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Preface
This	book	will	take	you	on	a	hands-on	exploration	of	the	wonderful	world	that	is	Hadoop
2	and	its	rapidly	growing	ecosystem.	Building	on	the	solid	foundation	from	the	earlier
versions	of	the	platform,	Hadoop	2	allows	multiple	data	processing	frameworks	to	be
executed	on	a	single	Hadoop	cluster.

To	give	an	understanding	of	this	significant	evolution,	we	will	explore	both	how	these	new
models	work	and	also	show	their	applications	in	processing	large	data	volumes	with	batch,
iterative,	and	near-real-time	algorithms.



What	this	book	covers
Chapter	1,	Introduction,	gives	the	background	to	Hadoop	and	the	Big	Data	problems	it
looks	to	solve.	We	also	highlight	the	areas	in	which	Hadoop	1	had	room	for	improvement.

Chapter	2,	Storage,	delves	into	the	Hadoop	Distributed	File	System,	where	most	data
processed	by	Hadoop	is	stored.	We	examine	the	particular	characteristics	of	HDFS,	show
how	to	use	it,	and	discuss	how	it	has	improved	in	Hadoop	2.	We	also	introduce
ZooKeeper,	another	storage	system	within	Hadoop,	upon	which	many	of	its	high-
availability	features	rely.

Chapter	3,	Processing	–	MapReduce	and	Beyond,	first	discusses	the	traditional	Hadoop
processing	model	and	how	it	is	used.	We	then	discuss	how	Hadoop	2	has	generalized	the
platform	to	use	multiple	computational	models,	of	which	MapReduce	is	merely	one.

Chapter	4,	Real-time	Computation	with	Samza,	takes	a	deeper	look	at	one	of	these
alternative	processing	models	enabled	by	Hadoop	2.	In	particular,	we	look	at	how	to
process	real-time	streaming	data	with	Apache	Samza.

Chapter	5,	Iterative	Computation	with	Spark,	delves	into	a	very	different	alternative
processing	model.	In	this	chapter,	we	look	at	how	Apache	Spark	provides	the	means	to	do
iterative	processing.

Chapter	6,	Data	Analysis	with	Pig,	demonstrates	how	Apache	Pig	makes	the	traditional
computational	model	of	MapReduce	easier	to	use	by	providing	a	language	to	describe	data
flows.

Chapter	7,	Hadoop	and	SQL,	looks	at	how	the	familiar	SQL	language	has	been
implemented	atop	data	stored	in	Hadoop.	Through	the	use	of	Apache	Hive	and	describing
alternatives	such	as	Cloudera	Impala,	we	show	how	Big	Data	processing	can	be	made
possible	using	existing	skills	and	tools.

Chapter	8,	Data	Lifecycle	Management,	takes	a	look	at	the	bigger	picture	of	just	how	to
manage	all	that	data	that	is	to	be	processed	in	Hadoop.	Using	Apache	Oozie,	we	show
how	to	build	up	workflows	to	ingest,	process,	and	manage	data.

Chapter	9,	Making	Development	Easier,	focuses	on	a	selection	of	tools	aimed	at	helping	a
developer	get	results	quickly.	Through	the	use	of	Hadoop	streaming,	Apache	Crunch	and
Kite,	we	show	how	the	use	of	the	right	tool	can	speed	up	the	development	loop	or	provide
new	APIs	with	richer	semantics	and	less	boilerplate.

Chapter	10,	Running	a	Hadoop	Cluster,	takes	a	look	at	the	operational	side	of	Hadoop.	By
focusing	on	the	areas	of	interest	to	developers,	such	as	cluster	management,	monitoring,
and	security,	this	chapter	should	help	you	to	work	better	with	your	operations	staff.

Chapter	11,	Where	to	Go	Next,	takes	you	on	a	whirlwind	tour	through	a	number	of	other
projects	and	tools	that	we	feel	are	useful,	but	could	not	cover	in	detail	in	the	book	due	to
space	constraints.	We	also	give	some	pointers	on	where	to	find	additional	sources	of
information	and	how	to	engage	with	the	various	open	source	communities.



What	you	need	for	this	book
Because	most	people	don’t	have	a	large	number	of	spare	machines	sitting	around,	we	use
the	Cloudera	QuickStart	virtual	machine	for	most	of	the	examples	in	this	book.	This	is	a
single	machine	image	with	all	the	components	of	a	full	Hadoop	cluster	pre-installed.	It	can
be	run	on	any	host	machine	supporting	either	the	VMware	or	the	VirtualBox	virtualization
technology.

We	also	explore	Amazon	Web	Services	and	how	some	of	the	Hadoop	technologies	can	be
run	on	the	AWS	Elastic	MapReduce	service.	The	AWS	services	can	be	managed	through	a
web	browser	or	a	Linux	command-line	interface.



Who	this	book	is	for
This	book	is	primarily	aimed	at	application	and	system	developers	interested	in	learning
how	to	solve	practical	problems	using	the	Hadoop	framework	and	related	components.
Although	we	show	examples	in	a	few	programming	languages,	a	strong	foundation	in	Java
is	the	main	prerequisite.

Data	engineers	and	architects	might	also	find	the	material	concerning	data	life	cycle,	file
formats,	and	computational	models	useful.



Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“If	Avro
dependencies	are	not	present	in	the	classpath,	we	need	to	add	the	Avro	MapReduce.jar
file	to	our	environment	before	accessing	individual	fields.”

A	block	of	code	is	set	as	follows:

topic_edges_grouped	=	FOREACH	topic_edges_grouped	{

		GENERATE

				group.topic_id	as	topic,

				group.source_id	as	source,

				topic_edges.(destination_id,w)	as	edges;

}

Any	command-line	input	or	output	is	written	as	follows:

$	hdfs	dfs	-put	target/elephant-bird-pig-4.5.jar	hdfs:///jar/

$	hdfs	dfs	–put	target/elephant-bird-hadoop-compat-4.5.jar	hdfs:///jar/

$	hdfs	dfs	–put	elephant-bird-core-4.5.jar	hdfs:///jar/	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Once	the	form	is	filled	in,	we	need	to
review	and	accept	the	terms	of	service	and	click	on	the	Create	Application	button	in	the
bottom-left	corner	of	the	page.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.



Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors


Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
The	source	code	for	this	book	can	be	found	on	GitHub	at
https://github.com/learninghadoop2/book-examples.	The	authors	will	be	applying	any
errata	to	this	code	and	keeping	it	up	to	date	as	the	technologies	evolve.	In	addition	you	can
download	the	example	code	files	from	your	account	at	http://www.packtpub.com	for	all
the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book	elsewhere,
you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed
directly	to	you.

https://github.com/learninghadoop2/book-examples
http://www.packtpub.com
http://www.packtpub.com/support


Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support


Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com


Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com


Chapter	1.	Introduction
This	book	will	teach	you	how	to	build	amazing	systems	using	the	latest	release	of	Hadoop.
Before	you	change	the	world	though,	we	need	to	do	some	groundwork,	which	is	where
this	chapter	comes	in.

In	this	introductory	chapter,	we	will	cover	the	following	topics:

A	brief	refresher	on	the	background	to	Hadoop
A	walk-through	of	Hadoop’s	evolution
The	key	elements	in	Hadoop	2
The	Hadoop	distributions	we’ll	use	in	this	book
The	dataset	we’ll	use	for	examples



A	note	on	versioning
In	Hadoop	1,	the	version	history	was	somewhat	convoluted	with	multiple	forked	branches
in	the	0.2x	range,	leading	to	odd	situations,	where	a	1.x	version	could,	in	some	situations,
have	fewer	features	than	a	0.23	release.	In	the	version	2	codebase,	this	is	fortunately	much
more	straightforward,	but	it’s	important	to	clarify	exactly	which	version	we	will	use	in	this
book.

Hadoop	2.0	was	released	in	alpha	and	beta	versions,	and	along	the	way,	several
incompatible	changes	were	introduced.	There	was,	in	particular,	a	major	API	stabilization
effort	between	the	beta	and	final	release	stages.

Hadoop	2.2.0	was	the	first	general	availability	(GA)	release	of	the	Hadoop	2	codebase,
and	its	interfaces	are	now	declared	stable	and	forward	compatible.	We	will	therefore	use
the	2.2	product	and	interfaces	in	this	book.	Though	the	principles	will	be	usable	on	a	2.0
beta,	in	particular,	there	will	be	API	incompatibilities	in	the	beta.	This	is	particularly
important	as	MapReduce	v2	was	back-ported	to	Hadoop	1	by	several	distribution	vendors,
but	these	products	were	based	on	the	beta	and	not	the	GA	APIs.	If	you	are	using	such	a
product,	then	you	will	encounter	these	incompatible	changes.	It	is	recommended	that	a
release	based	upon	Hadoop	2.2	or	later	is	used	for	both	the	development	and	the
production	deployments	of	any	Hadoop	2	workloads.



The	background	of	Hadoop
We’re	assuming	that	most	readers	will	have	a	little	familiarity	with	Hadoop,	or	at	the	very
least,	with	big	data-processing	systems.	Consequently,	we	won’t	give	a	detailed
background	as	to	why	Hadoop	is	successful	or	the	types	of	problem	it	helps	to	solve	in	this
book.	However,	particularly	because	of	some	aspects	of	Hadoop	2	and	the	other	products
we	will	use	in	later	chapters,	it	is	useful	to	give	a	sketch	of	how	we	see	Hadoop	fitting	into
the	technology	landscape	and	which	are	the	particular	problem	areas	where	we	believe	it
gives	the	most	benefit.

In	ancient	times,	before	the	term	“big	data”	came	into	the	picture	(which	equates	to	maybe
a	decade	ago),	there	were	few	options	to	process	datasets	of	sizes	in	terabytes	and	beyond.
Some	commercial	databases	could,	with	very	specific	and	expensive	hardware	setups,	be
scaled	to	this	level,	but	the	expertise	and	capital	expenditure	required	made	it	an	option	for
only	the	largest	organizations.	Alternatively,	one	could	build	a	custom	system	aimed	at	the
specific	problem	at	hand.	This	suffered	from	some	of	the	same	problems	(expertise	and
cost)	and	added	the	risk	inherent	in	any	cutting-edge	system.	On	the	other	hand,	if	a
system	was	successfully	constructed,	it	was	likely	a	very	good	fit	to	the	need.

Few	small-	to	mid-size	companies	even	worried	about	this	space,	not	only	because	the
solutions	were	out	of	their	reach,	but	they	generally	also	didn’t	have	anything	close	to	the
data	volumes	that	required	such	solutions.	As	the	ability	to	generate	very	large	datasets
became	more	common,	so	did	the	need	to	process	that	data.

Even	though	large	data	became	more	democratized	and	was	no	longer	the	domain	of	the
privileged	few,	major	architectural	changes	were	required	if	the	data-processing	systems
could	be	made	affordable	to	smaller	companies.	The	first	big	change	was	to	reduce	the
required	upfront	capital	expenditure	on	the	system;	that	means	no	high-end	hardware	or
expensive	software	licenses.	Previously,	high-end	hardware	would	have	been	utilized	most
commonly	in	a	relatively	small	number	of	very	large	servers	and	storage	systems,	each	of
which	had	multiple	approaches	to	avoid	hardware	failures.	Though	very	impressive,	such
systems	are	hugely	expensive,	and	moving	to	a	larger	number	of	lower-end	servers	would
be	the	quickest	way	to	dramatically	reduce	the	hardware	cost	of	a	new	system.	Moving
more	toward	commodity	hardware	instead	of	the	traditional	enterprise-grade	equipment
would	also	mean	a	reduction	in	capabilities	in	the	area	of	resilience	and	fault	tolerance.
Those	responsibilities	would	need	to	be	taken	up	by	the	software	layer.	Smarter	software,
dumber	hardware.

Google	started	the	change	that	would	eventually	be	known	as	Hadoop,	when	in	2003,	and
in	2004,	they	released	two	academic	papers	describing	the	Google	File	System	(GFS)
(http://research.google.com/archive/gfs.html)	and	MapReduce
(http://research.google.com/archive/mapreduce.html).	The	two	together	provided	a
platform	for	very	large-scale	data	processing	in	a	highly	efficient	manner.	Google	had
taken	the	build-it-yourself	approach,	but	instead	of	constructing	something	aimed	at	one
specific	problem	or	dataset,	they	instead	created	a	platform	on	which	multiple	processing
applications	could	be	implemented.	In	particular,	they	utilized	large	numbers	of

http://research.google.com/archive/gfs.html
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commodity	servers	and	built	GFS	and	MapReduce	in	a	way	that	assumed	hardware
failures	would	be	commonplace	and	were	simply	something	that	the	software	needed	to
deal	with.

At	the	same	time,	Doug	Cutting	was	working	on	the	Nutch	open	source	web	crawler.	He
was	working	on	elements	within	the	system	that	resonated	strongly	once	the	Google	GFS
and	MapReduce	papers	were	published.	Doug	started	work	on	open	source
implementations	of	these	Google	ideas,	and	Hadoop	was	soon	born,	firstly,	as	a	subproject
of	Lucene,	and	then	as	its	own	top-level	project	within	the	Apache	Software	Foundation.

Yahoo!	hired	Doug	Cutting	in	2006	and	quickly	became	one	of	the	most	prominent
supporters	of	the	Hadoop	project.	In	addition	to	often	publicizing	some	of	the	largest
Hadoop	deployments	in	the	world,	Yahoo!	allowed	Doug	and	other	engineers	to	contribute
to	Hadoop	while	employed	by	the	company,	not	to	mention	contributing	back	some	of	its
own	internally	developed	Hadoop	improvements	and	extensions.



Components	of	Hadoop
The	broad	Hadoop	umbrella	project	has	many	component	subprojects,	and	we’ll	discuss
several	of	them	in	this	book.	At	its	core,	Hadoop	provides	two	services:	storage	and
computation.	A	typical	Hadoop	workflow	consists	of	loading	data	into	the	Hadoop
Distributed	File	System	(HDFS)	and	processing	using	the	MapReduce	API	or	several
tools	that	rely	on	MapReduce	as	an	execution	framework.

Hadoop	1:	HDFS	and	MapReduce

Both	layers	are	direct	implementations	of	Google’s	own	GFS	and	MapReduce
technologies.



Common	building	blocks
Both	HDFS	and	MapReduce	exhibit	several	of	the	architectural	principles	described	in	the
previous	section.	In	particular,	the	common	principles	are	as	follows:

Both	are	designed	to	run	on	clusters	of	commodity	(that	is,	low	to	medium
specification)	servers
Both	scale	their	capacity	by	adding	more	servers	(scale-out)	as	opposed	to	the
previous	models	of	using	larger	hardware	(scale-up)
Both	have	mechanisms	to	identify	and	work	around	failures
Both	provide	most	of	their	services	transparently,	allowing	the	user	to	concentrate	on
the	problem	at	hand
Both	have	an	architecture	where	a	software	cluster	sits	on	the	physical	servers	and
manages	aspects	such	as	application	load	balancing	and	fault	tolerance,	without
relying	on	high-end	hardware	to	deliver	these	capabilities



Storage
HDFS	is	a	filesystem,	though	not	a	POSIX-compliant	one.	This	basically	means	that	it
does	not	display	the	same	characteristics	as	that	of	a	regular	filesystem.	In	particular,	the
characteristics	are	as	follows:

HDFS	stores	files	in	blocks	that	are	typically	at	least	64	MB	or	(more	commonly
now)	128	MB	in	size,	much	larger	than	the	4-32	KB	seen	in	most	filesystems
HDFS	is	optimized	for	throughput	over	latency;	it	is	very	efficient	at	streaming	reads
of	large	files	but	poor	when	seeking	for	many	small	ones
HDFS	is	optimized	for	workloads	that	are	generally	write-once	and	read-many
Instead	of	handling	disk	failures	by	having	physical	redundancies	in	disk	arrays	or
similar	strategies,	HDFS	uses	replication.	Each	of	the	blocks	comprising	a	file	is
stored	on	multiple	nodes	within	the	cluster,	and	a	service	called	the	NameNode
constantly	monitors	to	ensure	that	failures	have	not	dropped	any	block	below	the
desired	replication	factor.	If	this	does	happen,	then	it	schedules	the	making	of	another
copy	within	the	cluster.



Computation
MapReduce	is	an	API,	an	execution	engine,	and	a	processing	paradigm;	it	provides	a
series	of	transformations	from	a	source	into	a	result	dataset.	In	the	simplest	case,	the	input
data	is	fed	through	a	map	function	and	the	resultant	temporary	data	is	then	fed	through	a
reduce	function.

MapReduce	works	best	on	semistructured	or	unstructured	data.	Instead	of	data	conforming
to	rigid	schemas,	the	requirement	is	instead	that	the	data	can	be	provided	to	the	map
function	as	a	series	of	key-value	pairs.	The	output	of	the	map	function	is	a	set	of	other
key-value	pairs,	and	the	reduce	function	performs	aggregation	to	collect	the	final	set	of
results.

Hadoop	provides	a	standard	specification	(that	is,	interface)	for	the	map	and	reduce
phases,	and	the	implementation	of	these	are	often	referred	to	as	mappers	and	reducers.	A
typical	MapReduce	application	will	comprise	a	number	of	mappers	and	reducers,	and	it’s
not	unusual	for	several	of	these	to	be	extremely	simple.	The	developer	focuses	on
expressing	the	transformation	between	the	source	and	the	resultant	data,	and	the	Hadoop
framework	manages	all	aspects	of	job	execution	and	coordination.



Better	together
It	is	possible	to	appreciate	the	individual	merits	of	HDFS	and	MapReduce,	but	they	are
even	more	powerful	when	combined.	They	can	be	used	individually,	but	when	they	are
together,	they	bring	out	the	best	in	each	other,	and	this	close	interworking	was	a	major
factor	in	the	success	and	acceptance	of	Hadoop	1.

When	a	MapReduce	job	is	being	planned,	Hadoop	needs	to	decide	on	which	host	to
execute	the	code	in	order	to	process	the	dataset	most	efficiently.	If	the	MapReduce	cluster
hosts	are	all	pulling	their	data	from	a	single	storage	host	or	array,	then	this	largely	doesn’t
matter	as	the	storage	system	is	a	shared	resource	that	will	cause	contention.	If	the	storage
system	was	more	transparent	and	allowed	MapReduce	to	manipulate	its	data	more
directly,	then	there	would	be	an	opportunity	to	perform	the	processing	closer	to	the	data,
building	on	the	principle	of	it	being	less	expensive	to	move	processing	than	data.

The	most	common	deployment	model	for	Hadoop	sees	the	HDFS	and	MapReduce	clusters
deployed	on	the	same	set	of	servers.	Each	host	that	contains	data	and	the	HDFS
component	to	manage	the	data	also	hosts	a	MapReduce	component	that	can	schedule	and
execute	data	processing.	When	a	job	is	submitted	to	Hadoop,	it	can	use	the	locality
optimization	to	schedule	data	on	the	hosts	where	data	resides	as	much	as	possible,	thus
minimizing	network	traffic	and	maximizing	performance.



Hadoop	2	–	what’s	the	big	deal?
If	we	look	at	the	two	main	components	of	the	core	Hadoop	distribution,	storage	and
computation,	we	see	that	Hadoop	2	has	a	very	different	impact	on	each	of	them.	Whereas
the	HDFS	found	in	Hadoop	2	is	mostly	a	much	more	feature-rich	and	resilient	product
than	the	HDFS	in	Hadoop	1,	for	MapReduce,	the	changes	are	much	more	profound	and
have,	in	fact,	altered	how	Hadoop	is	perceived	as	a	processing	platform	in	general.	Let’s
look	at	HDFS	in	Hadoop	2	first.



Storage	in	Hadoop	2
We’ll	discuss	the	HDFS	architecture	in	more	detail	in	Chapter	2,	Storage,	but	for	now,	it’s
sufficient	to	think	of	a	master-slave	model.	The	slave	nodes	(called	DataNodes)	hold	the
actual	filesystem	data.	In	particular,	each	host	running	a	DataNode	will	typically	have	one
or	more	disks	onto	which	files	containing	the	data	for	each	HDFS	block	are	written.	The
DataNode	itself	has	no	understanding	of	the	overall	filesystem;	its	role	is	to	store,	serve,
and	ensure	the	integrity	of	the	data	for	which	it	is	responsible.

The	master	node	(called	the	NameNode)	is	responsible	for	knowing	which	of	the
DataNodes	holds	which	block	and	how	these	blocks	are	structured	to	form	the	filesystem.
When	a	client	looks	at	the	filesystem	and	wishes	to	retrieve	a	file,	it’s	via	a	request	to	the
NameNode	that	the	list	of	required	blocks	is	retrieved.

This	model	works	well	and	has	been	scaled	to	clusters	with	tens	of	thousands	of	nodes	at
companies	such	as	Yahoo!	So,	though	it	is	scalable,	there	is	a	resiliency	risk;	if	the
NameNode	becomes	unavailable,	then	the	entire	cluster	is	rendered	effectively	useless.	No
HDFS	operations	can	be	performed,	and	since	the	vast	majority	of	installations	use	HDFS
as	the	storage	layer	for	services,	such	as	MapReduce,	they	also	become	unavailable	even
if	they	are	still	running	without	problems.

More	catastrophically,	the	NameNode	stores	the	filesystem	metadata	to	a	persistent	file	on
its	local	filesystem.	If	the	NameNode	host	crashes	in	a	way	that	this	data	is	not
recoverable,	then	all	data	on	the	cluster	is	effectively	lost	forever.	The	data	will	still	exist
on	the	various	DataNodes,	but	the	mapping	of	which	blocks	comprise	which	files	is	lost.
This	is	why,	in	Hadoop	1,	the	best	practice	was	to	have	the	NameNode	synchronously
write	its	filesystem	metadata	to	both	local	disks	and	at	least	one	remote	network	volume
(typically	via	NFS).

Several	NameNode	high-availability	(HA)	solutions	have	been	made	available	by	third-
party	suppliers,	but	the	core	Hadoop	product	did	not	offer	such	resilience	in	Version	1.
Given	this	architectural	single	point	of	failure	and	the	risk	of	data	loss,	it	won’t	be	a
surprise	to	hear	that	NameNode	HA	is	one	of	the	major	features	of	HDFS	in	Hadoop	2
and	is	something	we’ll	discuss	in	detail	in	later	chapters.	The	feature	provides	both	a
standby	NameNode	that	can	be	automatically	promoted	to	service	all	requests	should	the
active	NameNode	fail,	but	also	builds	additional	resilience	for	the	critical	filesystem
metadata	atop	this	mechanism.

HDFS	in	Hadoop	2	is	still	a	non-POSIX	filesystem;	it	still	has	a	very	large	block	size	and
it	still	trades	latency	for	throughput.	However,	it	does	now	have	a	few	capabilities	that	can
make	it	look	a	little	more	like	a	traditional	filesystem.	In	particular,	the	core	HDFS	in
Hadoop	2	now	can	be	remotely	mounted	as	an	NFS	volume.	This	is	another	feature	that
was	previously	offered	as	a	proprietary	capability	by	third-party	suppliers	but	is	now	in	the
main	Apache	codebase.

Overall,	the	HDFS	in	Hadoop	2	is	more	resilient	and	can	be	more	easily	integrated	into
existing	workflows	and	processes.	It’s	a	strong	evolution	of	the	product	found	in	Hadoop



1.



Computation	in	Hadoop	2
The	work	on	HDFS	2	was	started	before	a	direction	for	MapReduce	crystallized.	This	was
likely	due	to	the	fact	that	features	such	as	NameNode	HA	were	such	an	obvious	path	that
the	community	knew	the	most	critical	areas	to	address.	However,	MapReduce	didn’t	really
have	a	similar	list	of	areas	of	improvement,	and	that’s	why,	when	the	MRv2	initiative
started,	it	wasn’t	completely	clear	where	it	would	lead.

Perhaps	the	most	frequent	criticism	of	MapReduce	in	Hadoop	1	was	how	its	batch
processing	model	was	ill-suited	to	problem	domains	where	faster	response	times	were
required.	Hive,	for	example,	which	we’ll	discuss	in	Chapter	7,	Hadoop	and	SQL,	provides
a	SQL-like	interface	onto	HDFS	data,	but,	behind	the	scenes,	the	statements	are	converted
into	MapReduce	jobs	that	are	then	executed	like	any	other.	A	number	of	other	products
and	tools	took	a	similar	approach,	providing	a	specific	user-facing	interface	that	hid	a
MapReduce	translation	layer.

Though	this	approach	has	been	very	successful,	and	some	amazing	products	have	been
built,	the	fact	remains	that	in	many	cases,	there	is	a	mismatch	as	all	of	these	interfaces,
some	of	which	expect	a	certain	type	of	responsiveness,	are	behind	the	scenes,	being
executed	on	a	batch-processing	platform.	When	looking	to	enhance	MapReduce,
improvements	could	be	made	to	make	it	a	better	fit	to	these	use	cases,	but	the	fundamental
mismatch	would	remain.	This	situation	led	to	a	significant	change	of	focus	of	the	MRv2
initiative;	perhaps	MapReduce	itself	didn’t	need	change,	but	the	real	need	was	to	enable
different	processing	models	on	the	Hadoop	platform.	Thus	was	born	Yet	Another
Resource	Negotiator	(YARN).

Looking	at	MapReduce	in	Hadoop	1,	the	product	actually	did	two	quite	different	things;	it
provided	the	processing	framework	to	execute	MapReduce	computations,	but	it	also
managed	the	allocation	of	this	computation	across	the	cluster.	Not	only	did	it	direct	data	to
and	between	the	specific	map	and	reduce	tasks,	but	it	also	determined	where	each	task
would	run,	and	managed	the	full	job	life	cycle,	monitoring	the	health	of	each	task	and
node,	rescheduling	if	any	failed,	and	so	on.

This	is	not	a	trivial	task,	and	the	automated	parallelization	of	workloads	has	always	been
one	of	the	main	benefits	of	Hadoop.	If	we	look	at	MapReduce	in	Hadoop	1,	we	see	that
after	the	user	defines	the	key	criteria	for	the	job,	everything	else	is	the	responsibility	of	the
system.	Critically,	from	a	scale	perspective,	the	same	MapReduce	job	can	be	applied	to
datasets	of	any	volume	hosted	on	clusters	of	any	size.	If	the	data	is	1	GB	in	size	and	on	a
single	host,	then	Hadoop	will	schedule	the	processing	accordingly.	If	the	data	is	instead	1
PB	in	size	and	hosted	across	1,000	machines,	then	it	does	likewise.	From	the	user’s
perspective,	the	actual	scale	of	the	data	and	cluster	is	transparent,	and	aside	from	affecting
the	time	taken	to	process	the	job,	it	does	not	change	the	interface	with	which	to	interact
with	the	system.

In	Hadoop	2,	this	role	of	job	scheduling	and	resource	management	is	separated	from	that
of	executing	the	actual	application,	and	is	implemented	by	YARN.



YARN	is	responsible	for	managing	the	cluster	resources,	and	so	MapReduce	exists	as	an
application	that	runs	atop	the	YARN	framework.	The	MapReduce	interface	in	Hadoop	2	is
completely	compatible	with	that	in	Hadoop	1,	both	semantically	and	practically.	However,
under	the	covers,	MapReduce	has	become	a	hosted	application	on	the	YARN	framework.

The	significance	of	this	split	is	that	other	applications	can	be	written	that	provide
processing	models	more	focused	on	the	actual	problem	domain	and	can	offload	all	the
resource	management	and	scheduling	responsibilities	to	YARN.	The	latest	versions	of
many	different	execution	engines	have	been	ported	onto	YARN,	either	in	a	production-
ready	or	experimental	state,	and	it	has	shown	that	the	approach	can	allow	a	single	Hadoop
cluster	to	run	everything	from	batch-oriented	MapReduce	jobs	through	fast-response	SQL
queries	to	continuous	data	streaming	and	even	to	implement	models	such	as	graph
processing	and	the	Message	Passing	Interface	(MPI)	from	the	High	Performance
Computing	(HPC)	world.	The	following	diagram	shows	the	architecture	of	Hadoop	2:

Hadoop	2

This	is	why	much	of	the	attention	and	excitement	around	Hadoop	2	has	been	focused	on
YARN	and	frameworks	that	sit	on	top	of	it,	such	as	Apache	Tez	and	Apache	Spark.	With
YARN,	the	Hadoop	cluster	is	no	longer	just	a	batch-processing	engine;	it	is	the	single
platform	on	which	a	vast	array	of	processing	techniques	can	be	applied	to	the	enormous
data	volumes	stored	in	HDFS.	Moreover,	applications	can	build	on	these	computation
paradigms	and	execution	models.

The	analogy	that	is	achieving	some	traction	is	to	think	of	YARN	as	the	processing	kernel
upon	which	other	domain-specific	applications	can	be	built.	We’ll	discuss	YARN	in	more
detail	in	this	book,	particularly	in	Chapter	3,	Processing	–	MapReduce	and	Beyond,
Chapter	4,	Real-time	Computation	with	Samza,	and	Chapter	5,	Iterative	Computation	with
Spark.





Distributions	of	Apache	Hadoop
In	the	very	early	days	of	Hadoop,	the	burden	of	installing	(often	building	from	source)	and
managing	each	component	and	its	dependencies	fell	on	the	user.	As	the	system	became
more	popular	and	the	ecosystem	of	third-party	tools	and	libraries	started	to	grow,	the
complexity	of	installing	and	managing	a	Hadoop	deployment	increased	dramatically	to	the
point	where	providing	a	coherent	offer	of	software	packages,	documentation,	and	training
built	around	the	core	Apache	Hadoop	has	become	a	business	model.	Enter	the	world	of
distributions	for	Apache	Hadoop.

Hadoop	distributions	are	conceptually	similar	to	how	Linux	distributions	provide	a	set	of
integrated	software	around	a	common	core.	They	take	the	burden	of	bundling	and
packaging	software	themselves	and	provide	the	user	with	an	easy	way	to	install,	manage,
and	deploy	Apache	Hadoop	and	a	selected	number	of	third-party	libraries.	In	particular,
the	distribution	releases	deliver	a	series	of	product	versions	that	are	certified	to	be
mutually	compatible.	Historically,	putting	together	a	Hadoop-based	platform	was	often
greatly	complicated	by	the	various	version	interdependencies.

Cloudera	(http://www.cloudera.com),	Hortonworks	(http://www.hortonworks.com),	and
MapR	(http://www.mapr.com)	are	amongst	the	first	to	have	reached	the	market,	each
characterized	by	different	approaches	and	selling	points.	Hortonworks	positions	itself	as
the	open	source	player;	Cloudera	is	also	committed	to	open	source	but	adds	proprietary
bits	for	configuring	and	managing	Hadoop;	MapR	provides	a	hybrid	open
source/proprietary	Hadoop	distribution	characterized	by	a	proprietary	NFS	layer	instead	of
HDFS	and	a	focus	on	providing	services.

Another	strong	player	in	the	distributions	ecosystem	is	Amazon,	which	offers	a	version	of
Hadoop	called	Elastic	MapReduce	(EMR)	on	top	of	the	Amazon	Web	Services	(AWS)
infrastructure.

With	the	advent	of	Hadoop	2,	the	number	of	available	distributions	for	Hadoop	has
increased	dramatically,	far	in	excess	of	the	four	we	mentioned.	A	possibly	incomplete	list
of	software	offerings	that	includes	Apache	Hadoop	can	be	found	at
http://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support.

http://www.cloudera.com
http://www.hortonworks.com
http://www.mapr.com
http://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support


A	dual	approach
In	this	book,	we	will	discuss	both	the	building	and	the	management	of	local	Hadoop
clusters	in	addition	to	showing	how	to	push	the	processing	into	the	cloud	via	EMR.

The	reason	for	this	is	twofold:	firstly,	though	EMR	makes	Hadoop	much	more	accessible,
there	are	aspects	of	the	technology	that	only	become	apparent	when	manually
administering	the	cluster.	Although	it	is	also	possible	to	use	EMR	in	a	more	manual	mode,
we’ll	generally	use	a	local	cluster	for	such	explorations.	Secondly,	though	it	isn’t
necessarily	an	either/or	decision,	many	organizations	use	a	mixture	of	in-house	and	cloud-
hosted	capacities,	sometimes	due	to	a	concern	of	over	reliance	on	a	single	external
provider,	but	practically	speaking,	it’s	often	convenient	to	do	development	and	small-scale
tests	on	local	capacity	and	then	deploy	at	production	scale	into	the	cloud.

In	a	few	of	the	later	chapters,	where	we	discuss	additional	products	that	integrate	with
Hadoop,	we’ll	mostly	give	examples	of	local	clusters,	as	there	is	no	difference	between
how	the	products	work	regardless	of	where	they	are	deployed.



AWS	–	infrastructure	on	demand	from
Amazon
AWS	is	a	set	of	cloud-computing	services	offered	by	Amazon.	We	will	use	several	of
these	services	in	this	book.



Simple	Storage	Service	(S3)
Amazon’s	Simple	Storage	Service	(S3),	found	at	http://aws.amazon.com/s3/,	is	a	storage
service	that	provides	a	simple	key-value	storage	model.	Using	web,	command-line,	or
programmatic	interfaces	to	create	objects,	which	can	be	anything	from	text	files	to	images
to	MP3s,	you	can	store	and	retrieve	your	data	based	on	a	hierarchical	model.	In	this
model,	you	create	buckets	that	contain	objects.	Each	bucket	has	a	unique	identifier,	and
within	each	bucket,	every	object	is	uniquely	named.	This	simple	strategy	enables	an
extremely	powerful	service	for	which	Amazon	takes	complete	responsibility	(for	service
scaling,	in	addition	to	reliability	and	availability	of	data).

http://aws.amazon.com/s3/


Elastic	MapReduce	(EMR)
Amazon’s	Elastic	MapReduce,	found	at	http://aws.amazon.com/elasticmapreduce/,	is
basically	Hadoop	in	the	cloud.	Using	any	of	the	multiple	interfaces	(web	console,	CLI,	or
API),	a	Hadoop	workflow	is	defined	with	attributes	such	as	the	number	of	Hadoop	hosts
required	and	the	location	of	the	source	data.	The	Hadoop	code	implementing	the
MapReduce	jobs	is	provided,	and	the	virtual	Go	button	is	pressed.

In	its	most	impressive	mode,	EMR	can	pull	source	data	from	S3,	process	it	on	a	Hadoop
cluster	it	creates	on	Amazon’s	virtual	host	on-demand	service	EC2,	push	the	results	back
into	S3,	and	terminate	the	Hadoop	cluster	and	the	EC2	virtual	machines	hosting	it.
Naturally,	each	of	these	services	has	a	cost	(usually	on	per	GB	stored	and	server-time
usage	basis),	but	the	ability	to	access	such	powerful	data-processing	capabilities	with	no
need	for	dedicated	hardware	is	a	powerful	one.

http://aws.amazon.com/elasticmapreduce/


Getting	started
We	will	now	describe	the	two	environments	we	will	use	throughout	the	book:	Cloudera’s
QuickStart	virtual	machine	will	be	our	reference	system	on	which	we	will	show	all
examples,	but	we	will	additionally	demonstrate	some	examples	on	Amazon’s	EMR	when
there	is	some	particularly	valuable	aspect	to	running	the	example	in	the	on-demand
service.

Although	the	examples	and	code	provided	are	aimed	at	being	as	general-purpose	and
portable	as	possible,	our	reference	setup,	when	talking	about	a	local	cluster,	will	be
Cloudera	running	atop	CentOS	Linux.

For	the	most	part,	we	will	show	examples	that	make	use	of,	or	are	executed	from,	a
terminal	prompt.	Although	Hadoop’s	graphical	interfaces	have	improved	significantly
over	the	years	(for	example,	the	excellent	HUE	and	Cloudera	Manager),	when	it	comes	to
development,	automation,	and	programmatic	access	to	the	system,	the	command	line	is
still	the	most	powerful	tool	for	the	job.

All	examples	and	source	code	presented	in	this	book	can	be	downloaded	from
https://github.com/learninghadoop2/book-examples.	In	addition,	we	have	a	home	page	for
the	book	where	we	will	publish	updates	and	related	material	at
http://learninghadoop2.com.

https://github.com/learninghadoop2/book-examples
http://learninghadoop2.com


Cloudera	QuickStart	VM
One	of	the	advantages	of	Hadoop	distributions	is	that	they	give	access	to	easy-to-install,
packaged	software.	Cloudera	takes	this	one	step	further	and	provides	a	freely
downloadable	Virtual	Machine	instance	of	its	latest	distribution,	known	as	the	CDH
QuickStart	VM,	deployed	on	top	of	CentOS	Linux.

In	the	remaining	parts	of	this	book,	we	will	use	the	CDH5.0.0	VM	as	the	reference	and
baseline	system	to	run	examples	and	source	code.	Images	of	the	VM	are	available	for
VMware	(http://www.vmware.com/nl/products/player/),	KVM	(http://www.linux-
kvm.org/page/Main_Page),	and	VirtualBox	(https://www.virtualbox.org/)	virtualization
systems.

http://www.vmware.com/nl/products/player/
http://www.linux-kvm.org/page/Main_Page
https://www.virtualbox.org/


Amazon	EMR
Before	using	Elastic	MapReduce,	we	need	to	set	up	an	AWS	account	and	register	it	with
the	necessary	services.

Creating	an	AWS	account
Amazon	has	integrated	its	general	accounts	with	AWS,	which	means	that,	if	you	already
have	an	account	for	any	of	the	Amazon	retail	websites,	this	is	the	only	account	you	will
need	to	use	AWS	services.

Note
Note	that	AWS	services	have	a	cost;	you	will	need	an	active	credit	card	associated	with
the	account	to	which	charges	can	be	made.

If	you	require	a	new	Amazon	account,	go	to	http://aws.amazon.com,	select	Create	a	new
AWS	account,	and	follow	the	prompts.	Amazon	has	added	a	free	tier	for	some	services,
so	you	might	find	that	in	the	early	days	of	testing	and	exploration,	you	are	keeping	many
of	your	activities	within	the	noncharged	tier.	The	scope	of	the	free	tier	has	been
expanding,	so	make	sure	you	know	what	you	will	and	won’t	be	charged	for.

Signing	up	for	the	necessary	services
Once	you	have	an	Amazon	account,	you	will	need	to	register	it	for	use	with	the	required
AWS	services,	that	is,	Simple	Storage	Service	(S3),	Elastic	Compute	Cloud	(EC2),	and
Elastic	MapReduce.	There	is	no	cost	to	simply	sign	up	to	any	AWS	service;	the	process
just	makes	the	service	available	to	your	account.

Go	to	the	S3,	EC2,	and	EMR	pages	linked	from	http://aws.amazon.com,	click	on	the	Sign
up	button	on	each	page,	and	then	follow	the	prompts.

http://aws.amazon.com
http://aws.amazon.com


Using	Elastic	MapReduce
Having	created	an	account	with	AWS	and	registered	all	the	required	services,	we	can
proceed	to	configure	programmatic	access	to	EMR.



Getting	Hadoop	up	and	running
Note
Caution!	This	costs	real	money!

Before	going	any	further,	it	is	critical	to	understand	that	use	of	AWS	services	will	incur
charges	that	will	appear	on	the	credit	card	associated	with	your	Amazon	account.	Most	of
the	charges	are	quite	small	and	increase	with	the	amount	of	infrastructure	consumed;
storing	10	GB	of	data	in	S3	costs	10	times	more	than	1	GB,	and	running	20	EC2	instances
costs	20	times	as	much	as	a	single	one.	There	are	tiered	cost	models,	so	the	actual	costs
tend	to	have	smaller	marginal	increases	at	higher	levels.	But	you	should	read	carefully
through	the	pricing	sections	for	each	service	before	using	any	of	them.	Note	also	that
currently	data	transfer	out	of	AWS	services,	such	as	EC2	and	S3,	is	chargeable,	but	data
transfer	between	services	is	not.	This	means	it	is	often	most	cost-effective	to	carefully
design	your	use	of	AWS	to	keep	data	within	AWS	through	as	much	of	the	data	processing
as	possible.	For	information	regarding	AWS	and	EMR,	consult
http://aws.amazon.com/elasticmapreduce/#pricing.

How	to	use	EMR
Amazon	provides	both	web	and	command-line	interfaces	to	EMR.	Both	interfaces	are	just
a	frontend	to	the	very	same	system;	a	cluster	created	with	the	command-line	interface	can
be	inspected	and	managed	with	the	web	tools	and	vice-versa.

For	the	most	part,	we	will	be	using	the	command-line	tools	to	create	and	manage	clusters
programmatically	and	will	fall	back	on	the	web	interface	cases	where	it	makes	sense	to	do
so.

AWS	credentials
Before	using	either	programmatic	or	command-line	tools,	we	need	to	look	at	how	an
account	holder	authenticates	to	AWS	to	make	such	requests.

Each	AWS	account	has	several	identifiers,	such	as	the	following,	that	are	used	when
accessing	the	various	services:

Account	ID:	each	AWS	account	has	a	numeric	ID.
Access	key:	the	associated	access	key	is	used	to	identify	the	account	making	the
request.
Secret	access	key:	the	partner	to	the	access	key	is	the	secret	access	key.	The	access
key	is	not	a	secret	and	could	be	exposed	in	service	requests,	but	the	secret	access	key
is	what	you	use	to	validate	yourself	as	the	account	owner.	Treat	it	like	your	credit
card.
Key	pairs:	these	are	the	key	pairs	used	to	log	in	to	EC2	hosts.	It	is	possible	to	either
generate	public/private	key	pairs	within	EC2	or	to	import	externally	generated	keys
into	the	system.

http://aws.amazon.com/elasticmapreduce/#pricing


User	credentials	and	permissions	are	managed	via	a	web	service	called	Identity	and
Access	Management	(IAM),	which	you	need	to	sign	up	to	in	order	to	obtain	access	and
secret	keys.

If	this	sounds	confusing,	it’s	because	it	is,	at	least	at	first.	When	using	a	tool	to	access	an
AWS	service,	there’s	usually	the	single,	upfront	step	of	adding	the	right	credentials	to	a
configured	file,	and	then	everything	just	works.	However,	if	you	do	decide	to	explore
programmatic	or	command-line	tools,	it	will	be	worth	investing	a	little	time	to	read	the
documentation	for	each	service	to	understand	how	its	security	works.	More	information	on
creating	an	AWS	account	and	obtaining	access	credentials	can	be	found	at
http://docs.aws.amazon.com/iam.

http://docs.aws.amazon.com/iam


The	AWS	command-line	interface
Each	AWS	service	historically	had	its	own	set	of	command-line	tools.	Recently	though,
Amazon	has	created	a	single,	unified	command-line	tool	that	allows	access	to	most
services.	The	Amazon	CLI	can	be	found	at	http://aws.amazon.com/cli.

It	can	be	installed	from	a	tarball	or	via	the	pip	or	easy_install	package	managers.

On	the	CDH	QuickStart	VM,	we	can	install	awscli	using	the	following	command:

$	pip	install	awscli

In	order	to	access	the	API,	we	need	to	configure	the	software	to	authenticate	to	AWS
using	our	access	and	secret	keys.

This	is	also	a	good	moment	to	set	up	an	EC2	key	pair	by	following	the	instructions
provided	at	https://console.aws.amazon.com/ec2/home?region=us-east-
1#c=EC2&s=KeyPairs.

Although	a	key	pair	is	not	strictly	necessary	to	run	an	EMR	cluster,	it	will	give	us	the
capability	to	remotely	log	in	to	the	master	node	and	gain	low-level	access	to	the	cluster.

The	following	command	will	guide	you	through	a	series	of	configuration	steps	and	store
the	resulting	configuration	in	the	.aws/credential	file:

$	aws	configure

Once	the	CLI	is	configured,	we	can	query	AWS	with	aws	<service>	<arguments>.	To
create	and	query	an	S3	bucket	use	something	like	the	following	command.	Note	that	S3
buckets	need	to	be	globally	unique	across	all	AWS	accounts,	so	most	common	names,
such	as	s3://mybucket,	will	not	be	available:

$	aws	s3	mb	s3://learninghadoop2

$	aws	s3	ls

We	can	provision	an	EMR	cluster	with	five	m1.xlarge	nodes	using	the	following
commands:

$	aws	emr	create-cluster	--name	"EMR	cluster"	\

--ami-version	3.2.0	\

--instance-type	m1.xlarge		\

--instance-count	5	\

--log-uri	s3://learninghadoop2/emr-logs

Where	--ami-version	is	the	ID	of	an	Amazon	Machine	Image	template
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html),	and	--log-uri
instructs	EMR	to	collect	logs	and	store	them	in	the	learninghadoop2	S3	bucket.

Note
If	you	did	not	specify	a	default	region	when	setting	up	the	AWS	CLI,	then	you	will	also
have	to	add	one	to	most	EMR	commands	in	the	AWS	CLI	using	the	—region	argument;
for	example,	--region	eu-west-1	is	run	to	use	the	EU	Ireland	region.	You	can	find

http://aws.amazon.com/cli
https://console.aws.amazon.com/ec2/home?region=us-east-1#c=EC2&s=KeyPairs
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html


details	of	all	available	AWS	regions	at
http://docs.aws.amazon.com/general/latest/gr/rande.html.

We	can	submit	workflows	by	adding	steps	to	a	running	cluster	using	the	following
command:

$	aws	emr	add-steps	--cluster-id	<cluster>	--steps	<steps>	

To	terminate	the	cluster,	use	the	following	command	line:

$	aws	emr	terminate-clusters	--cluster-id	<cluster>

In	later	chapters,	we	will	show	you	how	to	add	steps	to	execute	MapReduce	jobs	and	Pig
scripts.

More	information	on	using	the	AWS	CLI	can	be	found	at
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage.html.

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage.html


Running	the	examples
The	source	code	of	all	examples	is	available	at	https://github.com/learninghadoop2/book-
examples.

Gradle	(http://www.gradle.org/)	scripts	and	configurations	are	provided	to	compile	most	of
the	Java	code.	The	gradlew	script	included	with	the	example	will	bootstrap	Gradle	and
use	it	to	fetch	dependencies	and	compile	code.

JAR	files	can	be	created	by	invoking	the	jar	task	via	a	gradlew	script,	as	follows:

./gradlew	jar

Jobs	are	usually	executed	by	submitting	a	JAR	file	using	the	hadoop	jar	command,	as
follows:

$	hadoop	jar	example.jar	<MainClass>	[-libjars	$LIBJARS]	arg1	arg2	…	argN

The	optional	-libjars	parameter	specifies	runtime	third-party	dependencies	to	ship	to
remote	nodes.

Note
Some	of	the	frameworks	we	will	work	with,	such	as	Apache	Spark,	come	with	their	own
build	and	package	management	tools.	Additional	information	and	resources	will	be
provided	for	these	particular	cases.

The	copyJar	Gradle	task	can	be	used	to	download	third-party	dependencies	into
build/libjars/<example>/lib,	as	follows:

./gradlew	copyJar

For	convenience,	we	provide	a	fatJar	Gradle	task	that	bundles	the	example	classes	and
their	dependencies	into	a	single	JAR	file.	Although	this	approach	is	discouraged	in	favor
of	using	–libjar,	it	might	come	in	handy	when	dealing	with	dependency	issues.

The	following	command	will	generate	build/libs/<example>-all.jar:

$	./gradlew	fatJar

https://github.com/learninghadoop2/book-examples
http://www.gradle.org


Data	processing	with	Hadoop
In	the	remaining	chapters	of	this	book,	we	will	introduce	the	core	components	of	the
Hadoop	ecosystem	as	well	as	a	number	of	third-party	tools	and	libraries	that	will	make
writing	robust,	distributed	code	an	accessible	and	hopefully	enjoyable	task.	While	reading
this	book,	you	will	learn	how	to	collect,	process,	store,	and	extract	information	from	large
amounts	of	structured	and	unstructured	data.

We	will	use	a	dataset	generated	from	Twitter’s	(http://www.twitter.com)	real-time	fire
hose.	This	approach	will	allow	us	to	experiment	with	relatively	small	datasets	locally	and,
once	ready,	scale	the	examples	up	to	production-level	data	sizes.

http://www.twitter.com


Why	Twitter?
Thanks	to	its	programmatic	APIs,	Twitter	provides	an	easy	way	to	generate	datasets	of
arbitrary	size	and	inject	them	into	our	local-	or	cloud-based	Hadoop	clusters.	Other	than
the	sheer	size,	the	dataset	that	we	will	use	has	a	number	of	properties	that	fit	several
interesting	data	modeling	and	processing	use	cases.

Twitter	data	possesses	the	following	properties:

Unstructured:	each	status	update	is	a	text	message	that	can	contain	references	to
media	content	such	as	URLs	and	images
Structured:	tweets	are	timestamped,	sequential	records
Graph:	relationships	such	as	replies	and	mentions	can	be	modeled	as	a	network	of
interactions
Geolocated:	the	location	where	a	tweet	was	posted	or	where	a	user	resides
Real	time:	all	data	generated	on	Twitter	is	available	via	a	real-time	fire	hose

These	properties	will	be	reflected	in	the	type	of	application	that	we	can	build	with
Hadoop.	These	include	examples	of	sentiment	analysis,	social	network,	and	trend	analysis.



Building	our	first	dataset
Twitter’s	terms	of	service	prohibit	redistribution	of	user-generated	data	in	any	form;	for
this	reason,	we	cannot	make	available	a	common	dataset.	Instead,	we	will	use	a	Python
script	to	programmatically	access	the	platform	and	create	a	dump	of	user	tweets	collected
from	a	live	stream.

One	service,	multiple	APIs
Twitter	users	share	more	than	200	million	tweets,	also	known	as	status	updates,	a	day.	The
platform	offers	access	to	this	corpus	of	data	via	four	types	of	APIs,	each	of	which
represents	a	facet	of	Twitter	and	aims	at	satisfying	specific	use	cases,	such	as	linking	and
interacting	with	twitter	content	from	third-party	sources	(Twitter	for	Products),
programmatic	access	to	specific	users’	or	sites’	content	(REST),	search	capabilities	across
users’	or	sites’	timelines	(Search),	and	access	to	all	content	created	on	the	Twitter	network
in	real	time	(Streaming).

The	Streaming	API	allows	direct	access	to	the	Twitter	stream,	tracking	keywords,
retrieving	geotagged	tweets	from	a	certain	region,	and	much	more.	In	this	book,	we	will
make	use	of	this	API	as	a	data	source	to	illustrate	both	the	batch	and	real-time	capabilities
of	Hadoop.	We	will	not,	however,	interact	with	the	API	itself;	rather,	we	will	make	use	of
third-party	libraries	to	offload	chores	such	as	authentication	and	connection	management.

Anatomy	of	a	Tweet
Each	tweet	object	returned	by	a	call	to	the	real-time	APIs	is	represented	as	a	serialized
JSON	string	that	contains	a	set	of	attributes	and	metadata	in	addition	to	a	textual	message.
This	additional	content	includes	a	numerical	ID	that	uniquely	identifies	the	tweet,	the
location	where	the	tweet	was	shared,	the	user	who	shared	it	(user	object),	whether	it	was
republished	by	other	users	(retweeted)	and	how	many	times	(retweet	count),	the	machine-
detected	language	of	its	text,	whether	the	tweet	was	posted	in	reply	to	someone	and,	if	so,
the	user	and	tweet	IDs	it	replied	to,	and	so	on.

The	structure	of	a	Tweet,	and	any	other	object	exposed	by	the	API,	is	constantly	evolving.
An	up-to-date	reference	can	be	found	at	https://dev.twitter.com/docs/platform-
objects/tweets.

Twitter	credentials
Twitter	makes	use	of	the	OAuth	protocol	to	authenticate	and	authorize	access	from	third-
party	software	to	its	platform.

The	application	obtains	through	an	external	channel,	for	instance	a	web	form,	the
following	pair	of	credentials:

Consumer	key
Consumer	secret

The	consumer	secret	is	never	directly	transmitted	to	the	third	party	as	it	is	used	to	sign

https://dev.twitter.com/docs/platform-objects/tweets


each	request.

The	user	authorizes	the	application	to	access	the	service	via	a	three-way	process	that,	once
completed,	grants	the	application	a	token	consisting	of	the	following:

Access	token
Access	secret

Similarly,	to	the	consumer,	the	access	secret	is	never	directly	transmitted	to	the	third	party,
and	it	is	used	to	sign	each	request.

In	order	to	use	the	Streaming	API,	we	will	first	need	to	register	an	application	and	grant	it
programmatic	access	to	the	system.	If	you	require	a	new	Twitter	account,	proceed	to	the
signup	page	at	https://twitter.com/signup,	and	fill	in	the	required	information.	Once	this
step	is	completed,	we	need	to	create	a	sample	application	that	will	access	the	API	on	our
behalf	and	grant	it	the	proper	authorization	rights.	We	will	do	so	using	the	web	form	found
at	https://dev.twitter.com/apps.

When	creating	a	new	app,	we	are	asked	to	give	it	a	name,	a	description,	and	a	URL.	The
following	screenshot	shows	the	settings	of	a	sample	application	named	Learning	Hadoop
2	Book	Dataset.	For	the	purpose	of	this	book,	we	do	not	need	to	specify	a	valid	URL,	so
we	used	a	placeholder	instead.

Once	the	form	is	filled	in,	we	need	to	review	and	accept	the	terms	of	service	and	click	on
the	Create	Application	button	in	the	bottom-left	corner	of	the	page.

We	are	now	presented	with	a	page	that	summarizes	our	application	details	as	seen	in	the
following	screenshot;	the	authentication	and	authorization	credentials	can	be	found	under
the	OAuth	Tool	tab.

We	are	finally	ready	to	generate	our	very	first	Twitter	dataset.

https://twitter.com/signup
https://dev.twitter.com/apps




Programmatic	access	with	Python
In	this	section,	we	will	use	Python	and	the	tweepy	library,	found	at
https://github.com/tweepy/tweepy,	to	collect	Twitter’s	data.	The	stream.py	file	found	in
the	ch1	directory	of	the	book	code	archive	instantiates	a	listener	to	the	real-time	fire	hose,
grabs	a	data	sample,	and	echoes	each	tweet’s	text	to	standard	output.

The	tweepy	library	can	be	installed	using	either	the	easy_install	or	pip	package
managers	or	by	cloning	the	repository	at	https://github.com/tweepy/tweepy.

On	the	CDH	QuickStart	VM,	we	can	install	tweepy	using	the	following	command	line:

$	pip	install	tweepy

When	invoked	with	the	-j	parameter,	the	script	will	output	a	JSON	tweet	to	standard
output;	-t	extracts	and	prints	the	text	field.	We	specify	how	many	tweets	to	print	with–n
<num	tweets>.	When	–n	is	not	specified,	the	script	will	run	indefinitely.	Execution	can	be
terminated	by	pressing	Ctrl	+	C.

The	script	expects	OAuth	credentials	to	be	stored	as	shell	environment	variables;	the
following	credentials	will	have	to	be	set	in	the	terminal	session	from	where	stream.py
will	be	executed.

$	export	TWITTER_CONSUMER_KEY="your_consumer_key"

$	export	TWITTER_CONSUMER_SECRET="your_consumer_secret"

$	export	TWITTER_ACCESS_KEY="your_access_key"

$	export	TWITTER_ACCESS_SECRET="your_access_secret"

Once	the	required	dependency	has	been	installed	and	the	OAuth	data	in	the	shell
environment	has	been	set,	we	can	run	the	program	as	follows:

$	python	stream.py	–t	–n	1000	>	tweets.txt

We	are	relying	on	Linux’s	shell	I/O	to	redirect	the	output	with	the	>	operator	of	stream.py
to	a	file	called	tweets.txt.	If	everything	was	executed	correctly,	you	should	see	a	wall	of
text,	where	each	line	is	a	tweet.

Notice	that	in	this	example,	we	did	not	make	use	of	Hadoop	at	all.	In	the	next	chapters,	we
will	show	how	to	import	a	dataset	generated	from	the	Streaming	API	into	Hadoop	and
analyze	its	content	on	the	local	cluster	and	Amazon	EMR.

For	now,	let’s	take	a	look	at	the	source	code	of	stream.py,	which	can	be	found	at
https://github.com/learninghadoop2/book-examples/blob/master/ch1/stream.py:

import	tweepy

import	os

import	json

import	argparse

consumer_key	=	os.environ['TWITTER_CONSUMER_KEY']

consumer_secret	=	os.environ['TWITTER_CONSUMER_SECRET']

access_key	=	os.environ['TWITTER_ACCESS_KEY']

access_secret	=	os.environ['TWITTER_ACCESS_SECRET']

https://github.com/tweepy/tweepy
https://github.com/tweepy/tweepy
https://github.com/learninghadoop2/book-examples/blob/master/ch1/stream.py


class	EchoStreamListener(tweepy.StreamListener):

				def	__init__(self,	api,	dump_json=False,	numtweets=0):

								self.api	=	api

								self.dump_json	=	dump_json

								self.count	=	0

								self.limit	=	int(numtweets)

								super(tweepy.StreamListener,	self).__init__()

				def	on_data(self,	tweet):

								tweet_data	=	json.loads(tweet)

								if	'text'	in	tweet_data:

												if	self.dump_json:

																print	tweet.rstrip()

												else:

																print	tweet_data['text'].encode("utf-8").rstrip()

												self.count	=	self.count+1

												return	False	if	self.count	==	self.limit	else	True

				def	on_error(self,	status_code):

								return	True

				def	on_timeout(self):

								return	True

…

if	__name__	==	'__main__':

				parser	=	get_parser()

				args	=	parser.parse_args()

				auth	=	tweepy.OAuthHandler(consumer_key,	consumer_secret)

				auth.set_access_token(access_key,	access_secret)

				api	=	tweepy.API(auth)

				sapi	=	tweepy.streaming.Stream(

								auth,	EchoStreamListener(

												api=api,	

												dump_json=args.json,	

												numtweets=args.numtweets))

				sapi.sample()

First,	we	import	three	dependencies:	tweepy,	and	the	os	and	json	modules,	which	come
with	the	Python	interpreter	version	2.6	or	greater.

We	then	define	a	class,	EchoStreamListener,	that	inherits	and	extends	StreamListener
from	tweepy.	As	the	name	suggests,	StreamListener	listens	for	events	and	tweets	being
published	on	the	real-time	stream	and	performs	actions	accordingly.

Whenever	a	new	event	is	detected,	it	triggers	a	call	to	on_data().	In	this	method,	we
extract	the	text	field	from	a	tweet	object	and	print	it	to	standard	output	with	UTF-8
encoding.	Alternatively,	if	the	script	is	invoked	with	-j,	we	print	the	whole	JSON	tweet.
When	the	script	is	executed,	we	instantiate	a	tweepy.OAuthHandler	object	with	the	OAuth
credentials	that	identify	our	Twitter	account,	and	then	we	use	this	object	to	authenticate
with	the	application	access	and	secret	key.	We	then	use	the	auth	object	to	create	an
instance	of	the	tweepy.API	class	(api)



Upon	successful	authentication,	we	tell	Python	to	listen	for	events	on	the	real-time	stream
using	EchoStreamListener.

An	http	GET	request	to	the	statuses/sample	endpoint	is	performed	by	sample().	The
request	returns	a	random	sample	of	all	public	statuses.

Note
Beware!	By	default,	sample()	will	run	indefinitely.	Remember	to	explicitly	terminate	the
method	call	by	pressing	Ctrl	+	C.



Summary
This	chapter	gave	a	whirlwind	tour	of	where	Hadoop	came	from,	its	evolution,	and	why
the	version	2	release	is	such	a	major	milestone.	We	also	described	the	emerging	market	in
Hadoop	distributions	and	how	we	will	use	a	combination	of	local	and	cloud	distributions
in	the	book.

Finally,	we	described	how	to	set	up	the	needed	software,	accounts,	and	environments
required	in	subsequent	chapters	and	demonstrated	how	to	pull	data	from	the	Twitter
stream	that	we	will	use	for	examples.

With	this	background	out	of	the	way,	we	will	now	move	on	to	a	detailed	examination	of
the	storage	layer	within	Hadoop.



Chapter	2.	Storage
After	the	overview	of	Hadoop	in	the	previous	chapter,	we	will	now	start	looking	at	its
various	component	parts	in	more	detail.	We	will	start	at	the	conceptual	bottom	of	the	stack
in	this	chapter:	the	means	and	mechanisms	for	storing	data	within	Hadoop.	In	particular,
we	will	discuss	the	following	topics:

Describe	the	architecture	of	the	Hadoop	Distributed	File	System	(HDFS)
Show	what	enhancements	to	HDFS	have	been	made	in	Hadoop	2
Explore	how	to	access	HDFS	using	command-line	tools	and	the	Java	API
Give	a	brief	description	of	ZooKeeper—another	(sort	of)	filesystem	within	Hadoop
Survey	considerations	for	storing	data	in	Hadoop	and	the	available	file	formats

In	Chapter	3,	Processing	–	MapReduce	and	Beyond,	we	will	describe	how	Hadoop
provides	the	framework	to	allow	data	to	be	processed.



The	inner	workings	of	HDFS
In	Chapter	1,	Introduction,	we	gave	a	very	high-level	overview	of	HDFS;	we	will	now
explore	it	in	a	little	more	detail.	As	mentioned	in	that	chapter,	HDFS	can	be	viewed	as	a
filesystem,	though	one	with	very	specific	performance	characteristics	and	semantics.	It’s
implemented	with	two	main	server	processes:	the	NameNode	and	the	DataNodes,
configured	in	a	master/slave	setup.	If	you	view	the	NameNode	as	holding	all	the
filesystem	metadata	and	the	DataNodes	as	holding	the	actual	filesystem	data	(blocks),	then
this	is	a	good	starting	point.	Every	file	placed	onto	HDFS	will	be	split	into	multiple	blocks
that	might	reside	on	numerous	DataNodes,	and	it’s	the	NameNode	that	understands	how
these	blocks	can	be	combined	to	construct	the	files.



Cluster	startup
Let’s	explore	the	various	responsibilities	of	these	nodes	and	the	communication	between
them	by	assuming	we	have	an	HDFS	cluster	that	was	previously	shut	down	and	then
examining	the	startup	behavior.

NameNode	startup
We’ll	firstly	consider	the	startup	of	the	NameNode	(though	there	is	no	actual	ordering
requirement	for	this	and	we	are	doing	it	for	narrative	reasons	alone).	The	NameNode
actually	stores	two	types	of	data	about	the	filesystem:

The	structure	of	the	filesystem,	that	is,	directory	names,	filenames,	locations,	and
attributes
The	blocks	that	comprise	each	file	on	the	filesystem

This	data	is	stored	in	files	that	the	NameNode	reads	at	startup.	Note	that	the	NameNode
does	not	persistently	store	the	mapping	of	the	blocks	that	are	stored	on	particular
DataNodes;	we’ll	see	how	that	information	is	communicated	shortly.

Because	the	NameNode	relies	on	this	in-memory	representation	of	the	filesystem,	it	tends
to	have	quite	different	hardware	requirements	compared	to	the	DataNodes.	We’ll	explore
hardware	selection	in	more	detail	in	Chapter	10,	Running	a	Hadoop	Cluster;	for	now,	just
remember	that	the	NameNode	tends	to	be	quite	memory	hungry.	This	is	particularly	true
on	very	large	clusters	with	many	(millions	or	more)	files,	particularly	if	these	files	have
very	long	names.	This	scaling	limitation	on	the	NameNode	has	also	led	to	an	additional
Hadoop	2	feature	that	we	will	not	explore	in	much	detail:	NameNode	federation,	whereby
multiple	NameNodes	(or	NameNode	HA	pairs)	work	collaboratively	to	provide	the	overall
metadata	for	the	full	filesystem.

The	main	file	written	by	the	NameNode	is	called	fsimage;	this	is	the	single	most
important	piece	of	data	in	the	entire	cluster,	as	without	it,	the	knowledge	of	how	to
reconstruct	all	the	data	blocks	into	the	usable	filesystem	is	lost.	This	file	is	read	into
memory	and	all	future	modifications	to	the	filesystem	are	applied	to	this	in-memory
representation	of	the	filesystem.	The	NameNode	does	not	write	out	new	versions	of
fsimage	as	new	changes	are	applied	after	it	is	run;	instead,	it	writes	another	file	called
edits,	which	is	a	list	of	the	changes	that	have	been	made	since	the	last	version	of	fsimage
was	written.

The	NameNode	startup	process	is	to	first	read	the	fsimage	file,	then	to	read	the	edits	file,
and	apply	all	the	changes	stored	in	the	edits	file	to	the	in-memory	copy	of	fsimage.	It
then	writes	to	disk	a	new	up-to-date	version	of	the	fsimage	file	and	is	ready	to	receive
client	requests.

DataNode	startup
When	the	DataNodes	start	up,	they	first	catalog	the	blocks	for	which	they	hold	copies.
Typically,	these	blocks	will	be	written	simply	as	files	on	the	local	DataNode	filesystem.



The	DataNode	will	perform	some	block	consistency	checking	and	then	report	to	the
NameNode	the	list	of	blocks	for	which	it	has	valid	copies.	This	is	how	the	NameNode
constructs	the	final	mapping	it	requires—by	learning	which	blocks	are	stored	on	which
DataNodes.	Once	the	DataNode	has	registered	itself	with	the	NameNode,	an	ongoing
series	of	heartbeat	requests	will	be	sent	between	the	nodes	to	allow	the	NameNode	to
detect	DataNodes	that	have	shut	down,	become	unreachable,	or	have	newly	entered	the
cluster.



Block	replication
HDFS	replicates	each	block	onto	multiple	DataNodes;	the	default	replication	factor	is	3,
but	this	is	configurable	on	a	per-file	level.	HDFS	can	also	be	configured	to	be	able	to
determine	whether	given	DataNodes	are	in	the	same	physical	hardware	rack	or	not.	Given
smart	block	placement	and	this	knowledge	of	the	cluster	topology,	HDFS	will	attempt	to
place	the	second	replica	on	a	different	host	but	in	the	same	equipment	rack	as	the	first	and
the	third	on	a	host	outside	the	rack.	In	this	way,	the	system	can	survive	the	failure	of	as
much	as	a	full	rack	of	equipment	and	still	have	at	least	one	live	replica	for	each	block.	As
we’ll	see	in	Chapter	3,	Processing	–	MapReduce	and	Beyond,	knowledge	of	block
placement	also	allows	Hadoop	to	schedule	processing	as	near	as	possible	to	a	replica	of
each	block,	which	can	greatly	improve	performance.

Remember	that	replication	is	a	strategy	for	resilience	but	is	not	a	backup	mechanism;	if
you	have	data	mastered	in	HDFS	that	is	critical,	then	you	need	to	consider	backup	or	other
approaches	that	give	protection	for	errors,	such	as	accidentally	deleted	files,	against	which
replication	will	not	defend.

When	the	NameNode	starts	up	and	is	receiving	the	block	reports	from	the	DataNodes,	it
will	remain	in	safe	mode	until	a	configurable	threshold	of	blocks	(the	default	is	99.9
percent)	have	been	reported	as	live.	While	in	safe	mode,	clients	cannot	make	any
modifications	to	the	filesystem.



Command-line	access	to	the	HDFS
filesystem
Within	the	Hadoop	distribution,	there	is	a	command-line	utility	called	hdfs,	which	is	the
primary	way	to	interact	with	the	filesystem	from	the	command	line.	Run	this	without	any
arguments	to	see	the	various	subcommands	available.	There	are	many,	though;	several	are
used	to	do	things	like	starting	or	stopping	various	HDFS	components.	The	general	form	of
the	hdfs	command	is:

hdfs	<sub-command>	<command>	[arguments]

The	two	main	subcommands	we	will	use	in	this	book	are:

dfs:	This	is	used	for	general	filesystem	access	and	manipulation,	including
reading/writing	and	accessing	files	and	directories
dfsadmin:	This	is	used	for	administration	and	maintenance	of	the	filesystem.	We	will
not	cover	this	command	in	detail,	though.	Have	a	look	at	the	-report	command,
which	gives	a	listing	of	the	state	of	the	filesystem	and	all	DataNodes:

$	hdfs	dfsadmin	-report

Note
Note	that	the	dfs	and	dfsadmin	commands	can	also	be	used	with	the	main	Hadoop
command-line	utility,	for	example,	hadoop	fs	-ls	/.	This	was	the	approach	in	earlier
versions	of	Hadoop	but	is	now	deprecated	in	favor	of	the	hdfs	command.



Exploring	the	HDFS	filesystem
Run	the	following	to	get	a	list	of	the	available	commands	provided	by	the	dfs
subcommand:

$	hdfs	dfs

As	will	be	seen	from	the	output	of	the	preceding	command,	many	of	these	look	similar	to
standard	Unix	filesystem	commands	and,	not	surprisingly,	they	work	as	would	be
expected.	In	our	test	VM,	we	have	a	user	account	called	cloudera.	Using	this	user,	we	can
list	the	root	of	the	filesystem	as	follows:

$	hdfs	dfs	-ls	/

Found	7	items

drwxr-xr-x			-	hbase	hbase															0	2014-04-04	15:18	/hbase

drwxr-xr-x			-	hdfs		supergroup										0	2014-10-21	13:16	/jar

drwxr-xr-x			-	hdfs		supergroup										0	2014-10-15	15:26	/schema

drwxr-xr-x			-	solr		solr																0	2014-04-04	15:16	/solr

drwxrwxrwt			-	hdfs		supergroup										0	2014-11-12	11:29	/tmp

drwxr-xr-x			-	hdfs		supergroup										0	2014-07-13	09:05	/user

drwxr-xr-x			-	hdfs		supergroup										0	2014-04-04	15:15	/var

The	output	is	very	similar	to	the	Unix	ls	command.	The	file	attributes	work	the	same	as
the	user/group/world	attributes	on	a	Unix	filesystem	(including	the	t	sticky	bit	as	can	be
seen)	plus	details	of	the	owner,	group,	and	modification	time	of	the	directories.	The
column	between	the	group	name	and	the	modified	date	is	the	size;	this	is	0	for	directories
but	will	have	a	value	for	files	as	we’ll	see	in	the	code	following	the	next	information	box:

Note
If	relative	paths	are	used,	they	are	taken	from	the	home	directory	of	the	user.	If	there	is	no
home	directory,	we	can	create	it	using	the	following	commands:

$	sudo	-u	hdfs	hdfs	dfs	–mkdir	/user/cloudera

$	sudo	-u	hdfs	hdfs	dfs	–chown	cloudera:cloudera	/user/cloudera

The	mkdir	and	chown	steps	require	superuser	privileges	(sudo	-u	hdfs).

$	hdfs	dfs	-mkdir	testdir

$	hdfs	dfs	-ls

Found	1	items

drwxr-xr-x			-	cloudera	cloudera					0	2014-11-13	11:21	testdir

Then,	we	can	create	a	file,	copy	it	to	HDFS,	and	read	its	contents	directly	from	its	location
on	HDFS,	as	follows:

$	echo	"Hello	world"	>	testfile.txt

$	hdfs	dfs	-put	testfile.txt	testdir

Note	that	there	is	an	older	command	called	-copyFromLocal,	which	works	in	the	same
way	as	-put;	you	might	see	it	in	older	documentation	online.	Now,	run	the	following
command	and	check	the	output:



$	hdfs	dfs	-ls	testdir

Found	1	items

-rw-r--r--			3	cloudera	cloudera									12	2014-11-13	11:21	

testdir/testfile.txt

Note	the	new	column	between	the	file	attributes	and	the	owner;	this	is	the	replication
factor	of	the	file.	Now,	finally,	run	the	following	command:

$	hdfs	dfs	-tail	testdir/testfile.txt

Hello	world

Much	of	the	rest	of	the	dfs	subcommands	are	pretty	intuitive;	play	around.	We’ll	explore
snapshots	and	programmatic	access	to	HDFS	later	in	this	chapter.



Protecting	the	filesystem	metadata
Because	the	fsimage	file	is	so	critical	to	the	filesystem,	its	loss	is	a	catastrophic	failure.	In
Hadoop	1,	where	the	NameNode	was	a	single	point	of	failure,	the	best	practice	was	to
configure	the	NameNode	to	synchronously	write	the	fsimage	and	edits	files	to	both	local
storage	plus	at	least	one	other	location	on	a	remote	filesystem	(often	NFS).	In	the	event	of
NameNode	failure,	a	replacement	NameNode	could	be	started	using	this	up-to-date	copy
of	the	filesystem	metadata.	The	process	would	require	non-trivial	manual	intervention,
however,	and	would	result	in	a	period	of	complete	cluster	unavailability.



Secondary	NameNode	not	to	the	rescue
The	most	unfortunately	named	component	in	all	of	Hadoop	1	was	the	Secondary
NameNode,	which,	not	unreasonably,	many	people	expect	to	be	some	sort	of	backup	or
standby	NameNode.	It	is	not;	instead,	the	Secondary	NameNode	was	responsible	only	for
periodically	reading	the	latest	version	of	the	fsimage	and	edits	file	and	creating	a	new	up-
to-date	fsimage	with	the	outstanding	edits	applied.	On	a	busy	cluster,	this	checkpoint
could	significantly	speed	up	the	restart	of	the	NameNode	by	reducing	the	number	of	edits
it	had	to	apply	before	being	able	to	service	clients.

In	Hadoop	2,	the	naming	is	more	clear;	there	are	Checkpoint	nodes,	which	do	the	role
previously	performed	by	the	Secondary	NameNode,	plus	Backup	NameNodes,	which
keep	a	local	up-to-date	copy	of	the	filesystem	metadata	even	though	the	process	to
promote	a	Backup	node	to	be	the	primary	NameNode	is	still	a	multistage	manual	process.



Hadoop	2	NameNode	HA
In	most	production	Hadoop	2	clusters,	however,	it	makes	more	sense	to	use	the	full	High
Availability	(HA)	solution	instead	of	relying	on	Checkpoint	and	Backup	nodes.	It	is
actually	an	error	to	try	to	combine	NameNode	HA	with	the	Checkpoint	and	Backup	node
mechanisms.

The	core	idea	is	for	a	pair	(currently	no	more	than	two	are	supported)	of	NameNodes
configured	in	an	active/passive	cluster.	One	NameNode	acts	as	the	live	master	that
services	all	client	requests,	and	the	second	remains	ready	to	take	over	should	the	primary
fail.	In	particular,	Hadoop	2	HDFS	enables	this	HA	through	two	mechanisms:

Providing	a	means	for	both	NameNodes	to	have	consistent	views	of	the	filesystem
Providing	a	means	for	clients	to	always	connect	to	the	master	NameNode

Keeping	the	HA	NameNodes	in	sync
There	are	actually	two	mechanisms	by	which	the	active	and	standby	NameNodes	keep
their	views	of	the	filesystem	consistent;	use	of	an	NFS	share	or	Quorum	Journal
Manager	(QJM).

In	the	NFS	case,	there	is	an	obvious	requirement	on	an	external	remote	NFS	file	share—
note	that	as	use	of	NFS	was	best	practice	in	Hadoop	1	for	a	second	copy	of	filesystem
metadata	many	clusters	already	have	one.	If	high	availability	is	a	concern,	though	it
should	be	borne	in	mind	that	making	NFS	highly	available	often	requires	high-end	and
expensive	hardware.	In	Hadoop	2,	HA	uses	NFS;	however,	the	NFS	location	becomes	the
primary	location	for	the	filesystem	metadata.	As	the	active	NameNode	writes	all
filesystem	changes	to	the	NFS	share,	the	standby	node	detects	these	changes	and	updates
its	copy	of	the	filesystem	metadata	accordingly.

The	QJM	mechanism	uses	an	external	service	(the	Journal	Managers)	instead	of	a
filesystem.	The	Journal	Manager	cluster	is	an	odd	number	of	services	(3,	5,	and	7	are	the
most	common)	running	on	that	number	of	hosts.	All	changes	to	the	filesystem	are
submitted	to	the	QJM	service,	and	a	change	is	treated	as	committed	only	when	a	majority
of	the	QJM	nodes	have	committed	the	change.	The	standby	NameNode	receives	change
updates	from	the	QJM	service	and	uses	this	information	to	keep	its	copy	of	the	filesystem
metadata	up	to	date.

The	QJM	mechanism	does	not	require	additional	hardware	as	the	Checkpoint	nodes	are
lightweight	and	can	be	co-located	with	other	services.	There	is	also	no	single	point	of
failure	in	the	model.	Consequently,	the	QJM	HA	is	usually	the	preferred	option.

In	either	case,	both	in	NFS-based	HA	and	QJM-based	HA,	the	DataNodes	send	block
status	reports	to	both	NameNodes	to	ensure	that	both	have	up-to-date	information	of	the
mapping	of	blocks	to	DataNodes.	Remember	that	this	block	assignment	information	is	not
held	in	the	fsimage/edits	data.



Client	configuration
The	clients	to	the	HDFS	cluster	remain	mostly	unaware	of	the	fact	that	NameNode	HA	is
being	used.	The	configuration	files	need	to	include	the	details	of	both	NameNodes,	but	the
mechanisms	for	determining	which	is	the	active	NameNode—and	when	to	switch	to	the
standby—are	fully	encapsulated	in	the	client	libraries.	The	fundamental	concept	though	is
that	instead	of	referring	to	an	explicit	NameNode	host	as	in	Hadoop	1,	HDFS	in	Hadoop	2
identifies	a	nameservice	ID	for	the	NameNode	within	which	multiple	individual
NameNodes	(each	with	its	own	NameNode	ID)	are	defined	for	HA.	Note	that	the	concept
of	nameservice	ID	is	also	used	by	NameNode	federation,	which	we	briefly	mentioned
earlier.



How	a	failover	works
Failover	can	be	either	manual	or	automatic.	A	manual	failover	requires	an	administrator	to
trigger	the	switch	that	promotes	the	standby	to	the	currently	active	NameNode.	Though
automatic	failover	has	the	greatest	impact	on	maintaining	system	availability,	there	might
be	conditions	in	which	this	is	not	always	desirable.	Triggering	a	manual	failover	requires
running	only	a	few	commands	and,	therefore,	even	in	this	mode,	the	failover	is
significantly	easier	than	in	the	case	of	Hadoop	1	or	with	Hadoop	2	Backup	nodes,	where
the	transition	to	a	new	NameNode	requires	substantial	manual	effort.

Regardless	of	whether	the	failover	is	triggered	manually	or	automatically,	it	has	two	main
phases:	confirmation	that	the	previous	master	is	no	longer	serving	requests	and	the
promotion	of	the	standby	to	be	the	master.

The	greatest	risk	in	a	failover	is	to	have	a	period	in	which	both	NameNodes	are	servicing
requests.	In	such	a	situation,	it	is	possible	that	conflicting	changes	might	be	made	to	the
filesystem	on	the	two	NameNodes	or	that	they	might	become	out	of	sync.	Even	though
this	should	not	be	possible	if	the	QJM	is	being	used	(it	only	ever	accepts	connections	from
a	single	client),	out-of-date	information	might	be	served	to	clients,	who	might	then	try	to
make	incorrect	decisions	based	on	this	stale	metadata.	This	is,	of	course,	particularly
likely	if	the	previous	master	NameNode	is	behaving	incorrectly	in	some	way,	which	is
why	the	need	for	the	failover	is	identified	in	the	first	place.

To	ensure	only	one	NameNode	is	active	at	any	time,	a	fencing	mechanism	is	used	to
validate	that	the	existing	NameNode	master	has	been	shut	down.	The	simplest	included
mechanism	will	try	to	ssh	into	the	NameNode	host	and	actively	kill	the	process	though	a
custom	script	can	also	be	executed,	so	the	mechanism	is	flexible.	The	failover	will	not
continue	until	the	fencing	is	successful	and	the	system	has	confirmed	that	the	previous
master	NameNode	is	now	dead	and	has	released	any	required	resources.

Once	fencing	succeeds,	the	standby	NameNode	becomes	the	master	and	will	start	writing
to	the	NFS-mounted	fsimage	and	edits	logs	if	NFS	is	being	used	for	HA	or	will	become
the	single	client	to	the	QJM	if	that	is	the	HA	mechanism.

Before	discussing	automatic	failover,	we	need	a	slight	segue	to	introduce	another	Apache
project	that	is	used	to	enable	this	feature.



Apache	ZooKeeper	–	a	different	type	of
filesystem
Within	Hadoop,	we	will	mostly	talk	about	HDFS	when	discussing	filesystems	and	data
storage.	But,	inside	almost	all	Hadoop	2	installations,	there	is	another	service	that	looks
somewhat	like	a	filesystem,	but	which	provides	significant	capability	crucial	to	the	proper
functioning	of	distributed	systems.	This	service	is	Apache	ZooKeeper
(http://zookeeper.apache.org)	and,	as	it	is	a	key	part	of	the	implementation	of	HDFS	HA,
we	will	introduce	it	in	this	chapter.	It	is,	however,	also	used	by	multiple	other	Hadoop
components	and	related	projects,	so	we	will	touch	on	it	several	more	times	throughout	the
book.

ZooKeeper	started	out	as	a	subcomponent	of	HBase	and	was	used	to	enable	several
operational	capabilities	of	the	service.	When	any	complex	distributed	system	is	built,	there
are	a	series	of	activities	that	are	almost	always	required	and	which	are	always	difficult	to
get	right.	These	activities	include	things	such	as	handling	shared	locks,	detecting
component	failure,	and	supporting	leader	election	within	a	group	of	collaborating	services.
ZooKeeper	was	created	as	the	coordination	service	that	would	provide	a	series	of
primitive	operations	upon	which	HBase	could	implement	these	types	of	operationally
critical	features.	Note	that	ZooKeeper	also	takes	inspiration	from	the	Google	Chubby
system	described	at	http://research.google.com/archive/chubby-osdi06.pdf.

ZooKeeper	runs	as	a	cluster	of	instances	referred	to	as	an	ensemble.	The	ensemble
provides	a	data	structure,	which	is	somewhat	analogous	to	a	filesystem.	Each	location	in
the	structure	is	called	a	ZNode	and	can	have	children	as	if	it	were	a	directory	but	can	also
have	content	as	if	it	were	a	file.	Note	that	ZooKeeper	is	not	a	suitable	place	to	store	very
large	amounts	of	data,	and	by	default,	the	maximum	amount	of	data	in	a	ZNode	is	1	MB.
At	any	point	in	time,	one	server	in	the	ensemble	is	the	master	and	makes	all	decisions
about	client	requests.	There	are	very	well-defined	rules	around	the	responsibilities	of	the
master,	including	that	it	has	to	ensure	that	a	request	is	only	committed	when	a	majority	of
the	ensemble	have	committed	the	change,	and	that	once	committed	any	conflicting	change
is	rejected.

You	should	have	ZooKeeper	installed	within	your	Cloudera	Virtual	Machine.	If	not,	use
Cloudera	Manager	to	install	it	as	a	single	node	on	the	host.	In	production	systems,
ZooKeeper	has	very	specific	semantics	around	absolute	majority	voting,	so	some	of	the
logic	only	makes	sense	in	a	larger	ensemble	(3,	5,	or	7	nodes	are	the	most	common	sizes).

There	is	a	command-line	client	to	ZooKeeper	called	zookeeper-client	in	the	Cloudera
VM;	note	that	in	the	vanilla	ZooKeeper	distribution	it	is	called	zkCli.sh.	If	you	run	it
with	no	arguments,	it	will	connect	to	the	ZooKeeper	server	running	on	the	local	machine.
From	here,	you	can	type	help	to	get	a	list	of	commands.

The	most	immediately	interesting	commands	will	be	create,	ls,	and	get.	As	the	names
suggest,	these	create	a	ZNode,	list	the	ZNodes	at	a	particular	point	in	the	filesystem,	and
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get	the	data	stored	at	a	particular	ZNode.	Here	are	some	examples	of	usage.

Create	a	ZNode	with	no	data:

$	create	/zk-test	''	

Create	a	child	of	the	first	ZNode	and	store	some	text	in	it:

$	create	/zk-test/child1	'sampledata'

Retrieve	the	data	associated	with	a	particular	ZNode:

$	get	/zk-test/child1	

The	client	can	also	register	a	watcher	on	a	given	ZNode—this	will	raise	an	alert	if	the
ZNode	in	question	changes,	either	its	data	or	children	being	modified.

This	might	not	sound	very	useful,	but	ZNodes	can	additionally	be	created	as	both
sequential	and	ephemeral	nodes,	and	this	is	where	the	magic	starts.



Implementing	a	distributed	lock	with	sequential
ZNodes
If	a	ZNode	is	created	within	the	CLI	with	the	-s	option,	it	will	be	created	as	a	sequential
node.	ZooKeeper	will	suffix	the	supplied	name	with	a	10-digit	integer	guaranteed	to	be
unique	and	greater	than	any	other	sequential	children	of	the	same	ZNode.	We	can	use	this
mechanism	to	create	a	distributed	lock.	ZooKeeper	itself	is	not	holding	the	actual	lock;	the
client	needs	to	understand	what	particular	states	in	ZooKeeper	mean	in	terms	of	their
mapping	to	the	application	locks	in	question.

If	we	create	a	(non-sequential)	ZNode	at	/zk-lock,	then	any	client	wishing	to	hold	the
lock	will	create	a	sequential	child	node.	For	example,	the	create	-s	/zk-lock/locknode
command	might	create	the	node,	/zk-lock/locknode-0000000001,	in	the	first	case,	with
increasing	integer	suffixes	for	subsequent	calls.	When	a	client	creates	a	ZNode	under	the
lock,	it	will	then	check	if	its	sequential	node	has	the	lowest	integer	suffix.	If	it	does,	then	it
is	treated	as	having	the	lock.	If	not,	then	it	will	need	to	wait	until	the	node	holding	the	lock
is	deleted.	The	client	will	usually	put	a	watch	on	the	node	with	the	next	lowest	suffix	and
then	be	alerted	when	that	node	is	deleted,	indicating	that	it	now	holds	the	lock.



Implementing	group	membership	and	leader
election	using	ephemeral	ZNodes
Any	ZooKeeper	client	will	send	heartbeats	to	the	server	throughout	the	session,	showing
that	it	is	alive.	For	the	ZNodes	we	have	discussed	until	now,	we	can	say	that	they	are
persistent	and	will	survive	across	sessions.	We	can,	however,	create	a	ZNode	as
ephemeral,	meaning	it	will	disappear	once	the	client	that	created	it	either	disconnects	or	is
detected	as	being	dead	by	the	ZooKeeper	server.	Within	the	CLI	an	ephemeral	ZNode	is
created	by	adding	the	-e	flag	to	the	create	command.

Ephemeral	ZNodes	are	a	good	mechanism	to	implement	group	membership	discovery
within	a	distributed	system.	For	any	system	where	nodes	can	fail,	join,	and	leave	without
notice,	knowing	which	nodes	are	alive	at	any	point	in	time	is	often	a	difficult	task.	Within
ZooKeeper,	we	can	provide	the	basis	for	such	discovery	by	having	each	node	create	an
ephemeral	ZNode	at	a	certain	location	in	the	ZooKeeper	filesystem.	The	ZNodes	can	hold
data	about	the	service	nodes,	such	as	host	name,	IP	address,	port	number,	and	so	on.	To	get
a	list	of	live	nodes,	we	can	simply	list	the	child	nodes	of	the	parent	group	ZNode.	Because
of	the	nature	of	ephemeral	nodes,	we	can	have	confidence	that	the	list	of	live	nodes
retrieved	at	any	time	is	up	to	date.

If	we	have	each	service	node	create	ZNode	children	that	are	not	just	ephemeral	but	also
sequential,	then	we	can	also	build	a	mechanism	for	leader	election	for	services	that	need	to
have	a	single	master	node	at	any	one	time.	The	mechanism	is	the	same	for	locks;	the	client
service	node	creates	the	sequential	and	ephemeral	ZNode	and	then	checks	if	it	has	the
lowest	sequence	number.	If	so,	then	it	is	the	master.	If	not,	then	it	will	register	a	watcher
on	the	next	lowest	sequence	node	to	be	alerted	when	it	might	become	the	master.



Java	API
The	org.apache.zookeeper.ZooKeeper	class	is	the	main	programmatic	client	to	access	a
ZooKeeper	ensemble.	Refer	to	the	javadocs	for	the	full	details,	but	the	basic	interface	is
relatively	straightforward	with	obvious	one-to-one	correspondence	to	commands	in	the
CLI.	For	example:

create:	is	equivalent	to	CLI	create
getChildren:	is	equivalent	to	CLI	ls
getData:	is	equivalent	to	CLI	get



Building	blocks
As	can	be	seen,	ZooKeeper	provides	a	small	number	of	well-defined	operations	with	very
strong	semantic	guarantees	that	can	be	built	into	higher-level	services,	such	as	the	locks,
group	membership,	and	leader	election	we	discussed	earlier.	It’s	best	to	think	of
ZooKeeper	as	a	toolkit	of	well-engineered	and	reliable	functions	critical	to	distributed
systems	that	can	be	built	upon	without	having	to	worry	about	the	intricacies	of	their
implementation.	The	provided	ZooKeeper	interface	is	quite	low-level	though,	and	there
are	a	few	higher-level	interfaces	emerging	that	provide	more	of	the	mapping	of	the	low-
level	primitives	into	application-level	logic.	The	Curator	project
(http://curator.apache.org/)	is	a	good	example	of	this.

ZooKeeper	was	used	sparingly	within	Hadoop	1,	but	it’s	now	quite	ubiquitous.	It’s	used
by	both	MapReduce	and	HDFS	for	the	high	availability	of	their	JobTracker	and
NameNode	components.	Hive	and	Impala,	which	we	will	explore	later,	use	it	to	place
locks	on	data	tables	that	are	being	accessed	by	multiple	concurrent	jobs.	Kafka,	which
we’ll	discuss	in	the	context	of	Samza,	uses	ZooKeeper	for	node	(broker	in	Kafka
terminology),	leader	election,	and	state	management.

http://curator.apache.org/


Further	reading
We	have	not	described	ZooKeeper	in	much	detail	and	have	completely	omitted	aspects
such	as	its	ability	to	apply	quotas	and	access	control	lists	to	ZNodes	within	the	filesystem
and	the	mechanisms	to	build	callbacks.	Our	purpose	here	was	to	give	enough	of	the	details
so	that	you	would	have	some	idea	of	how	it	was	being	used	within	the	Hadoop	services	we
explore	in	this	book.	For	more	information,	consult	the	project	home	page.



Automatic	NameNode	failover
Now	that	we	have	introduced	ZooKeeper,	we	can	show	how	it	is	used	to	enable	automatic
NameNode	failover.

Automatic	NameNode	failover	introduces	two	new	components	to	the	system,	a
ZooKeeper	quorum,	and	the	ZooKeeper	Failover	Controller	(ZKFC),	which	runs	on
each	NameNode	host.	The	ZKFC	creates	an	ephemeral	ZNode	in	ZooKeeper	and	holds
this	ZNode	for	as	long	as	it	detects	the	local	NameNode	to	be	alive	and	functioning
correctly.	It	determines	this	by	continuously	sending	simple	health-check	requests	to	the
NameNode,	and	if	the	NameNode	fails	to	respond	correctly	over	a	short	period	of	time	the
ZKFC	will	assume	the	NameNode	has	failed.	If	a	NameNode	machine	crashes	or
otherwise	fails,	the	ZKFC	session	in	ZooKeeper	will	be	closed	and	the	ephemeral	ZNode
will	also	be	automatically	removed.

The	ZKFC	processes	are	also	monitoring	the	ZNodes	of	the	other	NameNodes	in	the
cluster.	If	the	ZKFC	on	the	standby	NameNode	host	sees	the	existing	master	ZNode
disappear,	it	will	assume	the	master	has	failed	and	will	attempt	a	failover.	It	does	this	by
trying	to	acquire	the	lock	for	the	NameNode	(through	the	protocol	described	in	the
ZooKeeper	section)	and	if	successful	will	initiate	a	failover	through	the	same
fencing/promotion	mechanism	described	earlier.



HDFS	snapshots
We	mentioned	earlier	that	HDFS	replication	alone	is	not	a	suitable	backup	strategy.	In	the
Hadoop	2	filesystem,	snapshots	have	been	added,	which	brings	another	level	of	data
protection	to	HDFS.

Filesystem	snapshots	have	been	used	for	some	time	across	a	variety	of	technologies.	The
basic	idea	is	that	it	becomes	possible	to	view	the	exact	state	of	the	filesystem	at	particular
points	in	time.	This	is	achieved	by	taking	a	copy	of	the	filesystem	metadata	at	the	point
the	snapshot	is	made	and	making	this	available	to	be	viewed	in	the	future.

As	changes	to	the	filesystem	are	made,	any	change	that	would	affect	the	snapshot	is
treated	specially.	For	example,	if	a	file	that	exists	in	the	snapshot	is	deleted	then,	even
though	it	will	be	removed	from	the	current	state	of	the	filesystem,	its	metadata	will	remain
in	the	snapshot,	and	the	blocks	associated	with	its	data	will	remain	on	the	filesystem
though	not	accessible	through	any	view	of	the	system	other	than	the	snapshot.

An	example	might	illustrate	this	point.	Say,	you	have	a	filesystem	containing	the
following	files:

/data1	(5	blocks)

/data2	(10	blocks)

You	take	a	snapshot	and	then	delete	the	file	/data2.	If	you	view	the	current	state	of	the
filesystem,	then	only	/data1	will	be	visible.	If	you	examine	the	snapshot,	you	will	see
both	files.	Behind	the	scenes,	all	15	blocks	still	exist,	but	only	those	associated	with	the
un-deleted	file	/data1	are	part	of	the	current	filesystem.	The	blocks	for	the	file	/data2
will	be	released	only	when	the	snapshot	is	itself	removed—snapshots	are	read-only	views.

Snapshots	in	Hadoop	2	can	be	applied	at	either	the	full	filesystem	level	or	only	on
particular	paths.	A	path	needs	to	be	set	as	snapshottable,	and	note	that	you	cannot	have	a
path	snapshottable	if	any	of	its	children	or	parent	paths	are	themselves	snapshottable.

Let’s	take	a	simple	example	based	on	the	directory	we	created	earlier	to	illustrate	the	use
of	snapshots.	The	commands	we	are	going	to	illustrate	need	to	be	executed	with	superuser
privileges,	which	can	be	obtained	with	sudo	-u	hdfs.

First,	use	the	dfsadmin	subcommand	of	the	hdfs	CLI	utility	to	enable	snapshots	of	a
directory,	as	follows:

$	sudo	-u	hdfs	hdfs	dfsadmin	-allowSnapshot	\

/user/cloudera/testdir

Allowing	snapshot	on	testdir	succeeded

Now,	we	create	the	snapshot	and	examine	it;	snapshots	are	available	through	the
.snapshot	subdirectory	of	the	snapshottable	directory.	Note	that	the	.snapshot	directory
will	not	be	visible	in	a	normal	listing	of	the	directory.	Here’s	how	we	create	a	snapshot
and	examine	it:

$	sudo	-u	hdfs	hdfs	dfs	-createSnapshot	\



/user/cloudera/testdir	sn1

Created	snapshot	/user/cloudera/testdir/.snapshot/sn1

$	sudo	-u	hdfs	hdfs	dfs	-ls	\

/user/cloudera/testdir/.snapshot/sn1

Found	1	items	-rw-r--r--			1	cloudera	cloudera									12	2014-11-13	11:21	

/user/cloudera/testdir/.snapshot/sn1/testfile.txt

Now,	we	remove	the	test	file	from	the	main	directory	and	verify	that	it	is	now	empty:

$	sudo	-u	hdfs	hdfs	dfs	-rm	\

/user/cloudera/testdir/testfile.txt

14/11/13	13:13:51	INFO	fs.TrashPolicyDefault:	Namenode	trash	configuration:	

Deletion	interval	=	1440	minutes,	Emptier	interval	=	0	minutes.	Moved:	

'hdfs://localhost.localdomain:8020/user/cloudera/testdir/testfile.txt'	to	

trash	at:	hdfs://localhost.localdomain:8020/user/hdfs/.Trash/Current

$	hdfs	dfs	-ls	/user/cloudera/testdir

$

Note	the	mention	of	trash	directories;	by	default,	HDFS	will	copy	any	deleted	files	into	a
.Trash	directory	in	the	user’s	home	directory,	which	helps	to	defend	against	slipping
fingers.	These	files	can	be	removed	through	hdfs	dfs	-expunge	or	will	be	automatically
purged	in	7	days	by	default.

Now,	we	examine	the	snapshot	where	the	now-deleted	file	is	still	available:

$	hdfs	dfs	-ls	testdir/.snapshot/sn1

Found	1	items	drwxr-xr-x			-	cloudera	cloudera										0	2014-11-13	13:12	

testdir/.snapshot/sn1

$	hdfs	dfs	-tail	testdir/.snapshot/sn1/testfile.txt

Hello	world

Then,	we	can	delete	the	snapshot,	freeing	up	any	blocks	held	by	it,	as	follows:

$	sudo	-u	hdfs	hdfs	dfs	-deleteSnapshot	\

/user/cloudera/testdir	sn1	

$	hdfs	dfs	-ls	testdir/.snapshot

$

As	can	be	seen,	the	files	within	a	snapshot	are	fully	available	to	be	read	and	copied,
providing	access	to	the	historical	state	of	the	filesystem	at	the	point	when	the	snapshot	was
made.	Each	directory	can	have	up	to	65,535	snapshots,	and	HDFS	manages	snapshots	in
such	a	way	that	they	are	quite	efficient	in	terms	of	impact	on	normal	filesystem	operations.
They	are	a	great	mechanism	to	use	prior	to	any	activity	that	might	have	adverse	effects,
such	as	trying	a	new	version	of	an	application	that	accesses	the	filesystem.	If	the	new
software	corrupts	files,	the	old	state	of	the	directory	can	be	restored.	If	after	a	period	of
validation	the	software	is	accepted,	then	the	snapshot	can	instead	be	deleted.



Hadoop	filesystems
Until	now,	we	referred	to	HDFS	as	the	Hadoop	filesystem.	In	reality,	Hadoop	has	a	rather
abstract	notion	of	filesystem.	HDFS	is	only	one	of	several	implementations	of	the
org.apache.hadoop.fs.FileSystem	Java	abstract	class.	A	list	of	available	filesystems
can	be	found	at
https://hadoop.apache.org/docs/r2.5.0/api/org/apache/hadoop/fs/FileSystem.html.	The
following	table	summarizes	some	of	these	filesystems,	along	with	the	corresponding	URI
scheme	and	Java	implementation	class.

Filesystem URI	scheme Java	implementation

Local file org.apache.hadoop.fs.LocalFileSystem

HDFS hdfs org.apache.hadoop.hdfs.DistributedFileSystem

S3	(native) s3n org.apache.hadoop.fs.s3native.NativeS3FileSystem

S3	(block-based) s3 org.apache.hadoop.fs.s3.S3FileSystem

There	exist	two	implementations	of	the	S3	filesystem.	Native—s3n—is	used	to	read	and
write	regular	files.	Data	stored	using	s3n	can	be	accessed	by	any	tool	and	conversely	can
be	used	to	read	data	generated	by	other	S3	tools.	s3n	cannot	handle	files	larger	than	5TB
or	rename	operations.

Much	like	HDFS,	the	block-based	S3	filesystem	stores	files	in	blocks	and	requires	an	S3
bucket	to	be	dedicated	to	the	filesystem.	Files	stored	in	an	S3	filesystem	can	be	larger	than
5	TB,	but	they	will	not	be	interoperable	with	other	S3	tools.	Additionally	block-based	S3
supports	rename	operations.

https://hadoop.apache.org/docs/r2.5.0/api/org/apache/hadoop/fs/FileSystem.html


Hadoop	interfaces
Hadoop	is	written	in	Java,	and	not	surprisingly,	all	interaction	with	the	system	happens	via
the	Java	API.	The	command-line	interface	we	used	through	the	hdfs	command	in	previous
examples	is	a	Java	application	that	uses	the	FileSystem	class	to	carry	out	input/output
operations	on	the	available	filesystems.

Java	FileSystem	API
The	Java	API,	provided	by	the	org.apache.hadoop.fs	package,	exposes	Apache	Hadoop
filesystems.

org.apache.hadoop.fs.FileSystem	is	the	abstract	class	each	filesystem	implements	and
provides	a	general	interface	to	interact	with	data	in	Hadoop.	All	code	that	uses	HDFS
should	be	written	with	the	capability	of	handling	a	FileSystem	object.

Libhdfs
Libhdfs	is	a	C	library	that,	despite	its	name,	can	be	used	to	access	any	Hadoop	filesystem
and	not	just	HDFS.	It	is	written	using	the	Java	Native	Interface	(JNI)	and	mimics	the	Java
FileSystem	class.

Thrift
Apache	Thrift	(http://thrift.apache.org)	is	a	framework	for	building	cross-language
software	through	data	serialization	and	remote	method	invocation	mechanisms.	The
Hadoop	Thrift	API,	available	in	contrib,	exposes	Hadoop	filesystems	as	a	Thrift	service.
This	interface	makes	it	easy	for	non-Java	code	to	access	data	stored	in	a	Hadoop
filesystem.

Other	than	the	aforementioned	interfaces,	there	exist	other	interfaces	that	allow	access	to
Hadoop	filesystems	via	HTTP	and	FTP—these	for	HDFS	only—as	well	as	WebDAV.

http://thrift.apache.org


Managing	and	serializing	data
Having	a	filesystem	is	all	well	and	good,	but	we	also	need	mechanisms	to	represent	data
and	store	it	on	the	filesystems.	We	will	explore	some	of	these	mechanisms	now.



The	Writable	interface
It	is	useful,	to	us	as	developers,	if	we	can	manipulate	higher-level	data	types	and	have
Hadoop	look	after	the	processes	required	to	serialize	them	into	bytes	to	write	to	a	file
system	and	reconstruct	from	a	stream	of	bytes	when	it	is	read	from	the	file	system.

The	org.apache.hadoop.io	package	contains	the	Writable	interface,	which	provides	this
mechanism	and	is	specified	as	follows:

			public	interface	Writable

			{

			void	write(DataOutput	out)	throws	IOException	;

			void	readFields(DataInput	in)	throws	IOException	;

			}

The	main	purpose	of	this	interface	is	to	provide	mechanisms	for	the	serialization	and
deserialization	of	data	as	it	is	passed	across	the	network	or	read	and	written	from	the	disk.

When	we	explore	processing	frameworks	on	Hadoop	in	later	chapters,	we	will	often	see
instances	where	the	requirement	is	for	a	data	argument	to	be	of	the	type	Writable.	If	we
use	data	structures	that	provide	a	suitable	implementation	of	this	interface,	then	the
Hadoop	machinery	can	automatically	manage	the	serialization	and	deserialization	of	the
data	type	without	knowing	anything	about	what	it	represents	or	how	it	is	used.



Introducing	the	wrapper	classes
Fortunately,	you	don’t	have	to	start	from	scratch	and	build	Writable	variants	of	all	the	data
types	you	will	use.	Hadoop	provides	classes	that	wrap	the	Java	primitive	types	and
implement	the	Writable	interface.	They	are	provided	in	the	org.apache.hadoop.io
package.

These	classes	are	conceptually	similar	to	the	primitive	wrapper	classes,	such	as	Integer
and	Long,	found	in	java.lang.	They	hold	a	single	primitive	value	that	can	be	set	either	at
construction	or	via	a	setter	method.	They	are	as	follows:

BooleanWritable

ByteWritable

DoubleWritable

FloatWritable

IntWritable

LongWritable

VIntWritable:	a	variable	length	integer	type
VLongWritable:	a	variable	length	long	type
There	is	also	Text,	which	wraps	java.lang.String.



Array	wrapper	classes
Hadoop	also	provides	some	collection-based	wrapper	classes.	These	classes	provide
Writable	wrappers	for	arrays	of	other	Writable	objects.	For	example,	an	instance	could
either	hold	an	array	of	IntWritable	or	DoubleWritable,	but	not	arrays	of	the	raw	int	or
float	types.	A	specific	subclass	for	the	required	Writable	class	will	be	required.	They	are	as
follows:

ArrayWritable

TwoDArrayWritable



The	Comparable	and	WritableComparable
interfaces
We	were	slightly	inaccurate	when	we	said	that	the	wrapper	classes	implement	Writable;
they	actually	implement	a	composite	interface	called	WritableComparable	in	the
org.apache.hadoop.io	package	that	combines	Writable	with	the	standard
java.lang.Comparable	interface:

			public	interface	WritableComparable	extends	Writable,	Comparable

			{}

The	need	for	Comparable	will	only	become	apparent	when	we	explore	MapReduce	in	the
next	chapter,	but	for	now,	just	remember	that	the	wrapper	classes	provide	mechanisms	for
them	to	be	both	serialized	and	sorted	by	Hadoop	or	any	of	its	frameworks.



Storing	data
Until	now,	we	introduced	the	architecture	of	HDFS	and	how	to	programmatically	store
and	retrieve	data	using	the	command-line	tools	and	the	Java	API.	In	the	examples	seen
until	now,	we	have	implicitly	assumed	that	our	data	was	stored	as	a	text	file.	In	reality,
some	applications	and	datasets	will	require	ad	hoc	data	structures	to	hold	the	file’s
contents.	Over	the	years,	file	formats	have	been	created	to	address	both	the	requirements
of	MapReduce	processing—for	instance,	we	want	data	to	be	splittable—and	to	satisfy	the
need	to	model	both	structured	and	unstructured	data.	Currently,	a	lot	of	focus	has	been
dedicated	to	better	capture	the	use	cases	of	relational	data	storage	and	modeling.	In	the
remainder	of	this	chapter,	we	will	introduce	some	of	the	popular	file	format	choices
available	within	the	Hadoop	ecosystem.



Serialization	and	Containers
When	talking	about	file	formats,	we	are	assuming	two	types	of	scenarios,	which	are	as
follows:

Serialization:	we	want	to	encode	data	structures	generated	and	manipulated	at
processing	time	to	a	format	we	can	store	to	a	file,	transmit,	and	at	a	later	stage,
retrieve	and	translate	back	for	further	manipulation
Containers:	once	data	is	serialized	to	files,	containers	provide	means	to	group
multiple	files	together	and	add	additional	metadata



Compression
When	working	with	data,	file	compression	can	often	lead	to	significant	savings	both	in
terms	of	the	space	necessary	to	store	files	as	well	as	on	the	data	I/O	across	the	network
and	from/to	local	disks.

In	broad	terms,	when	using	a	processing	framework,	compression	can	occur	at	three	points
in	the	processing	pipeline:

input	files	to	be	processed
output	files	that	result	after	processing	is	completed
intermediate/temporary	files	produced	internally	within	the	pipeline

When	we	add	compression	at	any	of	these	stages,	we	have	an	opportunity	to	dramatically
reduce	the	amount	of	data	to	be	read	or	written	to	the	disk	or	across	the	network.	This	is
particularly	useful	with	frameworks	such	as	MapReduce	that	can,	for	example,	produce
volumes	of	temporary	data	that	are	larger	than	either	the	input	or	output	datasets.

Apache	Hadoop	comes	with	a	number	of	compression	codecs:	gzip,	bzip2,	LZO,	snappy
—each	with	its	own	tradeoffs.	Picking	a	codec	is	an	educated	choice	that	should	consider
both	the	kind	of	data	being	processed	as	well	as	the	nature	of	the	processing	framework
itself.

Other	than	the	general	space/time	tradeoff,	where	the	largest	space	savings	come	at	the
expense	of	compression	and	decompression	speed	(and	vice	versa),	we	need	to	take	into
account	that	data	stored	in	HDFS	will	be	accessed	by	parallel,	distributed	software;	some
of	this	software	will	also	add	its	own	particular	requirements	on	file	formats.	MapReduce,
for	example,	is	most	efficient	on	files	that	can	be	split	into	valid	subfiles.

This	can	complicate	decisions,	such	as	the	choice	of	whether	to	compress	and	which	codec
to	use	if	so,	as	most	compression	codecs	(such	as	gzip)	do	not	support	splittable	files,
whereas	a	few	(such	as	LZO)	do.



General-purpose	file	formats
The	first	class	of	file	formats	are	those	general-purpose	ones	that	can	be	applied	to	any
application	domain	and	make	no	assumptions	on	data	structure	or	access	patterns.

Text:	the	simplest	approach	to	storing	data	on	HDFS	is	to	use	flat	files.	Text	files	can
be	used	both	to	hold	unstructured	data—a	web	page	or	a	tweet—as	well	as	structured
data—a	CSV	file	that	is	a	few	million	rows	long.	Text	files	are	splittable,	though	one
needs	to	consider	how	to	handle	boundaries	between	multiple	elements	(for	example,
lines)	in	the	file.
SequenceFile:	a	SequenceFile	is	a	flat	data	structure	consisting	of	binary	key/value
pairs,	introduced	to	address	specific	requirements	of	MapReduce-based	processing.	It
is	still	extensively	used	in	MapReduce	as	an	input/output	format.	As	we	will	see	in
Chapter	3,	Processing	–	MapReduce	and	Beyond,	internally,	the	temporary	outputs	of
maps	are	stored	using	SequenceFile.

SequenceFile	provides	Writer,	Reader,	and	Sorter	classes	to	write,	read,	and,	sort	data,
respectively.

Depending	on	the	compression	mechanism	in	use,	three	variations	of	SequenceFile	can	be
distinguished:

Uncompressed	key/value	records.
Record	compressed	key/value	records.	Only	‘values’	are	compressed.
Block	compressed	key/value	records.	Keys	and	values	are	collected	in	blocks	of
arbitrary	size	and	compressed	separately.

In	each	case,	however,	the	SequenceFile	remains	splittable,	which	is	one	of	its	biggest
strengths.



Column-oriented	data	formats
In	the	relational	database	world,	column-oriented	data	stores	organize	and	store	tables
based	on	the	columns;	generally	speaking,	the	data	for	each	column	will	be	stored
together.	This	is	a	significantly	different	approach	compared	to	most	relational	DBMS	that
organize	data	per	row.	Column-oriented	storage	has	significant	performance	advantages;
for	example,	if	a	query	needs	to	read	only	two	columns	from	a	very	wide	table	containing
hundreds	of	columns,	then	only	the	required	column	data	files	are	accessed.	A	traditional
row-oriented	database	would	have	to	read	all	columns	for	each	row	for	which	data	was
required.	This	has	the	greatest	impact	on	workloads	where	aggregate	functions	are
computed	over	large	numbers	of	similar	items,	such	as	with	OLAP	workloads	typical	of
data	warehouse	systems.

In	Chapter	7,	Hadoop	and	SQL,	we	will	see	how	Hadoop	is	becoming	a	SQL	backend	for
the	data	warehouse	world	thanks	to	projects	such	as	Apache	Hive	and	Cloudera	Impala.
As	part	of	the	expansion	into	this	domain,	a	number	of	file	formats	have	been	developed
to	account	for	both	relational	modeling	and	data	warehousing	needs.

RCFile,	ORC,	and	Parquet	are	three	state-of-the-art	column-oriented	file	formats
developed	with	these	use	cases	in	mind.

RCFile
Row	Columnar	File	(RCFile)	was	originally	developed	by	Facebook	to	be	used	as	the
backend	storage	for	their	Hive	data	warehouse	system	that	was	the	first	mainstream	SQL-
on-Hadoop	system	available	as	open	source.

RCFile	aims	to	provide	the	following:

fast	data	loading
fast	query	processing
efficient	storage	utilization
adaptability	to	dynamic	workloads

More	information	on	RCFile	can	be	found	at	http://www.cse.ohio-
state.edu/hpcs/WWW/HTML/publications/abs11-4.html.

ORC
The	Optimized	Row	Columnar	file	format	(ORC)	aims	to	combine	the	performance	of	the
RCFile	with	the	flexibility	of	Avro.	It	is	primarily	intended	to	work	with	Apache	Hive	and
has	been	initially	developed	by	Hortonworks	to	overcome	the	perceived	limitations	of
other	available	file	formats.

More	details	can	be	found	at	http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-
2.0.0.2/ds_Hive/orcfile.html.

Parquet
Parquet,	found	at	http://parquet.incubator.apache.org,	was	originally	a	joint	effort	of

http://www.cse.ohio-state.edu/hpcs/WWW/HTML/publications/abs11-4.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://parquet.incubator.apache.org


Cloudera,	Twitter,	and	Criteo,	and	now	has	been	donated	to	the	Apache	Software
Foundation.	The	goals	of	Parquet	are	to	provide	a	modern,	performant,	columnar	file
format	to	be	used	with	Cloudera	Impala.	As	with	Impala,	Parquet	has	been	inspired	by	the
Dremel	paper	(http://research.google.com/pubs/pub36632.html).	It	allows	complex,	nested
data	structures	and	allows	efficient	encoding	on	a	per-column	level.

Avro
Apache	Avro	(http://avro.apache.org)	is	a	schema-oriented	binary	data	serialization	format
and	file	container.	Avro	will	be	our	preferred	binary	data	format	throughout	this	book.	It	is
both	splittable	and	compressible,	making	it	an	efficient	format	for	data	processing	with
frameworks	such	as	MapReduce.

Numerous	other	projects	also	have	built-in	specific	Avro	support	and	integration,	however,
so	it	is	very	widely	applicable.	When	data	is	stored	in	an	Avro	file,	its	schema—defined	as
a	JSON	object—is	stored	with	it.	A	file	can	be	later	processed	by	a	third	party	with	no	a
priori	notion	of	how	data	is	encoded.	This	makes	data	self-describing	and	facilitates	use
with	dynamic	and	scripting	languages.	The	schema-on-read	model	also	helps	Avro	records
to	be	efficient	to	store	as	there	is	no	need	for	the	individual	fields	to	be	tagged.

In	later	chapters,	you	will	see	how	these	properties	can	make	data	life	cycle	management
easier	and	allow	non-trivial	operations	such	as	schema	migrations.

Using	the	Java	API
We’ll	now	demonstrate	the	use	of	the	Java	API	to	parse	Avro	schemas,	read	and	write
Avro	files,	and	use	Avro’s	code	generation	facilities.	Note	that	the	format	is	intrinsically
language	independent;	there	are	APIs	for	most	languages,	and	files	created	by	Java	will
seamlessly	be	read	from	any	other	language.

Avro	schemas	are	described	as	JSON	documents	and	represented	by	the
org.apache.avro.Schema	class.	To	demonstrate	the	API	for	manipulating	Avro
documents,	we’ll	look	ahead	to	an	Avro	specification	we	use	for	a	Hive	table	in	Chapter	7,
Hadoop	and	SQL.	The	following	code	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch2/src/main/java/com/learninghadoop2/avro/AvroParse.java.

In	the	following	code,	we	will	use	the	Avro	Java	API	to	create	an	Avro	file	containing	a
tweet	record	and	then	re-read	the	file,	using	the	schema	in	the	file	to	extract	the	details	of
the	stored	records:

				public	static	void	testGenericRecord()	{

								try	{

												Schema	schema	=	new	Schema.Parser()

			.parse(new	File("tweets_avro.avsc"));

												GenericRecord	tweet	=	new	GenericData

			.Record(schema);

												tweet.put("text",	"The	generic	tweet	text");

http://research.google.com/pubs/pub36632.html
http://avro.apache.org
https://github.com/learninghadoop2/book-examples/blob/master/ch2/src/main/java/com/learninghadoop2/avro/AvroParse.java


												File	file	=	new	File("tweets.avro");

												DatumWriter<GenericRecord>	datumWriter	=	

															new	GenericDatumWriter<>(schema);

												DataFileWriter<GenericRecord>	fileWriter	=	

															new	DataFileWriter<>(	datumWriter	);

												fileWriter.create(schema,	file);

												fileWriter.append(tweet);

												fileWriter.close();

												DatumReader<GenericRecord>	datumReader	=	

																new	GenericDatumReader<>(schema);

												DataFileReader<GenericRecord>	fileReader	=	

																new	DataFileReader(file,	datumReader);

												GenericRecord	genericTweet	=	null;

												while	(fileReader.hasNext())	{

																genericTweet	=	(GenericRecord)	fileReader

																				.next(genericTweet);

																for	(Schema.Field	field	:	

																				genericTweet.getSchema().getFields())	{

																				Object	val	=	genericTweet.get(field.name());

																				if	(val	!=	null)	{

																								System.out.println(val);

																				}

																}

												}

								}	catch	(IOException	ie)	{

												System.out.println("Error	parsing	or	writing	file.");

								}

				}

The	tweets_avro.avsc	schema,	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch2/tweets_avro.avsc,	describes	a	tweet	with	multiple	fields.	To
create	an	Avro	object	of	this	type,	we	first	parse	the	schema	file.	We	then	use	Avro’s
concept	of	a	GenericRecord	to	build	an	Avro	document	that	complies	with	this	schema.	In
this	case,	we	only	set	a	single	attribute—the	tweet	text	itself.

To	write	this	Avro	file—containing	a	single	object—we	then	use	Avro’s	I/O	capabilities.
To	read	the	file,	we	do	not	need	to	start	with	the	schema,	as	we	can	extract	this	from	the
GenericRecord	we	read	from	the	file.	We	then	walk	through	the	schema	structure	and
dynamically	process	the	document	based	on	the	discovered	fields.	This	is	particularly
powerful,	as	it	is	the	key	enabler	of	clients	remaining	independent	of	the	Avro	schema	and
how	it	evolves	over	time.

If	we	have	the	schema	file	in	advance,	however,	we	can	use	Avro	code	generation	to
create	a	customized	class	that	makes	manipulating	Avro	records	much	easier.	To	generate
the	code,	we	will	use	the	compile	class	in	the	avro-tools.jar,	passing	it	the	name	of	the
schema	file	and	the	desired	output	directory:

$	java	-jar	/opt/cloudera/parcels/CDH-5.0.0-1.cdh5.0.0.p0.47/lib/avro/avro-

https://github.com/learninghadoop2/book-examples/blob/master/ch2/tweets_avro.avsc


tools.jar	compile	schema	tweets_avro.avsc	src/main/java

The	class	will	be	placed	in	a	directory	structure	based	on	any	namespace	defined	in	the
schema.	Since	we	created	this	schema	in	the	com.learninghadoop2.avrotables
namespace,	we	see	the	following:

$	ls	src/main/java/com/learninghadoop2/avrotables/tweets_avro.java

With	this	class,	let’s	revisit	the	creation	and	the	act	of	reading	and	writing	Avro	objects,	as
follows:

				public	static	void	testGeneratedCode()	{

								tweets_avro	tweet	=	new	tweets_avro();

								tweet.setText("The	code	generated	tweet	text");

								try	{

												File	file	=	new	File("tweets.avro");

												DatumWriter<tweets_avro>	datumWriter	=	

																new	SpecificDatumWriter<>(tweets_avro.class);

												DataFileWriter<tweets_avro>	fileWriter	=	

																new	DataFileWriter<>(datumWriter);

												fileWriter.create(tweet.getSchema(),	file);

												fileWriter.append(tweet);

												fileWriter.close();

												DatumReader<tweets_avro>	datumReader	=	

																new	SpecificDatumReader<>(tweets_avro.class);

												DataFileReader<tweets_avro>	fileReader	=	

																new	DataFileReader<>(file,	datumReader);

												while	(fileReader.hasNext())	{

																tweet	=	fileReader.next(tweet);

																System.out.println(tweet.getText());

												}

								}	catch	(IOException	ie)	{

												System.out.println("Error	in	parsing	or	writingfiles.");

								}

				}

Because	we	used	code	generation,	we	now	use	the	Avro	SpecificRecord	mechanism
alongside	the	generated	class	that	represents	the	object	in	our	domain	model.
Consequently,	we	can	directly	instantiate	the	object	and	access	its	attributes	through
familiar	get/set	methods.

Writing	the	file	is	similar	to	the	action	performed	before,	except	that	we	use	specific
classes	and	also	retrieve	the	schema	directly	from	the	tweet	object	when	needed.	Reading
is	similarly	eased	through	the	ability	to	create	instances	of	a	specific	class	and	use	get/set
methods.



Summary
This	chapter	has	given	a	whistle-stop	tour	through	storage	on	a	Hadoop	cluster.	In
particular,	we	covered:

The	high-level	architecture	of	HDFS,	the	main	filesystem	used	in	Hadoop
How	HDFS	works	under	the	covers	and,	in	particular,	its	approach	to	reliability
How	Hadoop	2	has	added	significantly	to	HDFS,	particularly	in	the	form	of
NameNode	HA	and	filesystem	snapshots
What	ZooKeeper	is	and	how	it	is	used	by	Hadoop	to	enable	features	such	as
NameNode	automatic	failover
An	overview	of	the	command-line	tools	used	to	access	HDFS
The	API	for	filesystems	in	Hadoop	and	how	at	a	code	level	HDFS	is	just	one
implementation	of	a	more	flexible	filesystem	abstraction
How	data	can	be	serialized	onto	a	Hadoop	filesystem	and	some	of	the	support
provided	in	the	core	classes
The	various	file	formats	available	in	which	data	is	most	frequently	stored	in	Hadoop
and	some	of	their	particular	use	cases

In	the	next	chapter,	we	will	look	in	detail	at	how	Hadoop	provides	processing	frameworks
that	can	be	used	to	process	the	data	stored	within	it.



Chapter	3.	Processing	–	MapReduce	and
Beyond
In	Hadoop	1,	the	platform	had	two	clear	components:	HDFS	for	data	storage	and
MapReduce	for	data	processing.	The	previous	chapter	described	the	evolution	of	HDFS	in
Hadoop	2	and	in	this	chapter	we’ll	discuss	data	processing.

The	picture	with	processing	in	Hadoop	2	has	changed	more	significantly	than	has	storage,
and	Hadoop	now	supports	multiple	processing	models	as	first-class	citizens.	In	this
chapter	we’ll	explore	both	MapReduce	and	other	computational	models	in	Hadoop2.	In
particular,	we’ll	cover:

What	MapReduce	is	and	the	Java	API	required	to	write	applications	for	it
How	MapReduce	is	implemented	in	practice
How	Hadoop	reads	data	into	and	out	of	its	processing	jobs
YARN,	the	Hadoop2	component	that	allows	processing	beyond	MapReduce	on	the
platform
An	introduction	to	several	computational	models	implemented	on	YARN



MapReduce
MapReduce	is	the	primary	processing	model	supported	in	Hadoop	1.	It	follows	a	divide
and	conquer	model	for	processing	data	made	popular	by	a	2006	paper	by	Google
(http://research.google.com/archive/mapreduce.html)	and	has	foundations	both	in
functional	programming	and	database	research.	The	name	itself	refers	to	two	distinct	steps
applied	to	all	input	data,	a	map	function	and	a	reduce	function.

Every	MapReduce	application	is	a	sequence	of	jobs	that	build	atop	this	very	simple	model.
Sometimes,	the	overall	application	may	require	multiple	jobs,	where	the	output	of	the
reduce	stage	from	one	is	the	input	to	the	map	stage	of	another,	and	sometimes	there	might
be	multiple	map	or	reduce	functions,	but	the	core	concepts	remain	the	same.

We	will	introduce	the	MapReduce	model	by	looking	at	the	nature	of	the	map	and	reduce
functions	and	then	describe	the	Java	API	required	to	build	implementations	of	the
functions.	After	showing	some	examples,	we	will	walk	through	a	MapReduce	execution	to
give	more	insight	into	how	the	actual	MapReduce	framework	executes	code	at	runtime.

Learning	the	MapReduce	model	can	be	a	little	counter-intuitive;	it’s	often	difficult	to
appreciate	how	very	simple	functions	can,	when	combined,	provide	very	rich	processing
on	enormous	datasets.	But	it	does	work,	trust	us!

As	we	explore	the	nature	of	the	map	and	reduce	functions,	think	of	them	as	being	applied
to	a	stream	of	records	being	retrieved	from	the	source	dataset.	We’ll	describe	how	that
happens	later;	for	now,	think	of	the	source	data	being	sliced	into	smaller	chunks,	each	of
which	gets	fed	to	a	dedicated	instance	of	the	map	function.	Each	record	has	the	map
function	applied,	producing	a	set	of	intermediary	data.	Records	are	retrieved	from	this
temporary	dataset	and	all	associated	records	are	fed	together	through	the	reduce	function.
The	final	output	of	the	reduce	function	for	all	the	sets	of	records	is	the	overall	result	for
the	complete	job.

From	a	functional	perspective,	MapReduce	transforms	data	structures	from	one	list	of
(key,	value)	pairs	into	another.	During	the	Map	phase,	data	is	loaded	from	HDFS,	and	a
function	is	applied	in	parallel	to	every	input	(key,	value)	and	a	new	list	of	(key,	value)
pairs	is	the	output:

map(k1,v1)	->	list(k2,v2)

The	framework	then	collects	all	pairs	with	the	same	key	from	all	lists	and	groups	them
together,	creating	one	group	for	each	key.	A	Reduce	function	is	applied	in	parallel	to	each
group,	which	in	turn	produces	a	list	of	values:

reduce(k2,	list	(v2))	→	k3,list(v3)

The	output	is	then	written	back	to	HDFS	in	the	following	manner:

http://research.google.com/archive/mapreduce.html


Map	and	Reduce	phases



Java	API	to	MapReduce
The	Java	API	to	MapReduce	is	exposed	by	the	org.apache.hadoop.mapreduce	package.
Writing	a	MapReduce	program,	at	its	core,	is	a	matter	of	subclassing	Hadoop-provided
Mapper	and	Reducer	base	classes,	and	overriding	the	map()	and	reduce()	methods	with
our	own	implementation.



The	Mapper	class
For	our	own	Mapper	implementations,	we	will	subclass	the	Mapper	base	class	and	override
the	map()	method,	as	follows:

			class	Mapper<K1,	V1,	K2,	V2>

			{

									void	map(K1	key,	V1	value	Mapper.Context	context)

															throws	IOException,	InterruptedException

									...

			}

The	class	is	defined	in	terms	of	the	key/value	input	and	output	types,	and	then	the	map
method	takes	an	input	key/value	pair	as	its	parameter.	The	other	parameter	is	an	instance
of	the	Context	class	that	provides	various	mechanisms	to	communicate	with	the	Hadoop
framework,	one	of	which	is	to	output	the	results	of	a	map	or	reduce	method.

Notice	that	the	map	method	only	refers	to	a	single	instance	of	K1	and	V1	key/value	pairs.
This	is	a	critical	aspect	of	the	MapReduce	paradigm	in	which	you	write	classes	that
process	single	records,	and	the	framework	is	responsible	for	all	the	work	required	to	turn
an	enormous	dataset	into	a	stream	of	key/value	pairs.	You	will	never	have	to	write	map	or
reduce	classes	that	try	to	deal	with	the	full	dataset.	Hadoop	also	provides	mechanisms
through	its	InputFormat	and	OutputFormat	classes	that	provide	implementations	of
common	file	formats	and	likewise	remove	the	need	for	having	to	write	file	parsers	for	any
but	custom	file	types.

There	are	three	additional	methods	that	sometimes	may	be	required	to	be	overridden:.

			protected	void	setup(	Mapper.Context	context)

									throws	IOException,	InterruptedException

This	method	is	called	once	before	any	key/value	pairs	are	presented	to	the	map	method.
The	default	implementation	does	nothing:

			protected	void	cleanup(	Mapper.Context	context)

									throws	IOException,	InterruptedException

This	method	is	called	once	after	all	key/value	pairs	have	been	presented	to	the	map
method.	The	default	implementation	does	nothing:

			protected	void	run(	Mapper.Context	context)

									throws	IOException,	InterruptedException

This	method	controls	the	overall	flow	of	task	processing	within	a	JVM.	The	default
implementation	calls	the	setup	method	once	before	repeatedly	calling	the	map	method	for
each	key/value	pair	in	the	split	and	then	finally	calls	the	cleanup	method.



The	Reducer	class
The	Reducer	base	class	works	very	similarly	to	the	Mapper	class	and	usually	requires	only
subclasses	to	override	a	single	reduce()	method.	Here	is	the	cut-down	class	definition:

			public	class	Reducer<K2,	V2,	K3,	V3>

			{

						void	reduce(K2	key,	Iterable<V2>	values,

									Reducer.Context	context)

											throws	IOException,	InterruptedException

						...

			}

Again,	notice	the	class	definition	in	terms	of	the	broader	data	flow	(the	reduce	method
accepts	K2/V2	as	input	and	provides	K3/V3	as	output),	while	the	actual	reduce	method	takes
only	a	single	key	and	its	associated	list	of	values.	The	Context	object	is	again	the
mechanism	to	output	the	result	of	the	method.

This	class	also	has	the	setup,	run	and	cleanup	methods	with	similar	default
implementations	as	with	the	Mapper	class	that	can	optionally	be	overridden:

protected	void	setup(Reducer.Context	context)

throws	IOException,	InterruptedException

The	setup()	method	is	called	once	before	any	key/lists	of	values	are	presented	to	the
reduce	method.	The	default	implementation	does	nothing:

protected	void	cleanup(Reducer.Context	context)

throws	IOException,	InterruptedException

The	cleanup()	method	is	called	once	after	all	key/lists	of	values	have	been	presented	to
the	reduce	method.	The	default	implementation	does	nothing:

protected	void	run(Reducer.Context	context)

throws	IOException,	InterruptedException

The	run()	method	controls	the	overall	flow	of	processing	the	task	within	the	JVM.	The
default	implementation	calls	the	setup	method	before	repeatedly	and	potentially
concurrently	calling	the	reduce	method	for	as	many	key/value	pairs	provided	to	the
Reducer	class,	and	then	finally	calls	the	cleanup	method.



The	Driver	class
The	Driver	class	communicates	with	the	Hadoop	framework	and	specifies	the
configuration	elements	needed	to	run	a	MapReduce	job.	This	involves	aspects	such	as
telling	Hadoop	which	Mapper	and	Reducer	classes	to	use,	where	to	find	the	input	data	and
in	what	format,	and	where	to	place	the	output	data	and	how	to	format	it.

The	driver	logic	usually	exists	in	the	main	method	of	the	class	written	to	encapsulate	a
MapReduce	job.	There	is	no	default	parent	Driver	class	to	subclass:

public	class	ExampleDriver	extends	Configured	implements	Tool

			{

			...

			public	static	void	run(String[]	args)	throws	Exception

			{

						//	Create	a	Configuration	object	that	is	used	to	set	other	options

						Configuration	conf	=	getConf();

						//	Get	command	line	arguments

						args	=	new	GenericOptionsParser(conf,	args)

						.getRemainingArgs();

						//	Create	the	object	representing	the	job

						Job	job	=	new	Job(conf,	"ExampleJob");

						//	Set	the	name	of	the	main	class	in	the	job	jarfile

						job.setJarByClass(ExampleDriver.class);

						//	Set	the	mapper	class

						job.setMapperClass(ExampleMapper.class);

						//	Set	the	reducer	class

						job.setReducerClass(ExampleReducer.class);

						//	Set	the	types	for	the	final	output	key	and	value

						job.setOutputKeyClass(Text.class);

						job.setOutputValueClass(IntWritable.class);

						//	Set	input	and	output	file	paths

						FileInputFormat.addInputPath(job,	new	Path(args[0]));

						FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

						//	Execute	the	job	and	wait	for	it	to	complete

						System.exit(job.waitForCompletion(true)	?	0	:	1);

			}

			public	static	void	main(String[]	args)	throws	Exception

			{

						int	exitCode	=	ToolRunner.run(new	ExampleDriver(),	args);

						System.exit(exitCode);

				}

}

In	the	preceding	lines	of	code,	org.apache.hadoop.util.Tool	is	an	interface	for	handling
command-line	options.	The	actual	handling	is	delegated	to	ToolRunner.run,	which	runs



Tool	with	the	given	Configuration	used	to	get	and	set	a	job’s	configuration	options.	By
subclassing	org.apache.hadoop.conf.Configured,	we	can	set	the	Configuration	object
directly	from	command-line	options	via	GenericOptionsParser.

Given	our	previous	talk	of	jobs,	it’s	not	surprising	that	much	of	the	setup	involves
operations	on	a	job	object.	This	includes	setting	the	job	name	and	specifying	which	classes
are	to	be	used	for	the	mapper	and	reducer	implementations.

Certain	input/output	configurations	are	set	and,	finally,	the	arguments	passed	to	the	main
method	are	used	to	specify	the	input	and	output	locations	for	the	job.	This	is	a	very
common	model	that	you	will	see	often.

There	are	a	number	of	default	values	for	configuration	options,	and	we	are	implicitly	using
some	of	them	in	the	preceding	class.	Most	notably,	we	don’t	say	anything	about	the	format
of	the	input	files	or	how	the	output	files	are	to	be	written.	These	are	defined	through	the
InputFormat	and	OutputFormat	classes	mentioned	earlier;	we	will	explore	them	in	detail
later.	The	default	input	and	output	formats	are	text	files	that	suit	our	examples.	There	are
multiple	ways	of	expressing	the	format	within	text	files	in	addition	to	particularly
optimized	binary	formats.

A	common	model	for	less	complex	MapReduce	jobs	is	to	have	the	Mapper	and	Reducer
classes	as	inner	classes	within	the	driver.	This	allows	everything	to	be	kept	in	a	single	file,
which	simplifies	the	code	distribution.



Combiner
Hadoop	allows	the	use	of	a	combiner	class	to	perform	some	early	sorting	of	the	output
from	the	map	method	before	it’s	retrieved	by	the	reducer.

Much	of	Hadoop’s	design	is	predicated	on	reducing	the	expensive	parts	of	a	job	that
usually	equate	to	disk	and	network	I/O.	The	output	of	the	mapper	is	often	large;	it’s	not
infrequent	to	see	it	many	times	the	size	of	the	original	input.	Hadoop	does	allow
configuration	options	to	help	reduce	the	impact	of	the	reducers	transferring	such	large
chunks	of	data	across	the	network.	The	combiner	takes	a	different	approach	where	it’s
possible	to	perform	early	aggregation	to	require	less	data	to	be	transferred	in	the	first
place.

The	combiner	does	not	have	its	own	interface;	a	combiner	must	have	the	same	signature	as
the	reducer,	and	hence	also	subclasses	the	Reduce	class	from	the
org.apache.hadoop.mapreduce	package.	The	effect	of	this	is	to	basically	perform	a	mini-
reduce	on	the	mapper	for	the	output	destined	for	each	reducer.

Hadoop	does	not	guarantee	whether	the	combiner	will	be	executed.	Sometimes,	it	may	not
be	executed	at	all,	while	at	other	times	it	may	be	used	once,	twice,	or	more	times
depending	on	the	size	and	number	of	output	files	generated	by	the	mapper	for	each
reducer.



Partitioning
One	of	the	implicit	guarantees	of	the	Reduce	interface	is	that	a	single	reducer	will	be
given	all	the	values	associated	with	a	given	key.	With	multiple	reduce	tasks	running	across
a	cluster,	each	mapper	output	must	be	partitioned	into	the	separate	outputs	destined	for
each	reducer.	These	partitioned	files	are	stored	on	the	local	node	filesystem.

The	number	of	reduce	tasks	across	the	cluster	is	not	as	dynamic	as	that	of	mappers,	and
indeed	we	can	specify	the	value	as	part	of	our	job	submission.	Hadoop	therefore,	knows
how	many	reducers	will	be	needed	to	complete	the	job,	and	from	this,	it	knows	into	how
many	partitions	the	mapper	output	should	be	split.

The	optional	partition	function
Within	the	org.apache.hadoop.mapreduce	package	is	the	Partitioner	class,	an	abstract
class	with	the	following	signature:

public	abstract	class	Partitioner<Key,	Value>

{

		public	abstract	int	getPartition(Key	key,	Value	value,	int	

numPartitions);

}

By	default,	Hadoop	will	use	a	strategy	that	hashes	the	output	key	to	perform	the
partitioning.	This	functionality	is	provided	by	the	HashPartitioner	class	within	the
org.apache.hadoop.mapreduce.lib.partition	package,	but	it’s	necessary	in	some	cases
to	provide	a	custom	subclass	of	Partitioner	with	application-specific	partitioning	logic.
Notice	that	the	getPartition	function	takes	the	key,	value,	and	number	of	partitions	as
parameters,	any	of	which	can	be	used	by	the	custom	partitioning	logic.

A	custom	partitioning	strategy	would	be	particularly	necessary	if,	for	example,	the	data
provided	a	very	uneven	distribution	when	the	standard	hash	function	was	applied.	Uneven
partitioning	can	result	in	some	tasks	having	to	perform	significantly	more	work	than
others,	leading	to	much	longer	overall	job	execution	time.



Hadoop-provided	mapper	and	reducer
implementations
We	don’t	always	have	to	write	our	own	Mapper	and	Reducer	classes	from	scratch.	Hadoop
provides	several	common	Mapper	and	Reducer	implementations	that	can	be	used	in	our
jobs.	If	we	don’t	override	any	of	the	methods	in	the	Mapper	and	Reducer	classes,	the
default	implementations	are	the	identity	Mapper	and	Reducer	classes,	which	simply	output
the	input	unchanged.

The	mappers	are	found	at	org.apache.hadoop.mapreduce.lib.mapper	and	include	the
following:

InverseMapper:	returns	(value,	key)	as	an	output,	that	is,	the	input	key	is	output	as
the	value	and	the	input	value	is	output	as	the	key
TokenCounterMapper:	counts	the	number	of	discrete	tokens	in	each	line	of	input
IdentityMapper:	implements	the	identity	function,	mapping	inputs	directly	to
outputs

The	reducers	are	found	at	org.apache.hadoop.mapreduce.lib.reduce	and	currently
include	the	following:

IntSumReducer:	outputs	the	sum	of	the	list	of	integer	values	per	key
LongSumReducer:	outputs	the	sum	of	the	list	of	long	values	per	key
IdentityReducer:	implements	the	identity	function,	mapping	inputs	directly	to
outputs



Sharing	reference	data
Occasionally,	we	might	want	to	share	data	across	tasks.	For	instance,	if	we	need	to
perform	a	lookup	operation	on	an	ID-to-string	translation	table,	we	might	want	such	a	data
source	to	be	accessible	by	the	mapper	or	reducer.	A	straightforward	approach	is	to	store
the	data	we	want	to	access	on	HDFS	and	use	the	FileSystem	API	to	query	it	as	part	of	the
Map	or	Reduce	steps.

Hadoop	gives	us	an	alternative	mechanism	to	achieve	the	goal	of	sharing	reference	data
across	all	tasks	in	the	job,	the	Distributed	Cache	defined	by	the
org.apache.hadoop.mapreduce.filecache.DistributedCache	class.	This	can	be	used	to
efficiently	make	available	common	read-only	files	that	are	used	by	the	map	or	reduce	tasks
to	all	nodes.

The	files	can	be	text	data	as	in	this	case,	but	could	also	be	additional	JARs,	binary	data,	or
archives;	anything	is	possible.	The	files	to	be	distributed	are	placed	on	HDFS	and	added	to
the	DistributedCache	within	the	job	driver.	Hadoop	copies	the	files	onto	the	local
filesystem	of	each	node	prior	to	job	execution,	meaning	every	task	has	local	access	to	the
files.

An	alternative	is	to	bundle	needed	files	into	the	job	JAR	submitted	to	Hadoop.	This	does
tie	the	data	to	the	job	JAR,	making	it	more	difficult	to	share	across	jobs	and	requires	the
JAR	to	be	rebuilt	if	the	data	changes.



Writing	MapReduce	programs
In	this	chapter,	we	will	be	focusing	on	batch	workloads;	given	a	set	of	historical	data,	we
will	look	at	properties	of	that	dataset.	In	Chapter	4,	Real-time	Computation	with	Samza,
and	Chapter	5,	Iterative	Computation	with	Spark,	we	will	show	how	a	similar	type	of
analysis	can	be	performed	over	a	stream	of	text	collected	in	real	time.



Getting	started
In	the	following	examples,	we	will	assume	a	dataset	generated	by	collecting	1,000	tweets
using	the	stream.py	script,	as	shown	in	Chapter	1,	Introduction:

$	python	stream.py	–t	–n	1000	>	tweets.txt

We	can	then	copy	the	dataset	into	HDFS	with:

$	hdfs	dfs	-put	tweets.txt	<destination>

Tip
Note	that	until	now	we	have	been	working	only	with	the	text	of	tweets.	In	the	remainder
of	this	book,	we’ll	extend	stream.py	to	output	additional	tweet	metadata	in	JSON	format.
Keep	this	in	mind	before	dumping	terabytes	of	messages	with	stream.py.

Our	first	MapReduce	program	will	be	the	canonical	WordCount	example.	A	variation	of
this	program	will	be	used	to	determine	trending	topics.	We	will	then	analyze	text
associated	with	topics	to	determine	whether	it	expresses	a	“positive”	or	“negative”
sentiment.	Finally,	we	will	make	use	of	a	MapReduce	pattern—ChainMapper—to	pull
things	together	and	present	a	data	pipeline	to	clean	and	prepare	the	textual	data	we’ll	feed
to	the	trending	topic	and	sentiment	analysis	model.



Running	the	examples
The	full	source	code	of	the	examples	described	in	this	section	can	be	found	at
https://github.com/learninghadoop2/book-examples/tree/master/ch3.

Before	we	run	our	job	in	Hadoop,	we	must	compile	our	code	and	collect	the	required	class
files	into	a	single	JAR	file	that	we	will	submit	to	the	system.	Using	Gradle,	you	can	build
the	needed	JAR	file	with:

$	./gradlew	jar

Local	cluster
Jobs	are	executed	on	Hadoop	using	the	JAR	option	to	the	Hadoop	command-line	utility.
To	use	this,	we	specify	the	name	of	the	JAR	file,	the	main	class	within	it,	and	any
arguments	that	will	be	passed	to	the	main	class,	as	shown	in	the	following	command:

$	hadoop	jar	<job	jarfile>	<main	class>	<argument	1>	…	<argument	2>

Elastic	MapReduce
Recall	from	Chapter	1,	Introduction,	that	Elastic	MapReduce	expects	the	job	JAR	file	and
its	input	data	to	be	located	in	an	S3	bucket	and	conversely	will	dump	its	output	back	into
S3.

Note
Be	careful:	this	will	cost	money!	For	this	example,	we	will	use	the	smallest	possible
cluster	configuration	available	for	EMR,	a	single-node	cluster

First	of	all,	we	will	copy	the	tweet	dataset	and	the	list	of	positive	and	negative	words	to	S3
using	the	aws	command-line	utility:

$	aws	s3	put	tweets.txt	s3://<bucket>/input

$	aws	s3	put	job.jar	s3://<bucket>

We	can	execute	a	job	using	the	EMR	command-line	tool	as	follows	by	uploading	the	JAR
file	to	s3://<bucket>	and	adding	CUSTOM_JAR	steps	with	the	aws	CLI:

$	aws	emr	add-steps	--cluster-id	<cluster-id>	--steps	\

Type=CUSTOM_JAR,\

Name=CustomJAR,\

Jar=s3://<bucket>/job.jar,\

MainClass=<class	name>,\

Args=arg1,arg2,…argN

Here,	cluster-id	is	the	ID	of	a	running	EMR	cluster,	<class	name>	is	the	fully	qualified
name	of	the	main	class,	and	arg1,arg2,…,argN	are	the	job	arguments.

https://github.com/learninghadoop2/book-examples/tree/master/ch3


WordCount,	the	Hello	World	of	MapReduce
WordCount	counts	word	occurrences	in	a	dataset.	The	source	code	of	this	example	can	be
found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/WordCount.java
Consider	the	following	block	of	code	for	example:

public	class	WordCount	extends	Configured	implements	Tool

{

				public	static	class	WordCountMapper

												extends	Mapper<Object,	Text,	Text,	IntWritable>

				{

								private	final	static	IntWritable	one	=	new	IntWritable(1);

								private	Text	word	=	new	Text();

								public	void	map(Object	key,	Text	value,	Context	context

								)	throws	IOException,	InterruptedException	{

												String[]	words	=	value.toString().split("	")	;

												for	(String	str:	words)

												{

																word.set(str);

																context.write(word,	one);

												}

								}

				}

				public	static	class	WordCountReducer

												extends	Reducer<Text,IntWritable,Text,IntWritable>	{

								public	void	reduce(Text	key,	Iterable<IntWritable>	values,

																											Context	context

								)	throws	IOException,	InterruptedException	{

												int	total	=	0;

												for	(IntWritable	val	:	values)	{

																total++	;

												}

												context.write(key,	new	IntWritable(total));

								}

				}

				public	int	run(String[]	args)	throws	Exception	{

								Configuration	conf	=	getConf();

								args	=	new	GenericOptionsParser(conf,	args)

								.getRemainingArgs();

								Job	job	=	Job.getInstance(conf);

								job.setJarByClass(WordCount.class);

								job.setMapperClass(WordCountMapper.class);

								job.setReducerClass(WordCountReducer.class);

								job.setOutputKeyClass(Text.class);

								job.setOutputValueClass(IntWritable.class);

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/WordCount.java


								return	(job.waitForCompletion(true)	?	0	:	1);

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	WordCount(),	args);

								System.exit(exitCode);

				}

}

This	is	our	first	complete	MapReduce	job.	Look	at	the	structure,	and	you	should	recognize
the	elements	we	have	previously	discussed:	the	overall	Job	class	with	the	driver
configuration	in	its	main	method	and	the	Mapper	and	Reducer	implementations	defined	as
static	nested	classes.

We’ll	do	a	more	detailed	walkthrough	of	the	mechanics	of	MapReduce	in	the	next	section,
but	for	now,	let’s	look	at	the	preceding	code	and	think	of	how	it	realizes	the	key/value
transformations	we	discussed	earlier.

The	input	to	the	Mapper	class	is	arguably	the	hardest	to	understand,	as	the	key	is	not
actually	used.	The	job	specifies	TextInputFormat	as	the	format	of	the	input	data	and,	by
default,	this	delivers	to	the	mapper	data	where	the	key	is	the	byte	offset	in	the	file	and	the
value	is	the	text	of	that	line.	In	reality,	you	may	never	actually	see	a	mapper	that	uses	that
byte	offset	key,	but	it’s	provided.

The	mapper	is	executed	once	for	each	line	of	text	in	the	input	source,	and	every	time	it
takes	the	line	and	breaks	it	into	words.	It	then	uses	the	Context	object	to	output	(more
commonly	known	as	emitting)	each	new	key/value	of	the	form	(word,	1).	These	are	our
K2/V2	values.

We	said	before	that	the	input	to	the	reducer	is	a	key	and	a	corresponding	list	of	values,	and
there	is	some	magic	that	happens	between	the	map	and	reduce	methods	to	collect	the
values	for	each	key	that	facilitates	this—called	the	shuffle	stage,	which	we	won’t	describe
right	now.	Hadoop	executes	the	reducer	once	for	each	key,	and	the	preceding	reducer
implementation	simply	counts	the	numbers	in	the	Iterable	object	and	gives	output	for	each
word	in	the	form	of	(word,	count).	These	are	our	K3/V3	values.

Take	a	look	at	the	signatures	of	our	mapper	and	reducer	classes:	the	WordCountMapper
class	accepts	IntWritable	and	Text	as	input	and	provides	Text	and	IntWritable	as
output.	The	WordCountReducer	class	has	Text	and	IntWritable	accepted	as	both	input
and	output.	This	is	again	quite	a	common	pattern,	where	the	map	method	performs	an
inversion	on	the	key	and	values,	and	instead	emits	a	series	of	data	pairs	on	which	the
reducer	performs	aggregation.

The	driver	is	more	meaningful	here,	as	we	have	real	values	for	the	parameters.	We	use
arguments	passed	to	the	class	to	specify	the	input	and	output	locations.

Run	the	job	with:

$	hadoop	jar	build/libs/mapreduce-example.jar	

com.learninghadoop2.mapreduce.WordCount	\

	twitter.txt	output



Examine	the	output	with	a	command	such	as	the	following;	the	actual	filename	might	be
different,	so	just	look	inside	the	directory	called	output	in	your	home	directory	on	HDFS:

$	hdfs	dfs	-cat	output/part-r-00000



Word	co-occurrences
Words	occurring	together	are	likely	to	be	phrases	and	common—frequently	occurring—
phrases	are	likely	to	be	important.	In	Natural	Language	Processing,	a	list	of	co-occurring
terms	is	called	an	N-Gram.	N-Grams	are	the	foundation	of	several	statistical	methods	for
text	analytics.	We	will	give	an	example	of	the	special	case	of	an	N-Gram—and	a	metric
often	encountered	in	analytics	applications—composed	of	two	terms	(a	bigram).

A	naïve	implementation	in	MapReduce	would	be	an	extension	of	WordCount	that	emits	a
multi-field	key	composed	of	two	tab-separated	words.

public	class	BiGramCount	extends	Configured	implements	Tool

{

			public	static	class	BiGramMapper

											extends	Mapper<Object,	Text,	Text,	IntWritable>	{

							private	final	static	IntWritable	one	=	new	IntWritable(1);

							private	Text	word	=	new	Text();

							public	void	map(Object	key,	Text	value,	Context	context

							)	throws	IOException,	InterruptedException	{

											String[]	words	=	value.toString().split("	");

											Text	bigram	=	new	Text();

											String	prev	=	null;

											for	(String	s	:	words)	{

															if	(prev	!=	null)	{

																			bigram.set(prev	+	"\t+\t"	+	s);

																			context.write(bigram,	one);

															}

															prev	=	s;

											}

							}

			}

				@Override

				public	int	run(String[]	args)	throws	Exception	{

									Configuration	conf	=	getConf();

									args	=	new	GenericOptionsParser(conf,	args).getRemainingArgs();

									Job	job	=	Job.getInstance(conf);

									job.setJarByClass(BiGramCount.class);

									job.setMapperClass(BiGramMapper.class);

									job.setReducerClass(IntSumReducer.class);

									job.setOutputKeyClass(Text.class);

									job.setOutputValueClass(IntWritable.class);

									FileInputFormat.addInputPath(job,	new	Path(args[0]));

									FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

									return	(job.waitForCompletion(true)	?	0	:	1);

				}

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	BiGramCount(),	args);



								System.exit(exitCode);

				}

}

In	this	job,	we	replace	WordCountReducer	with
org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer,	which	implements	the
same	logic.	The	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/BiGramCount.java

https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/BiGramCount.java


Trending	topics
The	#	symbol,	called	a	hashtag,	is	used	to	mark	keywords	or	topics	in	a	tweet.	It	was
created	organically	by	Twitter	users	as	a	way	to	categorize	messages.	Twitter	Search
(found	at	https://twitter.com/search-home)	popularized	the	use	of	hashtags	as	a	method	to
connect	and	find	content	related	to	specific	topics	as	well	as	the	people	talking	about	such
topics.	By	counting	the	frequency	with	which	a	hashtag	is	mentioned	over	a	given	time
period,	we	can	determine	which	topics	are	trending	in	the	social	network.

public	class	HashTagCount	extends	Configured	implements	Tool

{

				public	static	class	HashTagCountMapper

												extends	Mapper<Object,	Text,	Text,	IntWritable>

				{

								private	final	static	IntWritable	one	=	new	IntWritable(1);

								private	Text	word	=	new	Text();

								private	String	hashtagRegExp	=

"(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)";

								public	void	map(Object	key,	Text	value,	Context	context)

																throws	IOException,	InterruptedException	{

												String[]	words	=	value.toString().split("	")	;

												for	(String	str:	words)

												{

																if	(str.matches(hashtagRegExp))	{

																				word.set(str);

																				context.write(word,	one);

																}

												}

								}

				}

				public	int	run(String[]	args)	throws	Exception	{

								Configuration	conf	=	getConf();

								args	=	new	GenericOptionsParser(conf,	args)

								.getRemainingArgs();

								Job	job	=	Job.getInstance(conf);

								job.setJarByClass(HashTagCount.class);

								job.setMapperClass(HashTagCountMapper.class);

								job.setCombinerClass(IntSumReducer.class);

								job.setReducerClass(IntSumReducer.class);

								job.setOutputKeyClass(Text.class);

								job.setOutputValueClass(IntWritable.class);

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

								return	(job.waitForCompletion(true)	?	0	:	1);

https://twitter.com/search-home


				}

				public	static	void	main(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(new	HashTagCount(),	args);

								System.exit(exitCode);

				}

}

As	in	the	WordCount	example,	we	tokenize	text	in	the	Mapper.	We	use	a	regular
expression—	hashtagRegExp—to	detect	the	presence	of	a	hashtag	in	Twitter’s	text	and
emit	the	hashtag	and	the	number	1	when	a	hashtag	is	found.	In	the	Reducer	step,	we	then
count	the	total	number	of	emitted	hashtag	occurrences	using	IntSumReducer.

The	full	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagCount.java

This	compiled	class	will	be	in	the	JAR	file	we	built	with	Gradle	earlier,	so	now	we
execute	HashTagCount	with	the	following	command:

$	hadoop	jar	build/libs/mapreduce-example.jar	\

com.learninghadoop2.mapreduce.HashTagCount	twitter.txt	output

Let’s	examine	the	output	as	before:

$	hdfs	dfs	-cat	output/part-r-00000

You	should	see	output	similar	to	the	following:

#whey									1

#willpower				1

#win										2

#winterblues		1

#winterstorm		1

#wipolitics			1

#women								6

#woodgrain				1

Each	line	is	composed	of	a	hashtag	and	the	number	of	times	it	appears	in	the	tweets
dataset.	As	you	can	see,	the	MapReduce	job	orders	results	by	key.	If	we	want	to	find	the
most	mentioned	topics,	we	need	to	order	the	result	set.	The	naïve	approach	would	be	to
perform	a	total	order	of	the	aggregated	values	and	selecting	the	top	10.

If	the	output	dataset	is	small,	we	can	pipe	it	to	standard	output	and	sort	it	using	the	sort
utility:

$	hdfs	dfs	-cat	output/part-r-00000	|	sort	-k2	-n	-r	|	head	-n	10

Another	solution	would	be	to	write	another	MapReduce	job	to	traverse	the	whole	result	set
and	sort	by	value.	When	data	becomes	large,	this	type	of	global	sorting	can	become	quite
expensive.	In	the	following	section,	we	will	illustrate	an	efficient	design	pattern	to	sort
aggregated	data

The	Top	N	pattern

https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagCount.java


In	the	Top	N	pattern,	we	keep	data	sorted	in	a	local	data	structure.	Each	mapper	calculates
a	list	of	the	top	N	records	in	its	split	and	sends	its	list	to	the	reducer.	A	single	reducer	task
finds	the	top	N	global	records.

We	will	apply	this	design	pattern	to	implement	a	TopTenHashTag	job	that	finds	the	top	ten
topics	in	our	dataset.	The	job	takes	as	input	the	output	data	generated	by	HashTagCount
and	returns	a	list	of	the	ten	most	frequently	mentioned	hashtags.

In	TopTenMapper	we	use	TreeMap	to	keep	a	sorted	list—in	ascending	order—of	hashtags.
The	key	of	this	map	is	the	number	of	occurrences;	the	value	is	a	tab-separated	string	of
hashtags	and	their	frequency.	In	map(),	for	each	value,	we	update	the	topN	map.	When
topN	has	more	than	ten	items,	we	remove	the	smallest:

public	static	class	TopTenMapper	extends	Mapper<Object,	Text,	

		NullWritable,	Text>	{

		private	TreeMap<Integer,	Text>	topN	=	new	TreeMap<Integer,	Text>();

		private	final	static	IntWritable	one	=	new	IntWritable(1);

		private	Text	word	=	new	Text();

		public	void	map(Object	key,	Text	value,	Context	context)	throws	

				IOException,	InterruptedException	{

		String[]	words	=	value.toString().split("\t")	;

		if	(words.length	<	2)	{

				return;

		}

		topN.put(Integer.parseInt(words[1]),	new	Text(value));

		if	(topN.size()	>	10)	{

				topN.remove(topN.firstKey());

		}

}

							@Override

							protected	void	cleanup(Context	context)	throws	IOException,	

InterruptedException	{

												for	(Text	t	:	topN.values())	{

																context.write(NullWritable.get(),	t);

												}

								}

				}

We	don’t	emit	any	key/value	in	the	map	function.	We	implement	a	cleanup()	method
that,	once	the	mapper	has	consumed	all	its	input,	emits	the	(hashtag,	count)	values	in	topN.
We	use	a	NullWritable	key	because	we	want	all	values	to	be	associated	with	the	same
key	so	that	we	can	perform	a	global	order	over	all	mappers’	top	n	lists.	This	implies	that
our	job	will	execute	only	one	reducer.

The	reducer	implements	logic	similar	to	what	we	have	in	map().	We	instantiate	TreeMap
and	use	it	to	keep	an	ordered	list	of	the	top	10	values:

				public	static	class	TopTenReducer	extends

												Reducer<NullWritable,	Text,	NullWritable,	Text>	{

								private	TreeMap<Integer,	Text>	topN	=	new	TreeMap<Integer,	Text>();



								@Override

								public	void	reduce(NullWritable	key,	Iterable<Text>	values,	Context	

context)	throws	IOException,	InterruptedException	{

												for	(Text	value	:	values)	{

																String[]	words	=	value.toString().split("\t")	;

																topN.put(Integer.parseInt(words[1]),

																				new	Text(value));

																if	(topN.size()	>	10)	{

																				topN.remove(topN.firstKey());

																}

												}

												for	(Text	word	:	topN.descendingMap().values())	{

																context.write(NullWritable.get(),	word);

												}

								}

				}

Finally,	we	traverse	topN	in	descending	order	to	generate	the	list	of	trending	topics.

Note
Note	that	in	this	implementation,	we	override	hashtags	that	have	a	frequency	value	already
present	in	TreeMap	when	calling	topN.put().	Depending	on	the	use	case,	it’s	advised	to
use	a	different	data	structure—such	as	the	ones	offered	by	the	Guava	library
(https://code.google.com/p/guava-libraries/)—or	adjust	the	updating	strategy.

In	the	driver,	we	enforce	a	single	reducer	by	setting	job.setNumReduceTasks(1):

$	hadoop	jar	build/libs/mapreduce-example.jar	\

com.learninghadoop2.mapreduce.TopTenHashTag	\

output/part-r-00000	\

top-ten

We	can	inspect	the	top	ten	to	list	trending	topics:

$	hdfs	dfs	-cat	top-ten/part-r-00000

#Stalker48						150

#gameinsight				55

#12M				52

#KCA				46

#LORDJASONJEROME								29

#Valencia							19

#LesAnges6						16

#VoteLuan							15

#hadoop2				12

#Gameinsight				11

The	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/TopTenHashTag.java

https://code.google.com/p/guava-libraries/
https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/TopTenHashTag.java


Sentiment	of	hashtags
The	process	of	identifying	subjective	information	in	a	data	source	is	commonly	referred	to
as	sentiment	analysis.	In	the	previous	example,	we	show	how	to	detect	trending	topics	in	a
social	network;	we’ll	now	analyze	the	text	shared	around	those	topics	to	determine
whether	they	express	a	mostly	positive	or	negative	sentiment.

A	list	of	positive	and	negative	words	for	the	English	language—a	so-called	opinion
lexicon—can	be	found	at	http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar.

Note
These	resources—and	many	more—have	been	collected	by	Prof.	Bing	Liu’s	group	at	the
University	of	Illinois	at	Chicago	and	have	been	used,	among	others,	in	Bing	Liu,	Minqing
Hu	and	Junsheng	Cheng.	“Opinion	Observer:	Analyzing	and	Comparing	Opinions	on	the
Web.”	Proceedings	of	the	14th	International	World	Wide	Web	conference	(WWW-2005),
May	10-14,	2005,	Chiba,	Japan.

In	this	example,	we’ll	present	a	bag-of-words	method	that,	although	simplistic	in	nature,
can	be	used	as	a	baseline	to	mine	opinion	in	text.	For	each	tweet	and	each	hashtag,	we	will
count	the	number	of	times	a	positive	or	a	negative	word	appears	and	normalize	this	count
by	the	text	length.

Note
The	bag-of-words	model	is	an	approach	used	in	Natural	Language	Processing	and
Information	Retrieval	to	represent	textual	documents.	In	this	model,	text	is	represented	as
the	set	or	bag—with	multiplicity—of	its	words,	disregarding	grammar	and	morphological
properties	and	even	word	order.

Uncompress	the	archive	and	place	the	word	lists	into	HDFS	with	the	following	command
line:

$	hdfs	dfs	–put	positive-words.txt	<destination>

$	hdfs	dfs	–put	negative-words.txt	<destination>

In	the	Mapper	class,	we	define	two	objects	that	will	hold	the	word	lists:	positiveWords
and	negativeWords	as	Set<String>:

private	Set<String>	positiveWords	=		null;

private	Set<String>	negativeWords	=	null;

We	override	the	default	setup()	method	of	the	Mapper	so	that	a	list	of	positive	and
negative	words—specified	by	two	configuration	properties:	job.positivewords.path	and
job.negativewords.path—is	read	from	HDFS	using	the	filesystem	API	we	discussed	in
the	previous	chapter.	We	could	have	also	used	DistributedCache	to	share	this	data	across
the	cluster.	The	helper	method,	parseWordsList,	reads	a	list	of	word	lists,	strips	out
comments,	and	loads	words	into	HashSet<String>:

private	HashSet<String>	parseWordsList(FileSystem	fs,	Path	wordsListPath)

http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar


{

				HashSet<String>	words	=	new	HashSet<String>();

				try	{

								if	(fs.exists(wordsListPath))	{

												FSDataInputStream	fi	=	fs.open(wordsListPath);

												BufferedReader	br	=

new	BufferedReader(new	InputStreamReader(fi));

												String	line	=	null;

												while	((line	=	br.readLine())	!=	null)	{

																if	(line.length()	>	0	&&	!line.startsWith(BEGIN_COMMENT))	{

																				words.add(line);

																}

												}

												fi.close();

								}

				}

				catch	(IOException	e)	{

								e.printStackTrace();

				}

				return	words;

}		

In	the	Mapper	step,	we	emit	for	each	hashtag	in	the	tweet	the	overall	sentiment	of	the
tweet	(simply	the	positive	word	count	minus	the	negative	word	count)	and	the	length	of
the	tweet.

We’ll	use	these	in	the	reducer	to	calculate	an	overall	sentiment	ratio	weighted	by	the
length	of	the	tweets	to	estimate	the	sentiment	expressed	by	a	tweet	on	a	hashtag,	as
follows:

								public	void	map(Object	key,	Text	value,	Context	context)

	throws	IOException,	InterruptedException	{

												String[]	words	=	value.toString().split("	")	;

												Integer	positiveCount	=	new	Integer(0);

												Integer	negativeCount	=	new	Integer(0);

												Integer	wordsCount	=	new	Integer(0);

												for	(String	str:	words)

												{

																if	(str.matches(HASHTAG_PATTERN))	{

																				hashtags.add(str);

																}

																if	(positiveWords.contains(str))	{

																				positiveCount	+=	1;

																}	else	if	(negativeWords.contains(str))	{

																				negativeCount	+=	1;

																}

																wordsCount	+=	1;



												}

												Integer	sentimentDifference	=	0;

												if	(wordsCount	>	0)	{

														sentimentDifference	=	positiveCount	-	negativeCount;

												}

												String	stats	;

												for	(String	hashtag	:	hashtags)	{

																word.set(hashtag);

																stats	=	String.format("%d	%d",	sentimentDifference,	

wordsCount);

																context.write(word,	new	Text(stats));

												}

								}

				}

In	the	Reducer	step,	we	add	together	the	sentiment	scores	given	to	each	instance	of	the
hashtag	and	divide	by	the	total	size	of	all	the	tweets	in	which	it	occurred:

public	static	class	HashTagSentimentReducer

												extends	Reducer<Text,Text,Text,DoubleWritable>	{

								public	void	reduce(Text	key,	Iterable<Text>	values,

																											Context	context

								)	throws	IOException,	InterruptedException	{

												double	totalDifference	=	0;

												double	totalWords	=	0;

												for	(Text	val	:	values)	{

																String[]	parts	=	val.toString().split("	")	;

																totalDifference	+=	Double.parseDouble(parts[0])	;

																totalWords	+=	Double.parseDouble(parts[1])	;

												}

												context.write(key,

new	DoubleWritable(totalDifference/totalWords));

								}

				}

The	full	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagSentiment.java

After	running	the	preceding	code,	execute	HashTagSentiment	with	the	following
command:

$	hadoop	jar	build/libs/mapreduce-example.jar	

com.learninghadoop2.mapreduce.HashTagSentiment	twitter.txt	output-sentiment	

<positive	words>	<negative	words>

You	can	examine	the	output	with	the	following	command:

$	hdfs	dfs	-cat	output-sentiment/part-r-00

000

You	should	see	an	output	similar	to	the	following:

#1068			0.011861271213042056

#10YearsOfLove		0.012285135487494233

https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagSentiment.java


#11					0.011941109121333999

#12					0.011938693593171155

#12F				0.012339242266249566

#12M				0.011864286953783268

#12MCalleEnPazYaTeVasNicolas

In	the	preceding	output,	each	line	is	composed	of	a	hashtag	and	the	sentiment	polarity
associated	with	it.	This	number	is	a	heuristic	that	tells	us	whether	a	hashtag	is	associated
mostly	with	positive	(polarity	>	0)	or	negative	(polarity	<	0)	sentiment	and	the	magnitude
of	such	a	sentiment—the	higher	or	lower	the	number,	the	stronger	the	sentiment.



Text	cleanup	using	chain	mapper
In	the	examples	presented	until	now,	we	ignored	a	key	step	of	essentially	every	application
built	around	text	processing,	which	is	the	normalization	and	cleanup	of	the	input	data.
Three	common	components	of	this	normalization	step	are:

Changing	the	letter	case	to	either	lower	or	upper
Removal	of	stopwords
Stemming

In	this	section,	we	will	show	how	the	ChainMapper	class—found	at
org.apache.hadoop.mapreduce.lib.chain.ChainMapper—allows	us	to	sequentially
combine	a	series	of	Mappers	to	put	together	as	the	first	step	of	a	data	cleanup	pipeline.
Mappers	are	added	to	the	configured	job	using	the	following:

ChainMapper.addMapper(

JobConf	job,

Class<?	extends	Mapper<K1,V1,K2,V2>>	klass,

Class<?	extends	K1>	inputKeyClass,

Class<?	extends	V1>	inputValueClass,

Class<?	extends	K2>	outputKeyClass,

Class<?	extends	V2>	outputValueClass,	JobConf	mapperConf)

The	static	method,	addMapper,	requires	the	following	arguments	to	be	passed:

job:	JobConf	to	add	the	Mapper	class
class:	Mapper	class	to	add
inputKeyClass:	mapper	input	key	class
inputValueClass:	mapper	input	value	class
outputKeyClass:	mapper	output	key	class
outputValueClass:	mapper	output	value	class
mapperConf:	a	JobConf	with	the	configuration	for	the	Mapper	class

In	this	example,	we	will	take	care	of	the	first	item	listed	above:	before	computing	the
sentiment	of	each	tweet,	we	will	convert	to	lowercase	each	word	present	in	its	text.	This
will	allow	us	to	more	accurately	ascertain	the	sentiment	of	hashtags	by	ignoring
differences	in	capitalization	across	tweets.

First	of	all,	we	define	a	new	Mapper—LowerCaseMapper—whose	map()	function	calls
Java	String’s	toLowerCase()	method	on	its	input	value	and	emits	the	lower	cased	text:

public	class	LowerCaseMapper	extends	Mapper<LongWritable,	Text,	

IntWritable,	Text>	{

				private	Text	lowercased	=	new	Text();

				public	void	map(LongWritable	key,	Text	value,	Context	context)

throws	IOException,	InterruptedException	{

								lowercased.set(value.toString().toLowerCase());

								context.write(new	IntWritable(1),	lowercased);

				}

}

In	the	HashTagSentimentChain	driver,	we	configure	the	Job	object	so	that	both	Mappers



will	be	chained	together	and	executed:

public	class	HashTagSentimentChain

extends	Configured	implements	Tool

{

				public	int	run(String[]	args)	throws	Exception	{

								Configuration	conf	=	getConf();

								args	=	new	GenericOptionsParser(conf,args).getRemainingArgs();

								//	location	(on	hdfs)	of	the	positive	words	list

								conf.set("job.positivewords.path",	args[2]);

								conf.set("job.negativewords.path",	args[3]);

								Job	job	=	Job.getInstance(conf);

								job.setJarByClass(HashTagSentimentChain.class);

								Configuration	lowerCaseMapperConf	=	new	Configuration(false);

								ChainMapper.addMapper(job,

																LowerCaseMapper.class,

																LongWritable.class,	Text.class,

																IntWritable.class,	Text.class,

																lowerCaseMapperConf);

								Configuration	hashTagSentimentConf	=	new	Configuration(false);

								ChainMapper.addMapper(job,

																HashTagSentiment.HashTagSentimentMapper.class,

																IntWritable.class,

																Text.class,	Text.class,

																Text.class,

																hashTagSentimentConf);

								

job.setReducerClass(HashTagSentiment.HashTagSentimentReducer.class);

								job.setInputFormatClass(TextInputFormat.class);

								FileInputFormat.addInputPath(job,	new	Path(args[0]));

								job.setOutputFormatClass(TextOutputFormat.class);

								FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

								return	(job.waitForCompletion(true)	?	0	:	1);

				}

				public	static	void	main	(String[]	args)	throws	Exception	{

								int	exitCode	=	ToolRunner.run(

new	HashTagSentimentChain(),	args);

								System.exit(exitCode);

				}

}

The	LowerCaseMapper	and	HashTagSentimentMapper	classes	are	invoked	in	a	pipeline,
where	the	output	of	the	first	becomes	the	input	of	the	second.	The	output	of	the	last
Mapper	will	be	written	to	the	task’s	output.	An	immediate	benefit	of	this	design	is	a
reduction	of	disk	I/O	operations.	Mappers	do	not	need	to	be	aware	that	they	are	chained.



It’s	therefore	possible	to	reuse	specialized	Mappers	that	can	be	combined	within	a	single
task.	Note	that	this	pattern	assumes	that	all	Mappers—and	the	Reduce—use	matching
output	and	input	(key,	value)	pairs.	No	casting	or	conversion	is	done	by	ChainMapper
itself.

Finally,	notice	that	the	addMapper	call	for	the	last	mapper	in	the	chain	specifies	the	output
key/value	classes	applicable	to	the	whole	mapper	pipeline	when	used	as	a	composite.

The	full	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagSentimentChain.java

Execute	HashTagSentimentChain	with	the	command:

$	hadoop	jar	build/libs/mapreduce-example.jar	

com.learninghadoop2.mapreduce.HashTagSentimentChain	twitter.txt	output	

<positive	words>	<negative	words>

You	should	see	an	output	similar	to	the	previous	example.	Notice	that	this	time,	the
hashtag	in	each	line	is	lowercased.

https://github.com/learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/HashTagSentimentChain.java


Walking	through	a	run	of	a	MapReduce
job
To	explore	the	relationship	between	mapper	and	reducer	in	more	detail,	and	to	expose
some	of	Hadoop’s	inner	workings,	we’ll	now	go	through	how	a	MapReduce	job	is
executed.	This	applies	to	both	MapReduce	in	Hadoop	1	and	Hadoop	2	even	though	the
latter	is	implemented	very	differently	using	YARN,	which	we’ll	discuss	later	in	this
chapter.	Additional	information	on	the	services	described	in	this	section,	as	well	as
suggestions	for	troubleshooting	MapReduce	applications,	can	be	found	in	Chapter	10,
Running	a	Hadoop	Cluster.



Startup
The	driver	is	the	only	piece	of	code	that	runs	on	our	local	machine,	and	the	call	to
Job.waitForCompletion()	starts	the	communication	with	the	JobTracker,	which	is	the
master	node	in	the	MapReduce	system.	The	JobTracker	is	responsible	for	all	aspects	of
job	scheduling	and	execution,	so	it	becomes	our	primary	interface	when	performing	any
task	related	to	job	management.

To	share	resources	on	the	cluster	the	JobTracker	can	use	one	of	several	scheduling
approaches	to	handle	incoming	jobs.	The	general	model	is	to	have	a	number	of	queues	to
which	jobs	can	be	submitted	along	with	policies	to	assign	resources	across	the	queues.	The
most	commonly	used	implementations	for	these	policies	are	Capacity	and	Fair	Scheduler.

The	JobTracker	communicates	with	the	NameNode	on	our	behalf	and	manages	all
interactions	relating	to	the	data	stored	on	HDFS.



Splitting	the	input
The	first	of	these	interactions	happens	when	the	JobTracker	looks	at	the	input	data	and
determines	how	to	assign	it	to	map	tasks.	Recall	that	HDFS	files	are	usually	split	into
blocks	of	at	least	64	MB	and	the	JobTracker	will	assign	each	block	to	one	map	task.	Our
WordCount	example,	of	course,	used	a	trivial	amount	of	data	that	was	well	within	a	single
block.	Picture	a	much	larger	input	file	measured	in	terabytes,	and	the	split	model	makes
more	sense.	Each	segment	of	the	file—or	split,	in	MapReduce	terminology—is	processed
uniquely	by	one	map	task.	Once	it	has	computed	the	splits,	the	JobTracker	places	them
and	the	JAR	file	containing	the	Mapper	and	Reducer	classes	into	a	job-specific	directory
on	HDFS,	whose	path	will	be	passed	to	each	task	as	it	starts.



Task	assignment
The	TaskTracker	service	is	responsible	for	allocating	resources,	executing	and	tracking	the
status	of	map	and	reduce	tasks	running	on	a	node.	Once	the	JobTracker	has	determined
how	many	map	tasks	will	be	needed,	it	looks	at	the	number	of	hosts	in	the	cluster,	how
many	TaskTrackers	are	working,	and	how	many	map	tasks	each	can	concurrently	execute
(a	user-definable	configuration	variable).	The	JobTracker	also	looks	to	see	where	the
various	input	data	blocks	are	located	across	the	cluster	and	attempts	to	define	an	execution
plan	that	maximizes	the	cases	when	the	TaskTracker	processes	a	split/block	located	on	the
same	physical	host,	or,	failing	that,	it	processes	at	least	one	in	the	same	hardware	rack.
This	data	locality	optimization	is	a	huge	reason	behind	Hadoop’s	ability	to	efficiently
process	such	large	datasets.	Recall	also	that,	by	default,	each	block	is	replicated	across
three	different	hosts,	so	the	likelihood	of	producing	a	task/host	plan	that	sees	most	blocks
processed	locally	is	higher	than	it	might	seem	at	first.



Task	startup
Each	TaskTracker	then	starts	up	a	separate	Java	virtual	machine	to	execute	the	tasks.	This
does	add	a	startup	time	penalty,	but	it	isolates	the	TaskTracker	from	problems	caused	by
misbehaving	map	or	reduce	tasks,	and	it	can	be	configured	to	be	shared	between
subsequently	executed	tasks.

If	the	cluster	has	enough	capacity	to	execute	all	the	map	tasks	at	once,	they	will	all	be
started	and	given	a	reference	to	the	split	they	are	to	process	and	the	job	JAR	file.	If	there
are	more	tasks	than	the	cluster	capacity,	the	JobTracker	will	keep	a	queue	of	pending	tasks
and	assign	them	to	nodes	as	they	complete	their	initially	assigned	map	tasks.

We	are	now	ready	to	see	the	executed	data	of	map	tasks.	If	all	this	sounds	like	a	lot	of
work,	it	is;	it	explains	why,	when	running	any	MapReduce	job,	there	is	always	a	non-
trivial	amount	of	time	taken	as	the	system	gets	started	and	performs	all	these	steps.



Ongoing	JobTracker	monitoring
The	JobTracker	doesn’t	just	stop	work	now	and	wait	for	the	TaskTrackers	to	execute	all
the	mappers	and	reducers.	It’s	constantly	exchanging	heartbeat	and	status	messages	with
the	TaskTrackers,	looking	for	evidence	of	progress	or	problems.	It	also	collects	metrics
from	the	tasks	throughout	the	job	execution,	some	provided	by	Hadoop	and	others
specified	by	the	developer	of	the	map	and	reduce	tasks,	although	we	don’t	use	any	in	this
example.



Mapper	input
The	driver	class	specifies	the	format	and	structure	of	the	input	file	using
TextInputFormat,	and	from	this,	Hadoop	knows	to	treat	this	as	text	with	the	byte	offset	as
the	key	and	line	contents	as	the	value.	Assume	that	our	dataset	contains	the	following	text:

This	is	a	test

Yes	it	is

The	two	invocations	of	the	mapper	will	therefore	be	given	the	following	output:

1	This	is	a	test

2	Yes	it	is



Mapper	execution
The	key/value	pairs	received	by	the	mapper	are	the	offset	in	the	file	of	the	line	and	the	line
contents,	respectively,	because	of	how	the	job	is	configured.	Our	implementation	of	the
map	method	in	WordCountMapper	discards	the	key,	as	we	do	not	care	where	each	line
occurred	in	the	file,	and	splits	the	provided	value	into	words	using	the	split	method	on	the
standard	Java	String	class.	Note	that	better	tokenization	could	be	provided	by	use	of
regular	expressions	or	the	StringTokenizer	class,	but	for	our	purposes	this	simple
approach	will	suffice.	For	each	individual	word,	the	mapper	then	emits	a	key	comprised	of
the	actual	word	itself,	and	a	value	of	1.



Mapper	output	and	reducer	input
The	output	of	the	mapper	is	a	series	of	pairs	of	the	form	(word,	1);	in	our	example,	these
will	be:

(This,1),	(is,	1),	(a,	1),	(test,	1),	(Yes,	1),	(it,	1),	(is,	1)

These	output	pairs	from	the	mapper	are	not	passed	directly	to	the	reducer.	Between
mapping	and	reducing	is	the	shuffle	stage,	where	much	of	the	magic	of	MapReduce
occurs.



Reducer	input
The	reducer	TaskTracker	receives	updates	from	the	JobTracker	that	tell	it	which	nodes	in
the	cluster	hold	map	output	partitions	that	need	to	be	processed	by	its	local	reduce	task.	It
then	retrieves	these	from	the	various	nodes	and	merges	them	into	a	single	file	that	will	be
fed	to	the	reduce	task.



Reducer	execution
Our	WordCountReducer	class	is	very	simple;	for	each	word,	it	simply	counts	the	number
of	elements	in	the	array	and	emits	the	final	(word,	count)	output	for	each	word.	For	our
invocation	of	WordCount	on	our	sample	input,	all	but	one	word	has	only	one	value	in	the
list	of	values;	is	has	two.



Reducer	output
The	final	set	of	reducer	output	for	our	example	is	therefore:

(This,	1),	(is,	2),	(a,	1),	(test,	1),	(Yes,	1),	(it,	1)

This	data	will	be	output	to	partition	files	within	the	output	directory	specified	in	the	driver
that	will	be	formatted	using	the	specified	OutputFormat	implementation.	Each	reduce	task
writes	to	a	single	file	with	the	filename	part-r-nnnnn,	where	nnnnn	starts	at	00000	and	is
incremented.



Shutdown
Once	all	tasks	have	completed	successfully,	the	JobTracker	outputs	the	final	state	of	the
job	to	the	client,	along	with	the	final	aggregates	of	some	of	the	more	important	counters
that	it	has	been	aggregating	along	the	way.	The	full	job	and	task	history	is	available	in	the
log	directory	on	each	node	or,	more	accessibly,	via	the	JobTracker	web	UI;	point	your
browser	to	port	50030	on	the	JobTracker	node.



Input/Output
We	have	talked	about	files	being	broken	into	splits	as	part	of	the	job	startup	and	the	data	in
a	split	being	sent	to	the	mapper	implementation.	However,	this	overlooks	two	aspects:
how	the	data	is	stored	in	the	file	and	how	the	individual	keys	and	values	are	passed	to	the
mapper	structure.



InputFormat	and	RecordReader
Hadoop	has	the	concept	of	InputFormat	for	the	first	of	these	responsibilities.	The
InputFormat	abstract	class	in	the	org.apache.hadoop.mapreduce	package	provides	two
methods	as	shown	in	the	following	code:

public	abstract	class	InputFormat<K,	V>

{

				public	abstract	List<InputSplit>	getSplits(	JobContext	context);

				RecordReader<K,	V>	createRecordReader(InputSplit	split,

								TaskAttemptContext	context)	;

}

These	methods	display	the	two	responsibilities	of	the	InputFormat	class:

To	provide	details	on	how	to	divide	an	input	file	into	the	splits	required	for	map
processing
To	create	a	RecordReader	that	will	generate	the	series	of	key/value	pairs	from	a	split

The	RecordReader	class	is	also	an	abstract	class	within	the
org.apache.hadoop.mapreduce	package:

public	abstract	class	RecordReader<Key,	Value>	implements	Closeable

{

		public	abstract	void	initialize(InputSplit	split,

				TaskAttemptContext		context);

		public	abstract	boolean	nextKeyValue()

				throws	IOException,	InterruptedException;

		public	abstract	Key	getCurrentKey()

				throws	IOException,	InterruptedException;

		public	abstract	Value	getCurrentValue()

				throws	IOException,	InterruptedException;

		public	abstract	float	getProgress()

				throws	IOException,	InterruptedException;

		public	abstract	close()	throws	IOException;

}

A	RecordReader	instance	is	created	for	each	split	and	calls	getNextKeyValue	to	return	a
Boolean	indicating	whether	another	key/value	pair	is	available,	and,	if	so,	the	getKey	and
getValue	methods	are	used	to	access	the	key	and	value	respectively.

The	combination	of	the	InputFormat	and	RecordReader	classes	therefore	are	all	that	is
required	to	bridge	between	any	kind	of	input	data	and	the	key/value	pairs	required	by
MapReduce.



Hadoop-provided	InputFormat
There	are	some	Hadoop-provided	InputFormat	implementations	within	the
org.apache.hadoop.mapreduce.lib.input	package:

FileInputFormat:	is	an	abstract	base	class	that	can	be	the	parent	of	any	file-based
input.
SequenceFileInputFormat:	is	an	efficient	binary	file	format	that	will	be	discussed	in
an	upcoming	section.
TextInputFormat:	is	used	for	plain	text	files.
KeyValueTextInputFormat:	is	used	for	plain	text	files.	Each	line	is	divided	into	key
and	value	parts	by	a	separator	byte.

Note	that	input	formats	are	not	restricted	to	reading	from	files;	FileInputFormat	is	itself	a
subclass	of	InputFormat.	It’s	possible	to	have	Hadoop	use	data	that	is	not	based	on	files	as
the	input	to	MapReduce	jobs;	common	sources	are	relational	databases	or	column-oriented
databases,	such	as	Amazon	DynamoDB	or	HBase.



Hadoop-provided	RecordReader
Hadoop	provides	a	few	common	RecordReader	implementations,	which	are	also	present
within	the	org.apache.hadoop.mapreduce.lib.input	package:

LineRecordReader:	implementation	is	the	default	RecordReader	class	for	text	files
that	presents	the	byte	offset	in	the	file	as	the	key	and	the	line	contents	as	the	value
SequenceFileRecordReader:	implementation	reads	the	key/value	from	the	binary
SequenceFile	container



OutputFormat	and	RecordWriter
There	is	a	similar	pattern	for	writing	the	output	of	a	job	coordinated	by	subclasses	of
OutputFormat	and	RecordWriter	from	the	org.apache.hadoop.mapreduce	package.	We
won’t	explore	these	in	any	detail	here,	but	the	general	approach	is	similar,	although
OutputFormat	does	have	a	more	involved	API,	as	it	has	methods	for	tasks	such	as
validation	of	the	output	specification.

It’s	this	step	that	causes	a	job	to	fail	if	a	specified	output	directory	already	exists.	If	you
wanted	different	behavior,	it	would	require	a	subclass	of	OutputFormat	that	overrides	this
method.



Hadoop-provided	OutputFormat
The	following	output	formats	are	provided	in	the	org.apache.hadoop.mapreduce.output
package:

FileOutputFormat:	is	the	base	class	for	all	file-based	OutputFormats
NullOutputFormat:	is	a	dummy	implementation	that	discards	the	output	and	writes
nothing	to	the	file
SequenceFileOutputFormat:	writes	to	the	binary	SequenceFile	format
TextOutputFormat:	writes	a	plain	text	file

Note	that	these	classes	define	their	required	RecordWriter	implementations	as	static
nested	classes,	so	there	are	no	separately	provided	RecordWriter	implementations.



Sequence	files
The	SequenceFile	class	within	the	org.apache.hadoop.io	package	provides	an	efficient
binary	file	format	that	is	often	useful	as	an	output	from	a	MapReduce	job.	This	is
especially	true	if	the	output	from	the	job	is	processed	as	the	input	of	another	job.	Sequence
files	have	several	advantages,	as	follows:

As	binary	files,	they	are	intrinsically	more	compact	than	text	files
They	additionally	support	optional	compression,	which	can	also	be	applied	at
different	levels,	that	is,	they	compress	each	record	or	an	entire	split
They	can	be	split	and	processed	in	parallel

This	last	characteristic	is	important	as	most	binary	formats—particularly	those	that	are
compressed	or	encrypted—cannot	be	split	and	must	be	read	as	a	single	linear	stream	of
data.	Using	such	files	as	input	to	a	MapReduce	job	means	that	a	single	mapper	will	be
used	to	process	the	entire	file,	causing	a	potentially	large	performance	hit.	In	such	a
situation,	it’s	preferable	to	use	a	splittable	format,	such	as	SequenceFile,	or,	if	you	cannot
avoid	receiving	the	file	in	another	format,	do	a	preprocessing	step	that	converts	it	into	a
splittable	format.	This	will	be	a	tradeoff,	as	the	conversion	will	take	time,	but	in	many
cases—especially	with	complex	map	tasks—this	will	be	outweighed	by	the	time	saved
through	increased	parallelism.



YARN
YARN	started	out	as	part	of	the	MapReduce	v2	(MRv2)	initiative	but	is	now	an
independent	sub-project	within	Hadoop	(that	is,	it’s	at	the	same	level	as	MapReduce).	It
grew	out	of	a	realization	that	MapReduce	in	Hadoop	1	conflated	two	related	but	distinct
responsibilities:	resource	management	and	application	execution.

Although	it	has	enabled	previously	unimagined	processing	on	enormous	datasets,	the
MapReduce	model	at	a	conceptual	level	has	an	impact	on	performance	and	scalability.
Implicit	in	the	MapReduce	model	is	that	any	application	can	only	be	composed	of	a	series
of	largely	linear	MapReduce	jobs,	each	of	which	follows	a	model	of	one	or	more	maps
followed	by	one	or	more	reduces.	This	model	is	a	great	fit	for	some	applications,	but	not
all.	In	particular,	it’s	a	poor	fit	for	workloads	requiring	very	low-latency	response	times;
the	MapReduce	startup	times	and	sometimes	lengthy	job	chains	often	greatly	exceed	the
tolerance	for	a	user-facing	process.	The	model	has	also	been	found	to	be	very	inefficient
for	jobs	that	would	more	naturally	be	represented	as	a	directed	acyclic	graph	(DAG)	of
tasks	where	the	nodes	on	the	graph	are	processing	steps,	and	the	edges	are	data	flows.	If
analyzed	and	executed	as	a	DAG	then	the	application	may	be	performed	in	one	step	with
high	parallelism	across	the	processing	steps,	but	when	viewed	through	the	MapReduce
lens,	the	result	is	usually	an	inefficient	series	of	interdependent	MapReduce	jobs.

Numerous	projects	have	built	different	types	of	processing	atop	MapReduce	and	although
many	are	wildly	successful	(Apache	Hive	and	Pig	are	two	standout	examples),	the	close
coupling	of	MapReduce	as	a	processing	paradigm	with	the	job	scheduling	mechanism	in
Hadoop1	made	it	very	difficult	for	any	new	project	to	tailor	either	of	these	areas	to	its
specific	needs.

The	result	is	Yet	Another	Resource	Negotiator	(YARN),	which	provides	a	highly
capable	job	scheduling	mechanism	within	Hadoop	and	the	well-defined	interfaces	for
different	processing	models	to	be	implemented	within	it.



YARN	architecture
To	understand	how	YARN	works,	it’s	important	to	stop	thinking	about	MapReduce	and
how	it	processes	data.	YARN	itself	says	nothing	about	the	nature	of	the	applications	that
run	atop	it,	rather	it’s	focused	on	providing	the	machinery	for	the	scheduling	and
execution	of	these	jobs.	As	we’ll	see,	YARN	is	just	as	capable	of	hosting	long-running
stream	processing	or	low-latency,	user-facing	workloads	as	it	is	capable	of	hosting	batch-
processing	workloads,	such	as	MapReduce.

The	components	of	YARN
YARN	is	comprised	of	two	main	components,	the	ResourceManager	(RM),	which
manages	resources	across	the	cluster,	and	the	NodeManager	(NM),	which	runs	on	each
host	and	manages	the	resources	on	the	individual	machine.	The	ResourceManager	and
NodeManagers	deal	with	the	scheduling	and	management	of	containers,	an	abstract	notion
of	the	memory,	CPU,	and	I/O	that	will	be	dedicated	to	run	a	particular	piece	of	application
code.	Using	MapReduce	as	an	example,	when	running	atop	YARN,	the	JobTracker	and
each	TaskTracker	all	run	in	their	own	dedicated	containers.	Note	though,	that	in	YARN,
each	MapReduce	job	has	its	own	dedicated	JobTracker;	there	is	no	single	instance	that
manages	all	jobs,	as	in	Hadoop	1.

YARN	itself	is	responsible	only	for	the	scheduling	of	tasks	across	the	cluster;	all	notions
of	application-level	progress,	monitoring,	and	fault	tolerance	are	handled	in	the
application	code.	This	is	a	very	explicit	design	decision;	by	making	YARN	as	independent
as	possible,	it	has	a	very	clear	set	of	responsibilities	and	does	not	artificially	constrain	the
types	of	application	that	can	be	implemented	on	YARN.

As	the	arbiter	of	all	cluster	resources,	YARN	has	the	ability	to	efficiently	manage	the
cluster	as	a	whole	and	not	focus	on	application-level	resource	requirements.	It	has	a
pluggable	scheduling	policy	with	the	provided	implementations	similar	to	the	existing
Hadoop	Capacity	and	Fair	Scheduler.	YARN	also	treats	all	application	code	as	inherently
untrusted	and	all	application	management	and	control	tasks	are	performed	in	user	space.

Anatomy	of	a	YARN	application
A	submitted	YARN	application	has	two	components:	the	ApplicationMaster	(AM),
which	coordinates	the	overall	application	flow,	and	the	specification	of	the	code	that	will
run	on	the	worker	nodes.	For	MapReduce	atop	YARN,	the	JobTracker	implements	the
ApplicationMaster	functionality	and	TaskTrackers	are	the	application	custom	code
deployed	on	the	worker	nodes.

As	mentioned	in	the	previous	section,	the	responsibilities	of	application	management,
progress	monitoring	and	fault	tolerance	are	pushed	to	the	application	level	in	YARN.	It’s
the	ApplicationMaster	that	performs	these	tasks;	YARN	itself	says	nothing	about	the
mechanisms	for	communication	between	the	ApplicationMaster	and	the	code	running	in
the	worker	containers,	for	example.

This	genericity	allows	YARN	applications	to	not	be	tied	to	Java	classes.	The



ApplicationManager	can	instead	request	a	NodeManager	to	execute	shell	scripts,	native
applications,	or	any	other	type	of	processing	that	is	made	available	on	each	node.



Life	cycle	of	a	YARN	application
As	with	MapReduce	jobs	in	Hadoop	1,	YARN	applications	are	submitted	to	the	cluster	by
a	client.	When	a	YARN	application	is	started,	the	client	first	calls	the	ResourceManager
(more	specifically	the	ApplicationManager	portion	of	the	ResourceManager)	and	requests
the	initial	container	within	which	to	execute	the	ApplicationMaster.	In	most	cases	the
ApplicationMaster	will	run	from	a	hosted	container	in	the	cluster,	just	as	will	the	rest	of
the	application	code.	The	ApplicationManager	communicates	with	the	other	main
component	of	the	ResourceManager,	the	scheduler	itself,	which	has	the	ultimate
responsibility	of	managing	all	resources	across	the	cluster.

The	ApplicationMaster	starts	up	in	the	provided	container,	registers	itself	with	the
ResourceManager,	and	begins	the	process	of	negotiating	its	required	resources.	The
ApplicationMaster	communicates	with	the	ResourceManager	and	requests	the	containers
it	requires.	The	specification	of	the	containers	requested	can	also	include	additional
information,	such	as	desired	placement	within	the	cluster	and	concrete	resource
requirements,	such	as	a	particular	amount	of	memory	or	CPU.

The	ResourceManager	provides	the	ApplicationMaster	with	the	details	of	the	containers	it
has	been	allocated,	and	the	ApplicationMaster	then	communicates	with	the	NodeManagers
to	start	the	application-specific	task	for	each	container.	This	is	done	by	providing	the
NodeManager	with	the	specification	of	the	application	to	be	executed,	which	as	mentioned
may	be	a	JAR	file,	a	script,	a	path	to	a	local	executable,	or	anything	else	that	the
NodeManager	can	invoke.	Each	NodeManager	instantiates	the	container	for	the
application	code	and	starts	the	application	based	on	the	provided	specification.

Fault	tolerance	and	monitoring
From	this	point	onward,	the	behavior	is	largely	application	specific.	YARN	will	not
manage	application	progress	but	does	perform	a	number	of	ongoing	tasks.	The
AMLivelinessMonitor	within	the	ResourceManager	receives	heartbeats	from	all
ApplicationMasters,	and	if	it	determines	that	an	ApplicationMaster	has	failed	or	stopped
working,	it	will	de-register	the	failed	ApplicationMaster	and	release	all	its	allocated
containers.	The	ResourceManager	will	then	reschedule	the	application	a	configurable
number	of	times.

Alongside	this	process	the	NMLivelinessMonitor	within	the	ResourceManager	receives
heartbeats	from	the	NodeManagers	and	keeps	track	of	the	health	of	each	NodeManager	in
the	cluster.	Similar	to	the	monitoring	of	ApplicationMaster	health,	a	NodeManager	will	be
marked	as	dead	after	receiving	no	heartbeats	for	a	default	time	of	10	minutes,	after	which
all	allocated	containers	are	marked	as	dead,	and	the	node	is	excluded	from	future	resource
allocation.

At	the	same	time,	the	NodeManager	will	actively	monitor	resource	utilization	of	each
allocated	container	and,	for	those	resources	not	constrained	by	hard	limits,	will	kill
containers	that	exceed	their	resource	allocation.



At	a	higher	level,	the	YARN	scheduler	will	always	be	looking	to	maximize	the	cluster
utilization	within	the	constraints	of	the	sharing	policy	being	employed.	As	with	Hadoop	1,
this	will	allow	low-priority	applications	to	use	more	cluster	resources	if	contention	is	low,
but	the	scheduler	will	then	preempt	these	additional	containers	(that	is,	request	them	to	be
terminated)	if	higher-priority	applications	are	submitted.

The	rest	of	the	responsibility	for	application-level	fault	tolerance	and	progress	monitoring
must	be	implemented	within	the	application	code.	For	MapReduce	on	YARN,	for
example,	all	the	management	of	task	scheduling	and	retries	is	provided	at	the	application
level	and	is	not	in	any	way	delivered	by	YARN.



Thinking	in	layers
These	last	statements	may	suggest	that	writing	applications	to	run	on	YARN	is	a	lot	of
work,	and	this	is	true.	The	YARN	API	is	quite	low-level	and	likely	intimidating	for	most
developers	who	just	want	to	run	some	processing	tasks	on	their	data.	If	all	we	had	was
YARN	and	every	new	Hadoop	application	had	to	have	its	own	ApplicationMaster
implemented,	then	YARN	would	not	look	quite	as	interesting	as	it	does.

What	makes	the	picture	better	is	that,	in	general,	the	requirement	isn’t	to	implement	each
and	every	application	on	YARN,	but	instead	use	it	for	a	smaller	number	of	processing
frameworks	that	provide	much	friendlier	interfaces	to	be	implemented.	The	first	of	these
was	MapReduce;	with	it	hosted	on	YARN,	the	developer	writes	to	the	usual	map	and
reduce	interfaces	and	is	largely	unaware	of	the	YARN	mechanics.

But	on	the	same	cluster,	another	developer	may	be	running	a	job	that	uses	a	different
framework	with	significantly	different	processing	characteristics,	and	YARN	will	manage
both	at	the	same	time.

We’ll	give	some	more	detail	on	several	YARN	processing	models	currently	available,	but
they	run	the	gamut	from	batch	processing	through	low-latency	queries	to	stream	and	graph
processing	and	beyond.

As	the	YARN	experience	grows,	however,	there	are	a	number	of	initiatives	to	make	the
development	of	these	processing	frameworks	easier.	On	the	one	hand	there	are	higher-
level	interfaces,	such	as	Cloudera	Kitten	(https://github.com/cloudera/kitten)	or	Apache
Twill	(http://twill.incubator.apache.org/),	that	give	friendlier	abstractions	above	the	YARN
APIs.	Perhaps	a	more	significant	development	model,	though,	is	the	emergence	of
frameworks	that	provide	richer	tools	to	more	easily	construct	applications	with	a	common
general	class	of	performance	characteristics.

https://github.com/cloudera/kitten
http://twill.incubator.apache.org/


Execution	models
We	have	mentioned	different	YARN	applications	having	distinct	processing
characteristics,	but	an	emerging	pattern	has	seen	their	execution	models	in	general	being	a
source	of	differentiation.	By	this,	we	refer	to	how	the	YARN	application	life	cycle	is
managed,	and	we	identify	three	main	types:	per-job	application,	per-session,	and	always-
on.

Batch	processing,	such	as	MapReduce	on	YARN,	sees	the	life	cycle	of	the	MapReduce
framework	tied	to	that	of	the	submitted	application.	If	we	submit	a	MapReduce	job,	then
the	JobTracker	and	TaskTrackers	that	execute	it	are	created	specifically	for	the	job	and	are
terminated	when	the	job	completes.	This	works	well	for	batch,	but	if	we	wish	to	provide	a
more	interactive	model	then	the	startup	overhead	of	establishing	the	YARN	application
and	all	its	resource	allocations	will	severely	impact	the	user	experience	if	every	command
issued	suffers	this	penalty.	A	more	interactive,	or	session-based,	life	cycle	will	see	the
YARN	application	start	and	then	be	available	to	service	a	number	of	submitted
requests/commands.	The	YARN	application	terminates	only	when	the	session	is	exited.

Finally,	we	have	the	concept	of	long-running	applications	that	process	continuous	data
streams	independent	of	any	interactive	input.	For	these	it	makes	most	sense	for	the	YARN
application	to	start	and	continuously	process	data	that	is	retrieved	through	some	external
mechanism.	The	application	will	only	exit	when	explicitly	shut	down	or	if	an	abnormal
situation	occurs.



YARN	in	the	real	world	–	Computation
beyond	MapReduce
The	previous	discussions	have	been	a	little	abstract,	so	in	this	section,	we	will	explore	a
few	existing	YARN	applications	to	see	just	how	they	use	the	framework	and	how	they
provide	a	breadth	of	processing	capability.	Of	particular	interest	is	how	the	YARN
frameworks	take	very	different	approaches	to	resource	management,	I/O	pipelining,	and
fault	tolerance.



The	problem	with	MapReduce
Until	now,	we	have	looked	at	MapReduce	in	terms	of	API.	MapReduce	in	Hadoop	is	more
than	that;	up	until	Hadoop	2,	it	was	the	default	execution	engine	for	a	number	of	tools,
among	which	were	Hive	and	Pig,	which	we	will	discuss	in	more	detail	later	in	this	book.
We	have	seen	how	MapReduce	applications	are,	in	fact,	chains	of	jobs.	This	very	aspect	is
one	the	biggest	pain	points	and	constraining	factors	of	the	frameworks.	MapReduce
checkpoints	data	to	HDFS	for	intra-process	communication:

A	chain	of	MapReduce	jobs

At	the	end	of	each	reduce	phase,	output	is	written	to	disk	so	that	it	can	then	be	loaded	by
the	mappers	of	the	next	job	and	used	as	its	input.	This	I/O	overhead	introduces	latency,
especially	when	we	have	applications	that	require	multiple	passes	on	a	dataset	(hence
multiple	writes).	Unfortunately,	this	type	of	iterative	computation	is	at	the	core	of	many
analytics	applications.

Apache	Tez	and	Apache	Spark	are	two	frameworks	that	address	this	problem	by
generalizing	the	MapReduce	paradigm.	We	will	briefly	discuss	them	in	the	remainder	of
this	section,	next	to	Apache	Samza,	a	framework	that	takes	an	entirely	different	approach
to	real-time	processing.



Tez
Tez	(http://tez.apache.org)	is	a	low-level	API	and	execution	engine	focused	on	providing
low-latency	processing,	and	is	being	used	as	the	basis	of	the	latest	evolution	of	Hive,	Pig
and	several	other	frameworks	that	implement	standard	join,	filter,	merge	and	group
operations.	Tez	is	an	implementation	and	evolution	of	a	programming	model	presented	by
Microsoft	in	the	2009	Dryad	paper	(http://research.microsoft.com/en-us/projects/dryad/).
Tez	is	a	generalization	of	MapReduce	as	dataflow	that	strives	to	achieve	fast,	interactive
computing	by	pipelining	I/O	operations	over	a	queue	for	intra-process	communication.
This	avoids	the	expensive	writes	to	disks	that	affect	MapReduce.	The	API	provides
primitives	expressing	dependencies	between	jobs	as	a	DAG.	The	full	DAG	is	then
submitted	to	a	planner	that	can	optimize	the	execution	flow.	The	same	application
depicted	in	the	preceding	diagram	would	be	executed	in	Tez	as	a	single	job,	with	I/O
pipelined	from	reducers	to	reducers	without	HDFS	writes	and	subsequent	reads	by
mappers.	An	example	can	be	seen	in	the	following	diagram:.

A	Tez	DAG	is	a	generalization	of	MapReduce

The	canonical	WordCount	example	can	be	found	at	https://github.com/apache/incubator-
tez/blob/master/tez-mapreduce-

http://tez.apache.org
http://research.microsoft.com/en-us/projects/dryad/
https://github.com/apache/incubator-tez/blob/master/tez-mapreduce-examples/src/main/java/org/apache/tez/mapreduce/examples/WordCount.java


examples/src/main/java/org/apache/tez/mapreduce/examples/WordCount.java.

DAG	dag	=	new	DAG("WordCount");

dag.addVertex(tokenizerVertex)

.addVertex(summerVertex)

.addEdge(new	Edge(tokenizerVertex,	summerVertex,

edgeConf.createDefaultEdgeProperty()));

Even	though	the	graph	topology	dag	can	be	expressed	with	a	few	lines	of	code,	the
boilerplate	required	to	execute	the	job	is	considerable.	This	code	handles	many	of	the	low-
level	scheduling	and	execution	responsibilities,	including	fault	tolerance.	When	Tez
detects	a	failed	task,	it	walks	back	up	the	processing	graph	to	find	the	point	from	which	to
re-execute	the	failed	tasks.

Hive-on-tez
Hive	0.13	is	the	first	high-profile	project	to	use	Tez	as	its	execution	engine.	We’ll	discuss
Hive	in	a	lot	more	detail	in	Chapter	7,	Hadoop	and	SQL,	but	for	now	we	will	just	touch	on
how	it’s	implemented	on	YARN.

Hive	(http://hive.apache.org)	is	an	engine	for	querying	data	stored	on	HDFS	through
standard	SQL	syntax.	It	has	been	enormously	successful,	as	this	type	of	capability	greatly
reduces	the	barriers	to	start	analytic	exploration	of	data	in	Hadoop.

In	Hadoop	1,	Hive	had	no	choice,	but	to	implement	its	SQL	statements	as	a	series	of
MapReduce	jobs.	When	SQL	is	submitted	to	Hive,	it	generates	the	required	MapReduce
jobs	behind	the	scenes	and	executes	these	on	the	cluster.	This	approach	has	two	main
drawbacks:	there	is	a	non-trivial	startup	penalty	each	time,	and	the	constrained
MapReduce	model	means	that	seemingly	simple	SQL	statements	are	often	translated	into
a	lengthy	series	of	multiple	dependent	MapReduce	jobs.	This	is	an	example	of	the	type	of
processing	more	naturally	conceptualized	as	a	DAG	of	tasks,	as	described	earlier	in	this
chapter.

Although	some	benefits	are	achieved	when	Hive	executes	within	MapReduce,	within
YARN,	the	major	benefits	come	in	Hive	0.13	when	the	project	is	fully	re-implemented
using	Tez.	By	exploiting	the	Tez	APIs,	which	are	focused	on	providing	low-latency
processing,	Hive	gains	even	more	performance	while	making	its	codebase	simpler.

Since	Tez	treats	its	workloads	as	the	DAGs	which	provide	a	much	better	fit	to	translated
SQL	queries,	Hive	on	Tez	can	perform	any	SQL	statement	as	a	single	job	with	maximized
parallelism.

Tez	helps	Hive	support	interactive	queries	by	providing	an	always-running	service	instead
of	requiring	the	application	to	be	instantiated	from	scratch	for	each	SQL	submission.	This
is	important	because,	even	though	queries	that	process	huge	data	volumes	will	simply	take
some	time,	the	goal	is	for	Hive	to	become	less	of	a	batch	tool	and	instead	move	to	be	as
much	of	an	interactive	tool	as	possible.

http://hive.apache.org


Apache	Spark
Spark	(.apache.org)	is	a	processing	framework	that	excels	at	iterative	and	near	real-time
processing.	Created	at	UC	Berkeley,	it	has	been	donated	as	an	Apache	project.	Spark
provides	an	abstraction	that	allows	data	in	Hadoop	to	be	viewed	as	a	distributed	data
structure	upon	which	a	series	of	operations	can	be	performed.	The	framework	is	based	on
the	same	concepts	Tez	draws	inspiration	from	(Dryad),	but	excels	with	jobs	that	allow	data
to	be	held	and	processed	in	memory,	and	it	can	very	efficiently	schedule	processing	on	the
in-memory	dataset	across	the	cluster.	Spark	automatically	controls	replication	of	data
across	the	cluster,	ensuring	that	each	element	of	the	distributed	dataset	is	held	in	memory
on	at	least	two	machines,	and	provides	replication-based	fault	tolerance	somewhat	akin	to
HDFS.

Spark	started	as	a	standalone	system,	but	was	ported	to	also	run	on	YARN	as	of	its	0.8
release.	Spark	is	particularly	interesting	because,	although	its	classic	processing	model	is
batch-oriented,	with	the	Spark	shell	it	provides	an	interactive	frontend	and	with	the	Spark
Streaming	sub-project	also	offers	near	real-time	processing	of	data	streams.	Spark	is
different	things	to	different	people;	it’s	both	a	high-level	API	and	an	execution	engine.	At
the	time	of	writing,	ports	of	Hive	and	Pig	to	Spark	are	in	progress.

http://spark.apache.org


Apache	Samza
Samza	(http://samza.apache.org)	is	a	stream-processing	framework	developed	at	LinkedIn
and	donated	to	the	Apache	Software	Foundation.	Samza	processes	conceptually	infinite
streams	of	data,	which	are	seen	by	the	application	as	a	series	of	messages.

Samza	currently	integrates	most	tightly	with	Apache	Kafka	(http://kafka.apache.org)
although	it	does	have	a	pluggable	architecture.	Kafka	itself	is	a	messaging	system	that
excels	at	large	data	volumes	and	provides	a	topic-based	abstraction	similar	to	most	other
messaging	platforms,	such	as	RabbitMQ.	Publishers	send	messages	to	topics	and
interested	clients	consume	messages	from	the	topics	as	they	arrive.	Kafka	has	multiple
aspects	that	set	it	apart	from	other	messaging	platforms,	but	for	this	discussion,	the	most
interesting	one	is	that	Kafka	stores	messages	for	a	period	of	time,	which	allows	messages
in	topics	to	be	replayed.	Topics	are	partitioned	across	multiple	hosts	and	partitions	can	be
replicated	across	hosts	to	protect	from	node	failure.

Samza	builds	its	processing	flow	on	its	concept	of	streams,	which	when	using	Kafka	map
directly	to	Kafka	partitions.	A	typical	Samza	job	may	listen	to	one	topic	for	incoming
messages,	perform	some	transformations,	and	then	write	the	output	to	a	different	topic.
Multiple	Samza	jobs	can	then	be	composed	to	provide	more	complex	processing
structures.

As	a	YARN	application,	the	Samza	ApplicationMaster	monitors	the	health	of	all	running
Samza	tasks.	If	a	task	fails,	then	a	replacement	task	is	instantiated	in	a	new	container.
Samza	achieves	fault	tolerance	by	having	each	task	write	its	progress	to	a	new	stream
(again	modeled	as	a	Kafka	topic),	so	any	replacement	task	just	needs	to	read	the	latest	task
state	from	this	checkpoint	topic	and	then	replay	the	main	message	topic	from	the	last
processed	position.	Samza	additionally	offers	support	for	local	task	state,	which	can	be
very	useful	for	join	and	aggregation	type	workloads.	This	local	state	is	again	built	atop	the
stream	abstraction	and	hence	is	intrinsically	resilient	to	host	failure.

YARN-independent	frameworks
An	interesting	point	to	note	is	that	two	of	the	preceding	projects	(Samza	and	Spark)	run
atop	YARN	but	are	not	specific	to	YARN.	Spark	started	out	as	a	standalone	service	and
has	implementations	for	other	schedulers,	such	as	Apache	Mesos	or	to	run	on	Amazon
EC2.	Though	Samza	runs	only	on	YARN	today,	its	architecture	explicitly	is	not	YARN-
specific,	and	there	are	discussions	about	providing	realizations	on	other	platforms.

If	the	YARN	model	of	pushing	as	much	as	possible	into	the	application	has	its	downsides
through	implementation	complexity,	then	this	decoupling	is	one	of	its	major	benefits.	An
application	written	to	use	YARN	need	not	be	tied	to	it;	by	definition,	all	the	functionality
for	the	actual	application	logic	and	management	is	encapsulated	within	the	application
code	and	is	independent	of	YARN	or	another	framework.	This	is,	of	course,	not	saying
that	designing	a	scheduler-independent	application	is	a	trivial	task,	but	it’s	now	a	tractable
task;	this	was	absolutely	not	the	case	pre-YARN.

http://samza.apache.org
http://kafka.apache.org


YARN	today	and	beyond
Though	YARN	has	been	used	in	production	(at	Yahoo!	in	particular)	for	some	time,	the
final	GA	version	was	not	released	until	late	2012.	The	interfaces	to	YARN	were	also
somewhat	fluid	until	quite	late	in	the	development	cycle.	Consequently,	the	fully	forward
compatible	YARN	as	of	Hadoop	2.2	is	still	relatively	new.

YARN	is	fully	functional	today,	and	the	future	direction	will	see	extensions	to	its	current
capabilities.	Perhaps	most	notable	among	these	will	be	the	ability	to	specify	and	control
container	resources	on	more	dimensions.	Currently,	only	location,	memory	and	CPU
specifications	are	possible,	and	this	will	be	expanded	into	areas	such	as	storage	and
network	I/O.

In	addition,	the	ApplicationMaster	currently	has	little	control	over	the	management	of	how
containers	are	co-located	or	not.	Finer-grained	control	here	will	allow	the
ApplicationMaster	to	specify	policies	around	when	containers	may	or	may	not	be
scheduled	on	the	same	node.	In	addition,	the	current	resource	allocation	model	is	quite
static,	and	it	will	be	useful	to	allow	an	application	to	dynamically	change	the	resources
allocated	to	a	running	container.



Summary
This	chapter	explored	how	to	process	those	large	volumes	of	data	that	we	discussed	so
much	in	the	previous	chapter.	In	particular	we	covered:

How	MapReduce	was	the	only	processing	model	available	in	Hadoop	1	and	its
conceptual	model
The	Java	API	to	MapReduce,	and	how	to	use	this	to	build	some	examples,	from	a
word	count	to	sentiment	analysis	of	Twitter	hashtags
The	details	of	how	MapReduce	is	implemented	in	practice,	and	we	walked	through
the	execution	of	a	MapReduce	job
How	Hadoop	stores	data	and	the	classes	involved	to	represent	input	and	output
formats	and	record	readers	and	writers
The	limitations	of	MapReduce	that	led	to	the	development	of	YARN,	opening	the
door	to	multiple	computational	models	on	the	Hadoop	platform
The	YARN	architecture	and	how	applications	are	built	atop	it

In	the	next	two	chapters,	we	will	move	away	from	strictly	batch	processing	and	delve	into
the	world	of	near	real-time	and	iterative	processing,	using	two	of	the	YARN-hosted
frameworks	we	introduced	in	this	chapter,	namely	Samza	and	Spark.



Chapter	4.	Real-time	Computation	with
Samza
The	previous	chapter	discussed	YARN,	and	frequently	mentioned	the	breadth	of
computational	models	and	processing	frameworks	outside	of	traditional	batch-based
MapReduce	that	it	enables	on	the	Hadoop	platform.	In	this	chapter	and	the	next,	we	will
explore	two	such	projects	in	some	depth,	namely	Apache	Samza	and	Apache	Spark.	We
chose	these	frameworks	as	they	demonstrate	the	usage	of	stream	and	iterative	processing
and	also	provide	interesting	mechanisms	to	combine	processing	paradigms.	In	this	chapter
we	will	explore	Samza	and	cover	the	following	topics:

What	Samza	is	and	how	it	integrates	with	YARN	and	other	projects	such	as	Apache
Kafka
How	Samza	provides	a	simple	callback-based	interface	for	stream	processing
How	Samza	composes	multiple	stream	processing	jobs	into	more	complex	workflows
How	Samza	supports	persistent	local	state	within	tasks	and	how	this	greatly	enriches
what	it	can	enable



Stream	processing	with	Samza
To	explore	a	pure	stream-processing	platform,	we	will	use	Samza,	which	is	available	at
https://samza.apache.org.	The	code	shown	here	was	tested	with	the	current	0.8	release	and
we’ll	keep	the	GitHub	repository	updated	as	the	project	continues	to	evolve.

Samza	was	built	at	LinkedIn	and	donated	to	the	Apache	Software	Foundation	in
September	2013.	Over	the	years,	LinkedIn	has	built	a	model	that	conceptualizes	much	of
their	data	as	streams,	and	from	this	they	saw	the	need	for	a	framework	that	can	provide	a
developer-friendly	mechanism	to	process	these	ubiquitous	data	streams.

The	team	at	LinkedIn	realized	that	when	it	came	to	data	processing,	much	of	the	attention
went	to	the	extreme	ends	of	the	spectrum,	for	example,	RPC	workloads	are	usually
implemented	as	synchronous	systems	with	very	low	latency	requirements	or	batch	systems
where	the	periodicity	of	jobs	is	often	measured	in	hours.	The	ground	in	between	has	been
relatively	poorly	supported	and	this	is	the	area	that	Samza	is	targeted	at;	most	of	its	jobs
expect	response	times	ranging	from	milliseconds	to	minutes.	They	also	assume	that	data
arrives	in	a	theoretically	infinite	stream	of	continuous	messages.

https://samza.apache.org


How	Samza	works
There	are	numerous	stream-processing	systems	such	as	Storm	(http://storm.apache.org),	in
the	open	source	world,	and	many	other	(mostly	commercial)	tools	such	as	complex	event
processing	(CEP)	systems	that	also	target	processing	on	continuous	message	streams.
These	systems	have	many	similarities	but	also	some	major	differences.

For	Samza,	perhaps	the	most	significant	difference	is	its	assumptions	about	message
delivery.	Many	systems	work	very	hard	to	reduce	the	latency	of	each	message,	sometimes
with	an	assumption	that	the	goal	is	to	get	the	message	into	and	out	of	the	system	as	fast	as
possible.	Samza	assumes	almost	the	opposite;	its	streams	are	persistent	and	resilient	and
any	message	written	to	a	stream	can	be	re-read	for	a	period	of	time	after	its	first	arrival.	As
we	will	see,	this	gives	significant	capability	around	fault	tolerance.	Samza	also	builds	on
this	model	to	allow	each	of	its	tasks	to	hold	resilient	local	state.

Samza	is	mostly	implemented	in	Scala	even	though	its	public	APIs	are	written	in	Java.
We’ll	show	Java	examples	in	this	chapter,	but	any	JVM	language	can	be	used	to
implement	Samza	applications.	We’ll	discuss	Scala	when	we	explore	Spark	in	the	next
chapter.

http://storm.apache.org


Samza	high-level	architecture
Samza	views	the	world	as	having	three	main	layers	or	components:	the	streaming,
execution,	and	processing	layers.

Samza	architecture

The	streaming	layer	provides	access	to	the	data	streams,	both	for	consumption	and
publication.	The	execution	layer	provides	the	means	by	which	Samza	applications	can	be
run,	have	resources	such	as	CPU	and	memory	allocated,	and	have	their	life	cycles
managed.	The	processing	layer	is	the	actual	Samza	framework	itself,	and	its	interfaces
allow	per-message	functionality.

Samza	provides	pluggable	interfaces	to	support	the	first	two	layers	though	the	current
main	implementations	use	Kafka	for	streaming	and	YARN	for	execution.	We’ll	discuss
these	further	in	the	following	sections.



Samza’s	best	friend	–	Apache	Kafka
Samza	itself	does	not	implement	the	actual	message	stream.	Instead,	it	provides	an
interface	for	a	message	system	with	which	it	then	integrates.	The	default	stream
implementation	is	built	upon	Apache	Kafka	(http://kafka.apache.org),	a	messaging
system	also	built	at	LinkedIn	but	now	a	successful	and	widely	adopted	open	source
project.

Kafka	can	be	viewed	as	a	message	broker	akin	to	something	like	RabbitMQ	or	ActiveMQ,
but	as	mentioned	earlier,	it	writes	all	messages	to	disk	and	scales	out	across	multiple	hosts
as	a	core	part	of	its	design.	Kafka	uses	the	concept	of	a	publish/subscribe	model	through
named	topics	to	which	producers	write	messages	and	from	which	consumers	read
messages.	These	work	much	like	topics	in	any	other	messaging	system.

Because	Kafka	writes	all	messages	to	disk,	it	might	not	have	the	same	ultra-low	latency
message	throughput	as	other	messaging	systems,	which	focus	on	getting	the	message
processed	as	fast	as	possible	and	don’t	aim	to	store	the	message	long	term.	Kafka	can,
however,	scale	exceptionally	well	and	its	ability	to	replay	a	message	stream	can	be
extremely	useful.	For	example,	if	a	consuming	client	fails,	then	it	can	re-read	messages
from	a	known	good	point	in	time,	or	if	a	downstream	algorithm	changes,	then	traffic	can
be	replayed	to	utilize	the	new	functionality.

When	scaling	across	hosts,	Kafka	partitions	topics	and	supports	partition	replication	for
fault	tolerance.	Each	Kafka	message	has	a	key	associated	with	the	message	and	this	is
used	to	decide	to	which	partition	a	given	message	is	sent.	This	allows	semantically	useful
partitioning,	for	example,	if	the	key	is	a	user	ID	in	the	system,	then	all	messages	for	a
given	user	will	be	sent	to	the	same	partition.	Kafka	guarantees	ordered	delivery	within
each	partition	so	that	any	client	reading	a	partition	can	know	that	they	are	receiving	all
messages	for	each	key	in	that	partition	in	the	order	in	which	they	are	written	by	the
producer.

Samza	periodically	writes	out	checkpoints	of	the	position	upto	which	it	has	read	in	all	the
streams	it	is	consuming.	These	checkpoint	messages	are	themselves	written	to	a	Kafka
topic.	Thus,	when	a	Samza	job	starts	up,	each	task	can	reread	its	checkpoint	stream	to
know	from	which	position	in	the	stream	to	start	processing	messages.	This	means	that	in
effect	Kafka	also	acts	as	a	buffer;	if	a	Samza	job	crashes	or	is	taken	down	for	upgrade,	no
messages	will	be	lost.	Instead,	the	job	will	just	restart	from	the	last	checkpointed	position
when	it	restarts.	This	buffer	functionality	is	also	important,	as	it	makes	it	easier	for
multiple	Samza	jobs	to	run	as	part	of	a	complex	workflow.	When	Kafka	topics	are	the
points	of	coordination	between	the	jobs,	one	job	might	consume	a	topic	being	written	to
by	another;	in	such	cases,	Kafka	can	help	smooth	out	issues	caused	due	to	any	given	job
running	slower	than	others.	Traditionally,	the	back	pressure	caused	by	a	slow	running	job
can	be	a	real	issue	in	a	system	comprised	of	multiple	job	stages,	but	Kafka	as	the	resilient
buffer	allows	each	job	to	read	and	write	at	its	own	rate.	Note	that	this	is	analogous	to	how
multiple	coordinating	MapReduce	jobs	will	use	HDFS	for	similar	purposes.

Kafka	provides	at-least	once	message	delivery	semantics,	that	is	to	say	that	any	message

http://kafka.apache.org


written	to	Kafka	will	be	guaranteed	to	be	available	to	a	client	of	the	particular	partition.
Messages	might	be	processed	between	checkpoints	however;	it	is	possible	for	duplicate
messages	to	be	received	by	the	client.	There	are	application-specific	mechanisms	to
mitigate	this,	and	both	Kafka	and	Samza	have	exactly-once	semantics	on	their	roadmaps,
but	for	now	it	is	something	you	should	take	into	consideration	when	designing	jobs.

We	won’t	explain	Kafka	further	beyond	what	we	need	to	demonstrate	Samza.	If	you	are
interested,	check	out	its	website	and	wiki;	there	is	a	lot	of	good	information,	including
some	excellent	papers	and	presentations.



YARN	integration
As	mentioned	earlier,	just	as	Samza	utilizes	Kafka	for	its	streaming	layer	implementation,
it	uses	YARN	for	the	execution	layer.	Just	like	any	YARN	application	described	in
Chapter	3,	Processing	–	MapReduce	and	Beyond,	Samza	provides	an	implementation	of
both	an	ApplicationMaster,	which	controls	the	life	cycle	of	the	overall	job,	plus
implementations	of	Samza-specific	functionality	(called	tasks)	that	are	executed	in	each
container.	Just	as	Kafka	partitions	its	topics,	tasks	are	the	mechanism	by	which	Samza
partitions	its	processing.	Each	Kafka	partition	will	be	read	by	a	single	Samza	task.	If	a
Samza	job	consumes	multiple	streams,	then	a	given	task	will	be	the	only	consumer	within
the	job	for	every	stream	partition	assigned	to	it.

The	Samza	framework	is	told	by	each	job	configuration	about	the	Kafka	streams	that	are
of	interest	to	the	job,	and	Samza	continuously	polls	these	streams	to	determine	if	any	new
messages	have	arrived.	When	a	new	message	is	available,	the	Samza	task	invokes	a	user-
defined	callback	to	process	the	message,	a	model	that	shouldn’t	look	too	alien	to
MapReduce	developers.	This	method	is	defined	in	an	interface	called	StreamTask	and	has
the	following	signature:

public	void	process(IncomingMessageEnvelope	envelope,

	MessageCollector	collector,	

	TaskCoordinator	coordinator)

This	is	the	core	of	each	Samza	task	and	defines	the	functionality	to	be	applied	to	received
messages.	The	received	message	that	is	to	be	processed	is	wrapped	in	the
IncomingMessageEnvelope;	output	messages	can	be	written	to	the	MessageCollector,
and	task	management	(such	as	Shutdown)	can	be	performed	via	the	TaskCoordinator.

As	mentioned,	Samza	creates	one	task	instance	for	each	partition	in	the	underlying	Kafka
topic.	Each	YARN	container	will	manage	one	or	more	of	these	tasks.	The	overall	model
then	is	of	the	Samza	Application	Master	coordinating	multiple	containers,	each	of	which
is	responsible	for	one	or	more	StreamTask	instances.



An	independent	model
Though	we	will	talk	exclusively	of	Kafka	and	YARN	as	the	providers	of	Samza’s
streaming	and	execution	layers	in	this	chapter,	it	is	important	to	remember	that	the	core
Samza	system	uses	well-defined	interfaces	for	both	the	stream	and	execution	systems.
There	are	implementations	of	multiple	stream	sources	(we’ll	see	one	in	the	next	section)
and	alongside	the	YARN	support,	Samza	ships	with	a	LocalJobRunner	class.	This
alternative	method	of	running	tasks	can	execute	StreamTask	instances	in-process	on	the
JVM	instead	of	requiring	a	full	YARN	cluster,	which	can	sometimes	be	a	useful	testing
and	debugging	tool.	There	is	also	a	discussion	of	Samza	implementations	on	top	of	other
cluster	manager	or	virtualization	frameworks.



Hello	Samza!
Since	not	everyone	already	has	ZooKeeper,	Kafka,	and	YARN	clusters	ready	to	be	used,
the	Samza	team	has	created	a	wonderful	way	to	get	started	with	the	product.	Instead	of
just	having	a	Hello	world!	program,	there	is	a	repository	called	Hello	Samza,	which	is
available	by	cloning	the	repository	at	git://git.apache.org/samza-hello-samza.git.

This	will	download	and	install	dedicated	instances	of	ZooKeeper,	Kafka,	and	YARN	(the
3	major	prerequisites	for	Samza),	creating	a	full	stack	upon	which	you	can	submit	Samza
jobs.

There	are	also	a	number	of	example	Samza	jobs	that	process	data	from	Wikipedia	edit
notifications.	Take	a	look	at	the	page	at	http://samza.apache.org/startup/hello-samza/0.8/
and	follow	the	instructions	given	there.	(At	the	time	of	writing,	Samza	is	still	a	relatively
young	project	and	we’d	rather	not	include	direct	information	about	the	examples,	which
might	be	subject	to	change).

For	the	remainder	of	the	Samza	examples	in	this	chapter,	we’ll	assume	you	are	either
using	the	Hello	Samza	package	to	provide	the	necessary	components
(ZooKeeper/Kafka/YARN)	or	you	have	integrated	with	other	instances	of	each.

This	example	has	three	different	Samza	jobs	that	build	upon	each	other.	The	first	reads	the
Wikipedia	edits,	the	second	parses	these	records,	and	the	third	produces	statistics	based	on
the	processed	records.	We’ll	build	our	own	multistream	workflow	shortly.

One	interesting	point	is	the	WikipediaFeed	example	here;	it	uses	Wikipedia	as	its	message
source	instead	of	Kafka.	Specifically,	it	provides	another	implementation	of	the	Samza
SystemConsumer	interface	to	allow	Samza	to	read	messages	from	an	external	system.	As
mentioned	earlier,	Samza	is	not	tied	to	Kafka	and,	as	this	example	shows,	building	a	new
stream	implementation	does	not	have	to	be	against	a	generic	infrastructure	component;	it
can	be	quite	job-specific,	as	the	work	required	is	not	huge.

Tip
Note	that	the	default	configuration	for	both	ZooKeeper	and	Kafka	will	write	system	data
to	directories	under	/tmp,	which	will	be	what	you	have	set	if	you	use	Hello	Samza.	Be
careful	if	you	are	using	a	Linux	distribution	that	purges	the	contents	of	this	directory	on	a
reboot.	If	you	plan	to	carry	out	any	significant	testing,	then	it’s	best	to	reconfigure	these
components	to	use	less	ephemeral	locations.	Change	the	relevant	config	files	for	each
service;	they	are	located	in	the	service	directory	under	the	hello-samza/deploy	directory.

http://git://git.apache.org/samza-hello-samza.git
http://samza.apache.org/startup/hello-samza/0.8/


Building	a	tweet	parsing	job
Let’s	build	our	own	simple	job	implementation	to	show	the	full	code	required.	We’ll	use
parsing	of	the	Twitter	stream	as	the	examples	in	this	chapter	and	will	later	set	up	a	pipe
from	our	client	consuming	messages	from	the	Twitter	API	into	a	Kafka	topic.	So,	we	need
a	Samza	task	that	will	read	the	stream	of	JSON	messages,	extract	the	actual	tweet	text,	and
write	these	to	a	topic	of	tweets.

Here	is	the	main	code	from	TwitterParseStreamTask.java,	available	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterParseStreamTask.java

package	com.learninghadoop2.samza.tasks;

public	class	TwitterParseStreamTask	implements	StreamTask	{

				@Override

				public	void	process(IncomingMessageEnvelope	envelope,	MessageCollector	

collector,	TaskCoordinator	coordinator)	{

								String	msg	=	((String)	envelope.getMessage());

								try	{

												JSONParser	parser		=	new	JSONParser();

												Object					obj					=	parser.parse(msg);

												JSONObject	jsonObj	=	(JSONObject)	obj;

												String					text				=	(String)	jsonObj.get("text");

												collector.send(new	OutgoingMessageEnvelope(new	

SystemStream("kafka",	"tweets-parsed"),	text));

								}	catch	(ParseException	pe)	{}

				}

		}

}

The	code	is	largely	self-explanatory,	but	there	are	a	few	points	of	interest.	We	use	JSON
Simple	(http://code.google.com/p/json-simple/)	for	our	relatively	straightforward	JSON
parsing	requirements;	we’ll	also	use	it	later	in	this	book.

The	IncomingMessageEnvelope	and	its	corresponding	OutputMessageEnvelope	are	the
main	structures	concerned	with	the	actual	message	data.	Along	with	the	message	payload,
the	envelope	will	also	have	data	concerning	the	system,	topic	name,	and	(optionally)
partition	number	in	addition	to	other	metadata.	For	our	purposes,	we	just	extract	the
message	body	from	the	incoming	message	and	send	the	tweet	text	we	extract	from	it	via	a
new	OutgoingMessageEnvelope	to	a	topic	called	tweets-parsed	within	a	system	called
kafka.	Note	the	lower	case	name—we’ll	explain	this	in	a	moment.

The	type	of	message	in	the	IncomingMessageEnvelope	is	java.lang.Object.	Samza	does
not	currently	enforce	a	data	model	and	hence	does	not	have	strongly-typed	message
bodies.	Therefore,	when	extracting	the	message	contents,	an	explicit	cast	is	usually
required.	Since	each	task	needs	to	know	the	expected	message	format	of	the	streams	it
processes,	this	is	not	the	oddity	that	it	may	appear	to	be.

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterParseStreamTask.java
http://code.google.com/p/json-simple/


The	configuration	file
There	was	nothing	in	the	previous	code	that	said	where	the	messages	came	from;	the
framework	just	presents	them	to	the	StreamTask	implementation,	but	obviously	Samza
needs	to	know	from	where	to	fetch	messages.	There	is	a	configuration	file	for	each	job
that	defines	this	and	more.	The	following	can	be	found	as	twitter-parse.properties	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/resources/twitter-parser.properties:

#	Job

job.factory.class=org.apache.samza.job.yarn.YarnJobFactory

job.name=twitter-parser

#	YARN

yarn.package.path=file:///home/gturkington/samza/build/distributions/learni

nghadoop2-0.1.tar.gz

#	Task

task.class=com.learninghadoop2.samza.tasks.TwitterParseStreamTask

task.inputs=kafka.tweets

task.checkpoint.factory=org.apache.samza.checkpoint.kafka.KafkaCheckpointMa

nagerFactory

task.checkpoint.system=kafka

#	Normally,	this	would	be	3,	but	we	have	only	one	broker.

task.checkpoint.replication.factor=1

#	Serializers

serializers.registry.string.class=org.apache.samza.serializers.StringSerdeF

actory

#	Systems

systems.kafka.samza.factory=org.apache.samza.system.kafka.KafkaSystemFactor

y

systems.kafka.streams.tweets.samza.msg.serde=string

systems.kafka.streams.tweets-parsed.samza.msg.serde=string

systems.kafka.consumer.zookeeper.connect=localhost:2181/

systems.kafka.consumer.auto.offset.reset=largest

systems.kafka.producer.metadata.broker.list=localhost:9092

systems.kafka.producer.producer.type=sync

systems.kafka.producer.batch.num.messages=1

This	may	look	like	a	lot,	but	for	now	we’ll	just	consider	the	high-level	structure	and	some
key	settings.	The	job	section	sets	YARN	as	the	execution	framework	(as	opposed	to	the
local	job	runner	class)	and	gives	the	job	a	name.	If	we	were	to	run	multiple	copies	of	this
same	job,	we	would	also	give	each	copy	a	unique	ID.	The	task	section	specifies	the
implementation	class	of	our	task	and	also	the	name	of	the	streams	for	which	it	should
receive	messages.	Serializers	tell	Samza	how	to	read	and	write	messages	to	and	from	the
stream	and	the	system	section	defines	systems	by	name	and	associates	implementation
classes	with	them.

In	our	case,	we	define	only	one	system	called	kafka	and	we	refer	to	this	system	when

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/resources/twitter-parser.properties


sending	our	message	in	the	preceding	task.	Note	that	this	name	is	arbitrary	and	we	could
call	it	whatever	we	want.	Obviously,	for	clarity	it	makes	sense	to	call	the	Kafka	system	by
the	same	name	but	this	is	only	a	convention.	In	particular,	sometimes	you	will	need	to	give
different	names	when	dealing	with	multiple	systems	that	are	similar	to	each	other,	or
sometimes	even	when	treating	the	same	system	differently	in	different	parts	of	a
configuration	file.

In	this	section,	we	will	also	specify	the	SerDe	to	be	associated	with	the	streams	used	by
the	task.	Recall	that	Kafka	messages	have	a	body	and	an	optional	key	that	is	used	to
determine	to	which	partition	the	message	is	sent.	Samza	needs	to	know	how	to	treat	the
contents	of	the	keys	and	messages	for	these	streams.	Samza	has	support	to	treat	these	as
raw	bytes	or	specific	types	such	as	string,	integer,	and	JSON,	as	mentioned	earlier.

The	rest	of	the	configuration	will	be	mostly	unchanged	from	job	to	job,	as	it	includes
things	such	as	the	location	of	the	ZooKeeper	ensemble	and	Kafka	clusters,	and	specifies
how	streams	are	to	be	checkpointed.	Samza	allows	a	wide	variety	of	customizations	and
the	full	configuration	options	are	detailed	at
http://samza.apache.org/learn/documentation/0.8/jobs/configuration-table.html.

http://samza.apache.org/learn/documentation/0.8/jobs/configuration-table.html


Getting	Twitter	data	into	Kafka
Before	we	run	the	job,	we	do	need	to	get	some	tweets	into	Kafka.	Let’s	create	a	new
Kafka	topic	called	tweets	to	which	we’ll	write	the	tweets.

To	perform	this	and	other	Kafka-related	operations,	we’ll	use	command-line	tools	located
within	the	bin	directory	of	the	Kafka	distribution.	If	you	are	running	a	job	from	within	the
stack	created	as	part	of	the	Hello	Samza	application;	this	will	be	deploy/kafka/bin.

kafka-topics.sh	is	a	general-purpose	tool	that	can	be	used	to	create,	update,	and	describe
topics.	Most	of	its	usages	require	arguments	to	specify	the	location	of	the	local	ZooKeeper
cluster,	where	Kafka	brokers	store	their	details,	and	the	name	of	the	topic	to	be	operated
upon.	To	create	a	new	topic,	run	the	following	command:

$	kafka-topics.sh		--zookeeper	localhost:2181	--create	–topic	tweets	--

partitions	1	--replication-factor	1

This	creates	a	topic	called	tweets	and	explicitly	sets	its	number	of	partitions	and
replication	factor	to	1.	This	is	suitable	if	you	are	running	Kafka	within	a	local	test	VM,	but
clearly	production	deployments	will	have	more	partitions	to	scale	out	the	load	across
multiple	brokers	and	a	replication	factor	of	at	least	2	to	provide	fault	tolerance.

Use	the	list	option	of	the	kafka-topics.sh	tool	to	simply	show	the	topics	in	the	system,
or	use	describe	to	get	more	detailed	information	on	specific	topics:

$	kafka-topics.sh		--zookeeper	localhost:2181	--describe	--topic	tweets

Topic:tweets				PartitionCount:1				ReplicationFactor:1				Configs:

				Topic:	tweets		Partition:	0				Leader:	0				Replicas:	0				Isr:	0

The	multiple	0s	are	possibly	confusing	as	these	are	labels	and	not	counts.	Each	broker	in
the	system	has	an	ID	that	usually	starts	from	0,	as	do	the	partitions	within	each	topic.	The
preceding	output	is	telling	us	that	the	topic	called	tweets	has	a	single	partition	with	ID	0,
the	broker	acting	as	the	leader	for	that	partition	is	broker	0,	and	the	set	of	in-sync	replicas
(ISR)	for	this	partition	is	again	only	broker	0.	This	last	value	is	particularly	important
when	dealing	with	replication.

We’ll	use	our	Python	utility	from	previous	chapters	to	pull	JSON	tweets	from	the	Twitter
feed,	and	then	use	a	Kafka	CLI	message	producer	to	write	the	messages	to	a	Kafka	topic.
This	isn’t	a	terribly	efficient	way	of	doing	things,	but	it	is	suitable	for	illustration
purposes.	Assuming	our	Python	script	is	in	our	home	directory,	run	the	following
command	from	within	the	Kafka	bin	directory:

$	python	~/stream.py	–j	|	./kafka-console-producer.sh		--broker-list	

localhost:9092	--topic	tweets

This	will	run	indefinitely	so	be	careful	not	to	leave	it	running	overnight	on	a	test	VM	with
small	disk	space,	not	that	the	authors	have	ever	done	such	a	thing.



Running	a	Samza	job
To	run	a	Samza	job,	we	need	our	code	to	be	packaged	along	with	the	Samza	components
required	to	execute	it	into	a	.tar.gz	archive	that	will	be	read	by	the	YARN	NodeManager.
This	is	the	file	referred	to	by	the	yarn.file.package	property	in	the	Samza	task
configuration	file.

When	using	the	single	node	Hello	Samza	we	can	just	use	an	absolute	path	on	the
filesystem,	as	seen	in	the	previous	configuration	example.	For	jobs	on	larger	YARN	grids,
the	easiest	way	is	to	put	the	package	onto	HDFS	and	refer	to	it	by	an	hdfs://	URI	or	on	a
web	server	(Samza	provides	a	mechanism	to	allow	YARN	to	read	the	file	via	HTTP).

Because	Samza	has	multiple	subcomponents	and	each	subcomponent	has	its	own
dependencies,	the	full	YARN	package	can	end	up	containing	a	lot	of	JAR	files	(over
100!).	In	addition,	you	need	to	include	your	custom	code	for	the	Samza	task	as	well	as
some	scripts	from	within	the	Samza	distribution.	It’s	not	something	to	be	done	by	hand.	In
the	sample	code	for	this	chapter,	found	at	https://github.com/learninghadoop2/book-
examples/tree/master/ch4,	we	have	set	up	a	sample	structure	to	hold	the	code	and	config
files	and	provided	some	automation	via	Gradle	to	build	the	necessary	task	archive	and
start	the	tasks.

When	in	the	root	of	the	Samza	example	code	directory	for	this	book,	perform	the
following	command	to	build	a	single	file	archive	containing	all	the	classes	of	this	chapter
compiled	together	and	bundled	with	all	the	other	required	files:

$	./gradlew	targz

This	Gradle	task	will	not	only	create	the	necessary	.tar.gz	archive	in	the
build/distributions	directory,	but	will	also	store	an	expanded	version	of	the	archive
under	build/samza-package.	This	will	be	useful,	as	we	will	use	Samza	scripts	stored	in
the	bin	directory	of	the	archive	to	actually	submit	the	task	to	YARN.

So	now,	let’s	run	our	job.	We	need	to	have	file	paths	for	two	things:	the	Samza	run-
job.sh	script	to	submit	a	job	to	YARN	and	the	configuration	file	for	our	job.	Since	our
created	job	package	has	all	the	compiled	tasks	bundled	together,	it	is	by	using	a	different
configuration	file	that	specifies	a	specific	task	implementation	class	in	the	task.class
property	that	we	tell	Samza	which	task	to	run.	To	actually	run	the	task,	we	can	run	the
following	command	from	within	the	exploded	project	archive	under	build/samza-
archives:

$	bin/run-job.sh		--config-

factory=org.apache.samza.config.factories.PropertiesConfigFactory	--config-

path=]config/twitter-parser.properties

For	convenience,	we	added	a	Gradle	task	to	run	this	job:

$	./gradlew	runTwitterParser

To	see	the	output	of	the	job,	we’ll	use	the	Kafka	CLI	client	to	consume	messages:

https://github.com/learninghadoop2/book-examples/tree/master/ch4


$	./kafka-console-consumer.sh	–zookeeper	localhost:2181	–topic	tweets-

parsed

You	should	see	a	continuous	stream	of	tweets	appearing	on	the	client.

Note
Note	that	we	did	not	explicitly	create	the	topic	called	tweets-parsed.	Kafka	can	allow
topics	to	be	created	dynamically	when	either	a	producer	or	consumer	tries	to	use	the	topic.
In	many	situations,	though	the	default	partitioning	and	replication	values	may	not	be
suitable,	and	explicit	topic	creation	will	be	required	to	ensure	these	critical	topic	attributes
are	correctly	defined.



Samza	and	HDFS
You	may	have	noticed	that	we	just	mentioned	HDFS	for	the	first	time	in	our	discussion	of
Samza.	Though	Samza	integrates	tightly	with	YARN,	it	has	no	direct	integration	with
HDFS.	At	a	logical	level,	Samza’s	stream-implementing	systems	(such	as	Kafka)	are
providing	the	storage	layer	that	is	usually	provided	by	HDFS	for	traditional	Hadoop
workloads.	In	the	terminology	of	Samza’s	architecture,	as	described	earlier,	YARN	is	the
execution	layer	in	both	models,	whereas	Samza	uses	a	streaming	layer	for	its	source	and
destination	data,	frameworks	such	as	MapReduce	use	HDFS.	This	is	a	good	example	of
how	YARN	enables	alternative	computational	models	that	not	only	process	data	very
differently	than	batch-oriented	MapReduce,	but	that	can	also	use	entirely	different	storage
systems	for	their	source	data.



Windowing	functions
It’s	frequently	useful	to	generate	some	data	based	on	the	messages	received	on	a	stream
over	a	certain	time	window.	An	example	of	this	may	be	to	record	the	top	n	attribute	values
measured	every	minute.	Samza	supports	this	through	the	WindowableTask	interface,	which
has	the	following	single	method	to	be	implemented:

		public	void	window(MessageCollector	collector,	TaskCoordinator	

coordinator);

This	should	look	similar	to	the	process	method	in	the	StreamTask	interface.	However,
because	the	method	is	called	on	a	time	schedule,	its	invocation	is	not	associated	with	a
received	message.	The	MessageCollector	and	TaskCoordinator	parameters	are	still
there,	however,	as	most	windowable	tasks	will	produce	output	messages	and	may	also
wish	to	perform	some	task	management	actions.

Let’s	take	our	previous	task	and	add	a	window	function	that	will	output	the	number	of
tweets	received	in	each	windowed	time	period.	This	is	the	main	class	implementation	of
TwitterStatisticsStreamTask.java	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterStatisticsStreamTask.java

public	class	TwitterStatisticsStreamTask	implements	StreamTask,	

WindowableTask	{

				private	int	tweets	=	0;

				@Override

				public	void	process(IncomingMessageEnvelope	envelope,	MessageCollector	

collector,	TaskCoordinator	coordinator)	{

								tweets++;

				}

				@Override

				public	void	window(MessageCollector	collector,	TaskCoordinator	

coordinator)	{

								collector.send(new	OutgoingMessageEnvelope(new	

SystemStream("kafka",	"tweet-stats"),	""	+	tweets));

								//	Reset	counts	after	windowing.

								tweets	=	0;

				}

}

The	TwitterStatisticsStreamTask	class	has	a	private	member	variable	called	tweets
that	is	initialized	to	0	and	is	incremented	in	every	call	to	the	process	method.	We
therefore	know	that	this	variable	will	be	incremented	for	each	message	passed	to	the	task
from	the	underlying	stream	implementation.	Each	Samza	container	has	a	single	thread
running	in	a	loop	that	executes	the	process	and	window	methods	on	all	the	tasks	within	the
container.	This	means	that	we	do	not	need	to	guard	instance	variables	against	concurrent
modifications;	only	one	method	on	each	task	within	a	container	will	be	executing
simultaneously.

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterStatisticsStreamTask.java


In	our	window	method,	we	send	a	message	to	a	new	topic	we	call	tweet-stats	and	then
reset	the	tweets	variable.	This	is	pretty	straightforward	and	the	only	missing	piece	is	how
Samza	will	know	when	to	call	the	window	method.	We	specify	this	in	the	configuration
file:

task.window.ms=5000

This	tells	Samza	to	call	the	window	method	on	each	task	instance	every	5	seconds.	To	run
the	window	task,	there	is	a	Gradle	task:

$	./gradlew	runTwitterStatistics

If	we	use	kafka-console-consumer.sh	to	listen	on	the	tweet-stats	stream	now,	we	will
see	the	following	output:

Number	of	tweets:	5012

Number	of	tweets:	5398

Note
Note	that	the	term	window	in	this	context	refers	to	Samza	conceptually	slicing	the	stream
of	messages	into	time	ranges	and	providing	a	mechanism	to	perform	processing	at	each
range	boundary.	Samza	does	not	directly	provide	an	implementation	of	the	other	use	of	the
term	with	regards	to	sliding	windows,	where	a	series	of	values	is	held	and	processed	over
time.	However,	the	windowable	task	interface	does	provide	the	plumbing	to	implement
such	sliding	windows.



Multijob	workflows
As	we	saw	with	the	Hello	Samza	examples,	some	of	the	real	power	of	Samza	comes	from
composition	of	multiple	jobs	and	we’ll	use	a	text	cleanup	job	to	start	demonstrating	this
capability.

In	the	following	section,	we’ll	perform	tweet	sentiment	analysis	by	comparing	tweets	with
a	set	of	English	positive	and	negative	words.	Simply	applying	this	to	the	raw	Twitter	feed
will	have	very	patchy	results,	however,	given	how	richly	multilingual	the	Twitter	stream
is.	We	also	need	to	consider	things	such	as	text	cleanup,	capitalization,	frequent
contractions,	and	so	on.	As	anyone	who	has	worked	with	any	non-trivial	dataset	knows,
the	act	of	making	the	data	fit	for	processing	is	usually	where	a	large	amount	of	effort
(often	the	majority!)	goes.

So	before	we	try	and	detect	tweet	sentiments,	let’s	do	some	simple	text	cleanup;	in
particular,	we’ll	select	only	English	language	tweets	and	we	will	force	their	text	to	be
lower	case	before	sending	them	to	a	new	output	stream.

Language	detection	is	a	difficult	problem	and	for	this	we’ll	use	a	feature	of	the	Apache
Tika	library	(http://tika.apache.org).	Tika	provides	a	wide	array	of	functionality	to	extract
text	from	various	sources	and	then	to	extract	further	information	from	that	text.	If	using
our	Gradle	scripts,	the	Tika	dependency	is	already	specified	and	will	automatically	be
included	in	the	generated	job	package.	If	building	through	another	mechanism,	you	will
need	to	download	the	Tika	JAR	file	from	the	home	page	and	add	it	to	your	YARN	job
package.	The	following	code	can	be	found	as	TextCleanupStreamTask.java	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TextCleanupStreamTask.java

public	class	TextCleanupStreamTask	implements	StreamTask	{

				@Override

				public	void	process(IncomingMessageEnvelope	envelope,	MessageCollector	

collector,	TaskCoordinator	coordinator)	{

								String	rawtext	=	((String)	envelope.getMessage());

								if	("en".equals(detectLanguage(rawtext)))	{

												collector.send(new	OutgoingMessageEnvelope(new	

SystemStream("kafka",	"english-tweets"),

																				rawtext.toLowerCase()));

								}

				}

				private	String	detectLanguage(String	text)	{

								LanguageIdentifier	li	=	new	LanguageIdentifier(text);

								return	li.getLanguage();

				}

}

This	task	is	quite	straightforward	thanks	to	the	heavy	lifting	performed	by	Tika.	We	create
a	utility	method	that	wraps	the	creation	and	use	of	a	Tika,	LanguageDetector,	and	then	we

http://tika.apache.org
https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TextCleanupStreamTask.java


call	this	method	on	the	message	body	of	each	incoming	message	in	the	process	method.
We	only	write	to	the	output	stream	if	the	result	of	applying	this	utility	method	is	"en",	that
is,	the	two-letter	code	for	English.

The	configuration	file	for	this	task	is	similar	to	that	of	our	previous	task,	with	the	specific
values	for	the	task	name	and	implementing	class.	It	is	in	the	repository	as
textcleanup.properties	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/resources/textcleanup.properties.	We	also	need	to
specify	the	input	stream:

task.inputs=kafka.tweets-parsed

This	is	important	because	we	need	this	task	to	parse	the	tweet	text	that	was	extracted	in	the
earlier	task	and	avoid	duplicating	the	JSON	parsing	logic	that	is	best	encapsulated	in	one
place.	We	can	run	this	task	with	the	following	command:

$	./gradlew	runTextCleanup

Now,	we	can	run	all	three	tasks	together;	TwitterParseStreamTask	and
TwitterStatisticsStreamTask	will	consume	the	raw	tweet	stream,	while
TextCleanupStreamTask	will	consume	the	output	from	TwitterParseStreamTask.

Data	processing	on	streams

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/resources/textcleanup.properties


Tweet	sentiment	analysis
We’ll	now	implement	a	task	to	perform	tweet	sentiment	analysis	similar	to	what	we	did
using	MapReduce	in	the	previous	chapter.	This	will	also	show	us	a	useful	mechanism
offered	by	Samza:	bootstrap	streams.

Bootstrap	streams
Generally	speaking,	most	stream-processing	jobs	(in	Samza	or	another	framework)	will
start	processing	messages	that	arrive	after	they	start	up	and	generally	ignore	historical
messages.	Because	of	its	concept	of	replayable	streams,	Samza	doesn’t	have	this
limitation.

In	our	sentiment	analysis	job,	we	had	two	sets	of	reference	terms:	positive	and	negative
words.	Though	we’ve	not	shown	it	so	far,	Samza	can	consume	messages	from	multiple
streams	and	the	underlying	machinery	will	poll	all	named	streams	and	provide	their
messages,	one	at	a	time,	to	the	process	method.	We	can	therefore	create	streams	for	the
positive	and	negative	words	and	push	the	datasets	onto	those	streams.	At	first	glance,	we
could	plan	to	rewind	these	two	streams	to	the	earliest	point	and	read	tweets	as	they	arrive.
The	problem	is	that	Samza	won’t	guarantee	ordering	of	messages	from	multiple	streams,
and	even	though	there	is	a	mechanism	to	give	streams	higher	priority,	we	can’t	assume
that	all	negative	and	positive	words	will	be	processed	before	the	first	tweet	arrives.

For	such	types	of	scenarios,	Samza	has	the	concept	of	bootstrap	streams.	If	a	task	has	any
bootstrap	streams	defined,	then	it	will	read	these	streams	from	the	earliest	offset	until	they
are	fully	processed	(technically,	it	will	read	the	streams	till	they	get	caught	up,	so	that	any
new	words	sent	to	either	stream	will	be	treated	without	priority	and	will	arrive	interleaved
between	tweets).

We’ll	now	create	a	new	job	called	TweetSentimentStreamTask	that	reads	two	bootstrap
streams,	collects	their	contents	into	HashMaps,	gathers	running	counts	for	sentiment
trends,	and	uses	a	window	function	to	output	this	data	at	intervals.	This	code	can	be	found
at	https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterSentimentStreamTask.java

public	class	TwitterSentimentStreamTask	implements	StreamTask,	

WindowableTask	{

				private	Set<String>										positiveWords		=	new	HashSet<String>();

				private	Set<String>										negativeWords		=	new	HashSet<String>();

				private	int																		tweets									=	0;

				private	int																		positiveTweets	=	0;

				private	int																		negativeTweets	=	0;

				private	int																		maxPositive				=	0;

				private	int																		maxNegative				=	0;

				@Override

				public	void	process(IncomingMessageEnvelope	envelope,	MessageCollector	

collector,	TaskCoordinator	coordinator)	{

								if	("positive-

words".equals(envelope.getSystemStreamPartition().getStream()))	{

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterSentimentStreamTask.java


												positiveWords.add(((String)	envelope.getMessage()));

								}	else	if	("negative-

words".equals(envelope.getSystemStreamPartition().getStream()))	{

												negativeWords.add(((String)	envelope.getMessage()));

								}	else	if	("english-

tweets".equals(envelope.getSystemStreamPartition().getStream()))	{

												tweets++;

												int				positive	=	0;

												int				negative	=	0;

												String	words				=	((String)	envelope.getMessage());

												for	(String	word	:	words.split("	"))	{

																if	(positiveWords.contains(word))	{

																				positive++;

																}	else	if	(negativeWords.contains(word))	{

																				negative++;

																}

												}

												if	(positive	>	negative)	{

																positiveTweets++;

												}

												if	(negative	>	positive)	{

																negativeTweets++;

												}

												if	(positive	>	maxPositive)	{

																maxPositive	=	positive;

												}

												if	(negative	>	maxNegative)	{

																maxNegative	=	negative;

												}

								}

				}

				@Override

				public	void	window(MessageCollector	collector,	TaskCoordinator	

coordinator)	{

								String	msg	=	String.format("Tweets:	%d	Positive:	%d	Negative:	%d	

MaxPositive:	%d	MinPositive:	%d",	tweets,	positiveTweets,	negativeTweets,	

maxPositive,	maxNegative);

								collector.send(new	OutgoingMessageEnvelope(new	

SystemStream("kafka",	"tweet-sentiment-stats"),	msg));

								//	Reset	counts	after	windowing.

								tweets									=	0;

								positiveTweets	=	0;

								negativeTweets	=	0;

								maxPositive				=	0;

								maxNegative				=	0;

				}



}

In	this	task,	we	add	a	number	of	private	member	variables	that	we	will	use	to	keep	a
running	count	of	the	number	of	overall	tweets,	how	many	were	positive	and	negative,	and
the	maximum	positive	and	negative	counts	seen	in	a	single	tweet.

This	task	consumes	from	three	Kafka	topics.	Even	though	we	will	configure	two	to	be
used	as	bootstrap	streams,	they	are	all	still	exactly	the	same	type	of	Kafka	topic	from
which	messages	are	received;	the	only	difference	with	bootstrap	streams	is	that	we	tell
Samza	to	use	Kafka’s	rewinding	capabilities	to	fully	re-read	each	message	in	the	stream.
For	the	other	stream	of	tweets,	we	just	start	reading	new	messages	as	they	arrive.

As	hinted	earlier,	if	a	task	subscribes	to	multiple	streams,	the	same	process	method	will
receive	messages	from	each	stream.	That	is	why	we	use
envelope.getSystemStreamPartition().getStream()	to	extract	the	stream	name	for
each	given	message	and	then	act	accordingly.	If	the	message	is	from	either	of	the
bootstrapped	streams,	we	add	its	contents	to	the	appropriate	hashmap.	We	break	a	tweet
message	into	its	constituent	words,	test	each	word	for	positive	or	negative	sentiment,	and
then	update	counts	accordingly.	As	you	can	see,	this	task	doesn’t	output	the	received
tweets	to	another	topic.

Since	we	don’t	perform	any	direct	processing,	there	is	no	point	in	doing	so;	any	other	task
that	wishes	to	consume	messages	can	just	subscribe	directly	to	the	incoming	tweets
stream.	However,	a	possible	modification	could	be	to	write	positive	and	negative
sentiment	tweets	to	dedicated	streams	for	each.

The	window	method	outputs	a	series	of	counts	and	then	resets	the	variables	(as	it	did
before).	Note	that	Samza	does	have	support	to	directly	expose	metrics	through	JMX,
which	could	possibly	be	a	better	fit	for	such	simple	windowing	examples.	However,	we
won’t	have	space	to	cover	that	aspect	of	the	project	in	this	book.

To	run	this	job,	we	need	to	modify	the	configuration	file	by	setting	the	job	and	task	names
as	usual,	but	we	also	need	to	specify	multiple	input	streams	now:

task.inputs=kafka.english-tweets,kafka.positive-words,kafka.negative-words

Then,	we	need	to	specify	that	two	of	our	streams	are	bootstrap	streams	that	should	be	read
from	the	earliest	offset.	Specifically,	we	set	three	properties	for	the	streams.	We	say	they
are	to	be	bootstrapped,	that	is,	fully	read	before	other	streams,	and	this	is	achieved	by
specifying	that	the	offset	on	each	stream	needs	to	be	reset	to	the	oldest	(first)	position:

systems.kafka.streams.positive-words.samza.bootstrap=true

systems.kafka.streams.positive-words.samza.reset.offset=true

systems.kafka.streams.positive-words.samza.offset.default=oldest

systems.kafka.streams.negative-words.samza.bootstrap=true

systems.kafka.streams.negative-words.samza.reset.offset=true

systems.kafka.streams.negative-words.samza.offset.default=oldest

We	can	run	this	job	with	the	following	command:



$	./gradlew	runTwitterSentiment

After	starting	the	job,	look	at	the	output	of	the	messages	on	the	tweet-sentiment-stats
topic.

The	sentiment	detection	job	will	bootstrap	the	positive	and	negative	word	streams	before
reading	any	of	our	newly	detected	lower-case	English	tweets.

With	the	sentiment	detection	job,	we	can	now	visualize	our	four	collaborating	jobs	as
shown	in	the	following	diagram:

Bootstrap	streams	and	collaborating	tasks

Tip
To	correctly	run	the	jobs,	it	may	seem	necessary	to	start	the	JSON	parser	job	followed	by
the	cleanup	job	before	finally	starting	the	sentiment	job,	but	this	is	not	the	case.	Any
unread	messages	remain	buffered	in	Kafka,	so	it	doesn’t	matter	in	which	order	the	jobs	of
a	multi-job	workflow	are	started.	Of	course,	the	sentiment	job	will	output	counts	of	0
tweets	until	it	starts	receiving	data,	but	nothing	will	break	if	a	stream	job	starts	before
those	it	depends	on.



Stateful	tasks
The	final	aspect	of	Samza	that	we	will	explore	is	how	it	allows	the	tasks	processing	stream
partitions	to	have	persistent	local	state.	In	the	previous	example,	we	used	private	variables
to	keep	a	track	of	running	totals,	but	sometimes	it	is	useful	for	a	task	to	have	richer	local
state.	An	example	could	be	the	act	of	performing	a	logical	join	on	two	streams,	where	it	is
useful	to	build	up	a	state	model	from	one	stream	and	compare	this	with	the	other.

Note
Note	that	Samza	can	utilize	its	concept	of	partitioned	streams	to	greatly	optimize	the	act	of
joining	streams.	If	each	stream	to	be	joined	uses	the	same	partition	key	(for	example,	a
user	ID),	then	each	task	consuming	these	streams	will	receive	all	messages	associated	with
each	ID	across	all	the	streams.

Samza	has	another	abstraction	similar	to	its	notion	of	the	framework	to	manage	its	jobs
and	that	which	implements	its	tasks.	It	defines	an	abstract	key-value	store	that	can	have
multiple	concrete	implementations.	Samza	uses	existing	open	source	projects	for	the	on-
disk	implementations	and	used	LevelDB	as	of	v0.7	and	added	RocksDB	as	of	v0.8.	There
is	also	an	in-memory	store	that	does	not	persist	the	key-value	data	but	that	may	be	useful
in	testing	or	potentially	very	specific	production	workloads.

Each	task	can	write	to	this	key-value	store	and	Samza	manages	its	persistence	to	the	local
implementation.	To	support	persistent	states,	the	store	is	also	modeled	as	a	stream	and	all
writes	to	the	store	are	also	pushed	into	a	stream.	If	a	task	fails,	then	on	restart,	it	can
recover	the	state	of	its	local	key-value	store	by	replaying	the	messages	in	the	backing
topic.	An	obvious	concern	here	will	be	the	number	of	messages	that	need	to	be	replayed;
however,	when	using	Kafka,	for	example,	it	compacts	messages	with	the	same	key	so	that
only	the	latest	update	remains	in	the	topic.

We’ll	modify	our	previous	tweet	sentiment	example	to	add	a	lifetime	count	of	the
maximum	positive	and	negative	sentiment	seen	in	any	tweet.	The	following	code	can	be
found	as	TwitterStatefulSentimentStateTask.java	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterStatefulSentimentStreamTask.java
Note	that	the	process	method	is	the	same	as	TwitterSentimentStateTask.java,	so	we
have	omitted	it	here	for	space	reasons:

public	class	TwitterStatefulSentimentStreamTask	implements	StreamTask,	

WindowableTask,	InitableTask	{

				private	Set<String>	positiveWords		=	new	HashSet<String>();

				private	Set<String>	negativeWords		=	new	HashSet<String>();

				private	int	tweets	=	0;

				private	int	positiveTweets	=	0;

				private	int	negativeTweets	=	0;

				private	int	maxPositive	=	0;

				private	int	maxNegative	=	0;

				private	KeyValueStore<String,	Integer>	store;

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/TwitterStatefulSentimentStreamTask.java


				@SuppressWarnings("unchecked")

				@Override

				public	void	init(Config	config,	TaskContext	context)	{

								this.store	=	(KeyValueStore<String,	Integer>)	

context.getStore("tweet-store");

				}

				@Override

				public	void	process(IncomingMessageEnvelope	envelope,	MessageCollector	

collector,	TaskCoordinator	coordinator)	{

...

				}

				@Override

				public	void	window(MessageCollector	collector,	TaskCoordinator	

coordinator)	{

								Integer	lifetimeMaxPositive	=	store.get("lifetimeMaxPositive");

								Integer	lifetimeMaxNegative	=	store.get("lifetimeMaxNegative");

								if	((lifetimeMaxPositive	==	null)	||	(maxPositive	>	

lifetimeMaxPositive))	{

												lifetimeMaxPositive	=	maxPositive;

												store.put("lifetimeMaxPositive",	lifetimeMaxPositive);

								}

								if	((lifetimeMaxNegative	==	null)	||	(maxNegative	>	

lifetimeMaxNegative))	{

												lifetimeMaxNegative	=	maxNegative;

												store.put("lifetimeMaxNegative",	lifetimeMaxNegative);

								}

								String	msg	=

												String.format(

																"Tweets:	%d	Positive:	%d	Negative:	%d	MaxPositive:	%d	

MaxNegative:	%d	LifetimeMaxPositive:	%d	LifetimeMaxNegative:	%d",

																tweets,	positiveTweets,	negativeTweets,	maxPositive,	

maxNegative,	lifetimeMaxPositive,

																lifetimeMaxNegative);

								collector.send(new	OutgoingMessageEnvelope(new	

SystemStream("kafka",	"tweet-stateful-sentiment-stats"),	msg));

								//	Reset	counts	after	windowing.

								tweets									=	0;

								positiveTweets	=	0;

								negativeTweets	=	0;

								maxPositive				=	0;

								maxNegative				=	0;

				}

}

This	class	implements	a	new	interface	called	InitableTask.	This	has	a	single	method
called	init	and	is	used	when	a	task	needs	to	configure	aspects	of	its	configuration	before
it	begins	execution.	We	use	the	init()	method	here	to	create	an	instance	of	the
KeyValueStore	class	and	store	it	in	a	private	member	variable.



KeyValueStore,	as	the	name	suggests,	provides	a	familiar	put/get	type	interface.	In	this
case,	we	specify	that	the	keys	are	of	the	type	String	and	the	values	are	Integers.	In	our
window	method,	we	retrieve	any	previously	stored	values	for	the	maximum	positive	and
negative	sentiment	and	if	the	count	in	the	current	window	is	higher,	update	the	store
accordingly.	Then,	we	just	output	the	results	of	the	window	method	as	before.

As	you	can	see,	the	user	does	not	need	to	deal	with	the	details	of	either	the	local	or	remote
persistence	of	the	KeyValueStore	instance;	this	is	all	handled	by	Samza.	The	efficiency	of
the	mechanism	also	makes	it	tractable	for	tasks	to	hold	sizeable	amount	of	local	state,
which	can	be	particularly	valuable	in	cases	such	as	long-running	aggregations	or	stream
joins.

The	configuration	file	for	the	job	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/resources/twitter-stateful-sentiment.properties.	It
needs	to	have	a	few	entries	added,	which	are	as	follows:

stores.tweet-

store.factory=org.apache.samza.storage.kv.KeyValueStorageEngineFactory

stores.tweet-store.changelog=kafka.twitter-stats-state

stores.tweet-store.key.serde=string

stores.tweet-store.msg.serde=integer

The	first	line	specifies	the	implementation	class	for	the	store,	the	second	line	specifies	the
Kafka	topic	to	be	used	for	persistent	state,	and	the	last	two	lines	specify	the	type	of	the
store	key	and	value.

To	run	this	job,	use	the	following	command:

$	./gradlew	runTwitterStatefulSentiment

For	convenience,	the	following	command	will	start	up	four	jobs:	the	JSON	parser,	the	text
cleanup,	the	statistics	job	and	the	stateful	sentiment	jobs:

$	./gradlew	runTasks

Samza	is	a	pure	stream-processing	system	that	provides	pluggable	implementations	of	its
storage	and	execution	layers.	The	most	commonly	used	plugins	are	YARN	and	Kafka,	and
these	demonstrate	how	Samza	can	integrate	tightly	with	Hadoop	YARN	while	using	a
completely	different	storage	layer.	Samza	is	still	a	relatively	new	project	and	the	current
features	are	only	a	subset	of	what	is	envisaged.	It	is	recommended	to	consult	its	webpage
to	get	the	latest	information	on	its	current	status.

https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/main/resources/twitter-stateful-sentiment.properties


Summary
This	chapter	focused	much	more	on	what	can	be	done	on	Hadoop	2,	and	in	particular
YARN,	than	the	details	of	Hadoop	internals.	This	is	almost	certainly	a	good	thing,	as	it
demonstrates	that	Hadoop	is	realizing	its	goal	of	becoming	a	much	more	flexible	and
generic	data	processing	platform	that	is	no	longer	tied	to	batch	processing.	In	particular,
we	highlighted	how	Samza	shows	that	the	processing	frameworks	that	can	be
implemented	on	YARN	can	innovate	and	enable	functionality	vastly	different	from	that
available	in	Hadoop	1.

In	particular,	we	saw	how	Samza	goes	to	the	opposite	end	of	the	latency	spectrum	from
batch	processing	and	enables	per-message	processing	of	individual	messages	as	they
arrive.

We	also	saw	how	Samza	provides	a	callback	mechanism	that	MapReduce	developers	will
be	familiar	with,	but	uses	it	for	a	very	different	processing	model.	We	also	discussed	the
ways	in	which	Samza	utilizes	YARN	as	its	main	execution	framework	and	how	it
implements	the	model	described	in	Chapter	3,	Processing	–	MapReduce	and	Beyond.

In	the	next	chapter,	we	will	switch	gears	and	explore	Apache	Spark.	Though	it	has	a	very
different	data	model	than	Samza,	we’ll	see	that	it	does	also	have	an	extension	that	supports
processing	of	real	time	data	streams,	including	the	option	of	Kafka	integration.	However,
both	projects	are	so	different	that	they	are	complimentary	more	than	in	competition.



Chapter	5.	Iterative	Computation	with
Spark
In	the	previous	chapter,	we	saw	how	Samza	can	enable	near	real-time	stream	data
processing	within	Hadoop.	This	is	quite	a	step	away	from	the	traditional	batch	processing
model	of	MapReduce,	but	still	keeps	with	the	model	of	providing	a	well-defined	interface
against	which	business	logic	tasks	can	be	implemented.	In	this	chapter	we	will	explore
Apache	Spark,	which	can	be	viewed	both	as	a	framework	on	which	applications	can	be
built	as	well	as	a	processing	framework	in	its	own	right.	Not	only	are	applications	being
built	on	Spark,	but	entire	components	within	the	Hadoop	ecosystem	are	also	being
reimplemented	to	use	Spark	as	their	underlying	processing	framework.	In	particular,	we
will	cover	the	following	topics:

What	Spark	is	and	how	its	core	system	can	run	on	YARN
The	data	model	provided	by	Spark	that	enables	hugely	scalable	and	highly	efficient
data	processing
The	breadth	of	additional	Spark	components	and	related	projects

It’s	important	to	note	upfront	that	although	Spark	has	its	own	mechanism	to	process
streaming	data,	this	is	but	one	part	of	what	Spark	has	to	offer.	It’s	best	to	think	of	it	as	a
much	broader	initiative.



Apache	Spark
Apache	Spark	(https://spark.apache.org/)	is	a	data	processing	framework	based	on	a
generalization	of	MapReduce.	It	was	originally	developed	by	the	AMPLab	at	UC
Berkeley	(https://amplab.cs.berkeley.edu/).	Like	Tez,	Spark	acts	as	an	execution	engine
that	models	data	transformations	as	DAGs	and	strives	to	eliminate	the	I/O	overhead	of
MapReduce	in	order	to	perform	iterative	computation	at	scale.	While	Tez’s	main	goal	was
to	provide	a	faster	execution	engine	for	MapReduce	on	Hadoop,	Spark	has	been	designed
both	as	a	standalone	framework	and	an	API	for	application	development.	The	system	is
designed	to	perform	general-purpose	in-memory	data	processing,	stream	workflows,	as
well	as	interactive	and	iterative	computation.

Spark	is	implemented	in	Scala,	which	is	a	statically	typed	programming	language	for	the
Java	VM	and	exposes	native	programming	interfaces	for	Java	and	Python	in	addition	to
Scala	itself.	Note	that	though	Java	code	can	call	the	Scala	interface	directly,	there	are	some
aspects	of	the	type	system	that	make	such	code	pretty	unwieldy,	and	hence	we	use	the
native	Java	API.

Scala	ships	with	an	interactive	shell	similar	to	that	of	Ruby	and	Python;	this	allows	users
to	run	Spark	interactively	from	the	interpreter	to	query	any	dataset.

The	Scala	interpreter	operates	by	compiling	a	class	for	each	line	typed	by	the	user,	loading
it	into	the	JVM,	and	invoking	a	function	on	it.	This	class	includes	a	singleton	object	that
contains	the	variables	or	functions	on	that	line	and	runs	the	line’s	code	in	an	initialize
method.	In	addition	to	its	rich	programming	interfaces,	Spark	is	becoming	established	as
an	execution	engine,	with	popular	tools	of	the	Hadoop	ecosystem	(such	as	Pig	and	Hive)
being	ported	to	the	framework.

https://spark.apache.org/
https://amplab.cs.berkeley.edu/


Cluster	computing	with	working	sets
Spark’s	architecture	is	centered	around	the	concept	of	Resilient	Distributed	Datasets
(RDDs),	which	is	a	read-only	collection	of	Scala	objects	partitioned	across	a	set	of
machines	that	can	persist	in	memory.	This	abstraction	was	proposed	in	a	2012	research
paper,	Resilient	Distributed	Datasets:	A	Fault-Tolerant	Abstraction	for	In-Memory	Cluster
Computing,	which	can	be	found	at
https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf.

A	Spark	application	consists	of	a	driver	program	that	executes	parallel	operations	on	a
cluster	of	workers	and	long-lived	processes	that	can	store	data	partitions	in	memory	by
dispatching	functions	that	run	as	parallel	tasks,	as	shown	in	the	following	diagram:

Spark	cluster	architecture

Processes	are	coordinated	via	a	SparkContext	instance.	SparkContext	connects	to	a
resource	manager	(such	as	YARN),	requests	executors	on	worker	nodes,	and	sends	tasks	to
be	executed.	Executors	are	responsible	for	running	tasks	and	managing	memory	locally.

Spark	allows	you	to	share	variables	between	tasks,	or	between	tasks	and	the	driver,	using
an	abstraction	known	as	shared	variables.	Spark	supports	two	types	of	shared	variables:
broadcast	variables,	which	can	be	used	to	cache	a	value	in	memory	on	all	nodes,	and
accumulators,	which	are	additive	variables	such	as	counters	and	sums.

Resilient	Distributed	Datasets	(RDDs)
An	RDD	is	stored	in	memory,	shared	across	machines	and	is	used	in	MapReduce-like
parallel	operations.	Fault	tolerance	is	achieved	through	the	notion	of	lineage:	if	a	partition
of	an	RDD	is	lost,	the	RDD	has	enough	information	about	how	it	was	derived	from	other
RDDs	to	be	able	to	rebuild	just	that	partition.	An	RDD	can	be	built	in	four	ways:

By	reading	data	from	a	file	stored	in	HDFS
By	dividing	–	parallelizing	–	a	Scala	collection	into	a	number	of	partitions	that	are
sent	to	workers

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf


By	transforming	an	existing	RDD	using	parallel	operators
By	changing	the	persistence	of	an	existing	RDD

Spark	shines	when	RDDs	can	fit	in	memory	and	can	be	cached	across	operations.	The	API
exposes	methods	to	persist	RDDs	and	allows	for	several	persistence	strategies	and	storage
levels,	allowing	for	spill	to	disk	as	well	as	space-efficient	binary	serialization.

Actions
Operations	are	invoked	by	passing	functions	to	Spark.	The	system	deals	with	variables
and	side	effects	according	to	the	functional	programming	paradigm.	Closures	can	refer	to
variables	in	the	scope	where	they	are	created.	Examples	of	actions	are	count	(returns	the
number	of	elements	in	the	dataset),	and	save	(outputs	the	dataset	to	storage).	Other
parallel	operations	on	RDDs	include	the	following:

map:	applies	a	function	to	each	element	of	the	dataset
filter:	selects	elements	from	a	dataset	based	on	user-provided	criteria
reduce:	combines	dataset	elements	using	an	associative	function
collect:	sends	all	elements	of	the	dataset	to	the	driver	program
foreach:	passes	each	element	through	a	user-provided	function
groupByKey:	groups	items	together	by	a	provided	key
sortByKey:	sorts	items	by	key



Deployment
Spark	can	run	both	in	local	mode,	similar	to	a	Hadoop	single-node	setup,	or	atop	a
resource	manager.	Currently	supported	resource	managers	include:

Spark	Standalone	Cluster	Mode
YARN
Apache	Mesos

Spark	on	YARN
An	ad-hoc-consolidated	JAR	needs	to	be	built	in	order	to	deploy	Spark	on	YARN.	Spark
launches	an	instance	of	the	standalone	deployed	cluster	within	the	ResourceManager.
Cloudera	and	MapR	both	ship	with	Spark	on	YARN	as	part	of	their	software	distribution.
At	the	time	of	writing,	Spark	is	available	for	Hortonworks’s	HDP	as	a	technology	preview
(http://hortonworks.com/hadoop/spark/).

Spark	on	EC2
Spark	comes	with	a	deployment	script,	spark-ec2,	located	in	the	ec2	directory.	This	script
automatically	sets	up	Spark	and	HDFS	on	a	cluster	of	EC2	instances.	In	order	to	launch	a
Spark	cluster	on	the	Amazon	cloud,	go	to	the	ec2	directory	and	run	the	following
command:

./spark-ec2	-k	<keypair>	-i	<key-file>	-s	<num-slaves>	launch	<cluster-

name>

Here,	<keypair>	is	the	name	of	your	EC2	key	pair,	<key-file>	is	the	private	key	file	for
the	key	pair,	<num-slaves>	is	the	number	of	slave	nodes	to	be	launched,	and	<cluster-
name>	is	the	name	to	be	given	to	your	cluster.	See	Chapter	1,	Introduction,	for	more	details
regarding	the	setup	of	key	pairs,	and	verify	that	the	cluster	scheduler	is	up	and	sees	all	the
slaves	by	going	to	its	web	UI,	the	address	of	which	will	be	printed	once	the	script
completes.

You	can	specify	a	path	in	S3	as	the	input	through	a	URI	of	the	form
s3n://<bucket>/path.	You	will	also	need	to	set	your	Amazon	security	credentials,	either
by	setting	the	environment	variables	AWS_ACCESS_KEY_ID	and	AWS_SECRET_ACCESS_KEY
before	your	program	is	executed,	or	through	SparkContext.hadoopConfiguration.

http://hortonworks.com/hadoop/spark/


Getting	started	with	Spark
Spark	binaries	and	source	code	are	available	on	the	project	website	at
http://spark.apache.org/.	The	examples	in	the	following	section	have	been	tested	using
Spark	1.1.0	built	from	source	on	the	Cloudera	CDH	5.0	QuickStart	VM.

Download	and	uncompress	the	gzip	archive	with	the	following	commands:

$	wget	http://d3kbcqa49mib13.cloudfront.net/spark-1.1.0.tgz	

$	tar	xvzf	spark-1.1.0.tgz

$	cd	spark-1.1.0

Spark	is	built	on	Scala	2.10	and	uses	sbt	(https://github.com/sbt/sbt)	to	build	the	source
core	and	related	examples:

$	./sbt/sbt	-Dhadoop.version=2.2.0		-Pyarn		assembly

With	the	-Dhadoop.version=2.2.0	and	-Pyarn	options,	we	instruct	sbt	to	build	against
Hadoop	versions	2.2.0	or	higher	and	enable	YARN	support.

Start	Spark	in	standalone	mode	with	the	following	command:

$	./sbin/start-all.sh	

This	command	will	launch	a	local	master	instance	at	spark://localhost:7077	as	well	as
a	worker	node.

A	web	interface	to	the	master	node	can	be	accessed	at	http://localhost:8080/	and	can
be	seen	in	the	following	screenshot:

Master	node	web	interface

Spark	can	run	interactively	through	spark-shell,	which	is	a	modified	version	of	the	Scala
shell.	As	a	first	example,	we	will	implement	a	word	count	of	the	Twitter	dataset	we	used
in	Chapter	3,	Processing	-	MapReduce	and	Beyond,	using	the	Scala	API.

Start	an	interactive	spark-shell	session	by	running	the	following	command:

$	./bin/spark-shell

The	shell	instantiates	a	SparkContext	object,	sc,	that	is	responsible	for	handling	driver
connections	to	workers.	We	will	describe	its	semantics	later	in	this	chapter.

http://spark.apache.org/
https://github.com/sbt/sbt


To	make	things	a	bit	easier,	let’s	create	a	sample	textual	dataset	that	contains	one	status
update	per	line:

$	stream.py	-t	-n	1000	>	sample.txt

Then,	copy	it	to	HDFS:

$	hdfs	dfs	-put	sample.txt	/tmp

Within	spark-shell,	we	first	create	an	RDD	-	file	-	from	the	sample	data:

val	file	=	sc.textFile("/tmp/sample.txt")

Then,	we	apply	a	series	of	transformations	to	count	the	word	occurrences	in	the	file.	Note
that	the	output	of	the	transformation	chain	-	counts	-	is	still	an	RDD:

val	counts	=	file.flatMap(line	=>	line.split("	"))

.map(word	=>	(word,	1))

.reduceByKey((m,	n)	=>	m	+	n)		

This	chain	of	transformations	corresponds	to	the	map	and	reduce	phases	that	we	are
familiar	with.	In	the	map	phase,	we	load	each	line	of	the	dataset	(flatMap),	tokenize	each
tweet	into	a	sequence	of	words,	count	the	occurrence	of	each	word	(map),	and	emit	(key,
value)	pairs.	In	the	reduce	phase,	we	group	by	key	(word)	and	sum	values	(m,	n)	together
to	obtain	word	counts.

Finally,	we	print	the	first	ten	elements,	counts.take(10),	to	the	console:

counts.take(10).foreach(println)



Writing	and	running	standalone	applications
Spark	allows	standalone	applications	to	be	written	using	three	APIs:	Scala,	Java,	and
Python.

Scala	API
The	first	thing	a	Spark	driver	must	do	is	to	create	a	SparkContext	object,	which	tells
Spark	how	to	access	a	cluster.	After	importing	classes	and	implicit	conversions	into	a
program,	as	in	the	following:

import	org.apache.spark.SparkContext	

import	org.apache.spark.SparkContext._

The	SparkContext	object	can	be	created	with	the	following	constructor:

new	SparkContext(master,	appName,	[sparkHome])	

It	can	also	be	created	through	SparkContext(conf),	which	takes	a	SparkConf	object.

The	master	parameter	is	a	string	that	specifies	a	cluster	URI	to	connect	to	(such	as
spark://localhost:7077)	or	a	local	string	to	run	in	local	mode.	The	appName	term	is
the	application	name	that	will	be	shown	in	the	cluster	web	UI.

It	is	not	possible	to	override	the	default	SparkContext	class,	nor	is	it	possible	to	create	a
new	one	within	a	running	Spark	shell.	It	is	however	possible	to	specify	which	master	the
context	connects	to	using	the	MASTER	environment	variable.	For	example,	to	run	spark-
shell	on	four	cores,	use	the	following:

$	MASTER=local[4]	./bin/spark-shell	

Java	API
The	org.apache.spark.api.java	package	exposes	all	the	Spark	features	available	in	the
Scala	version	to	Java.	The	Java	API	has	a	JavaSparkContext	class	that	returns	instances
of	org.apache.spark.api.java.JavaRDD	and	works	with	Java	collections	instead	of
Scala	ones.

There	are	a	few	key	differences	between	the	Java	and	Scala	APIs:

Java	7	does	not	support	anonymous	or	first-class	functions;	therefore,	functions	must
be	implemented	by	extending	the
org.apache.spark.api.java.function.Function,	Function2,	and	other	classes.	As
of	Spark	version	1.0	the	API	has	been	refactored	to	support	Java	8	lambda
expressions.	With	Java	8,	Function	classes	can	be	replaced	with	inline	expressions
that	act	as	a	shorthand	for	anonymous	functions.
The	RDD	methods	return	Java	collections
Key-value	pairs,	which	are	simply	written	as	(key,	value)	in	Scala,	are	represented
by	the	scala.Tuple2	class.
To	maintain	type	safety,	some	RDD	and	function	methods,	such	as	those	that	handle
key	pairs	and	doubles,	are	implemented	as	specialized	classes.



WordCount	in	Java
An	example	of	WordCount	in	Java	is	included	with	the	Spark	source	code	distribution	at
examples/src/main/java/org/apache/spark/examples/JavaWordCount.java.

First	of	all,	we	create	a	context	using	the	JavaSparkContext	class:

			JavaSparkContext	sc	=	new	JavaSparkContext(master,	"JavaWordCount",

					System.getenv("SPARK_HOME"),	

JavaSparkContext.jarOfClass(JavaWordCount.class));

				JavaRDD<String>	data	=	sc.textFile(infile,	1);

				JavaRDD<String>	words	=	data.flatMap(new	FlatMapFunction<String,	

String>()	{

						@Override

						public	Iterable<String>	call(String	s)	{

								return	Arrays.asList(s.split("	"));

						}

				});

				JavaPairRDD<String,	Integer>	ones	=	words.map(new	PairFunction<String,	

String,	Integer>()	{

						@Override

						public	Tuple2<String,	Integer>	call(String	s)	{

								return	new	Tuple2<String,	Integer>(s,	1);

						}

				});

				

				JavaPairRDD<String,	Integer>	counts	=	ones.reduceByKey(new	

Function2<Integer,	Integer,	Integer>()	{

						@Override

						public	Integer	call(Integer	i1,	Integer	i2)	{

								return	i1	+	i2;

						}

				});

We	then	build	an	RDD	from	the	HDFS	location	infile.	In	the	first	step	of	the
transformation	chain,	we	tokenize	each	tweet	in	the	dataset	and	return	a	list	of	words.	We
use	an	instance	of	JavaPairRDD<String,	Integer>	to	count	occurrences	of	each	word.
Finally,	we	reduce	the	RDD	to	a	new	JavaPairRDD<String,	Integer>	instance	that
contains	a	list	of	tuples,	each	representing	a	word	and	the	number	of	times	it	was	found	in
the	dataset.

Python	API
PySpark	requires	Python	version	2.6	or	higher.	RDDs	support	the	same	methods	as	their
Scala	counterparts	but	take	Python	functions	and	return	Python	collection	types.	Lambda
syntax	(https://docs.python.org/2/reference/expressions.html)	is	used	to	pass	functions	to
RDDs.

The	word	count	in	pyspark	is	relatively	similar	to	its	Scala	counterpart:

tweets	=	sc.textFile("/tmp/sample.txt")

counts	=	tweets.flatMap(lambda	tweet:	tweet.split('	'))	\

https://docs.python.org/2/reference/expressions.html


																		.map(lambda	word:	(word,	1))	\

																		.reduceByKey(lambda	m,n:m+n)

The	lambda	construct	creates	anonymous	functions	at	runtime.	lambda	tweet:
tweet.split('	')	creates	a	function	that	takes	a	string	tweet	as	the	input	and	outputs	a
list	of	strings	split	by	whitespace.	Spark’s	flatMap	applies	this	function	to	each	line	of	the
tweets	dataset.	In	the	map	phase,	for	each	word	token,	lambda	word:	(word,	1)	returns
(word,	1)	tuples	that	indicate	the	occurrence	of	a	word	in	the	dataset.	In	reduceByKey,
we	group	these	tuples	by	key	-	word	-	and	sum	the	values	together	to	obtain	the	word
count	with	lambda	m,n:m+n.



The	Spark	ecosystem
Apache	Spark	powers	a	number	of	tools,	both	as	a	library	and	as	an	execution	engine.



Spark	Streaming
Spark	Streaming	(found	at	http://spark.apache.org/docs/latest/streaming-programming-
guide.html)	is	an	extension	of	the	Scala	API	that	allows	data	ingestion	from	streams	such
as	Kafka,	Flume,	Twitter,	ZeroMQ,	and	TCP	sockets.

Spark	Streaming	receives	live	input	data	streams	and	divides	the	data	into	batches
(arbitrarily	sized	time	windows),	which	are	then	processed	by	the	Spark	core	engine	to
generate	the	final	stream	of	results	in	batches.	This	high-level	abstraction	is	called
DStream	(org.apache.spark.streaming.dstream.DStreams)	and	is	implemented	as	a
sequence	of	RDDs.	DStream	allows	for	two	kinds	of	operations:	transformations	and
output	operations.	Transformations	work	on	one	or	more	DStreams	to	create	new
DStreams.	As	part	of	a	chain	of	transformations,	data	can	be	persisted	either	to	a	storage
layer	(HDFS)	or	an	output	channel.	Spark	Streaming	allows	for	transformations	over	a
sliding	window	of	data.	A	window-based	operation	needs	to	specify	two	parameters:	the
window	length,	the	duration	of	the	window	and	the	slide	interval,	the	interval	at	which	the
window-based	operation	is	performed.

http://spark.apache.org/docs/latest/streaming-programming-guide.html


GraphX
GraphX	(found	at	https://spark.apache.org/docs/latest/graphx-programming-guide.html)	is
an	API	for	graph	computation	that	exposes	a	set	of	operators	and	algorithms	for	graph-
oriented	computation	as	well	as	an	optimized	variant	of	Pregel.

https://spark.apache.org/docs/latest/graphx-programming-guide.html


MLlib
MLlib	(found	at	http://spark.apache.org/docs/latest/mllib-guide.html)	provides	common
Machine	Learning	(ML)	functionality,	including	tests	and	data	generators.	MLlib
currently	supports	four	types	of	algorithms:	binary	classification,	regression,	clustering,
and	collaborative	filtering.

http://spark.apache.org/docs/latest/mllib-guide.html


Spark	SQL
Spark	SQL	is	derived	from	Shark,	which	is	an	implementation	of	the	Hive	data
warehousing	system	that	uses	Spark	as	an	execution	engine.	We	will	discuss	Hive	in
Chapter	7,	Hadoop	and	SQL.	With	Spark	SQL,	it	is	possible	to	mix	SQL-like	queries	with
Scala	or	Python	code.	The	result	sets	returned	by	a	query	are	themselves	RDDs,	and	as
such,	they	can	be	manipulated	by	Spark	core	methods	or	MLlib	and	GraphX.



Processing	data	with	Apache	Spark
In	this	section,	we	will	implement	the	examples	from	Chapter	3,	Processing	–	MapReduce
and	Beyond,	using	the	Scala	API.	We	will	consider	both	the	batch	and	real-time
processing	scenarios.	We	will	show	you	how	Spark	Streaming	can	be	used	to	compute
statistics	on	the	live	Twitter	stream.



Building	and	running	the	examples
Scala	source	code	for	the	examples	can	be	found	at
https://github.com/learninghadoop2/book-examples/tree/master/ch5.	We	will	be	using	sbt
to	build,	manage,	and	execute	code.

The	build.sbt	file	controls	the	codebase	metadata	and	software	dependencies;	these
include	the	version	of	the	Scala	interpreter	that	Spark	links	to,	a	link	to	the	Akka	package
repository	used	to	resolve	implicit	dependencies,	as	well	as	dependencies	on	Spark	and
Hadoop	libraries.

The	source	code	for	all	examples	can	be	compiled	with:

$	sbt	compile

Or,	it	can	be	packaged	into	a	JAR	file	with:

$	sbt	package

A	helper	script	to	execute	compiled	classes	can	be	generated	with:

$	sbt	add-start-script-tasks

$	sbt	start-script

The	helper	can	be	invoked	as	follows:

$	target/start	<class	name>	<master>	<param1>	…	<param	n>

Here,	<master>	is	the	URI	of	the	master	node.	An	interactive	Scala	session	can	be	invoked
via	sbt	with	the	following	command:

$	sbt	console

This	console	is	not	the	same	as	the	Spark	interactive	shell;	rather,	it	is	an	alternative	way
to	execute	code.	In	order	to	run	Spark	code	in	it	we	will	need	to	manually	import	and
instantiate	a	SparkContext	object.	All	examples	presented	in	this	section	expect	a
twitter4j.properties	file	containing	the	consumer	key	and	secret	and	the	access	tokens
to	be	present	in	the	same	directory	where	sbt	or	spark-shell	is	being	invoked:

oauth.consumerKey=

oauth.consumerSecret=

oauth.accessToken=

oauth.accessTokenSecret=

Running	the	examples	on	YARN
To	run	the	examples	on	a	YARN	grid,	we	first	build	a	JAR	file	using:

$	sbt	package

Then,	we	ship	it	to	the	resource	manager	using	the	spark-submit	command:

./bin/spark-submit	--class	application.to.execute	--master	yarn-cluster	

[options]	target/scala-2.10/chapter-4_2.10-1.0.jar	[<param1>	…	<param	n>]

https://github.com/learninghadoop2/book-examples/tree/master/ch5


Unlike	the	standalone	mode,	we	don’t	need	to	specify	a	<master>	URI.	In	YARN,	the
ResourceManager	is	selected	from	the	cluster	configuration.	More	information	on
launching	spark	in	YARN	can	be	found	at	http://spark.apache.org/docs/latest/running-on-
yarn.html.

Finding	popular	topics
Unlike	the	earlier	examples	with	the	Spark	shell	we	initialize	a	SparkContext	as	part	of
the	program.	We	pass	three	arguments	to	the	SparkContext	constructor:	the	type	of
scheduler	we	want	to	use,	a	name	for	the	application,	and	the	directory	where	Spark	is
installed:

import	org.apache.spark.SparkContext._

import	org.apache.spark.SparkContext

import	scala.util.matching.Regex

object	HashtagCount	{

		def	main(args:	Array[String])	{

[…]

		val	sc	=	new	SparkContext(master,	

"HashtagCount",	

System.getenv("SPARK_HOME"))

				val	file	=	sc.textFile(inputFile)

				val	pattern	=	new	Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")

				

				val	counts	=	file.flatMap(line	=>	

						(pattern	findAllIn	line).toList)

								.map(word	=>	(word,	1))

								.reduceByKey((m,	n)	=>	m	+	n)		

				

				counts.saveAsTextFile(outputPath)

		}

}

We	create	an	initial	RDD	from	a	dataset	stored	in	HDFS	-	inputFile	-	and	apply	logic	that
is	similar	to	the	WordCount	example.

For	each	tweet	in	the	dataset,	we	extract	an	array	of	strings	that	match	the	hashtag	pattern
(pattern	findAllIn	line).toArray,	and	we	count	an	occurrence	of	each	string	using
the	map	operator.	This	generates	a	new	RDD	as	a	list	of	tuples	in	the	form:

(word,	1),	(word2,	1),	(word,	1)	

Finally,	we	combine	together	elements	of	this	RDD	using	the	reduceByKey()	method.	We
store	the	RDD	generated	by	this	last	step	back	into	HDFS	with	saveAsTextFile.

The	code	for	the	standalone	driver	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/HashTagCount.scala

Assigning	a	sentiment	to	topics
The	source	code	of	this	example	can	be	found	at

http://spark.apache.org/docs/latest/running-on-yarn.html
https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/HashTagCount.scala


https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/HashTagSentiment.scala
and	the	code	is	as	follows:

import	org.apache.spark.SparkContext._

import	org.apache.spark.SparkContext

import	scala.util.matching.Regex

import	scala.io.Source

				

object	HashtagSentiment	{

		def	main(args:	Array[String])	{

			[…]

				val	sc	=	new	SparkContext(master,	

"HashtagSentiment",	

System.getenv("SPARK_HOME"))

				val	file	=	sc.textFile(inputFile)

				val	positive	=	Source.fromFile(positiveWordsPath)

						.getLines

						.filterNot(_	startsWith	";")

						.toSet

				val	negative	=	Source.fromFile(negativeWordsPath)

						.getLines

						.filterNot(_	startsWith	";")

						.toSet

				val	pattern	=	new	Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")

				val	counts	=	file.flatMap(line	=>	(pattern	findAllIn	line).map({

				word	=>	(word,	sentimentScore(line,	positive,	negative))	

				})).reduceByKey({	(m,	n)	=>	(m._1	+	n._1,	m._2	+	n._2)	})

				val	sentiment	=	counts.map({hashtagScore	=>

				val	hashtag	=	hashtagScore._1

				val	score	=	hashtagScore._2

				val	normalizedScore	=	score._1	/	score._2

				(hashtag,	normalizedScore)

				})

				sentiment.saveAsTextFile(outputPath)

		}

}

First,	we	read	a	list	of	positive	and	negative	words	into	Scala	Set	objects	and	filter	out
comments	(strings	beginning	with	;).

When	a	hashtag	is	found,	we	call	a	function	-	sentimentScore	-	to	estimate	the	sentiment
expressed	by	that	given	text.	This	function	implements	the	same	logic	we	used	in	Chapter
3,	Processing	–	MapReduce	and	Beyond,	to	estimate	the	sentiment	of	a	tweet.	It	takes	as
input	parameters	the	tweet’s	text,	str,	and	a	list	of	positive	and	negative	words	as
Set[String]	objects.	The	return	value	is	the	difference	between	the	positive	and	negative
scores	and	the	number	of	words	in	the	tweets.	In	Spark,	we	represent	this	return	value	as	a
pair	of	Double	and	Integer	objects:

https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/HashTagSentiment.scala


def	sentimentScore(str:	String,	positive:	Set[String],	

									negative:	Set[String]):	(Double,	Int)	=	{

			var	positiveScore	=	0;	var	negativeScore	=	0;

				str.split("""\s+""").foreach	{	w	=>

						if	(positive.contains(w))	{	positiveScore+=1;	}

						if	(negative.contains(w))	{	negativeScore+=1;	}

				}	

				((positiveScore	-	negativeScore).toDouble,	

											str.split("""\s+""").length)

}

We	reduce	the	map	output	by	aggregating	by	the	key	(the	hashtag).	In	this	phase,	we	emit
a	triple	made	of	the	hashtag,	the	sum	of	the	difference	between	positive	and	negative
scores,	and	the	number	of	words	per	tweet.	We	use	an	additional	map	step	to	normalize	the
sentiment	score	and	store	the	resulting	list	of	hashtag	and	sentiment	pairs	to	HDFS.



Data	processing	on	streams
The	previous	example	can	be	easily	adjusted	to	work	on	a	real-time	stream	of	data.	In	this
and	the	following	section,	we	will	use	spark-streaming-twitter	to	perform	some	simple
analytics	tasks	on	the	real-time	firehose:

		val	window	=	10

		val	ssc	=	new	StreamingContext(master,	"TwitterStreamEcho",	

Seconds(window),	System.getenv("SPARK_HOME"))

		val	stream	=	TwitterUtils.createStream(ssc,	auth)

		val	tweets	=	stream.map(tweet	=>	(tweet.getText()))

		tweets.print()

		ssc.start()

		ssc.awaitTermination()

}			

The	Scala	source	code	for	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/TwitterStreamEcho.scala

The	two	key	packages	we	need	to	import	are:

import	org.apache.spark.streaming.{Seconds,	StreamingContext}

import	org.apache.spark.streaming.twitter._

We	initialize	a	new	StreamingContext	ssc	on	a	local	cluster	using	a	10-second	window
and	use	this	context	to	create	a	DStream	of	tweets	whose	text	we	print.

Upon	successful	execution,	Twitter’s	real-time	firehose	will	be	echoed	in	the	terminal	in
batches	of	10	seconds	worth	of	data.	Notice	that	the	computation	will	continue	indefinitely
but	can	be	interrupted	at	any	moment	by	pressing	Ctrl	+	C.

The	TwitterUtils	object	is	a	wrapper	to	the	Twitter4j	library
(http://twitter4j.org/en/index.html)	that	ships	with	spark-streaming-twitter.	A
successful	call	to	TwitterUtils.createStream	will	return	a	DStream	of	Twitter4j
objects	(TwitterInputDStream).	In	the	preceding	example,	we	used	the	getText()
method	to	extract	the	tweet	text;	however,	notice	that	the	twitter4j	object	exposes	the
full	Twitter	API.	For	instance,	we	can	print	a	stream	of	users	with	the	following	call:

val	users	=	stream.map(tweet	=>	(tweet.getUser().getId(),	

tweet.getUser().getName()))

users.print()

State	management
Spark	Streaming	provides	an	ad	hoc	DStream	to	keep	the	state	of	each	key	in	an	RDD	and
the	updateStateByKey	method	to	mutate	state.

We	can	reuse	the	code	of	the	batch	example	to	assign	and	update	sentiment	scores	on
streams:

https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/TwitterStreamEcho.scala
http://twitter4j.org/en/index.html


object	StreamingHashTagSentiment	{

[…]

				

				val	counts	=	text.flatMap(line	=>	(pattern	findAllIn	line)

						.toList

						.map(word	=>	(word,	sentimentScore(line,	positive,	negative))))

						.reduceByKey({	(m,	n)	=>	(m._1	+	n._1,	m._2	+	n._2)	})

				val	sentiment	=	counts.map({hashtagScore	=>

								val	hashtag	=	hashtagScore._1

								val	score	=	hashtagScore._2

								val	normalizedScore	=	score._1	/	score._2

								(hashtag,	normalizedScore)

				})

				

				val	stateDstream	=	sentiment

									.updateStateByKey[Double](updateFunc)

	

				stateDstream.print

				ssc.checkpoint("/tmp/checkpoint")

				ssc.start()

}

A	state	DStream	is	created	by	calling	hashtagSentiment.updateStateByKey.

The	updateFunc	function	implements	the	state	mutation	logic,	which	is	a	cumulative	sum
of	sentiment	scores	over	a	period	of	time:

				val	updateFunc	=	(values:	Seq[Double],	state:	Option[Double])	=>	{

						val	currentScore	=	values.sum

						val	previousScore	=	state.getOrElse(0.0)

						Some(	(currentScore	+	previousScore)	*	decayFactor)

				}			

decayFactor	is	a	constant	value,	less	than	or	equal	to	zero,	that	we	use	to	proportionally
decrease	the	score	over	time.	Intuitively,	this	will	fade	hashtags	if	they	are	not	trending
anymore.	Spark	Streaming	writes	intermediate	data	for	stateful	operations	to	HDFS,	so	we
need	to	checkpoint	the	Streaming	context	with	ssc.checkpoint.

The	source	code	for	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/StreamingHashTagSentiment.scala

https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/StreamingHashTagSentiment.scala


Data	analysis	with	Spark	SQL
Spark	SQL	can	ease	the	task	of	representing	and	manipulating	structured	data.	We	will
load	a	JSON	file	into	a	temporary	table	and	calculate	simple	statistics	by	blending	SQL
statements	and	Scala	code:

object	SparkJson	{

			[…]

			val	file	=	sc.textFile(inputFile)

			

			val	sqlContext	=	new	org.apache.spark.sql.SQLContext(sc)

			import	sqlContext._

			

			val	tweets	=	sqlContext.jsonFile(inFile)

			tweets.printSchema()

			

			//	Register	the	SchemaRDD	as	a	table

			tweets.registerTempTable("tweets")

			val	text	=	sqlContext.sql("SELECT	text,	user.id	FROM	tweets")

			

			//	Find	the	ten	most	popular	hashtags

			val	pattern	=	new	Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")

				

			val	counts	=	text.flatMap(sqlRow	=>	(pattern	findAllIn	

sqlRow(0).toString).toList)

												.map(word	=>	(word,	1))

												.reduceByKey(	(m,	n)	=>	m+n)

			counts.registerTempTable("hashtag_frequency")

counts.printSchema

val	top10	=	sqlContext.sql("SELECT	_1	as	hashtag,	_2	as	frequency	FROM	

hashtag_frequency	order	by	frequency	desc	limit	10")

top10.foreach(println)

}

As	with	previous	examples,	we	instantiate	a	SparkContext	sc	and	load	the	dataset	of
JSON	tweets.	We	then	create	an	instance	of	org.apache.spark.sql.SQLContext	based	on
the	existing	sc.	The	import	sqlContext._	gives	access	to	all	functions	and	implicit
conventions	for	sqlContext.	We	load	the	tweets’	JSON	dataset	using
sqlContext.jsonFile.	The	resulting	tweets	object	is	an	instance	of	SchemaRDD,	which	is
a	new	type	of	RDD	introduced	by	Spark	SQL.	The	SchemaRDD	class	is	conceptually
similar	to	a	table	in	a	relational	database;	it	is	composed	of	Row	objects	and	a	schema	that
describes	the	content	in	each	Row.	We	can	see	the	schema	for	a	tweet	by	calling
tweets.printSchema().	Before	we’re	able	to	manipulate	tweets	with	SQL	statements,	we
need	to	register	SchemaRDD	as	a	table	in	the	SQLContext.	We	then	extract	the	text	field	of	a
JSON	tweet	with	an	SQL	query.	Note	that	the	output	of	sqlContext.sql	is	an	RDD	again.
As	such,	we	can	manipulate	it	using	Spark	core	methods.	In	our	case,	we	reuse	the	logic
used	in	previous	examples	to	extract	hashtags	and	count	their	occurrences.	Finally,	we
register	the	resulting	RDD	as	a	table,	hashtag_frequency,	and	order	hashtags	by



frequency	with	a	SQL	query.

The	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/SparkJson.scala.

SQL	on	data	streams
At	the	time	of	writing,	a	SQLContext	cannot	be	directly	instantiated	from	a
StreamingContext	object.	It	is,	however,	possible	to	query	a	DStream	by	registering	a
SchemaRDD	for	each	RDD	in	a	given	stream:

object	SqlOnStream	{

[…]

				val	ssc	=	new	StreamingContext(sc,	Seconds(window))

				val	gson	=	new	Gson()

				val	dstream	=	TwitterUtils

			.createStream(ssc,	auth)

			.map(gson.toJson(_))

				val	sqlContext	=	new	org.apache.spark.sql.SQLContext(sc)

				import	sqlContext._

			dstream.foreachRDD(	rdd	=>	{

						rdd.foreach(println)

								val	jsonRDD	=	sqlContext.jsonRDD(rdd)

								jsonRDD.registerTempTable("tweets")

								jsonRDD.printSchema	

									sqlContext.sql(query)

				})

				ssc.checkpoint("/tmp/checkpoint")

				ssc.start()	

				ssc.awaitTermination()	

}

In	order	to	get	the	two	working	together,	we	first	create	a	SparkContext	sc	that	we	use	to
initialize	both	a	StreamingContext	ssc	and	a	sqlContext.	As	in	previous	examples,	we
use	TwitterUtils.createStream	to	create	a	DStream	RDD	dstream.	In	this	example,	we
use	Google’s	Gson	JSON	parser	to	serialize	each	twitter4j	object	to	a	JSON	string.	To
execute	Spark	SQL	queries	on	the	stream,	we	register	a	SchemaRDD	jsonRDD	within	a
dstream.foreachRDD	loop.	We	use	the	sqlContext.jsonRDD	method	to	create	an	RDD
from	a	batch	of	JSON	tweets.	At	this	point,	we	can	query	the	SchemaRDD	using	the
sqlContext.sql	method.

The	source	code	of	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/SqlOnStream.scala.

https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/SparkJson.scala
https://github.com/learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/learninghadoop2/spark/SqlOnStream.scala


Comparing	Samza	and	Spark	Streaming
It	is	useful	to	compare	Samza	and	Spark	Streaming	to	help	identify	the	areas	in	which
each	can	best	be	applied.	As	it	has	been	hopefully	made	clear	in	this	book,	these
technologies	are	very	much	complimentary.	Even	though	Spark	Streaming	might	appear
competitive	with	Samza,	we	feel	both	products	offer	compelling	advantages	in	certain
areas.

Samza	shines	when	the	input	data	is	truly	a	stream	of	discrete	events	and	you	wish	to	build
processing	that	operates	on	this	type	of	input.	Samza	jobs	running	on	Kafka	can	have
latencies	in	the	order	of	milliseconds.	This	provides	a	programming	model	focused	on	the
individual	messages	and	is	the	better	fit	for	true	near	real-time	processing	applications.
Though	it	lacks	support	to	build	topologies	of	collaborating	jobs,	its	simple	model	allows
similar	constructs	to	be	built	and,	perhaps	more	importantly,	be	easily	reasoned	about.	Its
model	of	partitioning	and	scaling	also	focuses	on	simplicity,	which	again	makes	a	Samza
application	very	easy	to	understand	and	gives	it	a	significant	advantage	when	dealing	with
something	as	intrinsically	complex	as	real-time	data.

Spark	is	much	more	than	a	streaming	product.	Its	support	for	building	distributed	data
structures	from	existing	datasets	and	using	powerful	primitives	to	manipulate	these	gives
it	the	ability	to	process	large	datasets	at	a	higher	level	of	granularity.	Other	products	in	the
Spark	ecosystem	build	additional	interfaces	or	abstractions	upon	this	common	batch
processing	core.	This	is	very	much	a	different	focus	to	the	message	stream	model	of
Samza.

This	batch	model	is	also	demonstrated	when	we	look	at	Spark	Streaming;	instead	of	a	per-
message	processing	model,	it	slices	the	message	stream	into	a	series	of	RDDs.	With	a	fast
execution	engine,	this	means	latencies	as	low	as	1	second
(http://www.cs.berkeley.edu/~matei/papers/2012/hotcloud_spark_streaming.pdf).	For
workloads	that	wish	to	analyze	the	stream	in	such	a	way,	this	will	be	a	better	fit	than
Samza’s	per-message	model,	which	requires	additional	logic	to	provide	such	windowing.

http://www.cs.berkeley.edu/~matei/papers/2012/hotcloud_spark_streaming.pdf


Summary
This	chapter	explored	Spark	and	showed	you	how	it	adds	iterative	processing	as	a	new
rich	framework	upon	which	applications	can	be	built	atop	YARN.	In	particular,	we
highlighted:

The	distributed	data-structure-based	processing	model	of	Spark	and	how	it	allows
very	efficient	in-memory	data	processing
The	broader	Spark	ecosystem	and	how	multiple	additional	projects	are	built	atop	it	to
specialize	the	computational	model	even	further

In	the	next	chapter	we	will	explore	Apache	Pig	and	its	programming	language,	Pig	Latin.
We	will	see	how	this	tool	can	greatly	simplify	software	development	for	Hadoop	by
abstracting	away	some	of	the	MapReduce	and	Spark	complexity.



Chapter	6.	Data	Analysis	with	Apache	Pig
In	the	previous	chapters,	we	explored	a	number	of	APIs	for	data	processing.	MapReduce,
Spark,	Tez	and	Samza	are	rather	low-level,	and	writing	non-trivial	business	logic	with
them	often	requires	significant	Java	development.	Moreover,	different	users	will	have
different	needs.	It	might	be	impractical	for	an	analyst	to	write	MapReduce	code	or	build	a
DAG	of	inputs	and	outputs	to	answer	some	simple	queries.	At	the	same	time,	a	software
engineer	or	a	researcher	might	want	to	prototype	ideas	and	algorithms	using	high-level
abstractions	before	jumping	into	low-level	implementation	details.

In	this	chapter	and	the	following	one,	we	will	explore	some	tools	that	provide	a	way	to
process	data	on	HDFS	using	higher-level	abstractions.	In	this	chapter	we	will	explore
Apache	Pig,	and,	in	particular,	we	will	cover	the	following	topics:

What	Apache	Pig	is	and	the	dataflow	model	it	provides
Pig	Latin’s	data	types	and	functions
How	Pig	can	be	easily	enhanced	using	custom	user	code
How	we	can	use	Pig	to	analyze	the	Twitter	stream



An	overview	of	Pig
Historically,	the	Pig	toolkit	consisted	of	a	compiler	that	generated	MapReduce	programs,
bundled	their	dependencies,	and	executed	them	on	Hadoop.	Pig	jobs	are	written	in	a
language	called	Pig	Lat	in	and	can	be	executed	in	both	interactive	and	batch	fashions.
Furthermore,	Pig	Latin	can	be	extended	using	User	Defined	Functions	(UDFs)	written	in
Java,	Python,	Ruby,	Groovy,	or	JavaScript.

Pig	use	cases	include	the	following:

Data	processing
Ad	hoc	analytical	queries
Rapid	prototyping	of	algorithms
Extract	Transform	Load	pipelines

Following	a	trend	we	have	seen	in	previous	chapters,	Pig	is	moving	towards	a	general-
purpose	computing	architecture.	As	of	version	0.13	the	ExecutionEngine	interface
(org.apache.pig.backend.executionengine)	acts	as	a	bridge	between	the	frontend	and
the	backend	of	Pig,	allowing	Pig	Latin	scripts	to	be	compiled	and	executed	on	frameworks
other	than	MapReduce.	At	the	time	of	writing,	version	0.13	ships	with
MRExecutionEngine
(org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MRExecutionEngine
and	work	on	a	low-latency	backend	based	on	Tez
(org.apache.pig.backend.hadoop.executionengine.tez.*)	is	expected	to	be	included
in	version	0.14	(see	https://issues.apache.org/jira/browse/PIG-3446).	Work	on	integrating
Spark	is	currently	in	progress	in	the	development	branch	(see
https://issues.apache.org/jira/browse/PIG-4059).

Pig	0.13	comes	with	a	number	of	performance	enhancements	for	the	MapReduce	backend,
in	particular	two	features	to	reduce	latency	of	small	jobs:	direct	HDFS	access
(https://issues.apache.org/jira/browse/PIG-3642)	and	auto	local	mode
(https://issues.apache.org/jira/browse/PIG-3463).	Direct	HDFS,	the	opt.fetch	property,	is
turned	on	by	default.	When	doing	a	DUMP	in	a	simple	(map-only)	script	that	contains	only
LIMIT,	FILTER,	UNION,	STREAM,	or	FOREACH	operators,	input	data	is	fetched	from	HDFS,
and	the	query	is	executed	directly	in	Pig,	bypassing	MapReduce.	With	auto	local,	the
pig.auto.local.enabled	property,	Pig	will	run	a	query	in	the	Hadoop	local	mode	when
the	data	size	is	smaller	than	pig.auto.local.input.maxbytes.	Auto	local	is	off	by
default.

Pig	will	launch	MapReduce	jobs	if	both	modes	are	off	or	if	the	query	is	not	eligible	for
either.	If	both	modes	are	on,	Pig	will	check	whether	the	query	is	eligible	for	direct	access
and,	if	not,	fall	back	to	auto	local.	Failing	that,	it	will	execute	the	query	on	MapReduce.

https://issues.apache.org/jira/browse/PIG-3446
https://issues.apache.org/jira/browse/PIG-4059
https://issues.apache.org/jira/browse/PIG-3642
https://issues.apache.org/jira/browse/PIG-3463


Getting	started
We	will	use	the	stream.py	script	options	to	extract	JSON	data	and	retrieve	a	specific
number	of	tweets;	we	can	run	this	with	a	command	such	as	the	following:

$	python	stream.py	-j	-n	10000	>	tweets.json

The	tweets.json	file	will	contain	one	JSON	string	on	each	line	representing	a	tweet.

Remember	that	the	Twitter	API	credentials	need	to	be	made	available	as	environment
variables	or	hardcoded	in	the	script	itself.



Running	Pig
Pig	is	a	tool	that	translates	statements	written	in	Pig	Latin	and	executes	them	either	on	a
single	machine	in	standalone	mode	or	on	a	full	Hadoop	cluster	when	in	distributed	mode.
Even	in	the	latter,	Pig’s	role	is	to	translate	Pig	Latin	statements	into	MapReduce	jobs	and
therefore	it	doesn’t	require	the	installation	of	additional	services	or	daemons.	It	is	used	as
a	command-line	tool	with	its	associated	libraries.

Cloudera	CDH	ships	with	Apache	Pig	version	0.12.	Alternatively,	the	Pig	source	code	and
binary	distributions	can	be	obtained	at	https://pig.apache.org/releases.html.

As	can	be	expected,	the	MapReduce	mode	requires	access	to	a	Hadoop	cluster	and	HDFS
installation.	MapReduce	mode	is	the	default	mode	executed	when	running	the	Pig
command	at	the	command-line	prompt.	Scripts	can	be	executed	with	the	following
command:

$	pig	-f	<script>

Parameters	can	be	passed	via	the	command	line	using	-param	<param>=<val>,	as	follows:

$	pig	–param	input=tweets.txt

Parameters	can	also	be	specified	in	a	param	file	that	can	be	passed	to	Pig	using	the	-
param_file	<file>	option.	Multiple	files	can	be	specified.	If	a	parameter	is	present
multiple	times	in	the	file,	the	last	value	will	be	used	and	a	warning	will	be	displayed.	A
parameter	file	contains	one	parameter	per	line.	Empty	lines	and	comments	(specified	by
starting	a	line	with	#)	are	allowed.	Within	a	Pig	script,	parameters	are	in	the	form
$<parameter>.	The	default	value	can	be	assigned	using	the	default	statement:	%default
input	tweets.json'.	The	default	command	will	not	work	within	a	Grunt	session;	we’ll
discuss	Grunt	in	the	next	section.

In	local	mode,	all	files	are	installed	and	run	using	the	local	host	and	filesystem.	Specify
local	mode	using	the	-x	flag:

$	pig	-x	local

In	both	execution	modes,	Pig	programs	can	be	run	either	in	an	interactive	shell	or	in	batch
mode.

https://pig.apache.org/releases.html


Grunt	–	the	Pig	interactive	shell
Pig	can	run	in	an	interactive	mode	using	the	Grunt	shell,	which	is	invoked	when	we	use
the	pig	command	at	the	terminal	prompt.	In	the	rest	of	this	chapter,	we	will	assume	that
examples	are	executed	within	a	Grunt	session.	Other	than	executing	Pig	Latin	statements,
Grunt	offers	a	number	of	utilities	and	access	to	shell	commands:

fs:	allows	users	to	manipulate	Hadoop	filesystem	objects	and	has	the	same	semantics
as	the	Hadoop	CLI
sh:	executes	commands	via	the	operating	system	shell
exec:	launches	a	Pig	script	within	an	interactive	Grunt	session
kill:	kills	a	MapReduce	job
help:	prints	a	list	of	all	available	commands

Elastic	MapReduce
Pig	scripts	can	be	executed	on	EMR	by	creating	a	cluster	with	--applications
Name=Pig,Args=--version,<version>,	as	follows:

$	aws	emr	create-cluster	\

--name	"Pig	cluster"	\

--ami-version	<ami	version>	\

--instance-type	<EC2	instance>	\

--instance-count	<number	of	nodes>	\

--applications	Name=Pig,Args=--version,<version>\

--log-uri	<S3	bucket>	\

--steps	Type=PIG,\	

Name="Pig	script",\

Args=[-f,s3://<script	location>,\

-p,input=<input	param>,\

-p,output=<output	param>]

The	preceding	command	will	provision	a	new	EMR	cluster	and	execute	s3://<script
location>.	Notice	that	the	scripts	to	be	executed	and	the	input	(-p	input)	and	output	(-p
output)	paths	are	expected	to	be	located	on	S3.

As	an	alternative	to	creating	a	new	EMR	cluster,	it	is	possible	to	add	Pig	steps	to	an
already-instantiated	EMR	cluster	using	the	following	command:

$	aws	emr	add-steps	\

--cluster-id	<cluster	id>\

--steps	Type=PIG,\	

Name=	"Other	Pig	script",\

Args=[-f,s3://<script	location>,\

-p,input=<input	param>,\

-p,output=<output	param>]

In	the	preceding	command,	<cluster	id>	is	the	ID	of	the	instantiated	cluster.

It	is	also	possible	to	ssh	into	the	master	node	and	run	Pig	Latin	statements	within	a	Grunt
session	with	the	following	command:

$	aws	emr	ssh	--cluster-id	<cluster	id>	--key-pair-file	<key	pair>





Fundamentals	of	Apache	Pig
The	primary	interface	to	program	Apache	Pig	is	Pig	Latin,	a	procedural	language	that
implements	ideas	of	the	dataflow	paradigm.

Pig	Latin	programs	are	generally	organized	as	follows:

A	LOAD	statement	reads	data	from	HDFS
A	series	of	statements	aggregates	and	manipulates	data
A	STORE	statement	writes	output	to	the	filesystem
Alternatively,	a	DUMP	statement	displays	the	output	to	the	terminal

The	following	example	shows	a	sequence	of	statements	that	outputs	the	top	10	hashtags
ordered	by	the	frequency,	extracted	from	the	dataset	of	tweets:

tweets	=	LOAD	'tweets.json'	

		USING	JsonLoader('created_at:chararray,	

				id:long,	

				id_str:chararray,	

				text:chararray');

hashtags	=	FOREACH	tweets	{

		GENERATE	FLATTEN(

				REGEX_EXTRACT(

						text,	

						'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)',	1)

				)	as	tag;

}

hashtags_grpd	=	GROUP	hashtags	BY	tag;

hashtags_count	=	FOREACH	hashtags_grpd	{

		GENERATE	

				group,	

				COUNT(hashtags)	as	occurrencies;	

}

hashtags_count_sorted	=	ORDER	hashtags_count	BY	occurrencies	DESC;

top_10_hashtags	=	LIMIT	hashtags_count_sorted	10;

DUMP	top_10_hashtags;

First,	we	load	the	tweets.json	dataset	from	HDFS,	de-serialize	the	JSON	file,	and	map	it
to	a	four-column	schema	that	contains	a	tweet’s	creation	time,	its	ID	in	numerical	and
string	form,	and	the	text.	For	each	tweet,	we	extract	hashtags	from	its	text	using	a	regular
expression.	We	aggregate	on	hashtag,	count	the	number	of	occurrences,	and	order	by
frequency.	Finally,	we	limit	the	ordered	records	to	the	top	10	most	frequent	hashtags.

A	series	of	statements	like	the	previous	one	is	picked	up	by	the	Pig	compiler,	transformed
into	MapReduce	jobs,	and	executed	on	a	Hadoop	cluster.	The	planner	and	optimizer	will
resolve	dependencies	on	input	and	output	relations	and	parallelize	the	execution	of
statements	wherever	possible.

Statements	are	the	building	blocks	of	processing	data	with	Pig.	They	take	a	relation	as
input	and	produce	another	relation	as	output.	In	Pig	Latin	terms,	a	relation	can	be	defined



as	a	bag	of	tuples,	two	data	types	we	will	use	throughout	the	remainder	of	this	chapter.

Users	experienced	with	SQL	and	the	relational	data	model	might	find	Pig	Latin’s	syntax
somewhat	familiar.	While	there	are	indeed	similarities	in	the	syntax	itself,	Pig	Latin
implements	an	entirely	different	computational	model.	Pig	Latin	is	procedural,	it	specifies
the	actual	data	transforms	to	be	performed,	whereas	SQL	is	declarative	and	describes	the
nature	of	the	problem	but	does	not	specify	the	actual	runtime	processing.	In	terms	of
organizing	data,	a	relation	can	be	thought	of	as	a	table	in	a	relational	database,	where
tuples	in	a	bag	correspond	to	the	rows	in	a	table.	Relations	are	unordered	and	therefore
easily	parallelizable,	and	they	are	less	constrained	than	relational	tables.	Pig	relations	can
contain	tuples	with	different	numbers	of	fields,	and	those	with	the	same	field	count	can
have	fields	of	different	types	in	corresponding	positions.

A	key	difference	between	SQL	and	the	dataflow	model	adopted	by	Pig	Latin	lies	in	how
splits	in	a	data	pipeline	are	managed.	In	the	relational	world,	a	declarative	language	such
as	SQL	implements	and	executes	queries	that	will	generate	a	single	result.	The	dataflow
model	sees	data	transformations	as	a	graph	where	input	and	output	are	nodes	connected	by
an	operator.	For	instance,	intermediate	steps	of	a	query	might	require	the	input	to	be
grouped	by	a	number	of	keys	and	result	in	multiple	outputs	(GROUP	BY).	Pig	has	built-in
mechanisms	to	manage	multiple	data	flows	in	such	a	graph	by	executing	operators	as	soon
as	inputs	are	readily	available	and	potentially	apply	different	operators	to	each	flow.	For
instance,	Pig’s	implementation	of	the	GROUP	BY	operator	uses	the	parallel	feature
(http://pig.apache.org/docs/r0.12.0/perf.html#parallel)	to	allow	a	user	to	increase	the
number	of	reduce	tasks	for	the	MapReduce	jobs	generated	and	hence	increases
concurrency.	An	additional	side	effect	of	this	property	is	that	when	multiple	operators	can
be	executed	in	parallel	in	the	same	program,	Pig	does	so	(more	details	on	Pig’s	multi-
query	implementation	can	be	found	at	http://pig.apache.org/docs/r0.12.0/perf.html#multi-
query-execution).	Another	consequence	of	Pig	Latin’s	approach	to	computation	is	that	it
allows	the	persistence	of	data	at	any	point	in	the	pipeline.	It	allows	the	developer	to	select
specific	operator	implementations	and	execution	plans	when	necessary,	effectively
overriding	the	optimizer.

Pig	Latin	allows	and	even	encourages	developers	to	insert	their	own	code	almost
anywhere	in	a	pipeline	by	means	of	User	Defined	Functions	(UDFs)	as	well	as	by
utilizing	Hadoop	streaming.	UDFs	allow	users	to	specify	custom	business	logic	on	how
data	is	loaded,	how	it	is	stored,	and	how	it	is	processed,	whereas	streaming	allows	users	to
launch	executables	at	any	point	in	the	data	flow.

http://pig.apache.org/docs/r0.12.0/perf.html#parallel
http://pig.apache.org/docs/r0.12.0/perf.html#multi-query-execution


Programming	Pig
Pig	Latin	comes	with	a	number	of	built-in	functions	(the	eval,	load/store,	math,	string,
bag,	and	tuple	functions)	and	a	number	of	scalar	and	complex	data	types.	Additionally,	Pig
allows	function	and	data-type	extension	by	means	of	UDFs	and	dynamic	invocation	of
Java	methods.



Pig	data	types
Pig	supports	the	following	scalar	data	types:

int:	a	signed	32-bit	integer
long:	a	signed	64-bit	integer
float:	a	32-bit	floating	point
double:	a	64-bit	floating	point
chararray:	a	character	array	(string)	in	Unicode	UTF-8	format
bytearray:	a	byte	array	(blob)
boolean:	a	boolean
datetime:	a	datetime
biginteger:	a	Java	BigInteger
bigdecimal:	a	Java	BigDecimal

Pig	supports	the	following	complex	data	types:

map:	an	associative	array	enclosed	by	[],	with	the	key	and	value	separated	by	#,	and
items	separated	by	,
tuple:	an	ordered	list	of	data,	where	elements	can	be	of	any	scalar	or	complex	type
enclosed	by	(),	with	items	separated	by	,
bag:	an	unordered	collection	of	tuples	enclosed	by	{}	and	separated	by	,

By	default,	Pig	treats	data	as	untyped.	The	user	can	declare	the	types	of	data	at	load	time
or	manually	cast	it	when	necessary.	If	a	data	type	is	not	declared,	but	a	script	implicitly
treats	a	value	as	a	certain	type,	Pig	will	assume	it	is	of	that	type	and	cast	it	accordingly.
The	fields	of	a	bag	or	tuple	can	be	referred	to	by	the	name	tuple.field	or	by	the	position
$<index>.	Pig	counts	from	0	and	hence	the	first	element	will	be	denoted	as	$0.



Pig	functions
Built-in	functions	are	implemented	in	Java,	and	they	try	to	follow	standard	Java
conventions.	There	are	however	a	number	of	differences	to	keep	in	mind,	which	are	as
follows:

Function	names	are	case	sensitive	and	uppercase
If	the	result	value	is	null,	empty,	or	not	a	number	(NaN),	Pig	returns	null
If	Pig	is	unable	to	process	the	expression,	it	returns	an	exception

A	list	of	all	built-in	functions	can	be	found	at	http://pig.apache.org/docs/r0.12.0/func.html.

Load/store
Load/store	functions	determine	how	data	goes	into	and	comes	out	of	Pig.	The	PigStorage,
TextLoader,	and	BinStorage	functions	can	be	used	to	read	and	write	UTF-8	delimited,
unstructured	text,	and	binary	data	respectively.	Support	for	compression	is	determined	by
the	load/store	function.	The	PigStorage	and	TextLoader	functions	support	gzip	and	bzip2
compression	for	both	read	(load)	and	write	(store).	The	BinStorage	function	does	not
support	compression.

As	of	version	0.12,	Pig	includes	built-in	support	for	loading	and	storing	Avro	and	JSON
data	via	the	AvroStorage	(load/store),	JsonStorage	(store),	and	JsonLoader	(load).	At	the
time	of	writing,	JSON	support	is	still	somewhat	limited.	In	particular,	Pig	expects	a
schema	for	the	data	to	be	provided	as	an	argument	to	JsonLoader/JsonStorage,	or	it
assumes	that	.pig_schema	(produced	by	JsonStorage)	is	present	in	the	directory
containing	the	input	data.	In	practice,	this	makes	it	difficult	to	work	with	JSON	dumps	not
generated	by	Pig	itself.

As	seen	in	our	following	example,	we	can	load	the	JSON	dataset	with	JsonLoader:

tweets	=	LOAD	'tweets.json'	USING	JsonLoader(

'created_at:chararray,		

id:long,	

id_str:chararray,	

text:chararray,

source:chararray');

We	provide	a	schema	so	that	the	first	five	elements	of	a	JSON	object	created_id,	id,
id_str,	text,	and	source	are	mapped.	We	can	look	at	the	schema	of	tweets	by	using
describe	tweets,	which	returns	the	following:

	tweets:	{created_at:	chararray,id:	long,id_str:	chararray,text:	

chararray,source:	chararray}	

Eval
Eval	functions	implement	a	set	of	operations	to	be	applied	on	an	expression	that	returns	a
bag	or	map	data	type.	The	expression	result	is	evaluated	within	the	function	context.

AVG(expression):	computes	the	average	of	the	numeric	values	in	a	single-column

http://pig.apache.org/docs/r0.12.0/func.html


bag
COUNT(expression):	counts	all	elements	with	non-null	values	in	the	first	position	in
a	bag
COUNT_STAR(expression):	counts	all	elements	in	a	bag
IsEmpty(expression):	checks	whether	a	bag	or	map	is	empty
MAX(expression),	MIN(expression),	and	SUM(expression):	return	the	max,	min,	or
the	sum	of	elements	in	a	bag
TOKENIZE(expression):	splits	a	string	and	outputs	a	bag	of	words

The	tuple,	bag,	and	map	functions
These	functions	allow	conversion	from	and	to	the	bag,	tuple,	and	map	types.	They	include
the	following:

TOTUPLE(expression),	TOMAP(expression),	and	TOBAG(expression):	These	coerce
expression	to	a	tuple,	map,	or	bag
TOP(n,	column,	relation):	This	returns	the	top	n	tuples	from	a	bag	of	tuples

The	math,	string,	and	datetime	functions
Pig	exposes	a	number	of	functions	provided	by	the	java.lang.Math,	java.lang.String,
java.util.Date,	and	Joda-Time	DateTime	class	(found	at	http://www.joda.org/joda-
time/).

Dynamic	invokers
Dynamic	invokers	allow	the	execution	of	Java	functions	without	having	to	wrap	them	in	a
UDF.	They	can	be	used	for	any	static	function	that:

accepts	no	arguments	or	accepts	a	combination	of	string,	int,	long,	double,	float,
or	array	with	these	same	types
returns	a	string,	int,	long,	double,	or	float	value

Only	primitives	can	be	used	for	numbers	and	Java	boxed	classes	(such	as	Integer)	cannot
be	used	as	arguments.	Depending	on	the	return	type,	a	specific	kind	of	invoker	must	be
used:	InvokeForString,	InvokeForInt,	InvokeForLong,	InvokeForDouble,	or
InvokeForFloat.	More	details	regarding	dynamic	invokers	can	be	found	at
http://pig.apache.org/docs/r0.12.0/func.html#dynamic-invokers.

Macros
As	of	version	0.9,	Pig	Latin’s	preprocessor	supports	macro	expansion.	Macros	are	defined
using	the	DEFINE	statement:

DEFINE	macro_name(param1,	...,	paramN)	RETURNS	output_bag	{	

		pig_latin_statements	

};

The	macro	is	expanded	inline,	and	its	parameters	are	referenced	in	the	Pig	Latin	block
within	{	}.

http://www.joda.org/joda-time/
http://pig.apache.org/docs/r0.12.0/func.html#dynamic-invokers


The	macro	output	relation	is	given	in	the	RETURNS	statements	(output_bag).	RETURNS	void
is	used	for	a	macro	with	no	output	relation.

We	can	define	a	macro	to	count	the	number	of	rows	in	a	relation,	as	follows:

DEFINE	count_rows(X)	RETURNS	cnt	{	

		grpd	=	group	$X	all;	

		$cnt	=	foreach	grpd	generate	COUNT($X);	

};

We	can	use	it	in	a	Pig	script	or	Grunt	session	to	count	the	number	of	tweets:

tweets_count	=	count_rows(tweets);

DUMP	tweets_count;

Macros	allow	us	to	make	scripts	modular	by	housing	code	in	separate	files	and	importing
them	where	needed.	For	example,	we	can	save	count_rows	in	a	file	called
count_rows.macro	and	later	on	import	it	with	the	command	import
'count_rows.macro'.

Macros	have	a	number	of	limitations;	in	particular,	only	Pig	Latin	statements	are	allowed
inside	a	macro.	It	is	not	possible	to	use	REGISTER	statements	and	shell	commands,	UDFs
are	not	allowed,	and	parameter	substitution	inside	the	macro	is	not	supported.



Working	with	data
Pig	Latin	provides	a	number	of	relational	operators	to	combine	functions	and	apply
transformations	on	data.	Typical	operations	in	a	data	pipeline	consist	of	filtering	relations
(FILTER),	aggregating	inputs	based	on	keys	(GROUP),	generating	transformations	based	on
columns	of	data	(FOREACH),	and	joining	relations	(JOIN)	based	on	shared	keys.

In	the	following	sections,	we	will	illustrate	such	operators	on	a	dataset	of	tweets	generated
by	loading	JSON	data.

Filtering
The	FILTER	operator	selects	tuples	from	a	relation	based	on	an	expression,	as	follows:

relation	=	FILTER	relation	BY	expression;

We	can	use	this	operator	to	filter	tweets	whose	text	matches	the	hashtag	regular
expression,	as	follows:

tweets_with_tag	=	FILTER	tweets	BY	

				(text	

							MATCHES	'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)'

);

Aggregation
The	GROUP	operator	groups	together	data	in	one	or	more	relations	based	on	an	expression
or	a	key,	as	follows:

relation	=	GROUP	relation	BY	expression;

We	can	group	tweets	by	the	source	field	into	a	new	relation	grpd,	as	follows:

grpd	=	GROUP	tweets	BY	source;

It	is	possible	to	group	on	multiple	dimensions	by	specifying	a	tuple	as	the	key,	as	follows:

grpd	=	GROUP	tweets	BY	(created_at,	source);

The	result	of	a	GROUP	operation	is	a	relation	that	includes	one	tuple	per	unique	value	of	the
group	expression.	This	tuple	contains	two	fields.	The	first	field	is	named	group	and	is	of
the	same	type	as	the	group	key.	The	second	field	takes	the	name	of	the	original	relation
and	is	of	the	type	bag.	The	names	of	both	fields	are	generated	by	the	system.

Using	the	ALL	keyword,	Pig	will	aggregate	across	the	whole	relation.	The	GROUP	tweets
ALL	scheme	will	aggregate	all	tuples	in	the	same	group.

As	previously	mentioned,	Pig	allows	explicit	handling	of	the	concurrency	level	of	the
GROUP	operator	using	the	PARALLEL	operator:

grpd	=	GROUP	tweets	BY	(created_at,	id)	PARALLEL	10;

In	the	preceding	example,	the	MapReduce	job	generated	by	the	compiler	will	run	10
concurrent	reduce	tasks.	Pig	has	a	heuristic	estimate	of	how	many	reducers	to	use.



Another	way	of	globally	enforcing	the	number	of	reduce	tasks	is	to	use	the	set
default_parallel	<n>	command.

Foreach
The	FOREACH	operator	applies	functions	on	columns,	as	follows:

relation	=	FOREACH	relation	GENERATE	transformation;

The	output	of	FOREACH	depends	on	the	transformation	applied.

We	can	use	the	operator	to	project	the	text	of	all	tweets	that	contain	a	hashtag,	as	follows:

	t	=	FOREACH	tweets_with_tag	GENERATE	text;

We	can	also	apply	a	function	to	the	projected	columns.	For	instance,	we	can	use	the
REGEX_TOKENIZE	function	to	split	each	tweet	into	words,	as	follows:

t	=	FOREACH	tweets_with_tag	GENERATE	FLATTEN(TOKENIZE(text))	as	word;

The	FLATTEN	modifier	further	un-nests	the	bag	generated	by	TOKENIZE	into	a	tuple	of
words.

Join
The	JOIN	operator	performs	an	inner	join	of	two	or	more	relations	based	on	common	field
values.	Its	syntax	is	as	follows:

relation	=	JOIN	relation1	BY	expression1,	relation2	BY	expression2;

We	can	use	a	join	operation	to	detect	tweets	that	contain	positive	words,	as	follows:

positive	=	LOAD	'positive-words.txt'	USING	PigStorage()	as	(w:chararray);

Filter	out	the	comments,	as	follows:

positive_words	=	FILTER	positive	BY	NOT	w	MATCHES	'^;.*';

positive_words	is	a	bag	of	tuples,	each	containing	a	word.	We	then	tokenize	the	tweets’
text	and	create	a	new	bag	of	(id_str,	word)	tuples	as	follows:

id_words	=	FOREACH	tweets	{

			GENERATE	

						id_str,	

						FLATTEN(TOKENIZE(text))	as	word;

}

We	join	the	two	relations	on	the	word	field	and	obtain	a	relation	of	all	tweets	that	contain
one	or	more	positive	words,	as	follows:

positive_tweets	=	JOIN	positive_words	BY	w,	id_words	BY	word;

In	this	statement,	we	join	positive_words	and	id_words	on	the	condition	that
id_words.word	is	a	positive	word.	The	positive_tweets	operator	is	a	bag	in	the	form	of
{w:chararray,id_str:chararray,	word:chararray}	that	contains	all	elements	of
positive_words	and	id_words	that	match	the	join	condition.



We	can	combine	the	GROUP	and	FOREACH	operator	to	calculate	the	number	of	positive
words	per	tweet	(with	at	least	one	positive	word).	First,	we	group	the	relation	of	positive
tweets	by	the	tweet	ID,	and	then	we	count	the	number	of	occurrences	of	each	ID	in	the
relation,	as	follows:

grpd	=	GROUP	positive_tweets	BY	id_str;

score	=	FOREACH	grpd	GENERATE	FLATTEN(group),	COUNT(positive_tweets);

The	JOIN	operator	can	make	use	of	the	parallelize	feature	as	well,	as	follows:

positive_tweets	=	JOIN	positive_words	BY	w,	id_words	BY	word	PARALLEL	10

The	preceding	command	will	execute	the	join	with	10	reducer	tasks.

It	is	possible	to	specify	the	operator’s	behavior	with	the	USING	keyword	followed	by	the
ID	of	a	specialized	join.	More	details	can	be	found	at
http://pig.apache.org/docs/r0.12.0/perf.html#specialized-joins.

http://pig.apache.org/docs/r0.12.0/perf.html#specialized-joins


Extending	Pig	(UDFs)
Functions	can	be	a	part	of	almost	every	operator	in	Pig.	There	are	two	main	differences
between	UDFs	and	built-in	functions.	First,	UDFs	need	to	be	registered	using	the
REGISTER	keyword	in	order	to	make	them	available	to	Pig.	Secondly,	they	need	to	be
qualified	when	used.	Pig	UDFs	can	currently	be	implemented	in	Java,	Python,	Ruby,
JavaScript,	and	Groovy.	The	most	extensive	support	is	provided	for	Java	functions,	which
allow	you	to	customize	all	parts	of	the	process	including	data	load/store,	transformation,
and	aggregation.	Additionally,	Java	functions	are	also	more	efficient	because	they	are
implemented	in	the	same	language	as	Pig	and	because	additional	interfaces	are	supported,
such	as	the	Algebraic	and	Accumulator	interfaces.	On	the	other	hand,	Ruby	and	Python
APIs	allow	more	rapid	prototyping.

The	integration	of	UDFs	with	the	Pig	environment	is	mainly	managed	by	the	following
two	statements	REGISTER	and	DEFINE:

REGISTER	registers	a	JAR	file	so	that	the	UDFs	in	the	file	can	be	used,	as	follows:

REGISTER	'piggybank.jar'

DEFINE	creates	an	alias	to	a	function	or	a	streaming	command,	as	follows:

DEFINE	MyFunction	my.package.uri.MyFunction

The	version	0.12	of	Pig	introduced	the	streaming	of	UDFs	as	a	mechanism	for	writing
functions	using	languages	with	no	JVM	implementation.



Contributed	UDFs
Pig’s	code	base	hosts	a	UDF	repository	called	Piggybank.	Other	popular	contributed
repositories	are	Twitter’s	Elephant	Bird	(found	at	https://github.com/kevinweil/elephant-
bird/)	and	Apache	DataFu	(found	at	http://datafu.incubator.apache.org/).

Piggybank
Piggybank	is	a	place	for	Pig	users	to	share	their	functions.	Shared	code	is	located	in	the
official	Pig	Subversion	repository	found	at
http://svn.apache.org/viewvc/pig/trunk/contrib/piggybank/java/src/main/java/org/apache/pig/piggybank/
The	API	documentation	can	be	found	at	http://pig.apache.org/docs/r0.12.0/api/	under	the
contrib	section.	Piggybank	UDFs	can	be	obtained	by	checking	out	and	compiling	the
sources	from	the	Subversion	repository	or	by	using	the	JAR	file	that	ships	with	binary
releases	of	Pig.	In	Cloudera	CDH,	piggybank.jar	is	available	at
/opt/cloudera/parcels/CDH/lib/pig/piggybank.jar.

Elephant	Bird
Elephant	Bird	is	an	open	source	library	of	all	things	Hadoop	used	in	production	at	Twitter.
This	library	contains	a	number	of	serialization	tools,	custom	input	and	output	formats,
writables,	Pig	load/store	functions,	and	more	miscellanea.

Elephant	Bird	ships	with	an	extremely	flexible	JSON	loader	function,	which	at	the	time	of
writing,	is	the	go-to	resource	for	manipulating	JSON	data	in	Pig.

Apache	DataFu
Apache	DataFu	Pig	collects	a	number	of	analytical	functions	developed	and	contributed
by	LinkedIn.	These	include	statistical	and	estimation	functions,	bag	and	set	operations,
sampling,	hashing,	and	link	analysis.

https://github.com/kevinweil/elephant-bird/
http://datafu.incubator.apache.org/
http://svn.apache.org/viewvc/pig/trunk/contrib/piggybank/java/src/main/java/org/apache/pig/piggybank/
http://pig.apache.org/docs/r0.12.0/api/


Analyzing	the	Twitter	stream
In	the	following	examples,	we	will	use	the	implementation	of	JsonLoader	provided	by
Elephant	Bird	to	load	and	manipulate	JSON	data.	We	will	use	Pig	to	explore	tweet
metadata	and	analyze	trends	in	the	dataset.	Finally,	we	will	model	the	interaction	between
users	as	a	graph	and	use	Apache	DataFu	to	analyze	this	social	network.



Prerequisites
Download	the	elephant-bird-pig
(http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-pig/4.5/elephant-
bird-pig-4.5.jar),	elephant-bird-hadoop-compat
(http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-hadoop-
compat/4.5/elephant-bird-hadoop-compat-4.5.jar),	and	elephant-bird-core
(http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-
core/4.5/elephant-bird-core-4.5.jar)	JAR	files	from	the	Maven	central	repository	and	copy
them	onto	HDFS	using	the	following	command:

$	hdfs	dfs	-put	target/elephant-bird-pig-4.5.jar	hdfs:///jar/

$	hdfs	dfs	–put	target/elephant-bird-hadoop-compat-4.5.jar	hdfs:///jar/

$	hdfs	dfs	–put	elephant-bird-core-4.5.jar	hdfs:///jar/	

http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-pig/4.5/elephant-bird-pig-4.5.jar
http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-hadoop-compat/4.5/elephant-bird-hadoop-compat-4.5.jar
http://central.maven.org/maven2/com/twitter/elephantbird/elephant-bird-core/4.5/elephant-bird-core-4.5.jar


Dataset	exploration
Before	diving	deeper	into	the	dataset,	we	need	to	register	the	dependencies	to	Elephant
Bird	and	DataFu,	as	follows:

REGISTER	/opt/cloudera/parcels/CDH/lib/pig/datafu-1.1.0-cdh5.0.0.jar

REGISTER	/opt/cloudera/parcels/CDH/lib/pig/lib/json-simple-1.1.jar

REGISTER	hdfs:///jar/elephant-bird-pig-4.5.jar

REGISTER	hdfs:///jar/elephant-bird-hadoop-compat-4.5.jar

REGISTER	hdfs:///jar/elephant-bird-core-4.5.jar

Then,	load	the	JSON	dataset	of	tweets	using
com.twitter.elephantbird.pig.load.JsonLoader,	as	follows:

tweets	=	LOAD	'tweets.json'	using		

com.twitter.elephantbird.pig.load.JsonLoader('-nestedLoad');

com.twitter.elephantbird.pig.load.JsonLoader	decodes	each	line	of	the	input	file	to
JSON	and	passes	the	resulting	map	of	values	to	Pig	as	a	single-element	tuple.	This	enables
access	to	elements	of	the	JSON	object	without	having	to	specify	a	schema	upfront.	The	–
nestedLoad	argument	instructs	the	class	to	load	nested	data	structures.



Tweet	metadata
In	the	remainder	of	the	chapter,	we	will	use	metadata	from	the	JSON	dataset	to	model	the
tweet	stream.	One	example	of	metadata	attached	to	a	tweet	is	the	Place	object,	which
contains	geographical	information	about	the	user’s	location.	Place	contains	fields	that
describe	its	name,	ID,	country,	country	code,	and	more.	A	full	description	can	be	found	at
https://dev.twitter.com/docs/platform-objects/places.

place	=	FOREACH	tweets	GENERATE	(chararray)$0#'place'	as	place;

Entities	give	information	such	as	structured	data	from	tweets,	URLs,	hashtags,	and
mentions,	without	having	to	extract	them	from	text.	A	description	of	entities	can	be	found
at	https://dev.twitter.com/docs/entities.	The	hashtag	entity	is	an	array	of	tags	extracted
from	a	tweet.	Each	entity	has	the	following	two	attributes:

Text:	is	the	hashtag	text
Indices:	is	the	character	position	from	which	the	hashtag	was	extracted

The	following	code	uses	entities:

hashtags_bag	=	FOREACH	tweets	{

				GENERATE	

						FLATTEN($0#'entities'#'hashtags')	as	tag;

}

We	then	flatten	hashtags_bag	to	extract	each	hashtag’s	text:

hashtags	=	FOREACH	hashtags_bag	GENERATE	tag#'text'	as	topic;

Entities	for	user	objects	contain	information	that	appears	in	the	user	profile	and
description	fields.	We	can	extract	the	tweet	author’s	ID	via	the	user	field	in	the	tweet
map:

users	=	FOREACH	tweets	GENERATE	$0#'user'#'id'	as	id;

https://dev.twitter.com/docs/platform-objects/places
https://dev.twitter.com/docs/entities


Data	preparation
The	SAMPLE	built-in	operator	selects	a	set	of	n	tuples	with	probability	p	out	of	the	dataset,
as	follows:

sampled	=	SAMPLE	tweets	0.01;

The	preceding	command	will	select	approximately	1	percent	of	the	dataset.	Given	that
SAMPLE	is	probabilistic	(http://en.wikipedia.org/wiki/Bernoulli_sampling),	there	is	no
guarantee	that	the	sample	size	will	be	exact.	Moreover	the	function	samples	with
replacement,	which	means	that	each	item	might	appear	more	than	once.

Apache	DataFu	implements	a	number	of	sampling	methods	for	cases	where	having	an
exact	sample	size	and	no	replacement	is	desired	(SimpleRandomSampling),	sampling	with
replacement	(SimpleRandomSampleWithReplacementVote	and
SimpleRandomSampleWithReplacementElect),	when	we	want	to	account	for	sample	bias
(WeightedRandomSampling),	or	to	sample	across	multiple	relations	(SampleByKey).

We	can	create	a	sample	of	exactly	1	percent	of	the	dataset,	with	each	item	having	the	same
probability	of	being	selected,	using	SimpleRandomSample.

Note
The	actual	guarantee	is	a	sample	of	size	ceil	(p*n)	with	a	probability	of	at	least	99	percent.

First,	we	pass	a	sampling	probability	0.01	to	the	UDF	constructor:

DEFINE	SRS	datafu.pig.sampling.SimpleRandomSample('0.01');

and	the	bag,	created	with	(GROUP	tweets	ALL),	to	be	sampled:

sampled	=	FOREACH	(GROUP	tweets	ALL)	GENERATE	FLATTEN(SRS(tweets));

The	SimpleRandomSample	UDF	selects	without	replacement,	which	means	that	each	item
will	appear	only	once.

Note
Which	sampling	method	to	use	depends	both	on	the	data	we	are	working	with,
assumptions	on	how	items	are	distributed,	the	size	of	the	dataset,	and	what	we	practically
want	to	achieve.	In	general,	when	we	want	to	explore	a	dataset	to	formulate	hypotheses,
SimpleRandomSample	can	be	a	good	choice.	However,	in	several	analytics	applications,	it
is	common	to	use	methods	that	assume	replacement	(for	example,	bootstrapping).

Note	that	when	working	with	very	large	datasets,	sampling	with	replacement	and	sampling
without	replacement	tend	to	behave	similarly.	The	probability	of	an	item	being	selected
twice	out	of	a	population	of	billions	of	items	will	be	low.

http://en.wikipedia.org/wiki/Bernoulli_sampling


Top	n	statistics
One	of	the	first	questions	we	might	want	to	ask	is	how	frequent	certain	things	are.	For
instance,	we	might	want	to	create	a	histogram	of	the	top	10	topics	by	the	number	of
mentions.	Similarly,	we	might	want	to	find	the	top	50	countries	or	the	top	10	users.	Before
looking	at	tweets	data,	we	will	define	a	macro	so	that	we	can	apply	the	same	selection
logic	to	different	collections	of	items:

DEFINE	top_n(rel,	col,	n)	

		RETURNS	top_n_items	{

				grpd	=	GROUP	$rel	BY	$col;

				cnt_items	=	FOREACH	grpd	

								GENERATE	FLATTEN(group),	COUNT($rel)	AS	cnt;

				cnt_items_sorted	=	ORDER	cnt_items	BY	cnt	DESC;

				$top_n_items	=	LIMIT	cnt_items_sorted	$n;

		}

The	top_n	method	takes	a	relation	rel,	the	column	col	we	want	to	count,	and	the	number
of	items	to	return	n	as	parameters.	In	the	Pig	Latin	block,	we	first	group	rel	by	items	in
col,	count	the	number	of	occurrences	of	each	item,	sort	them,	and	select	the	most	frequent
n.

To	find	the	top	10	English	hashtags,	we	filter	them	by	language,	and	extract	their	text:

tweets_en	=	FILTER	tweets	by	$0#'lang'	==	'en';

hashtags_bag	=	FOREACH	tweets	{	

				GENERATE

								FLATTEN($0#'entities'#'hashtags')	AS	tag;

}

hashtags	=	FOREACH	hashtags_bag	GENERATE	tag#'text'	AS	tag;

And	apply	the	top_n	macro:

top_10_hashtags	=	top_n(hashtags,	tag,	10);

In	order	to	better	characterize	what	is	trending	and	make	this	information	more	relevant	to
users,	we	can	drill	down	into	the	dataset	and	look	at	hashtags	per	geographic	location.

First,	we	generate	bag	of	(place,	hashtag)	tuples,	as	follows:

hashtags_country_bag	=	FOREACH	tweets	generate	{

				0#'place'	as	place,	

				FLATTEN($0#'entities'#'hashtags')	as	tag;

}

And	then,	we	extract	the	country	code	and	hashtag	text,	as	follows:

hashtags_country	=	FOREACH	hashtags_country_bag	{

		GENERATE	

				place#'country_code'	as	co,	

				tag#'text'	as	tag;

}

Then,	we	count	how	many	times	each	country	code	and	hashtag	appear	together,	as



follows:

hashtags_country_frequency	=	FOREACH	(GROUP	hashtags_country	ALL)	{

		GENERATE	

				FLATTEN(group),	

				COUNT(hashtags_country)	as	count;

}

Finally,	we	count	the	top	10	countries	per	hashtag	with	the	TOP	function,	as	follows:

hashtags_country_regrouped=	GROUP	hashtags_country_frequency	BY	cnt;	

top_results	=	FOREACH	hashtags_country_regrouped	{

				result	=	TOP(10,	1,	hashtags_country_frequency);

				GENERATE	FLATTEN(result);

}	

TOP‘s	parameters	are	the	number	of	tuples	to	return,	the	column	to	compare,	and	the
relation	containing	said	column:

top_results	=	FOREACH	D	{

		result	=	TOP(10,	1,	C);

		GENERATE	FLATTEN(result);

}

The	source	code	for	this	example	can	be	found	at
https://github.com/learninghadoop2/book-examples/blob/master/ch6/topn.pig.

https://github.com/learninghadoop2/book-examples/blob/master/ch6/topn.pig


Datetime	manipulation
The	created_at	field	in	the	JSON	tweets	gives	us	time-stamped	information	about	when
the	tweet	was	posted.	Unfortunately,	its	format	is	not	compatible	with	Pig’s	built-in
datetime	type.

Piggybank	comes	to	the	rescue	with	a	number	of	time	manipulation	UDFs	contained	in
org.apache.pig.piggybank.evaluation.datetime.convert.	One	of	them	is
CustomFormatToISO,	which	converts	an	arbitrarily	formatted	timestamp	into	an	ISO	8601
datetime	string.

In	order	to	access	these	UDFs,	we	first	need	to	register	the	piggybank.jar	file,	as	follows:

REGISTER	/opt/cloudera/parcels/CDH/lib/pig/piggybank.jar

To	make	our	code	less	verbose,	we	create	an	alias	for	the	CustomFormatToISO	class’s	fully
qualified	Java	name:

DEFINE	CustomFormatToISO	

org.apache.pig.piggybank.evaluation.datetime.convert.CustomFormatToISO();

By	knowing	how	to	manipulate	timestamps,	we	can	calculate	statistics	at	different	time
intervals.	For	instance,	we	can	look	at	how	many	tweets	are	created	per	hour.	Pig	has	a
built-in	GetHour	function	that	extracts	the	hour	out	of	a	datetime	type.	To	use	this,	we
first	convert	the	timestamp	string	to	ISO	8601	with	CustomFormatToISO	and	then	the
resulting	chararray	to	datetime	using	the	built-in	ToDate	function,	as	follows:

hourly_tweets	=	FOREACH	tweets	{

		GENERATE	

				GetHour(

						ToDate(

						CustomFormatToISO(

$0#'created_at',	'EEE	MMMM	d	HH:mm:ss	Z	y')

						)

				)	as	hour;

}

Now,	it	is	just	a	matter	of	grouping	hourly_tweets	by	hour	and	then	generating	a	count	of
tweets	per	group,	as	follows:

hourly_tweets_count	=		FOREACH	(GROUP	hourly_tweets	BY	hour)	{	

		GENERATE	FLATTEN(group),	COUNT(hourly_tweets);

}

Sessions
DataFu’s	Sessionize	class	can	help	us	to	better	capture	user	activity	over	time.	A	session
represents	the	activity	of	a	user	within	a	given	period	of	time.	For	instance,	we	can	look	at
each	user’s	tweet	stream	at	intervals	of	15	minutes	and	measure	these	sessions	to
determine	both	network	volumes	as	well	as	user	activity:

DEFINE	Sessionize	datafu.pig.sessions.Sessionize('15m');

users_activity	=	FOREACH	tweets	{



						GENERATE	

								CustomFormatToISO($0#'created_at',	

																						'EEE	MMMM	d	HH:mm:ss	Z	y')	AS	dt,

								(chararray)$0#'user'#'id'	as	user_id;

}

users_activity_sessionized	=	FOREACH	

				(GROUP	users_activity	BY	user_id)	{

				ordered	=	ORDER	users_activity	BY	dt;

				GENERATE	FLATTEN(Sessionize(ordered))	

																				AS	(dt,	user_id,	session_id);

}

user_activity	simply	records	the	time	dt	a	given	user_id	posted	a	status	update.

Sessionize	takes	the	session	timeout	and	a	bag	as	input.	The	first	element	of	the	input
bag	is	an	ISO	8601	timestamp,	and	the	bag	must	be	sorted	by	this	timestamp.	Events	that
are	within	15	minutes	from	each	other	will	belong	to	the	same	session.

It	returns	the	input	bag	with	a	new	field,	session_id,	that	uniquely	identifies	a	session.
With	this	data,	we	can	calculate	the	session’s	length	and	some	other	statistics.	More
examples	of	Sessionize	usage	can	be	found	at
http://datafu.incubator.apache.org/docs/datafu/guide/sessions.html.

http://datafu.incubator.apache.org/docs/datafu/guide/sessions.html


Capturing	user	interactions
In	the	remainder	of	the	chapter,	we	will	look	at	how	to	capture	patterns	from	user
interactions.	As	a	first	step	in	this	direction,	we	will	create	a	dataset	suitable	to	model	a
social	network.	This	dataset	will	contain	a	timestamp,	the	ID	of	the	tweet,	the	user	who
posted	the	tweet,	the	user	and	tweet	she’s	replying	to,	and	the	hashtag	in	the	tweet.

Twitter	considers	as	a	reply	(in_reply_to_status_id_str)	any	message	beginning	with
the	@	character.	Such	tweets	are	interpreted	as	a	direct	message	to	that	person.	Placing	an	@
character	anywhere	else	in	the	tweet	is	interpreted	as	a	mention
('entities'#'user_mentions‘)	and	not	a	reply.	The	difference	is	that	mentions	are
immediately	broadcast	to	a	person’s	followers,	whereas	replies	are	not.	Replies	are,
however,	considered	as	mentions.

When	working	with	personally	identifiable	information,	it	is	a	good	idea	to	anonymize	if
not	remove	entirely	sensitive	data	such	as	IP	addresses,	names,	and	user	IDs.	A	commonly
used	technique	involves	a	hash	function	that	takes	as	input	the	data	we	want	to
anonymize,	concatenated	with	additional	random	data	called	salt.	The	following	code
shows	an	example	of	such	anonymization:

DEFINE	SHA	datafu.pig.hash.SHA();

from_to_bag	=	FOREACH	tweets	{

		dt	=	$0#'created_at';

		user_id	=	(chararray)$0#'user'#'id';

		tweet_id	=	(chararray)$0#'id_str';

		reply_to_tweet	=	(chararray)$0#'in_reply_to_status_id_str';

		reply_to	=	(chararray)$0#'in_reply_to_user_id_str';

		place	=	$0#'place';

		topics	=	$0#'entities'#'hashtags';

		GENERATE

				CustomFormatToISO(dt,	'EEE	MMMM	d	HH:mm:ss	Z	y')	AS	dt,

				SHA((chararray)CONCAT('SALT',	user_id))	AS	source,		

				SHA(((chararray)CONCAT('SALT',	tweet_id)))	AS	tweet_id,

				((reply_to_tweet	IS	NULL)	

									?	NULL	

									:	SHA((chararray)CONCAT('SALT',	reply_to_tweet)))	

															AS		reply_to_tweet_id,

				((reply_to	IS	NULL)	

									?	NULL	

									:	SHA((chararray)CONCAT('SALT',	reply_to)))	

																AS	destination,

				(chararray)place#'country_code'	as	country,

				FLATTEN(topics)	AS	topic;

}

—extract	the	hashtag	text

from_to	=	FOREACH	from_to_bag	{	

		GENERATE	

				dt,	

				tweet_id,	

				reply_to_tweet_id,	

				source,	



				destination,	

				country,

				(chararray)topic#'text'	AS	topic;

}

In	this	example,	we	use	CONCAT	to	append	a	(not	so	random)	salt	string	to	personal	data.
We	then	generate	a	hash	of	the	salted	IDs	with	DataFu’s	SHA	function.	The	SHA	function
requires	its	input	parameters	to	be	non	null.	We	enforce	this	condition	using	if-then-else
statements.	In	Pig	Latin,	this	is	expressed	as	<condition	is	true>	?	<true	branch>	:
<false	branch>	.	If	the	string	is	null,	we	return	NULL,	and	if	not,	we	return	the	salted	hash.
To	make	code	more	readable,	we	use	aliases	for	the	tweet	JSON	fields	and	reference	them
in	the	GENERATE	block.



Link	analysis
We	can	redefine	our	approach	to	determine	trending	topics	to	include	users’	reactions.	A
first,	naïve,	approach	could	be	to	consider	a	topic	as	important	if	it	caused	a	number	of
replies	larger	than	a	threshold	value.

A	problem	with	this	approach	is	that	tweets	generate	relatively	few	replies,	so	the	volume
of	the	resulting	dataset	will	be	low.	Hence,	it	requires	a	very	large	amount	of	data	to
contain	tweets	being	replied	to	and	produce	any	result.	In	practice,	we	would	likely	want
to	combine	this	metric	with	other	ones	(for	example,	mentions)	in	order	to	perform	more
meaningful	analyses.

To	satisfy	this	query,	we	will	create	a	new	dataset	that	includes	the	hashtags	extracted
from	both	the	tweet	and	the	one	a	user	is	replying	to:

tweet_hashtag	=	FOREACH	from_to	GENERATE	tweet_id,	topic;

from_to_self_joined	=	JOIN	from_to	BY	reply_to_tweet_id	LEFT,	

tweet_hashtag	BY	tweet_id;

twitter_graph	=	FOREACH	from_to_self_joined		{	

				GENERATE

								from_to::dt	AS	dt,

								from_to::tweet_id	AS	tweet_id,

								from_to::reply_to_tweet_id	AS	reply_to_tweet_id,

								from_to::source	AS	source,

								from_to::destination	AS	destination,

								from_to::topic	AS	topic,

								from_to::country	AS	country,

								tweet_hashtag::topic	AS	topic_replied;

}

Note	that	Pig	does	not	allow	a	cross	join	on	the	same	relation,	hence	we	have	to	create
tweet_hashtag	for	the	right-hand	side	of	the	join.	Here,	we	use	the	::	operator	to
disambiguate	from	which	relation	and	column	we	want	to	select	records.

Once	again,	we	can	look	for	the	top	10	topics	by	number	of	replies	using	the	top_n	macro:

top_10_topics	=	top_n(twitter_graph,	topic_replied,	10);

Counting	things	will	only	take	us	so	far.	We	can	compute	more	descriptive	statistics	on
this	dataset	with	DataFu.	Using	the	Quantile	function,	we	can	calculate	the	median,	the
90th,	95th,	and	the	99th	percentiles	of	the	number	of	hashtag	reactions,	as	follows:

DEFINE	Quantile	datafu.pig.stats.Quantile('0.5','0.90','0.95','0.99');

Since	the	UDF	expects	an	ordered	bag	of	integer	values	as	input,	we	first	count	the
frequency	of	each	topic_replied	entry,	as	follows.

topics_with_replies_grpd	=	GROUP	twitter_graph	BY	topic_replied;

topics_with_replies_cnt	=	FOREACH	topics_with_replies_grpd	{

		GENERATE

COUNT(twitter_graph)	as	cnt;

}



Then,	we	apply	Quantile	on	the	bag	of	frequencies,	as	follows:

quantiles	=	FOREACH	(GROUP	topics_with_replies_cnt	ALL)	{

				sorted	=	ORDER	topics_with_replies_cnt	BY	cnt;

				GENERATE	Quantile(sorted);

}

The	source	code	for	this	example	can	be	found	at
https://github.com/learninghadoop2/book-examples/blob/master/ch6/graph.pig.

https://github.com/learninghadoop2/book-examples/blob/master/ch6/graph.pig


Influential	users
We	will	use	PageRank,	an	algorithm	developed	by	Google	to	rank	web	pages
(http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf),	to	identify	influential	users	in	the
Twitter	graph	we	generated	in	the	previous	section.

This	type	of	analysis	has	a	number	of	use	cases,	such	as	targeted	and	contextual
advertisement,	recommendation	systems,	spam	detection,	and	obviously	measuring	the
importance	of	web	pages.	A	similar	approach,	used	by	Twitter	to	implement	the	Who	to
Follow	feature,	is	described	in	the	research	paper	WTF:	The	Who	to	Follow	service	at
Twitter	found	at	http://stanford.edu/~rezab/papers/wtf_overview.pdf.

Informally,	PageRank	determines	the	importance	of	a	page	based	on	the	importance	of
other	pages	linking	to	it	and	assigns	it	a	score	between	0	and	1.	A	high	PageRank	score
indicates	that	a	lot	of	pages	point	to	it.	Intuitively,	being	linked	by	pages	with	a	high
PageRank	is	a	quality	endorsement.	In	terms	of	the	Twitter	graph,	we	assume	that	users
receiving	a	lot	of	replies	are	important	or	influential	within	the	social	network.	In	Twitter’s
case,	we	consider	an	extended	definition	of	PageRank,	where	the	link	between	two	users
is	given	by	a	direct	reply	and	labeled	by	any	eventual	hashtag	present	in	the	message.
Heuristically,	we	want	to	identify	influential	users	on	a	given	topic.

In	DataFu’s	implementation,	each	graph	is	represented	as	a	bag	of	(source,	edges)
tuples.	The	source	tuple	is	an	integer	ID	representing	the	source	node.	The	edges	are	a
bag	of	(destination,	weight)	tuples.	destination	is	an	integer	ID	representing	the
destination	node.	weight	is	a	double	representing	how	much	the	edge	should	be	weighted.
The	output	of	the	UDF	is	a	bag	of	(source,	rank)	pairs,	where	rank	is	the	PageRank
value	for	the	source	user	in	the	graph.	Notice	that	we	talked	about	nodes,	edges,	and
graphs	as	abstract	concepts.	In	Google’s	case,	nodes	are	web	pages,	edges	are	links	from
one	page	to	the	other,	and	graphs	are	groups	of	pages	connected	directly	and	indirectly.

In	our	case,	nodes	represent	users,	edges	represent	in_reply_to_user_id_str	mentions,
and	edges	are	labeled	by	hashtags	in	tweets.	The	output	of	PageRank	should	suggest
which	users	are	influential	on	a	given	topic	given	their	interaction	patterns.

In	this	section,	we	will	write	a	pipeline	to:

Represent	data	as	a	graph	where	each	node	is	a	user	and	a	hashtag	labels	the	edge
Map	IDs	and	hashtags	to	integers	so	that	they	can	be	consumed	by	PageRank
Apply	PageRank
Store	the	results	into	HDFS	in	an	interoperable	format	(Avro)

We	represent	the	graph	as	a	bag	of	tuples	in	the	form	(source,	destination,	topic),
where	each	tuple	represents	the	interaction	between	nodes.	The	source	code	for	this
example	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch6/pagerank.pig.

We	will	map	users’	and	hashtags’	text	to	numerical	IDs.	We	use	the	Java	String
hashCode()	method	to	perform	this	conversion	step	and	wrap	the	logic	in	an	Eval	UDF.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://stanford.edu/~rezab/papers/wtf_overview.pdf
https://github.com/learninghadoop2/book-examples/blob/master/ch6/pagerank.pig


Note
The	size	of	an	integer	is	effectively	the	upper	bound	for	the	number	of	nodes	and	edges	in
the	graph.	For	production	code,	it	is	recommended	that	you	use	a	more	robust	hash
function.

The	StringToInt	class	takes	a	string	as	input,	calls	the	hashCode()	method,	and	returns
the	method	output	to	Pig.	The	UDF	code	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch6/udf/com/learninghadoop2/pig/udf/StringToInt.java.

package	com.learninghadoop2.pig.udf;

import	java.io.IOException;

import	org.apache.pig.EvalFunc;

import	org.apache.pig.data.Tuple;

public	class	StringToInt	extends	EvalFunc<Integer>	{

				public	Integer	exec(Tuple	input)	throws	IOException	{

								if	(input	==	null	||	input.size()	==	0)

												return	null;

								try	{

												String	str	=	(String)	input.get(0);

												return	str.hashCode();

								}	catch(Exception	e)	{

										throw	

													new	IOException("Cannot	convert	String	to	Int",	e);

								}

				}

}

We	extend	org.apache.pig.EvalFunc	and	override	the	exec	method	to	return
str.hashCode()	on	the	function	input.	The	EvalFunc<Integer>	class	is	parameterized
with	the	return	type	of	the	UDF	(Integer).

Next,	we	compile	the	class	and	archive	it	into	a	JAR,	as	follows:

$	javac	-classpath	/opt/cloudera/parcels/CDH/lib/pig/pig.jar:$(hadoop	

classpath)	com/learninghadoop2/pig/udf/StringToInt.java

$	jar	cvf	myudfs-pig.jar	com/learninghadoop2/pig/udf/StringToInt.class

We	can	now	register	the	UDF	in	Pig	and	create	an	alias	to	StringToInt,	as	follows:

REGISTER	myudfs-pig.jar

DEFINE	StringToInt	com.learninghadoop2.pig.udf.StringToInt();

We	filter	out	tweets	with	no	destination	and	no	topic,	as	follows:

tweets_graph_filtered	=	FILTER	twitter_graph	by	

(destination	IS	NOT	NULL)	AND	

(topic	IS	NOT	null);

Then,	we	convert	the	source,	destination,	and	topic	to	integer	IDs:

from_to	=	foreach	tweets_graph_filtered	{

		GENERATE	

				StringToInt(source)	as	source_id,	

https://github.com/learninghadoop2/book-examples/blob/master/ch6/udf/com/learninghadoop2/pig/udf/StringToInt.java


				StringToInt(destination)	as	destination_id,	

				StringToInt(topic)	as	topic_id;

}

Once	data	is	in	the	appropriate	format,	we	can	reuse	the	implementation	of	PageRank	and
the	example	code	(found	at	https://github.com/apache/incubator-
datafu/blob/master/datafu-pig/src/main/java/datafu/pig/linkanalysis/PageRank.java)
provided	by	DataFu,	as	shown	in	the	following	code:

DEFINE	PageRank	datafu.pig.linkanalysis.PageRank('dangling_nodes','true');

We	begin	by	creating	a	bag	of	(source_id,	destination_id,	topic_id)	tuples,	as
follows:

reply_to	=	group	from_to	by	(source_id,	destination_id,	topic_id);	

We	count	the	occurrences	of	each	tuple,	that	is,	how	many	times	two	people	talked	about	a
topic,	as	follows:

topic_edges	=	foreach	reply_to	{

		GENERATE	flatten(group),	((double)COUNT(from_to.topic_id))	as	w;

}

Remember	that	topic	is	the	edge	of	our	graph;	we	begin	by	creating	an	association
between	the	source	node	and	the	topic	edge,	as	follows:

topic_edges_grouped	=	GROUP	topic_edges	by	(topic_id,	source_id);

Then	we	regroup	it	with	the	purpose	of	adding	a	destination	node	and	the	edge	weight,	as
follows:

topic_edges_grouped	=	FOREACH	topic_edges_grouped	{

		GENERATE

				group.topic_id	as	topic,

				group.source_id	as	source,

				topic_edges.(destination_id,w)	as	edges;

}

Once	we	create	the	Twitter	graph,	we	calculate	the	PageRank	of	all	users	(source_id):

topic_rank	=	FOREACH	(GROUP	topic_edges_grouped	BY	topic)	{

		GENERATE

				group	as	topic,

				FLATTEN(PageRank(topic_edges_grouped.(source,edges)))	as	(source,rank);

}

topic_rank	=	FOREACH	topic_rank	GENERATE	topic,	source,	rank;

We	store	the	result	in	HDFS	in	Avro	format.	If	Avro	dependencies	are	not	present	in	the
classpath,	we	need	to	add	the	Avro	MapReduce	jar	file	to	our	environment	before
accessing	individual	fields.	Within	Pig,	for	example,	on	the	Cloudera	CDH5	VM:

REGISTER	/opt/cloudera/parcels/CDH/lib/avro/avro.jar

REGISTER	/opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar	

STORE	topic_rank	INTO	'replies-pagerank'	using	AvroStorage();				

Note

https://github.com/apache/incubator-datafu/blob/master/datafu-pig/src/main/java/datafu/pig/linkanalysis/PageRank.java


In	these	last	two	sections,	we	made	a	number	of	implicit	assumptions	on	what	a	Twitter
graph	might	look	like	and	what	the	concepts	of	topic	and	user	interaction	mean.	Given	the
constraints	that	we	posed,	the	resulting	social	network	we	analyzed	will	be	relatively	small
and	not	necessarily	representative	of	the	entire	Twitter	social	network.	Extrapolating
results	from	this	dataset	is	discouraged.	In	practice,	there	are	many	other	factors	that
should	be	taken	into	account	to	generate	a	robust	model	of	social	interaction.



Summary
In	this	chapter,	we	introduced	Apache	Pig,	a	platform	for	large-scale	data	analysis	on
Hadoop.	In	particular,	we	covered	the	following	topics:

The	goals	of	Pig	as	a	way	of	providing	a	dataflow-like	abstraction	that	does	not
require	hands-on	MapReduce	development
How	Pig’s	approach	to	processing	data	compares	to	SQL,	where	Pig	is	procedural
while	SQL	is	declarative
Getting	started	with	Pig	—	an	easy	task,	as	it	is	a	library	that	generates	custom	code
and	doesn’t	require	additional	services
An	overview	of	the	data	types,	core	functions,	and	extension	mechanisms	provided
by	Pig
Examples	of	applying	Pig	to	analyze	the	Twitter	dataset	in	detail,	which
demonstrated	its	ability	to	express	complex	concepts	in	a	very	concise	fashion
How	libraries	such	as	Piggybank,	Elephant	Bird,	and	DataFu	provide	repositories	for
numerous	useful	prewritten	Pig	functions
In	the	next	chapter,	we	will	revisit	the	SQL	comparison	by	exploring	tools	that
expose	a	SQL-like	abstraction	over	data	stored	in	HDFS



Chapter	7.	Hadoop	and	SQL
MapReduce	is	a	powerful	paradigm	that	enables	complex	data	processing	that	can	reveal
valuable	insights.	As	discussed	in	earlier	chapters	however,	it	does	require	a	different
mindset	and	some	training	and	experience	on	the	model	of	breaking	processing	analytics
into	a	series	of	map	and	reduce	steps.	There	are	several	products	that	are	built	atop
Hadoop	to	provide	higher-level	or	more	familiar	views	of	the	data	held	within	HDFS,	and
Pig	is	a	very	popular	one.	This	chapter	will	explore	the	other	most	common	abstraction
implemented	atop	Hadoop:	SQL.

In	this	chapter,	we	will	cover	the	following	topics:

What	the	use	cases	for	SQL	on	Hadoop	are	and	why	it	is	so	popular
HiveQL,	the	SQL	dialect	introduced	by	Apache	Hive
Using	HiveQL	to	perform	SQL-like	analysis	of	the	Twitter	dataset
How	HiveQL	can	approximate	common	features	of	relational	databases	such	as	joins
and	views
How	HiveQL	allows	the	incorporation	of	user-defined	functions	into	its	queries
How	SQL	on	Hadoop	complements	Pig
Other	SQL-on-Hadoop	products	such	as	Impala	and	how	they	differ	from	Hive



Why	SQL	on	Hadoop
So	far	we	have	seen	how	to	write	Hadoop	programs	using	the	MapReduce	APIs	and	how
Pig	Latin	provides	a	scripting	abstraction	and	a	wrapper	for	custom	business	logic	by
means	of	UDFs.	Pig	is	a	very	powerful	tool,	but	its	dataflow-based	programming	model	is
not	familiar	to	most	developers	or	business	analysts.	The	traditional	tool	of	choice	for	such
people	to	explore	data	is	SQL.

Back	in	2008	Facebook	released	Hive,	the	first	widely	used	implementation	of	SQL	on
Hadoop.

Instead	of	providing	a	way	of	more	quickly	developing	map	and	reduce	tasks,	Hive	offers
an	implementation	of	HiveQL,	a	query	language	based	on	SQL.	Hive	takes	HiveQL
statements	and	immediately	and	automatically	translates	the	queries	into	one	or	more
MapReduce	jobs.	It	then	executes	the	overall	MapReduce	program	and	returns	the	results
to	the	user.

This	interface	to	Hadoop	not	only	reduces	the	time	required	to	produce	results	from	data
analysis,	it	also	significantly	widens	the	net	as	to	who	can	use	Hadoop.	Instead	of
requiring	software	development	skills,	anyone	who’s	familiar	with	SQL	can	use	Hive.

The	combination	of	these	attributes	is	that	HiveQL	is	often	used	as	a	tool	for	business	and
data	analysts	to	perform	ad	hoc	queries	on	the	data	stored	on	HDFS.	With	Hive,	the	data
analyst	can	work	on	refining	queries	without	the	involvement	of	a	software	developer.	Just
as	with	Pig,	Hive	also	allows	HiveQL	to	be	extended	by	means	of	User	Defined
Functions,	enabling	the	base	SQL	dialect	to	be	customized	with	business-specific
functionality.



Other	SQL-on-Hadoop	solutions
Though	Hive	was	the	first	product	to	introduce	and	support	HiveQL,	it	is	no	longer	the
only	one.	Later	in	this	chapter,	we	will	also	discuss	Impala,	released	in	2013	and	already	a
very	popular	tool,	particularly	for	low-latency	queries.	There	are	others,	but	we	will
mostly	discuss	Hive	and	Impala	as	they	have	been	the	most	successful.

While	introducing	the	core	features	and	capabilities	of	SQL	on	Hadoop	however,	we	will
give	examples	using	Hive;	even	though	Hive	and	Impala	share	many	SQL	features,	they
also	have	numerous	differences.	We	don’t	want	to	constantly	have	to	caveat	each	new
feature	with	exactly	how	it	is	supported	in	Hive	compared	to	Impala.	We’ll	generally	be
looking	at	aspects	of	the	feature	set	that	are	common	to	both,	but	if	you	use	both	products,
it’s	important	to	read	the	latest	release	notes	to	understand	the	differences.



Prerequisites
Before	diving	into	specific	technologies,	let’s	generate	some	data	that	we’ll	use	in	the
examples	throughout	this	chapter.	We’ll	create	a	modified	version	of	a	former	Pig	script	as
the	main	functionality	for	this.	The	script	in	this	chapter	assumes	that	the	Elephant	Bird
JARs	used	previously	are	available	in	the	/jar	directory	on	HDFS.	The	full	source	code	is
at	https://github.com/learninghadoop2/book-
examples/blob/master/ch7/extract_for_hive.pig,	but	the	core	of	extract_for_hive.pig	is
as	follows:

--	load	JSON	data

tweets	=	load	'$inputDir'	using		

com.twitter.elephantbird.pig.load.JsonLoader('-nestedLoad');—Tweets

tweets_tsv	=	foreach	tweets	{

generate	

				(chararray)CustomFormatToISO($0#'created_at',	

'EEE	MMMM	d	HH:mm:ss	Z	y')	as	dt,	

				(chararray)$0#'id_str',	

(chararray)$0#'text'	as	text,	

				(chararray)$0#'in_reply_to',	

(boolean)$0#'retweeted'	as	is_retweeted,	

(chararray)$0#'user'#'id_str'	as	user_id,	(chararray)$0#'place'#'id'	as	

place_id;

}

store	tweets_tsv	into	'$outputDir/tweets'	

using	PigStorage('\u0001');—Places

needed_fields	=	foreach	tweets	{

			generate	

(chararray)CustomFormatToISO($0#'created_at',	

'EEE	MMMM	d	HH:mm:ss	Z	y')	as	dt,	

					(chararray)$0#'id_str'	as	id_str,	

$0#'place'	as	place;

}

place_fields	=	foreach	needed_fields	{

generate	

				(chararray)place#'id'	as	place_id,	

				(chararray)place#'country_code'	as	co,	

				(chararray)place#'country'	as	country,	

				(chararray)place#'name'	as	place_name,	

				(chararray)place#'full_name'	as	place_full_name,	

				(chararray)place#'place_type'	as	place_type;

}

filtered_places	=	filter	place_fields	by	co	!=	'';

unique_places	=	distinct	filtered_places;

store	unique_places	into	'$outputDir/places'	

using	PigStorage('\u0001');

—Users

users	=	foreach	tweets	{

			generate	

(chararray)CustomFormatToISO($0#'created_at',	

'EEE	MMMM	d	HH:mm:ss	Z	y')	as	dt,	

(chararray)$0#'id_str'	as	id_str,	

$0#'user'	as	user;

https://github.com/learninghadoop2/book-examples/blob/master/ch7/extract_for_hive.pig


}

user_fields	=	foreach	users	{

			generate	

				(chararray)CustomFormatToISO(user#'created_at',	

'EEE	MMMM	d	HH:mm:ss	Z	y')	as	dt,

		(chararray)user#'id_str'	as	user_id,	

		(chararray)user#'location'	as	user_location,	

		(chararray)user#'name'	as	user_name,	

		(chararray)user#'description'	as	user_description,	

		(int)user#'followers_count'	as	followers_count,	

		(int)user#'friends_count'	as	friends_count,	

		(int)user#'favourites_count'	as	favourites_count,	

		(chararray)user#'screen_name'	as	screen_name,	

		(int)user#'listed_count'	as	listed_count;

}

unique_users	=	distinct	user_fields;

store	unique_users	into	'$outputDir/users'	

using	PigStorage('\u0001');

Run	this	script	as	follows:

$	pig	–f	extract_for_hive.pig	–param	inputDir=<json	input>	-param	

outputDir=<output	path>

The	preceding	code	writes	data	into	three	separate	TSV	files	for	the	tweet,	user,	and	place
information.	Notice	that	in	the	store	command,	we	pass	an	argument	when	calling
PigStorage.	This	single	argument	changes	the	default	field	separator	from	a	tab	character
to	unicode	value	U0001,	or	you	can	also	use	Ctrl	+C	+	A.	This	is	often	used	as	a	separator
in	Hive	tables	and	will	be	particularly	useful	to	us	as	our	tweet	data	could	contain	tabs	in
other	fields.



Overview	of	Hive
We	will	now	show	how	you	can	import	data	into	Hive	and	run	a	query	against	the	table
abstraction	Hive	provides	over	the	data.	In	this	example,	and	in	the	remainder	of	the
chapter,	we	will	assume	that	queries	are	typed	into	the	shell	that	can	be	invoked	by
executing	the	hive	command.

Recently	a	client	called	Beeline	also	became	available	and	will	likely	be	the	preferred	CLI
client	in	the	near	future.

When	importing	any	new	data	into	Hive,	there	is	generally	a	three-stage	process:

Create	the	specification	of	the	table	into	which	the	data	is	to	be	imported
Import	the	data	into	the	created	table
Execute	HiveQL	queries	against	the	table

Most	of	the	HiveQL	statements	are	direct	analogues	to	similarly	named	statements	in
standard	SQL.	We	assume	only	a	passing	knowledge	of	SQL	throughout	this	chapter,	but
if	you	need	a	refresher,	there	are	numerous	good	online	learning	resources.

Hive	gives	a	structured	query	view	of	our	data,	and	to	enable	that,	we	must	first	define	the
specification	of	the	table’s	columns	and	import	the	data	into	the	table	before	we	can
execute	any	queries.	A	table	specification	is	generated	using	a	CREATE	statement	that
specifies	the	table	name,	the	name	and	types	of	its	columns,	and	some	metadata	about	how
the	table	is	stored:

CREATE	table	tweets	(

created_at	string,

tweet_id	string,

text	string,

in_reply_to	string,

retweeted	boolean,

user_id	string,

place_id	string

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE;

The	statement	creates	a	new	table	tweets	defined	by	a	list	of	names	for	columns	in	the
dataset	and	their	data	type.	We	specify	that	fields	are	delimited	by	the	Unicode	U0001
character	and	that	the	format	used	to	store	data	is	TEXTFILE.

Data	can	be	imported	from	a	location	in	HDFS	tweets/	using	the	LOAD	DATA	statement:

LOAD	DATA	INPATH	'tweets'	OVERWRITE	INTO	TABLE	tweets;

By	default,	data	for	Hive	tables	is	stored	on	HDFS	under	/user/hive/warehouse.	If	a
LOAD	statement	is	given	a	path	to	data	on	HDFS,	it	will	not	simply	copy	the	data	into
/user/hive/warehouse,	but	will	move	it	there	instead.	If	you	want	to	analyze	data	on
HDFS	that	is	used	by	other	applications,	then	either	create	a	copy	or	use	the	EXTERNAL
mechanism	that	will	be	described	later.



Once	data	has	been	imported	into	Hive,	we	can	run	queries	against	it.	For	instance:

SELECT	COUNT(*)	FROM	tweets;

The	preceding	code	will	return	the	total	number	of	tweets	present	in	the	dataset.	HiveQL,
like	SQL,	is	not	case	sensitive	in	terms	of	keywords,	columns,	or	table	names.	By
convention,	SQL	statements	use	uppercase	for	SQL	language	keywords,	and	we	will
generally	follow	this	when	using	HiveQL	within	files,	as	will	be	shown	later.	However,
when	typing	interactive	commands,	we	will	frequently	take	the	line	of	least	resistance	and
use	lowercase.

If	you	look	closely	at	the	time	taken	by	the	various	commands	in	the	preceding	example,
you’ll	notice	that	loading	data	into	a	table	takes	about	as	long	as	creating	the	table
specification,	but	even	the	simple	count	of	all	rows	takes	significantly	longer.	The	output
also	shows	that	table	creation	and	the	loading	of	data	do	not	actually	cause	MapReduce
jobs	to	be	executed,	which	explains	the	very	short	execution	times.



The	nature	of	Hive	tables
Although	Hive	copies	the	data	file	into	its	working	directory,	it	does	not	actually	process
the	input	data	into	rows	at	that	point.

Both	the	CREATE	TABLE	and	LOAD	DATA	statements	do	not	truly	create	concrete	table	data
as	such;	instead,	they	produce	the	metadata	that	will	be	used	when	Hive	generates
MapReduce	jobs	to	access	the	data	conceptually	stored	in	the	table	but	actually	residing
on	HDFS.	Even	though	the	HiveQL	statements	refer	to	a	specific	table	structure,	it	is
Hive’s	responsibility	to	generate	code	that	correctly	maps	this	to	the	actual	on-disk	format
in	which	the	data	files	are	stored.

This	might	seem	to	suggest	that	Hive	isn’t	a	real	database;	this	is	true,	it	isn’t.	Whereas	a
relational	database	will	require	a	table	schema	to	be	defined	before	data	is	ingested	and
then	ingest	only	data	that	conforms	to	that	specification,	Hive	is	much	more	flexible.	The
less	concrete	nature	of	Hive	tables	means	that	schemas	can	be	defined	based	on	the	data	as
it	has	already	arrived	and	not	on	some	assumption	of	how	the	data	should	be,	which	might
prove	to	be	wrong.	Though	changeable	data	formats	are	troublesome	regardless	of
technology,	the	Hive	model	provides	an	additional	degree	of	freedom	in	handling	the
problem	when,	not	if,	it	arises.



Hive	architecture
Until	version	2,	Hadoop	was	primarily	a	batch	system.	As	we	saw	in	previous	chapters,
MapReduce	jobs	tend	to	have	high	latency	and	overhead	derived	from	submission	and
scheduling.	Internally,	Hive	compiles	HiveQL	statements	into	MapReduce	jobs.	Hive
queries	have	traditionally	been	characterized	by	high	latency.	This	has	changed	with	the
Stinger	initiative	and	the	improvements	introduced	in	Hive	0.13	that	we	will	discuss	later.

Hive	runs	as	a	client	application	that	processes	HiveQL	queries,	converts	them	into
MapReduce	jobs,	and	submits	these	to	a	Hadoop	cluster	either	to	native	MapReduce	in
Hadoop	1	or	to	the	MapReduce	Application	Master	running	on	YARN	in	Hadoop	2.

Regardless	of	the	model,	Hive	uses	a	component	called	the	metastore,	in	which	it	holds	all
its	metadata	about	the	tables	defined	in	the	system.	Ironically,	this	is	stored	in	a	relational
database	dedicated	to	Hive’s	usage.	In	the	earliest	versions	of	Hive,	all	clients
communicated	directly	with	the	metastore,	but	this	meant	that	every	user	of	the	Hive	CLI
tool	needed	to	know	the	metastore	username	and	password.

HiveServer	was	created	to	act	as	a	point	of	entry	for	remote	clients,	which	could	also	act
as	a	single	access-control	point	and	which	controlled	all	access	to	the	underlying
metastore.	Because	of	limitations	in	HiveServer,	the	newest	way	to	access	Hive	is	through
the	multi-client	HiveServer2.

Note
HiveServer2	introduces	a	number	of	improvements	over	its	predecessor,	including	user
authentication	and	support	for	multiple	connections	from	the	same	client.	More
information	can	be	found	at
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2.

Instances	of	HiveServer	and	HiveServer2	can	be	manually	executed	with	the	hive	--
service	hiveserver	and	hive	--service	hiveserver2	commands,	respectively.

In	the	examples	we	saw	before	and	in	the	remainder	of	this	chapter,	we	implicitly	use
HiveServer	to	submit	queries	via	the	Hive	command-line	tool.	HiveServer2	comes	with
Beeline.	For	compatibility	and	maturity	reasons,	Beeline	being	relatively	new,	both	tools
are	available	on	Cloudera	and	most	other	major	distributions.	The	Beeline	client	is	part	of
the	core	Apache	Hive	distribution	and	so	is	also	fully	open	source.	Beeline	can	be
executed	in	embedded	version	with	the	following	command:

$	beeline	-u	jdbc:hive2://

https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2


Data	types
HiveQL	supports	many	of	the	common	data	types	provided	by	standard	database	systems.
These	include	primitive	types,	such	as	float,	double,	int,	and	string,	through	to
structured	collection	types	that	provide	the	SQL	analogues	to	types	such	as	arrays,
structs,	and	unions	(structs	with	options	for	some	fields).	Since	Hive	is	implemented
in	Java,	primitive	types	will	behave	like	their	Java	counterparts.	We	can	distinguish	Hive
data	types	into	the	following	five	broad	categories:

Numeric:	tinyint,	smallint,	int,	bigint,	float,	double,	and	decimal
Date	and	time:	timestamp	and	date
String:	string,	varchar,	and	char
Collections:	array,	map,	struct,	and	uniontype
Misc:	boolean,	binary,	and	NULL



DDL	statements
HiveQL	provides	a	number	of	statements	to	create,	delete,	and	alter	databases,	tables,	and
views.	The	CREATE	DATABASE	<name>	statement	creates	a	new	database	with	the	given
name.	A	database	represents	a	namespace	where	table	and	view	metadata	is	contained.	If
multiple	databases	are	present,	the	USE	<database	name>	statement	specifies	which	one	to
use	to	query	tables	or	create	new	metadata.	If	no	database	is	explicitly	specified,	Hive	will
run	all	statements	against	the	default	database.	SHOW	[DATABASES,	TABLES,	VIEWS]
displays	the	databases	currently	available	within	a	data	warehouse	and	which	table	and
view	metadata	is	present	within	the	database	currently	in	use:

CREATE	DATABASE	twitter;

SHOW	databases;

USE	twitter;

SHOW	TABLES;

The	CREATE	TABLE	[IF	NOT	EXISTS]	<name>	statement	creates	a	table	with	the	given
name.	As	alluded	to	earlier,	what	is	really	created	is	the	metadata	representing	the	table
and	its	mapping	to	files	on	HDFS	as	well	as	a	directory	in	which	to	store	the	data	files.	If	a
table	or	view	with	the	same	name	already	exists,	Hive	will	raise	an	exception.

Both	table	and	column	names	are	case	insensitive.	In	older	versions	of	Hive	(0.12	and
earlier),	only	alphanumeric	and	underscore	characters	were	allowed	in	table	and	column
names.	As	of	Hive	0.13,	the	system	supports	unicode	characters	in	column	names.
Reserved	words,	such	as	load	and	create,	need	to	be	escaped	by	backticks	(the	`
character)	to	be	treated	literally.

The	EXTERNAL	keyword	specifies	that	the	table	exists	in	resources	out	of	Hive’s	control,
which	can	be	a	useful	mechanism	to	extract	data	from	another	source	at	the	beginning	of	a
Hadoop-based	Extract-Transform-Load	(ETL)	pipeline.	The	LOCATION	clause	specifies
where	the	source	file	(or	directory)	is	to	be	found.	The	EXTERNAL	keyword	and	LOCATION
clause	have	been	used	in	the	following	code:

CREATE	EXTERNAL	TABLE	tweets	(

created_at	string,

tweet_id	string,

text	string,

in_reply_to	string,

retweeted	boolean,

user_id	string,

place_id	string

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE

LOCATION	'${input}/tweets';

This	table	will	be	created	in	the	metastore	but	the	data	will	not	be	copied	into	the
/user/hive/warehouse	directory.

Tip



Note	that	Hive	has	no	concept	of	primary	key	or	unique	identifier.	Uniqueness	and	data
normalization	are	aspects	to	be	addressed	before	loading	data	into	the	data	warehouse.

The	CREATE	VIEW	<view	name>	…	AS	SELECT	statement	creates	a	view	with	the	given
name.	For	example,	we	can	create	a	view	to	isolate	retweets	from	other	messages,	as
follows:

CREATE	VIEW	retweets	

COMMENT	'Tweets	that	have	been	retweeted'

AS	SELECT	*	FROM	tweets	WHERE	retweeted	=	true;

Unless	otherwise	specified,	column	names	are	derived	from	the	defining	SELECT
statement.	Hive	does	not	currently	support	materialized	views.

The	DROP	TABLE	and	DROP	VIEW	statements	remove	both	metadata	and	data	for	a	given
table	or	view.	When	dropping	an	EXTERNAL	table	or	a	view,	only	metadata	will	be	removed
and	the	actual	data	files	will	not	be	affected.

Hive	allows	table	metadata	to	be	altered	via	the	ALTER	TABLE	statement,	which	can	be
used	to	change	a	column	type,	name,	position,	and	comment	or	to	add	and	replace
columns.

When	adding	columns,	it	is	important	to	remember	that	only	metadata	will	be	changed	and
not	the	dataset	itself.	This	means	that	if	we	were	to	add	a	column	in	the	middle	of	the	table
which	didn’t	exist	in	older	files,	then	while	selecting	from	older	data,	we	might	get	wrong
values	in	the	wrong	columns.	This	is	because	we	would	be	looking	at	old	files	with	a	new
format.	We	will	discuss	data	and	schema	migrations	in	Chapter	8,	Data	Lifecycle
Management,	when	discussing	Avro.

Similarly,	ALTER	VIEW	<view	name>	AS	<select	statement>	changes	the	definition	of
an	existing	view.



File	formats	and	storage
The	data	files	underlying	a	Hive	table	are	no	different	from	any	other	file	on	HDFS.	Users
can	directly	read	the	HDFS	files	in	the	Hive	tables	using	other	tools.	They	can	also	use
other	tools	to	write	to	HDFS	files	that	can	be	loaded	into	Hive	through	CREATE	EXTERNAL
TABLE	or	through	LOAD	DATA	INPATH.

Hive	uses	the	Serializer	and	Deserializer	classes,	SerDe,	as	well	as	FileFormat	to
read	and	write	table	rows.	A	native	SerDe	is	used	if	ROW	FORMAT	is	not	specified	or	ROW
FORMAT	DELIMITED	is	specified	in	a	CREATE	TABLE	statement.	The	DELIMITED	clause
instructs	the	system	to	read	delimited	files.	Delimiter	characters	can	be	escaped	using	the
ESCAPED	BY	clause.

Hive	currently	uses	the	following	FileFormat	classes	to	read	and	write	HDFS	files:

TextInputFormat	and	HiveIgnoreKeyTextOutputFormat:	will	read/write	data	in
plain	text	file	format
SequenceFileInputFormat	and	SequenceFileOutputFormat:	classes	read/write	data
in	the	Hadoop	SequenceFile	format

Additionally,	the	following	SerDe	classes	can	be	used	to	serialize	and	deserialize	data:

MetadataTypedColumnsetSerDe:	will	read/write	delimited	records	such	as	CSV	or
tab-separated	records
ThriftSerDe,	and	DynamicSerDe:	will	read/write	Thrift	objects

JSON
As	of	version	0.13,	Hive	ships	with	the	native
org.apache.hive.hcatalog.data.JsonSerDe.	For	older	versions	of	Hive,	Hive-JSON-
Serde	(found	at	https://github.com/rcongiu/Hive-JSON-Serde)	is	arguably	one	of	the	most
feature-rich	JSON	serialization/deserialization	modules.

We	can	use	either	module	to	load	JSON	tweets	without	any	need	for	preprocessing	and
just	define	a	Hive	schema	that	matches	the	content	of	a	JSON	document.	In	the	following
example,	we	use	Hive-JSON-Serde.

As	with	any	third-party	module,	we	load	the	SerDe	JARs	into	Hive	with	the	following
code:

ADD	JAR	JAR	json-serde-1.3-jar-with-dependencies.jar;

Then,	we	issue	the	usual	CREATE	statement,	as	follows:

CREATE	EXTERNAL	TABLE	tweets	(

			contributors	string,

			coordinates	struct	<

						coordinates:	array	<float>,

						type:	string>,

			created_at	string,

			entities	struct	<

						hashtags:	array	<struct	<

https://github.com/rcongiu/Hive-JSON-Serde


												indices:	array	<tinyint>,

												text:	string>>,

…

)

ROW	FORMAT	SERDE	'org.openx.data.jsonserde.JsonSerDe'

STORED	AS	TEXTFILE

LOCATION	'tweets';		

With	this	SerDe,	we	can	map	nested	documents	(such	as	entities	or	users)	to	the	struct	or
map	types.	We	tell	Hive	that	the	data	stored	at	LOCATION	'tweets'	is	text	(STORED	AS
TEXTFILE)	and	that	each	row	is	a	JSON	object	(ROW	FORMAT	SERDE
'org.openx.data.jsonserde.JsonSerDe‘).	In	Hive	0.13	and	later,	we	can	express	this
property	as	ROW	FORMAT	SERDE	'org.apache.hive.hcatalog.data.JsonSerDe'.

Manually	specifying	the	schema	for	complex	documents	can	be	a	tedious	and	error-prone
process.	The	hive-json	module	(found	at	https://github.com/hortonworks/hive-json)	is	a
handy	utility	to	analyze	large	documents	and	generate	an	appropriate	Hive	schema.
Depending	on	the	document	collection,	further	refinement	might	be	necessary.

In	our	example,	we	used	a	schema	generated	with	hive-json	that	maps	the	tweets	JSON
to	a	number	of	struct	data	types.	This	allows	us	to	query	the	data	using	a	handy	dot
notation.	For	instance,	we	can	extract	the	screen	name	and	description	fields	of	a	user
object	with	the	following	code:

SELECT	user.screen_name,	user.description	FROM	tweets_json	LIMIT	10;

Avro
AvroSerde	(https://cwiki.apache.org/confluence/display/Hive/AvroSerDe)	allows	us	to
read	and	write	data	in	Avro	format.	Starting	from	0.14,	Avro-backed	tables	can	be	created
using	the	STORED	AS	AVRO	statement,	and	Hive	will	take	care	of	creating	an	appropriate
Avro	schema	for	the	table.	Prior	versions	of	Hive	are	a	bit	more	verbose.

As	an	example,	let’s	load	into	Hive	the	PageRank	dataset	we	generated	in	Chapter	6,	Data
Analysis	with	Apache	Pig.	This	dataset	was	created	using	Pig’s	AvroStorage	class,	and
has	the	following	schema:

{

		"type":"record",

		"name":"record",

		"fields":	[

				{"name":"topic","type":["null","int"]},

				{"name":"source","type":["null","int"]},

				{"name":"rank","type":["null","float"]}

		]

}		

The	table	structure	is	captured	in	an	Avro	record,	which	contains	header	information	(a
name	and	optional	namespace	to	qualify	the	name)	and	an	array	of	the	fields.	Each	field	is
specified	with	its	name	and	type	as	well	as	an	optional	documentation	string.

For	a	few	of	the	fields,	the	type	is	not	a	single	value,	but	instead	a	pair	of	values,	one	of
which	is	null.	This	is	an	Avro	union,	and	this	is	the	idiomatic	way	of	handling	columns

https://github.com/hortonworks/hive-json
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe


that	might	have	a	null	value.	Avro	specifies	null	as	a	concrete	type,	and	any	location	where
another	type	might	have	a	null	value	needs	to	be	specified	in	this	way.	This	will	be
handled	transparently	for	us	when	we	use	the	following	schema.

With	this	definition,	we	can	now	create	a	Hive	table	that	uses	this	schema	for	its	table
specification,	as	follows:

CREATE	EXTERNAL	TABLE	tweets_pagerank

ROW	FORMAT	SERDE

		'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

WITH	SERDEPROPERTIES	('avro.schema.literal'='{

				"type":"record",

				"name":"record",

				"fields":	[

								{"name":"topic","type":["null","int"]},

								{"name":"source","type":["null","int"]},

								{"name":"rank","type":["null","float"]}

				]

}')

STORED	AS	INPUTFORMAT

		'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT

		'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

LOCATION	'${data}/ch5-pagerank';

Then,	look	at	the	following	table	definition	from	within	Hive	(note	also	that	HCatalog,
which	we’ll	introduce	in	Chapter	8,	Data	Life	Cycle	Management,	also	supports	such
definitions):

DESCRIBE	tweets_pagerank;

OK

topic																	int																			from	deserializer			

source																int																			from	deserializer			

rank																		float																	from	deserializer		

In	the	DDL,	we	told	Hive	that	data	is	stored	in	Avro	format	using
AvroContainerInputFormat	and	AvroContainerOutputFormat.	Each	row	needs	to	be
serialized	and	deserialized	using	org.apache.hadoop.hive.serde2.avro.AvroSerDe.
The	table	schema	is	inferred	by	Hive	from	the	Avro	schema	embedded	in
avro.schema.literal.

Alternatively,	we	can	store	a	schema	on	HDFS	and	have	Hive	read	it	to	determine	the
table	structure.	Create	the	preceding	schema	in	a	file	called	pagerank.avsc—this	is	the
standard	file	extension	for	Avro	schemas.	Then	place	it	on	HDFS;	we	prefer	to	have	a
common	location	for	schema	files	such	as	/schema/avro.	Finally,	define	the	table	using
the	avro.schema.url	SerDe	property	WITH	SERDEPROPERTIES
('avro.schema.url'='hdfs://<namenode>/schema/avro/pagerank.avsc').

If	Avro	dependencies	are	not	present	in	the	classpath,	we	need	to	add	the	Avro	MapReduce
JAR	to	our	environment	before	accessing	individual	fields.	Within	Hive,	on	the	Cloudera
CDH5	VM:

ADD	JAR	/opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar;	



We	can	also	use	this	table	like	any	other.	For	instance,	we	can	query	the	data	to	select	the
user	and	topic	pairs	with	a	high	PageRank:

SELECT	source,	topic	from	tweets_pagerank	WHERE	rank	>=	0.9;

In	Chapter	8,	Data	Lifecycle	Management,	we	will	see	how	Avro	and	avro.schema.url
play	an	instrumental	role	in	enabling	schema	migrations.

Columnar	stores
Hive	can	also	take	advantage	of	columnar	storage	via	the	ORC
(https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC)	and	Parquet
(https://cwiki.apache.org/confluence/display/Hive/Parquet)	formats.

If	a	table	is	defined	with	very	many	columns,	it	is	not	unusual	for	any	given	query	to	only
process	a	small	subset	of	these	columns.	But	even	in	a	SequenceFile	each	full	row	and	all
its	columns	will	be	read	from	disk,	decompressed,	and	processed.	This	consumes	a	lot	of
system	resources	for	data	that	we	know	in	advance	is	not	of	interest.

Traditional	relational	databases	also	store	data	on	a	row	basis,	and	a	type	of	database
called	columnar	changed	this	to	be	column-focused.	In	the	simplest	model,	instead	of	one
file	for	each	table,	there	would	be	one	file	for	each	column	in	the	table.	If	a	query	only
needed	to	access	five	columns	in	a	table	with	100	columns	in	total,	then	only	the	files	for
those	five	columns	will	be	read.	Both	ORC	and	Parquet	use	this	principle	as	well	as	other
optimizations	to	enable	much	faster	queries.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
https://cwiki.apache.org/confluence/display/Hive/Parquet


Queries
Tables	can	be	queried	using	the	familiar	SELECT	…	FROM	statement.	The	WHERE	statement
allows	the	specification	of	filtering	conditions,	GROUP	BY	aggregates	records,	ORDER	BY
specifies	sorting	criteria,	and	LIMIT	specifies	the	number	of	records	to	retrieve.	Aggregate
functions,	such	as	count	and	sum,	can	be	applied	to	aggregated	records.	For	instance,	the
following	code	returns	the	top	10	most	prolific	users	in	the	dataset:

SELECT	user_id,	COUNT(*)	AS	cnt	FROM	tweets	GROUP	BY	user_id	ORDER	BY	cnt	

DESC	LIMIT	10

This	returns	the	top	10	most	prolific	users	in	the	dataset:

2263949659	4

1332188053		4

959468857		3

1367752118		3

362562944		3

58646041		3

2375296688		3

1468188529		3

37114209		3

2385040940		3

We	can	improve	the	readability	of	the	hive	output	by	setting	the	following:

SET	hive.cli.print.header=true;

This	will	instruct	hive,	though	not	beeline,	to	print	column	names	as	part	of	the	output.

Tip
You	can	add	the	command	to	the	.hiverc	file	usually	found	in	the	root	of	the	executing
user’s	home	directory	to	have	it	apply	to	all	hive	CLI	sessions.

HiveQL	implements	a	JOIN	operator	that	enables	us	to	combine	tables	together.	In	the
Prerequisites	section,	we	generated	separate	datasets	for	the	user	and	place	objects.	Let’s
now	load	them	into	hive	using	external	tables.

We	first	create	a	user	table	to	store	user	data,	as	follows:

CREATE	EXTERNAL	TABLE	user	(

created_at	string,

user_id	string,

`location`	string,

name	string,

description	string,

followers_count	bigint,

friends_count	bigint,

favourites_count	bigint,

screen_name	string,

listed_count	bigint

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'



STORED	AS	TEXTFILE

LOCATION	'${input}/users';

We	then	create	a	place	table	to	store	location	data,	as	follows:

CREATE	EXTERNAL	TABLE	place	(

place_id	string,

country_code	string,

country	string,

`name`	string,

full_name	string,

place_type	string

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE

LOCATION	'${input}/places';

We	can	use	the	JOIN	operator	to	display	the	names	of	the	10	most	prolific	users,	as
follows:

SELECT	tweets.user_id,	user.name,	COUNT(tweets.user_id)	AS	cnt	

FROM	tweets	

JOIN	user	ON	user.user_id		=	tweets.user_id

GROUP	BY	tweets.user_id,	user.user_id,	user.name	

ORDER	BY	cnt	DESC	LIMIT	10;	

Tip
Only	equality,	outer,	and	left	(semi)	joins	are	supported	in	Hive.

Notice	that	there	might	be	multiple	entries	with	a	given	user	ID	but	different	values	for	the
followers_count,	friends_count,	and	favourites_count	columns.	To	avoid	duplicate
entries,	we	count	only	user_id	from	the	tweets	table.

We	can	rewrite	the	previous	query	as	follows:

SELECT	tweets.user_id,	u.name,	COUNT(*)	AS	cnt	

FROM	tweets	

join	(SELECT	user_id,	name	FROM	user	GROUP	BY	user_id,	name)	u

ON	u.user_id	=	tweets.user_id

GROUP	BY	tweets.user_id,	u.name	

ORDER	BY	cnt	DESC	LIMIT	10;			

Instead	of	directly	joining	the	user	table,	we	execute	a	subquery,	as	follows:

SELECT	user_id,	name	FROM	user	GROUP	BY	user_id,	name;

The	subquery	extracts	unique	user	IDs	and	names.	Note	that	Hive	has	limited	support	for
subqueries,	historically	only	permitting	a	subquery	in	the	FROM	clause	of	a	SELECT
statement.	Hive	0.13	has	added	limited	support	for	subqueries	within	the	WHERE	clause
also.

HiveQL	is	an	ever-evolving	rich	language,	a	full	exposition	of	which	is	beyond	the	scope
of	this	chapter.	A	description	of	its	query	and	ddl	capabilities	can	be	found	at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual


Structuring	Hive	tables	for	given	workloads
Often	Hive	isn’t	used	in	isolation,	instead	tables	are	created	with	particular	workloads	in
mind	or	needs	invoked	in	ways	that	are	suitable	for	inclusion	in	automated	processes.
We’ll	now	explore	some	of	these	scenarios.



Partitioning	a	table
With	columnar	file	formats,	we	explained	the	benefits	of	excluding	unneeded	data	as	early
as	possible	when	processing	a	query.	A	similar	concept	has	been	used	in	SQL	for	some
time:	table	partitioning.

When	creating	a	partitioned	table,	a	column	is	specified	as	the	partition	key.	All	values
with	that	key	are	then	stored	together.	In	Hive’s	case,	different	subdirectories	for	each
partition	key	are	created	under	the	table	directory	in	the	warehouse	location	on	HDFS.

It’s	important	to	understand	the	cardinality	of	the	partition	column.	With	too	few	distinct
values,	the	benefits	are	reduced	as	the	files	are	still	very	large.	If	there	are	too	many
values,	then	queries	might	need	a	large	number	of	files	to	be	scanned	to	access	all	the
required	data.	Perhaps	the	most	common	partition	key	is	one	based	on	date.	We	could,	for
example,	partition	our	user	table	from	earlier	based	on	the	created_at	column,	that	is,
the	date	the	user	was	first	registered.	Note	that	since	partitioning	a	table	by	definition
affects	its	file	structure,	we	create	this	table	now	as	a	non-external	one,	as	follows:

CREATE	TABLE	partitioned_user	(

created_at	string,

user_id	string,

`location`	string,

name	string,

description	string,

followers_count	bigint,

friends_count	bigint,

favourites_count	bigint,

screen_name	string,

listed_count	bigint

)		PARTITIONED	BY	(created_at_date	string)

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE;

To	load	data	into	a	partition,	we	can	explicitly	give	a	value	for	the	partition	into	which	to
insert	the	data,	as	follows:

INSERT	INTO	TABLE	partitioned_user

PARTITION(	created_at_date	=	'2014-01-01')

SELECT	

created_at,

user_id,

location,

name,

description,

followers_count,

friends_count,

favourites_count,

screen_name,

listed_count

FROM	user;

This	is	at	best	verbose,	as	we	need	a	statement	for	each	partition	key	value;	if	a	single



LOAD	or	INSERT	statement	contains	data	for	multiple	partitions,	it	just	won’t	work.	Hive
also	has	a	feature	called	dynamic	partitioning,	which	can	help	us	here.	We	set	the
following	three	variables:

SET	hive.exec.dynamic.partition	=	true;

SET	hive.exec.dynamic.partition.mode	=	nonstrict;

SET	hive.exec.max.dynamic.partitions.pernode=5000;

The	first	two	statements	enable	all	partitions	(nonstrict	option)	to	be	dynamic.	The	third
one	allows	5,000	distinct	partitions	to	be	created	on	each	mapper	and	reducer	node.

We	can	then	simply	use	the	name	of	the	column	to	be	used	as	the	partition	key,	and	Hive
will	insert	data	into	partitions	depending	on	the	value	of	the	key	for	a	given	row:

INSERT	INTO	TABLE	partitioned_user

PARTITION(	created_at_date	)

SELECT	

created_at,

user_id,

location,

name,

description,

followers_count,

friends_count,

favourites_count,

screen_name,

listed_count,

to_date(created_at)	as	created_at_date

FROM	user;

Even	though	we	use	only	a	single	partition	column	here,	we	can	partition	a	table	by
multiple	column	keys;	just	have	them	as	a	comma-separated	list	in	the	PARTITIONED	BY
clause.

Note	that	the	partition	key	columns	need	to	be	included	as	the	last	columns	in	any
statement	being	used	to	insert	into	a	partitioned	table.	In	the	preceding	code	we	use	Hive’s
to_date	function	to	convert	the	created_at	timestamp	to	a	YYYY-MM-DD	formatted	string.

Partitioned	data	is	stored	in	HDFS	as	/path/to/warehouse/<database>/<table>/key=
<value>.	In	our	example,	the	partitioned_user	table	structure	will	look	like
/user/hive/warehouse/default/partitioned_user/created_at=2014-04-01.

If	data	is	added	directly	to	the	filesystem,	for	instance	by	some	third-party	processing	tool
or	by	hadoop	fs	-put,	the	metastore	won’t	automatically	detect	the	new	partitions.	The
user	will	need	to	manually	run	an	ALTER	TABLE	statement	such	as	the	following	for	each
newly	added	partition:

ALTER	TABLE	<table_name>	ADD	PARTITION	<location>;

To	add	metadata	for	all	partitions	not	currently	present	in	the	metastore	we	can	use:	MSCK
REPAIR	TABLE	<table_name>;	statement.	On	EMR,	this	is	equivalent	to	executing	the
following	statement:

ALTER	TABLE	<table_name>	RECOVER	PARTITIONS;	



Notice	that	both	statements	will	work	also	with	EXTERNAL	tables.	In	the	following	chapter,
we	will	see	how	this	pattern	can	be	exploited	to	create	flexible	and	interoperable	pipelines.

Overwriting	and	updating	data
Partitioning	is	also	useful	when	we	need	to	update	a	portion	of	a	table.	Normally	a
statement	of	the	following	form	will	replace	all	the	data	for	the	destination	table:

INSERT	OVERWRITE	INTO	<table>…

If	OVERWRITE	is	omitted,	then	each	INSERT	statement	will	add	additional	data	to	the	table.
Sometimes,	this	is	desirable,	but	often,	the	source	data	being	ingested	into	a	Hive	table	is
intended	to	fully	update	a	subset	of	the	data	and	keep	the	rest	untouched.

If	we	perform	an	INSERT	OVERWRITE	statement	(or	a	LOAD	OVERWRITE	statement)	into	a
partition	of	a	table,	then	only	the	specified	partition	will	be	affected.	Thus,	if	we	were
inserting	user	data	and	only	wanted	to	affect	the	partitions	with	data	in	the	source	file,	we
could	achieve	this	by	adding	the	OVERWRITE	keyword	to	our	previous	INSERT	statement.

We	can	also	add	caveats	to	the	SELECT	statement.	Say,	for	example,	we	only	wanted	to
update	data	for	a	certain	month:

INSERT	INTO	TABLE	partitioned_user

PARTITION	(created_at_date)

SELECT	created_at	,

user_id,

location,

name,

description,

followers_count,

friends_count,

favourites_count,

screen_name,

listed_count,

to_date(created_at)	as	created_at_date

FROM	user	

WHERE	to_date(created_at)	BETWEEN	'2014-03-01'	and	'2014-03-31';

Bucketing	and	sorting
Partitioning	a	table	is	a	construct	that	you	take	explicit	advantage	of	by	using	the	partition
column	(or	columns)	in	the	WHERE	clause	of	queries	against	the	tables.	There	is	another
mechanism	called	bucketing	that	can	further	segment	how	a	table	is	stored	and	does	so	in
a	way	that	allows	Hive	itself	to	optimize	its	internal	query	plans	to	take	advantage	of	the
structure.

Let’s	create	bucketed	versions	of	our	tweets	and	user	tables;	note	the	following	additional
CLUSTER	BY	and	SORT	BY	statements	in	the	CREATE	TABLE	statements:

CREATE	table	bucketed_tweets	(

tweet_id	string,

text	string,

in_reply_to	string,



retweeted	boolean,

user_id	string,

place_id	string

)		PARTITIONED	BY	(created_at	string)

CLUSTERED	BY(user_ID)	into	64	BUCKETS

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE;

CREATE	TABLE	bucketed_user	(

user_id	string,

`location`	string,

name	string,

description	string,

followers_count	bigint,

friends_count	bigint,

favourites_count	bigint,

screen_name	string,

listed_count	bigint

)		PARTITIONED	BY	(created_at	string)

CLUSTERED	BY(user_ID)	SORTED	BY(name)	into	64	BUCKETS

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE;

Note	that	we	changed	the	tweets	table	to	also	be	partitioned;	you	can	only	bucket	a	table
that	is	partitioned.

Just	as	we	need	to	specify	a	partition	column	when	inserting	into	a	partitioned	table,	we
must	also	take	care	to	ensure	that	data	inserted	into	a	bucketed	table	is	correctly	clustered.
We	do	this	by	setting	the	following	flag	before	inserting	the	data	into	the	table:

SET	hive.enforce.bucketing=true;

Just	as	with	partitioned	tables,	you	cannot	apply	the	bucketing	function	when	using	the
LOAD	DATA	statement;	if	you	wish	to	load	external	data	into	a	bucketed	table,	first	insert	it
into	a	temporary	table,	and	then	use	the	INSERT…SELECT…	syntax	to	populate	the	bucketed
table.

When	data	is	inserted	into	a	bucketed	table,	rows	are	allocated	to	a	bucket	based	on	the
result	of	a	hash	function	applied	to	the	column	specified	in	the	CLUSTERED	BY	clause.

One	of	the	greatest	advantages	of	bucketing	a	table	comes	when	we	need	to	join	two
tables	that	are	similarly	bucketed,	as	in	the	previous	example.	So,	for	example,	any	query
of	the	following	form	would	be	vastly	improved:

SET	hive.optimize.bucketmapjoin=true;

SELECT	…

FROM	bucketed_user	u	JOIN	bucketed_tweet	t

ON	u.user_id	=	t.user_id;

With	the	join	being	performed	on	the	column	used	to	bucket	the	table,	Hive	can	optimize
the	amount	of	processing	as	it	knows	that	each	bucket	contains	the	same	set	of	user_id
columns	in	both	tables.	While	determining	which	rows	against	which	to	match,	only	those



in	the	bucket	need	to	be	compared	against,	and	not	the	whole	table.	This	does	require	that
the	tables	are	both	clustered	on	the	same	column	and	that	the	bucket	numbers	are	either
identical	or	one	is	a	multiple	of	the	other.	In	the	latter	case,	with	say	one	table	clustered
into	32	buckets	and	another	into	64,	the	nature	of	the	default	hash	function	used	to	allocate
data	to	a	bucket	means	that	the	IDs	in	bucket	3	in	the	first	table	will	cover	those	in	both
buckets	3	and	35	in	the	second.

Sampling	data
Bucketing	a	table	can	also	help	while	using	Hive’s	ability	to	sample	data	in	a	table.
Sampling	allows	a	query	to	gather	only	a	specified	subset	of	the	overall	rows	in	the	table.
This	is	useful	when	you	have	an	extremely	large	table	with	moderately	consistent	data
patterns.	In	such	a	case,	applying	a	query	to	a	small	fraction	of	the	data	will	be	much
faster	and	will	still	give	a	broadly	representative	result.	Note,	of	course,	that	this	only
applies	to	queries	where	you	are	looking	to	determine	table	characteristics,	such	as	pattern
ranges	in	the	data;	if	you	are	trying	to	count	anything,	then	the	result	needs	to	be	scaled	to
the	full	table	size.

For	a	non-bucketed	table,	you	can	sample	in	a	mechanism	similar	to	what	we	saw	earlier
by	specifying	that	the	query	should	only	be	applied	to	a	certain	subset	of	the	table:

SELECT	max(friends_count)

FROM	user	TABLESAMPLE(BUCKET	2	OUT	OF	64	ON	name);

In	this	query,	Hive	will	effectively	hash	the	rows	in	the	table	into	64	buckets	based	on	the
name	column.	It	will	then	only	use	the	second	bucket	for	the	query.	Multiple	buckets	can
be	specified,	and	if	RAND()	is	given	as	the	ON	clause,	then	the	entire	row	is	used	by	the
bucketing	function.

Though	successful,	this	is	highly	inefficient	as	the	full	table	needs	to	be	scanned	to
generate	the	required	subset	of	data.	If	we	sample	on	a	bucketed	table	and	ensure	the
number	of	buckets	sampled	is	equal	to	or	a	multiple	of	the	buckets	in	the	table,	then	Hive
will	only	read	the	buckets	in	question.	For	example:

SELECT	MAX(friends_count)

FROM	bucketed_user	TABLESAMPLE(BUCKET	2	OUT	OF	32	on	user_id);

In	the	preceding	query	against	the	bucketed_user	table,	which	is	created	with	64	buckets
on	the	user_id	column,	the	sampling,	since	it	is	using	the	same	column,	will	only	read	the
required	buckets.	In	this	case,	these	will	be	buckets	2	and	34	from	each	partition.

A	final	form	of	sampling	is	block	sampling.	In	this	case,	we	can	specify	the	required
amount	of	the	table	to	be	sampled,	and	Hive	will	use	an	approximation	of	this	by	only
reading	enough	source	data	blocks	on	HDFS	to	meet	the	required	size.	Currently,	the	data
size	can	be	specified	as	either	a	percentage	of	the	table,	as	an	absolute	data	size,	or	as	a
number	of	rows	(in	each	block).	The	syntax	for	TABLESAMPLE	is	as	follows,	which	will
sample	0.5	percent	of	the	table,	1	GB	of	data	or	100	rows	per	split,	respectively:

TABLESAMPLE(0.5	PERCENT)

TABLESAMPLE(1G)



TABLESAMPLE(100	ROWS)

If	these	latter	forms	of	sampling	are	of	interest,	then	consult	the	documentation,	as	there
are	some	specific	limitations	on	the	input	format	and	file	formats	that	are	supported.



Writing	scripts
We	can	place	Hive	commands	in	a	file	and	run	them	with	the	-f	option	in	the	hive	CLI
utility:

$	cat	show_tables.hql

show	tables;

$	hive	-f	show_tables.hql		

We	can	parameterize	HiveQL	statements	by	means	of	the	hiveconf	mechanism.	This
allows	us	to	specify	an	environment	variable	name	at	the	point	it	is	used	rather	than	at	the
point	of	invocation.	For	example:

$	cat	show_tables2.hql

show	tables	like	'${hiveconf:TABLENAME}';

$	hive	-hiveconf	TABLENAME=user	-f	show_tables2.hql

The	variable	can	also	be	set	within	the	Hive	script	or	an	interactive	session:

SET	TABLE_NAME='user';

The	preceding	hiveconf	argument	will	add	any	new	variables	in	the	same	namespace	as
the	Hive	configuration	options.	As	of	Hive	0.8,	there	is	a	similar	option	called	hivevar
that	adds	any	user	variables	into	a	distinct	namespace.	Using	hivevar,	the	preceding
command	would	be	as	follows:

$	cat	show_tables3.hql

show	tables	like	'${hivevar:TABLENAME}';

$	hive	-hivevar	TABLENAME=user	–f	show_tables3.hql

Or	we	can	write	the	command	interactively:

SET	hivevar:TABLE_NAME='user';



Hive	and	Amazon	Web	Services
With	Elastic	MapReduce	as	the	AWS	Hadoop-on-demand	service,	it	is	of	course	possible
to	run	Hive	on	an	EMR	cluster.	But	it	is	also	possible	to	use	Amazon	storage	services,
particularly	S3,	from	any	Hadoop	cluster	be	it	within	EMR	or	your	own	local	cluster.



Hive	and	S3
As	mentioned	in	Chapter	2,	Storage,	it	is	possible	to	specify	a	default	filesystem	other
than	HDFS	for	Hadoop	and	S3	is	one	option.	But,	it	doesn’t	have	to	be	an	all-or-nothing
thing;	it	is	possible	to	have	specific	tables	stored	in	S3.	The	data	for	these	tables	will	be
retrieved	into	the	cluster	to	be	processed,	and	any	resulting	data	can	either	be	written	to	a
different	S3	location	(the	same	table	cannot	be	the	source	and	destination	of	a	single
query)	or	onto	HDFS.

We	can	take	a	file	of	our	tweet	data	and	place	it	onto	a	location	in	S3	with	a	command
such	as	the	following:

$	aws	s3	put	tweets.tsv	s3://<bucket-name>/tweets/

We	firstly	need	to	specify	the	access	key	and	secret	access	key	that	can	access	the	bucket.
This	can	be	done	in	three	ways:

Set	fs.s3n.awsAccessKeyId	and	fs.s3n.awsSecretAccessKey	to	the	appropriate
values	in	the	Hive	CLI
Set	the	same	values	in	hive-site.xml	though	note	this	limits	use	of	S3	to	a	single	set
of	credentials
Specify	the	table	location	explicitly	in	the	table	URL,	that	is,	s3n://<access	key>:
<secret	access	key>@<bucket>/<path>

Then	we	can	create	a	table	referencing	this	data,	as	follows:

CREATE	table	remote_tweets	(

created_at	string,

tweet_id	string,

text	string,

in_reply_to	string,

retweeted	boolean,

user_id	string,

place_id	string

)		CLUSTERED	BY(user_ID)	into	64	BUCKETS

ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\t'

LOCATION	's3n://<bucket-name>/tweets'

This	can	be	an	incredibly	effective	way	of	pulling	S3	data	into	a	local	Hadoop	cluster	for
processing.

Note
In	order	to	use	AWS	credentials	in	the	URI	of	an	S3	location	regardless	of	how	the
parameters	are	passed,	the	secret	and	access	keys	must	not	contain	/,	+,	=,	or	\	characters.
If	necessary,	a	new	set	of	credentials	can	be	generated	from	the	IAM	console	at
https://console.aws.amazon.com/iam/.

In	theory,	you	can	just	leave	the	data	in	the	external	table	and	refer	to	it	when	needed	to
avoid	WAN	data	transfer	latencies	(and	costs),	even	though	it	often	makes	sense	to	pull

https://console.aws.amazon.com/iam/


the	data	into	a	local	table	and	do	future	processing	from	there.	If	the	table	is	partitioned,
then	you	might	find	yourself	retrieving	a	new	partition	each	day,	for	example.



Hive	on	Elastic	MapReduce
On	one	level,	using	Hive	within	Amazon	Elastic	MapReduce	is	just	the	same	as
everything	discussed	in	this	chapter.	You	can	create	a	persistent	cluster,	log	in	to	the
master	node,	and	use	the	Hive	CLI	to	create	tables	and	submit	queries.	Doing	all	this	will
use	the	local	storage	on	the	EC2	instances	for	the	table	data.

Not	surprisingly,	jobs	on	EMR	clusters	can	also	refer	to	tables	whose	data	is	stored	on	S3
(or	DynamoDB).	And	also	not	surprisingly,	Amazon	has	made	extensions	to	its	version	of
Hive	to	make	all	this	very	seamless.	It	is	quite	simple	from	within	an	EMR	job	to	pull	data
from	a	table	stored	in	S3,	process	it,	write	any	intermediate	data	to	the	EMR	local	storage,
and	then	write	the	output	results	into	S3,	DynamoDB,	or	one	of	a	growing	list	of	other
AWS	services.

The	pattern	mentioned	earlier	where	new	data	is	added	to	a	new	partition	directory	for	a
table	each	day	has	proved	very	effective	in	S3;	it	is	often	the	storage	location	of	choice	for
large	and	incrementally	growing	datasets.	There	is	a	syntax	difference	when	using	EMR;
instead	of	the	MSCK	command	mentioned	earlier,	the	command	to	update	a	Hive	table
with	new	data	added	to	a	partition	directory	is	as	follows:

ALTER	TABLE	<table-name>	RECOVER	PARTITIONS;

Consult	the	EMR	documentation	for	the	latest	enhancements	at
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hive-
additional-features.html.	Also,	consult	the	broader	EMR	documentation.	In	particular,	the
integration	points	with	other	AWS	services	is	an	area	of	rapid	growth.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hive-additional-features.html


Extending	HiveQL
The	HiveQL	language	can	be	extended	by	means	of	plugins	and	third-party	functions.	In
Hive,	there	are	three	types	of	functions	characterized	by	the	number	of	rows	they	take	as
input	and	produce	as	output:

User	Defined	Functions	(UDFs):	are	simpler	functions	that	act	on	one	row	at	a	time.
User	Defined	Aggregate	Functions	(UDAFs):	take	multiple	rows	as	input	and
generate	multiple	rows	as	output.	These	are	aggregate	functions	to	be	used	in
conjunction	with	a	GROUP	BY	statement	(similar	to	COUNT(),	AVG(),	MIN(),	MAX(),	and
so	on).
User	Defined	Table	Functions	(UDTFs):	take	multiple	rows	as	input	and	generate	a
logical	table	comprised	of	multiple	rows	that	can	be	used	in	join	expressions.

Tip
These	APIs	are	provided	only	in	Java.	For	other	languages,	it	is	possible	to	stream	data
through	a	user-defined	script	using	the	TRANSFORM,	MAP,	and	REDUCE	clauses	that	act	as	a
frontend	to	Hadoop’s	streaming	capabilities.

Two	APIs	are	available	to	write	UDFs.	A	simple	API
org.apache.hadoop.hive.ql.exec.UDF	can	be	used	for	functions	that	take	and	return
basic	writable	types.	A	richer	API,	which	provides	support	for	data	types	other	than
writable	is	available	in	the	org.apache.hadoop.hive.ql.udf.generic.GenericUDF
package.	We’ll	now	illustrate	how	org.apache.hadoop.hive.ql.exec.UDF	can	be	used	to
implement	a	string	to	ID	function	similar	to	the	one	we	used	in	Chapter	5,	Iterative
Computation	with	Spark,	to	map	hashtags	to	integers	in	Pig.	Building	a	UDF	with	this	API
only	requires	extending	the	UDF	class	and	writing	an	evaluate()	method,	as	follows:

public	class	StringToInt	extends	UDF	{

				public	Integer	evaluate(Text	input)	{

								if	(input	==	null)

												return	null;

									String	str	=	input.toString();

									return	str.hashCode();

				}

}

The	function	takes	a	Text	object	as	input	and	maps	it	to	an	integer	value	with	the
hashCode()	method.	The	source	code	of	this	function	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch7/udf/com/learninghadoop2/hive/udf/StringToInt.java.

Tip
As	noted	in	Chapter	6,	Data	Analysis	with	Apache	Pig,	a	more	robust	hash	function	should
be	used	in	production.

https://github.com/learninghadoop2/book-examples/blob/master/ch7/udf/com/learninghadoop2/hive/udf/StringToInt.java


We	compile	the	class	and	archive	it	into	a	JAR	file,	as	follows:

$	javac	-classpath	$(hadoop	

classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*	

com/learninghadoop2/hive/udf/StringToInt.java	

$	jar	cvf	myudfs-hive.jar	com/learninghadoop2/hive/udf/StringToInt.class

Before	being	able	to	use	it,	a	UDF	must	be	registered	in	Hive	with	the	following
commands:

ADD	JAR	myudfs-hive.jar;

CREATE	TEMPORARY	FUNCTION	string_to_int	AS	

'com.learninghadoop2.hive.udf.StringToInt';	

The	ADD	JAR	statement	adds	a	JAR	file	to	the	distributed	cache.	The	CREATE	TEMPORARY
FUNCTION	<function>	AS	<class>	statement	registers	a	function	in	Hive	that	implements
a	given	Java	class.	The	function	will	be	dropped	once	the	Hive	session	is	closed.	As	of
Hive	0.13,	it	is	possible	to	create	permanent	functions	whose	definition	is	kept	in	the
metastore	using	CREATE	FUNCTION	…	.

Once	registered,	StringToInt	can	be	used	in	a	query	just	like	any	other	function.	In	the
following	example,	we	first	extract	a	list	of	hashtags	from	the	tweet’s	text	by	applying
regexp_extract.	Then,	we	use	string_to_int	to	map	each	tag	to	a	numerical	ID:

SELECT	unique_hashtags.hashtag,	string_to_int(unique_hashtags.hashtag)	AS	

tag_id	FROM

				(

								SELECT	regexp_extract(text,	

												'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')	as	hashtag		

								FROM	tweets	

								GROUP	BY	regexp_extract(text,	

								'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')

)	unique_hashtags	GROUP	BY	unique_hashtags.hashtag,	

string_to_int(unique_hashtags.hashtag);

Just	as	we	did	in	the	previous	chapter,	we	can	use	the	preceding	query	to	create	a	lookup
table:

CREATE	TABLE	lookuptable	(tag	string,	tag_id	bigint);

INSERT	OVERWRITE	TABLE	lookuptable	

SELECT	unique_hashtags.hashtag,	

				string_to_int(unique_hashtags.hashtag)	as	tag_id

FROM	

		(

				SELECT	regexp_extract(text,	

								'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')	AS	hashtag		

									FROM	tweets	

									GROUP	BY	regexp_extract(text,	

												'(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')

			)	unique_hashtags	

GROUP	BY	unique_hashtags.hashtag,	string_to_int(unique_hashtags.hashtag);



Programmatic	interfaces
In	addition	to	the	hive	and	beeline	command-line	tools,	it	is	possible	to	submit	HiveQL
queries	to	the	system	via	the	JDBC	and	Thrift	programmatic	interfaces.	Support	for
ODBC	was	bundled	in	older	versions	of	Hive,	but	as	of	Hive	0.12,	it	needs	to	be	built
from	scratch.	More	information	on	this	process	can	be	found	at
https://cwiki.apache.org/confluence/display/Hive/HiveODBC.

https://cwiki.apache.org/confluence/display/Hive/HiveODBC


JDBC
A	Hive	client	written	using	JDBC	APIs	looks	exactly	the	same	as	a	client	program	written
for	other	database	systems	(for	example	MySQL).	The	following	is	a	sample	Hive	client
program	using	JDBC	APIs.	The	source	code	for	this	example	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch7/clients/com/learninghadoop2/hive/client/HiveJdbcClient.java.

public	class	HiveJdbcClient	{

					private	static	String	driverName	=	"	org.apache.hive.jdbc.HiveDriver";

					

					//	connection	string

					public	static	String	URL	=	"jdbc:hive2://localhost:10000";

					//	Show	all	tables	in	the	default	database

					public	static	String	QUERY	=	"show	tables";

					public	static	void	main(String[]	args)	throws	SQLException	{

										try	{

															Class.forName	(driverName);

										}	

										catch	(ClassNotFoundException	e)	{

															e.printStackTrace();

															System.exit(1);

										}

										Connection	con	=	DriverManager.getConnection	(URL);

										Statement	stmt	=	con.createStatement();

										

										ResultSet	resultSet	=	stmt.executeQuery(QUERY);

										while	(resultSet.next())	{

															System.out.println(resultSet.getString(1));

										}

				}

}

The	URL	part	is	the	JDBC	URI	that	describes	the	connection	end	point.	The	format	for
establishing	a	remote	connection	is	jdbc:hive2:<host>:<port>/<database>.
Connections	in	embedded	mode	can	be	established	by	not	specifying	a	host	or	port,	like
jdbc:hive2://.

hive	and	hive2	are	the	drivers	to	be	used	when	connecting	to	HiveServer	and
HiveServer2.	QUERY	contains	the	HiveQL	query	to	be	executed.

Tip
Hive’s	JDBC	interface	exposes	only	the	default	database.	In	order	to	access	other
databases,	you	need	to	reference	them	explicitly	in	the	underlying	queries	using	the
<database>.<table>	notation.

First	we	load	the	HiveServer2	JDBC	driver	org.apache.hive.jdbc.HiveDriver.

Tip

https://github.com/learninghadoop2/book-examples/blob/master/ch7/clients/com/learninghadoop2/hive/client/HiveJdbcClient.java


Use	org.apache.hadoop.hive.jdbc.HiveDriver	to	connect	to	HiveServer.

Then,	like	with	any	other	JDBC	program,	we	establish	a	connection	to	URL	and	use	it	to
instantiate	a	Statement	class.	We	execute	QUERY,	with	no	authentication,	and	store	the
output	dataset	into	the	ResultSet	object.	Finally,	we	scan	resultSet	and	print	its	content
to	the	command	line.

Compile	and	execute	the	example	with	the	following	commands:

$	javac	HiveJdbcClient.java

$	java	-cp	$(hadoop	

classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*:/opt/cloudera/parcels/C

DH/lib/hive/lib/hive-jdbc.jar:	

com.learninghadoop2.hive.client.HiveJdbcClient



Thrift
Thrift	provides	lower-level	access	to	Hive	and	has	a	number	of	advantages	over	the	JDBC
implementation	of	HiveServer.	Primarily,	it	allows	multiple	connections	from	the	same
client,	and	it	allows	programming	languages	other	than	Java	to	be	used	with	ease.	With
HiveServer2,	it	is	a	less	commonly	used	option	but	still	worth	mentioning	for
compatibility.	A	sample	Thrift	client	implemented	using	the	Java	API	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch7/clients/com/learninghadoop2/hive/client/HiveThriftClient.java.
This	client	can	be	used	to	connect	to	HiveServer,	but	due	to	protocol	differences,	the	client
won’t	work	with	HiveServer2.

In	the	example	we	define	a	getClient()	method	that	takes	as	input	the	host	and	port	of	a
HiveServer	service	and	returns	an	instance	of
org.apache.hadoop.hive.service.ThriftHive.Client.

A	client	is	obtained	by	first	instantiating	a	socket	connection,
org.apache.thrift.transport.TSocket,	to	the	HiveServer	service,	and	by	specifying	a
protocol,	org.apache.thrift.protocol.TBinaryProtocol,	to	serialize	and	transmit	data,
as	follows:

								TSocket	transport	=	new	TSocket(host,	port);

								transport.setTimeout(TIMEOUT);

								transport.open();

								TBinaryProtocol	protocol	=	new	TBinaryProtocol(transport);

								client	=	new	ThriftHive.Client(protocol);

We	call	getClient()	from	the	main	method	and	use	the	client	to	execute	a	query	against
an	instance	of	HiveServer	running	on	localhost	on	port	11111,	as	follows:

					public	static	void	main(String[]	args)	throws	Exception	{

										Client	client	=	getClient("localhost",	11111);

										client.execute("show	tables");

										List<String>	results	=	client.fetchAll();											

for	(String	result	:	results)	{

System.out.println(result);											

}	

					}

Make	sure	that	HiveServer	is	running	on	port	11111,	and	if	not,	start	an	instance	with	the
following	command:

$	sudo	hive	--service	hiveserver	-p	11111

Compile	and	execute	the	HiveThriftClient.java	example	with:

$	javac	$(hadoop	classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*	

com/learninghadoop2/hive/client/HiveThriftClient.java

$	java	-cp	$(hadoop	classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*:	

com.learninghadoop2.hive.client.HiveThriftClient

https://github.com/learninghadoop2/book-examples/blob/master/ch7/clients/com/learninghadoop2/hive/client/HiveThriftClient.java


Stinger	initiative
Hive	has	remained	very	successful	and	capable	since	its	earliest	releases,	particularly	in	its
ability	to	provide	SQL-like	processing	on	enormous	datasets.	But	other	technologies	did
not	stand	still,	and	Hive	acquired	a	reputation	of	being	relatively	slow,	particularly	in
regard	to	lengthy	startup	times	on	large	jobs	and	its	inability	to	give	quick	responses	to
conceptually	simple	queries.

These	perceived	limitations	were	less	due	to	Hive	itself	and	more	a	consequence	of	how
translation	of	SQL	queries	into	the	MapReduce	model	has	much	built-in	inefficiency	when
compared	to	other	ways	of	implementing	a	SQL	query.	Particularly	in	regard	to	very	large
datasets,	MapReduce	saw	lots	of	I/O	(and	consequently	time)	spent	writing	out	the	results
of	one	MapReduce	job	just	to	have	them	read	by	another.	As	discussed	in	Chapter	3,
Processing	–	MapReduce	and	Beyond,	this	is	a	major	driver	in	the	design	of	Tez,	which
can	schedule	jobs	on	a	Hadoop	cluster	as	a	graph	of	tasks	that	does	not	require	inefficient
writes	and	reads	between	them.

The	following	is	a	query	on	the	MapReduce	framework	versus	Tez:

SELECT	a.country,	COUNT(b.place_id)	FROM	place	a	JOIN	tweets	b	ON	(a.	

place_id	=	b.place_id)	GROUP	BY	a.country;

The	following	figure	contrasts	the	execution	plan	for	the	preceding	query	on	the
MapReduce	framework	versus	Tez:

Hive	on	MapReduce	versus	Tez

In	plain	MapReduce,	two	jobs	are	created	for	the	GROUP	BY	and	JOIN	clauses.	The	first	job
is	composed	of	a	set	of	MapReduce	tasks	that	read	data	from	the	disk	to	carry	out
grouping.	The	reducers	write	intermediate	results	to	the	disk	so	that	output	can	be
synchronized.	The	mappers	in	the	second	job	read	the	intermediate	results	from	the	disk	as
well	as	data	from	table	b.	The	combined	dataset	is	then	passed	to	the	reducer	where	shared
keys	are	joined.	Were	we	to	execute	an	ORDER	BY	statement,	this	would	have	resulted	in	a



third	job	and	further	MapReduce	passes.	The	same	query	is	executed	on	Tez	as	a	single
job	by	a	single	set	of	Map	tasks	that	read	data	from	the	disk.	I/O	grouping	and	joining	are
pipelined	across	reducers.

Alongside	these	architectural	limitations,	there	were	quite	a	few	areas	around	SQL
language	support	that	could	also	provide	better	efficiency,	and	in	early	2013,	the	Stinger
initiative	was	launched	with	an	explicit	goal	of	making	Hive	over	100	times	as	fast	and
with	much	richer	SQL	support.	Hive	0.13	has	all	the	features	of	the	three	phases	of
Stinger,	resulting	in	a	much	more	complete	SQL	dialect.	Also,	Tez	is	offered	as	an
execution	framework	in	addition	to	a	MapReduce-based	implementation	atop	YARN
which	is	more	efficient	than	previous	implementations	on	Hadoop	1	MapReduce.

With	Tez	as	the	execution	engine,	Hive	is	no	longer	limited	to	a	series	of	linear
MapReduce	jobs	and	can	instead	build	a	processing	graph	where	any	given	step	can,	for
example,	stream	results	to	multiple	sub-steps.

To	take	advantage	of	the	Tez	framework,	there	is	a	new	hive	variable	setting:

set	hive.execution.engine=tez;

This	setting	relies	on	Tez	being	installed	on	the	cluster;	it	is	available	in	source	form	from
http://tez.apache.org	or	in	several	distributions,	though	at	the	time	of	writing,	not
Cloudera.

The	alternative	value	is	mr,	which	uses	the	classic	MapReduce	model	(atop	YARN),	so	it
is	possible	in	a	single	installation	to	compare	with	the	performance	of	Hive	using	Tez.

http://tez.apache.org


Impala
Hive	is	not	the	only	product	providing	SQL-on-Hadoop	capability.	The	second	most
widely	used	is	likely	Impala,	announced	in	late	2012	and	released	in	spring	2013.	Though
originally	developed	internally	within	Cloudera,	its	source	code	is	periodically	pushed	to
an	open	source	Git	repository	(https://github.com/cloudera/impala).

Impala	was	created	out	of	the	same	perception	of	Hive’s	weaknesses	that	led	to	the	Stinger
initiative.

Impala	also	took	some	inspiration	from	Google	Dremel
(http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf
which	was	first	openly	described	by	a	paper	published	in	2009.	Dremel	was	built	at
Google	to	address	the	gap	between	the	need	for	very	fast	queries	on	very	large	datasets
and	the	high	latency	inherent	in	the	existing	MapReduce	model	underpinning	Hive	at	the
time.	Dremel	was	a	sophisticated	approach	to	this	problem	that,	rather	than	building
mitigations	atop	MapReduce	such	as	implemented	by	Hive,	instead	created	a	new	service
that	accessed	the	same	data	stored	in	HDFS.	Dremel	also	benefited	from	significant	work
to	optimize	the	storage	format	of	the	data	in	a	way	that	made	it	more	amenable	to	very	fast
analytic	queries.

https://github.com/cloudera/impala
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36632.pdf


The	architecture	of	Impala
The	basic	architecture	has	three	main	components;	the	Impala	daemons,	the	state	store,
and	the	clients.	Recent	versions	have	added	additional	components	that	improve	the
service,	but	we’ll	focus	on	the	high-level	architecture.

The	Impala	daemon	(impalad)	should	be	run	on	each	host	where	a	DataNode	process	is
managing	HDFS	data.	Note	that	impalad	does	not	access	the	filesystem	blocks	through
the	full	HDFS	FileSystem	API;	instead,	it	uses	a	feature	called	short-circuit	reads	to	make
data	access	more	efficient.

When	a	client	submits	a	query,	it	can	do	so	to	any	of	the	running	impalad	processes,	and
this	one	will	become	the	coordinator	for	the	execution	of	that	query.	The	key	aspect	of
Impala’s	performance	is	that	for	each	query,	it	generates	custom	native	code,	which	is	then
pushed	to	and	executed	by	all	the	impalad	processes	on	the	system.	This	highly	optimized
code	performs	the	query	on	the	local	data,	and	each	impalad	then	returns	its	subset	of	the
result	set	to	the	coordinator	node,	which	performs	the	final	data	consolidation	to	produce
the	final	result.	This	type	of	architecture	should	be	familiar	to	anyone	who	has	worked
with	any	of	the	(usually	commercial	and	expensive)	Massively	Parallel	Processing
(MPP)	(the	term	used	for	this	type	of	shared	scale-out	architecture)	data	warehouse
solutions	available	today.	As	the	cluster	runs,	the	state	store	daemon	ensures	that	each
impalad	process	is	aware	of	all	the	others	and	provides	a	view	of	the	overall	cluster
health.



Co-existing	with	Hive
Impala,	as	a	newer	product,	tends	to	have	a	more	restricted	set	of	SQL	data	types	and
supports	a	more	constrained	dialect	of	SQL	than	Hive.	It	is,	however,	expanding	this
support	with	each	new	release.	Refer	to	the	Impala	documentation
(http://www.cloudera.com/content/cloudera-content/cloudera-
docs/CDH5/latest/Impala/impala.html)	to	get	an	overview	of	the	current	level	of	support.

Impala	supports	the	Hive	metastore	mechanism	used	by	Hive	to	persistently	store	the
metadata	surrounding	its	table	structure	and	storage.	This	means	that	on	a	cluster	with	an
existing	Hive	setup,	it	should	be	immediately	possible	to	use	Impala	as	it	will	access	the
same	metastore	and	therefore	provide	access	to	the	same	tables	available	in	Hive.

But	be	warned	that	the	differences	in	SQL	dialect	and	data	types	might	cause	unexpected
results	when	working	in	a	combined	Hive	and	Impala	environment.	Some	queries	might
work	on	one	but	not	the	other,	they	might	show	very	different	performance	characteristics
(more	on	this	later),	or	they	might	actually	give	different	results.	This	last	point	might
become	apparent	when	using	data	types	such	as	float	and	double	that	are	simply	treated
differently	in	the	underlying	systems	(Hive	is	implemented	on	Java	while	Impala	is
written	in	C++).

As	of	version	1.2,	it	supports	UDFs	written	both	in	C++	and	Java,	although	C++	is
strongly	recommended	as	a	much	faster	solution.	Keep	this	in	mind	if	you	are	looking	to
share	custom	functions	between	Hive	and	Impala.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/Impala/impala.html


A	different	philosophy
When	Impala	was	first	released,	its	greatest	benefit	was	in	how	it	truly	enabled	what	is
often	called	speed	of	thought	analysis.	Queries	could	be	returned	sufficiently	fast	that	an
analyst	could	explore	a	thread	of	analysis	in	a	completely	interactive	fashion	without
having	to	wait	for	minutes	at	a	time	for	each	query	to	complete.	It’s	fair	to	say	that	most
adopters	of	Impala	were	at	times	stunned	by	its	performance,	especially	when	compared	to
the	version	of	Hive	shipping	at	the	time.

The	Impala	focus	has	remained	mostly	on	these	shorter	queries,	and	this	does	impose
some	limitations	on	the	system.	Impala	tends	to	be	quite	memory-heavy	as	it	relies	on	in-
memory	processing	to	achieve	much	of	its	performance.	If	a	query	requires	a	dataset	to	be
held	in	memory	rather	than	being	available	on	the	executing	node,	then	that	query	will
simply	fail	in	versions	of	Impala	before	2.0.

Comparing	the	work	on	Stinger	to	Impala,	it	could	be	argued	that	Impala	has	a	much
stronger	focus	on	excelling	in	the	shorter	(and	arguably	more	common)	queries	that
support	interactive	data	analysis.	Many	business	intelligence	tools	and	services	are	now
certified	to	directly	run	on	Impala.	The	Stinger	initiative	has	put	less	effort	into	making
Hive	just	as	fast	in	the	area	where	Impala	excels	but	has	instead	improved	Hive	(to
varying	degrees)	for	all	workloads.	Impala	is	still	developing	at	a	fast	pace	and	Stinger	has
put	additional	momentum	into	Hive,	so	it	is	most	likely	wise	to	consider	both	products	and
determine	which	best	meets	the	performance	and	functionality	requirements	of	your
projects	and	workflows.

It	should	also	be	kept	in	mind	that	there	are	competitive	commercial	pressures	shaping	the
direction	of	Impala	and	Hive.	Impala	was	created	and	is	still	driven	by	Cloudera,	the	most
popular	vendor	of	Hadoop	distributions.	The	Stinger	initiative,	though	contributed	to	by
many	companies	as	diverse	as	Microsoft	(yes,	really!)	and	Intel,	was	lead	by
Hortonworks,	probably	the	second	largest	vendor	of	Hadoop	distributions.	The	fact	is	that
if	you	are	using	the	Cloudera	distribution	of	Hadoop,	then	some	of	the	core	features	of
Hive	might	be	slower	to	arrive,	whereas	Impala	will	always	be	up-to-date.	Conversely,	if
you	use	another	distribution,	you	might	get	the	latest	Hive	release,	but	that	might	either
have	an	older	Impala	or,	as	is	currently	the	case,	you	might	have	to	download	and	install	it
yourself.

A	similar	situation	has	arisen	with	the	Parquet	and	ORC	file	formats	mentioned	earlier.
Parquet	is	preferred	by	Impala	and	developed	by	a	group	of	companies	led	by	Cloudera,
while	ORC	is	preferred	by	Hive	and	is	championed	by	Hortonworks.

Unfortunately,	the	reality	is	that	Parquet	support	is	often	very	quick	to	arrive	in	the
Cloudera	distribution	but	less	so	in	say	the	Hortonworks	distribution,	where	the	ORC	file
format	is	preferred.

These	themes	are	a	little	concerning	since,	although	competition	in	this	space	is	a	good
thing,	and	arguably	the	announcement	of	Impala	helped	energize	the	Hive	community,
there	is	a	greater	risk	that	your	choice	of	distribution	might	have	a	larger	impact	on	the



tools	and	file	formats	that	will	be	fully	supported,	unlike	in	the	past.	Hopefully,	the	current
situation	is	just	an	artifact	of	where	we	are	in	the	development	cycles	of	all	these	new	and
improved	technologies,	but	do	consider	your	choice	of	distribution	carefully	in	relation	to
your	SQL-on-Hadoop	needs.



Drill,	Tajo,	and	beyond
You	should	also	consider	that	SQL	on	Hadoop	no	longer	only	refers	to	Hive	or	Impala.
Apache	Drill	(http://drill.apache.org)	is	a	fuller	implementation	of	the	Dremel	model	first
described	by	Google.	Although	Impala	implements	the	Dremel	architecture	across	HDFS
data,	Drill	looks	to	provide	similar	functionality	across	multiple	data	sources.	It	is	still	in
its	early	stages,	but	if	your	needs	are	broader	than	what	Hive	or	Impala	provides,	it	might
be	worth	considering.

Tajo	(http://tajo.apache.org)	is	another	Apache	project	that	seeks	to	be	a	full	data
warehouse	system	on	Hadoop	data.	With	an	architecture	similar	to	that	of	Impala,	it	offers
a	much	richer	system	with	components	such	as	multiple	optimizers	and	ETL	tools	that	are
commonplace	in	traditional	data	warehouses	but	less	frequently	bundled	in	the	Hadoop
world.	It	has	a	much	smaller	user	base	but	has	been	used	by	certain	companies	very
successfully	for	a	significant	length	of	time,	and	might	be	worth	considering	if	you	need	a
fuller	data	warehousing	solution.

Other	products	are	also	emerging	in	this	space,	and	it’s	a	good	idea	to	do	some	research.
Hive	and	Impala	are	awesome	tools,	but	if	you	find	that	they	don’t	meet	your	needs,	then
look	around—something	else	might.

http://drill.apache.org
http://tajo.apache.org


Summary
In	its	early	days,	Hadoop	was	sometimes	erroneously	seen	as	the	latest	supposed	relational
database	killer.	Over	time,	it	has	become	more	apparent	that	the	more	sensible	approach	is
to	view	it	as	a	complement	to	RDBMS	technologies	and	that,	in	fact,	the	RDBMS
community	has	developed	tools	such	as	SQL	that	are	also	valuable	in	the	Hadoop	world.

HiveQL	is	an	implementation	of	SQL	on	Hadoop	and	was	the	primary	focus	of	this
chapter.	In	regard	to	HiveQL	and	its	implementations,	we	covered	the	following	topics:

How	HiveQL	provides	a	logical	model	atop	data	stored	in	HDFS	in	contrast	to
relational	databases	where	the	table	structure	is	enforced	in	advance
How	HiveQL	supports	many	standard	SQL	data	types	and	commands	including	joins
and	views
The	ETL-like	features	offered	by	HiveQL,	including	the	ability	to	import	data	into
tables	and	optimize	the	table	structure	through	partitioning	and	similar	mechanisms
How	HiveQL	offers	the	ability	to	extend	its	core	set	of	operators	with	user-defined
code	and	how	this	contrasts	to	the	Pig	UDF	mechanism
The	recent	history	of	Hive	developments,	such	as	the	Stinger	initiative,	that	have	seen
Hive	transition	to	an	updated	implementation	that	uses	Tez
The	broader	ecosystem	around	HiveQL	that	now	includes	products	such	as	Impala,
Tajo	and	Drill	and	how	each	of	these	focuses	on	specific	areas	in	which	to	excel

With	Pig	and	Hive,	we’ve	introduced	alternative	models	to	process	MapReduce	data,	but
so	far	we’ve	not	looked	at	another	question:	what	approaches	and	tools	are	required	to
actually	allow	this	massive	dataset	being	collected	in	Hadoop	to	remain	useful	and
manageable	over	time?	In	the	next	chapter,	we’ll	take	a	slight	step	up	the	abstraction
hierarchy	and	look	at	how	to	manage	the	life	cycle	of	this	enormous	data	asset.



Chapter	8.	Data	Lifecycle	Management
Our	previous	chapters	were	quite	technology	focused,	describing	particular	tools	or
techniques	and	how	they	can	be	used.	In	this	and	the	next	chapter,	we	are	going	to	take	a
more	top-down	approach	whereby	we	will	describe	a	problem	space	you	are	likely	to
encounter	and	then	explore	how	to	address	it.	In	particular,	we’ll	cover	the	following
topics:

What	we	mean	by	the	term	data	life	cycle	management
Why	data	life	cycle	management	is	something	to	think	about
The	categories	of	tools	that	can	be	used	to	address	the	problem
How	to	use	these	tools	to	build	the	first	half	of	a	Twitter	sentiment	analysis	pipeline



What	data	lifecycle	management	is
Data	doesn’t	exist	only	at	a	point	in	time.	Particularly	for	long-running	production
workflows,	you	are	likely	to	acquire	a	significant	quantity	of	data	in	a	Hadoop	cluster.
Requirements	rarely	stay	static	for	long,	so	alongside	new	logic	you	might	also	see	the
format	of	that	data	change	or	require	multiple	data	sources	to	be	used	to	provide	the
dataset	processed	in	your	application.	We	use	the	term	data	lifecycle	management	to
describe	an	approach	to	handling	the	collection,	storage,	and	transformation	of	data	that
ensures	that	data	is	where	it	needs	to	be,	in	the	format	it	needs	to	be	in,	in	a	way	that
allows	data	and	system	evolution	over	time.



Importance	of	data	lifecycle	management
If	you	build	data	processing	applications,	you	are	by	definition	reliant	on	the	data	that	is
processed.	Just	as	we	consider	the	reliability	of	applications	and	systems,	it	becomes
necessary	to	ensure	that	the	data	is	also	production-ready.

Data	at	some	point	needs	to	be	ingested	into	Hadoop.	It	is	one	part	of	an	enterprise	and
often	has	multiple	points	of	integration	with	external	systems.	If	the	ingest	of	data	coming
from	those	systems	is	not	reliable,	then	the	impact	on	the	jobs	that	process	that	data	is
often	as	disruptive	as	a	major	system	failure.	Data	ingest	becomes	a	critical	component	in
its	own	right.	And	when	we	say	the	ingest	needs	to	be	reliable,	we	don’t	just	mean	that
data	is	arriving;	it	also	has	to	be	arriving	in	a	format	that	is	usable	and	through	a
mechanism	that	can	handle	evolution	over	time.

The	problem	with	many	of	these	issues	is	that	they	do	not	arise	in	a	significant	fashion
until	the	flows	are	large,	the	system	is	critical,	and	the	business	impact	of	any	problems	is
non-trivial.	Ad	hoc	approaches	that	worked	for	a	less	critical	dataflow	often	will	simply
not	scale,	but	will	be	very	painful	to	replace	on	a	live	system.



Tools	to	help
But	don’t	panic!	There	are	a	number	of	categories	of	tools	that	can	help	with	the	data	life
cycle	management	problem.	We’ll	give	examples	of	the	following	three	broad	categories
in	this	chapter:

Orchestration	services:	building	an	ingest	pipeline	usually	has	multiple	discrete
stages,	and	we	will	use	an	orchestration	tool	to	allow	these	to	be	described,	executed,
and	managed
Connectors:	given	the	importance	of	integration	with	external	systems,	we	will	look
at	how	we	can	use	connectors	to	simplify	the	abstractions	provided	by	Hadoop
storage
File	formats:	how	we	store	the	data	impacts	how	we	manage	format	evolution	over
time,	and	several	rich	storage	formats	have	ways	of	supporting	this



Building	a	tweet	analysis	capability
In	earlier	chapters,	we	used	various	implementations	of	Twitter	data	analysis	to	describe
several	concepts.	We	will	take	this	capability	to	a	deeper	level	and	approach	it	as	a	major
case	study.

In	this	chapter,	we	will	build	a	data	ingest	pipeline,	constructing	a	production-ready
dataflow	that	is	designed	with	reliability	and	future	evolution	in	mind.

We’ll	build	out	the	pipeline	incrementally	throughout	the	chapter.	At	each	stage,	we’ll
highlight	what	has	changed	but	can’t	include	full	listings	at	each	stage	without	trebling	the
size	of	the	chapter.	The	source	code	for	this	chapter,	however,	has	every	iteration	in	its	full
glory.



Getting	the	tweet	data
The	first	thing	we	need	to	do	is	get	the	actual	tweet	data.	As	in	previous	examples,	we	can
pass	the	-j	and	-n	arguments	to	stream.py	to	dump	JSON	tweets	to	stdout:

$	stream.py	-j	-n	10000	>	tweets.json

Since	we	have	this	tool	that	can	create	a	batch	of	sample	tweets	on	demand,	we	could	start
our	ingest	pipeline	by	having	this	job	run	on	a	periodic	basis.	But	how?



Introducing	Oozie
We	could,	of	course,	bang	rocks	together	and	use	something	like	cron	for	simple	job
scheduling,	but	recall	that	we	want	an	ingest	pipeline	that	is	built	with	reliability	in	mind.
So,	we	really	want	a	scheduling	tool	that	we	can	use	to	detect	failures	and	otherwise
respond	to	exceptional	situations.

The	tool	we	will	use	here	is	Oozie	(http://oozie.apache.org),	a	workflow	engine	and
scheduler	built	with	a	focus	on	the	Hadoop	ecosystem.

Oozie	provides	a	means	to	define	a	workflow	as	a	series	of	nodes	with	configurable
parameters	and	controlled	transition	from	one	node	to	the	next.	It	is	installed	as	part	of	the
Cloudera	QuickStart	VM,	and	the	main	command-line	client	is,	not	surprisingly,	called
oozie.

Note
We’ve	tested	the	workflows	in	this	chapter	against	version	5.0	of	the	Cloudera	QuickStart
VM,	and	at	the	time	of	writing	Oozie	in	the	latest	version,	5.1,	has	some	issues.	There’s
nothing	particularly	version-specific	in	our	workflows,	however,	so	they	should	be
compatible	with	any	correctly	working	Oozie	v4	implementation.

Though	powerful	and	flexible,	Oozie	can	take	a	little	getting	used	to,	so	we’ll	give	some
examples	and	describe	what	we	are	doing	along	the	way.

The	most	common	node	in	an	Oozie	workflow	is	an	action.	It	is	within	action	nodes	that
the	steps	of	the	workflow	are	actually	executed;	the	other	node	types	handle	management
of	the	workflow	in	terms	of	decisions,	parallelism,	and	failure	detection.	Oozie	has
multiple	types	of	actions	that	it	can	perform.	One	of	these	is	the	shell	action,	which	can	be
used	to	execute	any	command	on	the	system,	such	as	native	binaries,	shell	scripts,	or	any
other	command-line	utility.	Let’s	create	a	script	to	generate	a	file	of	tweets	and	copy	this
to	HDFS:

set	-e

source	twitter.keys

python	stream.py	-j	-n	500	>	/tmp/tweets.out

hdfs	dfs	-put	/tmp/tweets.out	/tmp/tweets/tweets.out

rm	-f	/tmp/tweets.out

Note	that	the	first	line	will	cause	the	entire	script	to	fail	should	any	of	the	included
commands	fail.	We	use	an	environment	file	to	provide	the	Twitter	keys	to	our	script	in
twitter.keys,	which	is	of	the	following	form:

export	TWITTER_CONSUMER_KEY=<value>

export	TWITTER_CONSUMER_SECRET=<value>

export	TWITTER_ACCESS_KEY=<value>	

export	TWITTER_ACCESS_SECRET=<value>

Oozie	uses	XML	to	describe	its	workflows,	usually	stored	in	a	file	called	workflow.xml.
Let’s	walk	through	the	definition	for	an	Oozie	workflow	that	calls	a	shell	command.

http://oozie.apache.org


The	schema	for	an	Oozie	workflow	is	called	workflow-app,	and	we	can	give	the
workflow	a	specific	name.	This	is	useful	when	viewing	job	history	in	the	CLI	or	Oozie
web	UI.	In	the	examples	in	this	book,	we’ll	use	an	increasing	version	number	to	allow	us
to	more	easily	separate	the	iterations	within	the	source	repository.	This	is	how	we	give	the
workflow-app	a	specific	name:

<workflow-app	xmlns="uri:oozie:workflow:0.4"	name="v1">

Oozie	workflows	are	made	up	of	a	series	of	connected	nodes,	each	of	which	represents	a
step	in	the	process,	and	which	are	represented	by	XML	nodes	in	the	workflow	definition.
Oozie	has	a	number	of	nodes	that	deal	with	the	transition	of	the	workflow	from	one	step	to
the	next.	The	first	of	these	is	the	start	node,	which	simply	states	the	name	of	the	first	node
to	be	executed	as	part	of	the	workflow,	as	follows:

				<start	to="fs-node"/>

We	then	have	the	definition	for	the	named	start	node.	In	this	case,	it	is	an	action	node,
which	is	the	generic	node	type	for	most	Oozie	nodes	that	actually	perform	some
processing,	as	follows:

				<action	name="fs-node">

Action	is	a	broad	category	of	nodes,	and	we	will	typically	then	specialize	it	with	the
particular	processing	for	this	given	node.	In	this	case,	we	are	using	the	fs	node	type,	which
allows	us	to	perform	filesystem	operations:

				<fs>

We	want	to	ensure	that	the	directory	on	HDFS	to	which	we	wish	to	copy	the	file	of	tweet
data,	exists,	is	empty,	and	has	suitable	permissions.	We	do	this	by	trying	to	delete	the
directory	if	it	exists,	then	creating	it,	and	finally	applying	the	required	permissions,	as
follows:

				<delete	path="${nameNode}/tmp/tweets"/>

				<mkdir	path="${nameNode}/tmp/tweets"/>

				<chmod	path="${nameNode}/tmp/tweets"	permissions="777"/>

				</fs>

We’ll	see	an	alternative	way	of	setting	up	directories	later.	After	performing	the
functionality	of	the	node,	Oozie	needs	know	how	to	proceed	with	the	workflow.	In	most
cases,	this	will	comprise	moving	to	another	action	node	if	this	node	was	successful	and
aborting	the	workflow	otherwise.	This	is	specified	by	the	next	elements.	The	ok	node
gives	the	name	of	the	node	to	which	to	transition	if	the	execution	was	successful;	the	error
node	names	the	destination	node	for	failure	scenarios.	Here’s	how	the	ok	and	fail	nodes
are	used:

				<ok	to="shell-node"/>

				<error	to="fail"/>

				</action>

				<action	name="shell-node">

The	second	action	node	is	again	specialized	with	its	specific	processing	type;	in	this	case,



we	have	a	shell	node:

<shell	xmlns="uri:oozie:shell-action:0.2">

The	shell	action	then	has	the	Hadoop	JobTracker	and	NameNode	locations	specified.	Note
that	the	actual	values	are	given	by	variables;	we’ll	explain	where	they	come	from	later.
The	JobTracker	and	NameNode	are	specified	as	follows:

												<job-tracker>${jobTracker}</job-tracker>

												<name-node>${nameNode}</name-node>

As	mentioned	in	Chapter	3,	Processing	–	MapReduce	and	Beyond,	MapReduce	uses
multiple	queues	to	provide	support	for	different	approaches	to	resource	scheduling.	The
next	element	specifies	the	MapReduce	queue	to	which	the	workflow	should	be	submitted:

													<configuration>

																<property>

																				<name>mapred.job.queue.name</name>

																				<value>${queueName}</value>

																</property>

													</configuration>

Now	that	the	shell	node	is	fully	configured,	we	can	specify	the	command	to	invoke,	again
via	a	variable,	as	follows:

														<exec>${EXEC}</exec>

The	various	steps	of	Oozie	workflows	are	executed	as	MapReduce	jobs.	This	shell	action
will,	therefore,	be	executed	as	a	specific	task	instance	on	a	particular	TaskTracker.	We,
therefore,	need	to	specify	which	files	need	to	be	copied	to	the	local	working	directory	on
the	TaskTracker	machine	before	the	action	can	be	performed.	In	this	case,	we	need	to	copy
the	main	shell	script,	the	Python	tweet	generator,	and	the	Twitter	config	file,	as	follows:

<file>${workflowRoot}/${EXEC}</file>

<file>${workflowRoot}/twitter.keys</file>

<file>${workflowRoot}/stream.py</file>

After	closing	the	shell	element,	we	again	specify	what	to	do	depending	on	whether	the
action	completed	successfully	or	not.	Because	MapReduce	is	used	for	job	execution,	the
majority	of	node	types	by	definition	have	built-in	retry	and	recovery	logic,	though	this	is
not	the	case	for	shell	nodes:

							</shell>

						<ok	to="end"/>

						<error	to="fail"/>

</action>

If	the	workflow	fails,	let’s	just	kill	it	in	this	case.	The	kill	node	type	does	exactly	that—
terminate	the	workflow	from	proceeding	to	any	further	steps,	usually	logging	error
messages	along	the	way.	Here’s	how	the	kill	node	type	is	used:

<kill	name="fail">

			<message>Shell	action	failed,	error	

message[${wf:errorMessage(wf:lastErrorNode())}]</message>



</kill>

The	end	node	on	the	other	hand	simply	halts	the	workflow	and	logs	it	as	a	successful
completion	within	Oozie:

			<end	name="end"/>

</workflow-app>

The	obvious	question	is	what	the	preceding	variables	represent	and	from	where	they	get
their	concrete	values.	The	preceding	variables	are	examples	of	the	Oozie	Expression
Language	often	referred	to	as	EL.

Alongside	the	workflow	definition	file	(workflow.xml),	which	describes	the	steps	in	the
flow,	we	also	need	to	create	a	configuration	file	that	gives	the	specific	values	for	a	given
execution	of	the	workflow.	This	separation	of	functionality	and	configuration	allows	us	to
write	workflows	that	can	be	used	on	different	clusters,	on	different	file	locations,	or	with
different	variable	values	without	having	to	recreate	the	workflow	itself.	By	convention,
this	file	is	usually	named	job.properties.	For	the	preceding	workflow,	here’s	a	sample
job.properties	file.

Firstly,	we	specify	the	location	of	the	JobTracker,	the	NameNode,	and	the	MapReduce
queue	to	which	to	submit	the	workflow.	The	following	should	work	on	the	Cloudera	5.0
QuickStart	VM,	though	in	v	5.1	the	hostname	has	been	changed	to	quickstart.cloudera.
The	important	thing	is	that	the	specified	NameNode	and	JobTracker	addresses	need	to	be
in	the	Oozie	whitelist—the	local	services	on	the	VM	are	added	automatically:

jobTracker=localhost.localdomain:8032

nameNode=hdfs://localhost.localdomain:8020

queueName=default

Next,	we	set	some	values	for	where	the	workflow	definitions	and	associated	files	can	be
found	on	the	HDFS	filesystem.	Note	the	use	of	a	variable	representing	the	username
running	the	job.	This	allows	a	single	workflow	to	be	applied	to	different	paths	depending
on	the	submitting	user,	as	follows:

tasksRoot=book

workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v1

oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/v1

Next,	we	name	the	command	to	be	executed	in	the	workflow	as	${EXEC}:

EXEC=gettweets.sh

More	complex	workflows	will	require	additional	entries	in	the	job.properties	file;	the
preceding	workflow	is	as	simple	as	it	gets.

The	oozie	command-line	tool	needs	to	know	where	the	Oozie	server	is	running.	This	can
be	added	as	an	argument	to	every	Oozie	shell	command,	but	that	gets	unwieldy	very
quickly.	Instead,	you	can	set	the	shell	environment	variable,	as	follows:

$	export	OOZIE_URL='http://localhost:11000/oozie'

After	all	that	work,	we	can	now	actually	run	an	Oozie	workflow.	Create	a	directory	on



HDFS	as	specified	in	the	values	in	the	job.properties	file.	In	the	preceding	command,
we’d	be	creating	this	as	book/v1	under	our	home	directory	on	HDFS.	Copy	the
stream.py,	gettweets.sh	and	twitter.properties	files	to	that	directory;	these	are	the
files	required	to	perform	the	actual	execution	of	the	shell	command.	Then,	add	the
workflow.xml	file	to	the	same	directory.

To	run	the	workflow	then,	we	do	the	following:

$	oozie	job	-run	-config	<path-to-job.properties>

If	submitted	successfully,	Oozie	will	print	the	job	name	to	the	screen.	You	can	see	the
current	status	of	this	workflow	with:

$	oozie	job	-info	<job-id>

You	can	also	check	the	logs	for	the	job:

$	oozie	job	-log	<job-id>		

In	addition,	all	current	and	recent	jobs	can	be	viewed	with:

$	oozie	jobs		

A	note	on	HDFS	file	permissions
There	is	a	subtle	aspect	in	the	shell	command	that	can	catch	the	unwary.	As	an	alternative
to	having	the	fs	node,	we	could	instead	include	a	preparation	element	within	the	shell
node	to	create	the	directory	we	need	on	the	filesystem.	It	would	look	like	the	following:

<prepare>

					<mkdir	path="${nameNode}/tmp/tweets"/>

</prepare>

The	prepare	stage	is	executed	by	the	user	who	submitted	the	workflow,	but	since	the
actual	script	execution	is	performed	on	YARN,	it	is	usually	executed	as	the	yarn	user.	You
might	hit	a	problem	where	the	script	generates	the	tweets,	the	/tmp/tweets	directory	is
created	on	HDFS,	but	the	script	then	fails	to	have	permission	to	write	to	that	directory.
You	can	either	resolve	this	through	assigning	permissions	more	precisely	or,	as	shown
earlier,	you	add	a	filesystem	node	to	encapsulate	the	needed	operations.	We’ll	use	a
mixture	of	both	techniques	in	this	chapter;	for	non-shell	nodes,	we’ll	use	prepare	elements,
particularly	if	the	needed	directory	is	manipulated	only	by	that	node.	For	cases	where	a
shell	node	is	involved	or	where	the	created	directories	will	be	used	across	multiple	nodes,
we’ll	be	safe	and	use	the	more	explicit	fs	node.

Making	development	a	little	easier
It	can	sometimes	get	awkward	to	manage	the	files	and	resources	for	an	Oozie	job	during
development.	Some	need	to	be	on	HDFS,	while	some	need	to	be	local,	and	changes	to
some	files	require	changes	to	others.	The	easiest	approach	is	often	to	develop	or	make
changes	in	a	complete	clone	of	the	workflow	directory	on	the	local	filesystem	and	push
changes	from	there	to	the	similarly	named	directory	in	HDFS,	not	forgetting,	of	course,	to
ensure	that	all	changes	are	under	revision	control!	For	operational	execution	of	the



workflow,	the	job.properties	file	is	the	only	thing	that	needs	to	be	on	the	local
filesystem	and,	conversely,	all	the	other	files	need	to	be	on	HDFS.	Always	remember	this:
it’s	all	too	easy	to	make	changes	to	a	local	copy	of	a	workflow,	forget	to	push	the	changes
to	HDFS,	and	then	be	confused	as	to	why	the	workflow	isn’t	reflecting	the	changes.

Extracting	data	and	ingesting	into	Hive
With	our	data	on	HDFS,	we	can	now	extract	the	separate	datasets	for	tweets	and	users,	and
place	data	as	in	previous	chapters.	We	can	reuse	extract_for_hive.pig	to	parse	the	raw
tweet	JSON	into	separate	files,	store	them	again	on	HDFS,	and	then	follow	up	with	a	Hive
step	that	ingests	these	new	files	into	Hive	tables	for	tweets,	users,	and	places.

To	do	this	within	Oozie,	we’ll	need	to	add	two	new	nodes	to	our	workflow,	a	Pig	action
for	the	first	step	and	a	Hive	action	for	the	second.

For	our	Hive	action,	we’ll	just	create	three	external	tables	that	point	to	the	files	generated
by	Pig.	This	would	then	allow	us	to	follow	our	previously	described	model	of	ingesting
into	temporary	or	external	tables	and	using	HiveQL	INSERT	statements	from	there	to	insert
into	the	operational,	and	often	partitioned,	tables.	This	create.hql	script	can	be	found	at
https://github.com/learninghadoop2/book-examples/blob/master/ch8/v2/hive/create.hql
but	is	simply	of	the	following	form:

CREATE	DATABASE	IF	NOT	EXISTS	twttr	;

USE	twttr;

DROP	TABLE	IF	EXISTS	tweets;

CREATE	EXTERNAL	TABLE	tweets	(

...

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE

LOCATION	'${ingestDir}/tweets';

DROP	TABLE	IF	EXISTS	user;

CREATE	EXTERNAL	TABLE	user	(

...

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE

LOCATION	'${ingestDir}/users';

DROP	TABLE	IF	EXISTS	place;

CREATE	EXTERNAL	TABLE	place	(

...

)	ROW	FORMAT	DELIMITED

FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	TEXTFILE

LOCATION	'${ingestDir}/places';

Note	that	the	file	separator	on	each	table	is	also	explicitly	set	to	match	what	we	are
outputting	from	Pig.	In	addition	to	this,	locations	in	both	scripts	are	specified	by	variables
for	which	we	will	provide	concrete	values	in	our	job.properties	file.

With	the	preceding	statements,	we	can	create	the	Pig	node	for	our	workflow	found	in	the

https://github.com/learninghadoop2/book-examples/blob/master/ch8/v2/hive/create.hql


source	code	as	v2	of	the	pipeline.	Much	of	the	node	definition	looks	similar	to	the	shell
node	used	previously,	as	we	set	the	same	configuration	elements;	also	notice	our	use	of	the
prepare	element	to	create	the	needed	output	directory.	We	can	create	the	Pig	node	for	our
workflow	as	shown	in	the	following	action:

<action	name="pig-node">

			<pig>

							<job-tracker>${jobTracker}</job-tracker>

							<name-node>${nameNode}</name-node>

							<prepare>

											<delete	path="${nameNode}/${outputDir}"/>

											<mkdir	path="${nameNode}/${outputDir}"/>

							</prepare>

							<configuration>

											<property>

															<name>mapred.job.queue.name</name>

															<value>${queueName}</value>

											</property>

							</configuration>

Similarly	as	with	the	shell	command,	we	need	to	tell	the	Pig	action	the	location	of	the
actual	Pig	script.	This	is	specified	in	the	following	script	element:

										<script>${workflowRoot}/pig/extract_for_hive.pig</script>

We	also	need	to	modify	the	command	line	used	to	invoke	the	Pig	script	to	add	several
parameters.	The	following	elements	do	this;	note	the	construction	pattern	wherein	one
element	adds	the	actual	parameter	name	and	the	next	its	value	(we’ll	see	an	alternative
mechanism	for	passing	arguments	in	the	next	section):

							<argument>-param</argument>

							<argument>inputDir=${inputDir}</argument>

							<argument>-param</argument>

							<argument>outputDir=${outputDir}</argument>

		</pig>

Because	we	want	to	move	from	this	step	to	the	Hive	node,	we	need	to	set	the	following
elements	appropriately:

							<ok	to="hive-node"/>

							<error	to="fail"/>

			</action>

The	Hive	action	itself	is	a	little	different	than	the	previous	nodes;	even	though	it	starts	in	a
similar	fashion,	it	specifies	the	Hive	action-specific	namespace,	as	follows:

<action	name="hive-node">

							<hive	xmlns="uri:oozie:hive-action:0.2">

								<job-tracker>${jobTracker}</job-tracker>

								<name-node>${nameNode}</name-node>

The	Hive	action	needs	many	of	the	configuration	elements	used	by	Hive	itself	and,	in
most	cases,	we	copy	the	hive-site.xml	file	into	the	workflow	directory	and	specify	its
location,	as	shown	in	the	following	xml;	note	that	this	mechanism	is	not	Hive-specific	and



can	also	be	used	for	custom	actions:

								<job-xml>${workflowRoot}/hive-site.xml</job-xml>

In	addition,	we	might	need	to	override	some	MapReduce	default	configuration	properties,
as	shown	in	the	following	xml,	where	we	specify	that	intermediate	compression	should	be
used	for	our	job:

								<configuration>

													<property>

																	<name>mapred.compress.map.output</name>

																	<value>true</value>

													</property>

								</configuration>

After	configuring	the	Hive	environment,	we	now	specify	the	location	of	the	Hive	script:

								<script>${workflowRoot}/hive/create.hql</script>

We	also	have	to	provide	the	mechanism	to	pass	arguments	to	the	Hive	script.	But	instead
of	building	out	the	command	line	one	component	at	a	time,	we’ll	add	the	param	elements
that	map	the	name	of	a	configuration	element	in	the	job.properties	file	to	variables
specified	in	the	Hive	script;	this	mechanism	is	also	supported	with	Pig	actions:

								<param>dbName=${dbName}</param>

								<param>ingestDir=${ingestDir}</param>

			</hive>

The	Hive	node	then	closes	as	the	others,	as	follows:

					<ok	to="end"/>

					<error	to="fail"/>

</action>

We	now	need	to	put	all	this	together	to	run	the	multistage	workflow	in	Oozie.	The	full
workflow.xml	file	can	be	found	at	https://github.com/learninghadoop2/book-
examples/tree/master/ch8/v2	and	the	workflow	is	visualized	in	the	following	diagram:

Data	ingestion	workflow	v2

https://github.com/learninghadoop2/book-examples/tree/master/ch8/v2


This	workflow	performs	all	the	steps	discussed	before;	it	generates	tweet	data,	extracts
subsets	of	data	via	Pig,	and	then	ingests	these	into	Hive.

A	note	on	workflow	directory	structure
We	now	have	quite	a	few	files	in	our	workflow	directory	and	it	is	best	to	adopt	some
structure	and	naming	conventions.	For	the	current	workflow,	our	directory	on	HDFS	looks
like	the	following:

/hive/

/hive/create.hql

/lib/

/pig/

/pig/extract_for_hive.pig

/scripts/

/scripts/gettweets.sh

/scripts/stream-json-batch.py

/scripts/twitter-keys

/hive-site.xml

/job.properties

/workflow.xml

The	model	we	follow	is	to	keep	configuration	files	in	the	top-level	directory	but	to	keep
files	related	to	a	given	action	type	in	dedicated	subdirectories.	Note	that	it	is	useful	to	have
a	lib	directory	even	if	empty,	as	some	node	types	look	for	it.

With	the	preceding	structure,	the	job.properties	file	for	our	combined	job	is	now	the
following:

jobTracker=localhost.localdomain:8032

nameNode=hdfs://localhost.localdomain:8020

queueName=default

tasksRoot=book

workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v2

oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/v2

oozie.use.system.libpath=true

EXEC=gettweets.sh

inputDir=/tmp/tweets

outputDir=/tmp/tweetdata

ingestDir=/tmp/tweetdata

dbName=twttr

In	the	preceding	code,	we’ve	fully	updated	the	workflow.xml	definition	to	include	all	the
steps	described	so	far—including	an	initial	fs	node	to	create	the	required	directory
without	worrying	about	user	permissions.

Introducing	HCatalog
If	we	look	at	our	current	workflow,	there	is	inefficiency	in	how	we	use	HDFS	as	the
interface	between	Pig	and	Hive.	We	need	to	output	the	result	of	our	Pig	script	onto	HDFS,
where	the	Hive	script	can	then	use	it	as	the	location	of	some	new	tables.	What	this



highlights	is	that	it	is	often	very	useful	to	have	data	stored	in	Hive,	but	this	is	limited,	as
few	tools	(primarily	Hive)	can	access	the	Hive	metastore	and	hence	read	and	write	such
data.	If	we	think	about	it,	Hive	has	two	main	layers:	its	tools	for	accessing	and
manipulating	its	data	plus	the	execution	framework	to	run	queries	on	that	data.

The	HCatalog	subproject	of	Hive	effectively	provides	an	independent	implementation	of
the	first	of	these	layers—the	means	to	access	and	manipulate	data	in	the	Hive	metastore.
HCatalog	provides	mechanisms	for	other	tools,	such	as	Pig	and	MapReduce,	to	natively
read	and	write	table-structured	data	that	is	stored	on	HDFS.

Remember,	of	course,	that	the	data	is	stored	on	HDFS	in	one	format	or	another.	The	Hive
metastore	provides	the	models	to	abstract	these	files	into	the	relational	table	structure
familiar	from	Hive.	So	when	we	say	we	are	storing	data	in	HCatalog,	what	we	really	mean
is	that	we	are	storing	data	on	HDFS	in	such	a	way	that	this	data	can	then	be	exposed	by
table	structures	specified	within	the	Hive	metastore.	Conversely,	when	we	refer	to	Hive
data,	what	we	really	mean	is	data	whose	metadata	is	stored	in	the	Hive	metastore,	and
which	can	be	accessed	by	any	metastore-aware	tool,	such	as	HCatalog.

Using	HCatalog

The	HCatalog	command-line	tool	is	called	hcat	and	will	be	preinstalled	on	the	Cloudera
QuickStart	VM—it	is	installed,	in	fact,	with	any	version	of	Hive	later	than	0.11	inclusive.

The	hcat	utility	doesn’t	have	an	interactive	mode,	so	generally	you	will	use	it	with
explicit	command-line	arguments	or	by	pointing	it	at	a	file	of	commands,	as	follows:

$	hcat	–e	"use	default;	show	tables"

$	hcat	–f	commands.hql

Though	the	hcat	tool	is	useful	and	can	be	incorporated	into	scripts,	the	more	interesting
element	of	HCatalog	for	our	purposes	here	is	its	integration	with	Pig.	HCatalog	defines	a
new	Pig	loader	called	HCatLoader	and	a	storer	called	HCatStorer.	As	the	names	suggest,
these	allow	Pig	scripts	to	read	from	or	write	to	Hive	tables	directly.	We	can	use	this
mechanism	to	replace	our	previous	Pig	and	Hive	actions	in	our	Oozie	workflow	with	a
single	HCatalog-based	Pig	action	that	writes	the	output	of	the	Pig	job	directly	into	our
tables	in	Hive.

For	clarity,	we’ll	create	new	tables	named	tweets_hcat,	places_hcat,	and	users_hcat
into	which	we’ll	insert	this	data;	note	that	these	are	no	longer	external	tables:

CREATE	TABLE	tweets_hcat…	

CREATE	TABLE	places_hcat	…

CREATE	TABLE	users_hcat	…

Note	that	if	we	had	these	commands	in	a	script	file,	we	could	use	the	hcat	CLI	tool	to
execute	them,	as	follows:

$	hcat	–f	create.hql

The	HCat	CLI	tool	does	not,	however,	offer	an	interactive	shell	akin	to	the	Hive	CLI.	We
can	now	use	our	previous	Pig	script	and	need	to	only	change	the	store	commands,
replacing	the	use	of	PigStorage	with	HCatStorer.	Our	updated	Pig	script,



extract_to_hcat.pig,	therefore	includes	store	commands	such	as	the	following:

store	tweets_tsv	into	'twttr.tweets_hcat'	using	

org.apache.hive.hcatalog.pig.HCatStorer();

Note	that	the	package	name	for	the	HCatStorer	class	has	the	org.apache.hive.hcatalog
prefix;	when	HCatalog	was	in	the	Apache	incubator,	it	used	org.apache.hcatalog	for	its
package	prefix.	This	older	form	is	now	deprecated,	and	the	new	form	that	explicitly	shows
HCatalog	as	a	subproject	of	Hive	should	be	used	instead.

With	this	new	Pig	script,	we	can	now	replace	our	previous	Pig	and	Hive	action	with	an
updated	Pig	action	using	HCatalog.	This	also	requires	the	first	usage	of	the	Oozie	sharelib,
which	we’ll	discuss	in	the	next	section.	In	our	workflow	definition,	the	pig	element	of	this
action	will	be	defined	as	shown	in	the	following	xml	and	can	be	found	as	v3	of	the
pipeline	in	the	source	bundle;	in	v3,	we’ve	also	added	a	utility	Hive	node	to	run	before	the
Pig	node	to	ensure	that	all	necessary	tables	exist	before	the	Pig	script	that	requires	them	is
executed.

<pig>

			<job-tracker>${jobTracker}</job-tracker>

			<name-node>${nameNode}</name-node>

			<job-xml>${workflowRoot}/hive-site.xml</job-xml>

				<configuration>

										<property>

														<name>mapred.job.queue.name</name>

														<value>${queueName}</value>

										</property>

										<property>

													<name>oozie.action.sharelib.for.pig</name>

													<value>pig,hcatalog</value>

										</property>

				</configuration>

				<script>${workflowRoot}/pig/extract_to_hcat.pig

				</script>

				<argument>-param</argument>

				<argument>inputDir=${inputDir}</argument>

</pig>

The	two	changes	of	note	are	the	addition	of	the	explicit	reference	to	the	hive-site.xml
file;	this	is	required	by	HCatalog,	and	the	new	configuration	element	that	tells	Oozie	to
include	the	required	HCatalog	JARs.

The	Oozie	sharelib
That	last	addition	touched	on	an	important	aspect	of	Oozie	we’ve	not	mentioned	thus	far:
the	Oozie	sharelib.	When	Oozie	runs	all	its	various	action	types,	it	requires	multiple
JARs	to	access	Hadoop	and	to	invoke	various	tools,	such	as	Hive	and	Pig.	As	part	of	the
Oozie	installation,	a	large	number	of	dependent	JARs	have	been	placed	on	HDFS	to	be
used	by	Oozie	and	its	various	action	types:	this	is	the	Oozie	sharelib.

For	most	usages	of	Oozie,	it’s	enough	to	know	the	sharelib	exists,	usually	under
/user/oozie/share/lib	on	HDFS,	and	when,	as	in	the	previous	example,	some	explicit



configuration	values	need	to	be	added.	When	using	a	Pig	action,	the	Pig	JARs	will
automatically	get	picked	up,	but	when	the	Pig	script	uses	something	like	HCatalog,	then
this	dependency	will	not	be	explicitly	known	to	Oozie.

The	Oozie	CLI	allows	manipulation	of	the	sharelib,	though	the	scenarios	where	this	will
be	required	are	outside	of	the	scope	of	this	book.	The	following	command	can	be	useful
though	to	see	which	components	are	included	in	the	Oozie	sharelib:

$	oozie	admin	-shareliblist

The	following	command	is	useful	to	see	the	individual	JARs	comprising	a	particular
component	within	the	sharelib,	in	this	case	HCatalog:

$	oozie	admin	-shareliblist	hcat

These	commands	can	be	useful	to	verify	that	the	required	JARs	are	being	included	and	to
see	which	specific	versions	are	being	used.

HCatalog	and	partitioned	tables
If	you	rerun	the	previous	workflow	a	second	time,	it	will	fail;	dig	into	the	logs,	and	you
will	see	HCatalog	complaining	that	it	cannot	write	to	a	table	that	already	contains	data.
This	is	a	current	limitation	of	HCatalog;	it	views	tables	and	partitions	within	tables	as
immutable	by	default.	Hive,	on	the	other	hand,	will	add	new	data	to	a	table	or	partition;	its
default	view	of	a	table	is	that	it	is	mutable.

Upcoming	changes	to	Hive	and	HCatalog	will	see	the	support	of	a	new	table	property	that
will	control	this	behavior	in	either	tool;	for	example,	the	following	added	to	a	table
definition	would	allow	table	appends	as	supported	in	Hive	today:

TBLPROPERTIES("immutable"="false")

This	is	currently	not	available	in	the	shipping	version	of	Hive	and	HCatalog,	however.	For
us	to	have	a	workflow	that	adds	more	and	more	data	into	our	tables,	we	therefore	need	to
create	a	new	partition	for	each	new	run	of	the	workflow.	We’ve	made	these	changes	in	v4
of	our	pipeline,	where	we	first	recreate	the	tables	with	an	integer	partition	key,	as	follows:

CREATE		TABLE	tweets_hcat	(

…)

PARTITIONED	BY	(partition_key	int)

ROW	FORMAT	DELIMITED

		FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	SEQUENCEFILE;

CREATE		TABLE	`places_hcat`(

…	)

partitioned	by(partition_key	int)

ROW	FORMAT	DELIMITED

		FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	SEQUENCEFILE

TBLPROPERTIES("immutable"="false")	;

CREATE		TABLE	`users_hcat`(



…)

partitioned	by(partition_key	int)

ROW	FORMAT	DELIMITED

		FIELDS	TERMINATED	BY	'\u0001'

STORED	AS	SEQUENCEFILE

TBLPROPERTIES("immutable"="false")	;

The	Pig	HCatStorer	takes	an	optional	partition	definition	and	we	modify	the	store
statements	in	our	Pig	script	accordingly;	for	example:

store	tweets_tsv	into	'twttr.tweets_hcat'	

using	org.apache.hive.hcatalog.pig.HCatStorer(

'partition_key=$partitionKey');

We	then	modify	our	Pig	action	in	the	workflow.xml	file	to	include	this	additional
parameter:

<script>${workflowRoot}/pig/extract_to_hcat.pig</script>

										<param>inputDir=${inputDir}</param>

										<param>partitionKey=${partitionKey}</param>

The	question	is	then	how	we	pass	this	partition	key	to	the	workflow.	We	could	specify	it	in
the	job.properties	file,	but	by	doing	so	we	would	hit	the	same	problem	with	trying	to
write	to	an	existing	partition	on	the	next	re-run.
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For	now,	we’ll	pass	this	as	an	explicit	argument	to	the	invocation	of	the	Oozie	CLI	and
explore	better	ways	to	do	this	later:

$	oozie	job	–run	–config	v4/job.properties	–DpartitionKey=12345

Note
Note	that	a	consequence	of	this	behavior	is	that	rerunning	an	HCat	workflow	with	the
same	arguments	will	fail.	Be	aware	of	this	when	testing	workflows	or	playing	with	the
sample	code	from	this	book.



Producing	derived	data
Now	that	we	have	our	main	data	pipeline	established,	there	is	most	likely	a	series	of
actions	that	we	wish	to	take	after	we	add	each	new	additional	dataset.	As	a	simple
example,	note	that	with	our	previous	mechanism	of	adding	each	set	of	user	data	to	a
separate	partition,	the	users_hcat	table	will	contain	users	multiple	times.	Let’s	create	a
new	table	for	unique	users	and	regenerate	this	each	time	we	add	new	user	data.

Note	that	given	the	aforementioned	limitations	of	HCatalog,	we’ll	use	a	Hive	action	for
this	purpose,	as	we	need	to	replace	the	data	in	a	table.

First,	we’ll	create	a	new	table	for	unique	user	information,	as	follows:

CREATE	TABLE	IF	NOT	EXISTS	`unique_users`(

		`user_id`	string	,

		`name`	string	,

		`description`	string	,

		`screen_name`	string	)

ROW	FORMAT	DELIMITED

		FIELDS	TERMINATED	BY	'\t'

STORED	AS	sequencefile	;

In	this	table,	we’ll	only	store	the	attributes	of	a	user	that	either	never	change	(ID)	or
change	rarely	(the	screen	name,	and	so	on).	We	can	then	write	a	simple	Hive	statement	to
populate	this	table	from	the	full	users_hcat	table:

USE	twttr;

INSERT	OVERWRITE	TABLE	unique_users

SELECT	DISTINCT	user_id,	name,	description,	screen_name

FROM	users_hcat;

We	can	then	add	an	additional	Hive	action	node	that	comes	after	our	previous	Pig	node	in
the	workflow.	When	doing	this,	we	discover	that	our	pattern	of	simply	giving	nodes	names
such	as	hive-node	is	a	really	bad	idea,	as	we	now	have	two	Hive-based	nodes.	In	v5	of	the
workflow,	we	add	this	new	node	and	also	change	our	nodes	to	have	more	descriptive
names:
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Performing	multiple	actions	in	parallel
Our	workflow	has	two	types	of	activity:	initial	setup	with	the	nodes	that	initialize	the
filesystem	and	Hive	tables,	and	the	functional	nodes	that	perform	actual	processing.	If	we
look	at	the	two	setup	nodes	we	have	been	using,	it	is	obvious	that	they	are	quite	distinct
and	not	interdependent.	We	can	therefore	take	advantage	of	an	Oozie	feature	called	fork
and	join	nodes	to	execute	these	actions	in	parallel.	The	start	of	our	workflow.xml	file
now	becomes:

	<start	to="setup-fork-node"/>

The	Oozie	fork	node	contains	a	number	of	path	elements,	each	of	which	specifies	a
starting	node.	Each	of	these	will	be	launched	in	parallel:

<fork	name="setup-fork-node">

			<path	start="setup-filesystem-node"	/>

			<path	start="create-tables-node"	/>

</fork>

Each	of	the	specified	action	nodes	is	no	different	from	any	we	have	used	previously.	An
action	node	can	link	to	a	series	of	other	nodes;	the	only	requirement	is	that	each	parallel
series	of	actions	must	end	with	a	transition	to	the	join	node	associated	with	the	fork
node,	as	follows:

				<action	name="setup-filesystem-node">

…

								<ok	to="setup-join-node"/>

								<error	to="fail"/>

				</action>

				<action	name="create-tables-node">

…

								<ok	to="setup-join-node"/>

								<error	to="fail"/>

				</action>

The	join	node	itself	acts	as	the	point	of	coordination;	any	workflow	that	has	completed
will	wait	until	all	the	paths	specified	in	the	fork	node	reach	this	point.	At	that	point,	the
workflow	continues	at	the	node	specified	within	the	join	node.	Here’s	how	the	join	node
is	used:

<join	name="create-join-node"	to="gettweets-node"/>

In	the	preceding	code	we	omitted	the	action	definitions	for	space	purposes,	but	the	full
workflow	definition	is	in	v6:
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Calling	a	subworkflow
Though	the	fork/join	mechanism	makes	the	process	of	parallel	actions	more	efficient,	it
does	still	add	significant	verbosity	if	we	include	it	in	our	main	workflow.xml	definition.
Conceptually,	we	have	a	series	of	actions	that	are	performing	related	tasks	required	by	our
workflow	but	not	necessarily	part	of	it.	For	this	and	similar	cases,	Oozie	offers	the	ability
to	invoke	a	subworkflow.	The	parent	workflow	will	execute	the	child	and	wait	for	it	to
complete,	with	the	ability	to	pass	configuration	elements	from	one	workflow	to	the	other.

The	child	workflow	will	be	a	full	workflow	in	its	own	right,	usually	stored	in	a	directory
on	HDFS	with	all	the	usual	structure	we	expect	for	a	workflow,	the	main	workflow.xml
file,	and	any	required	Hive,	Pig,	or	similar	files.

We	can	create	a	new	directory	on	HDFS	called	setup-workflow,	and	in	this	create	the	files
required	only	for	our	filesystem	and	Hive	creation	actions.	The	subworkflow
configuration	file	will	look	like	the	following:

<workflow-app	xmlns="uri:oozie:workflow:0.4"	name="create-workflow">

				<start	to="setup-fork-node"/>

				<fork	name="setup-fork-node">

										<path	start="setup-filesystem-node"	/>

						<path	start="create-tables-node"	/>

				</fork>

				<action	name="setup-filesystem-node">

				…

				</action>

				<action	name="create-tables-node">

				…

				</action>

				<join	name="create-join-node"	to="end"/>

				<kill	name="fail">

								<message>Action	failed,	error	

message[${wf:errorMessage(wf:lastErrorNode())}]</message>

				</kill>

				<end	name="end"/>

</workflow-app>



With	this	subworkflow	defined,	we	then	modify	the	first	nodes	of	our	main	workflow	to
use	a	subworkflow	node,	as	in	the	following:

				<start	to="create-subworkflow-node"/>

				<action	name="create-subworkflow-node">

								<sub-workflow>

												<app-path>${subWorkflowRoot}</app-path>

												<propagate-configuration/>

								</sub-workflow>

								<ok	to="gettweets-node"/>

								<error	to="fail"/>

				</action>

We	will	specify	the	subWorkflowPath	in	the	job.properties	of	our	parent	workflow,	and
the	propagate-configuration	element	will	pass	the	configuration	of	the	parent	workflow
to	the	child.

Adding	global	settings
By	extracting	utility	nodes	into	subworkflows,	we	can	significantly	reduce	clutter	and
complexity	in	our	main	workflow	definition.	In	v7	of	our	ingest	pipeline,	we’ll	make	one
additional	simplification	and	add	a	global	configuration	section,	as	in	the	following:

<workflow-app	xmlns="uri:oozie:workflow:0.4"	name="v7">

				<global>

												<job-tracker>${jobTracker}</job-tracker>

												<name-node>${nameNode}</name-node>

												<job-xml>${workflowRoot}/hive-site.xml</job-xml>

												<configuration>

																<property>

																				<name>mapred.job.queue.name</name>

																				<value>${queueName}</value>

																</property>

												</configuration>

</global>

<start	to="create-subworkflow-node"/>

By	adding	this	global	configuration	section,	we	remove	the	need	to	specify	any	of	these
values	in	the	Hive	and	Pig	nodes	in	the	remaining	workflow	(note	that	currently	the	shell
node	does	not	support	the	global	configuration	mechanism).	This	can	dramatically
simplify	some	of	our	nodes;	for	example,	our	Pig	node	is	now	as	follows:

<action	name="hcat-ingest-node">

			<pig>

					<configuration>

							<property>

									<name>oozie.action.sharelib.for.pig</name>

									<value>pig,hcatalog</value>

									</property>

							</configuration>

							<script>${workflowRoot}/pig/extract_to_hcat.pig</script>

										<param>inputDir=${inputDir}</param>

										<param>dbName=${dbName}</param>

										<param>partitionKey=${partitionKey}</param>



			</pig>

			<ok	to="derived-data-node"/>

			<error	to="fail"/>

</action>

As	can	be	seen,	we	can	add	additional	configuration	elements,	or	indeed	override	those
specified	in	the	global	section,	resulting	in	a	much	clearer	action	definition	that	focuses
only	on	the	information	specific	to	the	action	in	question.	Our	workflow	v7	has	had	both	a
global	section	added	as	well	as	the	addition	of	the	subworkflow,	and	this	makes	a
significant	improvement	in	the	workflow	readability:
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Challenges	of	external	data
When	we	rely	on	external	data	to	drive	our	application,	we	are	implicitly	dependent	on	the
quality	and	stability	of	that	data.	This	is,	of	course,	true	for	any	data,	but	when	the	data	is
generated	by	an	external	source	over	which	we	do	not	have	control,	the	risks	are	most
likely	higher.	Regardless,	when	building	what	we	expect	to	be	reliable	applications	on	top
of	such	data	feeds,	and	especially	when	our	data	volumes	grow,	we	need	to	think	about
how	to	mitigate	these	risks.



Data	validation
We	use	the	general	term	data	validation	to	refer	to	the	act	of	ensuring	that	incoming	data
complies	with	our	expectations	and	potentially	applying	normalization	to	modify	it
accordingly	or	to	even	delete	malformed	or	corrupt	input.	What	this	actually	involves	will
be	very	application-specific.	In	some	cases,	the	important	thing	is	ensuring	the	system
only	ingests	data	that	conforms	to	a	given	definition	of	accurate	or	clean.	For	our	tweet
data,	we	don’t	care	about	every	single	record	and	could	very	easily	adopt	a	policy	such	as
dropping	records	that	don’t	have	values	in	particular	fields	we	care	about.	For	other
applications,	however,	it	is	imperative	to	capture	every	input	record,	and	this	might	drive
the	implementation	of	logic	to	reformat	every	record	to	make	sure	it	complies	with	the
requirements.	In	yet	other	cases,	only	correct	records	will	be	ingested,	but	the	rest,	instead
of	being	discarded,	might	be	stored	elsewhere	for	later	analysis.

The	bottom	line	is	that	trying	to	define	a	generic	approach	to	data	validation	is	vastly
beyond	the	scope	of	this	chapter.

However,	we	can	offer	some	thoughts	on	where	in	the	pipeline	to	incorporate	various
types	of	validation	logic.

Validation	actions
Logic	to	do	any	necessary	validation	or	cleanup	can	be	incorporated	directly	into	other
actions.	A	shell	node	running	a	script	to	gather	data	can	have	commands	added	to	handle
malformed	records	differently.	Pig	and	Hive	actions	that	load	data	into	tables	can	either
perform	filtering	on	ingest	(easier	done	in	Pig)	or	add	caveats	when	copying	data	from	an
ingest	table	to	the	operational	store.

There	is	an	argument	though	for	the	addition	of	a	validation	node	into	the	workflow,	even
if	initially	it	performs	no	actual	logic.	This	could,	for	instance,	be	a	Pig	action	that	reads
the	data,	applies	the	validation,	and	writes	the	validated	data	to	a	new	location	to	be	read
by	follow-on	nodes.	The	advantage	here	is	that	we	can	later	update	the	validation	logic
without	altering	our	other	actions,	which	should	reduce	the	risk	of	accidentally	breaking
the	rest	of	the	pipeline	and	also	make	nodes	more	cleanly	defined	in	terms	of
responsibilities.	The	natural	extension	of	this	train	of	thought	is	that	a	new	subworkflow
for	validation	is	most	likely	a	good	model	as	well,	as	it	not	only	provides	separation	of
responsibilities,	but	also	makes	the	validation	logic	easier	to	test	and	update.

The	obvious	disadvantage	of	this	approach	is	that	it	adds	additional	processing	and
another	cycle	of	reading	the	data	and	writing	it	all	again.	This	is,	of	course,	directly
working	against	one	of	the	advantages	we	highlighted	when	considering	the	use	of
HCatalog	from	Pig.

In	the	end,	it	will	come	down	to	a	trade-off	of	performance	against	workflow	complexity
and	maintainability.	When	considering	how	to	perform	validation	and	just	what	that	means
for	your	workflow,	take	all	these	elements	into	account	before	deciding	on	an
implementation.



Handling	format	changes
We	can’t	declare	victory	just	because	we	have	data	flowing	into	our	system	and	are
confident	the	data	is	sufficiently	validated.	Particularly	when	the	data	comes	from	an
external	source	we	have	to	think	about	how	the	structure	of	the	data	might	change	over
time.

Remember	that	systems	such	as	Hive	only	apply	the	table	schema	when	the	data	is	being
read.	This	is	a	huge	benefit	in	enabling	flexible	data	storage	and	ingest,	but	can	lead	to
user-facing	queries	or	workloads	failing	suddenly	when	the	ingested	data	no	longer
matches	the	queries	being	executed	against	it.	A	relational	database,	which	applies
schemas	on	write,	would	not	even	allow	such	data	to	be	ingested	into	the	system.

The	obvious	approach	to	handling	changes	made	to	the	data	format	would	be	to	reprocess
existing	data	into	the	new	format.	Though	this	is	tractable	on	smaller	datasets,	it	quickly
becomes	infeasible	on	the	sort	of	volumes	seen	in	large	Hadoop	clusters.



Handling	schema	evolution	with	Avro
Avro	has	some	features	with	respect	to	its	integration	with	Hive	that	help	us	with	this
problem.	If	we	take	our	table	for	tweets	data,	we	could	represent	the	structure	of	a	tweet
record	by	the	following	Avro	schema:

{

	"namespace":	"com.learninghadoop2.avrotables",

	"type":"record",

	"name":"tweets_avro",

	"fields":[

			{"name":	"created_at",	"type":	["null"	,"string"]},

			{"name":	"tweet_id_str",	"type":	["null","string"]},

			{"name":	"text","type":["null","string"]},

			{"name":	"in_reply_to",	"type":	["null","string"]},

			{"name":	"is_retweeted",	"type":	["null","string"]},

			{"name":	"user_id",	"type":	["null","string"]},

		{"name":	"place_id",	"type":	["null","string"]}

		]

}

Create	the	preceding	schema	in	a	file	called	tweets_avro.avsc—this	is	the	standard	file
extension	for	Avro	schemas.	Then,	place	it	on	HDFS;	we	like	to	have	a	common	location
for	schema	files	such	as	/schema/avro.

With	this	definition,	we	can	now	create	a	Hive	table	that	uses	this	schema	for	its	table
specification,	as	follows:

CREATE	TABLE	tweets_avro

PARTITIONED	BY	(	`partition_key`	int)

ROW	FORMAT	SERDE

		'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

WITH	SERDEPROPERTIES	(

'avro.schema.url'='hdfs://localhost.localdomain:8020/schema/avro/tweets_avr

o.avsc'

)

STORED	AS	INPUTFORMAT

		'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT

		'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';

Then,	look	at	the	table	definition	from	within	Hive	(or	HCatalog,	which	also	supports	such
definitions):

describe	tweets_avro

OK

created_at														string																		from	deserializer

tweet_id_str												string																		from	deserializer

text																				string																		from	deserializer

in_reply_to													string																		from	deserializer

is_retweeted												string																		from	deserializer

user_id																	string																		from	deserializer

place_id																string																		from	deserializer

partition_key											int																			None



We	can	also	use	this	table	like	any	other,	for	example,	to	copy	the	data	from	partition	3
from	the	non-Avro	table	into	the	Avro	table,	as	follows:

SET	hive.exec.dynamic.partition.mode=nonstrict

INSERT	INTO	TABLE	tweets_avro

PARTITION	(partition_key)

SELECT		FROM	tweets_hcat

Note
Just	as	in	previous	examples,	if	Avro	dependencies	are	not	present	in	the	classpath,	we
need	to	add	the	Avro	MapReduce	JAR	to	our	environment	before	being	able	to	select	from
the	table.

We	now	have	a	new	tweets	table	specified	by	an	Avro	schema;	so	far	it	just	looks	like
other	tables.	But	the	real	benefits	for	our	purposes	in	this	chapter	are	in	how	we	can	use
the	Avro	mechanism	to	handle	schema	evolution.	Let’s	add	a	new	field	to	our	table
schema,	as	follows:

{

	"namespace":	"com.learninghadoop2.avrotables",

	"type":"record",

	"name":"tweets_avro",

	"fields":[

			{"name":	"created_at",	"type":	["null"	,"string"]},

			{"name":	"tweet_id_str",	"type":	["null","string"]},

			{"name":	"text","type":["null","string"]},

			{"name":	"in_reply_to",	"type":	["null","string"]},

			{"name":	"is_retweeted",	"type":	["null","string"]},

			{"name":	"user_id",	"type":	["null","string"]},

		{"name":	"place_id",	"type":	["null","string"]},

		{"name":	"new_feature",	"type":	"string",	"default":	"wow!"}

		]

}

With	this	new	schema	in	place,	we	can	validate	that	the	table	definition	has	also	been
updated,	as	follows:

describe	tweets_avro;

OK

created_at														string																		from	deserializer

tweet_id_str												string																		from	deserializer

text																				string																		from	deserializer

in_reply_to													string																		from	deserializer

is_retweeted												string																		from	deserializer

user_id																	string																		from	deserializer

place_id																string																		from	deserializer

new_feature													string																		from	deserializer

partition_key											int																					None

Without	adding	any	new	data,	we	can	run	queries	on	the	new	field	that	will	return	the
default	value	for	our	existing	data,	as	follows:

SELECT	new_feature	FROM	tweets_avro	LIMIT	5;

...



OK

wow!

wow!

wow!

wow!

wow!

Even	more	impressive	is	the	fact	that	the	new	column	doesn’t	need	to	be	added	at	the	end;
it	can	be	anywhere	in	the	record.	With	this	mechanism,	we	can	now	update	our	Avro
schemas	to	represent	the	new	data	structure	and	see	these	changes	automatically	reflected
in	our	Hive	table	definitions.	Any	queries	that	refer	to	the	new	column	will	retrieve	the
default	value	for	all	our	existing	data	that	does	not	have	that	field	present.

Note	that	the	default	mechanism	we	are	using	here	is	core	to	Avro	and	is	not	specific	to
Hive.	Avro	is	a	very	powerful	and	flexible	format	that	has	applications	in	many	areas	and
is	definitely	worth	deeper	examination	than	we	are	giving	it	here.

Technically,	what	this	provides	us	with	is	forward	compatibility.	We	can	make	changes	to
our	table	schema	and	have	all	our	existing	data	remain	automatically	compliant	with	the
new	structure	we	can’t,	however,	continue	to	ingest	data	of	the	old	format	into	the	updated
tables	since	the	mechanism	does	not	provide	backward	compatibility:

INSERT	INTO	TABLE	tweets_avro	

PARTITION	(partition_key)

SELECT	*	FROM	tweets_hcat;

FAILED:	SemanticException	[Error	10044]:	Line	1:18	Cannot	insert	into	

target	table	because	column	number/types	are	different	'tweets_avro':	Table	

insclause-0	has	8	columns,	but	query	has	7	columns.

Supporting	schema	evolution	with	Avro	allows	data	changes	to	be	something	that	is
handled	as	part	of	normal	business	instead	of	the	firefighting	emergency	they	all	too	often
turn	into.	But	plainly,	it’s	not	for	free;	there	is	still	a	need	to	make	the	changes	in	the
pipeline	and	roll	these	into	production.	Having	Hive	tables	that	provide	forward
compatibility	does,	however,	allow	the	process	to	be	performed	in	more	manageable	steps;
otherwise,	you	would	need	to	synchronize	changes	across	every	stage	of	the	pipeline.	If
the	changes	are	made	from	ingest	up	to	the	point	they	are	inserted	into	Avro-backed	Hive
tables,	then	all	users	of	those	tables	can	remain	unchanged	(as	long	as	they	don’t	do	things
like	select	*,	which	is	usually	a	terrible	idea	anyway)	and	continue	to	run	existing
queries	against	the	new	data.	These	applications	can	then	be	changed	on	a	different
timetable	to	the	ingestion	mechanism.	In	our	v8	of	the	ingest	pipeline,	we	show	how	to
fully	use	Avro	tables	for	all	of	our	existing	functionality.

Note
Note	that	Hive	0.14,	currently	unreleased	at	the	time	of	writing	this,	will	likely	include
more	built-in	support	for	Avro	that	might	simplify	the	process	of	schema	evolution	even
further.	If	Hive	0.14	is	available	when	you	read	this,	then	do	check	out	the	final
implementation.

Final	thoughts	on	using	Avro	schema	evolution



With	this	discussion	of	Avro,	we	have	touched	on	some	aspects	of	much	broader	topics,	in
particular	of	data	management	on	a	broader	scale	and	policies	around	data	versioning	and
retention.	Much	of	this	area	becomes	very	specific	to	an	organization,	but	here	are	a	few
parting	thoughts	that	we	feel	are	more	broadly	applicable.

Only	make	additive	changes

We	discussed	adding	columns	in	the	preceding	example.	Sometimes,	though	more	rarely,
your	source	data	drops	columns	or	you	discover	you	no	longer	need	a	new	column.	Avro
doesn’t	really	provide	tools	to	help	with	this,	and	we	feel	it	is	often	undesirable.	Instead	of
dropping	old	columns,	we	tend	to	maintain	the	old	data	and	simply	do	not	use	the	empty
columns	in	all	the	new	data.	This	is	much	easier	to	manage	if	you	control	the	data	format;
if	you	are	ingesting	external	sources,	then	to	follow	this	approach	you	will	either	need	to
reprocess	data	to	remove	the	old	column	or	change	the	ingest	mechanism	to	add	a	default
value	for	all	new	data.

Manage	schema	versions	explicitly

In	the	preceding	examples,	we	had	a	single	schema	file	to	which	we	made	changes
directly.	This	is	likely	a	very	bad	idea,	as	it	removes	our	ability	to	track	schema	changes
over	time.	In	addition	to	treating	schemas	as	artifacts	to	be	kept	under	version	control
(your	schemas	are	in	Git	too,	aren’t	they?)	it	is	often	useful	to	tag	each	schema	with	an
explicit	version.	This	is	particularly	useful	when	the	incoming	data	is	also	explicitly
versioned.	Then,	instead	of	overwriting	the	existing	schema	file,	you	can	add	the	new	file
and	use	an	ALTER	TABLE	statement	to	point	the	Hive	table	definition	at	the	new	schema.
We	are,	of	course,	assuming	here	that	you	don’t	have	the	option	of	using	a	different	query
for	the	old	data	with	the	different	format.	Though	there	is	no	automatic	mechanism	for
Hive	to	select	schema,	there	might	be	cases	where	you	can	control	this	manually	and
sidestep	the	evolution	question.

Think	about	schema	distribution

When	using	a	schema	file,	think	about	how	it	will	be	distributed	to	the	clients.	If,	as	in	the
previous	example,	the	file	is	on	HDFS,	then	it	likely	makes	sense	to	give	it	a	high
replication	factor.	The	file	will	be	retrieved	by	each	mapper	in	every	MapReduce	job	that
queries	the	table.

The	Avro	URL	can	also	be	specified	as	a	local	filesystem	location	(file://),	which	is
useful	for	development	and	also	as	a	web	resource	(http://).	Though	the	latter	is	very
useful	as	it	is	a	convenient	mechanism	to	distribute	the	schema	to	non-Hadoop	clients,
remember	that	the	load	on	the	web	server	might	be	high.	With	modern	hardware	and
efficient	web	servers,	this	is	most	likely	not	a	huge	concern,	but	if	you	have	a	cluster	of
thousands	of	machines	running	many	parallel	jobs	where	each	mapper	needs	to	hit	the
web	server,	then	be	careful.



Collecting	additional	data
Many	data	processing	systems	don’t	have	a	single	data	ingest	source;	often,	one	primary
source	is	enriched	by	other	secondary	sources.	We	will	now	look	at	how	to	incorporate	the
retrieval	of	such	reference	data	into	our	data	warehouse.

At	a	high	level,	the	problem	isn’t	very	different	from	our	retrieval	of	the	raw	tweet	data,	as
we	wish	to	pull	data	from	an	external	source,	possibly	do	some	processing	on	it,	and	store
it	somewhere	where	it	can	be	used	later.	But	this	does	highlight	an	aspect	we	need	to
consider;	do	we	really	want	to	retrieve	this	data	every	time	we	ingest	new	tweets?	The
answer	is	certainly	no.	The	reference	data	changes	very	rarely,	and	we	could	easily	fetch	it
much	less	frequently	than	new	tweet	data.	This	raises	a	question	we’ve	skirted	until	now:
just	how	do	we	schedule	Oozie	workflows?



Scheduling	workflows
Until	now,	we’ve	run	all	our	Oozie	workflows	on	demand	from	the	CLI.	Oozie	also	has	a
scheduler	that	allows	jobs	to	be	started	either	on	a	timed	basis	or	when	external	criteria
such	as	data	appearing	in	HDFS	are	met.	It	would	be	a	good	fit	for	our	workflows	to	have
our	main	tweet	pipeline	run,	say,	every	10	minutes	but	the	reference	data	only	refreshed
daily.

Tip
Regardless	of	when	data	is	retrieved,	think	carefully	how	to	handle	datasets	that	perform	a
delete/replace	operation.	In	particular,	don’t	do	the	delete	before	retrieving	and	validating
the	new	data;	otherwise,	any	jobs	that	require	the	reference	data	will	fail	until	the	next	run
of	the	retrieval	succeeds.	It	could	be	a	good	option	to	include	the	destructive	operations	in
a	subworkflow	that	is	only	triggered	after	successful	completion	of	the	retrieval	steps.

Oozie	actually	defines	two	types	of	applications	that	it	can	run:	workflows	such	as	we’ve
used	so	far	and	coordinators,	which	schedule	workflows	to	be	executed	based	on	various
criteria.	A	coordinator	job	is	conceptually	similar	to	our	other	workflows;	we	push	an
XML	configuration	file	onto	HDFS	and	use	a	parameterized	properties	file	to	configure	it
at	runtime.	In	addition,	coordinator	jobs	have	the	facility	to	receive	additional
parameterization	from	the	events	that	trigger	their	execution.

This	is	possibly	best	described	by	an	example.	Let’s	say,	we	wish	to	do	as	previously
mentioned	and	create	a	coordinator	that	executes	v7	of	our	ingest	workflow	every	10
minutes.	Here’s	the	coordinator.xml	file	(the	standard	name	for	the	coordinator	XML
definition):

<coordinator-app	name="tweets-10min-coordinator"		frequency="${freq}"	

start="${startTime}"	end="${endTime}"		timezone="UTC"	

xmlns="uri:oozie:coordinator:0.2">

The	main	action	node	in	a	coordinator	is	the	workflow,	for	which	we	need	to	specify	its
root	location	on	HDFS	and	all	required	properties,	as	follows:

				<action>

								<workflow>

											<app-path>${workflowPath}</app-path>

																<configuration>

																					<property>

																								<name>workflowRoot</name>

																								<value>${workflowRoot}</value>

																				</property>

…

We	also	need	to	include	any	properties	required	by	any	action	in	the	workflow	or	by	any
subworkflow	it	triggers;	in	effect,	this	means	that	any	user-defined	variables	present	in	any
of	the	workflows	to	be	triggered	need	to	be	included	here,	as	follows:

																				<property>

																								<name>dbName</name>



																								<value>${dbName}</value>

																			</property>

																			<property>

																								<name>partitionKey</name>

<value>${coord:formatTime(coord:nominalTime(),	'yyyyMMddhhmm')}

																								</value>

																			</property>

																			<property>

																								<name>exec</name>

																								<value>gettweets.sh</value>

																			</property>

																			<property>

																								<name>inputDir</name>

																								<value>/tmp/tweets</value>

																			</property>

																			<property>

																								<name>subWorkflowRoot</name>

																								<value>${subWorkflowRoot}</value>

																			</property>

													</configuration>

										</workflow>

						</action>

</coordinator-app>

We	used	a	few	coordinator-specific	features	in	the	preceding	xml.	Note	the	specification
of	the	starting	and	ending	time	of	the	coordinator	and	also	its	frequency	(in	minutes).	We
are	using	the	simplest	form	here;	Oozie	also	has	a	set	of	functions	to	allow	quite	rich
specifications	of	the	frequency.

We	use	coordinator	EL	functions	in	our	definition	of	the	partitionKey	variable.	Earlier,
when	running	workflows	from	the	CLI,	we	specified	these	explicitly	but	mentioned	there
was	a	better	way—this	is	it.	The	following	expression	generates	a	formatted	output
containing	the	year,	month,	day,	hour,	and	minute:

${coord:formatTime(coord:nominalTime(),	'yyyyMMddhhmm')}

If	we	then	use	this	as	the	value	for	our	partition	key,	we	can	ensure	that	each	invocation	of
the	workflow	correctly	creates	a	unique	partition	in	our	HCatalog	tables.

The	corresponding	job.properties	for	the	coordinator	job	looks	much	like	our	previous
config	files	with	the	usual	entries	for	the	NameNode	and	similar	variables	as	well	as
having	values	for	the	application-specific	variables,	such	as	dbName.	In	addition,	we	need
to	specify	the	root	of	the	coordinator	location	on	HDFS,	as	follows:

oozie.coord.application.path=${nameNode}/user/${user.name}/${tasksRoot}/twe

ets_10min

Note	the	oozie.coord	namespace	prefix	instead	of	the	previously	used	oozie.wf.	With
the	coordinator	definition	on	HDFS,	we	can	submit	the	file	to	Oozie	just	as	with	the
previous	jobs.	But	in	this	case,	the	job	will	only	run	for	a	given	time	period.	Specifically,	it
will	run	every	five	minutes	(the	frequency	is	variable)	when	the	system	clock	is	between
startTime	and	endTime.

We’ve	included	the	full	configuration	in	the	tweets_10min	directory	in	the	source	code	for



this	chapter.



Other	Oozie	triggers
The	preceding	coordinator	has	a	very	simple	trigger;	it	starts	periodically	within	a
specified	time	range.	Oozie	has	an	additional	capability	called	datasets,	where	it	can	be
triggered	by	the	availability	of	new	data.

This	isn’t	a	great	fit	for	how	we’ve	defined	our	pipeline	until	now,	but	imagine	that,
instead	of	our	workflow	collecting	tweets	as	its	first	step,	an	external	system	was	pushing
new	files	of	tweets	onto	HDFS	on	a	continuous	basis.	Oozie	can	be	configured	to	either
look	for	the	presence	of	new	data	based	on	a	directory	pattern	or	to	specifically	trigger
when	a	ready	file	appears	on	HDFS.	This	latter	configuration	provides	a	very	convenient
mechanism	with	which	to	integrate	the	output	of	MapReduce	jobs,	which	by	default,	write
a	_SUCCESS	file	into	their	output	directory.

Oozie	datasets	are	arguably	one	of	the	most	powerful	parts	of	the	whole	system,	and	we
cannot	do	them	justice	here	for	space	reasons.	But	we	do	strongly	recommend	that	you
consult	the	Oozie	home	page	for	more	information.



Pulling	it	all	together
Let’s	review	what	we’ve	discussed	until	now	and	how	we	can	use	Oozie	to	build	a
sophisticated	series	of	workflows	that	implement	an	approach	to	data	life	cycle
management	by	putting	together	all	the	discussed	techniques.

First,	it’s	important	to	define	clear	responsibilities	and	implement	parts	of	the	system
using	good	design	and	separation	of	concern	principles.	By	applying	this,	we	end	up	with
several	different	workflows:

A	subworkflow	to	ensure	the	environment	(mainly	HDFS	and	Hive	metadata)	is
correctly	configured
A	subworkflow	to	perform	data	validation
The	main	workflow	that	triggers	both	the	preceding	subworkflows	and	then	pulls
new	data	through	a	multistep	ingest	pipeline
A	coordinator	that	executes	the	preceding	workflows	every	10	minutes
A	second	coordinator	that	ingests	reference	data	that	will	be	useful	to	the	application
pipeline

We	also	define	all	our	tables	with	Avro	schemas	and	use	them	wherever	possible	to	help
manage	schema	evolution	and	changing	data	formats	over	time.

We	present	the	full	source	code	of	these	components	in	the	final	version	of	the	workflow
in	the	source	code	of	this	chapter.



Other	tools	to	help
Though	Oozie	is	a	very	powerful	tool,	sometimes	it	can	be	somewhat	difficult	to	correctly
write	workflow	definition	files.	As	pipelines	get	sizeable,	managing	complexity	becomes	a
challenge	even	with	good	functional	partitioning	into	multiple	workflows.	At	a	simpler
level,	XML	is	just	never	fun	for	a	human	to	write!	There	are	a	few	tools	that	can	help.
Hue,	the	tool	calling	itself	the	Hadoop	UI	(http://gethue.com/),	provides	some	graphical
tools	to	help	compose,	execute,	and	manage	Oozie	workflows.	Though	powerful,	Hue	is
not	a	beginner	tool;	we’ll	mention	it	a	little	more	in	Chapter	11,	Where	to	Go	Next.

A	new	Apache	project	called	Falcon	(http://falcon.incubator.apache.org)	might	also	be	of
interest.	Falcon	uses	Oozie	to	build	a	range	of	much	higher-level	data	flows	and	actions.
For	example,	Falcon	provides	recipes	to	enable	and	ensure	cross-site	replication	across
multiple	Hadoop	clusters.	The	Falcon	team	is	working	on	much	better	interfaces	to	build
their	workflows,	so	the	project	might	well	be	worth	watching.

http://gethue.com/
http://falcon.incubator.apache.org


Summary
Hopefully,	this	chapter	presented	the	topic	of	data	life	cycle	management	as	something
other	than	a	dry	abstract	concept.	We	covered	a	lot,	particularly:

The	definition	of	data	life	cycle	management	and	how	it	covers	a	number	of	issues
and	techniques	that	usually	become	important	with	large	data	volumes
The	concept	of	building	a	data	ingest	pipeline	along	good	data	life	cycle	management
principles	that	can	then	be	utilized	by	higher-level	analytic	tools
Oozie	as	a	Hadoop-focused	workflow	manager	and	how	we	can	use	it	to	compose	a
series	of	actions	into	a	unified	workflow
Various	Oozie	tools,	such	as	subworkflows,	parallel	action	execution,	and	global
variables,	that	allow	us	to	apply	true	design	principles	to	our	workflows
HCatalog	and	how	it	provides	the	means	for	tools	other	than	Hive	to	read	and	write
table-structured	data;	we	showed	its	great	promise	and	integration	with	tools	such	as
Pig	but	also	highlighted	some	current	weaknesses
Avro	as	our	tool	of	choice	to	handle	schema	evolution	over	time
Using	Oozie	coordinators	to	build	scheduled	workflows	based	either	on	time
intervals	or	data	availability	to	drive	the	execution	of	multiple	ingest	pipelines
Some	other	tools	that	can	make	these	tasks	easier,	namely,	Hue	and	Falcon

In	the	next	chapter,	we’ll	look	at	several	of	the	higher-level	analytic	tools	and	frameworks
that	can	build	sophisticated	application	logic	upon	the	data	collected	in	an	ingest	pipeline.



Chapter	9.	Making	Development	Easier
In	this	chapter,	we	will	look	at	how,	depending	on	use	cases	and	end	goals,	application
development	in	Hadoop	can	be	simplified	using	a	number	of	abstractions	and	frameworks
built	on	top	of	the	Java	APIs.	In	particular,	we	will	learn	about	the	following	topics:

How	the	streaming	API	allows	us	to	write	MapReduce	jobs	using	dynamic	languages
such	as	Python	and	Ruby
How	frameworks	such	as	Apache	Crunch	and	Kite	Morphlines	allow	us	to	express
data	transformation	pipelines	using	higher-level	abstractions
How	Kite	Data,	a	promising	framework	developed	by	Cloudera,	provides	us	with	the
ability	to	apply	design	patterns	and	boilerplate	to	ease	integration	and	interoperability
of	different	components	within	the	Hadoop	ecosystem



Choosing	a	framework
In	the	previous	chapters,	we	looked	at	the	MapReduce	and	Spark	programming	APIs	to
write	distributed	applications.	Although	very	powerful	and	flexible,	these	APIs	come	with
a	certain	level	of	complexity	and	possibly	require	significant	development	time.

In	an	effort	to	reduce	verbosity,	we	introduced	the	Pig	and	Hive	frameworks,	which
compile	domain-specific	languages,	Pig	Latin	and	Hive	QL,	into	a	number	of	MapReduce
jobs	or	Spark	DAGs,	effectively	abstracting	the	APIs	away.	Both	languages	can	be
extended	with	UDFs,	which	is	a	way	of	mapping	complex	logic	to	the	Pig	and	Hive	data
models.

At	times	when	we	need	a	certain	degree	of	flexibility	and	modularity,	things	can	get	tricky.
Depending	on	the	use	case	and	developer	needs,	the	Hadoop	ecosystem	presents	a	vast
choice	of	APIs,	frameworks,	and	libraries.	In	this	chapter,	we	identify	four	categories	of
users	and	match	them	with	the	following	relevant	tools:

Developers	that	want	to	avoid	Java	in	favor	of	scripting	MapReduce	jobs	using
dynamic	languages,	or	use	languages	not	implemented	on	the	JVM.	A	typical	use
case	would	be	upfront	analysis	and	rapid	prototyping:	Hadoop	streaming
Java	developers	that	need	to	integrate	components	of	the	Hadoop	ecosystem	and
could	benefit	from	codified	design	patterns	and	boilerplate:	Kite	Data
Java	developers	who	want	to	write	modular	data	pipelines	using	a	familiar	API:
Apache	Crunch
Developers	who	would	rather	configure	chains	of	data	transformations.	For	instance,
a	data	engineer	that	wants	to	embed	existing	code	in	an	ETL	pipeline:	Kite
Morphlines



Hadoop	streaming
We	have	mentioned	previously	that	MapReduce	programs	don’t	have	to	be	written	in	Java.
There	are	several	reasons	why	you	might	want	or	need	to	write	your	map	and	reduce	tasks
in	another	language.	Perhaps	you	have	existing	code	to	leverage	or	need	to	use	third-party
binaries—the	reasons	are	varied	and	valid.

Hadoop	provides	a	number	of	mechanisms	to	aid	non-Java	development,	primary	amongst
which	are	Hadoop	pipes	that	provide	a	native	C++	interface	and	Hadoop	streaming	that
allows	any	program	that	uses	standard	input	and	output	to	be	used	for	map	and	reduce
tasks.	With	the	MapReduce	Java	API,	both	map	and	reduce	tasks	provide	implementations
for	methods	that	contain	the	task	functionality.	These	methods	receive	the	input	to	the	task
as	method	arguments	and	then	output	results	via	the	Context	object.	This	is	a	clear	and
type-safe	interface,	but	it	is	by	definition	Java-specific.

Hadoop	streaming	takes	a	different	approach.	With	streaming,	you	write	a	map	task	that
reads	its	input	from	standard	input,	one	line	at	a	time,	and	gives	the	output	of	its	results	to
standard	output.	The	reduce	task	then	does	the	same,	again	using	only	standard	input	and
output	for	its	data	flow.

Any	program	that	reads	and	writes	from	standard	input	and	output	can	be	used	in
streaming,	such	as	compiled	binaries,	Unix	shell	scripts,	or	programs	written	in	a	dynamic
language	such	as	Python	or	Ruby.	The	biggest	advantage	to	streaming	is	that	it	can	allow
you	to	try	ideas	and	iterate	them	more	quickly	than	using	Java.	Instead	of	a
compile/JAR/submit	cycle,	you	just	write	the	scripts	and	pass	them	as	arguments	to	the
streaming	JAR	file.	Especially	when	doing	initial	analysis	on	a	new	dataset	or	trying	out
new	ideas,	this	can	significantly	speed	up	development.

The	classic	debate	regarding	dynamic	versus	static	languages	balances	the	benefits	of
swift	development	against	runtime	performance	and	type	checking.	These	dynamic
downsides	also	apply	when	using	streaming.	Consequently,	we	favor	the	use	of	streaming
for	upfront	analysis	and	Java	for	the	implementation	of	jobs	that	will	be	executed	on	the
production	cluster.



Streaming	word	count	in	Python
We’ll	demonstrate	Hadoop	streaming	by	re-implementing	our	familiar	word	count
example	using	Python.	First,	we	create	a	script	that	will	be	our	mapper.	It	consumes	UTF-
8	encoded	rows	of	text	from	standard	input	with	a	for	loop,	splits	this	into	words,	and
uses	the	print	function	to	write	each	word	to	standard	output,	as	follows:

#!/bin/env	python

import	sys

for	line	in	sys.stdin:

				#	skip	empty	lines

				if	line	==	'\n':

								continue

				#	preserve	utf-8	encoding

				try:

								line	=	line.encode('utf-8')

				except	UnicodeDecodeError:

								continue

				#	newline	characters	can	appear	within	the	text

				line	=	line.replace('\n',	'')

				#	lowercase	and	tokenize

				line	=	line.lower().split()

				for	term	in	line:

								if	not	term:

										continue

								try:

												print(

																u"%s"	%	(

																				term.decode('utf-8')))

								except	UnicodeEncodeError:

												continue

The	reducer	counts	the	number	of	occurrences	of	each	word	from	standard	input,	and
gives	the	output	as	the	final	value	to	standard	output,	as	follows:

#!/bin/env	python

import	sys

count	=	1

current	=	None

for	word	in	sys.stdin:

				word	=	word.strip()

				if	word	==	current:

								count	+=	1

				else:

								if	current:

												print	"%s\t%s"	%	(current.decode('utf-8'),	count)

								current	=	word



								count	=	1

if	current	==	word:

				print	"%s\t%s"	%	(current.decode('utf-8'),	count)

Note
In	both	cases,	we	are	implicitly	using	Hadoop	input	and	output	formats	discussed	in	the
earlier	chapters.	It	is	the	TextInputFormat	that	processes	the	source	file	and	provides	each
line	one	at	a	time	to	the	map	script.	Conversely,	the	TextOutputFormat	will	ensure	that	the
output	of	reduce	tasks	is	also	correctly	written	as	text.

Copy	map.py	and	reduce.py	to	HDFS,	and	execute	the	scripts	as	a	streaming	job	using	the
sample	data	from	the	previous	chapters,	as	follows:

$	hadoop	jar	/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-

streaming.jar	\

-file	map.py	\

-mapper	"python	map.py"	\

-file	reduce.py	\

-reducer	"python	reduce.py"	\

-input	sample.txt	\

-output	output.txt	

Note
Tweets	are	UTF-8	encoded.	Make	sure	that	PYTHONIOENCODING	is	set	accordingly	in	order
to	pipe	data	in	a	UNIX	terminal:

$	export	PYTHONIOENCODING='UTF-8'

The	same	code	can	be	executed	from	the	command-line	prompt:

$	cat	sample.txt	|	python	map.py|	python	reduce.py	>	out.txt

The	mapper	and	reducer	code	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/streaming/wc/python/map.py.

https://github.com/learninghadoop2/book-examples/blob/master/ch9/streaming/wc/python/map.py


Differences	in	jobs	when	using	streaming
In	Java,	we	know	that	our	map()	method	will	be	invoked	once	for	each	input	key/value
pair	and	our	reduce()	method	will	be	invoked	for	each	key	and	its	set	of	values.

With	streaming,	we	don’t	have	the	concept	of	the	map	or	reduce	methods	anymore;
instead	we	have	written	scripts	that	process	streams	of	received	data.	This	changes	how
we	need	to	write	our	reducer.	In	Java,	the	grouping	of	values	to	each	key	was	performed
by	Hadoop;	each	invocation	of	the	reduce	method	would	receive	a	single,	tab	separated
key	and	all	its	values.	In	streaming,	each	instance	of	the	reduce	task	is	given	the	individual
ungathered	values	one	at	a	time.

Hadoop	streaming	does	sort	the	keys,	for	example,	if	a	mapper	emitted	the	following	data:

First	1

Word	1

Word	1

A	1

First	1

The	streaming	reducer	would	receive	it	in	the	following	order:

A	1

First	1

First	1

Word	1

Word	1

Hadoop	still	collects	the	values	for	each	key	and	ensures	that	each	key	is	passed	only	to	a
single	reducer.	In	other	words,	a	reducer	gets	all	the	values	for	a	number	of	keys,	and	they
are	grouped	together;	however,	they	are	not	packaged	into	individual	executions	of	the
reducer,	that	is,	one	per	key,	as	with	the	Java	API.	Since	Hadoop	streaming	uses	the	stdin
and	stdout	channels	to	exchange	data	between	tasks,	debug	and	error	messages	should
not	be	printed	to	standard	output.	In	the	following	example,	we	will	use	the	Python
logging	(https://docs.python.org/2/library/logging.html)	package	to	log	warning
statements	to	a	file.

https://docs.python.org/2/library/logging.html


Finding	important	words	in	text
We	will	now	implement	a	metric,	Term	Frequency-Inverse	Document	Frequency	(TF-
IDF),	that	will	help	us	to	determine	the	importance	of	words	based	on	how	frequently	they
appear	across	a	set	of	documents	(tweets,	in	our	case).

Intuitively,	if	a	word	appears	frequently	in	a	document	it	is	important	and	should	be	given
a	high	score.	However,	if	a	word	appears	in	many	documents,	we	should	penalize	it	with	a
lower	score,	as	it	is	a	common	word	and	its	frequency	is	not	unique	to	this	document.

Therefore,	common	words	such	as	the,	and	for,	which	appear	in	many	documents,	will	be
scaled	down.	Words	that	appear	frequently	in	a	single	tweet	will	be	scaled	up.	Uses	of	TF-
IDF,	often	in	combination	with	other	metrics	and	techniques,	include	stop	word	removal
and	text	classification.	Note	that	this	technique	will	have	shortcomings	when	dealing	with
short	documents,	such	as	tweets.	In	such	cases,	the	term	frequency	component	will	tend	to
become	one.	Conversely,	one	could	exploit	this	property	to	detect	outliers.

The	definition	of	TF-IDF	we	will	use	in	our	example	is	the	following:

tf	=	#	of	times	term	appears	in	a	document	(raw	frequency)

idf	=	1+log(#		of	documents	/	#	documents	with	term	in	it)

tf-idf	=	tf	*	idf

We	will	implement	the	algorithm	in	Python	using	three	MapReduce	jobs:

The	first	one	calculates	term	frequency
The	second	one	calculates	document	frequency	(the	denominator	of	IDF)
The	third	one	calculates	per-tweet	TF-IDF

Calculate	term	frequency
The	term	frequency	part	is	very	similar	to	the	word	count	example.	The	main	difference	is
that	we	will	be	using	a	multi-field,	tab-separated,	key	to	keep	track	of	co-occurrences	of
terms	and	document	IDs.	For	each	tweet—in	JSON	format—the	mapper	extracts	the
id_str	and	text	fields,	tokenizes	text,	and	emits	a	term,	doc_id	tuple:

for	tweet	in	sys.stdin:

				#	skip	empty	lines

				if	tweet	==	'\n':

								continue

				try:

								tweet	=	json.loads(tweet)

				except:

								logger.warn("Invalid	input	%s	"	%	tweet)

								continue

				#	In	our	example	one	tweet	corresponds	to	one	document.

				doc_id	=	tweet['id_str']

				if	not	doc_id:

								continue

				#	preserve	utf-8	encoding

				text	=	tweet['text'].encode('utf-8')



				#	newline	characters	can	appear	within	the	text

				text	=	text.replace('\n',	'')

				#	lowercase	and	tokenize

				text	=	text.lower().split()

				for	term	in	text:

								try:

												print(

																u"%s\t%s"	%	(

																				term.decode('utf-8'),	doc_id.decode('utf-8'))

																)

								except	UnicodeEncodeError:

												logger.warn("Invalid	term	%s	"	%	term)

In	the	reducer,	we	emit	the	frequency	of	each	term	in	a	document	as	a	tab-separated	string:

freq	=	1

cur_term,	cur_doc_id	=	sys.stdin.readline().split()

for	line	in	sys.stdin:

				line	=	line.strip()

				try:

								term,	doc_id	=	line.split('\t')

				except:

								logger.warn("Invalid	record	%s	"	%	line)

				#	the	key	is	a	(doc_id,	term)	pair

				if	(doc_id	==	cur_doc_id)	and	(term	==	cur_term):

								freq	+=	1

				else:

								print(

												u"%s\t%s\t%s"	%	(

																cur_term.decode('utf-8'),	cur_doc_id.decode('utf-8'),	

freq))

								cur_doc_id	=	doc_id

								cur_term	=	term

								freq	=	1

print(

				u"%s\t%s\t%s"	%	(

								cur_term.decode('utf-8'),	cur_doc_id.decode('utf-8'),	freq))

For	this	implementation	to	work,	it	is	crucial	that	the	reducer	input	is	sorted	by	term.	We
can	test	both	scripts	from	the	command	line	with	the	following	pipe:

$	cat	tweets.json		|		python	map-tf.py		|	sort	-k1,2		|	\

python	reduce-tf.py

Whereas	at	the	command	line	we	use	the	sort	utility,	in	MapReduce	we	will	use
org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator.	This	comparator
implements	a	subset	of	features	provided	by	the	sort	command.	In	particular,	ordering	by
field	can	be	specified	with	the	–k<position>	option.	To	filter	by	term,	the	first	field	of	our
key,	we	set	-D	mapreduce.text.key.comparator.options=-k1:

/usr/bin/hadoop	jar	/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-



streaming.jar	\

-D	map.output.key.field.separator=\t	\

-D	stream.num.map.output.key.fields=2	\

-Dmapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator	\

-D	mapreduce.text.key.comparator.options=-k1,2	\

-input	tweets.json	\

-output	/tmp/tf-out.tsv	\

-file	map-tf.py	\

-mapper	"python	map-tf.py"	\

-file	reduce-tf.py	\

-reducer	"python	reduce-tf.py"	

Note
We	specify	which	fields	belong	to	the	key	(for	shuffling)	in	the	comparator	options.

The	mapper	and	reducer	code	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/streaming/tf-idf/python/map-tf.py.

Calculate	document	frequency
The	main	logic	to	calculate	document	frequency	is	in	the	reducer,	while	the	mapper	is	just
an	identity	function	that	loads	and	pipes	the	(ordered	by	term)	output	of	the	TF	job.	In	the
reducer,	for	each	term,	we	count	how	many	times	it	occurs	across	all	documents.	For	each
term,	we	keep	a	buffer	key_cache	of	(term,	doc_id,	tf)	tuples,	and	when	a	new	term	is
found	we	flush	the	buffer	to	standard	output,	together	with	the	accumulated	document
frequency	df:

#	Cache	the	(term,doc_id,	tf)	tuple.	

key_cache	=	[]

line	=	sys.stdin.readline().strip()

cur_term,	cur_doc_id,	cur_tf	=	line.split('\t')

cur_tf	=	int(cur_tf)

cur_df	=	1

for	line	in	sys.stdin:

				line	=	line.strip()

				try:

								term,	doc_id,	tf	=	line.strip().split('\t')

								tf	=	int(tf)

				except:

								logger.warn("Invalid	record:	%s	"	%	line)

								continue

				#	term	is	the	only	key	for	this	input

				if	(term	==	cur_term):

								#	increment	document	frequency

								cur_df	+=	1

								key_cache.append(

												u"%s\t%s\t%s"	%	(term.decode('utf-8'),	doc_id.decode('utf-8'),	

tf))

https://github.com/learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/python/map-tf.py


				else:

								for	key	in	key_cache:

												print("%s\t%s"	%	(key,	cur_df))

								print	(

												u"%s\t%s\t%s\t%s"	%	(

																cur_term.decode('utf-8'),

																cur_doc_id.decode('utf-8'),

																cur_tf,	cur_df)

												)

								#	flush	the	cache

								key_cache	=	[]

								cur_doc_id	=	doc_id

								cur_term	=	term

								cur_tf	=	tf

								cur_df	=	1

for	key	in	key_cache:

				print(u"%s\t%s"	%	(key.decode('utf-8'),	cur_df))

print(

				u"%s\t%s\t%s\t%s\n"	%	(

								cur_term.decode('utf-8'),

								cur_doc_id.decode('utf-8'),

								cur_tf,	cur_df))

We	can	test	the	scripts	from	the	command	line	with:

$	cat	/tmp/tf-out.tsv		|		python	map-df.py		|	python	reduce-df.py	>	

/tmp/df-out.tsv

And	we	can	test	the	scripts	on	Hadoop	streaming	with:

/usr/bin/hadoop	jar	/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-

streaming.jar	\

-D	map.output.key.field.separator=\t	\

-D	stream.num.map.output.key.fields=3	\

-D	mapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator	\

-D	mapreduce.text.key.comparator.options=-k1	\

-input	/tmp/tf-out.tsv/part-00000	\

-output	/tmp/df-out.tsv	\

-mapper	org.apache.hadoop.mapred.lib.IdentityMapper	\

-file	reduce-df.py	\

-reducer	"python	reduce-df.py"

On	Hadoop	we	use	org.apache.hadoop.mapred.lib.IdentityMapper,	which	provides
the	same	logic	as	the	map-df.py	script.

The	mapper	and	reducer	code	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/streaming/tf-idf/python/map-df.py.

Putting	it	all	together	–	TF-IDF
To	calculate	TF-IDF,	we	only	need	a	mapper	that	consumes	the	output	of	the	previous

https://github.com/learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/python/map-df.py


step:

num_doc	=	sys.argv[1]

for	line	in	sys.stdin:

				line	=	line.strip()

				try:

								term,	doc_id,	tf,	df	=	line.split('\t')

								tf	=	float(tf)

								df	=	float(df)

								num_doc	=	float(num_doc)

				except:

								logger.warn("Invalid	record	%s"	%	line)

				#	idf	=	num_doc	/	df

				tf_idf	=	tf	*	(1+math.log(num_doc	/	df))

				print("%s\t%s\t%s"	%	(term,	doc_id,	tf_idf))

The	number	of	documents	in	the	collection	is	passed	as	a	parameter	to	tf-idf.py:

/usr/bin/hadoop	jar	/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-

streaming.jar	\

-D	mapreduce.reduce.tasks=0	\

-input	/tmp/df-out.tsv/part-00000	\

-output	/tmp/tf-idf.out	\

-file	tf-idf.py	\

-mapper	"python	tf-idf.py	15578"

To	calculate	the	total	number	of	tweets,	we	can	use	the	cat	and	wc	Unix	utilities	in
combination	with	Hadoop	streaming:

/usr/bin/hadoop	jar	/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-

streaming.jar	\

-input	tweets.json	\

-output	tweets.cnt	\

-mapper	/bin/cat	\

-reducer	/usr/bin/wc

The	mapper	source	code	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/streaming/tf-idf/python/tf-idf.py.

https://github.com/learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/python/tf-idf.py


Kite	Data
The	Kite	SDK	(http://www.kitesdk.org)	is	a	collection	of	classes,	command-line	tools,	and
examples	that	aims	at	easing	the	process	of	building	applications	on	top	of	Hadoop.

In	this	section	we	will	look	at	how	Kite	Data,	a	subproject	of	Kite,	can	ease	integration
with	several	components	of	a	Hadoop	data	warehouse.	Kite	examples	can	be	found	at
https://github.com/kite-sdk/kite-examples.

On	Cloudera’s	QuickStart	VM,	Kite	JARs	can	be	found	at
/opt/cloudera/parcels/CDH/lib/kite/.

Kite	Data	is	organized	in	a	number	of	subprojects,	some	of	which	we’ll	describe	in	the
following	sections.

http://www.kitesdk.org
https://github.com/kite-sdk/kite-examples


Data	Core
As	the	name	suggests,	the	core	is	the	building	block	for	all	capabilities	provided	in	the
Data	module.	Its	principal	abstractions	are	datasets	and	repositories.

The	org.kitesdk.data.Dataset	interface	is	used	to	represent	an	immutable	set	of	data:

@Immutable

public	interface	Dataset<E>	extends	RefinableView<E>	{

		String	getName();

		DatasetDescriptor	getDescriptor();

		Dataset<E>	getPartition(PartitionKey	key,	boolean	autoCreate);

		void	dropPartition(PartitionKey	key);

		Iterable<Dataset<E>>	getPartitions();

		URI	getUri();

}

Each	dataset	is	identified	by	a	name	and	an	instance	of	the
org.kitesdk.data.DatasetDescriptor	interface,	that	is	the	structural	description	of	a
dataset	and	provides	its	schema	(org.apache.avro.Schema)	and	partitioning	strategy.

Implementations	of	the	Reader<E>	interface	are	used	to	read	data	from	an	underlying
storage	system	and	produce	deserialized	entities	of	type	E.	The	newReader()	method	can
be	used	to	get	an	appropriate	implementation	for	a	given	dataset:

public	interface	DatasetReader<E>	extends	Iterator<E>,	Iterable<E>,	

Closeable	{

		void	open();

		boolean	hasNext();

	

		E	next();

				void	remove();

				void	close();

				boolean	isOpen();

}

An	instance	of	DatasetReader	will	provide	methods	to	read	and	iterate	over	streams	of
data.	Similarly,	org.kitesdk.data.DatasetWriter	provides	an	interface	to	write	streams
of	data	to	the	Dataset	objects:

public	interface	DatasetWriter<E>	extends	Flushable,	Closeable	{

		void	open();

		void	write(E	entity);

		void	flush();

		void	close();

		boolean	isOpen();

}

Like	readers,	writers	are	use-once	objects.	They	serialize	instances	of	entities	of	type	E	and
write	them	to	the	underlying	storage	system.	Writers	are	usually	not	instantiated	directly;
rather,	an	appropriate	implementation	can	be	created	by	the	newWriter()	factory	method.
Implementations	of	DatasetWriter	will	hold	resources	until	close()	is	called	and	expect



the	caller	to	invoke	close()	in	a	finally	block	when	the	writer	is	no	longer	in	use.
Finally,	note	that	implementations	of	DatasetWriter	are	typically	not	thread-safe.	The
behavior	of	a	writer	being	accessed	from	multiple	threads	is	undefined.

A	particular	case	of	a	dataset	is	the	View	interface,	which	is	as	follows:

public	interface	View<E>	{

			Dataset<E>	getDataset();

			DatasetReader<E>	newReader();

			DatasetWriter<E>	newWriter();

			boolean	includes(E	entity);

			public	boolean	deleteAll();

}

Views	carry	subsets	of	the	keys	and	partitions	of	an	existing	dataset;	they	are	conceptually
similar	to	the	notion	of	“view”	in	the	relational	model.

A	View	interface	can	be	created	from	ranges	of	data,	or	ranges	of	keys,	or	as	a	union
between	other	views.



Data	HCatalog
Data	HCatalog	is	a	module	that	enables	the	accessing	of	HCatalog	repositories.	The	core
abstractions	of	this	module	are
org.kitesdk.data.hcatalog.HCatalogAbstractDatasetRepository	and	its	concrete
implementation,	org.kitesdk.data.hcatalog.HCatalogDatasetRepository.

They	describe	a	DatasetRepository	that	uses	HCatalog	to	manage	metadata	and	HDFS
for	storage,	as	follows:

public	class	HCatalogDatasetRepository	extends	

HCatalogAbstractDatasetRepository	{

			HCatalogDatasetRepository(Configuration	conf)	{

				super(conf,	new	HCatalogManagedMetadataProvider(conf));

		}

			HCatalogDatasetRepository(Configuration	conf,	MetadataProvider	provider)	

{

				super(conf,	provider);

		}

			public	<E>	Dataset<E>	create(String	name,	DatasetDescriptor	descriptor)	

{

				getMetadataProvider().create(name,	descriptor);

				return	load(name);

		}

			public	boolean	delete(String	name)	{

				return	getMetadataProvider().delete(name);

		}

			public	static	class	Builder	{

			…

		}

}

Note
As	of	Kite	0.17,	Data	HCatalog	is	deprecated	in	favor	of	the	new	Data	Hive	module.

The	location	of	the	data	directory	is	either	chosen	by	Hive/HCatalog	(so-called	“managed
tables”),	or	specified	when	creating	an	instance	of	this	class	by	providing	a	filesystem	and
a	root	directory	in	the	constructor	(external	tables).



Data	Hive
The	kite-data-module	exposes	Hive	schemas	via	the	Dataset	interface.	As	of	Kite	0.17,
this	package	supersedes	Data	HCatalog.



Data	MapReduce
The	org.kitesdk.data.mapreduce	package	provides	interfaces	to	read	and	write	data	to
and	from	a	Dataset	with	MapReduce.



Data	Spark
The	org.kitesdk.data.spark	package	provides	interfaces	for	reading	and	writing	data	to
and	from	a	Dataset	with	Apache	Spark.



Data	Crunch
The	org.kitesdk.data.crunch.CrunchDatasets	package	is	a	helper	class	to	expose
datasets	and	views	as	Crunch	ReadableSource	or	Target	classes:

public	class	CrunchDatasets	{

public	static	<E>	ReadableSource<E>	asSource(View<E>	view,	Class<E>	type)	{

				return	new	DatasetSourceTarget<E>(view,	type);

		}

public	static	<E>	ReadableSource<E>	asSource(URI	uri,	Class<E>	type)	{

				return	new	DatasetSourceTarget<E>(uri,	type);

		}

public	static	<E>	ReadableSource<E>	asSource(String	uri,	Class<E>	type)	{

				return	asSource(URI.create(uri),	type);

		}

public	static	<E>	Target	asTarget(View<E>	view)	{

				return	new	DatasetTarget<E>(view);

		}

	public	static	Target	asTarget(String	uri)	{

				return	asTarget(URI.create(uri));

		}

public	static	Target	asTarget(URI	uri)	{

				return	new	DatasetTarget<Object>(uri);

		}

}



Apache	Crunch
Apache	Crunch	(http://crunch.apache.org)	is	a	Java	and	Scala	library	to	create	pipelines	of
MapReduce	jobs.	It	is	based	on	Google’s	FlumeJava	(http://dl.acm.org/citation.cfm?
id=1806638)	paper	and	library.	The	project	goal	is	to	make	the	task	of	writing	MapReduce
jobs	as	straightforward	as	possible	for	anybody	familiar	with	the	Java	programming
language	by	exposing	a	number	of	patterns	that	implement	operations	such	as	aggregating,
joining,	filtering,	and	sorting	records.

Similar	to	tools	such	as	Pig,	Crunch	pipelines	are	created	by	composing	immutable,
distributed	data	structures	and	running	all	processing	operations	on	such	structures;	they
are	expressed	and	implemented	as	user-defined	functions.	Pipelines	are	compiled	into	a
DAG	of	MapReduce	jobs,	whose	execution	is	managed	by	the	library’s	planner.	Crunch
allows	us	to	write	iterative	code	and	abstracts	away	the	complexity	of	thinking	in	terms	of
map	and	reduce	operations,	while	at	the	same	time	avoiding	the	need	of	an	ad	hoc
programming	language	such	as	PigLatin.	In	addition,	Crunch	offers	a	highly	customizable
type	system	that	allows	us	to	work	with,	and	mix,	Hadoop	Writables,	HBase,	and	Avro
serialized	objects.

FlumeJava’s	main	assumption	is	that	MapReduce	is	the	wrong	level	of	abstraction	for
several	classes	of	problems,	where	computations	are	often	made	up	of	multiple,	chained
jobs.	Frequently,	we	need	to	compose	logically	independent	operations	(for	example,
filtering,	projecting,	grouping,	and	other	transformations)	into	a	single	physical
MapReduce	job	for	performance	reasons.	This	aspect	also	has	implications	for	code
testability.	Although	we	won’t	cover	this	aspect	in	this	chapter,	the	reader	is	encouraged	to
look	further	into	it	by	consulting	Crunch’s	documentation.

http://crunch.apache.org
http://dl.acm.org/citation.cfm?id=1806638


Getting	started
Crunch	JARs	are	already	installed	on	the	QuickStart	VM.	By	default,	the	JARs	are	found
in	/opt/cloudera/parcels/CDH/lib/crunch.

Alternatively,	recent	Crunch	libraries	can	be	downloaded	from
https://crunch.apache.org/download.html,	from	Maven	Central	or	Cloudera-specific
repositories.

https://crunch.apache.org/download.html


Concepts
Crunch	pipelines	are	created	by	composing	two	abstractions:	PCollection	and	PTable.

The	PCollection<T>	interface	is	a	distributed,	immutable	collection	of	objects	of	type	T.
The	PTable<Key,	Value>	interface	is	a	distributed,	immutable	hashtable—a	sub-interface
of	PCollection—of	keys	of	the	Key	type	and	values	of	the	Value	type	that	exposes
methods	to	work	with	the	key-value	pairs.

These	two	abstractions	support	the	following	four	primitive	operations:

parallelDo:	applies	a	user-defined	function,	DoFn,	to	a	given	PCollection	and
returns	a	new	PCollection
union:	merges	two	or	more	PCollections	into	a	single	virtual	PCollection
groupByKey:	sorts	and	groups	the	elements	of	a	PTable	by	their	keys
combineValues:	aggregates	the	values	from	a	groupByKey	operation

The	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/HashtagCount.java
implements	a	Crunch	MapReduce	pipeline	that	counts	hashtag	occurrences:

Pipeline	pipeline	=	new	MRPipeline(HashtagCount.class,	getConf());

pipeline.enableDebug();

PCollection<String>	lines	=	pipeline.readTextFile(args[0]);

PCollection<String>	words	=	lines.parallelDo(new	DoFn<String,	String>()	{

		public	void	process(String	line,	Emitter<String>	emitter)	{

				for	(String	word	:	line.split("\\s+"))	{

								if	(word.matches("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)"))	{

												emitter.emit(word);

								}

				}

		}

},	Writables.strings());

PTable<String,	Long>	counts	=	words.count();

pipeline.writeTextFile(counts,	args[1]);

//	Execute	the	pipeline	as	a	MapReduce.

pipeline.done();

In	this	example,	we	first	create	a	MRPipeline	pipeline	and	use	it	to	first	read	the	content	of
sample.txt	created	with	stream.py	-t	into	a	collection	of	strings,	where	each	element	of
the	collection	represents	a	tweet.	We	tokenize	each	tweet	into	words	with
tweet.split("\\s+"),	and	we	emit	each	word	that	matches	the	hashtag	regular
expression,	serialized	as	Writable.	Note	that	the	tokenizing	and	filtering	operations	are
executed	in	parallel	by	MapReduce	jobs	created	by	the	parallelDo	call.	We	create	a
PTable	that	associates	each	hashtag,	represented	as	a	string,	with	the	number	of	times	it
occurred	in	the	datasets.	Finally,	we	write	the	PTable	counts	into	HDFS	as	a	textfile.	The

https://github.com/learninghadoop2/book-examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/HashtagCount.java


pipeline	is	executed	with	pipeline.done().

To	compile	and	execute	the	pipeline,	we	can	use	Gradle	to	manage	the	needed
dependencies,	as	follows:

$	./gradlew	jar

$	./gradlew	copyJars

Add	the	Crunch	and	Avro	dependencies	downloaded	with	copyJars	to	the	LIBJARS
environment	variable:

$	export	CRUNCH_DEPS=build/libjars/crunch-example/lib

$	export	LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-

cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-

mapred-1.7.5-cdh5.0.3-hadoop2.jar

Then,	run	the	example	on	Hadoop:

$	hadoop	jar	build/libs/crunch-example.jar	\

com.learninghadoop2.crunch.HashtagCount	\

tweets.json	count-out	\

-libjars	$LIBJARS



Data	serialization
One	of	the	framework’s	goals	is	to	make	it	easy	to	process	complex	records	containing
nested	and	repeated	data	structures,	such	as	protocol	buffers	and	Thrift	records.

The	org.apache.crunch.types.PType	interface	defines	the	mapping	between	a	data	type
that	is	used	in	a	Crunch	pipeline	and	a	serialization	and	storage	format	that	is	used	to
read/write	data	from/to	HDFS.	Every	PCollection	has	an	associated	PType	that	tells
Crunch	how	to	read/write	data.

The	org.apache.crunch.types.PTypeFamily	interface	provides	an	abstract	factory	to
implement	instances	of	PType	that	share	the	same	serialization	format.	Currently,	Crunch
supports	two	type	families:	one	based	on	the	Writable	interface	and	the	other	on	Apache
Avro.

Note
Although	Crunch	permits	mixing	and	matching	PCollection	interfaces	that	use	different
instances	of	PType	in	the	same	pipeline,	each	PCollection	interfaces’s	PType	must	belong
to	a	unique	family.	For	instance,	it	is	not	possible	to	have	a	PTable	with	a	key	serialized	as
Writable	and	its	value	serialized	using	Avro.

Both	type	families	support	a	common	set	of	primitive	types	(strings,	longs,	integers,	floats,
doubles,	booleans,	and	bytes)	as	well	as	more	complex	PType	interfaces	that	can	be
constructed	out	of	other	PTypes.	These	include	tuples	and	collections	of	other	PType.	A
particularly	important,	complex,	PType	is	tableOf,	which	determines	whether	the	return
type	of	paralleDo	will	be	a	PCollection	or	PTable.

New	PTypes	can	be	created	by	inheriting	and	extending	the	built-ins	of	the	Avro	and
Writable	families.	This	requires	implementing	input	MapFn<S,	T>	and	output	MapFn<T,
S>	classes.	We	are	implementing	PType	for	instances	where	S	is	the	original	type	and	T	is
the	new	type	.

Derived	PTypes	can	be	found	in	the	PTypes	class.	These	include	serialization	support	for
protocol	buffers,	Thrift	records,	Java	Enums,	BigInteger,	and	UUIDs.	The	Elephant	Bird
library	we	discussed	in	Chapter	6,	Data	Analysis	with	Apache	Pig,	contains	additional
examples.



Data	processing	patterns
org.apache.crunch.lib	implements	a	number	of	design	patterns	for	common	data
manipulation	operations.

Aggregation	and	sorting
Most	of	the	data	processing	patterns	provided	by	org.apache.crunch.lib	rely	on	the
PTable‘s	groupByKey	method.	The	method	has	three	different	overloaded	forms:

groupByKey():	lets	the	planner	determine	the	number	of	partitions
groupByKey(int	numPartitions):	is	used	to	set	the	number	of	partitions	specified
by	the	developer
groupByKey(GroupingOptions	options):	allows	us	to	specify	custom	partitions	and
comparators	for	shuffling

The	org.apache.crunch.GroupingOptions	class	takes	instances	of	Hadoop’s
Partitioner	and	RawComparator	classes	to	implement	custom	partitioning	and	sorting
operations.

The	groupByKey	method	returns	an	instance	of	PGroupedTable,	Crunch’s	representation	of
a	grouped	table.	It	corresponds	to	the	output	of	the	shuffle	phase	of	a	MapReduce	job	and
allows	values	to	be	combined	with	the	combineValue	method.

The	org.apache.crunch.lib.Aggregate	package	exposes	methods	to	perform	simple
aggregations	(count,	max,	top,	and	length)	on	the	PCollection	instances.

Sort	provides	an	API	to	sort	PCollection	and	PTable	instances	whose	contents
implement	the	Comparable	interface.

By	default,	Crunch	sorts	data	using	one	reducer.	This	behavior	can	be	modified	by	passing
the	number	of	partitions	required	to	the	sort	method.	The	Sort.Order	method	signals	the
order	in	which	a	sort	should	be	done.

The	following	are	how	different	sort	options	can	be	specified	for	collections:

public	static	<T>	PCollection<T>	sort(PCollection<T>	collection)

public	static	<T>	PCollection<T>	sort(PCollection<T>	collection,	Sort.Order	

order)

public	static	<T>	PCollection<T>	sort(PCollection<T>	collection,	int	

numReducers,																																							Sort.Order	order)

The	following	are	how	different	sort	options	can	be	specified	for	tables:

public	static	<K,V>	PTable<K,V>	sort(PTable<K,V>	table)

public	static	<K,V>	PTable<K,V>	sort(PTable<K,V>	table,	Sort.Order	key)

public	static	<K,V>	PTable<K,V>	sort(PTable<K,V>	table,	int	numReducers,	

Sort.Order	key)

Finally,	sortPairs	sorts	the	PCollection	of	pairs	using	the	specified	column	order	in
Sort.ColumnOrder:



sortPairs(PCollection<Pair<U,V>>	collection,	Sort.ColumnOrder…	

columnOrders)

Joining	data
The	org.apache.crunch.lib.Join	package	is	an	API	to	join	PTables	based	on	a
common	key.	The	following	four	join	operations	are	supported:

fullJoin

join	(defaults	to	innerJoin)
leftJoin

rightJoin

The	methods	have	a	common	return	type	and	signature.	For	reference,	we	will	describe
the	commonly	used	join	method	that	implements	an	inner	join:

public	static	<K,U,V>	PTable<K,Pair<U,V>>	join(PTable<K,U>	left,	

PTable<K,V>	right)

The	org.apache.crunch.lib.Join.JoinStrategy	package	provides	an	interface	to
define	custom	join	strategies.	Crunch’s	default	strategy	(defaultStrategy)	is	to	join	data
reduce-side.



Pipelines	implementation	and	execution
Crunch	comes	with	three	implementations	of	the	pipeline	interface.	The	oldest	one,
implicitly	used	in	this	chapter,	is	org.apache.crunch.impl.mr.MRPipeline,	which	uses
Hadoop’s	MapReduce	as	its	execution	engine.
org.apache.crunch.impl.mem.MemPipeline	allows	all	operations	to	be	performed	in
memory,	with	no	serialization	to	disk	performed.	Crunch	0.10	introduced
org.apache.crunch.impl.spark.SparkPipeline	which	compiles	and	runs	a	DAG	of
PCollections	to	Apache	Spark.

SparkPipeline
With	SparkPipeline,	Crunch	delegates	much	of	the	execution	to	Spark	and	does	relatively
little	of	the	planning	tasks,	with	the	following	exceptions:

Multiple	inputs
Multiple	outputs
Data	serialization
Checkpointing

At	the	time	of	writing,	SparkPipeline	is	still	heavily	under	development	and	might	not
handle	all	of	the	use	cases	of	a	standard	MRPipeline.	The	Crunch	community	is	actively
working	to	ensure	complete	compatibility	between	the	two	implementations.

MemPipeline
MemPipeline	executes	in-memory	on	a	client.	Unlike	MRPipeline,	MemPipeline	is	not
explicitly	created	but	referenced	by	calling	the	static	method
MemPipeline.getInstance().	All	operations	are	in	memory,	and	the	use	of	PTypes	is
minimal.



Crunch	examples
We	will	now	use	Apache	Crunch	to	reimplement	some	of	the	MapReduce	code	written	so
far	in	a	more	modular	fashion.

Word	co-occurrence
In	Chapter	3,	Processing	–	MapReduce	and	Beyond,	we	showed	a	MapReduce	job,
BiGramCount,	to	count	co-occurrences	of	words	in	tweets.	That	same	logic	can	be
implemented	as	a	DoFn.	Instead	of	emitting	a	multi-field	key	and	having	to	parse	it	at	a
later	stage,	with	Crunch	we	can	use	a	complex	type	Pair<String,	String>,	as	follows:

class	BiGram	extends	DoFn<String,	Pair<String,	String>>	{

				@Override

				public	void	process(String	tweet,	

Emitter<Pair<String,	String>>	emitter)	{

								String[]	words	=	tweet.split("	")	;

																

								Text	bigram	=	new	Text();

								String	prev	=	null;

																	

								for	(String	s	:	words)	{

										if	(prev	!=	null)	{

														emitter.emit(Pair.of(prev,	s));

												}							

												prev	=	s;

								}

				}			

}							

Notice	how,	compared	to	MapReduce,	the	BiGram	Crunch	implementation	is	a	standalone
class,	easily	reusable	in	any	other	codebase.	The	code	for	this	example	is	included	in
https://github.com/learninghadoop2/book-
examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/DataPreparationPipeline.java

TF-IDF
We	can	implement	the	TF-IDF	chain	of	jobs	with	a	MRPipeline,	as	follows:

public	class	CrunchTermFrequencyInvertedDocumentFrequency	

									extends	Configured	implements	Tool,	Serializable	{

			

			private	Long	numDocs;

			

			@SuppressWarnings("deprecation")

			

			public	static	class	TF	{

								String	term;

								String	docId;

								int	frequency;

								public	TF()	{}

https://github.com/learninghadoop2/book-examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/DataPreparationPipeline.java


								public	TF(String	term,	

															String	docId,	Integer	frequency)	{

											this.term	=	term;

											this.docId	=	docId;

											this.frequency	=	(int)	frequency;

											

								}

			}

			public	int	run(String[]	args)	throws	Exception	{

							if(args.length	!=	2)	{

									System.err.println();

									System.err.println("Usage:	"	+	this.getClass().getName()	+	"	

[generic	options]	input	output");

									return	1;

							}

							//	Create	an	object	to	coordinate	pipeline	creation	and	execution.

							Pipeline	pipeline	=	

new	MRPipeline(TermFrequencyInvertedDocumentFrequency.class,	getConf());

												

							//	enable	debug	options

							pipeline.enableDebug();

							

							//	Reference	a	given	text	file	as	a	collection	of	Strings.

							PCollection<String>	tweets	=	pipeline.readTextFile(args[0]);

							numDocs	=	tweets.length().getValue();

							

							//	We	use	Avro	reflections	to	map	the	TF	POJO	to	avsc	

							PTable<String,	TF>	tf	=	tweets.parallelDo(new	TermFrequencyAvro(),	

Avros.tableOf(Avros.strings(),	Avros.reflects(TF.class)));

							

							//	Calculate	DF

							PTable<String,	Long>	df	=	Aggregate.count(tf.parallelDo(	new	

DocumentFrequencyString(),	Avros.strings()));

							

							

							//	Finally	we	calculate	TF-IDF	

							PTable<String,	Pair<TF,	Long>>	tfDf	=	Join.join(tf,	df);

							PCollection<Tuple3<String,	String,	Double>>	tfIdf	=	

tfDf.parallelDo(new	TermFrequencyInvertedDocumentFrequency(),

																Avros.triples(

																						Avros.strings(),	

																						Avros.strings(),	

																						Avros.doubles()));

		

							//	Serialize	as	avro	

							tfIdf.write(To.avroFile(args[1]));

							

							//	Execute	the	pipeline	as	a	MapReduce.

							PipelineResult	result	=	pipeline.done();

							return	result.succeeded()	?	0	:	1;

			}

			…

}



The	approach	that	we	follow	here	has	a	number	of	advantages	compared	to	streaming.
First	of	all,	we	don’t	need	to	manually	chain	MapReduce	jobs	using	a	separate	script.	This
task	is	Crunch’s	main	purpose.	Secondly,	we	can	express	each	component	of	the	metric	as
a	distinct	class,	making	it	easier	to	reuse	in	future	applications.

To	implement	term	frequency,	we	create	a	DoFn	class	that	takes	as	input	a	tweet	and	emits
Pair<String,	TF>.	The	first	element	is	a	term,	and	the	second	is	an	instance	of	the	POJO
class	that	will	be	serialized	using	Avro.	The	TF	part	contains	three	variables:	term,
documentId,	and	frequency.	In	the	reference	implementation,	we	expect	input	data	to	be	a
JSON	string	that	we	deserialize	and	parse.	We	also	include	tokenizing	as	a	subtask	of	the
process	method.

Depending	on	the	use	cases,	we	could	abstract	both	operations	in	separate	DoFns,	as
follows:

class	TermFrequencyAvro	extends	DoFn<String,Pair<String,	TF>>	{

				public	void	process(String	JSONTweet,	

Emitter<Pair	<String,	TF>>	emitter)	{

								Map<String,	Integer>	termCount	=	new	HashMap<>();

								String	tweet;

								String	docId;

								JSONParser	parser	=	new	JSONParser();

								try	{

												Object	obj	=	parser.parse(JSONTweet);

												JSONObject	jsonObject	=	(JSONObject)	obj;

												tweet	=	(String)	jsonObject.get("text");

												docId	=	(String)	jsonObject.get("id_str");

								

												for	(String	term	:	tweet.split("\\s+"))	{

																if	(termCount.containsKey(term.toLowerCase()))	{

																				termCount.put(term,	

termCount.get(term.toLowerCase())	+	1);

																}	else	{

																				termCount.put(term.toLowerCase(),	1);

																}

												}

								

												for	(Entry<String,	Integer>	entry	:	termCount.entrySet())	{

																emitter.emit(Pair.of(entry.getKey(),	new	TF(entry.getKey(),	

docId,	entry.getValue())));

												}

								}	catch	(ParseException	e)	{

												e.printStackTrace();

								}

				}

		}

}

Document	frequency	is	straightforward.	For	each	Pair<String,	TF>	generated	in	the	term



frequency	step,	we	emit	the	term—the	first	element	of	the	pair.	We	aggregate	and	count
the	resulting	PCollection	of	terms	to	obtain	document	frequency,	as	follows:

class	DocumentFrequencyString	extends	DoFn<Pair<String,	TF>,	String>	{

@Override

			public	void	process(Pair<String,	TF>	tfAvro,

						Emitter<String>	emitter)	{

						emitter.emit(tfAvro.first());

			}

}

We	finally	join	the	PTable	TF	with	the	PTable	DF	on	the	shared	key	(term)	and	feed	the
resulting	Pair<String,	Pair<TF,	Long>>	object	to
TermFrequencyInvertedDocumentFrequency.

For	each	term	and	document,	we	calculate	TF-IDF	and	return	a	term,	docIf,	and	tfIdf
triple:

			class	TermFrequencyInvertedDocumentFrequency	extends	MapFn<Pair<String,	

Pair<TF,	Long>>,	Tuple3<String,	String,	Double>	>		{						

						@Override

						public	Tuple3<String,	String,	Double>	map(

												Pair<String,	Pair<TF,	Long>>	input)	{

									Pair<TF,	Long>	tfDf	=	input.second();

									Long	df	=	tfDf.second();

									

									TF	tf	=	tfDf.first();

									double	idf	=	1.0+Math.log(numDocs	/	df);

									double	tfIdf	=	idf	*	tf.frequency;

									

									return		Tuple3.of(tf.term,	tf.docId,	tfIdf);

						}

						

			}			

We	use	MapFn	because	we	are	going	to	output	one	record	for	each	input.	The	source	code
for	this	example	can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/CrunchTermFrequencyInvertedDocumentFrequency.java

The	example	can	be	compiled	and	executed	with	the	following	commands:

$	./gradlew	jar

$	./gradlew	copyJars

If	not	already	done,	add	the	Crunch	and	Avro	dependencies	downloaded	with	copyJars	to
the	LIBJARS	environment	variable,	as	follows:

$	export	CRUNCH_DEPS=build/libjars/crunch-example/lib

$	export	LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-

cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-

mapred-1.7.5-cdh5.0.3-hadoop2.jar

Furthermore,	add	the	json-simple	JAR	to	LIBJARS:

$	export	LIBJARS=${LIBJARS},${CRUNCH_DEPS}/json-simple-1.1.1.jar

https://github.com/learninghadoop2/book-examples/blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/CrunchTermFrequencyInvertedDocumentFrequency.java


Finally,	run	CrunchTermFrequencyInvertedDocumentFrequency	as	a	MapReduce	job,	as
follows:

$	hadoop	jar	build/libs/crunch-example.jar	\

com.learninghadoop2.crunch.CrunchTermFrequencyInvertedDocumentFrequency		\

-libjars	${LIBJARS}	\

tweets.json	tweets.avro-out



Kite	Morphlines
Kite	Morphlines	is	a	data	transformation	library,	inspired	by	Unix	pipes,	originally
developed	as	part	of	Cloudera	Search.	A	morphline	is	an	in-memory	chain	of
transformation	commands	that	relies	on	a	plugin	structure	to	tap	heterogeneous	data
sources.	It	uses	declarative	commands	to	carry	out	ETL	operations	on	records.	Commands
are	defined	in	a	configuration	file,	which	is	later	fed	to	a	driver	class.

The	goal	is	to	make	embedding	ETL	logic	into	any	Java	codebase	a	trivial	task	by
providing	a	library	that	allows	developers	to	replace	programming	with	a	series	of
configuration	settings.

Concepts
Morphlines	are	built	around	two	abstractions:	Command	and	Record.

Records	are	implementations	of	the	org.kitesdk.morphline.api.Record	interface:

public	final	class	Record	{		

		private	ArrayListMultimap<String,	Object>	fields;		

…

				private	Record(ArrayListMultimap<String,	Object>	fields)	{…}

		public	ListMultimap<String,	Object>	getFields()	{…}

		public	List	get(String	key)	{…}

		public	void	put(String	key,	Object	value)	{…}

			…

}

A	record	is	a	set	of	named	fields,	where	each	field	has	a	list	of	one	or	more	values.	A
Record	is	implemented	on	top	of	Google	Guava’s	ListMultimap	and	ArrayListMultimap
classes.	Note	that	a	value	can	be	any	Java	object,	fields	can	be	multivalued,	and	two
records	don’t	need	to	use	common	field	names.	A	record	can	contain	an
_attachment_body	field	that	can	be	a	java.io.InputStream	or	a	byte	array.

Commands	implement	the	org.kitesdk.morphline.api.Command	interface:

public	interface	Command	{

			void	notify(Record	notification);

			boolean	process(Record	record);

			Command	getParent();

}

A	command	transforms	a	record	into	zero	or	more	records.	Commands	can	call	the
methods	on	the	Record	instance	provided	for	read	and	write	operations	as	well	as	for
adding	or	removing	fields.

Commands	are	chained	together,	and	at	each	step	of	a	morphline	the	parent	command
sends	records	to	its	child,	which	in	turn	processes	them.	Information	between	parents	and
children	is	exchanged	using	two	communication	channels	(planes);	notifications	are	sent
via	a	control	plane,	and	records	are	sent	over	a	data	plane.	Records	are	processed	by	the
process()	method,	which	returns	a	Boolean	value	to	indicate	whether	a	morphline	should
proceed	or	not.



Commands	are	not	instantiated	directly,	but	via	an	implementation	of	the
org.kitesdk.morphline.api.CommandBuilder	interface:

public	interface	CommandBuilder	{

			Collection<String>	getNames();

			Command	build(Config	config,	

						Command	parent,	

						Command	child,	

						MorphlineContext	context);

}

The	getNames	method	returns	the	names	with	which	the	command	can	be	invoked.
Multiple	names	are	supported	to	allow	backwards	compatible	name	changes.	The	build()
method	creates	and	returns	a	command	rooted	at	the	given	morphline	configuration.

The	org.kitesdk.morphline.api.MorphlineContext	interface	allows	additional
parameters	to	be	passed	to	all	morphline	commands.

The	data	model	of	morphlines	is	structured	following	a	source-pipe-sink	pattern,	where
data	is	captured	from	a	source,	piped	through	a	number	of	processing	steps,	and	its	output
is	then	delivered	into	a	sink.

Morphline	commands
Kite	Morphlines	comes	with	a	number	of	default	commands	that	implement	data
transformations	on	common	serialization	formats	(plaintext,	Avro,	JSON).	Currently
available	commands	are	organized	as	subprojects	of	morphlines	and	include:

kite-morphlines-core-stdio:	will	read	data	from	binary	large	objects	(BLOBs)
and	text
kite-morphlines-core-stdlib:	wraps	around	Java	data	types	for	data	manipulation
and	representation
kite-morphlines-avro:	is	used	for	serialization	into	and	deserialization	from	data	in
the	Avro	format
kite-morphlines-json:	will	serialize	and	deserialize	data	in	JSON	format
kite-morphlines-hadoop-core:	is	used	to	access	HDFS
kite-morphlines-hadoop-parquet-avro:	is	used	to	serialize	and	deserialize	data	in
the	Parquet	format
kite-morphlines-hadoop-sequencefile:	is	used	to	serialize	and	deserialize	data	in
the	Sequencefile	format
kite-morphlines-hadoop-rcfile:	is	used	to	serialize	and	deserialize	data	in	RCfile
format

A	list	of	all	available	commands	can	be	found	at	http://kitesdk.org/docs/0.17.0/kite-
morphlines/morphlinesReferenceGuide.html.

Commands	are	defined	by	declaring	a	chain	of	transformations	in	a	configuration	file,
morphline.conf,	which	is	then	compiled	and	executed	by	a	driver	program.	For	instance,
we	can	specify	a	read_tweets	morphline	that	will	load	tweets	stored	as	JSON	data,
serialize	and	deserialize	them	using	Jackson,	and	print	the	first	10,	by	combining	the

http://kitesdk.org/docs/0.17.0/kite-morphlines/morphlinesReferenceGuide.html


default	readJson	and	head	commands	contained	in	the	org.kitesdk.morphline	package,
as	follows:

morphlines	:	[{

		id	:	read_tweets

		importCommands	:	["org.kitesdk.morphline.**"]

				

		commands	:	[{

				readJson	{

						outputClass	:	com.fasterxml.jackson.databind.JsonNode

				}}

				{

						head	{	

						limit	:	10

				}}

		]

}]

We	will	now	show	how	this	morphline	can	be	executed	both	from	a	standalone	Java
program	as	well	as	from	MapReduce.

MorphlineDriver.java	shows	how	to	use	the	library	embedded	into	a	host	system.	The
first	step	that	we	carry	out	in	the	main	method	is	to	load	morphline’s	JSON	configuration,
build	a	MorphlineContext	object,	and	compile	it	into	an	instance	of	Command	that	acts	as
the	starting	node	of	the	morphline.	Note	that	Compiler.compile()	takes	a	finalChild
parameter;	in	this	case,	it	is	RecordEmitter.	We	use	RecordEmitter	to	act	as	a	sink	for	the
morphline,	by	either	printing	a	record	to	stdout	or	storing	it	into	HDFS.	In	the
MorphlineDriver	example,	we	use	org.kitesdk.morphline.base.Notifications	to
manage	and	monitor	the	morphline	life	cycle	in	a	transactional	fashion.

A	call	to	Notifications.notifyStartSession(morphline)	starts	the	transformation
chain	within	a	transaction	defined	by	calling	Notifications.notifyBeginTransaction.
Upon	success,	we	terminate	the	pipeline	with
Notifications.notifyShutdown(morphline).	In	the	event	of	failure,	we	roll	back	the
transaction,	Notifications.notifyRollbackTransaction(morphline),	and	pass	an
exception	handler	from	the	morphline	context	to	the	calling	Java	code:

public	class	MorphlineDriver	{

				private	static	final	class	RecordEmitter	implements	Command	{

							private	final	Text	line	=	new	Text();

						@Override

						public	Command	getParent()	{

									return	null;

						}

						@Override

						public	void	notify(Record	record)	{

									

						}

						@Override

						public	boolean	process(Record	record)	{



									line.set(record.get("_attachment_body").toString());

									

									System.out.println(line);

									

									return	true;

						}

							}		

				

			public	static	void	main(String[]	args)	throws	IOException	{

							/*	load	a	morphline	conf	and	set	it	up	*/

							File	morphlineFile	=	new	File(args[0]);

							String	morphlineId	=	args[1];

							MorphlineContext	morphlineContext	=	new	

MorphlineContext.Builder().build();

							Command	morphline	=	new	Compiler().compile(morphlineFile,	

morphlineId,	morphlineContext,	new	RecordEmitter());

										

							/*	Prepare	the	morphline	for	execution

								*	

								*	Notifications	are	sent	through	the	communication	channel		

								*	*/

							

							Notifications.notifyBeginTransaction(morphline);

							

							/*	Note	that	we	are	using	the	local	filesystem,	not	hdfs*/

							InputStream	in	=	new	BufferedInputStream(new	

FileInputStream(args[2]));

							

							/*	fill	in	a	record	and	pass		it	over	*/

							Record	record	=	new	Record();

							record.put(Fields.ATTACHMENT_BODY,	in);	

							

							try	{

												Notifications.notifyStartSession(morphline);

												boolean	success	=	morphline.process(record);

												if	(!success)	{

														System.out.println("Morphline	failed	to	process	record:	"	+	

record);

												}

								/*	Commit	the	morphline	*/

							}	catch	(RuntimeException	e)	{

											Notifications.notifyRollbackTransaction(morphline);

											morphlineContext.getExceptionHandler().handleException(e,	null);

									}

							finally	{

												in.close();

								}

							

								/*	shut	it	down	*/

								Notifications.notifyShutdown(morphline);					

				}

}

In	this	example,	we	load	data	in	JSON	format	from	the	local	filesystem	into	an
InputStream	object	and	use	it	to	initialize	a	new	Record	instance.	The	RecordEmitter



class	contains	the	last	processed	record	instance	of	the	chain,	on	which	we	extract
_attachment_body	and	print	it	to	standard	output.	The	source	code	for	MorphlineDriver
can	be	found	at	https://github.com/learninghadoop2/book-
examples/blob/master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/MorphlineDriver.java

Using	the	same	morphline	from	a	MapReduce	job	is	straightforward.	During	the	setup
phase	of	the	Mapper,	we	build	a	context	that	contains	the	instantiation	logic,	while	the
map	method	sets	the	Record	object	up	and	fires	off	the	processing	logic,	as	follows:

public	static	class	ReadTweets

								extends	Mapper<Object,	Text,	Text,	NullWritable>	{

				private	final	Record	record	=	new	Record();

				private	Command	morphline;

				@Override

				protected	void	setup(Context	context)

												throws	IOException,	InterruptedException	{

								File	morphlineConf	=	new	File(context.getConfiguration()

																.get(MORPHLINE_CONF));

								String	morphlineId	=	context.getConfiguration()

																.get(MORPHLINE_ID);

								MorphlineContext	morphlineContext	=	

new	MorphlineContext.Builder()

																.build();

								morphline	=	new	org.kitesdk.morphline.base.Compiler()

																.compile(morphlineConf,

																								morphlineId,

																								morphlineContext,

																								new	RecordEmitter(context));

				}

				public	void	map(Object	key,	Text	value,	Context	context)

												throws	IOException,	InterruptedException	{

								record.put(Fields.ATTACHMENT_BODY,

																new	ByteArrayInputStream(

value.toString().getBytes("UTF8")));

								if	(!morphline.process(record))	{

														System.out.println(

"Morphline	failed	to	process	record:	"	+	record);

								}

								record.removeAll(Fields.ATTACHMENT_BODY);

				}

}

In	the	MapReduce	code	we	modify	RecordEmitter	to	extract	the	Fields	payload	from
post-processed	records	and	store	it	into	context.	This	allows	us	to	write	data	into	HDFS	by
specifying	a	FileOutputFormat	in	the	MapReduce	configuration	boilerplate:

private	static	final	class	RecordEmitter	implements	Command	{

				private	final	Text	line	=	new	Text();

				private	final	Mapper.Context	context;

				private	RecordEmitter(Mapper.Context	context)	{

https://github.com/learninghadoop2/book-examples/blob/master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/MorphlineDriver.java


								this.context	=	context;

				}

				@Override

				public	void	notify(Record	notification)	{

				}

				@Override

				public	Command	getParent()	{

								return	null;

				}

				@Override

				public	boolean	process(Record	record)	{

								line.set(record.get(Fields.ATTACHMENT_BODY).toString());

								try	{

												context.write(line,	null);

								}	catch	(Exception	e)	{

												e.printStackTrace();

												return	false;

								}

								return	true;

				}

}			

Notice	that	we	can	now	change	the	processing	pipeline	behavior	and	add	further	data
transformations	by	modifying	morphline.conf	without	the	explicit	need	to	alter	the
instantiation	and	processing	logic.	The	MapReduce	driver	source	code	can	be	found	at
https://github.com/learninghadoop2/book-
examples/blob/master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/MorphlineDriverMapReduce.java

Both	examples	can	be	compiled	from	ch9/kite/	with	the	following	commands:

$	./gradlew	jar

$	./gradlew	copyJar

We	add	the	runtime	dependencies	to	LIBJARS,	as	follows

$	export	KITE_DEPS=/home/cloudera/review/hadoop2book-private-reviews-

gabriele-ch8/src/ch8/kite/build/libjars/kite-example/lib

export	LIBJARS=${LIBJARS},${KITE_DEPS}/kite-morphlines-core-

0.17.0.jar,${KITE_DEPS}/kite-morphlines-json-

0.17.0.jar,${KITE_DEPS}/metrics-core-3.0.2.jar,${KITE_DEPS}/metrics-

healthchecks-3.0.2.jar,${KITE_DEPS}/config-1.0.2.jar,${KITE_DEPS}/jackson-

databind-2.3.1.jar,${KITE_DEPS}/jackson-core-

2.3.1.jar,${KITE_DEPS}/jackson-annotations-2.3.0.jar

We	can	run	the	MapReduce	driver	with	the	following:

$	hadoop	jar	build/libs/kite-example.jar	\

com.learninghadoop2.kite.morphlines.MorphlineDriverMapReduce	\

-libjars	${LIBJARS}	\

morphline.conf	\

read_tweets	\

tweets.json	\

morphlines-out

https://github.com/learninghadoop2/book-examples/blob/master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/MorphlineDriverMapReduce.java


The	Java	standalone	driver	can	be	executed	with	the	following	command:

$	export	CLASSPATH=${CLASSPATH}:${KITE_DEPS}/kite-morphlines-core-

0.17.0.jar:${KITE_DEPS}/kite-morphlines-json-

0.17.0.jar:${KITE_DEPS}/metrics-core-3.0.2.jar:${KITE_DEPS}/metrics-

healthchecks-3.0.2.jar:${KITE_DEPS}/config-1.0.2.jar:${KITE_DEPS}/jackson-

databind-2.3.1.jar:${KITE_DEPS}/jackson-core-

2.3.1.jar:${KITE_DEPS}/jackson-annotations-2.3.0.jar:${KITE_DEPS}/slf4j-

api-1.7.5.jar:${KITE_DEPS}/guava-11.0.2.jar:${KITE_DEPS}/hadoop-common-

2.3.0-cdh5.0.3.jar

$	java	-cp	$CLASSPATH:./build/libs/kite-example.jar	\

com.learninghadoop2.kite.morphlines.MorphlineDriver	\

morphline.conf	\

read_tweets	tweets.json	\

morphlines-out



Summary
In	this	chapter,	we	introduced	four	tools	to	ease	development	on	Hadoop.	In	particular,	we
covered:

How	Hadoop	streaming	allows	the	writing	of	MapReduce	jobs	using	dynamic
languages
How	Kite	Data	simplifies	interfacing	with	heterogeneous	data	sources
How	Apache	Crunch	provides	a	high-level	abstraction	to	write	pipelines	of	Spark	and
MapReduce	jobs	that	implement	common	design	patterns
How	Morphlines	allows	us	to	declare	chains	of	commands	and	data	transformations
that	can	then	be	embedded	in	any	Java	codebase

In	Chapter	10,	Running	a	Hadoop	2	Cluster,	we	will	shift	our	focus	from	the	domain	of
software	development	to	system	administration.	We	will	discuss	how	to	set	up,	manage,
and	scale	a	Hadoop	cluster,	while	taking	aspects	such	as	monitoring	and	security	into
consideration.



Chapter	10.	Running	a	Hadoop	Cluster
In	this	chapter,	we	will	change	our	focus	a	little	and	look	at	some	of	the	considerations
you	will	face	when	running	an	operational	Hadoop	cluster.	In	particular,	we	will	cover	the
following	topics:

Why	a	developer	should	care	about	operations	and	why	Hadoop	operations	are
different
More	detail	on	Cloudera	Manager	and	its	capabilities	and	limitations
Designing	a	cluster	for	use	on	both	physical	hardware	and	EMR
Securing	a	Hadoop	cluster
Hadoop	monitoring
Troubleshooting	problems	with	an	application	running	on	Hadoop



I’m	a	developer	–	I	don’t	care	about
operations!
Before	going	any	further,	we	need	to	explain	why	we	are	putting	a	chapter	about	systems
operations	in	a	book	squarely	aimed	at	developers.	For	anyone	who	has	developed	for
more	traditional	platforms	(for	example,	web	apps,	database	programming,	and	so	on)
then	the	norm	might	well	have	been	for	a	very	clear	delineation	between	development	and
operations.	The	first	group	builds	the	code	and	packages	it	up,	and	the	second	group
controls	and	operates	the	environment	in	which	it	runs.

In	recent	years,	the	DevOps	movement	has	gained	momentum	with	a	belief	that	it	is	best
for	everyone	if	these	silos	are	removed	and	that	the	teams	work	more	closely	together.
When	it	comes	to	running	systems	and	services	based	on	Hadoop,	we	believe	this	is
absolutely	essential.



Hadoop	and	DevOps	practices
Even	though	a	developer	can	conceptually	build	an	application	ready	to	be	dropped	into
YARN	and	forgotten	about,	the	reality	is	often	more	nuanced.	How	many	resources	are
allocated	to	the	application	at	runtime	is	most	likely	something	the	developer	wishes	to
influence.	Once	the	application	is	running,	the	operations	staff	likely	want	some	insight
into	the	application	when	they	are	trying	to	optimize	the	cluster.	There	really	isn’t	the
same	clear-cut	split	of	responsibilities	seen	in	traditional	enterprise	IT.	And	that’s	likely	a
really	good	thing.

In	other	words,	developers	need	to	be	more	aware	of	the	operations	aspects,	and	the
operations	staff	need	to	be	more	aware	of	what	the	developers	are	doing.	So	consider	this
chapter	our	contribution	to	help	you	have	those	discussions	with	your	operations	staff.	We
don’t	intend	to	make	you	an	expert	Hadoop	administrator	by	the	end	of	this	chapter;	that
really	is	emerging	as	a	dedicated	role	and	skillset	in	itself.	Instead,	we	will	give	a	whistle-
stop	tour	of	issues	you	do	need	some	awareness	of	and	that	will	make	your	life	easier	once
your	applications	are	running	on	live	clusters.

By	the	nature	of	this	coverage,	we	will	be	touching	on	a	lot	of	topics	and	going	into	them
only	lightly;	if	any	are	of	deeper	interest,	then	we	provide	links	for	further	investigation.
Just	make	sure	you	keep	your	operations	staff	involved!



Cloudera	Manager
In	this	book,	we	used	as	the	most	common	platform	the	Cloudera	Hadoop	Distribution
(CDH)	with	its	convenient	QuickStart	virtual	machine	and	the	powerful	Cloudera
Manager	application.	With	a	Cloudera-based	cluster,	Cloudera	Manager	will	become	(at
least	initially)	your	primary	interface	into	the	system	to	manage	and	monitor	the	cluster,	so
let’s	explore	it	a	little.

Note	that	Cloudera	Manager	has	extensive	and	high-quality	online	documentation.	We
won’t	duplicate	this	documentation	here;	instead	we’ll	attempt	to	highlight	where
Cloudera	Manager	fits	into	your	development	and	operational	workflows	and	how	it	might
or	might	not	be	something	you	want	to	embrace.	Documentation	for	the	latest	and
previous	versions	of	Cloudera	Manager	can	be	accessed	via	the	main	Cloudera
documentation	page	at	http://www.cloudera.com/content/support/en/documentation.html.

http://www.cloudera.com/content/support/en/documentation.html


To	pay	or	not	to	pay
Before	getting	all	excited	about	Cloudera	Manager,	it’s	important	to	consult	the	current
documentation	concerning	what	features	are	available	in	the	free	version	and	which	ones
require	subscription	to	a	paid-for	Cloudera	offering.	If	you	absolutely	want	some	of	the
features	offered	only	in	the	paid-for	version	but	either	can’t	or	don’t	wish	to	pay	for
subscription	services,	then	Cloudera	Manager,	and	possibly	the	entire	Cloudera
distribution,	might	not	be	a	good	fit	for	you.	We’ll	return	to	this	topic	in	Chapter	11,
Where	to	Go	Next.



Cluster	management	using	Cloudera	Manager
Using	the	QuickStart	VM,	it	won’t	be	obvious,	but	Cloudera	Manager	is	the	primary	tool
to	be	used	for	management	of	all	services	in	the	cluster.	If	you	want	to	enable	a	new
service,	you’ll	use	Cloudera	Manager.	To	change	a	configuration,	you	will	need	Cloudera
Manager.	To	upgrade	to	the	latest	release,	you	will	again	require	Cloudera	Manager.

Even	if	the	primary	management	of	the	cluster	is	handled	by	operational	staff,	as	a
developer	you’ll	likely	still	want	to	become	familiar	with	the	Cloudera	Manager	interface
just	to	look	to	see	exactly	how	the	cluster	is	configured.	If	your	jobs	are	running	slowly,
then	looking	into	Cloudera	Manager	to	see	just	how	things	are	currently	configured	will
likely	be	your	first	start.	The	default	port	for	the	Cloudera	Manager	web	interface	is	7180,
so	the	home	page	will	usually	be	connected	to	via	a	URL	such	as
http://<hostname>:7180/cmf/home,	and	can	be	seen	in	the	following	screenshot:

Cloudera	Manager	home	page

It’s	worth	poking	around	the	interface;	however,	if	you	are	connecting	with	a	user	account
with	admin	privileges,	be	careful!

Click	on	the	Clusters	link,	and	this	will	expand	to	give	a	list	of	the	clusters	currently
managed	by	this	instance	of	Cloudera	Manager.	This	should	tell	you	that	a	single	Cloudera
Manager	instance	can	manage	multiple	clusters.	This	is	very	useful,	especially	if	you	have
many	clusters	spread	across	development	and	production.

For	each	expanded	cluster,	there	will	be	a	list	of	the	services	currently	running	on	the
cluster.	Click	on	a	service,	and	then	you	will	see	a	list	of	additional	choices.	Select
Configuration,	and	you	can	start	browsing	the	detailed	configuration	of	that	particular
service.	Click	on	Actions,	and	you	will	get	some	service-specific	options;	this	will	usually
include	stopping,	starting,	restarting,	and	otherwise	managing	the	service.



Click	on	the	Hosts	option	instead	of	Clusters,	and	you	can	start	drilling	down	into	the
servers	managed	by	Cloudera	Manager,	and	from	there,	see	which	service	components	are
deployed	on	each.

Cloudera	Manager	and	other	management	tools
That	last	comment	might	raise	a	question:	how	does	Cloudera	Manager	integrate	with
other	systems	management	tools?	Given	our	earlier	comments	regarding	the	importance	of
DevOps	philosophies,	how	well	does	it	integrate	with	the	tools	favored	in	DevOps
environments?

The	honest	answer:	not	always	very	well.	Though	the	main	Cloudera	Manager	server	can
itself	be	managed	by	automation	tools,	such	as	Puppet	or	Chef,	there	is	an	explicit
assumption	that	Cloudera	Manager	will	control	the	installation	and	configuration	of	all	the
software	Cloudera	Manager	needs	on	all	the	hosts	that	will	be	included	in	its	clusters.	To
some	administrators,	this	makes	the	hardware	behind	Cloudera	Manager	look	like	a	big,
black	box;	they	might	control	the	installation	of	the	base	operating	system,	but	the
management	of	the	configuration	baseline	going	forward	is	entirely	managed	by	Cloudera
Manager.	There’s	nothing	much	to	be	done	here;	it	is	what	it	is—to	get	the	benefits	of
Cloudera	Manager,	it	will	add	itself	as	a	new	management	system	in	your	infrastructure,
and	how	well	that	fits	in	with	your	broader	environment	will	be	determined	on	a	case-by-
case	basis.



Monitoring	with	Cloudera	Manager
A	similar	point	can	be	made	regarding	systems	monitoring	as	Cloudera	Manager	is	also
conceptually	a	point	of	duplication	here.	But	start	clicking	around	the	interface,	and	it	will
become	apparent	very	quickly	that	Cloudera	Manager	provides	an	exceptionally	rich	set	of
tools	to	assess	the	health	and	performance	of	managed	clusters.

From	graphing	the	relative	performance	of	Impala	queries	through	showing	the	job	status
for	YARN	applications	and	giving	low-level	data	on	the	blocks	stored	on	HDFS,	it	is	all
there	in	a	single	interface.	We’ll	discuss	later	in	this	chapter	how	troubleshooting	on
Hadoop	can	be	challenging,	but	the	single	point	of	visibility	provided	by	Cloudera
Manager	is	a	great	tool	when	looking	to	assess	cluster	health	or	performance.	We’ll
discuss	monitoring	in	a	little	more	detail	later	in	this	chapter.

Finding	configuration	files
One	of	the	first	confusions	faced	when	running	a	cluster	managed	by	Cloudera	Manager	is
trying	to	find	the	configuration	files	used	by	the	cluster.	In	the	vanilla	Apache	releases	of
products,	such	as	the	core	Hadoop,	there	would	be	files	typically	stored	in	/etc/hadoop,
similarly	/etc/hive	for	Hive,	/etc/oozie	for	Oozie,	and	so	on.

In	a	Cloudera	Manager	managed	cluster,	however,	the	config	files	are	regenerated	each
time	a	service	is	restarted,	and	instead	of	sitting	in	the	/etc	locations	on	the	filesystem,
will	be	found	at	/var/run/cloudera-scm-agent-process/<pid>-<task	name>/,	where
the	last	directory	might	have	a	name	such	as	7007-yarn-NODEMANAGER.	This	might	seem
odd	to	anyone	used	to	working	on	earlier	Hadoop	clusters	or	other	distributions	that	don’t
do	such	a	thing.	But	in	a	Cloudera	Manager-controlled	cluster,	it	might	often	be	easier	to
use	the	web	interface	to	browse	the	configuration	instead	of	looking	for	the	underlying
config	files.	Which	approach	is	best?	This	is	a	little	philosophical,	and	each	team	needs	to
decide	which	works	best	for	them.



Cloudera	Manager	API
We’ve	only	given	the	highest	level	of	overview	of	Cloudera	Manager,	and	in	doing	so,
have	completely	ignored	one	area	that	might	be	very	useful	for	some	organizations:
Cloudera	Manager	offers	an	API	that	allows	integration	of	its	capabilities	into	other
systems	and	tools.	Consult	the	documentation	if	this	might	be	of	interest	to	you.



Cloudera	Manager	lock-in
This	brings	us	to	the	point	that	is	implicit	in	the	whole	discussion	around	Cloudera
Manager:	it	does	cause	a	degree	of	lock-in	to	Cloudera	and	their	distribution.	That	lock-in
might	only	exist	in	certain	ways;	code,	for	example,	should	be	portable	across	clusters
modulo	the	usual	caveats	about	different	underlying	versions—but	the	cluster	itself	might
not	easily	be	reconfigured	to	use	a	different	distribution.	Assume	that	switching
distributions	would	be	a	complete	remove/reformat/reinstall	activity.

We	aren’t	saying	don’t	use	it,	rather	that	you	need	to	be	aware	of	the	lock-in	that	comes
with	the	use	of	Cloudera	Manager.	For	small	teams	with	little	dedicated	operations	support
or	existing	infrastructure,	the	impact	of	such	a	lock-in	is	likely	outweighed	by	the
significant	capabilities	that	Cloudera	Manager	gives	you.

For	larger	teams	or	ones	working	in	an	environment	where	integration	with	existing	tools
and	processes	has	more	weight,	the	decision	might	be	less	clear.	Look	at	Cloudera
Manager,	discuss	with	your	operations	people,	and	determine	what	is	right	for	you.

Note	that	it	is	possible	to	manually	download	and	install	the	various	components	of	the
Cloudera	distribution	without	using	Cloudera	Manager	to	manage	the	cluster	and	its	hosts.
This	might	be	an	attractive	middle	ground	for	some	users	as	the	Cloudera	software	can	be
used,	but	deployment	and	management	can	be	built	into	the	existing	deployment	and
management	tools.	This	is	also	potentially	a	way	of	avoiding	the	additional	expense	of	the
paid-for	levels	of	Cloudera	support	mentioned	earlier.



Ambari	–	the	open	source	alternative
Ambari	is	an	Apache	project	(http://ambari.apache.org),	which	in	theory,	provides	an	open
source	alternative	to	Cloudera	Manager.	It	is	the	administration	console	for	the
Hortonworks	distribution.	At	the	time	of	writing	Hortonworks	employees	are	also	the	vast
majority	of	the	project	contributors.

Ambari,	as	one	would	expect	given	its	open	source	nature,	relies	on	other	open	source
products,	such	as	Puppet	and	Nagios,	to	provide	the	management	and	monitoring	of	its
managed	clusters.	It	also	has	high-level	functionality	similar	to	Cloudera	Manager,	that	is,
the	installation,	configuration,	management,	and	monitoring	of	a	Hadoop	cluster,	and	the
component	services	within	it.

It	is	good	to	be	aware	of	the	Ambari	project	as	the	choice	is	not	just	between	full	lock-in
to	Cloudera	and	Cloudera	Manager	or	a	manually	managed	cluster.	Ambari	provides	a
graphical	tool	that	might	be	worth	consideration,	or	indeed	involvement,	as	it	matures.	On
an	HDP	cluster,	the	Ambari	UI	equivalent	to	the	Cloudera	Manager	home	page	shown
earlier	can	be	reached	at	http://<hostname>:8080/#/main/dashboard	and	looks	like	the
following	screenshot:

Ambari

http://ambari.apache.org


Operations	in	the	Hadoop	2	world
As	mentioned	in	Chapter	2,	Storage,	some	of	the	most	significant	changes	made	to	HDFS
in	Hadoop	2	involve	its	fault	tolerance	and	better	integration	with	external	systems.	This	is
not	just	a	curiosity,	but	the	NameNode	High	Availability	features,	in	particular,	have	made
a	massive	difference	in	the	management	of	clusters	since	Hadoop	1.	In	the	bad	old	days	of
2012	or	so,	a	significant	part	of	the	operational	preparedness	of	a	Hadoop	cluster	was	built
around	mitigations	for,	and	restoration	processes	around	failure	of	the	NameNode.	If	the
NameNode	died	in	Hadoop	1,	and	you	didn’t	have	a	backup	of	the	HDFS	fsimage
metadata	file,	then	you	basically	lost	access	to	all	your	data.	If	the	metadata	was
permanently	lost,	then	so	was	the	data.

Hadoop	2	has	added	the	in-built	NameNode	HA	and	the	machinery	to	make	it	work.	In
addition,	there	are	components	such	as	the	NFS	gateway	into	HDFS,	which	make	it	a
much	more	flexible	system.	But	this	additional	capability	does	come	at	the	expense	of
more	moving	parts.	To	enable	NameNode	HA,	there	are	additional	components	in	the
JournalManager	and	FailoverController,	and	the	NFS	gateway	requires	Hadoop-specific
implementations	of	the	portmap	and	nfsd	services.

Hadoop	2	also	now	has	extensive	other	integration	points	with	external	services	as	well	as
a	much	broader	selection	of	applications	and	services	that	run	atop	it.	Consequently,	it
might	be	useful	to	view	Hadoop	2	in	terms	of	operations	as	having	traded	the	simplicity	of
Hadoop	1	for	additional	complexity,	which	delivers	a	substantially	more	capable	platform.



Sharing	resources
In	Hadoop	1,	the	only	time	one	had	to	consider	resource	sharing	was	in	considering	which
scheduler	to	use	for	the	MapReduce	JobTracker.	Since	all	jobs	were	eventually	translated
into	MapReduce	code	having	a	policy	for	resource	sharing	at	the	MapReduce	level	was
usually	sufficient	to	manage	cluster	workloads	in	the	large.

Hadoop	2	and	YARN	changed	this	picture.	As	well	as	running	many	MapReduce	jobs,	a
cluster	might	also	be	running	many	other	applications	atop	other	YARN
ApplicationMasters.	Tez	and	Spark	are	frameworks	in	their	own	right	that	run	additional
applications	atop	their	provided	interfaces.

If	everything	runs	on	YARN,	then	it	provides	ways	of	configuring	the	maximum	resource
allocation	(in	terms	of	CPU,	memory,	and	soon	I/O)	consumed	by	each	container	allocated
to	an	application.	The	primary	goal	here	is	to	ensure	that	enough	resources	are	allocated	to
keep	the	hardware	fully	utilized	without	either	having	unused	capacity	or	overloading	it.

Things	get	somewhat	more	interesting	when	non-YARN	applications,	such	as	Impala,	are
running	on	the	cluster	and	want	to	grab	allocated	slices	of	capacity	(particularly	memory
in	the	case	of	Impala).	This	could	also	happen	if,	say,	you	were	running	Spark	on	the	same
hosts	in	its	non-YARN	mode	or	indeed	any	other	distributed	application	that	might	benefit
from	co-location	on	the	Hadoop	machines.

Basically,	in	Hadoop	2,	you	need	to	think	of	the	cluster	as	much	more	of	a	multi-tenancy
environment	that	requires	more	attention	given	to	the	allocation	of	resources	to	the	various
tenants.

There	really	is	no	silver	bullet	recommendation	here;	the	right	configuration	will	be
entirely	dependent	on	the	services	co-located	and	the	workloads	they	are	running.	This	is
another	example	where	you	want	to	work	closely	with	your	operations	team	to	do	a	series
of	load	tests	with	thresholds	to	determine	just	what	the	resource	requirements	of	the
various	clients	are	and	which	approach	will	give	the	maximum	utilization	and
performance.	The	following	blog	post	from	Cloudera	engineers	gives	a	good	overview	of
how	they	approach	this	very	issue	in	having	Impala	and	MapReduce	coexist	effectively:
http://blog.cloudera.com/blog/2013/06/configuring-impala-and-mapreduce-for-multi-
tenant-performance/.

http://blog.cloudera.com/blog/2013/06/configuring-impala-and-mapreduce-for-multi-tenant-performance/


Building	a	physical	cluster
There	is	one	minor	requirement	before	thinking	about	allocation	of	hardware	resources:
defining	and	selecting	the	hardware	used	for	your	cluster.	In	this	section,	we’ll	discuss	a
physical	cluster	and	move	on	to	Amazon	EMR	in	the	next.

Any	specific	hardware	advice	will	be	out	of	date	the	moment	it	is	written.	We	advise
perusing	the	websites	of	the	various	Hadoop	distribution	vendors	as	they	regularly	write
new	articles	on	the	currently	recommended	configurations.

Instead	of	telling	you	how	many	cores	or	GB	of	memory	you	need,	we’ll	look	at	hardware
selection	at	a	slightly	higher	level.	The	first	thing	to	realize	is	that	the	hosts	running	your
Hadoop	cluster	will	most	likely	look	very	different	from	the	rest	of	your	enterprise.
Hadoop	is	optimized	for	low(er)	cost	hardware,	so	instead	of	seeing	a	small	number	of
very	large	servers,	expect	to	see	a	larger	number	of	machines	with	fewer	enterprise
reliability	features.	But	don’t	think	that	Hadoop	will	run	great	on	any	junk	you	have	lying
around.	It	might,	but	recently	the	profile	of	typical	Hadoop	servers	has	been	moving	away
from	the	bottom-end	of	the	market,	and	instead,	the	sweet	spot	would	seem	to	be	in	mid-
range	servers	where	the	maximum	cores/disks/memory	can	be	achieved	at	a	price	point.

You	should	also	expect	to	have	different	resource	requirements	for	the	hosts	running
services	such	as	the	HDFS	NameNode	or	the	YARN	ResourceManager,	as	opposed	to	the
worker	nodes	storing	data	and	executing	the	application	logic.	For	the	former,	there	is
usually	much	less	requirement	for	lots	of	storage,	but	frequently,	a	need	for	more	memory
and	possibly	faster	disks.

For	Hadoop	worker	nodes,	the	ratio	between	the	three	main	hardware	categories	of	cores,
memory,	and	I/O	is	often	the	most	important	thing	to	get	right.	And	this	will	directly
inform	the	decisions	you	make	regarding	workload	and	resource	allocation.

For	example,	many	workloads	tend	to	become	I/O	bound	and	having	many	times	as	many
containers	allocated	on	a	host	than	there	are	physical	disks	might	actually	cause	an	overall
slowdown	due	to	contention	for	the	spinning	disks.	At	the	time	of	writing,	current
recommendations	here	are	for	the	number	of	YARN	containers	to	be	no	more	than	1.8
times	the	number	of	disks.	If	you	have	workloads	that	are	I/O	bound,	then	you	will	most
likely	get	much	better	performance	by	adding	more	hosts	to	the	cluster	instead	of	trying	to
get	more	containers	running	or	indeed	faster	processors	or	more	memory	on	the	current
hosts.

Conversely,	if	you	expect	to	run	lots	of	concurrent	Impala,	Spark,	and	other	memory-
hungry	jobs,	then	memory	might	quickly	become	the	resource	most	under	pressure.	This	is
why	even	though	you	can	get	current	hardware	recommendations	for	general-purpose
clusters	from	the	distribution	vendors,	you	still	need	to	validate	against	your	expected
workloads	and	tailor	accordingly.	There	is	really	no	substitute	for	benchmarking	on	a
small	test	cluster	or	indeed	on	EMR,	which	can	be	a	great	platform	to	explore	the	resource
requirements	of	multiple	applications	that	can	inform	hardware	acquisition	decisions.
Perhaps	EMR	might	be	your	main	environment;	if	so,	we’ll	discuss	that	in	a	later	section.





Physical	layout
If	you	do	use	a	physical	cluster,	there	are	a	few	things	you	will	need	to	consider	that	are
largely	transparent	on	EMR.

Rack	awareness
The	first	of	these	aspects	for	clusters	large	enough	to	consume	more	than	one	rack	of	data
center	space	is	building	rack	awareness.	As	mentioned	in	Chapter	2,	Storage,	when	HDFS
places	replicas	of	new	files,	it	attempts	to	place	the	second	replica	on	a	different	host	than
the	first,	and	the	third	in	a	different	rack	of	equipment	in	a	multi-rack	system.	This
heuristic	is	aimed	at	maximizing	resilience;	there	will	be	at	least	one	replica	available
even	if	an	entire	rack	of	equipment	fails.	MapReduce	uses	similar	logic	to	attempt	to	get	a
better-balanced	task	spread.

If	you	do	nothing,	then	each	host	will	be	specified	as	being	in	the	single	default	rack.	But,
if	the	cluster	grows	beyond	this	point,	you	will	need	to	update	the	rack	name.

Under	the	covers,	Hadoop	discovers	a	node’s	rack	by	executing	a	user-supplied	script	that
maps	node	hostname	to	rack	names.	Cloudera	Manager	allows	rack	names	to	be	set	on	a
given	host,	and	this	is	then	retrieved	when	its	rack	awareness	scripts	are	called	by	Hadoop.
To	set	the	rack	for	a	host,	click	on	Hosts-><hostname>->Assign	Rack,	and	then	assign
the	rack	from	the	Cloudera	Manager	home	page.

Service	layout
As	mentioned	earlier,	you	are	likely	to	have	two	types	of	hardware	in	your	cluster:	the
machines	running	the	workers	and	those	running	the	servers.	When	deploying	a	physical
cluster,	you	will	need	to	decide	which	services	and	which	subcomponents	of	the	services
run	on	which	physical	machines.

For	the	workers,	this	is	usually	pretty	straightforward;	most,	though	not	all,	services	have
a	model	of	a	worker	agent	on	all	worker	hosts.	But,	for	the	master/server	components,	it
requires	a	little	thought.	If	you	have	three	master	nodes,	then	how	do	you	spread	your
primary	and	backup	NameNodes:	the	YARN	ResourceManager,	maybe	Hue,	a	few	Hive
servers,	and	an	Oozie	manager?	Some	of	these	features	are	highly	available,	while	others
are	not.	As	you	add	more	and	more	services	to	your	cluster,	you’ll	also	see	this	list	of
master	services	grow	substantially.

In	an	ideal	world,	you	might	have	a	host	per	service	master	but	that	is	only	tractable	for
very	large	clusters;	in	smaller	installations	it	is	prohibitively	expensive.	Plus	it	might
always	be	a	little	wasteful.	There	are	no	hard-and-fast	rules	here	either,	but	do	look	at	your
available	hardware,	and	try	to	spread	the	services	across	the	nodes	as	much	as	possible.
Don’t,	for	example,	have	two	nodes	for	the	two	NameNodes	and	then	put	everything	else
on	a	third.	Think	about	the	impact	of	a	single	host	failure	and	manage	the	layout	to
minimize	it.	As	the	cluster	grows	across	multiple	racks	of	equipment,	the	considerations
will	also	need	to	consider	how	to	survive	single-rack	failures.	Hadoop	itself	helps	with	this
since	HDFS	will	attempt	to	ensure	each	block	of	data	has	replicas	across	at	least	two



racks.	But,	this	type	of	resilience	is	undermined	if,	for	example,	all	the	master	nodes	reside
in	a	single	rack.

Upgrading	a	service
Upgrading	Hadoop	has	historically	been	a	time-consuming	and	somewhat	risky	task.	This
remains	the	case	on	a	manually	deployed	cluster,	that	is,	one	not	managed	by	a	tool	such
as	Cloudera	Manager.

If	you	are	using	Cloudera	Manager,	then	it	takes	the	time-consuming	part	out	of	the
activity,	but	not	necessarily	the	risk.	Any	upgrade	should	always	be	viewed	as	an	activity
with	a	high	chance	of	unexpected	issues,	and	you	should	arrange	enough	cluster	downtime
to	account	for	this	surprise	excitement.	There’s	really	no	substitute	for	doing	a	test
upgrade	on	a	test	cluster,	which	underlines	the	importance	of	thinking	about	Hadoop	as	a
component	of	your	environment	that	needs	to	be	treated	with	a	deployment	life	cycle	like
any	other.

Sometimes	an	upgrade	requires	modification	to	the	HDFS	metadata	or	might	otherwise
affect	the	filesystem.	This	is,	of	course,	where	the	real	risks	lie.	In	addition	to	running	a
test	upgrade,	be	aware	of	the	ability	to	set	HDFS	in	upgrade	mode,	which	effectively
makes	a	snapshot	of	the	filesystem	state	prior	to	the	upgrade	and	which	will	be	retained
until	the	upgrade	is	finalized.	This	can	be	really	helpful	as	even	an	upgrade	that	goes	badly
wrong	and	corrupts	data	can	potentially	be	fully	rolled	back.



Building	a	cluster	on	EMR
Elastic	MapReduce	is	a	flexible	solution	that,	depending	on	requirements	and	workloads,
can	sit	next	to,	or	replace,	a	physical	Hadoop	cluster.	As	we’ve	seen	so	far,	EMR	provides
clusters	preloaded	and	configured	with	Hive,	Streaming,	and	Pig	as	well	as	with	custom
JAR	clusters	that	allow	the	execution	of	MapReduce	applications.

A	second	distinction	to	make	is	between	transient	and	long-running	life	cycles.	A	transient
EMR	cluster	is	generated	on	demand;	data	is	loaded	in	S3	or	HDFS,	some	processing
workflow	is	executed,	output	results	are	stored,	and	the	cluster	is	automatically	shut	down.
A	long-running	cluster	is	kept	alive	once	the	workflow	terminates,	and	the	cluster	remains
available	for	new	data	to	be	copied	over	and	new	workflows	to	be	executed.	Long-running
clusters	are	typically	well-suited	for	data	warehousing	or	working	with	datasets	large
enough	that	loading	and	processing	data	would	be	inefficient	compared	to	a	transient
instance.

In	a	must-read	white	paper	for	prospective	users	(found	at
https://media.amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf),
Amazon	gives	a	heuristic	to	estimate	which	cluster	type	is	a	better	fit	as	follows:

If	number	of	jobs	per	day	*	(time	to	setup	cluster	including	Amazon	S3	data	load	time	if
using	Amazon	S3	+	data	processing	time)	<	24	hours,	consider	transient	Amazon	EMR
clusters	or	physical	instances.	Long-running	instances	are	instantiated	by	passing	the	–
alive	argument	to	the	ElasticMapreduce	command,	which	enables	the	Keep	Alive	option
and	disables	auto	termination.

Note	that	transient	and	long-running	clusters	share	the	same	properties	and	limitations;	in
particular,	data	on	HDFS	is	not	persisted	once	the	cluster	is	shut	down.

https://media.amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf


Considerations	about	filesystems
In	our	examples	so	far	we	assumed	data	to	be	available	in	S3.	In	this	case,	a	bucket	is
mounted	in	EMR	as	an	s3n	filesystem,	and	it	is	used	as	input	source	as	well	as	a
temporary	filesystem	to	store	intermediate	data	in	computations.	With	S3	we	introduce
potential	I/O	overhead,	operations	such	as	reads	and	writes	fire	off	GET	and	PUT	HTTP
requests.

Note
Note	that	EMR	does	not	support	S3	block	storage.	The	s3	URI	maps	to	s3n.

Another	option	would	be	to	load	data	into	the	cluster	HDFS	and	run	processing	from
there.	In	this	case,	we	do	have	faster	I/O	and	data	locality,	but	we	would	lose	persistence.
When	the	cluster	is	shut	down,	our	data	disappears.	As	a	rule	of	thumb,	if	you	are	running
a	transient	cluster,	it	makes	sense	to	use	S3	as	a	backend.	In	practice,	one	should	monitor
and	take	decisions	based	on	the	workflow	characteristics.	Iterative,	multi-pass	MapReduce
jobs	would	greatly	benefit	from	HDFS;	one	could	argue	that	for	those	types	of	workflows,
an	execution	engine	like	Tez	or	Spark	would	be	more	appropriate.



Getting	data	into	EMR
When	copying	data	from	HDFS	to	S3,	it	is	recommended	to	use	s3distcp
(http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_s3distcp.html
instead	of	Apache	distcp	or	Hadoop	distcp.	This	approach	is	suitable	also	to	transfer	data
within	EMR	and	from	S3	to	HDFS.	To	move	very	large	amounts	of	data	from	the	local
disk	into	S3,	Amazon	recommends	parallelizing	the	workload	using	Jets3t	or	GNU
Parallel.	In	general,	it’s	important	to	be	aware	that	PUT	requests	to	S3	are	capped	at	5	GB
per	file.	To	upload	larger	files,	one	needs	to	rely	on	Multipart	Upload
(https://aws.amazon.com/about-aws/whats-new/2010/11/10/Amazon-S3-Introducing-
Multipart-Upload/),	an	API	that	allows	splitting	large	files	into	smaller	parts	and
reassembles	them	when	uploaded.	Files	can	also	be	copied	with	tools	such	as	the	AWS
CLI	or	the	popular	S3CMD	utility,	but	these	do	not	have	the	parallelism	advantages	of	as
s3distcp.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_s3distcp.html
https://aws.amazon.com/about-aws/whats-new/2010/11/10/Amazon-S3-Introducing-Multipart-Upload/


EC2	instances	and	tuning
The	size	of	an	EMR	cluster	depends	on	the	dataset	size,	the	number	of	files	and	blocks
(determines	the	number	of	splits)	and	the	type	of	workload	(try	to	avoid	spilling	to	disk
when	a	task	runs	out	of	memory).	As	a	rule	of	thumb,	a	good	size	is	one	that	maximizes
parallelism.	The	number	of	mappers	and	reducers	per	instance	as	well	as	heap	size	per
JVM	daemon	is	generally	configured	by	EMR	when	the	cluster	is	provisioned	and	tuned
in	the	event	of	changes	in	the	available	resources.



Cluster	tuning
In	addition	to	the	previous	comments	specific	to	a	cluster	run	on	EMR,	there	are	some
general	thoughts	to	keep	in	mind	when	running	workloads	on	any	type	of	cluster.	This
will,	of	course,	be	more	explicit	when	running	outside	of	EMR	as	it	often	abstracts	some
of	the	details.



JVM	considerations
You	should	be	running	the	64-bit	version	of	a	JVM	and	using	the	server	mode.	This	can
take	longer	to	produce	optimized	code,	but	it	also	uses	more	aggressive	strategies	and	will
re-optimize	code	over	time.	This	makes	it	a	much	better	fit	for	long-running	services,	such
as	Hadoop	processes.

Ensure	that	you	allocate	enough	memory	to	the	JVM	to	prevent	overly-frequent	Garbage
Collection	(GC)	pauses.	The	concurrent	mark-and-sweep	collector	is	currently	the	most
tested	and	recommended	for	Hadoop.	The	Garbage	First	(G1)	collector	has	become	the
GC	option	of	choice	in	numerous	other	workloads	since	its	introduction	with	JDK7,	so	it’s
worth	monitoring	recommended	best	practice	as	it	evolves.	These	options	can	be
configured	as	custom	Java	arguments	within	each	service’s	configuration	section	of
Cloudera	Manager.

The	small	files	problem
Heap	allocation	to	Java	processes	on	worker	nodes	will	be	something	you	consider	when
thinking	about	service	co-location.	But	there	is	a	particular	situation	regarding	the
NameNode	you	should	be	aware	of:	the	small	files	problem.

Hadoop	is	optimized	for	very	large	files	with	large	block	sizes.	But	sometimes	particular
workloads	or	data	sources	push	many	small	files	onto	HDFS.	This	is	most	likely
suboptimal	as	it	suggests	each	task	processing	a	block	at	a	time	will	read	only	a	small
amount	of	data	before	completing,	causing	inefficiency.

Having	many	small	files	also	consumes	more	NameNode	memory;	it	holds	in-memory	the
mapping	from	files	to	blocks	and	consequently	holds	metadata	for	each	file	and	block.	If
the	number	of	files	and	hence	blocks	increases	quickly,	then	so	will	the	NameNode
memory	usage.	This	is	likely	to	only	hit	a	subset	of	systems	as,	at	the	time	of	writing	this,
1	GB	of	memory	can	support	2	million	files	or	blocks,	but	with	a	default	heap	size	of	2	or
4	GB,	this	limit	can	easily	be	reached.	If	the	NameNode	needs	to	start	very	aggressively
running	garbage	collection	or	eventually	runs	out	of	memory,	then	your	cluster	will	be
very	unhealthy.	The	mitigation	is	to	assign	more	heap	to	the	JVM;	the	longer-term
approach	is	to	combine	many	small	files	into	a	smaller	number	of	larger	ones.	Ideally,
compressed	with	a	splittable	compression	codec.



Map	and	reduce	optimizations
Mappers	and	reducers	both	provide	areas	for	optimizing	performance;	here	are	a	few
pointers	to	consider:

The	number	of	mappers	depends	on	the	number	of	splits.	When	files	are	smaller	than
the	default	block	size	or	compressed	using	a	non	splittable	format,	the	number	of
mappers	will	equal	the	number	of	files.	Otherwise,	the	number	of	mappers	is	given
by	the	total	size	of	each	file	divided	by	the	block	size.
Compress	mappers	output	to	reduce	writes	to	disk	and	increase	I/O.	LZO	is	a	good
format	for	this	task.
Avoid	spill	to	disk:	the	mappers	should	have	enough	memory	to	retain	as	much	data
as	possible.
Number	of	Reducers:	it	is	recommended	that	you	use	fewer	reducers	than	the	total
reducer	capacity	(this	avoids	execution	waits).



Security
Once	you	built	a	cluster,	the	first	thing	you	thought	about	was	how	to	secure	it,	right?
Don’t	worry,	most	people	don’t.	But,	as	Hadoop	has	moved	on	from	being	something
running	in-house	analysis	in	the	research	department	to	directly	driving	critical	systems,
it’s	not	something	to	ignore	for	too	long.

Securing	Hadoop	is	not	something	to	be	done	on	a	whim	or	without	significant	testing.	We
cannot	give	detailed	advice	on	this	topic	and	cannot	stress	strongly	enough	the	need	to
take	this	topic	seriously	and	do	it	properly.	It	might	consume	time,	it	might	cost	money,
but	weigh	this	against	the	cost	of	having	your	cluster	compromised.

Security	is	also	a	much	bigger	topic	than	just	the	Hadoop	cluster.	We’ll	explore	some	of
the	security	features	available	in	Hadoop,	but	you	do	need	a	coherent	security	strategy	into
which	these	discrete	components	fit.



Evolution	of	the	Hadoop	security	model
In	Hadoop	1,	there	was	effectively	no	security	protection	as	the	provided	security	model
had	obvious	attack	vectors.	The	Unix	user	ID	with	which	you	connected	to	the	cluster	was
assumed	to	be	valid,	and	you	had	all	the	privileges	of	that	user.	Plainly,	this	meant	that
anyone	with	administrative	access	on	a	host	that	could	access	the	cluster	could	effectively
impersonate	any	other	user.

This	led	to	the	development	of	the	so-called	“head	node”	access	model,	whereby	the
Hadoop	cluster	was	firewalled	off	from	every	host	except	one,	the	head	node,	and	all
access	to	the	cluster	was	mediated	through	this	centrally-controlled	node.	This	was	an
effective	mitigation	for	the	lack	of	a	real	security	model	and	can	still	be	useful	in
situations	even	when	richer	security	schemes	are	utilized.



Beyond	basic	authorization
Core	Hadoop	has	had	additional	security	features	added,	which	address	the	previous
concerns.	In	particular,	they	address	the	following:

A	cluster	can	require	a	user	to	authenticate	via	Kerberos	and	prove	they	are	who	they
say	they	are.
In	secure	mode,	the	cluster	can	also	use	Kerberos	for	all	node-node	communications,
ensuring	that	all	communicating	nodes	are	authenticated	and	preventing	malicious
nodes	from	attempting	to	join	the	cluster.
To	ease	management,	users	can	be	collected	into	groups	against	which	data-access
privileges	can	be	defined.	This	is	called	Role	Based	Access	Control	(RBAC)	and	is
a	prerequisite	for	a	secure	cluster	with	more	than	a	handful	of	users.	The	user-group
mappings	can	be	retrieved	from	corporate	systems,	such	as	LDAP	or	active	directory.
HDFS	can	apply	ACLs	to	replace	the	current	Unix-inspired	owner/group/world
model.

These	capabilities	give	Hadoop	a	significantly	stronger	security	posture	than	in	the	past,
but	the	community	is	moving	fast	and	additional	dedicated	Apache	projects	have	emerged
to	address	specific	areas	of	security.

Apache	Sentry	https://sentry.incubator.apache.org	is	a	system	to	provide	much	finer-
grained	authorization	to	Hadoop	data	and	services.	Other	services	build	Sentry	mappings,
and	this	allows,	for	example,	specific	restrictions	to	be	placed	not	only	on	particular
HDFS	directories,	but	also	on	entities	such	as	Hive	tables.

Whereas	Sentry	focuses	on	providing	much	richer	tools	for	the	internal,	fine-grained
aspects	of	Hadoop	security,	Apache	Knox	(http://knox.apache.org)	provides	a	secure
gateway	to	Hadoop	that	integrates	with	external	identity	management	systems	and
provides	access	control	mechanisms	to	allow	or	disallow	access	to	specific	Hadoop
services	and	operations.	It	does	this	by	presenting	a	REST-only	interface	to	Hadoop	and
securing	all	calls	to	this	API.

https://sentry.incubator.apache.org
http://knox.apache.org


The	future	of	Hadoop	security
There	are	many	other	developments	happening	in	the	Hadoop	world.	Core	Hadoop	2.5
added	extended	file	attributes	to	HDFS,	which	can	be	used	as	the	basis	of	additional
access	control	mechanisms.	Future	versions	will	incorporate	capabilities	for	better	support
of	encryption	for	data	in	transit	as	well	as	at	rest,	and	the	Project	Rhino	initiative	led	by
Intel	(https://github.com/intel-hadoop/project-rhino/)	is	building	out	richer	support	for
filesystem	cryptographic	modules,	a	secure	filesystem,	and,	at	some	point,	a	fuller	key-
management	infrastructure.

The	Hadoop	distribution	vendors	are	moving	fast	to	add	these	capabilities	to	their	releases,
so	if	you	care	about	security	(you	do,	don’t	you!),	then	consult	the	documentation	for	the
latest	release	of	your	distribution.	New	security	features	are	being	added	even	in	point
updates	and	aren’t	being	delayed	until	major	upgrades.

https://github.com/intel-hadoop/project-rhino/


Consequences	of	using	a	secured	cluster
After	teasing	you	with	all	the	security	goodness	that	is	now	available	and	that	which	is
coming,	it’s	only	fair	to	give	some	words	of	warning.	Security	is	often	hard	to	do
correctly,	and	often	the	feeling	of	security	wrongly	employed	with	a	buggy	deployment	is
worse	than	knowing	you	have	no	security.

However,	even	if	you	do	it	right,	there	are	consequences	to	running	a	secure	cluster.	It
makes	things	harder	for	the	administrators	certainly	and	often	the	users,	so	there	is
definitely	an	overhead.	Specific	Hadoop	tools	and	services	will	also	work	differently
depending	on	what	security	is	employed	on	a	cluster.

Oozie,	which	we	discussed	in	Chapter	8,	Data	Lifecycle	Management,	uses	its	own
delegation	tokens	behind	the	scenes.	This	allows	the	oozie	user	to	submit	jobs	that	are
then	executed	on	behalf	of	the	originally	submitting	user.	In	a	cluster	using	only	the	basic
authorization	mechanism,	this	is	very	easily	configured,	but	using	Oozie	in	a	secure
cluster	will	require	additional	logic	to	be	added	to	the	workflow	definitions	and	the
general	Oozie	configuration.	This	isn’t	a	problem	with	Hadoop	or	Oozie;	however,
similarly	as	with	the	additional	complexity	resulting	from	the	much	better	HA	features	of
HDFS	in	Hadoop	2,	better	security	mechanisms	will	simply	have	costs	and	consequences
that	you	need	take	into	consideration.



Monitoring
Earlier	in	this	chapter,	we	discussed	Cloudera	Manager	as	a	visual	monitoring	tool	and
hinted	that	it	could	also	be	programmatically	integrated	with	other	monitoring	systems.
But	before	plugging	Hadoop	into	any	monitoring	framework,	it’s	worth	considering	just
what	it	means	to	operationally	monitor	a	Hadoop	cluster.



Hadoop	–	where	failures	don’t	matter
Traditional	systems	monitoring	tends	to	be	quite	a	binary	tool;	generally	speaking,	either
something	is	working	or	it	isn’t.	A	host	is	alive	or	dead,	and	a	web	server	is	responding	or
it	isn’t.	But	in	the	Hadoop	world,	things	are	a	little	different;	the	important	thing	is	service
availability,	and	this	can	still	be	treated	as	live	even	if	particular	pieces	of	hardware	or
software	have	failed.	No	Hadoop	cluster	should	be	in	trouble	if	a	single	worker	node	fails.
As	of	Hadoop	2,	even	the	failure	of	the	server	processes,	such	as	the	NameNode	shouldn’t
really	be	a	concern	if	HA	is	configured.	So,	any	monitoring	of	Hadoop	needs	to	take	into
account	the	service	health	and	not	that	of	specific	host	machines,	which	should	be
unimportant.	Operations	people	on	24/7	pager	are	not	going	to	be	happy	getting	paged	at	3
AM	to	discover	that	one	worker	node	in	a	cluster	of	10,000	has	failed.	Indeed,	once	the
scale	of	the	cluster	increases	beyond	a	certain	point,	the	failure	of	individual	pieces	of
hardware	becomes	an	almost	commonplace	occurrence.



Monitoring	integration
You	won’t	be	building	your	own	monitoring	tools;	instead,	you	might	likely	want	to
integrate	with	existing	tools	and	frameworks.	For	popular	open	source	monitoring	tools,
such	as	Nagios	and	Zabbix,	there	are	multiple	sample	templates	to	integrate	Hadoop’s
service-wide	and	node-specific	metrics.

This	can	give	the	sort	of	separation	hinted	previously;	the	failure	of	the	YARN
ResourceManager	would	be	a	high-criticality	event	that	should	most	likely	cause	alerts	to
be	sent	to	operations	staff,	but	a	high	load	on	specific	hosts	should	only	be	captured	and
not	cause	alerts	to	be	fired.	This	then	provides	the	duality	of	firing	alerts	when	bad	things
happen	in	addition	to	capturing	and	providing	the	information	needed	to	delve	into	system
data	over	time	to	do	trend	analysis.

Cloudera	Manager	provides	a	REST	interface,	which	is	another	point	of	integration
against	which	tools	such	as	Nagios	can	integrate	and	pull	the	Cloudera	Manager-defined
service-level	metrics	instead	of	having	to	define	its	own.

For	heavier-weight	enterprise-monitoring	infrastructure	built	on	frameworks,	such	as	IBM
Tivoli	or	HP	OpenView,	Cloudera	Manager	can	also	deliver	events	via	SNMP	traps	that
will	be	collected	by	these	systems.



Application-level	metrics
At	times,	you	might	also	want	your	applications	to	gather	metrics	that	can	be	centrally
captured	within	the	system.	The	mechanisms	for	this	will	differ	from	one	computational
model	to	another,	but	the	most	well-known	are	the	application	counters	available	within
MapReduce.

When	a	MapReduce	job	completes,	it	outputs	a	number	of	counters,	gathered	by	the
system	throughout	the	job	execution,	that	deal	with	metrics	such	as	the	number	of	map
tasks,	bytes	written,	failed	tasks,	and	so	on.	You	can	also	write	application-specific	metrics
that	will	be	available	alongside	the	system	counters	and	which	are	automatically
aggregated	across	the	map/reduce	execution.	First	define	a	Java	enum,	and	name	your
desired	metrics	within	it,	as	follows:

public	enum	AppMetrics{

		MAX_SEEN,

		MIN_SEEN,

		BAD_RECORDS	

};

Then,	within	the	map,	reduce,	setup,	and	cleanup	methods	of	your	Map	or	Reduce
implementations,	you	can	do	something	like	the	following	to	increment	a	counter	by	one:

Context.getCounter(AppMetrics.BAD_RECORDS).increment(1);

Refer	to	the	JavaDoc	of	the	org.apache.hadoop.mapreduce.Counter	interface	for	more
details	of	this	mechanism.



Troubleshooting
Monitoring	and	logging	counters	or	additional	information	is	all	well	and	good,	but	it	can
be	intimidating	to	know	how	to	actually	find	the	information	you	need	when
troubleshooting	a	problem	with	an	application.	In	this	section,	we	will	look	at	how
Hadoop	stores	logs	and	system	information.	We	can	distinguish	three	typologies	of	logs,
as	follows:

YARN	applications,	including	MapReduce	jobs
Daemon	logs	(NameNode	and	ResourceManager)
Services	that	log	non-distributed	workloads,	for	example,	HiveServer2	logging	to
/var/log

Next	to	these	log	typologies,	Hadoop	exposes	a	number	of	metrics	at	filesystem	(the
storage	availability,	replication	factor,	and	number	of	blocks)	and	system	level.	As
mentioned,	both	Apache	Ambari	and	Cloudera	Manager,	which	centralize	access	to	debug
information,	do	a	nice	job	as	the	frontend.	However,	under	the	hood,	each	service	logs	to
either	HDFS	or	the	single-node	filesystem.	Furthermore,	YARN,	MapReduce,	and	HDFS
expose	their	logfiles	and	metrics	via	web	interfaces	and	programmatic	APIs.



Logging	levels
Hadoop	logs	messages	to	Log4j	by	default.	Log4j	is	configured	via	log4j.properties	in
the	classpath.	This	file	defines	what	is	logged	and	with	which	layout:

log4j.rootLogger=${root.logger}

root.logger=INFO,console

log4j.appender.console=org.apache.log4j.ConsoleAppender

log4j.appender.console.target=System.err

log4j.appender.console.layout=org.apache.log4j.PatternLayout

log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd	HH:mm:ss}	%p	

%c{2}:	%m%n

The	default	root	logger	is	INFO,console,	which	logs	all	messages	at	the	level	INFO	and
above	to	the	console’s	stderr.	Single	applications	deployed	on	Hadoop	can	ship	their	own
log4j.properties	and	set	the	level	and	other	properties	of	their	emitted	logs	as	required.

Hadoop	daemons	have	a	web	page	to	get	and	set	the	log	level	for	any	Log4j	property.	This
interface	is	exposed	by	the	/LogLevel	endpoint	in	each	service	web	UI.	To	enable	debug
logging	for	the	ResourceManager	class,	we	will	visit
http://resourcemanagerhost:8088/LogLevel,	and	the	screenshot	can	be	seen	as
follows:

Getting	and	setting	the	log	level	on	ResourceManager

Alternatively,	the	YARN	daemonlog	<host:port>	command	interfaces	with	the	service
/LogLevel	endpoint.	We	can	inspect	the	level	associated	with	mapreduce.map.log.level
for	the	ResourceManager	class	using	the	–getlevel	<property>	parameter,	as	follows:

$	hadoop	daemonlog	-getlevel	localhost.localdomain:8088		

mapreduce.map.log.level	

Connecting	to	http://localhost.localdomain:8088/logLevel?

log=mapreduce.map.log.level	Submitted	Log	Name:	mapreduce.map.log.level	Log	

Class:	org.apache.commons.logging.impl.Log4JLogger	Effective	level:	INFO	

The	effective	level	can	be	modified	using	the	-setlevel	<property>	<level>	option:

$	hadoop	daemonlog	-setlevel	localhost.localdomain:8088		

mapreduce.map.log.level		DEBUG

Connecting	to	http://localhost.localdomain:8088/logLevel?

log=mapreduce.map.log.level&level=DEBUG



Submitted	Log	Name:	mapreduce.map.log.level

Log	Class:	org.apache.commons.logging.impl.Log4JLogger

Submitted	Level:	DEBUG

Setting	Level	to	DEBUG…

Effective	level:	DEBUG

Note	that	this	setting	will	affect	all	logs	produced	by	the	ResourceManager	class.	This
includes	system-generated	entries	as	well	as	the	ones	generated	by	applications	running	on
YARN.



Access	to	logfiles
Logfile	locations	and	naming	conventions	are	likely	to	differ	based	on	the	distribution.
Apache	Ambari	and	Cloudera	Manager	centralize	access	to	logfiles,	both	for	services	and
single	applications.	On	Cloudera’s	QuickStart	VM,	an	overview	of	the	currently	running
processes	and	links	to	their	logfiles,	the	stderr	and	stdout	channels	can	be	found	at
http://localhost.localdomain:7180/cmf/hardware/hosts/1/processes,	and	the
screenshot	can	be	seen	as	follows:

Access	to	log	resources	in	Cloudera	Manager

Ambari	provides	a	similar	overview	via	the	Services	dashboard	found	at
http://127.0.0.1:8080/#/main/services	on	the	HDP	Sandbox,	and	the	screenshot	can
be	seen	as	follows:



Access	to	log	resources	on	Apache	Ambari

Non-distributed	logs	are	usually	found	under	/var/log/<service>	on	each	cluster	node.
YARN	containers	and	MRv2	logs	locations	also	depend	on	the	distribution.	On	CDH5
these	resources	are	available	in	HDFS	under	/tmp/logs/<user>.

The	standard	modality	to	access	distributed	logs	is	either	via	command-line	tools	or	using
services	web	UIs.

For	instance,	the	command	is	as	follows:

$	yarn	application	-list	-appStates	ALL	

The	preceding	command	will	list	all	running	and	retried	YARN	applications.	The	URL	in
the	task	column	points	to	a	web	interface	that	exposes	the	task	log,	as	follows:

14/08/03	14:44:38	INFO	client.RMProxy:	Connecting	to	ResourceManager	at	

localhost.localdomain/127.0.0.1:8032	Total	number	of	applications	

(application-types:	[]	and	states:	[NEW,	NEW_SAVING,	SUBMITTED,	ACCEPTED,	

RUNNING,	FINISHED,	FAILED,	KILLED]):4																	Application-Id						

Application-Name						Application-Type								User							Queue															

State									Final-State									Progress																									

Tracking-URL	application_1405630696162_0002		PigLatin:DefaultJobName													

MAPREDUCE				cloudera		root.cloudera												FINISHED											

SUCCEEDED													100%		

http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0002	

application_1405630696162_0004		PigLatin:DefaultJobName													

MAPREDUCE				cloudera		root.cloudera												FINISHED											

SUCCEEDED													100%		

http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0004	

application_1405630696162_0003		PigLatin:DefaultJobName													

MAPREDUCE				cloudera		root.cloudera												FINISHED											



SUCCEEDED													100%		

http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0003	

application_1405630696162_0005		PigLatin:DefaultJobName													

MAPREDUCE				cloudera		root.cloudera												FINISHED											

SUCCEEDED													100%		

http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0005	

For	instance,
http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0002,	a
link	to	a	task	belonging	to	user	cloudera,	is	a	frontend	to	the	content	stored	under
hdfs:///tmp/logs/cloudera/logs/application_1405630696162_0002/.

In	the	following	sections,	we	will	give	an	overview	of	the	available	UIs	for	different
services.

Note
Provisioning	an	EMR	cluster	with	the	–log-uri	s3://<bucket>	option	will	ensure	that
Hadoop	logs	are	copied	into	the	s3://<bucket>	location.



ResourceManager,	NodeManager,	and	Application
Manager
On	YARN	the	ResourceManager	web	UI	provides	information	and	general	job	statistics	of
the	Hadoop	cluster,	running/completed/failed	jobs,	and	a	job	history	logfile.	By	default,
the	UI	is	exposed	at	http://<resourcemanagerhost>:8088/	and	can	be	seen	in	the
following	screenshot:

Resource	Manager

Applications
On	the	left-hand	sidebar,	it	is	possible	to	review	the	application	status	of	interest:	NEW,
SUBMITTED,	ACCEPTED,	RUNNING,	FINISHING,	FINISHED,	FAILED,	or	KILLED.	Depending	on
the	application	status,	the	following	information	is	available:

The	application	ID
The	submitting	user
The	application	name
The	scheduler	queue	in	which	the	application	is	placed
Start/finish	times	and	state
Link	to	the	Tracking	UI	for	application	history

In	addition,	the	Cluster	Metrics	view	gives	you	information	on	the	following:

Overall	application	status
Number	of	running	containers
Memory	usage
Node	status

Nodes
The	Nodes	view	is	a	frontend	to	the	NodeManager	service	menu,	which	shows	health	and
location	information	on	the	node’s	running	applications,	as	follows:



Nodes	status

Each	individual	node	of	the	cluster	exposes	further	information	and	statistics	at	host	level
via	its	own	UI.	These	include	which	version	of	Hadoop	is	running	on	the	node,	how	much
memory	is	available	on	the	node,	the	node	status,	and	a	list	of	running	applications	and
containers,	as	shown	in	the	following	screenshot:

Single	node	info

Scheduler
The	following	screenshot	shows	the	Scheduler	window:

Scheduler

MapReduce
Though	the	same	information	and	logging	details	are	available	in	MapReduce	v1	and



MapReduce	v2,	the	access	modality	is	slightly	different.

MapReduce	v1
The	following	screenshot	shows	the	MapReduce	JobTracker	UI:

The	Job	Tracker	UI

The	Job	Tracker	UI,	available	by	default	at	http://<jobtracker>:50070,	exposes
information	on	all	currently	running	as	well	as	retired	MapReduce	jobs,	a	summary	of	the
cluster	resources	and	health,	as	well	as	scheduling	information	and	completion	percentage,
as	shown	in	the	following	screenshot:

Job	details



For	each	running	and	retired	job,	details	are	available,	including	its	ID,	owner,	priority,
task	assignment,	and	task	launch	for	the	mapper.	Clicking	on	a	jobid	link	will	lead	to	a
job	details	page—the	same	URL	exposed	by	the	mapred	job	–list	command.	This
resource	gives	details	about	both	the	map	and	reduce	tasks	as	well	as	general	counter
statistics	at	the	job,	filesystem,	and	MapReduce	levels;	these	include	the	memory	used,
number	of	read/write	operations,	and	the	number	of	bytes	read	and	written.

For	each	Map	and	Reduce	operation,	the	JobTracker	exposes	the	total,	pending,	running,
completed,	and	failed	tasks,	as	shown	in	the	following	screenshot:

Job	tasks	overview

Clicking	on	the	links	in	the	Job	table	will	lead	to	a	further	overview	at	the	task	and	task-
attempt	levels,	as	shown	in	the	following	screenshot:

Task	attempts

From	this	last	page,	we	can	access	the	logs	of	each	task	attempt,	both	for	successful	and
failed/killed	tasks	on	each	individual	TaskTracker	host.	This	log	contains	the	most
granular	information	about	the	status	of	the	MapReduce	job,	including	the	output	of	Log4j
appenders	as	well	as	output	piped	to	the	stdout	and	stderr	channels	and	syslog,	as
shown	in	the	following	screenshot:



TaskTracker	logs

MapReduce	v2	(YARN)
As	we	have	seen	in	Chapter	3,	Processing	–	MapReduce	and	Beyond,	with	YARN,
MapReduce	is	only	one	of	many	processing	frameworks	that	can	be	deployed.	Recall	from
previous	chapters	that	the	JobTracker	and	TaskTracker	services	have	been	replaced	by	the
ResourceManager	and	NodeManager,	respectively.	As	such,	both	the	service	UIs	and	the
logfiles	from	YARN	are	more	generic	than	MapReduce	v1.

The	application_1405630696162_0002	name	shown	in	Resource	Manager	corresponds
to	a	MapReduce	job	with	the	job_1405630696162_0002	ID.	That	application	ID	belongs
to	the	task	running	inside	the	container,	and	clicking	on	it	will	reveal	an	overview	of	the
MapReduce	job	and	allow	a	drill-down	to	the	individual	tasks	from	either	phase	until	the
single-task	log	is	reached,	as	shown	in	the	following	screenshot:



A	YARN	application	containing	a	MapReduce	job

JobHistory	Server
YARN	ships	with	a	JobHistory	REST	service	that	exposes	details	on	finished	applications.
Currently,	it	only	supports	MapReduce	and	provides	information	on	finished	jobs.	This
includes	the	job	final	status	SUCCESSFUL	or	FAILED,	who	submitted	the	job,	the	total
number	of	map	and	reduce	tasks,	and	timing	information.

A	UI	is	available	at	http://<jobhistoryhost>:19888/jobhistory,	as	shown	in	the
following	screenshot:

JobHistory	UI

Clicking	on	each	job	ID	will	lead	to	the	MapReduce	job	UI	shown	in	the	YARN
application	screenshot.



NameNode	and	DataNode
The	web	interface	for	the	Hadoop	Distributed	File	System	(HDFS)	shows	information
about	the	NameNode	itself	as	well	as	the	filesystem	generally.

By	default,	it	is	located	at	http://<namenodehost>:50070/,	as	shown	in	the	following
screenshot:

NameNode	UI

The	Overview	menu	exposes	NameNode	information	about	DFS	capacity	and	usage	and
the	block	pool	status,	and	it	gives	a	summary	of	the	status	of	DataNode	health	and
availability.	The	information	contained	in	this	page	is	for	the	most	part	equivalent	to	what
is	shown	at	the	command-line	prompt:

$	hdfs	dfsadmin	–report

The	DataNodes	menu	gives	more	detailed	information	about	the	status	of	each	node	and
offers	a	drill-down	at	the	single-host	level,	both	for	available	and	decommissioned	nodes,
as	shown	in	the	following	screenshot:



Datanode	UI



Summary
This	has	been	quite	a	whistle-stop	tour	around	the	considerations	of	running	an	operational
Hadoop	cluster.	We	didn’t	try	to	turn	developers	into	administrators,	but	hopefully,	the
broader	perspective	will	help	you	to	help	your	operations	staff.	In	particular,	we	covered
the	following	topics:

How	Hadoop	is	a	natural	fit	for	DevOps	approaches	as	its	multilayered	complexity
means	it’s	not	possible	or	desirable	to	have	substantial	knowledge	gaps	between
development	and	operations	staff
Cloudera	Manager,	and	how	it	can	be	a	great	management	and	monitoring	tool;	it
might	cause	integration	problems	though,	if	you	have	other	enterprise	tools,	and	it
comes	with	a	vendor	lock-in	risk
Ambari,	the	Apache	open	source	alternative	to	Cloudera	Manager,	and	how	it	is	used
in	the	Hortonworks	distribution
How	to	think	about	selecting	hardware	for	a	physical	Hadoop	cluster,	and	how	this
naturally	fits	into	the	considerations	of	how	the	multiple	workloads	possible	in	the
world	of	Hadoop	2	can	peacefully	coexist	on	shared	resources
The	different	considerations	for	firing	up	and	using	EMR	clusters	and	how	this	can
be	both	an	adjunct	to,	as	well	as	an	alternative	to,	a	physical	cluster
The	Hadoop	security	ecosystem,	how	it	is	a	very	fast	moving	area,	and	how	the
features	available	today	are	vastly	better	than	some	years	ago	and	there	is	still	much
around	the	corner
Monitoring	of	a	Hadoop	cluster,	considering	what	events	are	important	in	the	Hadoop
model	of	embracing	failure,	and	how	these	alerts	and	metrics	can	be	integrated	into
other	enterprise-monitoring	frameworks
How	to	troubleshoot	issues	with	a	Hadoop	cluster,	both	in	terms	of	what	might	have
happened	and	how	to	find	the	information	to	inform	your	analysis
A	quick	tour	of	the	various	web	UIs	provided	by	Hadoop,	which	can	give	very	good
overviews	of	happenings	within	various	components	in	the	system

This	concludes	our	treatment	of	Hadoop	in	depth.	In	the	final	chapter,	we	will	express
some	thoughts	on	the	broader	Hadoop	ecosystem,	give	some	pointers	for	useful	and
interesting	tools	and	products	that	we	didn’t	have	a	chance	to	cover	in	the	book,	and
suggest	how	to	get	involved	with	the	community.



Chapter	11.	Where	to	Go	Next
In	the	previous	chapters	we	have	examined	many	parts	of	Hadoop	2	and	the	ecosystem
around	it.	However,	we	have	necessarily	been	limited	by	page	count;	some	areas	we	didn’t
get	into	as	much	depth	as	was	possible,	other	areas	we	referred	to	only	in	passing	or	did
not	mention	at	all.

The	Hadoop	ecosystem,	with	distributions,	Apache	and	non-Apache	projects,	is	an
incredibly	vibrant	and	healthy	place	to	be	right	now.	In	this	chapter,	we	hope	to
complement	the	previously	discussed	more	detailed	material	with	a	travel	guide,	if	you
will,	for	other	interesting	destinations.	In	this	chapter,	we	will	discuss	the	following	topics:

Hadoop	distributions
Other	significant	Apache	and	non-Apache	projects
Sources	of	information	and	help

Of	course,	note	that	any	overview	of	the	ecosystem	is	both	skewed	by	our	interests	and
preferences,	and	is	outdated	the	moment	it	is	written.	In	other	words,	don’t	for	a	moment
think	this	is	all	that’s	available,	consider	it	instead	a	whetting	of	the	appetite.



Alternative	distributions
We’ve	generally	used	the	Cloudera	distribution	for	Hadoop	in	this	book,	but	have
attempted	to	keep	the	coverage	distribution	independent	as	much	as	possible.	We’ve	also
mentioned	the	Hortonworks	Data	Platform	(HDP)	throughout	this	book	but	these	are
certainly	not	the	only	distribution	choices	available	to	you.

Before	taking	a	look	around,	let’s	consider	whether	you	need	a	distribution	at	all.	It	is
completely	possible	to	go	to	the	Apache	website,	download	the	source	tarballs	of	the
projects	in	which	you	are	interested,	then	work	to	build	them	all	together.	However,	given
version	dependencies,	this	is	likely	to	consume	more	time	than	you	would	expect.
Potentially,	vastly	more	so.	In	addition,	the	end	product	will	likely	lack	some	polish	in
terms	of	tools	or	scripts	for	operational	deployment	and	management.	For	most	users,
these	areas	are	why	employing	an	existing	Hadoop	distribution	is	the	natural	choice.

A	note	on	free	and	commercial	extensions—being	an	open	source	project	with	a	quite
liberal	license,	distribution	creators	are	also	free	to	enhance	Hadoop	with	proprietary
extensions	that	are	made	available	either	as	free	open	source	or	commercial	products.

This	can	be	a	controversial	issue	as	some	open	source	advocates	dislike	any
commercialization	of	successful	open	source	projects;	to	them,	it	appears	that	the
commercial	entity	is	freeloading	by	taking	the	fruits	of	the	open	source	community
without	having	to	build	it	for	themselves.	Others	see	this	as	a	healthy	aspect	of	the	flexible
Apache	license;	the	base	product	will	always	be	free,	and	individuals	and	companies	can
choose	whether	to	go	with	commercial	extensions	or	not.	We	don’t	give	judgment	either
way,	but	be	aware	that	this	is	another	of	the	controversies	you	will	almost	certainly
encounter.

So	you	need	to	decide	if	you	need	a	distribution	and	if	so	for	what	reasons,	which	specific
aspects	will	benefit	you	most	above	rolling	your	own?	Do	you	wish	for	a	fully	open
source	product	or	are	you	willing	to	pay	for	commercial	extensions?	With	these	questions
in	mind,	let’s	look	at	a	few	of	the	main	distributions.



Cloudera	Distribution	for	Hadoop
You	will	be	familiar	with	the	Cloudera	distribution	(http://www.cloudera.com)	as	it	has
been	used	throughout	this	book.	CDH	was	the	first	widely	available	alternative
distribution	and	its	breadth	of	available	software,	proven	level	of	quality,	and	its	free	cost
has	made	it	a	very	popular	choice.

Recently,	Cloudera	has	been	actively	extending	the	products	it	adds	to	its	distribution
beyond	the	core	Hadoop	projects.	In	addition	to	Cloudera	Manager	and	Impala	(both
Cloudera-developed	products),	it	has	also	added	other	tools	such	as	Cloudera	Search
(based	on	Apache	Solr)	and	Cloudera	Navigator	(a	data	governance	solution).	While	CDH
versions	prior	to	5	were	focused	more	on	the	integration	benefits	of	a	distribution,	version
5	(and	presumably	beyond)	is	adding	more	and	more	capability	atop	the	base	Apache
Hadoop	projects.

Cloudera	also	offers	commercial	support	for	its	products	in	addition	to	training	and
consultancy	services.	Details	can	be	found	on	the	company	web	page.

http://www.cloudera.com


Hortonworks	Data	Platform
In	2011,	the	Yahoo!	division	responsible	for	so	much	of	the	development	of	Hadoop	was
spun	off	into	a	new	company	called	Hortonworks.	They	have	also	produced	their	own	pre-
integrated	Hadoop	distribution	called	the	Hortonworks	Data	Platform	(HDP),	available
at	http://hortonworks.com/products/hortonworksdataplatform/.

HDP	is	conceptually	similar	to	CDH	but	both	products	have	differences	in	their	focus.
Hortonworks	makes	much	of	the	fact	HDP	is	fully	open	source,	including	the	management
tool	Ambari,	which	we	discussed	briefly	in	Chapter	10,	Running	a	Hadoop	Cluster.	They
have	also	positioned	HDP	as	a	key	integration	platform	through	its	support	for	tools	such
as	Talend	Open	Studio.	Hortonworks	does	not	offer	proprietary	software;	its	business
model	focuses	instead	on	offering	professional	services	and	support	for	the	platform.

Both	Cloudera	and	Hortonworks	are	venture-backed	companies	with	significant
engineering	expertise;	both	companies	employ	many	of	the	most	prolific	contributors	to
Hadoop.	The	underlying	technology	is,	however,	comprised	of	the	same	Apache	projects;
the	distinguishing	factors	are	how	they	are	packaged,	the	versions	employed,	and	the
additional	value-added	offerings	provided	by	the	companies.

http://hortonworks.com/products/hortonworksdataplatform/


MapR
A	different	type	of	distribution	is	offered	by	MapR	Technologies,	although	the	company
and	distribution	are	usually	referred	to	simply	as	MapR.	The	distribution	available	from
http://www.mapr.com	is	based	on	Hadoop,	but	has	added	a	number	of	changes	and
enhancements.

The	focus	of	the	MapR	distribution	is	on	performance	and	availability.	For	example,	it
was	the	first	distribution	to	offer	a	high-availability	solution	for	the	Hadoop	NameNode
and	JobTracker,	which	you	will	remember	from	Chapter	2,	Storage,	was	a	significant
weakness	in	core	Hadoop	1.	It	also	offered	native	integration	with	NFS	filesystems	long
before	Hadoop	2,	which	makes	processing	of	existing	data	much	easier.	To	achieve	these
features,	MapR	replaced	HDFS	with	a	full	POSIX	compliant	filesystem	that	also	features
no	NameNode,	resulting	in	a	true	distributed	system	with	no	master,	and	a	claim	of	much
better	hardware	utilization	than	Apache	HDFS.

MapR	provides	both	a	community	and	enterprise	edition	of	its	distribution;	not	all	the
extensions	are	available	in	the	free	product.	The	company	also	offers	support	services	as
part	of	the	enterprise	product	subscription	in	addition	to	training	and	consultancy.

http://www.mapr.com


And	the	rest…
Hadoop	distributions	are	not	just	the	territory	of	young	start-ups,	nor	are	they	a	static
marketplace.	Intel	had	its	own	distribution	until	early	2014	when	it	decided	to	fold	its
changes	into	CDH	instead.	IBM	has	its	own	distribution	called	IBM	Infosphere	Big
Insights	available	in	both	free	and	commercial	editions.	There	are	also	various	stories	of
numerous	large	enterprises	rolling	their	own	distributions,	some	of	which	are	made	openly
available	while	others	are	not.	You	will	have	no	shortage	of	options	with	so	many	high-
quality	distributions	available.



Choosing	a	distribution
This	raises	the	question:	how	to	choose	a	distribution?	As	can	be	seen,	the	available
distributions	(and	we	didn’t	cover	them	all)	range	from	convenient	packaging	and
integration	of	fully	open	source	products	through	to	entire	bespoke	integration	and
analysis	layers	atop	them.	There	is	no	overall	best	distribution;	think	carefully	about	your
requirements	and	consider	the	alternatives.	Since	all	these	offer	a	free	download	of	at	least
a	basic	version,	it’s	good	to	simply	play	and	experience	the	options	for	yourself.



Other	computational	frameworks
We’ve	frequently	discussed	the	myriad	possibilities	brought	to	the	Hadoop	platform	by
YARN.	We	went	into	details	of	two	new	models,	Samza	and	Spark.	Additionally,	other
more	established	frameworks	such	as	Pig	are	also	being	ported	to	the	framework.

To	give	a	view	of	the	much	bigger	picture	in	this	section,	we	will	illustrate	the	breadth	of
processing	possible	using	YARN	by	presenting	a	set	of	computational	models	that	are
currently	being	ported	to	Hadoop	on	top	of	YARN.



Apache	Storm
Storm	(http://storm.apache.org)	is	a	distributed	computation	framework	written	(mainly)
in	the	Clojure	programming	language.	It	uses	custom-created	spouts	and	bolts	to	define
information	sources	and	manipulations	to	allow	distributed	processing	of	streaming	data.
A	Storm	application	is	designed	as	a	topology	of	interfaces	that	creates	a	stream	of
transformations.	It	provides	similar	functionality	to	a	MapReduce	job	with	the	exception
that	the	topology	will	theoretically	run	indefinitely	until	it	is	manually	terminated.

Though	initially	built	distinct	from	Hadoop,	a	YARN	port	is	being	developed	by	Yahoo!
and	can	be	found	at	https://github.com/yahoo/storm-yarn.

http://storm.apache.org
https://github.com/yahoo/storm-yarn


Apache	Giraph
Giraph	originated	as	the	open	source	implementation	of	Google’s	Pregel	paper	(which	can
be	found	at	http://kowshik.github.io/JPregel/pregel_paper.pdf).	Both	Giraph	and	Pregel
are	inspired	by	the	Bulk	Synchronous	Parallel	(BSP)	model	of	distributed	computation
introduced	by	Valiant	in	1990.	Giraph	adds	several	features	including	master	computation,
sharded	aggregators,	edge-oriented	input,	and	out-of-core	computation.	The	YARN	port
can	be	found	at	https://issues.apache.org/jira/browse/GIRAPH-13.

http://kowshik.github.io/JPregel/pregel_paper.pdf
https://issues.apache.org/jira/browse/GIRAPH-13


Apache	HAMA
Hama	is	a	top-level	Apache	project	that	aims,	like	other	methods	we’ve	encountered	so
far,	to	address	the	weakness	of	MapReduce	with	regard	to	iterative	programming.	Similar
to	the	aforementioned	Giraph,	Hama	implements	the	BSP	techniques	and	has	been	heavily
inspired	by	the	Pregel	paper.	The	YARN	port	can	be	found	at
https://issues.apache.org/jira/browse/HAMA-431.

https://issues.apache.org/jira/browse/HAMA-431


Other	interesting	projects
Whether	you	use	a	bundled	distribution	or	stick	with	the	base	Apache	Hadoop	download,
you	will	encounter	many	references	to	other	related	projects.	We’ve	covered	several	of
these	such	as	Hive,	Samza,	and	Crunch	in	this	book;	we’ll	now	highlight	some	of	the
others.

Note	that	this	coverage	seeks	to	point	out	the	highlights	(from	the	authors’	perspective)	as
well	as	give	a	taste	of	the	breadth	of	types	of	projects	available.	As	mentioned	earlier,
keep	looking	out,	as	there	will	be	new	ones	launching	all	the	time.



HBase
Perhaps	the	most	popular	Apache	Hadoop-related	project	that	we	didn’t	cover	in	this	book
is	HBase	(http://hbase.apache.org).	Based	on	the	BigTable	model	of	data	storage
publicized	by	Google	in	an	academic	paper	(sound	familiar?),	HBase	is	a	nonrelational
data	store	sitting	atop	HDFS.

While	both	MapReduce	and	Hive	focus	on	batch-like	data	access	patterns,	HBase	instead
seeks	to	provide	very	low-latency	access	to	data.	Consequently	HBase	can,	unlike	the
aforementioned	technologies,	directly	support	user-facing	services.

The	HBase	data	model	is	not	the	relational	approach	that	was	used	in	Hive	and	all	other
RDBMSs,	nor	does	it	offer	the	full	ACID	guarantees	that	are	taken	for	granted	with
relational	stores.	Instead,	it	is	a	key-value	schema-less	solution	that	takes	a	column-
oriented	view	of	data;	columns	can	be	added	at	runtime	and	depend	on	the	values	inserted
into	HBase.	Each	lookup	operation	is	then	very	fast,	as	it	is	effectively	a	key-value
mapping	from	the	row	key	to	the	desired	column.	HBase	also	treats	timestamps	as	another
dimension	on	the	data	so	one	can	directly	retrieve	data	from	a	point	in	time.

The	data	model	is	very	powerful	but	does	not	suit	all	use	cases	just	as	the	relational	model
isn’t	universally	applicable.	But	if	you	have	a	requirement	for	structured	low-latency
views	on	large-scale	data	stored	in	Hadoop,	then	HBase	is	absolutely	something	you
should	look	at.

http://hbase.apache.org


Sqoop
In	Chapter	7,	Hadoop	and	SQL,	we	looked	at	tools	for	presenting	a	relational-like
interface	to	data	stored	on	HDFS.	Often,	such	data	either	needs	to	be	retrieved	from	an
existing	relational	database	or	the	output	of	its	processing	needs	to	be	stored	back.

Apache	Sqoop	(http://sqoop.apache.org)	provides	a	mechanism	for	declaratively
specifying	data	movement	between	relational	databases	and	Hadoop.	It	takes	a	task
definition	and	from	this	generates	MapReduce	jobs	to	execute	the	required	data	retrieval
or	storage.	It	will	also	generate	code	to	help	manipulate	relational	records	with	custom
Java	classes.	In	addition,	it	can	integrate	with	HBase	and	Hcatalog/Hive	and	it	provides	a
very	rich	set	of	integration	possibilities.

At	the	time	of	writing,	Sqoop	is	slightly	in	flux.	Its	original	version,	Sqoop	1,	was	a	pure
client-side	application.	Much	like	the	original	Hive	command-line	tool,	Sqoop	1	has	no
server	and	generates	all	code	on	the	client.	This	unfortunately	means	that	each	client	needs
to	know	a	lot	of	details	about	physical	data	sources,	including	exact	host	names	as	well	as
authentication	credentials.

Sqoop	2	provides	a	centralized	Sqoop	server	that	encapsulates	all	these	details	and	offers
the	various	configured	data	sources	to	the	connecting	clients.	It	is	a	superior	model	but	at
the	time	of	writing,	the	general	community	recommendation	is	to	stick	with	Sqoop	1	until
the	new	version	evolves	further.	Check	on	the	current	status	if	you	are	interested	in	this
type	of	tool.

http://sqoop.apache.org


Whir
When	looking	to	use	cloud	services	such	as	Amazon	AWS	for	Hadoop	deployments,	it	is
usually	a	lot	easier	to	use	a	higher	level	service	such	as	Elastic	MapReduce	as	opposed	to
setting	up	your	own	cluster	on	EC2.	Though	there	are	scripts	to	help,	the	fact	is	that	the
overhead	of	Hadoop-based	deployments	on	cloud	infrastructures	can	be	involved.	That’s
where	Apache	Whir	(https://whirr.apache.org/)	comes	in.

Whir	isn’t	focused	on	Hadoop;	it’s	about	supplier-independent	instantiation	of	cloud
services	of	which	Hadoop	is	a	single	example.	Whir	aims	to	provide	a	programmatic	way
of	specifying	and	creating	Hadoop-based	deployments	on	cloud	infrastructures	in	a	way
that	handles	all	the	underlying	service	aspects	for	you.	It	does	this	in	a	provider-
independent	fashion	so	that	once	you’ve	launched	on	say	EC2	then	you	can	use	the	same
code	to	create	the	identical	setup	on	another	provider	such	as	Rightscale	or	Eucalyptus.
This	makes	vendor	lock-in,	often	a	concern	with	cloud	deployments,	less	of	an	issue.

Whir	isn’t	quite	there	yet.	Today,	it	is	limited	in	services	it	can	create	and	providers	it
supports,	however,	if	you	are	interested	in	cloud	deployment	with	less	pain	then	it’s	worth
watching	its	progress.

Note
If	you	are	building	out	your	full	infrastructure	on	Amazon	Web	Services	then	you	might
find	cloud	formation	gives	much	of	the	same	ability	to	define	application	requirements,
though	obviously	in	an	AWS-specific	fashion.

https://whirr.apache.org/


Mahout
Apache	Mahout	(http://mahout.apache.org/)	is	a	collection	of	distributed	algorithms,	Java
classes,	and	tools	for	performing	advanced	analytics	on	top	of	Hadoop.	Similar	to	Spark’s
MLLib	briefly	mentioned	in	Chapter	5,	Iterative	Computation	with	Spark,	Mahout	ships
with	a	number	of	algorithms	for	common	use	cases:	recommendation,	clustering,
regression,	and	feature	engineering.	Although	the	system	is	focused	on	natural	language
processing	and	text-mining	tasks,	its	building	blocks	(linear	algebra	operations)	are
suitable	to	be	applied	to	a	number	of	domains.	As	of	Version	0.9,	the	project	is	being
decoupled	from	the	MapReduce	framework	in	favor	of	richer	programming	models	such
as	Spark.	The	community	end	goal	is	to	obtain	a	platform-independent	library	based	on	a
Scala	DSL.

http://mahout.apache.org/


Hue
Initially	developed	by	Cloudera	and	marketed	as	the	“User	Interface	for	Hadoop”,	Hue
(http://gethue.com/)	is	a	collection	of	applications,	bundled	together	under	a	common	web
interface,	that	act	as	clients	for	core	services	and	a	number	of	components	of	the	Hadoop
ecosystem:

The	Hue	Query	Editor	for	Hive

Hue	leverages	many	of	the	tools	we	discussed	in	previous	chapters	and	provides	an
integrated	interface	for	analyzing	and	visualizing	data.	There	are	two	components	that	are
remarkably	interesting.	On	one	hand,	there	is	a	query	editor	that	allows	the	user	to	create
and	save	Hive	(or	Impala)	queries,	export	the	result	set	in	CSV	or	Microsoft	Office	Excel
format	as	well	as	plot	it	in	the	browser.	The	editor	features	the	capability	of	sharing	both
HiveQL	and	result	sets,	thus	facilitating	collaboration	within	an	organization.	On	the	other
hand,	there	is	an	Oozie	workflow	and	coordinator	editor	that	allows	a	user	to	create	and
deploy	Oozie	jobs	manually,	automating	the	generation	of	XML	configurations	and
boilerplate.

Both	Cloudera	and	Hortonworks	distributions	ship	with	Hue	and	typically	include	the
following:

A	file	manager	for	HDFS
A	Job	Browser	for	YARN	(MapReduce)
An	Apache	HBase	browser
A	Hive	metastore	explorer
Query	editors	for	Hive	and	Impala
A	script	editor	for	Pig
A	job	editor	for	MapReduce	and	Spark

http://gethue.com/


An	editor	for	Sqoop	2	jobs
An	Oozie	workflow	editor	and	dashboard
An	Apache	ZooKeeper	browser

On	top	of	this,	Hue	is	a	framework	with	an	SDK	that	contains	a	number	of	web	assets,
APIs,	and	patterns	for	developing	third-party	applications	that	interact	with	Hadoop.



Other	programming	abstractions
Hadoop	isn’t	just	extended	by	additional	functionality,	there	are	tools	to	provide	entirely
different	paradigms	for	writing	the	code	used	to	process	your	data	within	Hadoop.



Cascading
Developed	by	Concurrent,	and	open	sourced	under	an	Apache	license,	Cascading
(http://www.cascading.org/)	is	a	popular	framework	that	abstracts	the	complexity	of
MapReduce	away	and	allows	us	to	create	complex	workflows	on	top	of	Hadoop.
Cascading	jobs	can	compile	to,	and	be	executed	on,	MapReduce,	Tez,	and	Spark.
Conceptually,	the	framework	is	similar	to	Apache	Crunch,	covered	in	Chapter	9,	Making
Development	Easier,	though	practically	there	are	differences	in	terms	of	data	abstractions
and	end	goals.	Cascading	adopts	a	tuple	data	model	(similar	to	Pig)	rather	than	arbitrary
objects,	and	encourages	the	user	to	rely	on	a	higher	level	DSL,	powerful	built-in	types,
and	tools	to	manipulate	data.

Put	in	simple	terms,	Cascading	is	to	PigLatin	and	HiveQL	what	Crunch	is	to	a	user-
defined	function.

Like	Morphlines,	which	we	also	saw	in	Chapter	9,	Making	Development	Easier,	the
Cascading	data	model	follows	a	source-pipe-sink	approach,	where	data	is	captured	from	a
source,	piped	through	a	number	of	processing	steps,	and	its	output	is	then	delivered	into	a
sink,	ready	to	be	picked	up	by	another	application.

Cascading	encourages	developers	to	write	code	in	a	number	of	JVM	languages.	Ports	of
the	framework	exist	for	Python	(PyCascading),	JRuby	(Cascading.jruby),	Clojure
(Cascalog),	and	Scala	(Scalding).	Cascalog	and	Scalding	in	particular	have	gained	a	lot	of
traction	and	spawned	off	their	very	own	ecosystems.

An	area	where	Cascading	excels	is	documentation.	The	project	provides	comprehensive
javadocs	of	the	API,	extensive	tutorials
(http://www.cascading.org/documentation/tutorials/)	and	an	interactive	exercise-based
learning	environment	(https://github.com/Cascading/Impatient).

Another	strong	selling	point	of	Cascading	is	its	integration	with	third-party	environments.
Amazon	EMR	supports	Cascading	as	a	first-class	processing	framework	and	allows	us	to
launch	Cascading	clusters	both	with	the	command	line	and	web	interfaces
(http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/CreateCascading.html
Plugins	for	the	SDK	exist	for	both	the	IntelliJ	IDEA	and	Eclipse	integrated	development
environments.	One	of	the	framework’s	top	projects,	Cascading	Patterns,	a	collection	of
machine-learning	algorithms,	features	a	utility	for	translating	Predictive	Model	Markup
Language	(PMML)	documents	into	applications	on	Apache	Hadoop,	thus	facilitating
interoperability	with	popular	statistical	environments	and	scientific	tools	such	as	R
(http://cran.r-project.org/web/packages/pmml/index.html).

http://www.cascading.org/
http://www.cascading.org/documentation/tutorials/
https://github.com/Cascading/Impatient
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/CreateCascading.html
http://cran.r-project.org/web/packages/pmml/index.html


AWS	resources
Many	Hadoop	technologies	can	be	deployed	on	AWS	as	part	of	a	self-managed	cluster.
However,	just	as	Amazon	offers	support	for	Elastic	MapReduce,	which	handles	Hadoop	as
a	managed	service,	there	are	a	few	other	services	that	are	worth	mentioning.



SimpleDB	and	DynamoDB
For	some	time,	AWS	has	offered	SimpleDB	as	a	hosted	service	providing	an	HBase-like
data	model.

It	has,	however,	largely	been	superseded	by	a	more	recent	service	from	AWS,
DynamoDB,	located	at	http://aws.amazon.com/dynamodb.	Though	its	data	model	is	very
similar	to	that	of	SimpleDB	and	HBase,	it	is	aimed	at	a	very	different	type	of	application.
Where	SimpleDB	has	quite	a	rich	search	API	but	is	very	limited	in	terms	of	size,
DynamoDB	provides	a	more	constrained	though	constantly	evolving	API,	but	with	a
service	guarantee	of	near-unlimited	scalability.

The	DynamoDB	pricing	model	is	particularly	interesting;	instead	of	paying	for	a	certain
number	of	servers	hosting	the	service,	you	allocate	a	certain	capacity	for	read-and-write
operations,	and	DynamoDB	manages	the	resources	required	to	meet	this	provisioned
capacity.	This	is	an	interesting	development	as	it	is	a	more	pure	service	model,	where	the
mechanism	of	delivering	the	desired	performance	is	kept	completely	opaque	to	the	service
user.	Have	a	look	at	DynamoDB	but	if	you	need	a	much	larger	scale	of	data	store	than
SimpleDB	can	offer;	however,	do	consider	the	pricing	model	carefully	as	provisioning	too
much	capacity	can	become	very	expensive	very	quickly.	Amazon	provides	some	good	best
practices	for	DynamoDB	at	the	following	URL	that	illustrate	that	minimizing	the	service
costs	can	result	in	additional	application-layer	complexity:
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html.

Note
Of	course	the	discussion	of	DynamoDB	and	SimpleDB	assumes	a	non-relational	data
model;	there	is	the	Amazon	Relational	Database	Service	(Amazon	RDS)	for	a	relational
database	in	the	cloud	service.

http://aws.amazon.com/dynamodb
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html


Kinesis
Just	as	EMR	is	hosted	Hadoop	and	DynamoDB	has	similarities	to	a	hosted	HBase,	it
wasn’t	surprising	to	see	AWS	announce	Kinesis,	a	hosted	streaming	data	service	in	2013.
This	can	be	found	at	http://aws.amazon.com/kinesis	and	it	has	very	similar	conceptual
building	blocks	to	the	stack	of	Samza	atop	Kafka.	Kinesis	provides	a	partitioned	view	of
messages	as	a	stream	of	data	and	an	API	to	have	callbacks	that	execute	when	messages
arrive.	As	with	most	AWS	services,	there	is	tight	integration	with	other	services	making	it
easy	to	get	data	into	and	out	of	locations	such	as	S3.

http://aws.amazon.com/kinesis


Data	Pipeline
The	final	AWS	service	that	we’ll	mention	is	Data	Pipeline,	which	can	be	found	at
http://aws.amazon.com/datapipeline.	As	the	name	suggests,	it	is	a	framework	for	building
up	data-processing	jobs	that	involve	multiple	steps,	data	movements,	and	transformations.
It	has	quite	a	conceptual	overlap	with	Oozie,	but	with	a	few	twists.	Firstly,	Data	Pipeline
has	the	expected	deep	integration	with	many	other	AWS	services,	enabling	easy	definition
of	data	workflows	that	incorporate	diverse	repositories	such	as	RDS,	S3,	and	DynamoDB.
In	addition	however,	Data	Pipeline	does	have	the	ability	to	integrate	agents	installed	on
local	infrastructure,	providing	an	interesting	avenue	for	building	workflows	that	span
across	the	AWS	and	on-premises	environments.

http://aws.amazon.com/datapipeline


Sources	of	information
You	don’t	just	need	new	technologies	and	tools—even	if	they	are	cool.	Sometimes,	a	little
help	from	a	more	experienced	source	can	pull	you	out	of	a	hole.	In	this	regard,	you	are
well	covered,	as	the	Hadoop	community	is	extremely	strong	in	many	areas.



Source	code
It’s	sometimes	easy	to	overlook,	but	Hadoop	and	all	the	other	Apache	projects	are	after	all
fully	open	source.	The	actual	source	code	is	the	ultimate	source	(pardon	the	pun)	of
information	about	how	the	system	works.	Becoming	familiar	with	the	source	and	tracing
through	some	of	the	functionality	can	be	hugely	informative.	Not	to	mention	helpful	when
you	are	hitting	unexpected	behavior.



Mailing	lists	and	forums
Almost	all	the	projects	and	services	listed	in	this	chapter	have	their	own	mailing	lists
and/or	forums;	check	out	the	home	pages	for	the	specific	links.	Most	distributions	also
have	their	own	forums	and	other	mechanisms	to	share	knowledge	and	get	(non-
commercial)	help	from	the	community.	Additionally,	if	using	AWS,	make	sure	to	check
out	the	AWS	developer	forums	at	https://forums.aws.amazon.com.

Always	remember	to	read	posting	guidelines	carefully	and	understand	the	expected
etiquette.	These	are	tremendous	sources	of	information;	the	lists	and	forums	are	often
frequently	visited	by	the	developers	of	the	particular	project.	Expect	to	see	the	core
Hadoop	developers	on	the	Hadoop	lists,	Hive	developers	on	the	Hive	list,	EMR
developers	on	the	EMR	forums,	and	so	on.

https://forums.aws.amazon.com


LinkedIn	groups
There	are	a	number	of	Hadoop	and	related	groups	on	the	professional	social	network
LinkedIn.	Do	a	search	for	your	particular	areas	of	interest,	but	a	good	starting	point	might
be	the	general	Hadoop	users’	group	at	http://www.linkedin.com/groups/Hadoop-Users-
988957.

http://www.linkedin.com/groups/Hadoop-Users-988957


HUGs
If	you	want	more	face-to-face	interaction	then	look	for	a	Hadoop	User	Group	(HUG)	in
your	area,	most	of	which	will	be	listed	at
http://wiki.apache.org/hadoop/HadoopUserGroups.	These	tend	to	arrange	semi-regular
get-togethers	that	combine	things	such	as	quality	presentations,	the	ability	to	discuss
technology	with	like-minded	individuals,	and	often	pizza	and	drinks.

No	HUG	near	where	you	live?	Consider	starting	one.

http://wiki.apache.org/hadoop/HadoopUserGroups


Conferences
Though	some	industries	take	decades	to	build	up	a	conference	circuit,	Hadoop	already	has
some	significant	conference	action	involving	the	open	source,	academic,	and	commercial
worlds.	Events	such	as	the	Hadoop	Summit	and	Strata	are	pretty	big;	these	and	some	other
are	linked	from	http://wiki.apache.org/hadoop/Conferences.

http://wiki.apache.org/hadoop/Conferences


Summary
In	this	chapter,	we	took	a	quick	gallop	around	the	broader	Hadoop	ecosystem,	looking	at
the	following	topics:

Why	alternative	Hadoop	distributions	exist	and	some	of	the	more	popular	ones
Other	projects	that	provide	capabilities,	extensions,	or	Hadoop	supporting	tools
Alternative	ways	of	writing	or	creating	Hadoop	jobs
Sources	of	information	and	how	to	connect	with	other	enthusiasts

Now,	go	have	fun	and	build	something	amazing!
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