Cumulative

Incremental Backup

Delta

SatThu

Full
Delta LogsCumulative

Fri

Technical Architecture and Data Management Foundations 173

Parallel Loading

The DB2 Loader is capable of loading all partitions in parallel, as shown in
Figure 5.12. This technology reduces the amount of time required for the
load process. Indexes are created and populated in parallel across all parti-
tions as well. The Loader also allows read access to the tables while the
load is running, which sustains the objective of high availability.

Online Load

As part of the loader, DB2 has the ability to load while queries are running
against the table. The loaded rows are not visible to users until explicitly
activated by a daemon process or the DBA. This allows us to keep the sys-
tem active for user queries while we load the data. In a nightly load envi-
ronment, it also gives us an option of capturing transactions throughout
the day, running them through an ETL process, and loading them to the
data warehouse as they become available. Then, at the end of the day, we
can activate the entire day’s loads through a single command, eliminating
our nightly load batch window.

Multidimensional Clustering

DB2 provides a feature called multidimensional clustering (MDC). MDCs
are block index structures present within each hash partition across the
system. The MDC has a number of implications for system loads and
availability.

Figure 5.12 Parallel loading.

DB2SPLIT

DB2SPLIT

DB2SPLIT

AUTOLOADER

174 Chapter 5

To create an MDC, the DBA defines the columns to be used for cluster-
ing. Data is loaded to the current cluster, in parallel and across hash parti-
tions. Using online load, the entire cluster remains transparent to the user
until it is activated. Activation can occur through a daemon process or
through a DBA-initiated command. There are three core benefits that MDC
technology brings to high availability:

Reduced resource requirements. Because the clusters can be directly
addressed, separate index reads and full or partial table scans can be
avoided.

Elimination of reorganizations. Because data are loaded in the proper
sequence at all times, the need for reorganizations is eliminated.

Allows elimination of the batch window. While online load can
allow us to effectively load data with no batch window, MDC pro-
vides very fast deletes of the oldest data. With Type 2 indexes, DB2
can allow concurrent reads and deletes without false lock contention.

Unplanned Outages

DB2 also incorporates a number of features to help avoid unplanned out-
ages or at least to minimize their disruption. DB2 starts with a highly avail-
able RDBMS, using industry-leading software development practices to
ensure the best-possible code quality. Still, things can go wrong. So, DB2
allows you to have both hardware and software redundancy.

Let’s examine software redundancy first. DB2 uses a watchdog program
to allow partitions on different nodes to monitor the health and status of
other partitions, as well as cleanup agents to clean up the work in case of a
failure. These features are designed to work in conjunction with the hard-
ware takeover features.

Because there are so many components within an MPP environment,
component failure is a primary concern. There are a number of layers to
hardware redundancy to address this issue. Starting at the storage level,
we use RAID to protect against disk failures. DB2 also supports full disk
subsystem mirroring. In the case of operating system or hardware failure,
DB2 works with industry-standard clustering technologies, including
IBM’s HACMP, Sun Cluster, VERITAS Cluster Server, Qualix HA,
Microsoft Cluster Services, Service Guard, and SteelEye LifeKeeper to
ensure maximum uptime. When you are using clustering services, a num-
ber of takeover options are available to recover from node failure. Node
failure can occur as a result of a nonrecoverable operating system error or

Technical Architecture and Data Management Foundations 175

hardware error in the node itself. In each case, DB2 will act as a partially
fault-tolerant environment. In-flight work that was not using the crashed
node will continue uninterrupted; in-flight work that was using the
crashed node will be rolled back. If we used Query Patroller or MQSeries
to submit the work, it can be automatically resubmitted when DB2
recovers.

The mechanism for recovery for DB2 partitions is a graceful shutdown
on the failed node and an automatic restart on the takeover node.

In each of the following cases, the takeover nodes must have access to
the disk used by the failed node. To accomplish this, we group the nodes
within an MPP environment into one or more clusters.

Idle Standby

Idle standby is when a single node acts as a “hot spare” in case any node in
the configuration crashes. In this situation, all of the work from the failed
node is redirected to the hot standby, as shown in Figure 5.13. The advan-
tage of this approach is that there is no degradation in performance. The
disadvantage is that it is relatively expensive to have nodes sitting around
not doing work, waiting for the off chance that a component will fail.

Active Standby

Active standby occurs when a node that is running a production workload
is used as the go-to point in case of node failure. Here you would likely
configure the takeover node with more capacity or a lighter workload than
other nodes in the configuration. Either approach has some negative impli-
cations. You will either experience possible performance degradation
when running with a down node (which could be high, if the recovery
node is not powerful enough to absorb the entire workload) or a much
higher node cost if it is properly configured to handle the extra workload.
(See Figure 5.14.)

Figure 5.13 Idle standby.

Idle

Active

Active

Failover
to Node 1

Active

176 Chapter 5

Figure 5.14 Active standby.

Mutual Takeover

Mutual takeover is yet another approach to addressing unplanned outages.
In this situation, every node is assigned a “buddy” node. If one of the
nodes fails, the buddy automatically takes over its workload. The advan-
tage is that it allows for a very high rate of failure; you could lose half the
nodes in an MPP configuration and continue running. The disadvantage is
significant performance degradation when running with a down node.
Because one node would now have twice the workload of the others, the
majority of nodes will have to wait for the busiest node to complete, even
with DB2’s dynamic parallelism. Figure 5.15 illustrates this configuration.

Figure 5.15 Mutual takeover.

Active

ActiveActive

Active

Active

ActiveActive

Failover
to Node 1

Active

Technical Architecture and Data Management Foundations 177

Cascade Takeover

The final option, and the one used most frequently in an MPP configura-
tion, is the cascade takeover. Each node will likely have multiple DB2 parti-
tions. With a cascade takeover, the other nodes within the cluster serve as
multiple takeover points. So, if we have four nodes with three partitions on
each node, each node would be configured to take over one partition. The
advantage is it allows us to maintain a balanced workload, even when run-
ning with diminished capacity. The disadvantage is it takes some planning
to determine the optimal number of nodes per cluster in a very large MPP
environment. (See Figure 5.16.)

When the partition is restarted on its takeover node, it must be given
access to its data. This means the takeover node must be given access to the
data. This can be the longest part of the recovery process. On AIX systems,
DB2 works with the Concurrent Resource Manager (CRM) to minimize the
recovery time required. Figure 5.17 illustrates the difference when utilizing
CRM. With CRM, all disks can be designated available to all nodes within
the cluster. DB2’s shared-nothing architecture will only allow access to the
data from the owning partition. When the partition is restarted on the
takeover node, it will have immediate access to its data.

Figure 5.16 Cascade takeover.

Active

ActiveActive

Active

178 Chapter 5

Figure 5.17 Concurrent Resource Manager.

Sizing Requirements

Estimating your data size requirements continues to be part technical
application and part ability to accurately assess your current data needs, as
well as to estimate their growth. Moreover, there are different kinds of data
structures that you must size. For instance, in our BI architecture we have
an ODS, DW staging area, atomic layer, and data marts of stars and cubes.

Nevertheless, these are a few of the issues that impact your sizing esti-
mates. For example, you may be able to use the source system platform to
perform much of your required transformations. That would mean, among
other things, that you need less staging area. Another issue is associated
with how you receive the data to be transformed and loaded into the
warehouse. If you receive only the needed records, then your transforma-
tion space can be significantly smaller, as opposed to receiving a wholesale
dump of data and having to determine the delta. Other issues affecting size
estimating include storage technology, mirroring, archiving, and history
required.

Without CRM, alternative
path to disk is not available
until after takeover.

Disks

Cluster
1

Servers

Without CRM, alternative
path to disk is available but
not used until failover.

Disks

Cluster
1

Servers

Technical Architecture and Data Management Foundations 179

Figure 5.18 shows several variables that must be included, or at least
considered, when you calculate sizing requirements. Of those identified,
three require further discussion:

Percent of staging. You must remember two issues when dealing
with staging areas. Your first concern should be with the initial load.
Often the staging area is estimated on the ongoing transformation
cycles, but the initial load is considerably larger than any period
cycle you may have. The second issue has to do with being able to
deal with the largest table in your effort. For example, the staging
area needs to consider rebuilding the index for the largest tables in
your warehouse or data mart. Estimating staging area is very diffi-
cult and must be periodically reviewed.

Percent of meta data. Gartner has estimated that warehouses main-
tain 10 to 25 percent of the space requirements for meta data. Your
value will be based on the amount and type of meta data you plan to
maintain and the tools you implement.

Statistical row size. To understand the “real” size of a row, the archi-
tect must take the time to get a statistical average of production rows,
as opposed to merely taking the physical schema of the source table
and use that as the basis for warehouse storage requirements. Many
production systems have large fields with fixed lengths—for exam-
ple, address line 3, with 50 characters, when in reality, 90 percent of
the values in the field are less than 20 characters.

Figure 5.18 Estimation issues.

Formula Variables

Period Measurement

Period of Row Growth per Period

Percent of Aggregation

Description

Daily, Weekly, Monthly, Quarterly

Percent of Meta Data 10% to 25% of base tables.

The value is dependent on business
requirements and calculated against
initial load.

Percent of Staging The value is dependent on business
requirements, system environment and
experience with data.

Percent of Contingency The estimate is largely dependent on
experience with the data being
transformed and stored. A typical
contingency is 15% to 25% of base tables.

The value could be as much as 100%
of base tables.

180 Chapter 5

Figure 5.19 Estimation calculation.

A template calculation is provided in Figure 5.19. The template is
intended only as a general guideline to highlight those issues pertinent to
attempting to estimate warehouse-centric database size. It is highly recom-
mended that the data architect and project planners invite experts in the
chosen technology to participate in sizing estimation. These experts should
cover database administration, computer system, and disk storage. You
will need the input from all of these areas to create a reasonable estimate of
the initial size of your warehouse and the expected size of your warehouse
over the next several months.

Even as you make your predictions of warehouse size, do not go out and
immediately purchase disk capacity for the expected size of your ware-
house in 2 years. This is not only a waste of disk space but of money. Pur-
chase a sufficient amount of disk that gives you room for several months,
perhaps a year. And plan to go back to the money well for disk storage in
the next budget cycle. By that time you will have a much clearer under-
standing of your disk requirements.

Summary

Establishing an effective technical architecture for your warehouse envi-
ronment is an ongoing challenge that requires constant monitoring and
tuning. It is incumbent on the technical staff to be active participants in this
effort and the technical architect to solicit the contribution of selected ven-
dors. The document produced is a unique work requiring an array of skills
that cover everything from systems engineering to disk storage. Further-
more, it is a living document. As new hardware and software is imple-
mented or upgraded, the architecture document will continue to be
updated through the life of your warehouse and BI environment.

Table Values

Initial Rows Loaded

Statistical Row Size (Bytes)

Index Size (Bytes)

Initial Load Size (MB)

Percent of Aggregation (30%)

Percent of Staging (15%)

Percent of Meta Data (10%)

Percent of Contingency (20%)

Dim 1

100,000

1,000

20

102

Dim 2

Initial Load Estimate

50,000

1,500

20

76

Fact

10 million

100

15

1,150

Initial Totals

398.4 MB

1,328 MB

199.2 MB

132.8 MB

265.6 MB

2,324 MB

Technical Architecture and Data Management Foundations 181

PA R T

Three

Data Management

185

Key Issues:

■■ BI drives the need to accommodate different types of information
content. It is not sufficient to simply address the management of
structured data. Architects and project planners must ensure that
text, spatial data, images, and other video objects can be blended
into the warehouse.

■■ As the need for 24x7 BI becomes widespread, it demands that the
database engine provide a means to load and maintain data with
minimum impact to the availability of the information to user audi-
ences. Batch window processing must become the exception and no
longer the rule.

Plenty of books document SQL syntax and other typical RDBMS func-
tions. This chapter avoids the SQL trap and instead focuses on five funda-
mental themes that best represent the DB2 V8 features and functionality
that support BI:

DB2 BI Fundamentals

C H A P T E R

6

■■ High availability

■■ Administration

■■ SQL and other programming features

■■ Performance

■■ Extensibility

In this chapter, we define and illustrate each of these concepts. All of
them lend themselves to a stable, scalable, and flexible BI environment.
That is not to say that these are the only important aspects of DB2 V8, but
these provide a secure foundation for all your subsequent BI efforts. Some
of these features are covered in greater depth elsewhere in this book. For
example, here we introduce materialized query tables (MQTs), but in
Chapter 7 we go into MQTs in considerable detail. Another example is the
Spatial Extender. This chapter includes it as part of the extensibility of DB2,
but Chapter 16 provides a much broader overview of the technology.

High Availability

As data warehouses and business intelligence systems continue to move
into the mainstream, availability has become critical. In the past it was pos-
sible to update a system through a nightly, weekly, or even monthly refresh
process, a process that could take the system away from the users for
extended periods. Today, with real-time updates, real-time decisions, and
user communities spread across the globe, this is simply not feasible. To
this end, DB2 has a large number of features designed to ensure high avail-
ability for the data warehouse, for example:

■■ Multidimensional clustering

■■ Online loads

■■ Real-time updates

■■ Batch window elimination

■■ Elimination of table reorganization

■■ Online load and MQT maintenance

■■ MQT staging tables

■■ Online table reorganization

186 Chapter 6

■■ Dynamic bufferpool management

■■ Dynamic database configuration

These features are described in the following sections, along with dis-
cussions on logging and storage considerations.

Multidimensional Clustering
Multidimensional clustering (MDC) is the basis for a number of high-
availability features. An overview of MDC is shown in Figure 6.1. MDCs
are clusters of data within each hash partition across the system. For certain
types of applications, the MDC has a number of implications for system
loads and availability. Prior to MDC:

■■ All indexes were row-based.

■■ Clustering was in one dimension only.

■■ Clustering was not guaranteed, since it degrades once page free
space is exhausted.

With MDC:

■■ Tables managed by block according to defining clustering dimen-
sions.

■■ Clustering is guaranteed, since it inserts an existing block that satis-
fies all dimensions or creates a new block.

■■ Dimension indexes are block-based, which results in smaller indexes
and allows row-based indexes to be supported.

■■ Queries in clustering dimensions only do I/Os absolutely necessary
for selected data.

To create an MDC, the DBA defines the columns to cluster on and the
data that will be in each:

CREATE TABLE

SALES (Customer VARCHAR(80),

Region CHAR(5),

Year INT)

ORGANIZE BY DIMENSIONS (Region, Year)

Data is loaded to the current cluster (in parallel, across hash partitions).
.

DB2 BI Fundamentals 187

Figure 6.1 MDC overview.

Online Loads
DB2 supports online loads, for example, data can be loaded to a table while
users continue to access the table. New rows will not be available to the
users until explicitly activated, either through an automated process or by
the DBA.

To accomplish this, DB2 places a marker indicating the end of the most
recently activated segments. Queries will only read up to this marker.
When a new load segment is activated, the marker is moved. In this way,
data can be loaded without worrying about dirty reads or other data cur-
rency impacts.
Let’s look at an example of using MDCs and online loads. Say you are a
telecommunications provider running a fraud detection application on
credit card calls. To have maximum impact, you need to look at current
data. You can create an MDC with the hour and minute of the transaction
as one of the defining dimensions. Every minute’s data will be placed in a
new set of clusters (depending on the other clustering columns). Every
minute, the transactions can be activated at the end of the load cycle.

In other words, MDC complements online loads. Because the new clus-
ters are transparent to running applications, loads can proceed with no
locking and minimal “dirty read” considerations. Refer to Figure 6.2.

Region

Year

Region

All records in this
block are from the
West region and
from the year 2000

Year

East

97

East

98

North

99

South

99

West

00

188 Chapter 6

Figure 6.2 Online load.

Load From Cursor
The DB2 Loader allows data to be loaded from a cursor. This cursor can

be part of an existing application, or it can be directed to an existing table.
Suppose we want to load data into the data warehouse directly from an
ODS or our OLTP system. The cursor can reference a table on a separate
system, running under a different copy of DB2 or Oracle. By using a cursor
against a table that is tied to MQSeries, rows from an MQSeries Integrator
queue can be directly loaded in real time.

Figure 6.3 AUTOLOADER with MDC.

MDC 1

Current MDC

MDC 2

MDC 3

MDC 4

MDC 5

MDC 6

DB2SPLIT AUTOLOADER
DB2SPLIT

DB2SPLIT

Table available for
read access during

load append

Inserted data visible
when load completes

(or constraints checked)

DB2 BI Fundamentals 189

Batch Window Elimination
Most every business has at least one or two very large transaction tables
that tend to dominate the nightly batch window. Suppose you want to sig-
nificantly reduce (or essentially eliminate) your batch window. With online
load, you can populate these tables throughout the day—or, for that matter,
populate the entire warehouse piecemeal throughout the day.

Online load and MDC together allow virtual elimination of the batch
window. Consider a situation where we want to maintain a nightly load
process but eliminate our batch window. We use the transaction date as
one of the clustering columns for our MDC. We can load to the current
cluster as transactions become available throughout the day using online
load, keeping the loaded data transparent to the user. At the end of the day,
we run a simple command to activate the daily partition. At the same time,
we run a process to eliminate the oldest rows. While the rows will be
deleted using standard SQL transactions, because the MDC will cluster the
rows together (because we used the load date as part of the cluster defini-
tion), it is possible to delete the oldest rows very quickly. (This speed is
enhanced considerably by the DB2’s use of type-2 indexes, covered later in
this section.) Of course, queries that are not impacted by rows being
deleted can be run while the deletes are executing. The batch window, the
biggest recurring cause of planned outages, is effectively eliminated.

Elimination of Table Reorganization
Many times tables have specific groups of columns that are used to cluster
the data. As rows are loaded to and deleted from the table, the rows can get
out of sequence, forcing reorganization (reorg). With MDC, you can elimi-
nate the need for many reorgs.

When you define the columns you want to cluster the data on, you
ensure the data is physically stored in sequenced order. Thus, you elimi-
nate the need for reorganizations on the table.

Online Load and MQT Maintenance
Materialized query tables are dependent on the data in the underlying
tables, as shown in Figure 6.4. When these tables are part of a real-time load
environment, the impacts on an MQT using check constraints could be
tremendous. For example, suppose you are running loads in 15-second
intervals on the transaction table. An MQT has been set up to summarize
transactions by week. The process to create this summary takes 10 seconds

190 Chapter 6

for every 15 seconds of data. Obviously, it is hard to keep up with this rate
of change, particularly in the middle of the day, when the system is likely
to be running its most intense workload.

To offset this, DB2 offers the option of deferred checking of MQT to base
table check constraints. Users must be aware, however, that there may be
data currency issues between the source table and the MQT when this fea-
ture is used. See Chapter 7 for more information.

MQT Staging Tables
When real-time updates are applied against an MQT, it is possible for con-
tention hot spots to form, particularly when multiple MQT source tables
are being updated at the same time. Suppose we are doing near real-time
loads to two base tables used to create an MQT. Of course, while we are
attempting to apply these changes, read-only queries are also running
against the MQT. In this situation, a high level of contention on the rows
can quickly occur, and the same row in the MQT might end up being
updated multiple times.

Figure 6.4 MQT maintenance with online loads.

MQT1

T1

Base
Table

Primary Key

Foreign Key

C1
MQT2

DB2 BI Fundamentals 191

To avoid these hot spots, DB2 uses staging tables (Figure 6.5). The stag-
ing table receives the real-time updates and applies them, and the resultant
changes can then be applied to the MQT as an incremental refresh. In this
way, the user is never impacted by contention from multiple real-time
update sources, and we don’t waste resources with multiple intermediate
updates.

Online Table Reorganization
In some cases, we want to define an MDC on a table in a way other than
how we need to order the data physically. For example, we want to cluster
by date (to optimize our deletes, minimizing our batch window), but we
want to order the table by customer number, as many of our reports are run
this way. Or, there are tables where we have decided an MDC is simply not
a reasonable solution.

These tables may become fragmented over time. DB2 lets you reorganize
fragmented tables without shutting down the tablespace. Table reorgs are
done within the existing tablespace, eliminating the need for excessive
storage. Each moved row leaves behind a “reorg pointer” indicating its
new location. This ensures rows are not read (or even reorged) more than
once. Once the reorganization is complete, the pointers are removed. Refer
to Figure 6.6.

Figure 6.5 MQT staging table versus no staging table.

CREATE TABLE t1 (c1 INT, c2 INT)
CREATE TABLE a1 AS

(SELECT c1, COUNT(*) as count
FROM t1 GROUP BY c1)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

SET INTEGRITY FOR a1 IMMEDIATE CHECKED

No Staging Table

TRAN 1:
INSERT INTO t1
VALUES (1,2)

TRAN n:
INSERT INTO t1
VALUES (1,100)

CREATE TABLE t1 . . .
CREATE TABLE a1 AS . . .

DATA INITIALLY DEFERRED REFRESH DEFERRED
SET INTEGRITY FOR a1 . . .
CREATE TABLE s1 FOR a1 PROPAGATE IMMEDIATE
SET INTEGRITY FOR s1 IMMEDIATE CHECKED
. . .
REFRESH TABLE a1 // prunes s1

With Staging Table

TRAN 1:
INSERT INTO t1
VALUES (1,2)

TRAN n:
INSERT INTO t1
VALUES (1,100) Discrete

Records

Refresh
Prunes s1

a1

t1

a1

t1

192 Chapter 6

Figure 6.6 Online table REORGs.

As shown in Figure 6.7, online table reorganization can be run in two
modes:

■■ Reclustering mode reorganizes the clustering index and the underly-
ing data together.

■■ Space Reclamation mode, used with tables without a clustering
index, works backward through the table to reclaim unused space.

Figure 6.7 Online table reorganization modes.

VACATE PAGE RANGE: MOVE and CLEAN to Make Space

FILL PAGE RANGE: MOVE and CLEAN to Fill Space

VACATE PAGE RANGE: MOVE and CLEAN to Make Space

Reclustering

Move rows from end of table, filling up holes at
the start

TIME

Space Reclamation

Free
Space

Table available for
full S/I/U/D access

during reorg

DB2 BI Fundamentals 193

Online table reorganization operates in a trickle mode, as a low-priority
task (see Figure 6.8). This ensures the reorganization does not significantly
impact query execution. If faster reorg execution is required, the DBA can
alter this priority.

Dynamic Bufferpool Management
On rare occasion, bufferpools need to be added, dropped, or expanded.
Suppose a pressing business need dictates we analyze years of data to pro-
duce an ad hoc report for a regulatory agency. The amount of data being
scanned and moved into one of the bufferpools far exceeds our normal
usage patterns, creating a thrashing situation (as bufferpool pages are
moved from real to virtual memory and back).

DB2 allows this and other bufferpool alterations to be done online. We
can expand the impacted bufferpool to meet the current needs without
shutting down the system, and we can return it to its normal state when we
are done, again online.

The syntax for bufferpool maintenance is shown in Figure 6.9.

Figure 6.8 Online REORG syntax.

REORG {TABLE table-name Table-Clause | INDEXES ALL FOR TABLE table-name
Index-Clause} [On-DbPartitionNum-Clause]

Table-Clause:
[INDEX index-name] [[ALLOW {READ | NO} ACCESS]
[USE tablespace-name] [INDEXSCAN] [LONGLOBDATA]] |
[INPLACE [[ALLOW {WRITE | READ} ACCESS] [NONTRUNCATE TABLE]
[START | RESUME] | {STOP | PAUSE}]]

Examples:
// Recluster data, allowing write access always
REORG TABLE t1 INDEX i1 INPLACE ALLOW WRITE ACCESS NOTRUNCATE TABLE

// Reclaim all embedded unused space in the table
REORG TABLE t1 INPLACE ALLOW WRITE ACCESS

// Reclaim space on partition 5
REORG TABLE t1 INPLACE ALLOW WRITE ACCESS ON DBPARTITIONNUM 5

194 Chapter 6

Figure 6.9 Dynamic bufferpool maintenance.

Dynamic Database Configuration
On rare occasions you might want to reset database configuration parame-
ters. The syntax is shown in Figure 6.10. Suppose we need to alter a major
configuration parameter because it was set incorrectly, or the Health Cen-
ter has indicated a potential problem in the works. DB2 allows this to be
done while the database remains online.

Database Managed Storage Considerations
If you choose to have the DBMS, rather than the operating system, manage
storage, you must monitor the storage (or, more precisely, have the Health
Center, which is discussed separately in this chapter, monitor it and alert
you to impending problems). Of course, manipulating the underlying stor-
age system could produce significant outages. To avoid this, DB2 allows
you to alter the containers and stripe sets without taking the system offline.
You can add stripe sets to a database-managed storage (DMS) container or
add another disk to the same stripe set in order to increase the available
storage. (See Figure 6.11.)

Figure 6.10 Online database configuration parameters.

 +--IMMEDIATE--+
>--UPDATE DB CFG-+---------------------+-USING parameter-clause,..-+--------------------+----->>

 +-FOR <dbname>-+ +--DEFERRED----+
parameter-clause:
>--MAXAPPLS--+--value----+--+-----------------------------+---------->

 | +-AUTOMATIC-----------+
 +--AUTOMATIC-----------------------------+

>>-ALTER--BUFFERPOOL--bufferpool-name--->
+IMMEDIATE+

>------- +- +---------------+----+--------------------------------+---SIZE--n--------+---><
| +DEFERRED-+ '-NODE--node-number---' |
| |

 +- +-NOT EXTENDED STORAGE-+-------------------------------------+
| '-EXTENDED STORAGE---------' |
'-ADD NODEGROUP--nodegroup-name-+IMMEDIATE+----------'

>>-CREATE--BUFFERPOOL--bufferpool-name--------- +----------------+--------------> ...
 + DEFERRED-+

>>-DROP----BUFFERPOOL--bufferpool-name---> ...

DB2 BI Fundamentals 195

Figure 6.11 Add stripe sets.

You can also drop containers, as shown in Figure 6.12, from an active
DMS storage space—provided, of course, you leave enough space to store
the data.

Logging Considerations
As data warehouses are incorporating more and more real-time data, logs
are becoming an increasingly critical feature of the DBMS. DB2 provides a
number of features to improve logging performance and recovery time.

A number of log features are designed to prevent or minimize outages.
DB2 can track which tablespaces have changes within each log file. You can
turn on and off the logs using the following setting.

Db2set DB2_COLLECT_TS_REC_INFO=OFF

If a tablespace needs to be recovered, DB2 will only read the logs that
have an impact on the recovery process, dramatically reducing the recov-
ery time.

DB2 provides for infinite logging. When activated, space for logs that
have already been archived is automatically reclaimed and reused. This
can reduce the amount of log maintenance required in data warehouses (or
other systems) with a high update volume, and it can prevent unexpect-
edly long transactions from having a negative performance impact due to
log overruns. Syntax is shown in Figure 6.13.

Figure 6.12 Drop container.

ALTER TABLESPACE myts
DROP (FILE'myfile')

ALTER TABLESPACE myts
BEGIN NEW STRIPE SET

(FILE 'cont1' 2500,
FILE 'cont2' 2500)

No
Rebalance!

196 Chapter 6

Figure 6.13 Enabling infinite logging.

DB2 allows mirrored logs to be kept on separate physical devices, ensur-
ing recoverability in the event of a complete device failure. The syntax is
shown in Figure 6.14.

Administration

Data warehouses are inherently complex, supporting an ever-changing
mixture of data demographics, user requests, and the resultant conflicting
workloads. Adding to this mix are increasing use of real-time loads, inte-
gration of remote data sources, and user communities that are demanding
new forms of data delivery.

Managing and tuning a system with these inherent levels of volatility
can be a daunting task. But the amount of time a DBA has in the day is
finite. To reduce the level of effort required and allow DBAs to expand their
control, IBM has invested heavily in the eLiza program. For DB2, the
SMART project has had the most direct impact on the product.

eLiza and SMART
The Self Managing and Resource Tuning (SMART), represents a database
effort that is part of IBM’s broader eLiza project for self-managing servers.
SMART is a long-term project designed to make database management
and tuning simple and automatic, with the eventual goal of full autonomic
computing. The items discussed in this section encompass many of the
newest administration features of DB2, but because of the resources IBM
has committed to the eLiza project, you should be aware that rapid
advances in this area are quite possible. You should therefore check with
IBM for the latest information.

Figure 6.14 Enabling mirrored logging.

>--UPDATE DB CFG-+-----------------------+-USING LOGSECOND -1
 +-FOR <dbname>-+

>--UPDATE DB CFG-+-----------------------+-USING LOGSECOND -1
 +-FOR <dbname>-+

DB2 BI Fundamentals 197

Automated Health Management Framework
The Automated Health Management Framework, shown in Figure 6.15,
allows the DBA to set thresholds for specific database events, including
performance- or availability-related items. When the threshold is reached,
a predetermined action is taken (e.g., a report produced, an email or page
sent). When the alert is received, the DBA can log into the Health Center to
view details and the Health Center’s suggested actions. The DBA can then
take one or more of the recommended actions or create his or her own
desired action. Through this proactive, automated approach, potential
problems can be dealt with before they become critical.

AUTOCONFIGURE
The AUTOCONFIGURE option allows DB2 to automatically configure a
number of critical system performance parameters, including memory
allocation percentages and bufferpool resizeability, automatically. The
AUTOCONFIGURE option can be defined through the CREATE DATA-
BASE command or the CLP. The syntax is shown in Figure 6.16.

Initial studies from IBM show that a few minutes of answering questions
for the AUTOCONFIGURE expert system can replace weeks of perfor-
mance tuning by a human DB2 performance expert.

Figure 6.15 Automated Health Management Framework.

GUI

CLP

APIs

Health Monitoring
Agents

DB bar

Instance foo

Email,
Pages,
Scripts

198 Chapter 6

Figure 6.16 AUTOCONFIGURE.

Administration Notification Log
The Administration Notification Log provides a single, easy-to-read log
file for all administrative messages. The syntax is diagrammed in Figure
6.17. DBAs can set the notification level (1 to 4) to the level of message they
wish to have reported, along with a customized message indicating the
severity they associate with each level.

Maintenance Mode
Sometimes it is necessary to place a DB2 instance into a known and stable
state before performing certain administrative tasks. To allow this, D2 pro-
vides a quiesce mode. When an instance is quiesced, the users can be
immediately forced off, or new logons/attachments can be disallowed.
When the latter option is used, the quiesce will take place when all active
users have logged off. Specific users (such as the DBA) can still be allowed
to access a database that is being quiesced. The syntax for quiesce is shown
in Figure 6.18.

Figure 6.17 Notification log.

>--UPDATE DBM CFG---USING NOTIFYLEVEL [1|2|3|4]

1 : Critical " It's Too Late! "
2 : 1+Urgent " Immediate Action Required "
3 : 2+Important " Important Information, But No Immediate Action Required "
4 : 3+FYI " For your information "

AUTOCONFIGURE [USING config-keyword value [{, config-keyword value}...]]
 [APPLY {DB ONLY | DB AND DBM | NONE}]

config-keyword:
MEM_PERCENT, WORKLOAD_TYPE, NUM_STMTS, TPM, ADMIN_PRIORITY,
IS_POPULATED, NUM_LOCAL_APPS, NUM_REMOTE_APPS, ISOLATION, BP_RESIZEABLE

DB2 BI Fundamentals 199

Figure 6.18 Quiesce.

Event Monitors
Event monitors can now be targeted to individual tables, and deadlock
monitors can provide the exact SQL statements that caused the deadlock.
The syntax for monitoring UDB events is diagrammed in Figure 6.19.

SQL and Other Programming Features

As business intelligence environments become more complex, features are
implemented which can make the development of applications simpler.

INSTEAD OF Triggers
For some situations it is desirable to have triggers perform actions instead
of standard SQL INSERT, UPDATE, or DELETE functions. INSTEAD OF
triggers allow the DBA to define case-by-case substitutions for standard
SQL operations. The code for using this function is shown in Figure 6.20.
Say we have data that is coming from a variety of source systems, and the
rules for updating these systems are different. When a change comes to the
data warehouse, we can use INSTEAD OF triggers to indicate different
processing depending on the original source system.

Figure 6.19 Event monitors.

CREATE EVENT MONITOR myevmon FOR DEADLOCKS WITH DETAILS WRITE TO TABLE
SET EVENT MONITOR myevmon STATE 1
// deadlocks occur
FLUSH EVENT MONITOR myevmon
SELECT dlconn_myevmon.deadlock_id, stmt_text FROM dlconn_myevmon, deadlock_myevmon

WHERE dlconn_myevmon.deadlock_id=deadlock_myevmon.deadlock_id

deadlock_id stmt_text
4 lock table t1 in exclusive mode
4 lock table t2 in exclusive mode

QUIESCE DATABASE IMMEDIATE [FORCE CONNECTIONS]

QUIESCE INSTANCE instance-name [USER user-name | GROUP group-name]
IMMEDIATE [FORCE CONNECTIONS]

UNQUIESCE DATABASE

UNQUIESCE INSTANCE instance-name

200 Chapter 6

Figure 6.20 INSTEAD OF trigger code.

Let’s consider an example. Suppose we have a table that is part of our
system of record. Because of this, we must keep historically accurate views
of the data. A user with proper access issues a DELETE command. Rather
than delete the entry, we want to create a new row that cancels out the orig-
inal transaction. Using an INSTEAD OF trigger, we can specify this revers-
ing transaction be applied instead of the standard SQL DELETE command.

DML Operations through UNION ALL
DB2 Version 7 provided full UPDATE and DELETE functionality to views
that contain one or more UNION ALL statements in their bodies. DB2 Ver-
sion 8 extended this capability to include INSERTs. Now, all data manipu-
lation commands are common across tables and views, including those
views with UNION ALL statements in their bodies.

INSERT through UNION ALL has a number of potential applications,
including the ability to insert data into a view that includes tables that have
been migrated to tertiary storage by a Hierarchical Storage Manager
(HSM). In this case, we may have identical table structures on RAID
devices for the most recent data, and the same table definitions on optical
for the oldest data. We may need to update rows in some of these tables.
INSERT through UNION will send the updates to the appropriate table.
The code syntax is shown in Figure 6.21.

CREATE VIEW EMPV (EMPNO, FIRSTNAME, MIDINIT, LASTNAME, PHONENO, HIREDATE, DEPTNAME)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE, DEPTNAME
FROM EMPLOYEE, DEPARTMENT WHERE EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

CREATE TRIGGER EMPV_INSERT INSTEAD OF EMPV
REFERENCING NEW AS NEWEMP DEFAULTS NULL FOR EACH ROW MODE DB2SQL
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)

VALUES (EMPNO, FIRSTNAME, MIDINIT, LASTNAME,
COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR ('70001', 'Unknown department name')),
PHONENO, HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP DEFAULTS NULL FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

VALUES (CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0
 ELSE RAISE_ERROR ('70002', 'Must not change EMPNO') END);
UPDATE EMPLOYEE AS E SET (FIRSTNAME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
 = (NEWEMP.FIRSTNAME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
 COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

 RAISE_ERROR ('70001', 'Unknown department name')),
 NEWEMP.PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;

END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP FOR EACH ROW MODE DB2SQL
DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

DB2 BI Fundamentals 201

Figure 6.21 INSERT through UNION ALL.

Informational Constraints
Referential integrity constraints do not have to be enforced by the DBMS.
In some cases, the source applications are used to enforce compliance
between tables. Still, in these cases, the DB2 optimizer could benefit from
knowing there is a constraint enforced between the tables. The CHECK
CONSTRAINT command, as outlined in Figure 6.22, provides an option to
allow the constraint to be exploited by the optimizer, but not checked by
the DBMS. This is called informational constraints.

Figure 6.22 Informational constraints.

CREATE TABLE H1 (MONTH INT, DATA INT)
CREATE TABLE H2 LIKE H1
ALTER TABLE H1 ADD CONSTRAINT CHK1 CHECK (MONTH BETWEEN 1 AND 6) NOT ENFORCED
ALTER TABLE H2 ADD CONSTRAINT CHK2 CHECK (MONTH BETWEEN 7 AND 12) NOT ENFORCED

CREATE VIEW FY AS SELECT * FROM H1 UNION ALL SELECT * FROM H2

SELECT * FROM FY WHERE MONTH IN (1, 2, 3)

CREATE TABLE Q1(order DATE, item VARCHAR (10), CHECK (MONTH (order) BETWEEN 1 AND 3)
CREATE TABLE Q2(order DATE, item VARCHAR (10), CHECK (MONTH (order) BETWEEN 4 AND 6)
CREATE TABLE Q3(order DATE, item VARCHAR (10), CHECK (MONTH (order) BETWEEN 7 AND 9)
CREATE TABLE Q4(order DATE, item VARCHAR (10), CHECK (MONTH (order) BETWEEN 10 AND 12)

CREATE VIEW V (order, item)
AS SELECT * FROM Q1

UNION ALL
SELECT * FROM Q2
UNION ALL
SELECT * FROM Q3
UNION ALL
SELECT * FROM Q4

INSERT INTO V VALUES ('2000-01-06', 'Shoes'), ('2000-06-17', 'Socks')

202 Chapter 6

User-Maintained MQTs
In some cases, we may have applications or users that maintain summary
or other derived tables. Consider an example where an application suite
calculates and stores all standardized corporate calculations for profitabil-
ity. Still, we would like these summary tables to be available to the opti-
mizer for automatic substitution at query execution time.

User-maintained MQTs allow us to tell the DB2 optimizer that a table is
calculated using certain commands, based on specific tables. DB2 will use
this information in its optimization process, even though it is not responsi-
ble for creating or maintaining the MQT.

Performance

Performance, of course, is one of the most critical aspects of a data ware-
house environment. The faster a query can execute, the faster the business
response can be enacted. The fewer resources a process takes, the more
resources that are freed for other tasks. Better performance translates
directly into faster actions and lower costs.

Connection Concentrator
Each user who is logged on to the system requires a certain level of
resources from the DBMS. DB2 uses an agent/sub-agent approach to dis-
patch specific commands throughout the system. At any given time, these
users or tasks have down cycles that could be used for other processing.

The Connection Concentrator allows multiple users to share critical
resources, including agents (agents coordinate the query and finalize the
result set in a shared-nothing environment) and sub-agents (processes that
carry out the actual execution of the query steps). Figure 6.23 illustrates the
concept.

Think of the connection concentrator as a multiplexer for query execu-
tion steps. By allowing multiple users to share database resources, the
overall demands on the system can be dramatically reduced, and the need
for process context switching can be greatly reduced.

DB2 BI Fundamentals 203

Figure 6.23 Connection Concentrator.

Compression
One of the truths about any data warehouse is that some columns are
sparsely populated. These columns can take considerable space in the data
warehouse. A method to effectively squeeze the unused space out can save
money and improve efficiency.

DB2 allows compression on specific columns. While this saves space
(and, hence, storage costs), it can also improve query performance by
allowing more rows to fit into each page, and hence be retrieved by each
I/O. Compression can be specified on “null” for any null column or on a
default value for any column. The compressible defaults are blank for char-
acter type fields and zero for numeric. For each row where the compressed
value is found, a compression byte is stored in place of the data. When the
column is retrieved by a query, DB2 will substitute the default value.

Figure 6.24 illustrates noncompressed versus compressed data.

Type-2 Indexes
To ensure the highest level of concurrency, DB2 provides type-2 index struc-
tures. These prevent false lock contention on the surrounding row values.
Type-2 indexes use a pseudo-delete algorithm, where rows that are deleted
will be left in the table but marked as deleted. The rows will be physically
removed when the transaction is committed. All indexes created in DB2 V7
or lower will be Type 1 indexes; all indexes created in DB2 V8 or higher will
be type-2 indexes. Both index types are compared in Figure 6.25.

N Client
Connections

Communications
Link

N Coordinator
Agents

f (N) Subagents

N Client
Connections

Communications
Link

K Coordinator
Agents

f (K) Subagents

204 Chapter 6

Figure 6.24 Non-compressed vs. compressed data.

Figure 6.25 Index types.

10 13 16 18

APP 1: DELETE FROM T1
WHERE C1=13

APP 2: INSERT INTO T1
VALUES (13,.....)

APP2: SELECT ... FROM T1
WHERE C1>10

APP3: INSERT INTO T1
VALUES (12,.....)

Type-1

Prevents unique
violations

Prevents dirty reads

Allows false conflict

L
10 13 16 18

APP 1: DELETE FROM T1
WHERE C1=13

APP 2: INSERT INTO T1
VALUES (13,.....)

APP2: SELECT ... FROM T1
WHERE C1>10

APP3: INSERT INTO T1
VALUES (12,.....)

Type-2

Prevents unique
violations

Prevents dirty reads

No longer conflicts

DL

Variable Portion

c4 data

c4 data

c4 4

1 2

21 c3c2 data

Non-compressed

Compress

Legend:

Actual column data

Fixed portion of variable column (4 bytes - offset + length)

Attribute byte:

Offset of column data

Existing Format: Always present for NULLable columns
New Format: Present when value/NULL compression active (not used to indicate 0 length values)

c1

Fixed Portion

c3 length=0

o3=o4 indicates c3 length is 0

endo4o3o2o1

End offset needed to
calculate length of c4

DB2 BI Fundamentals 205

MDC Performance Enhancement
In addition to the implications for high availability, MDCs also provide a
significant performance boost. Data are kept in clusters, or blocks, accord-
ing to their MDC value. Because these values are unique and known, the
optimizer can use them to quickly isolate rows that pertain to a specific
request. MDCs maintain rows in contiguous order. In addition to reducing
the need for reorgs, this also means more effective physical I/Os, as each
page contains contiguous rows.

Blocked Bufferpools
When the DB2 pre-fetchers read data from a table (or index) into the buffer-
pools, they use the first available space they find. Because data is removed
from the bufferpool based on spoiled rows, then via an LRU algorithm, the
available space at any given time can be spread across the bufferpool. This
can have a negative impact on performance.

DB2 allows you to define a bufferpool as blocked. A blocked bufferpool
maintains contiguous memory in block sizes that match the associated
tablespace. As blocks of pages are read by the pre-fetchers, they are moved
into contiguous memory. In this way, data is not only available to the appli-
cation when it needs the data, it is also available in the most effective man-
ner possible.

Extensibility

One of the key features of DB2 Universal Database is its extensibility. Tra-
ditional RDBMSs have a predetermined set of object definitions (integer,
character, decimal, etc.) and operations (add, subtract, string, etc.) that they
support. DB2 certainly supports all of these standard features. But it goes
well beyond these features and provides the ability to support new data
types (spatial, image, XML, and custom, to name a few) and operations
(PMML Scoring, discussed at the end of the chapter, data mining, spatial
analysis, etc.).

Incorporating advanced functionality at the engine level is the necessary
step for IBM to address a seamless integration of BI functionality. Only at
the engine level of the RDBMS can you truly tune for maximum perfor-
mance and consolidate administration. The extensions of DB2 UDB include
MQSeries Extender, Spatial Extender, Text Extender and Text Information
Extender, Image Extender, XML Extender, Video Extender, Audio Extender,
and Net Search Extender. In addition, a number of mining functions like

206 Chapter 6

DB2 Scoring, as well as access to MQSeries Integrator, are implemented
using these extensibility features. All of these bring to the core of your data-
base advanced features and functionality that enhance the capabilities of
your RDBMS and your ability to deliver broad informational content to
your user communities and their analytic applications.

Spatial Extender
The DB2 Spatial Extender allows you to store graphical information, index
it, and explore the relationships among various objects. This topic is dis-
cussed in greater detail in Chapter 16. For now, we will only briefly men-
tion the extensions functionality.

Say you work for a bank and your user community wants to look at the
performance of your various branches and ATMs. In a tabular report you
can see that one of our ATMs is underperforming, but there is no immedi-
ate indication of why this might be. On the spatial version, you can readily
see the issue: there are natural boundaries preventing customers from
reaching this ATM. Spatial analysis allows you to quickly see relationships
that would be difficult to find in a traditional tabular format. Images can be
viewed and analyzed using tools from ESRI. As illustrated in Figure 6.26,
analysts can quickly discern the outlet performance in comparison to the
competition.

Figure 6.26 Spatial analysis.

1124 ParkAvenue $200,000 Competitors
4862 Market Street $50,000
1239 1st Street $100,000

15th
St

28th
St

Park
Ave

B
ro

ad
w

ay

Ch
am

pa
St

M
ar

ke
t S

t

P

P

P

P

P

P

F

F

P

DB2 BI Fundamentals 207

Text Extender and Text Information Extender
The DB2 Text Extender provides linguistic indexing and search capabilities
in 22 languages. It includes the ability to run a number of different search
types, including free text and fuzzy searches. Synonyms and similar
spellings can be checked in all 22 supported languages. In addition to tra-
ditional documents, the Text Extender allows users to search in HTML and
XML texts.

Suppose we work for a property and casualty insurance company. The
Text Extender would allow us to easily store and analyze document-based
data pertaining to claims, for example, police reports on accidents and
damage reports from field agents. Using the fuzzy search capabilities, we
can find similar documents even when different descriptions were used.

The DB2 Text Information Extender provides mode sophisticated search
techniques, but does not have the range of language support that the Text
Extender does.

Image Extender
The DB2 Image Extender allows you to store image data and analyze it
using IBM’s Query By Image Content (QBIC). QBIC allows us to query
images for matches using colors or texture patterns from a sample image.
With DB2 Image Extender, we can do more than simply store and retrieve
images, we can perform complex analysis on the images themselves.

Let’s switch our example to a health insurer. A health insurer could keep
all patient records, including radiograph, ultrasound, and MRI images.
This data could then be offered as a value-added service to health care pro-
fessionals. The doctor could take an MRI, search the database for images
with similar patterns, and receive a report on diagnosis and treatment effi-
cacy for similar situations.

XML Extender
The DB2 XML Extender allows us to categorize and index XML-based data
for easy analysis. Tags and text within an XML record can be automatically
assigned to database columns.

Say you are an online retailer, and you collect a lot of data on your cus-
tomers. You can use XML to track their privacy restrictions and use these
restrictions as part of your criteria on including them in an upcoming mar-
keting campaign.

208 Chapter 6

Video Extender and Audio Extender
The DB2 Video Extender and DB2 Audio Extender allow storage and
retrieval of audio and video images. Say you are an analyst for a major
league sports team of a game, such as basketball, with a timed environ-
ment. You want to analyze the progress of other teams’ players for com-
petitive purposes and your own players for improvement purposes. You
can collect statistics on how the players perform under specific circum-
stances. Using the Video Extender, coordinated with the official time clock
used in the events, you can use actual game footage to precisely demon-
strate the trends and tendencies you are examining.

Net Search Extender
The DB2 Net Search Extender allows high-speed Boolean and fuzzy
searches against very large indexes. Returning to the online retailer exam-
ple, suppose you want to give our customers access to your inventory, even
when they use very imprecise search criteria. Using Net Search, you can
provide “Internet speed” search capabilities to their queries.

MQSeries
DB2 can view MQSeries Integrator queues as tables in the database. In this
way, DB2 can place data onto the queue by simply writing to the table, and
take data off of a queue by simply reading the table.

Let’s consider an example. Suppose you are a bank, and you want to
know every transaction your customer has made so you can position the
correct offer in front of him at any time. You need to understand everything
he has done with up-to-the-second accuracy. You define an MDC of one
second. You search the incoming MQSeries queue for new entries con-
stantly. When one is found, you use the DB2 loader’s ability to load directly
from another table (load from cursor) to load into your MDC directly from
the MQSeries Integrator queue. Every second, your data warehouse is
refreshed with the latest view of your customers.

DB2 Scoring
Implemented using DB2 Extender technology, DB2 Scoring is based on the
Data Mining Group’s (DMG, www.dmg.org) Predictive Model Markup
Language (PMML). PMML is an industry standard for creating and using

DB2 BI Fundamentals 209

scoring models. Once developed, PMML models can be deployed across
any PMML-compliant software. Data mining is explored in greater depth
in Chapter 14.

In a traditional data mining environment, a risk management expert
would develop the scoring models, and the business area experts would
decide how to treat customers within each score group. Moreover, typi-
cally the customers would be scored in a batch process and the results
pushed out to the customer-facing employees.

To clarify this, let’s return to the bank scenario. A customer calls the ser-
vice center to request a new credit line. He provides the customer service
agent with updated financial information. The agent puts the new data in,
and DB2 Scoring returns a score. Based on this score, the customer service
agent can give the customer an almost immediate answer.

What happened behind the scenes is the risk manager still defined the
scoring process, and the business area experts decided on the appropriate
actions to take based on the score. The scoring model was implemented
as a DB2 function. When the customer service agent input the new
data, the model used a standardized approach to determine a score and
returned an action based on these business rules. Without even realizing it,
the customer service agent executed a real-time data mining exercise. (See
Figure 6.27.)

Figure 6.27 DB2 Scoring.

Take Action

Transformed Data

Data
Exploration

Extracted
Information

Add
Scoring

MineTransform

Measure Results

Assess Permanent
Adoption

Define the
Problem

Scope the
Project

Identify Data
Sources

Form the
Team

Prepped
Data

Raw Data

210 Chapter 6

Summary

Today’s BI environments are increasingly demanding. From zero-latent
techniques to Internet portal technology to global enterprise logistics,
current BI systems are stressed to their maximum. That is why IBM has
designed DB2 V8 for maximum uptime, efficient administration, and
extensibility. DB2 provides many of the fundamental features and func-
tions to support the most demanding requirements for data management
in both warehousing and BI applications.

DB2 BI Fundamentals 211

213

Key Issues:

■■ Materialized query tables (MQTs) are an excellent example of BI
analytics blended into the database engine and its optimization
process.

■■ Significant performance can be experienced using MQT technology
for complex, long-running decision support queries over large data
sets.

■■ DB2 V8 MQTs are a significant improvement over previous imple-
mentations of automatic summary tables (ASTs).

Materialized query tables were introduced in DB2 UDB Version 5 and have
been continually enhanced with new capabilities since then. Their objec-
tive is to address the performance problems known to exist with automatic
summary tables. Prior to DB2 UDB V8, MQTs were called ASTs. In DB2 V8,
this feature has been extended to include a larger variety of materialized
views that do not contain summary data and therefore a more generalized

DB2 Materialized Query Tables

C H A P T E R

7

term than AST was required. ASTs can be considered a subset of the gener-
alized MQT.

The motivation for materialized views came from the performance prob-
lems associated with analyzing large amounts of data repetitively with
minor variations to the query predicates. The results of these queries are
almost always expressed as summaries or aggregates. For example, a
query might request the number of items belonging to a consumer elec-
tronics product group sold in each month of the previous year for the western
region, while another query may request the same kind of information for
only the month of December for all regions in the United States. A third
query might request monthly information for laptops for all regions in the
United States over the past 6 months. The underlying data could easily
involve millions of transactions stored in one or more tables that would
need to be scanned repeatedly to answer the queries. Consequently, query
performance is likely to be poor. MQTs address performance problems by:

■■ Allowing a DBA to precompute and materialize into a table an
aggregate query. This summary table contains a superset of the
information that answers a number of queries that have minor
variations.

■■ Enhancing the DB2 optimizer to automatically rewrite a query
against the base tables to target the materialized view instead (if
appropriate) to satisfy the original query. And since the materialized
view contains precomputed values, it is generally much smaller in
size than the base tables, causing significant performance gains to be
achieved.

A real-world example is a client that requires a query to compute the
total sales for all product categories for the year 1998. In this particular
case, the query involves joining 1.5 billion transaction rows in a fact table
with three dimension tables. The query has to touch at least 400 million
rows in the transaction table. Without an MQT, the response time on a 22-
node SP was 43 minutes. With an MQT, the response time has been
reduced to 3 seconds! DB2 essentially touches at least 4,000 times fewer
rows and avoided a join. The benefits achievable with MQTs largely
depend upon your own unique workload.

Materialized view functionality is somewhat similar to the role of a DB2
index, which provides an efficient access path that the query user is typi-
cally unaware of. But unlike an index, a user may directly query the MQT.
This is not generally recommended, however, since it would detract from
the appeal of an MQT being a black box that an administrator creates and
destroys as required to deliver superior query performance. Figure 7.1 pro-
vides an overview of the materialized view concept.

214 Chapter 7

Figure 7.1 Materialized view.

The materialized view concept can also be exploited for better perfor-
mance in an e-business environment. For example, in e-commerce, product
catalog information can be cached on mid-tier servers to significantly
improve the performance of catalog browsing. MQTs can be used to cache
back-end database product information on a mid-tier. DB2 supports such
caching by allowing MQTs to be defined over nicknames that are used to
define a remote table. Populating the MQT involves pulling data from the
remote table and storing it locally, resulting in significant performance ben-
efits. Note that this only applies to deferred refresh MQTs.

The single-table MQT example described in Figure 7.2 is replicating the
CUST table in a partitioned database environment to all the partitions. This
is done in order to improve the performance of joins with the TRANS table,
which is partitioned across a number of partitions. Single-table MQTs are
primarily used to isolate hot data for improved access performance. Such
MQTs can have indexes created on them that may not be viable on the
underlying tables on which the MQT is based. The join MQT example is
similar in concept to the single table MQT except that it involves a join of
two tables.

SQL Queries
Against Base Tables

DB2 Optimizer

no
query
rewrite

MQT
T1,T2,..Tn

Immediate
RefreshORDeferred

Refresh

Base Table
Tn

Base Table
T2

Base Table
T1

with
query
rewrite

DB2 Materialized Query Tables 215

Figure 7.2 MQT without aggregation.

Implementing MQTs requires you to determine the acceptable latency of
data for the query. For data warehouses and strategic decision making,
there can be (and in some cases needs to be) a certain latency, such as end-
of-day, end-of-week, or end-of-month information. In such cases, the mate-
rialized view need not be kept in sync with the base tables. DB2 supports a
deferred refresh of the MQT for such scenarios. With regard to OLAP and
tactical decision making, any MQT latency may be unacceptable, and DB2
supports an immediate refresh of the MQT in such cases. Note that there
could be significant performance overheads on the base tables when the
volume of update activity is high in these scenarios.

Other issues to consider for using MQTs include implementation and
tuning. For implementation you must identify the materialized views that
need to be created and the refresh approach to be adopted. Similarly, MQTs
that are no longer required should be identified and dropped. Tuning
requirements for optimal performance of your MQTs is another concern—
for example, executing RUNSTATS, creating referential integrity constraints,
choosing appropriate refresh approaches, and creating appropriate indexes.
The main syntax elements of creating an MQT are shown in Figure 7.3.

TRANSCUST

CUST custidA

STORE storeid1

TRANS ... custidA

TRANS ... storeid1

CUST_NAME, DATE, SALES
WHERE DATE >='2002-01-01'

Hot Pre-Joined Data

Join MQTs
Repartitioned Tables
Also for Colocated Joins

CUST custidB

STORE storeid2

TRANS ... custidB

TRANS ... storeid2

STORE storeid3

TRANS ... storeid3

TRANS

DATE, SALES WHERE
DATE >='2002-01-01'

Hot Data
• Columns
• Rows
• More indexes on less data

Single Table MQTs

Replicated Tables
Colocated Joins CUST CUST

STORE
storeid1

TRANS
storeid1

CUST

STORE
storeid2

TRANS
storeid2

CUST

STORE
storeid3

TRANS
storeid3

216 Chapter 7

Figure 7.3 Main MQT syntax elements.

For brevity, other issues that impact your implementation and execution
of materialized views are outlined in the following:

■■ When DEFINITION ONLY is specified, any valid fullselect that does
not reference a typed table or typed view can be specified. The
query is used only to define the table. The table is not populated
using the results of the query, and the REFRESH TABLE statement
cannot be used.

■■ When the CREATE TABLE statement is completed, the table is not
considered a materialized view. The columns of the table are defined
based on the definitions of the columns that result from the full-
select. If the fullselect references a single table in the FROM clause,

nickname

CREATE

as-subquery-clause:

TABLE element-list

as-subquery-clause

table-name

AS DEFINITION ONLY(fullselect)
,

OF

typed-table-options

type-name1

LIKE
copy-options

copy-options

materialized-query-table-options

table-name1

materialized-query-table-options:

DATA INITIALLY DEFERRED REFRESH DEFERRED
IMMEDIATE

staging-table-definition

view-name

(column-name)

staging-table-definition:

FOR PROPOGATE IMMEDIATEtable-name2
,

(staging-column-name)

ENABLE QUERY OPTIMIZATION

DISABLE QUERY OPTIMIZATION

MAINTAINED BY SYSTEM

MAINTAINED BY USER

DB2 Materialized Query Tables 217

select list items that are columns of that table are defined using the
column name, data type, and nullability characteristic of the refer-
enced table.

■■ With the DATA INITIALLY DEFERRED option, data is not inserted
into the table as part of the CREATE TABLE statement. The MQT
has to be populated using the SET INTEGRITY command or a
REFRESH TABLE statement, or some other user-determined mecha-
nisms, depending upon whether the MQT is system-maintained or
user-maintained.

■■ The ENABLE QUERY OPTIMIZATION parameter allows the MQT
to be used for query optimization. This is the default option.

■■ The DISABLE QUERY OPTIMIZATION ensures that the MQT is not
used for query optimization. However, it can still be directly
queried.

■■ The MAINTAINED BY SYSTEM option indicates that the data in the
MQT is maintained by the system and it is the default.

■■ The MAINTAINED BY USER option indicates that the MQT is user-
maintained. In this case, the user is allowed to perform UPDATE,
DELETE, or INSERT operations against the user-maintained MQT.
The REFRESH TABLE statement, used for system-maintained
MQTs, cannot be invoked against user-maintained MQTs. Only a
REFRESH DEFERRED MQT can be defined as MAINTAINED BY
USER.

Figure 7.4 shows the syntax of the REFRESH statement that refreshes the
data in an MQT. The INCREMENTAL and NOT INCREMENTAL options
are covered later in the chapter.

Figure 7.4 REFRESH TABLE statement.

REFRESH TABLE

,

INCREMENTAL
NOT INCREMENTAL

table-name

218 Chapter 7

Initializing MQTs

Three steps are necessary to initialize an MQT: creating, populating, and
tuning. And, of course, you will need to drop MQTs from time to time. We
discuss each in the following sections.

Creating
Assuming that the user has determined what the materialized view should
look like, the following occurs when the MQT creation DDL is executed.
First, since the MQT is not populated at the time of creation, it is placed in
CHECK PENDING NO ACCESS state regardless of whether it is a system-
maintained or a user-maintained MQT. No SQL read or write access is per-
mitted against tables in a CHECK PENDING NO ACCESS state. Second,
the dependencies regarding the underlying tables and the MQT are
recorded in SYSCAT.TABLES, SYSCAT.TABDEP, and SYSCAT.VIEWS, just
as in any other table or view definition creation. All packages that access
the underlying tables on which the materialized view is built are invali-
dated if the REFRESH IMMEDIATE option is chosen or it is a staging table.
This is because the SQL compiler must add appropriate operations in the
package to support the refresh immediate MQTs or staging tables. When
the package is first accessed after invalidation, an automatic rebind ensures
that the package has been updated to support the MQT or staging table.

EXPLAIN of this package will highlight the additional SQL operations
being performed to support MQTs.

Populating
Populating may be achieved in one of three ways: a SET INTEGRITY state-
ment, a REFRESH TABLE statement, or a user-managed technique:

SET INTEGRITY. The following statement causes the MQT to be
populated, and results in the CHECK PENDING NO ACCESS state
being reset on successful completion.
SET INTEGRITY FOR tablename IMMEDIATE CHECKED

REFRESH TABLE. The following statement causes the MQT to be
populated and the CHECK PENDING NO ACCESS state to be reset
on successful completion.
REFRESH TABLE tablename

There is no semantic difference between using the SET INTEGRITY
or the REFRESH TABLE syntax; both are treated identically.

DB2 Materialized Query Tables 219

User-managed. In the user-managed approach, it is left to the user to
populate the MQT and then reset the CHECK PENDING NO
ACCESS state. The user is responsible for ensuring the consistency
and integrity of the MQT. Typically, the user would first make the
underlying tables read-only. Then the user would extract the
required data from the underlying tables and write it to an external
file, at which point the user can IMPORT or LOAD the data into the
MQT. Either of these operations are permitted on a table in CHECK
PENDING NO ACCESS state. Finally, the user would reset the
CHECK PENDING NO ACCESS state using the following statement:
SET INTEGRITY FOR tablename ALL IMMEDIATE UNCHECKED

This action is recorded in the fifth position of the CONST_CHECKED
character array (value ‘U’) in the catalog table SYSCAT.TABLES col-
umn, indicating that the user has assumed responsibility for data
integrity of the MQT. The SET INTEGRITY statement also applies to
staging tables.

To use SQL INSERT statements, you must first take the MQT out of
CHECK PENDING NO ACCESS state, if appropriate. However, you must
first disable optimization before resetting the CHECK PENDING NO
ACCESS state via the DISABLE QUERY OPTIMIZATION option in the
DDL to ensure that a dynamic SQL query does not accidentally optimize to
this MQT while the data in it is still in a state of flux. This warning applies
to user-managed MQTs with the DEFERRED REFRESH option. Once the
materialized view has been populated, the optimization needs to be
enabled and the underlying tables need to be made read/write using the
SET INTEGRITY command.

Note that at any time a system-maintained MQT can be put back in
CHECK PENDING NO ACCESS state using the SET INTEGRITY FOR
tablename OFF statement. The ‘REFRESH TABLE tablename NOT INCRE-
MENTAL’ can be used if you want DB2 to fully refresh the MQT.

Using the SET INTEGRITY or REFRESH TABLE approaches to populate
the MQT involves using SQL INSERT subselect-type processing, which
may result in excessive logging when very large MQTs are being popu-
lated. Users may want to avoid this logging overhead by refreshing the
MQT using the preceding approach.

220 Chapter 7

Another mechanism of using LOAD via cursors may be used to populate
materialized views as well. For more information on this logic, please refer
to the redbook titled “DB2 UDB’s High Function Business Intelligence in
e-business” published by IBM.

Tuning
The tuning of an MQT is a straightforward process. This involves creating
appropriate indexes and executing the RUNSTATS utility on the MQT to
ensure optimal access path selection. For more details regarding the tuning
of MQTs, refer to the section MQT Tuning toward the end of the chapter.

MQT DROP
When an MQT is dropped, all dependencies are dropped and all packages
with dependencies on the MQT are invalidated. Views based on dropped
MQTs are marked inoperative.

MQT Refresh Strategies

As mentioned, DB2 supports both a deferred refresh as well as an immedi-
ate refresh of the MQTs. We discuss both of these options in the following
sections.

Deferred Refresh
This approach is used when the MQT need not be kept in sync when the
underlying tables on which it has been defined are updated. The data
could be refreshed when appropriate as deemed by the administrator. Such
MQTs are called REFRESH DEFERRED tables. There is one restriction:
MQT optimization does not occur for static SQL statements with REFRESH
DEFERRED tables. Figure 7.5 provides an overview of the deferred refresh
mechanism.

The SQL for creating a REFRESH DEFERRED MQT could look like:

CREATE SUMMARY TABLE dba.summary_salesAS (SELECT)

DATA INITIALLY DEFERRED

REFRESH DEFERRED

DB2 Materialized Query Tables 221

Figure 7.5 Deferred refresh.

REFRESH DEFERRED tables can be updated in one of two ways:

■■ Issue a full refresh command:
REFRESH TABLE dba.summary_sales NOT INCREMENTAL

The NOT INCREMENTAL option specifies a full refresh for the
table by recomputing the MQT definition. When this is done, all
existing data within the table is deleted and the query defining the
materialized query table is computed in its entirety.

■■ Perform an incremental refresh:
REFRESH TABLE dba.sales_summary INCREMENTAL

The INCREMENTAL option specifies an incremental refresh for the
table by considering only the appended portion (if any) of its under-
lying tables or the content of an associated staging table (if one
exists and its contents are consistent). If DB2 detects that the MQT
needs to be fully recomputed, then an error condition is returned.

If neither INCREMENTAL nor NOT INCREMENTAL is specified, the
system will determine whether incremental processing is possible. If not
possible, full refresh will be used.

Incremental
Refresh

Staging
Table
ST1

Base Table
Tn

Base Table
T2

MQT
T1,T2,..Tn

Base Table
T1

Full Refresh

Synchronous

Delta Aggregate

SQL
INSERTs
UPDATEs
DELETEs

+
LOAD

222 Chapter 7

There are three considerations for staging tables:

■■ If a staging table is present for the MQT that is to be refreshed and
incremental processing is not possible because the staging table is in
a pending state, an error is returned.

■■ Full refresh will be performed if the staging table is inconsistent and
the staging table is pruned.

■■ Incremental refresh will be performed using the contents of a valid
staging table and the staging table will be pruned.

Incremental refresh for update operations other than LOAD requires the
creation of a staging table. In the following example, assume that
sales_summary has been defined with the REFRESH DEFERRED option.
The staging table is created as follows:

CREATE TABLE sales_stage

FOR sales_summary

PROPOGATE IMMEDIATE

For this to be successful, even though the sales_summary table was
defined with the REFRESH DEFERRED option, it must satisfy all the con-
ditions of a REFRESH IMMEDIATE MQT.

The schema of the staging table looks much like the MQT for which it
has been defined. The difference is that the staging table may have two or
three more columns than its associated MQT. These are as follows:

globalTransid CHAR(8). Global transaction ID for each propagated
row.

globalTransTime CHAR(13). The timestamp of the transaction.

operationType SMALLINT. Values -1, 0, and 1 for SQL DELETE,
UPDATE, and INSERT, respectively.

There is a restriction: Each column name in the staging table must be
unique and unqualified. If a list of column names is not specified, the
columns of the table inherit the names of the columns of the associated
summary table. If a list of columns is specified, it must include the required
extra columns.

For replicated MQTs and nonaggregate query MQTs, the staging table
contains three more columns than the associated MQT. Otherwise, the
staging table only contains two extra columns, with the operationType col-
umn being omitted.

DB2 Materialized Query Tables 223

The PROPAGATE IMMEDIATE parameter indicates that any changes
made to the underlying tables as part of an INSERT, DELETE, UPDATE
operation are immediately added to the staging table with additional infor-
mation generated in the three extra columns of the staging table. This is
done as part of the same SQL statement. If the staging table is not marked
inconsistent, its content, at any point in time, is the delta changes to the
underlying table since the last REFRESH TABLE statement.

The target MQT has not yet been updated and still contains data corre-
sponding to the previous refresh operation. When the following refresh
statement is issued:

REFRESH TABLE dba.summary_sales

assuming DB2 uses the data in the staging table to update the target MQT,
it prunes the applied data in the staging table as part of this process.

The rows in the staging table are grouped and consolidated as required,
before the changes are applied to the MQT. DB2 takes a z-lock on the MQT
and the staging table (if one exists) during the REFRESH TABLE statement.
If the staging table is unavailable for extended periods of time because of a
lengthy refresh, it has the potential to negatively impact update activity on
the underlying table. Similarly, having the MQT unavailable for an
extended period because of refresh times can negatively affect the perfor-
mance of queries accessing the MQT.

The frequency of execution of the REFRESH TABLE statement has an
impact on the following:

Latency of the data. The tolerance for latency depends on the
application.

Logging overhead against the MQT. This is because more frequent
refreshes have the potential to involve more updates against the
MQT. Less frequent refreshes may result in fewer updates because
data consolidation may occur either on the staging table or underly-
ing table. On the other hand, less frequent refreshes could result in a
large volume of data in the staging table that needs to be pruned and
logged.

Following are several issues that you should examine when considering
deferred refresh:

■■ Logging space can be of concern when large volumes of data are
involved in refreshing an MQT. The following approaches may alle-
viate this problem:

224 Chapter 7

■■ Temporarily make the MQT look like a regular table so that it can
be populated directly using LOAD or suitably batched insert
statements with sub-selects corresponding to the query used to
define the MQT. When the entire table is populated, convert this
table back to an MQT using the SET SUMMARY option in the
ALTER TABLE statement.

■■ Use the ALTER TABLE statement with the NOT LOGGED INI-
TIALLY option to avoid logging during the refresh. This is proba-
bly the option of choice for the following reason: By limiting the
unit of work to the REFRESH TABLE statement, the probability
of an inadvertent rollback due to an error is quite small. In the
unlikely case that a rollback does occur, the MQT can be
refreshed again. However, only a full refresh occurs in such cases
(no incremental refresh is possible), and the database administra-
tor must drop and re-create the MQT DDL definition, since the
rollback will result in the MQT being placed in the DELETE
ONLY state.

■■ As mentioned earlier, using LOAD via cursors may be used to
populate materialized views as well. Since LOAD does not log
data, this is an effective mechanism to overcome the logging
issue.

■■ The data in the MQT can be refreshed at any time using the
REFRESH TABLE statement. The data in the table only reflects the
result of the query as a snapshot at the time the REFRESH TABLE
statement is processed.

■■ System-maintained MQTs defined with this attribute do not allow
INSERT, UPDATE, or DELETE statements.

■■ User-maintained MQTs defined with this attribute do allow INSERT,
UPDATE, or DELETE statements, but the REFRESH TABLE state-
ment cannot be issued against such MQTs.

NOTE When experiencing performance problems, you can choose to increase
the space for active logs by simply increasing the number of secondary log files
available. Another option for expanding active logs is to set the number of
secondary log files to -1. This is interpreted as infinite log space to DB2. This
does not imply additional disks as long as log archival is used. With log
archival, the active log is migrated to tertiary storage. In the event of a rollback,
recovery that requires log data from the archived log may take an extended
amount of time.

DB2 Materialized Query Tables 225

Immediate Refresh
This approach is used when the MQT must be kept in sync with any
changes in the underlying tables on which it has been defined. Such MQTs
are called REFRESH IMMEDIATE tables. Given the synchronous nature of
the immediate refresh capability, the atomic requirement for the change
propagation can have a negative impact on transactions updating the
underlying tables on which the MQT is based. The maintenance overhead
of a REFRESH IMMEDIATE must only be implemented under extreme cir-
cumstances that truly warrant the technique.

Not all MQTs can be defined to be REFRESH IMMEDIATE. What deter-
mines which MQT can be defined with REFRESH IMMEDIATE is dictated
by the ability to compute the changes to the MQT from the delta changes to
the underlying tables and any other base tables involved. MQT optimiza-
tion occurs for both static and dynamic SQL statements with REFRESH
IMMEDIATE tables.

The SQL for creating a Refresh Immediate materialized view could look
like this:

CREATE SUMMARY TABLE dba.summary_sales

AS (SELECT)

DATA INITIALLY DEFERRED

REFRESH IMMEDIATE

REFRESH IMMEDIATE tables are synchronized with the underlying
tables in the same unit of work as the changes (inserts, updates, or deletes)
to the underlying tables. For this to be an efficient process, there are limita-
tions on what can be defined as a REFRESH IMMEDIATE table. These are
discussed in the section MQT Limitations at the end of this chapter.

An incremental update mechanism is used to synchronize a REFRESH
IMMEDIATE MQT whenever an update, delete, or insert is done to an
underlying table. The process involved is shown in Figure 7.6.

The following steps occur when an SQL statement modifies a row in the
underlying table. Note that this processing occurs at statement execution
time as opposed to occurring at commit time:

1. The modified row is captured.

2. The query defining the MQT is computed based on the modified
row, computing the delta joins and delta aggregation to generate the
data necessary to update the materialized query table.

3. The delta is applied to the MQT.

226 Chapter 7

Figure 7.6 Immediate refresh.

For illustration, let’s say you have an MQT that has data grouped by
month. Assume that the data was up to and including the month of June. If
a sales entry is made for the month of June, the delta change to the aggre-
gation is computed so that the row in the materialized query table is
updated to reflect the newly inserted row in the underlying sales table. If a
row happens to be inserted into the sales table for the month of July, a new
row would be inserted in the MQT, since one did not exist before for July.

DB2 may use pipelining or temporary tables to effect this operation.
And, since this entire operation is atomic, any error encountered while
updating either the underlying table or the MQT will roll back all the
changes during the unit of work. This guarantees the synchronization of
the MQT with the underlying tables.

Loading Underlying Tables

The underlying tables of the MQT may be updated either through SQL
statements or via the LOAD utility. The LOAD INSERT appends rows after
the last pages of the table. The following discussion applies to REFRESH
IMMEDIATE MQTs and staging tables.

Base Table
Tn

Base Table
T2

Immediate Refresh of MQT

MQT
T1,T2,..Tn

Base Table
T1

SQL
INSERTs
UPDATEs
DELETEs

+
LOAD

Delta Propagation
in

Same Unit-of-Work

Delta Apply

Delta Select/Join

Delta
Aggregate

DB2 Materialized Query Tables 227

In DB2 V7, when a LOAD is performed on the underlying tables, all the
corresponding materialized views are put in a CHECK PENDING NO
ACCESS state until complete synchronization of the MQT and underlying
tables has been accomplished via the SET INTEGRITY or REFRESH
TABLE statements. When the tables involved are very large, the time to
refresh may be very large, since the entire underlying data is scanned, not
just the recently appended data. This can result in very poor response
times since MQT optimization would be inhibited with the MQT being in
a CHECK PENDING NO ACCESS state (see Matching Criteria coming up
in the chapter for details of matching limitations).

In DB2 V8, functionality has been added to reduce the impact of loading
data into the underlying tables. This includes the addition of new states, as
well as new options to LOAD and SET INTEGRITY. Each is discussed in
the sections that follow.

New States
Three new states have been added in DB2 V8 that reduce loading impact:

CHECK PENDING NO ACCESS state. The state is similar to the
previous CHECK PENDING state.

CHECK PENDING READ ACCESS state. This allows read access to
tables in such a state, but only up to and not including the first page
loaded.

NO DATA MOVEMENT state. This ensures that the RID of a row
cannot change. Consequently, operations such as REORG or REDIS-
TRIBUTE or an update of a partitioning key or of a key in an MDC
table will all be inhibited. SQL INSERT, UPDATED (except those just
mentioned), and DELETE operations do not change the RIDs and are
therefore permitted.

New LOAD Options
Two new options have been added to the LOAD:

CHECK PENDING CASCADE DEFERRED | IMMEDIATE. CAS-
CADE DEFERRED specifies that descendent foreign key tables and
descendent refresh immediate and staging tables are not put into
CHECK PENDING NO ACCESS state, but left in normal state.

ALLOW READ ACCESS | NO ACCESS. ALLOW READ ACCESS
specifies that all the data prior to the first page appended can con-
tinue to be read, but not updated.

228 Chapter 7

Figure 7.7 LOAD application sample.

SET INTEGRITY new option. There has been one significant option
added to SET INTEGRITY referred to as FULL ACCESS. This option
specifies that full read-write access is allowed on the table. This is true
even if there are dependent MQTs for the table that have not yet been
refreshed with the newly load appended data. If this option is not
specified, the table has the NO DATA MOVEMENT mode set on it.

Let’s examine the scenario given in Figure 7.7. Here SALES is the under-
lying table on which two MQTs, SALES_SUM and SALES_SUM_REGION,
are defined. The SALES table has check constraints in its definition, such as
region code checking, and it is also involved in referential integrity con-
straints with the PRODUCT and STORE_SALES tables.

In this scenario, we will assume that LOAD insert is performed on
SALES with the CHECK PENDING CASCADE DEFERRED option set:

LOAD INSERT INTO SALES

CHECK PENDING CASCADE DEFERRED...

ALLOW READ ACCESS...

This causes data to be appended to existing data in the table. If LOAD
replace is done, the entire contents of the table are deleted and replaced by
the new data. The CHECK PENDING CASCADE DEFERRED option can
still be used for LOAD REPLACE, but the ALLOW READ ACCESS option
cannot be used for LOAD REPLACE.

Now, let’s assume a LOAD insert is performed. The following events
will occur:

■■ LOAD issues a SET INTEGRITY SALES OFF, which causes SALES
to be put in CHECK PENDING READ ACCESS state because of the
ALLOW READ ACCESS option, and the data is loaded.

PRODUCT

SALES SALES_SUM

SALES_SUM_REGION

STORE_SALES

DB2 Materialized Query Tables 229

■■ STORE_SALES, PRODUCT, SALES_SUM, and
SALES_SUM_REGION are left in normal state because of the
CHECK PENDING CASCADE DEFERRED option. SQL statements
will only be able to access the SALES table data prior to the begin-
ning of the first loaded page because of the ALLOW READ ACCESS
option. They can also use SALES_SUM and SALES_SUM_REGION
for optimization because they are still synchronized. This has
expanded the window of availability of the MQT and underlying
table data.

■■ At the end of the load, SALES still has the CHECK PENDING READ
ACCESS state set on.

■■ Next, a SET INTEGRITY SALES...IMMEDIATE CHECKED is issued
to verify the integrity of the new data loaded. This takes an exclu-
sive lock on SALES and puts it into a NO DATA MOVEMENT state.
Also, the SALES_SUM and SALES_SUM_REGION MQTs are placed
in a CHECK PENDING NO ACCESS state. STORE_SALES will
remain in normal state, since the rows added do not affect the refer-
ential integrity relationship with STORE_SALES. The PRODUCT
table is also unaffected by the rows added to SALES and is therefore
left in normal state. The SET INTEGRITY step is not required if the
underlying table has no parent tables, descendent tables, check con-
straints, or generated columns. SET INTEGRITY SALES will cause
local check constraints to be verified, as well as referential integrity
violations checked against the PRODUCT table. These checks may
fail, which would result in states being rolled back to the way it was
at the end of the load. At this point, MQT optimization will be sus-
pended because both the SALES_SUM and SALES_SUM_REGION
MQTs are in CHECK PENDING NO ACCESS state.

■■ Assuming a successful SET INTEGRITY SALES step, we issue a
REFRESH TABLE SALES_SUM statement. This results in an incre-
mental update using only the data after the first loaded page, which
is a faster operation than scanning the entire underlying table. This
increases the availability of the SALES_SUM MQT as well. When
this refresh is completed, the CHECK PENDING NO ACCESS state
is reset on SALES_SUM, but not on SALES_SUM REGION, which
has yet to be refreshed. SALES will continue to be in the NO DATA
MOVEMENT state. SALES_SUM MQT is now available for opti-
mization, while SALES_SUM_REGION is not, since it is still in
CHECK PENDING NO ACCESS state.

230 Chapter 7

■■ Now a REFRESH TABLE SALES_SUM_REGION causes the table to
be taken out of CHECK PENDING NO ACCESS state and therefore
is available for MQT optimization. Since this is the final MQT on
SALES, the NO DATA MOVEMENT state is reset on SALES.

If the FULL ACCESS option is chosen on the SET INTEGRITY step, then
the NO DATA MOVEMENT state is not set on the SALES table. This means
that full read-write access is permitted on SALES, and therefore incremen-
tal update is no longer possible on the SALES_SUM and SALES_SUM_
REGION tables. When a REFRESH TABLE is issued against these tables, a
full refresh is done, which has a negative impact on availability of the
MQT. The decision to use FULL ACCESS is therefore an implementation
choice.

The preceding steps outline the significant feature improvements in DB2
V8. These improvements of data loads for MQTs exemplify the scalability
and performance of subsequent queries and data availability.

Using DB2 ALTER
The ALTER statement can be used to convert a materialized view to a reg-
ular table, and vice versa. The following statement converts an existing
MQT into a regular table. This results in all the packages dependent on this
MQT being invalidated.

ALTER TABLE tablename SET SUMMARY AS DEFINITION ONLY

The following statement converts an ordinary table into an MQT, where
the summary-table-definition defines the query and refreshable-table-
options:

ALTER TABLE tablename SET SUMMARY AS summary-table-definition

ALTER may be used for several reasons. You may choose to implement
it for correcting the MQT options to address changing requirements over
time. There may be a need to temporarily take MQT optimization offline
for maintenance, such as creating indexes. Or you may decide to take it
offline to avoid logging overhead as described in the Deferred Refresh sec-
tion earlier in the chapter.

When changing a regular table into an MQT, the regular table must not.

■■ Already be an MQT.

■■ Be a typed table.

DB2 Materialized Query Tables 231

■■ Have any constraints, unique indexes or triggers defined on it.

■■ Be referenced in the definition of another MQT.

Keep in mind you cannot ALTER a regular table into a staging table or
vice versa.

Materialized View Matching

The DB2 SQL Compiler analyzes user queries and produces an optimal
access path to produce the desired results. Figure 7.8 illustrates the process
flow of optimization. There are two key components to this process that are
most relevant to MQTs as follows:

■■ Query-rewrite component that analyzes the query and, if appropri-
ate, rewrites this query into another form that it believes will perform
in superior fashion to the one written by the user. This capability
frees users from having to deal with different syntactic representa-
tions of the same semantic query and allows them to instead focus
on using syntax they are most comfortable with. Part of this query-
rewrite process is the task of considering MQTs for optimization.
This includes checking for specific states and matching criteria.

■■ Cost-based optimizer component, which performs a cost analysis of
MQT processing versus underlying table access and decides on the
optimal access path.

State Considerations
The following state considerations apply for DB2 to even consider MQT
optimization:

■■ MQT must be created with the ENABLE QUERY OPTIMIZATION
parameter.

■■ The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZA-
TION register must enable optimization of the particular table type.
This register can be set to:
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION =

ALL|NONE|SYSTEM|USER

■■ For REFRESH DEFERRED materialized views, the CURRENT
REFRESH AGE register must be set to ANY as follows:
SET CURRENT REFRESH AGE ANY|0

232 Chapter 7

Figure 7.8 MQT optimization flow.

■■ REFRESH IMMEDIATE MQTs are always current and are always
candidates for MQT optimization regardless of the CURRENT
REFRESH AGE register setting.

■■ For dynamic and static SQL, the QUERY OPTIMIZATION level must
be set to 2 or greater than equal to 5. The default value is 5, and this
default can be changed in the DFT_QUERYOPT parameter in the
database configuration file. The level can be changed as follows:
SET CURRENT QUERY OPTIMIZATION LEVEL 7

■■ MQT cannot be in a CHECK PENDING NO ACCESS state.

Matching Criteria
Matching is the process of reviewing the user query and evaluating the
potential use of an MQT for query rewrite. Assuming that the state criteria
are not inhibitors, the query-rewrite component reviews the following cri-
teria to determine the viability of using the MQT in the query rewrite. We
discuss these criteria as:

TRANSCUST

MQT

DB2 Query Rewrite

Query ... Against base tables CUST and TRANS

DB2 OptimizerDB2 Optimizer

Rewrite?

MQT Cheaper?

Compensation

Yes

YesNo

No

DB2 Materialized Query Tables 233

■■ Matching permitted

■■ Matching inhibited

Quite often an MQT may not exactly match the user query, and DB2 may
have to incur some extra processing to massage the MQT data to deliver
the desired result. This extra processing is called compensation. Both of the
matching issues are discussed in the following sections.

Matching Permitted

MQTs will be considered for optimization in the following cases: Superset
predicates and perfect matches, queries with aggregations and grouping
columns, extra tables in the query and, finally, extra tables in the MQT.
Let’s review each of these in more detail.

Superset Predicates and Perfect Matches

This is the simplest case where the user query has the same number of
tables as in the MQT and the same expressions, and the user requests an
answer that can be fully met with the data in the MQT. Here, the predicates
involved in the MQT must be a superset of those involved in the query. In
DB2 V7, predicate analysis to detect this was limited. Only exact matches
or simple equality predicates and IN predicates were considered. In DB2
V8, the analysis has been expanded to cover a broader range of predicates.

Consider the following MQT example:

CREATE SUMMARY TABLE custtrans AS

(

SELECT cust_id, COUNT(*) AS counttrans

FROM trans

GROUP BY cust_id

)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A query that looks like the following will be considered matching for
materialized view optimization purposes:

SELECT cust_id, COUNT(*)

FROM trans

WHERE cust_id > 1000

GROUP BY cust_id

Following is another MQT example for your consideration:

CREATE SUMMARY TABLE custtrans AS

(

234 Chapter 7

SELECT cust_id, COUNT(*) AS counttrans

FROM trans

WHERE cust_id > 500

GROUP BY cust_id

)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A query that looks like the following will be considered matching for
MQT optimization purposes:

SELECT cust_id, COUNT(*)

FROM trans

WHERE cust_id > 1000

GROUP BY cust_id

Query with Aggregation Functions and Grouping Columns

Aggregation collapses related groups of rows, resulting in a smaller size of
the MQT. It is not necessary to define different MQTs for each type of user
grouping. DB2 can decide to use an MQT even if the MQT’s grouping is
different from that of the user query under certain conditions. For instance,
if the materialized view has a GROUP BY on a finer granularity, DB2 can
compute the result of a coarser granularity GROUP BY by doing further
aggregation (also known as compensation) on top of the MQT, as shown in
the following example. Consider this MQT, which has one row for every
month of every year:

CREATE SUMMARY TABLE dba.trans_agg AS

(

SELECT ti.pgid, t.locid, t.acctid, t.status,

year(pdate) as year, month(pdate) AS month,

SUM(ti.amount) AS amount, COUNT(*) AS count

FROM transitem AS ti, trans AS t

WHERE ti.transid = t.transid

GROUP BY YEAR(pdate), MONTH(pdate)

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

The following query with a GROUP BY on YEAR can be computed from
the preceding MQT by aggregating all the months of a year:

SELECT ti.pgid, t.locid, t.acctid, t.status,

YEAR(pdate) AS year, MONTH(pdate) AS month,

SUM(ti.amount) AS amount, COUNT(*) AS count

FROM transitem AS ti, trans AS t

WHERE ti.transid = t.transid

GROUP BY YEAR(pdate)

DB2 Materialized Query Tables 235

This capability allows the DBA to optimize by only defining one MQT at
the month level. This is the simplest form of matching handled by DB2 as
far as grouping columns are concerned. The number of MQTs can be mini-
mized by using complex constructs, including grouping sets, such as
ROLLUP and CUBE operators. Following are examples using grouping
sets:

CREATE SUMMARY TABLE MQT1 AS

(

SELECTGROUP BY GROUPING SETS

((customer_id, product_group_id), YEAR(date_col), MONTH(date_col))

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE;

The DB2 query-rewrite engine would consider matching any one of the
following queries against the above MQT, assuming there are no other
inhibitors:

SELECT GROUP BY customer_id, product_group_id

SELECT GROUP BY customer_id

SELECT GROUP BY product_group_id

SELECT GROUP BY YEAR(date_col)

SELECT GROUP BY MONTH(date_col)

If the grouping columns are NULLABLE, it may be necessary to add the
GROUPING in the output of the MQT. Following is another example:

CREATE SUMMARY TABLE MQT2 AS

(

SELECT store_id, cust_id, year, month, COUNT(*) as cnt

FROM Trans

GROUP BY GROUPING SETS

(

(store_id, cust_id, year),

(store_id, year),

(store_id, year, month),

(year)

)

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

The following query can be satisfied from the preceding MQT by simply
filtering out the rows pertaining to the other entities in the grouping set:

SELECT store_id, year, COUNT(*) as cnt

FROM Trans

WHERE year > 1990

GROUP BY store_id, year

236 Chapter 7

In this case, assuming that the columns are defined as NOT NULL
columns, the DB2 query-rewrite engine transforms the query automati-
cally internally as follows:

SELECT store_id, year, cnt

FROM MQT2

WHERE store_id IS NOT NULL AND

year IS NOT NULL AND

cust_id IS NULL AND

month IS NULL AND

year > 1990

The following extra predicates are the only compensating predicates
needed to make use of the MQT:

■■ The cust_id IS NULL predicate ensures that nothing will qualify
from the (store_id, cust_id, year) grouping.

■■ The month IS NULL predicate will filter out the rows pertaining to
the (store_id, year, month) grouping.

■■ The store_id IS NOT NULL predicate will ensure that nothing will
qualify from the (year) grouping, as well as the empty grouping ().

■■ The two predicates store_id IS NOT NULL AND year IS NOT NULL
ensure that all the rows from the (store_id, year) grouping are retrieved.

More complex scenarios might require further grouping.
Similar examples can be shown using the ROLLUP and CUBE operators

to satisfy user queries having many different combinations of column
groupings. Such complex MQTs not only save disk space but also can save
refresh times, since a single scan of the underlying tables is sufficient to
populate the MQT. Creating multiple MQTs, on the other hand, would
require individual REFRESH statements to be executed for each MQT and
thereby individual accesses against the underlying tables.

GROUPING SETS, ROLLUP and CUBE are effective ways of defining
MQTs that could be exploited by queries aggregating over a variety of
groupings available in the MQT as part of these super aggregates.

For the purpose of understanding these super aggregates, it is useful to
consider the equivalent result set broken down into a union of simple
groupings:

GROUP BY GROUPING SETS ((a,b), (c, d))

is equivalent to:

SELECT GROUP BY a,b

UNION ALL

DB2 Materialized Query Tables 237

SELECT GROUP BY c,d

UNION ALL

SELECT GROUP BY ()

GROUP BY ROLLUP (a,b,c)

This could also be expressed as a statement involving several UNION ALL
clauses or is equivalent to:

GROUP BY GROUPING SETS

(

(a,b,c)

(a,b)

(a)

()

)

GROUP BY CUBE (a,b,c) is equivalent to

GROUP BY GROUPING SETS

(

(a,b,c)

(a,b)

(a,c)

(b,c)

(a)

(b)

(c)

()

)

Extra Tables in the Query

DB2 can match user queries that contain more tables than those defined in
the MQT when the join predicates to the underlying tables can be replaced
by join predicates between the MQT and the additional tables.

Consider the following MQT:

CREATE SUMMARY TABLE dba.trans_agg AS

(

SELECT ti.pgid, t.locid, t.acctid, t.status,

YEAR(pdate) AS year,

MONTH(pdate) AS month, SUM(ti.amount) AS amount,

COUNT(*) AS count

FROM stars.transitem AS ti, stars.trans AS t

WHERE ti.transid = t.transid

GROUP BY YEAR(pdate), MONTH(pdate), ti.pgid, t.locid, t.acctid, t.status

)

238 Chapter 7

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

A user query that looks like the following can be considered matching
the preceding MQT even though it has an additional location table stars.loc
included:

SELECT YEAR(pdate) AS year, loc.country,

SUM(ti.amount) AS amount, COUNT(*) AS count

FROM stars.transitem AS ti, stars.trans AS t, stars.loc AS loc

WHERE ti.transid = t.transid AND t.locid = loc.locid

AND YEAR(pdate) BETWEEN 1990 and 1999

GROUP BY YEAR(pdate), loc.country

The stars.loc is joined on the locid column to stars.trans. The locid col-
umn is one of the GROUP BY columns of the MQT. DB2 can use this col-
umn to join the relevant rows of the MQT after applying the YEAR
predicate with the stars.loc table. The aggregated results can then be fur-
ther consolidated by grouping on the YEAR(pdate) and country.

Extra Tables in the MQT

DB2 can match user queries against MQTs that have more tables than
defined in the query in certain cases involving system-maintained referen-
tial integrity. Consider the following MQT:

CREATE TABLE dba.PG_SALESSUM AS

(

SELECT l.lineid AS prodline, pg.pgid AS pgroup,

loc.country, loc.state, YEAR(pdate) AS year,

MONTH(pdate) AS month, SUM(ti.amount) AS amount,

COUNT(*) AS count

FROM stars.transitem AS ti, stars.trans AS t,

stars.loc AS loc, stars.pgroup AS pg, stars.prodline AS l

WHERE ti.transid = t.transid AND ti.pgid = pg.pgid

AND pg.lineid =l.lineid AND t.locid = loc.locid

GROUP BY loc.country, loc.state, year(pdate),

month(pdate), l.lineid,pg.pgid

)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

A user query as follows can be considered as matching the preceding
MQT even though the MQT has two more tables (pgroup and prodline)
than in the user query:

SELECT YEAR(pdate) AS year, loc.country,

SUM(ti.amount) AS amount, COUNT(*) AS count

DB2 Materialized Query Tables 239

FROM stars.transitem AS ti, stars.trans AS t, stars.loc AS loc

WHERE ti.transid = t.transid AND t.locid = loc.locid

AND YEAR(pdate) BETWEEN 1990 and 1999

GROUP BY YEAR(pdate), loc.country

The preceding query references three tables, while the MQT has five. It
would appear at first glance that these additional tables, pgroup and prod-
line, would affect the result of the preceding query if that MQT were used
in the query rewrite. This would be true unless DB2 was aware of a refer-
ential integrity relationship involved. For instance, if the pgroup and prod-
line tables were related to the other tables through referential integrity, it
would not affect the number of rows in the result. They could be consid-
ered as lookup tables that are merely adding columns to the output. System-
maintained referential integrity lets the query-rewrite component know if
this is the case, and since these additional tables are guaranteed not to add
or remove rows in the result, the query-rewrite engine can proceed with
the MQT matching optimization and ignore these tables.

In the preceding example, the transitem table is joined to the pgroup
table on column pgid. If pgroup.pgid is the primary key in the referential
integrity relationship, every value of transitem.pgid has one and only one
value in pgroup. Furthermore, if the prodline table has a referential
integrity relationship with the pgroup table, where prodline.lineid is the
primary key, this join is also a join that does not affect the number of rows
in the output. The MQT can now be used for applying the query predicate,
selecting the columns required by the query, and consolidating the aggre-
gation by further grouping on only the columns required in the query.

Referential integrity may either be system maintained or provided as
informational constraints. This is new in DB2 V8 and uses the NOT
ENFORCED constraint attribute when defining the constraint. With infor-
mational referential integrity constraints, the onus is on the DBA to guar-
antee the integrity of reference, since DB2 makes no attempt to enforce
referential integrity. Informational referential integrity constraints help the
DB2 query rewrite engine make superior decisions about matching user
queries that have fewer tables than those defined in the materialized view.

Matching Inhibited

The query-rewrite component currently does not consider materialized
view optimization in the following cases:

■■ Query includes the following constructs.

■■ MQT is missing columns that are in the query.

240 Chapter 7

■■ MQT contains predicates more restrictive than in the query.

■■ Query contains an expression not derivable from a materialized view.

■■ Friendly arithmetic.

■■ Isolation mismatch.

Each of these conditions is described in the following sections.

Query Constructs

A query that includes the following constructs will not be considered for
MQT query rewrite:

■■ An underlying table in the MQT is itself a target of an UPDATE.

■■ Recursion or other complex constructs.

■■ Physical property functions like NODENUMBER.

■■ Outer join.

■■ UNION.

■■ XMLAGG.

■■ Window aggregation functions. These are aggregate functions speci-
fied with the OVER clause.

This is not a comprehensive list. Also, some of these restrictions may be
removed in future releases. As an example, while earlier versions of DB2
V8 needed an exact match of CASE expressions in the MQT and the query,
some CASE expressions are now handled with more flexibility. Refer to
DB2 UDB’s redbook titled: High Function Business Intelligence in e-business.

Fewer Columns

If the MQT is missing columns that exist in the underlying tables and the
query references those columns, then the MQT will be ignored for opti-
mization. Consider the following MQT:

CREATE SUMMARY TABLE custtrans AS

(

SELECT cust_id, COUNT(*) AS counttrans

FROM trans

GROUP BY cust_id

)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A user query that looks like the following will result in the MQT being
ignored for optimization purposes. This is because the trans_date column
has not been defined in the MQT:

DB2 Materialized Query Tables 241

SELECT cust_id, COUNT(*)

FROM trans

WHERE trans_date > ‘2002-01-01’

GROUP BY cust_id

Expression Not Derivable

Even if the expression used in the MQT is not identical to that used in the
query, it might be possible to derive the expression used in the query from
that in the MQT. However, it is possible for some “obvious” matching cases
to be ignored by DB2 because of precision or other issues, which will even-
tually be handled in the future. Following is an example:

CREATE summary table custtrans AS

(

SELECT cust_id, SUM(sale_price) AS total, COUNT(items) AS countitems

FROM trans

GROUP BY cust_id

)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A user query that looks like the following will result in the MQT being
ignored for optimization purposes, since the expression could not be
derived by DB2:

SELECT cust_id, SUM(sale_price * 0.15) / COUNT(items)

FROM trans

GROUP BY cust_id

Friendly Arithmetic

The database configuration parameter DFT_SQLMATHWARN NO|YES
sets the default value that determines the handling of arithmetic errors and
retrieval conversion errors as errors (unfriendly) or warnings (friendly)
during SQL statement compilation. For static SQL statements, the value of
this parameter is associated with the package at BIND time. For dynamic
SQL statements, the value of this parameter is used when the statement is
prepared. The default is NO (unfriendly). It is rare for this option to be
changed after initial database creation, since the ramifications may be sig-
nificant. (Refer to the DB2 Administration Guide for more details.)

The MQT will not be considered for query rewrite if the query demands
unfriendly arithmetic and the MQT supports friendly arithmetic. The MQT
will be considered for query rewrite when the query and MQT have

242 Chapter 7

identical arithmetic requirements, and also when the query demands
friendly arithmetic and the MQT supports unfriendly arithmetic.

Isolation Mismatch

The isolation level of the MQT must be equivalent to or higher than that
demanded of the user query. For example, if the MQT is defined with ISO-
LATION of CS, then a query that requests either UR or CS can match with
the MQT, whereas RS or RR will not be considered for matching. It is
important to know the ISOLATION under which the MQT was created.
The CLP command CHANGE ISOLATION TO may be used to set the ISO-
LATION level before creating the MQT.

MQT Design

Materialized views have the potential to provide significant performance
enhancements to certain types of queries and should be a key tuning
option in every DBA’s arsenal. However, MQTs do have certain overhead
characteristics that you must carefully consider when designing MQTs.
These include:

■■ Disk space due to the MQT and associated indexes, as well as stag-
ing tables.

■■ Locking contention on the MQT during a refresh. With deferred
refresh, the MQT is offline while the REFRESH TABLE is executing.
The same applies to a staging table, if one exists. Update activity
against underlying tables is impacted during the refresh window.
With immediate refresh, there is contention on the MQT when
aggregation is involved because of SQL INSERT, UPDATE, and
DELETE activity on the base table by multiple transactions.

■■ Logging overhead during refresh of very large tables.

■■ Logging associated with staging tables.

■■ Response time overhead on SQL updating the underlying tables
when immediate refresh and staging tables are involved because of
the synchronous nature of this operation.

The objective should be to minimize the number of MQTs required by
defining sufficiently granular REFRESH IMMEDIATE and REFRESH
DEFERRED MQTs that deliver the desired performance while minimizing
their overhead. To that end, the following information needs to be avail-
able in order to determine the most effective MQTs to build:

DB2 Materialized Query Tables 243

■■ Collect all the static SQL queries that are performing poorly and can
benefit from MQT optimization. Note their response time, frequency
of execution, priority, and data latency tolerance.

■■ Collect all the dynamic SQL queries that are performing poorly and
can benefit from MQT optimization. Note their response time, fre-
quency of execution, priority, and data latency tolerance.

■■ Group the queries that need to be satisfied by a REFRESH IMMEDI-
ATE MQT, and those that can be satisfied by a REFRESH
DEFERRED MQT.

■■ Based on matching criteria knowledge, identify a minimal number
of REFRESH DEFERRED and REFRESH IMMEDIATE MQTs of
appropriately fine granularity to satisfy multiple user queries.

■■ Create and populate the MQT along with RUNSTATS and indexes.

■■ Execute the grouped queries against this MQT and use EXPLAIN to
verify MQT optimization has occurred. Note response time
improvement of the queries, and consider whether any performance
tuning of the MQT or rewriting of the user query would help.

■■ If EXPLAIN indicates that query rewrite of the MQT has not
occurred, it may be due to one of three problems: state, matching cri-
teria, or costing. Determining state problems is easy enough, but
honing in on the other two reasons will have to be a trial-and-error
exercise, since there is no deterministic method to determine the rea-
son for the lack of MQT optimization. Once the cause has been iden-
tified, appropriate corrective action can be taken.

You may need to consider converting static SQL queries to dynamic SQL
queries in order to exploit REFRESH DEFERRED MQTs after weighing the
appropriate pros and cons.

The aforementioned steps describe a process that requires skilled profes-
sionals using trial-and-error techniques in order to design effective MQTs
and drop them when they are no longer beneficial. The process is both
time-consuming and error-prone.

MQT Tuning

Since the MQT is a just another table, normal tuning considerations apply,
such as ensuring RUNSTATS is current and appropriate indexes exist. Two
broad categories of tuning considerations apply to materialized views as
follows:

244 Chapter 7

■■ User query related: These are the considerations related to improv-
ing the performance of user queries against base tables that get
routed to the materialized view. This includes ensuring that RUN-
STATS is current, and that appropriate indexes exist on the materi-
alized view.

■■ Materialized view maintenance related: These are considerations
related to improving the performance of materialized view mainte-
nance by DB2 when updates occur on the underlying tables. The fol-
lowing guidelines are recommended:

■■ Create a non-unique index on the materialized view columns that
guarantee uniqueness of rows in a materialized view. In the case
of a partitioned materialized view, the partitioning key should be
a subset of the columns described above.

■■ Do not create an index on the staging table, since such indexes
will degrade the performance of appends to the staging table.

■■ Create an informational or system enforced referential integrity
(RI) constraint on joins in a materialized view if appropriate,
since DB2 takes advantage of these constraints to optimize the
maintenance of materialized views.

■■ Partition the staging table according to the partitioning of the
materialized view to promote collocated joins.

In choosing indexes, you should also take into account any joins necessi-
tated by REFRESH IMMEDIATE and staging MQT maintenance operations
that must be included in packages updating the underlying tables. An
EXPLAIN of such packages will identify these maintenance operations,
which might benefit greatly from appropriate indexes on the joined columns.
Note that unique indexes cannot be defined on a materialized view.

Refresh Optimization
REFRESH TABLE operations can have the following negative impact:

Refresh takes a z-lock on the MQT, thus making it unavailable for
access by SQL queries. Performance can be significantly impacted
for queries depending on MQT optimization during the refresh
window.

Refresh also takes a z-lock on the staging table (if one exists). This
can have a negative impact on updates to the underlying tables (they
will not succeed) if refresh takes an extended period of time, since

DB2 Materialized Query Tables 245

the staging table is updated in the same unit of work as updates to
the underlying table. Refresh causes logging to occur as a conse-
quence of updates to the MQT, as well as pruning of the staging
table. Refresh also consumes CPU, I/O, and buffer pool resources,
which ultimately impacts other users contending for the same
resources. Refresh resource consumption can be reduced by combin-
ing multiple MQT refreshes in a single REFRESH TABLE statement.
DB2 uses “multi-query optimization” to share joins and aggregations
required of each MQT in order to reduce the resource consumption
against underlying tables shared by the MQTs.

Illustrated in Figure 7.9 is the refresh process. MQT1 is an MQT based on
tables TRANS, STORE, and CUST, while MQT2 is based on tables TRANS
and STORE. Issuing the statement REFRESH TABLE MQT1, MQT2 causes
DB2 to attempt to match the MQT queries to formulate a common “sub-
sumer” query (CS), which is executed on the underlying tables. The results
are then suitably predicated to update MQT1 and MQT2, respectively. This
approach optimizes resource consumption against the underlying tables
and staging tables. It has a positive impact on the performance of SQL
queries and updates of underlying tables associated with staging tables.

Figure 7.9 Multi-query optimization.

INSERT INTO MQT1
SELECT store_name, cust_name,

SUM(sales) AS ss, COUNT(*) AS cnt
FROM CS
WHERE year = 2001
GROUP BY store_name, cust_name

SELECT store_name, cust_name, year,
SUM(sales) AS ss, COUNT(*) AS cnt

FROM Trans T, Store S, Cust C
WHERE T.store_id = S.store_id

AND T.cust_id = C.cust_id
AND T.year >= 1998

GROUP BY store_name, year, cust_name

INSERT INTO MQT2
SELECT store_name, year,

SUM(sales) AS ss, COUNT(*) AS cnt
FROM CS
WHERE year >= 1998
GROUP BY store_name, year

MQT1 MQT2

REFRESH TABLE MQT1, MQT2

Common Subsumer CS

SELECT store_name, cust_name,
SUM(sales) AS ss, COUNT(*) AS cnt

FROM Trans T, Store S, Cust C
WHERE T.store_id = S.store_id

AND T.cust_id = C.cust_id
AND T.year = 2001

GROUP BY store_name, cust_name

SELECT store_name, year,
SUM(sales) AS ss, COUNT(*) AS cnt

FROM Trans T, Store S
WHERE T.store_id = S.store_id

AND T.year >= 1998
GROUP BY store_name, year

246 Chapter 7

Considerations in grouping MQTs in a single REFRESH TABLE state-
ment include the following:

■■ Identical or overlapping underlying tables.

■■ Identical latency requirements for both MQTs, or at least acceptable
latency discrepancies between the MQTs.

■■ Large size of the underlying tables.

Materialized View Limitations

Like all other technologies, MQTs do have their limitations. For brevity, the
core limitations are outlined in the following list:

■■ When REFRESH DEFERRED or REFRESH IMMEDIATE is specified,
the fullselect cannot include the following:

■■ References to a MQT, declared temporary table, or typed table in
any FROM clause.

■■ References to a view where the fullselect of the view violates any
of the listed restrictions on the fullselect of the MQT.

■■ Expressions that are a reference type or DATALINK type (or dis-
tinct type based on these types).

■■ Functions that have external action.

■■ Functions written in SQL.

■■ Functions that depend on physical characteristics (for example,
NODENUMBER, DBPARTITIONNUM, HASHEDVALUE).

■■ Table or view references to system objects (explain tables also
should not be specified).

■■ Expressions that are a structured type or LOB type (or a distinct
type based on a LOB type).

■■ When REPLICATED is specified, there are two restrictions. First,
the GROUP BY clause is not allowed, and second, the material-
ized view query must only reference a single table.

■■ The following limitations apply to REFRESH IMMEDIATE, as well
as to queries used to create REFRESH DEFERRED tables associated
with a staging table:

■■ The fullselect must be a subselect, with the exception that
UNION ALL is supported in the input table expression of a
GROUP BY.

DB2 Materialized Query Tables 247

■■ The subselect cannot include the following:

■■ References to a nickname.

■■ Functions that have side effects or are nondeterministic.

■■ Scalar fullselects.

■■ Predicates with fullselects.

■■ Special registers like CURRENT TIMESTAMP.

■■ SELECT DISTINCT

■■ The supported column functions are SUM, COUNT,
COUNT_BIG, and GROUPING (without DISTINCT). The select
list must contain a COUNT(*) or COUNT_BIG(*) column. If the
MQT select list contains SUM(X) where X is a nullable argument,
then the MQT must also have COUNT(X) in its select list. These
column functions cannot be part of any expressions.

■■ If the FROM clause references more than one table or view, it can
only define an inner join without using the explicit INNER JOIN
syntax.

■■ All GROUP BY items must be included in the select list.

■■ GROUPING SETS, CUBE, and ROLLUP are supported. The
GROUP BY items and associated GROUPING column functions
in the select list must form a unique key of the result set. Thus,
the following restrictions must be satisfied:

■■ No grouping sets may be repeated. For example,
ROLLUP(X,Y),X is not allowed because it is equivalent to
GROUPING SETS((X,Y),(X),(X)).

■■ If X is a nullable GROUP BY item that appears within
GROUPING SETS, CUBE, or ROLLUP, then GROUPING(X)
must appear in the select list.

■■ Grouping on constants is not allowed.

■■ A HAVING clause is not allowed.

■■ If you are dealing with a multiple partition database partition
group, then the partitioning key must be a subset of the GROUP
BY items.

■■ If REPLICATED is specified, the table must have a unique key.

■■ When a GROUP BY clause is not specified, the following unique-
ness related restriction applies: The materialized view’s non-
duplicate requirement is achieved by deriving a unique key for
the MQT from one of the unique key constraints defined in each

248 Chapter 7

of the underlying tables. Therefore, the underlying tables must
have at least one unique key constraint defined on them and the
columns of these keys must appear in the select list of the MQT
definition.

Certain operations cannot be performed on the underlying tables of an
MQT that needs to be incrementally maintained:

■■ IMPORT REPLACE cannot be used on an underlying table of
an MQT.

■■ ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE
cannot be done on an underlying table of an MQT.

■■ MQTs cannot be used as exception tables to collect information
when constraints are being validated during bulk constraints check-
ing (during LOAD or executing the SET INTEGRITY statement).

Summary

It is not uncommon for the initiated to implement MQTs to address specific
performance problems for a particular BI solution. This is certainly some-
thing DBAs and data architects have available to them. The problem is that
implementing MQTs on an as-needed basis is dependent on the database
person having the foresight and knowledge to exploit the technology. This
invariably leads to great performance gains for very specific applications
and only for limited durations. In other words, the value of MQTs is lim-
ited when implemented in a haphazard manner.

The correct approach for MQT technology is for data architects and
DBAs to blend the use of MQTs as a natural part of the overall BI effort.
This means establishing standards and procedures regarding when they
should be applied and how they must be monitored and tuned, as well as
when they must be removed when they provide no more value. To that
end, data architectures and DBAs must take the lead in understanding the
application of this important technology with regard to decision support
applications and DB2.

DB2 Materialized Query Tables 249

PA R T

Four

Warehouse
Management

253

Key Issues:

■■ ETL technology must include a wide variety of robust transformation
processes from which programmers can choose. This is not always
the case with some ETL tools where preprogrammed transformation
processes are painfully limited. Application programmers are forced
to write custom programs even for common process steps.

■■ Preprogrammed processes for statistical analysis, OLAP, and mining
provide an environment for warehouse planners to tackle advanced
BI applications.

■■ Warehouse management cannot be fulfilled without meta data appli-
cations which gather and publish meta data to user communities.

■■ Warehouse management must be able to address relational database
targets as well as OLAP cubes within the same environment so that
cohesive, centralized control of data propagation can be achieved.

Warehouse Management
with IBM DB2 Data
Warehouse Center

C H A P T E R

8

IBM DB2 offers the IBM DB2 Data Warehouse Center, which is an inte-
grated component of the DB2 Control Center, providing the graphical user
interface for defining, automating, processing, and maintaining the data
warehouse. Specifically, the IBM DB2 Data Warehouse Center (DWC) is
used to define the processes that extract, cleanse, and transform data for
the warehouse. Moreover, once the processes are defined, DWC is used to
schedule, maintain, and monitor these processes.

IBM DB2 Data Warehouse Center is a warehouse management system that
can build multi-tiered data warehouses and is totally driven by meta data. It
can support various sources of relational databases, open database connec-
tivity (ODBC) sources, replication tables, OLE-DB sources, and application
sources such as WebSphere, MQSeries message queues, and SAP R/3.

The primary graphical interface of DWC is the process modeler that is
used to design and model the warehouse processes with regard to data
movement, transformation, and loading into the warehouse, data marts,
and OLAP cubes. These target structures can be implemented in DB2 rela-
tional tables including nicknames, DB2 OLAP Server, and Hyperion
Essbase Server cubes, as well as via exports to flat files.

This chapter provides an overview of data warehousing, warehousing
meta data, warehousing components, and warehousing tasks.

IBM DB2 Data Warehouse Center Essentials

There are fundamental components of DWC important for you to under-
stand. Administrators must understand what subject areas mean to DWC
as well as warehouse source and target structures. You should also under-
stand the concepts of steps, processes, task control flow, security, and task
scheduling. Each of these is defined in this section.

Warehouse Subject Area
A subject area identifies and groups related processes to a logical area of
the business. For example, if you are building a warehouse of wholesale
and retail data, you define a Wholesale subject area and a Retail subject
area. You then add the processes that relate to wholesale under the Whole-
sale subject area and add the definitions that relate to the retail data under
the Retail subject area.

Warehouse Source
Warehouse sources identify the tables and files that will provide input
data to your data warehouse. The source definition is stored in the data

254 Chapter 8

warehouse meta data, which can be exported to other warehouse partner
meta data. DWC uses the specifications in the warehouse sources to access
the data. The sources supported in the data warehouse include a wide
range of relational and nonrelational sources that have connectivity to
your warehousing environment and network—for example, database
tables, views, ASCII files, replication enabled tables, SAP business objects,
OLE DB, and MQSeries message queues.

Warehouse Target
Warehouse targets can be DB2 database tables or local files that contain
data that has been transformed. Similar to a warehouse source, users can
use warehouse targets to provide data to other warehouse targets. A cen-
tral data warehouse can provide data to departmental servers, or a main
fact table in the data warehouse can provide data to summary tables.

Warehouse Server and Logger
Warehouse server and logger are available on Windows and AIX operating
systems. Each warehouse server comes with a default agent.

Warehouse server interfaces with the warehouse client and Work In
Progress to direct the warehouse requests to the appropriate warehouse
component to execute the task. Once the task is completed, the task status
is returned to the warehouse client or Work In Progress. Most of the ware-
house tasks related to and building warehouse targets are sent to the spec-
ified warehouse agent for execution.

The warehouse server also has a built-in scheduler that is capable of
scheduling and dispatching your warehouse tasks based on the time inter-
val and task control flow that you specify.

The warehouse server directs all the warehouse message resolution and
logging to the warehouse logger.

Warehouse Agent and Agent Site
Warehouse agents manage the flow of data between the warehouse sources
and the warehouse targets. Warehouse agents are available on the AIX,
AS/400, Linux, OS/390, Windows NT, and Sun Solaris. The warehouse
agents use ODBC drivers or DB2 Call Level Interface (CLI) to communicate
with different data sources.

Multiple warehouse agents can be used to handle the transfer of data
between sources and target warehouses. The number of warehouse agents
that you use depends on your existing connectivity configuration and the
data volume that you plan to manage in your warehousing environment.

Warehouse Management with IBM DB2 Data Warehouse Center 255

Additional instances of a warehouse agent can be generated if multiple
warehouse processes require concurrent data extraction, transformation,
and loading.

Warehouse agents can be local or remote. A local warehouse agent
(including the default warehouse agent) is an agent that is installed on the
same operating system as the warehouse server. A remote warehouse
agent is an agent that is installed on a different operating system from the
warehouse server. There must be network connectivity configured
between the warehouse agent system and the warehouse server system.

An agent site is a logical name for an operating system where the ware-
house agent software is installed. The agent site name does not have to be
the same as the TCP/IP hostname. You can define multiple agent sites with
different agent user IDs on a single operating system or an IP address. A
logical name identifies each agent site in DWC.

The default agent site, named the default DWC agent site, is a local agent
on the same operating system as the warehouse server; this default agent
site is defined during initialization of the warehouse control database.

Warehouse Control Database
Warehouse meta data can be stored in a DB2 database that is local or
remote from the warehouse components. The warehouse control database
can be initialized at warehouse server and logger installation or use the
Warehouse Control Database Management tool on Windows or AIX. The
warehouse client, warehouse server, and logger maintain active connec-
tions to the warehouse control database to store and retrieve warehouse
operational data.

IBM DB2 Data Warehouse Center provides the graphical user interfaces
for you to import warehouse meta data from a tag file in IBM DB2 Data
Warehouse format, common warehouse metamodel format, ERwin,
MQSeries, and Trillium. You can export the warehouse meta data to a tag
file in IBM DB2 Data Warehouse format, common warehouse metamodel
format, and OLAP Integration Server. The IBM DB2 Data Warehouse Cen-
ter meta data and OLAP Integration Server meta data can also be pub-
lished to IBM Information Catalog.

IBM DB2 Data Warehouse Center provides additional interfaces for
users to exchange warehouse meta data with IBM partners and vendor
tools. These partners and vendor tools include Evolutionary Technologies
International, Ascential, ERwin, Trillium, Brio, Business Objects, Cognos,
and Hyperion OLAP Server CWMI compliant.

256 Chapter 8

Warehouse Process and Step
A warehouse process contains a series of warehouse steps that perform data
extract, transformation, and loading for a specific warehouse use. In gen-
eral, a process can retrieve source data, and populate warehouse targets.
With data that is aggregated, summarized, and cleansed for warehouse use.

A step is the definition of a single operation within the warehouse. By
using SQL statements, Replication, DB2 utilities, warehouse built-in trans-
formers, or user-defined programs, steps define how you move data and
transform data. When you run a step, a transfer of data between the ware-
house source and the warehouse target, or any transformation of that data,
can take place.

A step is a logical entity in the IBM DB2 Data Warehouse Center that
defines:

■■ A data link to its warehouse source.

■■ The definition of and a data link to the warehouse target table or
local file.

■■ The definition of the transformation using SQL, Replication, ware-
house transformers, DB2 utilities, or user-defined programs
involved in the population of the output table or file.

■■ The processing options and schedule by which the output file or
table are to be populated, such as appending to the warehouse tar-
get or replacing the warehouse target entirely.

Suppose you want IBM DB2 Data Warehouse Center to perform the fol-
lowing tasks:

■■ Extract data from different data sources.

■■ Convert the data to a format required by your user analysts to do
data mining or analysis.

■■ Write the data to a warehouse target table.

You would create a process that contains several warehouse steps. Each
warehouse step performs a separate task, such as extracting the data from
a source table or converting it to the desired format. You might need to cre-
ate several steps to completely transform and format the output data and
put it into its final warehouse target table.

Warehouse Management with IBM DB2 Data Warehouse Center 257

When a warehouse step or process runs, it can affect the warehouse tar-
get in the following ways:

■■ Replace all the data in the warehouse target with new data.

■■ Append the new data to the existing data.

■■ Append a separate edition of data.

■■ Update only the changed source data in the warehouse target.

You can run a step on demand, or you can schedule a step to run at a
specified time. In addition, you can schedule a step to run one time only, or
you can schedule it to run repeatedly, such as every month. You can also
schedule steps to run in sequence via the step task flow mechanism pro-
vided in DWC, so that when one step finishes running, the next step begins
running based on the step task flow conditions specified. You can schedule
steps to run unconditionally upon completion of another step, or on suc-
cess or failure.

If you schedule a warehouse process, the root step (or root steps) in the
process runs at the process’s scheduled time. The individual step’s sched-
ules will not be used for the warehouse process run. You can also cascade a
process on success, on failure, or on completion (unconditional).

The common processing steps are SQL, replication, program, trans-
former, Web site analysis programs, and user-defined. Each of these is
defined in the section that follows; however, for more detail on each step,
refer to Chapter 9.

SQL Step

A SQL step uses a SQL SELECT statement to extract and transform from a
warehouse source using a range of DB2 built-in functions and generates an
INSERT or UPDATE statement to insert or update the data into the ware-
house target table. You can also perform your own data type mapping in
the SQL step column-mapping page. The IBM DB2 Data Warehouse Center
also gives you the choice of using a pre-existing warehouse target or
having the warehouse target generated based on the selected warehouse
source columns.

Replication Step

A replication step uses the IBM Replication Capture and Apply technology
to either refresh the entire warehouse target or to just apply the changed
data. There are five different types of replication steps supported in DWC:

258 Chapter 8

■■ A base aggregate replication step creates a target warehouse table that
contains summarized data for a source appended at specified
intervals.

■■ A change aggregate replication step creates a target warehouse table
that contains aggregated data tracking the changes in the source
between each program cycle.

■■ A point-in-time replication step creates a target warehouse that
matches the source table, with a timestamp column added.

■■ A staging table replication step creates a table with data from commit-
ted transactions; that table, also called the consistent-change-data
table, can be used as the source for updating data to multiple target
warehouse tables.

■■ A user copy replication step creates a target warehouse that matches
the source table exactly at the time of the copy.

DB2 Utilities Step

You can use IBM DB2 utilities on Windows platform, AIX, SUN, Linux Intel,
iSeries, and z/OS to export data to a file, load data from a file to the ware-
house target, reorganize the warehouse target, and run statistics against the
warehouse target.

Use these utilities instead of the IBM Data Warehouse Center’s SQL pro-
cessing when there is a substantial amount of data to load. Experiment to
see which one is more efficient for you.

The bulk load and export utilities operate on a data file and a DB2 data-
base. The database server does not need to reside on the agent site, but the
source or target file must reside on the agent site.

OLAP Server Program Step

You can use these warehouse OLAP programs to automatically refresh an
OLAP Server database. The Data Warehouse Center allows you to sched-
ule three types of operations with an OLAP Server. To execute these pro-
grams, you must install Essbase Server or IBM DB2 OLAP Server software.

Warehouse Management with IBM DB2 Data Warehouse Center 259

■■ Loading data into the OLAP Server database.

■■ Updating dimensions of update an OLAP Server outline from a
source flat file using load rules, or from an SQL source using load
rules.

■■ Running calculations using default calculation or calculation with
OLAP calculation rules.

File Program Step

You can use these warehouse file programs to copy a file using FTP, export
ODBC source data to a file, run a FTP command file, or submit an MVS JCL
jobstream to an MVS system for execution.

Transformer Step

Transformer steps are DB2 stored procedures and user-defined functions
that specify statistical or warehouse transformers that you can use to trans-
form data. You can use these transformers to clean, invert, and pivot data;
generate primary keys and period tables; and calculate various statistics.

When you run the process, the transformer step writes data to one or
more warehouse targets.

User-Defined Program Step

A user-defined program step is a logical entity within the IBM DB2 Data
Warehouse Center that represents a business-specific transformation that
you want DWC to start. Because every business has unique data transfor-
mation requirements, businesses can choose to write their own program
steps or use tools such as those provided by ETI or Ascential.

For example, you can write a user-defined program that will perform the
following functions:

■■ Export data from a table.

■■ Manipulate that data.

■■ Write the data to a temporary output resource or a warehouse target.

260 Chapter 8

IBM DB2 Data Warehouse Center Launchpad

IBM DB2 Data Warehouse Center has a built-in launchpad that guides you
through the process of building a data warehouse. This launchpad pro-
vides an easy-to-use step-by-step wizard to walk you through each key
step with instructions.

Let’s go through a simple scenario of building a warehouse to store the
entire manager’s annual income in a DB2 data warehouse. Before you start
building a warehouse, there are a few setup steps that you need to perform.

Setting Up Your Data Warehouse Environment
When setting up your warehouse environment you need to consider three
general issues: defining and creating your warehouse database, identifying
the source data, and establishing your warehouse access. Let’s look at each
of these considerations.

Creating a Warehouse Database

You need to allocate a database for your data warehouses. You may have
one or more databases depending on your installation’s configuration and
size. It is highly recommended that you build a data warehouse on the
same machine as the warehouse agent that populates your target ware-
houses for performance improvement. In our example, we will use the
sample database on Windows and use the warehouse agent on the same
Windows system. After you have created your warehouse database, you
need to register this database as an ODBC system data source. The ware-
house agent on Windows uses ODBC to access the source data and the tar-
get warehouse tables. You can use the Microsoft ODBC Data Source
Administrator to register the warehouse database and perform a test
against the registered database to verify the connection is successful.

Browsing the Source Data

Source data is not always well structured or ready for analysis; you may
need to transform or cleanse it to make it more usable. In our example, we
will use the EMPLOYEE and DEPARTMENT tables from the DB2 SAMPLE

Warehouse Management with IBM DB2 Data Warehouse Center 261

database to construct a warehouse target table containing the manager’s
personnel data and the annual income. It is important to identify what
your user analysts need to see in the warehouse target so that you can col-
lect the source operational data correctly and efficiently.

IBM DB2 Data Warehouse supports a variety of relational and non-
relational source data such as an ASCII file. For DB2 source data, you can
use the IBM Control Center to sample the content of the source data: Select
Start → Programs → IBM DB2 → General Administration Tools → Control
Center. For ASCII file source data, you can use any editor to view the con-
tent and the format of the file. After the source data has been defined in
DWC, you can then sample the data immediately from DWC.

Establishing IBM DB2 Data Warehouse Center Security

To start IBM DB2 Data Warehouse Center, you can use the IBM DB2 Busi-
ness Intelligence Tools Data Warehouse Center. To log on to DWC, you
must be a registered IBM DB2 Data Warehouse Center user. At installation
time, a default user is defined and that is the same user ID that you use to
initialize the IBM DB2 Data Warehouse Center control database. In the
Logon Window, click on the Advanced button to verify the name of the
control database that is known to your Windows Client and the name of
the Warehouse Server host. Once you have logged on to the IBM DB2 Data
Warehouse Center, you can define additional users.

There is also a default security group defined at installation time and it
has Operations and Administration authority; the default user is assigned
to this group. You may later define additional security groups and users to
manage the security of your warehouse objects via the IBM DB2 Data
Warehouse Center’s Administration folder. (See Figure 8.1.)

Building a Data Warehouse Using the Launchpad
Figure 8.2 shows the nine tasks that you can follow to build the data ware-
house. Each task has a context help to give you an overview of what the step
does. The graphic representation of these nine tasks will also be refreshed to
highlight the warehouse objects that you are currently operating.

262 Chapter 8

Figure 8.1 Default security group.

Figure 8.2 IBM DB2 Data Warehouse Center launchpad.

Warehouse Management with IBM DB2 Data Warehouse Center 263

Figure 8.3 Subject area.

Task 1: Define a Subject Area

A subject area is a place where you can group the related processes, and it can
be used to represent a certain business area in your data warehouse envi-
ronment. If you are building a warehouse of sales and marketing data, you
define a Sales subject area and a Marketing subject area. (See Figure 8.3.)

Task 2: Define a Process

As illustrated in Figure 8.4, you can now define a process that contains
your data warehouse sources, targets, and steps to extract and transform
the source data into your target data warehouse in a data format that meets
your user analysts’ requirements.

You can assign user security to manage your warehouse objects at a
process level. You can also add warehouse users or groups to access the
warehouse objects in this process. In addition, you can insert process
description and additional notes to help you organize this process. (See
Figure 8.5.)

264 Chapter 8

Figure 8.4 Define a process.

Figure 8.5 Process properties.

Warehouse Management with IBM DB2 Data Warehouse Center 265

Task 3: Define a Warehouse Source

You can define relational and non-relational data sources to be used in
your process. Figure 8.6 lists the supported data source that you can man-
age in the IBM DB2 Data Warehouse Center. Only the definition of the
source is read and stored into the data warehouse meta data.

Shown in Figure 8.7 is an example of a DB2 source called “Employee”
that can contain one or more tables or views residing in the same database.
There is a list of operations that you can perform against the tables, such as
“sample the contents of the source.” When you define a source, you need
to provide a data source name, user ID, and password to connect to the
data source, and the connect information is used by the agent site specified.
Therefore, you need to make sure the database is accessible from the agent
site. Again, the access to this source can be granted to warehouse users or
groups. You can also have multiple agent sites with different authorization
IDs access this source.

Figure 8.6 Define a source and source types.

266 Chapter 8

Figure 8.7 Employee DB2 source.

Task 4: Define a Warehouse Target

You can define a warehouse target that will store the transformed source
data for analysis or for further data transformation such as building a cube.
Figure 8.8 lists the supported warehouse target types.

Figure 8.8 Define a target and target types.

Warehouse Management with IBM DB2 Data Warehouse Center 267

Defining a warehouse target (Figure 8.9) is similar to defining a ware-
house source, except that the warehouse target’s role in a warehouse step
is to store the transformed data. You will have to provide the same data
source connect string for the agent site to connect to the source. You can
also authorize other warehouse users and groups to access this target. In
addition, you can have multiple agent sites with different authorization
IDs to access this target. If you want to use the warehouse transformers,
you can register and enable them in the warehouse target database.

Task 5: Define a Step

You can use a variety of warehouse steps (Figure 8.10) to transform and
cleanse your data. Your own program can even be defined as a step to fur-
ther customize your warehousing needs; these user-defined programs do
not always require a warehouse source or target. You have total flexibility
to tailor your data extract, transformation, and loading process. You can
further define step cascade links to set conditions for the successor steps to
run on success, on failure, or on completion.

In our example, we have chosen the SQL step to extract the manager
salary data from the EMPLOYEE and DEPARTMENT warehouse source
tables. SQL step provides an SQLAssist Wizard for you to build the appro-
priate SQL statement to filter, extract, and join source data. Figure 8.11
illustrates the types of step types and subtypes available.

Figure 8.9 Target properties.

268 Chapter 8

Figure 8.10 Define a step.

Figure 8.11 Step types and subtypes.

Warehouse Management with IBM DB2 Data Warehouse Center 269

Task 6: Link a Source to a Step

Depending on the warehouse step type that you have chosen, the step may
require you to link a warehouse source as input to the step, (see Figure
8.12.) In our example, we have two warehouse source tables feeding into
the SQL step.

Figure 8.13 shows the warehouse source tables being selected and linked
to the SQL step we defined earlier. From the process modeler, you can also
draw a data link from a warehouse target as input to another compatible
warehouse step.

Task 7: Link a Step to a Target

Again, depending on the warehouse step type that you have specified, a
warehouse target may or may not be required. In our example, the SQL
step requires a warehouse target. (See Figure 8.14.)

Figure 8.12 Link the source.

270 Chapter 8

Figure 8.13 Warehouse sources.

Figure 8.14 Link the target.

Warehouse Management with IBM DB2 Data Warehouse Center 271

If you only need the warehouse target to store staging data to feed into
another compatible warehouse step type, you may link the step to a tran-
sient warehouse target. When the successor step is done with the transient
warehouse target as input, the transient warehouse target data will be
removed. The step that generates the transient warehouse target is called a
transient step. However, you cannot schedule a transient step in DWC.

In our example, we have defined a DB2 warehouse target table called
IWH.MANAGER_SALARY in the Employee Warehouse. (See Figure 8.15.)

Task 8: Define the Step Parameters

Each warehouse step has different parameters required to do the data
extract, transformation, and loading. Figure 8.16 shows the menu option to
initiate the process to define parameters.

In our example, the warehouse source tables are joined, filtered, aggre-
gated, and ordered before the SQL step populates the selected data into the
warehouse target. This is done via the Build SQL button (where the
SQLAssist Wizard is opened). You can also edit or test generated SQL.
Refer to Figure 8.17 for the IBM DB2 Data Warehouse Center interface.

Figure 8.15 Warehouse targets.

272 Chapter 8

Figure 8.16 Define step parameters.

Figure 8.17 Building SQL Statement for the step.

Warehouse Management with IBM DB2 Data Warehouse Center 273

Task 9: Schedule a Step to Run

Once you have tested the step, you can add schedules to the step and move
it to production. Figure 8.18 shows the menu option to start this process.

You can schedule a step (except for a transient step) or a process based
on certain run intervals or run frequency. If you have defined a step task
flow for this step, only the first step in the task flow stream needs to be
scheduled. Figure 8.19 shows the parameters available to scheduling steps.
After the first step is executed, the step task flow will be executed based on
the next step in the task flow condition. Also, mail notification can be
added to a step so that email can be sent to the DBA when the step com-
pleted with certain conditions that require your DBA’s attention.

Defining Keys on Target Tables
If your warehouse target is generated by the warehouse step, you may
choose to define a primary key for the target table to improve data access
performance. You can also define additional indexes for your target table
to optimize the data retrieval performance.

Figure 8.18 Schedule a step.

274 Chapter 8

Figure 8.19 Schedule types.

Maintaining the Data Warehouse
DB2 table statistics provide information about the physical and logical
characteristics of a table and its indexes. You must periodically collect these
statistics so that DB2 can determine the optimal access path to your data. If
extensive inserts, updates, and deletes are made to the data in your ware-
house target table, and the last collection of statistics no longer reflects the
actual table data, then data access performance can diminish. You should
always update statistics after major changes are made in your data ware-
house.

Reorganize a table rearranges the data in its physical storage; thus elim-
inating fragmentation, and ensuring that the table is stored efficiently in
the database. You can also use reorganization to control the order in which
the rows of a table are stored by adding indexes. You should drop the table
indexes before reorganizing your warehouse table and re-create them after
the data is loaded back to the warehouse table in the proper physical order.

DB2 Performance Monitor provides information about the state of DB2
and the data that it controls, and it alerts users of unusual situations. The
information is provided in a series of snapshot switch groups, each of
which represents the state of the system, databases, or application at a
point in time. You can control the frequency of the snapshots and the
amount of information collected.

The information that is collected by the performance monitor is returned
in performance variables. These performance variables are a defined set of
elements:

Warehouse Management with IBM DB2 Data Warehouse Center 275

Counter. Counts the number of times something has occurred, for
example, the number of rows written.

Gauge. Returns the current value, for example, the number of appli-
cations currently connected.

Timestamp. Represents the time when something occurred, for exam-
ple, the time when the last application completed.

Watermark. Records the highest value reached, for example, the max-
imum size of the database heap.

Authorizing Users of the Warehouse
IBM DB2 Data Warehouse Center provides security groups and users to
operate and administer warehouse objects. Once the warehouse target
tables are created in the target database or operating system, you need to
grant the proper database authorities or file privileges to the users to access
the warehouse data.

Cataloging Warehouse Objects for Users
You can catalog the warehouse objects (such as warehouse sources, targets,
subject areas, processes, and warehouse schemas) for use by the end users.
You catalog the objects by publishing IBM DB2 Data Warehouse Center
meta data in the IBM Information Catalog Manager (ICM). (See Figure
8.20.) ICM manages business meta data that helps users identify and locate
data and information available to them in the organization. For example,
users can look up the information catalog to locate the tables that contain
the data that they need to query.

After you publish the warehouse meta data to the ICM, you need to
update it periodically to refresh the changes that have been made in the
IBM DB2 Data Warehouse Center. To transfer DWC meta data updates to
the information catalog, you use Publish Metadata → Data Warehouse to
Information Catalog. For more information regarding meta data control,
see Chapter 10.

276 Chapter 8

Figure 8.20 Publish meta data.

Process and Step Task Control

Task flow control for steps and processes is the method for controlling their
sequence in DWC. The task flow for a step or a process can be one of the
following:

On success. The predecessor step has to complete successfully before
the successor step can run.

On failure. The predecessor step has to fail before the successor step
can run. This task flow can be used to do error handling for a failing
step.

On completion. The successor step will run unconditionally.

In a warehouse process, you may have multiple step task flow. Each step
task flow may contain one or more warehouse steps. Sometimes it is desir-
able to wait for a set of warehouse steps to finish before executing the next
set of warehouse steps. Once the related steps have been configured, you
can use the process task flow to manage how you want to execute successor
processes.

Each warehouse step or process can be scheduled. IBM DB2 Data Ware-
house Center administrators can specify when a step or a process will run
and how often. The schedule defined for a step will be activated when the

Warehouse Management with IBM DB2 Data Warehouse Center 277

step is promoted to production mode. The schedules defined for a process,
however, will be activated when the process is enabled. If an enabled
process is scheduled to run, only the steps in production mode will be run.
Only the first process in the process task flow needs to be scheduled and
enabled. All the subsequent processes in the process task flow need to be
enabled only. There is no concept of development, test, and production
modes for a warehouse process.

A number of rules are used to determine the completion code of a
process. Each step task flow identified in a process will have a root step and
a terminal step. The root step is predetermined while the terminal step is the
last step executed in the step task flow. The root step must be a step defined
physically in the current process and must not be a shortcut step or a tran-
sient step. The completion status of the terminal step in each step task flow
is used to calculate the final completion status of the entire process. It is
important to compute the final completion status of the process so the deci-
sion can be made as to whether the process task flow should be followed.

When you define task flows for your warehouse steps, the successor
steps will perform a data dependency check to ensure the warehouse
source is current. You may optionally turn it off if data dependency check-
ing is not desirable. This may be the case when you first develop steps for
your warehouse and the data dependency is not available or required. You
may later turn it back on when you are ready to go to production.

If your step requires both warehouse source and target, the DWC agents
available to run your step will be those that are common to both the ware-
house source and target. You should choose an agent that is on the same
physical machine as your warehouse target so that the data insert or load
to the warehouse target obtains the best performance.

Scheduling
When you have completed the testing of your warehouse steps, you may
schedule the step using the warehouse scheduler. Note that your step must
not be in production mode when you are adding a schedule. If you have
steps grouped into multiple warehouse processes, you may schedule
the steps at the process level. If you have schedules associated with both
the warehouse step and process and you want to run a process, only the
process schedule will be observed.

278 Chapter 8

Figure 8.21 Define a schedule.

To add a schedule to your warehouse step using the IBM DB2 Data
Warehouse Center scheduler, right-click on the step from the navigator and
select Schedule, as shown in Figure 8.21. Note that the process schedule
has the same schedule options as the step schedule.

Once selected, the window shown in Figure 8.22 appears. Here you can
add the schedule to the selected warehouse step. Within the window are a
few parameters to set as follows:

■■ Interval is the time interval that you want a task to run. It can run
only once or by Minutes, Hourly, Daily, Weekly, Monthly (Dates),
Monthly (Days), or Yearly.

■■ Frequency defines how frequently you want to run the task. For a
weekly schedule, for example, the frequency can be Every, Every
2nd, Every 3rd, . . ., or Every 8th.

■■ Start Date and Time determines when you want the schedule to take
effect. Note that if your interval value is One Time Only, the Start
Date and Time must be a future time.

■■ End indicates when you want the schedule to stop. You can let the
schedule continue indefinitely or end on a specified date.

Warehouse Management with IBM DB2 Data Warehouse Center 279

Figure 8.22 Add a schedule.

You may use the Add button to define multiple schedules to run your
task. Or you can also change or delete the schedule entries in the Schedule
List later. However, note that the schedule for a step can only be added,
changed, or deleted when the step is in nonproduction mode. Once the
step is promoted to production mode, you will not be able to make any
changes to the step schedule, because the IBM Data Warehouse Center has
already started to track and to maintain the schedules that you defined for
the tasks.

You can add a step task flow to a predecessor step or a successor step by
selecting the Step Task Flow notebook tab and right-clicking on white
space. You can also add a process task flow to a predecessor process by
opening the Process Task Flow notebook tab and clicking on the white
space. The condition for a step or process task flow can be: Starts on
Success, Starts on Failure, or Starts on Completion. (See Figure 8.23.) If you
have chosen to add both Starts on Success and Starts on Failure for the
same predecessor and successor, the IBM DB2 Data Warehouse Center will
consolidate both conditions to Starts on Completion.

280 Chapter 8

Figure 8.23 Define a step task flow.

You can also specify a predecessor or a successor step from another
process. To do this, click on the Create Shortcut button to identify which
step from another process you want to reference in the current process. The
button brings up a navigator to guide you to the warehouse subject,
process, and step that you want to reference.

Once you have added the shortcut to this process, you can again right-
click on the white space to add a new task flow condition. The shortcut step
appears in the predecessor and the successor selection list. Figure 8.24
shows the selection list.

Figure 8.24 Adding predecessor and successor steps.

Warehouse Management with IBM DB2 Data Warehouse Center 281

Notifying the Data Administrator
Upon the completion of a warehouse step, you can send an email message
to notify the appropriate parties about the status of the step or the process
execution. Figure 8.25 shows the notification parameters to set. This is par-
ticularly useful when the warehouse step or warehouse process fails and
the system programmer or data administrator needs to be notified to han-
dle the failure in order for the production job stream to continue. Another
use is to notify the responsible parties upon the completion of the entire job
stream so that other non-warehouse processing may continue or resume.

You can send email to a warehouse user when this step or a process has
completed (unconditionally), succeeded, or failed. You may also include
additional text by clicking on the Edit button. Once you have completed
the editing of the message, you can click on the Add button to add a new
message. You may change or remove the message later. You may also add
more users on the Notification List.

Figure 8.25 Define a notification for a step.

282 Chapter 8

Scheduling a Process
If you have grouped a set of related steps in a process, you may want to
schedule a process to run instead of scheduling the individual steps. You
may also arrange your steps in multiple processes so that you may have
certain steps in the successor processes to wait for those steps in the prede-
cessor process to run. This new feature allows the user to customize and
control the step flow.

For example, if you have three steps––Step 1, Step 2, and Step 3––and
Step 1 and Step 2 must complete successfully before Step 3 can be run, you
can group Step 1 and Step 2 into Process 1 and define Step 3 in Process 2.
Then you can add a process task flow between Process 1 and Process 2. (See
Figure 8.26.)

Figure 8.26 Grouping steps into a process.

Warehouse Management with IBM DB2 Data Warehouse Center 283

Process 1 contains two steps, and these two steps must be completed
successfully before the successor process starts. You may also notice that
there is a step task flow defined between the steps. This step flow appears
green to indicate that the successor step will run only if the predecessor
step is completed successfully.

Process 2 will wait for Process 1 to complete before it starts. In this
process, there is only one step, and there is a red arrow pointing to it.
This indicates that the step will retry indefinitely if it fails. You should use
this approach with caution. (See Figure 8.27.)

You can schedule Process 1 to run and promote all the steps to produc-
tion mode, as shown in Figure 8.28. The process will be enabled and the
scheduling starts. You can monitor the scheduled task in the Warehouse
Work in Progress window. The process schedule has the same graphical
user interface as the step schedule.

Figure 8.27 Recommended step grouping in a process.

284 Chapter 8

Figure 8.28 Promoting all steps in a process to production mode.

Figure 8.28 illustrates a process that is in Enabled mode. Any schedule
defined for this process will be honored until you click on Disable on the
Process pop-up menu. The Process pop-up menu has several submenus
that help you manage the process:

Schedule. You can open the process schedule to add, change, or
delete the schedules defined for the process.

Task Flow. You can open the process or the step task flow to add,
change, or delete the task flow for the process or the steps in the
process. Each task flow entry contains a predecessor and a successor.
The successor can be run when the predecessor is completed, suc-
ceeds, or fails.

Notification. You can add warehouse users to the mail notification
list when the process has completed.

Mode. You can promote the steps in the process to test or production
mode. You can also demote the steps in the process to test or develop-
ment mode.

Move. You can move the current process to another subject.

Remove. You can remove the current process from the IBM DB2 Data
Warehouse Center. All steps in the process must be in development
mode.

Warehouse Management with IBM DB2 Data Warehouse Center 285

Locate. You can locate warehouse objects including steps, files, tables,
views, and columns in the IBM Data Warehouse meta data store
based on the search criteria specified.

Properties. You can use the properties notebook to add or change the
process description and manage the security of the process such as
assigning warehouse security groups to access this process.

There are certain rules applied to using the process scheduling with the
multiple wait function. Understanding these rules will help you to deter-
mine how to group your steps in a process.

First, we need to identify the “root” step in a process, since all the root
steps will be started by the process schedule concurrently. The criteria for a
root step include the following:

■■ The step must not have a predecessor step within the same process.

■■ The step must be physically defined within the current process—
that is, a shortcut step coming from another process will not be
taken into consideration.

■■ The step must be in production mode. Any step that is not in pro-
duction mode will not be run as part of the process.

■■ The step must be a step that produces persistent warehouse data or
has data dependency from the predecessor step.

Next, we need to determine terminal steps in a process. The completion
status of the terminal steps will be used to calculate the process exit status.
It is very important to determine the process exit status in order for the
process task flow to be evaluated and to be followed. The terminal step in
a process must satisfy the following conditions:

■■ It has no successor step that is in production mode and is physically
defined in the current process.

■■ It has no matching condition to cascade down to the successor step
that is in production mode and is physically defined in the current
process.

Triggering Steps Outside IBM DB2
Data Warehouse Center
You can populate a warehouse target in the IBM DB2 Data Warehouse Cen-
ter by running a step manually in the process modeler or schedule a step to
run automatically. On certain occasions you may want to initiate the step
execution outside DWC, and a fixed schedule for the step does not quite

286 Chapter 8

serve the purpose. The IBM DB2 Data Warehouse Center allows you to
send a request to the warehouse server to promote, populate, or demote a
warehouse step via a Java interface with the program called XTClient. You
may embed this XTClient in your application or script file to trigger a par-
ticular warehouse step to run upon demand. This gives you total flexibility
to run a scheduled or nonscheduled warehouse step based on your own
local warehouse requirements. You may run your system and database
backups before triggering the first warehouse step in your nightly produc-
tion run. After the first production warehouse step is executed, the task
flow defined for that warehouse step is observed and followed.

The external trigger program is composed of two components: XTClient,
just mentioned, and XTServer. The XTServer is installed with the ware-
house server, while the XTClient is installed with the warehouse agent on
all the supported warehouse agent platforms. They are written in Java and
therefore require the appropriate level of the Java Development Kit (JDK)
to be installed on the system where you start the XTServer and XTClient.
You may also use the JDK that comes with the IBM DB2 Data Warehouse
Center and Control Center.

Starting the External Trigger Server

You must start the XTServer so that it is listening from a known TCP/IP
port before you invoke the external trigger client. Once the XTClient is
started, a request is sent to the XTServer to do the work. When the work is
completed, the XTClient is notified.

The syntax for starting the external trigger server is as follows:

java db2_vw_xt.XTServer TriggerServerPort

where TriggerServerPort is the TCP/IP port assigned to the external trigger
server. This value can be available for TCP/IP ports in your operating sys-
tem such as 11003 or 11004. Since the XTServer is going to listen from this
port for any incoming XTClient requests, you should ensure this port is not
used by other applications on the system where you start your XTServer.

Starting the External Trigger Client

You need to make sure the XTServer is listening from its TCP/IP port. You
can issue the command NETSTAT-A on the XTServer system to verify the
listening port.

Warehouse Management with IBM DB2 Data Warehouse Center 287

The syntax for starting the external trigger client is as follows:

java db2_vw_xt.XTClient ServerHostName ServerPort DWCUserID

DWCUserPassword StepName Command WaitForStepCompletion RowLimit

The parameters are as follows:

ServerHostName. This is the TCP/IP hostname for the system on
which the warehouse server is installed. You should specify a fully
qualified hostname.

ServerPort. This is the TCP/IP port assigned to the warehouse server.
The external trigger client must use the same port as the external trig-
ger server.

DWCUserID. This is the user ID with IBM DB2 Data Warehouse Cen-
ter Operations privileges.

DWCUserPassword. This is the password for the user ID.

StepName. This is the name of the step to process. The name is case-
sensitive and should be enclosed in double quotation marks (“”) if it
includes blanks, such as “ My First Warehouse Step “.

Command. This can be one of the five values described below. Note
that the user ID under which you run the external trigger program
must be in the same warehouse group as the process that contains
the step.

1. Execute the step.

2. Promote the step to test mode.

3. Promote the step to production mode.

4. Demote the step to test mode.

5. Demote the step to development mode.

WaitForStepCompletion. This optional parameter indicates whether
the external trigger program is to return the results of the step pro-
cessing. You can choose one of the following values:

■■ 1 is to wait for step completion. 0 is returned if the step is suc-
cessful; a nonzero value is returned if the step fails.

■■ 0 or blank does not wait for step completion.

RowLimit. This optional parameter indicates whether the external
trigger program is to extract all the rows of the source table or a sub-
set of the rows. You can use this parameter to quickly test the steps

288 Chapter 8

that extract a large amount of data. Note that this parameter is valid
only when the step is in test mode. You can choose one of the follow-
ing values:

■■ 0 or blank will fetch all rows.

■■ N will fetch n rows.

Monitoring Strategies with IBM
DB2 Data Warehouse Center

Many strategies and approaches are available to monitor the activities of
the warehouse. We discuss each in this section, from tools that monitor the
ETL data propagation of DWC to DB2 V8 to replication monitoring.

IBM DB2 Data Warehouse Center Monitoring Tools
A crucial task in building and maintaining a successful data warehouse
environment consists of monitoring the data warehouse. This monitoring
process covers two very distinct activities: monitoring the data warehouse
population and monitoring the data warehouse usage.

Typically, data warehouse administrators are often faced with the fol-
lowing questions:

■■ How much data is being extracted and loaded into a specific target
table?

■■ How long does it take to populate a specific target table?

■■ Does the amount of data being processed significantly vary between
different runs of the same transformation?

■■ Do some agents have a much bigger workload than others?

■■ When should some transformation steps be assigned to a different
agent for better load balancing?

■■ What would be the performance impact of assigning the execution
of a transformation step to a different agent?

■■ Are there peak times during the day when a certain agent is over-
loaded?

■■ Did all the transformation steps complete successfully?

■■ Do transformation steps complete successfully on the first try, or
after how many tries?

Warehouse Management with IBM DB2 Data Warehouse Center 289

■■ Are there concurrency problems?

■■ What is the approximate percentage of execution failures that can be
attributed to communication problems, or to a service that has not
been started?

■■ Which steps whose execution results in a failure can be associated
with bad source data?

■■ Which part in the step execution takes the longest to complete?

■■ Should a table in the data warehouse be transient or not? What are
the trade-offs?

■■ Should some steps be redesigned; for example, should an SQL step
be replaced with a DB2 load step?

All the questions are strictly related to the data warehouse population
process. Statistical information and logging information kept under the
Work in Progress GUI of DB2 Warehouse Manager hold the key to answer-
ing all these important questions. A sample statistical data warehouse could
be built very simply to automate the process of collecting a variety of statis-
tics and to deliver statistical reports to the data warehouse administrator.

The second aspect of data warehouse monitoring relates to the usage of
the data warehouse by the end users. To ensure optimal usage of resources,
this monitoring is indispensable, since it enables you to address these
critical questions:

■■ Which tables in the data warehouse are the least used?

■■ Are some tables only used around certain dates—for example,
during the first 3 days of the month?

■■ Do users need to receive the latest information in the table, or is data
that was retrieved an hour ago still meaningful?

■■ Which users should have higher priority to have their requests
executed?

■■ Should limits be imposed on the resources allocated to execute a
request?

■■ Should different resource limits be allocated to different groups of
users?

■■ How could resource usage and user activity be tracked and
reported?

■■ How could a fair chargeback policy be implemented?

290 Chapter 8

■■ How to balance resource usage across nodes?

■■ How to set and monitor thresholds for query concurrency?

■■ How to identify data archival candidates?

This kind of monitoring, although not restricted to a data warehouse envi-
ronment, provides influential information in a data warehouse environment.
Its results can guide the data warehouse administrator in deciding how the
data warehouse should evolve and be restructured. This monitoring can cer-
tainly give accurate hints regarding the need for:

■■ Dropping an unused table in the data warehouse

■■ Modifying an existing transformation step to filter the data truly
needed by end users

■■ Creating automatic summary tables

■■ Redistributing the data warehouse over multiple nodes

Monitoring Data Warehouse Population

During the execution of any transformation step, DB2 Warehouse Manager
collects a variety of statistical and logging information, which is stored in
the control database. This information is available to users belonging to a
group that has been assigned Operations privileges. Any user with Opera-
tions privileges has the authority to access the Work in Progress functions by
following the menu options in Figure 8.29. The Work in Progress environ-
ment is launched from the main IBM DB2 Data Warehouse Center window.

Figure 8.29 Starting Work in Progress.

Warehouse Management with IBM DB2 Data Warehouse Center 291

Figure 8.30 Monitoring steps and processes.

From the Work in Progress GUI shown in Figure 8.30, three types of
monitoring capabilities are available. You can view statistics associated
with transformation steps or browse the log information associated with
transformation steps. You can examine the status of transformation steps
and processes. Finally, you can view the warehouse source and warehouse
target import activities and errors.

Statistics related to the execution of transformation steps are kept at a
detailed level and a summarized level:

■■ The summarized statistics hold the average elapsed time needed to
execute the step, and the average number of bytes transferred. How-
ever, these values are not computed for each type of transformation.

■■ For an SQL transformation step, if the source and the target are
located on different systems, both the average elapsed time and the
average number of bytes transferred are computed.

■■ For an SQL transformation step, if the source and the target reside
on the same system, or if the step receives data from other steps,
then only the average elapsed time is computed; the column holding
the average number of bytes displays the not-applicable symbol (—)
in this case.

292 Chapter 8

■■ The average elapsed time, expressed in seconds, includes the time to
complete all processing steps, including connection time, disconnec-
tion time, and the time that it took to commit changes.

Figure 8.31 illustrates the high-level statistics available for examination.
Detailed statistics can also be retrieved for an individual step. This

detailed statistical information is shown in Figure 8.32 and includes:

■■ Number of times the transformation step was successfully and
unsuccessfully executed since the statistics were last reset for that
step.

■■ Date and time of completion of the first execution of the step since
the last statistics reset.

■■ Average elapsed time to complete the execution.

■■ Average number of rows and number of bytes extracted during pro-
cessing; this information is available only for SQL transformation
steps.

■■ Average number of rows and bytes extracted per minute.

■■ Number of rows and bytes extracted, the elapsed time as well as
the date and time of completion for executions with the following
characteristics:

Figure 8.31 Step statistics.

Warehouse Management with IBM DB2 Data Warehouse Center 293

Figure 8.32 Detail statistics.

■■ Fastest execution

■■ Slowest execution

■■ Execution with the smallest number of bytes extracted

■■ Execution with the largest number of bytes extracted

■■ Last execution of the step

Some of the detailed statistical information may not be available
depending on the type of the transformation step. For SQL steps, the infor-
mation about the number of bytes extracted is not available if the source
and target of the step are the same database. For non-SQL steps, no statis-
tical information is being kept. All statistics for a step (or a set of steps) can
be reset to zero; this may be an appropriate action when new statistics are
collected for a step from a specific point in time.

Besides statistics, log information is also available to monitor the data
warehouse population. You can display log information by selecting the
Show Log item from the Work in Progress menu, shown in Figure 8.33. The
log window displays log messages that were written to the log during a
run of a step and can be particularly useful to help troubleshoot problems
for a step. Only steps that have a status of Successful, Failed, Warning, or

294 Chapter 8

Figure 8.33 Log entries for a step.

Canceled will have logs. Many records may be written to the log during the
run of a single step. These logs have a tendency to grow fast, and the ware-
house administrator might need to adjust the maximum number of log
entries that should be displayed in the log window. This value can be
adjusted in the Server page of the IBM DB2 Data Warehouse Center Prop-
erties notebook by changing the value in the Purge Log When Total
Records Equal field.

Detailed information about each log record can be displayed by select-
ing the Show Details item from the menu for a selected log record. (See
Figure 8.34.)

Figure 8.34 Log detail.

Warehouse Management with IBM DB2 Data Warehouse Center 295

The Log Details window contains three areas of information: general,
detail, and message. The general information identifies the step, the identi-
fier of the step edition (run ID), the record number of the log record, and
the log message type, which identifies the event or error that occurred.
Detail information shows additional data about the event that is repre-
sented by the message type, including:

■■ The name of the program (.exe name) that encountered the error

■■ The name of the subsystem (Error Domain) that originally encoun-
tered the error (such as Windows 32, Sockets, ODBC, or the IBM
DB2 Data Warehouse Center)

■■ The unique DWC return code displayed in the Error Return Code 1
field and documented in the Message Reference section in the Infor-
mation Center (refer to DWC messages)

■■ The return code that is issued by the subsystem that originally
encountered the error, displayed in the Error Return Code 2 field

■■ SQLSTATE code that corresponds to an SQL statement if an error
occurred during execution of the statement

Finally, the detailed message area provides even more detail about the
log. This section contains information such as:

■■ Message text that corresponds to the error Return Code 1

■■ System message, supplied by the subsystem that encountered the
error, showing the message text that corresponds to the error Return
Code 2

■■ Comments that may contain additional information that the IBM
DB2 Data Warehouse Center provides for the message type

Even for steps that have executed successfully, logging information is
generated. In this case, the fields related to error messages are not filled;
the useful logging information displays the commands that have been exe-
cuted to run the step.

The status of the Transformation Steps and Processes, displayed in the
main Work in Progress window, provides information about the steps and
processes that are scheduled to run, are currently running, or have com-
pleted running. Note that the Work in Progress is not a complete historical
record of every step or process that has run; it only retains entries for the
last occurrence of each step or process. In addition, an entry for a step or
process is not kept in the Work in Progress window if:

■■ The step is a transient step. A transient step populates a transient
table and is executed when another step is executed that uses the

296 Chapter 8

transient table as input. Data in a transient table is not stored perma-
nently and is automatically removed when the dependent step has
completed its execution. The entry for a transient step only appears
in the Work in Progress window while the step is being executed.

■■ There are multiple steps that populate the same target. In this case,
only the step that was executed most recently to populate that target
will have an entry in the Work in Progress window.

Several status labels can be assigned to transformation steps. These
include the following:

Scheduled. The value in the Scheduled field shows the date and time
when the step is scheduled for execution; the Completed field is not
filled, since the step has not executed yet. If multiple execution
schedules have been defined for the step, one entry appears for each
schedule defined. The step must be in production mode for the entry
to appear in the Work in Progress window.

Populating. The step is currently being executed.

Retrying. The step execution has started but could not complete and is
in a retry mode; a step will be in a retry mode, for example, when
there is a network connection error between the warehouse server and
warehouse agent at the time of step execution. A step can only be in a
retry mode if in the Processing Options page of the step definition the
retry count is greater than zero. The execution of the step will be
retried automatically up to the number specified in the Retry Count
field, as long as it cannot complete successfully; the interval between
retries is also specified in the Processing Options page of the step defi-
nition. If the step still does not complete successfully when the maxi-
mum number of retries is reached, its status is switched to Failed.

Successful. The last execution of the step was successful.

Failed. The last execution of the step failed.

Warning. The last execution of the step completed with a warning.
The warehouse administrator can control what constitutes a warning;
the Processing Options page of the step definition lets you specify
how to treat an SQL warning and the case of No rows returned.
These situations can be treated as a success, a failure, or a warning.
Note that these options are only available for steps of type SQL.

Canceled. This identifies a step that was canceled by the warehouse
administrator while it was being executed.

Warehouse Management with IBM DB2 Data Warehouse Center 297

Canceling. A step is in the process of being canceled; its execution is
being terminated before completion.

Purging. Only steps that have a status of successful, failed, warning,
or canceled can be purged. Purging a step with a status of warning or
successful results in the data being deleted. Purging a step with a sta-
tus of failed results in the log records being deleted.

Monitoring Data Warehouse Usage

The Query Patroller tool is aimed at monitoring the usage of a database. Its
main capability is proactive governing. The tool prevents runaway queries
from even beginning. To detect such queries, it calculates the query’s cost
and compares that cost to thresholds set by the DBA for each user or group
of users. The Query Admin component of the tool lets the administrator set
the following parameters:

■■ Maximum number of simultaneous queries

■■ Maximum cost of any individual query (User Threshold)

■■ Maximum time that may elapse before a query is aborted

■■ Maximum number of rows that may be in the result set before the
result set gets truncated or the query is aborted

When the cost thresholds are violated, the query is put into a hold state,
and the administrator can decide when to put it back on the queue. There
are five core aspects to usage monitoring:

Priority queuing. When the query passes the cost threshold test, the
query ends up in one of possibly several priority queues and is run
when the server is ready. The administrator can set three different
priority levels (low, normal, high) for a user or group. When a user
submits a query, a dialog box appears, letting the user specify which
priority level he or she wants to assign for the query, and whether the
query should run now or be scheduled for later execution.

Result caching. Since in a warehouse environment at least some of
the data may not be updated very frequently, Query Patroller takes
advantage of that fact and implements a result caching technique. So,
if the same query is submitted several times between cache cleanups,
the results are only computed the first time after cache cleanup, and
for the subsequent requests, the result is immediately delivered to
the user. When a user submits a query, a dialog box appears, asking
the user whether he or she accepts a cached result or if the query

298 Chapter 8

should be run again to get a fresh result. The user does not have to tie
up the application for the result to come back; another dialog box lets
the user release the query, in which case the control returns to the
application, and the user receives an email when the query finishes
running. The result is then obtained by resubmitting the query.

System monitoring. All users can monitor the progress of their own
queries, and administrators can monitor and manipulate the progress
of all users’ queries. The System Monitor window displays a list of
jobs, their associate state (running, queued, done, aborted, held, can-
celed), the name of the user who submitted the job, and the start and
completion time.

Historical analysis. Query Patroller logs information about every
query it traps. The administrator can then get reports on what tables
and columns are being requested the most, what time of the day the
system is busiest, how many rows are being returned, and which
users are requesting data from which tables and columns. From that
kind of information, the administrator can decide, for example, on
which tables new indexes should be built.

Dynamic load balancing. On EEE systems, Query Patroller dynami-
cally load balances by looking at the CPU activity of every node and
distributing the work evenly among them.

DB2 Monitoring Tools
DB2 also provides the Snapshot Monitor and the Event Monitor to help
you collect database activities and statistics while you are populating your
warehouse targets. The Snapshot Monitor can be turned on to collect the
following database statistics:

■■ Bufferpool activity information (BUFFERPOOL)

■■ Lock information (LOCK)

■■ Sorting information (SORT)

■■ SQL statement information (STATEMENT)

■■ Table activity information (TABLE)

■■ Unit of work information (UOW)

You can use the collected Snapshot statistics to:

■■ Measure the workload, resource contention, lock escalation, and
buffer pool usage in the target database.

Warehouse Management with IBM DB2 Data Warehouse Center 299

■■ Evaluate the progress of the warehouse population via the Ware-
house Agent by the number of reads and writes, cursors being held,
and the elapsed time.

■■ Monitor the database activities for the Warehouse Server and Logger
against the Warehouse control database, or for the Warehouse Agent
against the source and target databases.

You can use the DB2 command LIST APPLICATIONS to list the DB2
application name, handle, ID, and database name for Warehouse Server
(IWH2SERV.EXE), Warehouse Logger (IWH2LOG.EXE), and Warehouse
Agent (IWH2AGNT.EXE) processes to filter the Snapshot Monitor statis-
tics collected in different SNAPSHOT switch groups. To help diagnose
poor system and application performance, you can use the LOCK switch
group to trace deadlocks and determine resource conflicts among Ware-
house Agent, Warehouse Server, Warehouse Logger, and other database
applications running on the system that lead to overall system perfor-
mance degradation. Additionally, you can examine the amount of time the
Warehouse Agent processes spent waiting for locks and which application
is holding these locks, as well as identify the applications that fail to com-
mit their transactions and release the held database resources.

Replication Center Monitoring
You can use the Replication Center Monitoring tool to monitor the Repli-
cation Capture and Apply activities and set threshold values to alert
responsible parties. When the specified threshold value has been reached,
you may choose to send an email to the system programmer or data
administrator to take the appropriate actions. Monitoring the Capture and
Apply activities is vital to the performance of running the warehouse repli-
cation steps. Refer to Figure 8.35 for menu options.

300 Chapter 8

Figure 8.35 Replication Center Monitor.

The following Capture alert conditions can be set per Capture schema in
the specified Capture server:

■■ Status down

■■ Status last committed

■■ Errors

■■ Warnings

■■ Current latency

■■ Historic latency

■■ Memory used

The following Apply alert conditions can be set per Apply schema in the
specified Apply server:

Warehouse Management with IBM DB2 Data Warehouse Center 301

■■ Apply status

■■ Errors

■■ Warnings

■■ Subscription sets failed

■■ Subscription sets delayed

■■ Inactive subscriptions sets

■■ Full refresh occurred

■■ Transactions rejected due to update anywhere conflict

■■ Number of rows reworked

■■ End-to-end latency

Once you have the Capture and Apply alert conditions defined and the
Replication Monitor started, you may display and examine the alert status.
Figure 8.36 illustrates the options. You can also filter the alerts based on the
specified time interval.

Figure 8.36 Show alerts in Replication Center Monitor.

302 Chapter 8

Warehouse Tuning

IBM DB2 Data Warehouse Center provides additional functions via DB2
utilities to tune your warehouse. From this tool you can update statistics,
reorganize your data, and tune the overall database performance. Each of
these components as well as others are detailed in this section.

Updating Statistics
You can use the DB2 Run Statistics Utility shown in Figure 8.37 of the DB2
Control Center to schedule RUNSTAT against your warehouse sources and
targets to update the DB2 access plan. This should be run after many
changes have been done against your warehouse sources and targets so
that table statistics managed by DB2 will be aware of the changes.

Figure 8.37 DB2 RUNSTATS parameters.

Warehouse Management with IBM DB2 Data Warehouse Center 303

Reorganizing Your Data
The DB2 REORG utility can be invoked from the IBM DB2 Control Center
that allows you to reorganize your data when excess fragmentation has
been caused by frequent insert, update, and delete activities against your
warehouse sources and targets. The REORG utility will affect all the nodes
in the node group. After each REORG, you should do a RUNSTAT to
update the table statistics and rebind the packages that use this reorganized
table; you may also want to re-create the indexes so that the optimized
access path is updated and can be used against the reorganized data.

If the table is a partitioned table residing on multiple nodes, and the
REORG fails on one or more nodes, only the failing nodes will have the table
reorganization rolled back. If the REORG fails, you should keep the tempo-
rary files so that DB2 can reuse these files for database recovery.

You can also define a warehouse user-defined program to invoke a
REORGCHK script to monitor your warehouse table after each warehouse
data population, especially for the warehouse target populated by a Select
and Update SQL step.

Using DB2 Snapshot and Monitor
You can use DB2 Snapshot Monitor in the IBM DB2 Control Center to turn
different DB2 SNAPSHOT switches to collect statistics on bufferpool
usage, unit of work, application, and lock. Events can be set to accumulate
statistics for specific groups of performance data, and the Event Analyzer
can be used to display and drill down the snapshot data. The available
event types that you can monitor are illustrated in Figure 8.38.

Figure 8.38 DB2 Event Monitor parameters.

304 Chapter 8

Once the performance statistics are collected, you can open the Analyze
Event Monitor Records to analyze the data.

Using Visual Explain
You can use the Visual Explain in the IBM DB2 Control Center to display
and analyze the data access paths for an SQL statement you use in a Ware-
house step such as SQL Select and Insert. The access path is displayed in an
easy-to-read graphical format, shown in Figure 8.39.

Figure 8.39 DB2 Explain SQL statement.

Warehouse Management with IBM DB2 Data Warehouse Center 305

Figure 8.40 DB2 access plan graph.

An example is shown in Figure 8.40. It shows a graphic in Visual Explain
for the following SELECT statement.

SELECT * FROM IWH.INFORESOURCE

By highlighting the objects of the map, you can see more details, as
shown in Figure 8.41.

Figure 8.41 DB2 operator details.

306 Chapter 8

Tuning Database Performance
To help tune for performance of building and populating your warehouse
data, the IBM DB2 Data Warehouse Center provides the Export and Load util-
ity steps to help manage the movement of large amounts of data, along with
the replication steps to update the warehouse target with the changed data.

DWC can be tuned like other DB2 application programs using the Snap-
shot Monitor data. Based on the findings on the statistics collected, you
may update certain DB2 database manager and database configuration
parameters.

For example, if you have been experiencing deadlocks or excessive lock
escalation, you may consider tuning the following DB2 database configu-
ration parameters:

■■ Max storage for lock list (4KB) (LOCKLIST)

■■ Interval for checking deadlock (ms) (DLCHKTIME)

■■ Percent of lock lists per application (MAXLOCKS)

■■ Lock timeout (sec) (LOCKTIMEOUT)

■■ Block log on disk full (BLK_LOG_DSK_FUL)

Another example is the space management for the primary and sec-
ondary logs. You need to size the amount of data being extracted and pop-
ulated to the warehouse targets so that these DB2 logs will have sufficient
space for all the concurrent warehouse steps to run:

■■ Log buffer size (4KB) (LOGBUFSZ)

■■ Log file size (4KB) (LOGFILSIZ)

■■ Number of primary log files (LOGPRIMARY)

■■ Number of secondary log files (LOGSECOND)

Maintaining IBM DB2 Data Warehouse Center

You can configure IBM DB2 Data Warehouse Center to meet your needs by
providing various configuration and default parameters that will be used
during IBM DB2 Data Warehouse Center function execution. DWC config-
uration utility allows you to set the following information by updating the
properties of the following:

■■ Trace levels for each DWC component to help you with problem
determination

Warehouse Management with IBM DB2 Data Warehouse Center 307

■■ Default actions for the warehouse server to determine how to
process missed or interrupted transformation schedules such as the
warehouse server restart type on the Windows platform.

■■ Timeout-related information when communicating with other ware-
house components

■■ The default number of times the warehouse server is to retry the
execution of a step that failed

■■ The default action the warehouse agent is to take when it encounters
warnings or situations where no data is returned

Log History
The IBM DB2 Data Warehouse Center logs the run status of all the ware-
house sources, steps, and targets in a log table in the warehouse control
database. Depending on your installation need for log history, you may
schedule an archive of these log records or prune the log history accord-
ingly. You may access this log history table from an application or script to
ensure it is operating at an optimal state.

Control Database
There is a set of warehouse tables that keep track of the warehouse objects
defined by the users and the relationships among these objects. These
objects may change dynamically. It is crucial to ensure the data integrity of
these control tables. You may want to schedule regular backups for these
tables, especially after major changes made to the warehouse sources,
steps, and targets. Since these control tables are being changed when you
define or operate against the warehouse objects, you may want to do a reg-
ular RUNSTAT or REORG against these control tables to ensure the best
performance when you perform your day-to-day warehouse operations.

DB2 Data Warehouse Center V8 Enhancements

Although there are numerous enhancements in IBM DB2 Data Warehouse
Center Version 8.1, we think it important to draw the reader’s attention to
some of the most significant. In the following list we identify nine:

Warehouse server on AIX. The warehouse server that interfaces
with the client and the warehouse meta data to create and schedule
steps to run at the designated agent site is now available on the AIX

308 Chapter 8

platform with the very same functions as the warehouse server on
the Windows platform. This enhancement totally removes the depen-
dency on the Windows platform for the IBM DB2 Data Warehouse
Center. For example, you can set up your warehouse clients, ware-
house server, and warehouse agent all on the same AIX system and
take advantage of the power of the AIX machine.

Warehouse agent on Linux. The data warehouse agent that interfaces
with the data sources and targets to extract, transform, and load the
warehouse data is now available on the Linux Intel platform. This is
one of the key UNIX platforms for IBM DB2 and its tools. The Linux
warehouse agent can take advantage of direct access to the local
warehouse residing in DB2 Linux.

Wait for multiple steps. In the warehousing environment, users often
must wait for certain steps to complete before running the next steps.
The solution to this requirement must be to take care of the waiting
step so that it does not run more than necessary. A simple step-to-
step cascade link may run the waiting step multiple times, and the
generated target warehouse may not be desirable. The enhancement
ensures the waiting step is run properly—that is, the waiting step
will not be run more than necessary. Users can organize their steps to
be waited on and group them in processes. A process can be enabled
to run using the defined schedules for the process. Enabling a process
will activate the process schedule and to execute the steps that are in
production mode within this process. Users can cascade the process
on success or on failure or on completion using the Process → Define
Schedule → Task Flow pull-down menu. Note that each step may
have its own schedule, but the process does not take the individual
step’s schedules into consideration when the process is scheduled to
run. Furthermore, a process may have steps in different modes
(development, test, and production); only the steps in production
mode will be run by the process’s schedules. When the steps in a
process are running, the user can monitor the scheduled process and
steps in the Work In Progress window.

Select from source and update target warehouse. Building a ware-
house may be time-consuming because of the large volume of data
involved and refreshing the entire target warehouse each time is not
very efficient. This enhancement introduces a new warehouse step
type to allow the user to select from the source warehouse data and
update the target warehouse based on the user-specified UPDATE
criteria, which include the selected source columns, column mapping

Warehouse Management with IBM DB2 Data Warehouse Center 309

between source and target, and key mapping between source and
target. With this change, the time to refresh your target warehouse
can be minimized to just refreshing the changed data. Since the target
warehouse is updated on a regular basis, you should consider reor-
ganizing the target warehouse. This ensures optimum performance
when users access the data. You may schedule a DB2 REORGCHK
script and a DB2 RUNSTATS script to run after populating an
updated warehouse target.

Client Connect, direct access to data source from client. This
enhancement allows the user to access the DB2 sources, including
IBM federated server, directly via the DB2/Java database interface
from the data warehouse client system. This allows the user to gain
access to certain data types, and functions that are supported by DB2
only and federated server nicknames. Warehouse sources defined via
Client Connect will not use the warehouse server or the warehouse
agent. The DB2 data source and target must be cataloged at the ware-
house client system. If you use this Client Connect source as input to
an SQL step and Client Connect target as output from that step. You
must also catalog the same DB2 source and target on the warehouse
agent system.

DB2 LOAD utility for parallel load. The DB2 script step for LOAD
has been enhanced to support parallel load. Refer to Figure 8.42 for
more information.

Figure 8.42 DB2 LOAD types.

310 Chapter 8

Publish warehouse meta data to the IBM Information Catalog Man-
ager and OLAP via the warehouse client. You can publish IBM DB2
Data Warehouse (DWC) meta data objects such as warehouse sub-
jects, processes, steps, sources, targets, and star schema objects to the
IBM Information Catalog Manager and OLAP via a graphical user
interface. When an object is published from DWC to the Information
Catalog Manager, the objects, object types, relationships, and rela-
tionship types then become visible both the IBM DB2 Data Ware-
house Center and the Information Catalog Manager. The IBM DB2
Data Warehouse Center application will remain the owner of the
published objects. Information Catalog Manager users, including the
administrator, will have only read access to the published objects,
object types, relationships, and relationship types. Published objects
will be allowed to have additional related objects created in the Infor-
mation Catalog Manager. For example, a published table can have a
comment added to it in the Information Catalog Manager. A pub-
lished database can be added to an Information Catalog Manager-
created business subject area. DWC-created relationships between
published objects cannot be changed or removed through the Infor-
mation Catalog Manager.

Improved usability. There are additional column mapping functions
that allow the user to map the source and target columns more effi-
ciently. There are also usability enhancements done with the process
modeler for rearranging warehouse objects layout, undoing arrange-
ment, opting step shortcuts, and highlighting information area of
process model for errors. The user can also have a new default option
to create primary key for the warehouse-generated target tables, to
disable dependency checking, and to customize agent trace levels for
individual DWC steps.

Improved integration with Control Center and Replication Center.
The interface with Control Center utility functions has been
improved to generate DB2 scripts to be run on the warehouse agent
system. In addition, an improved integrated Replication interface in
the DWC now supports the V8 replication APIs.

Warehouse Management with IBM DB2 Data Warehouse Center 311

Summary

IBM DB2 Data Warehouse Center is competitive with many of the leading
ETL tools in the market. As such, it goes beyond traditional ETL and
addresses the broader notion of warehouse management, including meta
data control, high availability, and warehouse monitoring. It can be imple-
mented in heterogeneous environments with disparate data sources and
database target tables and operating system files. It encompasses all the
core components necessary to support and manage a warehouse environ-
ment, and continues to be improved.

IBM DB2 Data Warehouse Center is significant for the IBM community
not because it is competitive with other leading technology of the same
genre. IBM DB2 Data Warehouse Center is important because it is espe-
cially tuned to work with other IBM products such as DB2 V8, Replication
Server, and DB2 OLAP Server. This is important to remember when con-
sidering ETL-centric applications. If you are an IBM shop or are consider-
ing an investment in IBM technology, then IBM DB2 Data Warehouse
Center must be on your short list for evaluation.

312 Chapter 8

313

Key Issues:

■■ Automating the transformation steps ensures process consistency,
data integrity, and meta data control.

■■ Preprogrammed transformation steps save significant time and
resources.

■■ ETL tools must not simply provide a process framework with little
true transformation capability.

■■ Any ETL process requires integration with a range of applications,
including your own in-house applications and those from a number
of vendors. Any ETL environment should provide transparent inte-
gration with leading vendors in the ETL or data-quality space, as
well as leading applications such as SAP and PeopleSoft.

Data Transformation with IBM
DB2 Data Warehouse Center

C H A P T E R

9

The design of your warehouse takes many factors into account. We have
already discussed several of these issues in previous chapters, such as data
and technical architectures. For this chapter, however, we now turn our
attention to the factors that influence the extraction, transformation, and
loading of data from sources to warehouse targets. Since we have already
debated the philosophical issues, like whether or not to implement an
atomic level, we will simply dive into the details. To that end, there are sev-
eral factors to consider, for example:

■■ Where is your data stored and what format is it in?

■■ How will you access that data?

■■ Do you need to manipulate the data in any way?

■■ Will you need a staging area to supply data to multiple data marts
off of the main warehouse?

■■ What is the frequency with which you need to refresh the data in the
warehouse or data mart?

■■ What is the final format in which you want to present the data to
your end users?

■■ How will you let users know what is available for their use?

These and many other questions should be discussed among the data
administrators, the warehouse architects, and the end users so that you can
produce a warehouse that contains the data needed to address your end
user’s business requirements.

For example, suppose you have an operational system with sales informa-
tion, and you have warehouse requirements to analyze the data using OLAP
processing each day. The system and warehouse requirements consist of the
following:

■■ The source sales data is in their operational CICS system on MVS
(CICS stands for Customer Information Control System; MVS for
Multiple Virtual Storage).

■■ Nightly batch jobs are run that extract data from the CICS system.

■■ The data needs to be cleansed, summarized, and stored in a local
DB2 UDB for SUN OS database.

■■ Cleansed and summarized data needs to be loaded into DB2 OLAP
Server for end-user analysis.

To process this data, you need to determine the best-possible approach
to get the data into its final end-user format. Using our preceding simple
example, the warehouse administrator would need to determine which
functions of the IBM DB2 Data Warehouse Center (DWC) should be used

314 Chapter 9

versus external functions. The types of questions should include the
following:

■■ Should an MVS scheduler handle the execution of the batch jobs, or
should the jobs be managed by warehouse?

■■ Who will be responsible for initiating the nightly MVS jobs? Data
Warehouse Center provides functions to start MVS jobs and wait
for their completion; however, in many cases, security policies at
a customer environment do not allow non-MVS schedulers to ini-
tiate MVS jobs.

■■ Should the data sets be pushed from the MVS system to Sun, or
should they be pulled on some timed basis?

■■ How will the extracted data get to the Sun system? As part of the
MVS job itself, the last step of the job could be to FTP the file to
Sun once the data is extracted successfully and then trigger the
IBM DB2 Data Warehouse Center to start processing those files.
Or you could use the warehouse functions to wait for the files to
appear on the MVS system and then pull those files down to Sun.

■■ Should the data be loaded into DB2 using the load utilities, or should
they be treated as open database connectivity (ODBC) data sources?

■■ Will the data be directly loaded into the staging tables with mini-
mal processing, or do you want to do some preprocessing (using
SQL) prior to loading the data? If no preprocessing of the data is
required, you could choose to do a fast load of the data using the
DB2 LOAD utility (driven by the IBM DB2 Data Warehouse Cen-
ter). This option is the fastest way to get the data into DB2, since it
can provide parallel loads into partitioned tables with minimal
logging. If you decide that preprocessing of the data is needed as
it is loaded in the staging table (e.g., data filtering or adding time-
stamp information), you may want to treat the file as an ODBC
source so that you can use SQL to manipulate the data, or add an
additional date column to the staging table as the data is loaded.

■■ What types of summarization and aggregation do you need to have
done on the data?

■■ Will you need to do extensive cleansing on the data prior to it
being loaded into the OLAP cubes? IBM DB2 Data Warehouse
Center provides “clean” transformers for basic cleansing of the
data. However, if you need more extensive cleansing capabilities
(e.g., name and address matching), you might consider using a
cleansing tool that IBM supports via the IBM DB2 Data Ware-
house Center, such as Ascential.

Data Transformation with IBM DB2 Data Warehouse Center 315

■■ Is the data written to the DB2 staging tables in a format of facts
and dimensions, or will the data need to be loaded into the cube
based on a set of rules? The IBM DB2 Data Warehouse Center
allows you to define the data to best suit your needs. If the data is
stored in the format of facts and dimensions, you can then use IBM
DB2 Data Warehouse Center’s integration with the Hyperion Inte-
gration Server to load the data from this format directly into the
cubes for use by the end user. If the data is not stored in a dimen-
sional schema, it can be loaded into the cubes using SQL-based
load rules. IBM DB2 Data Warehouse Center can then direct DB2
OLAP Server to build and populate the cubes using the load rules.
Alternatively, you could first export the data from the DB2 staging
tables into files and then drive the DB2 OLAP Server load process.

As you embark on the task of designing your warehouse, you will need
to know what functions are available directly through the IBM DB2 Data
Warehouse Center. Based on this information, you can begin the design of
your warehouse transformation processes. In some cases, you may need
additional functionality not provided by the IBM DB2 Data Warehouse
Center and therefore look to outside vendors to provide the transforma-
tions that you require. Fortunately, the IBM DB2 Data Warehouse Center
provides an interface allowing vendor applications to hook their transfor-
mation applications directly into the Data Warehouse Center. Doing so
allows you to have a single management interface to control all of your
warehouse processing, from data access to final end-user formatting.

This chapter defines and describes the core data transformation and inte-
gration steps provided by the Data Warehouse Center. Each step represents
a robust and efficient means to implement complex ETL processes in a
single development environment.

IBM DB2 Data Warehouse Center Process Model

The IBM DB2 Data Warehouse Center provides many different ways to
extract, transform, and load data, depending on your needs. The basic model
of working with the IBM DB2 Data Warehouse Center follows these steps:

1. Identify the sources of data that you will be using to populate the
warehouse.

2. Identify where the atomic layer, data marts, or OLAP cubes will be
stored.

316 Chapter 9

3. Identify the types of transformations that need to be applied to your
data.

4. Identify a means of grouping those transformations together for
easy maintenance.

5. Identify the schedules that transformations are to run on.

6. Identify task flows between transformations.

To illustrate the basic model, we will continue with the scenario we
started earlier and walk you through the various steps outlined in the next
three sections: Identify Sources and Targets, Identify the Transformations, and
The Process Model.

Identify the Sources and Targets
The first two steps in the basic model are to identify the data sources that are
required for populating the warehouse and identify the warehouse targets.
Figure 9.1 shows the screen interface used in IBM DB2 Data Warehouse
Center that provides the necessary functionality to do so. Figure 9.2 is a
screen shot of the IBM DB2 Data Warehouse Center dialog box for defining
warehouse targets.

Figure 9.1 Define a source.

Data Transformation with IBM DB2 Data Warehouse Center 317

Figure 9.2 Define a target.

In our scenario, we will be using staging tables in DB2 to cleanse and
aggregate the data prior to loading it into the OLAP cubes. As part of this
example, we identify the DB2 Sun system as a target warehouse. We also
identify the files that will be used by the warehouse. This includes the files
that are the results of a CICS extract that will be downloaded to the Sun
machine.

Identify the Transformations
Once your sources and targets have been defined, you can begin to define
the transformations that your data needs to go through. To do so, you first
must define a subject area. The menu option is shown in Figure 9.3. The
subject area is a logical grouping of warehouse processes that transform
the data from its source format to its target format. These subject areas are
generally created to identify a specific set of warehouse processes for a par-
ticular area (for example, “Populate the sales department warehouse”).

318 Chapter 9

Figure 9.3 Subject areas.

The subject area groups together related warehouse processing using
another logical grouping called a process. (See Figure 9.4.) A process groups
together individual transformations that produce all or some part of the
warehouse target. Processes can identify all of the individual transforma-
tions that must be completed (individually or together) before the process
is considered successful. You can also link processes together such that
when one process completes, another process starts in order to provide
additional transformations.

Continuing with our example, you will want to create a subject area that
groups a set of processes that takes the data from MVS, transforms the
data, and loads into OLAP cubes. One process may be defined to run the
MVS jobs to produce files and then FTP those files to the Sun system,
another process may be defined that loads those files into DB2 and cleanses
the data, and a third process might take the data from DB2 and load it into
OLAP cubes. Remember that we are merely reviewing a simple example.
Hopefully, you will not simply create a bunch of independent data marts;
instead, you will build and populate an atomic layer, which then serves as
the source for loading a cube like the one in our example.

Data Transformation with IBM DB2 Data Warehouse Center 319

Figure 9.4 Define a process.

Once you have defined the processes, you can begin to identify the trans-
formations you want to perform on the data as you move it into your ware-
house. In our example, you can add the “Extract MVS data and move to
Sun” process in a way that the IBM DB2 Data Warehouse Center transfor-
mations execute MVS jobs and, upon completion, FTP those files to Sun.

The Process Model
The basis for defining the transformations is the process model. The process
model is used to define the actions and transformations that will occur, the
order in which the transformations are to take place, the schedule those
transformations are to run under, and the task flow between the transfor-
mations.

When you open up the modeler on a process, you are presented with a
pallet of transformations and actions that you use to define the transfor-
mations called IBM DB2 Data Warehouse Center steps. Figure 9.5 illus-
trates the pallet. The modeler allows you to define the steps, the input and
output data that is used by a step (referred to as sources and target and data
links), the schedule a step is to execute on, and the task flow (called ware-
house cascade links) between steps.

320 Chapter 9

Figure 9.5 Warehouse steps pallet.

To use the process modeler, you simply drag and drop a data object or
transformation object from the pallet to the canvas and link them together
with the link tool. Using our example, you will want to drag and drop the
following:

■■ Two transformation steps that submit jobs on MVS

■■ Two transformation steps that FTP files from one system to the other

■■ Two objects to represent the files produced by the MVS jobs

■■ Two objects that represent the FTP files from MVS to Sun

To provide the data flow between the steps, you would link the first two
files representing the MVS files as sources to the FTP steps and link the sec-
ond pair of files representing the Sun files as targets of the FTP steps using
the data link tool.

To provide the scheduling and task flows between the steps, you would
add a schedule to each of the steps that execute the MVS jobs and then link
these steps so that if they complete successfully, the IBM DB2 Data Ware-
house Center will process the FTP steps. In all cases, if any of the steps fail,
you may want to link to a step that pages the console operator. Task flow is
accomplished via the cascade link tools.

The final results of the process model would resemble Figure 9.6.

Data Transformation with IBM DB2 Data Warehouse Center 321

Figure 9.6 Sample process model.

IBM DB2 Data Warehouse Center Transformations

As we have discussed before, a significant portion of your time will be used
determining which transformation types to use under which circumstances.
This section covers all the warehouse steps that you can use to transform the
source data into your DB2 target warehouse. Each step has unique charac-
teristics that are designed to meet different user requirements. Some steps
allow you to have multiple warehouse sources and warehouse targets.
Depending on the selected step type and your warehouse configurations,
you can extract and transform a wide range of data sources, including the
IBM DB2 family, Oracle, Sybase, Informix, Microsoft SQL Server, OLE DB,
MQSeries queues, ASCII files, VSAM files, and so on. Some warehouse step

322 Chapter 9

types provide wizards to help you customize your extract and data transfor-
mation using the SQL built-in functions, stored procedures, and so forth.
Table 9.1 outlines the steps of IBM DB2 Data Warehouse Center and provides
some guidance as to the pros and cons of each transformation step identified.

Table 9.1 Transformation Step Types

STEP TYPE PROS CONS NOTES

SQL steps Full power Performance SQL steps allow you to
of SQL process data at a record

Select/Insert Data volumes level and give you the full
Full database power of the source’s

Select/Update logging SQL support.

Incremental However, because this is
commit using the source

database application
Rollback interface, the

. capabilities performance will be
affected.

Platform
independent

Edition support

Data dependency
checking

Utility steps Performance No logging The DB2 utilities provide
a mechanism to quickly

LOAD Parallelism Minimal load, unload, or organize
transformations information in DB2. The

EXPORT File output on load LOAD utility can be set
up to exploit the parallel

RUNSTATS Error handling Platform- nature of DB2. The
dependent utility’s key feature is

REORG Data volumes performance, but
because of this, there is

Data dependency minimal logging, and if a
checking severe error should

occur, the transactions
Native database cannot be rolled back.
utility You will need to restore

the data from a prior
backup.

(continues)

Data Transformation with IBM DB2 Data Warehouse Center 323

Table 9.1 Transformation Step Types (Continued)

STEP TYPE PROS CONS NOTES

Warehouse Integrated Java stored Java stored procedures
steps transformations procedures may have performance

impacts with large
Platform- Geared toward amounts of data.
independent smaller data Additional cleansing

volumes capabilities may require
Basic data vendor products such as
cleansing and Data cleansing Ascential’s INTEGRITY or
formatting limited to SQL Trillium’s Batch System.

manipulation
Key and period
generation

Data inversion
and pivoting

Data dependency
checking

Statistical steps Integrated Java stored Java stored procedures
transformations procedures could have performance

implications.
Platform- Geared toward
independent smaller data

volumes
Analysis of
variances

Basic statistical
functions

Popular statistical
analysis

Data dependency
checking

Replications Only changed Initial loads Use the SQL or Utility
steps data need to be are having transformation steps to

moved performance initially populate data
implications. in warehouse, then

Performance use replication
DB2 sources transformations to

Capture outside only move only changes.
the warehouse

324 Chapter 9

Table 9.1 (Continued)

STEP TYPE PROS CONS NOTES

Integration of Capture
replication administration
subscription and management
services into outside of
warehouse warehouse control

Data dependency
checking

OLAP steps Allows the loading Administration
of cubes after of cube done
warehouse outside
processing warehouse
complete

No ESSCMD or
Data loading MaxL support

Cube calculations z/OS support
remote

Outline updates

Integration within
warehouse

Data dependency
checking

SAP steps Integration Performance on
within large amounts of
warehouse data

Column maps No IDOCS
from SAP business support
object to target DB2

Need basic
Transform understanding of
data while GetDetails and
moving GetCode BAPI calls

to do column
mapping

Hide low-level No z/OS or
details of BAPI iSeries support
calls from user

Administration
outside of
warehouse

(continues)

Data Transformation with IBM DB2 Data Warehouse Center 325

Table 9.1 Transformation Step Types (Continued)

STEP TYPE PROS CONS NOTES

Web traffic Allows you to Administration
steps bring in WEB outside of

data for analysis warehouse
by warehouse

No z/OS or
Integration iSeries support
within
warehouse

Transform data
while moving
to target

User-defined Flexible In some cases, The architecture of the
steps architecture user must write warehouse allows a user

to add any and maintain or vendor to write an
transformation code. application that can then be
(user or vendor managed by the IBM DB2
written) to Meta data Data Warehouse Center.
warehouse about the The user/vendor needs

transformation is to specify the application
Feedback to not externalized to execute, as well as the
warehouse about in ICM meta data that is needed
processing status by the application. After the

application completes its
Utilized warehouse processing, the application
vendors such as: can pass back processing
ETI, Ascential, reports and statistics to the
Trillium, and warehouse so that they can
Hyperion. be viewed by the user.

Platform-
independent

Language of
choice

Black box
processing

Data dependency
checking

326 Chapter 9

In addition to the selection of your transformation steps, there are other
considerations that impact your process model. The additional issues for
you to evaluate are described in the following sections.

Refresh Considerations
If your plans call for completely replacing existing data in a warehouse, or
you are creating a new data warehouse, you might consider using ware-
house step types such as SQL Select and Insert with the Replace option.
These are easy-to-use and easy-to-implement transformation types that
readily address wholesale refresh of warehouse data. For the initial load
of the warehouse, you might consider the DB2 Export and Load Scripts or
the Replication User Copy step to do the initial population of the target
warehouse.

You can also use a SQL Select and Update to refresh the target warehouse
table. For example, use SQL Select and Insert to make the initial load from
any supported data sources to a warehouse-generated default target table.
Then you can update the generated default target table using the SQL
Select and Update step. The SQL Select and Update step has a user-friendly
interface to help you construct an UPDATE statement to extract only the
data records that have changed at the source and move them into the tar-
get warehouse table.

On the other hand, if you plan to refresh your target warehouse with the
changed source data only after the initial load, you might consider using
the IBM Replication technology. This particular feature is integrated in the
IBM DB2 Data Warehouse Center using the Warehouse Replication User
Copy step. You can then take advantage of other warehouse replication
steps to apply only source data changes to your target warehouse. Note
that the replication steps in the IBM DB2 Data Warehouse Center support
replicated changes from DB2 source tables only.

After you have created the target warehouse, you may start building
indexes to optimize the data access by the end users. When loading data
into multiple tables, the warehouse does not consider constraints and you
may run into constraint errors. It is recommended indexes be dropped
prior to loading and then rebuilt after the data has been loaded. This
increases the performance of the load because the indexes will not need to
be updated on each insert.

Data Transformation with IBM DB2 Data Warehouse Center 327

Data Volume
Another issue to consider is data volume. For reasonable amounts of data
(based on data volumes and machine characteristics), you can use the SQL
Select and Insert steps to populate the source into a target warehouse.
Remember that this type of step selects data from the source (16 rows at a
time in most cases) and then inserts the block of data to the target. The
good thing about this type of transformation step is that it can exploit the
power of the source system. On the other hand, there are additional over-
head issues that have a direct impact on system performance. As a result,
SQL Select and Insert steps are only recommended for small to medium
data volumes.

For larger volumes of data you may want to use the warehouse DB2 UDB
Export step to export data from a source table into a file—at which point
you can take that file and load it into the target warehouse table using a
warehouse transformation Load step. These step types use the DB2 utilities
for exporting and importing data, and the performance can be significantly
faster than that of a SQL Select and Insert step. When using the warehouse
Load step, you need to consider a few features that may affect your deci-
sion—for example, the use of parallel loading of data for partitioned tables,
as well as the lack of logging for recoverability and error handling.

Manage Data Editions
You should consider using SQL Select and Insert steps in append mode if
you want to have the warehouse manage how much data is in the target
table. IBM DB2 Data Warehouse Center has a concept called editions that
allows you to define how many copies of the data you want in the target
table before the oldest data is purged. For example, if you are interested in
keeping a year’s worth of historical information about sales in your target
table, and you are loading that information each month, you can tell the
warehouse that you want 12 editions of the data in the target table when
you define your step. When the step is run each month, the warehouse
determines how many times the step has run before. In this example, the
first 12 times that the step runs, it adds the new sales information for that
month to the target table. When the step runs for the 13th time, the ware-
house adds the new sales information to the target table, and if that
completes successfully, it then deletes all the rows of sales data associated
with the first run of the step. From this point on, each time the step is run,
it appends the newest sales data to the table, then deletes the oldest sales

328 Chapter 9

data from the table. This feature allows you to keep rolling historical infor-
mation within the warehouse, totally managed by the warehouse.

User-Defined Transformation Requirements
In some cases, you may need to write your own application to provide a
specific transformation. Once you have written and tested your applica-
tion, you can register the application to the warehouse so that it can be
used just like any other step type. The application can even pass back pro-
cessing status and statistical information to the warehouse, making it avail-
able to other warehouse users and process steps.

Multiple Table Loads
At times, you will want to load data into multiple tables within the same
target warehouse. In this case, you will probably want to consider activat-
ing the database prior to the execution of the first step.

When the warehouse processes a step, it first connects to the database
where the source data resides, connects to the target database where the
target table is being loaded, runs the transformation, and then disconnects
from the source and target databases. When moving small amounts of data
during the transformation, the time it takes to connect and disconnect from
the database may be a significant portion of the total processing time.

If you activate the database prior to the first step executing, you will sig-
nificantly reduce the connect and disconnect times for all subsequent steps
using that database. Of course, you must remember to deactivate the data-
base as the last action of the warehouse processing. Otherwise, resources
may not be freed up appropriately. The ACTIVATE and DEACTIVATE
commands need to be created as user-defined steps to the warehouse.

Ensure Warehouse Data Is Up-to-Date
If you want to make sure that your data is always up-to-date, you might con-
sider using a function called transient data when defining your target table.
Transience is a concept that allows the user to indicate to the warehouse that
the source data needs to be refreshed prior to it being used by a step.

For example, suppose you are designing a warehouse that pulls a subset
of operational data from an Oracle database and loads it into a staging
table in DB2. That data is subsequently processed by another warehouse
step to cleanse and aggregate the data prior to a final export and load into

Data Transformation with IBM DB2 Data Warehouse Center 329

an OLAP cube. However, you should make sure that the data in the DB2
staging table is always the most current prior to the final processing.

Using the transient concept allows you to define the target table of the
step that pulls from the Oracle database as transient and then use that tran-
sient table as a source to the step that cleanses and aggregates the data. You
would then schedule only this second step (unlike the case where the first
step does not produce a transient table and you would schedule the first
step). When this second step is executed, prior to doing any processing, it
executes the first step to make sure the latest Oracle data is in the transient
staging table. Once the transient table has been successfully loaded, the
second step continues its processing.

Transient tables are very useful in the case where the data being pulled
is used by more than one subsequent step. If you do not use transient
tables, you need to make copies of this step for each process that uses that
data. Figure 9.7 shows the differences between using transient and non-
transient tables.

Figure 9.7 Using transient and nontransient tables.

330 Chapter 9

In the first process flow in Figure 9.7 (left flow), the target of the “Using
transients-SQL” step is defined as a transient table called TRANSIENT. This
table is then used as a source to the two OLAP steps that populate two dif-
ferent cubes. Now as each of the OLAP steps executes, prior to them loading
the cube, it will run the “Using transients-SQL” step, and once complete, the
OLAP steps will complete. In this case, you will notice that the schedules are
not on the “Using transients-SQL” step, but on each individual OLAP step
indicated as by the small clock icon. In fact, if you were to schedule a step
that produces a transient table, you would get a runtime error.

In contrast, the second process flow (right flow) shows how you would
accomplish the same task, using two SQL steps that load the same data into
the target table and run that at the different schedules, and then on success-
ful completion (links between the SQL and OLAP steps) of the SQL step, it
would execute the OLAP load step. To define the target table as transient,
you need to specify this on the step’s target output table definition. Refer to
Figure 9.8 to see the dialog interface.

There is an alternative to transient tables called dependency checking. You
should use this feature when you are concerned about the data being cur-
rent prior to the execution of a transformation. Using this function, IBM
DB2 Data Warehouse Center checks to make sure that the data in the table
being used as a source is valid.

Figure 9.8 Define a transient target.

Data Transformation with IBM DB2 Data Warehouse Center 331

Figure 9.9 Dependency checking.

Dependency checking is possible to do with transient data as described
previously, but transients cannot be used in all cases. For example, suppose
we need to define a process that contains three transformations, where the
second and third transformations use the data produced by the first step.
Also, we need to have each of these three transformations run on its own
schedule with no task dependency between them.

In some cases, if the first transformations were to fail—for example, the
data at the source was bad—then the target of the first transformations may
contain invalid or no data. This is especially true when transformations run
independently of the first transformations, leading to the possibility of sub-
sequent transformations pulling data that is invalid.

With the data dependency checking feature of the IBM DB2 Data Ware-
house Center, the user can indicate that the second and third steps should
check to make sure that the step that populates the table it uses as a source
completed successfully during its last run. If the step completed success-
fully, these dependent steps will begin execution. If the step failed, the
second and third steps will not start and a runtime error will be logged

332 Chapter 9

indicating that the data dependency check failed and that the user needs to
take corrective action to make sure the first step runs successfully.

As shown in Figure 9.9, dependency checking occurs each time the steps
“Dependency Checking-SQL (2)” or “Dependency Checking-SQL (3)” exe-
cute. Dependency checking makes sure that the last execution of “Depen-
dency Checking-SQL” produced valid results in the target table called
IWH.CHECK1.

Retry
IBM DB2 Data Warehouse Center provides you the ability to retry a step if
a communications error occurs when the warehouse server is starting a
warehouse agent. This capability is called retry and is specified at the step
level. If the step fails because of a communications error, the server retries
the step for the user-specified number of times. As long as the step is being
retried, the Work In Progress indicates that the step is in retry status.

The user can also specify a retry interval. A time interval can be estab-
lished and used by the warehouse server that specifies the time to wait
between each retry. The default value for this is to retry the step three times
once every 30 minutes. If the step continues to fail after all retries are
exhausted, the step fails with an error.

SQL Transformation Steps

SQL step types allow you to use the relational features of your source sys-
tems to access and transform necessary data. Using SQL steps, you have
full SQL language supported by the source to query and transform your
data and move it to the target warehouse. Of course, data architects and
ETL programmers need to understand what SQL is supported by the
source systems before it can be coded in your SQL step.

When you define an SQL transformation using the SQL step, you select
the SQL step type from the process modeler pallet and drop it onto the
process modeler canvas. The next step is to link up the sources that you
will be extracting data from and, optionally, the target where the extracted
and transformed data will be loaded. Linking the source to the SQL step
and the SQL step to the target on the process modeler canvas is done with
the process modeler link tool.

Two types of SQL query steps allow you to extract, transform, and load the
source tables to the target table. You can define these steps using the SQL
Step icon from the processor modeler. Figure 9.10 illustrates the options.

Data Transformation with IBM DB2 Data Warehouse Center 333

Figure 9.10 SQL step types.

Some points to remember about SQL step types are as follows:

■■ You can only join multiple source tables from the same physical
database for non-federated sources. For federated sources, you may
join heterogeneous data source types.

■■ You can only write to one target table.

■■ The warehouse agent that executes the SQL step must have connec-
tivity to both the source and target databases.

■■ The columns that are output as a result of the SELECT statement are
those that are mapped to the target.

■■ The target table can exist and be mapped in the step’s properties
page, or it can be generated by the warehouse as a result of a default
mapping and the columns resulting from the SELECT statement.

■■ Data in the target table can be appended to or completely replaced,
except for SQL Select and Update steps.

■■ You can have the warehouse incrementally commit the new records
of data after a user-defined number of records have been written to
the target table.

Let’s look at each of the two SQL step types.

334 Chapter 9

SQL Select and Insert
This IBM DB2 Data Warehouse Center step type allows you to select the
source data and do a full insert into the user-defined or warehouse-
generated target table. You have an option to append to or replace the con-
tent of the target table. When you choose the APPEND option, you may
also keep multiple editions of the load data in the target table.

On the SQL page there is an SQL wizard called SQLAssist to help you
customize a SELECT statement against the warehouse sources so that you
can filter and transform the source data according to your specific ware-
house needs.

On the Column Mapping page, map the output columns (resulting from
the SELECT statement you generated) to columns of your target table. Col-
umn mapping allows you to create an explicit data type mapping between
the source and target columns.

When creating SQL steps with edition functionality based on usage, you
should consider creating a nonunique index on the edition column to
speed up the performance of deleting editions. This option is critical for
large warehouse tables, since it can impact row insertion into target tables.

If you want IBM DB2 Data Warehouse Center to generate the target table
based on the source data, the IBM DB2 Data Warehouse Center will do an
automatic data type mapping from the selected source columns to the out-
put target columns. (See Figure 9.11.)

Figure 9.11 Generate default table.

Data Transformation with IBM DB2 Data Warehouse Center 335

Incremental commit is an option that is available for all SQL Select and
Insert steps. It allows you to control the commit scope of the data that is
managed by the IBM DB2 Data Warehouse Center. Incremental commit can
be used when the volume of data to be populated by the DWC agent is
large enough that the DB2 log files may fill up before the entire warehouse
step transaction is complete, or when you want to save partial data. SQL
steps will complete with an error if the amount of data being populated
exceeds the DB2 maximum log file size that has been allocated. Incremen-
tal commit is specified on the step processing options page as illustrated in
Figure 9.12.

The incremental commit option allows you to specify the number of
rows (rounded to the nearest factor of 16) to be processed before a commit
is performed. The agent selects and inserts data, committing incrementally
until it completes the data population to the warehouse target successfully.
When the data population completes successfully, outdated editions are
removed if the warehouse target has multiple editions and the target table
is defined with more than one edition.

Figure 9.12 Define a step with incremental commit.

336 Chapter 9

SQL Select and Update
This warehouse step type allows you to select the changed source data and
update the target table. For example, if you have a warehouse target that
contains the current inventory in stock, you may first do an initial load to
populate the source operational data into the warehouse target. At the end
of each business day, you can run the defined SQL Select and Update step
to update the warehouse target to reflect the changes in the current inven-
tory in stock without doing a full reload to your target warehouse.

Since the target table is updated each time you run the defined SQL
Select and Update step, you should schedule a RUNSTATS against the
warehouse target to keep DB2 table statistics up-to-date for optimal data
access performance. Also, you can schedule a REORG against the ware-
house target table to make sure it is done when necessary so the access per-
formance on the warehouse target will not deteriorate.

When you configure the update criteria for the warehouse target, you
must provide key mapping between the source and target tables. You
can also define the column mapping between the source and target like
Select and Insert Step type. The same capability as the SQL Select and
Insert step is available to edit the SQL statement and to choose the pro-
cessing options, except that IBM DB2 Data Warehouse Center does not
generate the default target tables for updates. Note, you should not have
multiple editions of the target table. (See Figure 9.13.)

Figure 9.13 SQL Select and Update.

Data Transformation with IBM DB2 Data Warehouse Center 337

DB2 Utility Steps

IBM DB2 Data Warehouse Center tightly integrates with the DB2 V8 utility
functions. This integration is such that DB2 V8 utility scripts generated by
warehouse are executable by a warehouse agent. You manage these DB2
Utility steps just like other warehouse step types and schedule them to run
based on your warehouse needs.

Export Utility Step
The Step Properties notebook for DB2 export is used to create a step to
export data from a DB2 table or view to a file located at the agent site. Fig-
ure 9.14 shows the interface.

The source database does not need to be on the same system as the ware-
house agent. However, the target file must be local to the warehouse agent.
You must specify the name of the target file as it is used on the warehouse

Figure 9.14 DB2 Export utility step.

338 Chapter 9

agent system. The DB2 export utility creates a target file if it does not exist
or replaces it if it exists. Note that the created target file will be owned by
the user ID that the warehouse agent executes under. Consequently, con-
sideration should be taken to authorize this target file to the appropriate
users.

To use an Export Utility step, the source table or view must be linked to
the step in the process modeler and the step must be linked to the ware-
house target file.

LOAD Utility
You can use the supplied warehouse programs to efficiently move large
quantities of data into newly created tables, or into tables that already con-
tain data, including DB2 on Windows, Unix, DB2 for iSeries, and DB2 for
z/OS database. Indexes for the load table are rebuilt upon successful data
load. The input file to the LOAD utility must be authorized to the ware-
house agent and it must be local to where the warehouse agent is. The
input file can be in either character delimited, fixed-length, or PCIXF for-
mat. The LOAD Utility step provides an option for you to bypass the DB2
logging for high-speed data loading to the target DB2 table. The load
modes supported are the following:

INSERT. Append the data in the input file to target DB2 table.

REPLACE. Replace the content of the target DB2 table with the data
in the input file.

PARTITIONED. Load the input file data into a partitioned DB2 table
using parallel loading. The loading process takes advantage of multi-
ple processors or multiple storage devices available on the operating
system, such as in a symmetric multiprocessor (SMP) environment.

RESTART. Restart a previously suspended LOAD utility. The loading
process resumes from the last consistency point.

TERMINATE. Terminate a previously suspended LOAD utility and
rolls back the operation to the point in time at which it was started,
even if consistency points were passed. The tablespaces where the
warehouse target table is will be reset to normal, and all table objects
in these tablespaces will be marked consistent again.

Figure 9.15 shows all the DB2 LOAD utility options identified in the pre-
ceding list.

Data Transformation with IBM DB2 Data Warehouse Center 339

Figure 9.15 DB2 LOAD utility step.

Warehouse Transformer Steps

IBM DB2 Data Warehouse Center provides a rich set of basic data transfor-
mations grouped under the warehouse transformers and statistical trans-
formers. To run these transformers, you should register them in your target
warehouse database and enable them in the warehouse meta data. This can
be accomplished by opening the Warehouse Target notebook’s Database
page, and checking the box named “Enable target for transformers”.

Cleansing Transformer
Use this transformer to perform rules-based find-and-replace operations
on a target table. The transformer finds values that you specify in the data
columns of the source table that your step accesses. Then the transformer
updates the corresponding columns with the replacement values that you
specify in the table to which your step writes. You can select multiple
columns from the input table to carry over to the output table. This trans-
former does not define rules or parameters for the carry-over columns.

Before you can use this transformer, you must create a rules table for
your clean type. A rules table designates the values that the Clean Data
transformer will use during the find-and-replace process. The rules table
must be in the same database as the input table and output table. Note, the
output table must exist and be identified as the warehouse target before the
cleansing step is defined.

The transformation options for the Clean Data transformer include the
following:

Find and Replace. Locate the input value from the rules table and
replace it with the value specified in the rules table. If a match is not

340 Chapter 9

found and you have turned on the error processing options, the
entire input row is written to the error table along with the RUN_ID
of the execution.

Carry Over. Copy the input column directly to the output table with-
out modification.

Clip. The rules table contains replacement values for numeric-only
data that fall below a lower bound or exceed an upper bound.

Discretize. The rules table contains one column with the low value,
one column with the high value, and one column with the replace-
ment value; if the input value is in one of the ranges specified
(between low and high values), it is replaced with the value specified
in the rules table.

Convert Case. Convert the character-only value to upper- or lowercase

Encode Invalid Values. Convert the invalid values to the predefined
correct values stored in the specified rule table.

At a minimum, a rules table must contain at least two columns. One col-
umn contains the values to be searched for, and the other column contains
the values to be replaced.

If a match is found, the corresponding replacement value will be copied
to the target table. If you specify a differentiator column for both the rules
and the source table, the values in the differentiator column must be iden-
tical for the match to be successful. If you specify an order column for the
rules table, the find and replace operation matching order will follow the
ascending order of values in the order column.

If a match is not found and you have turned on the error processing
option by selecting the multiple match option, write to error table, or by
enabling error processing, the entire input row will be written to the error
table along with the RUN_ID of the execution.

If you allow nulls for this clean type, you must put a null value in the
Find column of the rules table. (See Figure 9.16.)

For example, suppose your company receives syndicated data on a peri-
odic basis for each retail store that sells its products. Data from different
stores is provided by several different syndications, each of which, while
supplying the needed sales data, provides it in slightly different formats.
You can use the Clean DB2 stored procedure to modify and convert the
input data into a standard format for further propagation of the data into
the warehouse environment.

The clean utility has a few constraints. For instance, the input must be a
column in the warehouse source table and it cannot be a computed value
from the warehouse source table.

Data Transformation with IBM DB2 Data Warehouse Center 341

Figure 9.16 Clean Data-find and replace rules table.

To illustrate, let’s define a Clean Data transformer step. We will use a
table called EMPLOYEE and cleanse the WORKDEPT using Find and
Replace, SALARY using Clip, and COMM using Discrete, and leave the
EMPNO, LASTNAME, and FIRSTNAME unchanged using Carry Over.
Figure 9.17 shows the clean data step parameters.

Figure 9.17 Clean data step parameters.

342 Chapter 9

Generating Key Table
Use this transformer to create and insert unique keys into a warehouse
table. After you have built your warehouse target table, you may want
to add a key column to uniquely identify each record in your warehouse
target table. You can alter the warehouse target table to add the new key
column definition and the new column must be defined with NULLs
accepted. Alternatively, the key column may have been created initially
with the table; the initial values could be NULL or a default value. Then
you can run the Generate Key Table transformer against the modified
warehouse target. You can populate one key column to the target ware-
house in each step.

The generated key values can either replace null values via an Update
step or can be inserted into a newly defined key column using the Replace
step option.

Starting key values can be explicitly specified or calculated from the
maximum existing value of a column in the same or another table.

This transformer uses the warehouse target table as both input and out-
put, and it writes the customized key values into the target table. If you
want to alter the customized key properties, the Generate Key Table trans-
former step must be in development mode. However, you may change the
step properties such as the starting key values when the step is in nonpro-
duction mode.

When you select Update the Value in the Key Column, the transformer
updates only those rows in the table that do not have key values. When
additional rows are inserted into the table, the key values are null until you
run the transformer again.

Figures 9.18 and 9.19 show the property pages necessary to define the
Generating Key Table step.

Figure 9.18 Generate Key Table step.

Data Transformation with IBM DB2 Data Warehouse Center 343

Figure 9.19 Generate key table parameters.

Generating Period Table
This transformer is designed to create a period table that contains columns
of date information that you can use when evaluating other data, such as
determining inventory on stock within a certain period of time. There is no
input table required for this transformer. Output values are computed
based on the parameter values specified in this transformer, and placed into
an empty output table in predefined columns. You can specify the Start and
End values using date and time values or number of rows. One column of
data type Date, Time, or Timestamp is required. Values are generated based
on the resolution parameter, including: Day, Week, Month, Quarter, Year,
Two weeks, Four weeks, Hour and Minute. Figure 9.20 illustrates the reso-
lution options as well as other parameters available to warehouse planners.

Optional period related columns associated with the Date/Time column
value can be populated. For instance, you can associate date values with
up to 14 different formats including Julian Day, Hour in Day, Day in Week,
Day of Month, Day of Year, Week of Month, Week of Year, Month of Year,
Quarter of Year, Year, Name of Day, Name of Month, and Period Number
plus a sequence number. You can then use an SQL join to merge this gener-
ated period table with the date value in your source tables using the Date
column to create a warehouse target.

Let’s assume a company has a number of product data tables that all
include a DB2 date column. The company would like to use SQL SELECTs
against these tables using various period-related values rather than just
date. You can use the Generate Period Table transformer to populate a table
of period-related columns containing value types of interest.

344 Chapter 9

Figure 9.20 Generate period table parameters.

Mapping the selected date format to the warehouse target is shown in
Figure 9.21. After the transformation is executed, the target table will con-
tain the generated date values, as illustrated in Figure 9.22.

Figure 9.21 Generate period table column mapping.

Data Transformation with IBM DB2 Data Warehouse Center 345

Figure 9.22 Generate Period Table sample output.

Inverting Data Transformer
Use this transformer to invert the order of the rows and columns in a table.
When you use this transformer, the rows in the source table are trans-
formed to columns in the output table, and the columns in the input table
are transformed to rows in the output table. The order of data among the
columns, from top to bottom, is maintained and placed in rows, from left to
right. For example, consider the input table as a matrix. This transformer
swaps the data in the table around a diagonal line that extends from the
upper left of the table to the lower right. Then the transformer writes the
transformed data to the target table.

Before you begin this task, you must connect a source table from the
warehouse database to the step. You can also specify a target table that the
step will write to, or you can designate that the step create the target table.
The desired output columns must be created manually in a step-generated
warehouse target table. This transformer drops the existing database table
and re-creates it during each run. Each time you run a step using this trans-
former, the existing data is replaced, but the tablespace and table index
names are preserved.

The input table is expected to be either homogenous or of types all
related to each other through automatic promotion. That is, all the table
data is of the same or promotable type except for the first column if that is
to be used as the pivot column. Other constraints include the following:

■■ All data in the pivot column must be less than 18 characters wide.

■■ The number of rows in the source table should be less than the maxi-
mum number of table columns supported in the version of DB2 that
is running this transformer.

346 Chapter 9

Figure 9.23 Invert Data–sample source table.

Each time this step is run, the column names or the number of columns
may change. These columns will not be displayed when the target table
data is sampled; however, you may import the warehouse target table after
the transformer is executed.

Figure 9.23 shows a sample source table where the WEEK_OF column
will be inverted and the target table will be generated based on the input
parameters.

This transformer is useful because it is much simpler and easier to issue
an SQL statement against the resulting table than against the original table.
For example, after the table has been inverted, it is very easy to select the
highest value for the week of July 1st.

When setting the parameters of the invert, you should indicate the col-
umn you want to invert on. In our example we plan to invert on the
WEEK_OF column, as shown in Figure 9.24.

Figure 9.24 Invert data parameters.

Data Transformation with IBM DB2 Data Warehouse Center 347

Figure 9.25 Invert data sample output.

The data displayed in Figure 9.25 is the output results once the trans-
former has executed.

Pivoting Data
Often there is a requirement to group related data from selected columns in
the source table, which are called pivot columns, into a single column, called
a pivot group column, in the target table. The Pivoting data transformer can
create this regrouping of data even if you need to create more than one
pivot group column.

When using this transformer, you must keep in mind several considera-
tions. First, you can select multiple columns from the source table to carry
over to the output table, but the transformation will not change the data
itself. This transformer uses an existing target table in the same database or
creates a target table in the same database that contains the warehouse
source. Also, you can change the step definition only when the step is in
development mode. Finally, columnar data in each pivot group must have
either the same data type or data types that are related to each other
through automatic promotion.

To illustrate, let’s use an example. Figure 9.26 shows source data that we
want to pivot from the TransGalactic Company. The source data has a data-
base table representing Space Craft Maintenance average repair times for 4
lines, described by the propulsion system in each of two craft families (Pas-
senger and Cargo) collected on a weekly basis from Earth and Earth’s
Moon. The DBA wishes to aggregate repair times for each of the two craft
families so that she can perform statistics on the craft families either by
week, repair site, or craft line.

348 Chapter 9

Figure 9.26 Pivot data–sample input.

To start this pivot process, we first need to identify the carry-over
columns and the pivot groups as shown in Figure 9.27.

Next, we want to set the grouping characteristics of the source data. Note
that the number of pivot columns must be divisible by the number of
groups. Figure 9.28 demonstrates the grouping interface.

Finally, the source columns must be mapped to their corresponding tar-
get columns as shown in Figure 9.29.

After the transformation is executed, the warehouse target contains the
data shown in Figure 9.30. You can create other SQL steps to query this
pivot_out table by date, location, or spacecraft.

Figure 9.27 Pivot data parameters.

Data Transformation with IBM DB2 Data Warehouse Center 349

Figure 9.28 Pivot data grouping.

Figure 9.29 Pivot data column mapping.

Figure 9.30 Pivot data sample output.

350 Chapter 9

Date Format Changing
For easy and efficient transformation of date field formats, use this trans-
former. It converts the format of a date field in your source table to a
desired date field format in your target table. You can run this transformer
with any other transformer or warehouse program.

Numerous standard date formats are available with this transformer
that you can specify for the input and output columns. If a date in the input
column does not match the specified format, the transformer writes a null
value to the output table.

This transformer runs as a function called FormatDate against the input
date column for each row in the table, and the formatted output date is
placed in the output date column (which must exist). The format of the
input and output dates are chosen from menu lists of date and time formats.
Optionally, a user can specify his or her own input or output date format
using the listed data formats. Figure 9.31 shows the FormatDate interface.

Illustrated in Figure 9.32 is the SQL code generated when using the
FormatDate UDF.

Figure 9.31 FormatDate mappings.

Data Transformation with IBM DB2 Data Warehouse Center 351

Figure 9.32 Using FormatDate in an SQL statement.

Statistical Transformers
Several statistical analysis tools are available through IBM DB2 Data Ware-
house Center. Being able to include complex, statistical algorithms as a nat-
ural part of your ETL processing is powerful. However, any discussion of
their applicability is beyond the scope of this book. We present these trans-
formers to ensure complete coverage for the reader. It will be up to the
reader to discern their application.

Analysis of Variance (ANOVA)

The ANOVA transformer produces statistical calculations in two tables
based on a small number of parameters. There are three types of ANOVA:

■■ One-way

■■ Two-way

■■ Three-way

The transformer obtains two independent estimates of variance. The
first estimate is based on variability between groups, while the second esti-
mate is based on variability within groups.

After the ANOVA step computes the estimates, it calculates their ratio. A
family of distributions, the Fisher-F distributions, describes the signifi-
cance of this ratio.

The process also calculates a p-value. The p-value is the probability that the
means of the two groups are equal. A small p-value leads to the conclusion
that the means are different. For example, a p-value of 0.02 means there is a
2 percent chance that the sample means are equal. Likewise, a large p-value
leads to the conclusion that the means of the two groups are not different.

352 Chapter 9

Figure 9.33 ANOVA properties.

Many industry sectors rely upon this kind of statistical analysis, such as
finance and insurance, where ANOVA is used to detect, prevent, and reduce
fraud and error, and the medical and scientific community, where ANOVA
is used to identify populations with certain particular characteristics.

Let’s use a sample SALES table as the input table to ANOVA and gener-
ate the summary and statistics table. Figure 9.33 shows the ANOVA prop-
erties interface.

When we select the Column Mapping tab, we are prompted to enter
both the summary and statistics warehouse target table names. Figure 9.34
illustrates a straightforward movement of columnar data from the source
to target columns.

Figure 9.34 ANOVA column mapping.

Data Transformation with IBM DB2 Data Warehouse Center 353

Figure 9.35 ANOVA step.

Once we have identified and mapped the source to target tables in our
process, we now need to add the ANOVA step to our process model. Fig-
ure 9.35 demonstrates how the ANOVA step is implemented in our exam-
ple where the output summary and statistics tables are generated.

The summary table is called SALES_SUMMARY, and the statistics table is
SALES_STATISTICS. Once the ANOVA step is executed, the summary data
is stored in the SALES_SUMMARY table as shown in Figure 9.36. The output
displays six columns of data, each with a maximum of three rows. The
columns include the following:

■■ Source

■■ Degrees of freedom (DF)

■■ Sum of squared deviations from the mean (SS)

■■ Mean sum of squared deviations from the mean (MSS=SS/DF)

■■ F-value (MSS (between groups)) / MSS (within groups)

■■ P-value (Pvalue_function (DF, F-value))

Figure 9.36 ANOVA sample output summary.

354 Chapter 9

The statistics data is store in, SALES_STATISTICS, shown in Figure 9.37,
that contains five calculated statistics: Count, Sum, Average, Variance, and
Standard Deviation.

Calculating Statistics

The Calculating Statistics transformer calculates numerous descriptive
statistics on any number of data columns from a single table, including the
following:

COUNT. Number of items

SUM. Total when numbers are added together

MINIMUM. Smallest number

MAXIMUM. Largest number

RANGE. Difference between largest and smallest number

AVERAGE. Sum divided by the number of items (i.e., mean)

VARIANCE. Average squared deviation from the mean

STANDARD DEVIATION. Square root of the variance

COEFFICIENT OF VARIATION. Standard deviation as a percentage
of the mean

STANDARD ERROR. Standard deviation divided by square root of
the number of items

This transformer writes summary information into relational tables that
can be queried directly or used as input for further statistical analysis.

Figure 9.37 Calculating statistics–sample output.

Data Transformation with IBM DB2 Data Warehouse Center 355

Figure 9.38 Calculating statistics step parameters.

Defining the transformation step is straightforward, using the custom-
ary properties interface. Figure 9.38 illustrates the parameters necessary to
define the step.

In our example we are calculating the number of sales people (COUNT)
for each region, and we are deriving statistical SUM and AVG against the
source column SALES. The results of these statistics are mapped to a target
table as shown in Figure 9.39.

Figure 9.39 Calculating statistics column mapping.

356 Chapter 9

Figure 9.40 Calculating statistics sample output.

The output of our statistical transformation step is shown in Figure 9.40.

Calculating Subtotals

Use this transformer to calculate the running subtotal for a set of numeric
values grouped by a period of time. This particular feature is invaluable in
warehouse data propagation, since much of the ETL work has to do with
creating running subtotals. The transformer allows subtotals to be calcu-
lated in these increments: weekly, semimonthly, monthly, quarterly, or
annually.

To illustrate, we will take an accounting perspective. In accounting it is
often necessary to produce subtotals of numeric values for basic periods of
time. This is frequently encountered in payroll calculations where compa-
nies are required to produce month-to-date and year-to-date subtotals for
various types of payroll data.

There are a few issues to remember during the setup. First, the subtotal
values are placed into the input table in predefined output columns. Sec-
ond, the output columns must already exist. To put it simply: The input
table is the output table. Finally, there must exist a primary key column.

The first step to defining a subtotal transformation is to complete the
properties parameters as shown in Figure 9.41.

For example, a company has employee payroll data where employees
are paid semimonthly and would like to collect the monthly subtotal.
The primary key is CHECKID, and we plan to map the subtotal of
SALARY_Month to the column name SUBTOTAL in the output as shown
in Figure 9.42.

Data Transformation with IBM DB2 Data Warehouse Center 357

Figure 9.41 Calculating subtotals step parameters.

The final output is shown in Figure 9.43. The subtotal column in the pay-
roll table contains the employee monthly subtotal.

Figure 9.42 Calculating subtotals column mapping.

358 Chapter 9

Figure 9.43 Calculating subtotal sample output.

Chi-Squared Transformer

The Chi-Squared transformer performs the Chi-Square test on columns of
numerical data. Additionally, it is possible to supply expected values to the
Chi-Squared transformer, rather than having them calculated. This is
called the Chi-Square goodness-of-fit test. The results show how the observed
data differs from statistical expectations. Both of these tests, however, are
nonparametric tests. You can use the statistical results of these tests to
make the following determinations:

■■ Whether the values of one variable are related to the values of
another variable

■■ Whether the values of one variable are independent of the values of
another variable

■■ Whether the distribution of variable values meets your expectations

This transformer produces one or two output tables. One table is the
Chi-Square output table, which reports degrees of freedom, the Chi-Square
value, and the p-value. A second table is referred to as the Expected Output
Values, which shows the goodness-of-fit values for each cell used in the
Chi-Square by the transformer. This table is optional when running the
standard Chi-Square test.

To illustrate the process, we start with sample data shown in Figure 9.44.

Data Transformation with IBM DB2 Data Warehouse Center 359

Figure 9.44 Chi-Square sample input data.

Next, we need to set parameters as identified in Figure 9.45. The Column
of row definition contains the names of the rows in the conceptual table.
The Column of column names specifies the names of the columns in the
conceptual table. The Observed frequencies column, which must be numeric,
contains the cell counts used to compute the chi-square statistics. And,
finally, the Expected frequencies column is optional. If it is specified, it must
be numeric and contain the expected cell counts; it then calculates the
goodness-of-fit.

Figure 9.45 Chi-Square step parameters.

360 Chapter 9

Figure 9.46 Chi-Square column mapping.

Once we have defined the necessary parameters, the next step is to map
the source columns to target output. (See Figure 9.46.)

After the Chi-Square transformer is defined, it must be included in the
process model. As shown in Figure 9.47, there is a single input table and
two output tables. The first output table is referred to as CHISQ_OUTPUT,
and the second is CHISQ_EXPECTED.

A sample of the calculated results in both the output tables is shown in
Figures 9.48 and 9.49.

Figure 9.47 Chi-Square step.

Data Transformation with IBM DB2 Data Warehouse Center 361

Figure 9.48 Chi-Square–observed data.

Figure 9.49 Chi-Square–expected data.

Correlation Analysis

Correlation analysis is used to determine the extent to which changes in the
value of an attribute (such as length of employment) are associated with
changes in another attribute (such as salary). The data for a correlation
analysis consists of two input columns. Each column contains values for
one of the attributes of interest. The Correlation transformer can calculate
various measures of association between the two input columns. You can
select more than one statistic to calculate for a given pair of input columns.

The data in the input columns also can be treated as a sample obtained
from a larger population, and this transformer can be used to test whether
the attributes are correlated in the population. In this context, the null
hypothesis asserts that the two attributes are not correlated, and the alter-
native hypothesis asserts that the attributes are correlated.

This transformer calculates any of the following correlation-related sta-
tistics on one or more pairs of columns:

■■ Correlation coefficient is a measure of the linear relationship between
two attributes (columns) of data. It is also known as the Pearson
product-moment correlation coefficient. It ranges from -1 to +1 and is

362 Chapter 9

independent of units of measurement. A value near 0 indicates little
correlation; a value near +1 or -1 indicates a high level of correlation.

■■ Covariance is a measure of the linear relationship between two attrib-
utes (columns) of data ranges from -infinity to +infinity. A value too
small or too large is represented by a null value. It is dependent on
the units of measurement.

■■ T-value is the observed value of the T-statistic that is used to test the
hypothesis that the two attributes are correlated. It ranges from
-infinity to +infinity. A value near 0 is evidence that there is no corre-
lation between the attributes (null hypothesis). A value far from 0 is
evidence that there is correlation between the attributes. T-Value = r *
SQRT((n - 2) / (1 - r * r)) where r is the correlation coefficient, n is the
number of input value pairs, and SQRT is the square-root function.

■■ P-value is the probability, when the null hypothesis is true, that the
absolute value of the T-statistic would equal or exceed the observed
value (T-value). A small p-value is evidence that the null hypothesis
is false and the attributes are correlated.

We start at the same place as defining other transformers, the properties
parameters tab, as shown in Figure 9.50. Points of interest are the Grouping
Columns that group related rows for each statistical calculation. The Data
columns you select must be numeric and must contain input values for the
calculations. Particular statistics are chosen for each row through a sec-
ondary dialog box.

Figure 9.50 Correlation step parameters.

Data Transformation with IBM DB2 Data Warehouse Center 363

Figure 9.51 Correlation column mapping.

In our example we are trying to determine if there is a correlation
between the sample table EMPLOYEE education level and the correspond-
ing salary, bonus, and commission earned. We will choose all the available
statistics for Data Column2. All mapping from the source to target is done
under the Column Mapping tab of the properties interface, as shown in
Figure 9.51.

The calculated results are shown in Figure 9.52.

Moving Average

Use this transformer type to calculate simple and exponentially smoothed
moving averages, which can often predict the future course of a time-
related series of values. Moving averages are widely used in time-series
analysis in business and financial forecasting. Rolling sums have other
widely used financial uses.

You can use this transformer to calculate the following values:

Simple moving average. This is a standard moving average calcula-
tion. SMA [row i] = SUM (data values for last N rows) / N.

Exponential moving average. An exponentially smoothed moving
average is often more precise than a simple moving average. EMA
[row i] = (Value [row i] * K) + (EMA [row i - 1] * (1 - K)), where
K = 2 / (N + 1).

Rolling sum. This is a standard rolling sum. RS [row i] = SUM (data
values for last N rows).

364 Chapter 9

Figure 9.52 Correlation sample output.

Figure 9.53 shows the parameters tab of the properties page that must be
completed. The Order by column defines how to sort the source data for the
moving average calculations. You must specify at least one order column.
Input columns, which must be a numeric data type, contain input values for
the moving average. The specific statistics are chosen for each row through
a drop-down list. Finally, the Period determines the size of the “window” in
terms of the number of rows.

Figure 9.53 Moving average step parameters.

Data Transformation with IBM DB2 Data Warehouse Center 365

Figure 9.54 Moving average column mapping.

Following are some constraints to remember when using this transformer:

■■ The table must contain a primary key (it was DATE in this example).

■■ The table must contain at least one numeric column. An Order By
column is required.

■■ You cannot use the Order By columns as input columns (on the
parameters page) or as output columns (target columns on the col-
umn mapping page).

■■ A column may be used multiple times as an input column (CLOS-
ING_INDEX in this example).

■■ It is possible to replace the values in an input column with a calcu-
lated moving average, provided this column is not used as an input
in another row in the table.

In our example we are demonstrating how to calculate the moving aver-
age of a stock quote. The columnar mapping is shown in Figure 9.54. Note
that the input table STOCK_QUOTES also contains the output columns
CLOSE_SMA, CLOSE_EMA, and CLOSE_RS.

Regression Analysis

Regression analysis is used to identify the relationships between a depen-
dent variable and one or more independent variables, and to show how
closely they are correlated. You can use this transformer to show the effect
of a change in pricing on demand for a product, to show the effect of loca-
tion on the response to advertising, or to show how closely two seemingly
random sets of data are related.

366 Chapter 9

Figure 9.55 Regression step parameters.

This transformer performs a backward, full-model regression. This
method starts with all independent variables in a model but removes the
least-important independent variables one at a time until only significant
independent variables remain in the model. The Regression transformer
produces two additional output tables: the ANOVA summary table and the
Equation variable table.

Figure 9.55 shows the parameters that must be set for regression analysis.
There are a few areas of interest that need to be considered. First, only
numeric columns will be shown on the parameters page. The Predictor
columns are the independent variables of interest. In our example we are
using EDLEVEL (education level) and SALARY. And, finally, the Criterion
column is the dependent variable that is presumably related to the indepen-
dent variables. In our case the COMM column is the dependent variable.

In our example we will use the EMPLOYEE table as our input, and the
analysis will produce three separate outputs. Figure 9.56 identifies the
three as Multiple correlation coefficient table, ANOVA summary table, and
Equation variable table. And, as always, we must map the source columns
to target output.

The actual results of the regression transformation are found in three
tables. Figure 9.57 shows the output for the Regression variable table.

Figure 9.58 displays the sample results of the Regression ANOVA table.
And, finally, Figure 9.59 shows the results found in the Regression corre-

lation coefficient table.

Data Transformation with IBM DB2 Data Warehouse Center 367

Figure 9.56 Regression–output tables.

Figure 9.57 Regression–equation variable output table.

Figure 9.58 Regression ANOVA–summary output table.

Figure 9.59 Regression–multiple correlation coefficient output table.

368 Chapter 9

Data Replication Steps

Replication is a process of copying specific changes from one location
(source or capture) to another (target or apply) and synchronizing the data
in both locations. The source and target can be located on the same or dif-
ferent machines in a network. IBM DB2 Data Warehouse Center provides
replication capabilities via replication steps, which will replicate changes
or do a full copy between any two tables in DB2 databases. To define a
replication step, you must belong to a warehouse group that has access to
the process in which the step will be used.

There are five types of replication steps to consider. Each is shown in
Figure 9.60 and defined in the following list:

User copy. Generates a complete and condensed copy of the source
table. “Condensed” implies the target table has a primary key with
which updates are made. User copy tables look like regular source
tables and are the most common type of replication target tables.

Point in time. Generates a complete and condensed copy of the
source table at a certain point in time. It differs from a user copy table
in that it has an additional timestamp column to keep track of when
the transaction occurred.

Base aggregate. Produces a history table in which new rows are
appended for each subscription cycle using the result of a calculation
(via an SQL column function) against the source (or the base) table.

Change aggregate. Generates a table similar to base aggregate except
that new rows are based on the Changed Data (CD) table that contains
recently changed data as opposed to the source table.

Staging table. This is also called a Consistent Change Data (CCD)
table, because it reflects changes from a committed transaction. The
output table generated can be condensed or non-condensed and com-
pleted, or non-completed. Following are the data types:

■■ Condensed: The table contains a primary key and the most current
value for a row. Updates are made using the primary key, and it
is useful for staging changes to remote locations and for summa-
rizing updates before replicating to a target table.

■■ Noncondensed: The table does not contain a primary key, only a
history of changes to a row. Updates are done via appending
rows to the table, and it is useful for auditing purposes.

■■ Complete: The table contains every row in the source table.
■■ Non-complete: The table contains only changes made to the source

table for insert, update, and delete.

Data Transformation with IBM DB2 Data Warehouse Center 369

Figure 9.60 Replication steps.

Figure 9.61 Replication Launchpad.

370 Chapter 9

Changes can only be made to a replication step in development mode;
promoting it to test mode will create the target table and generate the sub-
scription set in the replication control table. A full refresh will be made the
first time a replication step is run. Promoting a replication step to produc-
tion mode enables the schedules that have been defined.

Setting Up Replication
Before you can import the replication source into the IBM DB2 Data Ware-
house Center, you need to create the replication control tables using the
Replication Center. Replication control tables must exist in both the control
and target databases before the replication steps can be run.

To start, you use the Replication Center, where you would see the inter-
face shown in Figure 9.61, the Replication Launchpad.

The launchpad is extremely verbose and therefore relatively easy for
technicians to follow. It is highly recommended to keep the launchpad vis-
ible to users until you establish proficiency on the various options avail-
able using replication services.

If you elect not to use the Launchpad, then you can use the Replication
Center to accomplish the same task, as shown in Figure 9.62. At this point
you should expand the folders as shown until you have opened the Custom
option. This will lead you to the Create Capture Control Tables interface
shown in Figure 9.63.

In the Create Capture Control Tables window, select the Capture control
database, override existing options if necessary, and click on OK. If you
didn’t check the option Use This Server as Both a Capture and Apply Con-
trol Server, then repeat these steps to create the replication control tables in
the warehouse target database (apply server).

Figure 9.62 Open Create Capture Control Table Custom window.

Data Transformation with IBM DB2 Data Warehouse Center 371

Figure 9.63 Create Capture and Apply control Tables.

Under the same Replication Center interface, you will now need to reg-
ister the source tables for the replication process. Figure 9.64 shows the
menu options to select.

Figure 9.64 Register Replication source tables.

372 Chapter 9

A table or view must be defined as a replication source using the Repli-
cation Center before it can be used as a replication source in the IBM DB2
Data Warehouse Center. Again, you can use the Replication Launchpad or
expand the Capture Control Server folder, select the appropriate control
server, right-click on Registered Tables, and select Register Tables. These
steps take you to the screen shown in Figure 9.65.

When you define a replication source table in the Replication Center, you
must choose which before-image and after-image columns to replicate (see
Figure 9.66). These columns are then defined in the replication CD table,
with the before-image columns starting with a special prefix (usually an X).
In IBM DB2 Data Warehouse Center, you then define a replication source in
the same way that you define other DB2 sources; just be sure to mark the
check box to retrieve replication source tables and specify the correct capture
schema. Note: If you need to change the before- and after-image columns,
you must change them in the IBM DB2 Replication Center and then re-
import the replication source into the IBM DB2 Data Warehouse Center.

Defining Replication Steps in IBM DB2
Data Warehouse Center
Remember that the replication subtype and subtype description fields,
which are noneditable, are different for all step types. However, except for
the Row Filtering page, all other pages of the replication step notebooks are
the same for all five types of replication steps.

Figure 9.65 Add registerable tables.

Data Transformation with IBM DB2 Data Warehouse Center 373

Figure 9.66 Register tables.

The first tab of the Replication step notebook displays general informa-
tion about the step type. (See Figure 9.67.) Only the name field is manda-
tory, and a default name is supplied.

Figure 9.67 Replication staging table step.

374 Chapter 9

Figure 9.68 Replication column selection.

The second tab, Column Selection, shows the columns that are available
or selected for replication. Note that only the columns that are defined for
change capture will appear in the available columns list. Figure 9.68 dis-
plays the Column Selection tab.

Shown in Figure 9.68 is an option to add a calculated column. If selected,
this option takes you to an expression builder. (See Figure 9.69.) The user
can type the expression directly into the Expression text area or can build
the expression by double-clicking on columns, operators, functions, and
expressions. Note that the resulting column will have a default type of
CHAR; it’s up to the user to make sure that the corresponding column in
the target table is of the correct data type.

The Column Mapping page, shown in Figure 9.70, is the same as that for
the other steps in the IBM DB2 Data Warehouse Center. After the default
target table is generated, the user can edit the attributes of any of the target
columns that are mapped to calculated columns if so desired, or they can
be edited directly in the columns mapping page.

Data Transformation with IBM DB2 Data Warehouse Center 375

Figure 9.69 Expression Builder.

Figure 9.70 Replication column mapping.

376 Chapter 9

Figure 9.71 Replication row filtering.

The fourth tab in the step notebook for Replication is row filtering. The row
filtering tab allows the user to specify the SQL WHERE clause that will be
used to sub-select rows from the source table. Figure 9.71 shows the tab.

The row filter code can be directly entered into the text area. Or, as
shown in Figure 9.71, you can import an SQL script from a file. Another
option is to use the SQL Assist tool to help you build your query.

There is a final option under the Row Filtering tab called CCD Properties.
The term stands for Consistent Change Data properties and should only be
present and considered when you are dealing with staging replication tables.
By selecting this option, a window will appear as shown in Figure 9.72.

Figure 9.72 CCD.

Data Transformation with IBM DB2 Data Warehouse Center 377

The CCD options allow you to specify whether your staging table con-
tains only current data or historical changes. It allows you to define
whether your staging table is appended to or empty when you start your
replication process. For information on all combinations, refer to the IBM
DB2 Data Warehouse Center Administration Guide.

Other than the properties that are common to all step types in IBM DB2
Data Warehouse Center, the Replication Step Processing Options tab also
allows the user to specify replication options such as Apply Control Server
Alias, Database Type, User ID, Password, and so on. Even though Apply
Qualifier is not a mandatory field, it’s still a good idea to specify a unique
name, since otherwise the system will generate a unique cryptic name. (See
Figure 9.73.)

Once the Replication step is defined and configured, you can execute the
step. This can be done by promoting the step and starting the capture pro-
gram in the Replication Center or by typing the following in a command
prompt:

ASNCAP CAPTURE_SERVER=source_DB STARTMODE=WARMSI

Figure 9.73 Replication step processing options.

378 Chapter 9

The STARTMODE=WARMSI parameter specifies an initial COLD start
that deletes any existing data in the CD tables; subsequent starts are warm
starts.

Before you test or run the step, make sure that the encrypted password
file has been created for the replication step. This is done using the replica-
tion program ASNPWD. Data Warehouse Replication steps assume that the
password file is found in the VWS_LOGGING directory and have a file-
name of applyqual.pwd, where applyqual is the Apply Qualifier in the
Processing Options page of the replication step. Finally, you can test the
step, which involves updating the event record in the IBMSNAP_SUBS_
EVENT table, marking the subscription record in IBMSNAP_SUBS_EVENT
active, and calling the agent to start the Apply program. After the test runs
successfully, you can then schedule and promote the step to production
mode.

MQSeries Integration

The IBM DB2 Data Warehouse Center enables you to access MQSeries mes-
sages as character strings which are fixed length, character-delimited for-
mat or XML documents. You do this by generating a DB2 user-defined
table function to access the MQSeries message data and creating a DB2
view against this user-defined table function in the IBM DB2 Data Ware-
house Center.

This provides powerful capabilities to the warehouse in that the
MQSeries support provides access to application data in queues and pre-
sents them to warehouse users as regular relational views. This functional-
ity allows you to join application data on a queue with data you may have
in a relational database.

For example, suppose a chemical company has an application where,
when a test of a chemical compound completes, the test results are written
to an MQSeries message queue. In your warehouse, you need to have the
test results joined with the chemical information to provide your users a
view of all the testing done by your company. Using the warehouse and
MQSeries, you can join the test information on the queue with the chemi-
cal information in your DB2 database and write those results to a ware-
house target table. No special application coding is needed in order to
provide this function to your warehouse users.

MQSeries supports two types of message on the queue in its integration
with DB2 and the warehouse:

Data Transformation with IBM DB2 Data Warehouse Center 379

■■ If the MQSeries message is in fixed-length or character-delimited
format, you can use the wizard provided by the IBM DB2 Data
Warehouse Center to transform the MQSeries messages into a DB2
view. Each supported MQSeries message is treated as a string,
which is parsed according to your specification and returned as a
result row of the view. You can use the created DB2 view as a ware-
house source for an SQL step or user-defined step.

■■ If the MQSeries messages are XML documents, you can use IBM
DB2 Data Warehouse Center to import meta data from the MQSeries
message queue with a DB2 XML Extender Document Access Defini-
tion (DAD) file. A warehouse user-defined step is generated to do
the data transformation. When this step is executed, it parses the
XML documents according to the user-defined DB2 XML Extender
DAD file and populates the target table containing the result data.

Accessing Fixed-Length or Delimited
MQSeries Messages
You can use the IBM DB2 Data Warehouse Center to access fixed-length
or character-delimited messages from MQSeries. Figure 9.74 shows the
straightforward process for invoking a wizard.

Figure 9.74 Invoking MQSeries wizard to create MQSeries table function.

380 Chapter 9

The wizard guides you through the task of creating user-defined func-
tions for reading or retrieving messages from MQSeries. You can further
create a DB2 view using the DB2 user-defined table function.

When you are finished with the wizard, the DB2 user-defined functions
are registered in the target database. The wizard also creates a DB2 view
using the user-defined function as a warehouse view source, which is
available for you to reference in an SQL or user-defined step. This DB2
view has the same characteristics as any other DB2 view defined in the IBM
DB2 Data Warehouse Center.

The wizard creates table functions that give the relational look to the
queue. Following is an example of the table function and view definition
that can then be used within the warehouse. This table function is called
DRUG_READ(), and it will provide a relational view of the queue with the
correlation ID of the message in the queue, as well as parse out the message
(using the DM2MQ built-in function called DB2MQ.GETCOL()) in the
queue to return the drug code, proper drug name, drug manufacturing
location, and a description about the drug.

CREATE FUNCTION DRUG_READ()

RETURNS TABLE

(CORRELID varchar(24),

DRUG_CODE varchar(10),

DRUG_NAME varchar(20),

DRUG_MAN_LOC varchar(30),

DRUG_DESC varchar(50))

LANGUAGE SQL

NOT DETERMINISTIC

EXTERNAL ACTION

READS SQL DATA

RETURN

SELECT

CORRELID,

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,1),10),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,2),20),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,3),30),

VARCHAR(DB2MQ.GETCOL(T.MSG,’,’,4),50)

FROM TABLE (DB2MQ.MQREADALL()) AS T

WHERE CORRELID = ‘Drugs’;

In this example, there is a queue that contains drug information (rather
than it being in DB2 tables already). As new drugs are created, they are
added to the queue. Say that you want to use this information to determine
which researchers and projects utilize which drugs. The research and proj-
ect information is stored in DB2 tables, so you want to be able to join the
queue data with the DB2 data. After the wizard described previously has
executed, the result is the definition of a table function and a view.

Data Transformation with IBM DB2 Data Warehouse Center 381

The view is then simply created as a SELECT * from the table function:

Create view drug_read as select * from table(drug_read()) t;

Once this view has been created, you can import this view definition as
a source into the warehouse, just like any other view. The view can then be
used in any step that requires a relational table or view. This mechanism
provides a powerful tool for treating queue data as a warehouse source.

Using DB2 MQSeries Views
Figure 9.75 is a screen shot showing the view created from the preceding
code and defined as a warehouse source.

A process model is shown in Figure 9.76, where MQ views and relational
tables are used within SQL type transformations. The LABRIEJJ.DRUG_
READ source object is an MQSeries message queue that will be joined with
other data sources to create the IWH.COMPOUND target table.

The MQSeries view is also available for use in complex SQL statements.
Figure 9.77 demonstrates the integration of MQSeries views and SQL. This
SQL statement joins the MQSeries queue (DRUG_READ view) to other
DB2 tables to get the list of all researchers working with compounds that
the drug is made up of.

Figure 9.75 MQSeries views.

382 Chapter 9

Figure 9.76 Using MQSeries views in warehouse steps.

Figure 9.77 Extracting data from MQSeries view.

Data Transformation with IBM DB2 Data Warehouse Center 383

Accessing XML MQSeries Messages
The following are the steps required to import MQSeries meta data into the
IBM DB2 Data Warehouse Center:

1. Prepare a warehouse target for the MQSeries XML document:

a. Define a warehouse target, and register and enable the transform-
ers in this warehouse target.

b. Enable the DB2 user-defined functions for MQSeries XML docu-
ment Support.

c. Enable the warehouse target for DB2 XML Extender. Refer to the
IBM DB2 XML Extender documentation for more information.

d. Create an XML Extender Data Access Definition (DAD) file to
specify the mapping between the XML documents content and
warehouse target tables.

e. Enable an XML collection using the DAD file for the database. Refer
to the IBM DB2 XML Extender Release Notes for more information.

2. Import the MQSeries XML document meta data:

a. Right-click on the Warehouse folder in the navigator, and click on
Import Meta data. Select MQSeries to open the Import Meta data
window. (See Figure 9.78.)

b. Click on OK to create a user-defined program step. When this step is
executed, the Data Warehouse MQSeries stored procedure extracts
the XML document from the queue and transforms the data into the
target tables as specified in the DAD file. (See Figure 9.79.)

Figure 9.78 Import MQSeries XML document metadata to a DB2 target table.

384 Chapter 9

Figure 9.79 MQSeries step–import XML document to DB2 target tables.

User-Defined Program Steps

You can use user-defined programs to use the best extract and transforma-
tion software for your warehouse needs while providing a single point of
control to administer your warehouse. You can manage and schedule these
user-defined programs like other warehouse step types.

For example, suppose you have a data cleansing program that you want
to use on your warehouse tables. You can define the data cleansing pro-
gram as a user-defined program and run a step for that program that starts
after a step that populates the warehouse tables.

First you would create a user program group before you define a user-
defined program to the IBM DB2 Data Warehouse Center. A user program
group is a logical group that contains related user-defined programs. The
supported user-defined program types include the following:

■■ Executable

■■ Command program

■■ Dynamic load library (on Windows only)

■■ Stored procedure

Data Transformation with IBM DB2 Data Warehouse Center 385

You can use the Warehouse System parameters and tokens as program
parameters in your user-defined programs. These parameters will be
substituted at execution time based on the source or target linked to the
user-defined program and your current IBM DB2 Data Warehouse Center
configuration.

To define a user-defined program, open the Warehouse → Adminis-
trator folder. Then select Programs and Transformers → User-Defined Pro-
grams and Transformers → your program group → Define Program. (See
Figure 9.80.)

Once you have defined the program, you can create instances of the pro-
gram in your user-defined program step in the process modeler. You need
to make sure the proper warehouse agent and warehouse groups and users
are authorized to access this program. Furthermore, the warehouse agent
is the one that will execute the program; you must make sure the PATH,
library PATH, and CLASSPATH (if necessary) required for this program
are known to the warehouse agent. On Windows, you can add the path
directories to the system environment variables. On UNIX, you need to
add the path directories to the IWH environment file.

Figure 9.81 is an example that defines a user-defined program with one
output parameter.

Figure 9.80 User-defined programs.

386 Chapter 9

After your program runs, it should return a return code to the ware-
house agent that executed the program. The return code should be a posi-
tive integer. If your program does not return a zero return code, the step
using the program will fail. The IBM DB2 Data Warehouse Center displays
the return code in the Error RC2 field of the Log Details window when the
value of Error RC1 is 8410. If the value of Error RC2 is 0, then the program
ran successfully without errors.

To return additional status information to the warehouse agent, your pro-
gram must create a file, called a feedback file, that contains the additional sta-
tus information about the execution of the user-defined program. The
directory path and filename for the feedback file is specified in the system
environment variable VWP_LOG, where the warehouse agent sits before it
calls the warehouse program. Your program must read the value of this envi-
ronment variable to create the feedback file. After the user-defined program
finishes running, the warehouse agent checks whether the feedback file
exists. If it exists, the warehouse agent reads and processes the feedback file.

Otherwise, the warehouse agent will not report the errors generated in
your program other than the operating system return code that resulted
from invoking your program. If the user-defined program cannot create
the file, you can continue to run without an error reporting mechanism in
your program.

The following shows an example of the feedback file:

<RC>20</RC>

<ROWS>0</ROWS>

<MSG>The parameter type is not correct</MSG>

<COMMENT>Please supply the correct parameter type (PASSWORD

NOTREQUIRED,GETPASSWORD,ENTERPASSWORD)</COMMENT>

<BYTES>0</BYTES>

<WARNING>0</WARNING>

<SQLSTATE>12345</SQLSTATE>

Figure 9.81 Define a user-defined program parameter.

Data Transformation with IBM DB2 Data Warehouse Center 387

This feedback indicates to the warehouse agent that an error occurred
(<WARNING>0</WARNING>), no rows of data were processed
(<BYTES>0</BYTES> and <ROWS>0</ROWS>), the message (in the
<MSG> element) should be displayed in the warehouse monitoring tool,
and RC2 should be set to 20 (<RC>20</RC>) overriding the value
returned to the agent. If you do not return a feedback file to the warehouse
agent, all nonzero return codes returned to the agent will be treated as an
error, and only default messages will be displayed.

Vendor Integration

IBM DB2 Data Warehouse Center supports many processes to transform
your data from its original source format to those that meet the require-
ments of your warehouse end users. These transformations provide a GUI
interface to define the parameters of the transformation, as well as a
process modeler to help you visualize both data and task dependencies.

In some cases, the warehouse-supported transformations may not meet
your needs because of platform or transformation limitations. To address
this, the warehouse can manage transformations generated by ETL ven-
dors such as ETI, Ascential, Trillium, and Microsoft, to name a few. The
user who is already set up and configured to run in these vendor’s envi-
ronments can easily bridge their tool to seamlessly operate in the Data
Warehouse environment.

This section discusses the details of the vendor’s transformation
processes integration into the IBM DB2 Data Warehouse Center.

ETI•EXTRACT Integration
ETI provides large-scale transformation tools to extract data from multiple
sources, transform that data, move it across systems, and then load it to the
target warehouse. ETI•EXTRACT is the ETI tool that provides the inter-
faces and utilities to define and coordinate these transformation (ETL)
steps. Once the steps have been defined via the interface, the
ETI•EXTRACT product generates applications (in the language of the
user’s choice) that performs the actual transformations. The basic output of
ETI•EXTRACT includes the ETL-generated applications and a “conver-
sion plan.” This conversion plan describes the system, order, and error con-
dition logic for the transformation to occur. For example, if a user wanted
to pull data from his ordering system in Oracle on a Sun system, transform
that data, and move the data to a z/OS system to be loaded into a DB2 for
z/OS database, the conversion plan would be something like:

388 Chapter 9

■■ Query the ORACLE database and transform the data.

■■ Write output from transformation to a temporary file on Sun.

■■ FTP the file from Sun to the z/OS system.

■■ Delete the temporary file on Sun.

■■ Populate the DB2 for z/OS database with the flat file that was just
transferred using the DB2 load utilities.

■■ Delete the temporary file on z/OS.

Once the ETI•EXTRACT user has defined and tested the transforma-
tions that need to take place and a conversion plan has been generated, the
ETI•EXTRACT user can then register this conversion plan to the IBM DB2
Data Warehouse Center so that it can manage the scheduling and execution
of the ETI•EXTRACT transformation processes. This is accomplished
when the ETI•EXTRACT user chooses the function to register the conver-
sion plan to IBM DB2 Data Warehouse Center and provides information
such as the system where IBM DB2 Data Warehouse Center resides, the
user ID and password for warehouse, and other information.

When the user has entered all of the required information and chooses to
register the conversion, ETI•EXTRACT connects to the IBM DB2 Data
Warehouse Center system specified, transfers the conversion plan and
associated meta data to that system, and then invokes an IBM DB2 Data
Warehouse Center function to convert this information into a format
usable by the IBM DB2 Data Warehouse Center. Once the transfer and
function invocation completes, the ETI•EXTRACT user is notified of the
completion status of this request.

ETI•EXTRACT remotely invokes the IBM DB2 Data Warehouse Center
function to convert its meta data from an ETI•EXTRACT format to an IBM
DB2 Data Warehouse Center format. This function reads the conversion
plan and meta data, and based upon this information, it generates IBM
DB2 Data Warehouse Center meta data that mimics the conversion plan,
but in a format that the IBM DB2 Data Warehouse Center can understand.
This ETI•EXTRACT information is converted into IBM DB2 Data Ware-
house Center meta data that represents the sources (warehouse sources),
targets (warehouse targets), intermediate files (warehouse targets) and
generated transformation program (warehouse processes and steps) and
data/task flows (data links and step completion actions) and it is imported
into the IBM DB2 Data Warehouse Center. Business-oriented meta data can
also be optionally imported into the Information Catalog Manager so that
your business end users can understand what ETI•EXTRACT transforma-
tions are taking place, as well as determine the lineage of their data targets.

Data Transformation with IBM DB2 Data Warehouse Center 389

After the meta data has been imported into the IBM DB2 Data Warehouse
Center, the function returns the processing status to the ETI•EXTRACT
user. The phase of the meta data registration is now considered complete,
and the IBM DB2 Data Warehouse Center has almost all the information it
needs to run the ETI•EXTRACT transformations. If the transfer and con-
version completes successfully, the warehouse administrator needs to pro-
vide some additional information in order for these transformations to
execute properly. This information includes the following:

■■ Any warehouse user that needs to view/modify these conversions
must be added to the generated ETI•EXTRACT security group.

■■ The passwords for the source and target systems where the data
resides.

■■ Optional descriptive meta data that will further embellish the mean-
ing of the transformation.

■■ Schedule information for the root transformations (Step 1 in the con-
version plan described previously) must be provided so that IBM
DB2 Data Warehouse Center knows when to execute the
ETI•EXTRACT transformations.

■■ Optional step flows to other warehouse-managed transformations
(e.g., when the last ETI transformation takes place, as in Step 6 in the
conversion plan, and completes successfully, start another ware-
house step that may then pull from the DB2 for z/OS database and
populate an OLAP cube).

Now that all the information has been successfully added/updated in
the IBM DB2 Data Warehouse Center, the warehouse steps reflecting the
ETI•EXTRACT conversions can be executed on demand or when the spec-
ified schedule is met.

To support the ETI•EXTRACT conversions, IBM DB2 Data Warehouse
Center provides a set of applications that know how to process the
ETI•EXTRACT transformation steps:

ETIEXMVS. Calls ETI•EXTRACT conversions on a z/OS (MVS) system.

ETIEXUNX. Calls ETI•EXTRACT conversions on a UNIX or Win-
dows system.

ETIDLMVS. Deletes intermediate files from a z/OS (MVS) system.

ETIDLUNX. Deletes intermediate files from a UNIX or Windows system.

ETIRCMVS. FTPs an intermediate file on a z/OS (MVS) system to
another system.

ETIRCUNX. FTPs an intermediate file on a UNIX/Windows system
to another system.

390 Chapter 9

These applications are defined as “user-defined programs” to the IBM
DB2 Data Warehouse Center, and the parameters passed to these programs
are generated from the meta data sent during the registration process. The
parameters to these programs include information such as:

■■ Host system where the ETI transformation is to execute

■■ User ID and password to the host system

■■ ETI program, script, or Job Control Language (JCL) that is to be exe-
cuted in order to perform the transformation

■■ ETI transformation type:

■■ QUERY—Pulls information from the source systems and writes
to an intermediate file

■■ POPULATE—Loads the data in the intermediate file to a target
system

■■ COPY—Copies the intermediate file from the source system to
the target system

■■ DELETE—Deletes the intermediate files

■■ MERGE—Merges multiple intermediate files together into a sin-
gle intermediate file

■■ SORT—Sorts an intermediate file

■■ QUERY/POP—Pulls data from a source system and loads it in a
target on the same system without intermediate files

■■ Intermediate files to be deleted

Once all the ETI•EXTRACT transformations have been registered to IBM
DB2 Data Warehouse Center and the required meta data has been updated,
the user does not modify any of the parameters of the IBM DB2 Data Ware-
house Center step other than any required password parameters.

As mentioned earlier, when the first ETI•EXTRACT conversion plan
registration occurs, the IBM DB2 Data Warehouse Center administrator
must add any other warehouse users to the ETI•EXTRACT security group.
This is done by opening the Warehouse → Administration folder, expand-
ing the Groups folder, and adding all the users that need access to the
ETI•EXTRACT information to the ETI•EXTRACT Security Group.

When IBM DB2 Data Warehouse Center users connect to GUI and open
the Subject Areas folder, they will see that the registration process has cre-
ated a warehouse subject area. The subject area is named based on the
ETI•EXTRACT conversion plan name. For each time the conversion plan
is imported into Data Warehouse Center, a new warehouse process is

Data Transformation with IBM DB2 Data Warehouse Center 391

created that contains all of the IBM DB2 Data Warehouse Center steps nec-
essary to complete the ETI•EXTRACT conversion. The processes are
named based on the ETI•EXTRACT conversion plan name and the time-
stamp of when the registration occurred. This allows for the ETI•EXTRACT
user to have multiple versions of the same conversion plan so that IBM DB2
Data Warehouse Center will support development, test, and production
environments. The production version of the process is usually the process
that has schedules and follow-on task flows associated with it.

A sample screen shot is shown in Figure 9.82, which shows the tree view
(navigator view) of the warehouse subject area that was created, as well as
the warehouse process object as a result of the registration process. The
right side of the screen shot shows all of the individual warehouse steps
and warehouse source and target objects in the warehouse process.

Right-clicking on the warehouse process object in the tree and selecting
Open causes the DWC process modeler to display all of the DWC steps, along
with their sources, targets, and data/task relationships in a graphical view.

For example, in Figure 9.83, we can see that the registration process cre-
ated three warehouse steps that will run the actual ETI•EXTRACT trans-
formations. In this example, QUERY, POPULATE, and DELETE steps were
generated. These steps will call the appropriate warehouse application to

Figure 9.82 Import ETI•EXTRACT steps.

392 Chapter 9

invoke the ETI•EXTRACT transformation on the proper platform. The fol-
lowing example also shows the data lineage (e.g., the CENSUS file is a
source to the QUERY step, which produces an intermediate file called
IWH.FILE.BVCCNSQ0, which is used as input to the POPULATE step,
which will load a different file called CENSUS). Lastly, the registration
process determines the appropriate task flow between the warehouse steps
(e.g., “on successful completion of the QUERY, start the POPULATE, and
upon successful completion of the POPULATE, clean up by calling the
DELETE step”). Again, all of this information has been generated based
upon the conversion plan and other meta data sent during the registration
process.

Note that all functions of IBM DB2 Data Warehouse Center are available
on these objects. For example, if you wish to see the columns of the CENSUS
file as well as the source database that it has been defined in, you can right-
click on the CENSUS object and select Open. This displays all of the meta
data associated with the CENSUS file. You can also do this to each ware-
house step to view the details of each of those steps.

Figure 9.83 Imported ETI•EXTRACT steps.

Data Transformation with IBM DB2 Data Warehouse Center 393

Also, from this interface, if you wish to change the task flow (e.g., add
another warehouse step that pages your administrator and that will be exe-
cuted in the case where the QUERY or POPULATE fails) or add the sched-
ule to when the root (QUERY) step is to execute, you can do that from this
interface.

When you right-click and select Open on one of the steps, a dialog box
appears that gives all of the details of the step. The first page of the step note-
book shown contains general information about the step. (See Figure 9.84.)

For example, if you open the QUERY step, a step dialog box appears that
shows all of the meta data associated with this step. You will notice that
this is a user-defined program type of step. This is because of the way the
integration between IBM DB2 Data Warehouse Center and ETI•EXTRACT
was designed. The meta data includes the following:

■■ The name of the step

■■ Descriptive information about the step (which can be modified)

■■ Contact information

All ETI•EXTRACT step types contain similar information and can be
modified as necessary. The means for modification and the types of meta
data are the same for these steps.

Switching to the Parameters page allows you to modify the parameters
that will be passed to the IBM DB2 Data Warehouse Center applications
that invoke the ETI•EXTRACT transformation. You should not modify any
parameters other than the password parameter and the return code param-
eter. These parameters contain the information about the ETI•EXTRACT
transformation programs that were generated by the ETI•EXTRACT user.

Figure 9.84 Imported ETI•EXTRACT step properties.

394 Chapter 9

Figure 9.85 displays the following parameters:

■■ Name of the system where the ETI•EXTRACT-generated program is
to be executed.

■■ Name of the program to execute (Windows batch file, UNIX scripts,
or MVS JCL).

■■ Where messages are to be written.

■■ Type of password to the host system, as well as the password itself;
this can be a password or the name of a program that will generate
the password.

■■ Highest return code that is considered successful. IBM DB2 Data
Warehouse Center will use the value of this parameter to determine
whether the ETI•EXTRACT transformation completed successfully.
This has implications for follow-on tasks; if the return code returned
from the ETI•EXTRACT conversion is greater than the value speci-
fied in this parameter, the transformation is considered a failure, and
only “On Failure” or “On Completion” steps will be executed. The
IBM DB2 Data Warehouse Center Work in Progress (WIP) dialog box
will also show this step as failed. If the value returned from the
ETI•EXTRACT transformation is less than or equal to the value of
this parameter, the step will be considered a success, and only “On
Success” or “On Completion” steps will be executed.

The Column Mapping page is not relevant to this transformation pro-
gram, since this meta data is embedded in the ETI•EXTRACT transforma-
tion itself. In addition, the Processing Options page contains the same
options as all other user-defined Processing Options pages.

Figure 9.85 ETI•EXTRACT step parameters.

Data Transformation with IBM DB2 Data Warehouse Center 395

All steps generated from the ETI•EXTRACT registration process are treated
like any other step in the IBM DB2 Data Warehouse Center; that is, you can
schedule these steps, change the task flows, change the parameters (where rec-
ommended), and enhance the descriptive information. Even though there are
seven different types of ETI•EXTRACT transformations managed by the IBM
DB2 Data Warehouse Center, the properties of the generated warehouse steps
for all of these transformation types are the same, except for the parameters
page. The parameters page contains different parameters based upon the
ETI•EXTRACT transformation that needs to be executed.

Including the types of transformation expands the breadth of the trans-
formations that the IBM DB2 Data Warehouse Center can provide, since it
gives you the full power of ETI•EXTRACT to integrate high-end, complex
transformations into the data. Remember that these transformations and
steps are generated based upon the information you specified in the
ETI•EXTRACT. Therefore, you should only need to modify the password
information on the parameters page. Modifying any other parameter may
cause the step to fail during execution.

Trillium Integration
The Trillium Software System is a name and address cleansing product that
reformats, standardizes, and verifies name and address data. The IBM DB2
Data Warehouse Center has integrated these Trillium cleansing functions by
reading the Trillium control files and create the corresponding Trillium
source, target, and step definition into the warehouse metadata to produce
cleansed output data files. You can manage these name and address cleans-
ing warehouse objects inside the IBM DB2 Data Warehouse Center and take
advantage of warehouse facilities such as step control flow, the scheduler,
warehouse object management, and monitoring. These cleansing steps can
be scheduled to run, and the cumulative results can be monitored via the
Work in Progress dialog box.

You can use the cleansing functions in the IBM DB2 Data Warehouse Cen-
ter by starting the Trillium Batch System programs from a user-defined pro-
gram. The user-defined program is added to the warehouse navigator tree
when you import the meta data from the Trillium Batch System script or JCL.
The warehouse agent can execute a Trillium Batch System script on various
platforms, including AIX, Solaris, Windows/2000, Windows/NT, and z/OS.

To import Trillium meta data into the IBM DB2 Data Warehouse Center,
you first create a Trillium Batch System (TBS) script or JCL to execute the TBS
commands to perform the desired name and address cleansing. The
script/JCL should have been verified to run successfully. Next, use the Import
Trillium Meta Data dialog box from the IBM DB2 Data Warehouse Center to
create the Trillium name and address cleansing step. (See Figure 9.86.)

396 Chapter 9

Figure 9.86 Importing Trillium metadata to create a warehouse step.

Once the input files and script are read into the IBM DB2 Data Ware-
house Center, the Trillium name and address cleansing step is automati-
cally created in the specified Warehouse process. Figure 9.87 illustrates
a process model with Trillium integration. You can promote the step and
run the test to execute the TBS script or JCL to do the name and address
cleansing.

Figure 9.87 Imported Trillium steps.

Data Transformation with IBM DB2 Data Warehouse Center 397

Ascential Integration
Ascential INTEGRITY is another data cleansing tool that is integrated into
the IBM Data Warehouse Center. The INTEGRITY tool allows you to
cleanse and re-engineer your data, taking one or more input files and pro-
ducing one or more “cleansed” output files. The integration between IBM
DB2 Data Warehouse Center and INTEGRITY includes the exchange of
meta data between the two products and the management of the
INTEGRITY cleansing routines.

The warehouse administrator can define the various source and target
data sources using the base functions of IBM DB2 Data Warehouse Center.
Once these have been defined to IBM DB2 Data Warehouse Center, that
meta data can then be exported to an interchange file on disk. Once the
warehouse meta data has been exported, the Ascential INTEGRITY
(INTEGRITY) tool can read that interchange file and load it into its own
private meta data store. Once the meta data is in INTEGRITY, the
INTEGRITY user can then use the tool and the imported meta data to
define all of the INTEGRITY procedures required to perform the cleansing
required.

Once the INTEGRITY procedures have been defined and tested, they can
be exported back to the warehouse and used in the warehousing process.
The IBM DB2 Data Warehouse Center administrator can schedule these
steps (when imported into the warehouse, the INTEGRITY procedures
become warehouse steps) and cascade to and from them as any other ware-
house transformation. Once these steps are executing, you can use IBM
DB2 Data Warehouse Center functionality to monitor the progress of the
execution, such as the Work in Progress dialog box.

Ascential INTEGRITY supports the following (noninclusive) types of
cleansing and reengineering:

Investigation. Analyzes free-form and single-domain fields. During
this process, free-form fields are parsed, patterns revealing field for-
mats are created and the meaning of data in free-form text fields is
determined.

Super STAN. Performs the data standardization, formatting, and vali-
dation of the data. It may involve converting free-form text into fixed
fields and manipulating data to conform to standard conventions.

Super Match. Groups related records and performs matching with
external reference files. The matching process involves performing
statistical matching, which involves calculating a score based on the
probability of a match between two records

398 Chapter 9

Survivorship. Handles conflict resolution and creates a format for
data loading.

Ascential INTEGRITY also provides a set of operators that you can use
in the INTEGRITY procedures:

Transfer. Copies all or part of input data to the output file.

Collapse. Produces a unique list of values for a data field.

Sort. Reorders the data file.

Parse. Separates free-form text fields to individual fixed fields.

Build. Generates a single record from multiple records from the
PARSE operator.

Unijoin. Matches fields to a reference file to perform statistical
matching.

Business Name Abbreviator. Converts data in business name fields
to abbreviated name keys for use in a matching procedure.

Microsoft OLE DB and Data
Transformation Services

You can access data from an OLE DB provider as a DB2 database view. IBM
DB2 Data Warehouse Center provides an interface to the IBM DB2 OLE DB
Wizard to assist you in creating a DB2 OLE DB table user-defined function.
This table user-defined function is responsible for extracting data from the
OLE DB source in table format. You can further define a DB2 view against
this table user-defined function and access the OLE DB data via this DB2
view.

Microsoft Data Transformation Services (DTS) allows you to import,
export, and transform data between OLE DB sources and targets to build
data warehouses. DTS is installed with Microsoft SQL Server. All DTS tasks
are stored in DTS packages that you can run and access using Microsoft
OLE DB Provider for DTS Packages. You can also create DB2 views with
the Data Warehouse OLE DB Assist Wizard for DTS packages. When you
access the DB2 view, the DTS package is also executed; the target table gen-
erated by the DTS package becomes the created DB2 view.

After you create a DB2 view for the OLE DB or DTS in the IBM DB2
Data Warehouse Center, you can use it like any other DB2 view. For
example, you can join a DB2 table with an OLE DB source from the

Data Transformation with IBM DB2 Data Warehouse Center 399

same source database in an SQL step. When you use the created DB2
view in an SQL step, the DTS provider is called and the DTS package runs
automatically.

Accessing OLE DB
To access OLE DB source in the IBM DB2 Data Warehouse Center, you need
to create a DB2 user-defined function and then create a DB2 view against it
(see Figure 9.88):

1. From the IBM DB2 Data Warehouse Center navigator, expand the
Warehouse Sources tree.

2. Expand a DB2 warehouse source.

3. Right-click on the Views folder, and click on the Create for OLE DB
table function. The OLE DB Assist Wizard opens. The wizard walks
you through the task of creating a new DB2 view in the Warehouse
Source database. This includes building the OLE DB connection
string and specifying the table in the OLE DB provider.

Figure 9.88 Create OLE DB table function.

400 Chapter 9

Accessing DTS Packages
To access a Data Transaction Services (DTS) package, you need to create a
view for the DTS package:

1. From the IBM DB2 Data Warehouse Center window, expand the
Warehouse Sources tree.

2. Expand the warehouse source that is to contain the view.

3. Right-click on the Views folder, and click on Microsoft OLE DB
Provider for DTS Packages.

4. The OLE DB Assist Wizard opens. The wizard walks you through
the task of creating a new view in the warehouse source database.
This includes helping the user create the OLE DB connection string
and identify the desired table in the OLE DB provider.

There are several considerations when accessing DTS packages. For
example, to identify a specific table from a DTS package, you must select
the DSO Row Set Provider check box in the Options tab of the Workflow
Properties window of the Data Pump Task that creates the target table. If
you turn on multiple DSO row set provider attributes, only the result of the
first selected step is used. When a view is selected, the row set of its target
table is returned and all other row sets that you create in subsequent steps
are ignored. When you enter the table name for the wizard, use the step
name, which is shown on the Options page of the Workflow Properties
notebook for the task.

Summary

The IBM DB2 Data Warehouse Center transformation steps are essential to
any warehouse iteration. The most frequently used transformation steps
are SQL, DB2 utilities, and Replication. For maximal flexibility and perfor-
mance, user-defined programs (for example, stored procedures) can be
invoked as transformation steps. The IBM technology also provides prede-
fined transformations that are critical to the success of any ETL process, for
example, generating surrogate keys and period tables to support the foun-
dations of the atomic data warehouse. With transformations to support
data pivoting and data inversion, architects can quickly transform data
into meaningful information slices as dictated by user communities. It is

Data Transformation with IBM DB2 Data Warehouse Center 401

important not to underestimate transformations such as these. Without the
support of the IBM DB2 Data Warehouse Center, ETL programmers would
need to use OLAP tools to create the pivot or inversion and then propagate
that data back into the warehouse for use by a broader audience. If this is
your only alternative, you will most likely never repopulate the warehouse
with the data pivot and instead keep all of that information in the data silo
of the OLAP tool. The IBM DB2 Data Warehouse Center ensures that we
can create informational content and store it in data structures most acces-
sible by all warehouse participants, the RDBMS itself.

The same holds true for transformers such as Correlation, Subtotals, and
Moving Average. These transformers empower the warehouse architects
to readily create information content at the atomic level, content that was
traditionally the domain of other tools.

If there is a tool that supports the evolution of the enterprise information
asset, it is the IBM DB2 Data Warehouse Center. With it, we can create more
information content, store it at the atomic level, and make it available to the
broadest possible audience.

402 Chapter 9

403

Key Issues:

■■ Warehouse efforts still do meta data poorly. It seems that warehouse
project managers continue to relegate the effort to a secondary
status rather than as a necessary primary component of any ware-
house iteration.

■■ Although warehouse planners seem adamant to invest heavily in
vertical technologies such as ETL or access tools, they often seem
less dedicated to investing just as heavily in a technology that hori-
zontally has broad impact on the entire enterprise warehouse effort:
a central meta data repository.

The planning effort involved in a repository implementation should be, in
many respects, similar to the planning of the data warehouse itself. The
same discipline and diligence should be undertaken. This planning should
occur synchronously with the warehouse planning, not as an afterthought.

Meta Data and the IBM DB2
Warehouse Manager

C H A P T E R

10

We examine several aspects of meta data in this chapter, starting with a
definition of meta data, its repository, sources, and types. We also examine
various considerations pertaining to the maintenance of a healthy meta
data repository. Then we focus on IBM software that is most responsible for
capturing and maintaining meta data, including Information Catalog and
Data Warehouse Center. We end the chapter with details on how IBM
warehouse meta data can be enriched with meta data from vendor
products.

What Is Meta Data?

Meta data is most commonly defined as “data about data”. A repository is a
place where this data is managed and maintained. These are high-level
abstract definitions that are generally undisputed but may vary somewhat
depending on whom you ask. Attempts to define this broad concept in
greater levels of detail and specificity result in greater ambiguity. The prin-
cipal reason for this is that there are no universal industrywide standards
regarding meta data. The intent of this section is to describe a meta data
repository in the context of a data warehouse.

An enterprise data warehouse normally includes data from a multitude
of sources. These sources include operational data as well as third-party
external data. Meta data can be extracted from the various tools, applica-
tions, and vendor solutions that are used to supply data to the warehouse.
Internal custom applications, relational database management systems
(RDBMSs), modeling tools, and enterprise resource planning (ERP) sys-
tems are all examples of and important contributors to meta data.

As the data is stored and propagated throughout a typical warehouse
environment, each physical data store adds more meta data. For example,
the meta data captured at the atomic level will not be the same as that
captured at the star or cube level—even for the same subject area. More-
over, the data of a BI environment is both structured (e.g., spreadsheets,
relational databases, multidimensional cubes) and unstructured (e.g.,
Word documents, images).

Another influence on meta data are the core components of warehous-
ing, including ETL, data management, and data access. Each component
impacts the type of meta data being generated. For example, as raw data is
extracted from source systems, it is cleansed and transformed by applying
business rules. The ETL process and the rules themselves are excellent
meta data.

404 Chapter 10

It is imperative that the warehouse system and warehouse planners
understand the characteristics and properties of the data under the ware-
house’s care so that the warehouse can be intelligently used. This is the role
that a meta data repository plays in the enterprise data warehouse.

Meta data can be as varied as the original data that it attempts to
describe. The more accurately and completely we can describe the data in
the warehouse, the more we can maximize its success and effectiveness.
Following are some examples of meta data that could be appropriate to
capture and maintain for a data warehouse:

■■ Source information describing where the data came from

■■ Lineage information showing historic data movement

■■ Column names

■■ Alias names

■■ Column sizes

■■ Transformation rules

■■ Logic rules

■■ Transformations task flow

■■ Update schedules

■■ Access patterns

■■ Ownership

■■ Data quality load results

These are only some of the types of meta data and their sources that can be
stored in a meta data repository. There is no universally agreed upon list or
standard that indicates which meta data is appropriate for a given enter-
prise warehouse.

The meta data structures the information in the data warehouse into cat-
egories, topics, groups, hierarchies, and so on. As shown in Figure 10.1 and
outlined in the following list, meta data provides information about the
data within a data warehouse:

■■ Meta data is “subject-oriented” and is based on abstractions of real-
world entities, for example, “project,” “customer,” or “organization.”

■■ Meta data defines how the transformed data is to be interpreted, for
example, whether 5/9/99 means September 5, 1999 (British) or May
9, 1999 (U.S.).

Meta Data and the IBM DB2 Warehouse Manager 405

Figure 10.1 Meta data sources.

■■ Meta data gives information about related data in the data warehouse.

■■ Meta data estimates response time by showing the number of
records to be processed in a query.

■■ Meta data holds calculated fields and precalculated formulas to
avoid misinterpretation and contains historical changes of a view.

The data warehouse administrator’s perspective of meta data is a full
repository and documentation of all contents and processes within the
data warehouse; from an end user perspective, meta data is the road map
through the information in the data warehouse.

Classification of Meta Data

Meta data can be categorized in several ways. In this section we discuss
three: by type of user, by its degree of formality at origin, and by the con-
text in which it is used.

Display,
Analyze,
Discover

Elements
Mappings

Operational
and

External
Data

Extract

Transform

Refinement

Store

Subject
Areas,
Cubes

Meta Data

406 Chapter 10

Meta Data by Type of User
It is not unusual for some to split meta data by user audience. In this case
there would be two broad audiences. The first is a technical audience rep-
resented by data modelers, DBAs, ETL, and access programmers or even
power users. These types of individuals look for information to support
ongoing maintenance and growth of the data warehouse. Without techni-
cal meta data, the task of analyzing and implementing changes to a deci-
sion support system is significantly more difficult and time-consuming.
The second user of meta data is the business community. This audience is
primarily made up of executives or business analysts. This group needs to
have the warehoused data defined for them in business terms—for exam-
ple, what reports, queries, and data are in the data warehouse; location of
the data; reliability of the data; context of the data; what transformation
rules were applied; and from which legacy systems the data was sourced.

Meta data users can be broadly placed into the categories of business
users and technical users. Both of these groups contain a wide variety of
users of the data warehouse meta data. They all need meta data to identify
and effectively use the information in the data warehouse. To that end,
three traditional categories of meta data that address the requirements of
these two audiences exist:

Technical meta data describes the technical attributes of warehouse
data. Examples include data types, source systems, and internal
column names. Obviously, IT gains the most benefit from this type of
meta data. Technical meta data provides accurate information regard-
ing the data within the domain of the data warehouse and BI envi-
ronment itself. IBM refers to this meta data as definitional meta data.

Operational meta data describes the process-related attributes of
warehouse data. Examples include access patterns, update sched-
ules, and data quality results. This type of meta data is valuable to IT
resources as well as business users.

Business meta data describes the business-related attributes of ware-
house data. Examples include load schedules, data ownership, and
business rules. This meta data is used primarily by business users
and provides a link between the data warehouse and the business
community. Business meta data provides users with a road map for
access to the data in the data warehouse.

Although meta data can be separated into different categories, with
different audiences that benefit, the objective remains the same: better
understanding of the warehouse data.

Meta Data and the IBM DB2 Warehouse Manager 407

Meta Data by Degree of Formality at Origin
Business, operational, and technical meta data for an organization come
from a wide variety of sources and support. The sources range from very
formal to completely informal.

First, let’s examine formal meta data sources. These sources of meta data
have been discussed, defined, documented, and agreed upon by the deci-
sion makers of the enterprise. Formal meta data is commonly stored in
tools or documents that are maintained, distributed, and recognized
throughout the organization. These formal meta data sources populate
both technical and business meta data.

Informal meta data consists of corporate knowledge, policies, and guide-
lines that are not in a standard form. This is the information that people
already know and is located in the “company consciousness” or perhaps in
a note on a key employee’s desk. It is not formally documented or agreed
upon; however, the information is every bit as valuable as that in the for-
mal meta data sources. Often, informal meta data provides some of the
most valuable information, because it tends to be business related. Note
that in many cases much of the business meta data is really informal. As a
result, it is critical that this meta data be captured, documented, formal-
ized, and reflected in the data warehouse. By doing this, you are taking an
informal source of meta data and transforming it into a formal source.
Because every organization differs, it is difficult to say where your infor-
mal sources of meta data are; however, the following is a list of the most
common types of informal meta data:

■■ Data stewardship

■■ Business rules

■■ Business definitions

Formal meta data is obviously the most readily available to warehouse
planners. Even so, there is no standardization of these sources, and, there-
fore, collecting and keeping current this meta data in one repository still
requires significant effort and commitment.

The hardest meta data to collect and keep current is the informal stuff. This
type of meta data source fluctuates dramatically, from well-documented
sources to Post-it notes. This inconsistency presents real challenges to ware-
house planners. Collecting this type of meta data is also labor-intensive. But
failure to collect and reconcile this type of meta data into the warehouse may
greatly weaken the benefits of building the warehouse in the first place.

408 Chapter 10

Meta Data by Usage Context
Earlier we defined meta data as “data about data.” What project planners
often miss is that meta data in one context may just be viewed as plain data
in another context. The distinction between data and meta data can
become very fuzzy.

Let’s use two examples to debate whether the user sees data or meta
data. In a warehouse implementation, dimension tables will very likely be
created. A market dimension may contain columns with the countries,
regions, and cities where products are being marketed. The content of this
dimension constitutes data for warehouse users. When this information is
transferred to the OLAP environment to update the outline of a DB2 OLAP
Server cube, the data is used to populate the members of the market
dimension. For an OLAP user, this information is clearly meta data.

For our second example, let’s take a product lookup table composed of
two columns: one column with the product code and the other with the
product name. In the operational environment, product codes are used;
however, warehouse users need more explicit information and want to
deal with real product names. There will be a transformation required to
perform this operation in the warehouse. The lookup table can be consid-
ered as meta data, since it expresses the transformation rule, and at the
same time it also contains data in the traditional sense.

The point is that it is not crucial to make a very precise distinction
between meta data and data itself. However, it is just as important to keep
the integrity between meta data and the data it describes as it is to keep
relational integrity in a database. An environment where the meta data
would not reflect the exact status of the data is not only useless, but it may
greatly jeopardize the effectiveness of decision making.

What Is the Meta Data Repository?

Now that we have an understanding of meta data, we need to further
discuss what is the repository. As noted previously, the repository provides
a place to store meta data. There are several implications that can, and
should, be made regarding the characteristics of a meta data repository. In
addition to the obvious requirement of a physical area to accommodate
meta data, the repository should be capable of managing and maintaining

Meta Data and the IBM DB2 Warehouse Manager 409

this meta data such that it can be used to better understand the contents of
the data warehouse. It should be architected such that the contents of the
meta data repository are continually synchronized with the data in the
enterprise data warehouse. This means that any structural change to the
actual data is also reflected in the repository. Structural changes could
include changing a calculation or size for a given column, for example.
Some vendors prefer to use the term meta data store rather than meta data
repository because the latter tends to formally imply an automated, inte-
grated set of well-managed processes. However, this material will refer to
the more commonly used term: meta data repository.

The scope of the meta data repository should include any data that is con-
tained in the enterprise data warehouse. The meta data repository and the
data warehouse should be tightly coupled to gain maximum value. All data
in the warehouse should be accounted for in the repository. This should
include both internal and external data, structured and unstructured.

From an IBM perspective, there are two places where warehouse meta
data is being stored. The first is the Data Warehouse Center control database,
which keeps the warehouse technical meta data generated during the defi-
nition of the warehouse and the warehouse transformations. It can also
receive meta data from third-party ETL tools. The second place, the Infor-
mation Catalog, can be viewed as the central business meta data repository.
However, this repository does not generate or refresh any meta data in and
of itself. It is merely a persistent database for the storage, maintenance, and
publication of meta data. It is fed meta data by other IBM tools, as well as by
third-party applications. The most significant contributor to the catalog
repository from the IBM world is the Data Warehouse Center, which controls
much of the data propagation throughout the warehouse environment.

Feeding Your Meta Data Repository

Different techniques can be used to feed the meta data repository, and
many terms have been used in the literature to describe the population of
meta data into the repository, such as meta data import and export, meta
data exchange, meta data transfer, meta data publication, meta data shar-
ing, and meta data integration. Following are definitions of these terms:

Meta data import. This operation consists of bringing meta data from
a remote environment into the local environment. The system issuing
the request for import is the receiver of the meta data. So, it is a pull
mechanism.

410 Chapter 10

Meta data export. This operation consists of sending local meta data
to a remote environment. The system issuing the request for export is
the sender of the meta data. So, it is a push mechanism.

Meta data transfer. This refers to the moving of meta data to another
environment. It can be implemented via a meta data import or export
operation.

Meta data exchange. This is the ability to move meta data in both
directions between two environments. This term is often mistakenly
used to express a simple transfer in only one direction. We will use
this term only to convey the idea of movement in both directions.

Meta data publication. This operation consists of moving technical
meta data from the Data Warehouse Center control database or from
OLAP to the Information Catalog.

Meta data sharing. This operation does not result in any physical
transfer of meta data between environments; it describes the ability
to point to meta data stored in another environment. Under this sce-
nario, the central meta data repository does not keep a physical copy
of the meta data generated by the other tool.

Meta data integration. This refers to seamless movement of meta
data across environments. True meta data integration is far from
being a reality in today’s environment.

Unfortunately, manual input of meta data is another important compo-
nent of the meta data repository feeding process that should not be under-
estimated.

Benefits of Meta Data and the
Meta Data Repository

Enterprise data warehouses have proven to be very valuable in a number
of corporations. The time and expense consumed in developing, imple-
menting, and maintaining a data warehouse is usually a significant invest-
ment. In fact, the meta data repository is arguably one of the most
important components of an enterprise data warehouse. A well-managed,
well-architected meta data repository helps protect this investment in sev-
eral ways, directly and indirectly. The important benefits of a meta data
repository include the following:

Meta Data and the IBM DB2 Warehouse Manager 411

Enhances the value and usability of the warehouse. With nearly any
product you use, an information or user’s guide helps you better
understand the product and how to gain the maximum usage. When
and if the product changes, the user’s guide should change also. The
meta data repository is analogous to a user’s guide; it must be
dynamic, not static.

Improves the quality of the warehouse by helping keep data consis-
tent and accurate for analytical purposes. Quality business deci-
sions need to be fueled by quality data and quality data usage. The
meta data repository helps to keep the warehouse consistent with
data in the source systems. Poor decisions made based on a lack of
understanding of the data in the warehouse can be costly.

Saves time and money. Structural changes to the warehouse often
require the participation of several resources, including business ana-
lysts, database administrators, and data warehouse developers. A
meta data repository speeds the systems development process and
reduces development costs. This is achieved by better understanding
the data in the warehouse and how it is being used.

Involves minimal disruption when IT and business users change
positions. In today’s work environment, employee transfers, termi-
nations, promotions, and job changes are common. The meta data
helps provide knowledge continuity as key players leave and change
their positions.

Provides a consistent, neutral, unbiased understanding of the data.
A meta data repository fosters the concept of having a single version
of definitions. The enterprise consists of resources from multiple
departments, each with its own perceptions of the data. Document-
ing the “enterprise” perception in the meta data repository helps to
eliminate the confusion and misunderstandings that typically occur
in these environments.

Increases competitive advantage by the ability to change systems at
the pace of business change. Business changes, such as mergers,
acquisitions, product changes, and initiatives to gain market share,
are predictable and typically frequent. When these changes occur, the
data warehouse structure needs to change. The ability to make data
warehouse changes in a timely manner so that there is no adverse
impact on the business is crucial. An effective means to complete an
impact analysis is often a prerequisite to these changes.

412 Chapter 10

So who benefits from having a meta data repository? The simple answer
is everyone involved with implementing, maintaining, and using the data
warehouse. The beneficiaries are both internal and external to a corpora-
tion. Following are some examples:

■■ Database administrators

■■ Auditors

■■ Business analysts

■■ Warehouse developers

■■ Suppliers, customers, stockholders

■■ Business executives and decision makers

Attributes of a Healthy Meta Data Repository

The meta data repository is one of the most valuable components in an
enterprise data warehouse. It is virtually a user’s guide for those who access
data in the data warehouse. Establishing and maintaining a meta data
repository would be useless if users could not access the information stored.
Therefore, the information in the meta data repository should be readily
available to anyone using the warehouse (business meta data), as well as
those who manage and maintain the warehouse (technical meta data).

Meta data repositories are as diverse as data warehouses. There are no
universal standards for their content or for their publication. However,
some important publication criteria to consider include the following:

Accessible. The meta data repository and its corresponding interface
must be accessible to all consumers of both technical and business
meta data. Having a meta data repository that is difficult to use or
understand will greatly limit the repository’s effectiveness.

Secure. Given the broad scope of data contained in the repository and
the diverse group of potential users, the repository should appropriately
limit access to those who should have it. Additionally, those who have
access should only be allowed to view content within their domain.

Consumer-sensitive. Both technical and business meta data is resi-
dent in the repository. Although they are both meta data, the publica-
tion should reflect the relevant consumer. Interfaces and content, for
example, will be very nontechnical and business-oriented for the pre-
sentation of business meta data.

Meta Data and the IBM DB2 Warehouse Manager 413

Accurate. The data warehouse user trusts that the data contained in
the warehouse is accurate in order to make quality decisions. This
same level of trust must exist for all those who access and use infor-
mation from the meta data repository.

Complete. A meta data repository may have a broad range of data,
from database schemas to query information to quality information.
All relevant information must be made available to meta data users
as necessary.

Dynamic. The meta data repository must reflect on a timely basis the
changes that have occurred in the definition and description of the
warehouse and the warehouse transformations.

Maintaining the Repository

Once established, the meta data repository must be continually upgraded
to reflect the current, accurate state of all data warehouse elements.

Although some of the data in the repository will be relatively static (i.e.,
not requiring frequent updates), some data will be updated constantly.
These updates to the repository may be either manual or automated.
Following are important considerations for meta data maintenance:

■■ Updates must be timely.

■■ Updates should originate from the appropriate source.

■■ Updates should be driven from the business or system.

■■ Ideally, maintenance should be performed on integrated meta data.

■■ A link between technical and business meta data maintenance
should be present.

■■ Changes to any and all meta data elements should be under version
control.

There are several additional considerations to remember to ensure a
healthy meta data environment. First, avoid meta data hiccups by always
having the latest available fix pack. Remember, the more you prolong that
upgrade to the latest fix pack, the further behind you will be with the fixes
and software enhancements.

414 Chapter 10

Second, make timely backups. It is always a good idea to back up the
control database regularly, so you can go back to a recent earlier state of
the control database in case anything goes wrong. You should also back
up the control database before applying changes via a tag file, since there is
no way to undo changes applied via a tag file.

Third, update regularly the statistics with the RUNSTATS utility, and
reorganize the data with the REORG utility, so that the meta data about the
tables adequately reflects the current status of your tables. This will also
ensure optimal performance when accessing the data.

Finally, do not commit the cardinal sin of using SQL to modify meta
data. The Data Warehouse Center GUI manipulates the control database to
keep the meta data in a consistent state. The only other safe way to manip-
ulate meta data would be through the meta data utilities. Note what this
implies: Under no circumstance should any SQL scripts be used to manip-
ulate meta data in the control database directly. This could leave inconsis-
tent meta data, which will cause steps to fail. The bottom line is this: Never
manipulate data in the control database directly.

Challenges to Implementing a Meta Data Repository

Having a data warehouse offers a number of advantages to a business in terms
of analysis and decision making. As noted previously, the meta data repository
supports the data warehouse in many ways. Despite this seemingly mutually
convenient arrangement, there are several issues that make implementing a
successful, effective meta data repository a challenging endeavor.

The very nature of data warehousing calls for source data from a variety of
different platforms, vendors, and applications. Ironically, this goal is very dif-
ficult to achieve when you are implementing meta data. There are many rea-
sons for this, but the central reason is that applications and tools may
maintain their own repositories—which do not communicate well with each
other. Because of a lack of industrywide standards and proprietary formats,
islands of meta data usually result with no seamless way to integrate. A num-
ber of ETL, ERP, RDBMS, and business intelligence vendors provide meta
data repositories that are tool-specific. This results in a disparate, fractured,
and inconsistent meta data environment. The most common way to “share”
meta data is to bridge these islands with meta data interchange mechanisms.

Despite the market hype, no one solution integrates all the various meta
data from different applications and tools—although some vendors

Meta Data and the IBM DB2 Warehouse Manager 415

attempt to lead potential buyers to believe otherwise. Even within the
same company, many vendors have not provided a fully integrated meta
data environment. Sadly, this means that enterprise data warehouses in
most instances are not fully exploited.

Both corporations and vendors recognize the missed opportunities of
not having a fully centralized meta data repository or at least a set of stan-
dards to enable meta data sharing. To this end, IBM has led a workgroup
that came up with a meta data interchange proposal called the Common
Warehouse Meta Data Interchange (CWMI). Unisys, Hyperion, Oracle, and
NCR were also involved. This proposal evolved into a standard called the
Common Warehouse Metamodel (CWM).

Another challenge to implementing a meta data repository is identifying
and documenting the required business meta data. Technical meta data can
be extracted from most systems and imported into another meta data
system. Business meta data, on the other hand, is principally retained in
the minds of various corporate employees. Attempting to extract this
information is time-consuming and fraught with the attendant human
imperfections (such as interpretational bias).

IBM Meta Data Technology

IBM has a suite of warehouse-centric tools that help create, manage, main-
tain, and monitor DB2 data warehouses. At the core of this robust technol-
ogy is a central control database that stores meta data from its own tools, as
well as from other non-IBM tools. Selected IBM partners and vendor tools
can interchange meta data in this environment. IBM offers several tools to
support the data warehouse environment. This section describes the
individual tools that are relevant to meta data processing: the Information
Catalog, Data Warehouse Center, and third-party partner tools.

Information Catalog
The Information Catalog, a component of the DB2 Warehouse Manager, is
the physical database that stores meta data. It is a DB2 Universal Database
of persistent data structures that is created and maintained. Beyond the
actual table structures, the Information Catalog has search and naviga-
tional capabilities to allow meta data managers and user communities to
access the meta data stored. Also, the catalog can receive meta data from a
number of sources such as the IBM DB2 Data Warehouse Center (DWC)
and IBM QMF for Windows, as well as several non-IBM products, includ-
ing Brio, Business Objects, and Cognos.

416 Chapter 10

Access to the Information Catalog is available via the Information Cata-
log Center, through a Web interface, or through the Information Catalog
Manager API.

IBM DB2 Data Warehouse Center
The IBM DB2 Data Warehouse Center, a component of DB2 Universal
Database, is a meta data-driven interface used to actually build the data
warehouse. It defines warehouse processes, transforms data, and manages
the warehouse. Each operation defined in the Data Warehouse Center
results in the generation of technical meta data stored in the warehouse
control database, which is a DB2 Universal Database. For more informa-
tion on the Data Warehouse Center, please refer to chapters 8 and 9.

The IBM DB2 Data Warehouse Center manages the warehouse transfor-
mation using the meta data acquired from users and other applications
that is stored in its control database. The meta data that is maintained and
managed by DWC includes information about the following:

■■ Authorized users of the warehouse center and their privileges

■■ The source databases and files that the user will be pulling data
from during the execution of warehouse processes

■■ The target databases and files that the user will be writing to during
the execution of warehouse processes

■■ The transformation algorithms that will be applied on the data as it
is being transformed

■■ User-defined applications that the warehouse center is to manage

■■ The systems where transformations are to be executed

Tight integration between DWC and the Information Catalog is provided
through a publication mechanism invoked by DWC. The mechanism per-
forms an extraction of specified technical meta data stored in the control
database and loads the meta data into the Information Catalog database.
During this process, the structure of the meta data is transformed to a for-
mat and content geared toward the business user community.

DWC can also exchange meta data with other vendor products, using
various protocols and standards, such as:

Interchange file. This is a meta data interchange format that is supported
by the IBM DB2 Data Warehouse Center. A tag language file, which is a
file containing the meta data for the objects to import, is an example of
an interchange file; the tag language, fully documented in the “Data
Warehouse Center Application Integration Guide,” allows you to create
DWC objects with an application in a programmatic fashion.

Meta Data and the IBM DB2 Warehouse Manager 417

MDIS. Meta Data Interchange Standard, a standard developed in the
mid-1990s.

CWM. Common Warehouse Metamodel, a modern standard for inter-
change of technical warehouse meta data based on XML.

IBM API. Import and export routines that can be invoked from user
scripts and programs.

The protocols or standards available to interchange meta data depend on
the products involved. If several protocols are supported for a particular
product, the meta data transferred may be slightly different depending on
the protocol chosen.

IBM DB2 Data Warehouse Center can be the recipient of meta data stored
in the following products:

■■ Ascential INTEGRITY

■■ Ascential DataStage

■■ CA ERwin

■■ ETI (Evolutionary Technologies International) ETI•EXTRACT

■■ Evoke Axio

■■ DB2 OLAP Integration Server and Hyperion Integration Server

■■ Other IBM DB2 Data Warehouse Center instances

IBM DB2 Data Warehouse Center meta data can be propagated to the
following products:

■■ Ascential INTEGRITY (file definitions)

■■ DB2 OLAP Integration Server and Hyperion Integration Server

■■ IBM DB2 OLAP Server and Hyperion Essbase

■■ IBM’s Information Catalog

■■ Other IBM DB2 Data Warehouse Center instances

Meta Data Acquisition by DWC

Meta data can be loaded into the warehouse using the following general
techniques:

■■ Manual user input via a Java-based GUI; the definition of any object
in the warehouse via the IBM DB2 Data Warehouse Center GUI
results in the creation of meta data.

418 Chapter 10

■■ Retrieval of existing source and target database schemas; from the
DWC GUI, functions are provided to pull (via ODBC or CLI connec-
tivity) existing meta data stored within those data systems catalogs.
The imported meta data includes the definition of tables, as well as
files in the source or target database selected.

■■ Any CWM-compliant warehouse application that supports the
following:

■■ Source and target definitions

■■ Transformation and step definitions

■■ Workflow between warehouse transformations

■■ Any application that can generate the IBM DB2 Data Warehouse
Center’s interchange file format.

Additionally, specific interfaces have been designed to collect meta data
from several ETL and data modeling tools. The process of collecting meta
data into IBM DB2 Data Warehouse Center may be implemented via an
import process initiated by DWC or by an export process initiated by the
other tool. Table 10.1 gives a summary of the meta data that can be col-
lected from specific tools into IBM DB2 Data Warehouse Center, as well as
the operation invoked to perform the transfer and standard used.

Table 10.1 IBM DB2 DWC Meta Data Acquisition from Various Tools

SOURCE STANDARD OPERATION SOURCE OBJECTS

ETI•EXTRACT MDIS Register Conversion Conversion

INTEGRITY IMF +Interchange file Export Procedure Procedure

DataStage Interchange file Export to DWC Job

Erwin Interchange file Import .er1 file ERwin physical or
logical model

Axio CWM Import CWM Mapping

OLAP/Hyperion Interchange file Export to DWC Script to update the
Integration outline and to load
Server data in cube

DWC Interchange file Import Subject, Process,

Source, Target,

Schema, Program

Meta Data and the IBM DB2 Warehouse Manager 419

Collecting Meta Data from ETI•EXTRACT
The ETI•EXTRACT tool from ETI is used to define conversions, which rep-
resent mappings and data transformations to be applied between source
and target environments. Once the conversion is defined, several programs
and scripts are generated. The source code programs contain the code
required to perform the transformations and mappings specified in the
conversion; the execution scripts as well as information on how to run the
generated programs in the right sequence.

To collect the meta data about an ETI•EXTRACT-generated conversion
into IBM DB2 Data Warehouse Center, you must first install the ETI•Meta
Scheduler for Data Warehouse Center, which is an optional priced feature
of the ETI•EXTRACT toolset. Then, after the conversion has been defined
and the conversion programs have been generated and executed to verify
that the conversion executes successfully, you have the choice between two
commands to send the information about an ETI conversion, as shown in
Figure 10.2.

The TRANSFER CONVERSION TO DATA WAREHOUSE CENTER
HOST command performs the following tasks:

■■ Takes the information produced during the program generation phase
of the conversion and translates it into the standard MDIS format.

■■ Transfers the MDIS-produced file from the ETI workstation environ-
ment to the IBM DB2 Data Warehouse Server host.

■■ Transfers the execution plan to the Data Warehouse Center Server host.
The execution plan for Visual Warehouse (VW) is one of the execution
plans generated during the generate program phase of the conversion.
It contains an ordered list of instructions (programs) to execute.

Figure 10.2 ETI•EXTRACT commands to transfer/register conversion.

420 Chapter 10

The REGISTER CONVERSION WITH DATA WAREHOUSE CENTER
command performs the same operations as the transfer command but also
populates the Data Warehouse Center and the Information Catalog with
the meta data related to the conversion.

While the Register Conversion command provides a single operation
approach for sending meta data to the IBM DB2 Data Warehouse Center,
the preferred approach might be to split this transfer of meta data into two
operations. The first operation is performed by ETI•EXTRACT issuing the
TRANSFER CONVERSION command. This generates an MDIS file and an
execution plan with the necessary meta data about the conversion. Notice
that the meta data is not stored at this point in IBM DB2 Data Warehouse
Center. The second operation, performed at the discretion of the DWC
administrator, invokes the FLGNMVE0 routine, which imports the meta
data stored in the MDIS file and the execution plan into DWC and the
Information Catalog.

Figure 10.3 shows the meta data flow between ETI•EXTRACT and IBM
DB2 Data Warehouse Center. Note that the REGISTER CONVERSION
command also generates meta data in the Information Catalog; this activ-
ity is detailed later in this chapter.

The MDIS file produced by the TRANSFER CONVERSION or REGIS-
TER CONVERSION operation contains the following information:

■■ A list of database sources and targets used by the conversion. Within
each database, the MDIS file has a description of records, mapped to
units in ETI and corresponding to tables, files, or IMS segments. For
each record, the MDIS file has a technical description (data type,
length, position) of each element, mapped to a part in ETI and corre-
sponding to columns or fields.

■■ The mapping between source and target, represented in the MDIS
file by the object type relationship. Each such object is identified as a
three-part name composed by the ETI source part, the word
<derived>, and an ETI target part. The relationship expression field
in MDIS contains the definition of the filter applied by ETI.

■■ ETI annotations are included in the MDIS file as Long Description.

In ETI•EXTRACT, conversion properties, schema properties, and filters
can be attached to a database, a unit, and a part. The meta data represent-
ing the conversion property, the schema property, and the filters appear as
application data in the MDIS file. The application data is associated to each
database, record, and element in the MDIS file.

Table 10.2 shows how objects in an ETI conversion are mapped into the
MDIS file.

Meta Data and the IBM DB2 Warehouse Manager 421

Figure 10.3 Meta data flow: ETI•EXTRACT to DB2 DWC.

Table 10.2 Object Mapping between ETI•EXTRACT and MDIS File

ETI•EXTRACT MDIS FILE

Database (Source / Target) — name, Database — name

Conversion properties, ApplicationData ConvProps

Schema properties, ApplicationData SchProps

Filters ApplicationData FilterProps

Unit — name Record — name, type

Conversion properties, ApplicationData ConvProps

Schema properties, ApplicationData SchProps

Filters ApplicationData

Part / Virtual Part Element

Name, type, length, annotation Name, type, position, length,

long description

Conversion properties ApplicationData ConvProps

Schema properties ApplicationData SchProps

Filters ApplicationData FilterProps

Map Relationship — expression

DB2 DWC
Information

Catalog

CL: flgnmve0 vw_plan.vw
mdis_file....

DWC: Export to IC

ETI: Transfer
Conversion to DWC Host

ETI-EXTRACT

ETI: Register
Conversion with DWC

MDIS
Tag
File

–plan.vw

422 Chapter 10

The REGISTER CONVERSION operation performs the same work as the
TRANSFER CONVERSION operation, but it adds another task: It uses the
information in the execution plan file and the MDIS meta data file to
generate meta data in the IBM DB2 Data Warehouse Center. The objects
created in IBM DB2 Data Warehouse Center are as follows:

■■ The source database for the conversion, listed in the Sources
notebook; detailed information about the source is found in the
Files/Tables page of the notebook, along with a description of each
field/column.

■■ The target database for the conversion, listed also in the Sources
notebook; same detailed information about the table and columns,
or file and fields, is provided.

■■ A subject area, which represents the conversion itself, with a name
composed of three parts separated by blanks: ETI, the execution
plan name, and a suffix of vw. The subject area contains one process
named New Process (n); this process holds the list of steps related to
the conversion, as well as the sources and the targets for each step.
Each step corresponds to one instruction in the execution plan file.
The name of the step is composed of up to five parts: ETI, the name
of the instruction (query, populate, delete, sort, merge), the input
file/table name, the output file/table name, and the time the object
was imported in the Data Warehouse Center. If this is the second
time this conversion is imported into DWC, a new process is cre-
ated, and each step in the process has a name containing the time of
the import.

■■ Each step contains information about the ETI program to call
(e.g., ETIEXMVS if the instruction in the plan is “RUN, QUERY,
mvshost, . . .”), the step to cascade on success (which is the next
instruction in the execution plan), and the source. So, the complete
sequencing for execution is available in DWC and is directly derived
from the order of appearance of the instructions in the execution plan.

■■ The intermediate files created by the conversion appear in the
Sources notebook, as “ETI intermediate files.” In the files page, the
intermediate filenames are listed.

Table 10.3 shows how objects in the MDIS file and the execution plan file
are mapped to IBM DB2 Data Warehouse Center objects.

Meta Data and the IBM DB2 Warehouse Manager 423

Table 10.3 Mapping between MDIS, Execution Plan, and DB2 DWC

MDIS AND EXECUTION PLAN IBM DB2 DATA WAREHOUSE CENTER

Database (Source/Target) Warehouse Sources

Name, type Name, type

Record Files/Tables

Name Name

Element Fields/Columns

Name, type, length, Name, type, length,

long description description

Execution plan Subject Area

Filename (Name: ETI execution plan name)

Process—New Process

Instruction Step—name (ETI QUERY)

(e.g., QUERY source target) Source, target, task flow

i-files Warehouse Sources

ETI intermediate files

The commands that can be invoked to transfer meta data from
ETI•EXTRACT into IBM DB2 Data Warehouse Center are summarized in
Table 10.4.

Table 10.4 Commands to Transfer Meta Data from ETI•EXTRACT to DB2 DWC

SOURCE TARGET GUI COMMAND LINE

ETI•EXTRACT DB2 DWC ETI•EXTRACT:

Workset>Open MetaStore

> Select Conversion

> Tools

> Register Conversion

with DWC

424 Chapter 10

Table 10.4 (Continued)

SOURCE TARGET GUI COMMAND LINE

ETI•EXTRACT MDIS file ETI•EXTRACT:

+ Workset>Open MetaStore

execution plan > Select Conversion

> Tools

> Transfer Conversion

to DWC Host

MDIS file DB2 DWC flgnmve0

+

execution plan

Collecting Meta Data from INTEGRITY
The INTEGRITY product, initially developed by Vality and acquired by
Ascential, is a comprehensive development environment for achieving
data quality. The tool provides a set of integrated modules for accomplish-
ing data reengineering tasks such as data investigation, data conditioning,
data matching, relationship building, conflict resolution, and data format-
ting. The successive phases of this re-engineering process generate proce-
dures that analyze and transform data in a source file and produce after
several phases one or more files with re-engineered data.

Meta data about the procedures generated by INTEGRITY and about
source files and generated files can be transferred to IBM DB2 Data Ware-
house Center. However, before meta data can be transferred, INTEGRITY
extension software must be installed. There are two components to install:
the Ascential Extensions for Buildtime and the Ascential Extensions for
Data Warehouse Center. The Extensions for Buildtime are stored on the
INTEGRITY client workstation. The Extensions for Data Warehouse Center
are stored by default in the IBM\sqllib\bin subdirectory on the Warehouse
Manager server.

Two types of INTEGRITY procedures can be defined and exported to
IBM DB2 Data Warehouse Center:

Meta Data and the IBM DB2 Warehouse Manager 425

Prebuilt procedures. These are provided with the INTEGRITY code;
they incorporate a number of data re-engineering operations into one
procedure. Prebuilt procedures provided are Investigation, Super-
STAN, SuperMATCH, and Survivorship.

Built procedures. These are constructed by the user and are composed
of a number of basic INTEGRITY operations.

When an INTEGRITY procedure is exported to IBM DB2 Data Ware-
house Center, the following activities take place:

1. Meta data associated to the procedure is stored into an IMF (INTEGRITY
Meta data Format) file on the local INTEGRITY file system.

2. The IMF meta data file is transferred to the DB2 Data Warehouse
Center platform.

3. The IMF file is converted into a tag language file (tag file).

4. The tag language file, which contains the meta data describing the
procedure, is imported into DWC.

For each procedure exported from INTEGRITY, a step and a process are
created in IBM DB2 Data Warehouse Center. The step can then be pro-
moted and scheduled for execution.

The following tasks must be performed in order to export the meta data
about the procedure to DWC:

1. From INTEGRITY, stage each procedure you want to export. To stage
a procedure, choose a procedure name, and select Run. From the Run
options window, select Stage. The staging step creates on your client
the required files to execute the run procedure, and it transfers the
files to the INTEGRITY server using FTP. It also builds a JCL or shell
script. This staging operation is part of the normal INTEGRITY
process, even when the procedure is not exported to DWC.

2. From INTEGRITY, select the Export Built Procedures, or Export Pre-
built Procedures item on the Data Warehouse Center menu; and
then select the procedures to export.

3. Before the export starts, INTEGRITY displays an Export Profile, set
up previously, along with the location of the IBM DB2 Data Ware-
house Center directories and the login information. A run profile
must also have been defined previously.

If the procedure was already exported, and the corresponding step in
IBM DB2 Data Warehouse Center is in test or production mode, then re-
exporting the procedure results in an error. For the export to be successful,
the step must be demoted to development mode first.

426 Chapter 10

Table 10.5 Object Mapping between INTEGRITY and IBM DB2 DWC

ASCENTIAL INTEGRITY IBM DB2 DATA WAREHOUSE CENTER

Project—Name, description Subject Area—Name, description

Procedure Process—New Process (n)

Procedure—Name, description Step—Name, description

Input Data Files—Name, description Source(s)—Name, description

Result Data Files—Name, description Target(s)—Name, description

Procedure Program Group—Vality

Program—Name, description

Project—Name, description Warehouse Target—Name, description

Data Files—Name, description Files—Name, description

Fields—Name, start, length, Fields—Name, start, length,

description, type Description, type

Table 10.5 shows the mapping of objects between Ascential INTEGRITY
and IBM DB2 Data Warehouse Center, as well as the meta data transferred.

In Ascential INTEGRITY, the main object types are as follows:

Projects. These are composed of data files and procedures to re-
engineer the data files.

Data files. These are used as input and output of the re-engineering
process.

Procedures. These describe the re-engineering activity.

When an Ascential INTEGRITY procedure is exported to IBM DB2 Data
Warehouse Center, there is also some additional contextual meta data infor-
mation that is being transferred, such as the project the procedure belongs
to and the files that are used as input and output to that procedure. Note
that each procedure being exported results in the creation of a separate
process in DWC. The detailed description of each of the operations used by
the procedure is not part of the meta data transferred. Information about the
order in which the procedures should be executed is not explicitly transmit-
ted as part of the meta data. However, the warehouse administrator can
discover the correct order by using the Show Related feature for each target
file, which shows the name of the step using this file as input. With this
information, it is easy to define how the steps should be cascaded.

Meta Data and the IBM DB2 Warehouse Manager 427

Figure 10.4 Meta data flow: Ascential INTEGRITY to IBM DB2 DWC.

Figure 10.4 shows the meta data flow between Ascential INTEGRITY
and IBM DB2 Data Warehouse Center. Note that meta data can also be
transferred from IBM DB2 Data Warehouse Center into Ascential
INTEGRITY. This is detailed later in the Transmission of DWC Meta Data to
Ascential INTEGRITY section.

Table 10.6 provides a summary of the commands available either from
the GUI or from the command line to perform the transfer of meta data
from Ascential INTEGRITY into IBM DB2 Data Warehouse Center.

The transfer of meta data between INTEGRITY and IBM DB2 Data Ware-
house Center can be done in one single operation, or it can be decomposed
into multiple tasks. The INTEGRITY administrator can just export the meta
data about a procedure into an IMF file. Please note that specifying an
invalid hostname in the Export profile results in the interruption of the
execution just after the IMF file is produced on the INTEGRITY system.
The IMF file can be converted into a tag file by using the tagcnv routine
(refer to the INTEGRITY documentation for a complete explanation of
the parameters to provide). The tag file can eventually be imported by the
DWC administrator using either the Data Warehouse Center GUI or the
command-line interface.

DB2 DWCINTEGRITY

DWC: Import
from TAG file
CL: iwh2imp2

CL: tagcnv
imf_file tagfile ...

Legend:
CL = Command Line

INTEGRITY:
Export Built Proc
Export Prebuilt Proc

INTEGRITY:
Export Built Proc
Export Prebuilt Proc

IMF
File

Tag
File

428 Chapter 10

Table 10.6 Commands to Transfer Meta Data from INTEGRITY to DB2 DWC

SOURCE TARGET GUI COMMAND LINE

INTEGRITY DB2 DWC INTEGRITY:

Data Warehouse Center

> Export Procedures

INTEGRITY .imf file INTEGRITY:

Data Warehouse Center

> Export Procedures

.imf file .tag file tagcnv

.tag file DB2 DWC DB2 DWC: iwh2imp2 tagfile

Warehouse

> Import Meta Data

> Tag Language

> Import File name

Collecting Meta Data from DataStage
The DataStage product, developed by Ascential, consists of a set of tools
for designing, developing, compiling, running, and administering applica-
tions that perform ETL operations. Extracting data from sources, perform-
ing data transformations, and loading a target with the resulting data are
examples of the operations defined by DataStage.

A user typically creates DataStage jobs using the DataStage Designer
GUI. A DataStage job consists of a series of individual stages, linked
together to describe the flow of data from a data source to the data ware-
house. A stage describes a particular operation performed on the data,
such as an extraction from a data source or a data transformation.

Meta data about the ETL jobs created in DataStage can be transferred
into IBM DB2 Data Warehouse Center. This meta data transfer involves the
following activities:

Meta Data and the IBM DB2 Warehouse Manager 429

1. DataStage jobs, created with the DataStage Designer tool, are
exported as DataStage Export files (DSX).

2. DSX files are converted into tag files.

3. Tag files are imported into IBM DB2 Data Warehouse Center.

Before such a transfer can be initiated, you must install the IBM DWC
Interface, which can be found on the Ascential DataStage Server CD-ROM.
The IBM DWC Interface installation has two parts:

■■ A client installation, performed on the DataStage client workstation.
It is here where the DWC export is initiated.

■■ A server installation, performed on the platform where the
DataStage server and the DWC agent are located.

The transfer of meta data about DataStage jobs is activated using the
DataStage Manager tool, as shown in Figure 10.5. A wizard helps you
define the parameters required for this meta data transfer.

Table 10.7 shows the mapping of objects between Ascential DataStage
and IBM DB2 Data Warehouse Center, as well as the meta data transferred.

When a DataStage job has been transferred to IBM DB2 Data Warehouse
Center, a process and a step are created. Their name is composed of three
parts: the name of the DataStage job, the word “Process”, and a timestamp.

The process is put in the subject area specified on the DWC Export Wiz-
ard page used to define the subject area name. This subject area is created
in the IBM DB2 Data Warehouse Center if it did not exist already.

A warehouse source or target is created for each table or file used as a
source in the DataStage stage, or file used as the output of a stage, respec-
tively. The name is composed of three parts: the name of the DataStage job,
the name of the table or the file, and a suffix (SRC for a source and TGT for a
target). Each warehouse source or target contains the name of one table or file.

Figure 10.5 Export of a job to IBM DB2 DWC from DataStage Manager.

430 Chapter 10

Table 10.7 Object Mapping between Ascential DataStage and IBM DB2 DWC

ASCENTIAL DATASTAGE IBM DB2 DATA WAREHOUSE CENTER

Job—Job name Process—JobName_ Process_Timestamp

Step—JobName_Process_Timestamp

Warehouse Source—JobName_SourceName_SRC

Warehouse Target—JobName_TargetName_TGT

If they do not already exist, a DataStage program group, named
DataStage, and a program template, named DataStage Server Job Executor,
are also created with attribute values specified in the DWC Export Wizard.

Note that information about the individual stages of the job is not trans-
mitted as part of the meta data export.

The meta data transmitted is mainly intended for allowing the
warehouse administrator to schedule DataStage jobs within the IBM DB2
Data Warehouse Center and to link these jobs with other IBM DB2 Data
Warehouse Center steps for execution.

Collecting Meta Data from ERwin
IBM DB2 Data Warehouse Center provides functionality to read CA’s
ERwin 3.5.2 models and format that meta data for import into IBM DB2
Data Warehouse Center. A modeling expert can define the target and
source schemas using ERwin’s modeler. Both the physical and the logical
models can be created in the tool. Once an ERwin model is completed, the
DWC administrator can use IBM DB2 Data Warehouse Center functional-
ity to read that model and import that meta data into DWC. Once the meta
data is in DWC, it is treated as any other source and target definitions and
can be used in any step that requires a table definition.

Figure 10.6 shows the menu options in IBM DB2 Data Warehouse Center
for importing meta data from ERwin.

The transfer of meta data from Erwin to IBM DB2 Data Warehouse Cen-
ter can be performed using the DWC GUI, as shown in Figure 10.6, or it can
be achieved in two separate steps using the following commands:

1. The FLGERWIN command takes as input an .er1 file and produces a
tag file.

Meta Data and the IBM DB2 Warehouse Manager 431

Figure 10.6 Importing ERwin meta data into IBM DB2 DWC.

2. The IWH2IMP2 command takes the tag file just created and imports
the meta data into DWC. It is also possible to do this import from
the DWC GUI by selecting the Tag Language option in the Import
Meta Data menu.

Figure 10.7 presents the commands available either from the DWC GUI
or from the command line to perform the transfer of meta data.

Table 10.8 shows the mapping of objects between ERwin and IBM DB2
Data Warehouse Center, as well as the meta data transferred.

Figure 10.7 Commands for importing meta data from ERwin into IBM DB2 DWC.

DB2 DWC

DWC:
Import Meta Data --> Tag Language

CL: iwh2imp2 tagfile.tag logpath control_DB ...

DWC: Import Meta Data
--> ERwin

ERwin 3.5.2

CL: flgerwin erwinfile.er1
tagfile.tag -dwc ...

Tag
File

432 Chapter 10

Table 10.8 Object Mapping between Erwin and IBM DB2 DWC

CA ERWIN IBM DB2 DATA WAREHOUSE CENTER

Database Warehouse Target

Name, version, description Name, type, description

Tables Tables

Name, owner, comment Name, schema, description

Columns Columns

Name, type, length, Name, type, length,

scale, nulls, comment scale, allows nulls, description

Diagram Warehouse Schema

Name, author, definition Name, administrator, description

Entities Tables

Name, definition Name, description

Attributes Columns

name, name,

key group membership warehouse primary/foreign key

Collecting Meta Data from Axio
The Axio product, developed by Evoke, automates the analysis of existing
data sources through a process called data profiling. Data profiling includes
column profiling, data dependency discovery, and redundancy analysis,
and it results in the automatic generation of a data model in third normal
form that expresses the desired business rules. The resulting data model is
stored in the Evoke Repository. The knowledge acquired with data profil-
ing is leveraged by Axio to create a new database design fully supported
by the source data and to generate accurate source-to-target mapping and
transformation specifications.

The meta data associated to this source-to-target mapping and the trans-
formation specifications can be transferred to IBM DB2 Data Warehouse
Center. The meta data stored in the Evoke Repository is first exported to a
CWM conformant XML file. This XML file can then be imported into IBM
DB2 Data Warehouse Center in one of two ways:

■■ Using the DWC GUI, by selecting in the Warehouse folder menu:
Import Meta Data>Common Warehouse Metamodel.

■■ Using the CWMImport command, from the command line.

Meta Data and the IBM DB2 Warehouse Manager 433

A successful import of meta data results in the creation of the following
objects in IBM DB2 Data Warehouse Center:

■■ A Subject Area.

■■ A Process in that Subject Area.

■■ Transformation steps: Each step is a program that maps and
transforms a column of the source table (or file) into a column in
the normalized target table (or file).

■■ Source tables (or files) and normalized target tables (or files).

■■ A Warehouse Target, which contains the definition of all the source
tables (or files) and normalized target tables (or files). For each table (or
file), the complete definition of each column (field) is also provided.

■■ A Program Group, named “Mapping between Columns,” which
contains one program that the Axio product invokes to perform the
mapping.

Collecting Meta Data from IBM OLAP Integration Server
The IBM OLAP Integration Server product and Hyperion Integration Server
product provide a suite of tools to transform a relational data source into
a multidimensional structure of an OLAP database. The process involves
the following:

■■ Building an OLAP model, which presents a dimensional view of the
relational data source schema

■■ Developing a metaoutline, which defines the dimensions and the
semantic levels (the hierarchy of members) within the dimensions of
a DB2 OLAP Server outline

■■ Creating a DB2 OLAP Server outline and loading data into a DB2
OLAP Server database

The metaoutline is an abstraction of an outline that defines domains
such as GEOGRAPHY, REGION, and CITY. From a metaoutline, one or
more outlines can be generated containing the specific instances in each
domain. For more information regarding the DB2 OLAP Server outline,
refer to Chapter 11.

Based on the specification of the metaoutline, scripts are automatically
generated by the tool to load the members in the outline and to load the
data in the DB2 OLAP Server database. These scripts can be saved and then
run periodically to update the outline and load the data in the cube.

434 Chapter 10

The meta data associated with the generation and loading of cubes can
be transferred to IBM DB2 Data Warehouse Center. Once this OLAP meta
data (cube information, the tables used by the cubes, and the applications
that generate the cubes from the tables) is in IBM DB2 Data Warehouse
Center, the DWC administrator can then include those OLAP applications
as part of the warehouse building process.

For example, if you are building a warehouse from multiple sources that
will eventually end up as OLAP cubes for business users to analyze data,
you can define the transformations that will take the data from the source
systems, transform it, and write it to dimension and fact tables in a ware-
house. Once the data is in the warehouse, you can then execute the OLAP
applications that read from the warehouse and generate the cubes used by
the business user.

Having this type of processing managed by warehouse assures the
warehouse users that the cubes contain the latest information from their
sources. Again, this type of functionality is possible because the warehouse
pushes meta data about the target tables it is managing to the OLAP tools.
And the OLAP tools push the meta data about the applications that it gen-
erates back to DWC. The DWC administrator can control, via scheduling
and task flow, how and when the cubes are regenerated (see Figure 10.8).

Figure 10.8 OLAP meta data process model.

Meta Data and the IBM DB2 Warehouse Manager 435

Figure 10.9 Export OLAP Integration Server meta data to IBM DB2 DWC.

The transfer of meta data is initiated on the DB2 OLAP Integration
Server system, using the FLGNXOLV command from the command line,
or the “Export to Data Warehouse Center” action item in the DB2 OLAP
Integration Server GUI, as shown in Figure 10.9.

Notice that the export interface requests a batch file; the interface does
not directly use the name of the scripts generated by the OLAP Integration
Server tool. This batch file is very easy to construct. It contains one line
with the OLAPICMD command to invoke the generated script in the fol-
lowing format:

OLAPICMD < script_filename > log_filename

For the export to complete successfully, the dimensions in the model
must already have been defined as tables within a warehouse source in the
IBM DB2 Data Warehouse Center.

The objects created in IBM DB2 Data Warehouse Center after the export
completes successfully are as follows:

436 Chapter 10

■■ A Subject Area, named “OLAP cubes.”

■■ A process, with a four-part name identifying the cube; the four-part
name is composed of the OLAP server system name, the application
name, the database name, and the outline name.

■■ One step, which is a user-defined program that takes as parameter
the batch program file mentioned during the definition of the
export.

■■ One or more tables, as sources for the step; these tables, which con-
tain the data to build the outline and load the data in the cube, had to
be defined beforehand as part of a warehouse source.

■■ A user-defined program group, named OLAP Integration; this pro-
gram group contains one program subtype named “Build OLAP
Cube,” which executes the HISEXNT.exe program, with the name of
the batch file as parameter.

Exchanging Meta Data between IBM DB2
Data Warehouse Center Instances

One of the tasks that comes with every warehousing project is to manage
the meta data associated with it. IBM DB2 Data Warehouse Center stores
all its meta data in the control database that is initialized by the user. Meta
data management is done via the DWC GUI. The GUI manipulates the con-
trol database to reflect the changes made by the user and keeps the meta
data in a consistent state. So, for a single-system warehouse installation,
hardly any meta data management is required, except for perhaps regular
backups of the control database, which is part of the DBA’s regular activi-
ties. However, implementation of warehousing projects typically involves
a test system and a production system. Processes are developed on the test
system, tested, and then moved to the production system. Some situations
involve various satellite data marts that need to reflect, onto the main
server, the changes in the changing dimensions. Another situation involves
the addition of new data marts, whose meta data may need to be combined
with the meta data on the main warehouse. Either way, in many cases there
is a need to move meta data between two or more warehouse installations.

Following are some general tips on the best way to manage meta data,
along with some of the utilities available to move meta data between two
or more Warehouse Manager installs.

Meta Data and the IBM DB2 Warehouse Manager 437

Maintaining Test and Production Systems
Once the processes are developed and tested on the development system,
they must be moved to the production system. A good way to start is to
duplicate the control databases. This can be done using the db2move
export/import utility. Here are the steps involved:

1. Export the development control database using the db2move utility:
db2move devdb export

2. Create the control database on the production machine:
create db proddb

3. Import the development control database into the production system:
db2move proddb import

You should then use the warehouse control database management utility
to initialize this database (proddb) as the control database on the produc-
tion system. Next, using the DWC GUI, you must change the source, target,
and agent site definitions in the production system to point to the produc-
tion sources. From the warehouse meta data perspective, it is important for
the administrator to understand when to use the db2move export/import
utility as opposed to warehouse meta data export/import. The rule is
simple: Whenever the whole control database needs to be duplicated into
another system, db2move should be used. For any other incremental
changes to warehouse processes, sources, targets, and so on, warehouse
meta data export/import should be used. The meta data export and import
utility retrieves and updates existing objects from the control database if
they already exist and validates the meta data being updated to ensure that
the changes via the tag or XML file leave the meta data in a consistent state.
The downside to this is that warehouse meta data export/import is slower
than db2move; however, it offers more granularity.

Meta Data Exchange Formats
Warehouse meta data export and import utilities support two formats:
IBM’s tag language and Object Management Group’s (OMG) CWM for-
mat, which is in XML. When the tag export format is used, a file containing
object definitions is generated, and this file is in IBM’s proprietary tag lan-
guage format. With CWM export, an XML file that conforms to CWM stan-
dard is generated.

438 Chapter 10

Tag Export and Import

The tag export and import utilities are useful to move definitional meta data
between data warehouse installations. Meta data objects like processes,
agent site definitions, warehouse schemas, user-defined program defini-
tions, and source/target definitions can be moved from one installation to
another. The Warehouse Export panel allows you to select objects that are to
be exported and launch the utility with the selected options. Figure 10.10
shows the menu choices to access the tag dialog box, and the tag export box
itself is shown in Figure 10.11.

Alternatively, you can use the command-line version of the same. This is
documented in the “Application Integration Guide.” The generated tag file
and associated binary files (files with numerical extensions) can be moved
to another system where the IBM DB2 Data Warehouse Center client is
available and then be imported. They can also be moved across platforms
(currently supported on Windows, AIX, and Solaris). When files are being
moved across platforms, you should use ASCII mode for the tag and .inp
files, and binary mode for the files with the numerical extensions.

When using export and import utilities, you should keep a couple of
things in mind. Because these utilities do a lot of in-memory processing and
repeatedly access the control database, they are very memory- and CPU-
intensive. It is a good idea to limit other activities on the system. Also, since
the memory buildup can be considerable, it is better to export and import
meta data in smaller installments instead of one huge export and import.

Figure 10.10 Export meta data.

Meta Data and the IBM DB2 Warehouse Manager 439

Figure 10.11 Tag language export.

When an export is being processed, there may be more objects included
in the tag files than just the ones selected during the export specification.
Indeed, the tag file is complete in itself: For example, all the referenced
objects are automatically included and exported. So if you select a process
to export, the sources and targets used by the steps, as well as dependent
steps and processes, are automatically included. You have the option to
exclude the source definitions during export; however, the target system
should have those sources defined in order to be able to import that tag file.
Otherwise, the user will get an error.

Exporting meta data to produce smaller tag files is a little tricky, though,
and should be done with two issues in mind: data dependency and
cascading.

You need to be aware that Export always exports steps that have a data
dependency. For example, let’s say Process P1 has Step S1 that populates
T1, and Process P2 has Step S2, which has a source T1 such that the follow-
ing dependency is established:

S1 —> T1 —> S2 —> T3

Given this scenario, if you export only Process P2, then P1 will be
exported in the tag file as well, because S2 is dependent on S1 for its data.
The data dependency goes backward. So, even if you export P2 only, P1
will be included in the tag file as well. In these cases exporting P1 and P2
separately will not help. You might as well export them together.

The second issue is cascading. If a step S1 in Process P1 cascades a step
S2 defined in process P2, then step S2 is considered to be a shortcut step in
process P1. In this case, if process P1 is selected for export, then process P2
will also be exported.

440 Chapter 10

Before importing a tag file, you should understand that the import util-
ity applies whatever is in the tag file to the control database. So you need
to be extra careful to ensure that the correct tag file is imported into the
control database. You should also do a backup of the control database
before running the import utility.

Initially we mentioned that meta data export and import utilities move
only definitional meta data. This means that any meta data that is relevant
to changes as a result of running a step is not carried as part of the tag file:
For instance, no runtime meta data is included in the tag or XML file.
Therefore, if transformers were enabled for target definitions from the sys-
tem where the tag file is generated, the user will explicitly have to enable
transformers wherever the tag file is imported.

Additionally, when importing meta data about a process more than
once, you must consider the notion of promotion. If the steps in that
process have been promoted, and the process is reimported, the import
will fail. Therefore, it is first necessary to demote all the steps in that
process at the production location before the process can be re-imported.

CWM Export and Import

Most of what has been said for the tag export and import utility in terms of
behavior is true for CWM as well. The main differences between the two
utilities are the language of interchange, which is XML for CWM, and,
more importantly, the conformance to CWM 1.0 DTD. This facilitates
exchange of meta data between vendors who support the CWM standard.
However, it is important to realize that meta data in IBM DB2 Data Ware-
house Center is composed of a richer set of object types and properties than
what is specified by CWM. The way this is handled is that all the stan-
dardized objects are exported as CWM objects and the rest are exported as
tag value pairs. Any other warehouse vendor that would like to utilize this
(CWM-conformant) XML file would understand the CWM objects and will
ignore the tag value pairs, thus facilitating exchange of meta data. The
same process works vice versa, when IBM DB2 Data Warehouse Center
needs to capture meta data from other warehousing tools.

Transmission of DWC Meta Data to Other Tools

Meta data within IBM DB2 Data Warehouse Center can be propagated to
other tools using the following:

■■ Any CWM-compliant warehouse application supporting the following:

■■ Source and target definitions

Meta Data and the IBM DB2 Warehouse Manager 441

■■ Transformation and step definitions

■■ Workflow between warehouse transformations

■■ Any application that can read the DWC’s interchange format—the
tag language that allows you to read the definition of Data Ware-
house Center objects with an application in a programmatic fashion
for use within that application

Specific interfaces have been provided to facilitate the transmission of
IBM DB2 Data Warehouse Center meta data. The process of meta data
transmission to other tools may be implemented via an export command
initiated by DWC or by an import command initiated by the other tool.
Table 10.9 gives a summary of the type of meta data transmitted to specific
tools, as well as the operation invoked to perform the transfer and the
standard used.

Transmission of DWC Meta Data to
IBM Information Catalog
Data Warehouse Center provides built-in functions that allow a DWC
administrator to publish selected meta data to the IBM Information Cata-
log so that it can be viewed by typical (non-DBA) end users. The functions
include a GUI for selecting various source data, target data, transformation
processes, and warehouse schemas. Once the data is selected, the adminis-
trator may publish that meta data to a specific Information Catalog. The
meta data is converted to a more “end user” format, such that users can see
all of the meta data about the warehouses that IBM DB2 Data Warehouse
Center is managing and, if necessary, can drill through the meta data to
determine the lineage and transformations of the data as it was trans-
formed from the original source to the final warehouse target format. (See
Figure 10.12.)

Table 10.9 IBM DB2 DWC Meta Data Transmission to Various Tools

TARGET STANDARD OPERATION SOURCE OBJECTS

Information Catalog Interchange file Publish meta data Subject, Process,
Source, Target,
Schema

OLAP/Hyperion Interchange file Export meta data Warehouse Schema
Integration Server

442 Chapter 10

Table 10.9 (Continued)

TARGET STANDARD OPERATION SOURCE OBJECTS

DB2 OLAP Server — Update outline step Dimension table

INTEGRITY Interchange file Import data Source files
dictionary

DWC Interchange file Export Subject, Process,
Source, Target,
Schema, Program

IBM DB2 Data Warehouse Center also provides the capabilities to syn-
chronize the technical meta data in DWC with an Information Catalog so
that changes made to the meta data in IBM DB2 Data Warehouse Center are
reflected in the Information Catalog. The DWC administrator can deter-
mine the frequency with which these changes are synchronized. The Infor-
mation Catalog also keeps track of the last time each object in the
Information Catalog was updated and the time the catalog initially created
the object.

The following example illustrates how the meta data about a process
(Figure 10.13) in the IBM DB2 Data Warehouse Center is presented in the
IBM Information Catalog (Figure 10.14). The data lineage is represented in
Figure 10.15. It provides information on how the transformation steps are
being cascaded, as well as the complete tree of transformations leading
back to the data sources.

Figure 10.12 Integration with ICM.

Meta Data and the IBM DB2 Warehouse Manager 443

Figure 10.13 Example of a process in IBM DB2 DWC.

Figure 10.14 Meta data about the process in the Information Catalog Center.

444 Chapter 10

Figure 10.15 Data lineage displayed in the Information Catalog Center.

Transmission of DWC Meta Data to
OLAP Integration Server
IBM DB2 Data Warehouse Center provides built-in functions that allow a
DWC administrator to publish meta data about the target tables and star
schemas defined in the warehouse to the IBM OLAP Integration Server
and Hyperion Integration Server (OLAP) products. These functions take
the target schema definitions from IBM DB2 Data Warehouse Center and
write that meta data to the meta data structures of each product. The ware-
house schema in DWC is converted into an OLAP model in the Integration
Server product. Target schema information, as well as all relevant relation-
ships between the targets, can then be used by these OLAP products to
define metaoutlines, as well as define and build OLAP cubes. Figure 10.16
shows the menu options for the OLAP Integration Server Export utility.

Remember that you must create a warehouse schema that shows the
relationships between the tables before you can export this meta data to
IBM DB2 OLAP Integration Server (OIS) or Hyperion Integration Server
(HIS). Figure 10.17 illustrates a warehouse star schema defined in IBM DB2
Data Warehouse Center. Figure 10.18 shows how this star schema is repre-
sented as a model in the DB2 OLAP Integration Server product after the
meta data has been exported.

Meta Data and the IBM DB2 Warehouse Manager 445

Figure 10.16 OLAP Integration export utility.

The function used to export the meta data about a warehouse schema to
the Integration Server product can be invoked from the IBM DB2 Data
Warehouse Center GUI, as shown in Figure 10.16, or from the command
line using the FLGNXHIS command. Table 10.10 provides a summary of
the commands available either from the GUI or from the command line to
perform the transfer of meta data.

Figure 10.17 Warehouse star schema.

446 Chapter 10

Figure 10.18 OLAP model in DB2 OLAP Integration Server.

Transmission of DWC Meta Data to IBM DB2 OLAP Server
When dimension tables are built in the warehouse, the tables can be used
to populate the content of the outline in the OLAP environment. IBM DB2
Data Warehouse Center provides transformations to update the outline in
OLAP based on data in a dimension table or in a file. The execution of the
DWC step results in the outline being updated in IBM DB2 OLAP Server.
This is a situation where the transfer of warehouse data results in the cre-
ation of meta data. The outline is considered meta data that describes the
cube in the IBM DB2 OLAP Server environment.

Table 10.10 Commands to Transfer Meta Data from IBM DB2 DWC to OLAP Integration
Server

SOURCE TARGET GUI COMMAND LINE

DB2 DWC OLAP Integration DB2 DWC: flgnxhis
Server Warehouse

> Export meta data

> OLAP Integration Server

Meta Data and the IBM DB2 Warehouse Manager 447

Figure 10.19 Import of file meta data in INTEGRITY.

Transmission of DWC Meta Data to Ascential INTEGRITY
One of the first tasks to perform with the Ascential INTEGRITY tool is to
provide a definition for the files that will need to be reengineered. If these
files have already been defined in the warehouse, it is possible to extract
the definition of these files from IBM DB2 Data Warehouse Center and to
import their definition into Ascential INTEGRITY.

This transfer of meta data is done by executing an import function using
the Ascential INTEGRITY GUI, as shown in Figure 10.19. The meta data is
imported from a tag file that had to be prepared ahead of time by the DWC
administrator. This file is generated as the result of an export of a Ware-
house Source issued from the IBM DB2 Data Warehouse Center GUI.

Transferring Meta Data In/Out of the Information
Catalog

As described earlier, the IBM Information Catalog is the central business
warehouse meta data repository. A lot of the meta data contained in the
Information Catalog comes from the IBM DB2 Data Warehouse Center. A
publication mechanism provides the means of transferring the meta data,

448 Chapter 10

as well as reorganizing the meta data according to the needs and expecta-
tions of business users.

In typical organizations, business meta data is spread within a variety of
tools. For efficiency and consistency, it makes sense to try to consolidate all
that meta data information into a single repository.

The Information Catalog can acquire meta data from a wide range of
other products and transmit its own meta data to other vendor tools. Table
10.11 shows the most important tools with which the Information Catalog
(IC) interacts, along with the commands to invoke for collecting meta data
from other tools into the Information Catalog and for populating other
tools with meta data stored in the Information Catalog.

Table 10.11 Transfer of Meta Data between IBM Information Catalog and Various Products

COMMANDS TO
POPULATE INFORMATION COMMANDS TO
CATALOG WITH OTHER POPULATE PRODUCT

PRODUCT PRODUCT META DATA WITH IC META DATA

DB2 DWC Publish meta data —

Information Catalog 1. Export (to tag file) 1. Export (to tag file)

2. Import (from tag file) 2. Import (from tag file)

Brio Register to IBM Information Connect to IC
Catalog

Connect to data source

BusinessObjects Use BO IBM Metadata Bridge Use BO IBM Metadata
Bridge

Cognos Update DataGuide Update impromptu Catalog
Business subject area

ERwin 1. flgerwin (to tag file) —

2. Import (from tag file)

QMF for Windows Register objects to —
Information Catalog

ETI•EXTRACT Register conversion —

DB2 OLAP Server Publish meta data
> OLAP to IC —
(issued from DWC)

Meta Data and the IBM DB2 Warehouse Manager 449

Acquisition of Meta Data by the Information Catalog
Numerous tool are available that generate meta data in the BI space. This
section explains how meta data can be collected from several leading
vendor products, including IBM’s.

Collecting Meta Data from IBM DB2 Data Warehouse Center

This operation is performed from DWC using the Publish Meta Data func-
tion, described earlier in this chapter in the section Transmission of DWC
Meta Data to IBM Information Catalog.

Collecting Meta Data from another Information Catalog

Meta data can be exchanged between two instances of Information Cata-
log. This exchange is performed in two separate operations: One operation
consists of exporting meta data objects from the Information Catalog to a
tag file, and the second operation is an import of the tag file to the other
instance of the Information Catalog. The import operation can be per-
formed using the Information Catalog Center GUI, or the command line
via the command DB2ICMIMPORT.

Accessing Brio Meta Data in the Information Catalog

The interface with Brio works quite differently than the other tools; specif-
ically, no meta data is physically exchanged. Instead, the setup consists of
establishing a connection to the other meta data environment. Since no
meta data is copied, you will always see the most current meta data.

The setup required to access Brio meta data from the IBM Information
Catalog includes the following tasks that are executed in the BrioQuery
environment:

1. Establish a connection to the Information Catalog database, using
the Brio Database Connection Wizard. This operation results in the
creation of an OCE file.

2. Create the Brio control tables in the Information Catalog database.
This operation is activated by selecting the Administer Repository
option on the Tools menu of BrioQuery Designer. It results in the
creation of nine control tables—all starting with the name Brio—in
the Information Catalog.

3. Create the new object types related to Brio objects. This is done by
selecting the Administer IBM Information Catalog item on the Tools

450 Chapter 10

menu of BrioQuery Designer. The object types that can be created
are Brio Enterprise Document and OnDemand Server Document.
New tables will be created (bqy and bqods) in the Information Cata-
log, as well as new programs that can be launched against objects of
these types.

4. Grant administrator authority to the user who will be assigned to
register Brio objects in the Information Catalog. This operation is
performed in the Information Catalog Center.

5. Create a business subject area in the Information Catalog. This busi-
ness subject area will contain the Brio objects that the user will regis-
ter. This completes the initial setup. Now Brio objects can be
registered in the Information Catalog.

6. Register a Brio object. For example, to register a BrioQuery docu-
ment, open the document using BrioQuery Designer, and select
Register to IBM Information Catalog.

Once objects have been registered in the Information Catalog, the Infor-
mation Catalog user can perform a search for objects of type Brio Enterprise
Document, for example. Each Brio document listed as the result of the
search in Information Catalog can then be viewed directly by selecting the
Start Program function, which automatically launches the BrioQuery
Designer application.

Collecting Meta Data from BusinessObjects

To transfer meta data between BusinessObjects and IBM Information Cata-
log, it is necessary to install the Business Objects IBM Metadata Bridge soft-
ware, which can be obtained from Business Objects.

The transfer of meta data from BusinessObjects to IBM Information Cat-
alog involves the following tasks, performed from the Business Objects
IBM Metadata Bridge GUI and shown in Figure 10.20:

1. Establish a connection to the BusinessObjects repository.

2. Establish a connection to the Information Catalog.

3. Specify the type of meta data to extract from BusinessObjects. If a
BusinessObjects universe is extracted, an object of type database is
created in the Information Catalog, and it contains the tables defined
in the universe. If a BusinessObjects report is extracted, an object of
type document is created in the Information Catalog.

Table 10.12 shows the mapping between BusinessObjects objects and
Information Catalog objects.

Meta Data and the IBM DB2 Warehouse Manager 451

Figure 10.20 Business Objects IBM Metadata Bridge.

Once the transfer has completed, the Information Catalog user can look
at the description and content of the databases that represent universes
and launch on BusinessObjects Documents the BusinessObjects program
that will display the report associated to the document.

Table 10.12 Object Mapping between BusinessObjects and IBM Information Catalog

BUSINESSOBJECTS INFORMATION CATALOG

Universe Databases

name, description, owner, . . . name, description, owner, . . .

Classes Tables

name, description, owner name, description, owner

Objects Columns

name, description, . . . name, description, . . .

Document (Report) BusinessObjects Documents

name name, associated program

452 Chapter 10

Collecting Meta Data from Cognos

To enable the exchange of meta data between the Cognos Impromptu Cat-
alog and the IBM Information Catalog, you must first install the DataGuide
Impromptu Bridge utility. The name DataGuide refers to the Information
Catalog as it was named a few years ago.

The DataGuide Impromptu Metadata Bridge utility can be used to per-
form the following tasks:

■■ Extract meta data from the Cognos Impromptu Catalog and import
it into a Business Subject Area in the Information Catalog.

■■ Extract meta data from a Business Subject Area in the Information
Catalog and update the Cognos Impromptu catalog.

A graphical user interface, shown in Figure 10.21, leads you through the
steps required to exchange the meta data.

Object types whose meta data can be transferred from Cognos to the
Information Catalog are as follows:

■■ Impromptu folders stored in the Impromptu Catalog

■■ Impromptu reports

■■ PowerPlay reports

■■ PowerPlay cubes

Table 10.13 shows the mapping between Cognos objects and Information
Catalog objects.

Figure 10.21 DataGuide Impromptu Metadata Bridge.

Meta Data and the IBM DB2 Warehouse Manager 453

Table 10.13 Object Mapping between Cognos and IBM Information Catalog

COGNOS INFORMATION CATALOG

Business Subject Area

Impromptu Catalog (.CAT) Impromptu Catalog

Folders Impromptu Folders

Columns Columns

Business Subject Area

Impromptu Reports Impromptu Reports

Business Subject Area

PowerPlay Reports PowerPlay Reports

Business Subject Area

PowerPlay Cubes PowerPlay Cubes

Once the transfer has completed, the Information Catalog user can look
at the description and content of each folder that represents an Impromptu
Catalog folder and launch from the Information Catalog the Cognos
program that will display the Impromptu or PowerPlay report.

Collecting Meta Data from ERwin

In the section earlier in the chapter named Meta Data Acquisition by DWC,
we explained how ERwin meta data can be transferred to the IBM DB2
Data Warehouse Center. Meta data can also be transferred immediately
from ERwin into the Information Catalog. The following two tasks must be
performed:

1. Generate a tag file for the Information Catalog. This tag file is gener-
ated by executing the FLGERWIN command, which takes as input an
ER1 file. Note that the tag file produced here is not the same as the
tag file being used as input to the IBM DB2 Data Warehouse Center.
The flag—ICM in the FLGERWIN command notifies the system that
the tag file must be generated for input to the Information Catalog.

2. Import the tag file into the Information Catalog; the import opera-
tion can be performed using the Information Catalog Center GUI or
the command line via the command DB2ICMIMPORT.

Table 10.14 shows the mapping between ERwin objects and Information
Catalog objects.

454 Chapter 10

Table 10.14 Object Mapping between ERwin and IBM Information Catalog

ERWIN INFORMATION CATALOG

Database Databases

Name, version, description name, type, owner, . . .

Tables Tables

Name, owner, comment name, schema, description

Columns Columns

Name, type, length, name, type, length,

scale, nulls, comment scale, allows nulls, description

Diagram Case Model

name, author, definition name, info, description

Entities Entity

name, notes, name, for further information,

definition, owner description, owner

Attributes Attribute

name, notes, definition, name, for further info, desc,

data type, length data type, length

Collecting Meta Data from QMF for Windows

QMF for Windows is an IBM query and reporting tool. QMF objects (QMF
queries and QMF forms) can be registered in the IBM Information Catalog;
once registered in the Information Catalog, these QMF objects can be
accessed directly from the Information Catalog.

The registration of a QMF object in the Information Catalog can be done
when the object is initially created, by checking the Register the Object in
the Information Catalog box. It can also be done after the object has been
saved at the server; in that case, multiple objects can be selected and be reg-
istered in the Information Catalog, using the Register in Information Cata-
log item on the List menu in QMF.

Registration can be either a one-step operation or a two-step operation. By
choosing the Register Immediately option, the QMF object definition is trans-
ferred immediately in Information Catalog. Choosing the Register Later
option results in the creation of a tag file; this tag file can then be imported at

Meta Data and the IBM DB2 Warehouse Manager 455

a later time to the Information Catalog, using the Information Catalog Center
GUI, or the command line via the command DB2ICMIMPORT.

Figure 10.22 shows the interface used in QMF for Windows to register
objects in the Information Catalog.

The mapping between QMF for Windows objects and Information Cata-
log objects is represented in Table 10.15.

QMF objects in the Information Catalog are associated with QMF pro-
grams that can be launched directly from the Information Catalog; differ-
ent types of programs are associated to different QMF object types. Three
types of programs can be invoked for an object of type QMF query:

Run QMF query with QMF for Windows. The result of the query is
displayed in a table format.

Run QMF query unattended with QMF for Windows. The query is
executed, but the result is not displayed on the user’s screen.

View QMF query with QMF for Windows. The QMF query defini-
tion is displayed, but the query is not executed.

The program associated to a QMF form object is “View QMF Form with
QMF for Windows”; this program displays the structure of the form. Data
resulting from the execution of a QMF query can then subsequently be
used as input for the form to be filled.

Figure 10.22 Registering QMF for Windows objects in the Information Catalog.

456 Chapter 10

Table 10.15 Object mapping between QMF for Windows and IBM Information Catalog

QMF FOR WINDOWS INFORMATION CATALOG

Server QMF Server—Server name

Queries—Name QMF queries on Server name

QMF query—Name, owner

Server QMF Server—Server name

Forms—Name QMF forms on Server name

QMF form—Name, owner

Collecting Meta Data from ETI•EXTRACT

In the Meta Data Acquisition by DWC section earlier in the chapter, we
explained how ETI•EXTRACT meta data can be transferred to the IBM
DB2 Data Warehouse Center. Meta data can also be transferred immedi-
ately from ETI•EXTRACT into the Information Catalog.

The Register Conversion operation transfers meta data in both the IBM
DB2 Data Warehouse Center and the Information Catalog. If a Transfer
Conversion operation is used, an MDIS meta data file is created; then the
flgnmve0 procedure can be executed. It takes the MDIS meta data file as
input and delivers meta data information to the IBM IDB2 Data Warehouse
Center and the Information Catalog.

Table 10.16 summarizes the meta data carried over to the Information
Catalog and the mapping with objects in the MDIS meta data file.

Table 10.16 Mapping between MDIS Meta Data File and Information Catalog

MDIS META DATA FILE INFORMATION CATALOG

Column—Name of target object

Relationship— Identifier, expression, Transformation—Name, expression

SourceObj, TargetObj Column—Name of source object

Database (Source/Target)— Databases—Name, type

Name, type, ApplicationData ETI Conversion Data— ApplicationData

(continues)

Meta Data and the IBM DB2 Warehouse Manager 457

Table 10.16 Mapping between MDIS Meta Data File and Information Catalog (Continued)

MDIS META DATA FILE INFORMATION CATALOG

Record—Name, ApplicationData File—Name

ETI Conversion Data—ApplicationData

Element—Name, type, length, Columns—Name, type, length,
null, long description, null, description

ApplicationData ETI Conversion Data—

ApplicationData

The objects created in the Information Catalog are as follows:

■■ Database objects, which represent the source and target databases.
Under the database object are listed the tables/files in that database,
and the columns/fields in each table/file.

■■ ETI Conversion Data objects. Such an object is created for each data-
base, table/file, and column/field. The ETI Conversion Data objects
contain Application Data such as the conversion property, the
schema property, and the filters applied on the database, table/file,
and column/field.

■■ A transformation object for each column/field on which a mapping
has been applied. The transformation name corresponds to the rela-
tionship identifier in the MDIS file. The tree structure in the Infor-
mation Catalog shows the column/field that results from the
transformation and the column(s)/field(s) that are the source of the
transformation. The filter expression is shown in the expression
property of the transformation.

Note the information that is not imported in the Information Catalog:

■■ The description of each ETI instruction, each of which is mapped to
a step in the IBM DB2 Data Warehouse Center.

■■ The lineage of transformations—that is, how the transformations
cascade each other.

■■ The description of the intermediate files.

This information can, however, be published if needed into the Information
Catalog from the IBM DB2 Data Warehouse Center. Most of the time, this
technical information will be too detailed to be required in the Information
Catalog.

458 Chapter 10

Collecting Meta Data from DB2 OLAP Server

This transfer of meta data from DB2 OLAP Server to the Information Cata-
log is implemented by defining a warehouse transformation step that uses
a predefined warehouse program to synchronize an OLAP meta data out-
line definition from OLAP with the Information Catalog meta data. Before
the synchronization can be activated, the outline must first have been iden-
tified through a registration in the Information Catalog.

To initially register an outline in the Information Catalog, you can use
the Data Warehouse Center GUI or the command-line interface.

■■ In the Data Warehouse Center, the Publish Meta Data command in
the Warehouse folder menu enables you to publish OLAP meta data
to the Information Catalog. (See Figure 10.12.) A control file contain-
ing the name of one or multiple outlines that you want to publish
must be provided; each outline must be specified as a four-part
name composed of the Essbase server name, the Essbase application
name, the Essbase database name, and the Essbase outline name; the
component names are separated by a dot. Each outline to be regis-
tered in the Information Catalog must appear on a separate line in
the control file.

■■ From the command line, the FLGNXOLN routine can be used to
perform the same operation. A control file must also be specified to
identify the outlines to register.

Once the information about the outline to publish in the Information
Catalog has been defined, an execution schedule can be associated to the
publication step, as shown in Figure 10.23. After the publication step is pro-
moted to production, the meta data in the Information Catalog is resyn-
chronized with the OLAP outline according to the execution schedule.

Figure 10.23 Associating a schedule to an OLAP-to-IC publication step.

Meta Data and the IBM DB2 Warehouse Manager 459

Table 10.17 Mapping of an OLAP Outline in the Information Catalog

DB2 OLAP SERVER INFORMATION CATALOG

Database—Name Multidimensional DB—Name, description

Dimension—Name, type, alias Dimension—Name, type, Dim name

Member—Name, alias, Member—Name, member name

calc string, attributes derived from, attributes

Several parameters can be specified during the outline registration defi-
nition to control how updates and deletes of members in the outline should
be reflected in the Information Catalog. The Delete existing object flag pro-
vides a way to keep a history of the outline in the Information Catalog, if
the flag is not set.

Table 10.17 defines the mapping between the objects in the OLAP outline
and the objects in the Information Catalog.

Transmission of Information Catalog Meta Data
Information Catalog meta data can be transmitted to another Information
Catalog instance and to other OLAP end-user tools. Objects of any type in
the Information Catalog can be exported; during the definition of the
export, the administrator can control whether the objects related to the
object exported should also be exported. Related objects include the objects
in the hierarchical relationship (e.g., database—table—columns), the
objects in peer-to-peer relationship, the objects in support relationship
(mostly objects providing additional documentation, such as a contact per-
son), and the objects in precedence relationship (e.g., cascade of step).

The interchange file (tag file) is the format used to interchange meta data
with other tools, as well as with another Information Catalog instance.

Transmitting Meta Data to Another Information Catalog
Meta data can be exported from one Information Catalog instance to
another. The Information Catalog administrator can decide the level of
granularity desired when exporting the meta data and which related
objects to export.

The export of Information Catalog meta data to the interchange file is
activated using the Export function available in the catalog menu of the
Information Catalog Center. (See Figure 10.24.)

460 Chapter 10

Figure 10.24 Exporting Information Catalog objects to a tag file.

The export results in the creation of the tag file, which contains all the
meta data associated to the objects being exported, and the related objects,
if desired. The tag file can then be used as a source of import into the other
instance of the Information Catalog, as explained in the previous section.

Enabling Brio to Access Information Catalog Meta Data
The setup required to access IBM Information Catalog meta data from Brio
includes the following tasks executed in the BrioQuery environment:

1. Establish a connection to the Information Catalog database, using the
Brio Database Connection Wizard, as described earlier in the chapter.

2. Create a connection to a data source, using the Brio Database Con-
nection Wizard; for example, that data source could be the data
warehouse built with the DB2 Data Warehouse Center; the meta
data about this database had to have been published to the Informa-
tion Catalog, since Brio only interacts with the Information Catalog.

3. Specify the connection file that must be used to access this data
source; this is the connection file specified in Step 1. This file pro-
vides information to connect to the Information Catalog.

4. Access the data source directly from BrioQuery; in that data source,
all the tables that are defined in the Information Catalog can be
accessed by the BrioQuery tool. In addition to the column names in
the table, the BrioQuery tool has direct access to the following meta
data: a description of the table, the contact name, and the date it was
last refreshed. A query can then easily be defined with BrioQuery
Designer using any of the tables in that source.

Meta Data and the IBM DB2 Warehouse Manager 461

Transmitting Information Catalog Meta Data to
BusinessObjects
Installation of the Business Objects IBM Metadata Bridge Software is a pre-
requisite. The BusinessObjects to Information Catalog meta data extraction
option (see Figure 10.20), selected on the main Metadata Bridge GUI page,
lets you define the basic operations needed to transfer meta data from the
Information Catalog into BusinessObjects. These operations consist of the
following:

■■ Establishing a connection to the Information Catalog

■■ Selecting in the Information Catalog a Database (Subject) containing
the tables of interest to BusinessObjects

■■ Connecting to the BusinessObjects Repository

■■ Selecting the tables and columns to include in the universe

■■ Specifying the name of a new BusinessObjects universe

■■ Creating a connection to the universe domain in which to store the
universe

As a result of this meta data transfer, the definition of the tables and
columns to be used in the universe is stored in BusinessObjects. Some com-
plementary information may have to be specified in BusinessObjects
Designer to fully characterize the universe:

■■ After the meta data transfer, all the columns are considered to be
dimensions; for multidimensional analysis, some columns must be
treated as measures. So, the property of appropriate columns should
be changed to Measure.

■■ The tables are not linked together; choose the relevant columns in
each table to define the table joins.

■■ The hierarchies within each table also need to be defined.

Table 10.18 defines the mapping between the objects in BusinessObjects
and the objects in the Information Catalog.

Table 10.18 Object Mapping between BusinessObjects and Information Catalog

INFORMATION CATALOG BUSINESSOBJECTS

Databases—Name Universe—Name

Tables—Name, description Classes—Name, description

Columns—Name, description Objects—Name, description

462 Chapter 10

Transmitting Information Catalog Meta Data to Cognos
The installation of the DataGuide Impromptu Metadata Bridge is a prereq-
uisite. In the previous section, we showed how to transfer the meta data
about Impromptu folders into an Information Catalog Business Subject
Area.

A likely scenario would be for the Information Catalog administrator to
rename some of the objects in the folder, or to change the structure of the
folders, and then to propagate these changes back to the Cognos
Impromptu Catalog.

Here again the bridge utility lets you easily transfer back to Cognos
Impromptu Catalog:

The folder structure. Any new folder not already in the Impromptu
Catalog is added. If columns under the folder object in the Informa-
tion Catalog are not in the Impromptu Catalog, you can choose to
add or ignore them by selecting or clearing the Create Meta Data
Objects box.

The folder items (columns) can be updated. All column names in the
Impromptu Catalog are replaced with the corresponding column
names in the Information Catalog.

Summary

Meta data is a broad concept that encompasses all aspects of data ware-
housing and can be found throughout the organization. So it is not sur-
prising that the exact definition of meta data varies. The most common
definition of meta data is that it is “data about data.” This very broad,
highly generalized definition is great for a concise understanding of the
term, but it falls short of providing the needed specifics.

To understand a meta data repository, we must define it in terms of a data
warehouse. A warehouse combines data from internal and external infor-
mation systems. This data is extracted, transformed, loaded, and combined
into the data warehouse. Rules and logic are applied to this data to elevate
its meaning to an enterprisewide perspective. The meta data repository pro-
vides the framework and processes to ensure that the data brought into the
warehouse is kept consistent and accurate for analytical purposes.

This repository or “place” where descriptive information is stored can
vary greatly in terms of origin, structure, and content. A number of ven-
dors provide meta data repositories that are tool-specific. Examples can be
found in ETL, relational database, data quality, and business intelligence

Meta Data and the IBM DB2 Warehouse Manager 463

tools. Conceptually, a meta data repository is a managed collection of
information that describes the data in the warehouse. But maintaining
meta data in separate, tool-specific repositories does not address the user
requirements for meta data. These independent meta data structures only
ensure that information regarding warehoused data remains fragmented.

What warehouse planners should focus on is building a centralized
repository. This structure would be the recipient of meta data from each of
these tool-centric structures and also serve as a point from which to
publish a single view of warehouse data to all user communities.

464 Chapter 10

PA R T

Five

OLAP and IBM

467

Key Issues:

■■ DB2 OLAP Server is virtually the same product as the leading multi-
dimensional server from Hyperion, Essbase. All features and func-
tionality enjoyed by Essbase users is made available in DB2 OLAP
Server.

■■ DB2 OLAP Server is just that: A database that serves up multidi-
mensional data. As such, DB2 OLAP Server is more than a simple
OLAP tool for your desktop. It can be the source of all dimensional
data across your enterprise.

■■ DB2 OLAP Server pre-computes metrics to achieve query response
times that are not attainable by relational database systems.

■■ DB2 OLAP Server is one of a few multidimensional database servers
that can actually build and maintain MOLAP cubes of 100 GB and
more. And, with Hybrid OLAP, scaling to larger multidimensional
data sets is available.

Multidimensional Data with
DB2 OLAP Server

C H A P T E R

11

■■ The outline is the database. This is a critical distinction between DB2
OLAP Server and relational database implementations of multidi-
mensional data. The power to readily create and manipulate the data-
base via a simple user interface understood by business analysts is
core to the success of this product and essential to successful OLAP.

■■ The multidimensional data of DB2 OLAP Server is natively accessed
by all leading OLAP and reporting vendors in the industry, including
Cognos, Business Objects, Crystal Decisions, Brio, and many more.

■■ Hybrid OLAP is the direction IBM is taking to ensure that their
RDBMS and Multidimensional Database (MDD) provide a seamless
integration between the data and the analytical tools, as well as a
transparent access to all the necessary data for OLAP business
requirements. The blending of these two technologies addresses the
ever-growing expectations of user communities for greater scale of
multidimensional data sets.

DB2 OLAP Server is a multidimensional analytic database server platform
that enables business analysts to analyze, manage, and steer their respec-
tive businesses. We define OLAP technologies as integral to BI and data
warehouse initiatives, as well as complementary to data mining and other
BI-centric technologies.

Arbor Software introduced their Extended Spreadsheet Services data-
base (Essbase) in the early 1990s. Although multidimensional databases
existed before, Arbor’s chief contribution was to provide a version for the
client/server environment. The software combined user-friendly, spread-
sheet client functionality with client/server modality. From its introduc-
tion, Essbase was fast, interactive, and available for users within the
current Windows desktop environments. Arbor very quickly achieved
market dominance.

IBM entered the OLAP marketplace in 1997 by licensing and reselling
Essbase from Arbor Software. In February 1998, IBM delivered DB2 OLAP
Server V1.0 based on Arbor Essbase V5.0. This first release was available
for Windows NT, OS/2, and AIX platforms. IBM called the product DB2
OLAP Server because multidimensional data was stored in the DB2 rela-
tional database, while the Essbase product stores data in multidimensional
arrays only.

While arrays provided optimized performance, this was not considered
an open storage format. IBM provided the option to store data in relational
DB2 tables as a means of opening up the data storage platform. IBM’s port
of Essbase to DB2 OLAP Server subsequently evolved to support both

468 Chapter 11

storage formats. DB2 OLAP Server V8, the relational storage option, has
been superceded by the Hybrid Analysis features of Essbase, which was
jointly designed by IBM and Hyperion Solutions. Today, the Hyperion (who
purchased Arbor Software) and IBM products remain virtually identical,
except that IBM has added an OLAP mining utility for DB2 OLAP Server
(Refer to Chapter 14 for more information on OLAP Mine).

OLAP technology and its related applications have surely captured the
mind-share of most user communities and BI implementation teams—and
for good reason. OLAP is an excellent analytic tool. Of course, when most
people think about OLAP, including architects and project planners, they
typically think of the desktop applications; Excel pivot tables or Cognos
PowerPlay cubes are the front-end tools that people commonly refer to as
OLAP. This perception is understandable, since that is the part of OLAP
that is in front of the user and where IT delivers those sexy graphs and pie
charts. However, OLAP is much more, and DB2 OLAP Server should not
be confused with a data access tool. Instead, when architects and project
planners think of DB2 OLAP Server, they should be thinking about an
enterprisewide dimensional server platform from which Cognos Power-
Play, Brio, Business Objects, Alphablox, and even Microsoft Excel can
source quality dimensional data.

Figure 11.1 shows the conscious inclusion of multidimensional data in
our BI organization. Several elements of our BI environment are impacted
by dimensional data (identified by number):

1. Data marts. The simple cubes suggest that architects often build
several dimensional structures, referred to as “farms,” to support
user requirements.

2. OLAP analysis. The cube graphic shown next to the analyst is one
of the most important analytical tools available in the power user’s
tool chest and therefore a critical part of your BI deployment.

3. Customer touch points. One of the best benefits of OLAP analysis
is its trend-spotting and forecasting abilities. Accurately identifying
trends helps you better respond to customers. This response might
be adjusting inventory levels at stores or improved target-marketing
through advertisements and coupon redemptions.

4. User community reporting. OLAP is also an excellent way to service
a broad audience of users via portal or other Web-enabled technology.
The analysis for these communities is less remarkable than that needed
by power users. Nevertheless, these users are equally excited about
OLAP. Why? Because some of the fundamental analytical value of
OLAP, such as slicing and dicing, pivoting and rollup, and drill-down
capabilities. Such functions are incredibly valued by broad audiences.

Multidimensional Data with DB2 OLAP Server 469

5. Back-feed loop. OLAP has been a key contributor to analytical
output that serves as input into production systems. The technology
is often treasured by financial analysts for budget forecasting. Once
the budgets are finalized, they are returned to the corporate finan-
cial systems.

6. Meta data. Mountains of meta data must be maintained for OLAP
functionality. It is not that meta data for OLAP is more important
than other BI-centric reporting technologies; however, OLAP seems
to better facilitate complex calculations and aggregations. The calcu-
lations definitely require formal control of meta data. When CFOs
compare profits for the same period from last year versus this year,
they need to be able to determine how the profit was calculated.
Therefore, historical integrity of meta data is especially important to
OLAP applications.

Figure 11.1 OLAP and the BI organization.

ACTION

ACTION

ACTION

3rd-
Party
Data

Sales

STAGING AREA

TableTable

Table
Table

Table

Table

Table

Table

Table

OPERATIONAL DATA STORE

Operations Raw
Data

Finance

CUSTOMER

C
U

ST
O

M
ER

 T
O

U
C

H
 P

O
IN

TS

META DATA

GEOCODING ATOMIC-LEVEL
NORMALIZED DATA

DATA MARTS
DIMENSIONAL DATA

MARKET FORECAST
TREND ANALYSIS
BUDGETING

DATA CLEANSING
DATA INTEGRATION

DATA TRANSFORMATION

TRAFFIC ANALYSIS
CLICKSTREAM ANALYSIS

MARKET SEGMENTATION
CUSTOMER SCORING

CALL DETAIL ANALYSIS

OPERATIONS
DATABASES

USER
COMMUNITIES

DATA
MINING

DATA
MINING

CUSTOMER AGENTS

DW AGENTS

AGENT NETWORK

OPERATIONS AGENTS PERCEPTS

PERCEPTS
PERCEPTS

PERCEPTS

PERCEPTSPERCEPTS

DECISION MAKERS

SPATIAL
ANALYSIS

Back-Feed Loop

Ba
ck

-F
ee

d
Lo

opBack-Feed Loop

ADVANCED QUERY AND
REPORTING

OLAP

DATA MINING $

Vendor

WEB

Customer or
Partner

Raw Data

CONCEPTUAL NETWORK

Email

Multimedia

Print

Web

Direct Mail

In-Store Purchase

Thank you for
your patience.

INTERNET

$$$

BI DASHBOARD AND
REPORTING PORTAL

DASHBOARD
User Profile

BI DASHBOARD AND
CONTROL PANEL

DASHBOARD
Analyst Profile

Back-Feed Loop 25

4

6

1

3

470 Chapter 11

Multidimensional Data with DB2 OLAP Server 471

NEW FUNCTIONALITY IN DB2 OLAP SERVER V8.1

Released in July 2002, version 8.1 of DB2 OLAP Server provides some
significant additional functionality to OLAP Server. For a complete discussion of
DB2 OLAP Server release 8.1, please see the IBM Redbook DB2 OLAP Server
8.1 Using Advanced Functions, First Edition (April 2002). Following are
summary descriptions of the important additions:

Hybrid analysis. Hybrid Analysis accesses data from a relational database
as if it resided in the multidimensional cube. It constructs SQL queries
dynamically allowing total flexibility of access to the relational database
from a DB2 OLAP Server multidimensional database. The MOLAP cube is
pre-calculated and detailed relational data is accessed dynamically at user
query execution time.

OLAP Miner. OLAP Miner enhances the reporting capabilities of DB2
OLAP Server, combining IBM Data Mining with DB2 OLAP Server
technology. It uses the calculated data that is created with DB2 OLAP
Server to identify atypical or deviant values automatically. OLAP Miner is a
free cost feature only of DB2 OLAP Server.

Advanced administrative functions. Version 8.1 incorporates significant
improvements in performance by exploiting multiple processors.
Improvements were made to support the task of managing multiple OLAP
servers, applications, and databases.

Parallel calculations, data load, and export. Many critical operations
(loading, calculating, exporting) can be run in multi-threaded mode to take
advantage of multiprocessor hardware. This improves system performance
and throughput, reducing batch windows when building and maintaining
OLAP cubes.

Administration services. Administration Services combines a single
middle-tier point of administration with an easy-to-use wizard graphical
interface. You can manage OLAP Server objects quickly, in a familiar visual
setting. Administrators can now perform multiple tasks simultaneously, run
processes in the background, do cross-server operations, and manage
active user sessions and requests anywhere in the enterprise.

Security migration tool. This tool automates the cross-server migrating
OLAP security data as well as the migration of applications, databases,
filters, users, and groups.

(continues)

Not surprisingly, OLAP-centric architects argue that to fully exploit the
power of DB2 OLAP, you should consider implementing the OLAP archi-
tecture across the enterprise in a manner similar to Ralph Kimball’s bus
architecture. This means that you would implement an atomic layer as a
dimensional model as opposed to 3NF. Although we recommend a normal-
ized atomic layer and dimensional data marts, you must evaluate the needs
of your organization and decide what type of atomic layer best works for
you. For a refresher of the architectural options, refer to Chapter 4.

This chapter dives deep into DB2 OLAP Server technology. At the risk of
being redundant, we begin by defining OLAP analytics and the aggrega-
tion value the technology brings to your environment. Then we review the
dimensional model and associate that model to the notion of an outline, as
defined by DB2 OLAP Server. We then show how the outline represents the
business requirements of your organization. Next, the chapter examines
the technical architecture of DB2 OLAP Server, focusing on the compo-
nents of the physical cube. The chapter ends with recommendations for
sizing, tuning, and assessing the hardware requirements for maximum
OLAP performance.

Understanding the Analytic Cycle of OLAP

As described in Chapter 1, OLAP stands for “online analytical processing.”
Coined by Dr. E.F. Codd in the early years of Arbor Software, the term

472 Chapter 11

NEW FUNCTIONALITY IN DB2 OLAP SERVER V8.1 (Continued)

Advanced enterprise services functionality. Enterprise Services enables
DB2 OLAP Server-based applications to be more reliable and efficient in
delivering the analysis needs to large numbers of web-based users.
Enterprise Services allows administrators to cluster OLAP Servers, to
balance OLAP Server workloads, and to provide connection pooling and
high concurrency. It facilitates the maintenance of high availability OLAP
Server environments.

External authentication. DB2 OLAP Server version 8.1 provides the option
of using external authentication of DB2 OLAP Server users instead of native
DB2 OLAP Server authentication. DB2 OLAP Server supports LDAP V3-
compliant servers, Microsoft Active Directory Service and NT authentication
as external authentication methods. You can even develop your own
authentication modules and plug them into DB2 OLAP Server security
infrastructure.

alludes to OLTP (online transaction processing). OLAP is an online process
as opposed to a batch process, which suggests having a dynamic rather
than a static functionality. The objective of OLAP is to support the process-
ing of business analytics and not business transactions. The coinage of the
acronym really suggests that the speed of processing set off by relational
database transaction processing systems is now available to business users
for analyzing data.

The success of DB2 OLAP Server can be related to extending the speed
analogy to apply to OLAP application development as well. No small part of
the initial success of OLAP tools in general is because rapid deployment of
departmental OLAP solutions provided an extremely fast return on invest-
ment (ROI) for organizations; departmental OLAP application deployment
times generally range between 30 and 90 days. Unfortunately, departmental
solutions remain disjointed and can fail across the enterprise—a point often
missed by OLAP-centric developers. Just as unfortunate, however, is that
seeing this disjointedness has led many IT professionals to the incorrect con-
clusion that OLAP tools are appropriate only for departmental initiatives
and have a marginal place within enterprisewide initiatives. Providing
OLAP across the enterprise brings to the entire organization what OLAP tra-
ditionally provides to departments: a controlled central data source for ana-
lytics. The ability to provide a “single source of truth” to the organization in
the form of advanced dimensional analytics that DB2 OLAP Server delivers
should be, at the very least, a provocative notion for IT.

To fully appreciate the value of OLAP, you must understand the term ana-
lytics. We find people in the marketplace often believe they know what
OLAP is without having a sound understanding of what is meant by busi-
ness analytics. Business analytics as enabled by DB2 OLAP Server are suc-
cessful at measuring, understanding, and predicting business performance.
But while this is a succinct definition, what does it really mean?

The old adage that you can’t manage what you can’t measure gives us a
starting point. We measure business performance with metrics. At the most
basic level, metrics are numbers that describe things. Business metrics
become more useful when they measure things and events that experience
has shown let us manage our business. For example, a metric called “sales”
tells us the total sales dollars for quarter one. The ability to report this met-
ric is of some interest, but it has limited value as a means of piloting a busi-
ness. It may be necessary, but it is far from sufficient. However, if we pair
“sales” with other metrics like “sales for last quarter,” we now have a busi-
ness measure useful for piloting the business. We can now measure
progress. Let’s add other metrics such as “sales for quarter one this year
and quarter one last year as a percentage of year-to-date sales.” We’ve now

Multidimensional Data with DB2 OLAP Server 473

enriched our metric set with new information that will automatically
enable us to ask and get answers to new questions like, “Why were we fur-
ther ahead last year by this time than we are now?”

In fact, the process of asking questions of data is a sound-bite definition of
what computer-based analysis is all about. And an analyst is an expert who
knows both what questions to ask and how to formulate new questions. This
heuristic iterative cycle of question asking and new question generation
across business metrics defines what might be called the analytic cycle.

An OLAP technology is one that supports and empowers users through
the analytic cycle. This is what is meant by OLAP. And the minimization
of the duration of this analytic cycle across complex business metrics is
what DB2 OLAP Server is all about.

Generating Useful Metrics

Our first business task is to generate useful metrics from our data. In the
hands of experts, these metrics naturally enable the generation of new
questions, which lead to new answers. So, what are useful metrics? Useful
metrics are numbers that contain other numbers in “compressed form.”

For example, a sum obviously adds up numbers by some criteria (e.g.,
“total sales for the second quarter for ISO channel products for the East
Region”). This aggregate becomes very useful when compared with
another aggregate, for example, the same criteria varied by time (“for last
quarter”) or when varied by geography (“for the West”). One way to
describe basic OLAP that is not too misleading is that it is a technology for
quickly comparing useful aggregates with other useful aggregates. It is,
however, much more than that.

No business executive is going to pilot a business based solely on totals.
The situation quickly becomes fascinating as people trained in quantitative
analysis begin digging for metrics that will help them understand, change,
and predict business performance, for example, ratios. Ratios are decep-
tively simple but highly useful tools for analyzing performance. For exam-
ple: “What percentage of profit did our family x products deliver last
quarter in the Asia Pacific region versus family y products?” Or, “What
market share does brand y enjoy versus brand z?”

Talented executives and individuals trained in quantitative analysis can’t
wait to get their minds around different ways of looking at a business ana-
lytically. All of the numbers they generate in some way contain or represent
other numbers in compressed form. Sums, averages, percentages—all are
derived from base quantities and represent them in some more general way

474 Chapter 11

that allows comparing, contrasting, predicting, and understanding a busi-
ness. The modern enterprise is so complex that if we did not have some way
of compressing and representing events, we couldn’t manage them.

Suggesting that OLAP metrics are numbers that represent other num-
bers in compressed form invites a comparison with classical statistical
analysis. We find that the OLAP discipline and the discipline of statistics
overlap and serve a similar purpose. Unfortunately, we also observe that
statistical insights are not necessarily as compelling to decision makers as
simple OLAP metrics. While DB2 OLAP Server can implement classic sta-
tistical measures like standard deviation and correlations, it can also imple-
ment simple ratios and percentages. Telling a decision maker “we lost
money on footwear in Massachusetts last quarter but made money in New
York State” is a lot more galvanizing than to say “the variance of profit in
the Northeast was greater than in the Southwest in quarter one.” Tradi-
tional statistics usually don’t speak to an average businessperson. OLAP
metrics do. While we’d like to see the day when statistical insight pervades
all cultures, OLAP is pervasive now.

Multidimensional Data with DB2 OLAP Server 475

DB2 OLAP SERVER FUNCTIONS

To support calculations, DB2 OLAP Server has over 200 built-in functions in ten
groupings and includes the ability to create user-defined functions. These
functions include the following:

◆ Allocation functions, which allocate values that are input at the parent
level

◆ Boolean functions, which provide expected analysis

◆ Date and time function, which converts date strings to numbers for use
in calculations

◆ Forecasting functions, which manipulate data for the purpose of calcu-
lating future values

◆ Mathematical functions, which return calculated values based on speci-
fied parameters

◆ Member set functions, which return a list of members

◆ Range and financial functions, affording added flexibility to your analy-
sis

◆ Relationship functions, which look up data within a database during a
calculation

◆ Statistical functions, which calculate classical statistical metrics such as
standard deviation

◆ User-defined functions, which enable users to create their own functions

OLAP Skills

In recent years BI products arose claiming to be MOLAP (Multidimen-
sional Array Storage Supporting OLAP), ROLAP (Relational Storage Sup-
porting OLAP), or HOLAP (Hybrid Storage Supporting OLAP) in nature.
We intend to stay out of strict definitions of these differences in this dis-
cussion, except to point out that their relative positioning becomes clear
when you evaluate the analytic world by skill set.

We stated that a systems analyst looks at column names, whereas a busi-
ness analyst looks at business names. Exploring the differences between
how systems professionals and business professionals see things is useful
to help further understand OLAP. Consider Figure 11.2, which depicts per-
spectives of the BI world. The systems analysis perspective and the busi-
ness analysis perspective apparently divide the BI world. The relevant
academic degree on the left is from Computer Science, whereas the rele-
vant academic degree on the right is from Business Science. Key business
performance indicators drive the business analysts, while database or sys-
tem application performance indicators drive the systems analyst/data
architect. The view on the left is systems architectural in nature, whereas
the view on the right is business logical in nature. Neither view is entirely
correct. Or rather, both together are correct; that is, the skills differences
between IT professionals and business management professionals cause
them to understand analytic processing in different but essentially com-
plementary ways.

Figure 11.2 Skill domain of BI.

MIS
System Analysis
Data Warehouse
Enterprise Infrastructure
ERD

MBA
Business Analysis

Business Unit KPIs
Departmental Marts
Business Algorithms

Systems Analyst Perspective Business Analyst Perspective

Business Intelligence/Data Warehouse

OLAP Domain

The way you view OLAP depends upon what side of the analytic space you come
from. The whole "ROLAP, HOLAP, MOLAP" debate comes from this difference.

ROLAP HOLAP MOLAP

476 Chapter 11

For the systems analyst or data architect, entity relationship diagrams
rule the world, whereas for the MBA, business algorithms rule it. Many
analysts think at the departmental level because business performance
indicators are usually relevant to some specific task set that maps to a spe-
cific organizational subsystem. Architects and systems analysts, on the
other hand, more often think at the corporate or enterprise level because
data warehouses are thought of as corporate application assets, not depart-
mental tools. Business analysts who do think at the corporate level have a
particularly disquieting job. Metrics need to be defined and aggregated for
the corporation as a whole and stored somewhere that permits asking
OLAP questions of them. The physical location of this analytic cube in the
corporate information structure has never been easy to define.

As in most things, “where you stand depends on where you sit.” People
skilled in business analytics are likely to be drawn to an OLAP tool that
presents to them things they understand, like business names. People
skilled in systems analysis are likely to be drawn to an OLAP tool that pre-
sents to them things that they understand, like column names. On the one
hand, we do not want to comment on the appropriateness of any specific
tool for any given task. Since pure objectivity on this matter is unlikely, it is
useful to know the background from which tool recommendations are
being made. However, we do want to suggest that there are more or less
appropriate tools for every task and that it is the mandate of data ware-
house architects to understand and implement tools that generate the
largest ROI for their organizations.

In the final analysis, it makes as little sense to attempt to build a single
OLAP cube and call it a warehouse as it does to populate summary tables
at every possible intersection point, across every conceivable column com-
bination in the DW and call it OLAP. The debate about relational versus
OLAP technologies is misguided. It is time to recognize relational, OLAP,
and data mining as complementary technologies.

Applying the Dimensional Model

Ralph Kimball seems to have been the first to systematically argue that
normalized relational database schemas supporting transaction processes
aren’t appropriate for supporting analytic processes. His idea of a dimen-
sional model stems largely from the fact that analytic processing require-
ments are not the same as transaction processing requirements, in the
following ways:

Multidimensional Data with DB2 OLAP Server 477

■■ A dimension business model is more easily understood by business
users than a normalized business model. Users understand a star
schema more easily than other modeling pictures.

■■ Speed advances in transaction processing come from altering the
schema. By properly configuring aggregation tables within these
star schema structures, system response greatly improves.

So the net result of star schemas is a more responsive and user-friendly
system. The relational database star provides the lion’s share of analytic
value to a large audience of business users. The advanced use of OLAP
technology, on the other hand, is more precisely focused and targets those
people in the organization who manage the business. It is focused on those
whose job is to see that the business is viable and competitive.

Steering Your Organization with OLAP
We can illustrate this by extending an analogy Ralph Kimball uses in The
Data Warehouse Toolkit, where he says that “users of an OLTP system turn
the wheels of the organization” and that “users of a data warehouse, on the
other hand, are watching the wheels of the organization” (Kimball, 3).

We propose that advanced OLAP users are the people who steer the
wheels of the organization. They are looking at the biggest business ques-
tions possible: Are we profitable? Where? Why? Why not? The OLAP users
are active. They decide where the enterprise is going, or provide informa-
tion directly to people who do decide.

Speed-of-Thought Analysis
Ultimately, then, an analytic tool is a tool that enables business analysts to
test different business models for the purpose of asking and answering
OLAP-type questions. The speed at which this process occurs is critical.
Does the analyst wait 1 second, 1 minute, 1 hour, or 1 day (or more) before
viewing the results that will lead to the next question?

The answer is important. The duration between question and answer
can be of such a length that the originating question needs to be recalled

478 Chapter 11

and reformulated before results can be optimally interpreted. The necessity
of having to constantly replace results in context hinders the analytic
process. Therefore, the OLAP functionality implemented by DB2 OLAP
Server supports rapid question-and-answer response times and has been
described as “analysis at the speed of thought.”

A drill-down is much more than a movement down to a level of higher
detail; it is a report that remains intimately connected to and answers the
question that generated it. This is precisely why a drill-up is every bit as
powerful for a business analyst as a drill-down; they both are question-
answer reports in context. To repeat, a drill-down is a report in context.
Each report is new, arrives instantaneously, and is not constrained by the
boundaries of canned reports that use replaceable parameters. The rapid
question-and-answer functionality that accrues to DB2 OLAP Server is
truly definitive for the business analyst. It is difficult to overstate the ana-
lytic value of this functionality.

We are suggesting that the quantitative change in speed of answers
makes a critical qualitative change in the ability to pilot the business.
Because users can think more quickly, they are freed to think more deeply
and in an unconstrained manner. They are able to be more creative. Using
DB2 OLAP Server, you can steer the enterprise faster and better.

The Outline of a Business

The DB2 OLAP Server outline is a place where the data model and the
business model are the same and are represented graphically. The DB2
OLAP schema is an “outline” of the business. The following discussion
details how the outline drives the physical schema of the cube itself.

The relationship between a star schema and a DB2 OLAP outline
(schema) is illustrated in Figures 11.3 and 11.4. This star schema is repre-
sented in the following DB2 OLAP Server database outline. As shown in
Figure 11.3, the star has four dimensions that essentially surround a single
fact table, thus the term star.

Multidimensional Data with DB2 OLAP Server 479

Figure 11.3 A star schema.

The DB2 OLAP Server outline shown in Figure 11.4 does not resemble a
star schema at all. There are several differences between the two. First is the
storage structure. As mentioned, the relational star has five tables (four
dimension tables and a fact table), whereas the OLAP outline schema has
five dimensions. Although it is correct to think about the five dimensions
representing tables, the business itself is being modeled and stored differ-
ently in the resulting subsequent databases.

order_num(PK)
order_type
order_type_desc
order_stage
order_stage_desc
shipto_code
shipto_city
shipto_state
shipto_zip
billto_code
billto_city
billto_state
billto_zip
ship_method
terms
order_amount
extract_id
snapshot_date(PK)

orders

date_id(PK)
day_of_week
name_of_day
weekend
holiday
week_of_month
week_of_year
name_of_month
month_of_year
quarter
year
extraction_id

Date

order_num(PK)
line_num(PK)
order_date(PK)
cust_code(PK)
item_code(PK)
line_type
line_stage
qty_ordered
item_price
extended_price

Measures/Facts

Managed
Redundancy

cust_code(PK)
cust_name
address_1
address_2
city
state
state_code
zip
territory
territory_desc
credit_limit
extract_id
snapshot_date(PK)

customer

item_code(PK)
item_desc
item_class
item_class_desc
vend_code
vend_item_code
vend_name
vend_city
vend_state
vend_zip
order_unit
order_unit_desc
sell_unit
sell_unit_desc
extract_id
snapshot_id

item

480 Chapter 11

Figure 11.4 DB2 OLAP Server outline.

In the relational star schema, each business entity (for example, product
code 100-1) is stored as part of the contents of a schema component (i.e.,
table). These contents are accessed using SQL. On the other hand, in the DB2
OLAP Server outline, instances of actual named business entities are the
database schema. In the star schema, product code 100-1 is the name of a
place where a specific item code is stored for each business event being man-
aged. In DB2 OLAP Server, each specific item_code is an entry in the schema.

The DB2 OLAP Server schema is a way of picturing an enterprise that is
closer to how businesspeople experience the business than are relational
schemas. Business users experience specific named entities, like product
100-1. They don’t experience the “categories” of entities, like a table col-
umn called item_code, which represent the core of relational modeling.

It is quite amazing to visit users and see that, day in and day out, they
live with complex coding references. Everybody within the same work
group would know that 100-55 is a new product for which the tooling
hasn’t been done yet, but the marketing brochures already tell the story.
Users will exchange knowing glances during OLAP design sessions about
specific arcane codes that even a close outsider from IT can barely under-
stand. When users see their codes embedded in a DB2 OLAP Server “busi-
ness model” (outline) they “get it” right away. That OLAP database meta
data is composed of business entities, not database schema, is manifest by
the fact that the best and most effective OLAP database designers are busi-
ness users. (See Figure 11.5.)

Multidimensional Data with DB2 OLAP Server 481

Figure 11.5 An expanded DB2 OLAP outline.

In a similar way, OLAP outlines make obvious the way the business
aggregates. Note in the outline fragment shown in Figure 11.5 that the
“form” given to the enterprise by the rollup structure is immediately obvi-
ous. This is important. Three inches of green bar paper of printed account
codes is an organizational list, not an organizational structure. The DB2
OLAP Server outline, however, not only shows the list, but also affords the
details to reveal the organizational structure.

Data processing people have long provided the ability to hide informa-
tion in order to disclose form. The invention of the program subroutine and
modular programming provided a way to isolate details but also to
emphasize logical form. Programmers have long used this ability to under-
stand the programs they write. This powerful capability is known as infor-
mation hiding and has become such a staple of programming that it is no
longer even mentioned.

In the same way that we can create computer programs we can’t under-
stand without help, we can create organizations we can’t understand with-
out help. In DB2 OLAP Server, double-clicking on an outline parent
expands or collapses the information. Many users have never been able to
visualize how account codes report to other account codes, but they can
when they use a DB2 OLAP outline. The information-hiding ability of the

Database (Current Alias Table: Default)
Measures (Label Only)
Date (Label Only)
Customers
Orders
Item

USA (+)
Central Region (+)

Ohio Vendors (+)
Vendors Columbus (+)

Class 100 (+)
100-1 (+)
100-2 (+)
100-3 (+)
100-4 (+)

Class 200 (+)
Class 300 (+)

Vendors Cleveland (+)
Michigan Vendors (+)

Eastern Region (+)
Canada (+)

482 Chapter 11

OLAP outline gives to business analysts the schematic clarity long avail-
able to data processing analysts.

In some OLAP modeling sessions, users will excitedly grab the input
mouse and start moving schema objects around. This ability to move,
reshape, and restructure the organization at the computer desktop is a core
part of the online analytic processing experience that is provided by DB2
OLAP Server.

The business question “What if Alice’s group reported to the North-
east?” can be modeled almost in one mouse-click. Users are close to their
data and close to their organization’s structure (i.e., multidimensional
meta data). In a DB2 OLAP Server environment, by design, you are natu-
rally close to both. This powerful organizational and analytic modeling is
made possible by the pictorial nature of the OLAP schema, where the busi-
ness model and the data model are identical.

The OLAP Array

The entity names in the OLAP Server outline are called members. The DB2
OLAP server stores a number at the intersection of every member by every
other member in the outline, across all dimensions at all levels of hierarchy
(see Figure 11.6). The storage structure supporting this is a multidimen-
sional array. Accessing numeric data in a DB2 OLAP Server array is
achieved by supplying appropriate coordinates or intersection points.

Figure 11.6 Business metrics.

33.5

Business Metrics

Customer = CU345798A Date = 10/1992

Measures = Sales

Order = G4974798AItem = SUIES 0

Multidimensional Data with DB2 OLAP Server 483

IBM DB2 OLAP Server is a multidimensional OLAP (MOLAP) tool. As
such, the array is defined to hold only numbers, and numbers only are data
to the tool. Some relational data has become meta data to DB2 OLAP
Server and is stored in a physically separate outline object. Pointers con-
nect outline members to array storage locations. Much of the modeling
quickness that OLAP Server provides is derived by this architecture. To
manipulate the outline schema, you don’t need to touch a vast data array.
To manipulate the vast data array, you touch the outline as needed. The
partnership between objects is intimate, patented, tested, and compelling.

Within the Item dimension, SKU-level members aggregate to class mem-
bers, class members aggregate to vendor members, and so on. Organiza-
tional structure is therefore represented by the database schema and not as
contents of the schema. The point still bears further emphasis and consid-
eration, and we want briefly to sketch here what we perceive as a limit on
the ability of relational modeling to successfully represent enterprise struc-
ture and business rules.

Relational Schema Limitations
A relational database schema (star or otherwise) approaches business logic
asymptotically. This is because the business entities are really contents of
relational database schema objects. Schema components reflect business
logic according to the ways that they are related to each other. But the
schema objects themselves are not business entities. Even though the sug-
gestion that database schema objects (like tables and indexes) should rep-
resent business entities probably sounds idiotic to relational data
modelers, that’s precisely what DB2 OLAP array schema objects (like
dimensions and members) do. Objects like array schema can also reflect
relationships, as in the simple example of days aggregating to months.
Indeed, very complex business relationships, or business logic, can be eas-
ily embedded in a DB2 OLAP Server schema. The array storage structure
removes a level of abstraction and thus enables modelers to alter the
schema and more efficiently and transparently create new business models.

Using our example from Figure 11.5, the level of abstraction that is
removed is demonstrated in the OLAP Server outline. There simply is no
column name called item_code whose contents instantiate the business
structure (and rollups) to be modeled. This level of indirection, as it were,
is eliminated. Users are directly connected to the business names they use
daily. We suggest that column names containing instances of business
names constitute an asymptotic limit to user understanding that relational
modeling, as powerful and successful as it is, cannot, by definition, cross.

484 Chapter 11

Derived Measures
Consider the DB2 OLAP schema extract in Figure 11.7, where the Revenues
metric is calculated by multiplying the Quantity by the Price metric. The
derived value (Revenues) is in no significant way different from other
members and is also part of the database schema. Note that in the DB2
OLAP Server database, Revenues are calculated for every intersection
point across each of the other dimensions in the database (i.e., every Item
by every Order for every Customers by every Date.) However, Extended
Price is calculated only (note the Boolean syntax within the formula) for
members intersecting with the descendants of the Central Region Items.
Finally, the Customer Revenue % Contribution formula relates the revenue
contribution of each customer with its parent (as a percent). Once again,
this calculation would occur across every other dimension in the database.

These are simple examples that illustrate the manner in which very com-
plex business logic can be modeled using DB2 OLAP Server. By removing
a level of abstraction present in relational dimensional modeling, we have
dropped down into an arena where we manipulate business names
directly in the picture object (outline) to help reveal the underlying busi-
ness structure. We also add computations to the aggregations to reveal and
test business rules. The point is that business analysts are very comfortable
using DB2 OLAP Server to continue to manipulate business hierarchies
and logic to create complex metrics to be used in piloting the business.

Business users are generally pleased to see that complex business ana-
lytics, typically hidden away in database programming logic, surface in the
OLAP outline and are literally published for the entire user community to
see, understand, and critique. “You can’t manage what you can’t measure”
applies to the measures too.

Figure 11.7 Derived measures.

Multidimensional Data with DB2 OLAP Server 485

Implementing an Enterprise OLAP Architecture

The preceding discussion made several observations that we now will
briefly examine more closely:

■■ Many key performance indicators (KPIs) are relevant only within
organizational subsystems.

■■ A star schema implies one OLAP cube and possibly many more.

■■ OLAP application development delivers rapid ROI.

■■ OLAP applications steer the business.

It follows from the first statement that there are metrics crucial to the
management of departmental business units that are not appropriately
stored within the DW. For example, at the corporate-level a bank does not
care which customers make the best loan candidates. The bank only cares
that the loan operation is profitable. The loans division of the retail bank-
ing department clearly does need to track loan customers at that level.
Many departmental-level KPIs are different from the corporate-level KPIs
that have to apply across the organization. The former properly needs to be
derived within departmental data marts.

We have suggested that the departmental business analysts are experts
at manipulating these metrics in order to test and steer their respective
units, and, moreover, that OLAP technology really targets these individu-
als as the ideal advanced user group. Using the DB2 OLAP Server envi-
ronment to provide complex, department-specific metrics for business
analysts, we end up proposing an architecture that is really a variation on
Kimball’s bus architecture. The diagram in Figure 11.8 attempts to isolate
BI/DW data structures. Nonhorizontal lines that link objects generally
indicate data flow and move from the bottom up. The horizontal connect-
ing lines between departmental marts indicate a conformed rather than a
stovepipe relational data mart environment. OLAP Integration Server
(OIS) is the MOLAP generating tool between relational star schema struc-
tures and DB2 OLAP cubes.

Note the corporate DB2 OLAP cubes. They are the same shade as the
corporate warehouse because they contain metrics of interest at the corpo-
rate level but are created by connecting information contained in depart-
mental DB2 OLAP cubes. This really illustrates that the proposed
architecture is a variation of Kimball’s bus architecture in that certain
departmental or subject-oriented database metrics are brought together to
compose a corporate perspective. (Chapter 4 also discussed implementing
DB2 OLAP Server in the role of an enterprisewide multidimensional data-
base it is intended to play.)

486 Chapter 11

Figure 11.8 Enterprise OLAP.

The graphic should not be taken to prescribe any particular relational
architecture. It is irrelevant, for example, whether the departmental
marts in the picture taken together are considered the “warehouse” or the
highly normalized database structure like that represented by the corpo-
rate warehouse. We consider DB2 OLAP Server as essentially neutral
regarding relational architecture, except that OIS needs star schemas to
perform efficiently.

We do not want to convey any ideas regarding the relative importance of
MOLAP versus relational analytics. Space constraints make it difficult to
adequately depict the important relational components that provide ana-
lytic reporting and underpin enterprisewide analytic (ROLAP or other-
wise) applications. We want to emphasize where MOLAP resides within
the BI/DW and position it as necessary and complementary technology.

In the production environment, organizational subsystem data is cleansed
and scrubbed within the relational database. This cleansed data is used as
source data that feeds star schema data marts. These data marts can be typi-
cal Kimball marts in every respect except that they will assume characteris-
tics necessary to support DB2 OLAP Server cube creation and maintenance.

The debate concerning whether to begin constructing the entire ware-
house or to begin building the data marts is very worn today. Clearly a
coordinated effort is required to build a functional and efficient BI envi-
ronment. But we want to point out that OLAP cubes quickly provide ROI
by fulfilling business analytic requirements within a 30- to 90-day time
frame. Moreover, cube schemas can be used to help define underlying star
schema requirements that, in turn, can be used to refine source data
requirements for the warehouse.

Corporate Warehouse

Source Data

M
D
B
M
S

R
D
B
M
S

Corporate Dates

LOB Dates

LOB Datamarts

Multidimensional Data with DB2 OLAP Server 487

Prototyping the Data Warehouse

In this way, DB2 OLAP Server can have a powerful role in prototyping the
data warehouse. Organizations have found that it is a relatively inexpen-
sive, safe, and effective way to start a warehouse project. You deliver valu-
able business answers to grateful users while simultaneously discovering
that your enterprise has five product master files, three general ledgers,
and that “customer x” is spelled seven different ways. Since multiple meta
data pointers to the same meta data entity (10 ways to spell “AT&T”) will
not pass edit in DB2 OLAP Server, you get to conform your designs as you
quickly deliver individual actual working models. Then, the harder work
of creating permanent data scrubbing and cleansing processes for overall
warehouse use can begin, but in the context of a successful, though
bounded, delivery of answers.

Sequentially adding OLAP applications while simultaneously conform-
ing the dimensionality of the underlying relational data marts effectively
implements (M)OLAP across the enterprise. A fully functional BI/DW can
be implemented by coordinating the design of the OLAP supporting rela-
tional schemas with the relational warehouse schema that provides enter-
prisewide analytics using ROLAP or other SQL technologies. In other
words, relational designs that support OLAP requirements can effectively
be used to prototype the warehouse. More importantly, the warehouse is
gradually constructed through the process of providing business-relevant
metrics that are used to produce a rapid ROI for the organization.

Building a BI/DW environment through OLAP applications offers IT the
ability to minimize application development time, maximize ROI and cre-
ate a data repository that is conformed across the enterprise, and provide
pertinent high- and low-level analytic functionality to business users from
the start. Hence, it is our view that relational and OLAP development
needs to be coordinated and done in parallel. Given this high-level descrip-
tion of enterprise OLAP, what are some of the practical considerations req-
uisite to implementing DB2 OLAP Server?

Database Design: Building Outlines
There are three ways to build a DB2 OLAP Server outline:

■■ Manually build dimensions and members through the Application
Manager GUI.

■■ Build a coordinated set of files and generate the outline in batch
mode using the ESSCMD or MaxL utilities.

■■ Use OLAP Integration Server.

488 Chapter 11

Figure 11.9 Application Manager.

NOTE In Figure 11.9, Hyperion Essbase is printed on the screen shot of the
DB2 OLAP Server Application Manager. This is because DB2 OLAP Server is a
fully licensed, current version of Essbase. IBM has increased the functionality of
Essbase but has not changed the base application itself.

Application Manager

Application Manager (App Man) is the central administrative tool for DB2
OLAP Server. It offers all administrative functions for building and main-
taining DB2 OLAP applications and databases. Through App Man, admin-
istrators can modify database schemas by manually altering dimensions
and dimension members. They can also:

■■ Create database calculation programs called calc scripts. (See Figure
11.10.)

■■ Create rules files for building dimensions and loading data. (See Fig-
ure 11.11.)

■■ Generate reports. (See Figure 11.12.)

Figure 11.10 Calc Script Editor.

Multidimensional Data with DB2 OLAP Server 489

Figure 11.11 Data Prep Editor.

■■ Perform user security definition and maintenance. (See Figure
11.13.)

■■ Monitor database statistics reported at the database, application,
and server levels, and perform routine database maintenance rou-
tines as required. (See Figure 11.14.)

ESSCMD and MaxL

The command-line utilities that support 100 percent of App Man function-
ality in batch mode are ESSCMD (pronounced “es command”) and MaxL
(pronounced “mac sel”). Traditionally, the database designer uses
App Man to create rules files that enable external files (of specific design)
to be used to build database dimensions (dimension-build rules files), as
well as populate databases with data (data-load rules files). Users have the
ability to load data from flat ASCII files, spreadsheets, or RDBMS tables
using the optional SQL interface.

An administrator would be responsible for creating and configuring a
batch environment to effect a lights-out production environment using
ESSCMD or MaxL. (For a complete introduction to App Man, MaxL, and
ESSCMD, refer to the documentation that accompanies DB2 OLAP Server.)

Figure 11.12 Report Editor.

490 Chapter 11

Figure 11.13 User/group security.

Application Manager, ESSCMD, and MaxL enable a powerful and flexi-
ble operating OLAP environment. Data can be loaded to a DB2 OLAP data-
base from nearly every conceivable ODBC data source that includes flat
files, RDBMS tables, and spreadsheets. Moreover, DB2 OLAP Server sup-
ports out-of-the-box database write capabilities. This functionality is cru-
cial for supporting, for example, budgeting applications where the users
need to be able to quickly adjust and readjust figures and test outcomes. In
this process, users that have an appropriate security profile can write data
to the database directly from (standard) spreadsheet client desktops.

Security can be maintained from providing users with full database
access all the way down to having access to a single cell. DB2 OLAP Server
supports development of a full complement of OLAP applications out-of-
the-box, and applications can be completely user-defined and dynamic
through the fully functional C and VB APIs.

Figure 11.14 Database information.

Multidimensional Data with DB2 OLAP Server 491

The ability to build and load data from multiple sources eases prototyp-
ing efforts. Furthermore, the App Man outline development GUI can be
used to function very effectively as a rapid application development
(RAD) tool enabling business users to convey complex business notions to
IT efficiently and with minimal effort.

Although the App Man, ESSCMD/MaxL tools represent a powerful
OLAP application development setting, they really are best applied within
small information systems environments. What works for application pro-
totyping does not necessarily work in a production environment, and new
OLAP application development here remains unfortunately tied to a cum-
bersome development process. New business models can be generated only
after the newly defined set of supporting dimension-build and data-load
files have been created. The result is an environment where a potentially
chaotic proliferation of files and database tables has to be monitored and
maintained. More often than not, these environments are decentralized and
reuse of an object is more a result of luck than planning and design.

To bring OLAP to the enterprise, a tool is needed that effectively coordi-
nates relational (star schema) meta data with OLAP meta data.

Figure 11.15 Relational to multidimensional data.

Integration Server desktop

OLAP Model

OLAP Metaoutline
Market

Measures

Market Region

Profit
Roffice

Relational Data Source

DB2 OLAP
Database

492 Chapter 11

OLAP Integration Server

DB2 OLAP Integration Server very precisely fits the role as meta data coor-
dinator. Using OIS, a user can create, populate, and then calculate data-
bases directly from RDMS tables. Figure 11.15 shows the basic outline of
the steps required to move relational data and meta data to multidimen-
sional data and meta data.

Figure 11.16 shows this architecture in greater detail. The OLAP model
“understands” source relational meta data. Users can select from a subset
of the OLAP model objects to generate OLAP metaoutlines. From an OLAP
metaoutline the user is able to generate a single DB2 OLAP database. The
ability to create many OLAP metaoutlines from a single OLAP model
enables users to efficiently create many OLAP cubes from a single rela-
tional star schema.

Relational data mart designers should take advantage of the one-to-
many relationship between OLAP models and OLAP metaoutlines and
design the relational database to support the generation of multiple OLAP
databases. This means that data mart design and contents should be
expressly expanded to let users take advantage of this functionality. For a
concise overview of relational schema design techniques to support OIS-
driven DB2 OLAP Server database development, refer to Appendix B,
“Integration Server Implementation Guidelines” in the IBM DB2 OLAP
Server Theory and Practices Redbook, IBM Inc., 2001.

Figure 11.16 OLAP model and metaoutline.

Integration Server Desktop

OLAP Model

Desktop

Integration Server

TCP/IP

Server

ODBC

OLAP Metaoutline
Market

Measures

Market Region

Profit
Roffice

TCP/IP

OLAP
Meta Data

Catalog

Relational
Data

Source

OLAP Command
Interface

DB2 OLAP
Server

DB2 OLAP
Database

TCP/IP

ODBC

Multidimensional Data with DB2 OLAP Server 493

Figures 11.15 and 11.16 show the correct flow of data and meta data but an
incorrect ordering of development events. The best-practice OIS methodol-
ogy actually works back to the relational star requirements from a set of
OLAP requirements. Once the analytic requirements are sketched out for an
OLAP database, star schema relational requirements can be developed. After
the DBA has created the appropriate relational data source (star schema) to
support OLAP model generation, DB2 OLAP databases can be created, pop-
ulated, and calculated using the OIS OLAP metaoutline interface.

In fact, the OIS tool supports the database creation activities for power
users, and the tool really aims at these individuals as its intended users.
The advanced use of cube generation functionality is sometimes referred to
as “cube-on-the-fly.” This term attempts to convey that users can efficiently
generate a new DB2 OLAP Server database for further analysis as a result
of questions and issues generated while performing analysis in another
cube. To support this, OIS enables users to select a subset of meta data
(dimensions and members) and numeric data from the data mart and gen-
erate new OLAP databases.

However, the real enabler of cube-on-the-fly functionality is the design
of the star schema that underpins cube generation. The relational schema
must contain data that supports these ad hoc cube-creating excursions
through data. For example, suppose that a key performance indicator (KPI)
on an executive report prepared from data in a corporate cube for the CFO
indicates a problem with sales in the Eastern Region for Diet Products. The
CFO might pick up the phone and ask the Eastern Region Manager of Diet
Products something like, “What is going on over there in the East?”

In a properly designed OIS/OLAP environment, a data analyst would
quickly create a new OLAP metaoutline from an existing OLAP model. A
new cube would be generated having a dimensionality and data that nar-
rowly focuses on the details of Eastern Region and Diet Products. These
details would not have been present in the corporate cube. Moreover, OIS
can design cubes that enable a drill-back to even more granular relational
detailed data stored in the star schema to further assist the analyst in her
task. Once the investigation is completed to the CFO’s satisfaction, the new
cube can be thrown away. But the prerequisite would be that these
Regional and Product details be available for use on demand in the star
schema. Ultimately, then, everything rests on the details of the design.

To sum up, the concept of cube-on-the-fly and throwaway cubes really
assumes an environment where the OLAP databases are being designed
and generated by users. If so, then what is the role of IT within an enterprise
OLAP environment if it is not to design and build the OLAP cubes to user

494 Chapter 11

specifications? After all, creating database schemas is not generally consid-
ered to be a user function.

Support Requirements
Let’s examine the statement that DB2 OLAP Server meta data is composed
of business entities. The most important implication that we want to draw
here is that, with minimal technical training, business users can become
excellent OLAP modelers. As we said earlier, users “get it” really fast.

Removing the layer of abstraction extant of the RDBMS schema compo-
nents enables the organization to appropriately keep business logic in the
hands of the business user and also put into their hands the ability to
embed that business logic into a highly functional computer-based struc-
ture called DB2 OLAP Server. OLAP application development does not
have to consist of transferring/translating business logic to a technician so
that the technician can transfer that logic to a schema. In OLAP Server,
business users build business models. The collaboration of IT and business
users in an OLAP environment enables each to remain largely within the
domains of their respective expertise.

Business users who build OLAP models (i.e., superusers) need to know
what buttons to push and what keystrokes to make in OIS and App Man to
enable them to achieve their objective. There are relational and multidi-
mensional components that must be understood in order for users to meet
these requirements.

To acquire this skill set, all that is really required is that they receive the
appropriate end-user training. These users will need to understand
enough about storage implications to be able to understand why they need
to work very closely with IT in the database creation process.

Are business users being set free to run rampant within an enterprise
infrastructure? No, they are not. The traditional role of IT is expanded in
one way. Of course, IT needs to know in detail the hardware requirements
necessary to support the entire OLAP environment. And to do this effec-
tively, IT must know the details about the storage implications of DB2
OLAP Server databases. Someone in IT should follow the training path
outlined for system administrators. But, in particular, they must under-
stand in detail the concepts related to sparse matrix management as they
pertain to DB2 OLAP Server. This is because OLAP storage constructs are,
as will be seen in the next section, data-driven. In other words, the under-
lying sparse nature of OLAP data sets is a major factor in the resource
requirements necessary to compute them.

Multidimensional Data with DB2 OLAP Server 495

DB2 OLAP Database as a Matrix

The notion that DB2 OLAP storage structures implement data storage as a
matrix (or array) is perhaps the most important concept for a DB2 OLAP
developer and IT resource manager. Figure 11.17 illustrates the array
model. Understanding matrix management eventually will include an
understanding of the corollary concept of sparseness. That is, as more
dimensions are added to the matrix, proportionally fewer intersection
points (or cells) across the matrix actually contain values.

Consider the following array declaration containing 21,370,660,375,680
intersection points:

DIM (172, 21, 27, 32, 209, 32765)
The DB2 OLAP Server allows dimensions to be tagged or defined as

either dense or sparse. When a dimension is tagged as dense, it becomes
part of the storage structure called the data block. Every data block that is cre-
ated in the database has an identical structure. In our example, it contains
precisely 172 * 21 * 27 = 97,524 cells, or intersection points. (See Figure 11.18.)

Figure 11.17 OLAP array model.

Measures (DENSE) {LabelOnly}

1 Profit (+)
2 Sales (+)
3 COGS (-)
4 Inventory (+)
1 Year Time (DENSE)
2 Q1 (+)
3 Q2 (+)
4 Q3 (+)
5 Q4 (+)
1 Products (SPARSE)
2 Colas (+)
3 Fruit Soda (+)
4 Root Beer (+)
1 Markets (SPARSE)
2 USA (+)
3 International (+)

1

1

2

3

4

2 3 4

1

1

2

3

2 3

Products

Markets

Year

Measures

4

Inner
(Dense)
Array for

USA Colas

Outer
(Sparse)

Array

Value for COGS in Q3 of USA Colas

5

Index position (3,4) in the block, meta data values
"COGS" from Measures, "Q3" from Year.

496 Chapter 11

Figure 11.18 OLAP storage structures explored.

All data blocks are stored on disk within the ESS*.PAG files. Addressing,
or locating, blocks of data is provided by sparse member combinations.
These combinations become part of the storage structure called the index
and are stored on disk with the ESS*.IND files.

Enabling these two definitions of dimensions makes the matrix modular.
The data block is a fixed format data structure, the existence of which is
driven by data-relevant sparse member combinations in the index. By
“data-relevant” we mean that only where business data actually exists
across sparse member combinations will a data block be generated.

For example, if we do not sell any suntan oil in January in the Arctic, we
do not reserve any space in our array for those intersection coordinates.
One of the differences between the DB2 OLAP storage structures and rela-
tional ones is that a relational index is optional. In DB2 OLAP the index is
not. Deleting an index for a relational table has no effect on the table data.
Deleting the index from a DB2 OLAP database corrupts the database.

The small subcomponents of the array (the data block and its index
address) are quite readily moved between disk and working memory. These
structures mesh very well with the general user requirement of only being
interested in sub-sets of information from the array at any one point in time.

1 index pointer
(12, 200, 1897)

DIM (172, 21, 27, 32, 209, 32765)

dense

Unique combinations
of the sparse dimensions
form the index.

1 data block

Tagging some
dimensions dense
creates the block

sparse

Multidimensional Data with DB2 OLAP Server 497

Block Creation Explored
The database shown in Figure 11.18 contains six dimensions with the fol-
lowing DB2 OLAP configuration:

Dense dimension #1 containing 172 members

Dense dimension #2 containing 21 members

Dense dimension #3 containing 27 members

Sparse dimension #1 containing 32 members

Sparse dimension #2 containing 209 members

Sparse dimension #3 containing 32,765 members

Which data blocks are actually created depends upon unique sparse
combinations that contain data. In our example, a block with address (12,
200, 1897) has been generated because a business event has occurred at that
intersection point. We could convert or translate the index node into some-
thing like “A&P (customer 1897 of sparse dimension #3) sold colas (mem-
ber 12 of sparse dimension #1) in New York (member 200 of sparse
dimension #2.)”

Matrix Explosion
The three defining characteristics of a DB2 OLAP Server array are as follows:

■■ The number of dimensions

■■ The number of members within each dimension

■■ The hierarchical relationship of the members within each dimension

Data explosion can occur across each characteristic individually and
concurrently having a combined (that is, Cartesian) impact. For example, if
we increase sparse dimension #1 to include 5,000 members, the number of
potential intersection points increases from 2.3 * 1013 to 3.3 * 1015! In similar
fashion, adding a completely new dimension will explode the number of
potential intersection points. We can do both at once, adding more mem-
bers to an existing dimension at the same time as we add a completely new
dimension to the database. (See Chapter 2 for more discussion regarding
cell explosion.)

498 Chapter 11

DB2 OLAP Server Sizing Requirements

Estimating the size of a DB2 OLAP multidimensional database is concep-
tually identical to estimating the size of any database, relational or other-
wise. It essentially involves estimating final size based on numeric
extrapolations derived from known characteristics of the data. The more
precisely the characteristics of the data to be stored are known, the more
accurate the estimation can be. Once we are confident that we know what
has to be stored, we can more or less effectively gauge approximately how
much of it we need to store. DB2 OLAP Server databases make this process
very simple in some respects, in others not.

What DB2 OLAP Server Stores
As mentioned previously, DB2 OLAP stores only numbers at intersection
points across a storage array. It stores floating-point numbers and needs 8
bytes per number. That’s the easy part. You really do not have to worry
about different data types. Moreover, there is an inherent sparseness of
multidimensional data sets that the DB2 OLAP array has to deal with that
creates overhead for the server, since some of those intersection points in
the array contain no values. Illustrated in Figure 11.19 is a comparison
between the DB2 OLAP outline and the storage of intersection points.

Figure 11.19 DB2 OLAP array.

Measures (DENSE) {LabelOnly}

1 Profit (+)
2 Sales (+)
3 COGS (-)
4 Inventory (+)
1 Year Time (DENSE)
2 Q1 (+)
3 Q2 (+)
4 Q3 (+)
5 Q4 (+)
1 Products (SPARSE)
2 Colas (+)
3 Fruit Soda (+)
4 Root Beer (+)
1 Markets (SPARSE)
2 USA (+)
3 International (+)

1

1

2

3

4

2 3 4

1

1

2

3

2 3

Products

Markets

Year

Measures

4

Inner
(Dense)
Array for

USA Colas

Outer
(Sparse)

Array

Value for COGS in Q3 of USA Colas

5

Index position (3,4) in the block, meta data values
"COGS" from Measures, "Q3" from Year.

Multidimensional Data with DB2 OLAP Server 499

DB2 OLAP Server uses a concept called data blocks to store intersection
points. These data blocks contain a fixed configuration of intersection
points called data cells where floating-point numbers can be stored. A prop-
erly configured database will be the one that generates the fewest number
of data blocks with the greatest amount of data. You can create a reason-
ably accurate estimation of the overall database size if you can answer the
following two questions:

■■ Approximately how many cells, on average, does a block contain?
■■ Approximately how many blocks are generated?

Using SET MSG ONLY: Pre-Version 8 Estimates
Prior to Release 8.1 of DB2 OLAP Server, SET MSG ONLY was a completely
undocumented and unsupported command. It has a number of very sig-
nificant uses. To use the command, a representative sample of production
data is loaded into an empty database. Then a calculation of the database is
initiated using the following script:

SET MSG ONLY;

CALC ALL;

This command, when specified in a calculation script or as part of the
database default calc, will initiate a false-calculation of a database. This
means that the DB2 OLAP Server engine will perform a calculation run-
through of the database keeping track of the calculation process in terms of
block creation. This information will be reported in the application log, and
from it you can deduce the approximate number of data blocks that the
database would have created as if you had actually calculated it.

If you can generate a reliable statistic regarding the total number of
blocks that a model will create without having to create them, you can do
two very valuable things:

Estimate database size. By keeping a record of the number of blocks
created and database size in bytes directly after a representative level-
0 data load to a database, you can divide the (total number of bytes)
by the (number of loaded blocks) to derive an estimate of the average
number of bytes per compressed block on disk. Multiplying that fig-
ure by the total estimated number of blocks gives you a very good
approximation of the total size of your compressed database in bytes.

500 Chapter 11

Estimate batch calculation time. Assuming that you now have a very
good approximation of the total size of your database, you can divide
that number by the DB2 OLAP throughput metric of your hardware
to generate an estimation of the total time to calculate the model.
Note that we are assuming here that batch calculation throughput is
linear. Empirical observations repeatedly show that as calculations
approach their completion, throughput on the DB2 OLAP server
diminishes. This is especially evident when calculating very large
databases containing many tens of millions of blocks.

What is Representative Data?
SET MSG ONLY reports block creation based on the nature of the data that
was loaded. This is the hard part. It is not always possible to come up with
a representative data sample. And if you only load some data, or fabricate
data, you will only generate limited results, fabricated results, or both! To
be reliable and accurate, you need to load real data across all of the dimen-
sions in the model.

Thus, SET MSG ONLY enables you to get a very accurate estimation of
the total number of blocks that a particular database (configuration) will
generate in a very short amount of time. The word estimation is used
because the algorithm will not take into consideration member formula or
calculation scripts. This should be considered a qualification to any esti-
mates generated by SET MSG ONLY.

Sizing Estimates for DB2 OLAP Server Version 8
As shown in Figure 11.20, there is a new support for DB2 OLAP Server V8.0
called ESTIMATEFULLDBSIZE. The command should be considered a
replacement for SET MSG ONLY. Executed using esscmd.exe, this com-
mand provides an estimation of total block count.

A good estimate of database size can be calculated by multiplying the
block count by the block size and compression ratio as follows:

102216 * 58464 * .03313 = 198 Meg

Figure 11.20 ESTIMATEFULLDBSIZE command.

localhost: ccdemo: finance: essexer[1]->estimatefulldbsize 4;
EstimateFullDbSize:

Estimated count of blocks after full calculation = 102216
Time elapsed to calculate this estimation = 1.75 seconds

Multidimensional Data with DB2 OLAP Server 501

Figure 11.21 Estimate versus actual.

Figure 11.21 shows that the estimated database size is within 10 percent
of the overall database size after calculation.

Database Tuning

We have already looked at the basics of the data storage structures and
how dimension settings and member tags can be effectively used to offset
the effects of sparse matrix management and the data explosion that can
accompany multidimensional databases. But there are three more
advanced issues to consider when tuning your database. These include
two advanced DB2 OLAP functions and one feature that can also be
employed to offset matrix explosion and to tune extremely large DB2
OLAP applications.

There are four major areas to concentrate on when performance tuning a
DB2 OLAP database:

■■ Handling the characteristics of the dimensionality and embedded
business logic.

■■ Implementing member tags.
■■ Handling outline/database consolidation and business formulae.
■■ Determining optimal dense/sparse settings.

All of these revolve around the single most important DB2 OLAP con-
struct: the database outline. In a DB2 OLAP Server environment the data-
base outline is the database schema. We have said it is a place where the
business model and the data model are the same and are represented

Number of existing blocks 105440

Block size in bytes 58464

Potential number of blocks 1346018520

Existing level-0 blocks 5750

Compression Ratio 0.02778

Index file 8216576 Open D:\Essbase65bld

Data file 180232192 Open D:\Essbase65bld

Parameter Value

1

2

Type Size Status Name

1

2

3

4

8

502 Chapter 11

graphically. The storage characteristics of the outline are no less important to
a multidimensional model than are the storage characteristics of the schema
to a relational one. A relational schema tuned for OLTP or query processing
will pay very different attention to the schema design and the associated
storage structures to achieve the desired performance characteristics.

Goal Of Database Tuning
The goal of optimally configuring sparse-dense settings for a database tun-
ing is twofold:

■■ Create as few blocks as possible.
■■ Create blocks that are as densely populated as possible.

Dense dimensions are implemented to reflect the density of the data set,
and sparse dimensions are implemented to reflect, or reduce the effect of,
the sparseness of the data set. We write reduce because it is not realistic to
expect to be able to eliminate sparseness from a DB2 OLAP Server matrix.
If the dense nature of a data set is not contained within the block (a dense
dimension is tagged sparse), an explosion of the overall number of data
blocks that the configuration generates will result. Conversely, large and
empty data blocks indicate that sparseness has not been effectively elimi-
nated from the data set.

Outline Tuning Considerations
There are three main considerations when tuning the outline:

How many dimensions are there? Implementers are limited by the
total number of dimensions that can be modeled, as well as by the
hardware configuration on which the model is being developed.

How large are they? The total number of members ultimately deter-
mines the sparseness of the data set.

How deep are they? Database performance characteristics will also
vary according to the depth of the hierarchies of the dimensions.
Designers must be able to identify and adjust database configura-
tions according to the demands of the specific (practical) database
being developed.

Sparse or dense settings might have to be altered to accommodate spe-
cific client requirements—for example, to support member calculation or
query retrieval requirements.

Multidimensional Data with DB2 OLAP Server 503

NOTE Database configurations will be optimal not necessarily according to
the best sparse/dense configuration but according to requirements specific to
the model at hand.

Databases that are incrementally updated across time almost by defini-
tion preclude the possibility of tagging the time dimension dense, even
though it properly adheres to the density of the data set.

Batch Calculation and Data Storage
The batch calc process for DB2 OLAP Server databases optimizes runtime
performance by making the vast majority of data set values persistent. The
cycle of database build and refresh will regularly include time for loading
data, as well as time to replenish derived and aggregation values along the
dimensional hierarchies. The period of time required to refresh data is
commonly referred to as the batch window. The batch calculation process
will have significant disk storage implications. To help defray the cost of
auxiliary storage and I/O, the objective of the database designer is to
implement the database configuration that generates the least number of
blocks that has the highest density.

Member Tags and Dynamic Calculations
DB2 OLAP Server enables users to tag members as dynamic calculations.
Members that are tagged will have their calculation removed from the
batch calculation process. They will be dynamically calculated for the user
at query retrieval or runtime. Positive effects of implementing dynamic
calculation member tags include:

■■ Reduced batch calculation window
■■ Reduced data block size
■■ Reduced overall database size

Member tags are not only implemented for storage implications. Tags
also enable users to take embedded business logic coded in the DB2 OLAP
Server calculation engine within the outline. The DB2 OLAP Server data-
base has been coded to “understand” a certain amount of business logic.

For example, time balancing is the term DB2 OLAP Server uses to
describe business quantities that do not aggregate over time. Having 5

504 Chapter 11

headcount in January, 6 in February, and 10 in March does not mean we
have 21 headcount for Quarter 1. The same is true for inventory items and
(alas) for balance sheet items such as your checkbook. There is a critical
business need to represent these metrics as desired at upper levels of time.
They cannot be left to the standard engine aggregation. In DB2 OLAP
Server, you click on a button in the outline to make a quantity “TB First”
(said “Time Balance First”), or “TB Last,” or “TB Average.” This will cause
the database engine to report correctly at upper levels of time the first
period value, the last period value, or the average period value.

There are also ways to enable the database engine to calculate values
according to business logic that either includes or skips values that are
missing from the database—for example, to implement the business-
relevant difference between the average revenue for all products and the
average revenue for all products sold.

DB2 OLAP Server enables this business logic to be implemented by the
database engine. Implementation is simple, intuitive, and a mouse-click
away, and it works the same across all levels of time. The outline fragment
illustrated in Figure 11.22 is a small sample of tagging capabilities of DB2
OLAP Server. Note first that the Measures dimension itself has been
tagged as the Accounts dimension. This is a dimension tag that enables the
implementation of other member tags like, for example, Expense Report-
ing. The Dynamic Calc tag indicates that member calculations are per-
formed at query time rather than during batch window calculations. The
Label Only tag causes DB2 OLAP Server to treat the member as a naviga-
tion point, and DB2 OLAP Server does not reserve any storage space for
numeric data for these members. The TB First tag implements the time-
balancing functionality discussed previously, and the Expense Reporting
tag implements balance sheet expense account functionality. Finally, note
that the Opening Inventory member has no less than three member tags, as
well as a member formula associated with it.

Figure 11.22 Tagging.

Measures Accounts (Label Only)
Revenues (~) (Dynamic Calc)

Quantity (+)
Price (*)

Extended Price (~) (Dynamic Calc) if(@DESCENDANTS ("Central Region")) "Extended Price" = Price*1.1; endif
Customer Revenue % Contribution (+) (Dynamic Calc) Revenues%@PARENTVAL (Customers, Revenues);
Inventory (~) (Label Only)

Opening Inventory (+) (Dynamic Calc) (TB First) (Expense Reporting) IF(NOT@ISMBR(Jan))"Opening Inventory"
Additions (~) (Expense Reporting)
Ending Inventory (~) (TB Last) (Expense Reporting)

Multidimensional Data with DB2 OLAP Server 505

The small outline fragment helps illustrate why business users find it
easy to use to build business models. The outline is, in the final analysis, a
user-friendly object for business analysts. Users can be allowed (or disal-
lowed) to view outline contents directly in order to understand the defini-
tion of metrics. The same user-friendly functionality cannot be said to
apply to other OLAP products.

Disk Subsystem Utilization and Database File
Configuration
We do not want to wade into ongoing debates on which RAID level offers
optimal performance. We do want to offer some guidelines for storage
experts to be aware of when considering how to configure disk arrays and
subsystems. DB2 OLAP Server is disk I/O-intensive. It is write-intensive
during database calculation events, and read-intensive during user query
retrieval events.

DB2 OLAP Server offers administrators the ability to manage three sets
of files differently. The first set we will refer to as database control files.
These reside within the same directory structure as the DB2 OLAP Server
executable files, but under a different subdirectory. Control files stored
there include those associated with specific databases like the database
outline (which need to be fully read into working memory), as well as
transaction control files, and so on. By default, the data (ess*.pag) and data
index (ess*.ind) files are also stored within subdirectories off of the instal-
lation directory.

Administrators can separate data and index files from each other, as well
as from the control files along different disk I/O channels. Since every fetch
from disk involves reading from both the index and data files, isolating
these files from each other on separate disk I/O channels will be accompa-
nied by a performance boost. An additional, though less significant, boost
in performance can be achieved by isolating the database control files on
an I/O channel separate, again, from both the data and data index files.

Database Partitioning
DB2 OLAP partitioning functionality potentially gives application design-
ers the ability to implement a very large application across a multiple
rather than single database architecture. Through partitioning, a designer

506 Chapter 11

can break up and divide a single database into smaller databases and then
spread workload across the hardware infrastructure, thereby more effi-
ciently utilizing disk and CPU resources.

We say potentially because use of the partitioning option in all but the
simplest of cases involves very advanced understanding of DB2 OLAP
storage structures, calculation, and query retrieval requirements. We
almost hesitate to caution that database partitioning does not solve all
issues concerning database scale.

We are bringing database partitioning to your attention because, prop-
erly configured, it can add real value to a DB2 OLAP Server implementa-
tion. For a more detailed discussion of DB2 OLAP partitioning, refer to the
DB2 OLAP Server Database Administrator’s Guide.

Attribute Dimensions
The third functionality that we deem important to mention in this context
is the ability to use attribute dimensions in DB2 OLAP Server. An attribute
dimension is essentially a dimension that describes another dimension
directly and provides the ability for users to dynamically calculate values
relative to the dimensional attribute at runtime.

For example, consider a product dimension where each individual
product has the attribute of color, as shown in Figure 11.23. Users can have
analytic functionality across the color attribute in one of two ways. The
database can implement color analytics as a regular (or base) dimension.
This solution has the Color dimension become part of the multidimen-
sional storage array and will impact data storage and batch calculation
requirements. The Color dimension would appear as a regular dimension,
and every intersection point in the cube would have a member of the Color
dimension as a reference point, or coordinate.

Figure 11.23 Color dimension.

Database (Current Alias Table: Default)
Measures Accounts (Label Only)
Date (Label Only)
Product
Orders
Item
Color

Red (+)
Blue (+)
Green (+)

Multidimensional Data with DB2 OLAP Server 507

On the other hand, color analytics could be implemented through an
attribute dimension as shown in Figure 11.24. Here color is an attribute that
describes members of the Product dimension. In the former case, all DB2
OLAP Server analytic capabilities are brought to bear on color, whereas as
an attribute of product, DB2 OLAP Server offers only a subset of analytic
capabilities. (For more information on the use of Attribute dimensions, see
the DB2 OLAP Server Database Administrator’s Guide.

If an attribute has no data storage or batch calculation requirements,
why not use attributes all of the time? There are two main reasons for
choosing to implement attribute dimensions cautiously:

■■ Attribute dimension calculations are dynamically calculated for
users at runtime, and, therefore, they can seriously impact retrieval
performance. In fact, the only two scenarios that we are aware of
where database tuning is required to support query retrievals
involve both attribute dimensions and database partitioning.

■■ An attribute dimension generally describes data at the lowest level of
granularity. Products, for example, have attributes that disappear at
the product-type level. For example, the size attribute for a particular
cola SKU is 16 oz. However, the Colas product line does not have a
single size attribute because the product line of Colas has potentially
many size attributes. It perhaps warrants saying that product lines
could have a suite of attributes and that these would not be applica-
ble either below or above them along the product hierarchy.

Storing multidimensional data at a low level of granularity can expand
tremendously the overall storage requirements of the OLAP database. As a
result, we caution that the use of attributes, too, needs to be implemented
by developers with advanced knowledge of DB2 OLAP Server storage
structures and calculation requirements.

Figure 11.24 Attribute dimensions.

Database (Current Alias Table: Default)
Measures Accounts (Label Only)
Date (Label Only)
Product {Color}
Orders
Item
Color Attribute (Type: Text)

Red
Blue
Green

508 Chapter 11

Assessing Hardware Requirements

Multidimensional technology is really only beginning to be delivered in
enterprisewide contexts and management of an enterprise OLAP environ-
ment represents a nontrivial set of tasks. Databases and applications can
grow to enormous proportions. For example, IBM manages and distributes
their worldwide Corporate Planning application at their Apex center in
Southbury, Connecticut. They scale over 1 terabyte of triple-mirrored
OLAP data to over 6,000 users using 420 applications (500+ databases)
delivered across 30 AIX nodes and it is available 24 × 7 × 365.

Obviously, implementations with the magnitude of Apex require man-
aging more than DB2 OLAP Server and perhaps defy attempts to prescribe
hardware configurations. At the enterprise level it is quite out of the
question to relegate OLAP functionality to that old out-of-service NT
server. Enterprise BI/DW initiatives have assumed mission-critical status
for organizations.

As mentioned, DB2 OLAP Server databases can be both CPU- and disk
I/O-intensive, and you should expect a full-scale implementation of OLAP
across the enterprise to be demanding of both types of resources. A num-
ber of questions can be asked that will assist you in determining hardware
configuration definitions and requirements to support OLAP:

■■ Are the applications read-only?
■■ How many concurrent readers will likely be involved?
■■ Are applications read-, write-, and calculate-intensive?
■■ If so, how many concurrent calculations are likely to be involved?
■■ Are there also concurrent readers-only of these calculation databases?
■■ Are complex business algorithms involved in database calculations?

The answers to these questions will assist you in making a more or less
accurate approximation of infrastructure requirements. In the absence of
these answers, however, what can be done?

There is a way to make some more or less meaningful quantitative
assessments about infrastructure requirements in advance of the availabil-
ity of real data and detailed user requirements. For someone familiar with
DB2 OLAP Server, the process involves making an assumption that might
appear odd to someone not so familiar. The assumption is that platform
utilization (essentially reducible to disk throughput) will be 100 percent
during batch processing.

Multidimensional Data with DB2 OLAP Server 509

Experience has shown that the functionality offered by multidimen-
sional databases is highly sought after within the business user commu-
nity. The development of DB2 OLAP Server from its inception at Arbor
Software until today can be read as the ongoing attempt to bring as much
OLAP functionality to as much data as possible.

The result of satisfying this demand is that users generally end up push-
ing the OLAP envelope to its limit within the time frame of their particular
batch-calculation environment (refer to the section Batch Calculation and
Data Storage, earlier in the chapter). It is only a marginal exaggeration to
say that each advance of DB2 OLAP Server that increases the ability of the
engine to be more efficient at processing data is met with an equal increase
in demand for more OLAP functionality.

At first, the demand for increased OLAP functionality takes the form of
adding more dimensionality to the databases. This can cause the database
sizes to explode. More refined and advanced OLAP environments will be
populated with databases that vary in size from tightly focused small
(hundreds of megabytes) databases serving precise business modeling
purposes to larger (greater than 50 GB) generic reporting OLAP databases.

Consider, for example, what effect dynamic calculation member tags
really brought to DB2 OLAP Server. When first introduced in Essbase ver-
sion 5.0, dynamic member tags provided the ability to defer the calculation
of certain metrics to occur at runtime. Because fewer members are being
stored on disk, the database size is reduced. Because fewer members are
being calculated during the batch process, the amount of time required to
calculate data was also reduced.

The user community, however, did not respond by expressing delight at
disk space saved or processing time reduced. Rather, they immediately
began to look for ways to implement more OLAP functionality in their
existing databases that still fit within the old batch window.

In a hypothetical but truly representative example, a batch calculation
would be reduced from 8 to 2 hours and the database size reduced from 20
to 5 GB simply by implementing dynamic calculations. Once this perfor-
mance boost was posted, users begin immediately to seek to implement
more OLAP functionality. Implementing this increased functionality returns
the batch calculation time back to 8 hours and grows the database back to 20
GB, but the “new” version of the “old” database will have nine rather than
six dimensions, incorporating 100 rather than 10 business metrics!

In the final analysis, it can be expected that every gain in performance will
be met with an equal user demand for an increase in OLAP functionality.

510 Chapter 11

This user behavior, however, actually provides a way to back into an esti-
mation of hardware requirements. These estimates involve at least being
able to gather two pieces of user requirement information. The first is to get
an estimate of the number of OLAP databases planned for implementa-
tion. The key component to the estimate, however, is determining how
much time will be devoted to precalculating the databases.

CPU Estimate
Based on the assumption that user requirements will require each platform
to be utilized 100 percent during batch processing, you can begin by assign-
ing one CPU to support the calculation of each database. Factoring in the
number of concurrent users that will be addressing OLAP enables you to
refine CPU requirements. Query retrievals have supported multiple thread-
ing for a while, and in Version 8.1, each database can take advantage of up
to four CPUs during calculation, so you can also factor assigning more than
one CPU per database if necessary for calculation as well, if designed.

Disk Estimate
Since disk throughput continues to lag far behind CPU throughput, over-
all system performance remains directly related to the former. So, by fac-
toring the overall OLAP disk throughput for a given platform across a
strictly defined period of time, you can estimate how much disk space will
potentially be required. You also have to take into account that certain
DB2 OLAP Server maintenance routines will require double the amount of
disk space, but you really only have to do so for the largest database. (The
maximum largest database can be estimated by multiplying the amount of
time for the batch window by throughput on a given platform.)

The following example represents a template for estimating OLAP
throughput for a 4-hour OLAP database batch-process window:

Number of business units 50

Cubes estimated per business unit × 4

Cubes (CPUs) for batch processing 200

Extra CPUs estimated for query processing + 50

CPUs total 250

CPUs/Platform Server ÷ 8

Total Platform Servers (250/8) 32

Estimated OLAP Throughput (gigabytes/hour) 4

Multidimensional Data with DB2 OLAP Server 511

OLAP Auxiliary Storage Requirements
Total disk requirements to support 32 (discrete) servers can be calculated
using the following formula:

Batch CalcTime * ThroughPut * NumberOFServers

4 hours * 4 gig/hour * 32 = 512 gigabytes

Add an additional 16 GB (per server) to support database maintenance
routines (16 * 32 = 368):

368 + 512 = 880 gigabytes

Each cube averages (512 GB/200 cubes) 2.6 GB.
Is it reasonable to assume that the order of 0.9 terabytes of OLAP data

will exist within an enterprisewide BI/DW? We think that the number is
not too far out of line. The example probably overestimates when it assumes
each database is roughly of equal size. Results will vary widely according
to particular scenarios. The point is that the method provides a way to
begin to define the scope of OLAP infrastructure requirements.

OLAP Backup and Disaster Recovery

Precisely which objects need to be backed up to support disaster recovery
is what we want to consider OLAP disaster recovery when perceived from
a slightly higher perspective.

In this chapter you have seen how DB2 OLAP Server functionality across
the enterprise calls for the implementation of a tool called OLAP Integration
Server. OIS is a sophisticated utility that enables users to map relational star
schema data and meta data to DB2 OLAP Server data and meta data.

In such an environment, the source relational data that becomes meta
data (i.e., dimension hierarchies and dimension hierarchy member names),
as well as numeric (fact table) data for OLAP, are stored in an RDBMS. It is
from the relational database that are generated both the structure and con-
tent of multidimensional DB2 OLAP Server databases.

A coherent backup and recovery strategy might be constructed around the
notion that all that is required is to keep from disaster the data required to re-
create or derive other values. In an OIS/DB2 OLAP Server environment, star

512 Chapter 11

schema data is the source from which multidimensional databases are
derived. It seems to follow that only relational source data and OIS reposi-
tories, but not the derived values of multidimensional databases and their
objects, need to be backed up.

In an OIS/DB2 OLAP Server environment, multidimensional databases
are only loosely coupled with their relational source, and it is possible, and
even sometimes desirable, for users to be able to alter the OLAP database
schemas that OIS generates. We’ve argued that the ability to manipulate
the multidimensional schema is a very important part of advanced user
OLAP functionality. This functionality does infer, however, that the final
form of OLAP databases may not be incipient with their relational sources.

In these cases, extra-database information needs also to be backed up for
disaster recovery. And in all likelihood there will be other extra-database
OLAP objects that need to be secured for a full disaster recovery program,
for example, modified database outlines, user report definitions, and cal-
culation programs (calc scripts).

Securing extra-database information is not the only reason to extend a
disaster recovery strategy beyond RDBMS objects and contents. Efficiencies
in the ability to restore user data and environments are also important. The
ultimate factor in determining whether to extend backup strategies to
include every OLAP object will be the amount of time it takes to regenerate
the OLAP databases compared to the time it takes to restore them. The closer
that users experience components of the BI/DW to be mission-critical, the
more they will demand the fastest return to normal operations. You should
expect OLAP users in particular to be very demanding in this regard.

Summary

DB2 OLAP Server is a MOLAP tool that enables analysts to steer the busi-
ness. We defined OLAP as essential and integral to BI/DW initiatives. Its
place is complementary to data mining and relational technologies within
the BI/DW.

We provided a high-level architecture for implementing OLAP across
the enterprise and argued for the strategic importance of using the fulfill-
ment OLAP requirements to help IT prototype the data warehouse. Imple-
mentations of this type necessitate the coordination and cooperation of IT
with business user personnel.

Multidimensional Data with DB2 OLAP Server 513

515

Key Issues:

■■ ETL processes have an opportunity to blend OLAP-centric transfor-
mation steps into the environment, thus providing warehouse
administrators and acquisition developers a single setting from
which to control all data movement. And, although there are many
ETL tools available, few focus on this aspect of data transforma-
tion—from relational technology to cube.

■■ Being able to load cubes is important; however, two characteristics
of DB2 OLAP Server cubes must also be addressed. Warehouse
administrators must be able to control the calculation of the cube as
well as modify the cube structure itself.

IBM DB2 Data Warehouse Center (DWC) allows a user to manage and
transform source data into a warehouse. Once the data is in the warehouse,
it can then be used for loading into multidimensional (OLAP) databases
such as DB2 OLAP Server.

OLAP with IBM DB2 Data
Warehouse Center

C H A P T E R

12

OLAP integration is a natural fit for integration with the Data Ware-
house Center. The base functions of the tool allow you to pull the data
together from a variety of different sources and formats, clean and aggre-
gate that data, and then take this atomic-level data at a predefined aggre-
gate level and load it into OLAP cubes for use by end-user business
analysts. For example, a process scenario could be like this:

1. Pull data from the ORACLE sales database and populate a DB2
warehouse.

2. Pull geographic information from the Human Resource database in
DB2, cleanse it to remove any duplicate information, and blend it
into the DB2 warehouse.

3. Summarize the data per salesperson to get the total sales for an
individual.

4. Join the data together, sales and geographic information.

5. Import the data into DB2 OLAP Server for multidimensional analysis.

Resolving a lot of the data preparation at the atomic layer and then hav-
ing OLAP-centric steps in IBM DB2 Data Warehouse Center to process that
atomic level data into OLAP cubes for analysis ensures processing consis-
tency.

We’ve already described OLAP in detail in various chapters. In Chapter
4 we defined the dimensional model and related OLAP structures, and in
Chapter 11 we described the application of OLAP and the technical aspects
of DB2 OLAP Server. In this chapter we describe how the Data Warehouse
Center can support the propagation of data into the cube structures of DB2
OLAP Server. To that end, we start by defining the DWC step types specific
to the support of OLAP transformations. The chapter then describes how
these steps are added into your ETL process. Load and calc scripts are then
specified for building your cubes, along with a review of steps to modify
your cube outline.

IBM DB2 Data Warehouse Center Step Types

IBM DB2 Data Warehouse Center allows users to add OLAP processing of
warehouse data to the warehouse process by having native OLAP support
step types. Step types for OLAP are similar to those described in Chapters

516 Chapter 12

8 and 9. As shown in Figure 12.1, these step types allow you to do a variety
of processing on the data, including:

■■ Update the dimensions of outline of an OLAP cube from meta data
stored in a file based on a rules file.

■■ Update the dimensions of outline of an OLAP cube from meta data
in a relational table based on a rules file.

■■ Load the OLAP cube with a delimited file generated from the execu-
tion of a warehouse step using no rules file and using the OLAP
load mechanism.

■■ Load the OLAP cube with a delimited file generated from the execu-
tion of a warehouse step using no rules file and using the OLAP lock
and import mechanism.

■■ Load the OLAP cube with a file generated from the execution of a
warehouse step using a rules file.

■■ Load the OLAP cube with data in a relational table generated from
the execution of a warehouse step using a rules file.

■■ Execute the default calculation on an OLAP cube.
■■ Execute a calculation on an OLAP cube using a calculation script.

Each of these step types can be added to a warehouse process such that
the steps can be executed after another warehouse process produces the
data needed for the OLAP processing. All of the steps can be linked
together so that the IBM DB2 Data Warehouse Center process can start
with raw source data and only be considered successful when the OLAP
cube is loaded.

Figure 12.1 OLAP step examples.

OLAP with IBM DB2 Data Warehouse Center 517

Adding OLAP to Your Process

To include OLAP processing as part of your warehouse transformation,
create or update a new subject area. Once you have created the subject area,
you can create or update an IBM DB2 Data Warehouse Center process that
will contain the warehouse transformations, or links to other transforma-
tion. Once you have created the process, open the process and begin defin-
ing the steps that pull and transform the data from its source systems and
the steps to load the cubes. You can now begin to supply the information
that DWC needs to execute the transformation.

To use OLAP steps in your process, you must perform the following
steps:

1. Select the appropriate OLAP step type from the process modeler
pallet and drop it onto the process modeler canvas.

2. Depending on the type of OLAP step you are using, you will also
need to drop a Warehouse Source representing the data to be loaded
into the OLAP cube.

3. Using the data link tool, connect the Warehouse Source to the OLAP
step.

4. Right-click on the step and select Properties.

Figure 12.2 Process model with OLAP.

518 Chapter 12

Figure 12.3 OLAP steps properties book.

Refer to Figure 12.2 to associate the preceding tasks with the process
model interface. All of the OLAP steps contain similar meta data. The para-
meters page must be completed with the information needed for OLAP pro-
cessing. Each page is reviewed in the following sections.

OLAP Server Main Page
The first page of all OLAP program steps contains general information
about the step. Shown in Figure 12.3 is the main page, as well as the other
three tabs to the property book, including Parameters, Column Mapping,
and Processing Options.

Table 12.1 describes the information captured on the main page. Only
the name is required.

Table 12.1 Main Page

PARAMETER DESCRIPTION

Name Step name. This must be a unique name across the
warehouse and is required.

Administrator The name of the warehouse administrator that
maintains this step.

Description A short description of the purpose of the step.

Notes A longer description about what the step does.

OLAP with IBM DB2 Data Warehouse Center 519

OLAP Server Column Mapping Page
This page is not used for OLAP step types. The mapping information is
defined by the OLAP processing program itself.

OLAP Server Program Processing Options
The Processing Options page of all OLAP programs contains information
about how the step is to execute. Table 12.2 describes each option.

Other Considerations
There are several rules that you need to follow when any step parameters
reference a location. First, you must be sure that the OLAP client of DB2
OLAP Server (or Hyperion’s Essbase) is installed at the agent site where
the steps will be executed.

Another consideration has to do with load files. If a file (either the file to
be loaded into the cube, the rules file, or the calculation script) is used in one
of the OLAP step types, you need to indicate where the file is physically
located. If the file is located on the system where the agent (specified in the
step’s processing options) is executing, you need to specify the fully quali-
fied filename, as well as indicate that the file is located at the agent system.
If the file is located at the OLAP server’s system, that file must not be fully
qualified, nor should you specify the file’s extension. The file on the OLAP
server system must also be located in the directory structure associated with
the OLAP database as specified by your OLAP system. Moreover, if a step
requires a source file or table to be linked to the step, until that link exists,
the entry fields on the parameters page will be disabled.

Table 12.2 Program Processing Options

OPTION DESCRIPTION

Population type Indicates how the step is to be populated. Since this is an
OLAP program, it is considered program-controlled. This
cannot be modified.

Agent site Indicates the agent site where this step will execute. The agent
site needs to have the OLAP client installed on this system.

Run on demand Indicates that the step can be started manually from the WIP
or from an external trigger.

520 Chapter 12

Table 12.2 (Continued)

OPTION DESCRIPTION

Retry Indicates the number of times the warehouse server is to try to
start the step in case there is a communications error with the
agent.

Interval Indicates how often the warehouse server is to try to contact
the agent in case there is a communications error with the
agent.

Each OLAP step type provides different options for the user. The pro-
cessing is determined by the information specified on the parameters page
in the step’s properties notebook.

A final consideration is that all OLAP step transformations are available
for the following operating systems:

■■ Windows NT
■■ AIX
■■ Solaris Operating Environment
■■ AS/400

OLAP Server Load Rules

You must examine several load rules for your OLAP steps. You can load free-
form text to SQL tables, all with specific rules that define what to do with the
data being loaded. The following sections describe each type of load.

Free Text Data Load
Use the OLAP Server free text data load warehouse program to load data
from a comma-delimited flat file into a multidimensional OLAP Server
database. The OLAP server can be a DB2 OLAP server or an Essbase server.

The free text data load warehouse program uses the file that is selected
as a source for the step in the process. The step must have only one source
file linked. The data in the source file must match the OLAP server outline
values exactly. The selected source file must be on the agent site.

OLAP with IBM DB2 Data Warehouse Center 521

The file that is to be loaded is determined when you draw (using the link
tool) a link between a file and this step. If a file source has not been
attached to this step, the entry fields on this page are disabled. All parame-
ters must be entered.

The properties page is shown in Figure 12.4. Table 12.3 lists the necessary
page parameters.

File with Load Rules
Load data from file with load rules (ESSDATA2) warehouse program to load
data from a flat file into a multidimensional OLAP Server database. The DB2
OLAP server or Essbase server can be used.

The warehouse program uses the linked file as a source for the step. The
step must have only one source file linked. The name for the source file-
name must follow the conventions for specifying filenames on the client
(agent system) or server of your OLAP server system. If the file location
flag in your program indicates that the rules file is on an agent site, you
must specify a fully qualified filename in the Load Rule File Name field on
the Parameters page of the Step notebook.

Figure 12.5 is a properties page that requests information regarding
where the load is to take place, as well as information about the files that
will be used to load the OLAP cube. The file that is to be loaded is deter-
mined when you draw (using the link tool) a link between a file and this
step. All parameters are required and are outlined in Table 12.4. Note, the
load rules file must be built outside the IBM DB2 Data Warehouse Center.

Figure 12.4 Free text data load properties page.

522 Chapter 12

Table 12.3 Free Text Parameters

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to be loaded.

OLAP Server database name Enter the database name of the OLAP cube that is
to be loaded.

OLAP Server user ID Enter the user ID that the load is to run in behalf of.
This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the load
is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
load is to be run in behalf of.

File without Load Rules
Use the load data from a file without using load rules (ESSDATA4) program
to load data from a flat file into a multidimensional OLAP server database
without using load rules. The OLAP server can be a DB2 OLAP server or an
Essbase server. When you select a step that uses this warehouse program,
link the source file to the step, but do not link the step to a target table.

Figure 12.5 File load rules properties.

OLAP with IBM DB2 Data Warehouse Center 523

Table 12.4 File Load Parameters

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to be loaded.

OLAP Server database name Enter the database name of the OLAP cube that is
to be loaded.

OLAP Server user ID Enter the user ID that the load is to run in behalf of.
This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the load
is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
load is to be run in behalf of.

Load rules file name Enter the name of the file that contains the load
rules. If the file location flag in your program
indicates that the file is on the OLAP client (agent)
site, you must specify a fully qualified filename.

Load rules file location Indicate if the rules file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

Source file location Indicate if the source file to be loaded resides at the
OLAP client (agent) site or if it resides at the OLAP
server site.

OLAP server utility abort Indicate what action the OLAP server is to take
when it encounters an error.

Figure 12.6 illustrates the property book interface, and a description of
the parameters is outlined in Table 12.5. All parameters are required.

524 Chapter 12

Figure 12.6 File without load rules properties page.

Table 12.5 File Load without Rules

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to be loaded.

OLAP Server database name Enter the database name of the OLAP cube that is
to be loaded.

OLAP Server user ID Enter the user ID that the load is to run in behalf of.
This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the load
is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
load is to be run in behalf of.

Source file location Indicate if the source file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

OLAP server utility abort Indicate what action the OLAP server is to take
when it encounters an error.

OLAP with IBM DB2 Data Warehouse Center 525

SQL Table with Load Rules
Loading data from SQL tables into your multidimensional OLAP Server
database is done with the SQL table with load rules (ESSDATA3) warehouse
program. The OLAP server can be a DB2 OLAP Server or an Essbase server.

The load data from an SQL table with load rules warehouse program
uses the user ID and password defined for the source database for the step.
When you select a step that uses this warehouse program, you must link
the source table to the step, but do not link the step to a target.

Figure 12.7 shows the properties interface page. The information you
must enter is outlined in Table 12.6. All parameters are required.

Table 12.6 SQL Load Rules

PARAMETER DESCRIPTION

OLAP Server application Enter the OLAP server application name that
name contains the database to be loaded.

OLAP Server database name Enter the database name of the OLAP cube that is
to be loaded.

OLAP Server user ID Enter the user ID that the load is to run in behalf of.
This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the load
is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
load is to be run in behalf of.

Load rules file name Enter the name of the file that contains the load
rules. If the file location flag in your program
indicates that the file is on the OLAP client (agent)
site, you must specify a fully qualified filename.

Rules file location Indicate if the rules file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

OLAP server utility abort Indicate what action the OLAP server is to take
when it encounters an error.

526 Chapter 12

Figure 12.7 SQL load properties page.

OLAP Server Calculation

The intersection points of the cube can be calculated once the data is loaded
into the multidimensional database. You can use the default calculations or
define calculation rules. Let’s look at each of these options.

Default Calculation
Use the default calc (ESSCALC1) warehouse program to call the default calc
script that is associated with the target database. The OLAP server can be a
DB2 OLAP Server or an Essbase server. When you select a step that uses the
default calc warehouse program, do not link the step to a source or a target.

Figure 12.8 shows the properties page, and the information regarding
the OLAP server where the default calculation is to take place is found in
Table 12.7. All parameters are required.

OLAP with IBM DB2 Data Warehouse Center 527

Figure 12.8 Default calc properties page.

Table 12.7 Default Calculation

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to run the default calculation

on.

OLAP Server database name Enter the OLAP server database name of the OLAP
cube that is to have the default calculation run.

OLAP Server user ID Enter the user ID that the default calculation is to be
run in behalf of. This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the
default calculation is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
default calculation is to be run in behalf of.

Calc with Calc Rules
The calc with calc rules (ESSCALC2) warehouse program is used to apply
a specified calc script to an OLAP server database. The OLAP server can be
a DB2 OLAP Server or an Essbase server. When you select a step that uses
this warehouse program, do not link the step to a source or a target. (See
Figure 12.9.)

528 Chapter 12

Figure 12.9 Calc rules properties page.

Table 12.8 outlines the parameters about the script file used to calculate
the OLAP cube. All parameters are required. The calc script must be built
outside the IBM DB2 Data Warehouse Center.

Table 12.8 Calculations with Rules

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to run the calculation on.

OLAP Server database name Enter the database name of the OLAP cube that is
to have the calculation run.

OLAP Server user ID Enter the user ID that the calculation is to run in
behalf of. This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the
calculation is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
calculation is to be run in behalf of.

Calc script file name Enter the name of the file that contains the calc
scripts. If the file location flag in your program
indicates that the file is on the OLAP client (agent)
site, you must specify a fully qualified filename.

Calc script file location Indicate if the calc script file resides at the OLAP
client (agent) site or if it resides at the OLAP server
site.

OLAP with IBM DB2 Data Warehouse Center 529

Updating the OLAP Server Outline

One of the most powerful aspects of DB2 OLAP Server is that the outline is
the database. Therefore, being able to update the outline from either a file
or SQL table adds flexibility to the control of the database itself. The two
approaches to update the OLAP Server outline are discussed in the sec-
tions that follow.

Using a File
In this approach, you use the update outline (ESSOTL1) warehouse pro-
gram to update an OLAP server outline from a source flat file using load
rules. The OLAP server can be a DB2 OLAP server or an Essbase server.

The update outline warehouse program uses the linked file as a source
for the step. The step must have only one source file linked, and the source
filename must follow the conventions for your OLAP server for specifying
filenames on the client or server. If the file location flag in your warehouse
program indicates that the file is on the client (agent) site, you must spec-
ify a fully qualified filename in the Load Rules File Name field on the Para-
meters page of the Step notebook. If the file location flag indicates that the
source file is on the OLAP server, you must specify the filename without an
extension in the Load Rules File Name field on the Parameters page of the
Step notebook.

When you select a step that uses this warehouse program, link the source
file to the step, but do not link the step to a target table.

Figure 12.10 Outline update from file properties page.

530 Chapter 12

Table 12.9 File Update to Outline

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to have its outline updated.

OLAP Server database name Enter the OLAP server database name of the OLAP
cube that is to have its outline updated.

OLAP Server user ID Enter the user ID that the update of the outline is to
run in behalf of. This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the
update of the outline is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
update of the outline is to be run in behalf of.

Load rules file name Enter the name of the file that contains the load
rules. If the file location flag in your program
indicates that the file is on the OLAP client (agent)
site, you must specify a fully qualified filename.

Rules file location Indicate if the rules file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

Source file location Indicate if the source file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

Figure 12.10 shows the properties page. Table 12.9 identifies the parame-
ters used for the outline process.

Using an SQL Table
Use the update outline from the SQL table (ESSOTL2) warehouse program
to update an OLAP server outline from an SQL source using load rules.
The OLAP server can be a DB2 OLAP server or an Essbase server.

When you select a step that uses this warehouse program, you must link
the source table to the step, but do not link the step to a target table.

Figure 12.11 displays the properties page, and Table 12.10 identifies the
parameters for defining a SQL table for outline update. All parameters are
required.

OLAP with IBM DB2 Data Warehouse Center 531

Figure 12.11 SQL outline update properties page.

Table 12.10 SQL Outline Update

PARAMETER DESCRIPTION

OLAP Server system name Enter the name of the system where the OLAP
server is installed.

OLAP Server application Enter the OLAP server application name that
name contains the database to have the outline updated.

OLAP Server database name Enter the database name of the OLAP cube that is
to have the outline updated.

OLAP Server user ID Enter the user ID that the update of the outline is to
run in behalf of. This must be a valid OLAP user ID.

OLAP Server password Enter the password for the OLAP user that the
update of the outline is to be run in behalf of.

Verify OLAP Server password Re-enter the password for the OLAP user that the
update of the outline is to be run in behalf of.

532 Chapter 12

Table 12.10 (Continued)

PARAMETER DESCRIPTION

Load rules file name Enter the name of the file that contains the load
rules. If the file location flag in your program
indicates that the file is on the OLAP client (agent)
site, you must specify a fully qualified filename.

Rules file location Indicate if the rules file resides at the OLAP client
(agent) site or if it resides at the OLAP server site.

Summary

One of the biggest challenges of warehouse management is controlling the
propagation of data from relational technology and related data structures
to multidimensional technology and their physical structures. This control
must be more than simple external calls to third-party loading and mainte-
nance routines. The processing must be complete and robust within the
warehouse management technology itself. IBM DB2 Data Warehouse Cen-
ter is a rare warehouse tool that naturally blends two of the prominent
technologies, relational and dimensional, into a central environment for
maximum control for administrators.

One of the strengths that IBM DB2 Data Warehouse Center brings to
warehouse management and ETL processing is the OLAP steps. These
steps allow data warehouse administrators the opportunity to blend all
physical structures of warehousing, relational as well as multidimensional,
into a single cohesive process. This means that not only do administrators
control the propagation of data between dissimilar structures, but they also
control all meta data. It is a boon to any BI effort.

OLAP with IBM DB2 Data Warehouse Center 533

535

Key Issues:

■■ DB2 UDB query-related functions are broadly classified into analytic
and OLAP functions.

■■ Database-resident OLAP functions ensure a single point of truth and
efficient management of dimensional data creation, propagation,
and management.

OLAP is a critical BI technology that enables analysts and executives alike
to gain informational insight through fast, reliable, and interactive access
to a wide variety of views. The information of focus is transformed from
raw data to reflect the real dimensionality of the enterprise as understood
by the user and defined by the business itself. Typical enterprise dimen-
sions are time, location/geography, product, and customer. For more infor-
mation on OLAP, refer to Chapter 11.

DB2 OLAP Functions

C H A P T E R

13

While OLAP systems have the ability to answer “who” and “what” ques-
tions, it is their ability to answer “what if” and “why” that sets them apart.
OLAP enables decision making about future actions.

OLAP functions provide the ability to return the following information
in a query result:

■■ Ranking with RANK and DENSE_RANK
■■ Numbering with ROW_NUMBER
■■ Aggregation with existing column functions such as MAX, MIN,

AVG, and so on

Key to DB2 OLAP functions is the ability to define a window that defines
the set of rows over which the function is applied, and the sequence in which
the function is applied. When an OLAP function is used with a column func-
tion, like AVG, SUM, or MAX, the target rows can be further refined, relative
to the current row, as either a range or a number of rows preceding and fol-
lowing the current row. For example, within a window partitioned by month,
a moving average can be calculated over the previous 3-month period.

Figure 13.1 Ranking, numbering, and aggregate functions.

RANK

DENSE_RANK [] window-partition-clause

OVER([

window-order-clause

ranking-function:

)

ROW_NUMBER (

window-partition-clause

OVER (

)

window-order-clause

numbering-function:

column-function

window-partition-clause

OVER (

)

window-order-clause
window-aggregation-group-clause

aggregation-function:

window-aggregation-group-clause

RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

536 Chapter 13

Besides windowing, the ability to group sets of rows is critical to OLAP
functionality. ROLLUP and CUBE are extensions to the GROUP BY clause
to provide OLAP functionality. ROLLUP and CUBE are called supergroups.

We discuss OLAP functionality as:

■■ Ranking, numbering, and aggregate functions
■■ GROUPING capabilities, ROLLUP and CUBE

The syntax of OLAP functions is broadly defined in Figure 13.1. All of
these functions and functionality are discussed in this chapter. We include
examples for clarity.

OLAP Functions

The OLAP functions of DB2 V8 encompass a wide variety of applications to
address the dimensional nature of most data. They include the following:

■■ RANK
■■ DENSE_RANK
■■ ROWNUMBER
■■ PARTITION BY
■■ ORDER BY

Another important class of OLAP functionality is incorporated under the
window aggregation group clause. The windowing capability enables sig-
nificant control of data grouping that enhances OLAP analytics. Figures 13.2
and 13.3 illustrate the overall syntax. In this chapter, we review the applica-
tion of window aggregation group clause, as well as all the functions listed.

Specific Functions
Following are descriptions of each of the database-resident OLAP func-
tions of DB2 V8.

RANK

The RANK function assigns a sequential rank of a row within a window.
The RANK of a row is defined as one plus the number of rows that strictly
precede the row. Rows that are not distinct within the ordering of the win-
dow are assigned equal ranks.

DB2 OLAP Functions 537

Figure 13.2 Window partition and window order clauses.

If two or more rows are not distinct with respect to the ordering, then
there will be one or more gaps in the sequential rank numbering. That is,
the results of RANK may have gaps in the numbers resulting from dupli-
cate values.

DENSE_RANK

Like the RANK function, DENSE_RANK assigns a sequential rank to a
row in a window. However, its DENSE_RANK is one plus the number of
rows preceding it that are distinct with respect to the ordering. Therefore,
there will be no gaps in the sequential rank numbering, with ties being
assigned the same rank.

ROWNUMBER

ROWNUMBER computes the sequential row number of the row within the
window defined by an ordering clause (if one is specified), starting with 1 for
the first row and continuing sequentially to the last row in the window. If an
ordering clause, ORDER BY, is not specified in the window, the row numbers
are assigned to the rows in arbitrary order as returned by the sub-select.

asc option:

NULLS FIRST

NULLS LAST
ASC

window-order-clause:

desc option

asc option
ORDER BY sort-key-expression

window-partition-clause:

PARTITION BY partitioning-expression

*

desc option:

NULLS LAST

NULLS FIRST
DESC

538 Chapter 13

Figure 13.3 Window aggregation group clause.

PARTITION BY

The PARTITION BY clause allows for subdividing the window into parti-
tions. A partitioning expression is used to define the partitioning of the
result set.

ORDER BY

The ORDER BY clause defines the ordering of rows within a window that
determines the value of the OLAP function or the meaning of the ROW
values in the window-aggregation-group clause (see the following section
concerning the window-aggregation-group).

ROWS

RANGE

group-start
group-between
group-end

window-aggregation-group-clause:

UNBOUNDED-PRECEDING
unsigned-constant—PRECEDING
CURRENT ROW

group-start:

UNBOUNDED-PRECEDING
unsigned-constant—PRECEDING

CURRENT ROW

group-bound1:

unsigned-constant—FOLLOWING

UNBOUNDED-FOLLOWING
unsigned-constant—PRECEDING

CURRENT ROW

group-bound2:

unsigned-constant—FOLLOWING

UNBOUNDED-FOLLOWING

group-end:

unsigned-constant—FOLLOWING

BETWEEN ANDgroup-bound1 group-bound2

group-between:

DB2 OLAP Functions 539

The ORDER BY clause does not define the ordering of the query result
set. A sort-key-expression is an expression used in defining the ordering of
the rows within the window. This clause is required when using the RANK
and DENSE_RANK functions.

There are two sorting sequences:

ASC. Sorts the sort-key-expression in ascending order. Null values
are considered last in the order by default, since in DB2 nulls are con-
sidered high values.

DESC. Sorts the sort-key-expression in descending order. Null values
are considered first in the order unless NULLS LAST is specified.

Window Aggregation Group Clause

The window aggregation group clause defines the window to a set of rows
with a defined ordering relative to the rows in the window:

■■ ROWS indicates the window is defined by counting rows.
■■ RANGE indicates the window is defined by an offset from a sort

key:
■■ group-start, group-between, and group-end: The group-start,

between and group-end functions define the ROWS or RANGE
window to be some number of rows or range of rows around the
current row in the window. These functions make it possible to
compute moving average types of calculations.

■■ group-start: Specifies the starting point for this aggregation
group. The window ends at the current row when
UNBOUNDED PRECEDING or PRECEDING is specified
(more coming up in the list). Specification of the group-
start clause is the equivalent to a group-between clause of
the form “BETWEEN group-start AND CURRENT ROW”.

■■ group-between: Specifies the aggregation group-start and
-end based on either ROWS or RANGE that fit within the
specified group-bound1 (beginning) and group-bound2
(endpoint).

■■ group-end: Specifies the ending point of the aggregation
group. The aggregation group start is the current row.
Specification of a group-end clause is the equivalent to a
group-between clause of the form “BETWEEN CURRENT
ROW AND group-end”. Figure 13.4 shows the relation-
ships among the various window bounds that follow.

540 Chapter 13

■■ Group-bounds one and two:
■■ CURRENT ROW specifies the start or end of the window as the

current row.
■■ UNBOUNDED PRECEDING includes the entire window preced-

ing the current row. This can be specified with either ROWS or
RANGE.

■■ UNBOUNDED FOLLOWING includes the entire window fol-
lowing the current row. This can be specified with either ROWS
or RANGE.

■■ PRECEDING specifies either the range or number of rows pre-
ceding the current row as being in the window. If ROWS is speci-
fied, then the value is a positive integer indicating a number of
rows. If RANGE is specified, then the data type of the value must
be comparable to the type of the sort-key-expression of the win-
dow ORDER BY clause.

■■ FOLLOWING specifies either the range or number of rows fol-
lowing the current row as being in the window. If ROWS is speci-
fied, then the value is a positive integer indicating a number of
rows. If RANGE is specified, then the data type of the value must
be comparable to the type of the sort-key-expression of the win-
dow ORDER BY clause.

Figure 13.4 Windowing relationships.

Unbounded Preceding

Unbounded Following

NFirst

NLast

3 Preceding

3 Following

Current Row

N–3

N

N+3

DB2 OLAP Functions 541

GROUPING Capabilities: ROLLUP and CUBE

The result of a GROUP BY operation is a set of groups of rows. Each row in
this result represents the set of rows for which the grouping expression is
satisfied. Complex forms of the GROUP BY clause include grouping sets
and supergroups.

For grouping, all null values from a grouping expression are considered
equal. (See Figure 13.5.)

A grouping set specification allows multiple grouping clauses to be spec-
ified in a single statement. This can be thought of as a union of two or more
groups of rows into a single result set. It is logically equivalent to the union
of multiple sub-selects with the GROUP BY clause in each sub-select corre-
sponding to one grouping set. A grouping set can be a single element, or it
can be a list of elements delimited by parentheses, where an element is
either a grouping expression or a supergroup:

GROUP BY a is equivalent to GROUP BY GROUPING SETS ((a))

GROUP BY a,b,c is equivalent to GROUP BY GROUPING SETS ((a,b,c))

In terms of OLAP functions we will confine our discussion to the two
supergroups ROLLUP and CUBE. Shown in Figure 13.6 are the super-
group ROLLUP and CUBE functions.

ROLLUP
A ROLLUP group is an extension to the GROUP BY clause that produces a
result set that contains subtotal rows in addition to the “regular” grouped
rows. Subtotal rows are “super-aggregate” rows that contain further aggre-
gates whose values are derived by applying the same column functions
that were used to obtain the grouped rows. A ROLLUP grouping is a series
of grouping sets. For example:

Figure 13.5 GROUP BY clause.

GROUP BY grouping-expression

*

grouping-sets
super-groups

542 Chapter 13

GROUP BY ROLLUP (a,b,c)

is equivalent to

GROUP BY GROUPING SETS

(

(a,b,c)

(a,b)

(a)

()

)

Notice that the n elements of the ROLLUP translate to n+1 grouping set.
Another point to remember is that the order in which the grouping expres-
sions are specified is significant for ROLLUP.

CUBE
The CUBE supergroup is the other extension to the GROUP BY clause that
produces a result set that contains all the subtotal rows of a ROLLUP aggre-
gation and, in addition, contains cross-tabulation rows. Cross-tabulation
rows are additional super-aggregate rows. They are, as the name implies,
summaries across columns if the data were represented as a spreadsheet.

Figure 13.6 Supergroup ROLLUP and CUBE.

>>--+-ROLLUP--(--grouping-expression-list--)---------+------------------------><

|--------+--grouping-expression---------------------+----+---------------------------|

|----(---)---|

--(-------grouping-expression-----+----)-- --
--

--
--

--
--

-. --,-------------------------------

--
--

--
--

+-CUBE--(--grouping-expression-list--)------------+

'-| grand-total |---'

. --,---.

grouping-expression-list

grand-total

| |

|V

V

(2)

DB2 OLAP Functions 543

Like ROLLUP, a CUBE group can also be thought of as a series of group-
ing sets. In the case of a CUBE, all permutations of the cubed grouping
expression are computed along with the grand total. Therefore, the n ele-
ments of a CUBE translate to 2n (2 to the power n) grouping sets. For
instance, a specification of

GROUP BY CUBE (a,b,c)

is equivalent to

GROUP BY GROUPING SETS

(

(a,b,c)

(a,b)

(a,c)

(b,c)

(a)

(b)

(c)

()

)

Notice that the three elements of the CUBE translate to eight grouping sets.
Unlike ROLLUP, the order of specification of elements does not matter

for CUBE, for example:

CUBE (DayOfYear, Sales_Person)

is the same as

CUBE (Sales_Person,DayOfYear)

CUBE is an extension of the ROLLUP function. The CUBE function not
only provides the column summaries we saw in rollup but also calculates
the row summaries and grand totals for the various dimensions.

Ranking, Numbering, and Aggregation

These functions are useful in determining ranks, positioning, sequences,
and medians. They have been used by the following:

■■ Financial institutions to identify top profitable customers
■■ The International Olympic Committee (IOC) to rank contestants,

assign medals, and determine leading-country medal rankings

544 Chapter 13

Medians are useful in applications where the average is greatly influ-
enced by a few extreme values called outliers. Companies want to build
sales campaigns that hit the largest segment of their target population and
not the average. The median metric is the midpoint of a set of data ele-
ments. For example, in the sequence 3, 5, 7, 8, and 37, the median is 8, and
the average or mean is 12.

RANK Example
When specifying an OLAP function like RANK, DENSE_RANK, or
ROW_NUMBER, a window is specified that defines the rows over which
the function is applied, and in what order. This window is specified via the
OVER() clause.

Assume we would like to rank employees by total compensation and list
them alphabetically. The following SQL shows that the ORDER BY clause
in the RANK () OVER statement controls only the ranking sequence and
not output sequence:

SELECT EMPNO, LASTNAME, FIRSTNME,

SALARY+BONUS AS TOTAL_SALARY,

RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

FROM EMPLOYEE

WHERE SALARY+BONUS > 30000

ORDER BY LASTNAME

The results of the query are shown in Figure 13.7.

Figure 13.7 Employee DENSE_RANK by total salary.

000120 GEYER JOHN 40775.00 4

EMPNO LASTNAME FIRSTNAME TOTAL_SALARY RANK_SALARY

000010 HAAS CHRISTINE 53750.00 1

000120 HENDERS... EILEEN 30350.00 9

000120 KWAN SALLY 38850.00 5

000110 LUCCHESSI VINCENZO 47400.00 2

000120 LUTZ JENNIFER 30440.00 8

000120 PULASKI EVA 36770.00 6

000120 STERN IRVING 32850.00 7

999981 SMYTHE CHRISTINE 53750.00 1

000120 THOMPSON MICHAEL 41850.00 3

999982 VINO VINCENZO 47400.00 2

DB2 OLAP Functions 545

Since nulls collate high, nulls in RANK and DENSE_RANK functions
are ranked first for descending rankings. This can be overridden with the
“nulls last” parameter, RANK () OVER (ORDER BY salary desc nulls last)
as ranking.

ROW_NUMBER, RANK, and DENSE_RANK Example
Since ROW_NUMBER creates a sequential numbering to the rows in the
window, it can be used with an ORDER BY clause in the window to elimi-
nate gaps or duplicates.

Without the ORDER BY clause, ROW_NUMBER assigns sequential
numbers to rows arbitrarily as retrieved by the sub-select. Such a result is
not related to ranking but merely assigns arbitrary numbers to rows.

The following example shows the differences between RANK,
DENSE_RANK, and ROW_NUMBER:

SELECT EMPNO, LASTNAME, FIRSTNME,

SALARY+BONUS AS TOTAL_SALARY,

RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY,

DENSE_RANK() OVER (ORDER BY SALARY+BONUS DESC) AS DENSERANK,

ROW_NUMBER() OVER (ORDER BY SALARY+BONUS DESC) AS ROW_NUMBER

FROM EMPLOYEE

WHERE SALARY+BONUS > 30000

Figure 13.8 shows the results of such a query.

RANK and PARTITION BY Example
The following is an example of using the PARTITION BY clause, which
allows you to subdivide the rows into partitions. It functions similarly to
the GROUP BY function but is local to the window set, whereas GROUP
BY is a global function.

Figure 13.8 RANK, DENSE_RANK, and ROW_NUMBER comparison.

000010 HAAS CHRISTINE 53750.00 1

EMPNO LASTNAME FIRSTNAME TOTAL_SALARY RANK_SALARY DENSERANK ROW_NUMBER

999981 SMYTHE CHRISTINE 53750.00 1

000110 LUCCHESSI VINCENZO 47400.00 3

999982 VINO VINCENZO 47400.00 3

000120 THOMPSON MICHAEL 41850.00 5

000120 GEYER JOHN 40775.00 6

000120 KWAN SALLY 38850.00 7

000120 PULASKI EVA 36770.00 8

000120 STERN IRVING 32850.00 9

000120 LUTZ JENNIFER 30440.00 10

000120 HENDERS... EILEEN 30350.00 11

1

1

2

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

10

11

546 Chapter 13

Assume we want to find the top four rankings of employee salary within
each department. We need to use the RANK function with partition (rank-
ing window) by department, along with a common table expression; other-
wise, the reference to RANK_IN_DEPT in our sub-select is ambiguous. The
SQL is as follows:

WITH CTE AS(

SELECT WORKDEPT, LASTNAME, FIRSTNME,SALARY,

RANK() OVER (PARTITION BY WORKDEPT

ORDER BY SALARY DESC NULLS LAST)

AS RANK_IN_DEPT

FROM EMPLOYEE)

SELECT WORKDEPT, LASTNAME,FIRSTNME,SALARY, RANK_IN_DEPT

FROM CTE

WHERE RANK_IN_DEPT <= 4 AND WORKDEPT IN

(‘A00’,’A11’,’B01’,’C01’,’D1’,’D11’)

ORDER BY WORKDEPT, RANK_IN_DEPT, LASTNAME

Figure 13.9 illustrates sample results.
Initially, the employee table is partitioned by department. Then the rank-

ing function is applied based on highest to lowest salary within the com-
mon table expression. Then the outer select chooses only the top four
employees in the departments requested and orders them by department
and rank in the department. Ties in rank are listed alphabetically.

Figure 13.9 PARTITION BY window results.

A00 HAAS CHRISTINE 52750.00 1

WORKDEPT LASTNAME FIRSTNAME SALARY RANK_IN_DEPT

A00 LUCCHESSI VINCENZO 46500.00 2

A00 O'CONNELL SEAN 29250.00 3

A11 SMYTHE CHRISTINE 52750.00 1

A11 VINO VINCENZO 46500.00 2

A11 WALKER SEAN 29250.00 3

B01 THOMPSON MICHAEL 41250.00 1

C01 KWAN SALLY 38250.00 1

C01 NICHOLLS HEATHER 28420.00 2

C01 QUINTANA DOLORES 23800.00 3

D1 HOMEMAKER SALLY 60000.00 1

D1 BOOKERN DAN 50000.00 2

D1 WILLIE SAMANTHA 48000.00 3

D1 BEGOOD JOHN 45000.00 4

D1 DANCING JEAN 45000.00 4

D11 STERN IRVING 32250.00 1

D11 LUTZ JENNIFER 29840.00 2

D11 BROWN DAVID 27740.00 3

D11 ADAMSON BRUCE 25280.00 4

DB2 OLAP Functions 547

OVER clause example
With the OVER clause, you can turn aggregate functions like SUM, AVG,
COUNT, COUNT_BIG, CORRELATION, VARIANCE, COVARIANCE,
MIN, MAX, and STDDEV into OLAP functions. Rather than returning the
aggregate of the rows as a single value, the OVER function operates on the
range of rows specified in the window and returns a single aggregate value
for the range.

Let’s illustrate this function with an example. Assume we would like to
determine for each employee within a department the percentage of that
employee’s salary to the total department salary. That is, if an employee’s
salary is $20,000 and the department total is $100,000, then the employee’s
percentage of the department’s salary is 20 percent.

Our SQL would look like this:

SELECT WORKDEPT,LASTNAME,SALARY, DECIMAL(SALARY,15,0)*100/SUM(SALARY)

OVER (PARTITION BY WORKDEPT) AS DEPT_SALARY_PERCENT

FROM EMPLOYEE

WHERE WORKDEPT IN (‘A00’,’A11’,’B01’,’C01’,’D1’,’D11’)

ORDER BY WORKDEPT, DEPT_SALARY_PERCENT DESC

The SUM (SALARY) is ranged by the OVER (PARTITION BY...) clause to
only those values in each department. Figure 13.10 shows sample results.

This same concept can be applied to determine product percentage of
sales for various product groups within a retail store, bank, or distribution
center.

ROWS and ORDER BY Example
You can also define the rows in the window function using a window
aggregate clause when an ORDER BY clause is included in the definition.
This allows the inclusion or exclusion of ranges of values or rows within
the ordering clause.

Assume we want to smooth the curve of random data similar to the 50-
and 200-day moving average of stock price found on numerous stock Web
sites. The SQL for our example is

SELECT DATE,SYMBOL,CLOSE_PRICE,AVG(CLOSE_PRICE) OVER

(ORDER BY DATE ROWS 5 PRECEDING) AS SMOOTH

FROM STOCKTAB

WHERE SYMBOL = ‘IBM’

548 Chapter 13

Figure 13.10 Salary as a percent of department total salary.

The result is shown in Figure 13.11.
The equivalent result can be calculated using the RANGE instead of

ROWS. ROWS works well in situations when the data is dense; that is,
there are no values duplicated or missing.

Figure 13.12 shows a 5-day moving average.

ROWS, RANGE, and ORDER BY Example
Stock tables have the weekends missing. RANGE can be used to overcome
gaps, as illustrated in the following example. Assume we want to calculate
the 7-day calendar average with the intent of taking into account the week-
ends. We will compare the results of ROWS versus RANGE. The necessary
SQL code is as follows:

A00 HAAS 52750.00 41.050

WORKDEPT LASTNAME SALARY DEPT_SALARY_PERCENT

A00 LUCCHESSI 46500.00 36.186

A00 O'CONNELL 29250.00 22.762

A11 SMYTHE 52750.00 41.050

A11 VINO 46500.00 36.186

A11 WALKER 29250.00 22.762

B01 THOMPSON 41250.00 100.000

C01 KWAN 38250.00 42.279

C01 NICHOLLS 28420.00 31.413

C01 QUINTANA 23800.00 26.307

D1 HOMEMAKER 60000.00 13.636

D1 BOOKERN 50000.00 11.363

D1 WILLIE 48000.00 10.909

D1 DANCING 45000.00 10.227

D1 BEGOOD 45000.00 10.227

D1 KNOWSIT 44000.00 10.000

D1 NOTDANCING 43000.00 9.772

D1 MAKER 40000.00 9.090

D1 BAKER 35000.00 7.954

D1 JAMES 30000.00 6.818

D11 STERN 32250.00 14.520

D11 LUTZ 29840.00 13.435

D11 BROWN 27740.00 12.489

D11 ADAMSON 25280.00 11.382

D11 YOSHIMURA 24680.00 11.112

D11 PIANKA 22250.00 10.018

D11 SCOUNTTEN 21340.00 9.608

D11 WALKER 20450.00 9.207

D11 JONES 18270.00 8.226

DB2 OLAP Functions 549

Figure 13.11 Five-day smoothing of IBM.

SELECT DATE, SUBSTR(DAYNAME(DATE),1,9) AS DAY_WEEK, CLOSE_PRICE,

DECIMAL(AVG(CLOSE_PRICE)

OVER (ORDER BY DATE ROWS 6 PRECEDING),7,2)

AS

AVG_7_ROWS,

COUNT(CLOSE_PRICE)

OVER (ORDER BY DATE ROWS 6 PRECEDING) AS COUNT_7_ROWS,

DECIMAL(AVG(CLOSE_PRICE)

OVER (ORDER BY DATE RANGE 0000006. PRECEDING),7,2)

AS AVG_7_RANGE,

COUNT(CLOSE(CLOSE_PRICE)

OVER (ORDER BY DATE RANGE 0000006. PRECEDING) AS

COUNT_7_RANGE

FROM STOCKTAB

WHERE SYMBOL=’IBM’

The results shown in Figure 13.13 illustrate the difference in ROWS versus
RANGE. Attempting to use ROWS in setting the window for 7 calendar days
actually returns seven preceding rows. These seven rows span more than
one calendar week. RANGE fixes this problem by recognizing the weekend
gap. Therefore, RANGE is appropriate when there are gaps in the input data.

1999-08-02 IBM 110.125 110.12500...

DATE SYMBOL CLOSE_P SMOOTH

1999-08-03 IBM 109.500 109.81250...

1999-08-04 IBM 112.000 110.54166...

1999-08-05 IBM 110.625 110.56250...

1999-08-06 IBM 112.750 111.00000...

1999-08-09 IBM 110.625 111.10000...

1999-08-10 IBM 108.375 110.87500...

1999-08-11 IBM 109.250 110.32500...

1999-08-12 IBM 109.375 110.07500...

1999-08-13 IBM 108.500 109.22500...

1999-08-16 IBM 110.250 109.15000...

1999-08-17 IBM 108.375 109.15000...

1999-08-18 IBM 108.375 108.97500...

1999-08-19 IBM 109.375 108.97500...

1999-08-20 IBM 112.000 109.67500...

1999-08-23 IBM 113.125 110.25000...

1999-08-24 IBM 114.875 111.55000...

1999-08-25 IBM 115.500 112.97500...

1999-08-26 IBM 113.375 113.77500...

1999-08-27 IBM 115.625 114.50000...

1999-08-30 IBM 113.625 114.60000...

1999-08-31 IBM 112.875 114.20000...

1999-09-01 IBM 115.625 114.22500...

550 Chapter 13

Figure 13.12 IBM 5-day moving average.

Figure 13.13 Calendar 7-day moving average.

1999-08-02 Monday 110.125 110.12

DATE DAY_WEEK CLOSE_P... COUNT_7...AVG_7_R... AVG_7_RA...

1999-08-03 Tuesday 109.500 109.81

1999-08-04 Wednesday 112.000 110.54

1999-08-05 Thursday 110.625 110.56

1999-08-06 Friday 112.750 111.00

1999-08-09 Monday 110.625 110.93

1999-08-10 Tuesday 108.375 110.57

1999-08-11 Wednesday 109.250 110.44

1999-08-12 Thursday 109.375 110.42

1999-08-13 Friday 108.500 109.92

1999-08-16 Monday 110.250 109.87

1999-08-17 Tuesday 108.375 109.25

1999-08-18 Wednesday 108.375 108.92

1999-08-19 Thursday 109.375 109.07

1999-08-20 Friday 112.000 109.46

1999-08-23 Monday 113.125 110.00

1999-08-24 Tuesday 114.875 110.91

1999-08-25 Wednesday 115.500 111.66

1999-08-26 Thursday 113.375 112.37

1999-08-27 Friday 115.625 113.41

1999-08-30 Monday 113.625 114.01

1999-08-31 Tuesday 112.875 114.14

1999-09-01 Wednesday 115.625 114.50

110.12

109.81

110.54

110.56

111.00

110.10

110.87

110.32

110.07

109.22

109.15

109.15

108.97

108.97

109.67

110.25

111.55

112.97

113.77

114.50

114.60

114.20

114.22

1

2

3

4

5

6

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

COUNT_7...

1

2

3

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Closing

5 Day Ave.

Date

Pr
ic

e

IBM 5 Day Moving Average

108

19
99

-0
8-

02
19

99
-0

8-
03

19
99

-0
8-

04
19

99
-0

8-
05

19
99

-0
8-

06
19

99
-0

8-
09

19
99

-0
8-

10
19

99
-0

8-
11

19
99

-0
8-

12
19

99
-0

8-
13

19
99

-0
8-

16
19

99
-0

8-
17

19
99

-0
8-

18
19

99
-0

8-
19

19
99

-0
8-

20
19

99
-0

8-
23

19
99

-0
8-

24
19

99
-0

8-
25

19
99

-0
8-

26
19

99
-0

8-
27

19
99

-0
8-

30
19

99
-0

8-
31

19
99

-0
9-

01

109
110
111
112
113
114
115
116

DB2 OLAP Functions 551

GROUPING, GROUP BY, ROLLUP, and CUBE

Following are examples of OLAP functions using GROUPING, GROUP
BY, ROLLUP and CUBE.

GROUPING, GROUP BY, and CUBE Example
Grouping is used in conjunction with the supergroup functions GROUP BY
CUBE or ROLLUP. The purpose of the GROUPING function is to identify
summary rows in the CUBE and ROLLUP query results. The GROUPING
function returns a 1 or a 0 to indicate whether or not a row returned by the
GROUP BY function is a subtotal row generated by the GROUP BY function.

A 1 means the row was the result of a subtotal, and a 0 means the row
was not the result of a subtotal. The input to the GROUPING function can
be any type, but it must be an item of the associated GROUP BY clause. For
example:

SELECT SALES_DATE,

SALES_PERSON,

SUM(SALES) AS UNITS_SOLD,

GROUPING(SALES_DATE) AS DATE_GROUP,

GROUPING(SALES_PERSON) AS SALES_GROUP

FROM SALES

GROUP BY CUBE (SALES_DATE, SALES_PERSON)

ORDER BY SALES_DATE, SALES_PERSON

Sample results of the query are shown in Figure 13.14.

NOTE Figure 13.14 is output from the DB2 Command Line Processor. Here
nulls are represented as “-”.

The 1s in the DATE_GROUP column indicate the values in the
UNIT_SOLD column are subtotal rows generated by the GROUP BY CUBE
clause. Likewise, the 1s in the SALES_GROUP column indicate these rows
are also subtotal rows. The last row, where DATE_GROUP and
SALES_GROUP are both 1, indicates this row is a grand total row.

This function is used for end-user applications built to recognize
SALES_DATE subtotal row by the fact that the value of DATE_GROUP is 0
and the value of SALES_GROUP is 1.

552 Chapter 13

Figure 13.14 Grouping result.

A SALES_PERSON subtotal row can be recognized by the fact that the
value of DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand
total row can be recognized by the value 1 for both DATE_GROUP and
SALES_GROUP.

ROLLUP Example
In our sales data example in Figures 13.15 and 13.16, we want to summa-
rize the sales data by salesperson and date with a rollup of sales to a day
and week level for weeks 13 and 14 in 1996.

Our SQL looks like this:

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES

WHERE WEEK(SALES_DATE) IN (13,14) AND

YEAR(SALES_DATE) = 1996

GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON

)

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

12/31/1995
12/31/1995
12/31/1995
12/31/1995
03/29/1996
03/29/1996
03/29/1996
03/29/1996
03/30/1996
03/30/1996
03/30/1996
03/30/1996
03/31/1996
03/31/1996
03/31/1996
03/31/1996
04/01/1996
04/01/1996
04/01/1996
04/01/1996

GOUNOT
LEE
LUCCHESSI
-
GOUNOT
LEE
LUCCHESSI
-
GOUNOT
LEE
LUCCHESSI
-
GOUNOT
LEE
LUCCHESSI
-
GOUNOT
LEE
LUCCHESSI
-
GOUNOT
LEE
LUCCHESSI
-

1
6
1
8

11
12

4
27
21
21

4
46

3
27

1
31
14
25

4
43
50
91
14

155

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1

0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP

DB2 OLAP Functions 553

Figure 13.15 Sales item detail for March.

The results are presented in Figure 13.17. The last row has no entry in the
first two columns. These blanks are, technically speaking, nulls. The DB2
Command Center translates nulls to blanks in this case. (Other tools may
display nulls differently.) This same behavior is seen in the DB2 Command
Center output for CUBE.

The key to translating the format of the query results is to recognize the
output format is controlled by the ORDER BY statement. In the preceding
example, the output is sequenced first on week, then days within that
week, and finally by salesperson for that day. Second, a summary or rollup
row is inserted based on the order of the rollup statement. It is processed in
reverse order. First, the rollup for each salesperson is given for the first day,
then for that day a rollup is given. After that, all salesperson summaries for
that day are presented. After all days in a week are processed in this man-
ner, a rollup row for each week is given. This process continues until all
weeks are processed. Finally, a rollup grand total is given.

1996-03-29 LUCCHESSI Ontario-So... 3

SALES_DATE SALES_PERSON REGION SALES

1996-03-29 LUCCHESSI Quebec 1

1996-03-29 LEE Ontario-So... 2

1996-03-29 LEE Ontario-No... 2

1996-03-29 LEE Quebec 3

1996-03-29 LEE Manitoba 5

1996-03-29 GOUNOT Ontario-So... 3

1996-03-29 GOUNOT Quebec 1

1996-03-29 GOUNOT Manitoba 7

1996-03-30 LUCCHESSI Ontario-So... 1

1996-03-30 LUCCHESSI Quebec 2

1996-03-30 LUCCHESSI Manitoba 1

1996-03-30 LEE Ontario-So... 7

1996-03-30 LEE Ontario-No... 3

1996-03-30 LEE Quebec 7

1996-03-30 LEE Manitoba 4

1996-03-30 GOUNOT Ontario-So... 2

1996-03-30 GOUNOT Quebec 18

1996-03-30 GOUNOT Manitoba 1

1996-03-31 LUCCHESSI Manitoba 1

1996-03-31 LEE Ontario-So... 14

1996-03-31 LEE Ontario-No... 3

1996-03-31 LEE Quebec 7

1996-03-31 LEE Manitoba 3

1996-03-31 GOUNOT Ontario-So... 2

1996-03-31 GOUNOT Quebec 1

554 Chapter 13

Figure 13.16 Sales item detail for April.

To put it succinctly, rollup processing provides column summaries. This
is demonstrated in Figure 13.18.

The results are best viewed as tables, spreadsheets, or bar charts. The
objects are made by translating the results into commercially available
spreadsheets and charting tools. Figure 13.19 demonstrates charting
visualization.

CUBE Example
To calculate a CUBE in our previous example, we merely replace ROLLUP
with CUBE in the GROUP BY clause as follows:

1996-04-01 LUCCHESSI Ontario-So... 3

SALES_DATE SALES_PERSON REGION SALES

1996-04-01 LUCCHESSI Manitoba 1

1996-04-01 LEE Ontario-So... 8

1996-04-01 LEE Ontario-No...

1996-04-01 LEE Quebec 8

1996-04-01 LEE Manitoba 9

1996-04-01 GOUNOT Ontario-So... 3

1996-04-01 GOUNOT Ontario-No... 1

1996-04-01 GOUNOT Quebec 3

1996-04-01 GOUNOT Manitoba 7

1996-04-05 LEE Manitoba 5

1996-04-05 LEE Quebec 3

1996-04-05 LEE Ontario-So... 3

1996-04-05 LEE Ontario-No... 1

1996-04-06 LEE Manitoba 3

1996-04-06 LEE Quebec 2

1996-04-06 LEE Ontario-So... 1

1996-04-06 LEE Ontario-No... 1

1996-04-06 LUCCHESSI Manitoba 2

1996-04-06 LUCCHESSI Quebec 2

1996-04-06 LUCCHESSI Ontario-So... 2

1996-04-06 LUCCHESSI Ontario-No... 2

1996-04-05 LUCCHESSI Manitoba 1

1996-04-05 LUCCHESSI Quebec 1

1996-04-05 LUCCHESSI Ontario-So... 2

1996-04-05 LUCCHESSI Ontario-No... 1

1996-04-05 GOUNOT Manitoba 5

DB2 OLAP Functions 555

Figure 13.17 Results of the ROLLUP query.

SELECT WEEK(SALES_DATE) AS WEEK,

DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

SALES_PERSON, SUM(SALES) AS UNITS_SOLD

FROM SALES

WHERE WEEK(SALES_DATE) in (13,14) AND

YEAR(SALES_DATE) = 1996

GROUP BY CUBE (WEEK(SALES_DATE),

DAYOFWEEK(SALES_DATE), SALES_PERSON)

ORDER BY WEEK, DAY_WEEK, SALES_PERSON

The query results are shown in Figure 13.20.
These results are more readily understood when translated into a three-

dimensional cube (our three dimensions are weeks, days, and salesperson)
or tables laid out one on top of another.

6 GOUNOT 11

DAY_WEEK SALES_PERSON UNITS_SOLD

6 LEE 12

6 LUCCHESSI 4

276

7 GOUNOT 21

7 LEE 21

7 LUCCHESSI 4

7 46

73

1 GOUNOT 3

1 LEE 27

1 LUCCHESSI 1

1 31

2 GOUNOT 14

2 LEE 25

2 LUCCHESSI 4

2 43

6 GOUNOT 5

6 LEE 12

6 LUCCHESSI 5

6 22

7 LEE 7

7 LUCCHESSI 8

7 15

111

184

13

WEEK

13

13

13

13

13

13

13

13

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

556 Chapter 13

Figure 13.18 ROLLUP visualization as tables.

In Figure 13.21, which shows a CUBE query result explanation, we have
added labels to the sections of the query result to aid in the creation of the
tables. Unlike the results in ROLLUP, which are column summary tables,
the results of a CUBE are cross tabulation tables. The three tables based on
our example are as follows:

■■ _ Units Sold by Salesperson by Day for Week 13

■■ _ Units Sold by Salesperson by Day for Week 14

■■ _ Units Sold by Salesperson by Day for Weeks 13 and 14

The tables are built using any commercially available spreadsheet tool.
We simply follow the template provided in Figure 13.21 to create the three
tables in Figure 13.22, which shows the CUBE query tables. In that figure,
the super-aggregate rows are represented as the Total column in those
tables. The Total rows in those tables are the row summaries referred to in
the previous discussion on subtotal rows for the ROLLUP function.

Figure 13.19 ROLLUP visualization as bar chart.

50

40

30

20

10

0

Gounot
Lee

Lucchessi

Sales for Week 13

U
ni

ts
 s

ol
d

Subtotal

Week 14

Gounot 3 14 5 0

Lee 27 25 12 7

Lucchessi 4 5 5 8

Subtotal 27 25 12 15

Total 27 25 12

Day 1 Day 2 Day 6 Day 7

74

Week 13

Gounot 11 21

Lee 12 21

Lucchessi 4 4

Subtotal 27 46

Total 73

Day 6 Day 7

DB2 OLAP Functions 557

Figure 13.20 CUBE query results.

6 GOUNOT 11

DAY_WEEK SALES_PERSON UNITS_SOLD

6 LEE 12

6 LUCCHESSI 4

276

7 GOUNOT 21

7 LEE 21

7 LUCCHESSI 4

7 46

32GOUNOT

33LEE

8LUCCHESSI

73

1 3

1

GOUNOT

27

1

LEE

31

2 14

2 25

2

GOUNOT

4

2

LEE

43

6

LUCCHESSI

GOUNOT

LEE

LUCCHESSI

5

6 12

6 5

6 22

7

7

7

7

8

15

13

WEEK

13

13

13

13

13

13

13

13

13

13

13

14

14

14

14

14

14

14

14

14

GOUNOT 22

LEE 71

LUCCHESSI

LEE

LUCCHESSI

18

111

14

14

14

14

14

1 GOUNOT 3

1 LEE 27

1 LUCCHESSI 1

1 31

2 GOUNOT 14

2 LEE 25

2 LUCCHESSI 4

2 43

6 GOUNOT 16

6 LEE 24

6 LUCCHESSI 9

6 48

7 GOUNOT 21

7 LEE 28

7 LUCCHESSI 12

7 81

GOUNOT 54

LEE 104

LUCCHESSI 26

184

14

14

14

14

558 Chapter 13

Figure 13.21 CUBE query results explanation.

6 GOUNOT 11

DAY_WEEK SALES_PERSON UNITS_SOLD

6 LEE 12

6 LUCCHESSI 4

276

7 GOUNOT 21

7 LEE 21

7 LUCCHESSI 4

7 46

32GOUNOT

33LEE

8LUCCHESSI

73

1 3

1

GOUNOT

27

1

LEE

31

2 14

2 25

2

GOUNOT

4

2

LEE

43

6

LUCCHESSI

GOUNOT

LEE

LUCCHESSI

5

6 12

6 5

6 22

7

7

7

7

8

15

13

WEEK

13

13

13

13

13

13

13

13

13

13

13

14

14

1 1LUCCHESSI14

14

14

14

14

14

14

14

GOUNOT 22

LEE 71

LUCCHESSI

LEE

LUCCHESSI

18

111

14

14

14

14

14

1 GOUNOT 3

1 LEE 27

1 LUCCHESSI 1

1 31

2 GOUNOT 14

2 LEE 25

2 LUCCHESSI 4

2 43

6 GOUNOT 16

6 LEE 24

6 LUCCHESSI 9

6 48

7 GOUNOT 21

7 LEE 28

7 LUCCHESSI 12

7 61

GOUNOT 54

LEE 104

LUCCHESSI 26

184

14

14

14

14

Columns

Column Summary

Columns

Row Summaries

Week 13 Table (Slice)

Week 14 Table (Slice)

Daily Table (Slice)

Row Summaries

Row Summaries

Columns

Columns

Columns

Columns

Columns

Columns

Columns

Columns

Column Summary

Column Summary

Column Summary

Column Summary

Column Summary

Column Summary

Column Summary

Column Summary

Column Summary

Grand Summary

DB2 OLAP Functions 559

Figure 13.22 CUBE query tables.

OLAP Functions in Use

To ensure readers understand the application of DB2 V8 OLAP functions,
we have chosen two different business scenarios. Each scenario describes
an application goal, the type of OLAP functions used, the SQL necessary,
and the expected results.

Presenting Annual Sales by Region and City
This is a typical report reviewing sales results for planning budgets, cam-
paigns, expansions/consolidations, and so forth. The SQL and OLAP func-
tions defined here are simple implementations of complex and effective
technologies.

Data

Input for this report is primarily transaction data, along with dimension
information relating to date, product, and location. Attributes of interest
include the following:

Week 13

Gounot – – 11 21

Lee – – 12 21

Lucchessi – – 4 4

Total – – 27 46

Day 1 Day 2 Day 6 Day 7 Total

32

33

8

73

Week 13/14

Gounot 16 21

Lee 24 28

Lucchessi 9 12

Total 27 46

Day 1 Day 2 Day 6 Day 7 Total

54

104

26

184

3 14

27 25

1 4

31 43Week 14

Gounot 5 –

Lee 12 7

Lucchessi 5 8

Total 22 15

3 14

27 25

1 4

31 43

Day 1 Day 2 Day 6 Day 7 Total

22

71

18

111

560 Chapter 13

■■ Date of transaction, product purchased, product price, and quantity
purchased

■■ Product code, product name, subgroup code, subgroup name, prod-
uct group, and product group name

■■ Region, city

BI functions

The following functions are showcased:

■■ GROUP BY
■■ ROLLUP

Steps

Our data resided in a FACT_TABLE and a LOOKUP_MARKET table. The
following SQL was run in DB2 Control Center:

SELECT b.region_type_id, a.city_id,

SUM(a.sales) AS TOTAL_SALES

FROM fact_table a, lookup_market b

WHERE YEAR(transdate)=1999

AND a.city_id=b.city_id

AND b.region_type_id=6

GROUP BY ROLLUP(b.region_type_id,a.city_id)

ORDER BY b.region_type_id, a.city_id

To reduce the size of the query result, the preceding SQL limits the query
to region 6 and a transaction date of 1999. Table 13.1 shows the results of
this query.

Table 13.1 Yearly Sales by City, Region

REGION_TYPE_ID CITY_ID TOTAL_SALES

6 1 81655

6 2 131512

6 3 58384

(continues)

DB2 OLAP Functions 561

Table 13.1 Yearly Sales by City, Region (Continued)

REGION_TYPE_ID CITY_ID TOTAL_SALES

...

...

...

6 19 77113

6 20 55520

6 21 63647

6 22 7166

6 23 92230

...

...

6 30 1733

6 31 5058

6 1190902

1190902

Some rows of the result table were removed to fit on the page. The result
shows ROLLUP of two groupings (region, city) returning three totals as
follows:

■■ Total for region, city
■■ Total for region
■■ Grand total

Identifying Target Groups for a Campaign
The following example illustrates advanced OLAP functions used in com-
bination with traditional SQL, as well as with statistical functions. The end
result is an incredibly valuable SQL statement that epitomizes the power
and relevance of BI at the database engine level.

The objective is to identify a particular group of customers from a larger
set that will most likely respond to a marketing campaign, thus resulting in
a better return on investment.

562 Chapter 13

In our example, a financial institution would like to increase revenue by
marketing mortgages to customers during the first quarter of the new fis-
cal year. Previous total coverage campaigns have been unsuccessful, and
the company would like to focus on a particular city for better results.

Candidate target cities chosen are Palo Alto (eight branches) and San
Jose (nine branches), since they are located in the Silicon Valley area, which
has the highest average family income in the state of California. The ratio-
nale is that people with high incomes generally own their homes or would
like to own homes and therefore are ideal targets for the campaign.

The decision to choose Palo Alto or San Jose as the target city was based
on the following analysis steps:

1. Conduct a survey of the residents of Palo Alto and San Jose and ana-
lyze the results.

2. Using the Chi-Squared technique, infer from the results whether a
relationship exists between where a customer lives and the product
he or she will buy.

3. If such a relationship exists, use the Wilcoxon Rank Sum Test to
prove that Palo Alto residents will likely buy mortgage loans.

Data

The main sources of data for this query are as follows:

■■ Cumulative distribution of the Chi-Square table
■■ Survey results in the form of contingency and survey tables
■■ Cumulative distribution of the Wilcoxon Rank-Sum Statistic Table

BI Functions

The following functions are showcased:

■■ SUM
■■ CUBE
■■ LOG(n)
■■ GROUPING
■■ RANK

DB2 OLAP Functions 563

Table 13.2 Survey Data Contingency Table

PRODUCT PALO ALTO SAN JOSE TOTAL

Checking/savings 45 85 130

Visa 90 10 40

Mortgage 110 80 190

Total 185 175 360

Steps

We executed the following three steps to arrive at the answer:

1. We collected the survey data, documenting it in a Contingency table
before loading it into a DB2 table called SURVEY. The survey asked
Palo Alto and San Jose residents which products they will likely buy
next and documented the results in the Contingency table shown in
Table 13.2. This data was then loaded into the SURVEY DB2.

2. We then used the Chi-Squared technique to prove that there is a
relationship between where a customer lives and the product he or
she will buy by disproving the null hypothesis—in other words, by
disproving that where customers live has no bearing on what prod-
ucts they buy. The formula for the “maximum likelihood” Chi-
Squared test for independence is shown below:
Maximum Likelihood X = 2n log (n)

+ [2n11 log (n11) + ... + 2n rc

- [2n1+ log (n1+) + ... + 2nr+ log (nr+)]

- [2n+1 log (n+1) + ... + 2n+c log (n+c)]

Where:

nij: # in cell (i,j)

ni+: row i sum

n+j: column j sum

n: total # of user

NOTE Table lookups and complex calculations can be automated in DB2 via
user-defined functions (UDFs).

The SQL query for calculation of the preceding Chi-Square (X) is as
follows:

564 Chapter 13

WITH c_table (prod_name, city, n, g1, g2) AS

(

SELECT prod_name, city, count(*),

2e0*(0.5e0-GROUPING(prod_name)),

2e0*(0.5e0-GROUPING(city))

FROM survey

GROUP BY CUBE (prod_name, city)

)

SELECT SUM(g1*g2*2e0*n*log(n)) as chi2

FROM c_table

NOTE When multiple division and multiplication operators are involved,
consider using floating-point data type instead of INTEGER or DECIMAL to avoid
arithmetic exceptions such as overflow.

The result of the preceding query is CHI2 = 34.1139

The cumulative distribution of the Chi-Square table (not shown here)
shows that the probability of independence for Prob (X > 34.114) is
less than 0.001 percent. Therefore, we conclude that there is a relation-
ship between where a person lives and the products they will buy.

3. Here we use the Wilcoxon Rank Sum Test to prove that Palo Alto
residents will likely buy more mortgages than the residents of San
Jose. This, too, involves disproving the null hypothesis; that is, we
disprove that customers in Palo Alto will not buy more mortgages
than the residents of San Jose. This involves the following steps:

a. For each branch in Palo Alto and San Jose, collect the percentage
of people who responded “yes” when asked whether they were
likely to buy mortgages. Load the statistics to a table called SUR-
VEY_MORTG. The columns in this table are as follows:
■■ Cityid—City
■■ Branchid—Branch within the city
■■ Percentyes—Percentage of branch customers who responded

yes

b. Compute the Wilcoxon Rank Sum Test one-tail analysis for Palo
Alto—also known as the “W statistic.”

c. Look up the table of tail probabilities for this W statistic value, in
order to determine whether or not the hypothesis is disproved.

d. Compute the W statistic for Palo Alto:

DB2 OLAP Functions 565

WITH ranked_mortg (city, ranks) AS

(

SELECT city, RANK() OVER (ORDER BY Percentyes)

FROM survey_mortg

)

SELECT SUM(ranks) as W

FROM ranked_mortg

WHERE city=’Palo Alto’;

The result of this query is a Wilcoxon W = 93.

Based on the table of tail probabilities for small values of ranks (not
shown here), the probability of getting a rank sum of 93 is only 2.3 percent.
In other words, the probability that Palo Alto residents will not buy more
mortgages than San Jose residents is about 2.3 percent, which is quite low.
We therefore conclude that Palo Alto residents will likely respond to our
mortgage loan campaign as compared to San Jose residents.

Summary

OLAP is quickly becoming an integral part of the database engine itself.
This migration of technology blurs the distinction between RDBMS and
OLAP tools and effectively challenges the traditional role relational data-
bases are often relegated to play with regard to dimensional data.

For years the OLAP functionality was the exclusive domain of OLAP
tools. Leading database vendors such as IBM are working aggressively to
blend that technology into the core of the database, thereby making OLAP
a natural extension of database management.

To that end, DB2 V8 OLAP functions are a logical, effective expansion of
SQL and its role in BI. If you have a background in SQL and an under-
standing of OLAP techniques, then becoming proficient with these func-
tions will be fairly straightforward and intuitive. Moreover, once
empowered with this technology, data architects and warehouse DBAs will
readily recognize the opportunities to implement this technology to maxi-
mize performance for user communities.

566 Chapter 13

PA R T

Six

Enhanced Analytics

569

Key Issues:

■■ Data architects and project planners must understand data mining
to ensure a robust analytical landscape and rich informational con-
tent for their BI organization.

■■ Although query and reporting, as well as OLAP, are important
tools in our BI war chest, they alone are not sufficient. Data mining
is cornerstone to assessing customer risk, market segmentation, and
prediction.

■■ It is not necessary for architects and IT personnel to become data
mining experts. What is important is that architects understand the
technology and techniques that are a part of a mining environment.
Most importantly, architects must be able to recognize when a min-
ing solution is required for a particular BI application.

Data Mining with
Intelligent Miner

C H A P T E R

14

■■ Data mining is quickly being integrated into the database environ-
ment. A substantial step forward to this is the Predictive Model
Markup Language (PMML) standard and the associated scoring
functions. Among other things, this standard enables a shared use of
mining models between vendors and gives your BI environment the
flexibility that allows you to apply mining models wherever you can
execute SQL.

In this chapter we concentrate on the practical issues of data mining.
Specifically, we show you what is necessary to reliably mine your own
business with results that you can put to use.

The use of scientific applications in commercial environments was the
direct result of relational database technology that allowed companies to
capture and store larger and larger volumes of data. The term data mining
was coined as a phrase to encompass these different techniques when
applied to very large volumes of data.

Some of the techniques that are used to perform data mining are compu-
tationally complex. In order to discover the patterns existing within large
data sets, a large number of computations must be performed. In the last 10
years the growth in the use of large commercial databases (specifically,
data warehouses), coupled with the need to understand and interpret this
data, has led to an explosion in the use of data mining for a wide variety of
commercial applications.

This chapter begins by defining how data mining fits in your BI effort
and what is necessary for effective mining. We then detail the mining
process itself by outlining the steps necessary for mining runs. As a depar-
ture from traditional mining application, we demonstrate how to exploit
mining techniques to design more effective data warehouse structures and
the informational content they store. The content also examines how min-
ing should be deployed as an active participant in the decision-making and
information cycle for analysts with products like IM Scoring and the new
DB2 V8 features for modeling and visualization. The chapter ends with an
introduction to new mining technology introduced by IBM for data dis-
covery applications with DB2 OLAP Server.

Data Mining and the BI Organization

It is imperative that data architects understand the value data mining tools
and techniques bring to any BI environment. Moreover, architects must be
able to spot mining opportunities within the business requirements and

570 Chapter 14

understand what is necessary to effectively implement mining solutions to
address those requirements.

Frankly, without mining, how can organizations with 24x7 worldwide
operations keep pace with the critical monitoring and analysis of mountains
of data in the constant quest of tuning the company’s operations for maxi-
mum performance? Moreover how can CRM be effective without data min-
ing playing an active, if not key, role?

The single biggest hurdle facing the broad adoption of data mining tech-
nology for warehouse-centric efforts is comprehension. But this does not
apply to users; for them, the use of data mining is transparent. IT shops are
the ones that need to understand the value of mining.

The information organization must include data mining as a natural,
integral tool for the BI environment—that means everything from extrac-
tion, transformation and loading (ETL) to data management to data access
and deployment. Figure 14.1 illustrates the information organization with
regard to data mining. For brevity, each area influenced or impacted by
mining is identified by a number, which is described in the following list:

Figure 14.1 The influence of data mining on the information organization.

ACTION

ACTION

ACTION

3rd-
Party
Data

Sales

STAGING AREA

TableTable

Table
Table

Table

Table

Table

Table

Table

OPERATIONAL DATA STORE

Operations Raw
Data

Finance

CUSTOMER

C
U

ST
O

M
ER

 T
O

U
C

H
 P

O
IN

TS

META DATA

GEOCODING ATOMIC-LEVEL
NORMALIZED DATA

DATA MARTS
DIMENSIONAL DATA

MARKET FORECAST
TREND ANALYSIS
BUDGETING

DATA CLEANSING
DATA INTEGRATION

DATA TRANSFORMATION

TRAFFIC ANALYSIS
CLICKSTREAM ANALYSIS

MARKET SEGMENTATION
CUSTOMER SCORING

CALL DETAIL ANALYSIS

OPERATIONS
DATABASES

USER
COMMUNITIES

DATA
MINING

DATA
MINING

CUSTOMER AGENTS

DW AGENTS

AGENT NETWORK

OPERATIONS AGENTS PERCEPTS

PERCEPTS
PERCEPTS

PERCEPTS

PERCEPTSPERCEPTS

DECISION MAKERS

SPATIAL
ANALYSIS

Back-Feed Loop

Ba
ck

-F
ee

d
Lo

opBack-Feed Loop

ADVANCED QUERY AND
REPORTING

OLAP

DATA MINING $

Vendor

Web

Customer or
Partner

Raw Data

CONCEPTUAL NETWORK

Email

Multimedia

Print

Web

Direct Mail

In-Store Purchase

Thank you for
your purchase.

INTERNET

$$$

BI DASHBOARD AND
REPORTING PORTAL

DASHBOARD
User Profile

BI DASHBOARD AND
CONTROL PANEL

DASHBOARD
Analyst Profile

Back-Feed Loop

1
1

1

2

3
4

5

9

7

8

6

Data Mining with Intelligent Miner 571

1. Agent technology. The objects used for blending agent-based tech-
nology into the BI environment are defined as agents. Each of these
agent objects are a part of a broader agent network that reports
findings and makes action recommendations to analysts. The agents
can start as simple reflex agents that simply alert analysts of KPI
thresholds—for example, “demand deposits are critically low.”
At the other extreme, the agents can be implemented as neural
networks designed with mining tools that recommend actions, if
not perform the necessary adjustments themselves. For example,
suppose the customer agents are monitoring demand generated
by a new banner ad campaign. The agent network contains several
components. For instance, the network could monitor customer
responses to a campaign and inventory levels, and use trend analy-
sis from the warehouse to predict demand. If the demand starts to
exceed the inventory necessary to meet fulfillment requirements, the
agent network can either recommend to an analyst that more inven-
tory should be purchased or it can place the necessary orders itself
and notify the analyst that it has done so. Three agents are identified
in the diagram:

a. Operations agent: This object represents agent-based technology
specifically designed and implemented to monitor operational
systems.

b. Customer agent: The object identified is for those agents designed
and implemented to monitor customer systems and related touch
points.

c. Data warehouse agent: Agents identified in this role monitor data
in atomic data structures as well as data marts.

2. ODS. The ODS object is the information organization’s representa-
tive object for tactical data. That is not to say that there are not other
tactical data sources, including production systems. For our pur-
poses, the ODS epitomizes the use of tactical data in support of zero-
latent analysis, of which data mining is a critical BI tool.

3. Staging area. For the information organization, any ETL efforts
implemented should evaluate the requirements of any subsequent
mining projects. For example, the ETL effort should ensure that a
value exists for the income column. However, the ETL effort should
go one step further, if necessary to a mining process, and bin the
income into categories defined by mining, for instance, high, upper
middle, middle, and low income bins. If this type of data preparation

572 Chapter 14

is done as a natural part of our ETL, then the mining effort does not
have to concern itself with this work. Moreover, if the ETL process
adopts the work, multiple mining model efforts as well as reporting
and OLAP will use similar source data from the atomic level of the
warehouse.

4. Third-party data. It is not unusual for third-party data to be inte-
grated with your own company data to enhance the information
content for mining purposes. For instance, you may know little
more than a customer’s address. But with that address you could
purchase third-party data that tells you a lot more about the area
around that address, for example, age and income classifications,
race, and population trends.

5. Atomic level. The atomic layer of the warehouse environment is
an excellent source of mining data for several reasons. First, the
atomic layer should represent the enterprise as a whole, thus allow-
ing mining data to be sourced across subject areas. Second, the gran-
ularity of the atomic layer should be at the natural (lowest) grain of
the business. This is not always the case for other warehouse struc-
tures such as stars or cubes. Third, the atomic layer should be where
derived data is created and historical integrity is implemented and
maintained.

6. Data marts. Star and cube farms are an excellent source of mining
fodder. The dimensions of these structures are built by collapsing
correlated data into a single table or entity construct. This is true for
stars, and in the case of cubes, the construct is a resultant set of rows
to be loaded into the cube technology. In either case, the correlated
data stored in these structures readily lends itself to data mining,
since mining often focuses on data correlation. To a large degree, if
dimensional data is built correctly, it can be considered prepped
data for mining.

There is another aspect of data marts that makes them important
mining fodder. Cubes created to support OLAP can be incredibly
large, making it difficult for analysts to notice nuggets of informa-
tion hidden in the vast array of precalculated cells. Mining can be
optimized to read the cube structures to search for trends that might
be useful for an analyst to examine. This is definitely a task for min-
ing: being sent out into a sea of data to return with any significant
findings.

Data Mining with Intelligent Miner 573

7. Analysts. The success of the information organization is deter-
mined by its ability to access BI-centric informational content. Data
mining is not only a critical contributor to that informational con-
tent, but it also has great impact on the value of analysis using other
BI tools. For example, scoring results of a mining model could be
incorporated into the data for an OLAP application or advanced
SQL reporting or even spatial analysis.

8. Touch points. CRM is all about being attentive to your customers
and adjusting operations to better serve them. CRM simply cannot
be successful without the contribution of data mining techniques
and technologies.

9. User communities. Although the general user community will
never create mining models, it benefits significantly from the efforts.
Usually reports or portal dashboards provide an excellent means to
publish pertinent mining results.

Although not numbered in the figure, it should be obvious that feedback
loops and meta data are necessary for your mining efforts. Actions taken as
a result of mining runs must be fed back into existing systems. These feed-
back loops ensure that the informational asset of the organization is nur-
tured and necessary adjustments to the organization are implemented.

One particularly important development with regard to Intelligent
Miner and the data mining arena in general is the establishment of stan-
dards for exchanging data mining models and the ability to deploy these
models directly into relational databases, such as DB2 Universal Database
and Oracle. The new standard is based on the Predictive Model Markup
Language. This standard provides for the exchange of analytic models like
linear regression, clustering, decision tree, and neural network. The most
important advantages are as follows:

■■ Mining experts on-site are not necessary.
■■ Computational resources are exploited efficiently.
■■ It allows real-time (event-triggered) processing, as well as batch

processing.
■■ It enables foreign software applications access to the modeling logic.
■■ It allows the generalization of any future model type.
■■ Mining models can be developed in one technology and deployed in

another.

The balance of this chapter discusses the types of business issues that can
be solved by data mining, the mining techniques employed, and how to
create a warehouse environment to support your mining efforts.

574 Chapter 14

Effective Data Mining
The data collected about its customers is one of the greatest assets that any
business has available. Buried within all this data is valuable information
that can make a difference regarding how you do business. The challenge
is how to unearth all the hidden nuggets of informational content buried
under mountains of data. It is the ability to uncover the information hid-
den just beneath the data layer that mining brings to the BI table, thereby
improving your ability to make better, well-informed decisions.

Data in itself provides no judgment or interpretation and therefore pro-
vides no basis for action. Putting data into context is what turns it into
informational content. Where the context is well understood, BI enables
the transformation from data to decision to become a routine process
within your business. However, in today’s highly competitive environ-
ment, which pushes the need for innovative ways to satisfy customer
demands, the context of the data is not well understood. In these situa-
tions, data mining provides the tools and techniques to help you discover
new contexts and hence new things about your customers. Armed with
this knowledge, data mining also helps you to predict customer behavior
and proactively adjust your interactions. The combination of discovery
and prediction is the essence of data mining. This ability allows you to
make decisions based on real knowledge of your business and customers,
instead of just on gut feelings.

Data mining, for example, can address questions such as:

■■ What are the characteristics of my most profitable customers?
■■ What product mix should I keep in all stores in the NE region?
■■ Who is likely to respond to a certain campaign?
■■ Where should I open new stores?

The Mining Process

Data mining generally follows a process that begins with a precise, formal
definition of the business problem. This dictates the data necessary to
address the issues, as well as the appropriate mining technique. With the
data and mining technique selected, miners will conduct test mining runs
and inspect and evaluate the results. It is entirely possible that further iter-
ations of data selection and the application of different mining techniques
may be necessary to provide a final solution. Assuming that your mining
effort effectively addresses the original business problem, it is necessary to
deploy the results so that it leads to concrete actions taken.

Data Mining with Intelligent Miner 575

You might think that you already are data mining by using standard sta-
tistical techniques or reporting tools to explore your database. In reality,
what you are doing is making a hypothesis about a business issue that you
are addressing and then attempting to prove or disprove your hypothesis
by looking for data to support or contradict the hypothesis.

For example, suppose that, as a retailer, you believe out-of-town cus-
tomers visit your larger inner-city stores less often than other customers. But
when they do so they make larger purchases. To answer this type of question
you can simply formulate a database query looking, for example, at your
branches, their locations, sales figures, and customers, and then compile the
average money spent per visit for each customer to prove your hypotheses.
The answer discovered, however, may only be true for a small, highly prof-
itable group of out-of-town shoppers who visited inner-city stores over a
weekend. At the same time, out-of-town customers, perhaps commuters,
visit the store during the week and spend exactly the same way as your other
customers. In this case, your initial hypothesis test may indicate that there is
no difference between out-of-town and inner-city shoppers.

Data mining uses an alternative approach that begins with the premise
that you do not know what patterns of customer behaviors exist. In this
case, you might simply ask the question: what are the relationships between
what my customers spend and where they come from? You would leave it
up to the mining algorithm to tell you about all of the different types of cus-
tomers and the money they spend. Data mining provides answers without
your having to ask specific questions. That is not to say that data mining is
magic. You still have to understand the overall process.

To that end, the process starts with defining the business problem that
you want to solve. Then a mining expert can concentrate on the right solu-
tion, that is, gather relevant data and discover hidden patterns using min-
ing algorithms. Once the analysis is complete, the new knowledge
extracted from the data must be put into action. Any mining investment
only pays off when the net results are deployed in the day-to-day business.

There are seven steps to follow, as illustrated in Figure 14.2, for imple-
menting a mining process:

1. Create a precise definition of the business issue.

2. Map the business issue to a data model and data requirements.

3. Source and preprocess the data.

4. Explore and evaluate the data.

5. Select the data mining technique.

6. Interpret the results.

7. Deploy the results.

576 Chapter 14

Figure 14.2 Seven steps of data mining.

Let’s look at each of these steps more closely.

Step 1: Create a Precise Definition of the Business Issue
Data mining is about choosing the right tools for the job and then using
them skillfully to discover the information in your data. We often have to
use a combination of the tools at our disposal if we are to make real dis-
coveries and extract the maximum value from our data. Therefore, the first
step in our data mining method is to identify the business issue that you
want to address and then determine how the business issue can be trans-
lated into a question, or set of questions, that data mining can tackle.

By business issue we mean that there is an identified problem to which you
need an answer, where you suspect, or know, that the answer is buried
somewhere in the data but you are not sure where. As you are formulating
the business issue, you need to also think about whether you have access to
the right data. It is important to recognize that the data you hold may not
contain the information required to answer the question you are posing.

Step 1
Define the business issue.

Step 5
Choose the mining technique.

Step 2
Data model to use.

Step 3
Source the data.

Step 4
Evaluate to data model.

Define the data.

Define the data.

Step 6
Interpret the results.

Step 7
Deploy the results.

Data Mining with Intelligent Miner 577

A business issue should fulfill the requirements of having:

■■ A clear description of the problem to be addressed
■■ An understanding of the data that might be relevant
■■ A vision for how you are going to use the mining results in your

business

Each of these requirements is discussed in the following sections.

Describing the Problem

If you are not sure what questions data mining can address, the best
approach is to look at examples of where it has been successfully used, either
in your own industry or in related industries. Many business and research
fields have been proven to be excellent candidates for data mining, for exam-
ple, banking, insurance, retail, and telecommunications. There are many
others, such as manufacturing, pharmaceuticals, biotechnology, and so on,
where significant benefits have also been derived. Well-known approaches
are customer profiling and cross-selling in retail, loan delinquency and fraud
detection in banking and finance, customer retention (attrition and churn) in
telecoms, and patient profiling and weight rating for diagnosis-related
groups in health care. Some of these are depicted in Figure 14.3.

Figure 14.3 Data mining problems.

Product Analysis

Cross-Selling

Credit Analysis

Customer AttritionTarget Marketing

Fraud Detection

Demand Forecasting

Loan Delinquency

Market Basket Analysis

Customer Acquisition

578 Chapter 14

Even where the specific business issue you are addressing has not been
addressed elsewhere, understanding how data mining can be applied
helps to define your issue in terms that data mining can answer. You need
to remember that data mining is about the discovery of patterns and rela-
tionships in your data. All of the different applications are using the same
data mining concepts and applying them in subtly different ways.

With this in mind, when you define the business issue, you should think
about it in terms of patterns and relationships. Take fraud as an example.
Rather than ask the question, “Can we detect fraudulent customers?”, you
could ask the question, “Can we detect a small group of customers who
exhibit unusual characteristics that may be indicative of fraud?” Alterna-
tively, if you have identified some customers who are behaving fraudu-
lently, the question is this: Can we identify some unique characteristics of
these customers that would enable us to identify other potentially fraudu-
lent customers?

Understanding Your Data

As mentioned previously, when you are formulating the business question,
you need to consider whether you have the data necessary to answer the
question. It is important to recognize that the data you hold may not con-
tain the information required to answer the question you are posing. For
example, suppose you are trying to determine why you are losing cus-
tomers and you suspect the reason is that your competitors are undercut-
ting you on price. If you do not have any competitor pricing data in your
database, then clearly data mining is not going to answer whether this is
the case. Although this is a trivial example, sometimes it is not so obvious
that the data cannot provide the answer you are looking for. The amazing
thing is how many people still believe that data mining should be able to
perform the impossible. Where the specific business issue has been
addressed elsewhere, then knowing what data was used to address the
issue helps you to decide which of your own data should be used and how
it may need to be transformed before it can be effectively mined. This
process is termed the construction of a common data model. The use of com-
mon data models is a very powerful aid to performing data mining, as we
show when we address specific business issues.

Data Mining with Intelligent Miner 579

Using the Results

When defining the business issue that you want to address with data min-
ing, you should carefully consider how you are going to use the informa-
tion that you discover. Very often, considering how you will deploy the
results of your data mining into your business helps to clarify the business
issue you are addressing and helps you determine what data you are going
to use. One approach is to assume you have already gotten the right results
from your mining effort, then examine how they will apply or impact your
business organization. Suppose, for example, that you want to use data
mining to identify which types of existing customers will respond to new
offers or services and then use the results to target new customers. Clearly,
the variables you use when performing the data mining on your existing
customers must be the same variables that you can derive about your new
customers. In this case you cannot use the 6-month aggregated expendi-
ture (aggregated spend) on particular products if all you have available for
new customers is the expenditure from a single transaction. Thinking
about how you are going to use the information you derive places con-
straints on the selection of data that you can use to perform the data min-
ing and is therefore a key element in the overall process of translating the
business issue into a data mining question.

Step 2: Map Business Issue to Data Model and Data
Requirements
Where the data is being used routinely to support a specific business appli-
cation, the data and meta data together form what we call a data model that
supports the application. Typically the data model defines the following:

Data sources used. Indicates the physical location where the data is
stored or derived from.

Data types. Defines how the data is structured, for example, CHAR,
INT, DATE.

Data content. Lists the tables or data files and the fields they contain.

Data description. Delivers the names and description of the fields
themselves.

Data usage. Considers the ownership of tables and fields and how
users use the content.

The data model essentially describes the data that it contains and that the
users exploit. And like all other applications that require data models, data

580 Chapter 14

mining needs its own model as well. For most data mining applications, the
data model required is in the form of a single file or database tables, with the
record addressing whatever the target investigation requires.

Data mining techniques usually work with one huge input table. This
doesn’t mean that you have to physically store all data in one de-normalized
table. Instead, it’s common to define an appropriate SQL view that repre-
sents all the normalized tables. Each record can comprise one or many
fields, where each field may be derived from a number of different data
sources but all are tied to the same target or subject. For example, if the tar-
get/subject is your customers, then all data in the table should somehow
relate to customers. In most business applications the most common data
types are as follows:

Transactional data. This is operational data generated each time some
interaction occurs with the target. This data typically contains a time-
stamp and some transaction identifier, as well as details of the trans-
action. Transactional data may, for example, relate to point-of-sales
data for a customer in a supermarket or to the recording of informa-
tion on a production line in a manufacturing application.

Relationship data. This nonvolatile data contains relatively stable
information about customers, products, equipment, items, and work-
ing processes.

Demographic data. Demographic data comprises person-specific
(customer, patient) data that usually comes from external or third-
party sources. Typically this includes information on age, gender,
postal code, and so on.

Defining data models for any application is often a complex task, and
defining data models for data mining is no exception. Where the data
model is required to support an application that has specific requirements
(e.g., some form of business reporting tool), the data can be defined by ask-
ing the end users what types of information they require and then per-
forming the necessary aggregations to support this requirement. In the
case of data mining, the challenge is that very often you are not sure at the
outset which variables are important and therefore exactly what is
required. Generating data models for completely new data mining appli-
cations can therefore be a time-consuming activity.

The alternative is to use common data models that have been developed
to solve business issues similar to the ones you are trying to address. While
these types of models may not initially provide you with all of the infor-
mation you require, they are usually designed to be extendable to include

Data Mining with Intelligent Miner 581

additional variables. The main advantage of using a common data model
is that it provides you with a way of quickly seeing how data mining can
be used within your business. In the following chapters we suggest some
simple data models that can be used in this way.

Step 3: Source and Preprocess the Data
Data sourcing and preprocessing comprises the stages of identifying, col-
lecting, filtering, and aggregating (raw) data into a format required by the
data models and the selected mining function. Sourcing and preparing the
data is the most time-consuming part of any data mining effort. These
steps are similar to the steps associated with warehouse extraction, trans-
formation, and loading discussed earlier in this book. Most mining projects
start without having a data warehouse in place and therefore must deal
with all the basic ETL steps initially. If your mining project can read the
data from a well-organized data warehouse, you are lucky. It means that
you can concentrate on the mining issues right away. However, even if you
start with a well-managed data warehouse containing cleansed data, there
is still additional data preparation necessary for mining. For example:

■■ Customer segmentation could require data where the number and
dollar value of transactions are summarized per customer.

■■ Key performance indicators, such as an estimated lifetime value for
customers, may be necessary for a mining run.

■■ Discretization of numeric values into common classes, such as age
ranges, can make mining results easier to interpret.

Step 4: Explore and Evaluate the Data
Even after populating the mining model with data, we still have to make
sure that the data used fulfills the requirements of completeness, exactness,
and relevance. The purpose of this step is to perform an initial evaluation
of the data. We start this step by browsing the input data with visualization
tools, referred to as visual inspection. This may lead to the detection of
implausible distributions. For example, a wrong join of tables during the data
preparation step could result in variables containing values actually
belonging to different fields.

During the initial exploration you can easily detect fields that have too
many missing values or fields with many outlier values. Although most
mining functions are able to deal with missing values, there may be default
values that must be substituted as a “best guess.” Sometimes a field has a

582 Chapter 14

rather skewed distribution of values; for example, there may be a few very
big numbers. This is typical of data about personal income where a few
people have extraordinary salaries. Another typical example is image data
about the length of phone calls. Almost all calls are quite short, in the range
of minutes, while a few phone calls may last an hour or more. Again, some
mining algorithms are smart enough to deal with such data distributions,
but transforming these fields can improve results. Let’s say you take
numeric income values and transform them into discrete tax brackets.

Finally, the selection of features/variables for the mining run is a natural
part of this explore and evaluate step. Variables could be superfluous by
presenting the same or very similar information as others but increasing
the runtime. Dependent, or highly correlated variables could be found with
statistical tests like bivariate statistics and linear and polynomial regres-
sion. Dependent variables should be reduced by selecting one variable for
all others or by composing a new variable for all correlated ones by factor
or component analysis.

Step 5: Select the Data Mining Technique
Data mining also includes the crucial step of selecting the best-suited min-
ing technique for a given business issue. This step not only includes defin-
ing the appropriate technique or mix of techniques to use, but also the way
in which the techniques must be applied.

In general, data mining techniques can be divided into two broad
categories:

■■ Discovery data mining
■■ Predictive data mining

Each category is discussed in the following sections, as well as its rele-
vant data mining techniques.

Discovery Data Mining

Discovery data mining applies to a range of techniques whose primary
objective is to find patterns inside your data without any prior knowledge
of what patterns exist. The following are examples of discovery mining
techniques:

Clustering. This term is used for a range of techniques that attempt
to group data records on the basis of how similar they are. A data
record may, for example, comprise a description of each of your cus-
tomers. In this case, clustering would group similar customers

Data Mining with Intelligent Miner 583

together, while at the same time maximizing the differences between
the different customer groups formed. Clustering constructs, for
example, customer segments by analyzing the characteristics repre-
sented in the data instead of starting with predefined assumptions. It
will find the commonly known large segments and it will also find
niche segments which may be overlooked.

Link analysis. Link analysis describes a family of techniques that
determine associations between data records. The most well-known
type of link analysis is market basket analysis. In this case the data
records are the items purchased by a customer during the same
transaction, and because the technique is derived from the analysis of
supermarket data, these are designated as being in the same basket.
Market basket analysis discovers the combinations of items that are
purchased by different customers, and by association (or linkage), you
can build a picture of which types of product are purchased together.
Link analysis is not restricted to market basket analysis. If you think
of the market basket as a grouping of data records, then the tech-
nique can be used in any situation where there are a large number of
groups of data records.

Sequence analysis. Sequence analysis comprises of data mining tech-
niques that are applied to the analysis of time-ordered data records
or, indeed, any data set that can be considered ordered. These data
mining techniques attempt to detect similar sequences or subse-
quences in the ordered data.

Predictive Mining

Predictive data mining is applied to a range of techniques that find rela-
tionships between a specific variable (called the target variable) and the
other variables in your data. The following are examples of predictive min-
ing techniques:

Classification. This term describes the assignment of data records
into predefined categories—for example, assigning customers to pre-
defined market segments, risk classes, or product usage classes. In
this case, the target variable is the category and the techniques dis-
cover the relationship between the other variables and the target cat-
egory. When a new record is to be classified, the technique
determines the category and the probability that the record belongs
to the category. Classification techniques include decision trees and
neural and radial basis function (RBF) classifiers.

584 Chapter 14

Value prediction. This concerns predicting the value of a continuous
variable from the other variables in a data record—for example, pre-
dicting the likely expenditure of a customer from his or her age, gen-
der, and income group. The most familiar value prediction techniques
include linear and polynomial regression, and data mining extends
these to other techniques, such as neural and RBF value prediction.

Step 6: Interpret the Results
The results from performing any type of data mining can provide a wealth
of information that can be difficult to interpret. Therefore, this step often
requires assistance from a business expert who can translate the mining
results back into the business context. Because we do not expect the busi-
ness analyst to necessarily be a mining expert, it is important that the
results are presented in such a way that they are relatively easy to interpret.
To assist in this process, you have at your disposal a range of tools that
enable you to visualize the results and to provide the necessary statistical
information necessary for facilitating the interpretation. Figure 14.4 illus-
trates one of the visualization techniques used by Intelligent Miner.

Figure 14.4 Intelligent Miner visualization.

2

27

married

married
single

marital status no of dependants

married

marital status no of dependants

age

marital status no of dependants age

divorced

married
single divorced

marital statusno of dependantsage

age

3
0

3
0

>3
1

>3
1

>3
1

2

2

3
0
2

>3
1

3
0
2

19

8

4

3

6

9

Data Mining with Intelligent Miner 585

Step 7: Deploy the Results
This step is possibly the most important of all: deploying the results of the
data mining into your business. If you only see data mining as an analyti-
cal tool, you are failing to realize the full potential of what data mining has
to offer. When you perform data mining you can both discover new things
about your customers and determine how to classify or how to predict par-
ticular characteristics or attributes. In all these cases data mining creates
mathematical representations of the data that we call models. They contain
the rules and patterns found by the mining algorithm. These models are
very important for two reasons:

■■ They provide you with a deeper insight of your business.
■■ They can be deployed in or used by other business processes, for

example, your CRM systems.

When embarking on any data mining activity, you should think care-
fully about how you intend to use the data mining results and where in
your business the results will have the greatest impact.

Integrating Data Mining

While data mining is often performed using a stand-alone workbench tool,
there are many cases where the data mining functions should be integrated
as an additional function in another business application. Most notably,
this is true for scoring. DB2 provides a feature called IM Scoring that imple-
ments the deployment of predictive mining as SQL extensions. For exam-
ple, a call center application can easily be enriched by an indicator for the
churn risk of a customer. When a customer calls in, the application will look
up the customer profile data and compute the predicted risk score on the
fly. Or think of a Web application where product recommendations are
placed dynamically when a visitor clicks to the next page. Based on cus-
tomer profile data and also on the user’s recent online activities, a scoring
function will pick the campaign that is most likely to be of interest to the
online user. This real-time scoring method always uses up-to-date infor-
mation about the customer. Often the input data is read from an Opera-
tional Data Store (ODS). Contrast this with an environment where a
mining expert launches a workbench tool and once in a while produces an
output table containing the scores for all customers. With batch processing,
the mining results are outdated by the time they are actually used. Real-
time scoring is the best method for closing the loop between back-office
analysis and front-office operations.

586 Chapter 14

The functions of IM Scoring are tightly integrated with the SQL interface
of the database engine. They read standard PMML models as input, and
the models are managed and updated as simple values in database tables.
A particular benefit is that any database application can easily be adapted
to invoke scoring. The application doesn’t even have to know the mining
functions because they can be hidden behind regular VIEW. Furthermore,
scoring can be called within triggers or by agents, thus enabling trigger-
based campaigns where certain rules are activated as soon as an indicator
or predicted score reaches some threshold.

The integration of data mining into business applications is not
restricted to scoring. In fact, the modeling functions creating a new cus-
tomer segmentation or training a new classification model are available as
DB2 extenders. Visualization tools are provided as pluggable components
as well. This opens up a whole new area where customized mining
processes can be integrated into a solution, thereby enabling business users
to drive a predefined mining process. For example, a tailored solution for
detecting fraudulent behavior of stock traders or detecting data quality
issues in a daily ETL process can be built by calling the database mining
functions internally. The solution is able to better detect unusual patterns
in the most recent data. The end user does not have to know the technology
and does not need to depend on a mining expert after the solution has been
designed and implemented.

Skills for Implementing a Data Mining Project

Successfully implementing a data mining project using the preceding
method requires a mix of skills in the following areas:

■■ Data manipulation (for example, SQL)
■■ Knowledge of mining techniques
■■ Domain knowledge or ability to communicate with domain experts
■■ Creativity

These skills are normally not incorporated into one person, and therefore
mining requires a team effort. Such a team will comprise the following:

■■ A marketing analyst who is informed in the branches of businesses
that have been selected for data mining.

■■ An IT analyst who is experienced with data management proce-
dures within your business.

■■ A data engineering team who will have the lead and the experience
in all data mining topics.

Data Mining with Intelligent Miner 587

■■ A business user or users who can check the usability of the mining
result and evaluate the deployment from a solely business perspec-
tive. Many data mining projects run into problems by underestimat-
ing the efforts of searching and delivering raw data with a reasonable
degree of quality necessary for the deployment of mining.

■■ A project owner who is normally the head of a branch inside the
company to support the work and help to resolve problems.

Whether or not these are different individuals clearly depends on the
mix of skills that they have, but in general the team must be able to accom-
plish the following:

Understand the data source. There are two aspects of understanding
the data source: knowledge about the physical data situation in the
company and the usage of the data proposed for data mining. Nor-
mally, the data mining expert is not the data administrator, who is
responsible for the all data repositories. In this case, the interaction
with the database owner and the mining expert must be guaranteed.

Understand the data preparation. Data preparation requires a lot of
expertise in creating new data input (for example, SQL programming
skill) and a good understanding of the given raw data. An excellent
data miner may not be successful if he or she lacks expertise in the
business field under discussion.

Understand the algorithms. Using algorithms means being able to
adapt the setting for the various mining runs. Because all data min-
ing functions are highly sophisticated from an implementation point
of view, data mining experts are demanded who are well trained
with the selected data mining toolkit. Namely, these persons must
overview how much effort has to be undertaken to solve each step of
the mining process and how to solve each task either with the toolkit,
the database system, or additional statistical functions.

Understand the business needs. This skill is specifically tied to the
subject matter experts brought forward by the user community and
the ability of the mining team to interpret those requirements into
mining solutions.

Benefits of Data Mining

Beyond decision support systems, several aspects of a data warehouse can
benefit from a mining tool, both in improved data quality and warehouse
design. The following sections explore unique ways to apply mining that
are often never considered by architects or project planners, including:

588 Chapter 14

■■ Ensuring data quality
■■ Identifying relevant dimensions/attributes for a subject area
■■ Improving analytical value of stars/cubes with mining results
■■ Enhancing BI access

Data Quality
Data mining can help improve the data quality by checking simple statisti-
cal indicators of the data that is loaded into the warehouse. When the ware-
house data is regularly updated with current data—for example, with new
transactions from the previous day—we can assume that the new data has
about the same range of values as the accumulated data in the warehouse.
Of course, there may be continuous trends, such as growing sales figures.
So we cannot simply check fixed minimal or maximal value. Nevertheless,
it is still straightforward to check whether the new average value in certain
columns is close to the average value in the corresponding columns in the
warehouse data. A typical statistical measure for the closeness of values is
to build intervals based on the “standard deviation” of a collection of val-
ues. DB2 directly provides statistical functions for computing standard
deviation, correlation, and linear regression.

Let’s say the average value of new data lies outside the average range
currently in the warehouse, plus or minus the standard deviation. Given
this scenario, it is likely that the new values are invalid or, at the very least,
suspect. There may be several reasons for this disparity—for instance, an
error during the transmission of data might have cut off a significant digit
or all values may be missing or equal to 0. Equally of concern is if the new
average value is too close to the average value of the previous load; in this
case it is likely the input data wasn’t updated. The implementation of sim-
ple prediction models from data mining tools for checking values is an
optimum means for data quality checks, ensuring the data being propa-
gated into the warehouse is of the quality user communities assume.

Relevant Dimensions
Another aspect of mining that can be exploited by data architects has to do
with identifying the relevant dimensions/attributes that dictate the design
of a star schema or cube and, therefore, the ultimate analytical value. To
start, let’s talk about a pitfall of dimensional tools called the “curse of
dimensionality.” We will use data mining (a variation of a dimensional
tool) as an example. It is not unusual to blend third-party data with com-
pany data and use it in mining efforts. The added data is supposed to pro-
vide greater insight; however, adding more data does not necessarily

Data Mining with Intelligent Miner 589

improve the models. It can also have a negative effect. Data mining algo-
rithms try to use every input field. If there are too many fields that are not
relevant to the business question, then it might be difficult for the mining
algorithm to find a relationship, because the input data is too complex. The
curse of dimensionality is an increasing problem for a more popular BI tool
as well: OLAP.

Mining tools and techniques can be applied to the design of OLAP
cubes. When designing an OLAP cube a typical problem is identifying the
important dimensions and their related attributes that should be included
in the cube or star schema. Data mining can help you define the most rele-
vant contributors to any subsequent dimensional analysis from either of
these data structures. The use of common data mining tools such as corre-
lation and sensitivity analysis help you identify the most appropriate
dimensions/attributes.

Using Mining Results in OLAP
Many applications of data mining concentrate on the specific feature of
mining, but they fail to describe mining in the context of a dimensional
data mart where the star schema is the basic data model. That’s very simi-
lar to organizations that build independent data marts that result in
stovepipe applications. Data mining usually works with flat relations as
input, but there is also an important connection to the star schema. It turns
out that OLAP and data mining represent two different techniques to ana-
lyze the same business data. In most cases, we can use the general star
schema/cube as a starting point. Whereas OLAP focuses on data in the fact
table and the dimensions are used to navigate the cube, data mining usu-
ally focuses on one dimension of the star schema and the fact table is used
to enrich information about that dimension.

Not unlike OLAP efforts, a mining project always starts with a specific
business problem, such as how to find cross-selling opportunities for cus-
tomers. In this case, we need data that provides a picture of the customer
behavior. So, it’s not only the plain dimension table that is used in mining.
Related hierarchy definitions, such as product groups, are utilized in data
mining for association analysis. Moreover, various aggregation operations
are used during preprocessing to add derived values to the selected
dimension. For example, in a banking application we could select the cus-
tomer dimension and enhance the customer information via aggregations

590 Chapter 14

on the transactions, such as the average amount of transactions done at
ATMs during the previous 3 months. These aggregations could also use
attributes from other dimensions, for example, the type of transactions
done at kiosks, on the Web, and by phone.

While dimensional data can be used as input for data mining, the reverse
is also true. We can enrich the dimensional data with results from data min-
ing. A typical instance is to create a clustering model that groups customers
into segments. Once this segmentation is defined, the label of the segment
can be added as an attribute to the customer dimension. Later we can use
that segment label as a dimension in OLAP or we can build an OLAP cube
that filters customers in a specific segment—for example, for further analy-
sis of a high-profit group of customers.

Finally, mining can enhance the data access layer for end users. For
instance, IM Scoring is used to embed mining results into end-user appli-
cations. Mining is transparent to the user. Examples include online ranking
of insurance risk or personalization in a Web application where a mining
model is used to make specific product recommendations. Other examples
of mining at the access layer are CRM systems for mailing campaigns. Min-
ing is used to find the target customers who are most likely to respond or
have a high propensity to buy a certain product. Managing the campaign
is done in the CRM system, which internally calls mining.

Benefits of Mining DB2 OLAP Server

IBM’s Intelligent Miner is an exceptional mining tool that complements
more common analytical methods used in warehousing, specifically
OLAP. The difference between mining and OLAP is that data mining is
discovery-driven while OLAP techniques are defined as hypothesis-driven.
Therefore, mining will dig for insights within the data, whereas OLAP
requires the analyst to navigate through the data to find insight. And even
when OLAP is implemented with a sophisticated tool such as IBM’s DB2
OLAP Server, the vast amounts of data make it difficult for even a seasoned
analyst to locate all insight. That’s where data mining comes in.

Referred to as OLAP Miner, this technology merges the discovery-driven
value of Intelligent Miner with the hypothesis-driven strength of DB2
OLAP Server. This offers BI environments and their user communities a
broader analytical landscape, for instance:

Data Mining with Intelligent Miner 591

■■ OLAP Miner can support a fast path to actionable information and
detect new business opportunities within large cube data sets.

■■ The technology affords ad hoc data exploration of OLAP cubes.
■■ OLAP Miner allows exhaustive, machine-driven, algorithm-based

mining for uncovering unexpected values in OLAP cubes.

Figure 14.5 OLAP Miner deviations.

592 Chapter 14

Users must first define the subset of the cube that OLAP Miner will be
running against, as well as the number of deviations to report back to the
users. OLAP Miner considers a cell of a cube to be deviant if it is significantly
different from the expected value, which is calculated by the mining algo-
rithm. Once a mining run is completed, users can utilized the Deviation
Viewer (see Figure 14.5) to examine each deviation found in the OLAP cube
subset of data.

Summary

When some data architects and project planners hear the term data mining,
there is immediate resistence. The technology is not for the faint of heart.
Even now, mining requires a skilled individual to create effective mining
models that produce relevant and important information content. But that
doesn’t mean we all need to be mining experts to exploit the technology.
We do, however, have to understand the technology so that we know when
data mining makes the most sense for a BI application and what the data
warehouse environment can do to support that mining effort.

However, don’t become distracted by technical details often included in
textbooks on data mining. The technology is becoming more and more
mature. The key to a successful application of data mining lies in under-
standing its value for your business. The two pillars of data mining are dis-
covery and prediction. They provide you with a better understanding of
your business and with the ability to quickly anticipate the behavior of your
customers, suppliers, or even of internal production processes. Your busi-
ness decisions will become more precise and you will be able to act faster.

Too often our mining models are taken off-site, created and supported
by third parties. These consulting services use our business rules, our data,
and our money to produce information that we need to run our companies.
This is critical information and it seems reasonable that the BI team should
be an active participant. Think about it. If the information is essential to our
organization and the process to acquire that information is based on every-
thing being supplied from our organization, then why don’t we demand to
play an active role in its creation and maintenance? The answer is simple:
We should.

Data Mining with Intelligent Miner 593

595

Key Issues:

■■ Database-resident functions provide a means for the database to
actively participate in BI solutions for more than just data storage
for other BI tools.

■■ Data architects can use DB2 V8 BI-centric functions in combination
with DB2 V8 OLAP functions to implement complex solutions at the
database level.

■■ Database-resident functions allow architects to create more mean-
ingful BI information content at the engine level and store that infor-
mation as derived data to be propagated and exploited by
subsequent BI applications.

■■ DB2 V8 BI functions allow DBAs to actively participate in BI solu-
tions.

■■ DB2 V8 BI functions afford a means to centrally control meta data
for derived information content.

DB2-Enhanced BI
Features and Functions

C H A P T E R

15

DB2 V8 provides a wide array of BI-centric functions that enhance your
ability to perform robust analytics at the database level. This has several
benefits to your efforts. One benefit is that you can implement various BI
functions using SQL anywhere in your BI environment where you can exe-
cute an SQL statement. Another benefit is that you can implement these
various BI solutions to gain derived values that will be stored for all subse-
quent BI applications—a single source of the truth, if you will.

Think of it. Such common BI functions as random sample aggregations
or providing total sales revenue per quarter and cumulative sales over
multiple years can be executed with SQL. We not only create an effective
means of control for derived data, but we make a more efficient environ-
ment, since the raw data required for these types of functions does not
have to be collected and shipped off to another technology for calculation.

In this chapter, we define the functions available in DB2 V8, as well as
provide sample applications of their use in a typical warehouse setting.

DB2 Analytic Functions

There are 20 functions specific to advanced analytics in DB2 V8. Table 15.1
summarizes the functions themselves, and this section covers each in more
detail.

Table 15.1 DB2 Analytic Functions

ANALYTIC FUNCTIONS DESCRIPTION

AVG Returns the average of a set of numbers.

CORRELATION or CORR Returns the coefficient of correlation of a set of
number pairs.

COUNT Returns the count of the number of rows in a set of
rows or values.

COUNT_BIG Returns the number of rows or values in a set of
rows or values. Result can be greater than the
maximum value of the integer.

COVARIANCE or COVAR Returns the covariance of a set of number pairs.

MAX Returns the maximum value in a set of values.

MIN Returns the minimum value in a set of values.

596 Chapter 15

Table 15.1 (Continued)

ANALYTIC FUNCTIONS DESCRIPTION

RAND Returns a random floating-point number between 0
and 1.

STDDEV Returns the standard deviation of a set of numbers.

SUM Returns the sum of a set of numbers.

VARIANCE or VAR Returns the variance of a set of numbers.

Regression Features

REGR_AVGX Returns quantities used to compute regression
diagnostic statistics.

REGR_AVGY Returns quantities used to compute regression
diagnostic statistics.

REGR_COUNT Returns the number of non-null number pairs used
to fit the regression line.

REGR_INTERCEPT or Returns the y-intercept of the regression line.
REGR_ICPT

REGR_R2 Returns the coefficient of determination for the
regression.

REGR_SLOPE Returns the slope of the regression line.

REGR_SXX Returns quantities used to compute regression
diagnostic statistics.

REGR_SXY Returns quantities used to compute regression
diagnostic statistics.

REGR_SYY Returns quantities used to compute regression
diagnostic statistics.

Following are descriptions of each function listed in the table, as well as
its syntax and use.

AVG
The AVG function returns the average of a set of numbers. ALL indicates
duplicate rows are to be included, and this is the default. The average func-
tion is applied to a set of values after eliminating all null values. If DISTINCT
is specified, duplicate values are eliminated as well. (See Figure 15.1.)

DB2-Enhanced BI Features and Functions 597

Figure 15.1 AVG syntax.

CORRELATION
The CORRELATION function returns the coefficient of correlation of a set
of number pairs. The coefficient indicates the strength of the linear rela-
tionship between the set of variables. The input values must be numeric,
and the data type of the result is double-precision floating-point.

As shown in Figure 15.2, the function is applied to the set of numeric
pairs derived from the argument values (expression1,expression2) by the
elimination of all pairs for which either expression1 or expression2 is null:

■■ A null result implies the input set is empty.

■■ When the result is not null, it will be between -1 and 1.

■■ A zero value means the two expressions are not linearly related.

■■ A -1 or a +1 means they are linearly perfectly related.

COUNT
The COUNT function counts the number of rows or values in a set of rows
or values. A row that includes only null values is included in the count,
thus the result cannot be null. The result is a large integer that is the num-
ber of rows in the set. The syntax is found in Figure 15.3.

Figure 15.2 CORRELATION syntax.

>>-+-CORRELATION-+--(----expression1--,--expression2--)--------------------><
 '-CORR--------------'

 .-ALL---------.
>>-AVG--(----+--------------+--expression--)-------------------------------><

 '-DISTINCT-'

598 Chapter 15

Figure 15.3 COUNT syntax.

COUNT_BIG
The COUNT_BIG function counts the number of rows or values in a set of
rows or values. It functions the same as COUNT except that the result can
be greater than the maximum value of integer. The result data type of
COUNT_BIG is a decimal with precision 31 and scale 0. Nulls are treated
like they are in COUNT. (See Figure 15.4.)

COVARIANCE
The COVARIANCE function, shown in Figure 15.5, is used to determine if
a relationship exists between two variables. This function calculates the
population covariance of a set of number pairs. (A population is a collection
of all data points for a given subject of interest.) If both variables tend to be
above or below the average simultaneously, then the covariance is positive.
On the other hand, if one variable tends to have above average values
when the other variable has below average values, then the covariance is
negative.

Figure 15.4 COUNT BIG syntax.

.-ALL---------.
>>-COUNT_BIG--(----+-+--------------+---expression--+--)--------------------><

| '-DISTINCT-' |
'--*------------------------------------'

.-ALL------.
>>-COUNT--(----+-+--------------+---expression--+--)--------------------><

| '-DISTINCT-' |
'--*--------------------------'

DB2-Enhanced BI Features and Functions 599

Figure 15.5 COVARIANCE.

Input for a covariance test is a set of numeric pairs, and the output is
double-precision floating-point. (See Figure 15.5.) The function is applied
to the set of numeric pairs derived from the argument values (expres-
sion1,expression2) by the elimination of all pairs for which either expres-
sion1 or expression2 is null. A null result indicates an empty input set.

MAX
The MAX function, shown in Figure 15.6, returns the maximum value in a
set of values. The result is considered to be a derived value and can be null.
The function is applied to the set of values derived from the argument val-
ues by the elimination of null values.

If the function is applied to an empty set, the result is a null value. The
specification of DISTINCT has no effect on the result and therefore is not rec-
ommended. It is included for compatibility with other relational systems.

MIN
The MIN function (syntax shown in Figure 15.7) returns the minimum
value in a set of values. The result is considered to be a derived value and
can be null. The function is applied to the set of values derived from the
argument values by the elimination of null values.

If the function is applied to an empty set, the result is a null value. The
specification of DISTINCT has no effect on the result and therefore is not rec-
ommended. It is included for compatibility with other relational systems.

Figure 15.6 MAX syntax.

.-ALL------.
>>-MAX--(----+--------------+--expression--)--------------------><

'-DISTINCT-'

>>-+-COVARIANCE-+--(----expression1--,--expression2--)--------------------><
'-COVAR-----------'

600 Chapter 15

Figure 15.7 MIN syntax.

RAND
The RAND function returns a random floating-point value between 0 and
1 using the argument as the optional seed value. The function is defined as
nondeterministic. An argument is not required, but if it is specified, it can
be either an INTEGER or SMALLINT. Providing a seed value guarantees
the repeatability of the result and is generally used for debugging pur-
poses. The result can be null if the argument is null. (See Figure 15.8.)

The following SQL results in a 10 percent sample (corresponding to 0.1)
of all the rows in the CUSTOMERS table:

SELECT * FROM CUSTOMERS

WHERE RAND() < 0.1

In the preceding SQL, if there were 100,000 rows in the CUSTOMERS
table, the actual number of rows in the sample is random, but is equal on
average to (100,000/10) = 10,000. Since this technique involves a complete
scan of the CUSTOMERS table, it is appropriate in situations where a sam-
ple is created once and then used repeatedly in multiple queries. In other
words, the cost of creating the sample is amortized over multiple queries.

This is a “Bernoulli sample,” where each row is selected for inclusion in
the sample with probability q=(n/N) where n is the desired sample size,
and N is the total number of rows and rejected with probability (1-q), inde-
pendently of the other rows. The final sample size is random but is equal to
n on average.

Figure 15.8 RAND syntax.

RAND
expression

()

MIN
ALL

DISTINCT
expression()

DB2-Enhanced BI Features and Functions 601

Figure 15.9 STDDEV syntax.

STDDEV
The STDDEV function returns the standard deviation of a set of numbers.
The input must be numeric and the output is double-precision floating-
point. The STDDEV function is applied to the set of values derived from
the argument values by the elimination of null values. If the input data set
is empty, the result is null. Otherwise, the result is the standard deviation
of the values in the set. (See Figure 15.9.)

SUM
The SUM function returns the sum of a set of numbers. The function is
applied to the set of values derived from the argument values by the elim-
ination of null values. The syntax of SUM is shown in Figure 15.10. If the
function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

VARIANCE
The VARIANCE function returns the variance of a set of numbers. The
argument values must be numeric. The function is applied to the set of val-
ues derived from the argument values by the elimination of null values. If
the function is applied to an empty set, the result is a null value. (See Fig-
ure 15.11.)

Figure 15.10 SUM syntax.

.-ALL------------.
>>-SUM--(----+-----------------+--expression--)-----------------------------><

'-DISTINCT----'

.-ALL------------.
>>-STDDEV--(----+-----------------+--expression--)-----------------------------><

'-DISTINCT----'

602 Chapter 15

Figure 15.11 VARIANCE syntax.

Regression Functions
The regression functions (see Figure 15.2) support the fitting of an
ordinary-least-squares regression line of the form: Y = aX + b, where:

■■ Y is the dependent variable.
■■ X is the independent variable.
■■ a is the slope of the regression line.
■■ b is the intercept.

Both a and b are called coefficients.
There are nine distinct regression functions:

REGR_SLOPE. Calculates the slope of the line (the parameter a in the
preceding equation).

REGR_INTERCEPT (REGR_ICPT). Calculates the y-intercept of the
regression line (b in the preceding equation).

REGR_COUNT. Determines the number of non-null pairs used to
determine the regression.

REGR_R2. Expresses the quality of the best-fit regression. R2 (R-
squared) is referred to as the coefficient of determination or the “good-
ness-of-fit” for the regression.

REGR_AVGX. Returns quantities that can be used to compute vari-
ous diagnostic statistics needed for the evaluation of the quality and
statistical validity of the regression model.

REGR_AVGY, REGR_SXX, REGR_SYY and REGR_SXY. Defined
similarly to REGR_AVGX.

.-ALL------------.
>>-+-VARIANCE-+--(----+-----------------+--expression--)--------------------------><

'-VAR-----------' '-DISTINCT----'

DB2-Enhanced BI Features and Functions 603

Figure 15.12 Regression function syntax.

Each function is applied to the set of values derived from the input
numeric pairs (expression1,expression2) by the elimination of all pairs for
which either expression1 or expression2 is null. In other words, both values
must be non-null to be considered for the function. As defined, expression1
corresponds to the Y variable and expression2 corresponds to the X variable.

When using regression functions, you need to keep a few considerations
in mind. The first consideration is whether the input for all of the regres-
sion functions must be numeric; the output of REGR_COUNT is integer
and all the remaining functions output is done in double-precision floating
point. Second, the regression functions are all computed simultaneously
during a single pass through the data set. Another consideration you must
examine has to do with the input set. If the input set is not empty and
VARIANCE(expression2) is positive, then REGR_COUNT returns the num-
ber of non-null pairs in the set, and the remaining functions return results
that are defined in Table 15.2. Furthermore, if the input set is not empty and
VARIANCE(expression2) is equal to zero, then the regression line either has
infinite slope or is undefined. In this case, the functions REGR_SLOPE,
REGR_INTERCEPT, and REGR_R2 each return a null value, and the
remaining functions return values that are defined in Table 15.2.

On the other hand, if the input set is empty, REGR_COUNT returns zero,
and the remaining functions return a null value.

A final consideration is when the result is not null. In this case:

■■ REGR_R2 is between 0 and 1.
■■ REGR_SXX and REGR_SYY is non-negative. This non-negative

value is used to describe the spread of the values for either X or Y
from their average values.

Refer to Table 15.2 for more information regarding the regression com-
putations.

>>-+-REGR_AVGX-------------+--(----expression1--,--expression2--)--><
+-REGR_AVGY------------- +
+-REGR_COUNT---------- +
+-+-REGR_INTERCEPT-+-+
| '--REGR_ICPT-----------' |
+-REGR_R2----------------- +
+-REGR_SLOPE------------+
+-REGR_SXX--------------- +
+-REGR_SXY----------------+
'-REGR_SYY----------------- '

604 Chapter 15

Table 15.2 Function Computation

FUNCTION COMPUTATION

REGR_SLOPE (expr1, expr2) COVAR (expr1, expr2) / VAR (expr2)

REGR_ICPT (expr1, expr2) AVG (expr1) – REGR_SLOPE (expr1, expr2) * AVG
(expr2)

REGR_R2 (expr1, expr2) POWER (CORR (expr1, expr2), 2) if VAR (expr1) > 0

REGR_R2 (expr1, expr2) 1 if VAR (expr1) = 0

REGR_AVGX (expr1, expr2) AVG (expr2)

REGR_AVGY (expr1, expr2) AVG (expr1)

REGR_SXX (expr1, expr2) REGR_COUNT (expr1, expr2) * VAR (expr2)

REGR_SYY (expr1, expr2) REGR_COUNT (expr1, expr2) * VAR (expr1)

REGR_SXY (expr1, expr2) REGR_COUNT (expr1, expr2) * COVAR (expr1,
expr2)

NOTE The difference between REGR_AVG and AVG is that all nulls are
excluded in the REGR_AVG computations, while they are included in the
AVG(expression) computation.

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type. In gen-
eral, it is more efficient to use the regression functions to compute the sta-
tistics needed for a regression analysis than to perform the equivalent
computations using ordinary column functions such as AVG, VARIANCE,
and COVARIANCE.

The usual diagnostic statistics that accompany a linear-regression analy-
sis can be computed in terms of the preceding functions as follows and are
offered with minimal explanation:

Adjusted r2:

1 - ((1-REGR_R2)*((REGR_COUNT - 1) / (REGR_COUNT - 2)))

The preceding expression applies to a simple linear regression, meaning
that a model includes only one independent variable.

Standard error is the standard deviation of the sample mean:

SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX)) / (REGR_COUNT-2))

DB2-Enhanced BI Features and Functions 605

Total sum of squares:

REGR_SYY

Regression sum of squares:

POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares:

(Total sum of squares) - (regression sum of squares)

t statistic:
For each coefficient (slope and intercept in the simple linear regression

model), there is a concern as to whether the coefficient’s value is meaning-
ful or if the coefficient is really zero. That is, the independent variable (x)
does not contribute to the value of the dependent variable (y). The t statis-
tic can help make this determination for slope:

REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for intercept:

REGR_INTERCEPT/((Standard error) *

SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

COVAR, CORR, VAR, STDDEV, and Regression Examples
The following examples give a flavor of the use of these functions in a
number of scenarios.

COVARIANCE Example

We suspect there is a relationship between employee salary and the bonus
that they receive, and we use the data shown in Table 15.3.

Table 15.3 D11 Employee Salary and Bonus

FIRST NAME SALARY BONUS

IRVING 32,250.00 500.00

BRUCE 25,280.00 500.00

ELIZABETH 22,250.00 400.00

606 Chapter 15

Table 15.3 (Continued)

FIRST NAME SALARY BONUS

MASATOSHI 24,680.00 500.00

MARILYN 21,340.00 500.00

JAMES 20,450.00 400.00

DAVID 27,740.00 600.00

WILLIAM 18,270.00 400.00

JENNIFER 29,840.00 600.00

The DB2 SQL for covariance could be as follows:

SELECT COVARIANCE (salary,bonus)

FROM employee

WHERE workdept = ‘D11’

The result of this query is 23650.86.
This large positive result indicates there is a direct relationship between

salary and bonus. In other words, as an employee’s salary increases so does
the bonus. While this conclusion appears intuitive with only a few data
points, it is less obvious when there are a large number of data points
involved—say, 1,000 or 10,000 employees. The covariance test thus enables
you to identify possible relationships between variables.

Correlation helps quantify the strength of the relationship. It does not
indicate how strong the relationship is. It merely indicates one exists and
whether it is a direct or indirect relation. To determine the strength of a
relationship, the correlation must be calculated.

CORRELATION Examples

Using the same salary bonus example in Table 15.3, we can quantify the
strength of the relationship with the following SQL:

SELECT CORRELATION (salary,bonus) AS cor

FROM employee

WHERE workdept = ‘D11’

The result of the query is 0.739.
This quantitatively confirms the reasonably strong relationship between

salary and bonus for the employees in department D11.

DB2-Enhanced BI Features and Functions 607

Let’s consider another example of correlation involving the retail indus-
try. Assume we have the transactions of purchases from all the customers of
a retail organization selling a variety of products and we would like to iden-
tify customers with similar buying habits. For example, when Customer A
bought a particular product, Customer X also tended to buy the same prod-
uct. Such information can be put to effective use in target marketing.

A view called transhist is created that contains the customer ID, product
ID, and the dollar amount purchased over all transactions:

SELECT a.custid as custid1, b.custid as custid2,

CORR(a.amount, b.amount) AS cor

FROM transhist a, transhist b

WHERE a.prodid = b.prodid AND a.custid < b.custid

GROUP BY a.custid, b.custid

HAVING CORR(a.amount, b.amount) >= 0.5 AND COUNT(*) > 100

ORDER BY a.custid, cor DESC

This query joins the view with itself and uses the HAVING clause to
restrict the output to cases of high correlation (>= 0.5) and to cases where
there are at least a 100 products involved—that is, there are at least 100 data
points used to compute the correlation.

The results of the preceding query are shown in Table 15.4
The result shows a high correlation between the buying habits of Cus-

tomer 1071 and Customer 2014; that is, whenever customer 1071 bought a
large amount of a given product, then customer 2014 also tended to buy a
large amount of the same product.

Table 15.4 CORRELATION Results

CUSTID1 CUSTID2 CORR

1026 8271 0.51

1071 2014 0.74 <<====

1071 7219 0.63

2014 7219 0.58

8271 9604 0.56

608 Chapter 15

VARIANCE Example

DB2 has a built-in function to calculate variance. Using the same salary and
bonus data shown in Table 15.3, our SQL is as follows:

SELECT AVG(salary), VARIANCE(salary) AS Variance

FROM employee

WHERE workdept = ‘D11’

The average salary is $24,677.78, while the variance in our case is
1.885506172839506E7. However, this is not very intuitive, and standard
deviation provides a more intuitive answer.

STDDEV Examples

Using the same data as shown in Table 15.3, the standard deviation of
salary of employees in department D11 can be computed as follows.

SELECT AVG(salary), STDDEV(salary) AS StandDev

FROM employee

WHERE workdept = ‘D11’

The result of this query is an average of $2,477.78 and a standard devia-
tion of $4,342.24. It represents the average distance of any given salary
from the average salary for the set, which is a lot more intuitive than the
variance function discussed earlier.

Another example of standard deviation involves computing the various
statistics of an organization’s sales worldwide over multiple years. The
data is contained in three tables—trans, transitem, and loc:

SELECT loc.country AS country, YEAR(t.pdate) AS year,

COUNT(*) AS count, SUM(ti.amount) AS sum,

AVG(ti.amount) AS avg, MAX(ti.amount) AS max,

STDDEV(ti.amount) AS std

FROM trans t, transitem ti, loc loc

WHERE t.transid = ti.transid AND loc.locid = t.locid

GROUP BY loc.country, year(t.pdate)

The results of the query are in Table 15.5.

DB2-Enhanced BI Features and Functions 609

Table 15.5 STDDEV Results

COUNTRY YEAR COUNT SUM AVG MAX STDDEV

USA 1998 235 127505 542.57 899.99 80.32

USA 1999 349 236744 678.35 768.61 170.45

GERMANY 1998 180 86278 479.32 771.65 77.41

GERMANY 1999 239 126737 530.28 781.99 72.22

The result shows commonly gathered statistics related to sales such as
COUNT, SUM, AVG, and MAX. The STDDEV function shows that U.S.
sales in 1999 are much more variable (STDDEV of $170.45) than sales in
other years and other locations. In other words, the amounts in the individ-
ual sales transactions vary more widely from their average value of $678.35.

Linear Regression Examples

Using the same data shown in Table 15.3, we will derive a regression model
where salary is the independent variable and bonus is the dependent vari-
able using the following DB2 SQL:

SELECT REGR_SLOPE (bonus , salary) AS slope,

REGR_ICPT (bonus , salary) AS intercept

FROM employee

WHERE workdept = ‘D11’

The result of this query is a slope of 0.0125 and an intercept is $179.313.
The columns referenced in the regression functions are reversed from

those in the variance and covariance examples. Since we wish to determine
BONUS as a function of SALARY, it is listed first before SALARY.

DB2 has a R2 function, REGR_R2. The properties of R2 are as follows:

■■ R2 bound is between 0 and 1.
■■ If R2 equals 1, then all the points fit on the regression line exactly.
■■ If R2 equals zero, then the two attributes are independent.

The closer R2 is to 1, the better the computed linear regression model. In
general, an R2 greater than 0.90 is considered a good fit for most applica-
tions. However, it varies by application, and it is eventually up to the user
to decide what value constitutes a good model.

The DB2 SQL could look like this:

610 Chapter 15

SELECT REGR_R2 (bonus , salary) AS R2

FROM employee

WHERE workdept = ‘D11’

The result of this query is 0.54624.
Since R2 is not very close to 1, we conclude that the computed linear

regression model does not appear to be a very good fit. Another example of
using regression involves the assumption of a linear relationship between
the advertising budget and sales figures of a particular organization that
conforms to the equation y = ax + b, where:

■■ y is the sales dependent variable.
■■ x is the advertising budget independent variable.
■■ a is the slope.
■■ b is the y-axis intercept corresponding to budget cost even with zero

sales.

The following queries determine the values for a and b given a set of
non-null values of budget and sales data points in a table t.

SELECT

REGR_COUNT(t.sales, t.ad_budget) AS num_cities,

REGR_SLOPE(t.sales, t.ad_budget) AS a,

REGR_ICPT(t.sales, t.ad_budget) AS b

FROM t;

The result of the query is as follows, with REGR_COUNT returning the
number of (x,y) non-null pairs used to fit the regression line: Num_cities =
126, a = 1.9533 and b = 13.381.

The input data and the derived linear model is shown in Figure 15.13.

Figure 15.13 Linear regression.

250

200

150

100

50

0 20 40 60

y = 1.9533x + 13.381

ad_budget

sa
le

s

80 100
0

DB2-Enhanced BI Features and Functions 611

While the preceding SQL models the equation, it does not tell you the
quality of the fit—that is, the accuracy of the regression line. Another diag-
nostic statistic called R2 must be computed to determine this. R2 is the
square of the correlation coefficient (CORR) as follows. R2 can also be
interpreted as the proportion of variation in the y values that is explained
by the variation in the x values, as opposed to variation due to randomness
or to other variables not included in the model.

SELECT

REGR_COUNT(t.sales, t.ad_budget) AS num_cities,

REGR_SLOPE(t.sales, t.ad_budget) AS a,

REGR_ICPT(t.sales, t.ad_budget) AS b,

REGR_R2(t.sales, t.ad_budget) as r-squared

FROM t;

The result shows R2 to be 0.95917, which is a very high quality of fit of the
regression line.

There is one limitation in DB2 V8: It does not support nonlinear regres-
sion models.

BI-Centric Function Examples

To provide you with a perspective of what can be done with these BI
functions, we have included the following three examples. Each demon-
strates a practical application of the function or functions, as well as the
required syntax.

Using Sample Data
In many cases the volume of data available may be very large, and it may
not be cost-effective or timely enough to analyze the entire data. In such
cases, it would be appropriate to take a representative sample of the data
and perform analyses on it instead. An efficient and cost-effective sam-
pling function can have a significant impact on the scalability of a system
involving large volumes of data that typify the e-business environment.

DB2 provides support for a RAND function that uses a Bernoulli sam-
pling technique. The quality of the sample and the size of the sample play
a significant role in the accuracy of the result obtained. A discussion of
these considerations is beyond the scope of this book. Suffice it to say that
these factors are unique to each domain and possibly to each organization.

Anyone implementing these functions is strongly urged to have a thor-
ough understanding of sampling theory and its application to their busi-
ness environment prior to using the DB2 V8 RAND function.

612 Chapter 15

When sampling from a single table, care should be taken to ensure that
the extracted sample is sufficiently representative to provide an acceptable
degree of accurate results. Trial and error is probably the best approach to
hone in on an acceptable sample size.

Another factor to be considered is that, in general, a join of sampled tables
is not statistically equivalent to a sample from the join of the original
tables. An acceptable approach for a join involving referentially con-
strained tables may be to sample the foreign key table and then extract the
rows in the referenced table using the foreign key values in the sample. You
should evaluate the efficacy of this approach in your particular environment.

One possible technique (without using the RAND function) to obtain a
sample of a fixed size—say, m rows—is to:

1. Append a column of random numbers to the target table.

2. Order the rows of the table by this column.

3. Fetch the first m rows.

While this technique is not efficient, its cost can be reduced by amortiz-
ing it over multiple queries.

Another possibility is to store the rows of the target table in random
order by either loading the data in random order initially or appending a
column of random numbers to the table and using DB2’s reorganization
utility to cluster the rows according to this column. A random sample can
then be quickly obtained by simply scanning the table. There are obvious
issues of maintaining random order as data is added, as well as perfor-
mance issues relating to non-sampling queries, which must be evaluated
on a case-by-case basis.

Sampling may be used for auditing and data mining, as well as getting
approximate answers to aggregation-type questions. Assume we have a
very large table containing sales data by country. We would like to obtain
the sales summary by year and country using sampling and assess the
“standard error” of the estimate. We use the familiar trans, transitem, and
loc tables for this query:

SELECT loc.country AS country, YEAR(t.pdate) AS year,

SUM(ti.sales) / :samp_rate AS est_sales,

SQRT((1e0/:samp_rate)*(1e0-(1e0/:samp_rate))*SUM(sales*sales)) AS

std_err

FROM trans t, transitem ti, loc loc

WHERE t.transid = ti.transid AND loc.locid = t.locid

AND RAND(1) < :samp_rate

GROUP BY loc.country, YEAR(t.pdate)

The preceding query takes a Bernoulli sample from a join of the three
tables, using a sampling rate of 0.01 resulting in approximately 1 percent of

DB2-Enhanced BI Features and Functions 613

the rows being selected. To estimate the sum for the entire table, we need to
scale the answer up by a factor of (1/:samp_rate), which is 100 percent. The
standard error is computed as shown.

The result of the query is shown in Table 15.6.
Typically, there is a high probability that the true sum will lie within +/-

2 standard errors of the estimate. Therefore, in the preceding query, given
the low standard error computation, there is a high probability that the
estimated sums are accurate to within about a 2 percent error.

When the original table is very large and the sampling rate is not
extremely small, we can typically be more specific about the precision of
our estimator. For example, the true value of the sum is within +/- 1.96
standard errors with probability approximately 95 percent, and within +/-
2.576 standard errors with probability approximately 99 percent.

The optimizer can treat the sampling predicate like any other predicate
for optimization purposes. The main drawback to this approach is that a
scan of the entire table is required, so there are no I/O savings. In practice,
it may be desirable to amortize the sampling cost over multiple queries by
saving the sample as a table. The sample should be refreshed periodically,
however, so that sampling anomalies do not systematically influence the
results.

In the following queries, we obtain a better estimate of total sales for
each group by scaling up using the true sampling rate; that is, the group
size in the entire table is divided by the group size in the sampled table.
This scaleup, though more expensive to compute, leads to more stable and
precise estimators.

The following SQL creates the sample table:

CREATE TABLE samp_table(country, year, sales) AS

SELECT loc.country, YEAR(t.pdate), ti.sales

FROM trans t, transitem ti, loc loc

WHERE t.transid = ti.transid AND loc.locid = t.locid

AND RAND(1) < :samp_rate

Table 15.6 Sample.

COUNTRY YEAR EST_SALES STD_ERR

USA 1998 127505 1326.09

USA 1999 236744 2133.17

GERMANY 1998 86278 961.45

GERMANY 1999 126737 1488.66

...

614 Chapter 15

The following SQL creates a view that computes the group size g_size:

CREATE TABLE big_group_sizes(country, year, g_size) AS

SELECT loc.country, YEAR(t.pdate), COUNT(*)

FROM trans t, transitem ti, loc loc

WHERE t.transid = ti.transid AND loc.locid = t.locid

GROUP BY loc.country, YEAR(t.pdate)

You need to make sure that the appropriate indexes are created and sta-
tistics collected before running the following query. The SQL scales up the
estimate by the true sampling rate as highlighted.

SELECT s.country, s.year, b.g_size * AVG(s.sales) AS est_sales,

SQRT(b.g_size * b.g_size * ((1e0 - :samp_rate)/COUNT(s.sales))

* (1e0 - (1e0/COUNT(s.sales))) * (COUNT(s.sales)/(COUNT(s.sales)-1e0))

* VAR(s.sales)) AS std_err

FROM samp_table s, big_group_sizes b

WHERE s.country = b.country AND s.year = b.year

GROUP BY s.country, s.year, b.g_size

We do the scaleup by computing the average sales for a group in the
sampled table (i.e., total sales for the group divided by the group size) and
then multiplying by g_size the size of the group in the original table.

Listing the Top Five Salespersons by Region This Year
This query requires that the salespersons have completed at least 10 sales
transactions. The query would typically be used for recognition purposes.

Data Description

The main source of input to this query is sales information with the key
attributes of date of sale, salesperson, region, and count of sales transac-
tions. All our data resides in the SALES table.

BI Functions Showcased

The example features the following functions:

■■ RANK
■■ OVER
■■ PARTITION BY
■■ ORDER BY

DB2-Enhanced BI Features and Functions 615

Steps

We executed the following SQL via the DB2 Control Center:

WITH temp(region,sales_person,total_sale,sales_rank) AS

(

SELECT region, sales_person, COUNT(sales) AS total_sale,

RANK() OVER (PARTITION BY region ORDER BY COUNT(sales) DESC) AS

sales_rank

FROM rmres7.sales

GROUP BY region, sales_person

)

SELECT * FROM temp WHERE sales_rank <=5 AND total_sale >10;

TOTAL_SALE counts the number of sales transactions.
Table 15.7 shows the results of the query. A temporary table, temp, is first

created with results from number of sales (TOTAL_SALE) with partition-
ing over a region. The temp table is then ranked to show the top five sales-
men whose TOTAL_SALE is >=10.

Table 15.7 Top Five Salespersons by Region

REGION SALES_PERSON TOTAL_SALE SALES_RANK

Manitoba LEE 16 1

Manitoba CHANG 14 2

Manitoba GOUNOT 14 2

Manitoba LUCCHESSI 12 4

Manitoba ADAMS 11 5

Ontario-North LUCCHESSI 16 1

Ontario-North CHANG 15 2

Ontario-North ADAMS 14 3

Ontario-North LEE 14 3

Ontario-North GOUNOT 12 5

616 Chapter 15

Determining Relationships between Product Purchases
The purpose of this query is to try and establish whether there is a rela-
tionship between products purchased by customers. This allows a sales-
person to cross-sell complementary products.

It is well known that there is a strong relationship between certain prod-
uct purchases, such as hammers and nails, and paint and paintbrushes.
However, other relationships may not be so readily apparent. For example,
suppose a supermarket chain discovered a relationship between beer and
candies (sweets), while another retailer discovered a relationship between
late-night gasoline purchases and flowers.

Data mining is often used to discover unexpected or complex relation-
ships; however, it is possible to use DB2 UDB’s CORRELATION function
to identify the nature of a relationship between two sets of data.

Many retailers now offer “loyalty” cards with the intention of being able
to collect data based on people’s purchase pattern and thereby create tar-
geted sales campaigns. Often these campaigns are based on very simple
analysis of large volumes of data.

Data Description

The main source of data is the transactions obtained from purchases from
a loyalty card scheme database. The key attributes of interest in our exam-
ple are card number and the purchases of six items (coffee, beer, snack
foods, bread, ready meals, and milk).

BI Functions Showcased

The example features the following functions:

CORRELATION

Steps

We executed the following SQL:

SELECT DEC(CORRELATION(beer,snacks),15,2) AS “Beer_Snacks”,

DEC(CORRELATION(beer,milk),15,2) as “Beer_Milk”

FROM lc_purchases

DB2-Enhanced BI Features and Functions 617

Figure 15.14 Beer and snacks correlation.

The SQL does two simple correlation calculations between purchases of
beer and snack foods and beer and milk. The result of this query based on
our sample data is Beer_Snacks = 0.83 and Beer_Milk = 0.01.

The sample data shows a very high correlation between purchases of
beer and snack foods, but almost no correlation between beer and milk.
The sample data used in this example was charted using BRIO. Figures
15.14 and 15.15 show that in our given sample, almost everyone who
bought beer also bought some snack foods. However, only one person
bought beer and milk together.

25

Beer

20

15

10

5

0

Correlation between Beer and Snack Foods

Snacks

03
75

37
76

66
5

08
30

10
34

57
7

09
97

95
52

59
8

13
27

55
51

62
2

16
08

32
54

49
3

18
73

83
64

81
8

22
85

83
63

59
7

23
16

35
48

69
2

23
80

44
37

39
1

24
23

16
96

52
3

24
99

46
59

26
0

27
58

87
32

56
6

29
38

93
24

62
5

29
45

03
61

64
4

29
96

91
76

30
5

35
34

04
33

97
3

36
83

58
40

93
7

40
49

80
62

07
4

42
97

00
61

34
2

54
62

81
31

96
2

Card Number

618 Chapter 15

Figure 15.15 Beer and milk.

Summary

Data architects will find DB2 residence BI functions to be extremely useful.
They provide significant control over the implementation of complex and
often time-consuming applications. You no longer have to store and for-
ward data to other BI tools. You can apply the same functionality using the
database functions, implemented with standard SQL. Moreover, because
these functions are merely extensions of SQL, your existing team of DBAs
can readily gain the skill necessary to successfully carry out complex BI-
centric solutions.

For more information regarding DB2-enhanced BI features and func-
tionality, refer to DB2 UDB’s High Function Business Intelligence in e-business
from IBM.

25

Beer

20

15

10

5

0

Correlation between Beer and Milk

Milk
03

75
37

76
66

5

08
30

10
34

57
7

09
97

95
52

59
8

13
27

55
51

62
2

16
08

32
54

49
3

18
73

83
64

81
8

22
85

83
63

59
7

23
16

35
48

69
2

23
80

44
37

39
1

24
23

16
96

52
3

24
99

46
59

26
0

27
58

87
32

56
6

29
38

93
24

62
5

29
45

03
61

64
4

29
96

91
76

30
5

35
34

04
33

97
3

36
83

58
40

93
7

40
49

80
62

07
4

42
97

00
61

34
2

54
62

81
31

96
2

Card Number

DB2-Enhanced BI Features and Functions 619

621

Key Issues:

■■ Who, what, and when get plenty of analytical attention, but the where
aspect is completely underexploited. Spatial data will enhance the
who by binding substantial third-party data—from companies like
Dunn & Bradstreet—to your existing data, thus creating new infor-
mational content. And spatial data will directly enable analysis for
the where.

■■ Spatial analysis should be considered mandatory for the forward-
thinking BI organization. It represents a critical BI pylon, enhancing
the informational content of warehoused data and broadening the
analytical landscape capability of the organization.

■■ Most architects don’t even realize it, but the foundation of spatial
analysis—addresses—is jealously protected and groomed in many
organizations today. But what do organizations do with all these
addresses? A common analytical use for addresses is householding;
yet even this application is often outsourced to companies like Axiom.

Blending Spatial Data
into the Warehouse

C H A P T E R

16

■■ It is hard for many companies to justify the dollar investment put
toward the gathering, verifying, and cleansing of addresses. We
must go the extra step and use that address as the basis for creating
spatial information content and enable spatial analysis.

■■ The technology exists for the natural integration of spatial data into
our warehouse repositories. DB2 UDB is optimized and aware of the
nuances of spatial objects. Its spatial extension is based on the most
powerful spatial technology on the market from ESRI.

No one questions the value that time brings to the analytical table. Without
it we have no definition to our analysis, only amorphous results. But time
is only one pylon supporting the entire spectrum of analysis available.
Space is another. It is imperative that architects and project planners under-
stand the value spatial data brings to user communities and plan for its
natural inclusion.

Your data warehouse, data mart, operational data store, OLAP cubes,
and just about every other database in your organization—from personal
contact databases to those underpinning your corporate ERP, CRM, and
supply chain management (SCM) are full of spatial data. Blending it in,
exploiting the analytical fodder it brings about, is really not an option,
because the basis of spatial data is already in your databases. The challenge
for most data architects and project sponsors is to appreciate what spatial
data is, where it comes from, and how it can be used to enhance and extend
the decision-making capabilities of your BI environment.

The basis of spatial data is an inherent, almost assumed part of most data-
bases; nevertheless, most individuals, including IT, do not recognize the
effort as having spatial relevance. Companies around the world spend enor-
mous resources collecting and cleansing addresses for customers, stores,
offices, warehouses, and virtually anything else that might have an address
associated with it. Utilization of this hard-won address data is often trivial
and includes events such as mass mailings and stovepipe market analysis.
This is due, in large part, to a lack of understanding within the business com-
munity of what spatial data/analysis is and the types of business problems
it can tackle. The situation is exacerbated because IT professionals, data
architects, and others are equally naïve regarding spatial technology.

This chapter begins by examining where spatial data and related analy-
sis impacts our BI organization. Once we have a sense of where it fits in BI,
the chapter defines what spatial data is, how we obtain it, and how it influ-
ences decision support. We end the chapter with a review of how best to
serve up spatial data in our warehouse.

622 Chapter 16

Spatial Analysis and the BI Organization

Figure 16.1 illustrates the areas within the information organization that
are influenced or impacted by spatial data, related analysis, and technolo-
gies. Each area is described in the following numbered list, which corre-
sponds with the diagram:

1. Operational databases. Generally, the start of spatial data is in the
operational systems of our organizations. This is where addresses
are collected for any number of targets, including customers, stores,
warehouses, and so on.

2. Third-party data. Having a good address of a customer is the criti-
cal point of spatial analysis. However, that is all a company needs;
all other demographic data can be purchased from a number of ven-
dors, including Dunn & Bradstreet, Urban Data Systems, ESRI, and
the Census Bureau. This is a very important aspect of spatial analy-
sis. Your organization can focus on securing accurate, cleansed
addresses while purchasing valuable demographics for a thorough
analytical landscape. This means you can invest in demographic
data per business requirement and minimize, if not eliminate, the
investments necessary to collect your own demographics.

3. Staging area. A large portion of your company’s investment in
spatial data will be securing a clean, accurate address. This most
likely will involve the purchase and implementation of technology
specifically designed to address this issue, including Trillium and
Firstlogic’s Postalsoft, among others.

4. Atomic level. Spatial data should first be introduced to the BI
environment at the atomic layer of the warehouse in the form of a
process discussed in this chapter called geocoding. If this is done at
the atomic level of your warehouse, all subsequent use of spatial
data and related analysis is consistent throughout the organization.
This ensures that warehouse managers have a single point of entry
and, therefore, control. Also, for database engines such as DB2 Uni-
versal Database with Spatial Extender, spatial analysis can be con-
ducted within advanced SQL reports typical of atomic-level data.
This is available because of an extended SQL that is discussed in this
chapter.

5. Data marts. Spatial data and analysis is not uncommon for star
schemas where geography dimensions are established. As for cube
technology, you can still exploit spatial data by preprocessing spatial
analysis that lends value to the subsequent OLAP analysis. For

Blending Spatial Data into the Warehouse 623

example, the calculation of drive time or distance can be done as part
of the ETL process for loading a star schema or cube, where the net
value of the calculation is physically stored as an attribute to the data
mart. OLAP analysis can then exploit these spatially derived attrib-
utes as part of their typical constraints, where the analysis itself can
be conducted with sophisticated OLAP technologies or even a simple
Excel PivotTable. No special map-rendering software is required.

6. Analyst. The analyst should have available spatial visualization
technologies and analysis. This means that investments in products
capable of rendering maps would be valuable. Existing warehouse-
centric technology already makes map rendering available, including
Crystal Writer and Business Objects, to name a few. Or you can imple-
ment high-end analysis tools such as ESRI’s Business Analyst or sim-
ple map-rendering software like MapPoint. Also, all of this analysis
should be available via a Web browser and the corporate BI portal.

7. Customer touch points. The spatial value of your BI effort should
extend to the customers themselves. This can be done via your com-
pany Web site, where customers could log in and identify them-
selves (with a company discount or membership ID), and a map
would be rendered showing the closest distributor/store that sells
your products in relation to where the customer lives.

8. Back-feed loop. As with everything else in our BI environment,
we must consciously design a means to feed back into our business
environment as a whole the net value of our analysis. In the case of
spatial data, one common back-feed would be a cleansed, accurate,
and geocoded address for each customer that can be used by events
such as mass mailing campaigns or CRM support.

This chapter introduces the use of spatial data and analysis in decision
making and gets you started on the road to a planned and thoughtful
blending of spatial data into your warehouse efforts. We answer questions
such as the following:

■■ What is spatial data?
■■ What does spatial data do for your analysis?
■■ Where do you find spatial data in your organization?
■■ How do you manage spatial data?
■■ What tools are used for spatial analysis?
■■ How is this analysis shared with the rest of the organization?

624 Chapter 16

Figure 16.1 The influence of spatial data on the BI organization.

In the process, we hope to remove the fear, uncertainty, and doubt (FUD
factor) that is often associated with the use of spatial data and technologies.
This chapter demonstrates that incorporating spatial data into the ware-
house is not only possible but practical, using common, off-the-shelf soft-
ware and industry-leading databases such as DB2 Universal Database with
DB2 Spatial Extender.

The Impact of Space

Many business problems explicitly or implicitly require that geography be
taken into account. Consider the following everyday business questions:

■■ Where are my customers located?
■■ How big is my market area?
■■ What is my share of the market area?

ACTION

ACTION

ACTION

3rd-
Party
Data

Sales

STAGING AREA

TableTable

Table
Table

Table

Table

Table

Table

Table

OPERATIONAL DATA STORE

Operations Raw
Data

Finance

CUSTOMER

C
U

ST
O

M
ER

 T
O

U
C

H
 P

O
IN

TS

META DATA

GEOCODING ATOMIC-LEVEL
NORMALIZED DATA

DATA MARTS
DIMENSIONAL DATA

MARKET FORECAST
TREND ANALYSIS
BUDGETING

DATA CLEANSING
DATA INTEGRATION

DATA TRANSFORMATION

TRAFFIC ANALYSIS
CLICKSTREAM ANALYSIS

MARKET SEGMENTATION
CUSTOMER SCORING

CALL DETAIL ANALYSIS

OPERATIONS
DATABASES

USER
COMMUNITIES

DATA
MINING

DATA
MINING

CUSTOMER AGENTS

DW AGENTS

AGENT NETWORK

OPERATIONS AGENTS PERCEPTS

PERCEPTS
PERCEPTS

PERCEPTS

PERCEPTSPERCEPTS

DECISION MAKERS

SPATIAL
ANALYSIS

Back-Feed Loop

Ba
ck

-F
ee

d
Lo

opBack-Feed Loop

ADVANCED QUERY AND
REPORTING

OLAP

DATA MINING $

Vendor

WEB

Customer or
Partner

Raw Data

CONCEPTUAL NETWORK

Email

Multimedia

Print

Web

Direct Mail

In-Store Purchase

Thank you for
your patience.

INTERNET

$$$

BI DASHBOARD AND
REPORTING PORTAL

DASHBOARD
User Profile

BI DASHBOARD AND
CONTROL PANEL

DASHBOARD
Analyst Profile

Back-Feed Loop

1

2

3

4 5

7

8

6

Blending Spatial Data into the Warehouse 625

■■ Which market areas offer the greatest potential for growth?
■■ What is the spending potential for my product in this market?
■■ How many stores can this market support?
■■ What’s the best mix of products to carry in each store?
■■ Where should I target my direct mailing to get the most from my

marketing dollars?
■■ What media channel will reach the audience I’m targeting?
■■ Where should I open new sites?
■■ Can I consolidate sites without hurting customer service?

These questions illustrate how spatial considerations are part of many
common business problems. A complete list would cover several pages
and be outdated as soon as it was published. Nevertheless, such is the
growing use of spatial analysis in all types of decisions for all kinds of
industries from utilities to retail store chains to banks and insurance com-
panies to public agencies.

Common BI tools do a good job of analyzing the basic who, what, when,
and how questions. Data needed to discover who is buying what product on
what day through what channel is captured with virtually every transaction.
And the tools for conducting the analysis have become mature and
accepted by decision support system (DSS) professionals. From these mod-
est data elements, data mining tools can identify cross-sell and up-sell
opportunities, determine market-basket relationships, profile customers,
and evaluate distribution channels.

But these traditional analysis tools fall short in answering the tougher
questions of why people buy and where customers live in relation to their
purchases. Although many organizations actively try to determine why
customers buy, these reasons are rarely captured at the time of the transac-
tion and stored as a natural part of the OLTP database. They are more often
captured as a separate process, such as warranty registration cards or sur-
veys, from all or a portion of the customer base. Well-known statistical
methods are then applied to help determine what causes people to buy.
Though plagued by the problem that these statistical cause-and-effect asso-
ciations often don’t pan out at the register, the methods nevertheless pro-
vide additional insights to a complex and evolving customer base.

Although the why of a transaction is rarely captured with it, the where of
the transaction, its geographic location, is almost always captured. In fact,

626 Chapter 16

multiple locations are often captured. Ship-to, bill-to, and customer contacts
are all often captured at companies everywhere. But unlike the dimensions
of who, what, and when (customer, product, time), the where, or geographic
dimension, gets little attention. Although a part of many star schemas, the
geographic dimension has been underexploited analytically, if not over-
looked altogether. This lack of attention is mainly because analysts are not
familiar with spatial analysis applications and techniques, because planners
think the technology is too expensive or complex, or because user communi-
ties and IT are unaware of the analytic packages available.

The impact of space is as natural to our thinking process as time. Just as
a date explodes data into a wealth of analytical power, so, too, does an
address. From addresses, you can build one or more elaborate space-
related dimensions and data-access-layer applications. Attributes of the
dimension could include longitude and latitude, street address, street
block, city quadrant, zip code, street, city, county, state, and country. And
these spatial-centric attributes can be combined with a variety of demo-
graphic information such as household income, education, family size, and
home value, or numeric characteristics such as drive time between the cus-
tomer and his or her favorite store.1

Space is an information windfall for the analyst and is as critical to the
process of interrogating our data as time. There are even aspects of space
that go beyond the value of time. For example, where time has a single,
constant perspective, space can represent information about the people
who live at a location, as well as information about where that location
physically is in relation to the rest of the world.

We naturally think spatially. However, most of our decision support sys-
tems are spatially handicapped. This situation has never stopped us from
thinking spatially; it has only stifled our ability to fully exploit the data
heaped into our warehouses.

Putting your data in the context of space, like time, greatly adds to your
understanding of it. Given the availability and affordability of spatial
application products and spatial data management extensions like DB2
Spatial Extender that provide this spatial context is a real and compelling
option. Spatial data is such a boon to analysis that the definition of a mod-
ern warehouse must include characteristics such as integrated, nonvolatile,
time-variant, and space-centric.

Blending Spatial Data into the Warehouse 627

1 Gonzales, 1999.

What Is Spatial Data?

When we think of spatial data, we naturally think of a map and elements
we see on it, such as roads, lakes, and points of interest. The map does not
contain all of the possible real-world objects that could be displayed. It
would be impossible to represent everything on the map. Similarly, since it
is impossible to capture reality inside a computer, geographic information
systems (GIS) users must abstract real-world phenomena, or entities, into a
geometric representation of reality. Three basic geometric shapes are used
to represent reality: points, lines, and polygons (areas). These shapes are
often called geometric objects, geometric features, or feature types.

The Onion Analogy
Think of the world as a large onion. When you peel an onion, you see that
it is composed of many layers. Real-world entities can be seen the same
way: The earth can be “peeled” into many layers, each representing a dif-
ferent theme. You could put all the streets in one layer and all zip code
boundaries in another layer. As you can imagine, the complexity of the
earth allows you to create as many layers as you want.

Spatial data stores the locations of tangible geographic features such as
roads, stores, customer locations, or other real-world entities, as well as the
locations of nontangible features such as territory, zip code, or census tract
boundaries. It also stores attribute information describing those features,
such as street address, store or customer name, territory sales volume, cen-
sus demography, or other tabular information. The question then becomes
how to best organize these real-world entities into manageable geometric
shapes (point, line, or area) linked to their associated attributes and to store
them digitally.

Spatial Data Structures
With a GIS, you can model data in three basic ways: as a collection of dis-
crete features in vector format, as a grid of cells in raster format, or as a set
of triangulated points modeling a surface.

628 Chapter 16

Vector Data

Vector data represents geographic features as points, lines, and polygons
and is very well suited to recording the location of discrete geographic fea-
tures with precise locations like territory boundaries, customer locations,
trade areas, on so forth. (See Figure 16.2.) Vector data records spatial infor-
mation as x-y coordinates in a rectangular (planar) coordinate system.
Point features are recorded as single x-y locations. Line features, such as
streets, or the outlines of polygons, such as zip code boundaries, are
recorded as an ordered series of x-y coordinates. Additional information
about the feature, such as territory sales volume, customer score, or dis-
posable income, can be stored in an associated attribute table.

Raster Data

Raster data represents imaged or continuous data. The most common
source for a raster data set is a satellite image or aerial photograph. Figure
16.3 shows both a raster data set and an aerial photograph. A raster data set
can also be a photograph of a feature, such as a building. Raster data sets
excel in storing and working with continuous data, such as elevation,
water table, pollution concentration, and ambient noise level. A raster is a
rectangular array of equally spaced cells. A cell is a uniform unit that rep-
resents a defined area of the earth, such as a square meter or square mile.
Each cell within this array contains a number representing an attribute of
the geographic feature, such as soil type, elevation, census tract, or slope.
Additional information about the cell, such as population, age, or sales vol-
ume, can be stored in an associated attribute table.

Figure 16.2 Vector data.

Points
(Retail stores)

Lines
(Streets)

Areas
(Blocks)

Flood
Major Roads
Railroads
Wells

Blending Spatial Data into the Warehouse 629

Figure 16.3 Raster data.

Triangulated Data

Triangulated data, also known as triangulated irregular networks (TINs), is
a useful and efficient way to capture the surface of a piece of land. TINs
support perspective views like that shown in Figure 16.4. You can drape a
photographic image on top of a TIN for a photorealistic terrain display.
TINs are particularly useful for modeling watersheds, visibility, line-of-
sight, slope, aspect, ridges and rivers, and volumetrics. They can also be
used to summarize statistics for a surface, such as customer density against
a reference layer.

Figure 16.4 Triangulated data.

Rasters

630 Chapter 16

Spatial Data vs. Other Graphic Data
There are four main differences between spatial data and data created in
computer-aided drafting (CAD) or graphic applications or scanned from
paper sources, such as reports and photographs as follows:

■■ In spatial data there is an explicit relationship between the real-
world geometric feature and its associated attribute information, so
that both are always available when you work with the data. If you
select particular features displayed on a map, you can automatically
select the records containing the attributes of these features whether
they reside in separate tabular files or in a database. So when you
click on a customer, for example, you have access to all the tabular
information associated with that customer, such as address, sales,
products purchased, and whatever else your operational data store
(ODS) or data warehouse may capture on the customer.

■■ Spatial data is georeferenced to known locations on the Earth’s sur-
face. To ensure that location is accurately recorded, spatial data
always employs a specific coordinate system, unit of measurement,
and map projection. When spatial data is displayed, it has a particu-
lar scale, just like any paper map. Graphic files used in CAD pro-
grams or other commercial graphics packages are typically stored in
units such as inches rather than geographic coordinate systems
required for spatial data.

■■ Spatial data is designed to enable specific geographic features and
phenomena to be managed, manipulated, and analyzed easily and
flexibly to meet a wide range of needs. Other types of graphic data
may be oriented solely toward presentation and display, and may
store features such that they can only be analyzed in a limited num-
ber of ways. For example, drive time analysis is not possible with
linear data created by a CAD or graphics application because there
is no explicit network connectivity and direction maintained. Simi-
larly, none of the graphics objects created in these packages have
any idea of where they are in relation to all the other graphics,
which prohibits any kind of proximity or adjacency analysis. They
are just “dumb” graphic objects.

■■ Spatial data is organized thematically into different layers, like the
layers of an onion. There is one layer for each set of geographic fea-
tures or phenomena for which information will be recorded. For
example, census tracts, streets, sales territories, and customer loca-
tions will each be stored as a separate spatial layers, rather than
stored all together in one as CAD or other graphic applications do.

Blending Spatial Data into the Warehouse 631

This makes it easier to manage and manipulate the data, especially
because much of the power of working geographically comes from
being able to analyze the spatial relationships between different geo-
graphic layers.

There is no other data like spatial data. It provides a unique perspective
and an enhancement to traditional forms of data found in warehouses.

Obtaining Spatial Data

There are two main ways to obtain spatial data for your application: creat-
ing it yourself or acquiring it. Let’s look at each of these.

Creating Your Own Spatial Data
Most spatial application venders provide tools for creating and maintain-
ing spatial data, and a discussion of them goes beyond the scope of this
book. Suffice it to say, however, that some tools are better than others, and
their selection may have a significant impact on the quality of the spatial
data that goes into the warehouse. With these tools, spatial data can be cre-
ated from many different sources, including digitizing paper maps by
hand, directly reading satellite or aerial imagery, scanning and converting
paper maps or photographs, converting CAD data, reading of raw x-y
coordinates from files or GPS devices, and more.

Creating your own data internally allows you to create exactly the spa-
tial data you need. It can be expensive, however. Major creators of their
own spatial data are private and public utilities, government agencies such
as counties and municipalities, defense departments, and other organiza-
tions whose affairs require the management of widely dispersed assets.
Often they have invested millions of dollars in spatial data creation and
ongoing maintenance. Equally as often these data assets have been created
for specific stovepipe applications used by a single department within the
overall organization and are neither well-known throughout the organiza-
tion nor integrated with other IT assets.

Acquiring Spatial Data
Your own organization may have spatial data somewhere already. You
should start there first. Some of the data created by government agencies is
available free or for sale, such as data from the Census Bureau or U.S. Geo-
logical Service. Other data is not available at all to anyone outside of the

632 Chapter 16

group it was created for because of privacy, security, or other concerns. GIS
vendors often bundle data with their products. Finally, there are pure spa-
tial data vendors who specialize in creating data and selling it to a broad
base of users.

Companies who specialize in providing spatial data are numerous and
cover a broad range of data, from street data to image data to business loca-
tions to trade areas to demographic data. They often include or enhance
government data, such as census data, through specialized forecasts and
surveys, or they aggregate data by custom boundaries such as postal code
or media boundaries.

Finding spatial data has always been a bit like finding your way around
a new town. You go down a few dead ends and talk to a lot of people who
may or may not understand just where you are trying to go. Fortunately,
this task is getting easier through the appearance of spatial data clearing-
houses and gateways, better spatial meta data and search engines, and the
delivery of spatial data via Web-based data services. For now, however,
talk to your spatial application vendor, spatial data providers, or their com-
petitors to find sources of spatial data. It will often be the best alternative to
creating the data yourself or simply doing without. Since many of the com-
panies building data warehouses are global in reach, this inconsistency of
data availability can be a major problem for some types of applications.

Government Data

Much of the data created by government agencies is available for free or for
a small fee. The U.S. Geological Service has a geospatial data clearinghouse
that provides direct access to spatial data and links to other spatial data
providers, both government and commercial. Likewise, the U.S Census
Bureau provides maps and boundary files for census demography. Outside
of the United States, data availability and cost is widely variable. Some
countries restrict access to geographic data in the same ways they restrict
media. Other countries may not have the resources to build and maintain
base-level spatial data such as street centerlines, and there may not be
enough business opportunity for a commercial data provider to do it alone.

Vendor Data

General-purpose GIS applications typically include ready-to-use map and
tabular data, such as all of the county boundaries in the United States, and
associated tabular data, such as county name, population, and other sum-
mary demographics. For many applications, you’ll find this is the only

Blending Spatial Data into the Warehouse 633

data you need. You can use this data by itself to create maps for a wide
variety of map display and analysis purposes. You can also use this data as
a base to which to add your own data, such as sales by store or territory, so
you can render and query maps based on data from your own organiza-
tion, as well as the included demographic and other data.

Specialized GIS applications often include data specific to the purpose of
the application. Some include detailed boundary files down to the block
group and associated census data, business locations, lifestyle demograph-
ics, and more. These applications are used for general business purposes
such as customer profiling, competitive analysis, and market segmenta-
tion. Some come with detailed street files with associated attributes for
navigation, such as street speed, direction, and turn restrictions that are
used in routing applications. In addition to providing all of the data
needed, these specific-purpose applications may come packaged with
standard analysis tools hidden behind wizard-based interfaces that reduce
the complexity of data extraction and analysis, making it easier for end
users to understand and use the spatial tool.

Spatial Data in DSS

Although spatial data has been used to support decisions for millennia in
the form of static maps, we’ll start with the more recent use of spatial data
in electronic form. Among the first users of spatial data were government
agencies and private companies, such as the Census Bureau and forestry
companies, interested in better understanding and managing human or
natural resources. The technology was new and required specialized soft-
ware, databases, and skill sets. Strategic decision support was the main
emphasis of these early systems, since they were too expensive for man-
agement or operational decision support.

By the late 1980s, advances in computer technology made desktop sys-
tems affordable to a broader range of organizations, both public and pri-
vate. Business unit managers and operational managers could acquire and
use spatial technology to help make better decisions. And that’s just what
they did, most often as project or departmental systems that were outside
the IT department’s realm of influence. A great deal of effort was put into
creating the spatial data needed to support their decision-making needs,
and it was rarely shared outside the project or department that created it.

By the late 1990s, huge and varied spatial data sets had been created by
traditional government and private users of spatial technology. Every kind
of spatial data imaginable was becoming available at affordable prices:
street databases with address ranges, direction, and speed attributes for

634 Chapter 16

algorithmically locating customers on maps and routing vehicles; point
databases containing all businesses in the United States, together with
information on sales, number of employees, and so on for competitive
analysis; polygon databases containing demographic information by state,
county, zip code, census tract, and block group for customer profiling; and
a wide variety of other data created by commercial spatial data providers
for a myriad of decision support functions.

The continued technological advancement of computing platforms,
availability of relatively cheap spatial data, and the incorporation of tradi-
tional decision support tools into the products offered by the spatial appli-
cation vendors has put spatial analysis well within the reach of strategic,
management, and operational decision makers. Today, spatial data is inex-
pensive and readily available in standard formats, and spatial analysis
tools are comprehensive and affordable.

Spatial Analysis and Data Mining

Automatic discovery of patterns and trends, the great expectation from
data mining, is more of an aspiration than an achievement. Broader defin-
itions of data mining recognize that the application of algorithms to data is
only a part of data mining. As important, if not more important, is natural
human pattern recognition combined with appropriate knowledge of the
subject area and accurate interpretation of the results.

Under this broader definition, spatial analysis tools and data mining
tools have a common purpose: to automate the process of trend analysis
and data discovery. Spatial analysis combines the mathematics of both sta-
tistics and topology with query and visualization tools to help decision
makers see and explore patterns and trends not possible with pure data
mining tools alone. In addition, since mainstream data mining tools are
simply not aware of spatial relationships, they provide little algorithmic
aid in the discovery of geographic patterns and trends based on factors
such as proximity, adjacency, coincidence, containment, or connectivity.

Spatial analysis tools augment and extend the capabilities of data mining
tools. Neither are single tools, but a suite of tools that include visualization,
statistical analysis, and modeling, as well as specialized tools such as
neural networks, fuzzy logic, and multidimensional analysis. Both are
designed to assist managers in semistructured or unstructured tasks. Both
support, rather than replace, management judgment.

Since spatial analysis and data mining share a common purpose, it is only
natural that they follow a common approach, as described in Table 16.1.

Blending Spatial Data into the Warehouse 635

Table 16.1 Data Mining and Spatial Analysis Comparison

PROBLEM-SOLVING
APPROACHES DATA MINING SPATIAL ANALYSIS

Association Things done together Things located together

Sequences Events over time Events over time and space

Classifications Pattern recognition Spatial pattern recognition

Clusters Define new groups Locate new groups

Forecasting Prediction from time Prediction from time
series and space

How data mining and spatial analysis complement each other can be
illustrated by considering a common data mining function: clustering.
Clustering is a well-known mining method that groups data sharing simi-
lar characteristics. Consider a cluster study that has grouped your cus-
tomers into a number of groups based on profitability, age, and income.
One group, your most profitable customers, is predominately in the group-
ing of 40- to 50-year-olds with over $100,000 in annual income. This type of
clustering, or segmentation, is quite common in data mining. Unfortu-
nately, a spatial analyst would find much lacking:

■■ Can we expect this cluster, or segment, to behave the same if they
are located in New York or Nebraska? Probably not. The issue of
geographic extrapolation is just one of the problems associated with
clustering. The goal is to find clusters that behave the same, and
regional differences in behavior can vary greatly.

■■ Can we locate this cluster? If so, we may be able to use the combined
underlying demographic, economic, and psycho-graphic attributes
of the cluster’s area to help us further profile the customer and iden-
tify other areas with similar characteristics and, quite likely, behav-
ior. Spatial analysis tools are perfect for profiling clusters of
customers and prospecting for new ones.

■■ Can we determine the size and shape of this cluster? This is critical
to determining market potential or penetration, which in turn is crit-
ical to deciding what to do with the cluster. Spatial analysis tools can
reveal the size and shape of the cluster in relation to existing or pro-
posed stores using simple rings or drive-time polygons, can be used
to compute penetration polygons or cannibalization potential, and
can locate potential competitors who will compete for the same clus-
ter’s business.

636 Chapter 16

Similar examples could be given for each of the other approaches to data
mining, but the point should be clear: Spatial analysis not only serves a
common purpose with data mining but also follows a common technical
approach to solving data mining problems.

Spatial analysis also shares the same basic process steps as data mining.
The data mining steps as described in Chapter 14 are identical to those of
spatial analysis and are repeated here intact, with minor editing to reflect
spatial terminology:

1. Develop an understanding of the application, relevant prior knowl-
edge, and the end user’s goal.

2. Create a target spatial and associated attribute data set to be used for
discovery.

3. Clean and process the data (fix and standardize address data,
account for differences in spatial coordinate systems, etc.).

4. Reduce the number of variables, both spatial and nonspatial, and
find invariant representations of the data, if possible.

5. Choose the data mining task (trade area analysis, segmentation).

6. Choose the data mining algorithm (Euclidian distance, actual drive
time).

7. Search for patterns of interest (the actual data mining).

8. Interpret the pattern mined, using spatial visualization tools. If nec-
essary, iterate through any of Steps 1 through 7.

9. Consolidate the knowledge discovered and communicate it, usually
via maps.

Now that we’ve seen how spatial analysis can augment and extend data
mining studies, let’s get into the specifics of how to do it.

Serving Up Spatial Analysis

Perhaps the most commonly recognized form of spatial analysis is the
investigation and understanding that goes on intuitively when we look at a
map. We naturally draw conclusions from the things we see: Stores are con-
veniently located near freeways or are too far away; most of our customers
live in the north side of town; the customer base (population) is increasing
or decreasing. When we see a map, most of us don’t need a calculator to per-
form this level of spatial analysis; we inherently think spatially.

Blending Spatial Data into the Warehouse 637

For example, Figure 16.5 shows store sales in relation to customer den-
sity. Customer density is represented by the 3D contours and store sales by
each of three cylinders. Clearly we have a problem with one of our stores
that seems to be related to its poor proximity to any customer base. No
math needed here. The map is interpreted based on a combination of
innate knowledge and past experience. Although creating the map
involved some fairly sophisticated calculations, such as surface generation,
its interpretation was purely intuitive. But absent the map, without a visual
representation, it is doubtful that one would see the pattern so quickly, or
perhaps at all.

Broadly defined, spatial analysis includes the transformations, manipu-
lations, and methods that apply to geographic data to add value to them,
to support decisions, and to reveal patterns and anomalies that are not
immediately obvious. This includes such things as visualization, linear
analysis, coincidence analysis, and adjacency modeling. Like data mining,
the techniques used in spatial analysis could easily fill an entire book.
Indeed, a whole new set of analytical tools becomes available.

Figure 16.5 Spatial 3D.

638 Chapter 16

Figure 16.6 GeoStatistical Analyst.

Like all good data analysis tools, good geo-analytic tools have good user
interfaces with easy-to-use wizards for performing their analytic functions.
Figure 16.6 shows one such tool from ESRI, GeoStatistical Analyst. The
results of the analysis are visually displayed in Figure 16.7, where higher
concentrations of air pollution are shown toward the orange end of the
spectrum.

Although the technique illustrated here could easily be applied to deter-
mining the density of customers who might buy based on a sample survey,
a fairly good grasp of the underlying mathematics is necessary to formu-
late the problem and select the best model to evaluate the data. This is a
common problem with data mining tools. For our purpose, we’ll stick to
some easy-to-understand techniques used to answer some of the funda-
mental business questions directed at the data warehouse. While they are
by no means exhaustive, they are representative of the types of spatial
analysis beginning to be used to augment and extend traditional data
analysis for business analytics.

Typical Business Questions Directed
at the Data Warehouse
Spatial data is a catalyst for numerous business question opportunities.
Attempting to identify all the possible business questions is not practical. It
would be similar to defining all the OLAP questions you could ask. How-
ever, there are typical questions that are asked of spatially enabled data.

Blending Spatial Data into the Warehouse 639

Figure 16.7 Air pollution.

Where Are My Customers Coming From?

This is by far the most common business question asked of the data ware-
house. Although the warehouse holds this information in almost every
case, the distribution of customers is difficult to see from transactional
queries or lists. Putting customers on the map is one of the great benefits of
spatial analysis tools.

Figure 16.8 shows customers of a shopping mall. Notice the linear distri-
bution of customers along major roads. It might be safe to assume that
many customers live close to bus lines. That bit of insight might, in turn,
lead marketers to spend more of their advertising dollars on billboards, on
buses, or at bus stops as opposed to a shotgun mailing to several zip codes.

The technology to do this bit of magic is quite mature within the spatial
industry. Most spatial vendors have products that include the ability to
geocode customers, vendors, or any other address information. Address
cleansing software vendors generally have more sophisticated address
cleansing algorithms and geocoders than those tools provided by spatial

640 Chapter 16

vendors; however, the visualization and analysis tools necessary to extract
real value from clean, accurate addresses is still the domain of spatial ven-
dors. Consequently, products from both types of vendors are often used
together with the warehouse, providing a robust capability to ensure that
address data going into the warehouse is clean and that it can be accessed
and utilized by advanced spatial analysis tools to extract meaningful and
actionable information.

I Don’t Have Customer Address Information—
Can I Still Use Spatial Analysis Tools?

One of the most common tools is simple ring analysis. The analysis begins
with no knowledge of what a store or other facility’s market area may be,
so simple rings of 1-, 3-, and 5-mile radii (or other user-defined radii) are
created around the facility by the spatial analysis tool. Once created, the
underlying demographics within the rings can be extracted and compared
to the demographics of similar rings around successful facilities. Many
other questions can be answered as well, such as these: How many house-
holds are within 1, 3, and 5 miles of the facility? What is the average income
of households within 3 miles of the facility? Simple ring studies are a typi-
cal first cut at visualizing the market area around a facility and are a useful
tool for helping to decide whether to expand into new markets or leave
existing ones. Figure 16.9 is an example of a simple ring analysis.

Figure 16.8 Shopping mall.

Blending Spatial Data into the Warehouse 641

Simple ring analysis requires no data from the warehouse. A variation of
the analysis uses an attribute of the facility, such as sales or square footage,
to vary the size of the ring proportionally when compared to all other facil-
ities. The ring becomes larger the greater the sales or the larger the size of
the store. These data-driven rings give an idea of the drawing radius of a
facility and can be used to extract demographic data to determine if the
underlying population can support the business needed to sustain the store.
They are also useful to get a rough idea of competitors’ trade areas in the
absence of detailed information on the competitor’s operations other than
their locations and approximate size in term of sales, facilities, or other com-
parable factors. Figure 16.10 is an example of a data-driven ring analysis.

Simple and data-driven rings are easy to create, but they do not consider
potentially important factors such as the drive time to get to a facility. To
consider drive time, specialized spatial network analysis tools and naviga-
ble street data are required. Fortunately, both are available at a reasonable
cost from most spatial tool vendors. Drive time rings add a higher level of
realism to ring analysis, and depending on the business, may be well
worth the added investment. Pizza chains, for example, are very concerned
about the time it takes to deliver a pizza to ensure a fresh and hot product
is delivered every time. Figure 16.11 is an example of a drive-time analysis.

Figure 16.9 Ring analysis.

642 Chapter 16

Figure 16.10 Data-driven ring analysis.

Figure 16.11 Drive-time analysis.

Blending Spatial Data into the Warehouse 643

Understanding a Spatially Enabled Data
Warehouse

Introducing spatial data across your source systems can be very disruptive.
Of course, most GIS vendors try to sell spatial techniques and technologies
by focusing on their graphical appeal and front-end applicability (logistics
departments, utility companies, and government agencies are favorite tar-
gets). This strategy ultimately fed the negative impact of stovepipe data
and analysis within organizations. There are many reasons and business
requirements that drive the need for spatial analysis, but you don’t have to
limit the value of spatial data and related analysis to the enterprise. To that
end, we recommend that if you have tactical requirements for spatial data,
then the data gathered and used toward that requirement should be prop-
agated into the warehouse to the benefit of all potential strategic analysis
that might benefit from such data. And, if there are no tactical requirements
driving spatial techniques or technologies on the operational side of your
business, you should consider, at the very least, geocoding your produc-
tion data. For example, most companies go through great pains and often
make significant resource investments to collect and scrub their customer
addresses. Why? Well, if you do not exploit the spatial aspect of the
address, then the only value of this effort is to mail material to your cus-
tomers or provide fodder for householding processes.

Since you have gone through all the trouble of maintaining clean ad-
dresses for your organization, it seems a waste not to exploit its real value:
spatial analysis. The foundation of spatial analysis is your clean address. We
discuss how to bind the address to spatial data in the following section.

Geocoding
The data warehouse is often responsible for the transformation of simple
address-based data, in the form of customer addresses, store locations, and
so forth, into legitimate spatial data that represents the explicit geographi-
cal relationships between these addresses. This is typically achieved by
assigning a geocode (longitude and latitude value) to each address during
the ETL process. This unique value serves as the cornerstone to all subse-
quent analysis, such as understanding the distance between a store loca-
tion and its best customers or the drive time from a freeway exit and a store
location. Moreover, once a geocode has been assigned, you can enhance

644 Chapter 16

your informational content by binding demographic data from third par-
ties, such as Dunn & Bradstreet, to your existing data, which increases your
analytical landscape.

Essentially, spatial data is any location-based data, including addresses,
zip codes, zones, roads, census blocks, and so on. And geocoding is the
process used to transform this location-based data into other spatial data
that can be recognized and exploited by visualization tools, analysis tools,
and RDBMS environments. Geocoding commonly represents spatial data
as a latitude/longitude coordinate. Spatial data represents locations in
terms of points (e.g., a specific address), lines (e.g., a road or river) and
polygons (e.g., a county or state boundary, lakes, tax entities).

Geocoding is the single most important key to blending spatial data into
your warehouse. The process of geocoding should be considered a natural
part of your ETL transformation steps and can support either batch pro-
cessing or be assigned as rows that are inserted into the atomic layer of the
warehouse.

If you are geocoding addresses in a large table of existing customer data,
you will probably need to perform the following tasks:

1. Add a spatial column to the customer table to contain the spatial data.

2. Register the spatial column for geocoding, indicating which columns
(e.g., number, street, city, state) are to be input to the geocoder.

3. Run the geocoder in batch mode to update the location columns
with the geocoded data.

After the initial geocoding, you can then indicate that you want geocod-
ing to occur only on insert or update. This process is controlled by insert
and update triggers on the data.

Think about how and when you want geocoding to take place. For exam-
ple, if you are planning on launching a new CRM application that lets your
service personnel track a location on a map while on the phone with the cus-
tomer, you very well might want to geocode on the operational side in real
time and carry the geocoded data forward into the data warehouse. This
may require some conversion to the OGC well-known text or binary format.

Otherwise, you probably want to do batch geocoding as a separate trans-
formation step, either in a staging area or after the data is loaded into the
warehouse. You may also need to build iterative steps into the geocoding
process to allow for the possibility of investigating any problems in gener-
ating points, which might be caused by invalid addresses or a mismatch
between the base map and the set of addresses being geocoded.

Blending Spatial Data into the Warehouse 645

Technology Requirements for Spatial Warehouses
While it is true that some GIS applications are extremely complex and
require specialized skills and technologies, this is usually the domain of
government and utilities industries. For general business applications, GIS
is a straightforward effort that affords huge upside dividends for end
users. There are two reasons that business GIS is painless:

■■ Leading RDBMS technology provides integration for GIS at the
database engine level.

■■ Most business applications require less specific granularity. For
example, customer addresses might be categorized by block groups
or zip codes as opposed to being individually geocoded.

That is not to say that GIS for business applications cannot require exact-
ing detail and specificity, such as logistics planning. The point is that gen-
eral business GIS is much simpler to implement than in the past, without
compromising the analytical value.

In the case of business applications, maximum functionality and techni-
cal transparency are achieved when integrating spatial data as a natural
part of the atomic level and implementing it at the database engine level.

DB2 Spatial Extender provides optimum integration between spatial
objects and DB2 Universal Database for several reasons, including:

■■ Central management of spatial objects is treated as any other object
to the database. Database administration tools include spatial utili-
ties, including the ability to import and export spatial data files,2

optimization for spatial indexes, and replication support.
■■ Spatial-centric functions are run at the engine level. Traditional spatial

functions include DISTANCE, OVERLAP, INTERSECT, and WITHIN.
■■ Standard SQL with spatial extensions is available to all applications.

For example:

The engine is optimized to address querying and indexing spatial
objects. For example, the standard indexing used for textual data
cannot deal with the multidimensional nature of spatial objects. IBM
has developed a grid index technique to ensure DB2 Universal Data-
base Spatial Extender can provide the performance and functional-
ity expected.

646 Chapter 16

2 “Shapefile” is a de facto industry standard from ESRI for such an interchange file form, but
others exist as well.

DB2 Spatial Extender also provides support for all the established spatial
data types, including point, line, and polygon objects established by the
Open GIS Consortium (OGC)3 and in the SQL standard (SQLMM, 1999).
Additionally, DB2 Spatial Extender ensures that processes fundamental to
handling spatial data are included, specifically geocoding.

Additionally, you can merge SQL with spatial functions as outlined in
the following three examples:

Finding zones. The following query finds the average customer dis-
tance from each department store. The spatial functions used in this
example are ST_Distance and ST_Within (the SQL spatial standard
names for these functions):
SELECT s.id, AVG(ST_Distance(c.location,s.location))

FROM customers c, stores s

WHERE ST_Within(c.location,s.zone)=1

GROUP BY s.id

Converting spatial data to text format. The following query finds the
customer locations for those who live in the San Francisco Bay Area
and converts it to the OGC well-known text representation. The spa-
tial functions used in this example are ST_AsText and ST_Within:
SELECT ST_AsText(c.location,cordref(1))

FROM customers c

WHERE ST_Within(c.location,:BayArea)=1

Creating searchable zones. This query finds the customers who live
within the flood zone or within 2 miles from the boundary of the
flood zone. The spatial functions used in this example are ST_Buffer
and ST_Within:
SELECT c.name,c.phoneNo,c.address

FROM customers c

WHERE ST_Within(c.location,ST_Buffer(:floodzone,2))=1

Adding Spatial Data to the Warehouse
The first step for data architects is to understand which of the two possible
types of spatially biased warehouse iterations you are focused on. At the
risk of oversimplification, spatial warehouse implementations are defined
by two general categories with regard to the enterprise data warehouse:

Blending Spatial Data into the Warehouse 647

3 See www.opengis.org.

Entities. This type of warehouse iteration is defined by requiring spa-
tial entities to be added. This is essentially the addition of spatial lay-
ers to your spatial data, such as streets, lots, forests, sections of pipes,
oil wells, and flood zones.

Attributes. In this type of iteration you bind descriptive characteristics
about existing entities, such as income level for a neighborhood, pop-
ulation densities, SIC codes and represented businesses for a particu-
lar study area, and amount of oil being pumped for specific wells.

The difference between spatial entities and attributes isn’t trivial. One
very distinguishing characteristic is how the information will appear to
users; spatial entities usually require software that understands the objects,
for instance, map rendering applications. A spatial entity iteration of your
warehouse will undoubtedly dictate that you add a geographic tool to
access the data being stored or that your existing tool can handle the new
spatial entities. Conversely, implementation of spatial attributes can be
used virtually everywhere in the warehouse—as constraints to existing fil-
ters for spatial analysis using spatial tools or for use with common ware-
house access tools such as SQL reports and OLAP.

There are at least five issues that the data architect must keep in mind
when adding spatial data into the warehouse:

Determine if the iteration evolves spatial entities or spatial attributes
or both. If you are implementing spatial entities, you must examine
if there is any additional impact on the data storage resources and if
existing data access tools will suffice.

Determine if you need to purchase third-party demographic data.
This is particular to a spatial attribute iteration of your warehouse. It
is common for companies to have the address information but little
else. Consequently, the purchase of third-party demographics is a
natural part of dealing with a business requirement. But that doesn’t
mean that you purchase all of your demographic data all at once. The
purchase of third-party data will be driven by business requirements.

Focus on ensuring accurate address information. This means that
address cleansing should be inherent in the ETL processing done for
the atomic layer of the warehouse. But this is only half of the quality

648 Chapter 16

equation. It is critical that operational systems update their processes
to ensure that addresses are being entered consistently.

Add a geocoding process. A geocoding process should become a nat-
ural part of ETL efforts to load data into the atomic layer of your
warehouse. If you cannot provide a consistent address, then consider
geocoding at the zip code level.

Consider disk space and indexing strategies. A spatial implementa-
tion will affect disk space and related issues, such as portioning.
Moreover, DBAs will need to understand special indexing require-
ments of spatial objects, as well as become intimate with how the
database engine optimizes such objects.

Summary

The single most important question organizations need to ask themselves is
not if they should evolve their data with spatial content but when this effort
starts. The technological road map has existed for years, evolving consider-
ably in the past few years in terms of features and functionality. Leading
database systems like DB2 V8 have consciously embedded leading spatial
technology at the engine level. Moreover, ETL and data access tools have
equally met the trend by enabling their application with spatial features.

Organizations can acquire data from any number of established vendors
such as Dunn & Bradstreet, Urban Data System, ESRI, and even the Census
Bureau. But the availability of spatial data and analysis goes much further
than vendors promoting their goods. The new trend is spatial Web services.
Companies like ESRI provide Internet services that include all the core fea-
tures, functionality, and benefits of spatial data, technology, and analysis.
Consequently, companies who want to blend spatial content and benefits
into their BI organization but do not want to tackle the technology can sim-
ply integrate their BI environment to include spatial content via the Web.

The technology is mature and widely supported, the data is readily
available, and even for the spatially inept company, spatial analysis can be
conducted over the Internet. Why, then, would an organization not make
spatial content a natural part of their BI landscape? Good question.

Blending Spatial Data into the Warehouse 649

651

Berry, Michael J.A. and Gordon S. Linoff. Mastering Data Mining. New
York: John Wiley & Sons, 2000.

Boehm, Barry W. “A Spiral Model of Software Development and Enhance-
ment.” IEEE. May 1988.

Boon, Simon. “COBIT: Control Objectives for Information and Related
Technologies.” Journal of Data Warehousing. IT Governance Institute. Vol-
ume 2, Number 4, Winter 1997.

Cockburn, Alistair. “Using ‘V-W’ Staging to Clarify Spiral Development.”
www.methodjournal.com. 2001.

Gonzales, Michael L. “Spatial OLAP: Conquering Geography.” DB2 Maga-
zine. Spring 1999.

Gonzales, Michael L. “Seeking Spatial Intelligence.” Intelligent Enterprise.
January 20, 2000.

Gonzales, Michael L., Rafael Coss, and Kathryn Zeidenstein. “Picture This!
A Spatially Aware Data Warehouse.” Journal of Data Warehousing. Vol-
ume 6, Number 3, Summer 2001.

Gonzales, Michael L. “Fear and Loathing in Project Management.” Intelli-
gent Enterprise. June 13, 2002.

Gonzales, Michael L. “Bird’s Eye BI.” DB2 Magazine. Winter 2002.

Bibliography

C H A P T E R

Harris, K. “Changing the View of ROI to VOI.” Gartner. November 14,
2001.

IBM. “IBM DB2 OLAP Miner: An Opportunity-Discovery Feature of DB2
OLAP Server.” November 2001.

Inmon, William H. Building the Data Warehouse. New York: John Wiley &
Sons, 1996.

Inmon, William H. Building the Operational Data Store. New York: John
Wiley & Sons, 1999.

Kimball, Ralph. The Data Warehouse Toolkit. New York: John Wiley & Sons,
1996.

Kimball, Ralph. The Data Warehouse Lifecycle Toolkit. New York: John Wiley
& Sons, August 1998.

Kimball, Ralph. “Is your Data Correct?” Intelligent Enterprise, December 5,
2000.

McKnight, William. “Data Warehouse Justification and ROI.” DM Review.
November 1999.

Raskino, M. “ROI Comes from Strategic Capabilities, Not Applications.”
Gartner. February 5, 2002.

Tillman, George. A Practical Guide to Logical Data Modeling. New York:
McGraw-Hill, 1993.

Voelker, Michael P. “Data Warehousing: What Works?” Technology Decisions
for Insurance. July 2001.

652 Bibliography

653

Index

A
active logs, expansion methods, 225
active standby, 176
address cleansing, 14–15
administration

Administration Notification Log, 199
AUTOCONFIGURE, 198–199
Automated Health Management

Framework, 198
eLiza project, 197
event monitors, 200
quiesce mode, 199–200
Self Managing and Resource Tuning

(SMART), 197
Administration Notification Log,

administrative messages, 199
administration services, OLAP

Server, 471
administrative functions, OLAP

Server, 471
advanced OLAP users, analytical

requirements, 42
advertisements, touch point type, 52
advertising campaigns, customer touch

point, 53
agents

customer touch points, 7
data mining influence, 572
DWC, 255–256
warehouse servers, 255

agent sites, DWC, 255–256
aggregate, OLAP functions,

536–537, 544–551
aggregated spend, 580
aggregation function query,

MQTs, 235–238
AIX platform

Concurrent Resource Manager (CRM),
178–179

warehouse server, 308–309
allocations, complex calculation type, 45
ALTER statement, MQTs, 231–232
analysis of variance (ANOVA), 352–355
analysts

BI architecture benefits, 8
data access requirements, 41
data mining influence, 574
spatial data influence, 624–625

analytical functions, 25, 596–619
analytical systems, key questions, 4–5
analytic cycle, OLAP Server, 472–474
analytics, 473
annual sales, OLAP functions, 560–562
ANOVA (analysis of variance), 352–355
antecedent documentation, DIF Matrix, 80
Application Manager, 489–490
Arbore Software, Essbase, 468–469
Architecture, 6–7
arithmetic, matching queries, 242–243
arrays, OLAP Server, 483–485

654 Index

Ascential
DataStage, 429–431
DWC interaction, 256

Ascential INTEGRITY, 398–399, 448
ASCII files, 255, 322
AST. See automatic summary tables
atomic layer

address cleansing, 14
architecture component, 6
built-in iterations, 33
capabilities, 33–34
clustering index, 161
data architecture alternatives, 113–117
data architecture template, 109
data marts, 30
data target, 33–34
DB2 Extender, 162
defined types, 162
dependent data marts, 120–121
dimensional, 113
dimensional cap architecture, 114–116
enterprise wide data source, 33
extraction, transformation, and loading

(ETL), 7
granularity, 33
hierarchical storage, 162–164
high-level data architecture, 111
historical integrity maintenance, 33
HOLAP platform/Star Schema, 117
indexes, 161
Inmon approach, 129–130
multidimensional clusters (MDCs), 161
multidimensional data

architecture, 114–115
operational data stores (ODSs), 30
RDBMS, 14
redistribution, 158–160
replicated tables, 160–161
ROLAP platform/3NF, 116–117
vs. star data architecture, 138
static environment, 34
table collocation, 158–160
time-variant data, 33
user-defined functions (UDFs), 162
user-defined types (UDTs), 162

atomic level
data mining influence, 573
spatial data influence, 623–625

atomic-level model, 128, 132–133
attribute dimensions, 507–508
Audio Extender, 209

authentication, OLAP Server, 472
AUTOCONFIGURE, 198–199
Automated Health Management Frame-

work, event thresholds, 198
automatic summary tables,

MQT, 213–214
availability.

active standby, 176
backups, 172–173
cascade takeover, 178
idle standby, 176
multidimension clustering (MDC),

174–175
mutual takeover, 177
online load, 174
online space management, 172
parallel loading, 174
technical architecture, 172–179
unplanned outages, 175–179
See also high availability

AVG function, 597–598

B
back-end cache, MQT use, 215
back-feed loops, 8–9, 470, 624–625
backups, 172–173, 512–513
base aggregate, 369–370
base aggregate replication steps, DWC,

259
Basic Statistics transformer, 355–357
batch reports, information

extraction, 30
batch window, 504
batch window elimination, 190
Bernoulli sampling, 612–615
BI. See business intelligence
bi-centric functions, 612–619
BI dashboards, information

extraction, 30
BI hacking approach, iterations, 90
BI Solution Delivery, IBM approach, 100
blocked bufferpools, 206
Brio, 256, 450–451, 461
bufferpools, 194–195, 206
business analysts, 41–42
business analytics, 473
Business Dimensional Lifecycle, 91
Business Discovery, 100
business intelligence (BI) , 3–9, 18–19
Business Intelligence Data Warehouse

Development, IBM approach, 101, 103

Index 655

Business Intelligence Decision Opti-
mization, IBM approach, 102

Business Intelligence Design and Plan-
ning, 103

Business Intelligence Proof of
Concept, 102

Business Intelligence Solution
Delivery, 103

business issues, 577–582
business logical model (BLM),

128, 130–131
business meta data, types, 41–42
business names, meta data type, 42
Business Objects, 256, 451–252, 462
business outline, OLAP Server, 479–483
business requirements, 71
business-to-consumer (B2C)

portals, 52

C
cache, back-end database, 215
calc scripts, OLAP Server, 489
calculated fields, meta data, 406
calculation-intensive capability, OLAP,

45
calc with calc rules script, 528–529
Call Level Interface (CLI), 255
candidate outcome models, 84–86
cascade links, process modeler, 320–321
cascade takeover, 178
CASE. See computer-aided software

engineering
case views, enterprise strategy, 63
casual end users, data access, 41
catalog partitions, architecture, 172
catalogs, warehouse objects, 276–277
centralized data architecture, 148–152
centralized data warehousing, 148–152
change aggregate, 369–370
change aggregate replication steps, 259
character-delimited format, 380–382
CHECK PENDING NO ACCESS state,

219
CHECK PENDING READ ACCESS

state, 228
Chi-Squared transformer, 359–362
classifications, predictive data

mining, 584
cleansing

data architecture, 141
data warehouse (DW) process, 31

ETL element, 39
standardization of data, 39

CLI. (Call Level Interface), 255
Client Connect, data source access, 310
closed-loop learning, 53–54
CLP, AUTOCONFIGURE definitions,

198–199
clustering, discovery data mining,

583–585
clustering index, atomic layer, 161
clusters, technical architecture, 166–168
code resolution, ETL transformation, 39
Cognos, 256, 453–454, 463
column grouping query, MQTs, 235–238
column mapping page, OLAP Server,

520
column type/size, technical meta

data, 41
columns, 204, 241–242
command program, 385
commands

CHECK CONSTRAINT, 202
CREATE DATABASE, 198
ESTIMATEFULLDBSIZE, 501–502
SET MSG ONLY, 500–501

common data model, data
mining, 579

Common Warehouse Meta Data Inter-
change (CWMI), 416

Common Warehouse Metamodel
(CWM), 416, 418

compensation, 234
compression, specific columns, 204
compromise, Hybrid OLAP, 48
computer-aided software engineering

(CASE), meta data generation, 41
conceptual views, enterprise

strategy, 63
Concurrent Resource Manager, 178–179
Connection Concentrator, 203–204
constraints

data architecture, 67
enterprise strategy, 63
informational, 202
technical architecture, 66

constructs, matching inhibited queries,
241

consultants, planning team members, 76
consumer-to-consumer (C2C) portals, 52
containers, 157–158, 195–196
control database, 256, 308, 410

656 Index

corporate culture, BI organization
barrier, 6

correlation analysis, 362–364
correlation coefficient, 362–363
CORRELATION function, 598, 607–608,

617–619
cost accounting, ROI, 19–20
COUNT_BIG function, 599
counters, performance variable, 276
COUNT function, 598–599
coupons, customer touch point, 52
covariance, 363
COVARIANCE function, 599–600,

606–607
CPU, OLAP Server estimates, 511
criteria matching

aggregation function query, 235–238
column grouping query, 235–238
extra table query, 238–240
matching inhibited queries, 240–243
matching permitted, 234–240
MQTs, 233–243
perfect match query, 234–235
superset predicate query, 234–235

cross-tabulation rows, 543
CUBE function, OLAP, 542–544,

552–553, 555–560, 563
cubes, MOLAP server storage, 49–50
cube/star farms, traditional data struc-

ture, 5
customer agents, 572
customer relationship management

(CRM), 7
customers, 4–5, 7
customer scoring, back-feed loop, 8–9
customer touch points

agents, 7
data mining influence, 574
described, 8
OLAP Server, 469–470
spatial data influence, 624–625
types, 52

CWM (Common Warehouse
Metamodel), 416, 418

CWM format, meta data, 438, 441
CWMI (Common Warehouse Meta Data

Interchange), 416

D
data, dormant, 22
data access, 40–41, 96

data architecture
atomic layer, 111
atomic layer alternatives, 113–117
atomic-level model, 128, 132–133
atomic vs. star data, 138
business logical model (BLM), 128,

130–131
cleansing, 141
data delivery, 122–127
data flow diagram (DFD), 129
data mart models, 128, 133–137
data marts, 112, 118–122
deliverables, 127–129
dimensional atomic layer, 113–114
dimensional cap, 114–116
high-level, 111
HOLAP platform/Star Schema atomic

layer, 117
Inmon approach, 129–130
integration, 141
iteration planning, 62, 66–69
latency, 140
metric maps, 128
MicroStrategy Intelligent Server,

116–117
multidimensional atomic layer,

114–115
OLAP, 141
operational data store (OSD), 138–140
poor choice indicators, 108
ROLAP platform/3NF atomic layer,

116–117
scope, 140
selection criteria, 140–143
source-to-target maps, 129
templates, 109
transformation, 141
types, 141
variations, 110

data arts, spatial data influence, 623–625
database managed storage (DBMS),

157–158, 195–197
database matrix, OLAP Server, 496–498
database-resident tools, 25
databases, 215, 256, 506
database tables, 255
data blocks, OLAP Server,

496–498, 500
data cells, OLAP Server, 500
data content, data model element, 580
data dart, data architecture template, 109
data definition language (DDL), 41

Index 657

data delivery system, 26–27, 122–127
data descriptions, data model element,

580
data flow diagram (DFD), 129
DataJoiner, 154
data links, process modeler, 320–321
data-load rules files, OLAP Server, 490
data loads, OLAP Server, 471
data management, 40, 158–165
data mart models, 128, 133–137
data marts

architecture component, 7
atomic-level data consumer, 30
attribution benefits, 119
business rule adjustment benefits, 119
data architecture, 112, 118–122
data mining influence, 573
data refining associations, 39–40
data target, 34–35
dependent, 34, 120–121
derived benefits, 118
drill-down benefits, 119
drill-through benefits, 119
end-user access, 34
historical integrity, 119
implementation methods, 14
implemented as an extension of

the data warehouse, 34
independent, 34, 121–122
integration benefits, 118
multidimensional/relational

data view, 34
OLAP Server, 469–470
pre-aggregated information storage, 34
precalculation benefits, 118
purposes, 34
simplicity of design/performance

tradeoffs, 35
summary benefits, 118

data mining
advantages, 574
agent technology, 572
aggregated spend, 580
analysts, 42, 574
analytical user requirements, 46–47
atomic level, 573
benefits, 588–591
business issue definition, 577–580
common data model, 579
comprehension hurdle, 571
computationally complex, 570
customer agents, 572

customer profiling, 7
customer relationship management

(CRM), 7
data access tool, 41
data content, 580
data description, 580
data marts, 573
data quality, 589
data recognition, 579
data sources, 580
data sourcing, 582
data types, 580
data usage, 580
data warehouse agents, 572
DB2 Intelligent Miner Scoring

Services, 24
defined, 570
demographic data type, 581
discovery, 583–584
exploring/evaluating data, 582–583
implausible distributions, 582
implementation skills, 587–588
information content planning

element, 12
information organization, 571–574
integration, 586–587
mapping business issues, 580–582
ODS objects, 572
OLAP Server benefits, 591–593
OLAP uses, 590–591
operations agents, 572
predictive, 583–585
Predictive Model Markup Language

(PMML), 24
preprocessing data, 582
problem identification, 578–579
process flow, 575–586
questions, 575
relationship data type, 581
relevant dimensions, 589–590
results application, 580
results deployment, 586
results interpretation, 585
seamless integration, 24
spatial analysis comparison, 635–637
staging area, 572–573
third-party data, 573
touch points, 574
transactional data type, 581
user communities, 574
variable selections, 583
visual inspection, 582

658 Index

data models, 580–582
data partitioning, parallelism, 154
data profiling, 433
DataPropagator Relational, ODS

capability, 26
data quality, data mining benefit, 589
data refinement, data warehouse

(DW), 32
data refining, data mart associations,

39–40
data replication steps, 371
data silos, poor architecture indicator, 100
data sources, 32, 322, 580
data sourcing, data mining, 582
DataStage, meta data collection, 429–431
data storage, partitioning, 157–158
data structures, 5
data targets, 32–36
data types, data model element, 580
data usage, data model element, 580
data volumes, transformations, 328
data warehouse agents, 572
Data Warehouse Center

agents/sites, 255–256
Axio meta data, 433–434
base aggregate replication steps, 259
change aggregate replication steps, 259
chi-squared goodness-of-fit test,

359–362
Common Warehouse Metamodel

(CWM), 418
control database, 256, 308
current source checking, 278
CWMI compliant vendor tools, 256
database creation, 261
data profiling, 433–434
data reorganization, 304
data replication steps, 369–379
DataStage meta data, 429–431
DB2 Control Center component, 254
DB2 V8 enhancements, 308–311
default DWC agent site, 256
dependency checking, 331–333
editions, 328–329
environment configuration, 261–262
ERwin meta data, 431–433
ETI-EXTRACT meta data, 420–425
ETI-Meta Scheduler, 420–425
file program steps, 260
FormatDate function, 351–352
IBM API, 418

IBM OLAP Integration Server
meta data, 434–437

incremental commit, 336
INTEGRITY meta data collection,

425–429
interchange files, 417
launchpad, 261–277
LOAD utility, 339–340
log history, 308
logger, 255
maintenance parameters, 307–308
meta data acquisition, 417–425
meta data exchange formats, 438–441
meta data exchanges, 437–441
meta data integration, 418
Meta Data Interchange Standard

(MDIS), 418
meta data transmissions, 441–448
monitoring tools, 289–302
MQSeries integration, 379–385
Notification List, 282
Object Management Group’s CWM

format, 438, 441
OLAP integration, 24
OLAP Server integration, 515–516
OLAP Server program steps, 259–260
OLAP support step types, 516–517
performance tuning, 307
performance variables, 276
point-in-time replication steps, 259
population monitoring, 291–298
population/usage questions, 289–291
process groups, 319–320
process modeler, 320–322
process scheduling, 283–286
process steps, 257–260
process task flows, 277–278
production mode promotion, 278–279
Publish Meta Data function, 450
Query Patroller, 298–299
Replication Center setup, 371–373
Replication Launchpad, 371–373
replication steps, 258–259
retry, 333
root step, 278
seamless BI integration, 22–23
security setup, 262
server, 255
shortcut step, 278
source data browsing, 261–262
source identification, 317–318
sources, 254–255

Index 659

SQLAssist Wizard, 335
SQL steps, 258
SQL transformation step types,

333–337
staging table replication steps, 259
statistical transformers, 352–368
step notifications, 282
step task flows, 277–278
subject areas, 254, 318–319
tag language format, 417, 438–441
target identification, 317–318
targets, 255
task flow controls, 277–289
terminal step, 278
transform steps, 260
transformation step types, 323–327
transformation vendor integration,

388–399
transformer steps, 340–368
transient data, 329–333
transient step, 278
triggering external steps, 286–289
updating statistics, 303
usage monitoring, 298–299
user authorizations, 276
user copy replication steps, 259
user-defined program steps, 260
user-defined transformation steps,

385–388
utility steps, 259, 338–340
warehouse object catalogs, 276–277
warehouse scheduler, 278–281
warehouse tuning, 303–307
Work in Progress environment,

291–299
data warehouses (DWs)

BI component, 31–32
cleansing process, 31
data access, 40–41
data management, 40
data refinement, 32
defined, 3
dormant data avoidance, 22
evolving asset, 71
extraction process, 31
extraction, transformation, and loading

(ETL), 36–40
geocoding, 644–645
loading, 32
meta data, 41–42
passive, 3–4
ROI application problems, 19

spatial data addition, 647–649
spatial warehouse requirements,

646–647
transformation process, 31
transportation, 32

date formats, changing, 351–352
DB2

analytical functions, 25
atomic layer data management,

158–164
automatic updates, 150
centralized data architecture, 148–152
cluster (shared disk), support, 148
clustering index, 161
Concurrent Resource Manager, 178–179
database-managed storage (DMS),

157–158
DB2SPLIT utility, 155–156
distributed data warehousing, 152–154
hardware architectures, 169–170
hierarchical storage, 162–164
Hierarchical Storage Management

(HSM), 163–164
high-availability environment, 172–179
I/O level parallelism, 157
infinite logging, 196–197
instances, 148
inter-partition parallelism, 156
intra-partition parallelism, 156
materialized query tables (MQTs),

149–150
multiple load files, 155
nicknamed MQTs, 151–153
parallelism, 154–157
partition groups, 150–151
partitioning keys, 153–155
pipeline parallelism, 157
Query By Image Content (QBIC), 162
query steps, 157
quiesce mode, 199–200
real (near real) time updates, 150
recursion functions, 25
refresh-deferred options for MQTs, 150
refresh-immediate options for

MQTs, 150
shared-nothing (MMP) support,

148–149
single-processor support, 148
SMP support, 148
star schemas, 164–165
summary table queries, 149–150

660 Index

DB2 (continued)
system-managed storage (SMS),

157–158
tablespaces, 157–158
turntable parameter, 152
unplanned outage avoidance, 175–179
XML support, 23

DB2 DataJoiner, ODS capability, 26
DB2 Extenders, BI integration, 23
DB2 Intelligent Miner, 24
DB2 Intelligent Miner for Data, 24
DB2 Intelligent Miner for Text, 24
DB2 Intelligent Miner Scoring

Services, 24
DB2 Loader, load from cursor support,

189
db2move export/import utility, 438
DB2 OLAP Server

meta data collection, 459–460
meta data transmission, 447–448
seamless BI integration, 22–23
See also OLAP Server

DB2 OLAP Server Analyzer, 24
DB2 OLAP Server V 8.1, HOLAP plat-

form/Star Schema atomic layer, 117
DB2 Relational Connect, 26, 153–154
DB2 Scoring, PMML roots, 209–210
DB2 Spatial Extenders, spatial

analysis, 25
DB2SPLIT utility, 155–156
DB2 UDB V8, 22–23
DB2 XML Extender Document Access

Definition (DAD) file, 380, 384–385
DBMS. See database managed storage
DDL (data definition language), 41
dealers, customer touch point, 8
decision support system (DSS), 626,

634–635
default calc script, OLAP Server,

527–528
default DWC agent site, DWC, 256
deferred refresh, MQTs, 221–225
defined types, atomic layer, 162
deliverables, data architecture, 127–129
demographic data type, data mining,

581
DENSE_RANK function, OLAP,

538, 546
dependency checking, 331–333
dependent data mart, 34, 120–121

deployable, Desktop OLAP, 48
derived data calculations, 41
Design and Planning engagement,

101–102
Desktop OLAP, 41, 48
diagrams, technical architecture, 147
DIF (Dysfunction, Impact, and Feasibil-

ity) Matrix, 78–86
dimensional atomic layer, 113–114
dimensional business question, 11–12
dimensional cap, 114–116
dimensional model , 477–479
dimensional spectrum, 51–52
dimensional technology, 47–52
dimension-build rules files, 490
direct mail, customer touch point, 8, 53
disaster recovery, OLAP Server, 512–513
discipline, BI planning importance,

16–17
discovery data mining, 583–584
disk throughput, OLAP Server, 511
disparate data, data delivery, 122–123
distributed data warehousing, 152–154
DML operations, 201–202
dormant data, 22
drop containers, DBMS monitoring, 196
dropped MQTs, 221
DSS. See decision support system
DWC. See Data Warehouse Center
DWC launchpad

process definition, 264–265
process step definition, 268–269
source/step links, 270–271
step parameter definitions, 272–273
step run definitions, 274
step/target links, 270–272
subject area definition, 264
target table key definitions, 274–275
user authorizations, 276
warehouse maintenance, 275–276
warehouse object catalogs, 276–277
warehouse source definition, 266–267
warehouse target definition, 267–268

DWs. See data warehouses
dynamic bufferpools, 194–195
dynamic databases, 195
dynamic environment, 34
dynamic load library, 385
dynamic parallelism, 170–171
dynamic users, analytical

requirements, 42

Index 661

Dysfunction, Impact, and Feasibility
(DIF) Matrix, 78

dysfunctional processes, identifying,
82–83

E
EAI. See enterprise application

integration
editions, DWC, 328–329
eLiza project, Self Managing and

Resource Tuning (SMART), 197
email, customer touch point, 8, 52
email, DWC step notifications, 282
end-users, 41–47
enterprise application integration (EAI),

126–127
enterprise data warehouse, 120–121
enterprise resource planning (ERP), 404
enterprise services, OLAP Server, 472
enterprise strategy, 62–64
Environmental Systems Research

Institute (ERSI), 25, 639–640
environments, DWC, 261–262
ERwin, 256, 431–433, 454–455
Essbase, development history, 468–469
ESSCMD command-line utility, 490–492
ESTIMATEFULLDBSIZE command,

501–502
ETI-EXTRACT, 388–396, 420–425,

457–458
ETI-Meta Scheduler, meta data

collection, 420–425
ETL. See extraction, transformation, and

loading
Event Monitor, 299–300, 304–305
event monitors, UDB events, 200
event thresholds, Automated Health

Management Framework, 198
Evoke, Axio, 433–434
Evolutionary Technologies

International, 256
evolving asset, data warehouse as, 71
executable, user-defined program type,

385
executives, data access requirements, 41
executive sponsorship, 71
exports, OLAP Server, 471
expressions, 242
extensibility, 207–210
external authentication, OLAP Server, 472

external data, source type, 32
extraction, 38–39, 31
extraction, transformation, and loading

(ETL), 7, 14–15, 36–40, 95, 126–127

F
feasibility study, spiral approach, 94–95
file program steps, DWC, 260
file with load rules, OLAP Server,

522–523
file without load rules, 523–525
finance departments, 44
fixed length format, 380–382
FormatDate function, 351–352
formulas, ROI, 21
free text data loads, OLAP Server,

521–522
functions

analytic, 25, 596–619
bi-centric examples, 612–619
OLAP Server, 471, 475
recursion, 25

G
gauges, performance variable, 276
geocoding, spatial data, 7, 644–645
goals

business intelligence (BI), 3
data architecture, 67
enterprise strategy, 63
long term, 17
OLAP Server database tuning, 503
short term, 17
technical architecture, 66

government, spatial data source, 633
granularity, atomic layer, 33
graphics, vs. spatial data, 631–632
GROUP BY function, 552–553, 560–562
GROUPING function, 552–553, 563
grouping sets, OLAP functions, 542

H
hardware architectures, DB2, 169–170
hash map, 154
Health Center, DBMS, 195–196
hierarchical storage, atomic layer,

162–164
Hierarchical Storage Management

(HSM), 163–164
hierarchies, 41, 45–46

662 Index

high availability
batch window elimination, 190
database managed storage (DBMS),

195–196
defined, 186–187
dynamic bufferpools, 194–195
dynamic databases, 195
load from cursor, 189
logs, 196–197
MQT maintenance, 190–191
MQT staging tables, 191–192
multidimensional clustering (MDC),

187–188
OnLine Load, 188–189
online table reorganization, 192–194
table reorganization elimination, 190
See also availability

high-level data architecture, illustrated,
111

historical data, source type, 32
historical integrity, 33, 54–58, 119
HOLAP platform/Star Schema atomic

layer, 117
HSM (Hierarchical Storage

Management), 163–164
hybrid analysis, OLAP Server, 471
Hybrid OLAP, compromise, 48
Hyperion, Essbase, 467
Hyperion Integration Server, 434
Hyperion OLAP Server CWMI

compliant, 256

I
I/O level parallelism, DB2, 157
IBM, core BI objectives, 22–23
IBM API, 418
IBM approach

BI Solution Delivery, 100
business intelligence engagement, 101
consulting engagement, 102
data warehouse development, 102
design/planning engagement, 101–102
model components, 100
strategy engagement, 100

IBM DB2 Business Intelligence Tools
Data Warehouse Center, 262

IBM DB2 OLAP Server Theory and Prac-
tices Redbook (IBM Inc., 2001), 493

IBM OLAP Integration Server, 434–437
IBM’s High Availability Cluster Multi-

Processing (HACMP), 175

IBM WebSphere MQ, message broker, 27
idle standby, 176
IGS Method Business Intelligence

Engagement Model, 100
Image Extender, image data storage, 208
immediate refresh, MQTs, 226–227
implausible distributions, data mining,

582
implementation view, perspectives,

69–70
IM Scoring, data mining, 586–587
independent data marts, 34, 121–122
indexes, 41, 156–157, 161, 204–205
infinite logging, DB2 support, 196–197
informational constraints, 202
Information Catalog

Brio meta data collection, 450–451
Brio meta data transmission, 461
BusinessObjects meta data collection,

451–452
BusinessObjects meta data

transmission, 462
Cognos meta data collection, 453–454
Cognos meta data transmission, 463
DB2 OLAP Server meta data collection,

459–460
ERwin meta data collection, 454–455
ETI-Extract meta data collection,

457–458
IBM DB2 Warehouse Center meta data

collection, 450
meta data acquisition, 450–460
meta data storage, 410, 416–417
meta data transmission, 442–445,

460–463
QMF for Windows meta data

collection, 455–457
separate instance meta data collection,

450
transferring meta data in/out, 448–463
transmitting meta data between cata-

logs, 460–461
Information Catalog Manager, 276–277
information content, 10–17
information gathering, spatial

analysis, 7
Informix, transformation data source,

322
Inmon approach, 90–91, 129–130
instances, 148, 437–44
INSTEAD OF triggers, 200–201

Index 663

integration, data architecture, 141
Integration Server, OLAP Server,

493–495
INTEGRITY, meta data, 425–429
Intelligent Miner

data mining benefits, 591–593
seamless BI integration, 22–23
See also OLAP Miner

interchange files, meta data, 417
Internet, data source type, 32
inter-partition parallelism, 156, 170–171
intra-partition parallelism, 156
isolation mismatch, 243
iterations

90-day cycles, 70
atomic layer, 33
BI hacking approach, 90
business dimensional lifecycle

approach, 91
business requirement driven, 60
corporate strategy alignment princi-

ples, 71
data architecture, 62
defined, 8
DIF matrix, 77–86
dormant data avoidance, 22
enterprise strategy, 62
extraction, transformation, and loading

(ETL), 36–40
first iteration planning, 70–87
IBM approach, 100–103
implementation and maintenance, 62
Inmon approach, 90–91
long-term enterprise assimilation, 61
near-term gains/long-term plans, 62
needs identification, 61
readiness assessment, 71–73
resource planning, 74–77
schizophrenic interpretation, 61
scope definition, 87
spiral approach, 91–99
strategic business question, 87–89
subsequent iteration planning, 87–89
tactical business question, 88
technical architecture, 62

IT JAD sessions, DIF Matrix, 80

J
Java-based GUI, meta data input, 418
Java Development Kit (JDK), 287
join MQTs, table joins, 215–216

joins, 159–160, 164–165
joint application design (JAD), 10–11

K
key columns, generating, 343–344
key questions, analytical systems, 4–5
kiosks, customer touch point, 52

L
latency, data architecture, 141
LifeKeeper, 175
linear regression, 610–612
link analysis, discovery data

mining, 584
links, 270–272, 320–321
Linux platform, warehouse agent, 309
load from cursor, high availability, 189
loading, data warehouse (DW)

process, 32
load rules, OLAP Server, 521–527
LOAD utility, 227–231, 310, 339–340
local files, DWC target, 255
Log Details, Work in Progress, 296
LOG function, OLAP, 563
loggers, DWC, 255
log history, DWC, 308
logs, 196–197, 199
loops, back-feed, 8–9, 470

M
main page, OLAP Server, 519
manufacturing, OLAP

applications, 44
mapping tables, code resolution, 39
marketing campaigns, 5, 562–566
marketing departments, 44
market research, data source type, 32
massively parallel processing (MPP),

166–168
matching inhibited queries, 240–243
matching permitted queries, 234–240
materialized query tables (MQTs)

aggregation function query, 235–238
ALTER statement, 231–232
automatic summary tables ASTs,

213–214
back-end database cache use, 215
CHECK PENDING NO ACCESS state,

219
CHECK PENDING READ ACCESS

state, 228

664 Index

materialized query tables
(MQTs) (continued)

column grouping query, 235–238
compensation, 234
creating, 219
criteria matching, 233–243
DB2, 149–150
deferred refresh, 221–225
design guidelines, 243–244
development history, 213–214
dropped, 221
extra table query, 238–240
high availability, 190–191
immediate refresh, 226–227
implementation, 216
initializing, 219–221
join, 215–216
limitations, 247–249
loading underlying tables, 227–231
maintenance, 190–191
matching inhibited queries, 240–243
matching permitted queries, 234–240
materialized view functionality, 214–215
materialized view matching, 232–243
nicknamed MQTs, 151–153
NO DATA MOVEMENT state, 228
optimization flow, 233
partition groups, 151
perfect match query, 234–235
performance issues, 214
populating, 219–221
query latency, 216
real-world example, 214
refresh optimization, 245–247
refresh strategies, 221–227
REFRESH TABLE statement, 217–219,

224–225, 245–247
SET INTEGRITY statement, 219
single-table example, 215–216
SQL INSERT statements, 220
staging tables, 191–192
state considerations, 232–233
superset predicate query, 234–235
syntax elements, 216–217
tuning, 216, 221, 244–247
user-maintained, 203
user-managed approach, 219–220

materialized view matching, 235–243
MAX function, 600
MaxL command-line utility, 490–492
MDBMS technology, data access tool, 41
MDC. See multidimensional clustering

MDIS (Meta Data Interchange
Standard), 418

members, OLAP Server, 483–485
memory, blocked bufferpools, 206
message brokers, 26–27, 123–124
meta data

acquisition methods, 418–419
Ascential INTEGRITY transmission, 448
Axio, 433–434
Brio, 450–451, 461
business category, 41–42
BusinessObjects, 451–452, 462
calculated fields, 406
categories, 41–42
classifications, 406–409
Cognos, 453–454, 462
Common Warehouse Meta Data Inter-

change (CWMI), 416
Common Warehouse Metamodel

(CWM), 416, 418
control database, 410
data profiling, 433–434
Data Warehouse Center, 417–425
DataStage, 429–431
db2move export/import utility, 438
DB2 OLAP Server, 459–460
DB2 OLAP Server transmission, 447–448
defined, 404
degree of formality, 408–409
DWC acquisition, 418–425
ERwin, 431–433, 454–455
ETI-Extract, 420–425, 457–458
exchange formats, 438–441
IBM API, 418
IBM Information Catalog transmission,

442–445
IBM OLAP Integration Server, 434–437
Information Catalog, 410, 416–417
INTEGRITY, 425–429
interchange files, 417
manual user input, 418
Meta Data Interchange Standard

(MDIS), 418
Object Management Group’s CWM

format, 438, 441
OLAP Integration Server transmission,

445–447
OLAP Server, 469–470
propagation tools, 441–448
publishing to IBM Information Catalog

Manager, 311
QMF for Windows, 455–457

Index 665

related data information, 406
repository, 404, 409–416
response time estimates, 406
sizing requirements, 180
sources, 404–406
subject-oriented, 405
tag export/import, 439–441
tag language format, 417, 438–441
technical category, 41
transferring in/out of Information

Catalog, 448–463
transformed data interpretation, 405
transmission, 460–463
type of user classification, 407
types, 405
usage context classification, 408–409
warehouse object catalogs, 276–277

Meta Data Interchange Standard
(MDIS), 418

metric maps, data architecture, 128
Microsoft Cluster Services, 175
Microsoft OLE DB, 399–401
Microsoft SQL Server, 322
MicroStrategy Intelligent Server, 116–117
MIN function, 600–601
mirrored logs, 197
modeling tools, meta data source, 404
MOLAP server, 49–50
moving averages, 364–366
MPP (massively parallel processing),

166–168
MQSeries Integrator, 27, 209
MQSeries messages, 23, 26–27, 255, 322,

379–385
MQTs. See materialized query tables
multidimensional clustering (MDC),

161, 174–175, 187–188, 206
multidimensional data architecture,

114–115
Multidimensional OLAP, per-

formance, 48
multidimensional views, OLAP, 44–45
multimedia, 8, 32, 53
multiple load files, DB2, 155
multiple technology business

question, 13
mutual takeover, 177

N
net present value (NPV), ROI base, 20
Net Search Extender, 209
nicknamed MQTs, 151–153

NO DATA MOVEMENT state, 228
nonfrequent user , 42
normalized atomic-level data, 5
Notification List, DWC, 282
NPV (net present value), 20
null columns, compression, 204
numbering , 536–537, 544–551

O
Object Management Group, 438, 441
ODBC (open database connectivity

drivers), 255
ODS. See operational data store
ODS objects, data mining influence, 572
OLAP analysis, 469–470
OLAP functions

aggregate, 536–537, 544–551
annual sales by region/city, 560–562
column definitions, 536
cross-tabulation rows, 543
grouping capabilities, 542
grouping sets, 542
numbering, 536–537, 544–551
ranking, 536–537, 544–551
results display, 536
row definitions, 536
supergroups, 537
target group identification, 562–566
window aggregation group clause,

540–541
window definitions, 536

OLAP Integration Server, 445–447
OLAP Miner, 471, 591–593. See also Intel-

ligent Miner
OLAP Server

administration services, 471
administrative functions, 471
analytic cycle, 472–474
analytic database server platform, 468
Application Manager, 489–490
arrays, 483–485
attribute dimensions, 507–508
auxiliary storage requirements, 512
back-feed loop, 470
backups, 512–513
batch calculations, 504
batch calculation time estimate, 501
business outline, 479–483
calc scripts, 489
calculations, 527–529
calculation scripts, 527–528
calc with calc rules script, 528–529

666 Index

OLAP Server (continued)
column mapping page, 520
CPU estimates, 511
database file configuration, 506
database matrix, 496–498
database partitioning, 506–507
database size estimate, 500
database tuning goals, 503
data blocks, 496–498, 500
data cells, 500
data-load rules files, 490
data loads, 471
data marts, 469–470
data mining benefits, 591–593
data storage, 504
data warehouse prototype, 488–495
default calc, 527–528
derived measures, 485
development history, 468–469
dimensional model, 477–479
dimension-build rules files, 490
disaster recovery, 512–513
disk subsystem utilization, 506
disk throughput estimates, 511
DWC integration, 515–516
DWC program steps, 259–260
dynamic calculations, 504–506
enterprise services, 472
ESSCMD command-line utility, 490–492
ESTIMATEFULLDBSIZE command,

501–502
exports, 471
external authentication, 472
file updates, 530–531
file with load rules, 522–523
file without load rules, 523–525
free text data loads, 521–522
functions, 475
hardware requirements, 509–512
hybrid analysis, 471
Hyperion, Essbase similarities, 467
implementation architecture, 486–488
Integration Server, 493–495
load rules, 521–527
main page, 519
MaxL command-line utility, 490–492
members, 483–485
member tags, 504–506
meta data, 470
metric generation, 474–475
OLAP analysis, 469–470

OLAP miner, 471
outline building methods, 488
outline tuning, 503–504
parallel calculations, 471
process steps, 518–519
program processing, 520–521
representative data, 501
rule files, 489
schema limitations, 484
security migration tool, 471
SET MSG ONLY command, 500–501
sizing, 499–502
skill sets, 476–477
speed-of-thought analysis, 478–479
SQL table update, 531–533
SQL table with load rules, 526–527
step types, 516–517
storage array, 499–500
subject area, 518
support requirements, 495
touch points, 469–470
transformations, 518–521
user community pointing, 469–470

OLE DB, 255, 322
online analytical processing (OLAP)

adaptations, 48
analytical user requirements, 43–46
calculation-intensive capabilities, 45
data architecture, 141
data mining uses, 590–591
Desktop OLAP, 48
dimensional technologies, 47–52
Hybrid OLAP, 48
information access tool, 5
Multidimensional OLAP, 48
multidimensional views, 44–45
relational databases, 43–44
Relational OLAP, 48
seamless integration, 24
servers, 48–50
time intelligence, 45–46

OnLine Load, 174, 188–191
online space management, 172
online table reorganization, 192–194
open database connectivity (ODBC)

drivers, warehouse agents, 255
operating systems, agent site, 256
operational databases, 8, 32, 623–625
operational data store (ODS)

architecture component, 6
atomic layer component, 30

Index 667

current-valued, 35
data architecture, 138–140
data architecture template, 109
data delivery system, 26–27
data mining integration, 586–587
data target, 35–36
defined, 29–30
detailed, 35
integration, 35
subject-oriented, 35
volatility, 35

operational managers, 41
operations agents, 572
Oracle, transformation data source, 322
ORDER BY function, 539–540, 548–551,

615–616
orphaned structures, 100
OVER function, OLAP, 548, 615–616

P
parallel calculations, 471
parallelism, 154–157, 170–171
parallel loading, availability element,

174
PARTITION BY function, 539, 546–547,

615–616
partition groups, DB2 support, 150–151
partitioning keys, 153–155
partitions, 154–161, 172, , 506–507
passive data warehouses, 3–4
Performance Monitor, 275–276
performance variables, DWC, 276
period tables, generating, 344–346
pictures, data source type, 32
pipeline parallelism, DB2, 157
pivot columns, transformations, 348–350
pivot group columns, 348–350
pivot tables, information access tool, 5
plaintext files, data source type, 32
PMML. See Predictive Modeling

Markup Language
point in time, 259, 369–370
population, monitoring, 291–298
power users, analytical requirements, 42
pre-aggregated information

storage, 34
predictive data mining, 583–585
Predictive Modeling Markup Language

(PMML), 24, 209–210
print advertisement, 8
print media, customer touch point, 53

process groups, DWC, 319–320
process model, 316–322
process modeler, transformations,

320–322
process steps, 296–298, 518–519
products, analytical system questions, 5
program processing, 520–521
project failures, 108
project teams, participants, 75–76
Publish Meta Data function, 450
pulling, data extraction, 39
pushing, data propagation, 39
p-value, 363

Q
QBIC. (Query By Image Content), 162
QMF for Windows, 455–457
Qualix HA, 175
queries, 41, 43, 149–150, 156–157, 234–243
Query By Image Content (QBIC), 162
Query Patroller, 298–299
questions

analytical system, 4–5
data architecture deliverables, 127
data mining, 575
dimensional business, 11
dysfunctional process identification,

82–83
multiple technology business, 13
process feasibility, 84
process impact, 83
ROI benefits, 21
spatial data, 624–627, 639–643
statistics, 46
strategic business identification, 87–89
tactical business identification, 88
technical architecture, 146
transformation handling, 314–316
warehouse population/usage, 289–291

quiesce mode, 199–200

R
radio, customer touch point, 53
RAND function, 601–602, 612–615
RANGE function, OLAP, 549–551
RANK function, 537–538, 545–546, 563,

615–616
ranking, 536–537, 544–551
raster data, 629–630
RDBMS. See relational database man-

agement system

668 Index

readiness assessments, elements, 71–73
recursion functions, 25
redistribution, atomic layer, 158–160
REFRESH DEFERRED tables, 221–225
REFRESH IMMEDIATE tables, 226–227
REFRESH TABLE statement, 217–219,

224–245, 245–247
REGR_AVGX function, 603–606
REGR_AVGY function, 603–606
REGR_COUNT function, 603–606
regression analysis, 366–368
regression functions, 603–607
REGR_INTERCEPT function, 603–606
REGR_R2 function, 603–606, 610–612
REGR_SLOPE function, 603–606
REGR_SXX function, 603–606
REGR_SXY function, 603–606
REGR_SYY function, 603–606
relational database management system

(RDBMS), 14, 404
relational databases, 32, 43–44
Relational OLAP, 41, 48
relationship data type, data mining, 581
relevant dimensions, 589–590
reorganization, tables, 190, 192–194
REORG utility, 304, 415
repeatable processes, ROI com-

ponent, 21
replicated tables, atomic layer, 160–161
replication, 369
Replication Center, configuration,

371–373
Replication Center Monitoring, 300–302
replication enabled tables, 255
Replication Launchpad, 371–373
Replication Process folder, 374
replication steps, 258–259, 369–379
reporting database, 6
reports, analytical user requirements, 43
repository

attributes, 413–414
benefits, 411–413
characteristics, 409–410
Common Warehouse Meta Data Inter-

change (CWMI), 416
Common Warehouse Metamodel

(CWM), 416
defined, 404
integration problems, 415–416
maintenance techniques, 414–415
scope, 410

representative data, OLAP Server, 501
resource planning, team member, 74–75
resource sharing, Connection

Concentrator, 203–204
Retail subject area, DWC, 254
retry, transformations, 333
return on investment (ROI)

application problems, 19–20
benefit identification, 20
benefit questions, 21
“big-bang” avoidance, 20
consensus gathering, 20
cost accounting, 19–20
cost recognition, 20
cost reduction based on NPV, 20
element identification, 20
formulas, 21
measurement methods, 18–21
repeatable processes, 21
time frame, 21

ROLAP platform/3NF atomic layer,
116–117

ROLAP servers, dynamic SQL
generation, 50

roles
data warehouse team members, 74–75
project team, 75–76

ROLLUP function, OLAP, 542–543,
552–555, 560–562

ROW_NUMBER function, OLAP, 546
ROWNUMBER function, OLAP,

538–539
rows, cross-tabulation, 543
ROWS function, OLAP, 548–551
rule files, OLAP Server, 489
Run Statistics Utility, 303
RUNSTATS utility, repository

maintenance, 415

S
sales channels, analytical system ques-

tions, 5
sales departments, OLAP appli-

cations, 44
sales transaction, time-variant example,

55–58
SAP business objects, DWC source, 255
SAS dataset, data marts, 34
scalability, Relational OLAP, 48
scheduler

DWC, 278–281
warehouse servers, 255

Index 669

schemas
database navigation uses, 149
distributed data warehousing, 153
OLAP Server limitations, 484
star, 164–165

scope
data architecture, 140
iterations, 87
meta data repository, 410

scripts, OLAP Server calculations,
527–529

seamless integration
database-resident tools, 25
data mining, 24
IBM core objective, 22–23
online analytic processing, 24
spatial analysis, 25

searches, Text Information Extender, 208
security, DWC setup, 262
security migration tool, OLAP Server,

471
Self Managing and Resource

Tuning (SMART), database
management, 197

sequence analysis, discovery data min-
ing, 584

servers
DB2 OLAP Server, 117
DWC, 255
MicroStrategy Intelligent Server, 116–117
MOLAP, 49–50
OLAP, 48–50

Service Guard, 175
service level agreements (SLAs), central-

ized data architecture, 148
services, analytical system questions, 5
SET INTEGRITY statement, MQTs, 219
SET MSG ONLY command, OLAP

Server, 500–501
share calculations, complex calculation

type, 45
shared-nothing, 168–170
shared-nothing (MMP) support, DB2,

148–149
shared-resource, 168–170
simplified data delivery, IBM core objec-

tive, 23
single-point integration, data delivery,

124–125
single-table MQTs, hot data isolation,

215–216

skill sets, OLAP Server, 476–477
SMART (Self Managing and Resource

Tuning), 197
SMP. (symmetric multiprocessing),

166–168
Snapshot Monitor, 299–300, 304–305
source availability, iteration scope, 87
source data, browsing with DWC,

261–262
sources

DWC, 254–255
DWC definitions, 266–267
meta data, 404–406
selections, 309–310
spatial data, 622, 632–634
transformation identification, 317–318

source-to-target maps, data architecture,
129

spatial analysis
address cleansing, 14
data mining comparison, 635–637
DB2 Spatial Extenders, 25
Environmental Systems Research Insti-

tute (ERSI), 25
geocoding, 7
information content planning element,

12–13
information gathering tool, 7
RDBMS, 14
seamless integration, 25

spatial data
adding to the data warehouse (DW),

647–649
air pollution presentation, 639–640
analysts, 624–625
atomic level, 623–625
back-feed loops, 624–625
creating vs. acquiring, 632
customer density presentation, 638
customer distribution presentation,

640–641
data arts, 623–624
data-driven ring analysis presentation,

642–643
data mining comparison, 635–637
decision support system (DSS), 626,

634–635
drive-time analysis presentation,

642–643
ESRI, GeoStatistical Analyst, 639–640
geocoding, 644–645

670 Index

spatial data (continued)
government data sources, 633
onion analogy, 628
operational databases, 623–625
vs. other graphic types, 631–632
presentation methods, 637–643
questions, 624–627, 639–643
raster data, 629–630
ring analysis presentation, 641–642
sources, 622, 632–634
staging areas, 623–625
structures, 628–630
supported data types, 647
technology requirements, 646–647
third-party data, 623–625
touch points, 624–625
triangulated data, 630
triangulated irregular networks

(TINs), 630
Universal Database integration, 646–647
vector data, 629
vendor data sources, 633–634

Spatial Extender
graphical information storage, 207
seamless BI integration, 22–23
spatial objects/Universal Database

integration, 646–647
supported data types, 647

spiral approach
data access prototype, 96
ETL prototype, 95
feasibility study, 94–95
first iteration, 96–97
life cycle model, 93
risk reduction, 92–93
sections, 91–92
subsequent iterations, 97–98
time lines, 98–99
V-W staging, 98–99
warehouse development, 94–98

spreadsheets
data source type, 32
information access tool, 5
information extraction, 30

SQL. See Structured Query Language
SQLAssist Wizard, 335
SQL extensions, data mining integra-

tion, 586–587
SQL INSERT statements, MQTs, 220

SQL steps
DWC, 258
incremental commit, 336
Select and Insert, 335–336
Select and Update, 337
transformation types, 333–337

SQL tables, OLAP Server update,
531–533

SQL table with load rules, OLAP Server,
526–527

staging, sizing requirements, 180
staging area

address cleansing, 14
architecture component, 7
data architecture template, 109
data mining influence, 572–573
data target, 32–33
spatial data influence, 623–625

staging table replication steps, DWC, 259
staging tables

data replication step, 369–370
real-time updates, 191–192

standards, enterprise strategy, 64
star/cube farms, traditional data

structure, 5
star data, vs. atomic layer architecture,

138
star schema

data management, 164–165
indexes, 156–157
semi-join, 164–165

STARjoin, DB2, 164–165
statements

ALTER, 231–232
REFRESH TABLE, 217–219, 224–225,

245–247
SET INTEGRITY, 219
SQL INSERT, 220
UNION ALL, 201–202

states
CHECK PENDING NO ACCESS, 219
CHECK PENDING READ ACCESS, 228
LOAD utility, 228
MQT considerations, 232–233
NO DATA MOVEMENT, 228

static environment, atomic layer, 34
static parallelism, technical architecture,

170–171
static reports, information access tool, 5

Index 671

statistical row size, technical
architecture, 180–181

statistics
analytical user requirements, 46
questions, 46
warehouse population monitoring,

292–293
STDDEV function, 602, 609–610
SteelEye, 175
steps

cleansing transformer, 340–342
data replication, 369–379
DB2 utility, 338–340
DWC, 257–260
DWC definitions, 274
email notifications, 282
export utility, 338–339
generating key columns, 343–344
generating period tables, 344–346
incremental commit, 336
inverting data transformer, 346–347
OLAP Server types, 516–517
pivoting data, 348–350
production mode promotion, 278–279
retry, 333
root, 278
scheduling, 278–281
shortcut, 278
SQL Select and Insert, 335–336
SQL Select and Update, 337
SQL transformation types, 333–337
statistical transformers, 352–368
task flows, 277–278
terminal, 278
transformation types, 323–327
transformer, 340–368
transient, 278
triggering externally, 286–289
user-defined transformations, 385–388
waiting for multiple, 309

storage array, OLAP Server, 499–500
stored procedure, user-defined program

type, 385
stores, customer touch point, 52
strategic business questions, iteration

scope, 87
strategic requirements, iteration focus, 71
Strategy engagement, IBM approach, 100
stripe sets, DBMS monitoring, 195–196

Structured Query Language (SQL)
INSTEAD OF triggers, 200–201
ROLAP servers, 50

subject areas
defining, 264
DWC, 254
iteration scope, 87
OLAP Server, 518
transformations, 318–319

subsystems, OLAP Server, 506
subtotal calculations, statistical trans-

former, 357–359
SUM function, 563, 602
summary tables, 149–150, 203
Sun Cluster, 175
supergroups, OLAP functions, 537
Sybase, transformation data source, 322
symmetric multiprocessing (SMP),

166–168
system-managed storage (SMS), 157–158
system names, technical meta data

type, 41

T
table collocation, atomic layer, 158–160
table loads, transformations, 329
table names, technical meta data type, 41
table reorganization elimination, 190
tables

data source type, 32
load from cursor support, 189
loading underlying MQTs, 227–231
online loads, 188–189
online reorganization, 192–194
precomputed results, 25
redistribution, 159
REFRESH DEFERRED, 221–225
REFRESH IMMEDIATE, 226–227
replicated, 160–161
transaction, 190

tablespaces, 157–158
tag files, meta data export/import,

439–441
tag language files, meta data, 417
tag language format, 438–441
tape archives, data source type, 32
target groups, 562–566
targets, 255, 267–268, 317–318
target tables, 274–275, 329–333
target warehouse, updating, 309–310

672 Index

task flow controls, DWC, 277–289
team members, 15–16, 74–75
technical architecture

backups, 172–173
catalog partitions, 172
centralized data warehousing, 148–152
clusters, 166–168
data storage partitioning, 157–158
DB2SPLIT utility, 155–156
diagram, 147
distributed data warehousing, 152–154
dynamic parallelism, 170–171
high availability environment, 172–179
inter-partition parallelism, 170–171
iteration planning, 62, 64–66
massively parallel processing (MPP),

166–168
multidimension clustering (MDC),

174–175
on-line load, 174
parallelism, 154–157
parallel loading, 174
partitioning keys, 154–155
questions, 146
shared-nothing, 168–170
shared-resource, 168–170
sizing requirements, 179–181
static parallelism, 170–171
structures, 146
symmetric multiprocessing (SMP),

166–168
unplanned outage avoidance, 175–179

technical meta data, CASE genera-
tion, 41

telephone operators, 8
television, customer touch point, 53
templates, data architecture, 109
test plans, technical architecture, 69
Text Extender, linguistic indexing, 208
Text Information Extender, searches, 208
third-party data, 573, 623–625
time, hierarchies, 45–46
time frames, ROI, 21
time intelligence, OLAP, 45–46
time lines, spiral approach, 98–99
timestamps, performance variable, 276
time-variant, 55–58
time-variant data, 33
TINs. (triangulated irregular networks),

630

Tivoli Storage Manager, 163–164
transactional data type, data

mining, 581
transaction tables, 190
transformations

analysis of variance (ANOVA)
transformer, 352–355

Ascential INTEGRITY integration,
398–399

Basic Statistics transformer, 355–357
cascade links, 320–321
Chi-Squared transformer, 359–362
cleansing transformer, 340–342
correlation analysis, 362–364
data architecture, 141
data links, 320–321
data replication steps, 369–379
data sources, 322
data volumes, 328
data warehouse (DW) process, 31
date format changing, 351–352
dependency checking, 331–333
design questions, 314–316
editions, 328–329
ETI-Extract integration, 388–396
ETL element, 39
export utility step, 338–339
generating key columns, 343–344
generating period tables, 344–346
inverting data transformer, 346–348
LOAD utility, 339–340
Microsoft OLE DB, 399–401
moving average, 364–366
MQSeries integration, 379–385
multiple table loads, 329
OLAP Server, 518–521
pivoting data, 348–350
process groups, 319–320
process modeler, 320–322
refresh considerations, 327
regression analysis, 366–368
retry, 333
source identification, 317–318
SQL and Update step, 337
SQL Select and Insert step, 335–336
SQL step types, 333–337
statistical transformers, 352–368
step types, 323–327
subject area, 318–319
subtotal calculations, 357–359

Index 673

target identification, 317–318
transformer steps, 340–368
transient data, 329–333
Trillium Software System integration,

396–397
user-defined, 329
user-defined steps, 385–388
vendor integration, 388–399

transformation steps, monitoring,
296–298

transformer steps
analysis of variance (ANOVA), 352–355
Basic Statistics, 355–357
calculating subtotals, 357–359
Chi-Squared, 359–362
cleansing, 340–342
correlation analysis, 362–364
date format changing, 351–352
generating key columns, 343–344
generating period tables, 344–346
inverting data transformer, 346–347
moving average, 364–366
pivoting data, 348–350
regression analysis, 366–368
statistical transformers, 352–368

transform steps, DWC, 260
transient data, transformations, 329–333
transmissions, meta data, 441–448
transportation, 32
triangulated data, 630
triangulated irregular networks (TINs),

630
triggers, INSTEAD OF, 200–201
Trillium

address cleansing, 14–15
DWC interaction, 256
transformation integration, 396–397

turntable parameter, DB2, 152
t-value, 363
type-2 index structure, 204–205

U
UDFs (user-defined functions), 162
UDTs (user-defined types), 162
underlying tables, loading, 227–231
unintegrated technology, 6
UNION ALL statements, 201–202
Universal Database, 646–647
unplanned outages, 175–179
updates, OLAP Server, 530–533

user authorizations, DWC, 276
user communities, 8, 574
user community reporting, 469–470
user copy, data replication step, 369–370
user copy replication steps, DWC, 259
user-defined functions (UDFs), 162
user-defined program steps, DWC, 260
user-defined transformations, 329,

385–388
user-defined types (UDTs), 162
user groups, 42
user JAD sessions, DIF Matrix, 81–82
user-maintained MQTs, 203
user program groups, 385–388
users, quiesce mode, 199–200
utilities steps, DWC, 259

V
value predictions, 584
variable selections, data mining, 583
VARIANCE function, 602–603, 609
vector data, 629
vendors, 388–399, 633–634
VERITAS Cluster Server, 175
Video Extender, 209
views

DWC source, 255
MQSeries messages, 382–383

Visual Explain, 305–306
visual inspection, data mining, 582
VSAM files, 322
V-W staging, spiral approach, 98–99

W
warehouse agent on Linux, 309
warehouse agents, DWC, 255–256
warehouse-centric content

data targets, 32–36
data warehouse components, 36–42
data warehouses (DWs), 31–32, 36–42
operational data stores (ODSs), 29–30
SAS dataset, 34

warehouse control database, DWC, 256
warehouse databases, creating, 261
warehouse environment, 53
warehouse loggers, DWC, 255
warehouse maintenance, DWC, 275–276
Warehouse Manager, 437–441
warehouse objects, catalogs, 276–277
warehouse population, 291–298

674 Index

warehouse process
defining, 264–265
DWC steps, 257–260
scheduling, 283–286
step task flows, 277–278

warehouse scheduler, DWC, 278–281
warehouse server on AIX, 308–309
warehouse servers, DWC, 255
warehouse sources, 254–255, 266–267
warehouse steps, 268–269, 272–274
warehouse subject areas. See subject

areas
warehouse targets, 255, 267–268
warehouse target tables, 274–275
warehousing, EAI technology, 126
watermarks, performance

variable, 276
Web pages, customer touch point, 8, 52
Web traffic data import, DWC source,

255
Wholesale subject area, DWC, 254
window aggregation group clause,

540–541

wizards, SQLAssist, 335
Work in Progress

data warehouse population, 291–298
high-level population statistics, 293–294
Log Details, 296
population statistics, 292–293
retry, 333
transformation steps and processes,

296–298

X
XML, DB2 support, 23
XML document format, 380, 384–385
XML Extender, 208
XML Extender Document Access Defini-

tion (DAD) file, 380, 384–385
XTClient, 287–289
XTServer , 286–287

Z
zero-latency analysis, 23, 27, 53

	@Team LiB
	Contents
	Acknowledgments
	About the Contributors
	Introduction
	How the Book Is Organized
	Who Should Read This Book
	What’s on the Web Site?
	Summary

	PART
One
Fundamentals of
Business Intelligence
and the Data Warehouse
	CHAPTER 1 Overview of the BI Organization
	Overview of the BI Organization Architecture
	Providing Information Content
	Planning for Information Content
	Designing for Information Content
	Implementing Information Content

	Justifying Your BI Effort
	Linking Your Project to Known Business Requirements
	Measuring ROI
	Applying ROI
	Questions for ROI Benefits

	Making the Most of the First Iteration of the Warehouse

	IBM and The BI Organization
	Seamless Integration
	Data Mining
	Online Analytic Processing
	Spatial Analysis
	Database-Resident Tools

	Simplified Data Delivery System
	Zero-Latency

	Summary

	CHAPTER 2 Business Intelligence
Fundamentals
	BI Components and Technologies
	Business Intelligence Components
	Data Warehouse
	Data Sources
	Data Targets

	Warehouse Components
	Extraction, Transformation, and Loading
	Extraction
	Transformation/Cleansing
	Data Refining

	Data Management
	Data Access
	Meta Data

	Analytical User Requirements
	Reporting and Querying
	Online Analytical Processing
	Multidimensional Views
	Calculation-Intensive Capabilities
	Time Intelligence

	Statistics
	Data Mining

	Dimensional Technology and BI
	The OLAP Server
	MOLAP
	ROLAP

	Defining the Dimensional Spectrum

	Touch Points
	Zero-Latency and Your Warehouse Environment
	Closed-Loop Learning
	Historical Integrity
	Summary

	CHAPTER 3 Planning Data
Warehouse Iterations
	Planning Any Iteration
	Building Your BI Plan
	Enterprise Strategy
	Designing the Technical Architecture
	Designing the Data Architecture
	Implementing and Maintaining the Warehouse

	Planning the First Iteration
	Aligning the Warehouse with Corporate Strategy
	Conducting a Readiness Assessment
	Resource Planning

	Identifying Opportunities with the DIF Matrix1
	Determining the Right Approach
	Applying the DIF Matrix
	Antecedent Documentation and Known Problems
	IT JAD Sessions
	Select Candidate Iteration Opportunities
	Get IT Scores
	Create DIF Matrix
	User JAD Session and Scoring
	Average DIF Scores
	Select According to Score
	Submit to Management

	Dysfunctional
	Impact
	Feasibility
	DIF Matrix Results

	Planning Subsequent Iterations
	Defining the Scope
	Identifying Strategic Business Questions

	Implementing a Project Approach
	BI Hacking Approach
	The Inmon Approach
	Business Dimensional Lifecycle Approach
	The Spiral Approach
	Reducing Risk
	The Spiral Approach and Your Life Cycle Model
	Warehouse Development and the Spiral Model
	Flattening Spiral Rounds to Time Lines

	The IBM Approach
	Choosing the Right Approach

	Summary

	PART
Two
Business Intelligence
Architecture
	CHAPTER 4 Designing the Data Architecture
	Choosing the Right Architecture
	Atomic Layer Alternatives
	ROLAP Platform on a 3NF Atomic Layer
	HOLAP Platform on a Star Schema Atomic Layer

	Data Marts
	Atomic Layer with Dependent Data Marts
	Independent Data Marts
	Data Delivery Architecture
	EAI and Warehousing
	Comparing ETL and EAI

	Expected Deliverables
	Modeling the Architecture
	Business Logical Model
	Atomic-Level Model
	Modeling the Data Marts
	Comparing Atomic and Star Data

	Operational Data Store
	Data Architecture Strategy
	Summary

	CHAPTER 5 Technical Architecture and Data
Management Foundations
	Broad Technical Architecture Decisions
	Centralized Data Warehousing
	Distributed Data Warehousing
	Parallelism and the Warehouse
	Partitioning Data Storage

	Technical Foundations for Data Management
	DB2 and the Atomic Layer
	Redistribution and Table Collocation
	Replicated Tables
	Indexing Options
	Multidimensional Clusters as Indexes
	Defined Types, User-Defined Functions, and DB2 Extenders
	Hierarchical Storage Considerations

	DB2 and Star Schemas

	DB2 Technical Architecture Essentials
	SMP, MPP, and Clusters
	Shared-Resource vs. Shared-Nothing
	DB2 on Hardware Architectures

	Static and Dynamic Parallelism
	Catalog Partition
	High Availability
	Online Space Management
	Backup
	Parallel Loading
	Online Load
	Multidimensional Clustering
	Unplanned Outages

	Sizing Requirements
	Summary

	PART
Three
Data Management
	CHAPTER 6 DB2 BI Fundamentals
	High Availability
	Multidimensional Clustering
	Online Loads
	Load From Cursor
	Batch Window Elimination
	Elimination of Table Reorganization
	Online Load and MQT Maintenance
	MQT Staging Tables
	Online Table Reorganization
	Dynamic Bufferpool Management
	Dynamic Database Configuration
	Database Managed Storage Considerations
	Logging Considerations

	Administration
	eLiza and SMART
	Automated Health Management Framework
	AUTOCONFIGURE
	Administration Notification Log
	Maintenance Mode
	Event Monitors

	SQL and Other Programming Features
	INSTEAD OF Triggers
	DML Operations through UNION ALL
	Informational Constraints
	User-Maintained MQTs

	Performance
	Connection Concentrator
	Compression
	Type-2 Indexes
	MDC Performance Enhancement
	Blocked Bufferpools

	Extensibility
	Spatial Extender
	Text Extender and Text Information Extender
	Image Extender
	XML Extender
	Video Extender and Audio Extender
	Net Search Extender
	MQSeries
	DB2 Scoring

	Summary

	CHAPTER 7 DB2 Materialized Query Tables
	Initializing MQTs
	Creating
	Populating
	Tuning
	MQT DROP

	MQT Refresh Strategies
	Deferred Refresh
	Immediate Refresh

	Loading Underlying Tables
	New States
	New LOAD Options

	Using DB2 ALTER
	Materialized View Matching
	State Considerations
	Matching Criteria
	Matching Permitted
	Matching Inhibited

	MQT Design
	MQT Tuning
	Refresh Optimization

	Materialized View Limitations
	Summary

	PART
Four
Warehouse
Management
	CHAPTER 8 Warehouse Management
with IBM DB2 Data
Warehouse Center
	IBM DB2 Data Warehouse Center Essentials
	Warehouse Subject Area
	Warehouse Source
	Warehouse Target
	Warehouse Server and Logger
	Warehouse Agent and Agent Site
	Warehouse Control Database
	Warehouse Process and Step
	SQL Step
	Replication Step
	DB2 Utilities Step
	OLAP Server Program Step
	File Program Step
	Transformer Step
	User-Defined Program Step

	IBM DB2 Data Warehouse Center Launchpad
	Setting Up Your Data Warehouse Environment
	Creating a Warehouse Database
	Browsing the Source Data
	Establishing IBM DB2 Data Warehouse Center Security

	Building a Data Warehouse Using the Launchpad
	Task 1: Define a Subject Area
	Task 2: Define a Process
	Task 3: Define a Warehouse Source
	Task 4: Define a Warehouse Target
	Task 5: Define a Step
	Task 6: Link a Source to a Step
	Task 7: Link a Step to a Target
	Task 8: Define the Step Parameters
	Task 9: Schedule a Step to Run

	Defining Keys on Target Tables
	Maintaining the Data Warehouse
	Authorizing Users of the Warehouse
	Cataloging Warehouse Objects for Users

	Process and Step Task Control
	Scheduling
	Notifying the Data Administrator
	Scheduling a Process
	Triggering Steps Outside IBM DB2
Data Warehouse Center
	Starting the External Trigger Server
	Starting the External Trigger Client

	Monitoring Strategies with IBM
DB2 Data Warehouse Center
	IBM DB2 Data Warehouse Center Monitoring Tools
	Monitoring Data Warehouse Population
	Monitoring Data Warehouse Usage

	DB2 Monitoring Tools
	Replication Center Monitoring

	Warehouse Tuning
	Updating Statistics
	Reorganizing Your Data
	Using DB2 Snapshot and Monitor
	Using Visual Explain
	Tuning Database Performance

	Maintaining IBM DB2 Data Warehouse Center
	Log History
	Control Database

	DB2 Data Warehouse Center V8 Enhancements
	Summary

	CHAPTER 9 Data Transformation with IBM
DB2 Data Warehouse Center
	IBM DB2 Data Warehouse Center Process Model
	Identify the Sources and Targets
	Identify the Transformations
	The Process Model

	IBM DB2 Data Warehouse Center Transformations
	Refresh Considerations
	Data Volume
	Manage Data Editions
	User-Defined Transformation Requirements
	Multiple Table Loads
	Ensure Warehouse Data Is Up-to-Date
	Retry

	SQL Transformation Steps
	SQL Select and Insert
	SQL Select and Update

	DB2 Utility Steps
	Export Utility Step
	LOAD Utility

	Warehouse Transformer Steps
	Cleansing Transformer
	Generating Key Table
	Generating Period Table
	Inverting Data Transformer
	Pivoting Data
	Date Format Changing
	Statistical Transformers
	Analysis of Variance (ANOVA)
	Calculating Statistics
	Calculating Subtotals
	Chi-Squared Transformer
	Correlation Analysis
	Moving Average
	Regression Analysis

	Data Replication Steps
	Setting Up Replication
	Defining Replication Steps in IBM DB2
Data Warehouse Center

	MQSeries Integration
	Accessing Fixed-Length or Delimited
MQSeries Messages
	Using DB2 MQSeries Views
	Accessing XML MQSeries Messages

	User-Defined Program Steps
	Vendor Integration
	ETI.EXTRACT Integration
	Trillium Integration
	Ascential Integration

	Microsoft OLE DB and Data
Transformation Services
	Accessing OLE DB
	Accessing DTS Packages

	Summary

	CHAPTER 10 Meta Data and the IBM DB2
Warehouse Manager
	What Is Meta Data?
	Classification of Meta Data
	Meta Data by Type of User
	Meta Data by Degree of Formality at Origin
	Meta Data by Usage Context

	What Is the Meta Data Repository?
	Feeding Your Meta Data Repository
	Benefits of Meta Data and the
Meta Data Repository
	Attributes of a Healthy Meta Data Repository
	Maintaining the Repository
	Challenges to Implementing a Meta Data Repository
	IBM Meta Data Technology
	Information Catalog
	IBM DB2 Data Warehouse Center

	Meta Data Acquisition by DWC
	Collecting Meta Data from ETI.EXTRACT
	Collecting Meta Data from INTEGRITY
	Collecting Meta Data from DataStage
	Collecting Meta Data from ERwin
	Collecting Meta Data from Axio
	Collecting Meta Data from IBM OLAP Integration Server

	Exchanging Meta Data between IBM DB2
Data Warehouse Center Instances
	Maintaining Test and Production Systems
	Meta Data Exchange Formats
	Tag Export and Import
	CWM Export and Import

	Transmission of DWC Meta Data to Other Tools
	Transmission of DWC Meta Data to
IBM Information Catalog
	Transmission of DWC Meta Data to
OLAP Integration Server
	Transmission of DWC Meta Data to IBM DB2 OLAP Server
	Transmission of DWC Meta Data to Ascential INTEGRITY

	Transferring Meta Data In/Out of the Information
Catalog
	Acquisition of Meta Data by the Information Catalog
	Collecting Meta Data from IBM DB2 Data Warehouse Center
	Collecting Meta Data from another Information Catalog
	Accessing Brio Meta Data in the Information Catalog
	Collecting Meta Data from BusinessObjects
	Collecting Meta Data from Cognos
	Collecting Meta Data from ERwin
	Collecting Meta Data from QMF for Windows
	Collecting Meta Data from ETI.EXTRACT
	Collecting Meta Data from DB2 OLAP Server

	Transmission of Information Catalog Meta Data
	Transmitting Meta Data to Another Information Catalog
	Enabling Brio to Access Information Catalog Meta Data
	Transmitting Information Catalog Meta Data to
BusinessObjects
	Transmitting Information Catalog Meta Data to Cognos

	Summary

	PART
Five
OLAP and IBM
	CHAPTER 11 Multidimensional Data with
DB2 OLAP Server
	Understanding the Analytic Cycle of OLAP
	Generating Useful Metrics
	OLAP Skills
	Applying the Dimensional Model
	Steering Your Organization with OLAP
	Speed-of-Thought Analysis

	The Outline of a Business
	The OLAP Array
	Relational Schema Limitations
	Derived Measures

	Implementing an Enterprise OLAP Architecture
	Prototyping the Data Warehouse
	Database Design: Building Outlines
	Application Manager
	ESSCMD and MaxL
	OLAP Integration Server

	Support Requirements

	DB2 OLAP Database as a Matrix
	Block Creation Explored
	Matrix Explosion

	DB2 OLAP Server Sizing Requirements
	What DB2 OLAP Server Stores
	Using SET MSG ONLY: Pre-Version 8 Estimates
	What is Representative Data?
	Sizing Estimates for DB2 OLAP Server Version 8

	Database Tuning
	Goal Of Database Tuning
	Outline Tuning Considerations
	Batch Calculation and Data Storage
	Member Tags and Dynamic Calculations
	Disk Subsystem Utilization and Database File
Configuration
	Database Partitioning
	Attribute Dimensions

	Assessing Hardware Requirements
	CPU Estimate
	Disk Estimate
	OLAP Auxiliary Storage Requirements

	OLAP Backup and Disaster Recovery
	Summary

	CHAPTER 12 OLAP with IBM DB2 Data
Warehouse Center
	IBM DB2 Data Warehouse Center Step Types
	Adding OLAP to Your Process
	OLAP Server Main Page
	OLAP Server Column Mapping Page
	OLAP Server Program Processing Options
	Other Considerations

	OLAP Server Load Rules
	Free Text Data Load
	File with Load Rules
	File without Load Rules
	SQL Table with Load Rules

	OLAP Server Calculation
	Default Calculation
	Calc with Calc Rules

	Updating the OLAP Server Outline
	Using a File
	Using an SQL Table

	Summary

	CHAPTER 13 DB2 OLAP Functions
	OLAP Functions
	Specific Functions
	RANK
	DENSE_RANK
	ROWNUMBER
	PARTITION BY
	ORDER BY
	Window Aggregation Group Clause

	GROUPING Capabilities: ROLLUP and CUBE
	ROLLUP
	CUBE

	Ranking, Numbering, and Aggregation
	RANK Example
	ROW_NUMBER, RANK, and DENSE_RANK Example
	RANK and PARTITION BY Example
	OVER clause example
	ROWS and ORDER BY Example
	ROWS, RANGE, and ORDER BY Example

	GROUPING, GROUP BY, ROLLUP, and CUBE
	GROUPING, GROUP BY, and CUBE Example
	ROLLUP Example
	CUBE Example

	OLAP Functions in Use
	Presenting Annual Sales by Region and City
	Data
	BI functions
	Steps

	Identifying Target Groups for a Campaign
	Data
	BI Functions
	Steps

	Summary

	PART
Six
Enhanced Analytics
	CHAPTER 14 Data Mining with
Intelligent Miner
	Data Mining and the BI Organization
	Effective Data Mining

	The Mining Process
	Step 1: Create a Precise Definition of the Business Issue
	Describing the Problem
	Understanding Your Data
	Using the Results

	Step 2: Map Business Issue to Data Model and Data
Requirements
	Step 3: Source and Preprocess the Data
	Step 4: Explore and Evaluate the Data
	Step 5: Select the Data Mining Technique
	Discovery Data Mining
	Predictive Mining

	Step 6: Interpret the Results
	Step 7: Deploy the Results

	Integrating Data Mining
	Skills for Implementing a Data Mining Project
	Benefits of Data Mining
	Data Quality
	Relevant Dimensions
	Using Mining Results in OLAP

	Benefits of Mining DB2 OLAP Server
	Summary

	CHAPTER 15 DB2-Enhanced BI
Features and Functions
	DB2 Analytic Functions
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE
	MAX
	MIN
	RAND
	STDDEV
	SUM
	VARIANCE
	Regression Functions
	COVAR, CORR, VAR, STDDEV, and Regression Examples
	COVARIANCE Example
	CORRELATION Examples
	VARIANCE Example
	STDDEV Examples
	Linear Regression Examples

	BI-Centric Function Examples
	Using Sample Data
	Listing the Top Five Salespersons by Region This Year
	Data Description
	BI Functions Showcased
	Steps

	Determining Relationships between Product Purchases
	Data Description
	BI Functions Showcased
	Steps

	Summary

	CHAPTER 16 Blending Spatial Data
into the Warehouse
	Spatial Analysis and the BI Organization
	The Impact of Space
	What Is Spatial Data?
	The Onion Analogy
	Spatial Data Structures
	Vector Data
	Raster Data
	Triangulated Data

	Spatial Data vs. Other Graphic Data

	Obtaining Spatial Data
	Creating Your Own Spatial Data
	Acquiring Spatial Data
	Government Data
	Vendor Data

	Spatial Data in DSS
	Spatial Analysis and Data Mining
	Serving Up Spatial Analysis
	Typical Business Questions Directed
at the Data Warehouse
	Where Are My Customers Coming From?
	I Don’t Have Customer Address Information—
Can I Still Use Spatial Analysis Tools?

	Understanding a Spatially Enabled Data
Warehouse
	Geocoding
	Technology Requirements for Spatial Warehouses
	Adding Spatial Data to the Warehouse

	Summary

	Bibliography
	Index

