Beginning

Android

Application Development

IN FULL COLOR

Wei-Meng Lee

BEGINNING
ANDROID™ APPLICATION DEVELOPMENT

INTRODUG CTION. ..ottt i i i ittt ittt eeneeneenesnssnssnnsnnnnns XV
CHAPTER 1 Getting Started with Android Programming 1
CHAPTER 2 Activitiesand Intents. i i 27
CHAPTER 3 Getting to Know the Android User Interface....................... 81
CHAPTER 4 Designing Your User Interface Using Views. 125
CHAPTER5 Displaying Pictures and Menus with Views. 169
CHAPTER 6 DataPersistence i 203
CHAPTER7 ContentProviders i i 237
CHAPTER8 Messagingand Networking. 263
CHAPTER 9 Location-Based Services 301
CHAPTER 10 Developing Android Services, 331
CHAPTER 11 Publishing Android Applications. 359
APPENDIX A Using Eclipse for Android Development 381
APPENDIX B Usingthe Android Emulator......... i i, 393
APPENDIX C Answersto EXercisest 411

BEGINNING

Android™ Application Development

Wei-Meng Lee

WILEY
Wiley Publishing, Inc.

Beginning Android™ Application Development

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-01711-1

ISBN: 978-1-118-08729-9 (ebk)
ISBN: 978-1-118-08749-7 (ebk)
ISBN: 978-1-118-08780-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or

online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for dam-
ages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the organization or Web
site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work
may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011921777

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Android is a trademark of Google, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in

this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To my family:

Thanks for the understanding and support while [
worked on getting this book ready! I love you all!

—WEI-MENG LEE

CREDITS

EXECUTIVE EDITOR
Robert Elliott

SENIOR PROJECT EDITOR
Ami Frank Sullivan

TECHNICAL EDITOR
Kunal Mittal

PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Luann Rouff

EDITORIAL DIRECTOR
Robyn B. Siesky

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND
EXECUTIVE GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND
EXECUTIVE PUBLISHER
Barry Pruett

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

COMPOSITOR
James D. Kramer,
Happenstance Type-O-Rama

PROOFREADER
Nancy Carrasco

INDEXER
Robert Swanson

COVER DESIGNER
Michael E. Trent

COVER IMAGE

© Viktoriya Sukhanova/istockphoto.com

ABOUT THE AUTHOR

WEI-MENG LEE is a technologist and founder of Developer Learning Solutions (www.learn2develop.net),
a technology company specializing in hands-on training on the latest mobile technologies. Wei-Meng
has many years of training experience, and his training courses place special emphasis on the learning-
by-doing approach. This hands-on approach to learning programming makes understanding the subject
much easier than reading books, tutorials, and documentation.

Wei-Meng is also the author of Beginning iOS 4 Application Development (Wrox), along with sev-
eral other Wrox titles. You can contact Wei-Meng at weimenglee@learn2develop.net.

ABOUT THE TECHNICAL EDITOR

KUNAL MITTAL serves as an Executive Director of Technology at Sony Pictures Entertainment where
he is responsible for the SOA, Identity Management, and Content Management programs. Kunal is
an entrepreneur who helps startups define their technology strategy, product roadmap, and develop-
ment plans. He generally works in an Advisor or Consulting CTO capacity, and serves actively in the
Project Management and Technical Architect functions.

He has authored, and edited several books and articles on J2EE, Cloud Computing, and mobile tech-
nologies. He holds a Master’s degree in Software Engineering and is an instrument-rated private pilot.

http://www.learn2develop.net
mailto:weimenglee@learn2develop.net

ACKNOWLEDGMENTS

EVERY TIME | FINISH A BOOK PROJECT, I always tell myself that this will be the last book that I ever

write. That’s because writing books is such a time-consuming and laborious effort. However, when

you receive e-mail messages from readers who want to thank you for helping them learn a new tech-
nology, all the frustrations disappear.

Sure enough, when I finished my previous book on iOS programming, I immediately signed on to
do another book — this time about Android. Although you only see the author’s name on the book
cover, a lot of people actually worked behind the scenes to make it possible. And now that the
book is finally done, it is time to thank a number of those people.

First, a huge thanks to Ami Sullivan, my editor, who is always a pleasure to work with. I cannot
believe that we have already worked on three books together in such a short duration (only one year)
and this is our fourth book! When I hear that Ami is going to be my editor, I know the project is
in good hands. Thanks for the guidance, Ami; and thank you for your patience during those times
when it seemed like the book was never going to be finished on schedule!

I should not forget the heroes behind the scene: copy editor Luann Rouff and technical editor Kunal
Mittal. They have been eagle-eye editing the book, making sure that every sentence makes sense —
both grammatically as well as technically. Thanks, Luann and Kunal!

I also want to take this chance to thank my editor at MobiForge.com, Ruadhan O'Donoghue, who has
always been very supportive of my articles. He is always receptive of my ideas and has always been
understanding when my schedule falls behind. Thanks for maintaining such a great site, Ruadhan!

Last, but not least, I want to thank my parents, and my wife, Sze Wa, for all the support they have
given me. They selflessly adjusted their schedules to accommodate mine when I was working on this
book. My wife, as always, stayed up late with me on numerous nights as I furiously worked to meet
the deadlines, and for this I am very grateful. Finally, to our lovely dog, Ookii, thanks for staying by
our side. (For those readers who do not know who Ookii is, you can find two pictures of her in this
book. I will leave finding them as an extra exercise for you!)

CONTENTS

INTRODUCTION XV
CHAPTER 1: GETTING STARTED WITH ANDROID PROGRAMMING 1
What Is Android? 2
Android Versions 2
Features of Android 3
Architecture of Android 3
Android Devices in the Market 4
The Android Market 6
Obtaining the Required Tools 6
Eclipse 7
Android SDK 7
Android Development Tools (ADT) 7
Creating Android Virtual Devices (AVDs) "
Creating Your First Android Application 14
Anatomy of an Android Application 22
Summary 25
CHAPTER 2: ACTIVITIES AND INTENTS 27
Understanding Activities 27
Applying Styles and Themes to Activity 32
Hiding the Activity Title 33
Displaying a Dialog Window 34
Displaying a Progress Dialog 39
Linking Activities Using Intents 43
Resolving Intent Filter Collision 48
Returning Results from an Intent 50
Passing Data Using an Intent Object 54
Calling Built-In Applications Using Intents 56
Understanding the Intent Object 64
Using Intent Filters 65
Adding Categories 71
Displaying Notifications 73
Summary 78

CONTENTS

CHAPTER 3: GETTING TO KNOW THE ANDROID USER INTERFACE 81
Understanding the Components of a Screen 81
Views and ViewGroups 82
LinearLayout 83
AbsoluteLayout 87
TableLayout 89
RelativeLayout 91
FramelLayout 93
ScrollView 95
Adapting to Display Orientation 97
Anchoring Views 98
Resizing and Repositioning 101
Managing Changes to Screen Orientation 104
Persisting State Information during Changes in Configuration 108
Detecting Orientation Changes 109
Controlling the Orientation of the Activity 110
Creating the User Interface Programmatically 1M1
Listening for Ul Notifications 14
Overriding Methods Defined in an Activity 114
Registering Events for Views 119
Summary 122
CHAPTER 4: DESIGNING YOUR USER INTERFACE USING VIEWS 125
Basic Views 126
TextView View 126
Button, ImageButton, EditText, CheckBox, ToggleButton, RadioButton,
and RadioGroup Views 127
ProgressBar View 135
AutoCompleteTextView View 141
Picker Views 144
TimePicker View 144
Displaying the TimePicker in a Dialog Window 147
DatePicker View 149
Displaying the DatePicker View in a Dialog Window 153
List Views 156
ListView View 156
Customizing the ListView 159
Using the Spinner View 162

Summary 166

CONTENTS

CHAPTER 5: DISPLAYING PICTURES AND MENUS WITH VIEWS 169
Using Image Views to Display Pictures 169
Gallery and ImageView Views 170
ImageSwitcher 177
GridView 181
Using Menus with Views 185
Creating the Helper Methods 186
Options Menu 188
Context Menu 190
Some Additional Views 193
AnalogClock and DigitalClock Views 194
WebView 194
Summary 200
CHAPTER 6: DATA PERSISTENCE 203
Saving and Loading User Preferences 203
Using getSharedPreferences() 204
Using getPreferences|) 208
Persisting Data to Files 209
Saving to Internal Storage 209
Saving to External Storage (SD Card) 214
Choosing the Best Storage Option 216
Using Static Resources 217
Creating and Using Databases 218
Creating the DBAdapter Helper Class 218
Using the Database Programmatically 224
Adding Contacts 224
Retrieving All the Contacts 225
Retrieving a Single Contact 226
Updating a Contact 227
Deleting a Contact 228
Upgrading the Database 230
Pre-Creating the Database 230
Bundling the Database with an Application 231
Summary 234
CHAPTER 7: CONTENT PROVIDERS 237
Sharing Data in Android 237
Using a Content Provider 238
Predefined Query String Constants 243

Xi

CONTENTS

Projections 246
Filtering 246
Sorting 247
Creating Your Own Content Providers 247
Using the Content Provider 256
Summary 260
CHAPTER 8: MESSAGING AND NETWORKING 263
SMS Messaging 263
Sending SMS Messages Programmatically 264
Getting Feedback After Sending the Message 267
Sending SMS Messages Using Intent 269
Receiving SMS Messages 270
Updating an Activity from a BroadcastReceiver 273
Invoking an Activity from a BroadcastReceiver 277
Caveats and Warnings 280
Sending E-Mail 281
Networking 284
Downloading Binary Data 286
Downloading Text Files 288
Accessing Web Services 291
Performing Asynchronous Calls 296
Summary 297
CHAPTER 9: LOCATION-BASED SERVICES 301
Displaying Maps 302
Creating the Project 302
Obtaining the Maps API Key 303
Displaying the Map 305
Displaying the Zoom Control 308
Changing Views 310
Navigating to a Specific Location 312
Adding Markers 315
Getting the Location That Was Touched 318
Geocoding and Reverse Geocoding 320
Getting Location Data 322
Monitoring a Location 327
Summary 327

xii

CONTENTS

CHAPTER 10: DEVELOPING ANDROID SERVICES 331
Creating Your Own Services 331
Performing Long-Running Tasks in a Service 336
Performing Repeated Tasks in a Service 341
Executing Asynchronous Tasks on
Separate Threads Using IntentService 343
Communicating between a Service and an Activity 346
Binding Activities to Services 350
Summary 356
CHAPTER 11: PUBLISHING ANDROID APPLICATIONS 359
Preparing for Publishing 359
Versioning 360
Digitally Signing Your Android Applications 362
Deploying APK Files 367
Using the adb.exe Tool 367
Using a Web Server 369
Publishing on the Android Market 372
Creating a Developer Profile 372
Submitting Your Apps 373
Summary 378
APPENDIX A: USING ECLIPSE FOR ANDROID DEVELOPMENT 381
Getting Around in Eclipse 381
Workspaces 381
Package Explorer 382
Using Projects from Other Workspaces 383
Editors 385
Perspectives 387
Auto Import of Namespaces 387
Code Completion 388
Refactoring 388
Debugging 389
Setting Breakpoints 389
Exceptions 390
APPENDIX B: USING THE ANDROID EMULATOR 393
Uses of the Android Emulator 393
Installing Custom AVDs 393

xiii

CONTENTS

Xiv

Emulating Real Devices 398
SD Card Emulation 399
Emulating Devices with Different Screen Sizes 401
Emulating Physical Capabilities 402
Sending SMS Messages to the Emulator 403
Making Phone Calls 406
Transferring Files into and out of the Emulator 407
Resetting the Emulator 409
APPENDIX C: ANSWERS TO EXERCISES 41
Chapter 1 Answers 411
Chapter 2 Answers 41
Chapter 3 Answers 412
Chapter 4 Answers 412
Chapter 5 Answers 412
Chapter 6 Answers 413
Chapter 7 Answers 413
Chapter 8 Answers 413
Chapter 9 Answers 413
Chapter 10 Answers 414
Chapter 11 Answers 414

INDEX

415

INTRODUCTION

I FIRST STARTED PLAYING WITH THE ANDROID SDK before it was officially released as version 1.0. Back
then, the tools were unpolished, the APIs in the SDK were unstable, and the documentation was sparse.
Fast forward two and a half years, Android is now a formidable mobile operating system, with a fol-
lowing no less impressive than the iPhone. Having gone through all the growing pains of Android, I
think now is the best time to start learning about Android programming — the APIs have stabilized,
and the tools have improved. But one challenge remains: getting started is still an elusive goal for many.
It was with this challenge in mind that I was motivated to write this book, one that could benefit begin-
ning Android programmers and enable them to write progressively more sophisticated applications.

As a book written to help jump-start beginning Android developers, it covers the necessary topics in
a linear manner so that you can build on your knowledge without being overwhelmed by the details.
I adopt the philosophy that the best way to learn is by doing — hence the numerous Try It Out sec-
tions in each chapter, which first show you how to build something and then explain how everything
works.

Although Android programming is a huge topic, my aim for this book is threefold: to get you started
with the fundamentals, to help you understand the underlying architecture of the SDK, and to appre-
ciate why things are done in certain ways. It is beyond the scope of any book to cover everything
under the sun related to Android programming, but I am confident that after reading this book (and
doing the exercises), you will be well equipped to tackle your next Android programming challenge.

WHO THIS BOOK IS FOR

This book is targeted for the beginning Android developer who wants to start developing applications
using Google’s Android SDK. To truly benefit from this book, you should have some background in
programming and at least be familiar with object-oriented programming concepts. If you are totally
new to Java — the language used for Android development — you might want to take a programming
course in Java programming first, or grab one of many good books on Java programming. In my expe-
rience, if you already know C# or VB.NET, learning Java is not too much of an effort; you should be
comfortable just following along with the Try It Outs.

For those totally new to programming, [know the lure of developing mobile apps and making some
money is tempting. However, before attempting to try out the examples in this book, I think a better
starting point would be to learn the basics of programming first.

@ NOTE All the examples discussed in this book were written and tested using version

2.3 of the Android SDK. While every effort is made to ensure that all the tools used
in this book are the latest, it is always possible that by the time you read this book,
a newer version of the tools may be available. If so, some of the instructions and/or
screenshots may differ slightly. However, any variations should be manageable.

INTRODUCTION

WHAT THIS BOOK COVERS

Xvi

This book covers the fundamentals of Android programming using the Android SDK. It is divided
into 11 chapters and three appendices.

Chapter 1: Getting Started with Android Programming covers the basics of the Android OS and its
current state. You will learn about the features of Android devices, as well as some of the popular
devices in the market. You will then learn how to download and install all the required tools to
develop Android applications and then test them on the Android Emulator.

Chapter 2: Activities and Intents gets you acquainted with the two fundamental concepts in Android
programming: activities and intents. Activities are the building blocks of an Android application. You
will learn how to link activities together to form a complete Android application using intents, the
glue to links activities and one of the unique characteristics of the Android OS.

Chapter 3: Getting to Know the Android User Interface covers the various components that make up

the Ul of an Android application. You will learn about the various layouts you can use to build the Ul
of your application, and the numerous events that are associated with the UI when users interact with
the application.

Chapter 4: Designing Your User Interface Using Views walks you through the various basic views
you can use to build your Android Ul. You will learn three main groups of views: basic views, picker
views, and list views.

Chapter 5: Displaying Pictures and Menus with Views continues the exploration of views. Here, you
will learn how to display images using the various image views, as well as display options and con-
text menus in your application. This chapter ends with some additional cool views that you can use
to spice up your application.

Chapter 6: Data Persistence shows you how to save, or store, data in your Android application. In
addition to learning the various techniques to store user data, you will also learn file manipulation
and how to save files onto internal and external storage (SD card). In addition, you will learn how to
create and use a SQLite database in your Android application.

Chapter 7: Content Providers discusses how data can be shared among different applications on an
Android device. You will learn how to use a content provider and then build one yourself.

Chapter 8: Messaging and Networking explores two of the most interesting topics in mobile pro-
gramming — sending SMS messages and network programming. You will learn how to programmat-
ically send and receive SMS and e-mail messages; and how to connect to web servers to download
data. Finally, you will see how Web services can be consumed in an Android application.

Chapter 9: Location-Based Services demonstrates how to build a location-based service application
using Google Maps. You will also learn how to obtain geographical location data and then display
the location on the map.

Chapter 10: Developing Android Services shows you how you can write applications using services.
Services are background applications that run without a UI. You will learn how to run your services asyn-
chronously on a separate thread, and how your activities can communicate with them.

INTRODUCTION

Chapter 11: Publishing Android Applications discusses the various ways you can publish your Android
applications when you are ready. You will also learn about the steps to publishing and selling your appli-
cations on the Android Market.

Appendix A: Using Eclipse for Android Development provides a brief overview of the many features
in Eclipse.

Appendix B: Using the Android Emulator provides some tips and tricks on using the Android Emulator
for testing your applications.

Appendix C: Answers to Exercises contains the solutions to the end-of-chapter exercises found in
every chapter.

HOW THIS BOOK IS STRUCTURED

This book breaks down the task of learning Android programming into several smaller chunks, enabling
you to digest each topic before delving into a more advanced one.

If you are a total beginner to Android programming, start with Chapter 1 first. Once you have familiar-
ized yourself with the basics, head over to the appendixes to read more about Eclipse and the Android
Emulator. When you are ready, continue with Chapter 2 and gradually move into more advanced topics.

A feature of this book is that all the code samples in each chapter are independent of those discussed
in previous chapters. That way, you have the flexibility to dive into the topics that interest you and
start working on the Try It Out projects.

WHAT YOU NEED TO USE THIS BOOK

All the examples in this book run on the Android Emulator (which is included as part of the Android
SDK). However, to get the most out of this book, having a real Android device would be useful
(though not absolutely necessary).

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout the book.

LAl These Are Exercises or Examples for You to Follow

The Try It Out sections appear once or more per chapter. These are exercises to work through as you
follow the related discussion in the text.

1.
2.

They consist of a set of numbered steps.

Follow the steps with your copy of the project files.

xvii

INTRODUCTION

How It Works

After each Try It Out, the code you’ve typed is explained in detail.

As
>

>
>
>

for other conventions in the text:
New terms and important words are highlighted in italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.
Filenames, URLs, and code within the text are treated like so: persistence.properties.
Code is presented in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bolding to emphasize code that is of particular importance in the
present context.

@ NOTE Notes, tips, hints, tricks, and asides to the current discussion look like this.

SOURCE CODE

xviii

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All the source code used in this book
is available for download at www.wrox.com. When at the site, simply locate the book’s title (use the
Search box or one of the title lists) and click the Download Code link on the book’s detail page to
obtain all the source code for the book.

You’ll find the filename of the project you need in a CodeNote such as this at the beginning of the
Try it Out features:

code snippet filename

After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-01711-1.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time help us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com, you will find a number of different forums that will help you not only as you read
this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you want to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

XiX

http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport

INTRODUCTION

XX

After you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the Web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as for many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Getting Started with
Android Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

What is Android?

Android versions and its feature set

The Android architecture

The various Android devices on the market
The Android Market application store

How to obtain the tools and SDK for developing Android applications

Y Y Y Y Y VY Y

How to develop your first Android application

Welcome! The fact that you are holding this book in your hands (or are reading it on your lat-
est mobile device) signifies that you are interested in learning how to write applications for the
Android platform — and there’s no better time to do this than now! The mobile application
market is exploding, and recent market research shows that Android has overtaken iPhone
to occupy the second position in the U.S. smartphone market. The first place honor currently
goes to Research In Motion (RIM), with Apple’s iPhone taking third place. By the time you
read this, chances are good that Android may have become the number one smartphone plat-
form in the U.S., and that you may even be reading this on one of the latest Android devices.

What propelled this relatively unknown operating system, which Google bought in 20035, to
its popular status today? And what features does it offer? In this chapter you will learn what
Android is, and what makes it so compelling to both developers and device manufacturers alike.
You will also get started with developing your first Android application, and learn how to obtain
all the necessary tools and set them up. By the end of this chapter, you will be equipped with the
basic knowledge you need to explore more sophisticated techniques and tricks for developing
your next killer Android application.

2 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

WHAT IS ANDROID?

Android is a mobile operating system that is based on a modified version of Linux. It was originally
developed by a startup of the same name, Android, Inc. In 20035, as part of its strategy to enter the
mobile space, Google purchased Android and took over its development work (as well as its develop-
ment team).

Google wanted Android to be open and free; hence, most of the Android code was released under
the open-source Apache License, which means that anyone who wants to use Android can do so by
downloading the full Android source code. Moreover, vendors (typically hardware manufacturers)
can add their own proprietary extensions to Android and customize Android to differentiate their
products from others. This simple development model makes Android very attractive and has thus
piqued the interest of many vendors. This has been especially true for companies affected by the phe-
nomenon of Apple’s iPhone, a hugely successful product that revolutionized the smartphone industry.
Such companies include Motorola and Sony Ericsson, which for many years have been developing
their own mobile operating systems. When the iPhone was launched, many of these manufacturers
had to scramble to find new ways of revitalizing their products. These manufacturers see Android as
a solution — they will continue to design their own hardware and use Android as the operating sys-
tem that powers it.

The main advantage of adopting Android is that it offers a unified approach to application development.
Developers need only develop for Android, and their applications should be able to run on numerous
different devices, as long as the devices are powered using Android. In the world of smartphones, appli-
cations are the most important part of the success chain. Device manufacturers therefore see Android
as their best hope to challenge the onslaught of the iPhone, which already commands a large base of
applications.

Android Versions

Android has gone through quite a number of updates since its first release. Table 1-1 shows the vari-
ous versions of Android and their codenames.

TABLE 1-1: A Brief History of Android Versions

ANDROID VERSION RELEASE DATE CODENAME
1.1 9 February 2009

1.5 30 April 2009 Cupcake

1.6 15 September 2009 Donut
2.0/21 26 October 2009 Eclair

2.2 20 May 2010 Froyo

2.3 6 December 2010 Gingerbread

3.0 Unconfirmed at the time of writing Honeycomb

What Is Android? | 3

Features of Android

As Android is open source and freely available to manufacturers for customization, there are no fixed
hardware and software configurations. However, Android itself supports the following features:

> Storage — Uses SQLite, a lightweight relational database, for data storage. Chapter 6 discusses
data storage in more detail.

> Connectivity — Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth (includes
A2DP and AVRCP), WiFi, LTE, and WiMAX. Chapter 8 discusses networking in more detail.

Messaging — Supports both SMS and MMS. Chapter 8 discusses messaging in more detail.
Web browser — Based on the open-source WebKit, together with Chrome’s V8 JavaScript engine

Media support — Includes support for the following media: H.263, H.264 (in 3GP or MP4
container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or
3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

> Hardware support — Accelerometer Sensor, Camera, Digital Compass, Proximity Sensor,
and GPS

> Multi-touch — Supports multi-touch screens

> Multi-tasking — Supports multi-tasking applications

> Flash support — Android 2.3 supports Flash 10.1.

>

Tethering — Supports sharing of Internet connections as a wired/wireless hotspot

Architecture of Android

In order to understand how Android works, take a look at Figure 1-1, which shows the various layers
that make up the Android operating system (OS).

APPLICATIONS

S | N B | e

APPLICATION FRAMEWORK
{ Activity Manager } { Window Manager } {Comem Providers} { View System }

()

{ Package Manager } {Telephony Manager} { Resource Manager } { Location Manager } {Notification Manager}

LIBRARIES ANDROID RUNTIME

{ Surface Manager } { Media Framework } { SQLite }
{ OpenGL/ES } { FreeType } { WebKit } Dalvik Virtual Machine
{ SGL J { SSL J { libc J

LINUX KERNEL
{ Display Driver } { Camera Driver } {Flash Memory Driver} {Binder(IPC) Driver}

{ Keypad Driver } { WiFi Driver } { Audio Drivers } {PowerManagememJ

FIGURE 1-1

4 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

The Android OS is roughly divided into five sections in four main layers:

>

Linux kernel — This is the kernel on which Android is based. This layer contains all the low-
level device drivers for the various hardware components of an Android device.

Libraries — These contain all the code that provides the main features of an Android OS. For
example, the SQLite library provides database support so that an application can use it for
data storage. The WebKit library provides functionalities for web browsing.

Android runtime — At the same layer as the libraries, the Android runtime provides a set of core
libraries that enable developers to write Android apps using the Java programming language. The
Android runtime also includes the Dalvik virtual machine, which enables every Android appli-
cation to run in its own process, with its own instance of the Dalvik virtual machine (Android
applications are compiled into the Dalvik executables). Dalvik is a specialized virtual machine
designed specifically for Android and optimized for battery-powered mobile devices with limited
memory and CPU.

Application framework — Exposes the various capabilities of the Android OS to application
developers so that they can make use of them in their applications.

Applications — At this top layer, you will find applications that ship with the Android device
(such as Phone, Contacts, Browser, etc.), as well as applications that you download and install
from the Android Market. Any applications that you write are located at this layer.

Android Devices in the Market

Android devices come in all shapes and sizes. As of late
November 2010, the Android OS can be seen powering
the following types of devices:

>

Y Y VY VY Y

Chances are good that you own at least one of the preceding
devices. Figure 1-2 shows (clockwise) the Samsung Galaxy S,
the HTC Desire HD, and the LG Optimus One smartphones.

Another popular category of devices that manufacturers
are rushing out is the tablet. Tablet sizes typically start at

Smartphones
Tablets
E-reader devices
Netbooks

MP4 players

Internet TVs

seven inches, measured diagonally. Figure 1-3 shows the FIGURE 1-2
Samsung Galaxy Tab and the Dell Streak, which is a five-
inch phone tablet.

What Is Android? | 5

Besides smartphones and tablets, Android is also beginning to appear in dedicated devices, such as
e-book readers. Figure 1-4 shows the Barnes and Noble’s NOOKcolor, which is a color e-Book reader

running the Android OS.

FIGURE 1-3 FIGURE 1-4

In addition to these popular mobile devices, Android is also slowly finding its way into your living
room. People of Lava, a Swedish company, has developed an Android-based TV, call the Scandinavia

Android TV (see Figure 1-5).

Google has also ventured into a proprietary smart TV platform based on Android and co-developed
with companies such as Intel, Sony, and Logitech. Figure 1-6 shows Sony’s Google TV.

FIGURE 1-5 FIGURE 1-6

6 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

The Android Market

As mentioned earlier, one of the main factors determining the success of a smartphone platform is
the applications that support it. It is clear from the success of the iPhone that applications play a very
vital role in determining whether a new platform swims or sinks. In addition, making these applica-
tions accessible to the general user is extremely important.

As such, in August 2008, Google announced the Android Market, an online application store for
Android devices, and made it available to users in October 2008. Using the Market application that
is preinstalled on their Android device, users can simply download third-party applications directly
onto their devices. Both paid and free applications are supported on the Android Market, though
paid applications are available only to users in certain countries due to legal issues.

Similarly, in some countries, users can buy paid applications from the Android Market, but develop-
ers cannot sell in that country. As an example, at the time of writing, users in India can buy apps from
the Android Market, but developers in India cannot sell apps on the Android Market. The reverse may

also be true; for example, users in South Korea cannot buy apps, but developers in South Korea can sell
apps on the Android Market.

Chapter 11 discusses more about the Android Market and how you can sell your own applications in it.

OBTAINING THE REQUIRED TOOLS

Now that you know what Android is and its feature set, you are probably anxious to get your hands
dirty and start writing some applications! Before you write your first app, however, you need to
download the required tools and SDKs.

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the tools needed
are free and can be downloaded from the Web. Most of the examples provided in this book should work
fine with the Android emulator, with the exception of a few examples that require access to the hard-
ware. For this book, I will be using a Windows 7 computer to demonstrate all the code samples. If you
are using a Mac or Linux computer, the screenshots should look similar; some minor differences may be
present, but you should be able to follow along without problems.

So, let the fun begin!

JAVA JDK

The Android SDK makes use of the Java SE Development Kit (JDK). Hence, if your
computer does not have the JDK installed, you should start by downloading the JDK
from www.oracle.com/technetwork/java/javase/downloads/index.html and install-
ing it prior to moving to the next section.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Obtaining the Required Tools | 7

Eclipse

The first step towards developing any applications is obtaining the integrated development environment
(IDE). In the case of Android, the recommended IDE is Eclipse, a multi-language software development
environment featuring an extensible plug-in system. It can be used to develop various types of applica-
tions, using languages such as Java, Ada, C, C++, COBOL, Python, etc.

For Android development, you should download the Eclipse IDE for Java EE =2
Developers (www.eclipse.org/downloads/packages/eclipse-ide-java-ee- @@vl < Anls..
developers/heliossrl). Six editions are available: Windows (32 and 64-bit), T
Mac OS X (Cocoa 32 and 64), and Linux (32 and 64-bit). Simply select the rel- Neme '
evant one for your operating system. All the examples in this book were tested cenfiguration

dropins

using the 32-bit version of Eclipse for Windows.

leatures

pd

Once the Eclipse IDE is downloaded, unzip its content (the eclipse folder) into ehogiks
a folder, say c:\aAndroid\. Figure 1-7 shows the content of the eclipse folder. ’:;‘i’:i‘;mm
2} mfifacts.am]
. = edlipse.exe
Androld SDK & | echpsean
5] echpsecens
The next important piece of software you need to download is, of course, the ?W'_“‘:""I"
.) notice. htmi
Android SDK. The Android SDK contains a debugger, libraries, an emulator,
documentation, sample code, and tutorials. * lan L
13 ilems
You can download the Android SDK from http://developer.android.com/sdk/ } J
e —————
index.html. FIGURE 1-7

Once the SDK is downloaded, unzip its content (the android-sdk-windows folder)
into the c:\Android\ folder, or whatever name you have given to the folder you just
created.

Android Development Tools (ADT)

The Android Development Tools (ADT) plug-in for Eclipse is an extension to the Eclipse IDE that
supports the creation and debugging of Android applications. Using the ADT, you will be able to do
the following in Eclipse:

> Create new Android application projects.

> Access the tools for accessing your Android emulators and devices.
> Compile and debug Android applications.

> Export Android applications into Android Packages (APK).

> Create digital certificates for code-signing your APK.

To install the ADT, first launch Eclipse by double-clicking on the eclipse.exe file located in the
eclipse folder.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr1
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr1

8 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

When Eclipse is first started, you will be prompted for a folder to use as your workspace. In Eclipse,
a workspace is a folder where you store all your projects. Take the default suggested and click OK.

Once Eclipse is up and running, select the Help = Install New Software... menu item (see

Figure 1-8).

In the Install window that appears, type http://dl-ssl.google.com/android/eclipse in the text box (see

Figure 1-9) and click Add....

After a while, you will see the Developer Tools item appear in the middle of the window (see Figure 1-10).
Expand it, and it will reveal its content: Android DDMS, Android Development Tools, and Android

Hierarchy Viewer. Check all of them and click Next.

!
|
Iwtindow
b~ | B Welcome b et
| @ Help Contents
| 45 Senech
Dynamic Help
Key Assist.. Chrl+Shaft+L
Tips and Tricks...
& Repart Bug or Enhancement...
Cheat Sheets..,

Check for Updates
Install New Software...
Felifse Marketplace...

About Eclipse

FIGURE 1-8

&) Install =

Available Suftware

=
Check the iterrs Hhal you wish b install A)‘J
¢

Work with; httpe//dl- ssl.goegle.com/android/eclipse - [Add.
Finnel rrscee sailbware by werking wath the “Avalabile Sullware Siles” preferences,
type filter text
MName Version
] 000 Peserlesprer Toels

v m | v
| Selecti Deselect All

Details
9] Shenw aily the latest versions of avsilable softwane |1 Hicke iterns that are alresdy installed
1| Groug items by calegory What is aliesddy inslalled?

] Contact all upedate sites during install 1o find eauired softoare

®

< Back Heat > Finisk Cancel |

FIGURE 1-9

http://dl-ssl.google.com/android/eclipse

Obtaining the Required Tools | 9

oo ==

Awvnilnble Software
Check the items that you wish to install, \P
Vork with: httpy//dl-£sl.google.com/android/eclipse/ - Addun

Find mare software by working with the “Auailable Software Sites” preferences,

type Iillert_lm — _ __ _ —
Mame Version |
a (@] 00 Developer ook
[&+ Android DUMS B01V2U012062107-82219
[#] 45 Android Development Tools §.0.1201012062007 82219 |
[¥] 45+ Android Hierarchy Viewer 8.0.17201012062107-82219 |
T—
Details

[¥] Show only the latest versions of available software [7] Hide items that are already installed

[¥] Graup tems by categary What is already installed?
7] Centact all update sites. during install 1o find wquited software

©) LT | T S

FIGURE 1-10

When you see the installation details, as shown in Figure 1-11, click Next.

18 st (5 i |

Install Details
Review the tems to be installed, i

| Name Version Id
@4 Andicl DOMS BN WINMAEND.. comandrididee pse.didoms featue.gro..
§k Android Development Tools B.O1v20101206210... com.android.de.ec |
{5 Android Hierarchy Viewer 8.0.1.420101206210... cem.android.ide.cclipse.hi i |
|k .]
Size: Unknown
Details

® [ton | (Gancel]

FIGURE 1-11

10 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

You will be asked to review the licenses for the tools. Check the option to accept the license agree-
ments (see Figure 1-12). Click Finish to continue.

B Trstall ==
Review Licenses
Licenses must be reviewed and accepted betore the software can be installed. -
Licenses: License text:

Apache License -
Mote! jcommon 1012 jar 15 under the B50 I
Mote: leml2-2.3,0,ar ic under the BSD licensy

@ | accept the terms of the license agreements

T} n b | (01 1do not accept the terms of the licence agreements
FIGURE 1-12

Eclipse will now proceed to download the tools from the Internet and install them (see Figure 1-13).
This will take some time, so be patient.

1@ Installing Software | olE)

” Tnstalling Software

17| Always run in background

[Runin Background| | cancel | | oetails>> |

FIGURE 1-13

NOTE |If you have any problems downloading the ADT, check out Google’s help
athttp://developer.android.com/sdk/eclipse-adt.html#installing.

Once the ADT is installed, you will be prompted to restart Eclipse. After doing so, go to Window =
Preferences (see Figure 1-14).

http://developer.android.com/sdk/eclipse-adt.html#installing

Obtaining the Required Tools | 11

Lrojet Eiep
8 g Mew Window k-
Mew Editor

Open Percpective
Show View

Customize Perzpective..
Save Perspective fs...
Reset Perspective..
Close Perspective

Close All Perspectives

Navigation
Android SDK and AVD Manager

Preferences

FIGURE 1-14

In the Preferences window that appears, select Android. You will see an error message saying that
the SDK has not been set up (see Figure 1-15). Click OK to dismiss it.

type filter te @ Value must be an eaisting directory - - o
Sl | Anclroid Preferences
Android
Ant SDK Location: Browse...
Data Management Mote: The hist of SDK Targets below is only reloaded once you hit ‘Apply’ or ‘0K’
Help
Install/Update Targel Narme Venda Platform APL. |

—

& Android SDK Location

The locatien of the Android SDK has not been sctup. Please go to Preferences >
Android and sct it up

——

Tearn

Terminal

Usage Data Collector
Validation

Web

Web Services

EML

.@

\

FIGURE 1-15

Enter the location of the Android SDK folder. In this example, it would be c:\android\
android-sdk-windows. Click OK.

Creating Android Virtual Devices (AVDs)

The next step is to create AVD to be used for testing your Android applications. AVD stands for
Android Virtual Devices. An AVD is an emulator instance that enables you to model an actual device.

12 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

Each AVD consists of a hardware profile, a mapping to a system image, as well as emulated storage,
such as a secure digital (SD) card.

You can create as many AVDs as you want in order to test your applications with several different
configurations. This testing is important to confirm the behavior of your application when it is run
on different devices with varying capabilities.

NOTE Appendix B will discuss some of the capabilities of the Android Emulator.

To create an AVD, go to Windows = Android SDK and AVD Manager.

Select the Available packages option in the left pane and expand the package name shown in the right
pane. Figure 1-16 shows the various packages available for you to create AVDs to emulate the differ-
ent versions of an Android device.

£3 Andecid SDK and AVD Manager [5] |

Vintual devices SDK Location: C:\Users\Wei-Meng L phtindroid 2 3\android-sdk-wi

Inctalled packages
m Packages available tor download

4 [J] & Android Repository
| X Android SDK Taals, revision
W Android 50K Platferm: toels, revision 1
[¥] = Documentation for Android SOK, AP19, revision 1
[& SDK Platform Android 2.3, APL9, revision 1
[l SDK Platform Andraid 2.2, APTS, tevivion ?
SDK Platform Android 2.1, APIT, revision 2
SUK Matfarm Andreid 2001, APLE, revision 1 [Ubselebe)
SO Platform Android 2.0, APLS, revition 1 (Obsolete)
SDK Platform Andreid 1.6, APL4, revision 3
SDK Platform Andreid 1.5, APT3, revivion 4
W SUK Plattorm Andreid 1.1, APLZ, revision 1 (Ubselebe)
[&y samples for SDK APID, revision L
[7] & Samples for SDK APIS, revision 1
(7] & Samples far SDK APT7, revision 1
a |¥] & Third party Add-ons
« [V GoogleInc. add ons (dl-sshacogle.com)
[¥ " Google APls by Google Inc,, Android APIS, revision 1
[#) 1 Google APIs by Google Inc,, Android APLS, revision 2
|} i Goongle APE by Grogle Tnc., Android APTT, revision 1
[*fy Google APls by Google Inc,, Android APLE, revision 1 (Ubsolete)
[*Bp Google APlz by Google Inc., Android APLS, revizion 1 (Obsolete)
[#] iy Google &PIs by Google Inc, Android API4, revision 2
[i Gungle APk by Guogle Tnc, Andrsid APT3, mevision 3
| B8 Google Usb Driver package. revision 4
[¥] 8 Google Market Licensing package. revision 1
« [V ics add-ons ile.com)
[#) {f GALAXY Tab by Samsung Electronics.,, Android API8, revision 1

&

T R TE T T

EEESEE

Descnption

Add Add-on Site., | | Uelete Add-on Site... | [T Display updates [install Selected

FIGURE 1-16

Check the relevant tools, documentation, and platforms you need for your project.

Once you have selected the items you want, click the Install Selected button to download them. Because
it takes a while to download from Google’s server, it is a good idea to download only whatever you
need immediately, and download the rest when you have more time.

Obtaining the Required Tools | 13

NOTE For a start, you should at least select the latest SDK platform. At the time
of writing, the latest SDK platform is SDK Platform Android 2.3, API 9, revision 1.

Each version of the Android OS is identified by an API level number. For example, Android 2.3 is
level 9 (API 9), while Android 2.2 is level 8 (API 8), and so on. For each level, two platforms are
available. For example, level 9 offers the following:

> SDK Platform Android 2.3
> Google APIs by Google Inc.
The key difference between the two is that the Google APIs platform contains the Google Maps library.

Therefore, if the application you are writing requires Google Maps, you need to create an AVD using
the Google APIs platform (more on this in Chapter 9, “Location Based Services.”

Click the Virtual Devices item in the left pane of the window. Then click the New... button located
in the right pane of the window.

In the Create new Android Virtual Device (AVD) window, enter the items as shown in Figure 1-17.
Click the Create AVD button when you are done.

- ——+
3 Android SDR and AVD Manager CRLN
List of eisting Anchruicl Vietual Divices located al C\Users\Wei-Meng el androidavd
Installed peckages
Lyailable packages AVD Mame Target Mame Platform AP Level EI
18] Create new Android Virtual Device (AVD) sl N (peete.. |
Repair..
Name: Android 2.3 Emulator Ll
Target [Android23 - APILeveld | | i petaiss.. |
5D Card: Start.., |
& Size: Mig =)
I File: Browsc..,
Skim:
® Ruili-in: | Default (HVGA) -
7! Resolution: x
Refresh |
Harshware:
I Property Value Hew.
S— Abstracted LCD density 160 S I:

Cwverride the edsting AVD with the same name

| Crestemvd || Concel

FIGURE 1-17

14 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

In this case, you have created an AVD (put simply, an Android emulator) that emulates an Android
device running version 2.3 of the OS. In addition to what you have created, you also have the option
to emulate the device with an SD card and different screen densities and resolutions.

NOTE Appendix B explains how to emulate the different types of Android devices.

It is preferable to create a few AVDs with different API levels so that your application can be tested
on different devices. The example shown in Figure 1-18 shows the many AVDs created to test your
applications on a wide variety of different Android platforms.

F3 Anclrusied SDK and AV Manager

= | © i

Installed packages
Avalable packages

List of existing Android Virtual Devices located at C:\Users\Wei-Meng Lee\.android\avd

AVD Name

" Andreid 1.5 Emulater

w HTC

~ Andreid 2.1 Emulater

* GooglenPls 2.1 Emulator
* fAndreid 2.2 Emulater

~ EmulatorWithSD

* GoogleAPlc 2.2 Emulator
~ WVGAES

o SameungGalayTab

* Andraid_2.3_Emulator

" HDScreen

% Android_2.3_Emulator_With5D

" Avald Andreid Virtual Device.

Target Name
Andreid 1.5

Andreid 1.6

Android 2.1-updatel
Google APL (Google Inc.)
Andreid 2.2

Google APLs (Google Inc.)
Google APL (Google Inc.)
Google APL (Google Inc.)
GALAXY Tab Addon (Samzung Elect...
Android 2.3

Andreid 23

Google APIz (Google Inc.)

A repairable Androwd Virtual Device.
W An Andrond Virtual Device that Tailed to load. Click 'Details’ 1o see the enor.

Platform

FIGURE 1-18

Creating Your First Android Application

With all the tools and the SDK downloaded and installed, it is now time to start your engine! As
in all programming books, the first example uses the ubiquitous Hello World application. This will
enable you to have a detailed look at the various components that make up an Android project.

So, without any further ado, let’s dive straight in!

Creating Your First Android Application

codefile HelloWorld.zip available for download at Wrox.com

1. Using Eclipse, create a new project by selecting File = Project... (see Figure 1-19).

Obtaining the Required Tools | 15

2.

U BT T ———

[FIc] edt Retactor Run Nawgate Scarch Pro

et iriowe:) iprm -~ .
Mew Alt+Shifts[» | 28 JPA Project
Open File.. 7 Enlerprise Apphication Project
Cloze cutew |G| Dimamic Weh Projoct
Clowe Al Culsshifi-w |89 EBProject o
& Connector Project
Save CirleS | o ol -
#4 Application Client Project
G| SSve sy G0 Static Weeh Project
Save All CorlsShift=S |03 proect.,
Rever
& Senvlel
Movte 6 Session Bean (€16 3.0
Rename... P | cg Message-Driven Bean (B8)
Refrech F5 GL Entity
Convert Line Delimiters To 3 A WebService
Print... Crlsp [[H Folder
% File
Switch Warkspace v
Restart 4 Bample.
£ Import. 4 Other.. ChileM
3 Fxpart.
Properties Alt+Enter
Bt
T T (rin alwde_ (Mn . ¢ (Sc
FIGURE 1-19

@

NOTE After you have created your first Android application, subsequent
Android projects can be created by selecting File = New = Android Project.

Expand the Android folder and select Android Project (see Figure 1-20).

B New Project
Select a wizard

Wizards:

| ==
—)

type filter text.

(&L Java Project

L2 Plug-in Project
b (= General
« = Andraid
iU
[
b S Bl

b = Java
o (& Java EE

% Android Progect |
Ji Android Test Project

i+ (= Felipse Mudeling Framework

& Java Project trom basting Ant Buildhile

@

< Back

Finish Cancel

FIGURE 1-20

16 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

3. Name the Android project as shown in Figure 1-21 and then click Finish.

18} New Android Project =| &
New Android Project $
Creates a new Android Project resource. ngs
Project name: HrJinWoﬂd
Contents
1@ Create new project in workspace
() Create projec! from existing source
[#]Use default location
CifUsers/Wer-Meng Lee/mynowwerkspace/HelloWerld Bitnarse.
(I Create project from existing sample
Samples: | AccelerometerMay
Build Target
Target Hame Vendor Platharm APT..
[T] Android 2.1-upda.. fAndroid Open Source Project 21-upd.. 7
[Goegle APls Google Inc. 21-upd.. 7
|| Andraid 2.2 Android Open Source Project 22 B
[F] Guugle APL GuoogleInc. 22 8
[7] GALAXY Tab Add.. Sameung Electronics Co, Ltd. 22 8
[¥] Andreid 2.3 Andreid Open Source Project 23 9
7] Google APls Goegle Inc. 23 L]
Standard Android platform 2.3
Propertiec
Application name: HelleWorld
Package name: netlearnZdevelop.tHelloWorld
@] Create Activity: Mainfctivity
Man SDK Versien: 9
@}' < lack Nest > | [Limsh] | Cancel

FIGURE 1-21

NOTE You need to have at least a period (.) in the package name. The rec-
ommended convention for the package name is to use your domain name
in reverse order, followed by the project name. For example, my company’s
domain name is learn2develop.net, hence my package name would be
net.learn2develop.HelloWorld.

The Eclipse IDE should now look like Figure 1-22.

In the Package Explorer (located on the left of the Eclipse IDE), expand the HelloWorld project by
clicking on the various arrows displayed to the left of each item in the project. In the res/layout
folder, double-click the main.xm1 file (see Figure 1-23).

Obtaining the Required Tools | 17

B s g bl
Fie EdA Relactor Fum Scwsce Nawgale Sessch Project Window Help
e A Bxid $-0-%- HE~- &5 5~ chlei e o [T 2 e e
s, O =B task 5 = 5@ welceme 3
ERle™ g-Eslexela”
L Hellgwony Find R oAb Asate.,
L Uncategorised.
(@ Cannect Mylyn n

Canmeqt to yewr task and ALM tols.
S Outline 31 it =]
(A outline iy not mvslable.

(T v — =B
0 fems
Deseriptien . Hesource Path
| " vl W v
FIGURE 1-22
B v - HelcWord/ e mpout/reain om « Ecpee ==
Fie Edn Refactor Fun Source Nmwgrte Search Preject Window Help
- 8 BAE $-0-0- @@ &5 7~ v vt iy 3 [T 2 sava e
ot 56 o i =
S8 T Edting contig: defaut (BRIETTIR- =1
o & Heloiodd
- DB {27 qvGa = |Foran = |y loca = [Dock. =[Oy time = | Theme = Conate_ |
et leamideveiep Hellsana i -
L S o
o |
&
o B Andrsid 23 6 Sufnceiew | |
o andrede - e e () Vi
o mmats D) ViewShab
o B Webien E
G denwable-hapi
= demwable-ldpi © acalogciock
(2 deawable-mdpi &) AutoCompleteT
+ 2 layout @ Button
(1] mainami) Crecilien
3 ia\‘xu««w {Qu =
) defoub praperties B b
oy D Dunebickes =
AT DhatalClosk = | *
Graghical Layeut | mainam|
[£. Probiems 1 & hndoc) 5, Decarton w =0
0 iterens.
Descrigtion - Ressutc Path Lecitisn Type
4 w '
g sl « HeloWedd/ietlayent

FIGURE 1-23

The main.xml file defines the user interface (UI) of your application. The default view is the Layout
view, which lays out the activity graphically. To modify the UL, click the main.xml tab located at
the bottom (see Figure 1-24).

18 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

7.

o

</LinearLayout>

4

. Layout | main.xrml |

[5 Problems 33-'-\._”@ Javadoc|

FIGURE 1-24

Add the following code in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="€@string/hello" />

<TextView
android:layout_width="£fill parent"
android:layout_height="wrap content”

android:text="This is my first Android Application!" />

<Button
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="And this is a clickable button!" />

</LinearLayout>

To save the changes made to your project, press Ctrl+s.

You are now ready to test your application on the Android Emulator. Select the project name in
Eclipse and press F11. You will be asked to select a way to debug the application. Select Android

Application as shown in Figure 1-25 and click OK.

NOTE Some Eclipse installations have an irritating bug: After creating a new proj-
ect, Eclipse reports that it contains errors when you try to debug the application.
This happens even when you have not modified any files or folders in the project.
To solve this problem, simply delete the R.java file located under the gen/net
.learn2develop.HelloWorld folder; Eclipse will automatically generate a new
R.java file for you. Once this is done, the project shouldn’t contain any errors.

http://schemas.android.com/apk/res/android

Obtaining the Required Tools | 19

Run As l = W
Select a way to run ‘HelloWorld™:

[Androic Applic aticn

i Andraich Wit Test

5] lava Applet

T lava Application
o it Test

Descnption
Runs an Android Application

® =)

FIGURE 1-25

10. The Android Emulator will now be started (if the emulator is locked, you need to slide the unlock
button to unlock it first). Figure 1-26 shows the application running on the Android Emulator.

i 555GoogleAPls 2.3 Emulator [E=NE

HelloWorld

\

FIGURE 1-26

11. Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now
shows the Home screen (see Figure 1-27).

20 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

i 5554:GoogleAPls 2.2 Emulator [

Fhﬁ*ﬁhfﬁhr
7 o i P

FIGURE 1-27

12. Click the application Launcher icon to display the list of applications installed on the device. Note
that the HelloWorld application is now installed in the application launcher (see Figure 1-28).

[¥
! 5554:GoogleAPls 2.2 Emulator =

e r?[—?”@f—[_?iw’—'{'h

"Tf"“r"

FIGURE 1-28

Obtaining the Required Tools | 21

WHICH AVD WILL BE USED TO TEST YOUR APPLICATION?

Recall that earlier you created a few AVDs using the AVD Manager. So which one
will be launched by Eclipse when you run an Android application? Eclipse will
check the target that you specified (when you created a new project), comparing it
against the list of AVDs that you have created. The first one that matches will be
launched to run your application.

If you have more than one suitable AVD running prior to debugging the application,
Eclipse will display the Android Device Chooser window, which enables you to select
the desired emulator/device to debug the application (see Figure 1-29).

' Android Device Chocser ==\

Select a device compatible with target Andrend 2.2,
@ Choose & running Android device

Serial Number AVD Name Target Debug State

E errmilalor-5554 Ardrmicd 2.2 _Frudator o Amadroid 2.2 ¥es Online

Brmulator555% GoogleAPl 22 Frmulalor o Google APTs (Google Tne.) Yes Online
Launch a new Android Virtual Device

AVD Name Targel Narme Platform APT Level || P

No AVD available

o | fR—

\

FIGURE 1-29

How It Works

To create an Android project using Eclipse, you need to supply the information shown in Table 1-2.

TABLE 1-2: Project Files Created by Default

PROPERTIES DESCRIPTION

Project name The name of the project

Application name A user-friendly name for your application

Package name The name of the package. You should use a reverse domain name for this.
Create Activity The name of the first activity in your application

Min SDK Version The minimum version of the SDK that your project is targeting

22 |

CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

In Android, an Activity is a window that contains the user interface of your applications. An application
can have zero or more activities; in this example, the application contains one activity: MainActivity.
This MainActivity is the entry point of the application, which is displayed when the application is
started. Chapter 2 discusses activities in more detail.

In this simple example, you modified the main.xm1 file to display the string “This is my first Android
Application!” and a button. The main.xml file contains the user interface of the activity, which is dis-
played when Mainactivity is loaded.

When you debug the application on the Android Emulator, the application is automatically installed on
the emulator. And that’s it — you have developed your first Android application!

The next section unravels how all the various files in your Android project work together to make your
application come alive.

Anatomy of an Android Application

Now that you have created your first Hello World Android application, it is time to dissect the innards
of the Android project and examine all the parts that make everything work.

First, note the various files that make up an Android project in the f£ Package Explorer £ = 8
Package Explorer in Eclipse (see Figure 1-30). "
. . « [} netleamldevelop.HelloWarld
The various folders and their files are as follows: . » (B Mamchingjun
4B gen| 2
. . . « £ nell {hr ol
> src — Contains the .java source files for your project. In @ Riava
this example, there is one file, MainActivity.java. The L A
MainActivity.java file is the source file for your activity. } o
You will write the code for your application in this file. 4 £ drowable hdpi
By icon.png
> Android 2.3 library — This item contains one file, G a3
android.jar, which contains all the class libraries needed - :“:;‘j:_‘p:""
for an Android application. L .
| mainam
. . & 7 values
> gen — Contains the R.java file, a compiler-generated file B s
that references all the resources found in your project. R
You should not modify this file. =) proguardcty
> assets — This folder contains all the assets used by your FIGURE 1-30
application, such as HTML, text files, databases, etc.
> res — This folder contains all the resources used in your application. It also contains a few
other subfolders: drawable-<resolution>, layout, and values. Chapter 3 talks more about
how you can support devices with different screen resolutions and densities.
> AndroidManifest.xml — This is the manifest file for your Android application. Here you spec-

ify the permissions needed by your application, as well as other features (such as intent-filters,
receivers, etc.). Chapter 2 discusses the use of the androidMani fest.xml file in more details.

Obtaining the Required Tools | 23

The main.xm1 file defines the user interface for your activity. Observe the following in bold:

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />

The estring in this case refers to the strings.xml file located in the res/values folder. Hence,
@string/hello refers to the hello string defined in the strings.xml file, which is “Hello World,
MainActivity!”:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="hello">Hello World, MainActivity!</string>
<string name="app_name">HelloWorld</string>

</resources>

It is reccommended that you store all the string constants in your application in this strings.xml file
and reference these strings using the @string identifier. That way, if you ever need to localize your
application to another language, all you need to do is replace the strings stored in the strings.xml

file with the targeted language and recompile your application.

Observe the content of the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.HelloWorld"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

The androidManifest.xml file contains detailed information about the application:
> It defines the package name of the application as net.learn2develop.HelloWorld.

> The version code of the application is 1. This value is used to identify the version number of
your application. It can be used to programmatically determine whether an application needs
to be upgraded.

> The version name of the application is 1.0. This string value is mainly used for display to the
user. You should use the format: <major>.<minor>.<point> for this value.

> The application uses the image named icon.png located in the drawable folder.

http://schemas.android.com/apk/res/android

24 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

> The name of this application is the string named app_name defined in the strings.xm1 file.

> There is one activity in the application represented by the MainActivity.java file. The label
displayed for this activity is the same as the application name.

> Within the definition for this activity, there is an element named <intent-filters>:

> The action for the intent filter is named android.intent.action.MAIN to indicate that
this activity serves as the entry point for the application.

> The category for the intent-filter is named android.intent.category.LAUNCHER
to indicate that the application can be launched from the device’s Launcher icon.
Chapter 2 discusses intents in more details.

> Finally, the android:minSdkvVersion attribute of the <uses-sdk> element specifies the minimum
version of the OS on which the application will run.

As you add more files and folders to your project, Eclipse will automatically generate the content of
R.java, which at the moment contains the following:

package net.learn2develop.HelloWorld;

public final class R {
public static final class attr {
}
public static final class drawable ({
public static final int icon=0x7£020000;
}
public static final class layout {
public static final int main=0x7£030000;
}
public static final class string {
public static final int app_name=0x7£040001;
public static final int hello=0x7£040000;

You are not supposed to modify the content of the R.java file; Eclipse automatically generates the
content for you when you modify your project.

NOTE |If you delete r.java manually, Eclipse will regenerate it for you imme-
diately. Note that in order for Eclipse to generate the R.java file for you, the
project must not contain any errors. If you realize that Eclipse has not regener-
ated R. java after you have deleted it, check your project again. The code may
contain syntax errors, or your XML files (such as AndroidManifest.xml, main.xml,
etc.) may not be well-formed.

Summary | 25

Finally, the code that connects the activity to the Ul (main.xml) is the setContentview () method,
which is in the MainActivity.java file:

package net.learn2develop.HelloWorld;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

Here, R.1layout .main refers to the main.xm1 file located in the res/1layout folder. As you add additional

XML files to the res/1layout folder, the filenames will automatically be generated in the R.java file. The

onCreate () method is one of many methods that are fired when an activity is loaded. Chapter 2 discusses
the life cycle of an activity in more detail.

SUMMARY

This chapter has provided a brief overview of Android, and highlighted some of its capabilities. If
you have followed the sections on downloading the tools and SDK, you should now have a work-
ing system — one that is capable of developing more interesting Android applications other than
the Hello World application. In the next chapter, you will learn about the concepts of activities and
intents, and the very important roles they play in Android.

1. Whatis an AVD?

2. Whatis the difference between the android:versionCode and android:versionName attributes in
the AndroidManifest.xml file?

3. Whatis the use of the strings.xml file?

Answers to the Exercises can be found in Appendix C.

26 | CHAPTER1 GETTING STARTED WITH ANDROID PROGRAMMING

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC

Android OS

Languages used for
Android application
development

Android Market
Tools for Android
Application Development

Activity

The Android manifest file

KEY CONCEPTS

Android is an open-source mobile operating system based on the
Linux operating system. It is available to anyone who wants to adapt
it to run on their own devices.

You use the Java programming language to develop Android appli-
cations. Written applications are compiled into Dalvik executables,
which are then run on top of the Dalvik Virtual Machine.

The Android Market hosts all the various Android applications written
by third-party developers.

Eclipse IDE, Android SDK, and the ADT

An activity is represented by a screen in your Android application.
Each application can have zero or more activities.

The AndroidManifest.xml file contains detailed configuration infor-
mation for your application. As your application gets more sophisti-
cated, you will modify this file, and you will see the different information
you can add to this file as you progress through the chapters.

Activities and Intents

WHAT YOU WILL LEARN IN THIS CHAPTER

What activities are

How to apply styles and themes to activities
How to display activities as dialog windows
Understanding the concept of intents

How to use the Intent object to link activities

How intent filters help you to selectively connect to other activities

Y Y Y VY Y VY Y

How to display alerts to the user using notifications

In Chapter 1, you learned that an activity is a window that contains the user interface of your
applications. An application can have zero or more activities. Typically, applications have one
or more activities, and the main aim of an activity is to interact with the user. From the moment
an activity appears on the screen to the moment it is hidden, it goes through a number of stages,
known as an activity’s life cycle. Understanding the life cycle of an activity is vital to ensuring
that your application works correctly. In this chapter, you will learn more about how activities
work and the things that you need to take note of when designing your Android application.

Apart from activities, another unique concept in Android is that of an intent. An intent is basically
the “glue” that enables different activities from different applications to work together seamlessly,
ensuring that tasks can be performed as though they all belong to one single application. In the
second part of this chapter, you will learn more about this very important concept and how you
can use it to call built-in applications such as the Browser, Phone, Maps, and more.

UNDERSTANDING ACTIVITIES

This chapter begins by looking at how to create an activity. To create an activity, you create a
Java class that extends the Activity base class:

package net.learn2develop.Activities;

28 | CHAPTER2 ACTIVITIES AND INTENTS

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Your activity class would then load its Ul component using the XML file defined in your res/layout
folder. In this example, you would load the UI from the main.xm1 file:

setContentView(R.layout.main) ;

Every activity you have in your application must be declared in your AndroidManifest.xml file,
like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Activities"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

The Activity base class defines a series of events that governs the life cycle of an activity. The Activity
class defines the following events:

> onCreate() — Called when the activity is first created

> onstart () — Called when the activity becomes visible to the user

> onResume () — Called when the activity starts interacting with the user

> onpause() — Called when the current activity is being paused and the previous activity is

being resumed

\

onstop () — Called when the activity is no longer visible to the user

\

onDestroy () — Called before the activity is destroyed by the system (either manually or by
the system to conserve memory)

> onRestart () — Called when the activity has been stopped and is restarting again

http://schemas.android.com/apk/res/android

Understanding Activities | 29

By default, the activity created for you contains the oncreate () event. Within this event handler is
the code that helps to display the Ul elements of your screen.

Figure 2-1 shows the life cycle of an activity and the various stages it goes through — from when the
activity is started until it ends.

Activity
starts

onCreate()
User navigates
back to the
activity onStart() onRestart()

onResume() <
Process is
killed
Activity is
running The activity

comes to the
foreground

Another activity comes
in front of the activity

Other applications onPause()
need memory

[The activity is no longer visible]

The activity

comes to the
foreground

onStop()

onDestroy()

Activity is
shut down

IMAGE REPRODUCED FROM WORK CREATED AND SHARED BY THE ANDROID OPEN SOURCE PROJECT
AND USED ACCORDING TO TERMS DESCRIBED IN THE CREATIVE COMMONS 2.5 ATTRIBUTION
LICENSE. SEE http://developer.android.com/reference/android/app/Activity.html

FIGURE 2-1

http://developer.android.com/reference/android/app/Activity.html

30 | CHAPTER2 ACTIVITIES AND INTENTS

The best way to understand the various stages experienced by an activity is to create a new project,
implement the various events, and then subject the activity to various user interactions.

Understanding the Life Cycle of an Activity

codefile Activities.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as shown in Figure 2-2.

g T)
Mo Andraid Projact]
c 2
restes o new Andreid Prepect rescurce. i
"
Preject mama: Actatier
Centents
@ Creste new projest in workspace
Create preject from existing source.
] Uise defimit Iscation
C:fUsera Wi Meng | tie
Creste preject from exivting samgple
Samiples | AccelersmeserPlay
il Taeget
[Farget Marma Vender Plafers A1
Andresd 15 Adioid Open Sousce Project 15 3
Goegle APty Google bne. 15 3
|] Andress 16 Andreid Open Source Project 14 4
Goegle APl Googlelne. 15 4
Andread 11 upda_ Andioid Open Source Project Heupd 7
Google APl Googlelne. Howpd. 7
Android 22 Andioid Open Source Project 2]
| 1] Goegle ap Googlelne 1 3
| GALAXY Tebddd.., Samiung Electronis Co. Ltd, 2 8
| [¥1 Andreed 23 Andreid Open Souree Preject i Ll
| 1] Google &Pl [23]
Standard Andreid platform 13
Properties
Apghcaben name: Setralies
a =
¥ Create Actooty: MuinActivity
Min 0K Versiere ©
@ Beee [i |[CEeim][cws |

FIGURE 2-2

2. IntheMainActivity.java file, add the following statements in bold:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends Activity {
String tag = "Events";

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
Log.d(tag, "In the onCreate() event");

Understanding Activities | 31

Log.d(tag, "In the onStart() event");

Log.d(tag, "In the onRestart() event");

Log.d(tag, "In the onResume() event");

Log.d(tag, "In the onPause() event");

Log.d(tag, "In the onStop() event");

Log.d(tag, "In the onDestroy() event");

}
public void onStart ()
{

super.onStart();
}
public void onRestart()
{

super.onRestart();
}
public void onResume ()
{

super .onResume () ;
}
public void onPause()
{

super.onPause();
}
public void onStop()
{

super.onStop();
}
public void onDestroy()
{

super.onDestroy() ;
}

Press F11 to debug the application on the Android Emulator.

When the activity is first loaded, you should see the following in the LogCat window (click on the
Debug perspective; see also Figure 2-3):

12-28 13:45:28.115: DEBUG/Events(334): In the onCreate()
12-28 13:45:28.115: DEBUG/Events(334): In the onStart()
12-28 13:45:28.115: DEBUG/Events(334): In the onResume()

13=28 134526 334
13=28 13 45 26 346
13=20 13 45 26 3de
12-28 13,4527 00%

363 dalwiken
361 jdwp

263 dnlviken

Ere] dndroidRunt ine
12-28 134527 004
13-28 13.45:27 @38
Li=28 11 45 27,875

12-28 13 45:27.925 373 AndreidRus
12-28 13:45:20.935 dalwikvn
37 dalvikvn

12-28 13 4527 545

e D o . CTIET L har
L
Tane Hld “u! kuuw

GC_CONCURRENT freed 102K, 71% fres 197
Got wake-up sigeal, bailieg cut of sl
Debugger has detached. cbiect registry
»r2330 hndrotdRuntine STIRT com androi
ChmckINT te O
Calling main mntsy com
arting Tntent { s

Shutting down VH
GC_CONCURRENT (reed 103K, 695 fres 313
Debugger has detached . object registry
WOTE. & af thresd 'Binder Thread

e e
o

Diaplayed nel learnidevelop setivsties
GC_CONCURRENT [reed 853K, 49% free 400
A EVETTEIT feaed F0U E1% feme BBAME T

FIGURE 2-3

event

event

32 | CHAPTER2 ACTIVITIES AND INTENTS

When you now press the back button on the Android Emulator, observe that the following is printed:

12-28 13:59:46.266: DEBUG/Events(334): In the onPause() event
12-28 13:59:46.806: DEBUG/Events(334): In the onStop() event
12-28 13:59:46.806: DEBUG/Events(334): In the onDestroy() event

Click the Home button and hold it there. Click the Activities icon and observe the following:

12-28 14:00:54.115: DEBUG/Events(334): In the onCreate() event
12-28 14:00:54.156: DEBUG/Events(334): In the onStart() event
12-28 14:00:54.156: DEBUG/Events(334): In the onResume() event

Press the Phone button on the Android Emulator so that the activity is pushed to the background.
Observe the output in the LogCat window:

12-28 14:01:16.515: DEBUG/Events(334): In the onPause() event
12-28 14:01:17.135: DEBUG/Events(334): In the onStop() event

Notice that the onDestroy () event is not called, indicating that the activity is still in memory. Exit
the phone dialer by pressing the Back button. The activity is now visible again. Observe the output
in the LogCat window:

12-28 14:02:17.255: DEBUG/Events(334): In the onRestart() event

12-28 14:02:17.255: DEBUG/Events(334): In the onStart() event
12-28 14:02:17.255: DEBUG/Events(334): In the onResume() event

The onrestart () event is now fired, followed by the onstart () and onResume () events.

How It Works

As you can see from this simple experiment, an activity is destroyed when you press the Back button.
This is crucial to know, as whatever state the activity is currently in will be lost; hence, you need to write
additional code in your activity to preserve its state when it is destroyed (Chapter 3 will show you how).
At this point, note that the onpause () event is called in both scenarios — when an activity is sent to the
background, as well as when it is killed when the user presses the Back button.

When an activity is started, the onStart () and onResume () events are always called, regardless of whether
the activity is restored from the background or newly created.

NOTE Even if an application has only one activity and the activity is killed, the
application will still be running in memory.

Applying Styles and Themes to Activity

By default, an activity occupies the entire screen. However, you can also apply a dialog theme to an
activity so that it is displayed as a floating dialog. For example, you might want to customize your activ-
ity to display as a pop-up, warning the user about some actions that they are going to perform. In this
case, displaying the activity as a dialog is a good way to get their attention.

Understanding Activities

To apply a dialog theme to an activity, simply modify the <Activity> element in the
AndroidManifest.xml file by adding the android: theme attribute:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Activities"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€string/app_name"
android:theme="@android:style/Theme.Dialog" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

Doing so will make the activity appear as a dialog, as shown in Figure 2-4.

Hiding the Activity Title

You can also hide the title of an activity if desired (such as when you just want to display a status upda
to the user). To do so, use the requestwindowFeature () method and pass it the window. FEATURE_NO_
TITLE constant, like this:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

import android.view.Window;

public class MainActivity extends Activity {
String tag = "Events";

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

//---hides the title bar---
requestWindowFeature (Window.FEATURE NO TITLE);

setContentView(R.layout.main) ;
Log.d(tag, "In the onCreate() event");

This will hide the title bar, as shown in Figure 2-5.

te

http://schemas.android.com/apk/res/android

34 | CHAPTER2 ACTIVITIES AND INTENTS

¥ 555€Android 2.3 Emulator

¥ ouil B 222

Activities

Hello

.

FIGURE 2-4 FIGURE 2-5

Displaying a Dialog Window

There are times where you need to display a dialog window to get a confirmation from the user. In
this case, you can override the onCreatebialog () protected method defined in the base Activity
class to display a dialog window. The following Try It Out shows you how.

Displaying a Dialog Window Using an Activity

codefile Dialog.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Dialog.

2. Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="@string/hello" />
<Button
android:id="@+id/btn_dialog"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Click to display a dialog" />
</LinearLayout>

http://schemas.android.com/apk/res/android

Understanding Activities

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Dialog;

import
import
import
import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;
android.app.AlertDialog;
android.app.Dialog;
android.content.DialogInterface;
android.view.View;
android.widget.Button;
android.widget.Toast;

class MainActivity extends Activity {

CharSequence[] items = { "Google", "Apple", "Microsoft" };
boolean[] itemsChecked = new boolean [items.length];

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btn = (Button) findvViewById(R.id.btn dialog);
btn.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
showDialog(0);

b

@Override
protected Dialog onCreateDialog(int id) {

switch (id) {
case 0:
return new AlertDialog.Builder(this)
.setIcon(R.drawable.icon)
.setTitle("This is a dialog with some simple text...")
.setPositiveButton("OK", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast .makeText (getBaseContext (),
"OK clicked!", Toast.LENGTH SHORT).show();

1)
.setNegativeButton("Cancel", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)

Toast .makeText (getBaseContext (),
"Cancel clicked!", Toast.LENGTH SHORT).show();

})

36 | CHAPTER2 ACTIVITIES AND INTENTS

.setMultiChoiceItems(items, itemsChecked, new
DialogInterface.OnMultiChoiceClickListener() {

@Override
public void onClick(DialogInterface dialog, int which,

boolean isChecked) {
Toast .makeText (getBaseContext (),
items [which] + (isChecked ? " checked!":

" unchecked!"),
Toast .LENGTH SHORT) .show();

}
)
.create();

}

return null;

4. Press F11 to debug the application on the Android Emulator. Click the button to display the dialog
(see Figure 2-6). Checking the various checkboxes will cause the Toast class to display the text of
the item checked/unchecked. To dismiss the dialog, click the OK or Cancel button.

[ESREE)

5556Android_2.3_Fmulator

S il B 12290

Apple

PIrE RS R AR TE Y
PP e v ey o e o
>z [x lcelvleInIm] |e

Microsoft

FIGURE 2-6

How It Works

To display a dialog, you first override the onCreatepialog() method in the Activity class:

@Override

protected Dialog onCreateDialog(int id) {
/]

}

Understanding Activities | 37

This method is called when you call the showbialog () method:

Button btn = (Button) findviewById(R.id.btn dialog);
btn.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
showDialog(0);
}
)

The onCreatebialog () method is a callback for creating dialogs that are managed by the activity. When
you call the showbialog () method, this callback will be invoked. The showbialog () method accepts an

integer argument identifying a particular dialog to display.

To create a dialog, you use the AlertDialog class’s Builder constructor. You set the various properties,

such as icon, title, and buttons, as well as checkboxes:

@Override
protected Dialog onCreateDialog(int id) {
switch (id) {
case 0:
return new AlertDialog.Builder (this)
.setIcon(R.drawable.icon)

.setTitle("This is a dialog with some simple text.

.setPositiveButton("OK", new
DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,
int whichButton)
{
Toast.makeText (getBaseContext (),

")

"OK clicked!", Toast.LENGTH_SHORT) .show() ;

}
}
.setNegativeButton("Cancel", new
DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,
int whichButton)
{

Toast .makeText (getBaseContext (),

"Cancel clicked!", Toast.LENGTH_SHORT) .show() ;

}
}
.setMultiChoiceItems (items, itemsChecked, new
DialogInterface.OnMultiChoiceClickListener () {
@Override

public void onClick(DialogInterface dialog, int which,

boolean isChecked) {
Toast.makeText (getBaseContext (),

items [which] + (isChecked ? " checked!":

" unchecked!"),
Toast.LENGTH_SHORT) .show() ;

)
.create();

}

return null;

38 | CHAPTER2 ACTIVITIES AND INTENTS

The preceding code sets two buttons: OK and Cancel, using
the setpPositiveButton () and setNegativeButton () methods, !
respectively. You also set a list of checkboxes for users to choose via
the setMultichoiceItems () method. For the setMultiChoiceItems ()
method, you passed in two arrays: one for the list of items to display
and another to contain the value of each item to indicate if they are
checked. When each item is checked, you use the Toast class to
display a message (see Figure 2-7).

This is a dialog with
some simple text...

Google

Apple

Microsoft

Google checked!

FIGURE 2-7

THE CONTEXT OBJECT

In Android, you will often encounter the context class and its instances. Instances of
the context class are often used to provide reference to your application. For exam-
ple, in this example, the first parameter of the Toast class takes in a Context object.

return new AlertDialog.Builder (this)
.setIcon(R.drawable.icon)
.setTitle("This is a dialog with some simple text...")
.setPositiveButton ("OK", new
DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,
int whichButton)

{
Toast .makeText (getBaseContext (),
"OK clicked!", Toast.LENGTH_SHORT) .show() ;

But because the Toast () class is not used directly in the activity (it is used within
the aAlertDialog class), you need to return an instance of the context class by using
the getBaseContext () method.

Another area where you will encounter the context class is when creating a view
dynamically in an activity. For example, you may want to dynamically create a
TextView view from code. To do so, you instantiate the TextView class, like this:

TextView tv = new TextView(this);

The constructor for the Textview class takes a context object, and because the
Activity class is a subclass of context, you can use the this keyword to represent
the context object.

Understanding Activities | 39

Displaying a Progress Dialog

Besides the plain dialog that you created in the previous section, you can also create a progress dialog.
A progress dialog is useful for showing the progress of some activities, such as the status of a download
operation.

The following Try It Out shows you how to display a progress dialog.

Displaying a Progress Dialog Window Using an Activity

1.

Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.Dialog;

import android.app.Activity;

import android.app.AlertDialog;

import android.app.Dialog;

import android.content.DialogInterface;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

import android.app.ProgressDialog;
import android.os.Handler;
import android.os.Message;

public class MainActivity extends Activity {
CharSequence[] items = { "Google", "Apple", "Microsoft" };
boolean[] itemsChecked = new boolean [items.length];

private ProgressDialog _progressDialog;
private int _progress = 0;
private Handler _progressHandler;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btn = (Button) findViewById(R.id.btn dialog);
btn.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
showDialog(1l);
_progress = 0;
_progressDialog.setProgress(0);
_progressHandler.sendEmptyMessage(0) ;

)

_progressHandler = new Handler() {

40 | CHAPTER2 ACTIVITIES AND INTENTS

public void handleMessage (Message msg) {

super.handleMessage (msg) ;

if (_progress >= 100) {
_progressDialog.dismiss();

} else {
_progress++;
_progressDialog.incrementProgressBy (1) ;
_progressHandler.sendEmptyMessageDelayed (0, 100);

@Override
protected Dialog onCreateDialog(int id) {
switch (id) {
case 0:
return new AlertDialog.Builder (this)
/] ...
/],
.create();
case 1:
_progressDialog = new ProgressDialog(this);
_progressDialog.setIcon(R.drawable.icon);
_progressDialog.setTitle("Downloading files...");
_progressDialog.setProgressStyle (ProgressDialog.STYLE HORIZONTAL) ;
_progressDialog.setButton(DialogInterface.BUTTON POSITIVE, "Hide", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)

Toast .makeText (getBaseContext (),
"Hide clicked!", Toast.LENGTH SHORT) .show();

});
_progressDialog.setButton(DialogInterface.BUTTON NEGATIVE, "Cancel", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog,
int whichButton)

Toast .makeText (getBaseContext (),
"Cancel clicked!", Toast.LENGTH SHORT).show();

});
return progressDialog;

}

return null;

2. Press F11 to debug the application on the Android Emulator. Click the button to display the prog-
ress dialog (see Figure 2-8). Observe that the progress bar will count up to 100.

Understanding Activities | 41

5556:Android 2.3 Emulator o

Eowl B

ﬁhhﬁ
r—r—"r“r"‘

FIGURE 2-8

How It Works

To create a progress dialog, you first create an instance of the ProgressDialog class and set its various
prog g Y
properties, such as icon, title, and style:

_progressDialog = new ProgressDialog(this);
_progressDialog.setIcon(R.drawable.icon) ;
_progressDialog.setTitle("Downloading files...");
_progressDialog.setProgressStyle (ProgressDialog.STYLE_HORIZONTAL) ;

You then set the two buttons that you want to display inside the progress dialog:

_progressDialog.setButton(DialogInterface.BUTTON_POSITIVE, "Hide", new
DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,
int whichButton)

Toast.makeText (getBaseContext (),
"Hide clicked!", Toast.LENGTH_SHORT) .show() ;

)
_progressDialog.setButton(DialogInterface.BUTTON_NEGATIVE, "Cancel", new
DialogInterface.OnClickListener () {
public void onClick(DialogInterface dialog,
int whichButton)

Toast.makeText (getBaseContext (),
"Cancel clicked!", Toast.LENGTH_SHORT) .show() ;

42 | CHAPTER2 ACTIVITIES AND INTENTS

}
)

return _progressDialog;

The preceding causes a progress dialog to appear (see Figure 2-9).

ol B 318

! Downloading files...

FIGURE 2-9

To display the progress status in the progress dialog, you need to use a Handler object to run a back-
ground thread:

_progress = 0;
_progressDialog.setProgress (0) ;
_progressHandler.sendEmptyMessage (0) ;

The background thread counts up to 100, with each count delayed by 100 milliseconds:

_progressHandler = new Handler() {
public void handleMessage (Message msg) {

super .handleMessage (msg) ;

if (_progress >= 100) {
_progressDialog.dismiss () ;

} else {
_progress++;
_progressDialog.incrementProgressBy (1) ;
_progressHandler.sendEmptyMessageDelayed (0, 100);

}i

When the count reaches 100, the progress dialog is dismissed.

Linking Activities Using Intents | 43

LINKING ACTIVITIES USING INTENTS

An Android application can contain zero or more activities. When your application has more than one
activity, you may need to navigate from one activity to another. In Android, you navigate between activi-
ties through what is known as an intent.

The best way to understand this very important but somewhat abstract concept in Android is to experi-
ence it firsthand and see what it helps you to achieve.

The following Try It Out shows how to add another activity to an existing project and then navigate
between the two activities.

Linking Activities with Intents

1. Using the activities project created earlier, add the following statements in bold to the
AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Activities"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€string/app_name"
androidstheme= —
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".Activity2"
android:label="Activity 2">
<intent-filter>
<action android:name="net.learn2develop.ACTIVITY2" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />

NOTE You'll need to remove the attribute that has strikethrough applied.

2. Right click on the package name under the src folder and select New = Class (see Figure 2-10).

3. Name the new class file activity2 (see Figure 2-11) and click Finish.

http://schemas.android.com/apk/res/android

44 | CHAPTER2 ACTIVITIES AND INTENTS

Make a copy of the main.xm1 file by right-clicking on it and selecting copy. Then, right-click on the
res/layout folder and select Paste. Name the file activity2.xml. The res/layout folder will now
contain the activity?2.xml file (see Figure 2-12).

Mlbstmil, © 0|5 7 7 O (K Actites Manitest 25\
= €2xml version="1.0" encoding="ubf 8"»
| | “«<manifest xmins:androld="http://schemas. android.c
nackage="net, Isarn2develon. Ackivities™
New ¥4 Java Project
b £ gen [Generated Java Hiles| G Tl & Andvoid Project
o mh Android 23
B asests Open in New Window [T Presect.:
a e Open Type Hierarchy F4 |85 Package
b = drawable hdpi Show In Alt+ShiftsW » | & Class
b (= drawable-ldpi
= | = Tnterf
b [drawable-mdpi E Copy e | @ Ttedace
4 (& layout [#5 Copy Qualified Name @ Eim
¥ mainaml & Paste CiieV @ Annolation
FIGURE 2-10
8} New Java Clas E=SRc
Jaova Class —
Create a new Java class. -
Sourcefolder Activities/src
I e e
[Tl Enclosing type: g e
Name: Activity?
Madifiers: @ public) default private protected
Flabstract [Tfinal [| static (1= oo B5|%
Superclass: Javalang.Ubgect 2 12 Activities
Tnterfac e 4 [® s
lLJ 4 5 netleam2develop.fctivities
o |4] Activity? java
Remaove » [1] MainActivityjava
v B4 gen |Generated Java Files)
‘Which method stubs would you like to create? 5 @k Android 23
| public static void main(String[] args) = assels
| Constructors from superclass a B res
[¥] Inherited abstract methods b | drawable hdpi
Do you want to add comments? (Contigure templates and detault value here) g ::E::::::I i
| Generate comments ‘ & layn P
b B2 values
1 AndroidManilestom|
@ Lancel (5 default.properties
= preguard.cfg
FIGURE 2-11 FIGURE 2-12

Modify the activity2.xml file as follows:

<?xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

Linking Activities Using Intents | 45

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="This is Activity 2!"
/>

</LinearLayout>

In the Activity?2.java file, add the following statements in bold:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;

public class Activity2 extends Activity {
@Override
public void onCreate(Bundle savedInstanceState)
super.onCreate (savedInstanceState);
setContentView(R.layout.activity2);

Modify the Mainactivity.java file as shown in bold:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;

import android.view.KeyEvent;
import android.content.Intent;

public class MainActivity extends Activity {
String tag = "Events";

{

/** Called when the activity is first created. */

@Override
public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;

//---hides the title bar---

{

/ /requestWindowFeature (Window.FEATURE _NO TITLE);

setContentView(R.layout.main) ;
Log.d(tag, "In the onCreate() event");

public boolean onKeyDown(int keyCode, KeyEvent event)

{
if (keyCode == KeyEvent.KEYCODE DPAD CENTER)

{

startActivity(new Intent("net.learn2develop.ACTIVITY2"));

46 | CHAPTER2 ACTIVITIES AND INTENTS

}

return false;

}

public void onStart () {/7/... 1}
public void onRestart() {/7/...}
public void onResume () {/7/7... 1%
public void onPause() {/7/7... 1}
public void onStop () {//...1}
public void onDestroy () {/7/7...}

8. Press F11 to debug the application on the Android Emulator. When the first activity is loaded, click
the center of the directional pad (see Figure 2-13; on a real device this can be achieved by pressing
down the trackball). The second activity will now be loaded.

' 5556:Andraid 21, Truliter

[Activity 2

FIGURE 2-13

How It Works

As you have learned, an activity is made up of a Ul component (for example, main.xml) and a class
component (for example, MainActivity.java). Hence, if you want to add another activity to a project,
you need to create these two components.

In the AndroidManifest.xml file, specifically you have added the following:

<activity android:name=".Activity2"
android:label="Activity 2">

Linking Activities Using Intents | 47

<intent-filter>
<action android:name="net.learn2develop.ACTIVITY2" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>

Here, you have added a new activity to the application. Note the following:
> The name of the new activity added is “Activity2”.
> The label for the activity is named “Activity 27.

> The intent filter name for the activity is “net.learn2develop.ACTIVITY2”. Other activities that wish
to call this activity will invoke it via this name. Ideally, you should use the reverse domain name of
your company as the intent filter name in order to reduce the chances of another application having
the same intent filter. The next section discusses what happens when two or more activities have the
same intent filter.

> The category for the intent filter is “android.intent.category.DEFAULT”. You need to add this to
the intent filter so that this activity can be started by another activity using the startActivity ()
method (more on this shortly).

In the Mainactivity.java file, you implemented the onkeyDown event handler. This event is fired when-
ever the user presses one of the keys on the device. When the user presses the center key on the direc-
tional pad (as represented by the KeyEvent . KEYCODE_DPAD_CENTER constant), you use the startaActivity()
method to display Activity2 by creating an instance of the Intent class and passing it the intent filter
name of Activity2 (which is net.learn2develop.ACTIVITY2):

public boolean onKeyDown (int keyCode, KeyEvent event)

{
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)

{
startActivity(new Intent("net.learn2develop.ACTIVITY2"));

}

return false;

Activities in Android can be invoked by any application running on the device. For example, you can
create a new Android project and then display Activity2 by using its net.learn2develop.ACTIVITY2
intent filter. This is one of the fundamental concepts in Android that enables an application to invoke
another easily.

If the activity that you want to invoke is defined within the same project, you can rewrite the preceding
statement like this:

startActivity(new Intent(this, Activity2.class));

However, this approach is applicable only when the activity you want to display is within the same
project as the current activity.

48 | CHAPTER2 ACTIVITIES AND INTENTS

Resolving Intent Filter Collision

In the previous section, you learned that the <intent-filter> element defines how your activity can
be invoked by another activity. What happens if another activity (in either the same or a separate
application) has the same filter name? For example, suppose your application has another activity
named Activity3, with the following entry in the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Activities"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="€@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name" >
<! -- android:theme="@android:style/Theme.Dialog" -->
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".Activity2"
android:label="Activity 2">
<intent-filter>
<action android:name="net.learn2develop.ACTIVITY2" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<activity android:name=".Activity3"
android:label="Activity 3">
<intent-filter>
<action android:name="net.learn2develop.ACTIVITY2" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

If you call the startactivity () method with the following intent, then the Android OS will display
a selection as shown in Figure 2-14:

startActivity(new Intent("net.learn2develop.ACTIVITY2"));

If you check the “Use by default for this action” item and then select an activity, then the next time
the intent “net.learn2develop.ACTIVITY2” is called again, it will always launch the previous activ-
ity that you have selected.

To clear away this default, go to the Settings application in Android and select Applications =
Manage applications and select the application name (see Figure 2-15). When the details of the
application are shown, scroll down to the bottom and click the Clear defaults button.

http://schemas.android.com/apk/res/android

Linking Activities Using Intents | 49

B 355b:Androsd 23 Emulator

Activity 2

Activity 3

«" Use hy default for this action.

FIGURE 2-14

¥ 555:Andmid_23 Trulator

Activities

ContentProviders

Dialog

Provider

Internal storage

25MR used A9MB free

5556:Andraid_23_Fmulator

Storage
Total
Application

Data

FIGURE 2-15

24.00KB
24.00KB
0.00B

0.00B

50 |

CHAPTER 2 ACTIVITIES AND INTENTS

Returning Results from an Intent

The startactivity () method invokes another activity but does not return a result to the current
activity. For example, you may have an activity that prompts the user for username and password.
The information entered by the user in that activity needs to be passed back to the calling activity
for further processing. If you need to pass data back from an activity, you should instead use the
startActivityForResult () method. The following Try It Out demonstrates this.

Obtaining a Result from an Activity

1.

Using the same project created in the previous section, add the following statements in bold to the
main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Please enter your name" />
<EditText
android:id="@+id/txt_username"
android:layout_width="fill parent"
android:layout_height="wrap content" />
<Button
android:id="@+id/btn OK"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="0OK" />
</LinearLayout>

Add the following statements in bold to Activity2.java:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;

import android.content.Intent;
import android.net.Uri;

import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class Activity2 extends Activity {
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.activity2);

//---get the OK button---
Button btn = (Button) findviewById(R.id.btn OK);

//---event handler for the OK button---

http://schemas.android.com/apk/res/android

Linking Activities Using Intents | 51

btn.setOnClickListener (new View.OnClickListener ()
{
public void onClick(View view) {
Intent data = new Intent();

//---get the EditText view---
EditText txt_username =
(EditText) findvViewById(R.id.txt username);

//---set the data to pass back---
data.setData(Uri.parse(

txt_username.getText () .toString())):
setResult (RESULT OK, data);

//---closes the activity---
finish();

b

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Activities;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;
import android.view.KeyEvent;
import android.widget.Toast;
import android.content.Intent;

public class MainActivity extends Activity {
String tag = "Events";
int request_Code = 1;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

//---hides the title bar---
//requestWindowFeature (Window.FEATURE_NO_TITLE) ;

setContentView(R.layout.main) ;
Log.d(tag, "In the onCreate() event");

public boolean onKeyDown (int keyCode, KeyEvent event)
{
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
//startActivity(new Intent("net.learn2develop.ACTIVITY2"));
//startActivity(new Intent(this, Activity2.class));

startActivityForResult (new Intent (

52 | CHAPTER2 ACTIVITIES AND INTENTS

"net.learn2develop.ACTIVITY2"),
request_Code) ;

}

return false;

}

public void onActivityResult (int requestCode, int resultCode, Intent data)

{
if (requestCode == request_Code) {
if (resultCode == RESULT OK) {
Toast.makeText (this,data.getData().toString(),
Toast .LENGTH SHORT) .show():;
}
}
}
public void onStart () {/7/... 1}
public void onRestart () C//...1%
public void onResume () {//7... 1%
public void onPause() {/7/7... 1}
public void onStop () {//...}
public void onDestroy () {//...}

4. Press F11 to debug the application on the Android Emulator. When the first activity is loaded,
click the center button on the directional pad. Activity2 will now be loaded. Enter your name (see
Figure 2-16) and click the OK button. You will see that the first activity now displays the name you
have entered using the Toast class.

% 5556:Android_2.3 Emulator » 5556:Android_2.3_Emulator -

“Activity 2

W@LMengLed

wel-Meng Lee

FIGURE 2-16

Linking Activities Using Intents | 53

How It Works

To call an activity and wait for a result to be returned from it, you need to use the
startActivityForResult () method, like this:
startActivityForResult (new Intent (

"net.learn2develop.ACTIVITY2"),
request_Code) ;

In addition to passing in an Intent object, you need to pass in request code as well. The request code is
simply an integer value that identifies an activity you are calling. This is needed because when an activity
returns a value, you must have a way to identify it. For example, you may be calling multiple activities
at the same time and some activities may not return immediately (for example, waiting for a reply from
a server). When an activity returns, you need this request code to determine which activity is actually
returned.

y NOTE If the request code is set to -1, then calling it using the
startActivityForResult () method is equivalent to calling it using
the startActivity () method. That is, no result will be returned.

In order for an activity to return a value to the calling activity, you use an Intent object to send data
back via the setpata () method:

Intent data = new Intent();

//---get the EditText view---
EditText txt_username =
(EditText) findviewById(R.id.txt_username);

//---set the data to pass back---
data.setData (Uri.parse(

txt_username.getText () .toString()));
setResult (RESULT_OK, data);

//---closes the activity---
finish();

The setResult () method sets a result code (either RESULT_OK or RESULT_CANCELLED) and the data (an
Intent object) to be returned back to the calling activity. The finish() method closes the activity and
returns control back to the calling activity.

In the calling activity, you need to implement the onActivityResult () method, which is called whenever
an activity returns:

public void onActivityResult (int requestCode, int resultCode, Intent data)
{
if (requestCode == reqguest_Code) {
if (resultCode == RESULT_OK) {
Toast.makeText (this,data.getData () .toString(),

54 | CHAPTER2 ACTIVITIES AND INTENTS

Toast.LENGTH_SHORT) .show () ;

Here, you check for the appropriate request code and display the result that is returned. The returned
result is passed in via the data argument; and you obtain its details through the getpata () method.

Passing Data Using an Intent Object

Besides returning data from an activity, it is also common to pass data to an activity. For example,
in the previous example you may want to set some default text in the EditText view before the activ-
ity is displayed. In this case, you can use the Intent object to pass the data to the target activity. The
following Try It Out shows you how.

Passing Data to the Target Activity

1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

public boolean onKeyDown (int keyCode, KeyEvent event)
{
if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER)
{
//startActivity (new Intent ("net.learn2develop.ACTIVITY2"));
//startActivity (new Intent (this, Activity2.class));
/*
startActivityForResult (new Intent (
"net.learn2develop.ACTIVITY2"),
request_Code) ;
*/

Intent i = new Intent("net.learn2develop.ACTIVITY2");
Bundle extras = new Bundle();
extras.putString("Name", "Your name here");
i.putExtras (extras);
startActivityForResult (i, 1);

}

return false;

2. Add the following statements in bold to Activity2.java:

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.activity2);

String defaultName="";

Bundle extras = getIntent().getExtras();
if (extras!=null)

{

Linking Activities Using Intents | 55

defaultName = extras.getString("Name");
}
//---get the EditText view---
EditText txt_username =
(EditText) findViewById(R.id.txt username);
txt_username.setHint (defaultName);

//---get the OK button---
Button btn = (Button) findviewById(R.id.btn OK);

//---event handler for the OK button---
btn.setOnClickListener (new View.OnClickListener ()
{

/]
)

3. Press F11 to debug the application on the Android Emulator. When you click the center button of
the directional keypad, notice that the EditText view in the target activity displays the hint text

(see Figure 2-17).

-
8 555k:Androsd_23_Emulator

In_.l:: name here

e

FIGURE 2-17

NOTE The hint text is placeholder text that is commonly found in EditText
views. It is displayed when the view is empty, and it disappears as soon as the
user types something into it. It is useful for displaying hints that tell users what
type of information they should enter.

56 | CHAPTER2 ACTIVITIES AND INTENTS

How It Works

To use the Intent object to carry data to the target activity, you made use of a Bundle object:

Bundle extras = new Bundle();
extras.putString("Name", "Your name here");
i.putExtras (extras) ;

A Bundle object is basically a dictionary object that enables you to set data in key/value pairs. In this
case, you created a key named Name and assigned it a value of “your name here”. The Bundle object is
then added to the Tntent object using the putExtras () method.

In the target activity, you first use the getIntent () method to obtain the intent that started the activity.
You then use the getExtras () method to obtain the Bundle object:

Bundle extras = getlIntent().getExtras();

if (extras!=null)

{

defaultName = extras.getString("Name") ;

The getstring () method retrieves the Name key from the Bundle object. The string retrieved is then
assigned to the EditText view using the setHint () method:

//---get the EditText view---
EditText txt_username =

(EditText) findviewById(R.id.txt_username) ;
txt_username.setHint (defaultName) ;

CALLING BUILT-IN APPLICATIONS USING INTENTS

Until this point, you have seen how to call activities within your own application. One of the key
aspects of Android programming is using the intent to call activities from other applications. In par-
ticular, your application can call the many built-in applications that are included with an Android
device. For example, if your application needs to enable a user to call a particular person saved in
the Contacts application, you can simply use an Intent object to bring up the Contacts application,
from which the user can select the person to call. This enables your application to present a consis-
tent user experience, and enables you to avoid building another application to retrieve all the con-
tacts in the Contacts application.

The following Try It Out demonstrates how to call some of the built-in applications commonly
found on an Android device.

Calling Built-In Applications Using Intents

codefile Intents.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Intents.

Calling Built-In Applications Using Intents | 57

Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >

<Button

android:id="@+id/btn_webbrowser"
android:layout_width="fill parent"
android:layout_height="wrap_ content"
android:text="Web Browser" />

<Button

android:id="@+id/btn_makecalls"
android:layout_width="fill parent"”
android:layout_height="wrap_ content"
android:text="Make Calls" />

<Button

android:id="@+id/btn_ showMap"
android:layout_width="£fill parent"”
android:layout_height="wrap_ content"
android:text="Show Map" />

<Button

android:id="@+id/btn_chooseContact"

android:layout_width="fill parent"

android:layout_height="wrap content"

android:text="Choose Contact" />
</LinearLayout>

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Intents;

import
import

import
import
import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.content.Intent;
android.net.Uri;
android.provider.ContactsContract;
android.view.View;
android.view.View.OnClickListener;
android.widget.Button;
android.widget.Toast;

class MainActivity extends Activity {

Button bl, b2, b3, b4;
int request_Code = 1;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---Web browser button---

http://schemas.android.com/apk/res/android

58 | CHAPTER2 ACTIVITIES AND INTENTS

bl = (Button) findViewById(R.id.btn webbrowser);
bl.setOnClickListener (new OnClickListener ()
{
public void onClick(View arg0) {
Intent i = new
Intent (android.content.Intent.ACTION VIEW,
Uri.parse("http://www.amazon.com"));
startActivity(i);

)i

//---Make calls button---
b2 = (Button) findViewById(R.id.btn makecalls);
b2.setOnClickListener (new OnClickListener()
{
public void onClick(View arg0) {
Intent i = new
Intent (android.content.Intent .ACTION DIAL,
Uri.parse("tel:+651234567"));
startActivity(i);

1)

//---Show Map button---
b3 = (Button) findViewById(R.id.btn showlMap);
b3.setOnClickListener (new OnClickListener()
{
public void onClick(View arg0) {
Intent i = new
Intent (android.content.Intent .ACTION VIEW,
Uri.parse("geo:37.827500,-122.481670"));
startActivity(i);

});

//---Choose Contact button---

b4 = (Button) findvViewById(R.id.btn chooseContact);

b4 .setOnClickListener (new OnClickListener()

{

public void onClick(View arg0) {

Intent i = new
Intent (android.content.Intent .ACTION PICK);
i.setType(ContactsContract.Contacts.CONTENT TYPE);
startActivityForResult (i, request_Code);

});

public void onActivityResult (int requestCode, int resultCode, Intent data)
{
if (requestCode == request_Code)
{
if (resultCode == RESULT OK)
{

Calling Built-In Applications Using Intents | 59

Toast .makeText (this,data.getData() .toString(),
Toast .LENGTH_ SHORT) .show();

Intent i = new Intent(
android.content.Intent .ACTION VIEW,
Uri.parse(data.getData() .toString()));

startActivity(i);

4. Press F11 to debug the application on the Android Emulator.

5. Click the Web Browser button to load the Browser application on the emulator (see Figure 2-18).

-
| 5556:Android_2.3_Emulator # | 5556:4ndroid_2 3_Emulator p— ‘

@ htlp://www.amazon,com...
Web Browser

amazoncom

Make Calls
"\ cart | Wish List

Show Map
|Search Amazon.com] @

Choose Contact

Shop All Departments
Books
Movies, Music & Games

Electronics

\

FIGURE 2-18

6. Click the Make Calls button and the Phone application will load (see Figure 2-19).
7. Similarly, to load the Maps application, shown in Figure 2-20, click the Show Map button.

NOTE In order to display the Maps application, you need to run the application
on an AVD that supports the Google APIs.

8. Click the Choose Contact application to show a list of contacts that you can select (see
Figure 2-21). Selecting a contact will show details about that contact.

60 | CHAPTER2 ACTIVITIES AND INTENTS

8 5556Android_2.3_Froulatorn B 555MAndroid 2.3 Emulator WithsD'

A \

FIGURE 2-19 FIGURE 2-20

§ 5556:Android_23_Ermulator § 5556:Android 23 Ermulator -

= wl B 156

' Wei-Meng Lee *

Sally Jackson Call mobile ol - |

) Email home
Wei-Meng Lee S

FIGURE 2-21

How It Works

In this example, you saw how you can use the Intent class to invoke some of the built-in applications in
Android (such as Maps, Phone, Contacts, and Browser).

Calling Built-In Applications Using Intents | 61

In Android, intents usually come in pairs: action and data. The action describes what is to be performed,
such as editing an item, viewing the content of an item, and so on. The data specifies what is affected, such
as a person in the Contacts database. The data is specified as an uri object.

Some examples of action are as follows:

> ACTION_VIEW

> ACTION_DIAL

> ACTION_PICK

Some examples of data include the following:
> http://www.google.com

> tel:+651234567

> geo:37.827500,-122.481670

>

content://contacts

NOTE The section “Using Intent Filters” will explain the type of data you can
define for use in an activity.

Collectively, the action and data pair describes the operation to be performed. For example, to dial
a phone number, you would use the pair ACTION_DIAL/tel:+651234567. To display a list of contacts
stored in your phone, you use the pair ACTION_VIEW/content://contacts. To pick a contact from the
list of contacts, you use the pair ACTION_PICK/content://contacts.

In the first button, you create an Intent object and then pass two arguments to its constructor — the
action and the data:
Intent i = new
Intent (android.content.Intent .ACTION VIEW,

Uri.parse("http://www.amazon.com")) ;
startActivity (1) ;

The action here is represented by the android.content.Intent.ACTION_VIEW constant. You use the
parse () method of the uri class to convert an URL string into an Uri object.

The android.content.Intent.ACTION_VIEW constant actually refers to the “android.intent.action
.VIEW” action, so the preceding could be rewritten as follows:
Intent i = new
Intent ("android.intent.action.VIEW",

Uri.parse("http://www.amazon.com")) ;
startActivity (i) ;

The preceding code snippet can also be rewritten like this:

Intent i = new
Intent ("android.intent.action.VIEW");

http://www.google.com

62 | CHAPTER2 ACTIVITIES AND INTENTS

i.setData(Uri.parse("http://www.amazon.com"));
startActivity (i) ;

Here, you set the data separately using the setpata () method.

For the second button, you dial a specific number by passing in the telephone number in the data portion:

Intent i = new
Intent (android.content.Intent .ACTION DIAL,
Uri.parse("tel:+651234567"));
startActivity(i);

In this case, the dialer will display the number to be called. The user must still press the dial button to dial
the number. If you want to directly call the number without user intervention, change the action as follows:

Intent i = new
Intent (android.content.Intent .ACTION CALL,
Uri.parse("tel:+651234567"));
startActivity (i) ;

NOTE |If you want your application to directly call the specified number, you
need to add the android.permission.CALL_PHONE permission to your application.

If you simply want to display the dialer without specifying any number, simply omit the data portion,

like this:

Intent i = new
Intent (android.content.Intent.ACTION_DIAL) ;
startActivity (i) ;

The third button displays a map using the ACTTON_VIEW constant:

Intent i = new
Intent (android.content.Intent .ACTION VIEW,
Uri.parse("geo:37.827500,-122.481670"));
startActivity (i) ;

Here, instead of using “http” you use the “geo” scheme.

The fourth button invokes the Contacts application to enable the user to pick a contact. Because you are
asking the user to select a contact, you need the Contacts application to return a value; in this case, you
need to set the type of data to indicate what kind of data needs to be returned:
Intent i = new
Intent (android.content.Intent.ACTION_PICK) ;

i.setType (ContactsContract.Contacts.CONTENT_TYPE) ;
startActivityForResult (i, request_Code) ;

If you want to view and select only those contacts with a phone number, you could set the type as follows:

i.setType(
ContactsContract.CommonDataKinds.Phone.CONTENT TYPE);

Calling Built-In Applications Using Intents | 63

In this case, the contacts and their phone numbers are displayed (see Figure 2-22).

-
5 555Android_2.3_Frnulator

Sally Jackson

Home 3454

Wei-Meng Lee

%

FIGURE 2-22

Because you are expecting a result from the Contacts application, you invoke it using the

startActivityForResult () method, passing in the Intent object and a request code. You need
to implement the onActivityResult () method in order to obtain a result from the activity:
public void onActivityResult (int requestCode,
int resultCode, Intent data)

{

if (requestCode == reqguest_Code)

{

if (resultCode == RESULT_OK)
{

Toast.makeText (this,data.getData () .toString(),
Toast.LENGTH_SHORT) .show () ;
Intent i = new Intent(
android.content.Intent .ACTION_VIEW,

Uri.parse(data.getData () .toString()));
startActivity (i) ;

In the case of the Contacts application, when you choose a particular contact (using the AcTION_PICK
constant), an URL containing the contact selected is returned, like this:

content://com.android.contacts/contacts/loopup/0r1-1234567890/1

64

CHAPTER 2 ACTIVITIES AND INTENTS

Obtaining this URL is not very useful unless you know what to do with it. Therefore, in this case, you
can create another Intent object to view it:

Intent i = new Intent(
android.content.Intent .ACTION VIEW,
Uri.parse(data.getData().toString()));

startActivity (i) ;

This will show details about the selected contact.

Understanding the Intent Object

So far, you have seen the use of the Tntent object to call other activities. This is a good time to recap
and gain a more detailed understanding of how the Intent object performs its magic.

First, you see that you can call another activity by passing its action to the constructor of an Intent
object:

startActivity (new Intent ("net.learn2develop.ACTIVITY2"));

The action (in this example “net.learn2develop.ACTIVITY2”) is also known as the component name.
This is used to identify the target activity/application that you want to invoke. You can also rewrite
the component name by specifying the class name of the activity if it resides in your project, like this:

startActivity (new Intent (this, Activity2.class));

You can also create an Intent object by passing in an action constant and data, such as the following:

Intent i = new
Intent (android.content.Intent.ACTION VIEW,
Uri.parse("http://www.amazon.com")) ;
startActivity(i);

The action portion defines what you want to do, while the data portion contains the data for the tar-
get activity to act upon. You can also pass the data to the Intent object using the setData () method:

Intent i = new
Intent (android.content.Intent.ACTION VIEW) ;
i.setData(Uri.parse("http://www.amazon.com"));

In this example, you indicate that you want to view a web page with the specified URL. The Android
OS will look for all activities that are able to satisfy your request. This process is known as intent
resolution. The next section discusses in more detail how your activities can be the target of other
activities.

For some intents, there is no need to specify the data. For example, to select a contact from the Contacts
application, you specify the action and then indicate the MIME type using the setType () method:
Intent i = new

Intent (android.content.Intent .ACTION_PICK) ;
i.setType (ContactsContract.Contacts.CONTENT_TYPE) ;

Calling Built-In Applications Using Intents | 65

The setType () method explicitly specifies the MIME data type to indicate the type of data to
return. The MIME type for ContactsContract.Contacts.CONTENT_TYPE is "vnd.android.cursor

.dir/contact".

Besides specifying the action, the data, and the type, an Intent object can also specify a category. A
category groups activities into logical units so that Android can use it for further filtering. The next
section discusses categories in more details.

To summarize, an Intent object can contain the following information:

> Action

> Data

> Type

> Category

Using Intent Filters

Earlier, you saw how an activity can invoke another activity using the Intent object. In order for
other activities to invoke your activity, you need to specify the action and category within the
<intent-filter> element in the AndroidManifest.xml file, like this:
<intent-filter>
<action android:name="net.learn2develop.ACTIVITY2" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>

This is a very simple example in which one activity calls another using the “net.learn2develop
.acTIvITY2” action. The following Try It Out shows you a more sophisticated example.

Specifying Intent Filters in More Details

1. Using the Intents project created earlier, add a new class to the project and name it MyBrowserActivity
java. Also add a new XML file to the res/1ayout folder and name it browser.xml (see Figure 2-23).

2 12 Intents
o ([e
4 i netleamZdevelopintents
[1] MainActivity.java
1] MyBrowserictivity java
EB gen [Generted lava Tiles]
=, Androed 2.3
s assets
a [res
= drawable-hdpi
= drawable-Idpi
= drawable-mdpi
4 [z layour
(¥ brewserxml
%] mamaml
1= values
f-l AndroidManifestaml
|2 defaubt propeties
d.ctg

FIGURE 2-23

66 | CHAPTER2 ACTIVITIES AND INTENTS

2. Add the following statements in bold to the AndroidManifest .xml file:

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Intents"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".MyBrowserActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<action android:name="net.learn2develop.MyBrowser" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
<uses-permission android:name="android.permission.CALL_PHONE" />
<uses-permission android:name="android.permission.INTERNET" />
</manifest>

3. Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<Button
android:id="@+1id/btn_webbrowser"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Web Browser" />

<Button
android:id="@+id/btn_makecalls"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Make Calls" />

<Button
android:id="@+id/btn_showMap"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Show Map" />

<Button
android:id="@+1id/btn_chooseContact"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Calling Built-In Applications Using Intents | 67

android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Choose Contact" />
<Button
android:id="@+id/btn_launchMyBrowser"
android:layout_width="fill parent"”
android:layout_height="wrap_ content"
android:text="Launch My Browser" />
</LinearLayout>

Add the following statements in bold to the Mainactivity.java file:

package net.learn2develop.Intents;

import android.app.Activity;

import android.content.Intent;

import android.net.Uri;

import android.os.Bundle;

import android.provider.ContactsContract;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.Toast;

public class MainActivity extends Activity {

Button bl, b2, b3, b4, b5;
int request_Code = 1;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---Web browser button---
bl = (Button) findviewById(R.id.btn_ webbrowser) ;
bl.setOnClickListener (new OnClickListener ()
{
/...
)

//---Make calls button---
b2 = (Button) findViewById(R.id.btn_makecalls);
b2.setOnClickListener (new OnClickListener ()
{
/] ...
1)

//---Show Map button---
b3 = (Button) findViewById(R.id.btn_showMap) ;
b3 .setOnClickListener (new OnClickListener ()
{
/...

68 | CHAPTER2 ACTIVITIES AND INTENTS

}) i
//---Choose Contact button---
b4 = (Button) findViewById(R.id.btn_chooseContact);
b4 .setOnClickListener (new OnClickListener ()
{
/...
1)

b5 = (Button) findViewById(R.id.btn launchMyBrowser);
b5.setOnClickListener (new OnClickListener ()
{
public void onClick(View arg0)
{
Intent i = new
Intent ("net.learn2develop.MyBrowser");
i.setData(Uri.parse("http://www.amazon.com")) ;
startActivity(i);

}
});
}
public void onActivityResult (int requestCode, int resultCode, Intent data)
{
/...
}

5. Add the following statements in bold to the browser.xm1 file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical™"
android:layout_width="fill parent"
android:layout_height="£fill parent" >

<WebView
android:id="@+id/WebView01"
android:layout_width="wrap content"
android:layout_height="wrap content" />

</LinearLayout>

6. Add the following statements in bold to the MyBrowseractivity.java file:

package net.learn2develop.Intents;

import android.app.Activity;

import android.net.Uri;

import android.os.Bundle;

import android.webkit.WebView;
import android.webkit.WebViewClient;

public class MyBrowserActivity extends Activity {

http://schemas.android.com/apk/res/android

Calling Built-In Applications Using Intents | 69

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.browser);

Uri url = getIntent().getData();
WebView webView = (WebView) findViewById(R.id.WebView01);
webView.setWebViewClient (new Callback());
webView.loadUrl (url.toString());
}

private class Callback extends WebViewClient {

@Override
public boolean shouldOverrideUrlLoading (WebView view, String url) {

return(false);

}

Press F11 to debug the application on the Android Emulator.

Click the Launch my Browser button and you should see the new activity displaying the Amazon.com
web page (see Figure 2-24).

g
B 5554Android_23_Emulator WithSD

Intents

amazoncom

iy Cart | Wish List

Kindle

#1 Bestselling
Product on
Amazon

Learn More

Shop All Departments
Books
Movles, Music & Games
Electronics

See All Departments

FIGURE 2-24

70 | CHAPTER2 ACTIVITIES AND INTENTS

How It Works

In this example, you created a new activity named MyBrowserActivity. You first needed to declare it in
the AndroidManifest.xml file:

<activity android:name=".MyBrowserActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<action android:name="net.learn2develop.MyBrowser" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" />
</intent-filter>
</activity>

In the <intent-filter> element, you declared it to have two actions, one category, and one data. This
means that all other activities can invoke this activity using either the “android.intent.action.VIEW” or
the “net.learn2develop.MyBrowser” action. For all activities that you want others to call using the start
Activity() or startActivityForResult () methods, they need to have the “android.intent.category
.DEFAULT” category. If not, your activity will not be callable by others. The <data> element specifies the
type of data expected by the activity. In this case, it expects the data to start with the “http://” prefix.

The preceding intent filter could also be rewritten as follows:

<activity android:name=".MyBrowserActivity"
android:label="@string/app name">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" />
</intent-filter>
<intent-filter>
<action android:name="net.learn2develop.MyBrowser" />
<category android:name="android.intent.category.DEFAULT" />
<data android:scheme="http" />
</intent-filter>
</activity>

Writing the intent filter this way makes it much more readable and logically groups the action, category,
and data within an intent filter.

If you now use the AcTTON_vIEW action with the data shown here, Android will display a selection (as
shown in Figure 2-25):

Intent i = new
Intent (android.content.Intent.ACTION VIEW,
Uri.parse("http://www.amazon.com")) ;
startActivity (i) ;

You can choose between using the Browser application or the Intents application that you are currently
building.

Calling Built-In Applications Using Intents | 71

-
87 555&Android_23_Emulator WithsD

Complete action using

6 Browser

& Intents

Use by default for this

FIGURE 2-25

Adding Categories

You can group your activities into categories by using the <category> element in the intent filter.
Suppose you have added the following <category> element to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Intents"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".MyBrowserActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<action android:name="net.learn2develop.MyBrowser" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="net.learn2develop.Apps" />

http://schemas.android.com/apk/res/android

72 | CHAPTER2 ACTIVITIES AND INTENTS

<data android:scheme="http" />
</intent-filter>

</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
<uses-permission android:name="android.permission.CALL_PHONE" />
<uses-permission android:name="android.permission.INTERNET" />

</manifest>

In this case, the following code will invoke the MyBrowerActivity activity:

Intent i = new
Intent (android.content.Intent .ACTION_VIEW,
Uri.parse("http://www.amazon.com")) ;
i.addCategory("net.learn2develop.Apps");
startActivity (i) ;

You add the category to the Intent object using the addcategory () method. If you omit the
addCategory () statement, the preceding code will still invoke the MyBroweractivity activity
because it will still match the default category "android.intent.category.DEFAULT".

However, if you specify a category that does not match the category defined in the intent filter, it
will not work:

Intent i = new
Intent ("net.learn2develop.MyBrowser",
Uri.parse("http://www.amazon.com")) ;
//---this category does not match any in the intent-filter---
i.addCategory("net.learn2develop.OtherApps");
startActivity (i) ;

The preceding category (“net.learn2develop.Otherapps”) does not match any in the intent filter, so
a run-time exception will be raised.

If you add the preceding category in the intent filter of MyBrowerActivity, then the preceding code
will work:

<intent-filter>
<action android:name="android.intent.action.VIEW" />
<action android:name="net.learn2develop.MyBrowser" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="net.learn2develop.Apps" />
<category android:name="net.learn2develop.OtherApps" />
<data android:scheme="http" />

</intent-filter>

You can add multiple categories to an Intent object; for example, the following statements add the
“net.learn2develop.SomeOtheraApps” category to the Intent object:

Intent i = new
Intent ("net.learn2develop.MyBrowser",
Uri.parse("http://www.amazon.com")) ;
i.addCategory("net.learn2develop.OtherApps") ;
i.addCategory("net.learn2develop.SomeOtherApps") ;
startActivity (i) ;

Displaying Notifications | 73

Because the intent filter does not define the "net.learn2develop.SomeOtherapps" category, the pre-
ceding code will not be able to invoke the MyBrowerActivity activity. To fix this, you need to add
the "net.learn2develop.SomeOtherApps" category to the intent filter again.

From this example, it is evident that when using an Intent object with categories, all categories added
to the Tntent object must fully match those defined in the intent filter before an activity can be invoked.

DISPLAYING NOTIFICATIONS

So far, you have been using the Toast class to display messages to the user. While the Toast class is

a handy way to show users alerts, it is not persistent. It flashes on the screen for a few seconds and
then disappears. If it contains important information, users may easily miss it if they are not looking
at the screen.

For messages that are important, you should use a more persistent method. In this case, you should
use the NotificationManager to display a persistent message at the top of the device, commonly
known as the status bar (sometimes also referred to as the notification bar). The following Try It
Out demonstrates how.

Displaying Notifications on the Status Bar

codefile Notifications.zip available for download at Wrox.com

Using Eclipse, create a new Android project and name it Notifications.

Add a new class file named NotificationView.java to the src folder of the project (see Figure 2-26).
In addition, add a new notification.xml file to the res/layout folder as well.

4 3= Notifications
a (@
& th netleamZdevelop.Notthcations
[1] MainActivityjava
[} NotificationView.java
D gen [Groerated lava Files]
=4 Android 2.3
&3 assets
a e
(& drawable-hdpi
&= diawable-ldpi
& drawable-mdpi
a [layout
% mainaml
X, notificationxml|
= values
i AndrowdMandtestoamn]
[5 default.propertics
preguard.cfg

FIGURE 2-26

Populate the notification.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"

http://schemas.android.com/apk/res/android

74 | CHAPTER2 ACTIVITIES AND INTENTS

android:layout_height="fill parent" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Here are the details for the notification..." />
</LinearLayout>

4. Populate the Notificationview.java file as follows:
package net.learn2develop.Notifications;
import android.app.Activity;
import android.app.NotificationManager;

import android.os.Bundle;

public class NotificationView extends Activity

{
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout.notification);
//---1look up the notification manager service---
NotificationManager nm = (NotificationManager)
getSystemService (NOTIFICATION SERVICE);
//---cancel the notification that we started
nm.cancel (getIntent () .getExtras().getInt("notificationID"));
}
}

5. Add the following statements in bold to the AndroidMani fest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Notifications"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<activity android:name=".NotificationView"
android:label="Details of notification">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />

http://schemas.android.com/apk/res/android

Displaying Notifications | 75

<uses-permission android:name="android.permission.VIBRATE" />
</manifest>

Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >
<Button
android:id="@+id/btn_displaynotif"
android:layout_width="£fill parent"”
android:layout_height="wrap_ content"
android:text="Display Notification" />
</LinearLayout>

Finally, add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Notifications;

import android.app.Activity;

import android.os.Bundle;

import android.app.Notification;

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;

import android.view.View;

import android.widget.Button;

public class MainActivity extends Activity {
int notificationID = 1;
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button button = (Button) findvViewById(R.id.btn displaynotif);
button.setOnClickListener (new Button.OnClickListener() {
public void onClick(View v) {
displayNotification();

})i

protected void displayNotification()

{
//---PendingIntent to launch activity if the user selects
// this notification---
Intent i = new Intent(this, NotificationView.class);
i.putExtra("notificationID", notificationID);

PendingIntent pendingIntent =
PendingIntent.getActivity(this, 0, i, 0);

http://schemas.android.com/apk/res/android

76

CHAPTER 2 ACTIVITIES AND INTENTS

10.
1.

NotificationManager nm = (NotificationManager)
getSystemService (NOTIFICATION SERVICE);

Notification notif = new Notification(
R.drawable.icon,
"Reminder: Meeting starts in 5 minutes",
System.currentTimeMillis());

CharSequence from = "System Alarm";
CharSequence message = "Meeting with customer at 3pm...";

notif.setLatestEventInfo(this, from, message, pendingIntent):;

//---100ms delay, vibrate for 250ms, pause for 100 ms and
// then vibrate for 500ms---

notif.vibrate = new long[] { 100, 250, 100, 500};
nm.notify(notificationID, notif);

Press F11 to debug the application on the Android Emulator.

Click the Display Notification button (see the top left of Figure 2-27) and a notification will appear
on the status bar.

Clicking and dragging the status bar down will reveal the notification (see the right of Figure 2-27).

Clicking on the notification will reveal the Notificationview activity. This also causes the
notification to be dismissed from the status bar.

3554:Android 2.3 Emulator WithSD ¥ 5554:Android 23 Emulator WithSD -

' Reminder: Meet! sin5 January 3, 2011

[Notifications

Display Motification

5 System Alarm
Meeting with customer at 3pm...

FIGURE 2-27

Displaying Notifications | 77

How It Works

To display a notification, you first created an Intent object to point to the NotificationView class:

//---PendingIntent to launch activity if the user selects
// this notification---

Intent i = new Intent(this, NotificationView.class);
i.putExtra("notificationID", notificationID);

This intent will be used to launch another activity when the user selects a notification from the list of noti-
fications. In this example, you added a key/value pair to the ITntent object so that you can tag the notifica-
tion ID, identifying the notification to the target activity. This ID will be used to dismiss the notifications
later.

You would also need to create a PendingIntent object. A PendingTntent object helps you to perform an
action on your application’s behalf, often at a later time, regardless of whether your application is run-
ning or not. In this case, you initialized it as follows:

PendingIntent pendingIntent =
PendingIntent.getActivity(this, 0, i, 0);
The getactivity () method retrieves a PendingIntent object and you set it using the following arguments:
> context — Application context
> request code — Request code for the intent
> intent — The intent for launching the target activity
> flags — The flags in which the activity is to be launched

You then obtain an instance of the NotificationManager class and create an instance of the
Notification class:

NotificationManager nm = (NotificationManager)
getSystemService (NOTIFICATION SERVICE);

Notification notif = new Notification(
R.drawable.icon,
"Reminder: Meeting starts in 5 minutes”,
System.currentTimeMillis());

The Notification class enables you to specify the notification’s main information when the notification
first appears on the status bar. The second argument to the Notification constructor sets the “ticker
text” on the status bar (see Figure 2-28).

| 5554:Android 2.3 Emulator WithSD

H Reminder: Me

[Notifications

Disnlav Matificatinn

FIGURE 2-28

78 | CHAPTER2 ACTIVITIES AND INTENTS

Next, you set the details of the notification using the setlLatestEventInfo () method:

CharSequence from = "System Alarm";

CharSequence message = "Meeting with customer at 3pm...";
notif.setLatestEventInfo(this, from, message, pendingIntent);
//---100ms delay, vibrate for 250ms, pause for 100 ms and

// then vibrate for 500ms---

notif.vibrate = new long[] { 100, 250, 100, 500};

The preceding also sets the notification to vibrate the phone. Finally, to display the notification you use
the notify () method:

nm.notify(notificationID, notif);

When the user clicks on the notification, the Notificationview activity is launched. Here, you dismiss
the notification by using the cancel () method of the NotificationManager object and passing it the ID
of the notification (passed in via the Intent object):

//---1look up the notification manager service---

NotificationManager nm = (NotificationManager)
getSystemService (NOTIFICATION SERVICE);

//---cancel the notification that we started
nm.cancel (getIntent () .getExtras().getInt("notificationID"));

SUMMARY

This chapter first provided a detailed look at how activities work and the various forms in which you
can display them. You also learned how to display dialog windows using activities.

The second part of this chapter demonstrated a very important concept in Android — the intent. The
intent is the “glue” that enables different activities to be connected, and is a vital concept to under-
stand when developing for the Android platform.

EXERCISES

1. What will happen if you have two or more activities with the same intent filter action name?
. Write the code to invoke the built-in Browser application.

Which components can you specify in an intent filter?

A W N

What is the difference between the Toast and NotificationManager class?

Answers to the Exercises can be found in Appendix C.

Summary | 79

TOPIC
Creating an activity

Key life cycle of an activity

Displaying an activity as a
dialog

Intent

Intent filter

Calling an activity

Passing data to an activity

Components in an Intent
object

Displaying notifications

PendingIntent object

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS
All activities must be declared in the AndroidManifest.xml file.

When an activity is started, the onStart () and onResume () events
are always called.

When an activity is killed or sent to the background, the
onPause () event is always called.

Use the showDialog () method and implement the onCreate
Dialog () method.

The “glue” that connects different activities

The “filter” that enables you to specify how your activities should
be called

Use the startActivity () or startActivityForResult ()
method.

Use the Bundle object.

An Intent object can contain the following: action, data, type, and
category.

Use the NotificationManager class.

A pPendingIntent object helps you to perform an action on your
application’s behalf, often at a later time, regardless of whether or
not your application is running.

Getting to Know the Android
User Interface

WHAT YOU WILL LEARN IN THIS CHAPTER

The various ViewGroups you can use to lay out your views
How to adapt to changes in screen orientation
How to manage screen orientation changes

How to create the Ul programmatically

Y Y Y Y Y

How to listen for Ul notifications

In Chapter 2, you learned about the activity class and its life cycle. You learned that an activity
is a means by which users interact with the application. However, an activity by itself does not
have a presence on the screen. Instead, it has to draw the screen using Views and ViewGroups. In
this chapter, you will learn the details about creating user interfaces in Android, how users inter-

act with them. In addition, you will learn how to handle changes in screen orientation on your

Android devices.

UNDERSTANDING THE COMPONENTS OF A SCREEN

In Chapter 2, you saw that the basic unit of an Android application is an activity. An activity
displays the user interface of your application, which may contain widgets like buttons, labels,
text boxes, and so on. Typically, you define your Ul using an XML file (e.g., the main.xm1 file
located in the res/1ayout folder), which may look like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

http://schemas.android.com/apk/res/android

82 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

android:layout_width="fill parent"
android:layout_height="fill_ parent"
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

</LinearLayout>

During run time, you load the XML Ul in the oncreate () event handler in your Activity class, using
the setContentvView() method of the Activity class:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main);

During compilation, each element in the XML file is compiled into its equivalent Android GUI class,
with attributes represented by methods. The Android system then creates the UI of the activity when
it is loaded.

NOTE While it is always easier to build your Ul using an XML file, sometimes
you need to build your Ul dynamically during run time (for example, when writing
games). Hence, it is also possible to create your Ul entirely using code. Later in
this chapter you will see an example of how this can be done.

Views and ViewGroups

An activity contains Views and ViewGroups. A view is a widget that has an appearance on screen.
Examples of views are buttons, labels, and text boxes. A view derives from the base class android

.view.View.

NOTE Chapters 4 and 5 discuss the various common views in Android.

One or more views can be grouped together into a ViewGroup. A ViewGroup (which is itself a spe-
cial type of view) provides the layout in which you can order the appearance and sequence of views.
Examples of ViewGroups include LinearLayout and FrameLayout. A ViewGroup derives from the
base class android.view.ViewGroup.

Android supports the following ViewGroups:
> LinearLayout

> AbsoluteLayout

Understanding the Components of a Screen | 83

TableLayout
RelativeLayout

FrameLayout

Y Y VY

ScrollView

The following sections describe each of these ViewGroups in more detail. Note that in practice it is
common to combine different types of layouts to create the Ul you want.

LinearLayout

The LinearLayout arranges views in a single column or a single row. Child views can be arranged
either vertically or horizontally. To see how LinearLayout works, consider the following elements
typically contained in the main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"

>
<TextView

android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:text="@string/hello"

/>
</LinearLayout>

In the main.xml file, observe that the root element is <LinearLayout> and it has a <Textview> ele-
ment contained within it. The <LinearLayout> element controls the order in which the views con-

tained within it appear.

Each View and ViewGroup has a set of common attributes, some of which are described in Table 3-1.

TABLE 3-1: Common Attributes Used in Views and ViewGroups

ATTRIBUTE
layout_width
layout_height
layout_marginTop
layout_marginBottom
layout_marginLeft

layout_marginRight

DESCRIPTION

Specifies the width of the View or ViewGroup

Specifies the height of the View or ViewGroup

Specifies extra space on the top side of the View or ViewGroup
Specifies extra space on the bottom side of the View or ViewGroup
Specifies extra space on the left side of the View or ViewGroup

Specifies extra space on the right side of the View or ViewGroup

continues

http://schemas.android.com/apk/res/android

84 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

TABLE 3-1 (continued)

ATTRIBUTE DESCRIPTION

layout_gravity Specifies how child Views are positioned

layout_weight Specifies how much of the extra space in the layout should be allocated
to the View

layout_x Specifies the x-coordinate of the View or ViewGroup

layout_y Specifies the y-coordinate of the View or ViewGroup

y NOTE Some of these attributes are applicable only when a View is in a specific
ViewGroup. For example, the 1layout_weight and layout_gravity attributes are
applicable only when a View is in either a LinearLayout Or @ TableLayout.

For example, the width of the <Textview> element fills the entire width of its parent (which is the
screen in this case) using the fi11_parent constant. Its height is indicated by the wrap_content con-
stant, which means that its height is the height of its content (in this case, the text contained within
it). If you don’t want to have the <Textview> view occupy the entire row, you can set its layout_width
attribute to wrap_content, like this:

< TextView
android:layout_width="wrap_content
android:layout_height="wrap_content"
android:text="@string/hello"

/>

This will set the width of the view to be equal to the width of the text contained within it.

Consider the following layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>

<TextView
android:layout_width="105dp"
android:layout_height="wrap_ content"
android:text="@string/hello"
/>

<Button
android:layout_width="160dp"
android:layout_height="wrap_ content"
android:text="Button"
/>

</LinearLayout>

http://schemas.android.com/apk/res/android

Understanding the Components of a Screen | 85

UNITS OF MEASUREMENT

When specifying the size of an element on an Android UI, you should be aware of
the following units of measurement:

> dp — Density-independent pixel. 160dp is equivalent to one inch of physical
screen size. This is the recommended unit of measurement when specifying the
dimension of views in your layout. You can specify either “dp” or “dip” when
referring to a density-independent pixel.

> sp — Scale-independent pixel. This is similar to dp and is recommended for
specifying font sizes.

> pt — Point. A point is defined to be 1/72 of an inch, based on the physical
screen size.

> px — Pixel. Corresponds to actual pixels on the screen. Using this unit is not
recommended, as your Ul may not render correctly on devices with different
screen sizes.

Here, you set the width of both the Textview and Button views to an absolute value. In this case, the
width for the TextView is set to 105 density-independent pixels wide, and the Button to 160 density-
independent pixels wide. Figure 3-1 shows how the views look when viewed on an emulator with a
resolution of 320x480.

Figure 3-2 shows how the views look when viewed on a high-resolution (480x800) emulator.

- I
¥ 5554:Android_23_Emulator B 5556:HDScreen

A\

\

FIGURE 3-1 FIGURE 3-2

As you can see, in both emulators the widths of both views are the same with respect to the width of
the emulator. This demonstrates the usefulness of using the dp unit, which ensures that even if the reso-
lution of the target device is different, the size of the view relative to the device remains unchanged.

86

CHAPTER 3 GETTING TO KNOW THE ANDROID USER INTERFACE

The preceding example also specifies that the orientation of the layout is vertical:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical™"
android:layout_width="fill_parent"
android:layout_height="fill parent"
>

The default orientation layout is horizontal, so if you omit the android:orientation attribute, the
views will appear as shown in Figure 3-3.

§1 5534iAndroid 2.3 Emulator |

Laycuts

ITECETS TR AR TR
hTrTrTFTF?WTkTrTrTf?

FIGURE 3-3

In LinearLayout, you can apply the layout_weight and layout_gravity attributes to views con-
tained within it, as the following modifications to main.xml show:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<TextView
android:layout_width="105dp"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

<Button
android:layout_width="160dp"
android:layout_height="wrap_ content"
android:text="Button"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Understanding the Components of a Screen | 87

android:layout_gravity="right"
android:layout_weight="0.2"
/>

<EditText
android:layout_width="£fill parent"”
android:layout_height="wrap_ content"
android:textSize="18sp"
android:layout_weight="0.8"
/>

</LinearLayout>

Figure 3-4 shows that the button is aligned to the right of its parent (which is the LinearLayout)
using the layout_gravity attribute. At the same time, you use the 1ayout_weight attribute to spec-
ify the ratio in which the Button and EditText views occupy the remaining space on the screen. The
total value for the 1ayout_weight attribute must be equal to 1.

355%ifndroid 2.3 Emulator EI_M

Layouts

Vaav
DO

adbidsidadsdedzils
G o g

5 e e e

,—--: 1 [T ———— [p— rre—
-~ fsmle | =

\

FIGURE 3-4

AbsoluteLayout

The absoluteLayout enables you to specify the exact location of its children. Consider the following
Ul defined in main.xml:

<?xml version="1.0" encoding="utf-8"?>

<AbsolutelLayout
android:layout_width="fill parent"
android:layout_height="fill_parent"
xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

88 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

>

<Button
android:layout_width="188dp"
android:layout_height="wrap_content"
android:text="Button"
android:layout_x="126px"
android:layout_y="361px"
/>

<Button
android:layout_width="113dp"
android:layout_height="wrap_content"
android:text="Button"
android:layout_x="12px"
android:layout_y="361px"
/>

</AbsoluteLayout>

Figure 3-5 shows the two Button views located at their specified positions using the android_layout_x
and android_layout_y attributes.

-
% 5550:Android_2.3_Emulator =)

[Layouts

1 2 3 o
EEET e

N e e o

FIGURE 3-5

However, there is a problem with the absoluteLayout when the activity is viewed on a high-resolu-
tion screen (see Figure 3-6). For this reason, the absoluteLayout has been deprecated since Android
1.5 (although it is still supported in the current version). You should avoid using the absoluteLayout
in your U, as it is not guaranteed to be supported in future versions of Android. You should instead
use the other layouts described in this chapter.

Understanding the Components of a Screen | 89

%! 3358HDAcreen =]]|

= al B 210

FIGURE 3-6

TableLayout

The TableLayout groups views into rows and columns. You use the <Tablerow> element to designate
a row in the table. Each row can contain one or more views. Each view you place within a row forms
a cell. The width of each column is determined by the largest width of each cell in that column.

Consider the content of main.xml shown here:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_height="fill_parent"
android:layout_width="fill parent"
>
<TableRow>
<TextView
android:text="User Name:"
android:width ="120px"
/>
<EditText
android:id="@+id/txtUserName"
android:width="200px" />
</TableRow>

http://schemas.android.com/apk/res/android

90 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

<TableRow>
<TextView
android:text="Password:"
/>
<EditText
android:id="@+id/txtPassword"
android:password="true"
/>
</TableRow>
<TableRow>
<TextView />
<CheckBox android:id="@+id/chkRememberPassword"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Remember Password"
/>
</TableRow>
<TableRow>
<Button
android:id="@+id/buttonSignIn"
android:text="Log In" />
</TableRow>
</TablelLayout>

Figure 3-7 shows what the preceding looks like when rendered on the Android Emulator.

B | 5554:Andrond 2.3 Emulator

Tayouts

FIGURE 3-7

Note that in the preceding example, there are two columns and four rows in the TableLayout. The cell
directly under the Password Textview is populated with an <Textview/> empty element. If you don’t do
this, the Remember Password checkbox will appear under the Password Textview, as shown in Figure 3-8.

Understanding the Components of a Screen | 91

B 5558Andrond_2.3 Emulator [ESEE =)

Layouts

FIGURE 3-8

RelativeLayout

The RelativeLayout enables you to specify how child views are positioned relative to each other.
Consider the following main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

android:id="@+id/RLayout"

android:layout_width="fill parent"

android:layout_height="fill_parent"

xmlns:android="http://schemas.android.com/apk/res/android"

>

<TextView
android:id="@+id/1lblComments"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Comments"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
/>

<EditText
android:id="@+id/txtComments"
android:layout_width="fill parent"
android:layout_height="170px"
android:textSize="18sp"
android:layout_alignLeft="@+id/lblComments"
android:layout_below="@+id/lblComments"
android:layout_centerHorizontal="true"
/>

<Button
android:id="@+id/btnSave"

http://schemas.android.com/apk/res/android

92 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

android:layout_width="125px"
android:layout_height="wrap_content"
android:text="Save"
android:layout_below="@+id/txtComments"
android:layout_alignRight="@+id/txtComments"”
/>
<Button

android:id="@+id/btnCancel"
android:layout_width="124px"
android:layout_height="wrap_content"
android:text="Cancel"
android:layout_below="@+id/txtComments”
android:layout_alignLeft="@+id/txtComments"
/>

</RelativeLayout>

Notice that each view embedded within the RelativeLayout has attributes that enable it to align
with another view. These attributes are as follows:
> layout_alignParentTop
layout_alignParentLeft
layout_alignLeft
layout_alignRight

layout_below

Y VYV VY Y Y

layout_centerHorizontal

The value for each of these attributes is the ID for the view that you are referencing. The preceding
XML UI creates the screen shown in Figure 3-9.

B 555&Androsd 2.3 Emulator ‘—M‘-' y]

oulwialealpalnilveluclneloulesl
aalseloledeanlicdicd e

FIGURE 3-9

Understanding the Components of a Screen | 93

FrameLayout

The FrameLayout is a placeholder on screen that you can use to display a single view. Views that you
add to a FrameLayout are always anchored to the top left of the layout. Consider the following con-
tent in main.xml:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
android:id="@+id/RLayout"
android:layout_width="fill parent"
android:layout_height="fill parent"
xmlns:android="http://schemas.android.com/apk/res/android"
>
<TextView
android:id="@+id/1blComments"
android:layout_width="wrap_ content"
android:layout_height="wrap_ content"
android:text="This is my lovely dog, Ookii"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
/>
<FrameLayout
android:layout_width="wrap_ content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/1blComments"
android:layout_below="@+id/1lblComments"
android:layout_centerHorizontal="true"
>
<ImageView
android:src = "@drawable/ookii"
android:layout_width="wrap_ content"
android:layout_height="wrap_content"
/>
</FrameLayout>
</RelativeLayout>

Here, you have a FrameLayout within a RelativeLayout. Within the FrameLayout, you embed an
ImagevView. The Ul is shown in Figure 3-10.

NOTE This example assumes that the res/drawable-mdpi folder has an image
named ookii.png.

If you add another view (such as a Button view) within the FrameLayout, the view will overlap the
previous view (see Figure 3-11):

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
android:id="@+id/RLayout"
android:layout_width="fill parent"
android:layout_height="fill_parent"

http://schemas.android.com/apk/res/android

94 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

xmlns:android="http://schemas.android.com/apk/res/android"
>
<TextView
android:id="@+1id/1blComments"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This is my lovely dog, Ookii"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
/>
<FrameLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignLeft="@+id/lblComments"
android:layout_below="@+1d/1blComments"
android:layout_centerHorizontal="true"
>
<ImageView
android:src = "@drawable/ookii"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>
<Button
android:layout_width="124dp"
android:layout_height="wrap content”
android:text="Print Picture"
/>
</FrameLayout>
</RelativeLayout>

(87 5554Android 23 Emulator [ESRE ")

Layouts

FIGURE 3-10

http://schemas.android.com/apk/res/android

Understanding the Components of a Screen | 95

(1 5554 Android_23_ Emulator =)

Layouts

,,_,_ ,__r_.,_h Lt
—~|| ’|

—— [—'[

ALT |

AaLT

h

FIGURE 3-11

NOTE You can add multiple views to a FrameLayout, but each will be stacked on
top of the previous one. This is useful in cases where you want to animate series
of images, with only one visible at a time.

ScrollView

A scrollview is a special type of FrameLayout in that it enables users to scroll through a list of views
that occupy more space than the physical display. The Scrollview can contain only one child view or
ViewGroup, which normally is a LinearLayout.

@ NOTE Do not use a ListView (discussed in Chapter 4) together with the
Scrollview. The ListView is designed for showing a list of related information
and is optimized for dealing with large lists.

The following main.xml content shows a Scrol1view containing a LinearLayout, which in turn
contains some Button and EditText views:

<?xml version="1.0" encoding="utf-8"?>
<Scrollview
android:layout_width="fill parent"

96

CHAPTER 3 GETTING TO KNOW THE ANDROID USER INTERFACE

android:layout_height="fill_ parent"
xmlns:android="http://schemas.android.com/apk/res/android"
>
<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical"
>
<Button
android:id="@+id/buttonl"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Button 1"
/>
<Button
android:id="@+id/button2"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Button 2"
/>
<Button
android:id="@+id/button3"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Button 3"
/>
<EditText
android:id="@+id/txt"
android:layout_width="fill_parent"
android:layout_height="300px"
/>
<Button
android:id="@+id/buttond"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Button 4"
/>
<Button
android:id="@+id/button5"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Button 5"
/>
</LinearLayout>
</Scrollview>

Figure 3-12 shows the scrol1lview enabling the users to drag the screen upward to reveal the views
located at the bottom of the screen.

http://schemas.android.com/apk/res/android

Adapting to Display Orientation | 97

5 5554Andrid 2.3 Tmalator B 555%:Andrord_23_Emulatar -

Lay uﬁts

FIGURE 3-12

ADAPTING TO DISPLAY ORIENTATION

One of the key features of modern smartphones is their ability to switch screen orientation, and
Android is no exception. Android supports two screen orientations: portrait and landscape. By default,
when you change the display orientation of your Android device, the current activity that is displayed
will automatically redraw its content in the new orientation. This is because the oncreate () event of
the activity is fired whenever there is a change in display orientation.

NOTE When you change the orientation of your Android device, your current
activity is actually destroyed and then re-created.

However, when the views are redrawn, they may be drawn in their original locations (depending on
the layout selected). Figure 3-13 shows one of the examples illustrated earlier displayed in both por-
trait and landscape mode.

As you can observe in landscape mode, a lot of empty space on the right of the screen could be used.
Furthermore, any additional views at the bottom of the screen would be hidden when the screen ori-
entation is set to landscape.

98 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

& 555chndmid_23 Emulstor o+ S55bhedond 3.3 Emulator

[Cayaas”

B S ® O @

ALT

FIGURE 3-13

In general, you can employ two techniques to handle changes in screen orientation:

> Anchoring — The easiest way is to “anchor” your views to the four edges of the screen.
When the screen orientation changes, the views can anchor neatly to the edges.

> Resizing and repositioning — Whereas anchoring and centralizing are simple techniques to
ensure that views can handle changes in screen orientation, the ultimate technique is resizing
each and every view according to the current screen orientation.

Anchoring Views

Anchoring could be easily achieved by using RelativeLayout. Consider the following main.xml
containing five Button views embedded within the <RelativeLayout> element:

<?xml version="1.0" encoding="utf-8"7?>
<RelativeLayout
android:layout_width="fill_parent"
android:layout_height="fill_parent"
xmlns:android="http://schemas.android.com/apk/res/android"
>
<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_ content"
android:text="Top Left Button"
android:layout_alignParentLeft="true"
android:layout_alignParentTop="true"
/>

http://schemas.android.com/apk/res/android

Adapting to Display Orientation

<Button
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top Right Button"
android:layout_alignParentTop="true"
android:layout_alignParentRight="true"
/>

<Button
android:id="@+id/button3"
android:layout_width="wrap_ content"
android:layout_height="wrap_ content"
android:text="Bottom Left Button"
android:layout_alignParentLeft="true"
android:layout_alignParentBottom="true"
/>

<Button
android:id="@+id/buttond"
android:layout_width="wrap_content"
android:layout_height="wrap content"
android:text="Bottom Right Button"
android:layout_alignParentRight="true"
android:layout_alignParentBottom="true"
/>

<Button
android:id="@+id/button5"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Middle Button"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
/>

</RelativeLayout>

Observe the following attributes found in the various Button views:

>

Y Y Y Y Y

layout_alignParentLeft — Aligns the view to the left of the parent view
layout_alignParentRight — Aligns the view to the right of the parent view
layout_alignParentTop — Aligns the view to the top of the parent view
layout_alignParentBottom — Aligns the view to the bottom of the parent view
layout_centerVertical — Centers the view vertically within its parent view

layout_centerHorizontal — Centers the view horizontally within its parent view

Figure 3-14 shows the activity when viewed in portrait mode.

When the screen orientation changes to landscape mode, the four buttons are aligned to the four
edges of the screen, and the center button is centered in the middle of the screen with its width fully
stretched (see Figure 3-15).

100 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

- B
8 | 5554:Andioid_2:3_Frrulator fedo |

= wl W 337

Layouts

Bottom Lefl Button Boltom Right Butlon

FIGURE 3-14

8 | 5354:Andioid_2.3_Froulatoe [E=EE)

£ wi @ 338
Layouts

o

urwrvmwr“r'mr—'wr‘“ OO0

[g
Fhr——"-':r??r— D™ OO

FIGURE 3-15

Adapting to Display Orientation | 101

Resizing and Repositioning

Apart from anchoring your views to the four edges of the screen, an easier way to
customize the UI based on screen orientation is to create a separate res/layout

folder containing the XML files for the UI of each orientation. To support land-
scape mode, you can create a new folder in the res folder and name it as 4 & layout
layout-land (representing landscape). Figure 3-16 shows the new folder

containing the file main.xml.

Basically, the main.xml file contained within the 1ayout folder defines the Ul
for the activity in portrait mode, whereas the main.xml file in the layout-land

folder defines the Ul in landscape mode.

assels

PR

PE

res
% drawable-hdp
= drawable-1dpi

(&= draveable-mdpi

p

| mainxml
4 | = layout-land
3 il
= values
|4 AndroidManitestami
[3 default.properties

FIGURE 3-16

The following shows the content of main.xml under the 1ayout folder:

<?xml version="1.0" encoding="utf-8"?>

<RelativelLayout

android:layout_width="fill parent"
android:layout_height="fill_parent"
xmlns:android="http://schemas.android.com/apk/res/android"

>
<Button
android

android:
android:
android:
android:
android:

/>
<Button

android:
android:
android:
android:
android:
android:

/>
<Button

android:

android

android:
android:
android:
android:

/>
<Button

android:

android

android:
android:
android:
android:

/>

:id="@+id/buttonl"
layout_width="wrap_content"
layout_height="wrap_content"
text="Top Left Button"
layout_alignParentLeft="true"
layout_alignParentTop="true"

id="@+id/button2"
layout_width="wrap_content"
layout_height="wrap_content"
text="Top Right Button"
layout_alignParentTop="true"
layout_alignParentRight="true"

id="@+id/button3"
:layout_width="wrap_content"
layout_height="wrap_content"
text="Bottom Left Button"
layout_alignParentLeft="true"
layout_alignParentBottom="true"

id="@+id/buttond"
:layout_width="wrap_content"
layout_height="wrap_content"
text="Bottom Right Button"
layout_alignParentRight="true"
layout_alignParentBottom="true"

http://schemas.android.com/apk/res/android

102 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

<Button

android:id="@+id/button5"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Middle Button"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
/>

</RelativeLayout>

The following shows the content of main.xml under the 1ayout-1land folder (the statements in bold
are the additional views to display in landscape mode):

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

android:layout_width="fill_parent"

android:layout_height="fill_ parent"

xmlns:android="http://schemas.android.com/apk/res/android"

>

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top Left Button"
android:layout_alignParentLeft="true"
android:layout_alignParentTop="true"
/>

<Button
android:id="@+id/button2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Top Right Button"
android:layout_alignParentTop="true"
android:layout_alignParentRight="true"
/>

<Button
android:id="@+id/button3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Bottom Left Button"
android:layout_alignParentLeft="true"
android:layout_alignParentBottom="true"
/>

<Button
android:id="@+id/buttond"
android:layout_width="wrap_content"
android:layout_height="wrap_ content"
android:text="Bottom Right Button"
android:layout_alignParentRight="true"
android:layout_alignParentBottom="true"
/>

<Button
android:id="@+id/button5"
android:layout_width="fill_parent"

http://schemas.android.com/apk/res/android

Adapting to Display Orientation

| 103

android:layout_height="wrap_content"
android:text="Middle Button"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
/>

<Button

android:id="@+id/button6é"
android:layout_width="180px"
android:layout_height="wrap content"”
android:text="Top Middle Button"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:layout_alignParentTop="true"
/>

<Button

android:id="@+id/button7"
android:layout_width="180px"
android:layout_height="wrap_ content"
android:text="Bottom Middle Button"
android:layout_centerVertical="true"
android:layout_centerHorizontal="true"
android:layout_alignParentBottom="true"
/>

</RelativeLayout>

When the activity is loaded in portrait mode, it will show five buttons, as shown in Figure 3-17.

‘Layouts

- y
5 5554Andmid 2.3 Tmalator [

Middle Button

Bottom Right Button

“ oml @ 354

FIGURE 3-17

104 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

When the activity is loaded in landscape mode, there are now seven buttons (see Figure 3-18), proving
that different XML files are loaded when the device is in a different orientation.

@ 1
% | 5554:Android_2.3 Emulator =)

= wl & 348

Layouts

Top Middle Buttan Top Right Button

Bottom Left Button Bottom Middle Button J Bottom Right Button

MIEEEEEEREE O 0 0 O
[—r—v—*r—"ﬁ[—“"—f—

.

FIGURE 3-18

Using this method, when the orientation of the device changes, Android will automatically load the
appropriate XML file for your activity depending on the current screen orientation.

MANAGING CHANGES TO SCREEN ORIENTATION

Now that you have looked at how to implement the two techniques for adapting to screen orienta-
tion changes, let’s explore what happens to an activity’s state when the device changes orientation.

The following Try It Out demonstrates the behavior of an activity when the device changes orientation.

Understanding Activity Behavior When Orientation Changes

codefile Orientations.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it orientations.

2. Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

Managing Changes to Screen Orientation | 105

android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<EditText
android:id="@+id/txtFieldl"
android:layout_width="fill parent"
android:layout_height="wrap content" />
<EditText
android:layout_width="fill parent"
android:layout_height="wrap content" />
</LinearLayout>

Add the following statements in bold to the Mainactivity.java file:

package net.learn2develop.Orientations;

import android.app.Activity;
import android.os.Bundle;

import android.util.Log;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
Log.d("StateInfo", "onCreate");

@Override

public void onStart() {
Log.d("sSstateInfo", "onStart");
super.onStart();

@Override

public void onResume() {
Log.d("StateInfo", "onResume");
super.onResume () ;

@Override

public void onPause() {
Log.d("StateInfo", "onPause");
super.onPause();

@Override

public void onStop() {
Log.d("stateInfo", "onStop");
super.onStop() ;

106 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

@Override

public void onDestroy() {

Log.d("stateInfo",

"onDestroy") ;

super.onDestroy() ;

@Override

public void onRestart() {

Log.d("stateInfo",

"onRestart");

super.onRestart();

4. Press F11 to debug the application on the Android Emulator.

5. Enter some text into the two EditText views (see Figure 3-19).

6. Change the orientation of the Android Emulator by pressing Ctrl+F11. Figure 3-20 shows the emu-
lator in landscape mode. Note that the text in the first EditText view is still visible, while the second
EditText view is now empty.

7. Observe the output in the LogCat window (you need to switch to the Debug perspective in
Eclipse). You should see something like this:

01-05 13:32:30
01-05 13:32:30
01-05 13:32:30

01-05 13:35:20
01-05 13:35:20
01-05 13:35:20
01-05 13:35:20
01-05 13:35:20
01-05 13:35:20

How It Works

.266:
.296:
.296:

.106:
.106:
.106:
.246:
.256:
.256:

DEBUG/StateInfo(5477) :
DEBUG/StateInfo (5477) :
DEBUG/StateInfo (5477) :

DEBUG/StateInfo (5477
DEBUG/StateInfo (5477
DEBUG/StateInfo (5477
DEBUG/StateInfo (5477
DEBUG/StateInfo (5477
DEBUG/StateInfo (5477

)
)
) :
)z
)
)

onCreate
onStart
onResume

onPause
onStop
onDestroy
onCreate
onStart
onResume

From the output shown in the LogCat window, it is apparent that when the device changes orientation,

the activity is destroyed:

01-05 13:35:20.106:
01-05 13:35:20.106:
01-05 13:35:20.106:

It is then re-created:

01-05 13:35:20.246:
01-05 13:35:20.256:
01-05 13:35:20.256:

DEBUG/StateInfo (5477) :
DEBUG/StateInfo (5477):
DEBUG/StateInfo (5477) :

DEBUG/StateInfo (5477) :
DEBUG/StateInfo (5477) :
DEBUG/StateInfo (5477) :

onPause
onStop
onDestroy

onCreate
onStart
onResume

It is important that you understand this behavior because you need to ensure that you take the neces-
sary steps to preserve the state of your activity before it changes orientation. For example, you may have
variables containing values needed for some calculations in the activity. For any activity, you should save
whatever state you need to save in the onPause () event, which is fired every time the activity changes ori-
entation. The following section demonstrates the different ways to save this state information.

Managing Changes to Screen Orientation | 107

B | 5554fndroid 2.3 Emulator

AB £ wl & 123
Orientations

This line will be retained

This line will disappcar,.l

TUV WYz

Lo o]

1 |2 (3 [a |5 {6 |7]s [0]
[_[“F““”r""‘l"?f"f’_'l"’*l—"l_"

FIGURE 3-19

B 35%4:Androwd 2.3 Emulator

[Orientations

This line will be retained |

1@ PR T PR A T
P 7 P e e e e e s o
r“*r—[‘?r—f -

[R | o r—f—Wﬁ'— =

P — o

FIGURE 3-20

108 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

Another important behavior to understand is that only views that are named (via the android:id attri-
bute) in an activity will have their state persisted when the activity they are contained in is destroyed.
For example, the user may change orientation while entering some text into an EditText view. When
this happens, any text inside the EditText view will be persisted and restored automatically when the
activity is re-created. In contrast, if you do not name the EditText view using the android:id attribute,
the activity will not be able to persist the text currently contained within it.

Persisting State Information during Changes in Configuration

So far, you have learned that changing screen orientation destroys an activity and re-creates it. Keep in
mind that when an activity is re-created, the current state of the activity may be lost. When an activity
is killed, it will fire one or more of the following two events:

> onpause () — This event is always fired whenever an activity is killed or pushed into the
background.
> onSavelInstanceState() — This event is also fired whenever an activity is about to be killed

or put into the background (just like the onPause () event). However, unlike the onpause ()
event, the onsaveInstanceState event is not fired when an activity is being unloaded from
the stack (for example, when the user pressed the Back button), because there is no need to
restore its state later.

In short, to preserve the state of an activity, you could always implement the onPause () event, and
then use your own ways to preserve the state of your activity, such as using a database, internal or
external file storage, etc.

If you simply want to preserve the state of an activity so that it can be restored later when the activity
is re-created (such as when the device changes orientation), a much simpler way would be to imple-
ment the onsaveInstanceState () method, as it provides a Bundle object as an argument so that you
can use it to save your activity’s state. The following code shows that you can save the string 1D into
the Bundle object during the onSaveInstanceState event:

@Override

public void onSaveInstanceState(Bundle outState) {
//---save whatever you need to persist---
outState.putString ("ID", "1234567890");
super.onSavelnstanceState (outState) ;

When an activity is re-created, the onCreate () event is first fired, followed by the
onRestoreInstanceState () event, which enables you to retrieve the state that you saved
previously in the onsaveInstanceState event through the Bundle object in its argument:

@Override

public void onRestoreInstanceState (Bundle savedInstanceState) {
super .onRestoreInstanceState (savedInstanceState) ;
//---retrieve the information persisted earlier---
String ID = savedInstanceState.getString("ID");

Managing Changes to Screen Orientation | 109

Although you can use the onSaveInstanceState () event to save state information, note the limitation
that you can only save your state information into a Bundle object. If you need to save more complex
data structures, then this is not an adequate solution.

Another event handler that you can use is the onRetainNonConfigurationInstance () event. This
event is fired when an activity is about to be destroyed due to a configuration change. You can save
your current data by returning it in this event, like this:

@Override

public Object onRetainNonConfigurationInstance() {
//---save whatever you want here; it takes in an Object type---
return("Some text to preserve");

y NOTE When screen orientation changes, this change is part of what is known
as a configuration change. A configuration change will cause your current activ-
ity to be destroyed.

Note that this event returns an object type, which pretty much allows you to return any data type.
To extract the saved data, you can extract it in the onCreate () event, using the
getLastNonConfigurationInstance () method, like this:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
Log.d("StateInfo", "onCreate");
String str = (String) getLastNonConfigurationInstance();

Detecting Orientation Changes

Sometimes you need to know the device’s current orientation during run time. To determine that,
you can use the windowManager class. The following code snippet demonstrates how you can pro-
grammatically detect the current orientation of your activity:

import android.util.Log;
import android.view.Display;
import android.view.WindowManager;
/] ...
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---get the current display info---
WindowManager wm = getWindowManager () ;

Display d = wm.getDefaultDisplay();

if (d.getwWidth() > d.getHeight())

110 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

{
//---landscape mode---
Log.d("Orientation", "Landscape mode");
}
else
{
//---portrait mode---
Log.d("Orientation", "Portrait mode");
}

The getDefaultDisplay () method returns a Display object representing the screen of the device.
You can then get its width and height and deduce the current orientation.

Controlling the Orientation of the Activity

Occasionally you might want to ensure that your application is only displayed in a certain orienta-
tion. For example, you may be writing a game that should only be viewed in landscape mode. In this
case, you can programmatically force a change in orientation using the setRequestOrientation ()
method of the activity class:

import android.content.pm.ActivityInfo;

public class MainActivity extends Activity ({

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
//---change to landscape mode---
setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION LANDSCAPE);

To change to portrait mode, use the ActivityInfo.SCREEN ORIENTATION PORTRAIT constant:

setRequestedOrientation(ActivityInfo.SCREEN ORIENTATION PORTRAIT);

Besides using the setRequestOrientation () method, you can also use the android:screenOrientation
attribute on the <activity> element in AndroidManifest.xml as follows to constrain the activity to a

certain orientation:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Orientations"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="€@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name"
android:screenOrientation="landscape" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

http://schemas.android.com/apk/res/android

Creating the User Interface Programmatically | 111

</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

The preceding example constrains the activity to a certain orientation (landscape in this case) and pre-
vents the activity from being destroyed; that is, the activity will not be destroyed and the oncreate ()
event will not be fired again when the orientation of the device changes.

Following are two other values that you can specify in the android: screenorientation attribute:
» portrait — Portrait mode

» sensor — Based on the accelerometer

CREATING THE USER INTERFACE PROGRAMMATICALLY

So far, all the Uls you have seen in this chapter are created using XML. As mentioned earlier, besides
using XML you can also create the Ul using code. This approach is useful if your Ul needs to be dynami-
cally generated during run time. For example, suppose you are building a cinema ticket reservation sys-
tem and your application will display the seats of each cinema using buttons. In this case, you would need
to dynamically generate the UI based on the cinema selected by the user.

The following Try It Out demonstrates the code needed to dynamically build the Ul in your activity.

Creating the Ul via Code

codefile UICode.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it UICode.

2. Inthe MainActivity.java file, add the following statements in bold:

package net.learn2develop.UICode;

import android.app.Activity;
import android.os.Bundle;

import android.view.ViewGroup.LayoutParams;
import android.widget.Button;

import android.widget.LinearLayout;

import android.widget.TextView;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
//setContentView (R.layout.main) ;

//---param for views---
LayoutParams params =

112 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

new LinearLayout.LayoutParams (
LayoutParams.FILL_ PARENT,
LayoutParams.WRAP_ CONTENT) ;

//---create a layout---
LinearLayout layout = new LinearLayout (this);
layout.setOrientation(LinearLayout.VERTICAL);

//---create a textview---
TextView tv = new TextView(this);
tv.setText ("This is a TextView");
tv.setLayoutParams (params) ;

//---create a button---

Button btn = new Button(this);
btn.setText ("This is a Button");
btn.setLayoutParams (params) ;

//---adds the textview---
layout.addview(tv) ;

//---adds the button---
layout.addview(btn) ;

//---create a layout param for the layout---
LinearLayout.LayoutParams layoutParam =
new LinearLayout.LayoutParams (
LayoutParams.FILL_PARENT,
LayoutParams.WRAP_ CONTENT) ;

this.addContentView(layout, layoutParam);

3. Press F11 to debug the application on the Android Emulator. Figure 3-21 shows the activity created.

How It Works

In this example, you first commented out the setContentView() statement so that it does not load the
Ul from the main.xml file.

You then created a LayoutParams object to specify the layout parameter that can be used by other views
(which you will create next):

//---param for views---
LayoutParams params =
new LinearLayout.LayoutParams (
LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT) ;

You also created a LinearLayout object to contain all the views in your activity:

//---create a layout---
LinearLayout layout = new LinearLayout (this);
layout.setOrientation (LinearLayout.VERTICAL) ;

Creating the User Interface Programmatically | 113

® | 555d:ndroid_2.3_ Emulator =)

UICode

FIGURE 3-21

Next, you created a TextView and a Button view:

//---create a textview---
TextView tv = new TextView(this);
tv.setText ("This is a TextView");
tv.setLayoutParams (params) ;

//---create a button---

Button btn = new Button(this);
btn.setText ("This is a Button");
btn.setLayoutParams (params) ;

You then added them to the LinearLayout object:

//---adds the textview---
layout.addview (tv) ;

//---adds the button---
layout.addView (btn) ;

You also created a LayoutParams object to be used by the LinearLayout object:

//---create a layout param for the layout---
LinearLayout.LayoutParams layoutParam =
new LinearLayout.LayoutParams (
LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT) ;

114 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

Finally, you added the LinearLayout object to the activity:

this.addContentView(layout, layoutParam);

As you can see, using code to create the Ul is quite a laborious affair. Hence, dynamically generate your
UI using code only when necessary.

LISTENING FOR Ul NOTIFICATIONS

Users interact with your Ul at two levels: the activity level and the views level. At the activity level,
the Activity class exposes methods that you can override. Some common methods that you can
override in your activities include the following:

> onKeyDown — Called when a key was pressed and not handled by any of the views contained
within the activity

> onKeyUp — Called when a key was released and not handled by any of the views contained
within the activity

> onMenuTtemSelected — Called when a panel’s menu item has been selected by the user (cov-
ered in Chapter 5)

> onMenuOpened — Called when a panel’s menu is opened by the user (covered in Chapter 5)

Overriding Methods Defined in an Activity

To understand how activities interact with the user, let’s start off by overriding some of the methods
defined in the activity’s base class and learn how they are handled when the user interacts with the
activity.

Overriding Activity Methods

codefile UlActivity.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it UTactivity.

2. Add the following statements in bold:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:orientation="vertical"
xmlns:android="http://schemas.android.com/apk/res/android"
>
<TextView

android:layout_width="214dp"

http://schemas.android.com/apk/res/android

Listening for Ul Notifications | 115

android:layout_height="wrap_ content"
android:text="Your Name"
/>

<EditText
android:id="@+id/txt1l"
android:layout_width="214dp"
android:layout_height="wrap_ content"
/>

<Button
android:id="@+id/btnl"
android:layout_width="106dp"
android:layout_height="wrap_ content"”
android:text="0K"
/>

<Button
android:id="@+id/btn2"
android:layout_width="106dp"
android:layout_height="wrap_ content"
android:text="Cancel"
/>

</LinearLayout>

3. Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.UIActivity;

import android.app.Activity;
import android.os.Bundle;

import android.view.KeyEvent;
import android.widget.Toast;

public class MainActivity extends Activity {
/** Called when the activity is first created.
@Override
public void onCreate (Bundle savedInstanceState)
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

@Override

public boolean onKeyDown(int keyCode, KeyEvent event)

{
switch (keyCode)
{
case KeyEvent.KEYCODE DPAD CENTER:
Toast .makeText (getBaseContext (),
"Center was clicked",
Toast .LENGTH_LONG) .show() ;
break;
case KeyEvent .KEYCODE_DPAD LEFT:
Toast .makeText (getBaseContext (),
"Left arrow was clicked",

116 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

Toast .LENGTH LONG) .show();
break;
case KeyEvent.KEYCODE DPAD RIGHT:
Toast .makeText (getBaseContext (),
"Right arrow was clicked",
Toast.LENGTH LONG) .show();
break;
case KeyEvent .KEYCODE DPAD UP:
Toast .makeText (getBaseContext (),
"Up arrow was clicked",
Toast .LENGTH_LONG) .show() ;

break;
case KeyEvent.KEYCODE_DPAD DOWN:
Toast .makeText (getBaseContext (),
"Down arrow was clicked",
Toast . LENGTH_LONG) .show() ;
break;

}
return false;

4. Press F11 to debug the application on the Android Emulator.

5. When the activity is loaded, type some text into it, as shown on the left of Figure 3-22. Next, click
the down arrow key on the directional pad. Observe the message shown on the screen, as shown in
the black area on the right of Figure 3-22.

8 5554Android 23 Frrudator

FIGURE 3-22

How It Works

When the activity is loaded, the cursor will be blinking in the EditText view, as it has the focus.

Listening for Ul Notifications | 117

In the MainActivitiy class, you override the onkeyDown () method of the base activity class, like this:

@Override
public boolean onKeyDown (int keyCode, KeyEvent event)
{
switch (keyCode)
{
case KeyEvent.KEYCODE_DPAD_CENTER:
/...
break;
case KeyEvent.KEYCODE_DPAD_LEFT:
/] ..
break;
case KeyEvent.KEYCODE_DPAD_RIGHT:
/] ..
break;
case KeyEvent.KEYCODE_DPAD_UP:
/] ..
break;
case KeyEvent.KEYCODE_DPAD_DOWN :
/] ..
break;
}

return false;

In Android, whenever you press any keys on your device, the view that currently has the focus will
try to handle the event generated. In this case, when the EditText has the focus and you press a key,
the EditText view will handle the event and display the character you have just pressed in the view.
However, if you press the up or down directional arrow key, the ditText view does not handle this,
and instead passes the event to the activity. In this case, the onkeyDown () method is called. In this case,
you checked the key that was pressed and displayed a message indicating the key pressed. Observe that
the focus is now also transferred to the next view, which is the OK button.

Interestingly, if the EditText view already has some text in it and the cursor (57 5554tAndroid_23 Emulator
is at the end of the text (see Figure 3-23), then clicking the left arrow key

does not fire the onkeyDown() event; it simply moves the cursor one character
to the left. This is because the EditText view has already handled the event.

If you press the right arrow key instead, then the onkeyDown () method will

be called (because now the EditText view will not be handling the event).
The same applies when the cursor is at the beginning of the EditText view.
Clicking the left arrow will fire the onkeyDown () event, whereas clicking the FIGURE 3-23
right arrow will simply move the cursor one character to the right.

Wei-Meng Le&

OK

With the OK button in focus, press the center button in the directional pad. Observe that the message
“Center was clicked” is not displayed. This is because the Button view itself is handling the click event.
Hence the event is not caught by the onkeybown () method. However, if none of the views is in focus at
the moment (you can achieve this by clicking on the background of the screen), then pressing the center
key will show the “Center was clicked” message (see Figure 3-24).

118 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

- \
B 5554:Android_2.3 Trulator o []

UlActivity

Wei-Meng Lee

Cancel

Center was

FIGURE 3-24

Note that the onkeyDown () method returns a boolean result. You should return true when you want to
tell the system that you are done with the event and that the system should not proceed further with it.
For example, consider the case when you return true after each key has been matched:

@Override
public boolean onKeyDown (int keyCode, KeyEvent event)
{
switch (keyCode)
{
case KeyEvent.KEYCODE_DPAD_CENTER:
Toast.makeText (getBaseContext (),
"Center was clicked",
Toast.LENGTH_LONG) .show () ;
return true;
case KeyEvent.KEYCODE_DPAD_LEFT:
Toast.makeText (getBaseContext (),
"Left arrow was clicked",
Toast.LENGTH_LONG) .show () ;
return true;
case KeyEvent.KEYCODE_DPAD_RIGHT:
Toast.makeText (getBaseContext (),
"Right arrow was clicked",
Toast.LENGTH_LONG) .show () ;
return true;
case KeyEvent.KEYCODE_DPAD_UP:
Toast.makeText (getBaseContext (),
"Up arrow was clicked",
Toast.LENGTH_LONG) .show () ;

Listening for Ul Notifications | 119

If you test this,

return true;
case KeyEvent.KEYCODE_DPAD_DOWN :
Toast.makeText (getBaseContext (),
"Down arrow was clicked",
Toast.LENGTH_LONG) .show() ;
return true;
}

return false;

you will see that now you cannot navigate between the views using the arrow keys.

Registering Events for Views

Views can fire events when users interact with them. For example, when a user touches a Button
view, you need to service the event so that the appropriate action can be performed. To do so, you
need to explicitly register events for views.

Using the same example discussed in the previous section, recall that the activity has two Button
views; therefore, you can register the button click events using an anonymous class as shown here:

package net.learn2develop.UIActivity;

import
import
import
import
import

import
import

public

android.app.Activity;
android.os.Bundle;
android.view.KeyEvent;
android.view.View;
android.widget.Toast;

android.view.View.OnClickListener;
android.widget.Button;

class MainActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---the two buttons are wired to the same event handler---
Button btnl = (Button)findViewById(R.id.btnl);
btnl.setOnClickListener (btnListener);

Button btn2 = (Button)findViewById(R.id.btn2);
btn2.setOnClickListener (btnListener);

//---create an anonymous class to act as a button click listener---
private OnClickListener btnListener = new OnClickListener()

{

public void onClick(View v)

120 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

{
Toast .makeText (getBaseContext (),
((Button) v).getText() + " was clicked",
Toast .LENGTH LONG) .show();
}
};
@Override

public boolean onKeyDown (int keyCode, KeyEvent event)
{
switch (keyCode)
{
/...
/...

}

return false;

If you now press either the OK button or the Cancel button, the appropriate message will be dis-
played (see Figure 3-25), proving that the event is wired up properly.

B 5534:Androsd L3 Emulator

UTActivity.

-y ﬁﬁwm

FIGURE 3-25

Besides defining an anonymous class for the event handler, you can also define an anonymous inner
class to handle an event. The following example shows how you can handle the onFocusChange ()

event for the EditText view:

import android.widget.EditText;

public class MainActivity extends Activity ({

Listening for Ul Notifications | 121

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---the two buttons are wired to the same event handler---
Button btnl = (Button)findviewById(R.id.btnl);
btnl.setOnClickListener (btnListener) ;

Button btn2 = (Button)findviewById(R.id.btn2);
btn2.setOnClickListener (btnListener) ;

EditText txtl = (EditText)findViewById(R.id.txtl);

//---create an anonymous inner class to act as an onfocus listener---
txtl.setOnFocusChangeListener (new View.OnFocusChangeListener()
{
@Override
public void onFocusChange(View v, boolean hasFocus) {
Toast .makeText (getBaseContext (),
((EditText) v).getId() + " has focus - " + hasFocus,
Toast .LENGTH_LONG) .show() ;

});

As shown in Figure 3-26, when the EditText view receives the focus, a message is printed on the screen.

’ .
%% 5554Android 2.3 Fmulator (o= o

W S Q.

r-rrar-;r’—fr-ﬁ?rﬂrr il
o w e [R[r [y Juliole
' [y |
20z e Tu-ln v fu] o]
e | o (/]]

2131034113 has locus - Lrue

FIGURE 3-26

122 | CHAPTER3 GETTING TO KNOW THE ANDROID USER INTERFACE

SUMMARY

In this chapter, you have learned how user interfaces are created in Android. You have also learned
about the different layouts that you can use to position the views in your Android Ul. Because Android
devices support more than one screen orientation, you need to take special care to ensure that your Ul
can adapt to changes in screen orientation.

EXERCISES

1. What is the difference between the dp unit and the px unit? Which one should you use to specify
the dimension of a view?

2. Why is the AbsoluteLayout not recommended for use?
3. Whatis the difference between the onPause () event and the onSaveInstanceState () event?
4. Name the three events you can override to save an activity’s state.

Answers to Exercises can be found in Appendix C.

Summary | 123

TOPIC
LinearLayout
AbsoluteLayout
TableLayout
RelativeLayout
FrameLayout

ScrollvView

Unit of Measure

Two ways to adapt
to changes in
orientation

Using different
XML files for dif-
ferent orientations

Three ways to per-
sist activity state

Getting the dimen-
sion of the current
device

Constraining
the activity’s
orientation

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS

Arranges views in a single column or single row

Enables you to specify the exact location of its children

Groups views into rows and columns

Enables you to specify how child views are positioned relative to each other
A placeholder on screen that you can use to display a single view

A special type of FrameLayout in that it enables users to scroll through a list
of views that occupy more space than the physical display allows

Use the dp for specifying the dimension of views and sp for font size

Anchoring, and resizing and repositioning

Use the layout folder for portrait Ul, and layout-1and for landscape Ul.

Use the onPause () event.
Use the onSaveInstanceState() event.

Use the onRetainNonConfigurationInstance () event.

Use the WindowManager class’s getDefaultDisplay () method.

Use the setRequestOrientation () method, or the
android:screenOrientation attribute in the AndroidManifest.xml file.

Designing Your User Interface
Using Views

WHAT YOU WILL LEARN IN THIS CHAPTER

> How to use the basic views in Android to design your user interface

> How to use the picker views to display lists of items

> How to use the list views to display lists of items
In the previous chapter, you learned about the various layouts that you can use to position
your views in an activity. You also learned about the techniques you can use to adapt to differ-

ent screen resolutions and sizes. In this chapter, you will take a look at the various views that
you can use to design the user interface for your applications.

In particular, you will learn about the following view groups:

> Basic views — Commonly used views such as the Textview, EditText, and Button
views

> Picker views — Views that enable users to select from a list, such as the TimePicker
and DatePicker views

> List views — Views that display a long list of items, such as the Listview and the

SpinnerView views

Subsequent chapters will cover the other views not covered in this chapter, such as the date
and time picker views and other views for displaying graphics, etc.

126 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

BASIC VIEWS

To get started, let’s explore some of the basic views that you can use to design the UI of your
Android applications:

> TextView
EditText
Button
ImageButton
CheckBox
ToggleButton

RadioButton

Y YV VY Y Y Y Y

RadioGroup

These basic views enable you to display text information, as well as perform some basic selection.
The following sections explore all these views in more detail.

TextView View

When you create a new Android project, Eclipse always creates the main.xm1 file (located in the res/
layout folder), which contains a <TextView> element:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
>

<TextView
android:layout_width="£fill parent"
android:layout_height="wrap content”
android:text="@string/hello"
/>

</LinearLayout>

The Textview view is used to display text to the user. This is the most basic view and one that you
will frequently use when you develop Android applications. If you need to allow users to edit the text
displayed, you should use the subclass of Textview, EditText, which is discussed in the next section.

NOTE In some other platforms, the Textview is commonly known as the label
view. Its sole purpose is to display text on the screen.

http://schemas.android.com/apk/res/android

Basic Views | 127

Button, ImageButton, EditText, CheckBox, ToggleButton,
RadioButton, and RadioGroup Views

Besides the Textview view, which you will likely use the most often, there are some other basic controls
that you will find yourself frequently using: Button, ImageButton, EditText, CheckBox, ToggleButton,
RadioButton, and RadioGroup:

>
>
>
>
>

>

Button — Represents a push-button widget

ImageButton — Similar to the Button view, except that it also displays an image

EditText — A subclass of the Textview view, except that it allows users to edit its text content
CheckBox — A special type of button that has two states: checked or unchecked

RadioGroup and RadioButton — The RadioButton has two states: either checked or unchecked.

Once a RadioButton is checked, it cannot be unchecked. A RadioGroup is used to group together
one or more RadioButton views, thereby allowing only one RadioButton to be checked within
the RadioGroup.

ToggleButton — Displays checked/unchecked states using a light indicator

The following Try It Out provides details about how these views work.

ANl Using the Basic Views

codefile BasicViews1.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it as shown in Figure 4-1.

@

NOTE For subsequent projects that you will create in this book, the various fields
for the project will adopt the following values:

> Application Name: <project name>

> Package name: net.learn2develop.<project name>
> Create Activity: MainActivity

> Min SDK Version: 9

2. Modify the main.xnl file located in the res/layout folder by adding the following elements shown
in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"

http://schemas.android.com/apk/res/android

128 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

android:layout_height="fill_parent">

<Button android:id="@+id/btnSave"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Save" />

<Button android:id="@+id/btnOpen"
android:layout_width="wrap content"
android:layout_height="wrap content”
android:text="Open" />

<ImageButton android:id="@+id/btnImgl"
android:layout_width="fill parent"
android:layout_height="wrap_ content”
android:src="@drawable/icon" />

<EditText android:id="@+id/txtName"
android:layout_width="fill parent"
android:layout_height="wrap content" />

<CheckBox android:id="@+id/chkAutosave"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Autosave" />

<CheckBox android:id="@+id/star"
style="?android:attr/starStyle"
android:layout_width="wrap content"
android:layout_height="wrap content" />

<RadioGroup android:id="@+id/rdbGpl"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:orientation="vertical" >
<RadioButton android:id="@+id/rdbl"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Option 1" />
<RadioButton android:id="@+id/rdb2"
android:layout_width="fill parent"”
android:layout_height="wrap content”
android:text="Option 2" />
</RadioGroup>

<ToggleButton android:id="@+id/togglel"
android:layout_width="wrap content"
android:layout_height="wrap content" />
</LinearLayout>
3. To sce the views in action, debug the project in Eclipse by selecting the project name and pressing F11.

Figure 4-2 shows the various views displayed in the Android Emulator.

Basic Views | 129

(8] Mew Android Prcject

Cantents

Mow Android Prajoct
Creates & new Andreid Praject rescurce.

Project name: BancVarmal

& Crrate frew propect i workipace
Creste pagject from sisting source
1 Use default location

Vrer e-Meng Lee mymeswsaiapace Bruciionl
Creste project from existing sample
Saemples: acce
Bud Target
Tager Name Wander Puatfesm APl
Android 20-upde.. Andeoid Open Source Pregeet eupd. T
Google APl Goegle Inc. d-upd. T
Android 22 Android Open Source Project 22]
Google API: Goaghalns. 2]
GALAXY Tab Add_ Saemung Bectionics Co., Lid 2 L]
J| Andrid 13 Android Open Source Pregect 24 L
Google APl Gosglelns, u]
Standaed Arebeoid platform 2.3
Properties
Apphiecation neme B Views]
Puckagensme netlasenldealop Basciont]
| Create Actraty: MainActiviey

Mhin SOF Versignr 9

FIGURE 4-1

4 5554:hindroid_2.2_Emulator

BasicViews1

FIGURE 4-2

130 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

4. Click on the various views and note how they vary in their look and feel. Figure 4-3 shows the fol-
lowing changes to the view:

» The first CheckBox view (Autosave) is checked.
» The second CheckBox View (star) is checked.

» The second RadioButton (Option 2) is selected.
>

The ToggleButton is turned on.

" '
4 SESAAndrid 2.2 Frmulstor [E= e
Ml 3:20m

Baslcviews1

N —

kA

FIGURE 4-3

How It Works

So far, all the views are relatively straightforward — they are listed using the <LinearLayout> element,
so they are stacked on top of each other when they are displayed in the activity.

For the first Button, the layout_width attribute is set to £i11_parent so that its width occupies the entire
width of the screen:

<Button android:id="@+id/btnSave"”
android:layout_width="fill parent"
android:layout_height="wrap content"
android:text="Save" />

For the second Button, the layout_width attribute is set to wrap_content so that its width will be the
width of its content — specifically, the text that it is displaying (i.e.,“Open”):

<Button android:id="@+id/btnOpen”
android:layout_width="wrap content”
android:layout_height="wrap content"
android:text="Open" />

Basic Views | 131

The TmageButton displays a button with an image. The image is set through the src attribute. In this
case, you simply use the image used for the application icon:
<ImageButton android:id="@+id/btnImgl"
android:layout_width="fill_parent"

android:layout_height="wrap_ content"
android:src="@drawable/icon" />

The EditText view displays a rectangular region where the user can enter some text. You set the layout
_height to wrap_content so that if the user enters a long string of text, its height will automatically be
adjusted to fit the content (see Figure 4-4).

<EditText android:id="@+id/txtName"

android:layout_width="fill_ parent"
android:layout_height="wrap content” />

&

This is a long sentence that will
span multiple lines..|

FIGURE 4-4

The checkBox displays a checkbox that users can tap to check or uncheck it:

<CheckBox android:id="@+id/chkAutosave"”
android:layout_width="fill_parent"
android:layout_height="wrap_ content"
android:text="Autosave" />

If you do not like the default look of the checkBox, you can apply a style attribute to it to display it as
some other image, such as a star:

<CheckBox android:id="@+id/star"
style="?android:attr/starStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

The format for the value of the style attribute is as follows:

? [package:] [type:]name.

The RadioGroup encloses two RadioButtons. This is important because radio buttons are usually used
to present multiple options to the user for selection. When a RadioButton in a RadioGroup is selected, all
other RadioButtons are automatically unselected:

<RadioGroup android:id="@+id/rdbGpl"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="vertical" >
<RadioButton android:id="@+id/rdbl"
android:layout_width="fill_parent"
android:layout_height="wrap_ content"
android:text="Option 1" />

132 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

<RadioButton android:id="@+id/rdb2"
android:layout_width="fill_parent"
android:layout_height="wrap content"
android:text="Option 2" />
</RadioGroup>

Notice that the RadioButtons are listed vertically, one on top of another. If you want to list them hori-
zontally, you need to change the orientation attribute to horizontal. You would also need to ensure
that the layout_width attribute of the RadioButtons are set to wrap_content:

<RadioGroup android:id="@+id/rdbGpl"
android:layout_width="fill_parent"
android:layout_height="wrap content"
android:orientation="horizontal" >
<RadioButton android:id="@+id/rdbl"
android:layout_width="wrap_content”
android:layout_height="wrap content"
android:text="Option 1" />
<RadioButton android:id="@+id/rdb2"
android:layout_width="wrap_content"
android:layout_height="wrap content"
android:text="Option 2" />
</RadioGroup>

Figure 4-5 shows the RadioButtons displayed horizontally.

tion 1 .\’:Iprl.r:r‘. 2

FIGURE 4-5

The ToogleButton displays a rectangular button that users can toggle on and off by clicking it:

<ToggleButton android:id="@+id/togglel"
android:layout_width="wrap_content”
android:layout_height="wrap content" />

One thing that has been consistent throughout this example is that each view has the id attribute set to
a particular value, such as in the case of the Button:

<Button android:id="@+id/btnSave"
android:layout_width="fill_parent"
android:layout_height="wrap content"
android:text="Save" />

The id attribute is an identifier for a view so that it may later be retrieved using the view. findviewById()
or Activity.findViewById () methods.

Basic Views | 133

1.

Now that you have seen how the various views look for an activity, the following Try It Out demon-
strates how you can programmatically control them

Handling View Events

Using the same project created in the previous Try It Out, modify the MainActivity.java file by
adding the following statements in bold:

package net.learn2develop.BasicViewsl;

import
import

import
import
import
import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.view.View;

android.widget.Button;

android.widget.CheckBox;
android.widget.RadioButton;
android.widget.RadioGroup;

android.widget.Toast;

android.widget.ToggleButton;
android.widget.RadioGroup.OnCheckedChangeListener;

class MainActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---Button view---
Button btnOpen = (Button) findvViewById(R.id.btnOpen);
btnOpen.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
DisplayToast ("You have clicked the Open button");

b

//---Button view---
Button btnSave = (Button) findvViewById(R.id.btnSave);
btnSave.setOnClickListener (new View.OnClickListener()

{
public void onClick(View v) {
DisplayToast ("You have clicked the Save button");

})i

//---CheckBox---

CheckBox checkBox = (CheckBox) findViewById(R.id.chkAutosave);

checkBox.setOnClickListener (new View.OnClickListener()
{
public void onClick(View v) {
if (((CheckBox)v) .isChecked())
DisplayToast ("CheckBox is checked");
else

134 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

DisplayToast ("CheckBox is unchecked");

});

//---RadioButton---
RadioGroup radioGroup = (RadioGroup) findviewById(R.id.rdbGpl);
radioGroup.setOnCheckedChangeListener (new OnCheckedChangeListener ()
{
public void onCheckedChanged(RadioGroup group, int checkedId) {
RadioButton rbl = (RadioButton) findViewById(R.id.rdbl);
if (rbl.isChecked()) {
DisplayToast ("Option 1 checked!");
} else {
DisplayToast ("Option 2 checked!");

//---ToggleButton---
ToggleButton toggleButton =

(ToggleButton) findviewById(R.id.togglel);
toggleButton.setOnClickListener (new View.OnClickListener ()

{
public void onClick(View v) {
if (((ToggleButton)v).isChecked())
DisplayToast ("Toggle button is On");
else
DisplayToast ("Toggle button is Of£f");

i
}

private void DisplayToast (String msg)
{

Toast .makeText (getBaseContext (), msg,
Toast .LENGTH_ SHORT) .show();

2. Press F11 to debug the project on the Android Emulator.

3. Click on the various views and observe the message displayed in the Toast window.

How It Works

To handle the events fired by each view, you first have to programmatically locate the view that you cre-
ated during the onCreate () event. You do so using the Activity.findviewById () method, supplying it
with the ID of the view:

//---Button view---
Button btnOpen = (Button) findvViewById(R.id.btnOpen);

The setonclickListener () method registers a callback to be invoked later when the view is clicked:

btnOpen.setOnClickListener (new View.OnClickListener () {

Basic Views | 135

public void onClick(View v) {
DisplayToast ("You have clicked the Open button");
}
)

The onclick() method is called when the view is clicked.

For the CheckBox, to determine its state you have to typecast the argument of the onclick () method to
a CheckBox and then check its isChecked () method to see if it is checked:

//---CheckBox---
CheckBox checkBox = (CheckBox) findViewById(R.id.chkAutosave);
checkBox.setOnClickListener (new View.OnClickListener ()

{
public void onClick(View v) {
if (((CheckBox)v) .isChecked())
DisplayToast ("CheckBox is checked");
else
DisplayToast ("CheckBox is unchecked");

1)

ForRadioButton,you need to use the setonCheckedChangeListener () method on the RadioGroup to
register a callback to be invoked when the checked RadioButton changes in this group:

//---RadioButton---
RadioGroup radioGroup = (RadioGroup) findViewById(R.id.rdbGpl);
radioGroup.setOnCheckedChangeListener (new OnCheckedChangeListener ()
{
public void onCheckedChanged (RadioGroup group, int checkedId) {
RadioButton rbl = (RadioButton) findViewById(R.id.rdbl);
if (rbl.isChecked()) {
DisplayToast ("Option 1 checked!");
} else {
DisplayToast ("Option 2 checked!");

)

When a RadioButton is selected, the onCheckedChanged () method is fired. Within it, you locate individ-

ual RadioButtons and then call their isChecked() method to determine which RadioButton is selected.

Alternatively, the onCheckedChanged () method contains a second argument that contains a unique iden-
tifier of the RadioButton selected.

ProgressBar View

The progressBar view provides visual feedback of some ongoing tasks, such as when you are per-
forming a task in the background. For example, you might be downloading some data from the Web
and need to update the user about the status of the download. In this case, the ProgressBar view is a
good choice for this task.

136 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

Using the ProgressBar View

codefile BasicViews2.zip available for download at Wrox.com

Using Eclipse, create an Android project and name it as BasicViews2.

Modify the main.xml file located in the res/1layout folder by adding the following code in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >

<ProgressBar android:id="@+id/progressbar"
android:layout_width="wrap_ content"
android:layout_height="wrap content" />

</LinearLayout>

In the Mainactivity.java file, add the following statements in bold:

package net.learn2develop.BasicViews?2;

import android.app.Activity;
import android.os.Bundle;

import android.os.Handler;
import android.widget.ProgressBar;

public class MainActivity extends Activity {

private static int progress;

private ProgressBar progressBar;
private int progressStatus = 0;

private Handler handler = new Handler();

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

progress = 0;
progressBar = (ProgressBar) findViewById(R.id.progressbar);
//---do some work in background thread---
new Thread(new Runnable()
{
public void run()
{
//---do some work here---
while (progressStatus < 10)
{
progressStatus = doSomeWork() ;

http://schemas.android.com/apk/res/android

Basic Views | 137

}

//---hides the progress bar---
handler.post (new Runnable()

{
public void run()
{
//---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---
progressBar.setVisibility(8);
}
1)

}

//---do some long lasting work here---
private int doSomeWork()
{
try {
//---simulate doing some work---
Thread.sleep(500);
} catch (InterruptedException e)
{
e.printStackTrace();
}
return ++progress;
}
}) .start();

4. Press F11 to debug the project on the Android Emulator. Figure 4-6 shows the ProgressBar animating.
After about five seconds, it will disappear.

5554:Android 2.2 Emulator =)
M@ 1:24

BasicViews2

10al3 o s ls.
o fe Ja fr v [

%

FIGURE 4-6

138 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

How It Works

The default mode of the ProgressBar view is indeterminate — that is, it shows a cyclic animation. This
mode is useful for tasks that do not have a clear indication of when they will be completed, such as when
you are sending some data to a web service and waiting for the server to respond. If you simply put
the <ProgressBar> element in your main.xml file, it will display a spinning icon continuously. It is your
responsibility to stop it when your background task has completed.

The code that you have added in the Java file shows how you can spin off a background thread to simu-
late performing some long-running tasks. To do so, you use the Thread class together with a Runnable
object. The run () method starts the execution of the thread, which in this case calls the doSomework ()
method to simulate doing some work. When the simulated work is done (after about five seconds), you
use a Handler object to send a message to the thread to dismiss the ProgressBar:

//---do some work in background thread---
new Thread(new Runnable ()
{
public void run()
{
//---do some work here---
while (progressStatus < 10)
{
progressStatus = doSomeWork() ;

}

//---hides the progress bar---
handler.post (new Runnable ()
{
public void run()
{
//---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---
progressBar.setVisibility(8);

1)
}

//---do some long lasting work here---
private int doSomeWork ()
{
try {
//---simulate doing some work---
Thread.sleep(500) ;
} catch (InterruptedException e)
{
e.printStackTrace () ;
}
return ++progress;
}
}) .start();

When the task is completed, you hide the ProgressBar by setting its Visibility property to GONE (value 8).
The difference between the INVISTBLE and GONE constants is that the INVISTBLE constant simply hides the
ProgressBar (the region occupied by the ProgressBar is still taking up space in the activity). The GONE con-
stant removes the ProgressBar view from the activity and does not take up any space on it.

Basic Views | 139

The next Try It Out shows how you can change the look of the ProgressBar.

Customizing the ProgressBar View

1. Using the same project created in the previous Try It Out, modify the main.xm1 file as shown here:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >

<ProgressBar android:id="@+id/progressbar"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
style="?android:attr/progressBarStyleHorizontal" />

</LinearLayout>

2. Modify the Mainactivity.java file by adding the following statements in bold:

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

progress = 0;

progressBar = (ProgressBar) findViewById(R.id.progressbar);
progressBar.setMax(200) ;

//---do some work in background thread---
new Thread(new Runnable()
{
public void run()
{
//---do some work here---
while (progressStatus < 100)

{
progressStatus = doSomeWork() ;
//---Update the progress bar---
handler.post (new Runnable()
{
public void run() {
progressBar.setProgress (progressStatus);
}
b
}

//---hides the progress bar---
handler.post (new Runnable()

{

public void run()

http://schemas.android.com/apk/res/android

140 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

//---0 - VISIBLE; 4 - INVISIBLE; 8 - GONE---
progressBar.setVisibility (8);

1)
}

//---do some long lasting work here---
private int doSomeWork ()

{
try {
//---simulate doing some work---
Thread.sleep(50);
} catch (InterruptedException e)
{
e.printStackTrace () ;
}
return ++progress;
}
}) .start();

w

Press F11 to debug the project on the Android Emulator.

4. Tigure 4-7 shows the ProgressBar displaying the progress. The progresspar disappears when the
progress reaches 50%.

i 5554Android 2.2 Emulator)
%m 2:35m

BasicViews2

1 [2 13 Ja |5 J6 7|

A

FIGURE 4-7

Basic Views | 141

How It Works

To make the ProgressBar display horizontally, Sirnply set its style attribute to ?android:attr/progress
BarStyleHorizontal:

<ProgressBar android:id="@+id/progressbar"”
android:layout_width="wrap_content"
android:layout_height="wrap_ content"
style="?android:attr/progressBarStyleHorizontal" />

To display the progress, call its setProgress () method, passing in an integer indicating its progress:

//---Update the progress bar---
handler.post (new Runnable()
{
public void run() {
progressBar.setProgress (progressStatus);

b

In this example, you set the range of the ProgressBar from 0 to 200 (via the setMax () method). Hence,
the ProgressBar will stop and then disappear when it is halfway through (since you only continue to call
the dosomeniork () method as long as the progressstatus is less than 100). To ensure that the ProgressBar
disappears only when the progress reaches 100%, either set the maximum value to 100, or modify the
while loop to stop when the progressstatus reaches 200, like this:

//---do some work here---
while (progressStatus < 200)

AutoCompleteTextView View

The AutoCompleteTextView is a view that is similar to EditText (in fact it is a subclass of EditText),
except that it shows a list of completion suggestions automatically while the user is typing. The fol-
lowing Try It Out shows how to use the autoCompleteTextview to automatically help users complete
the text entry.

Using the AutoCompleteTextView

codefile BasicViews3.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it BasicViews3.

2. Modify the main.xnl file located in the res/layout folder as shown here in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"

http://schemas.android.com/apk/res/android

142 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

android:layout_height="fill parent" >

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Name of President" />

<AutoCompleteTextView android:id="@+id/txtCountries"
android:layout_width="fill parent"
android:layout_height="wrap content" />

</LinearLayout>

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.BasicViews3;

import
import

import
import

public

android.app.Activity;
android.os.Bundle;

android.widget.ArrayAdapter;
android.widget.AutoCompleteTextView;

class MainActivity extends Activity {

String[] presidents = {

"Dwight D. Eisenhower",
"John F. Kennedy",
"Lyndon B. Johnson",
"Richard Nixon",
"Gerald Ford",
"Jimmy Carter",
"Ronald Reagan",
"George H. W. Bush",
"Bill Clinton",
"George W. Bush",
"Barack Obama"

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple dropdown item lline, presidents);

AutoCompleteTextView textView = (AutoCompleteTextView)
findviewById(R.id.txtCountries);

textView.setThreshold(3);
textView.setAdapter (adapter);

Basic Views | 143

4. Press F11 to debug the application on the Android Emulator. As shown in Figure 4-8, a list of
matching names appears as you type into the AutoCompleteTextView.

[i 5554:Android 2.2 Emulator [
M@ 3:36em

BasicViews3

George W. Bush

4 laidz la s ile l7:ls [oiloy
I_I-I_"_"'_"_{T_"_'_’_l—“

FIGURE 4-8

How It Works

In the Mainactivity class, you first create a String array containing a list of presidents’ names:

String[] presidents = {
"Dwight D. Eisenhower",
"John F. Kennedy",
"Lyndon B. Johnson",
"Richard Nixon",
"Gerald Ford",
"Jimmy Carter",
"Ronald Reagan",
"George H. W. Bush",
"Bill Clinton",
"George W. Bush",
"Barack Obama"

Y

The ArrayAdapter object manages the array of strings that will be displayed by the autoCompleteTextView.
In the preceding example, you set the AutoCompleteTextView to display in the simple_dropdown_item_
1line mode:

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_dropdown_item_1lline, presidents);

144 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

The setThreshold () method sets the minimum number of characters the user must type before the sug-
gestions appear as a drop-down menu:

textView.setThreshold(3) ;

The list of suggestions to display for the autocompleteTextview is obtained from the arrayadapter object:

textView.setAdapter (adapter) ;

PICKER VIEWS

Selecting the date and time is one of the common tasks you need to perform in a mobile application.
Android supports this functionality through the TimePicker and patericker views. The following
sections show how to make use of these views in your activity.

TimePicker View

The TimePicker view enables users to select a time of the day, in either 24-hour mode or AM/PM
mode. The following Try It Out shows you how to use it.

Using the TimePicker Wiew

codefile BasicViews4.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it BasicViews4.

2. Modify the main.xm1 file located in the res/1layout folder by adding the following lines in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent" >

<TimePicker android:id="@+id/timePicker"
android:layout_width="wrap content"
android:layout_height="wrap content" />

<Button android:id="@+id/btnSet"
android:layout_width="wrap_ content"
android:layout_height="wrap content"
android:text="I am all set!"™ />

</LinearLayout>

3. Press F11 to debug the application on the Android Emulator. Figure 4-9 shows the TimePicker in
action. Besides clicking on the plus (+) and minus (-) buttons, you can use the numeric keypad on
the device to change the hour and minute, and click the AM button to toggle between AM and PM.

http://schemas.android.com/apk/res/android

Picker Views

| 145

\

% S55ddindroid 2.2 Proulitor e |

BasicViews4

29

FIGURE 4-9

Back in Eclipse, add the following statements in bold to the MainaActivity.java file:

package net.learn2develop.BasicViews4;

import
import

import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.view.View;
android.widget.Button;
android.widget.TimePicker;
android.widget.Toast;

class MainActivity extends Activity {

TimePicker timePicker;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

timePicker = (TimePicker) findvViewById(R.id.timePicker);
timePicker.setIs24HourView(true);

//---Button view---
Button btnOpen = (Button) findviewById(R.id.btnSet);
btnOpen.setOnClickListener (new View.OnClickListener() {

146 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

public void onClick(View v) {
Toast .makeText (getBaseContext (),
"Time selected:" +
timePicker.getCurrentHour () +
":" 4+ timePicker.getCurrentMinute(),
Toast .LENGTH_ SHORT) .show();

5. Press F11 to debug the application on the Android Emulator. This time, the Timepicker will be
displayed in the 24-hour format. Clicking the Button will display the time that you have set in the
TimePicker (see Figure 4-10).

[& 5554ndroid 22 Emulator e

Time selecled:1:33

%

FIGURE 4-10

How It Works

The TimePicker displays a standard Ul to enable users to set a time. By default, it displays the time
in the AM/PM format. If you wish to display the time in the 24-hour format, you can use the
setIs24HourView () method.

To programmatically get the time set by the user, use the getCurrentHour () and getCurrentMinute ()
methods:

Toast .makeText (getBaseContext (),
"Time selected:" +
timePicker.getCurrentHour () +
":" + timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT) .show () ;

Picker Views | 147

NOTE The getCurrentHour () method always returns the hour in 24-hour format,

i.e., a value from O to 23.

Displaying the TimePicker in a Dialog Window

While you can display the TimePicker in an activity, a better way is to display it in a dialog window,
so that once the time is set, it disappears and doesn’t take up any space in an activity. The following
Try It Out shows how to do just that.

Using a Dialog to Display the TimePicker View

1.

Using the same project created in the previous Try It Out, modify the MainaActivity.java file as
shown here:

package net.learn2develop.BasicViews4;

import
import
import
import
import
import

import
import

public

android.app.Activity;
android.os.Bundle;
android.view.View;
android.widget.Button;
android.widget.TimePicker;
android.widget.Toast;

android.app.Dialog;
android.app.TimePickerDialog;

class MainActivity extends Activity {

TimePicker timePicker;

int hour, minute;
static final int TIME DIALOG ID = 0;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

showDialog (TIME DIALOG ID);

timePicker = (TimePicker) findViewById(R.id.timePicker);
timePicker.setIs24HourView (true) ;

//---Button view---
Button btnOpen = (Button) findviewById(R.id.btnSet);
btnOpen.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
Toast.makeText (getBaseContext (),
"Time selected:" +
timePicker.getCurrentHour () .toString ()

+

148 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

2. Press F11 to debug the application on the Android Emulator. When the activity is loaded, you can
see the TimePicker displayed in a dialog window (see Figure 4-11). Set a time and then click the Set
button. You will see the Toast window displaying the time that you just set.

How It Works

To display a dialog window, you use the showbialog () method, passing it an ID to identify the source

":" + timePicker.getCurrentMinute() .toString(),

Toast.LENGTH_SHORT) .show () ;

1)
}

@Override
protected Dialog onCreateDialog(int id)
{

switch (id) {

case TIME DIALOG_ID:
return new TimePickerDialog (
this, mTimeSetListener, hour, minute, false);
}
return null;

}

private TimePickerDialog.OnTimeSetListener mTimeSetListener =
new TimePickerDialog.OnTimeSetListener ()
{
public void onTimeSet (
TimePicker view, int hourOfDay, int minuteOfHour)

{
hour = hourOfDay;
minute = minuteOfHour;
Toast .makeText (getBaseContext (),
"You have selected : " + hour + ":" + minute,
Toast .LENGTH SHORT) .show();
}

of the dialog:

When the showbialog () method is called, the onCreatebialog () method will be called:

showDialog (TIME DIALOG_ID) ;

@Override
protected Dialog onCreateDialog(int id)
{

switch (id) {

case TIME_DIALOG_ID:
return new TimePickerDialog (
this, mTimeSetListener, hour, minute, false);
}

return null;

Picker Views | 149

i 3554Android 22 Elnor [y

FIGURE 4-11

Here, you create a new instance of the TimePickerDialog class, passing it the current context, the callback,
the initial hour and minute, as well as whether the TimePicker should be displayed in 24-hour format.

When the user clicks the Set button in the TimePicker dialog window, the onTimeset () method will
be called:

private TimePickerDialog.OnTimeSetListener mTimeSetListener =
new TimePickerDialog.OnTimeSetListener ()
{
public void onTimeSet (
TimePicker view, int hourOfDay, int minuteOfHour)
{
hour = hourOfDay;
minute = minuteOfHour;
Toast.makeText (getBaseContext (),
"You have selected : " + hour + ":" + minute,
Toast.LENGTH_SHORT) .show () ;

Y

Here, the onTimeset () method will contain the hour and minute set by the user via the hourofpay and
minuteOfHour arguments, respectively.

DatePicker View

Another view that is similar to the TimePicker is the DatePicker. Using the DatePicker, you can
enable users to select a particular date on the activity. The following Try It Out shows you how to
use the DatePicker.

150 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

Using the DatePicker View

1. Using the same project created in the previous Try It Out, modify the main.xm1 file as shown here:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill parent" >

<DatePicker android:id="@+id/datePicker"
android:layout_width="wrap_ content"
android:layout_height="wrap content" />

<TimePicker android:id="@+id/timePicker"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<Button android:id="@+id/btnSet"
android:layout_width="wrap_content"
android:layout_height="wrap_ content"
android:text="1 am all set!" />

</LinearLayout>

2. Press F11 to debug the application on the Android Emulator. Figure 4-12 shows the Datepicker
and TimePicker views.

[5554Android 23 Emulator Lo] |

Basicviews4

OO0 0

ﬁa—-ﬂ

&

VEAY
DO A

]2 03 lals o lrfsfs o]

\

FIGURE 4-12

http://schemas.android.com/apk/res/android

Picker Views

| 151

Back in Eclipse, add in the following statements in bold to the Mainactivity

package net.learn2develop.BasicViews4;

import
import
import
import

import

import
import

import
import

public

android.app.Activity;
android.os.Bundle;
android.view.View;
android.widget.Button;

android.widget.Toast;

android.app.Dialog;
android.app.TimePickerDialog;

android.widget.TimePicker;
android.widget.DatePicker;

class MainActivity extends Activity {

TimePicker timePicker;
DatePicker datePicker;

int hour, minute;
static final int TIME_DIALOG_ID = O0;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//showDialog (TIME_DIALOG_ID) ;

timePicker = (TimePicker) findViewById(R.id.timePicker);
timePicker.setIs24HourView (true) ;

datePicker = (DatePicker) findViewById(R.id.datePicker);

//---Button view---
Button btnOpen = (Button) findViewById(R.id.btnSet);
btnOpen.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
Toast.makeText (getBaseContext (),

.java file:

"Date selected:" + datePicker.getMonth() + 1 +

"/" + datePicker.getDayOfMonth() +
/" 4+ datePicker.getYear() + "\n" +

"Time selected:" + timePicker.getCurrentHour () +

":" + timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT) .show () ;

)

@Override

152 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

protected Dialog onCreateDialog(int id)

{

switch (id) {

case TIME_DIALOG_ID:
return new TimePickerDialog (
this, mTimeSetListener, hour, minute, false);

}

return null;
}

private TimePickerDialog.OnTimeSetListener mTimeSetListener =
new TimePickerDialog.OnTimeSetListener ()

{
public void onTimeSet (
TimePicker view, int hourOfDay, int minuteOfHour)
{
hour = hourOfDay;
minute = minuteOfHour;
Toast.makeText (getBaseContext (),
"You have selected : " + hour + ":" + minute,
Toast.LENGTH_SHORT) .show () ;
}
Y

4. Press F11 to debug the application on the Android Emulator. Once the date is set, clicking the
Button will display the date set (see Figure 4-13).

f ® | 5554Android_2.3_Emulator [E=TE)

= ul B 237
BasicViewsd

o+
Jan 2011
-

o

Fh”ﬁffhfrr

FIGURE 4-13

Picker Views | 153

How It Works

Like the TimePicker,yOllcallthc getMonth(),getDayOfMonth(),and getYear()InethOdStI)getthe
month, day, and year, respectively:
"Date selected:" + datePicker.getMonth() + 1 +

"/" + datePicker.getDayOfMonth() +
"/" + datePicker.getYear() + "\n" +

Note that the getMonth () method returns 0 for January, 1 for February, and so on. Hence, you need to
add a one to the result of this method to get the month number.

Displaying the DatePicker View in a Dialog Window

Like the TimePicker, you can also display the patePicker in a dialog window. The following Try It Out
shows you how.

ANl Using a Dialog to Display the DatePicker View
1. Using the same project created in the previous Try It Out, add the following statements in bold to
the MainActivity.java file:

package net.learn2develop.BasicViews4;

import android.app.Activity;
import android.os.Bundle;

import android.view.View;
import android.widget.Button;

import android.widget.Toast;

import android.app.Dialog;
import android.app.TimePickerDialog;

import android.widget.TimePicker;
import android.widget.DatePicker;

import android.app.DatePickerDialog;
import java.util.Calendar;

public class MainActivity extends Activity {
TimePicker timePicker;
DatePicker datePicker;

int hour, minute;
int yr, month, day;

static final int TIME DIALOG_ID =

0;
static final int DATE DIALOG ID 1;

/** Called when the activity is first created. */

154 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//showDialog (TIME_DIALOG_ID) ;

//---get the current date---

Calendar today = Calendar.getInstance();
yr = today.get(Calendar.YEAR);

month = today.get (Calendar.MONTH) ;

day = today.get(Calendar.DAY OF_ MONTH) ;
showDialog (DATE DIALOG_ID);

timePicker = (TimePicker) findvViewById(R.id.timePicker);
timePicker.setIs24HourView (true) ;

datePicker = (DatePicker) findviewById(R.id.datePicker);

//---Button view---

Button btnOpen = (Button) findvViewById(R.id.btnSet);

btnOpen.setOnClickListener (new View.OnClickListener () {

public void onClick(View v) {
Toast.makeText (getBaseContext (),

"Date selected:" + datePicker.getMonth() +
"/" + datePicker.getDayOfMonth() +
"/" + datePicker.getYear() + "\n" +
"Time selected:" + timePicker.getCurrentHour () +
":" + timePicker.getCurrentMinute(),
Toast.LENGTH_SHORT) .show () ;

}
}) i
}
@Override
protected Dialog onCreateDialog(int id)
{
switch (id) {
case TIME_DIALOG_ID:
return new TimePickerDialog (
this, mTimeSetListener, hour, minute, false);
case DATE DIALOG_ID:
return new DatePickerDialog (
this, mDateSetListener, yr, month, day);
}
return null;
}

private DatePickerDialog.OnDateSetListener mDateSetListener =
new DatePickerDialog.OnDateSetListener()
{
public void onDateSet (
DatePicker view, int year, int monthOfYear, int dayOfMonth)

{

Picker Views

| 155

yr = year;
month = monthOfYear;
day = dayOfMonth;

Toast .makeText (getBaseContext (),

"You have selected : " + (month + 1) +
ll/ll + day + II/II + year’
Toast .LENGTH_ SHORT) .show();

private TimePickerDialog.OnTimeSetListener mTimeSetListener =
new TimePickerDialog.OnTimeSetListener ()

{

public void onTimeSet (
TimePicker view, int hourOfDay, int minuteOfHour)

{

hour = hourOfDay;

minute =

minuteOfHour;

Toast.makeText (getBaseContext (),

"You have selected : " + hour + ":" + minute,

Toast.LENGTH_SHORT) .show () ;

Press F11 to debug the application on the Android Emulator. When the activity is loaded, you can
see the patepricker displayed in a dialog window (see Figure 4-14). Set a date and then click the Set
button. The Toast window will display the date you have just set.

§ 5554 Android_2.2_Fmulator

G Sunday,
2010

November 14,

(ol |

ﬁrf*frr -

I_' - = ==
'm.'r g !Al.'r

FIGURE 4-14

156 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

How It Works

The patePicker works exactly like the TimePicker. When a date is set, it fires the onDateset () method,
where you can obtain the date set by the user:

public void onDatesSet (
DatePicker view, int year, int monthOfYear, int dayOfMonth)
{
yr = year;
month = monthOfYear;
day = dayOfMonth;
Toast.makeText (getBaseContext (),
"You have selected : " + (month + 1) +
"/" + day + "/" + year,
Toast .LENGTH_SHORT) .show () ;

Note that you have to initialize the three variables — yr, month, and day — before showing the dialog:

//---get the current date---

Calendar today = Calendar.getInstance();
yr = today.get (Calendar.YEAR) ;

month = today.get (Calendar.MONTH) ;

day = today.get(Calendar.DAY_ _OF_MONTH) ;
showDialog (DATE_DIALOG_ID) ;

If you don’t, you will get an illegal argument exception error during run time
“current should be >= start and <= end”) when you create an instance of the DatePickerDialog class.
y

LIST VIEWS

List views are views that enable you to display a long list of items. In Android, there are two types
of list views: ListView and Spinnerview. Both are useful for displaying long lists of items. The fol-
lowing Try It Outs show them in action.

ListView View

The Listview displays a list of items in a vertically scrolling list. The following Try It Out demon-
strates how to display a list of items using the ListView.

Displaying a Long List of Iltems Using the ListView

1. Using Eclipse, create an Android project and name it BasicViewS5.

codefile BasicViews5.zip available for download at Wrox.com

List Views | 157

3.

Modify the MainActivity.java file by inserting the statements shown here in bold:

package net.learn2develop.BasicViews5;

import
import

import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.app.ListActivity;
android.view.View;
android.widget.ArrayAdapter;
android.widget.ListView;
android.widget.Toast;

class MainActivity extends ListActivity {

String[] presidents = {

"Dwight D. Eisenhower",
"John F. Kennedy",
"Lyndon B. Johnson",
"Richard Nixon",
"Gerald Ford",
"Jimmy Carter",
"Ronald Reagan",
"George H. W. Bush",
"Bill Clinton",
"George W. Bush",
"Barack Obama"

/** Called when the activity is first created. */
@QOverride
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
//setContentView(R.layout.main);

setListAdapter (new ArrayAdapter<String> (this,
android.R.layout.simple list_item 1, presidents));

public void onListItemClick(
ListView parent, View v, int position, long id)

{

Toast .makeText (this,
"You have selected " + presidents[position],
Toast .LENGTH_ SHORT) .show();

Press F11 to debug the application on the Android Emulator. Figure 4-15 shows the activity dis-
playing the list of presidents’ names.

158 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

i 5554Android 2.2 Emulator (oo
A& 11:50 m

BasicViews5

Dwight D. Eisenhower
John F. Kennedy
Lyndon B. Johnson
Richard Nixon

Gerald Ford

Jimmy Carter

Parmald Da=sa=n

A

FIGURE 4-15

4. Click on an item. A message containing the item selected will be displayed.

How It Works

The first thing to notice in this example is that the MainaActivity class extends the ListActivity
class. The ListActivity class extends the activity class and it displays a list of items by binding to a
data source. Also, note that there is no need to modify the main.xm1 file to include the Listview; the
ListActivity class itself contains a ListView. Hence, in the onCreate () method, there is no need to
call the setcontentview() method to load the Ul from the main.xm1 file:

//---no need to call this---
//setContentView (R.layout.main) ;

In the onCreate () method, you use the setListadapter () method to programmatically fill the entire
screen of the activity with a Listview. The ArrayAdapter object manages the array of strings that will
be displayed by the Listview. In the preceding example, you set the ListView to display in the simple_
list_item_ 1 mode:

setListAdapter (new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_1, presidents));

The onListItemClick() method is fired whenever an item in the Listview has been clicked:

public void onListItemClick(
ListView parent, View v, int position, long id)

List Views | 159

Toast.makeText (this,
"You have selected " + presidents[position],
Toast.LENGTH_SHORT) .show () ;

Here, you simply display the name of the president selected using the Toast class.

Customizing the ListView

The Listview is a versatile control that you can further customize. The following Try It Out shows
how you can allow multiple items in the ListView to be selected and how you can enable filtering
support.

Customizing the ListView

1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

ListView lstView = getListView();
//1stView.setChoiceMode(0); //CHOICE_MODE_NONE
//1lstView.setChoiceMode(1l); //CHOICE_MODE_SINGLE
lstView.setChoiceMode(2); //CHOICE_MODE_MULTIPLE
lstView.setTextFilterEnabled(true);

setListAdapter (new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_checked, presidents));

public void onListItemClick (
ListView parent, View v, int position, long id)
{
//---toggle the check displayed next to the item---
parent .setItemChecked(position, parent.isItemChecked(position));
Toast .makeText (this,
"You have selected " + presidents[position],
Toast.LENGTH_SHORT) .show() ;

2. Press F11 to debug the application on the Android Emulator. You can now click on each item to
display the check icon next to it (see Figure 4-16).

160 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

- -
5554:Andraid_2.2_Emulator [

BasicViews5

Dwight D. Eisenhower

John F. Kennedy

Lyndon B. Johnson o Mm O D
Richard Nixon

Gerald Ford

Jimmy Carter

FIGURE 4-16

How It Works

To programmatically get a reference to the ListView object, you use the getListview() method, which
fetches the Listactivity’s list view. You need to do this so that you can programmatically modify the
behavior of the Listview. In this case, you used the setChoiceMode () method to tell the Listview how
it should handle a user’s click. For this example, you set it to 2, which means that the user can select
multiple items:

//1lstView.setChoiceMode (0); //CHOICE_MODE_NONE

//1lstView.setChoiceMode (1) ; //CHOICE_MODE_SINGLE
lstView.setChoiceMode (2) ; //CHOICE_MODE_MULTIPLE

A very cool feature of the Listview is its support for filtering. When you enable filtering through the
setTextFilterEnabled () method, users will be able to type on the keypad and the Listview will auto-
matically filter to match what you have typed:

lstView.setTextFilterEnabled (true) ;
Figure 4-17 shows the list filtering in action. Here, all items in the list that contain the word “john” will
appear in the result list.

To display the check icon displayed next to each item, use the setItemChecked() method:

//---toggle the check displayed next to the item---
parent .setItemChecked(position, parent.isItemChecked(position));

The preceding statement will toggle the check icon for each item when you click on it.

List Views | 161

& 5554Android 2.2 Emulator =
ﬁm & 12:26em

BasicViews5

Lyndon B. Johnson

FIGURE 4-17

While this example shows that the list of presidents’ names is stored in an array, in a real-life appli-
cation it is recommended that you either retrieve them from a database or at least store them in the
strings.xml file. The following Try It Out shows you how.

AN Storing Items in the strings.xml File

1. Using the same project created in the previous section, add the following lines in bold to the
strings.xml file located in the res/values folder:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, MainActivity!</string>
<string name="app_name">BasicViews5</string>
<string-array name="presidents_array">
<item>Dwight D. Eisenhower</item>
<item>John F. Kennedy</item>
<item>Lyndon B. Johnson</item>
<item>Richard Nixon</item>
<item>Gerald Ford</item>
<item>Jimmy Carter</item>
<item>Ronald Reagan</item>
<item>George H. W. Bush</item>
<item>Bill Clinton</item>
<item>George W. Bush</item>
<item>Barack Obama</item>
</string-array>
</resources>

162 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

2. Modify the MainActivity.java file as shown in bold:

public class MainActivity extends ListActivity {
String[] presidents;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

ListView lstView = getListView() ;
//1stView.setChoiceMode (0); //CHOICE_MODE_NONE
//1lstView.setChoiceMode (1); //CHOICE_MODE_SINGLE
lstView.setChoiceMode (2) ; //CHOICE_MODE_MULTIPLE
lstView.setTextFilterEnabled (true) ;

presidents =
getResources () .getStringArray(R.array.presidents_array);

setListAdapter (new ArrayAdapter<String> (this,
android.R.layout.simple_list_item_checked, presidents));

public void onListItemClick(
ListView parent, View v, int position, long id)
{

/...

/...

Y

3. Press F11 to debug the application on the Android Emulator. You should see the same list of
names that appeared in the previous Try It Out.

How It Works

With the names now stored in the strings.xml file, you can retrieve it programmatically in this
MainActivity.java file using the getResources () method:
presidents =

getResources () .getStringArray (R.array.presidents_array) ;

In general, you can programmatically retrieve resources bundled with your application using the
getResources()Incthod.

Using the Spinner View

The Listview displays a long list of items in an activity, but sometimes you may want your user
interface to display other views, and hence you do not have the additional space for a full-screen view

List Views | 163

like the Listview. In such cases, you should use the spinnerview. The Spinnerview displays one item
at a time from a list and enables users to choose among them.

The following Try It Out shows how you can use the Spinnerview in your activity.

Using the SpinnerView to Display an Item at a Time

1. Using Eclipse, create an Android project and name it as BasicViews6.

codefile BasicViews6.zip available for download at Wrox.com

2. Modify the main.xmnl file located in the res/layout folder as shown here:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<Spinner
android:id="@+id/spinnerl"
android:layout_width="wrap content"
android:layout_height="wrap content"”
android:drawSelectorOnTop="true" />

</LinearLayout>

3. Add the following lines in bold to the strings.xmi file located in the res/values folder:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string name="hello">Hello World, MainActivity!</string>
<string name="app_name">BasicViews6</string>
<string-array name="presidents_array">
<item>Dwight D. Eisenhower</item>
<item>John F. Kennedy</item>
<item>Lyndon B. Johnson</item>
<item>Richard Nixon</item>
<item>Gerald Ford</item>
<item>Jimmy Carter</item>
<item>Ronald Reagan</item>
<item>George H. W. Bush</item>
<item>Bill Clinton</item>
<item>George W. Bush</item>
<item>Barack Obama</item>
</string-array>
</resources>

4. Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.BasicViews6;

import android.app.Activity;

http://schemas.android.com/apk/res/android

164 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemSelectedListener;
import android.widget.ArrayAdapter;

import android.widget.Spinner;

import android.widget.Toast;

public class MainActivity extends Activity {
String[] presidents;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

presidents =
getResources () .getStringArray(R.array.presidents_array);
Spinner sl = (Spinner) findViewById(R.id.spinnerl);

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_ spinner item, presidents);

sl.setAdapter (adapter);

sl.setOnItemSelectedListener (new OnItemSelectedListener ()

{
@Override
public void onItemSelected(AdapterView<?> arg0, View argl,
int arg2, long arg3)

{
int index = arg0.getSelectedItemPosition();
Toast .makeText (getBaseContext (),
"You have selected item : " + presidents[index],
Toast .LENGTH_ SHORT) .show();
}
@Override

public void onNothingSelected(AdapterView<?> arg0) {}

5. Press F11 to debug the application on the Android Emulator. Click on the spinnerview and you
will see a pop-up displaying the list of presidents’ names (see Figure 4-18). Clicking on an item will
display a message showing you the item selected.

How It Works

The preceding example works very much like the Listview. One additional method you need to implement
is the onNothingSelected () method. This method is fired when the user presses the Back button, which
dismisses the list of items displayed. In this case, nothing is selected and you do not need to do anything.

List Views | 165

i S5MAndond 22 Emulaton

Dwight D. Eisenhower
John F. Kennedy
Lyndon B. Johnson
Richard Nixan

Gerald Ford

el d R s [T [P) e e
P 7 e e g ey s
+ \I A I' =g I :

ALT | ALT

FIGURE 4-18

Instead of displaying the items in the ArrayAdapter as a simple list, you can also display them using
radio buttons. To do so, modify the second parameter in the constructor of the Arrayadapter class:

ArrayAdapter<String> adapter = new ArrayAdapter<String> (this,
android.R.layout.simple_spinner dropdown_item, presidents);

This will cause the items to be displayed as a list of radio buttons (see Figure 4-19).

4 555&Andreid 2.2 Emulater

Dwight D. Eisenhower
John F. Kennedy
Lyndon B. Johnson
Richard Nixon

Gerald Ford

IR I R R

[l [l e Gl |

| AT) |

FIGURE 4-19

166 | CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

SUMMARY

This chapter provided a brief look at some of the commonly used views in an Android application.
While it is not possible to exhaustively examine each view in detail, the views you learned about
here should provide a good foundation for designing your Android application’s user interface,
regardless of its requirements.

EXERCISES

1. How do you programmatically determine whether a RadioButton is checked?
2. How do you access the string resource stored in the strings.xml file?
3. Write the code snippet to obtain the current date.

Answers to the Exercises can be found in Appendix C.

Summary | 167

WHAT YOU LEARNED IN THIS CHAPTER
TOPIC KEY CONCEPTS

TextView <TextView
android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:text="€string/hello"

/>

Button <Button android:id="@+id/btnSave"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Save" />

ImageButton <ImageButton android:id="@+id/btnImgl"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:src="@drawable/icon" />

EditText <EditText android:id="@+id/txtName"
android:layout_width="fill parent"
android:layout_height="wrap_content" />

CheckBox <CheckBox android:id="@+id/chkAutosave"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Autosave" />

RadioGroup and RadioButton <RadioGroup android:id="@+id/rdbGpl"
android:layout_width="fill parent"
android:layout_height="wrap content"
android:orientation="vertical" >
<RadioButton android:id="@+id/rdbl"

android:layout_width="fill parent"

android:layout_height="wrap_content"

android:text="Option 1" />
<RadioButton android:id="@+id/rdb2"

android:layout_width="fill parent"

android:layout_height="wrap_content"

android:text="Option 2" />
</RadioGroup>

ToggleButton <ToggleButton android:id="@+id/togglel"
android:layout_width="wrap_ content"
android:layout_height="wrap_content" />

ProgressBar <ProgressBar android:id="@+id/progressbar"
android:layout_width="wrap_ content"
android:layout_height="wrap_content" />

AutoCompleteTextBox <AutoCompleteTextView android:id="@+id/txtCountries"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

continues

168

| CHAPTER4 DESIGNING YOUR USER INTERFACE USING VIEWS

(continued)
TOPIC
TimePicker

DatePicker

Spinner

KEY CONCEPTS

<TimePicker

android:
android:

<DatePicker

android:
android:

android:id="@+id/timePicker"
layout_width="wrap_content"
layout_height="wrap_content"

android:id="@+id/datePicker"
layout_width="wrap_content"
layout_height="wrap_content"

<Spinner android:id="@+id/spinnerl"”

android:
android:
android:

layout_width="wrap_content"
layout_height="wrap_content"
drawSelectorOnTop="true" />

/>

/>

Displaying Pictures and
Menus with Views

WHAT YOU WILL LEARN IN THIS CHAPTER

> How to use the Gallery, ImageSwitcher, Gridview, and ImageView
views to display images

> How to display options and context menus
> How to display time using the analogClock and DigitalClock views
> How to display Web content using the webview
In the previous chapter, you learned about the various views that you can use to build the user

interface of your Android application. In this chapter, you continue your exploration of the
other views that you can use to create robust and compelling applications.

In particular, you shall turn your attention to views that enable you to display images. In addition,
you will also learn how to create option and context menus in your Android application. This chap-
ter ends with a discussion of some nice views that enable you to display the current time and Web
content.

USING IMAGE VIEWS TO DISPLAY PICTURES

So far, all the views you have seen until this point are used to display text information. For
displaying images, you can use the ImageView, Gallery, ImageSwitcher, and Gridview views.

The following sections discuss each view in more detail.

170 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

Gallery and ImageView Views

The Gallery is a view that shows items (such as images) in a center-locked, horizontal scrolling list.
Figure 5-1 shows how the Gallery view looks when it is displaying some images.

FIGURE 5-1

The following Try It Out shows you how to use the Gallery view to display a set of images.

Using the Gallery View

codefile Gallery.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project as shown in Figure 5-2.

([ew Androic Project [B

New Andraid Projoct
Creates a new Andoid Project resource

Project name: Gallery

Contents

& Create new project m workspace
Create project from exsting source

V1 Use delault location

CufUsers/Wei-Meng Lee/mynowworkapace/ Gallery Briene
Create project from existing tample

Sample: | AccelerometerPlay

Build Target

Target Marme Vender Platform &PL |
Android 21 -upda... Android Open Source Project 21-upd.. T |

Google ARl Google Inc, 3-upd 7

Android 2.2 Android Dpen Source Project 22 8

[7] Goagle APts Geagle Ine, 2 8

| GALAXY Tab Add.. Samsung Electronics Ce., Ltd, 22 8

4 Andreid 23 Android Open Source Project 3 9

Google APls Google Ine. 23]

Stendard Android platiorm 23
Praperties
Agplication name Gallesy
Package name: netleam? develop. Gallery
J] Create Activity. MainActivity

Min SDK Version: 9

FIGURE 5-2

Using Image Views to Display Pictures | 171

2. Modify the main.xnl file as shown in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent" >

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Images of San Francisco" />

<Gallery
android:id="@+id/galleryl"
android:layout_width="fill parent"
android:layout_height="wrap content" />

<ImageView
android:id="@+id/imagel"
android:layout_width="320px"
android:layout_height="250px"
android:scaleType="£fitXy" />

</LinearLayout>

3. Right-click on the res/values folder and select New = File. Name the file attrs.xml.

4. Populate the attrs.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<declare-styleable name="Galleryl">
<attr name="android:galleryItemBackground" />
</declare-styleable>
</resources>

5. DPrepare a series of images and name them pic1.png, pic2.png, and so on for each subsequent
image (see Figure 5-3).

NOTE You can download the series of images from this book’s support website
at www . wrox . Com.

6. Drag and drop all the images into the res/drawable-ndpi folder (see Figure 5-4). When a dialog is
displayed, check the copy option and click OK.

NOTE This example assumes that this project will be tested on an AVD with
medium DPI screen resolution. For a real-life project, you need to ensure that
each drawable folder has a set of images (of different resolutions).

http://schemas.android.com/apk/res/android
http://www.wrox.com

172

| CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

picl.png

4 B res
I+ = drawable-hdpi
I» = drawable-ldpi
4 [= drawable-mdpi

|| icon.png

e iy picd ey

picS.png

[F[EEE

L7

(B pich.png

| M| pic.png
4 = layout

|%] mainxml
4 [= values

picl.png

FIGURE 5-3 FIGURE 5-4

Add the following statements in bold to the Mainactivity.ava file:

package net.learn2develop.Gallery;

import
import

import
import
import
import
import
import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.content.Context;
android.content.res.TypedArray;
android.view.View;

android.view.ViewGroup;

android.widget .AdapterView;
android.widget.AdapterView.OnItemClickListener;
android.widget .BaseAdapter;
android.widget.Gallery;
android.widget.ImageView;

android.widget.Toast;

class MainActivity extends Activity {

//---the images to display---
Integer[] imageIDs = {

R.drawable.picl,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7

/** Called when the activity is first created. */
@Override

Using Image Views to Display Pictures

| 173

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Gallery gallery = (Gallery) findviewById(R.id.galleryl);

gallery.setAdapter (new ImageAdapter(this));
gallery.setOnItemClickListener (new OnItemClickListener ()
{
public void onItemClick(AdapterView<?> parent, View v,
int position, long id)

{
Toast .makeText (getBaseContext (),
"pic" + (position + 1) + " selected",
Toast .LENGTH_ SHORT) .show();
}

b

public class ImageAdapter extends BaseAdapter

{

private Context context;
private int itemBackground;

public ImageAdapter (Context c)

{
context = c;
//---setting the style---
TypedArray a = obtainStyledAttributes(R.styleable.Galleryl);
itemBackground = a.getResourceId(

R.styleable.Galleryl android galleryItemBackground, 0);

a.recycle();

//---returns the number of images---
public int getCount() {
return imageIDs.length;

//---returns the ID of an item---
public Object getItem(int position) {
return position;

//---returns the ID of an item---
public long getItemId(int position) {
return position;

//---returns an ImageView view---

public View getView(int position, View convertView, ViewGroup parent) {
ImageView imageView = new ImageView(context);
imageView.setImageResource (imageIDs [position]);
imageView.setScaleType (ImageView.ScaleType.FIT XY);
imageView.setLayoutParams (new Gallery.LayoutParams (150, 120));
imageView.setBackgroundResource (itemBackground) ;

174 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

return imageView;

}
8. Press F11 to debug the application on the Android Emulator. Figure 5-5 shows the Gallery view
displaying the series of images.

9. You can swipe the images to view the entire series of images. Observe that as you click on an image,
the Toast class will display its name (see Figure 5-6).

i SSSdindnid 22 Emulater [Py

Gallery

5

FIGURE 5-5

i S554Andrond 22 Emulator | =)

plcs selected

FIGURE 5-6

Using Image Views to Display Pictures | 175

10. To display the selected image in the Imageview, add the following statements in bold to the

1.

MainActivity.java file:

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Gallery gallery = (Gallery) findviewById(R.id.galleryl);

gallery.setAdapter (new ImageAdapter (this));

gallery.setOnItemClickListener (new OnItemClickListener ()
{

public void onItemClick(AdapterView<?> parent, View v,
int position, long id)
{
Toast.makeText (getBaseContext (),
"pic" + (position + 1) + " selected",
Toast.LENGTH_SHORT) .show () ;

//---display the images selected---
ImageView imageView = (ImageView) findViewById(R.id.imagel);
imageView.setImageResource (imageIDs [position]);

1)

Press F11 to debug the application again. This time, you will see the image selected in the Tmageview
(see Figure 5-7).

[5554android 22 Emulator [ESNRE=)

als [o | Jo [n [y [k o |®
2z Ix [c Iv.]s In m [, |e

FIGURE 5-7

176 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

How It Works

You first add the Gallery and ImageView views to main.xml:

<Gallery
android:id="@+id/galleryl"
android:layout_width="fill parent"
android:layout_height="wrap_ content" />

<ImageView
android:id="@+id/imagel"
android:layout_width="320px"
android:layout_height="250px"
android:scaleType="fitxXy" />

As mentioned earlier, the Gallery view is used to display the series of images in a horizontal scrolling
list. The Tmageview is used to display the image selected by the user.

The list of images to be displayed is stored in the imageIDs array:

//---the images to display---
Integer[] imageIDs = {

R.drawable.picl,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pich,
R.drawable.picé6,
R.drawable.pic7

}i

You create the Imageadapter class (which extends the BaseAdapter class) so that it can bind to the
Gallery view with a series of ImageView views:

Gallery gallery = (Gallery) findViewById(R.id.galleryl);
gallery.setAdapter (new ImageAdapter (this));
gallery.setOnItemClickListener (new OnItemClickListener ()
{
public void onItemClick (AdapterView<?> parent, View v,
int position, long id)
{
Toast.makeText (getBaseContext (),
"pic" + (position + 1) + " selected",
Toast.LENGTH_SHORT) .show () ;

//---display the images selected---
ImageView imageView = (ImageView) findViewById(R.id.imagel);

imageView.setImageResource (imageIDs[position]) ;

1)

When an image in the Gallery view is selected (i.e., clicked), the position (0 for the first image, 1 for the
second image, and so on) of the selected image is displayed and the image is displayed in the Imageview.

Using Image Views to Display Pictures | 177

ImageSwitcher

The previous section demonstrated how to use the Gallery view together with an Imageview to dis-
play a series of thumbnail images so that when one is selected, the selected image is displayed in the
ImageView. However, sometimes you don’t want an image to appear abruptly when the user selects
it in the callery view — you might, for example, want to apply some animation to the image when
it transits from one image to another. In this case, you need to use the Imageswitcher together with
the callery view. The following Try It Out shows you how.

Using the ImageSwitcher View

codefile ImageSwitcher.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as ImageSwitcher.

2. Modify the main.xn1 file by adding the following statements in bold:

<?xml version="1.0" encoding="utf-8"?>
<RelativelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:background="#ff000000" >

<Gallery
android:id="@+id/galleryl"
android:layout_width="fill parent"”
android:layout_height="wrap content" />

<ImageSwitcher
android:id="@+id/switcherl”
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_alignParentLeft="true"
android:layout_alignParentRight="true"
android:layout_alignParentBottom="true" />

</RelativeLayout>

3. Right-click on the res/values folder and select New = File. Name the file attrs.xml.

4. Populate the attrs.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<declare-styleable name="Galleryl">
<attr name="android:galleryItemBackground" />
</declare-styleable>
</resources>

5. Drag and drop a series of images into the res/drawable-mdpi folder When a dialog is displayed,
check the copy option and click OK.

http://schemas.android.com/apk/res/android

178 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

6. Add the following bold statements to the MainaActivity.java file:

package net.learn2develop.ImageSwitcher;

import android.app.Activity;
import android.os.Bundle;

import android.content.Context;

import android.content.res.TypedArray;

import android.view.View;

import android.view.ViewGroup;

import android.view.ViewGroup.LayoutParams;
import android.view.animation.AnimationUtils;
import android.widget.BaseAdapter;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;
import android.widget.Gallery;

import android.widget.ViewSwitcher.ViewFactory;
import android.widget.ImageSwitcher;

import android.widget.ImageView;

public class MainActivity extends Activity implements ViewFactory {
//---the images to display---
Integer[] imageIDs = {
R.drawable.picl,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic7

private ImageSwitcher imageSwitcher;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

imageSwitcher = (ImageSwitcher) findViewById(R.id.switcherl);

imageSwitcher.setFactory(this);

imageSwitcher.setInAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_in));

imageSwitcher.setOutAnimation(AnimationUtils.loadAnimation(this,
android.R.anim.fade_out));

Gallery gallery = (Gallery) findviewById(R.id.galleryl);
gallery.setAdapter (new ImageAdapter(this));
gallery.setOnItemClickListener (new OnItemClickListener()
{

public void onItemClick(AdapterView<?> parent,

View v, int position, long id)

{

imageSwitcher.setImageResource (imageIDs[position]);

Using Image Views to Display Pictures

| 179

})

public View makeView()

{

ImageView imageView = new ImageView(this);
imageView.setBackgroundColor (0xFF000000);
imageView.setScaleType (ImageView.ScaleType.FIT CENTER);
imageView.setLayoutParams (new

ImageSwitcher.LayoutParams (
LayoutParams.FILL_ PARENT,
LayoutParams.FILL_PARENT));

return imageView;

public class ImageAdapter extends BaseAdapter

{

private Context context;
private int itemBackground;

public ImageAdapter (Context c)

{

context = c;

//---setting the style---
TypedArray a = obtainStyledAttributes(R.styleable.Galleryl);
itemBackground = a.getResourceId(

R.styleable.Galleryl_android galleryItemBackground, 0);
a.recycle();

//---returns the number of images---
public int getCount ()

{

return imageIDs.length;

//---returns the ID of an item---
public Object getItem(int position)

{

return position;

public long getItemId(int position)

{

return position;

//---returns an ImageView view---
public View getView(int position, View convertView, ViewGroup parent)

{

ImageView imageView = new ImageView(context);

imageView.setImageResource (imageIDs [position]);

180 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

imageView.setScaleType (ImageView.ScaleType.FIT XY);
imageView.setLayoutParams (new Gallery.LayoutParams (150, 120));
imageView.setBackgroundResource (itemBackground) ;

return imageView;

7. Press F11 to debug the application on the Android Emulator. Figure 5-8 shows the Gallery and
ImageSwitcher views, with both the collection of images as well as the image selected.

»
§ 5554:android_22 Emulator

.

ImageSwitcher

FIGURE 5-8

How It Works

The first thing you notice in this example is that the Mainactivity not only extends Activity, but also
implements ViewFactory. To use the TmageSwitcher view, you need to implement the viewFactory inter-
face, which creates the views for use with the Tmageswitcher view. For this, you need to implement the

makeView () method:

public View makeView ()

{

ImageView

imageView.
imageView.
imageView.

imageView = new ImageView (this);
setBackgroundColor (0xFF000000) ;

setScaleType (ImageView.ScaleType.FIT CENTER) ;
setLayoutParams (new

ImageSwitcher.LayoutParams (

LayoutParams.FILL_ PARENT,
LayoutParams.FILL,_PARENT)) ;

return imageView;

Using Image Views to Display Pictures | 181

This method creates a new view to be added in the ImageSwitcher view.

Like the Gallery example in the previous section, you also implemented an Imageadapter class so that
it can bind to the Gallery view with a series of Imageview views.

In the oncreate () method, you get a reference to the TmageSwitcher view and set the animation, specify-
ing how images should “fly” in and out of the view. Finally, when an image is selected from the Gallery
view, the image is displayed in the TmageSwitcher view:

@0Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

imageSwitcher = (ImageSwitcher) findviewById(R.id.switcherl);

imageSwitcher.setFactory (this) ;

imageSwitcher.setInAnimation (AnimationUtils. loadAnimation(this,
android.R.anim.fade_in));

imageSwitcher.setOutAnimation (AnimationUtils.loadAnimation(this,
android.R.anim. fade_out));

Gallery gallery = (Gallery) findviewById(R.id.galleryl);
gallery.setAdapter (new ImageAdapter (this));
gallery.setOnItemClickListener (new OnItemClickListener ()
{

public void onItemClick (AdapterView<?> parent,

View v, int position, long id)

{

imageSwitcher.setImageResource (imagelDs [position]) ;

)

In this example, when an image is selected in the Gallery view, it will appear by “fading” in. When the
next image is selected, the current image will fade out. If you want the image to slide in from the left and
slide out to the right when another image is selected, try the following animation:
imageSwitcher.setInAnimation (AnimationUtils. loadAnimation(this,
android.R.anim.slide_in left));

imageSwitcher.setOutAnimation (AnimationUtils.loadAnimation(this,
android.R.anim.slide out_right));

Like the previous Try It Out, you also created the Imagenrdapter class (which extends the BaseAdapter
class) so that it can bind to the Gallery view with a series of Imageview views.

GridView

The Gridview shows items in a two-dimensional scrolling grid. You can use the Gridview together
with an Tmageview to display a series of images. The following Try It Out demonstrates how.

182

| CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

Using the GridView View

1.
2.

codefile Grid.zip available for download at Wrox.com

Using Eclipse, create a new Android project and name it Grid.

Drag and drop a series of images into the res/drawable-mdpi folder (see Figure 5-9). When a dia-

log is displayed, check the copy option and click OK.

4 = Tes

I» (= drawable-hdpi

[+ = drawable-ldpi

4 [= drawable-mdpi
|R&| icon.png

LN
4 [= layout
|%| mainxml

FIGURE 5-9

Populate the main.xml file with the following content:

<?xml version="1.0" encoding="utf-8"7?>

<Gridview xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/gridview"
android:layout_width="fill parent”
android:layout_height="fill parent"
android:numColumns="auto_ fit"
android:verticalSpacing="10dp"
android:horizontalSpacing="10dp"
android:columnWwidth="90dp"
android:stretchMode="columnWidth"
android:gravity="center"

/>

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Grid;

android.app.Activity;
android.os.Bundle;

import
import

android.content.Context;
android.view.View;
android.view.ViewGroup;
android.widget .AdapterView;

import
import
import
import
import
import
import
import
import

android.widget .BaseAdapter;
android.widget.Gridview;
android.widget.ImageView;
android.widget.Toast;

public class MainActivity extends Activity {

android.widget.AdapterView.OnItemClickListener;

http://schemas.android.com/apk/res/android

Using Image Views to Display Pictures

| 183

//---the images to display---

Integer[] imageIDs = {
R.drawable.picl,
R.drawable.pic2,
R.drawable.pic3,
R.drawable.pic4,
R.drawable.pic5,
R.drawable.pic6,
R.drawable.pic?7

};

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

GridView gridvView = (Gridview) findViewById(R.id.gridview);
gridview.setAdapter (new ImageAdapter (this));

gridvView.setOnItemClickListener (new OnItemClickListener()

{

public void onItemClick(AdapterView<?> parent,

View v, int position, long id)

+ " selected",

{
Toast .makeText (getBaseContext (),
"pic" + (position + 1)
Toast .LENGTH SHORT) .show();
}

b
}

public class ImageAdapter extends BaseAdapter

{

private Context context;

public ImageAdapter (Context c)
{
context = c;

}

//---returns the number of images---
public int getCount() {
return imageIDs.length;

}

//---returns the ID of an item---
public Object getItem(int position) {
return position;

}

//---returns the ID of an item---
public long getItemId(int position) {
return position;

}

//---returns an ImageView view---
public View getView(int position, View

convertView,

184 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

ViewGroup parent)

{
ImageView imageView;
if (convertView == null) {
imageView = new ImageView(context);
imageView.setLayoutParams (new
Gridview.LayoutParams (85, 85));
imageView.setScaleType (
ImageView.ScaleType.CENTER_CROP);
imageView.setPadding(5, 5, 5, 5):
} else {
imageView = (ImageView) convertView;
}
imageView.setImageResource (imageIDs [position]);
return imageView;
}

5. Press F11 to debug the application on the Android Emulator. Figure 5-10 shows the Griaview
displaying all the images.

555d:Android_2 2_Emulator =)

r-—!r-@?[—;v *‘i‘c?[‘rr"“‘t-—?r—q—
pics selected r—'r—{\[—wr—nr;—-.r[—-r—w,——r—

.

FIGURE 5-10

How It Works

Like the Gallery and ImageSwitcher example, you implement the TmageAdapter class and then bind it
to the Gridview:
Gridview gridview = (GridvView) findViewById(R.id.gridview) ;
gridview.setAdapter (new ImageAdapter (this));

gridview.setOnItemClickListener (new OnItemClickListener ()

Using Menus with Views

| 185

public void onItemClick (AdapterView<?> parent,
View v, int position, long id)
{
Toast.makeText (getBaseContext (),
"pic" + (position + 1) + " selected",
Toast.LENGTH_SHORT) .show () ;

)

When an image is selected, you display a Toast message indicating the image selected.

Within the cridview, you can specify the size of the images and how images are spaced out in the
Gridview by setting the padding for each image:

//---returns an ImageView view---
public View getView(int position, View convertView,
ViewGroup parent)
{
ImageView imageView;
if (convertView == null) {
imageView = new ImageView (context);
imageView.setLayoutParams (new
Gridview.LayoutParams (85, 85));
imageView.setScaleType (
ImageView.ScaleType.CENTER_CROP) ;
imageView.setPadding(5, 5, 5, 5);
} else {
imageView = (ImageView) convertView;
}
imageView.setImageResource (imageIDs [position]) ;
return imageView;

USING MENUS WITH VIEWS

Menus are useful for displaying additional options that are not directly visible on the main UI of an
application. There are two main types of menus in Android:

> Options menu — Displays information related to the current activity. In Android, you activate
the options menu by pressing the MENU key.

> Context menu — Displays information related to a particular view on an activity. In Android,
to activate a context menu you tap and hold on to it.

Figure 5-11 shows an example of an options menu in the browser application. The option menu is
displayed whenever the user presses the MENU button. The menu items displayed vary according to
the current activity that is running.

Figure 5-12 shows a context menu that is displayed when the user presses and holds on a hyperlink
displayed on the page. The menu items displayed vary according to the component or view currently
selected. To activate the context menu, the user selects an item on the screen and either taps and
holds it or simply presses the center button on the directional keypad.

186 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

g = f
% 5554:Android_22_Emulator % 53554M\ndroid 2.2 Emulator

AN @ 11:21 a0 Al 11:21m

P | http://media.wiley.com/
| FREE 5 product_data/

Open

Open in new window
Bookmark link
Save link

Share link

New wandow Bookmarks

',

| ¥ rare link 1191
Retresh Forwa

FIGURE 5-11 FIGURE 5-12

Creating the Helper Methods

Before you go ahead and create your options and context menus, you need to create two helper meth-
ods. One creates a list of items to show inside a menu, while the other handles the event that is fired
when the user selects an item inside the menu.

Creating the Menu Helper Methods

codefile Menus.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as Menus.

2. IntheMainActivity.java file, add the following statements in bold:

package net.learn2develop.Menus;

import android.app.Activity;
import android.os.Bundle;

import android.view.Menu;
import android.view.MenuItem;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity ({
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Using Menus with Views | 187

private void CreateMenu(Menu menu)

{
MenuItem mnul = menu.add(0, 0, 0, "Item 1");
{
mnul.setAlphabeticShortcut('a’);
mnul.setIcon(R.drawable.icon);
}
MenuItem mnu2 = menu.add(0, 1, 1, "Item 2");
{
mnu2.setAlphabeticShortcut('b');
mnu2.setIcon(R.drawable.icon);
}
MenuItem mnu3 = menu.add(0, 2, 2, "Item 3");
{
mnu3.setAlphabeticShortcut('c');
mnu3.setIcon(R.drawable.icon);
}
MenuItem mnu4 = menu.add(0, 3, 3, "Item 4");
{
mnu4 .setAlphabeticShortcut ('d');
}
menu.add(0, 3, 3, "Item 5");
menu.add(0, 3, 3, "Item 6");
menu.add(0, 3, 3, "Item 7");
}

private boolean MenuChoice(MenuItem item)
{
switch (item.getItemId()) {
case 0:
Toast .makeText (this, "You clicked on Item 1",
Toast .LENGTH_LONG) .show() ;
return true;
case 1:
Toast .makeText (this, "You clicked on Item 2",
Toast .LENGTH LONG) .show();
return true;
case 2:
Toast .makeText (this, "You clicked on Item 3",
Toast .LENGTH_ LONG) .show() ;
return true;
case 3:
Toast .makeText (this, "You clicked on Item 4",
Toast .LENGTH_ LONG) .show() ;
return true;
case 4:
Toast .makeText (this, "You clicked on Item 5",
Toast .LENGTH_ LONG) .show() ;
return true;
case 5:
Toast .makeText (this, "You clicked on Item 6",
Toast . LENGTH_LONG) .show() ;
return true;

188 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

case 6:
Toast .makeText(this, "You clicked on Item 7",
Toast .LENGTH LONG) .show();
return true;
}

return false;

How It Works

The preceding example creates two methods: CreateMenu () and MenuChoice (). The CreateMenu () method
takes a Menu argument and adds a series of menu items to it.

To add a menu item to the menu, you create an instance of the MenuTtem class and use the add () method
of the Menu object.

MenuItem mnul = menu.add(0, 0, 0, "Item 1");
{
mnul.setAlphabeticShortcut('a');
mnul.setIcon(R.drawable.icon);

The four arguments of the add () method are as follows:

> grouptd — The group identifier that the menu item should be part of. Use 0 if an item is not in
a group.

> itemId — Unique item ID
> order — The order in which the item should be displayed
> title — The text to display for the menu item

You can use the setAlphabeticShortcut () method to assign a shortcut key to the menu item so that
users can select an item by pressing a key on the keyboard. The setIcon () method sets an image to be
displayed on the menu item.

The MenuChoice () method takes a MenuTtem argument and checks its ID to determine the menu item that
is clicked. It then displays a Toast message to let the user know which menu item was clicked.

Options Menu

You are now ready to modify the application to display the options menu when the user presses the
MENU button on the Android device.

Displaying an Options Menu

1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.Menus;

import android.app.Activity;

Using Menus with Views | 189

import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.widget.Button;
import android.widget.Toast;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {
super.onCreateOptionsMenu (menu) ;
CreateMenu (menu) ;
return true;

}

@Override
public boolean onOptionsItemSelected(MenuItem item)
{

return MenuChoice(item);

}

private void CreateMenu (Menu menu)
{

/...
}

private boolean MenuChoice (Menultem item)
{

/...
}

2. Press F11 to debug the application on the Android Emulator. Figure 5-13 shows the options menu
that pops up when you click the MENU button. To select a menu item, either click on an individ-
ual item or use its shortcut key (A to D; applicable only to the first four items).

How It Works

To display the options menu for your activity, you need to override two methods in your activity:
onCreateOptionsMenu () and onOptionsItemSelected(). The onCreateOptionsMenu () method is called
when the MENU button is pressed. In this event, you call the createMenu () helper method to display the
options menu. When a menu item is selected, the onoptionsTtemSelected () method is called. In this case,
you call the MenuChoice () method to display the menu item selected (and do whatever you want to do).

Observe the icons displayed for menu items 1, 2, and 3. Also, if the options menu has more than six items,
a “More” menu item will be displayed to indicate the additional options. Figure 5-14 shows the additional
menu items displayed as a list, after the user has pressed the More menu item.

190 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

- 5
i S55dAndrod 22 Emulator [

Menus

Tap and hold this for more options...

Ttem 4

FIGURE 5-13

[5554amiroi 22 Emulator [EE)
AN @ 7:46

Menus

Tap and hold this for mere optiens...

ey e rz‘.

FIGURE 5-14

Context Menu

The previous section showed how the options menu is displayed when the user presses the MENU but-
ton. Besides the options menu, you can also display a context menu. A context menu is usually associ-
ated with a view on an activity, and it is displayed when the user long clicks an item. For example, if
the user taps on a Button view and hold it for a few seconds, a context menu can be displayed.

Using Menus with Views | 191

If you want to associate a context menu with a view on an activity, you need to call the
setOnCreateContextMenuListener () method of that particular view. The following Try It Out
shows how you can associate a context menu with a Button view.

Displaying a Context Menu

1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.Menus;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.Menultem;
import android.widget.Button;
import android.widget.Toast;

import android.view.View;
import android.view.ContextMenu;
import android.view.ContextMenu.ContextMenuInfo;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btn = (Button) findViewById(R.id.btnl);
btn.setOnCreateContextMenuListener (this);

@Override

public boolean onCreateOptionsMenu (Menu menu) {
super .onCreateOptionsMenu (menu) ;
CreateMenu (menu) ;
return true;

@Override
public boolean onOptionsItemSelected(Menultem item)
{

return MenuChoice (item) ;

@Override
public void onCreateContextMenu(ContextMenu menu, View view,
ContextMenuInfo menuInfo)
{
super.onCreateContextMenu (menu, view, menuInfo);
CreateMenu (menu) ;

@Override

192 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

public boolean onContextItemSelected(MenuItem item)
{
return MenuChoice(item);

}

private void CreateMenu (Menu menu)
{

VA
}

private boolean MenuChoice (Menultem item)
{

/...
}

2. Press F11 to debug the application on the Android Emulator. Figure 5-15 shows the context menu
that is displayed when you long-click the Button view.

¥ 5554:Android_22_Emulator =L

EH o % =R s P P

FIGURE 5-15

How It Works

In the preceding example, you call the setonCreateContextMenuListener () method of the Button view
to associate it with a context menu.

When the user long-clicks the Button view, the onCreateContextMenu () method is called. In this
method, you call the createMenu () method to display the context menu. Similarly, when an item

Some Additional Views | 193

inside the context menu is selected, the onContextTtemSelected() method is called, where you call the
MenuChoice () method to display a message to the user.

Notice that the shortcut keys for the menu items do not work. To enable the shortcuts keys, you need to
call the setQuertyMode () method of the Menu object, like this:

private void CreateMenu (Menu menu)

{

menu.setQwertyMode (true) ;
MenuItem mnul = menu.add(0, 0, 0, "Item 1");
{
mnul.setAlphabeticShortcut ('d");
mnul.setIcon(R.drawable.icon) ;

Doing so will enable the shortcut key (see Figure 5-16).

-
¥ 5554:Android_2 2_Emulator =rh

Item 1
Menu+a
Item 2
Menurh
Item 3
Menu+c
Ttem 4 P TR R R TR [T
Menurd —__| el =l e
P] e oy s
Item 5 alichBEllEpls]iE!
T e e
Ttem A el e I'_— lealcasl
ALT [!— "‘i ,_? ALT
FIGURE 5-16
SOME ADDITIONAL VIEWS

Besides the standard views that you have seen up to this point, the Android SDK provides some
additional views that make your applications much more interesting. In this section, you will learn
more about the following views: analogClock, DigitalClock, and Webview.

194 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

AnalogClock and DigitalClock Views

The AnalogClock view displays an analog clock with two hands — one for minutes and one for
hours. Its counterpart, the DigitalClock view, displays the time digitally. Both display the system
time, and do not allow you to display a particular time. Hence, if you want to display the time for a
particular region, you have to build your own custom views.

NOTE Creating your own custom views in Android is beyond the scope of this
book. However, if you are interested in this area, take a look at Google’s Android
documentation on this topic at: http: //developer.android.com/guide/topics/
ui/custom-components.html.

Using the AnalogClock and DigitalClock views are straightforward; simply declare them in your
XML file (such as main.xm1), like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>

<AnalogClock
android:layout_width="wrap_ content"
android:layout_height="wrap content" />

<DigitalClock
android:layout_width="wrap content"

android:layout_height="wrap content" />

</LinearLayout>
Figure 5-17 shows the analogClock and DigitalClock views in action.

WebView

The webview enables you to embed a web browser in your activity. This is very useful if your appli-
cation needs to embed some web content, such as maps from some other providers, and so on. The
following Try It Out shows how you can programmatically load the content of a web page and dis-
play it in your activity.

Using the WebView View

codefile WebView.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as WebView.

http://developer.android.com/guide/topics/ui/custom-components.html
http://schemas.android.com/apk/res/android
http://developer.android.com/guide/topics/ui/custom-components.html

Some Additional Views | 195

[i ss5aAndroid 22 Emulatar [=S

_" 2:22».1

AdditionalViews

[_\,
!—”“"TI-”V“’-""
o F‘!"—__'-"“ -

\

FIGURE 5-17

Add the following statements to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>

<WebView android:id="@+id/webviewl"
android:layout_width="wrap content"
android:layout_height="wrap_ content" />

</LinearLayout>

In the Mainactivity.java file, add the following statements in bold:

package net.learn2develop.WebView;

import android.app.Activity;
import android.os.Bundle;

import android.webkit.WebSettings;
import android.webkit.WebView;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

http://schemas.android.com/apk/res/android

196 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

setContentView(R.layout.main) ;

WebView wv = (WebView) findvViewById(R.id.webviewl);

WebSettings webSettings = wv.getSettings();
webSettings.setBuiltInZoomControls (true);

wv.loadUrl (
"http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg"):

4. Press F11 to debug the application on the Android Emulator. Figure 5-18 shows the content of the
WebView.

5 555dAndiaid_2.2_Frmulatos [l |

2]

WebView

i -
5 g

_J)\l‘. l
Beginning

Android 2

Application Development

FIGURE 5-18

How It Works

To use the webview to load a web page, you use the 1loadurl () method, like this:
wv.loadUrl (
"http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg");

To display the built-in zoom controls, you need to first get the websettings property from the webview
and then call its setBuiltInZoomControls () method:
WebSettings webSettings = wv.getSettings();
webSettings.setBuiltInZoomControls (true) ;

Figure 5-19 shows the built-in zoom controls that appear when you use the mouse to click and drag the
content of the webView on the Android Emulator.

http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg
http://ecx.images-amazon.com/images/I/41HGB-W2Z8L._SL500_AA300_.jpg

Some Additional Views | 197

NOTE While most Android devices support multi-touch screens, the built-in zoom
controls are useful for zooming your web content when testing your application

on the Android Emulator.

Sometimes when you load a page that redirects you (such as load-
ing www .wrox . com redirects you to www.wrox.com/wileyCDa), WebView
will cause your application to launch the device’s browser applica-
tion to load the desired page. For example, if you ask the webview
to load www.wrox.com, Wrox.com will automatically redirect you to
www . wrox . com/WileyCDA/ In this case, your application will auto-
matically launch the device’s browser application to load your page.
In Figure 5-20, note the URL bar at the top of the screen.

To prevent this from happening, you need to implement the
WebViewClient class and override the shouldoverrideUrlLoading ()
method, as shown in the following example:

package net.learn2develop.WebView;

import android.app.Activity;

import android.os.Bundle;

import android.webkit.WebSettings;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

WebView

Beginning

Android 2

Application Development
2 &)

FIGURE 5-19

WebView wv = (WebView) findviewById(R.id.webviewl);

wv.setWebViewClient (new Callback());
WebSettings webSettings = wv.getSettings();
webSettings.setBuiltInZoomControls (true) ;
wv.loadUrl("http://www.wrox.com") ;

}

private class Callback extends WebViewClient {
@Override

public boolean shouldOverrideUrlLoading(WebView view, String url) {

return(false);

Figure 5-21 shows the Wrox.com home page now loading correctly in the webview.

http://www.wrox.com
http://www.wrox.com/wileyCDA
http://www.wrox.com
http://www.wrox.com/WileyCDA/

198 | CHAPTER5 DISPLAYING PICTURES AND MENUS WITH VIEWS

(5 s55aanaroid 22, Ematntor T L il |

A& 3:01m

Ehttp:/rwww.wrox.com... ¢ | X

PR TR TR TR TR R
ol sl L o |
[[P e e o o s e ey 79
e RS UV [PN [T e

e e d el
ALT i | ALT

\

FIGURE 5-20

W 5554:Android 22 Emulstor

M@ 2:02am

WebView

WIroN Prl:_!.-;r ner (o PTII‘LLITEIII'IIII{"

Home Bookstore/E-Books P2

Find Wrox Titles

Browse by Topic:

Al Tides Microsoft Servers
Mabile
Open Source iy
PHE/MYSOL EECE e G E)
SharePoint :
Sl Il SErRr
Visual Basic

T [P e) P ey P P R

Wb
Microsoft Office XML — | T e P e e e e e

ALT 2 ALT

FIGURE 5-21

You can also dynamically formulate an HTML string and load it into the Wwebview, using the
loadDatawithBaseURL () method:

WebView wv = (WebView) findViewById(R.id.webviewl);
final String mimeType = "text/html";
final String encoding "UTF-8";

Some Additional Views | 199

String html = "<HI>A simple HTML page</Hl><body>" +
"<p>The quick brown fox jumps over the lazy dog</p>";

wv.loadDataWithBaseURL("", html, mimeType, encoding, "");
Figure 5-22 shows the content displayed by the webview.
[+ S554undraid 22 Emulator [ESTE =)

WebView

A simple HTML
page

The quick brown fox jumps over the lazy
dog

FIGURE 5-22

Alternatively, if you have an HTML file located in the assets folder
it into the webview using the loadurl () method:

WebView wv = (WebView)
wv.loadUrl("file:///android_asset/Index.html");

(see Figure 5-23), you can also load

findViewById(R.id.webviewl) ;

8] 1ava - WebView/azsets/Tndewhtml - Eelipse

={

File Edt Bun Source Mavigste Seprch Project Refactor Windew Help

fix = A BAE B0 #F#Ey ™G 5 B3 % Debug
Gledlotacarcy
[2 Package Explorer 3 = O () Indeshtml £3
e%|e =l w0 simple NIML page</ni>
> :h:l::-"im l The quick Brown fask Jumps aver the lasy dagc/ps

B netlearnddevelop WebVi g aresthrep://vvy.geogie.som/lagas/Laga EOVAE.gQIf" /s
[netl WebVii
1] MainActivityjava

B gen [Generated Lava Files]
= Android 2.2
s ssets

2 Indeshitml

& drawable- hapi E

(& drawsble-ldpi

= drawsble-mdgy

& layout —

& values E ’]

A AndroidManifestaml -

7 1182 Problems (@ Jevadoc [Destaration B Console 52

[foa Writakle Srnart Insert 1:28

\

= 0|/ B Outline 22

oM [T Tova) <2 Juea £E

3 hl
T body
g
Y| img sre=http://www.goagle

FIGURE 5-23

200 | CHAPTERS5 DISPLAYING PICTURES AND MENUS WITH VIEWS

Figure 5-24 shows the content of the webview.

5554Android 2.2 Emulator

WebView

A simple HTML
page

The guick brown fox jumps over the lazy
dog

GO-USIQ"

’_F'"—I_7[_"""_"{ l—'[—’_"'_'"l_"

FIGURE 5-24

SUMMARY

In this chapter, you have taken a look at the various views that enable you to display images:
Gallery, TmageView, TmageSwitcher, and Gridview. In addition, you learned about the difference
between options menus and context menus, and how to display them in your application. Finally,

you learned about the analogClock and DigitalClock views, which display the current time graphi-
cally, as well as the webview, which displays the content of a web page.

1. What is the purpose of the ImageSwitcher?

Name the two methods you need to override when implementing an options menu in your activity.

Name the two methods you need to override when implementing a context menu in your activity.

AW N

. How do you prevent the webview from invoking the device’s web browser when a redirection
occurs in the webview?

Answers to the Exercises can be found in Appendix C.

Summary

201

TOPIC

Use of the
Gallery View

Gallery

ImageView

Use of the
ImageSwitcher
view

ImageSwitcher

Use of the
Gridview

Gridview

AnalogClock

DigitalClock

WebView

KEY CONCEPTS

» WHAT YOU LEARNED IN THIS CHAPTER

Displays a series of images in a horizontal scrolling list

<Gallery

android:id="@+id/galleryl"
android:layout_width="fill parent"
android:layout_height="wrap_content" />

<ImageView

android:id="@+id/imagel"

android:layout_width="320px"
android:layout_height="250px"
android:scaleType="fitxXy" />

Performs animation when switching between images

<ImageSwitcher

android:id="@+id/switcherl"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:layout_alignParentLeft="true"
android:layout_alignParentRight="true"
android:layout_alignParentBottom="true" />

Shows items in a two-dimensional scrolling grid

<Gridview xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/gridview"
android:layout_width="fill_parent"
android:layout_height="fill parent"
android:numColumns="auto_fit"
android:verticalSpacing="10dp"
android:horizontalSpacing="10dp"
android:columnWidth="90dp"
android:stretchMode="columnWidth"
android:gravity="center" />

<AnalogClock

android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<DigitalClock

android:layout_width="wrap_content"
android:layout_height="wrap_content" />

<WebView android:id="@+id/webviewl"
android:layout_width="wrap_ content"
android:layout_height="wrap_content" />

http://schemas.android.com/apk/res/android

Data Persistence

WHAT YOU WILL LEARN IN THIS CHAPTER

> How to save simple data using the Sharedpreferences object
> How to write and read files in internal and external storage

> How to create and use a SQLite database

In this chapter, you will learn how to persist data in your Android applications. Persisting data
is an important topic in application development, as users expect to reuse the data sometime at
a later stage. For Android, there are primarily three basic ways of persisting data:

A lightweight mechanism known as shared preferences to save small chunks of data

> Traditional file systems

> A relational database management system through the support of SQLite databases

The techniques discussed in this chapter enable applications to create and access their own pri-
vate data. In the next chapter you’ll learn how you can share data across applications.

SAVING AND LOADING USER PREFERENCES

Android provides the sharedpreferences object to help you save simple application data. For
example, your application may have an option to allow users to specify the font size of the text
displayed in your application. In this case, your application needs to remember the size set by the
user so that the next time he or she uses the application again, your application can set the size
appropriately. In order to do so, you have several options. You can save the data to a file, but you
have to perform some file management routines, such as writing the data to the file, indicating
how many characters to read from it, and so on. Also, if you have several pieces of information to
save, such as text size, font name, preferred background color, and so on, then the task of writing
to a file becomes more onerous.

204 | CHAPTER6 DATA PERSISTENCE

An alternative to writing to a text file is to use a database, but saving simple data to a database is over-
kill, both from a developer’s point of view and in terms of the application’s run-time performance.

Using the sharedprreferences object, however, you save the data you want through the use of key/
value pairs — specify a key for the data you want to save, and then both it and its value will be
saved automatically to an XML file for you.

Using getSharedPreferences|()

To see how the sharedpreferences object works, the following Try It Out demonstrates how easy it
is to save user data to an XML file, and then retrieve it easily via the same object.

Saving Data Using the SharedPreferences Object

codefile SharedPreferences.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it as shown in Figure 6-1.

8] tew drdroid Project By ==)'
Naw Android Project)
Crestes o mew Andreid Progect ressurce.

Preject name: - ShacsdPraferances

Contents

@ Create new project in workspace
Creste preject frem exsting source

¥l Use defilt hoation

Creste pregect from existing sample

Samgles AccelerometerPlay

Bl Target

Target Narms Vendor Platform L.
Andreid 1§ Andieid Opan Seuece Broject 15 ¥
Geegle APly Gesgleline. 5] ¥
Andeoid 16 Aalroid Open Scorce Project 16 4
Geegls APl Geoglelne. 15 1
Andrend 21-upda.. Android Open Seurce Progect eupd. 7
Beagle APl Googleine. Iaupd_ 7
Android 11 Andraid Open Soarce Project 1] 8
Googhe 4Bl Google Ine. 11 [
GALAKY Tab Add.. Samuerg Electronscs Lo Lid 2 8

¥ Android 23 android Open Source Project Fi} El
Geeght APl Googlelne. "X] 2

Standard Andrend platferm 2.3

Penpastior
Apphcaben rame: ShaesPrdeences

[—

] Creste Actvmy: MuinActivity
Min 50K Versiom §

® P T | s | |

FIGURE 6-1

2. Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"7>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

http://schemas.android.com/apk/res/android

Saving and Loading User Preferences | 205

android:layout_width="fill parent"

android:layout_height="fill_parent"
<SeekBar

android:id="@+id/SeekBar0l"

android:layout_width="£fill parent"”

android:layout_height="wrap_ content"
<TextView

android:id="@+id/TextView01l"

android:layout_width="£fill parent"”

android:layout_height="wrap_ content"

android:text="@string/hello" />
<EditText

android:id="@+id/EditText0l"

android:layout_width="fill parent"”

android:layout_height="wrap_ content"
<Button

android:id="@+id/btnSave"

android:text="Save"

android:layout_width="wrap content"

android:layout_height="wrap content"
</LinearLayout>

/>

/>

/>

Add the following statements in bold to the Mainactivity.java file:

package net.learn2develop.SharedPreferences;

android.app.Activity;
android.os.Bundle;

import
import

import
import
import
import
import
import
import

android.view.View;
android.widget.Button;
android.widget.EditText;
android.widget.SeekBar;

android.widget.Toast;

public
private SharedPreferences prefs;
private String prefName = "MyPref";
private EditText editText;
private SeekBar seekBar;
private Button btn;

private
private

android.content.SharedPreferences;

static final String FONT SIZE KEY =
static final String TEXT VALUE KEY =

android.widget.SeekBar.OnSeekBarChangeListener;

class MainActivity extends Activity {

"fontsize";
"textvalue";

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView(R.layout.main) ;

editText =
seekBar =

(EditText) findViewById(R.id.EditText01);
(SeekBar) findviewById(R.id.SeekBar01l);

206 | CHAPTER6 DATA PERSISTENCE

btn = (Button) findViewById(R.id.btnSave);

btn.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
//---get the SharedPreferences object---
prefs = getSharedPreferences(prefName, MODE PRIVATE) ;
SharedPreferences.Editor editor = prefs.edit();

//---save the values in the EditText view to preferences---
editor.putFloat (FONT SIZE_KEY, editText.getTextSize()):;
editor.putString(TEXT VALUE KEY, editText.getText().toString());

//---saves the values---
editor.commit () ;

//---display file saved message---

Toast .makeText (getBaseContext (),
"Font size saved successfully!",
Toast .LENGTH_ SHORT) .show();

});

//---1load the SharedPreferences object---
SharedPreferences prefs = getSharedPreferences(prefName, MODE_PRIVATE);

//---set the TextView font size to the previously saved values---
float fontSize = prefs.getFloat (FONT SIZE KEY, 12);

//---init the SeekBar and EditText---
seekBar.setProgress((int) fontSize);

editText.setText (prefs.getString (TEXT VALUE_KEY, ""));
editText.setTextSize(seekBar.getProgress());

seekBar.setOnSeekBarChangeListener (new OnSeekBarChangeListener() {
@Override
public void onStopTrackingTouch(SeekBar seekBar) {
}

@Override
public void onStartTrackingTouch(SeekBar seekBar) {
}

@Override
public void onProgressChanged(SeekBar seekBar, int progress,
boolean fromUser) {
//---change the font size of the EditText---
editText.setTextSize (progress);

4. Press F11 to debug the application on the Android Emulator.

Saving and Loading User Preferences | 207

5. Enter some text into the £ditText view and then change its font size by adjusting the SeekBar view
(see Figure 6-2). Click Save.

(7 s554Android_2.3_Emulator WithsD [E =)

SharedPreferences

This o
sentence W SO

will be

saved... PN T T AR T Y
) P s e e
P e e e e e e e
[P o i e

o P ey s o

| ALT | | ALT

FIGURE 6-2

6. Return to Eclipse and press F11 to debug the application on the Android Emulator again. The
application now displays the same text that you entered earlier using the same font size set earlier.

How It Works

To use the SharedPreferences object, you use the getSharedPreferences () method, passing it the name
of the shared preferences file (in which all the data will be saved), as well as the mode in which it should
be opened:

private SharedPreferences prefs;

//---get the SharedPreferences object---
prefs = getSharedPreferences (prefName, MODE_PRIVATE) ;
SharedPreferences.Editor editor = prefs.edit();

The MODE_PRTVATE constant indicates that the shared preference file can only be opened by the applica-
tion that created it. The Editor class allows you to save key/value pairs to the preferences file by exposing
methods such as the following:

> putString ()
> putBoolean ()

> putLong ()

208 | CHAPTER6 DATA PERSISTENCE

> putInt ()

> putFloat ()

When you are done saving the values, call the commit () method to save the changes:

//---save the values in the EditText view to preferences---
editor.putFloat (FONT_SIZE_KEY, editText.getTextSize());
editor.putString (TEXT VALUE_KEY, editText.getText().toString());

//---saves the values---
editor.commit () ;

When the activity is loaded, you first obtain the Sharedpreferences object and then retrieve all the val-
ues saved earlier:

//---load the SharedPreferences object---
SharedPreferences prefs = getSharedPreferences (prefName, MODE_PRIVATE) ;

//---set the TextView font size to the previously saved values---
float fontSize = prefs.getFloat (FONT_SIZE_KEY, 12);

//---init the SeekBar and EditText---
seekBar.setProgress ((int) fontSize);

editText.setText (prefs.getString (TEXT VALUE_KEY, ""));
editText.setTextSize (seekBar.getProgress());

The shared preferences file is saved as an XML file in the /data/ A
3 =
data/<package_name>/shared_prefs folder (see Figure 6-3). a [shared prefs
{5 MyPrefom]
Its content is shown here (formatted for clarity): FIGURE 63

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<string name="textvalue">This is so cool!</string>
<float name="fontsize" value="75.0" />
</map>

Using getPreferences()

In the previous section, you used the used the sharedpreferences object by supplying it with a
name, like this:

//---get the SharedPreferences object---
prefs = getSharedPreferences (prefName, MODE_PRIVATE) ;

In this case, the information saved inside the Sharedpreferences object is visible to all the activities
within the same application. However, if you don’t need to share the data between activities, you
can use the getPreferences () method, like this:

//---get the SharedPreferences object---
prefs = getPreferences (MODE_PRIVATE) ;

Persisting Data to Files | 209

The getPreferences () method does not require a name, and the data L B g
saved is restricted to the activity that created it. In this case, the file- « G shared prefs

. L. [ManActivity.eml
name used for the preferences file will be named after the activity that MyPrefami
created it (see Figure 6-4). FIGURE 6-4

PERSISTING DATA TO FILES

The sharedpreferences object allows you to store data that could best be stored as key/value pairs,
for example, data such as user ID, birthdate, gender, driving license number, etc. However, some-
times you might prefer to use the traditional file system to store your data. For example, you might
want to store text of poems that you want to display in your applications. In Android, you can use
the classes in the java.io namespace to do so.

Saving to Internal Storage

The first way to save files in your Android application is to write to the device’s internal storage. The fol-
lowing Try It Out demonstrates how to save a string entered by the user to the device’s internal storage.

A RNeIal Saving Data to Internal Storage

codefile Files.zip available for download at Wrox.com

1. Using Eclipse, create an Android project and name it as shown in Figure 6-5.

2. Inthe main.xml file, add the following statements in bold:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >
<TextView
android:layout_width="fill parent"
android:layout_height="wrap content"
android:text="Please enter some text"
/>
<EditText
android:id="@+id/txtTextl"
android:layout_width="fill parent"”
android:layout_height="wrap content" />
<Button
android:id="@+id/btnSave"
android:text="Save"
android:layout_width="fill parent"
android:layout_height="wrap_ content" />
<Button
android:id="@+id/btnLoad"
android:text="Load"
android:layout_width="fill parent"”
android:layout_height="wrap_ content" />
</LinearLayout>

http://schemas.android.com/apk/res/android

210 | CHAPTER6 DATA PERSISTENCE

8] Mew Andocid Projuct [EE—=)
New Android Project e
Crestes u new Andreid Project sescurce. iz
11|
Preject rame: Fies =1
Cantents
@ Craate new proiect in workipace
Creste project fom exirting source
1 Use defwul lecation
C/\senyWer- Meng Lee/ Begimning Andraid iy Broeie, |
Creste preject from esiting smpte
[P P—
Bl Target
| Target Mama Wander Platlorm APIL.
Androd 15 Anderid Open Source Pregect (8] 3
Geegle 4Pl Geoglelne. 18 3 3
Android 15 Android Open Source Project 18 1
Google 4Pl Goenghe b, 16]
Androdd 11-updatel Andenid Open Source Pregect L-updat.. 7
Google APls Googlelne. 21-updet_ 7
Androdd 22 Andetid Open Source Pregect 2 L]
Googhe 4Rl Geeghe b, n L
] GALAXY Tob Addem Samsung Eectronics Co., Lid. 5 L
¥ Android 23 Android Open Source Project A} L]
Gasgle APfE Geegi . 3 L]
Standard Andreed platform 1.3
Prapanier
Apphaten rame Files
Packagemame: et ieamdeveiop Fles
7 Creste Setwaty: Muindesiity
@ EEC T | i

FIGURE 6-5

3. Inthe Mainactivity.dava file, add the following statements in bold:

package net.learn2develop.Files;

import android.app.Activity;
import android.view.View;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import android.os.Bundle;

import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

public class MainActivity extends Activity {
private EditText textBox;
private static final int READ BLOCK_SIZE = 100;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

textBox = (EditText) findvViewById(R.id.txtTextl);

Persisting Data to Files

21

Button saveBtn = (Button) findViewById(R.id.btnSave);
Button loadBtn = (Button) findvViewById(R.id.btnLoad);

saveBtn.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
String str = textBox.getText().toString();
try
{
FileOutputStream fOut =
openFileOutput ("textfile.txt",
MODE_WORLD_READABLE) ;
OutputStreamWriter osw = new
OutputStreamWriter (£fOut);

//---write the string to the file---
osw.write(str);

osw.flush();

osw.close();

//---display file saved message---

Toast .makeText (getBaseContext (),
"File saved successfully!",
Toast .LENGTH_SHORT) .show() ;

//---clears the EditText---
textBox.setText ("");

}
catch (IOException ioe)
{
ioe.printStackTrace();
}

loadBtn.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
try
{
FileInputStream fIn =
openFileInput ("textfile.txt");
InputStreamReader isr = new
InputStreamReader (fIn);

char[] inputBuffer = new char[READ BLOCK SIZE];
String s = "";

int charRead;
while ((charRead = isr.read(inputBuffer))>0)
{
//---convert the chars to a String---
String readString =
String.copyValueOf (inputBuffer, 0,
charRead) ;
s += readString;

inputBuffer = new char[READ BLOCK SIZE];

212 | CHAPTER6 DATA PERSISTENCE

}
//---set the EditText to the text that has been
// read---

textBox.setText (s);

Toast .makeText (getBaseContext (),
"File loaded successfully!",
Toast . LENGTH_SHORT) .show() ;
}
catch (IOException ioe) {
ioe.printStackTrace();
}

4. Press F11 to debug the application on the Android Emulator.

5. Type some text into the EditText view (see Figure 6-6) and then click the Save button.

%1 5554Android 23 Emulatar =

AB % wil B 11:41

This is a string of texL...

Save

Load

[T P [P8 T R [TR P P
) P e e e e e
el 'f_T’_l Jad
T o o o ot

20)) N 7 I

FIGURE 6-6

6. If the file is saved successfully, you will see the Toast class displaying the “File saved successfully!”
message. The text in the EditText view should disappear.

7. Click the Load button and you should see the string appearing in the EditText view again. This
confirms that the text is saved correctly.

Persisting Data to Files | 213

How It Works

To save text into a file, you use the FileOutputStream class. The openFileoutput () method opens a
named file for writing, with the mode specified. In this example, you use the MODE_WORLD_READABLE
constant to indicate that the file is readable by all other applications:

FileOutputStream fOut =
openFileOutput ("textfile.txt",
MODE_WORLD_READABLE) ;

Apart from the MODE_WORLD_READABLE constant, you can select from the following: MoDE_PRIVATE (file
can only be accessed by the application that created it), MODE_APPEND (for appending to an existing file),
and MODE_wORLD_WRITEABLE (all other applications have write access to the file).

To convert a character stream into a byte stream, you use an instance of the outputStreamiiriter class,
by passing it an instance of the FileoutputStream object:

OutputStreamWriter osw = new
OutputStreamWriter (fOut) ;

You then use its write () method to write the string to the file. To ensure that all the bytes are written
to the file, use the flush() method. Finally, use the close () method to close the file:

osw.write(str);
osw.flush();
osw.close();

To read the content of a file, you use the FileInputStream class, together with the InputStreamReader class:

FileInputStream fIn =
openFileInput ("textfile.txt");

InputStreamReader isr = new
InputStreamReader (fIn) ;

As you do not know the size of the file to read, the content is read in blocks of 100 characters into a
buffer (character array). The characters read are then copied into a String object:

char[] inputBuffer = new char[READ BLOCK_SIZE];
String s = "";

int charRead;
while ((charRead = isr.read(inputBuffer))>0)
{
//---convert the chars to a String---
String readString =
String.copyValueOf (inputBuffer, 0,
charRead) ;
s += readString;

inputBuffer = new char[READ BLOCK_SIZE];

The read () method of the InputStreamReader object reads the number of characters read and returns -1
if the end of the file is reached.

214 | CHAPTER6 DATA PERSISTENCE

When testing this application on the Android Emulator, you can use the DDMS to verify that the appli-
cation did indeed save the file into the application’s files directory (see Figure 6-7; the actual directory
is /data/data/net.learn2develop.Files/files)

r
& ooms - F 7 Eclipse
File Fdit Run Source Mavigale Search Project Refactor Window Help
| (i B Bid -0~ &5 - £ 45 Debug [DOM
I o 8 ol et daw il
B Devices 22 = 7113 Threads | J Heap | @ Allocation Tracker | = File Explorer 22
B 66|22 S| M| Name Size Date
e = @ jpenommnsollopemnn 010:12-24
B emulator-5554 + & netleamiZdevelop.ContentProviders 10-12-24
system_process 4 = netlearnZdevelop Files 2010-12-24
jp.co.amronsoft.openwnn 4 G files 200-12-24
com.android.launcher | tentfile.tel 27 2010-12-24
s andisd sysbermui b & lib 010-12-4
com.android.phone & % netleamnddevelop. Provider 10-12-24
andreid.process.media = dentpanic 2010-12-11
com.android.quicksearchbox (= local 010-12-11
com.sveapico b (& lastefaund M010-12-11
conmanthoid defcantines 2 muze 01211

FIGURE 6-7

Saving to External Storage (SD Card)

The previous section showed how you can save your files to the internal storage of your Android
device. Sometimes, it would be useful to save them to external storage (such as an SD card) because
of its larger capacity, as well as the capability to share the files easily with other users (by removing
the SD card and passing it to somebody else).

Using the project created in the previous section as the example, to save the text entered by the user
in the SD card, modify the onclick () method of the Save button as shown in bold here:

saveBtn.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {

String str = textBox.getText().toString();

try

{
//---SD Card Storage---
File sdCard = Environment.getExternalStorageDirectory();
File directory = new File (sdCard.getAbsolutePath() +

"/MyFiles");

directory.mkdirs();
File file = new File(directory, "textfile.txt");
FileOutputStream fOut = new FileOutputStream(file);

OutputStreamWriter osw = new
OutputStreamWriter (fOut) ;

//---write the string to the file---
osw.write(str);
osw.flush() ;

Persisting Data to Files | 215

osw.close();

//---display file saved message---

Toast.makeText (getBaseContext (),
"File saved successfully!",
Toast.LENGTH_SHORT) .show() ;

//---clears the EditText---
textBox.setText ("");

}

catch (IOException ioe)

{

ioe.printStackTrace() ;

1)

The preceding code uses the getExternalStoragedirectory () method to return the full path to the
external storage. Typically, it should return the “/sdcard” path for a real device, and “/mnt/sdcard”
for an Android Emulator. However, you should never try to hardcode the path to the SD card, as
manufacturers may choose to assign a different path name to the SD card. Hence, be sure to use the
getExternalStorageDirectory()InethodtolfturnthefullpathtotheS[)card.

You then create a directory called MyFiles in the SD card. Finally, you save the file into this
directory.

To load the file from the external storage, modify the onclick () method for the Load button:

loadBtn.setOnClickListener (new View.OnClickListener () {
public void onClick (View v) {

try

{
//---SD Storage---
File sdCard = Environment.getExternalStorageDirectory();
File directory = new File (sdCard.getAbsolutePath() +

"/MyFiles");

File file = new File(directory, "textfile.txt");
FileInputStream fIn = new FileInputStream(file);
InputStreamReader isr = new InputStreamReader (fIn);

char[] inputBuffer = new char[READ_BLOCK_SIZE];
String s = "";

int charRead;
while ((charRead = isr.read(inputBuffer))>0)
{
//---convert the chars to a String---
String readString =
String.copyValueOf (inputBuffer, 0, charRead);
s += readString;

inputBuffer = new char[READ BLOCK_SIZE];
}
//---set the EditText to the text that has been
// read---

216 | CHAPTER6 DATA PERSISTENCE

textBox.setText (s);

Toast.makeText (getBaseContext (),
"File loaded successfully!",
Toast.LENGTH_SHORT) .show () ;

}
catch (IOException ioe) {
ioe.printStackTrace() ;

1)

Note that in order to write to the external storage, you need to add the WRITE_EXTERNAL_STORAGE
permission in your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Files"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="9" />
<uses-permission android:name="android.permission.WRITE EXTERNAL_STORAGE">
</uses-permission>
</manifest>

Choosing the Best Storage Option

And so, you have seen the few ways of saving data in your Android applications — SharedPreferences,
internal storage, and external storage. Which one should you use in your applications? Here are some
suggestions:

> If you have data that can be represented using key/value pairs, then use the sharedpreferences
object. For example, if you want to store user preference data such as user name, background
color, date of birth, last login date, then the Sharedpreferences object is the ideal way to store
these data. Moreover, you don’t really have to get your hands dirty on how these data are stored,;
all you need is to use the SharedPreferences object to store and retrieve them.

> If you need to store ad-hoc data, then using the internal storage is a good option. For exam-
ple, your application (such as an RSS reader) may need to download images from the Web
for display. In this scenario, saving the images to internal storage is a good solution. You
may also need to persist data created by the user, such as when you have a note-taking appli-
cation where users can take notes and save them for later use. In all these scenarios, using the
internal storage is a good choice.

http://schemas.android.com/apk/res/android

Persisting Data to Files | 217

> There are times when you need to share your application data with other users. For example,
you may create an Android application that logs the coordinates of the locations that a user
has been to, and you want to share all these data with other users. In this scenario, you can
store your files on the SD card of the device so that users can easily transfer the data to other
devices (and computers) for use later.

Using Static Resources

Besides creating and using files dynamically during run time, it is also possible to om
add files to your package during design time so that you can use it during run time. = deawabi dpi
For example, you may want to bundle some help files with your package so that i-scant
you can display some help messages when users need it. In this case, you can add 5 i
the files to the res/raw folder (you need to create this folder yourself) of your pack- L ";‘,J:'“"""
age. Figure 6-8 shows the res/raw folder containing a file named textfile.txt. 4 AndroidManifestml
To make use of the file in code, use the getResources () method to return a FIGURE 6-8

Resources object and then use its openRawResource () method to open the file
contained in the res/raw folder:

import java.io.InputStream;
import java.io.BufferedReader;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

InputStream is = this.getResources().openRawResource(R.raw.textfile);
BufferedReader br = new BufferedReader (new InputStreamReader(is));
String str = null;
try {

while ((str = br.readLine()) != null) {

Toast .makeText (getBaseContext (),
str, Toast.LENGTH_ SHORT) .show();

}

is.close();

br.close();
} catch (IOException e) {

e.printStackTrace();

}

textBox = (EditText) findviewById(R.id.txtTextl);
Button saveBtn = (Button) findviewById(R.id.btnSave);
Button loadBtn = (Button) findViewById(R.id.btnLoad);

saveBtn.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
}

)

loadBtn.setOnClickListener (new View.OnClickListener () {

218 | CHAPTER6 DATA PERSISTENCE

public void onClick(View v) {
}
1)

The resource ID of the resource stored in the res/raw folder is named after its filename without its
extension. For example, if the text file is textfile.txt, then its resource ID is R.raw.textfile.

CREATING AND USING DATABASES

So far, all the techniques you have seen are useful for saving simple sets of data. For saving relational

data, using a database is much more efficient. For example, if you want to store the results of all the
students in a school, it is much more efficient to use a database to represent them because you can use
database querying to retrieve the results of the specific students. Moreover, using databases enables
you to enforce data integrity by specifying the relationships between different sets of data.

Android uses the SQLite database system. The database that you create for an application is only acces-
sible to itself; other applications will not be able to access it.

In this section, you will learn how to programmatically create a SQLite database in your Android
application. For Android, the SQLite database that you create programmatically in an application is
always stored in the /data/data/<package_name>/databases folder.

Creating the DBAdapter Helper Class

A good practice for dealing with databases is to create a helper class to encapsulate all the complexi-
ties of accessing the data so that it is transparent to the calling code. Hence, for this section, you

will create a helper class called pBadapter that creates, opens, closes,
and uses a SQLite database. i' Rawe |1 wmen

In this example, you are going to create a database named MyDB contain-
ing one table named contacts. This table will have three columns: _id,
name, and email (see Figure 6-9). FIGURE 6-9

Creating the Database Helper Class

codefile Databases.zip available for download at Wrox.com

Using Eclipse, create an Android project and name it Databases. & Dalabnes
a [s
4 {3 netleamZdevelop Databaces

Add a new class file to the project and name it DBadapter. java (see [Dskdepimjos
Figure 6-10). [MamActrutyava

f!;ﬂ gen [Generated Java Files]

Add the following statements in bold to the DBadapter.java file: FIGURE 6-10

package net.learn2develop.Databases;

import android.content.ContentValues;
import android.content.Context;

Creating and Using Databases | 219

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;
import android.database.sglite.SQLiteOpenHelper;
import android.util.Log;

public class DBAdapter {
public static final String KEY ROWID = "_id";
public static final String KEY NAME = "name";
public static final String KEY EMAIL = "email";
private static final String TAG = "DBAdapter";

private static final String DATABASE NAME = "MyDB";
private static final String DATABASE TABLE = "contacts";
private static final int DATABASE VERSION = 1;

private static final String DATABASE_CREATE =
"create table contacts (_id integer primary key autoincrement, "
+ "name text not null, email text not null);";

private final Context context;

private DatabaseHelper DBHelper;
private SQLiteDatabase db;

public DBAdapter (Context ctx)
{
this.context = ctx;
DBHelper = new DatabaseHelper (context);

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper (Context context)

{
super (context, DATABASE NAME, null, DATABASE VERSION) ;

@Override
public void onCreate(SQLiteDatabase db)
{
try {
db.execSQL (DATABASE CREATE) ;
} catch (SQLException e) {
e.printStackTrace();

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion, int newVersion)
{
Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS contacts");

220

CHAPTER 6 DATA PERSISTENCE

onCreate(db) ;

//---opens the database---
public DBAdapter open() throws SQLException
{
db = DBHelper.getWritableDatabase();
return this;

//---closes the database---
public void close()
{

DBHelper.close();

//---insert a contact into the database---
public long insertContact(String name, String email)

{
ContentValues initialValues = new ContentValues();
initialvValues.put (KEY NAME, name);
initialvalues.put (KEY EMAIL, email);
return db.insert (DATABASE TABLE, null, initialValues);
}

//---deletes a particular contact---
public boolean deleteContact (long rowId)
{
return db.delete(DATABASE TABLE, KEY ROWID + "=" + rowId, null) > 0;

//---retrieves all the contacts---
public Cursor getAllContacts()
{
return db.query(DATABASE TABLE, new String[] {KEY ROWID, KEY NAME,
KEY EMAIL}, null, null, null, null, null);

//---retrieves a particular contact---
public Cursor getContact(long rowId) throws SQLException
{
Cursor mCursor =
db.query(true, DATABASE TABLE, new String[] {KEY ROWID,
KEY NAME, KEY EMAIL}, KEY ROWID + "=" + rowId, null,
null, null, null, null);
if (mCursor != null) {
mCursor.moveToFirst () ;
}

return mCursor;

//---updates a contact---
public boolean updateContact(long rowId, String name, String email)

Creating and Using Databases | 221

ContentValues args = new ContentValues();

args.put (KEY NAME, name);

args.put (KEY EMAIL, email);

return db.update(DATABASE TABLE, args, KEY ROWID + "=" + rowId, null) > 0;

How It Works

You first defined several constants to contain the various fields for the table that you are going to create
in your database:

public static final String KEY ROWID = "_id";
public static final String KEY NAME = "name";
public static final String KEY EMAIL = "email";

private static final String TAG = "DBAdapter";

private static final String DATABASE NAME = "MyDB";
private static final String DATABASE TABLE = "contacts";
private static final int DATABASE VERSION = 1;

private static final String DATABASE_ CREATE =
"create table contacts (_id integer primary key autoincrement, "
+ "name text not null, email text not null);";

In particular, the DATABASE CREATE constant contains the SQL statement for creating the contacts table
within the MyDB database.

Within the DBadapter class, you also extend the sQLiteOpenHelper class, which is a helper class in Android
to manage database creation and version management. In particular, you override the onCreate () and
onUpgrade()lnethod&

public class DBAdapter {
public static final String KEY ROWID = "_id";
public static final String KEY _NAME = "name";
public static final String KEY_EMAIL = "email";
private static final String TAG = "DBAdapter";

private static final String DATABASE _NAME = "MyDB";
private static final String DATABASE_TABLE = "contacts";
private static final int DATABASE_VERSION = 1;

private static final String DATABASE CREATE =
"create table contacts (_id integer primary key autoincrement, "
+ "name text not null, email text not null);";

private final Context context;

private DatabaseHelper DBHelper;
private SQLiteDatabase db;

public DBAdapter (Context ctx)
{

222

CHAPTER 6 DATA PERSISTENCE

The onCreate () method creates a new database if the required database is not present. The
onUpgrade () method is called when the database needs to be upgraded. This is achieved by checking the
value defined in the DATABASE_VERSION constant. For this implementation of the onupgrade () method,

this.context = ctx;
DBHelper = new DatabaseHelper (context);

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper (Context context)

{
super (context, DATABASE NAME, null, DATABASE VERSION) ;

}
@Override
public void onCreate(SQLiteDatabase db)
{
try {
db.execSQL (DATABASE CREATE) ;
} catch (SQLException e) {
e.printStackTrace();
}
}
@Override

public void onUpgrade (SQLiteDatabase db, int oldVersion, int newVersion)

{

Log.w(TAG, "Upgrading database from version " + oldVersion + " to "
+ newVersion + ", which will destroy all old data");

db.execSQL("DROP TABLE IF EXISTS contacts");
onCreate(db) ;

you simply drop the table and create it again.

You can then define the various methods for opening and closing the database, as well as the methods

for adding/editing/deleting rows in the table:

public class DBAdapter ({
/...
/...

//---opens the database---
public DBAdapter open() throws SQLException
{
db = DBHelper.getWritableDatabase();
return this;

//---closes the database---
public void close()

{

Creating and Using Databases | 223

DBHelper.close();

//---insert a contact into the database---
public long insertContact(String name, String email)

{
ContentValues initialValues = new ContentValues();
initialvValues.put (KEY NAME, name);
initialvalues.put (KEY EMAIL, email);
return db.insert (DATABASE TABLE, null, initialValues);
}

//---deletes a particular contact---
public boolean deleteContact(long rowId)
{
return db.delete(DATABASE TABLE, KEY ROWID + "=" + rowId, null) > 0;

//---retrieves all the contacts---
public Cursor getAllContacts()
{
return db.query(DATABASE TABLE, new String[] {KEY ROWID, KEY NAME,
KEY EMAIL}, null, null, null, null, null);

//---retrieves a particular contact---
public Cursor getContact(long rowId) throws SQLException
{
Cursor mCursor =
db.query(true, DATABASE TABLE, new String[] {KEY ROWID,
KEY NAME, KEY EMAIL}, KEY ROWID + "=" + rowId, null,
null, null, null, null);
if (mCursor != null) {
mCursor .moveToFirst () ;
}

return mCursor;

//---updates a contact---
public boolean updateContact (long rowId, String name, String email)

{

ContentValues args = new ContentValues();

args.put (KEY NAME, name);

args.put (KEY EMAIL, email);

return db.update(DATABASE TABLE, args, KEY ROWID + "=" + rowId, null) > 0;
}

Notice that Android uses the cursor class as a return value for queries. Think of the cursor as a pointer
to the result set from a database query. Using cursor enables Android to more efficiently manage rows
and columns as needed.

You use a Contentvalues object to store key/value pairs. Its put () method enables you to insert keys
with values of different data types.

224 | CHAPTER6 DATA PERSISTENCE

Using the Database Programmatically

You are now ready to use the database using the helper class created in the previous section.

Adding Contacts

The following Try It Out demonstrates how you can add a contact to the table.

Adding Contacts to a Table

1. Using the same project created earlier, add the following statements in bold to the Mainactivity

.java file:

package net.learn2develop.Databases;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

DBAdapter db = new DBAdapter (this);

//---add a contact---
db.open();

long id = db.insertContact ("Wei-Meng Lee", "weimenglee@learn2develop.net");

id = db.insertContact ("Mary Jackson", "mary@jackson.com");
db.close();

2. Press F11 to debug the application on the Android Emulator.
How It Works

In this example, you first created an instance of the pBadapter class:

DBAdapter db = new DBAdapter (this);

The insertcontact () method returns the ID of the inserted row. If an error
occurs during the operation, it returns -1.

If you examine the file system of the Android device/emulator using DDMS,
you can see that the myDB database is created under the databases folder (see

4 = netlearmn2develop.Databaces
4 [+ databases

5] MyDR

(=]

Figure 6-11). FIGURE 6-11

Creating and Using Databases | 225

Retrieving All the Contacts

To retrieve all the contacts in the contacts table, use the getallcontacts () method of the DBAdapter
class, as the following Try It Out shows.

Retrieving All Contacts from a Table

1.

Using the same project created earlier, add the following statements in bold to the MainaActivity
.java file:

package net.learn2develop.Databases;

import
import
import

import

public

android.app.Activity;
android.os.Bundle;
android.widget.Toast;

android.database.Cursor;

class MainActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

}

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

DBAdapter db = new DBAdapter (this);

/*

//---add a contact---

db.open() ;

long id = db.insertContact ("Wei-Meng Lee", "weimenglee@learn2develop.net");
id = db.insertContact ("Mary Jackson", "mary@jackson.com");

db.close();

*/

//---get all contacts---
db.open();
Cursor ¢ = db.getAllContacts();
if (c.moveToFirst())
{

do {

DisplayContact(c);

} while (c.moveToNext());
}
db.close();

public void DisplayContact (Cursor c)

{

Toast .makeText (this,
"id: " + c.getString(0) + "\n" +

226 | CHAPTER6 DATA PERSISTENCE

"Name: " + c.getString(l) + "\n" +
"Email: " + c.getString(2),
Toast.LENGTH LONG) .show();

}

2. Press F11 to debug the application on the Android Emulator. Figure 6-12 shows the Toast class
displaying the contacts retrieved from the database.

" 5554:Android 23 Emulator WithSD (=

[Databases

arnzdevelop.net

FIGURE 6-12

How It Works

The getallcontacts () method of the DBadapter class retrieves all the contacts stored in the database. The
result is returned as a Cursor object. To display all the contacts, you first need to call the moveToFirst ()
method of the cursor object. If it succeeds (which means at least one row is available), display the details

of the contact using the DisplayContact () method. To move to the next contact, call the moveToNext ()
method of the cursor object.

Retrieving a Single Contact

To retrieve a single contact using its ID, call the getContact () method of the DBAdapter class, as the
following Try It Out shows.

Creating and Using Databases | 227

Retrieving a Contact from a Table

1. Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

DBAdapter db = new DBAdapter (this);

/*

//---add a contact---
/...

*/

/*

//---get all contacts---
/] ..

*/

//---get a contact---
db.open();
Cursor c¢ = db.getContact(2);
if (c.moveToFirst())
DisplayContact(c);
else
Toast .makeText (this, "No contact found", Toast.LENGTH LONG).show();

db.close();

2. Press F11 to debug the application on the Android Emulator. The details of the second contact will
be displayed using the Toast class.

How It Works

The getcontact () method of the DBadapter class retrieves a single contact using its ID. You passed in
the ID of the contact; in this case, you passed in an ID of 2 to indicate that you want to retrieve the
second contact:

Cursor c¢ = db.getContact(2);

The result is returned as a cursor object. If a row is returned, you display the details of the contact using
the DisplayContact () method; otherwise, you display a message using the Toast class.

Updating a Contact

To update a particular contact, call the updatecontact () method in the DBAdapter class by passing
the ID of the contact you want to update, as the following Try It Out shows.

228 | CHAPTER6 DATA PERSISTENCE

Updating a Contact in a Table

1. Using the same project created earlier, add the following statements in bold to the Mainactivity
.java file:

@Override

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

DBAdapter db = new DBAdapter (this);

/*

//---add a contact---
/...

*/

/‘k

//---get all contacts---
/...

*/

/*
/...
*/

//---update contact---
db.open() ;
if (db.updateContact(l, "Wei-Meng Lee", "weimenglee@gmail.com"))
Toast .makeText (this, "Update successful."”, Toast.LENGTH LONG).show();
else
Toast .makeText (this, "Update failed.", Toast.LENGTH LONG).show();

db.close();

2. Press F11 to debug the application on the Android Emulator. A message will be displayed if the
update is successful.

How It Works

The updatecontact () method in the DBAdapter class updates a contact’s details by using the ID of the
contact you want to update. It returns a Boolean value, indicating whether the update was successful.

Deleting a Contact

To delete a contact, use the deletecontact () method in the DBAdapter class by passing the ID of the
contact you want to update, as the following Try It Out shows.

Creating and Using Databases | 229

Deleting a Contact from a Table

1. Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

DBAdapter db = new DBAdapter (this);

/*

//---add a contact---
/...

*/

/*

//---get all contacts---
/] ...

*/

/*

//---get a contact---
/...

*/

/*

//---update contact---
/...

*/

//---delete a contact---
db.open();
if (db.deleteContact(1))
Toast .makeText (this, "Delete successful.", Toast.LENGTH LONG).show();

else
Toast .makeText (this, "Delete failed.", Toast.LENGTH LONG).show();

db.close();

2. Press F11 to debug the application on the Android Emulator. A message will be displayed if the
deletion was successful.

How It Works

The deletecontact () method in the DBAdapter class deletes a contact using the ID of the contact you
want to update. It returns a Boolean value, indicating whether the deletion was successful.

230 | CHAPTER6 DATA PERSISTENCE

Upgrading the Database

Sometimes, after creating and using the database, you may need to add additional tables, change the
schema of the database, or add columns to your tables. In this case, you need to migrate your exist-
ing data from the old database to a newer one.

To upgrade the database, change the DATABASE_VERSTON constant to a value higher than the previous
one. For example, if its previous value was 1, change it to 2:
public class DBAdapter {
public static final String KEY_ROWID = "_id";
public static final String KEY NAME = "name";

public static final String KEY _EMAIL = "email";
private static final String TAG = "DBAdapter";

private static final String DATABASE_NAME = "MyDB";
private static final String DATABASE_TABLE = "contacts";
private static final int DATABASE VERSION = 2;

When you run the application one more time, you will see the following message in the LogCat win-
dow of Eclipse:

DBAdapter (24096) : Upgrading database from version 1 to 2, which will destroy all
old data

In this example, for simplicity you simply drop the existing table and create a new one. In real-life,
you usually back up your existing table and then copy them over to the new table.

Pre-Creating the Database

In real-life applications, sometimes it would be more efficient to pre-create the database at design
time rather than run time. To pre-create a SQLite database, you can use many of the free tools avail-
able on the Internet. One such tool is the SQLite Database Browser, which is available free for the
different platforms (http://sourceforge.net/projects/sqlitebrowser/).

Once you have installed the SQLite Database Browser, you can create a database visually. Figure 6-13
shows that I have created a contacts table with the fields indicated.

3 5QUite Detabase Browser - CAlsers\WeiMeng Lee\Desktopimydt =i
et vew Hep

DFE~ & FgnE B W

Database Struchore | [rowse Datn | Execute SO

Fontects |table CREATE TABLE contacts (id INTEGER PRIMARY KEY, name TEXT, emai TEXT)
" Beld INTEGER PRIMARY KEY
imed TET
emal fick TEXT

FIGURE 6-13

http://sourceforge.net/projects/sqlitebrowser/

Creating and Using Databases | 231

Populating the table with rows is also straightforward. Figure 6-14 shows how you can fill the table

with data using the Browse Data tab.

(2 50Lite Database Browser - CAUsers\Wei-Meng Lee\Desktopmydb =)
e e —

N d > oo o of B | W2

Databage Structure | Brows=Dale | Execute SQU

N C=— N ==

d name emall
i 1WeMenglee | wemengleegzgmal.c
2 2Mary Jacksen |mary@jacksen. com |
1-20f2 Go oz | o

FIGURE 6-14

Bundling the Database with an Application

With the database created at design time, the next thing you should do is bundle it together with
your application so that you can use it in your application. The following Try It Out shows you how.

Bundling a Database

1. Using the same project created earlier, drag and drop the SQLite database file that you have created
in the previous section into the assets folder in your Android project in Eclipse (see Figure 6-135).

4 = Databases
a g
a [# netleamnZdevelop.Databases
1 [§] DBAdapterjava

I MainActivity java
20 gen [Grrrsated lava Files]
=i Android 2.3
4 3 assts
e
4 (s res

¢ (= drawable-hdpi
& drawable-1dpi

b % drawable-mdpi

I = layout

b &> values

i AndresidManifed aml

[E detauttproperties

=/ preguard.cfg

FIGURE 6-15

NOTE Note that a filename for files added to the assets folder must be in lower-
case letters. As such, a filename such as MyDB is invalid, whereas mydb is fine.

2. Add the following statements in bold to the Mainactivity.java file:

Prepared for RICHARD SALD@%,eé;rﬁ}lqg%hard32@comcastnet Order number: 82951548 This PDF is for the purchaser’s personal use in accordance with the Wrox
Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy, please visit www.wrox.com to purchase your own

copy.

232 | CHAPTER6 DATA PERSISTENCE

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
try {
String destPath = "/data/data/" + getPackageName() +
"/databases/MyDB";
File f = new File(destPath);
if (!f.exists()) {
CopyDB(getBaseContext () .getAssets().open("mydb"),
new FileOutputStream(destPath));
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();

}
DBAdapter db = new DBAdapter (this);

//---get all contacts---
db.open()
Cursor c db.getAllContacts();
if (c.moveToFirst())

{

N~

do {
DisplayContact(c);
} while (c.moveToNext());
}
db.close();

public void CopyDB(InputStream inputStream,
OutputStream outputStream)
throws IOException {
//---copy 1K bytes at a time---
byte[] buffer = new byte[1024];
int length;
while ((length = inputStream.read(buffer)) > 0) {
outputStream.write(buffer, 0, length);
}
inputStream.close();
outputStream.close();

3. Press F11 to debug the application on the Android Emulator. When the application runs, it will
copy the mydb database file into the /data/data/net.learn2develop.Databases/databases/ folder
with the name MyDB.

How It Works

You first defined the copyDB () method to copy the database file from one location to another:

public void CopyDB(InputStream inputStream,

Creating and Using Databases | 233

OutputStream outputStream)
throws IOException {
//---copy 1K bytes at a time---
byte[] buffer = new byte[1024];
int length;
while ((length = inputStream.read(buffer)) > 0) {
outputStream.write (buffer, 0, length);
}
inputStream.close() ;
outputStream.close() ;

Note that in this case you used the TnputStream object to read from the source file, and then wrote it to
the destination file using the outputstream object.

When the activity is created, you copy the database file located in the assets folder into the /data/data/
net.learn2develop.Databases/databases/ folder on the Android device (or emulator):

try {
String destPath = "/data/data/" + getPackageName () +
"/databases/MyDB";
File f = new File(destPath);
if (!f.exists()) {
CopyDB (getBaseContext () .getAssets().open("mydb"),
new FileOutputStream(destPath)) ;
}
} catch (FileNotFoundException e) {
e.printStackTrace() ;
} catch (IOException e) {
e.printStackTrace() ;

}

You copy the database file only if it does not exist in the destination folder. If you don’t perform this
check, every time the activity is created you will overwrite the database file with the one in the assets
folder. This may not be desirable, as your application may make changes to the database file during

run time, and this will wipe out all the changes you have made so far.

To ensure that the database file is indeed copied, be sure to delete the database file in your emulator (if it
already existed) prior to testing the application. You can delete the database using DDMS (see Figure 6-16).

' = : = - - =
% Thiet | @ Heap | @ Allocaion Ticker | SFlpiplorm i, @ 4[=" 70
E Name Date Time Permissions Inf D leie the selection |
[com.svonpico 210-12-24 1Z1E dresrxoox
o = jp.co.emroncoft.openwnn 2010-12-24 1208 drwar-x--x
4 [== netlearn2develop.Databases 2010-12-25 0d:2d drwoerex--x
a = databae 2010-12-25 0425 drowerwe--x
= MyDB 2010-12-25 (4 -pw-rwe---
= b 2010-12-25 04:24 drwer-xrx
== netleamdevelop.Files 2010-12-24 1251 drwsr-x--x
= netleam2develop SharedPrelerences 2010-12-25 0210 diwwren--x

FIGURE 6-16

234 | CHAPTER6 DATA PERSISTENCE

SUMMARY

In this chapter, you learned the different ways to save persistent data to your Android device. For sim-
ple unstructured data, using the sharedpPreferences object is the ideal solution. If you need to store
bulk data, then consider using the traditional file system. Finally, for structured data, it is more efficient
to store it in a relational database management system. For this, Android provides the SQLite database,
which you can access easily using the APIs exposed.

Note that for the Sharedpreferences object and the SQLite database, the data is accessible only by
the application that creates it. In other words, it is not shareable. If you need to share data among
different applications, you need to create a content provider. Content providers are discussed in more
detail in the next chapter.

EXERCISES

1. What is the difference between the getSharedPreferences () and getPreferences () methods?
2. Name the method that enables you to obtain the path of the external storage of an Android device.
3. What is the permission you need to declare when writing files to external storage?

Answers to Exercises can be found in Appendix C.

Summary | 235

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS
Save simple user data Use the SharedPreferences object.
Sharing data among activities Use the getSharedPreferences () method.

in the same application

Saving data visible only to the Use the getPreferences () method.
activity that created it

Saving to file Use the FileOutputStream and OutputStreamReader classes.
Reading from file Use the FileInputStream and InputStreamReader classes.
Saving to external storage Use the getExternalStorageDirectory () method to return the

path to the external storage.

Accessing files in the res/raw Use the openRawResource () method in the Resources object
folder (obtained via the getResources () method).

Creating a database helper Extend the SQLiteOpenHelper class.
class

Content Providers

WHAT YOU WILL LEARN IN THIS CHAPTER

What are content providers?
How to use a content provider in Android

How to create your own content provider

Y Y VY Y

How to use your own content provider

In the previous chapter, you learned about the various ways to persist data — using shared
preferences, files, as well as SQLite databases. While using the database approach is the recom-
mended way to save structured and complex data, sharing data is a challenge because the data-
base is accessible to only the package that created it.

In this chapter, you will learn Android’s way of sharing data through the use of content pro-
viders. You will learn how to use the built-in content providers, as well as implement your
own content providers to share data across packages.

SHARING DATA IN ANDROID

In Android, using a content provider is the recommended way to share data across packages.

Think of a content provider as a data store. How it stores its data is not relevant to the appli-

cation using it; what is important is how packages can access the data stored in it using a con-

sistent programming interface. A content provider behaves very much like a database — you
can query it, edit its content, as well as add or delete its content. However, unlike a database, a
content provider can use different ways to store its data. The data can be stored in a database,

in files, or even over a network.

Android ships with many useful content providers, including the following:
> Browser — Stores data such as browser bookmarks, browser history, and so on

> CallLog — Stores data such as missed calls, call details, and so on

238 | CHAPTER7 CONTENT PROVIDERS

> Contacts — Stores contact details
> MediaStore — Stores media files such as audio, video and images

> Settings — Stores the device’s settings and preferences

Besides the many built-in content providers, you can also create your own content providers.

To query a content provider, you specify the query string in the form of a URI, with an optional
specifier for a particular row. The format of the query URI is as follows:

<standard_prefix>://<authority>/<data_path>/<id>

The various parts of the URI are as follows:
> The standard prefix for content providers is always content://.

> The authority specifies the name of the content provider. An example would be contacts for
the built-in Contacts content provider. For third-party content providers, this could be the
fully qualiﬁed name, such as com.wrox.provider or net.learn2develop.provider.

> The data path specifies the kind of data requested. For example, if you are getting all the con-
tacts from the Contacts content provider, then the data path would be people, and the URI
would look like this: content://contacts/people.

> The id specifies the specific record requested. For example, if you are looking for contact
number 2 in the Contacts content provider, the URI would look like this: content://
contacts/people/2.

Table 7-1 shows some examples of query strings.

TABLE 7-1: Example Query Strings

QUERY STRING DESCRIPTION
content://media/internal/images Returns a list of all the internal images on the device
content://media/external/images Returns a list of all the images stored on the external

storage (e.g., SD card) on the device
content://call_log/calls Returns a list of all calls registered in the Call Log

content://browser/bookmarks Returns a list of bookmarks stored in the browser

USING A CONTENT PROVIDER

The best way to understand content providers is to actually use one. The following Try It Out shows
how you can use a content provider from within your Android application.

Using a Content Provider | 239

Using the Contacts Content Provider

1.

codefile Provider.zip available for download at Wrox.com

Using Eclipse, create a new Android project and name it as shown in Figure 7-1.

[8] New Android Project T
New Andraid Project QPF'
Creates a new Android Project resaurce. I(I l
Pragect name: Prevader
Contents
& Create new project in workspace
_ Create project from existing source
[¥] Use default location
1+ | CuUsersWei-Meng Lee/Beginning Android/Provider Reowrse
") Create project from existing sample
Samples: | Apillemos
Build Target
Target Name Vendar Platfarm APlLe..
(7] Android15 Andreid Open Source Project 15 3]
[7] Google APl GoogleInc, 15 3
[Android 1.6 Android Open Source Project 14 4
[7] Google APls GoogleInc. 15 4
7] Android 2.1-updatel Android Open Source Project 21-updarel 7
[[] Goegle APl Googlelnc. 21-updatel 7
[[] Android 22 Android Open Source Project 2]
[7] Google APl Googlelnc. 12 §
[T GALAXY Tab Adden Samsung Electronics Co.. Ltd, 2]
[¥ Android 23 Android Open Source Project 3 9
[7] Google ARl GoogleInc. 23 9
Standard Android platform 2.3
Properties
Application name Provider
Pack Provider
[¥] Create Activity: MainActivity
Min SDK Version: 9
) pee [meas | [Enah][Canca
FIGURE 7-1

Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

<ListView
android:id="@+id/android:list"

http://schemas.android.com/apk/res/android

240 | CHAPTER7 CONTENT PROVIDERS

android:layout_width="fill parent"
android:layout_height="wrap_ content”
android:layout_weight="1"
android:stackFromBottom="false"
android:transcriptMode="normal"
/>

<TextView
android:id="@+id/contactName"
android:textStyle="bold"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>

<TextView
android:id="@+id/contactID"
android:layout_width="fill parent"
android:layout_height="wrap_ content"
/>

</LinearLayout>

3. Inthe MainActivity.java class, code the following:

package net.learn2develop.Provider;

import android.app.Activity;
import android.os.Bundle;

import android.app.ListActivity;

import android.database.Cursor;

import android.net.Uri;

import android.provider.ContactsContract;
import android.widget.SimpleCursorAdapter;

public class MainActivity extends ListActivity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Uri allContacts = Uri.parse("content://contacts/people");
Cursor c¢ = managedQuery(allContacts, null, null, null, null);

String[] columns = new String[] {
ContactsContract.Contacts.DISPLAY NAME,
ContactsContract.Contacts._ID};

int[] views = new int[] {R.id.contactName, R.id.contactID};

SimpleCursorAdapter adapter =
new SimpleCursorAdapter (this, R.layout.main, ¢, columns, views);
this.setListAdapter (adapter);

Using a Content Provider

| 241

4.

5.

6.

Add the following statements in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="net.learn2develop.Provider"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.READ_CONTACTS">
</uses-permission>

</manifest>

Launch an AVD and create a few contacts in the Android Emulator (see Figure 7-2).

8 | 5534:Android 2.3 Emulator i]

- ==

New contact

g‘ Phone-only, unsynced...

B

Phone o
I T ©

2] r—*fr*'
'_'_r_’ r_.r— AL‘l‘

FIGURE 7-2

Press F11 to debug the application on the Android Emulator. Figure 7-3 shows the activity displaying

the list of contacts you just created.

http://schemas.android.com/apk/res/android

242 | CHAPTER7 CONTENT PROVIDERS

r e
i 555%Android 23 Emulator B

"Provider

\

FIGURE 7-3

How It Works

In this example, you retrieved all the contacts stored in the Contacts application and displayed them in
the ListView.

The managedQuery () method of the activity class retrieves a managed cursor. A managed cursor
handles all the work of unloading itself when the application pauses and requerying itself when the
application restarts.

The statement

Cursor ¢

managedQuery (allContacts, null, null, null, null);

is equivalent to

Cursor c¢ = getContentResolver().query(allContacts, null, null, null, null);
startManagingCursor(c); //---allows the activity to manage the Cursor's
// lifecyle based on the activity's lifecycle---

The getContentResolver () method returns a ContentResolver object, which helps to resolve a content
URI with the appropriate content provider.

The simpleCursorAdapter object maps a cursor to TextViews (or ImageViews) defined in your XML file
(main.xml). It maps the data (as represented by columns) to views (as represented by views):
String[] columns = new String[] {

ContactsContract.Contacts.DISPLAY_NAME,
ContactsContract.Contacts._ID};

Using a Content Provider | 243

int[] views = new int[] {R.id.contactName, R.id.contactID};

SimpleCursorAdapter adapter =
new SimpleCursorAdapter (this, R.layout.main, ¢, columns, views);
this.setListAdapter (adapter) ;

Note that in order for your application to access the Contacts application, you need to have the READ_
CONTACTS permission in your AndroidManifest.xml file.

Predefined Query String Constants

Besides using the query URI, you can use a list of predefined query string constants in Android to specify
the URI for the different data types. For example, besides using the query content://contacts/people,
you can rewrite the following statement

Uri allContacts = Uri.parse("content://contacts/people");

using one of the predefined constants in Android, as

Uri allContacts = ContactsContract.Contacts.CONTENT_URI;

NOTE For Android 2.0 and later, to query the base Contacts records you need
to use the ContactsContract.Contacts.CONTENT_URI URI.

Some examples of predefined query string constants are as follows:
> Browser.BOOKMARKS_URI

Browser.SEARCHES_URI

CallLog.CONTENT_ URI

MediaStore.Images.Media.INTERNAL_CONTENT_ URI

MediaStore.Images.Media.EXTERNAL_CONTENT URI

Y VYV Y Y Y

Settings.CONTENT_URI

If you want to retrieve the first contact, specify the ID of that contact, like this:

Uri oneContact = Uri.parse("content://contacts/people/1");

Alternatively, use the predefined constant together with the withappended1d() method of the
ContentUris class:

import android.content.ContentUris;

/] ...

Uri oneContact = ContentUris.withAppendedId(
ContactsContract.Contacts.CONTENT _URI, 1);

244 | CHAPTER7 CONTENT PROVIDERS

Besides binding to a ListView, you can also print out the results using the cursor object, as shown here:

package net.learn2develop.Provider;

import android.app.Activity;
import android.os.Bundle;

import android.app.ListActivity;

import android.database.Cursor;

import android.net.Uri;

import android.provider.ContactsContract;
import android.widget.SimpleCursorAdapter;

import android.util.Log;

public class MainActivity extends ListActivity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Uri allContacts = ContactsContract.Contacts.CONTENT_URT;

Cursor c = managedQuery (
allContacts, null, null, null, null);

String[] columns = new String[] {
ContactsContract.Contacts.DISPLAY_ NAME,
ContactsContract.Contacts._ID};

int[] views = new int[] {R.id.contactName, R.id.contactID};

SimpleCursorAdapter adapter =
new SimpleCursorAdapter (this, R.layout.main,
¢, columns, views);

this.setListAdapter (adapter) ;

PrintContacts(c);

private void PrintContacts(Cursor c)
{
if (c.moveToFirst()) {
do{
String contactID = c.getString(c.getColumnIndex
ContactsContract.Contacts._ID));
String contactDisplayName =
c.getString(c.getColumnIndex(
ContactsContract.Contacts.DISPLAY NAME)) ;
Log.v("Content Providers", contactID + ", " +
contactDisplayName) ;
} while (c.moveToNext()):

Using a Content Provider | 245

NOTE If you are not familiar with how to view the LogCat window, refer to
Appendix A for an quick tour of the Eclipse IDE.

The printcontacts () method will print out the following in the LogCat window:

12-13 02:40:36.825: VERBOSE/Content Providers(497):
1, Wei-Meng Lee

12-13 02:40:36.825: VERBOSE/Content Providers(497):
2, Sally Jackson

It prints out the ID and name of each contact stored in the Contacts application. In this case, you
access the ContactsContract.Contacts._ID field to obtain the ID of a contact, and contactsContract
.Contacts.DISPLAY_NAME for the name of a contact. If you want to display the phone number of a
contact, you need to query the content provider again, as the information is stored in another table:

private void PrintContacts (Cursor c)
{
if (c.moveToFirst()) {
do{
String contactID = c.getString(c.getColumnIndex (
ContactsContract.Contacts._ID));
String contactDisplayName =
c.getString(c.getColumnIndex (
ContactsContract.Contacts.DISPLAY_NAME)) ;
Log.v("Content Providers", contactID + ", " +
contactDisplayName) ;
//---get phone number---
int hasPhone =
c.getInt (c.getColumnIndex (
ContactsContract.Contacts.HAS PHONE_NUMBER)) ;
if (hasPhone == 1) {
Cursor phoneCursor =
getContentResolver() .query(
ContactsContract.CommonDataKinds.Phone.CONTENT URI, null,
ContactsContract.CommonDataKinds.Phone.CONTACT ID + " = " +
contactID, null, null);
while (phoneCursor.moveToNext()) {
Log.v("Content Providers",
phoneCursor.getString(
phoneCursor.getColumnIndex (
ContactsContract.CommonDataKinds.Phone.NUMBER))) ;
}
phoneCursor.close();
}
} while (c.moveToNext());

246 | CHAPTER7 CONTENT PROVIDERS

NOTE To access the phone number of a contact, you need to query against the
URI stored in ContactsContract .CommonDataKinds . Phone.CONTENT_URI.

In the preceding code snippet, you first check whether a contact has a phone number using the
ContactsContract.Contacts.HAS_PHONE_NUMBER field. If the contact has at least a phone number,
you then query the content provider again based on the ID of the contact. Once the phone number(s)
are retrieved, you then iterate through them and print out the numbers. You should see something

like this:

12-13 02:41:09.541: VERBOSE/Content Providers(546):
1, Wei-Meng Lee

12-13 02:41:09.541: VERBOSE/Content Providers(546):
969-240-65

12-13 02:41:09.541: VERBOSE/Content Providers(546):
2, Sally Jackson

12-13 02:41:09.541: VERBOSE/Content Providers(546):
345-668-43

Projections

The second parameter of the managedguery () method controls how many columns are returned by
the query; this parameter is known as the projection. Earlier, you specified null:

Cursor ¢ = managedQuery(allContacts,
null, null, null, null);

You can specify the exact columns to return by creating an array containing the name of the column
to return, like this:

String[] projection = new Stringl]
{ContactsContract.Contacts._ID,
ContactsContract.Contacts.DISPLAY_ NAME,
ContactsContract.Contacts.HAS_PHONE_NUMBER} ;

Cursor ¢ = managedQuery(allContacts, projection,
null, null, null);

In the above case, the _1D, DISPLAY_NAME, and HAS_PHONE_NUMBER fields will be retrieved.

Filtering

The third and fourth parameters of the managedguery () method enable you to specify a SQL wHERE
clause to filter the result of the query. For example, the following statement retrieves only the people
whose name ends with “Lee”:

Cursor ¢ = managedQuery(allContacts, projection,
ContactsContract.Contacts.DISPLAY _NAME + " LIKE '%Lee'",
null, null);

Creating Your Own Content Providers | 247

Here, the third parameter contains a SQL statement containing the name to search for (“Lee”). You
can also put the search string into the fourth argument of the method, like this:

Cursor ¢ = managedQuery(allContacts, projection,
ContactsContract.Contacts.DISPLAY NAME + " LIKE ?",
new String[] {"%Lee"} , null);

Sorting

The fifth parameter of the managedguery () method enables you to specify a SQL ORDER BY clause to
sort the result of the query. For example, the following statement sorts the contact names in ascend-
ing order:

Cursor c = managedQuery (
allContacts,
projection,
ContactsContract.Contacts.DISPLAY_NAME + " LIKE ?",
new String([] {"%"}
ContactsContract.Contacts.DISPLAY NAME + " ASC");

To sort in descending order, use the pEsc keyword:

Cursor ¢ = managedQuery (
allContacts,
projection,
ContactsContract.Contacts.DISPLAY_NAME + " LIKE ?",
new String[] {"%"}
ContactsContract.Contacts.DISPLAY NAME + " DESC");

CREATING YOUR OWN CONTENT PROVIDERS

Creating your own content provider in Android is pretty simple.
All you need to do is extend the abstract contentProvider class

and override the various methods defined within it. - e]
In this section, you will learn how to create a simple content pro-

vider that stores a list of books. For ease of illustration, the content

provider stores the books in a database table containing three fields,

as shown in Figure 7-4. FIGURE 7-4

The following Try It Out shows you the steps.

Creating Your Own Content Provider

codefile ContentProviders.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as ContentProviders.

248 | CHAPTER7 CONTENT PROVIDERS

2. In the src folder of the project, add a new Java class file and name it BooksProvider.java (see
Figure 7-5).

| 4 = ContentProvidess
4 (3 e
4 [netleam2develop.ContentProviders
|3] BooksProviderjava
[0 MainActivity java
% gen |Genenat &5
=4 Android 23
2= assets

ed Java

& res

FIGURE 7-5

3. Populate the BooksProvider. java file as follows:

package net.learn2develop.ContentProviders;

import
import
import
import
import
import
import
import
import
import
import
import
import

public
{

android.content.ContentProvider;
android.content.ContentUris;
android.content.ContentValues;
android.content.Context;
android.content.UriMatcher;
android.database.Cursor;
android.database.SQLException;
android.database.sqlite.SQLiteDatabase;
android.database.sqlite.SQLiteOpenHelper;
android.database.sqlite.SQLiteQueryBuilder;
android.net.Uri;

android.text.TextUtils;

android.util.Log;

class BooksProvider extends ContentProvider

public static final String PROVIDER NAME =

"net.learn2develop.provider.Books";

public static final Uri CONTENT_URI =

public static final String _ID =

Uri.parse("content://"+ PROVIDER _NAME + "/books");

ll_idll;

public static final String TITLE = "title";
public static final String ISBN = "isbn";

private static

final int BOOKS = 1;

private static final int BOOK_ID = 2;

private static final UriMatcher uriMatcher;

static{
uriMatcher =
uriMatcher.addURI (PROVIDER NAME,
uriMatcher.addURI (PROVIDER_NAME,

"books™",
"books/#",

//---for database use---
private SQLiteDatabase booksDB;

new UriMatcher (UriMatcher.NO_ MATCH) ;
BOOKS) ;

BOOK_1ID);

Creating Your Own Content Providers | 249

private static final String DATABASE_NAME = "Books";
private static final String DATABASE_TABLE = "titles";
private static final int DATABASE VERSION = 1;
private static final String DATABASE_CREATE =

"create table " + DATABASE TABLE +

" (_id integer primary key autoincrement, "

+ "title text not null, isbn text not null);";

private static class DatabaseHelper extends SQLiteOpenHelper

{
DatabaseHelper (Context context) {
super (context, DATABASE_NAME, null, DATABASE VERSION) ;
}
@Override
public void onCreate(SQLiteDatabase db)
{
db.execSQL (DATABASE_CREATE) ;
}
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {
Log.w("Content provider database",
"Upgrading database from version " +
oldVersion + " to " + newVersion +
", which will destroy all old data");
db.execSQL("DROP TABLE IF EXISTS titles");
onCreate(db) ;
}
}
@Override

public int delete(Uri arg0, String argl, Stringl[] arg2) {
// arg0 = uri
// argl = selection
// arg2 = selectionArgs
int count=0;
switch (uriMatcher.match(arg0)){
case BOOKS:
count = booksDB.delete(
DATABASE_TABLE,
argl,
arg2);
break;
case BOOK_ID:
String id = arg0.getPathSegments().get(1l);
count = booksDB.delete(
DATABASE_TABLE,
ID+ " =" + id +
(!TextUtils.isEmpty(argl) ? " AND (" +
argl + I)I s Illl)’
arg2);
break;
default: throw new IllegalArgumentException("Unknown URI " + argO0);

250 | CHAPTER7 CONTENT PROVIDERS

}
getContext () .getContentResolver () .notifyChange(arg0, null);

return count;

@Override
public String getType(Uri uri) {
switch (uriMatcher.match(uri)) {
//---get all books---
case BOOKS:
return "vnd.android.cursor.dir/vnd.learn2develop.books ";
//---get a particular book---
case BOOK_ID:
return "vnd.android.cursor.item/vnd.learn2develop.books ";
default:
throw new IllegalArgumentException("Unsupported URI: " + uri);

@Override
public Uri insert(Uri uri, ContentValues values) {
//---add a new book---
long rowID = booksDB.insert (
DATABASE_TABLE,

nn
7

values);

//---if added successfully---
if (rowID>0)

{
Uri _uri = ContentUris.withAppendedId(CONTENT URI, rowID);
getContext () .getContentResolver () .notifyChange(_uri, null);
return _uri;
}
throw new SQLException("Failed to insert row into " + uri);
}
@Override

public boolean onCreate() {
Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper (context);
booksDB = dbHelper.getWritableDatabase();
return (booksDB == null)? false:true;

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
SQLiteQueryBuilder sqglBuilder = new SQLiteQueryBuilder();
sqglBuilder.setTables (DATABASE TABLE);

if (uriMatcher.match(uri) == BOOK_ID)
//---1if getting a particular book---
sglBuilder.appendWhere (

Creating Your Own Content Providers

| 251

_ID + " = " + uri.getPathSegments().get(1));

if (sortOrder==null || sortOrder==""
sortOrder = TITLE;

Cursor c¢ = sqlBuilder.query(
booksDB,
projection,
selection,
selectionArgs,
null,
null,
sortOrder) ;

//---register to watch a content URI for changes---
c.setNotificationUri (getContext () .getContentResolver(), uri);
return c;

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) ({
int count = 0;
switch (uriMatcher.match(uri)) {
case BOOKS:
count = booksDB.update (
DATABASE_TABLE,
values,
selection,
selectionArgs);
break;
case BOOK_ID:
count = booksDB.update (
DATABASE_TABLE,

values,

_ID + " = " + uri.getPathSegments().get(1l) +

(!TextUtils.isEmpty(selection) ? " AND (" +
selection + ')' : "m),

selectionArgs);
break;
default: throw new IllegalArgumentException("Unknown URI " + uri);
}
getContext () .getContentResolver () .notifyChange (uri, null);
return count;

4. Add the following statements in bold to the AndroidManifest .xmnl file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.ContentProviders"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">

http://schemas.android.com/apk/res/android

252 | CHAPTER7 CONTENT PROVIDERS

<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<provider android:name="BooksProvider"
android:authorities="net.learn2develop.provider.Books" />
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

How It Works

In this example, you first created a class named BookspProvider that extends the contentpProvider base
class. The various methods to override in this class are as follows:

> getType () — Returns the MIME type of the data at the given URI

> onCreate() — Called when the provider is started

> query() — Receives a request from a client. The result is returned as a cursor object.
> insert() — Inserts a new record into the content provider

> delete() — Deletes an existing record from the content provider

> update() — Updates an existing record from the content provider

Within your content provider, you are free to choose how you want to store your data — a traditional
file system, XML, a database, or even through Web services. For this example, you use the SQLite
database approach that was discussed in the previous chapter.

You then defined the following constants within the BooksProvider class:
public static final String PROVIDER_NAME =
"net.learn2develop.provider.Books";

public static final Uri CONTENT_URI =
Uri.parse("content://"+ PROVIDER_NAME + "/books");

public static final String _ID = "_id";
public static final String TITLE = "title";
public static final String ISBN = "isbn";

private static final int BOOKS = 1;
private static final int BOOK_ID = 2;

private static final UriMatcher uriMatcher;

static{
uriMatcher = new UriMatcher (UriMatcher.NO_MATCH) ;
uriMatcher.addURI (PROVIDER_NAME, "books", BOOKS) ;
uriMatcher.addURI (PROVIDER_NAME, "books/#", BOOK_ID);

Creating Your Own Content Providers | 253

Observe in the preceding code that you use an UriMatcher object to parse the content URI that is passed
to the content provider through a contentResolver. For example, the following content URI represents a
request for all books in the content provider:

content://net.learn2develop.provider.Books/books

The following represents a request for a particular book with _id s:

content://net.learn2develop.provider.MailingList/books/5

Your content provider uses a SQLite database to store the books. Note that you use the SQLiteOpenHelper
helper class to help manage your database:

private static class DatabaseHelper extends SQLiteOpenHelper
{
DatabaseHelper (Context context) {
super (context, DATABASE_NAME, null, DATABASE_VERSION) ;

@Override
public void onCreate (SQLiteDatabase db)

{
db.execSQL (DATABASE_CREATE) ;

@Override
public void onUpgrade (SQLiteDatabase db, int oldVersion,
int newVersion) {
Log.w("Content provider database",
"Upgrading database from version " +
oldversion + " to " + newVersion +
", which will destroy all old data");
db.execSQL ("DROP TABLE IF EXISTS titles");
onCreate (db) ;

Next, you override the getType () method to uniquely describe the data type for your content provider.
Using the UriMatcher object, you return "vnd.android.cursor.item/vnd.learn2develop.books" for a
single book, and "vnd.android.cursor.dir/vnd.learn2develop.books" for multiple books:

@Override
public String getType (Uri uri) {
switch (uriMatcher.match(uri)) {
//---get all books---
case BOOKS:
return "vnd.android.cursor.dir/vnd.learn2develop.books ";
//---get a particular book---
case BOOK_ID:
return "vnd.android.cursor.item/vnd.learn2develop.books ";
default:
throw new IllegalArgumentException ("Unsupported URI: " + uri);

254 | CHAPTER7 CONTENT PROVIDERS

Next, you override the onCreate () method to open a connection to the database when the content
provider is started:

@Override
public boolean onCreate() {
Context context = getContext();
DatabaseHelper dbHelper = new DatabaseHelper (context) ;
booksDB = dbHelper.getWritableDatabase() ;
return (booksDB == null)? false:true;

You override the query () method to allow clients to query for books:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
SQLiteQueryBuilder sglBuilder = new SQLiteQueryBuilder();
sglBuilder.setTables (DATABASE_TABLE) ;

if (uriMatcher.match(uri) == BOOK_ID)
//---1if getting a particular book---
sglBuilder.appendWhere (
_ID + " = " + uri.getPathSegments().get(1));

if (sortOrder==null || sortOrder=="")
sortOrder = TITLE;

Cursor ¢ = sglBuilder.query (
booksDB,
projection,
selection,
selectionArgs,
null,
null,
sortOrder) ;

//---register to watch a content URI for changes---
c.setNotificationUri (getContext ().getContentResolver(), uri);
return c;

By default, the result of the query is sorted using the title field. The resulting query is returned as a
Cursor object.

To allow a new book to be inserted into the content provider, override the insert () method:

@Override
public Uri insert (Uri uri, ContentValues values) {
//---add a new book---
long rowID = booksDB.insert (
DATABASE_TABLE,

values) ;

//---if added successfully---
if (rowID>0)

Creating Your Own Content Providers | 255

Uri _uri = ContentUris.withAppendedId(CONTENT URI, rowlD);
getContext () .getContentResolver () .notifyChange(_uri, null);
return _uri;

}

throw new SQLException("Failed to insert row into " + uri);

Once the record is inserted successfully, call the notifyChange () method of the contentResolver. This
will notify registered observers that a row was updated.

To delete a book, override the delete () method:

public int delete(Uri arg0, String argl, String[] arg2) {
// arg0 = uri
// argl = selection
// arg2 = selectionArgs
int count=0;
switch (uriMatcher.match(arg0)) {
case BOOKS:
count = booksDB.delete(
DATABASE_TABLE,
argl,
arg?2) ;
break;
case BOOK_ID:
String id = arg0.getPathSegments () .get(1);
count = booksDB.delete(
DATABASE_TABLE,

_ID + " =" + 1id +
(!TextUtils.isEmpty(argl) ? " AND (" +
argl + ') o ""),
arg2);

break;
default: throw new IllegalArgumentException ("Unknown URI " + arg0);
}
getContext () .getContentResolver () .notifyChange (arg0, null);
return count;

Likewise, call the notifyChange () method of the contentResolver after the deletion. This will notify
registered observers that a row was deleted.

Finally, to update a book, override the update () method:

@Override
public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
int count = 0;
switch (uriMatcher.match(uri)) {
case BOOKS:
count = booksDB.update (
DATABASE_TABLE,
values,
selection,
selectionArgs) ;

256 | CHAPTER7 CONTENT PROVIDERS

break;
case BOOK_ID:
count = booksDB.update (
DATABASE_TABLE,

values,

_ID + " = " + uri.getPathSegments().get(1l) +

(!TextUtils.isEmpty(selection) ? " AND (" +
selection + ")' : ""),

selectionArgs) ;

break;
default: throw new IllegalArgumentException ("Unknown URI " + uri);
}
getContext () .getContentResolver () .notifyChange (uri, null);
return count;

As with the insert () and delete() methods, you call the notifyChange () method of the ContentResolver
after the update. This notifies registered observers that a row was updated.

Finally, to register your content provider with Android, modify the AndroidManifest.xml file by adding
the <provider> element.

Using the Content Provider

Now that you have built your new content provider, you can test it from within your Android appli-
cation. The following Try It Out demonstrates how this can be done.

Using the Newly Created Content Provider

1. Using the same project created in the previous section, add the following statements in bold to the

main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<TextView
android:layout_width="fill_ parent"
android:layout_height="wrap_content"
android:text="ISBN" />

<EditText
android:id="@+id/txtISBN"
android:layout_height="wrap_ content"
android:layout_width="£fill parent" />

<TextView
android:layout_width="£fill parent"
android:layout_height="wrap_ content"

http://schemas.android.com/apk/res/android

Creating Your Own Content Providers | 257

android:text="Title" />

<EditText
android:id="@+id/txtTitle"
android:layout_height="wrap_content"
android:layout_width="£fill parent" />

<Button
android:text="Add title"
android:id="@+id/btnadd"
android:layout_width="£fill parent"
android:layout_height="wrap_ content" />

<Button
android:text="Retrieve titles"
android:id="@+id/btnRetrieve"
android:layout_width="£fill parent"
android:layout_height="wrap_content" />

</LinearLayout>

In the Mainactivity.java file, add the following statements in bold:

package net.learn2develop.ContentProviders;

import android.app.Activity;
import android.os.Bundle;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;
import android.widget.Toast;

import android.content.ContentValues;
import android.database.Cursor;
import android.net.Uri;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btnAdd = (Button) findViewById(R.id.btnaAdd);
btnAdd.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
//---add a book---
ContentValues values = new ContentValues();
values.put (BooksProvider.TITLE, ((EditText)
findviewById(R.id.txtTitle)) .getText().toString());
values.put (BooksProvider.ISBN, ((EditText)
findViewById(R.id.txtISBN)).getText () .toString());
Uri uri = getContentResolver().insert (
BooksProvider.CONTENT URI, values);

258 | CHAPTER7 CONTENT PROVIDERS

Toast .makeText (getBaseContext () ,uri.toString(),
Toast .LENGTH_LONG) .show();

});

Button btnRetrieve = (Button) findvViewById(R.id.btnRetrieve);
btnRetrieve.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
//---retrieve the titles---
Uri allTitles = Uri.parse(
"content://net.learn2develop.provider.Books/books") ;
Cursor ¢ = managedQuery(allTitles, null, null, null,
"title desc");
if (c.moveToFirst()) {
do{
Log.v("ContentProviders",
c.getString(c.getColumnIndex(
BooksProvider. ID)) + ", " +
c.getString(c.getColumnIndex (
BooksProvider.TITLE)) + ", " +
c.getString(c.getColumnIndex(
BooksProvider.ISBN)));
} while (c.moveToNext());

3. Press F11 to debug the application on the Android Emulator.

4. Enter an ISBN and title for a book and click the Add title button. Figure 7-6 shows the Toast class
displaying the URI of the book added to the content provider. To retrieve all the titles stored in the
content provider, click the Retrieve titles button and observe the values printed in the Logcat win-

dow of Eclipse.
How It Works

First, you modified the activity so that users can enter a book’s ISBN and title to add to the content pro-

vider that you have just created.

To add a book to the content provider, you create a new Contentvalues object and then populate it

with the various information about a book:

//---add a book---
ContentValues values = new ContentValues() ;

values.put (BooksProvider.TITLE, ((EditText)
findViewById(R.id.txtTitle)) .getText () .toString());
values.put (BooksProvider.ISBN, ((EditText)

findviewById(R.id.txtISBN)) .getText ().toString());
Uri uri = getContentResolver().insert(
BooksProvider.CONTENT_URI, values);

Creating Your Own Content Providers | 259

" =
555%Andraid_2.3_Emulstor =)

ContentProviders

9780470452622

Beginning Android 2 Application
Development|

Add title

Retrieve fitles

FIGURE 7-6

Notice that because your content provider is in the same package, you can use the BooksProvider.TITLE
and the BooksProvider.ISBN constants to refer to the "title" and "isbn" fields, respectively. If you were
accessing this content provider from another package, then you would not be able to use these constants.
In that case, you need to specify the field name directly, like this:

ContentValues values = new ContentValues();

values.put ("title", ((EditText)
findviewById(R.id.txtTitle)) .getText () .toString());
values.put ("isbn", ((EditText)

findviewById(R.1id.txtISBN)) .getText ().toString());
Uri uri = getContentResolver () .insert (
Uri.parse(
"content://net.learn2develop.provider.Books/books"),
values) ;
Toast .makeText (getBaseContext () ,uri.toString(),
Toast.LENGTH_LONG) .show () ;

Also note that for external packages you need to refer to the content URI using the fully qualified
content URI:

Uri.parse(
"content://net.learn2develop.provider.Books/books"),
To retrieve all the titles in the content provider, you used the following code snippets:

Uri allTitles = Uri.parse(
"content://net.learn2develop.provider.Books/books") ;

260 | CHAPTER7 CONTENT PROVIDERS

Cursor ¢ = managedQuery(allTitles, null, null, null,
"title desc");
if (c.moveToFirst()) {
do{
Log.v("ContentProviders",
c.getString(c.getColumnIndex (
BooksProvider._ID)) + ", " +
c.getString(c.getColumnIndex (
BooksProvider.TITLE)) + ", " +
c.getString(c.getColumnIndex (
BooksProvider.ISBN))) ;
} while (c.moveToNext());

The preceding query will return the result sorted in descending order based on the title field.

If you want to update a book’s detail, call the update () method with the content URI indicating the
book’s ID:

ContentValues editedvValues = new ContentValues();
editedValues.put (BooksProvider.TITLE, "Android Tips and Tricks");
getContentResolver () .update (

Uri.parse(

"content://net.learn2develop.provider.Books/books/2"),

editedvalues,

null,

null);

To delete a book, use the delete () method with the content URI indicating the book’s ID:

getContentResolver () .delete(
Uri.parse("content://net.learn2develop.provider.Books/books/2"),
null, null);

To delete all books, simply omit the book’s ID in your content URI:

getContentResolver () .delete(
Uri.parse("content://net.learn2develop.provider.Books/books"),
null, null);

SUMMARY

In this chapter, you learned what content providers are and how to use some of the built-in con-

tent providers in Android. In particular, you have seen how to use the Contacts content provider.
Google’s decision to provide content providers enables applications to share data through a standard
set of programming interfaces. In addition to the built-in content providers, you can also create your
own custom content provider to share data with other packages.

Summary | 261

EXERCISES

1. Write the query to retrieve all contacts from the Contacts application that contain the word “jack.”
2. Name the methods that you need to override in your own implementation of a content provider.
3. How do you register a content provider in your AndroidManifest .xml file?

Answers can be found in Appendix C.

262 | CHAPTER7 CONTENT PROVIDERS

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC
Retrieving a managed cursor

Two ways to specify a query for a
content provider

Retrieving the value of a column in
a content provider

Query URI for accessing a contact’s
name

Query URI for accessing a contact’s
phone number

Creating your own content provider

KEY CONCEPTS
Use the managedQuery () method.

Use either a query URI or a predefined query string constant.

Use the getColumnIndex () method.

ContactsContract.Contacts.CONTENT_URI

ContactsContract.CommonDataKinds.Phone.CONTENT_URI

Create a class and extend the ContentProvider class.

Messaging and Networking

WHAT YOU WILL LEARN IN THIS CHAPTER

> How to send SMS messages programmatically from within your
application

How to send SMS messages using the built-in Messaging application
How to receive incoming SMS messages
How to send e-mail messages from your application

How to connect to the Web using HTTP

Y Y Y Y VY

How to consume Web services

Once your basic Android application is up and running, the next interesting thing you can add
to it is the capability to communicate with the outside world. You may want your application
to send an SMS message to another phone when an event happens (such as when you reach a
particular geographical location), or you may wish to access a Web service that provides cer-
tain services (such as currency exchange, weather, etc.).

In this chapter, you learn how to send and receive SMS messages programmatically from
within your Android application.

You will also learn how to use the HTTP protocol to talk to web servers so that you can download
text and binary data. The last part of this chapter shows you how to parse XML files to extract the
relevant parts of an XML file — a technique that is useful if you are accessing Web services.

SMS MESSAGING

SMS messaging is one of the main killer applications on a mobile phone today — for some
users as necessary as the phone itself. Any mobile phone you buy today should have at least
SMS messaging capabilities, and nearly all users of any age know how to send and receive

264 | CHAPTER8 MESSAGING AND NETWORKING

such messages. Android comes with a built-in SMS application that enables you to send and receive
SMS messages. However, in some cases you might want to integrate SMS capabilities into your own
Android application. For example, you might want to write an application that automatically sends
a SMS message at regular time intervals. For example, this would be useful if you wanted to track
the location of your kids — simply give them an Android device that sends out an SMS message con-
taining its geographical location every 30 minutes. Now you know if they really went to the library
after school! (Of course, that would also mean you would have to pay the fees incurred in sending
all those SMS messages...)

This section describes how you can programmatically send and receive SMS messages in your Android
applications. The good news for Android developers is that you don’t need a real device to test SMS
messaging: The free Android Emulator provides that capability.

Sending SMS Messages Programmatically

You will first learn how to send SMS messages programmatically from within your application. Using
this approach, your application can automatically send an SMS message to a recipient without user
intervention. The following Try It Out shows you how.

Sending SMS Messages

codefile SMS.zip available for download at Wrox.com

Using Eclipse, create a new Android project and name it as shown in Figure 8-1.

[Maw indreid Project

How Android Project
Crestes s new Android Project resource.

Project e SMIS

Conents

@ Craste new project in workipace
Create project from esisting source

7 Use default Iocation

Create project from esisting sample
Sarmples: | piliemus
Build Target

Target Mame Verdor

Geagie &Pl Googhelne.

Geegle APy Google lne.
Goagie APl Goeglelac.

Propertas

Application neme: SMS

Packsgemame netlearnldevelop M
o Creste Activity: Mamictnaty

Wi 50K Version: 9

szr/Wei Meng Lee/Beginning Andeoid/SM

Andrond 11-updatel Andiold Open Source Prapect 21-upda.
Andreid 21 Android Open Saurce Project 2

QALY Tab Adden Samaung Electreries Co., Ltdl 2
¥ Android 23 Android Open Source Froject 3

|]

Plafeern AP
21.upar.

2

e

3

FIGURE 8-1

SMS Messaging | 265

Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"

<Button

android:id="@+id/btnSendsMS"
android:layout_width="fill parent"
android:layout_height="wrap_ content"
android:text="Send SMS" />

</LinearLayout>

In the AndroidManifest.xml file, add the following statements in bold:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.SMS"

android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="@string/app_name">

<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>

<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.SEND_ SMS"></uses-permission>
</manifest>

Add the following statements in bold to the Mainactivity.java file:

package net.learn2develop.SMS;

import
import

import
import
import
import
import

public

android.app.Activity;
android.os.Bundle;

android.app.PendingIntent;
android.content.Intent;
android.telephony.SmsManager;
android.view.View;
android.widget.Button;

class MainActivity extends Activity {

Button btnSendSMS;

/** Called when the activity is first created. */
@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

266 | CHAPTER8 MESSAGING AND NETWORKING

setContentView(R.layout.main) ;

btnSendsMS = (Button) findvViewById(R.id.btnSendSusS);
btnSendSMS.setOnClickListener (new View.OnClickListener ()

{
public void onClick(View v)
{
sendSMS ("5556", "Hello my friends!");
}

});
}

//---sends an SMS message to another device---

private void sendSMS(String phoneNumber, String message)

{
SmsManager sms = SmsManager.getDefault();

sms.sendTextMessage (phoneNumber, null, message, null, null);

Press F11 to debug the application on the Android Emulator. Using the Android SDK and AVD
Manager, launch another AVD.

On the first Android Emulator, click the Send SMS button to send an SMS message to the second
emulator. The left side of Figure 8-2 shows the SMS message received by the second emulator (note
the notification bar at the top of the second emulator).

5556:GoogleAPls_2.2_Emulator

a 5554: Hello my friends!

See all your apps.
Touch the Launcher icon.

FIGURE 8-2

SMS Messaging | 267

How It Works

Android uses a permissions-based policy whereby all the permissions needed by an application must be
specified in the AndroidManifest.xml file. This ensures that when the application is installed, the user
knows exactly which access permissions it requires.

Because sending SMS messages incurs additional costs on the user’s end, indicating the SMS permissions
in the AndroidManifest.xml file enables users to decide whether to allow the application to install or not.

To send an SMS message programmatically, you use the SmsManager class. Unlike other classes, you do
not directly instantiate this class; instead, you call the getbefault () static method to obtain a SmsManager
object. You then send the SMS message using the sendTextMessage () method:

private void sendSMS (String phoneNumber, String message)
{
SmsManager sms = SmsManager.getDefault();
sms . sendTextMessage (phoneNumber, null, message, null, null);

Following are the five arguments to the sendTextMessage () method:
> destinationaddress — Phone number of the recipient

> scAddress — Service center address; use null for default SMSC
> text — Content of the SMS message
>

sentIntent — Pending intent to invoke when the message is sent (discussed in more detail in the
next section)

\

deliveryIntent — Pending intent to invoke when the message has been delivered (discussed in
more detail in the next section)

Getting Feedback after Sending the Message

In the previous section, you learned how to programmatically send SMS messages using the
SmsManager class; but how do you know that the message has been sent correctly? To do so, you can
create two PendingIntent objects to monitor the status of the SMS message-sending process. These
two PendingIntent objects are passed to the last two arguments of the sendTextMessage () method.
The following code snippets show how you can monitor the status of the SMS message being sent:

//---sends an SMS message to another device---
private void sendSMS (String phoneNumber, String message)
{

String SENT = "SMS_SENT";

String DELIVERED = "SMS_DELIVERED";

PendingIntent sentPI = PendingIntent.getBroadcast(this, 0,
new Intent (SENT), 0);

PendingIntent deliveredPI = PendingIntent.getBroadcast(this, 0,

268 | CHAPTER8 MESSAGING AND NETWORKING

new Intent (DELIVERED), 0);

//---when the SMS has been sent---
registerReceiver (new BroadcastReceiver() {
@Override
public void onReceive(Context arg0, Intent argl) {
switch (getResultCode())
{
case Activity.RESULT OK:
Toast .makeText (getBaseContext (), "SMS sent",
Toast .LENGTH_ SHORT) .show();
break;
case SmsManager .RESULT_ERROR_GENERIC_FAILURE:
Toast .makeText (getBaseContext (), "Generic failure",
Toast .LENGTH SHORT) .show();
break;
case SmsManager .RESULT_ ERROR_NO_SERVICE:
Toast .makeText (getBaseContext (), "No service",
Toast .LENGTH_ SHORT) .show();
break;
case SmsManager .RESULT_ ERROR_NULL_PDU:
Toast .makeText (getBaseContext (), "Null PDU",
Toast .LENGTH_ SHORT) .show();
break;
case SmsManager .RESULT_ ERROR_RADIO_OFF:
Toast .makeText (getBaseContext (), "Radio off",
Toast .LENGTH SHORT) .show();
break;

}
}, new IntentFilter (SENT));

//---when the SMS has been delivered---
registerReceiver (new BroadcastReceiver() {
@Override
public void onReceive(Context arg0, Intent argl) {
switch (getResultCode())
{
case Activity.RESULT OK:
Toast .makeText (getBaseContext (), "SMS delivered",
Toast .LENGTH_ SHORT) .show();
break;
case Activity.RESULT CANCELED:
Toast .makeText (getBaseContext (), "SMS not delivered",
Toast .LENGTH_ SHORT) .show();
break;

}
}, new IntentFilter (DELIVERED)):;

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage (phoneNumber, null, message, sentPI, deliveredPI);

SMS Messaging | 269

Here, you created two PendingIntent objects. You then registered for two BroadcastReceivers.
These two BroadcastReceivers listen for intents that match “sMs_sEnT” and “SMS_DELIVERED”
(which are fired by the OS when the message has been sent and delivered, respectively). Within
each BroadcastReceiver you override the onReceive () method and get the current result code.

The two PendingIntent objects are passed into the last two arguments of the sendTextMessage ()
method:

sms . sendTextMessage (phoneNumber, null, message, sentPI, deliveredPI);

In this case, whether a message has been sent correctly or failed to be delivered, you will be notified
of its status via the two PendingIntent objects.

Sending SMS Messages Using Intent

Using the smsManager class, you can send SMS messages from within your application without the need
to involve the built-in Messaging application. However, sometimes it would be easier if you could
simply invoke the built-in Messaging application and let it do all the work of sending the message.

To activate the built-in Messaging application from within your application, you can use an Intent
object together with the MIME type "vnd.android-dir/mms-sms" as shown by the following code
snippet:

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

btnSendSMS = (Button) findViewById(R.id.btnSendSMS) ;
btnSendSMS.setOnClickListener (new View.OnClickListener ()
{

public void onClick (View v)
{
//sendSMS ("5556", "Hello my friends!");
Intent i = new
Intent (android.content.Intent .ACTION VIEW);
i.putExtra("address", "5556; 5558; 5560");

i.putExtra("sms_body", "Hello my friends!");
i.setType("vnd.android-dir/mms-sms");
startActivity(i);

1)

This will invoke the Messaging application, as shown in Figure 8-3. Note that you can send your SMS
to multiple recipients by simply separating each phone number with a semicolon (in the putExtra ()
method).

270 | CHAPTER8 MESSAGING AND NETWORKING

B 554Andioid_2.2_Fmulator =

5556, 5560, 5558

5556, 5560, 5558

P P P s g P

R o e
"_'_.'_"__"'_['_r""'-"_!‘“i“_"_

He!lumyfriendsq m — p P

ALT (s | ALT

FIGURE 8-3

NOTE |If you use this method to invoke the Messaging application, there is no
need to ask for the SMS_SEND permission in AndroidManifest.xml because your
application is ultimately not the one sending the message.

Receiving SMS Messages

Besides sending SMS messages from your Android applications, you can also receive incoming SMS
messages from within your application by using a BroadcastReceiver object. This is useful when you
want your application to perform an action when a certain SMS message is received. For example,
you might want to track the location of your phone in case it is lost or stolen. In this case, you can
write an application that automatically listens for SMS messages containing some secret code. Once

that message is received, you can then send an SMS message containing the location’s coordinates
back to the sender.

The following Try It Out shows how to programmatically listen for incoming SMS messages.

Receiving SMS Messages

1.

Using the same project created in the previous section, add the following statements in bold to the
AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

http://schemas.android.com/apk/res/android

SMS Messaging | 271

package="net.learn2develop.SMS"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<receiver android:name=".SlMSReceiver">
<intent-filter>
<action android:name=
"android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>
</receiver>
</application>
<uses-sdk android:minSdkVersion="8" />
<uses-permission android:name="android.permission.SEND_SMS"></uses-permission>
<uses-permission android:name="android.permission.RECEIVE_ SMS">
</uses-permission>
</manifest>

In the src folder of the project, add a new Class file to the package name PEEET
. i o @
and call it sMSReceiver.java (see Figure 8-4). 4 i netleamZdeveiop SMS
mymm@wfw
Code the sMSReceiver.java file as follows: & Ur";_?f_sf‘ft_'l'_f_’:"::_'ll
=\ Android 2.2
package net.learn2develop.SMS; By assets
FIGURE 8-4

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver
{
@Override
public void onReceive(Context context, Intent intent)
{
//---get the SMS message passed in---
Bundle bundle = intent.getExtras();
SmsMessage[] msgs = null;

String str = "";
if (bundle != null)
{

//---retrieve the SMS message received---

Object[] pdus = (Object[]) bundle.get("pdus");

msgs = new SmsMessage[pdus.length];

for (int i=0; i<msgs.length; i++)({
msgs[i] = SmsMessage.createFromPdu((bytel[])pdus([i]);
str += "SMS from " + msgs[i].getOriginatingAddress();

272 | CHAPTER8 MESSAGING AND NETWORKING

str += " :";
str += msgs[i] .getMessageBody () .toString();
str += "\n";
}
//---display the new SMS message---
Toast .makeText (context, str, Toast.LENGTH_ SHORT).show();

4. Press F11 to debug the application on the Android Emulator.

5. Using the DDMS, send a message to the emulator. Your application should be able to receive the
message and display it using the Toast class (see Figure 8-3).

\ 555&Android 22 Emulator =

E +651234567; Hello from DDMS!

SM5

vﬁv

1234567 :Hello from DOMS!

FIGURE 8-5

How It Works

To listen for incoming SMS messages, you create a BroadcastReceiver class. The BroadcastReceiver
class enables your application to receive intents sent by other applications using the sendBroadcast ()
method. Essentially, it enables your application to handle events raised by other applications. When an
intent is received, the onrReceive () method is called; hence, you need to override this.

When an incoming SMS message is received, the onReceive () method is fired. The SMS message is
contained in the Intent object (intent; the second parameter in the onrReceive () method) via a Bundle
object. The messages are stored in an Object array in the PDU format. To extract each message, you
use the static createFromPdu () method from the SmsMessage class. The SMS message is then displayed
using the Toast class. The phone number of the sender is obtained via the getoriginatingAddress ()

SMS Messaging | 273

method, so if you need to send an autoreply to the sender, this is the method to obtain the sender’s phone
number.

One interesting characteristic of the BroadcastReceiver is that you can continue to listen for incoming
SMS messages even if the application is not running; as long as the application is installed on the device,
any incoming SMS messages will be received by the application.

Updating an Activity from a BroadcastReceiver

The previous section described how you can use a BroadcastReceiver class to listen for incoming
SMS messages and then use the Toast class to display the received SMS message. Often, you’ll want
to send the SMS message back to the main activity of your application. For example, you might wish
to display the message in a Textview. The following Try It Out demonstrates how you can do this.

Creating a View-Based Application Project

1. Using the same project created in the previous section, add the following lines in bold to the
main.xml file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"

<Button
android:id="@+id/btnSendsMS"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Send SMS" />

<TextView
android:id="@+id/textViewl"
android:layout_width="wrap content"
android:layout_height="wrap content"” />

</LinearLayout>

2. Add the following statements in bold to the SMSReceiver. java file:

package net.learn2develop.SMS;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.telephony.SmsMessage;
import android.widget.Toast;

public class SMSReceiver extends BroadcastReceiver

http://schemas.android.com/apk/res/android

274 | CHAPTER8 MESSAGING AND NETWORKING

@Override
public void onReceive (Context context, Intent intent)
{

//---get the SMS message passed in---

Bundle bundle = intent.getExtras();

SmsMessage[] msgs = null;

String str = "";
if (bundle != null)
{

//---retrieve the SMS message received---
Object[] pdus = (Object[]) bundle.get("pdus");
msgs = new SmsMessage[pdus.length];
for (int i=0; i<msgs.length; i++){
msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
str += "SMS from " + msgs[i].getOriginatingAddress();
str += " :";
str += msgs[i].getMessageBody () .toString();
str += "\n";
}
//---display the new SMS message---
Toast.makeText (context, str, Toast.LENGTH_SHORT) .show() ;

//---send a broadcast intent to update the SMS received in the activity---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction("SMS_RECEIVED ACTION");
broadcastIntent.putExtra("sms", str);

context.sendBroadcast (broadcastIntent);

3. Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.SMS;

import android.app.Activity;

import android.os.Bundle;

import android.app.PendingIntent;
import android.content.Context;
import android.content.Intent;
import android.telephony.SmsManager;
import android.view.View;

import android.widget.Button;

import android.widget.Toast;

import android.content.BroadcastReceiver;
import android.content.IntentFilter;
import android.widget.TextView;

public class MainActivity extends Activity {
Button btnSendSMS;

IntentFilter intentFilter;

private BroadcastReceiver intentReceiver = new BroadcastReceiver() {

SMS Messaging | 275

@Override

public void onReceive (Context context, Intent intent) {
//---display the SMS received in the TextView---
TextView SMSes = (TextView) findViewById(R.id.textViewl);
SMSes.setText (intent.getExtras() .getString("sms"));

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---intent to filter for SMS messages received---
intentFilter = new IntentFilter();
intentFilter.addAction("SMS RECEIVED ACTION");

btnSendsSMS = (Button) findViewById(R.id.btnSendSMS) ;
btnSendSMS.setOnClickListener (new View.OnClickListener ()
{

public void onClick (View v)

{
//sendSMS ("5554", "Hello my friends!");

Intent i = new

Intent (android.content.Intent .ACTION VIEW) ;
i.putExtra("address", "5556; 5558; 5560");
i.putExtra("sms_body", "Hello my friends!");
i.setType("vnd.android-dir/mms-sms") ;
startActivity (i) ;

)

@Override

protected void onResume() {
//---register the receiver---
registerReceiver (intentReceiver, intentFilter);
super.onResume () ;

@Override

protected void onPause() {
//---unregister the receiver---
unregisterReceiver (intentReceiver);
super.onPause();

//---sends an SMS message to another device---
private void sendSMS (String phoneNumber, String message)
{

/...

276 | CHAPTER8 MESSAGING AND NETWORKING

4. Press F11 to debug the application on the Android Emulator. Using the DDMS, send an SMS message
to the emulator. Figure 8-6 shows the Toast class displaying the message received, and the Textview
showing the message received.

[5554ndrord_22 Emulator i i
Isms
ello from DDMS! r
F'=F=“r—1r==r==r==r==r="r=% :
| oo | -
FIGURE 8-6

How It Works

You first added a TextView to your activity so that it can be used to display the received SMS message.

Next, you modified the sMSReceiver class so that when it receives an SMS message, it will broadcast another

Intent object so that any applications listening for this intent can be notified (which we will implement in
the activity next). The SMS received is also sent out via this intent:

//---send a broadcast intent to update the SMS received in the activity---
Intent broadcastIntent = new Intent();

broadcastIntent.setAction("SMS RECEIVED_ACTION") ;
broadcastIntent.putExtra("sms", str);
context.sendBroadcast (broadcastIntent) ;

Next, in your activity you created a BroadcastReceiver object to listen for broadcast intents:

private BroadcastReceiver intentReceiver = new BroadcastReceiver () {
@Override
public void onReceive (Context context, Intent intent) {
//---display the SMS received in the TextView---
TextView SMSes = (TextView) findviewById(R.id.textViewl);
SMSes.setText (intent.getExtras () .getString("sms")) ;

SMS Messaging | 277

When a broadcast intent is received, you update the SMS message in the Textview.

You need to create an IntentFilter object so that you can listen for a particular intent. In this case, the
intent is "SMS_RECEIVED_ACTION":

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---intent to filter for SMS messages received---
intentFilter = new IntentFilter();
intentFilter.addAction("SMS RECEIVED ACTION");
/...

Finally, you register the BroadcastReceiver in the activity’s onResume () event and unregister it in the
onPause () event:

@Override

protected void onResume () {
//---register the receiver---
registerReceiver (intentReceiver, intentFilter);
super.onResume () ;

}

@Override

protected void onPause() {
//---unregister the receiver---
unregisterReceiver (intentReceiver) ;
super .onPause () ;

This means that the Textview will display the SMS message only when the message is received while the
activity is visible on the screen. If the SMS message is received when the activity is not in the foreground,
the Textview will not be updated.

Invoking an Activity from a BroadcastReceiver

The previous example shows how you can pass the SMS message received to be displayed in the activ-
ity. However, in many situations your activity may be in the background when the SMS message is
received. In this case, it would be useful to be able to bring the activity to the foreground when a mes-
sage is received. The following Try It Out shows you how.

AL Invoking an Activity

1. Using the same project created in the previous section, add the following lines in bold to the
MainActivity.java file:

/** Called when the activity is first created. */
@Override

278 | CHAPTER8 MESSAGING AND NETWORKING

public void onCreate (Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---intent to filter for SMS messages received---
intentFilter = new IntentFilter();
intentFilter.addAction ("SMS_RECEIVED ACTION") ;

//---register the receiver---
registerReceiver (intentReceiver, intentFilter);

btnSendsMS = (Button) findViewById(R.id.btnSendSMS) ;
btnSendsSMS.setOnClickListener (new View.OnClickListener ()

{
public void onClick (View v)
{
//sendSMS ("5554", "Hello my friends!");
Intent i = new
Intent (android.content.Intent .ACTION_VIEW) ;
i.putExtra("address", "5556; 5558; 5560");
i.putExtra("sms_body", "Hello my friends!");
i.setType("vnd.android-dir/mms-sms") ;
startActivity (i) ;
}
1)
}
@Override

protected void onResume () {
//---register the receiver---
//registerReceiver (intentReceiver, intentFilter);

super.onResume () ;

@Override

protected void onPause () {
//---unregister the receiver---
//unregisterReceiver (intentReceiver);
super .onPause() ;

@Override

protected void onDestroy() {
//---unregister the receiver---
unregisterReceiver (intentReceiver);
super.onPause();

2. Add the following statements in bold to the SMSReceiver. java file:

@Override
public void onReceive (Context context, Intent intent)

{

SMS Messaging | 279

//---get the SMS message passed in---

Bundle bundle = intent.getExtras();

SmsMessage[] msgs = null;

String str = "";

if (bundle != null)

{
//---retrieve the SMS message received---
Object[] pdus = (Object[]) bundle.get("pdus");
msgs = new SmsMessage[pdus.lengthl];
for (int i=0; i<msgs.length; i++){

msgs[i] = SmsMessage.createFromPdu((byte[])pdus[i]);
str += "SMS from " + msgs[i].getOriginatingAddress();

str += " :";
str += msgs[i].getMessageBody () .toString() ;
str += "\n";

}

//---display the new SMS message---

Toast .makeText (context, str, Toast.LENGTH_SHORT) .show() ;

//---launch the MainActivity---

Intent mainActivityIntent = new Intent (context, MainActivity.class);
mainActivityIntent.setFlags(Intent.FLAG ACTIVITY NEW TASK);

context.startActivity(mainActivityIntent);

//---send a broadcast to update the SMS received in the activity---

Intent broadcastIntent = new Intent();

broadcastIntent.setAction("SMS RECEIVED ACTION") ;

broadcastIntent.putExtra("sms", str);
context.sendBroadcast (broadcastIntent) ;

3. Modify the main.xnl file as follows:

<activity android:name=".MainActivity"
android:label="@string/app_name"
android:launchMode="singleTask" >
<intent-filter>

<action android:name="android.intent.action.MAT

">

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>
4. Press F11 to debug the application on the Android Emulator. When the MainActivity is shown,
click the Home button to send the activity to the background.
5. Use the DDMS to send an SMS message to the emulator again. This time, note that the activity will
be brought to the foreground, displaying the SMS message received.
How It Works

In the Mainactivity class, you first register the BroadcastReceiver in the activity’s onCreate () event,
instead of the onResume () event; and instead of unregistering it in the onPause () event, you now unregister

280 | CHAPTER8 MESSAGING AND NETWORKING

it in the onbdestroy () event. This ensures that even if the activity is in the background, it will still be able to
listen for the broadcast intent.

Next, you modify the onReceive () event in the SMSReceiver class by using an intent to bring the activ-
ity to the foreground before broadcasting another intent:

//---launch the MainActivity---

Intent mainActivityIntent = new Intent (context, MainActivity.class);
mainActivityIntent.setFlags(Intent.FLAG ACTIVITY NEW_TASK);
context.startActivity(mainActivityIntent);

//---send a broadcast to update the SMS received in the activity---
Intent broadcastIntent = new Intent();

broadcastIntent.setAction("SMS RECEIVED ACTION") ;
broadcastIntent.putExtra("sms", str);

context.sendBroadcast (broadcastIntent) ;

The startactivity () method launches the activity and brings it to the foreground. Note that you need
to set the Intent.FLAG_ACTIVITY NEW_TASK flag because calling startactivity() from outside of an
activity context requires the FLAG_ACTIVITY NEW_TASK flag.

You also need to set the 1launchMode attribute of the <activity> element in the AndroidManifest.xml file
to singleTask:
<activity android:name=".MainActivity"

android:label="@string/app_name"
android:launchMode="singleTask" >

If you don’t set this, multiple instances of the activity will be launched as your application receives SMS
messages.

Note that in this example, when the activity is in the background (such as when you click the Home
button to show the home screen), the activity is brought to the foreground and its Textview is updated
with the SMS received. However, if the activity was killed (such as when you click the Back button to
destroy it), the activity is launched again but the Textview is not updated.

Caveats and Warnings

While the ability to send and receive SMS messages makes Android a very compelling platform
for developing sophisticated applications, this flexibility comes with a price. A seemingly innocent
application may send SMS messages behind the scene without the user knowing, as demonstrated by
a recent case of an SMS-based Trojan Android application (http://forum.vodafone.co.nz/topic/
5719-android-sms-trojan-warning/). Claiming to be a media player, once installed, the application
sends SMS messages to a premium number, resulting in huge phone bills for the user.

While the user needs to explicitly give permission to your application, the request for permission is
only shown at installation time. Figure 8-7 shows the request for permission that appears when you

http://forum.vodafone.co.nz/topic/5719-android-sms-trojan-warning/
http://forum.vodafone.co.nz/topic/5719-android-sms-trojan-warning/

Sending E-Mail | 281

try to install the application (as an APK file; Chapter 11 discusses packaging your Android applica-
tions in more detail) on the emulator (same as on a real device). If the user clicks the Install button,
he or she is considered to have given permission to allow the application to send and receive SMS
messages. This is dangerous, as after the application is installed it can send and receive SMS mes-
sages without ever prompting the user again.

.
i S55EmulatorWithsD [

P sus

Do you want to install this

Allow this application to:

il llelslelrlololo

FIGURE 8-7

In addition to this, the application can also “sniff” for incoming SMS messages. For example, based
on the techniques you learned from the previous section, you can easily write an application that
checks for certain keywords in the SMS message. When an SMS message contains the keyword you
are looking for, you can then use the Location Manager (discussed in Chapter 9) to obtain your geo-
graphical location and then send the coordinates back to the sender of the SMS message. The sender
could then easily track your location. All these tasks can be done easily without the user knowing it!
That said, users should try to avoid installing Android applications that come from dubious sources,
such as from unknown websites, strangers, etc.

SENDING E-MAIL

Like SMS messaging, Android also supports e-mail. The Gmail/Email application on Android enables
you to configure an e-mail account using POP3 or IMAP. Besides sending and receiving e-mails using
the Gmail/Email application, you can also send e-mail messages programmatically from within your
Android application. The following Try It Out shows you how.

282 | CHAPTER8 MESSAGING AND NETWORKING

Sending E-mail Programmatically

codefile Emails.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Emails.

2. Add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>

<Button
android:id="@+id/btnSendEmail"
android:layout_width="fill parent"
android:layout_height="wrap content”
android:text="Send Email" />

</LinearLayout>

3. Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Email;

import android.app.Activity;
import android.os.Bundle;

import android.content.Intent;
import android.net.Uri;

import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {
Button btnSendEmail;

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

btnSendEmail = (Button) findViewById(R.id.btnSendEmail);
btnSendEmail.setOnClickListener (new View.OnClickListener()
{
public void onClick(View v)
{
String[] to = {"weimenglee@learn2develop.net", "weimenglee@gmail.com"};
String[] cc = {"course@learn2develop.net"};
sendEmail (to, cc, "Hello", "Hello my friends!");

http://schemas.android.com/apk/res/android

Sending E-Mail | 283

//---sends an SMS message to another device---

private void sendEmail (String[] emailAddresses, Stringl]
String subject, String message)

{

carbonCopies,

Intent emailIntent = new Intent (Intent.ACTION SEND);
emailIntent.setData(Uri.parse("mailto:"));

String[] to = emailAddresses;

String[] cc = carbonCopies;
emailIntent.putExtra(Intent.EXTRA EMAIL, to);
emailIntent.putExtra(Intent.EXTRA CC, cc);
emailIntent.putExtra(Intent.EXTRA SUBJECT, subject);
emailIntent.putExtra(Intent.EXTRA TEXT, message);
emailIntent.setType("message/rfc822");

startActivity(Intent.createChooser(emailIntent, "Email"));

Press F11 to test the application on a real Android device. Click the Send Email button and you
should see the Email application launched in your device, as shown in Figure 8-8.

~IVE d
|_ nel>, <weimenglee@gr

| <coursemlearn 2develop.nets, 1

| Hello)

Hello my friends!

Save ax

il draft

I Discard

FIGURE 8-8

How It Works

In this example, you are launching the built-in Email application to send an e-mail message. To do so,
you use an Intent object and set the various parameters using the setData (), putExtra(), and setType ()
methods:

Intent emailIntent = new Intent (Intent.ACTION_SEND) ;

emailIntent.setData (Uri.parse("mailto:"));

String[] to = emailAddresses;
String[] cc = carbonCopies;

emailIntent.
emailIntent.
emailIntent.
emailIntent.
emailIntent.

putExtra (Intent
putExtra (Intent
putExtra (Intent
putExtra (Intent

.EXTRA_EMAIL, to);
.EXTRA_CC, cc);
.EXTRA_SUBJECT, subject);
.EXTRA_TEXT, message) ;

setType ("message/rfc822");
startActivity (Intent.createChooser (emailIntent,

"Email"));

284

| CHAPTER8 MESSAGING AND NETWORKING

NETWORKING

The previous sections covered how to get connected to the outside world using SMS and e-mail. Another
way to achieve that is to use the HTTP protocol. Using the HTTP protocol, you can perform a wide vari-
ety of tasks, such as downloading web pages from a web server, downloading binary data, and so on.

The following Try It Out creates an Android project so that you can use the HTTP protocol to con-
nect to the Web to download all sorts of data.

Creating the Project

codefile Networking.zip available for download at Wrox.com

Using Eclipse, create a new Android project and name it Networking.

Add the following statement in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Networking"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="8" />
<uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

Import the following namespaces in the MainActivity.java file:

package net.learn2develop.Networking;

import android.app.Activity;
import android.os.Bundle;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

import java.net.URLConnection;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.widget.ImageView;
import android.widget.Toast;

import javax.xml.parsers.DocumentBuilder;

http://schemas.android.com/apk/res/android

Networking

| 285

import
import

import
import
import
import

public

javax.xml.parsers.DocumentBuilderFactory;
javax.xml.parsers.ParserConfigurationException;

org.w3c.dom.Document ;
org.w3c.dom.Element;
org.w3c.dom.Node;

org.w3c.dom.NodeList;

class MainActivity extends Activity {

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Define the openHttpConnection () method in the MainActivity.java file:

public class MainActivity extends Activity {

private InputStream OpenHttpConnection(String urlString)
throws IOException

{

InputStream in = null;
int response = -1;

URL url = new URL(urlString);
URLConnection conn = url.openConnection();

if (!(conn instanceof HttpURLConnection))
throw new IOException("Not an HTTP connection")j;
try{
HttpURLConnection httpConn = (HttpURLConnection) conn;
httpConn.setAllowUserInteraction(false);
httpConn.setInstanceFollowRedirects (true);
httpConn.setRequestMethod ("GET") ;
httpConn.connect () ;
response = httpConn.getResponseCode();
if (response == HttpURLConnection.HTTP_OK) {
in = httpConn.getInputStream();

}
}
catch (Exception ex)
{
throw new IOException("Error connecting");
}

return in;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

286 | CHAPTER8 MESSAGING AND NETWORKING

How It Works

Because you are using the HTTP protocol to connect to the Web, your application needs the INTERNET
permission; hence, the first thing you do is add the permission in the AndroidManifest.xml file.

You then define the openHttpConnection () method, which takes a URL string and returns an InputStream
object. Using an InputStream object, you can download the data by reading bytes from the stream object.
In this method, you made use of the Ht tpURLConnection object to open an HTTP connection with a remote
URL. You set all the various properties of the connection, such as the request method, and so on:

HttpURLConnection httpConn = (HttpURLConnection) conn;
httpConn.setAllowUserInteraction(false);
httpConn.setInstanceFollowRedirects (true) ;
httpConn.setRequestMethod ("GET") ;

After you try to establish a connection with the server, you get the HTTP response code from it. If the
connection is established (via the response code HTTP_0K), then you proceed to get an InputStream object
from the connection:

httpConn.connect () ;

response = httpConn.getResponseCode() ;

if (response == HttpURLConnection.HTTP_OK) {
in = httpConn.getInputStream() ;

Using the InputStream object, you can then start to download the data from the server.

Downloading Binary Data

One of the common tasks you need to perform is downloading binary data from the Web. For example,
you may want to download an image from a server so that you can display it in your application. The
following Try It Out shows how this is done.

Creating the Project

1. Using the same project created earlier, add the following statements in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<ImageView
android:id="@+id/img"
android:layout_width="wrap content"
android:layout_height="wrap content”
android:layout_gravity="center" />

</LinearLayout>

http://schemas.android.com/apk/res/android

Networking | 287

2. Add the following statements in bold to the MainActivity.java file:

public class MainActivity extends Activity {
ImageView img;

private InputStream OpenHttpConnection (String urlString)
throws IOException
{

/...

private Bitmap DownloadImage (String URL)
{
Bitmap bitmap = null;
InputStream in = null;
try {
in = OpenHttpConnection (URL);
bitmap = BitmapFactory.decodeStream(in);
in.close();
} catch (IOException el) {
Toast .makeText (this, el.getLocalizedMessage(),
Toast . LENGTH_LONG) .show() ;

el.printStackTrace();
}

return bitmap;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---download an image---
Bitmap bitmap =
DownloadImage (
"http://www.streetcar.org/mim/cable/images/cable-01.jpg");
img = (ImageView) findViewById(R.id.img);
img.setImageBitmap (bitmap);

3. Press F11 to debug the application on the Android Emulator. Figure 8-9 shows the image down-
loaded from the Web and then displayed in the Tmageview.

How It Works

The DownloadImage () method takes the URL of the image to download and then opens the connection to
the server using the openHt tpConnection () method that you have defined earlier. Using the Tnputstream
object returned by the connection, the decodestream() method from the BitmapFactory class is used
to download and decode the data into a Bitmap object. The DownloadImage () method returns a Bitmap
object.

http://www.streetcar.org/mim/cable/images/cable-01.jpg

288 | CHAPTER8 MESSAGING AND NETWORKING

”
5 S554Andmid_ 2.7 Frulator [E=NE)

Networking
|8

l_‘[""@"[_#' i I""”[_E""“r_[—

Steve Ferraria ;MID_.. ,—rl-—-lr—;" ,—rr—‘r—yq[— r_"r__"j[ﬁ

fffhhr

FIGURE 8-9

The image is then displayed using an Imageview view.

REFERRING TO LOCALHOST FROM YOUR EMULATOR

When working with the Android Emulator, you may frequently need to access data
hosted on the local web server using 1ocalhost. For example, your own Web services
is likely to be hosted on your local computer during development time and you want
to test it on the same development machine you use to write your Android applica-
tions. In such cases, you should use the special IP address of 10.0.2.2 (not 127.0.0.1)
to refer to the host computer’s loopback interface. From the Android Emulator’s per-
spective, localhost (127.0.0.1) refers to its own loopback interface.

Downloading Text Files

Besides downloading binary data, you can also download plain-text files. For example, you might
be writing an RSS Reader application and hence need to download RSS XML feeds for processing.
The following Try It Out shows how you can download a plain-text file in your application.

Networking | 289

Downloading Plain-Text Files

1. Using the same project created earlier, add the following statements in bold to the MainActivity
.java file:

public class MainActivity extends Activity {
ImageView img;

private InputStream OpenHttpConnection (String urlString)
throws IOException
{

/...

private Bitmap DownloadImage (String URL)
{
/...

private String DownloadText (String URL)
{
int BUFFER_SIZE = 2000;
InputStream in = null;
try {
in = OpenHttpConnection (URL) ;
} catch (IOException el) {
Toast .makeText (this, el.getLocalizedMessage(),
Toast.LENGTH_ LONG) .show() ;

el.printStackTrace();

return "";

InputStreamReader isr = new InputStreamReader(in);
int charRead;

String str = "";

char[] inputBuffer = new char[BUFFER_SIZE];

try {
while ((charRead = isr.read(inputBuffer))>0)
{

//---convert the chars to a String---
String readString =
String.copyValueOf(inputBuffer, 0, charRead);

str += readString;
inputBuffer = new char[BUFFER_SIZE];

}

in.close();

} catch (IOException e) {

Toast .makeText (this, e.getLocalizedMessage(),

Toast .LENGTH_ LONG) .show() ;

e.printStackTrace();

290 | CHAPTER8 MESSAGING AND NETWORKING

return "";

}

return str;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---download an image---
Bitmap bitmap =
DownloadImage (
"http://www.streetcar.org/mim/cable/images/cable-01.jpg") ;
img = (ImageView) findViewById(R.id.img);
img.setImageBitmap (bitmap) ;

//---download an RSS feed---
String str = DownloadText (
"http://www.appleinsider.com/appleinsider.rss");
Toast .makeText (getBaseContext (), str,
Toast . LENGTH_SHORT) .show() ;

2. Press F11 to debug the application on the Android Emulator. Figure 8-10 shows the RSS feed
downloaded and displayed using the Toast class.

[' 5554Android_22 Emulator =l

[T s e [P P v Py g [P
PP P P P T P T
““—F—Tr—vf—‘f—Tr—zr—;rf?r—Trfr
o ,_!,_ = i_"__- —r—

e e il —~r—-—-—-—-—-—-——-:- -
Lo Y| S| :

FIGURE 8-10

http://www.streetcar.org/mim/cable/images/cable-01.jpg
http://www.appleinsider.com/appleinsider.rss

Networking | 291

How It Works

The DownloadText () method takes an URL of the text file to download and then returns the string
of the text file downloaded. It basically opens an HTTP connection to the server and then uses an
InputStreamReader object to read each character from the stream and save it in a String object.

Accessing Web Services

So far you have seen how to download images and text from the Web. The previous section showed
how to download an RSS feed from a server. Very often, you need to download XML files and parse
the contents (a good example of this is consuming Web services). Therefore, in this section you learn
how to connect to a Web service using the HTTP GeT method. Once the Web service returns a result
in XML, you will extract the relevant parts and display its content using the Toast class.

For this example, the web method you will be using is from http://services.aonaware.com/
DictService/DictService.asmx?op=Define. This web method is from a Dictionary Web service
that returns the definitions of a given word.

The web method takes a request in the following format:

GET /DictService/DictService.asmx/Define?word=string HTTP/1.1
Host: services.aonaware.com

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: length

It returns a response in the following format:

<?xml version="1.0" encoding="utf-8"?>
<WordDefinition xmlns="http://services.aonaware.com/webservices/">
<Word>string</Word>
<Definitions>
<Definition>
<Word>string</Word>
<Dictionary>
<Id>string</Id>
<Name>string</Name>
</Dictionary>
<WordDefinition>string</WordDefinition>
</Definition>
<Definition>
<Word>string</Word>
<Dictionary>
<Id>string</Id>
<Name>string</Name>
</Dictionary>
<WordDefinition>string</WordDefinition>
</Definition>
</Definitions>
</WordDefinition>

http://services.aonaware.com/DictService/DictService.asmx?op=Define
http://services.aonaware.com/webservices/
http://services.aonaware.com/DictService/DictService.asmx?op=Define

292 | CHAPTER8 MESSAGING AND NETWORKING

Hence, to obtain the definition of a word, you need to establish an HTTP connection to the web
method and then parse the XML result that is returned. The following Try It Out shows you how.

134Nl Consuming Web Services

1. Using the same project created earlier, add the following statements in bold to the Mainactivity
.java file:

public class MainActivity extends Activity {
ImageView img;

private InputStream OpenHttpConnection (String urlString)
throws IOException
{

/...

private Bitmap DownloadImage (String URL)
{
/]

private String DownloadText (String URL)
{
/...

private void WordDefinition(String word) {
InputStream in = null;
try {
in = OpenHttpConnection (
"http://services.aonaware.com/DictService/DictService.asmx/Define?word=" + word);
Document doc = null;
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
DocumentBuilder db;
try {
db = dbf.newDocumentBuilder();
doc = db.parse(in);
} catch (ParserConfigurationException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}

doc.getDocumentElement () .normalize();

//---retrieve all the <Definition> nodes---
NodeList itemNodes =
doc.getElementsByTagName ("Definition");

String strDefinition = "";
for (int i = 0; i < definitionElements.getLength(); i++) {

http://services.aonaware.com/DictService/DictService.asmx/Define?word=

Networking

293

Node itemNode = definitionElements.item(i);

if (itemNode.getNodeType() == Node.ELEMENT NODE)

{
//---convert the Node into an Element---
Element definitionElement = (Element) itemNode;

//---get all the <WordDefinition> elements under

// the <Definition> element---

NodeList wordDefinitionElements =
(definitionElement) .getElement sByTagName (
"WordDefinition");

strDefinition = "";
for (int j = 0; j < wordDefinitionElements.getLength(); j++)
//---convert a <WordDefinition> Node into an Element---
Element wordDefinitionElement =
(Element) wordDefinitionElements.item(j);

//---get all the child nodes under the
// <WordDefinition> element---
NodeList textNodes =
((Node) wordDefinitionElement) .getChildNodes();

strDefinition +=
((Node) textNodes.item(0)).getNodeValue() + ". ";

//---display the title---
Toast .makeText (getBaseContext (), strDefinition,
Toast .LENGTH_SHORT) .show();

}
} catch (IOException el) {
Toast .makeText (this, el.getLocalizedMessage(),
Toast .LENGTH_ LONG) .show() ;
el.printStackTrace();

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

//---download an image---
Bitmap bitmap =
DownloadImage (
"http://www.streetcar.org/mim/cable/images/cable-01.jpg") ;
img = (ImageView) findViewById(R.id.img);
img.setImageBitmap (bitmap) ;

//---download an RSS feed---
String str = DownloadText (

{

http://www.streetcar.org/mim/cable/images/cable-01.jpg

294 | CHAPTER8 MESSAGING AND NETWORKING

"http://www.appleinsider.com/appleinsider.rss");
Toast.makeText (getBaseContext (), str,
Toast.LENGTH_SHORT) .show() ;

//---access a Web service using GET---
WordDefinition("Apple");

2. Press F11 to debug the application on the Android Emulator. Figure 8-11 shows the result of the
Web service call being parsed and then displayed using the Toast class.

g
& 555%Andrond_2.2_Emulator

il el it foe | el el o]
[P R P [) s e s
7 [P s i P e

enus {Pyrus} which
the frult; an apple

sl G r___T,ﬂ' ? ALT

FIGURE 8-11

How It Works
The wordpefinition () method first opens an HTTP connection to the Web service, passing in the word
that you are interested in:

in = OpenHttpConnection (
"http://services.aonaware.com/DictService/DictService.asmx/Define?word=" + word) ;

It then uses the DocumentBuilderFactory and DocumentBuilder objects to obtain a Document (DOM)
object from an XML file (which is the XML result returned by the Web service):

Document doc = null;

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder db;

try {

http://www.appleinsider.com/appleinsider.rss
http://services.aonaware.com/DictService/DictService.asmx/Define?word=

Networking | 295

db = dbf.newDocumentBuilder () ;
doc = db.parse(in);

} catch (ParserConfigurationException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

} catch (Exception e) {

// TODO Auto-generated catch block
e.printStackTrace() ;

}

doc.getDocumentElement () .normalize() ;

Once the Document object is obtained, you will find all the elements with the <pefinition> tag:

//---retrieve all the <Definition> nodes---
NodeList itemNodes =
doc.getElementsByTagName ("Definition") ;

Figure 8-12 shows the structure of the XML document returned by the Web service.

¥ibordDefinition xmlns:ixsi="http://www.nd.org/20081/
XMLSchema- instance” wmlns:xsd="http://wwe.u3.0rg/2001/
XHLSchema" xmlns="http://scrvices.oonaware.com/
webservices/ ™y
<Wordrappled/Wordy
viDefinitions>
¥<Definit ion>
Wrdrappled s
»cDictionarys_«/Dicticnarys
» <Wordletinition®~</Wordbetinition>
4/Uetinition>
¥ ¢Definition>
<Wordrapple</Word:
<M ectionarys < /Mictionarys
» <WardDefini b ions < /WordDefinil lons
«/Definition>
» <Definitionz.c/Definitions
b <Detinition>.</Uefinition>
» ¢Definitiond.</Definitions
4/Delinitions>
<«/WardDefinitiany

FIGURE 8-12

As the definition of a word is contained within the <wWordpefinition> element, you then proceed to
extract all the definitions:

String strDefinition = "";
for (int i = 0; i1 < definitionElements.getLength(); 1i++) {
Node itemNode = definitionElements.item(i);
if (itemNode.getNodeType() == Node.ELEMENT NODE)
{
//---convert the Node into an Element---
Element definitionElement = (Element) itemNode;

//---get all the <WordDefinition> elements under

// the <Definition> element---

NodeList wordDefinitionElements =
(definitionElement) .getElementsByTagName (
"WordDefinition") ;

strDefinition = "";

for (int j = 0; j < wordDefinitionElements.getLength(); j++) {
//---convert a <WordDefinition> Node into an Element---

296

| CHAPTER8 MESSAGING AND NETWORKING

Element wordDefinitionElement =
(Element) wordDefinitionElements.item(j);

//---get all the child nodes under the
// <WordDefinition> element---
NodeList textNodes =
((Node) wordDefinitionElement) .getChildNodes () ;
//---get the first node, which contains the text---
strDefinition +=
((Node) textNodes.item(0)).getNodevalue() + ". ";
}
//---display the title---
Toast.makeText (getBaseContext () ,strDefinition,
Toast.LENGTH_SHORT) .show () ;

}
} catch (IOException el) {
Toast .makeText (this, el.getLocalizedMessage(),
Toast .LENGTH LONG) .show();
el.printStackTrace() ;

The above loops through all the <pefinition> elements and then for each <Definition> element it looks

for a child element named <wordpefinition>. The text content of the <wordbefinition> element contains
the definition of a word. The Toast class displays each word definition that is retrieved.

Performing Asynchronous Calls

So far, all the connections made in the previous few sections are all synchronous — that is, the con-
nection to a server will not return until the data is received. In real life, this presents some problems
due to network connections being inherently slow. When you connect to a server to download some
data, the user interface of your application remains frozen until a response is obtained. In most cases,
this is not acceptable. Hence, you need to ensure that the connection to the server is made in an asyn-
chronous fashion.

The easiest way to connect to the server asynchronously is to use the AsyncTask class available in the
Android SDK. Using AsyncTask enables you to perform background tasks in a separate thread and
then return the result in a Ul thread. Using this class enables you to perform background operations
without needing to handle complex threading issues.

Using the previous example of downloading an image from the server and then displaying the image
in an ImageView, you could wrap the code in an instance of the asyncTask class, as shown below:

public class MainActivity extends Activity ({
ImageView img;

private class BackgroundTask extends AsyncTask
<String, Void, Bitmap> {
protected Bitmap doInBackground(String... url) {

Summary | 297

//---download an image---
Bitmap bitmap = DownloadImage (url[0]);
return bitmap;

protected void onPostExecute(Bitmap bitmap) {
ImageView img = (ImageView) findViewById(R.id.img);
img.setImageBitmap (bitmap) ;

private InputStream OpenHttpConnection (String urlString)
throws IOException

{

Basically, you defined a class that extends the asyncTask class. In this case, there are two methods
within the BackgroundTask class — doInBackground () and onPostExecute (). You put all the code
that needs to be run asynchronously in the doTnBackground () method. When the task is completed,
the result is passed back via the onPostExecute () method. The onPostExecute () method is executed
on the Ul thread, hence it is thread safe to update the Tmageview with the bitmap downloaded from
the server.

NOTE You will learn more about the asyncTask class in Chapter 10 which covers
developing services in Android.

To perform the asynchronous tasks, simply create an instance of the BackgroundTask class and call
its execute () method:

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;
new BackgroundTask () .execute (
"http://www.streetcar.org/mim/cable/images/cable-01.jpg");

SUMMARY

This chapter described the various ways to communicate with the outside world. You first learned
how to send and receive SMS messages. You then learned how to send e-mail messages from within
your Android application. Besides SMS and e-mail, another way to communicate with the outside
world is through the use of the HTTP protocol. Using the HTTP protocol, you can download data
from a web server. One good application of this is to talk to Web services, whereby you need to
parse XML files.

http://www.streetcar.org/mim/cable/images/cable-01.jpg

298 | CHAPTER8 MESSAGING AND NETWORKING

EXERCISES

1. Name the two ways in which you can send SMS messages in your Android application.

2. Name the permissions you need to declare in your androidManifest .xml file for sending and
receiving SMS messages.

3. How do you notify an activity from a BroadcastReceiver?

4. Name the permissions you need to declare in your AndroidManifest.xml file for an HTTP
connection.

Answers to Exercises can be found in Appendix C.

Summary | 299

» WHAT YOU LEARNED IN THIS CHAPTER

TOPIC KEY CONCEPTS

Programmatically send- Use the SmsManager class.
ing SMS messages

Getting feedback on Use two PendingIntent objects in the sendTextMessage () method.
messages sent

Sending SMS messages Set the intent type to “vnd.android-dir/mms-sms”.
using Intent

Receiving SMS Implement a BroadcastReceiver and set it in the AndroidManifest
messages .xml1 file.

Sending e-mail using Set the intent type to “message/rfc822”.

Intent

Establishing an HTTP Use the HttpURLConnection class.

connection

Accessing Web services Use the Document, DocumentBuilderFactory, and DocumentBuilder
classes to parse the XML result returned by the Web service.

Location-Based Services

WHAT YOU WILL LEARN IN THIS CHAPTER

How to display Google Maps in your Android application
How to display the zoom controls on the map

How to switch between the different map views

How to add markers to maps

How to get the address location touched on the map

How to perform geocoding and reverse geocoding

Y Y Y Y VY VY Y

How to obtain geographical data using GPS, Cell-ID, and Wi-Fi
triangulation

» How to monitor for a location

We have all seen the explosive growth of mobile apps in recent years. One category of apps
that is very popular is location-based services, commonly known as LBS. LBS apps track your
location, and may offer additional services such as locating amenities nearby, as well as offer-
ing suggestions for route planning, and so on. Of course, one of the key ingredients in a LBS
app is maps, which present a visual representation of your location.

In this chapter, you will learn how to make use of the Google Maps in your Android application,
and how to manipulate it programmatically. In addition, you will learn how to obtain your geo-
graphical location using the LocationManager class available in the Android SDK.

302 | CHAPTER9 LOCATION-BASED SERVICES

DISPLAYING MAPS

Google Maps is one of the many applications bundled with the Android platform. In addition to
simply using the Maps application, you can also embed it into your own applications and make it do
some very cool things. This section describes how to use Google Maps in your Android applications
and programmatically perform the following:

> Change the views of Google Maps.
> Obtain the latitude and longitude of locations in Google Maps.

> Perform geocoding and reverse geocoding (translating an address to latitude and longitude
and vice versa).

> Add markers to Google Maps.

Creating the Project

To get started, you need to first create an Android project so that you can display the Google Maps
in your activity.

Creating the Project

codefile LBS.zip available for download at Wrox.com

1. Using Eclipse, create an Android project as shown in Figure 9-1.

& New fondrod Preject [

Hew Android Project
Creates & new Andreid Preject resource.

Project name: LES
Contents
@ Conate new proprel in workipace
Create project from einting seurce
(# U defauit lncatien
Cu/User/Wo-Meng Lee/Beginning Andreid /L83
Coeate project from exsting sample

Samples: | ApiDerrs

Butld Target

Tasget Name Vendor Platform APL.
Android 11-updatel Android Open Fource Project 2-upde.,

7

Google Abh Google Inc. eupda. T
android 2.2 Andresd Open Soutce Pragect 5 B
Google AFl Google Inc. F5] L]
GALAXY Tab Addon Ssmsung Dlectronict Co, Ltd. 22]

1) indioid 13 Androd Open Soutce Preject 13 (]
Geoghe 470 Goeglelne. 3 8

Propedies

Apglication name: LIS

Packagename netlesmideveiep 65
] Craate Acthity: Munactaaty

Min SDE Veriiom: 9

FIGURE 9-1

Displaying Maps | 303

NOTE In order to use Google Maps in your Android application, you need to
ensure that you check the Google APIs as your build target. Google Maps is
not part of the standard Android SDK, so you need to find it in the Google APls
add-on.

2. Once the project is created, observe the additional JAR file (maps . jar) located under the Google
APIs folder (see Figure 9-2).

rated Java liles]
tel]
2\an

FIGURE 9-2

How It Works

This simple activity created an Android project that uses the Google APIs add-on. The Google APIs add-
on includes the standard Android library, with the addition of the Maps library, as packaged within the
maps.jar file.

Obtaining the Maps API Key

Beginning with the Android SDK release v1.0, you need to apply for a free Google Maps API key before
you can integrate Google Maps into your Android application. When you apply for the key, you must
also agree to Google’s terms of use, so be sure to read them carefully.

To apply for a key, follow the series of steps outlined next.

NOTE Google provides detailed documentation on applying for a Maps APl key
at http://code.google.com/android/add-ons/google-apis/mapkey.html.

First, if you are testing the application on the Android Emulator or an Android device directly con-
nected to your development machine, locate the SDK debug certificate located in the default folder
(C:\Users\<username>\.android for Windows 7 users). You can verify the existence of the debug
certificate by going to Eclipse and selecting Window = Preferences. Expand the Android item and
select Build (see Figure 9-3). On the right side of the window, you will be able to see the debug cer-
tificate’s location.

http://code.google.com/android/add-ons/google-apis/mapkey.html

304

| CHAPTER9 LOCATION-BASED SERVICES

NOTE For Windows XP users, the default Android folder is
C:\Documents and Settings\<username>\Local Settings\Application Data\Android.

e ~
@] Prefersnces o)
type filles text Build et ¥
G | -
kit Duild Settings:
a Android : :
Build | Avtomatically iefresh Resouroes and Assels Tolde on bild
DOMS | Foree error when external jars contain native libraries
Launch Build output
LagCal 8 Silenl
Usage Stats Marmal
i Verbose
Data Management
Help Default debug keystore C\Users\Wer- Meng Lee\.androidh debug.keystore
Tl all/Upclate &
Tava Custom debug keystore: Browze,..
Java EE
Java Persistence
JavaScript
Plug-in Development
Remote Systems
Run/Debug
Server
Tasks
Team
Terminal
Uzage Data Collector [| e |
Validation - | Bt Onfwls| o
@ UK [concel |
\
FIGURE 9-3

The filename of the debug keystore is debug.keystore. This is the certificate that Eclipse uses to sign
your application so that it may be run on the Android Emulator or devices.

Using the debug keystore, you need to extract its MD35 fingerprint using the Keytool.exe application
included with your JDK installation. This fingerprint is needed to apply for the free Google Maps
key. You can usually find the Keytool.exe In the c: \Program Files\Java\<JDK_version_number>\bin

folder.

Issue the following command (see Figure 9-4) to extract the MDS fingerprint:

keytool.exe -list -alias androiddebugkey -keystore
"C:\Users\<username>\.android\debug.keystore" -storepass android
-keypass android

B CWindeweaystem 3P md e

FIGURE 9-4

= =) e |

Displaying Maps | 305

In this example, my MDS fingerprint is EF: 7A:61:EA:AF: E0:B4:2D:FD:43:5E:1D:26:04:34:BA.

Copy the MDS5 certificate fingerprint and navigate your web browser to: http://code.google.com/
android/maps-api-signup.html. Follow the instructions on the page to complete the application
and obtain the Google Maps key. When you are done, you should see something similar to what is
shown in Figure 9-5.

GO {)gle Google Maps API

dongle UCode Home > Google Maps AP > Google Maps AP Signup

Thank you for signing up for an Android Maps APl key!

Your kay is:

OK2eMNy joSHFPa i ohLhSuLHBAFSZPmh4uTmTVTA

This key is good for all apps signed with your certificate whose fingerprint is:
EF:7A:61:FRh:AF:E0:B4:2D:FD:43:5E:1D:26:04:34:BA
Here 13 an example xml layout ta get you started on your way ta mapping glory:

<com.google. android.maps . MapView

N6uLHbSF9ZFmh4uIm7VIAY

Check out the Al d tation for more

FIGURE 9-5

@ NOTE Although you can use the MD5 fingerprint of the debug keystore to
obtain the Maps API key for debugging your application on the Android Emulator
or devices, the key will not be valid if you try to deploy your Android application
as an APK file. Once you are ready to deploy your application to the Android
Market (or other methods of distribution), you need to reapply for a Maps API
key using the certificate that will be used to sign your application. Chapter 11 dis-
cusses this topic in more detail.

Displaying the Map

You are now ready to display Google Maps in your Android application. This involves two main
tasks:

> Modify your androidManifest.xml file by adding both the <uses-1ibrary> element and the
INTERNET permission.

> Add the Mapview element to your UL

http://code.google.com/android/maps-api-signup.html
http://code.google.com/android/maps-api-signup.html

306 | CHAPTER9 LOCATION-BASED SERVICES

The following Try It Out shows you how.

Displaying Google Maps

1. Using the project created in the previous section, add the following lines in bold to the main.xml
file (be sure to replace the value of the apikey attribute with the API key you obtained earlier):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill_parent"
>

<com.google.android.maps.MapView
android:id="@+id/mapView"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:enabled="true"
android:clickable="true"
android:apiKey="<YOUR KEY>" />

</LinearLayout>

2. Add the following lines in bold to the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">

<uses-library android:name="com.google.android.maps" />

<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

</application>
<uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

3. Add the following statements in bold to the MainActivity.java file. Note that Mainactivity is
now extending the MapActivity class.

package net.learn2develop.LBS;

import android.app.Activity;

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

Displaying Maps | 307

import android.os.Bundle;
import com.google.android.maps.MapActivity;

public class MainActivity extends MapActivity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

}

@Override

protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

4. Press F11 to debug the application on the Android Emulator. Figure 9-6 shows Google Maps dis-
playing in the activity of your application.

i 5356:000gleAPls 2.2 Emulator R=HEET

FIGURE 9-6

How It Works

In order to display Google Maps in your application, you first need to have the INTERNET permission in
your manifest file. You then add the <com.google.android.maps.MapView> element to your Ul file to
embed the map within your activity. Very importantly, your activity must now extend the Mapactivity
class, which itself is an extension of the activity class. For the MapActivity class, you need to implement
one method: isRouteDisplayed (). This method is used for Google’s accounting purposes, and you should

308 | CHAPTER9 LOCATION-BASED SERVICES

return true for this method if you are displaying routing information on the map. For most simple cases,
you can simply return false.

CAN’T SEE THE MAP?

If instead of seeing Google Maps displayed you see an empty screen with grids,
then most likely you are using the wrong API key in the main.xml file. It is also pos-
sible that you omitted the INTERNET permission in your AndroidManifest.xml file.
Finally, ensure that you have Internet access on your emulator/devices.

If your program does not run (i.e., it crashes), then you probably forgot to add the
following statement to the androidMani fest.xml file:

<uses-library android:name="com.google.android.maps" />

Note its placement in the AndroidManifest.xml file; it should be within the
<Application> element.

Displaying the Zoom Control

The previous section showed how you can display Google Maps in your Android application. You
can pan the map to any desired location and it will be updated on-the-fly. However, on the emulator
there is no way to zoom in or out from a particular location (on a real Android device you can pinch
the map to zoom it). Thus, in this section, you will learn how you can let users zoom in or out of the
map using the built-in zoom controls.

Displaying the Built-n Zoom Controls

1. Using the project created in the previous activity, add in the following statements in bold:

package net.learn2develop.LBS;

import android.app.Activity;
import android.os.Bundle;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

public class MainActivity extends MapActivity {
MapView mapView;
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mapView = (MapView) findViewById(R.id.mapView);

Displaying Maps | 309

mapView.setBuiltInZoomControls (true);

@Override

protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

2. Press F11 to debug the application on the Android
Emulator. Observe the built-in zoom controls that appear
at the bottom of the map when you click and drag the map
(see Figure 9-7). You can click the minus (-) icon to zoom
out of the map and the plus (+) icon to zoom into the map.

How It Works FIGURE 9-7

To display the built-in zoom controls, you first get a reference to
the map and then call the setBuiltInZoomControls () method:

mapView = (MapView) findViewById(R.id.mapView);
mapView.setBuiltInZoomControls (true) ;

Besides displaying the zoom controls, you can also programmatically zoom in or out of the map
using the zoomIn () or zoomout () method of the Mapcontroller class. The following Try It Out
shows you how to achieve this.

Programmatically Zooming In or Out of the Map

1. Using the project created in the previous activity, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.LBS;

import android.app.Activity;
import android.os.Bundle;

import com.google.android.maps.MapActivity;
import com.google.android.maps.MapView;

import android.view.KeyEvent;
import com.google.android.maps.MapController;

public class MainActivity extends MapActivity {
MapView mapView;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

310 | CHAPTER9 LOCATION-BASED SERVICES

setContentView(R.layout.main) ;
mapView = (MapView) findviewById(R.id.mapView) ;
mapView.setBuiltInZoomControls (true) ;

}

public boolean onKeyDown (int keyCode, KeyEvent event)

{
MapController mc = mapView.getController();
switch (keyCode)
{
case KeyEvent.KEYCODE_ 3:
mc.zoomIn();
break;
case KeyEvent.KEYCODE_ 1:
mc.zoomOut () ;
break;
}
return super.onKeyDown(keyCode, event);
}
@Override

protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

2. Press F11 to debug the application on the Android Emulator. You can now zoom into the map by
pressing the numeric 3 key on the emulator. To zoom out of the map, press the numeric 1 key.

How It Works

To handle key presses on your activity, you handle the onkeyDown event:

public boolean onKeyDown (int keyCode, KeyEvent event)
{
/...

To manage the panning and zooming of the map, you need to obtain an instance of the MapController
class from the Mapview object. The MapController class contains the zoomIn () and zoomout () methods
(plus some other methods to control the map) to enable users to zoom in or out of the map, respectively.

Changing Views

By default, Google Maps is displayed in map view, which is basically drawings of streets and places
of interest. You can also set Google Maps to display in satellite view using the setsatellite()
method of the Mapview class:

@Override
public void onCreate (Bundle savedInstanceState) {

Displaying Maps | 311

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mapView = (MapView) findViewById(R.id.mapView) ;

mapView.setBuiltInZoomControls (true) ;
mapView.setSatellite(true);

Figure 9-8 shows Google Maps displayed in satellite view.

f Sdinngle&Ph,_2.7_Frmulstor

FIGURE 9-8

Besides satellite view, you can also display the map in street view (which highlights all the streets
on the map) using the setStreetview() method. Figure 9-9 shows the map displaying a location in
both street view (left) and satellite view (right).

@Override

public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mapView = (MapView) findViewById(R.id.mapView) ;
mapView.setBuiltInZoomControls (true) ;
mapView.setSatellite(true);
mapView.setStreetView(true);

If you want to display traffic conditions on the map, use the setTraffic() method:

mapView.setTraffic (true);

312 | CHAPTER9 LOCATION-BASED SERVICES

r -
i 5596ctioogleAPis_2.2 Emulator & Ss3biinogleARs 22 Emulator

FIGURE 9-9

Figure 9-10 shows the map displaying the current traffic con-
ditions. The different colors reflect the varying traffic condi-

tions. In general, green color equates to smooth traffic of
about 50 miles per hour, yellow equates to moderate traffic

of about 25-50 miles per hour, and red equates to slow traf-
fic of about less than 25 miles per hour.

& S554GoogleARis_2.2_Emulator

Note that the traffic information is only available in major
cities in the United States, France, Britain, Australia, and
Canada, with new cities and countries frequently added.

Navigating to a Specific Location

By default, Google Maps displays the map of the United States
when it is first loaded. However, you can also set Google
Maps to display a particular location. In this case, you can
use the animateTo () method of the MapController class.

The following Try It Out shows how you can programmati-
cally animate Google Maps to a particular location.

FIGURE 9-10

Displaying Maps

| 313

Navigating the Map to Display a Specific Location

1.

Using the project created in the previous activity, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.LBS;

import
import
import
import
import
import

import

public

android.app.Activity;
android.os.Bundle;
android.view.KeyEvent;
com.google.android.maps.MapActivity;
com.google.android.maps.MapController;
com.google.android.maps.MapView;

com.google.android.maps.GeoPoint;

class MainActivity extends MapActivity ({

MapView mapView;
MapController mc;
GeoPoint p;

/** Called when the activity is first created.
@Override

public void onCreate (Bundle savedInstanceState)

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

*/

{

mapView = (MapView) findViewById(R.id.mapView) ;

mapView.setBuiltInZoomControls (true) ;
//mapView.setSatellite(true);

mapView.setStreetView (true) ;

mc = mapView.getController();

String coordinates[] = {"1.352566007", "103.78921587"};

double lat = Double.parseDouble(coordinates[0]);
double lng = Double.parseDouble(coordinates[1l]);

P = new GeoPoint (
(int) (lat * 1E6),
(int) (1ng * 1E6));

mc.animateTo(p) ;
mc.setZoom(13);
mapView.invalidate():;

public boolean onKeyDown (int keyCode, KeyEvent

{

event)

314 | CHAPTER9 LOCATION-BASED SERVICES

MapController mc = mapView.getController();
switch (keyCode)
{
case KeyEvent.KEYCODE_3:
mc.zoomIn() ;
break;
case KeyEvent.KEYCODE_1:
mc. zoomOut () ;
break;
}
return super.onKeyDown (keyCode, event) ;
}

@Override

protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

2. Press F11 to debug the application on the Android Emulator. When the map is loaded, observe that
it now animates to a particular location in Singapore (see Figure 9-11).

[5556:GoogleAPls 2.2 Emulator [E=E

Pt ']
@gﬁkgﬁbﬂﬂw

ngm'ﬂf!lwmn e
olf Courne | B

SO -
Bt o,
cous (b

FIGURE 9-11

How It Works

In the preceding code, you first obtain a map controller from the Mapview instance and assign it to a
MapController object (mc). You then use a GeoPoint object to represent a geographical location. Note
that for this class, the latitude and longitude of a location are represented in micro degrees. This means

Displaying Maps | 315

that they are stored as integer values. For a latitude value of 40.747778, for example, you need to multi-
ply it by 1e6 (which is one million) to obtain 40747778.

To navigate the map to a particular location, you can use the animateTo () method of the MapController
class. The setzoom() method enables you to specify the zoom level at which the map is displayed (the
bigger the number, the more details you see on the map). The invalidate () method forces the Mapview
to be redrawn.

Adding Markers

Adding markers to a map to indicate places of interest enables your users to easily locate the places
they are looking for. The following Try It Out shows you how to add a marker to Google Maps.

Adding Markers to the Map

1. Create a GIF image containing a pushpin (see Figure 9-12) and copy it e
into the res/drawable-mdpi folder of the project. For the best effect, e
make the background of the image transparent so that it does not 4 5 drawable mdps
block parts of the map when the image is added to the map. S i /[
4 [layout
2. Using the project created in the previous activity, add the following o e
statements in bold to the Mainactivity.java file:
FIGURE 9-12

package net.learn2develop.LBS;
import android.app.Activity;

import android.os.Bundle;
import android.view.KeyEvent;

import com.google.android.maps.GeoPoint;
import com.google.android.maps.MapActivity;
import com.google.android.maps.MapController;
import com.google.android.maps.MapView;

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;
import android.graphics.Canvas;

import android.graphics.Point;

import com.google.android.maps.Overlay;
import java.util.List;

public class MainActivity extends MapActivity {
MapView mapView;
MapController mc;
GeoPoint p;

class MapOverlay extends com.google.android.maps.Overlay
{

@Override

316 | CHAPTER9 LOCATION-BASED SERVICES

public boolean draw(Canvas canvas, MapView mapView,
boolean shadow, long when)
{

super.draw(canvas, mapView, shadow);

//---translate the GeoPoint to screen pixels---
Point screenPts = new Point();
mapView.getProjection() .toPixels(p, screenPts);

//---add the marker---
Bitmap bmp = BitmapFactory.decodeResource(

getResources(), R.drawable.pushpin);
canvas.drawBitmap (bmp, screenPts.x, screenPts.y-50, null);
return true;

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mapView = (MapView) findvViewById(R.id.mapView) ;
mapView.setBuiltInZoomControls (true) ;

//mapView.setSatellite(true);
//mapView.setStreetView(true);

mc = mapView.getController();

String coordinates[] = {"1.352566007", "103.78921587"};
double lat Double.parseDouble(coordinates|[0]) ;

double 1lng = Double.parseDouble(coordinates([1]);

P = new GeoPoint (
(int) (lat * 1E6),
(int) (lng * 1E6));

mc.animateTo (p) ;
mc.setzoom(13) ;

//---Add a location marker---

MapOverlay mapOverlay = new MapOverlay();
List<Overlay> listOfOverlays = mapView.getOverlays():
listOfOverlays.clear();

listOfOverlays.add (mapOverlay) ;

mapView.invalidate() ;

public boolean onKeyDown (int keyCode, KeyEvent event)
{
MapController mc = mapView.getController();
switch (keyCode)

Displaying Maps | 317

case KeyEvent.KEYCODE_3:
mc.zoomIn() ;
break;
case KeyEvent.KEYCODE_1:
mc . zoomOut () ;
break;
}
return super.onKeyDown (keyCode, event);
}
@Override
protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

3. Press F11 to debug the application on the Android Emulator. Figure 9-13 shows the marker added
to the map.

(ISR

W 5556i500gieAPis 2.2 Emulator

M@ 2:50m

MO O

I—
— _'I'_i—.._ﬂ_!ld _{ f—
| _
r— s '._._._.l___r.._._ —p— r.__._.r._._._ Pr—

ALT ALT

FIGURE 9-13

How It Works
To add a marker to the map, you first need to define a class that extends the overlay class:

class MapOverlay extends com.google.android.maps.Overlay
{

@Override
public boolean draw(Canvas canvas, MapView mapView,

318 | CHAPTER9 LOCATION-BASED SERVICES

boolean shadow, long when)
{
/]

An overlay represents an individual item that you can draw on the map. You can add as many overlays
as you want. In the Mapoverlay class, override the draw() method so that you can draw the pushpin
image on the map. In particular, note that you need to translate the geographical location (represented
by a GeoPoint object, p) into screen coordinates:

//---translate the GeoPoint to screen pixels---

Point screenPts = new Point();
mapView.getProjection() .toPixels(p, screenPts);

Because you want the pointed tip of the pushpin to indicate the position of the location, you need to
deduct the height of the image (which is 50 pixels) from the y coordinate of the point (see Figure 9-14)
and draw the image at that location:

//---add the marker---

Bitmap bmp = BitmapFactory.decodeResource (

getResources (), R.drawable.pushpin);
canvas.drawBitmap (bmp, screenPts.x, screenPts.y-50, null);

Polnt to deaw image
screenPts.x, screenPrs.y-5C

)lrsu
acreenPra.x, acreenPra.y

Location of point

FIGURE 9-14

To add the marker, create an instance of the Mapoverlay class and add it to the list of overlays available
on the Mapview object:

//---Add a location marker---

MapOverlay mapOverlay = new MapOverlay () ;
List<Overlay> listOfOverlays = mapView.getOverlays();
listOfOverlays.clear () ;

listOfOverlays.add (mapOverlay) ;

Getting the Location That Was Touched

After using Google Maps for a while, you may want to know the latitude and longitude of a location
corresponding to the position on the screen that was just touched. Knowing this information is very
useful, as you can determine a location’s address, a process known as reverse geocoding (you will
learn how this is done in the next section).

Displaying Maps | 319

If you have added an overlay to the map, you can override the onTouchEvent () method within the
MapOverlay class. This method is fired every time the user touches the map. This method has two

parameters: MotionEvent and Mapview. Using the MotionEvent parameter, you can determine whether
the user has lifted his or her finger from the screen using the getaAction () method. In the following
code snippet, if the user has touched and then lifted the finger, you display the latitude and longitude
of the location touched:

import android.view.MotionEvent;
import android.widget.Toast;
/] ...

class MapOverlay extends com.google.android.maps.Overlay
{
@Override
public boolean draw(Canvas canvas, MapView mapView,
boolean shadow, long when)

{

super.draw (canvas, mapView, shadow);

//---translate the GeoPoint to screen pixels---
Point screenPts = new Point();
mapView.getProjection().toPixels(p, screenPts);

//---add the marker---
Bitmap bmp = BitmapFactory.decodeResource (

getResources (), R.drawable.pushpin);
canvas.drawBitmap (bmp, screenPts.x, screenPts.y-50, null);
return true;

@Override
public boolean onTouchEvent (MotionEvent event, MapView mapView)
{
//---when user lifts his finger---
if (event.getAction() == 1) {
GeoPoint p = mapView.getProjection().fromPixels (
(int) event.getX(),
(int) event.getY()):
Toast .makeText (getBaseContext (),
"Location: "+
p.getLatitudeE6() / 1E6 + "," +
p.getLongitudeE6() /1E6 ,
Toast .LENGTH_ SHORT) .show();
}
return false;

The getProjection() method returns a projection for converting between screen-pixel coordinates
and latitude/longitude coordinates. The fromPixels () method then converts the screen coordinates

into a GeoPoint object.

Figure 9-15 shows the map displaying a set of coordinates when the user clicks a location on the map.

320 | CHAPTER9 LOCATION-BASED SERVICES

' 5556:GoogleAPls 2.2 Emulator Ll [

Ml & 6:35m

BT TE R TR TR TR

i e | s |

FIGURE 9-15

Geocoding and Reverse Geocoding

As mentioned in the preceding section, if you know the latitude and longitude of a location, you can
find out its address using a process known as reverse geocoding. Google Maps in Android supports
this via the Geocoder class. The following code snippet shows how you can retrieve the address of a
location just touched using the getFromLocation () method:

import android.location.Address;
import android.location.Geocoder;
import java.util.Locale;

import java.io.IOException;

/]

@Override
public boolean onTouchEvent (MotionEvent event, MapView mapView)
{
//---when user lifts his finger---
if (event.getAction() == 1) {
GeoPoint p = mapView.getProjection().fromPixels (
(int) event.getX(),
(int) event.getY());
/*
Toast .makeText (getBaseContext (),
"Location: "+
p.getLatitudeE6() / 1E6 + "," +
p.getLongitudeE6 () /1E6
Toast .LENGTH_SHORT) .show () ;

Displaying Maps | 321

*/

Geocoder geoCoder = new Geocoder (
getBaseContext (), Locale.getDefault());
try {
List<Address> addresses = geoCoder.getFromLocation (
p.getLatitudeE6() / 1E6,
p.getLongitudeE6() / 1lE6, 1);

String add = "";

if (addresses.size() > 0)

{

for (int i=0; i<addresses.get(0).getMaxAddressLineIndex();
i++)
add += addresses.get(0).getAddressLine(i) + "\n";

}

Toast .makeText (getBaseContext (), add, Toast.LENGTH SHORT) .show();
}
catch (IOException e) {

e.printStackTrace();
}
return true;

}

return false;

The Geocoder object converts the latitude and longitude into an address using the getFromLocation ()
method. Once the address is obtained, you display it using the Toast class. Figure 9-16 shows the
application displaying the address of a location that was touched on the map.

If you know the address of a location but want to know its latitude and longitude, you can do so via
geocoding. Again, you can use the Geocoder class for this purpose. The following code shows how
you can find the exact location of the Empire State Building by using the getFromLocationName ()
method:

//---geo-coding---
Geocoder geoCoder = new Geocoder (this, Locale.getDefault()):
try {
List<Address> addresses = geoCoder.getFromLocationName (
"empire state building", 5);

String add = "";
if (addresses.size() > 0) {
P = new GeoPoint (
(int) (addresses.get(0).getLatitude() * 1E6),
(int) (addresses.get(0).getLongitude() * 1E6));
mc.animateTo(p);
mapView.invalidate();
}
} catch (IOException e) {
e.printStackTrace();

322

| CHAPTER9 LOCATION-BASED SERVICES

Figure 9-17 shows the map navigating to the location of the Empire State Building.

Nome Park
E11th Ave Juwell Hei 1 v é@ E
g Hoffman H; y ,,v&' Ciiton | Central Park
i LS t Roosevelt
@ ' A Theater District M::‘m Fslandd
LY e Times Sauare, /
£ % Ve, idtawn 8
% . .,.‘4 . East 4 Hunlers
y ';.;:LM 3 Muray Ha P oIt
0 2 _ EShA, Fatiren T
603 Peoria St District
o ; ' & B
v Aurora, CO 80011 R ot
Square Village !
SoHo 1
/ \ / o
\.r\n_u.;h'\@\ Q S(Naw York U f
FIGURE 9-16 FIGURE 9-17

GETTING LOCATION DATA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many satellites
orbiting the earth, you can use a GPS receiver to find your location easily. However, GPS requires a
clear sky to work and hence does not always work indoors or where satellites can’t penetrate (such as
a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile phone
is switched on, it is constantly in contact with base stations surrounding it. By knowing the identity of
cell towers, it is possible to translate this information into a physical location through the use of various
databases containing the cell towers’ identities and their exact geographical locations. The advantage of
cell tower triangulation is that it works indoors, without the need to obtain information from satellites.
However, it is not as precise as GPS because its accuracy depends on overlapping signal coverage, which
varies quite a bit. Cell tower triangulation works best in densely populated areas where the cell towers
are closely located.

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect to cell
towers, the device connects to a Wi-Fi network and checks the service provider against databases to
determine the location serviced by the provider. Of the three methods described here, Wi-Fi triangu-
lation is the least accurate.

On the Android, the SDK provides the LocationManager class to help your device determine the user’s
physical location. The following Try It Out shows you how this is done in code.

Navigatin&the Map to a Specific Location Using the Location

1.

Manager Class

Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.LBS;

import android.app.Activity;

Getting Location Data

| 323

import
/...
/...

import
import

import

public

android.content.Context;

android.location.Location;
android.location.LocationListener;
android.location.LocationManager;

class MainActivity extends MapActivity {

MapView mapView;
MapController mc;
GeoPoint p;

private LocationManager 1m;
private LocationListener locationListener;

class MapOverlay extends com.google.android.maps.Overlay

{

/]

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

mapView = (MapView) findViewById(R.id.mapView) ;
mapView.setBuiltInZoomControls (true) ;

mc = mapView.getController () ;

//---navigate to a point first---
String coordinates[] = {"1.352566007", "103.78921587"};
double lat = Double.parseDouble(coordinates[0]);
double lng = Double.parseDouble(coordinates([1]);
p = new GeoPoint (
(int) (lat * 1E6),
(int) (lng * 1E6));
mc.animateTo (p) ;
mc.setZoom(13) ;

//---Add a location marker---
/...

//---reverse geo-coding---
/...

//---use the LocationManager class to obtain locations data---
1lm = (LocationManager)
getSystemService (Context.LOCATION SERVICE);

locationListener = new MyLocationListener();
1m.requestLocationUpdates (

LocationManager.GPS_PROVIDER,
ol

324 | CHAPTER9 LOCATION-BASED SERVICES

0,
locationListener);

private class MyLocationListener implements LocationListener
{
@Override
public void onLocationChanged(Location loc) {
if (loc != null) {
Toast .makeText (getBaseContext (),
"Location changed : Lat: " + loc.getLatitude() +
" Lng: " + loc.getLongitude(),
Toast .LENGTH_ SHORT) .show();

p = new GeoPoint (
(int) (loc.getLatitude() * 1E6),
(int) (loc.getLongitude() * 1E6));

mc.animateTo(p);
mc.setZoom(18);

@Override
public void onProviderDisabled(String provider) {

}

@Override
public void onProviderEnabled(String provider) {
}

@Override
public void onStatusChanged(String provider, int status,
Bundle extras) {

public boolean onKeyDown (int keyCode, KeyEvent event)

{
/]

@Override

protected boolean isRouteDisplayed() {
// TODO Auto-generated method stub
return false;

2. Press F11 to debug the application on the Android Emulator.

3. To simulate GPS data received by the Android Emulator, you use the Location Controls tool (see
Figure 9-18) located in the DDMS perspective.

Getting Location Data | 325

Ensure that you have first selected the emulator in the Devices tab. Then, in the Emulator Control
tab, locate the Location Controls tool and select the Manual tab. Enter a latitude and longitude

and click the Send button.

Observe that the map on the emulator now animates to another location (see Figure 9-19). This

proves that the application has received the GPS data.

] DDMS - LBS/sc/net/leamdevelopfL RS MainAc tivily java -
File Edit Run Source Refactor Navigate Search Pa

i A 8u
Flw il =% (o' -
B vences R =8
K| G@nly 2 oM
Name 2] |
HTOTYPY02235 Online 2_1.-!

a [Z) ermulator-5554 Online G| &
system_process 50 &0: ||
com.andreidanputme 117 880 ||
com.andreid.phone 121 B850
com.ardroid launche 123 BG607
com.android.settings 128 Ba0¢
com.gocgle.process.c 169 a0t

e amernid slapmele 182 AR "

. it | " |

| =0

Location Controls
Manual [Gex | kML
8 Decimal

) Sexagesimal
Langitude 122084095

Latitude 37422006 -
[sene] |

FIGURE 9-18

i 5E54GongleAPTs 2.2 Frulstor

)

FIGURE 9-19

326 | CHAPTER9 LOCATION-BASED SERVICES

How It Works

In Android, location-based services are provided by the LocationManager class, located in the android
.location package. Using the LocationManager class, your application can obtain periodic updates of
the device’s geographical locations, as well as fire an intent when it enters the proximity of a certain
location.

In the MainActivity.java file, you first obtain a reference to the LocationManager class using the
getSystemService () method. To be notified whenever there is a change in location, you need to reg-
ister a request for location changes so that your program can be notified periodically. This is done
via the requestLocationUpdates()lnethod:
lm.requestLocationUpdates (

LocationManager.GPS_PROVIDER,

0,

0,

locationListener) ;

This method takes four parameters:

> provider — The name of the provider with which you register. In this case, you are using GPS to
obtain your geographical location data.

» minTime — The minimum time interval for notifications, in milliseconds
» minDistance — The minimum distance interval for notifications, in meters
> listener — An object whose onLocationChanged () method will be called for each location update

The MyLocationListener class implements the LocationListener abstract class. You need to override
four methods in this implementation:

> onLocationChanged (Location location) — Called when the location has changed

> onProviderDisabled (String provider) — Called when the provider is disabled by the user

> onProviderEnabled(String provider) — Called when the provider is enabled by the user

> onStatusChanged (String provider, int status, Bundle extras) — Called when the provider

status changes

In this example, you’re more interested in what happens when a location changes, so you’ll write some
code in the onLocationChanged () method. Specifically, when a location changes, you will display a
small dialog on the screen showing the new location information: latitude and longitude. You show
this dialog using the Toast class.

If you want to use Cell-ID and Wi-Fi triangulation (important for indoor use) for obtaining your
location data, you can use the network location provider, like this:

Im.requestLocationUpdates (
LocationManager .NETWORK_ PROVIDER,
0,
0,
locationListener) ;

Summary | 327

You can combine both the GPS location provider with the network location provider within your
application.

Monitoring a Location

One very cool feature of the LocationManager class is its ability to monitor a specific location. This
is achieved using the addproximityalert () method. The following code snippet shows how to moni-
tor a particular location so that if the user is within a five-meter radius from that location, your
application will fire an intent to launch the web browser:

//---use the LocationManager class to obtain locations data---
Im = (LocationManager)
getSystemService (Context.LOCATION_ SERVICE) ;

//---PendingIntent to launch activity if the user is within some locations---
PendingIntent pendIntent = PendingIntent.getActivity(
this, 0, new
Intent (android.content.Intent .ACTION VIEW,
Uri.parse("http://www.amazon.com")), 0);

1m.addProximityAlert (37.422006, -122.084095, 5, -1, pendIntent);

The addpProximityalert () method takes five arguments: latitude, longitude, radius (in meters), expi-
ration (time for the proximity alert to be valid, after which it will be deleted; -1 for no expiration),
and the pending intent.

Note that if the Android device’s screen goes to sleep, the proximity is also checked once every four
minutes in order to preserve the battery life of the device.

SUMMARY

This chapter took a whirlwind tour of the Mapview object, which displays Google Maps in your
Android application. You have learned the various ways in which the map can be manipulated, and
you have also seen how you can obtain geographical location data using the various network provid-
ers: GPS, Cell-ID, or Wi-Fi triangulation.

EXERCISES

1.

2.
3.
4.

If you have embedded the Google Maps APl into your Android application but it does not show
the map when the application is loaded, what could be the likely reasons?

What is the difference between geocoding and reverse geocoding?
Name the two location providers that you can use to obtain your location data.
What is the method for monitoring a location?

Answers to Exercises can be found in Appendix C.

CHAPTER 9 LOCATION-BASED SERVICES

TOPIC

Displaying the
MapView

Referencing the
Map library

Displaying the
zoom controls

Programmatically
zooming in or out
of the map

Changing views

Animating to
a particular
location

Adding markers

Getting the loca-
tion of the map
touched

Geocoding
and reverse
geocoding

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS

<com.google.android.maps.MapView
android:id="@+id/mapView"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:enabled="true"
android:clickable="true"
android:apiKey="0K2eMNyjc5HFPsiobLh6uLHb8FIZFmh4duIm7VTA"

<uses-library android:name="com.google.android.maps" />
mapView.setBuiltInZoomControls (true) ;

mc.zoomIn() ;
mc . zoomOut () ;

mapView.setSatellite(true);
mapView.setStreetView (true) ;
mapView.setTraffic (true);

mc = mapView.getController();
String coordinates[] = {"1.352566007", "103.78921587"};
double lat = Double.parseDouble(coordinates[0]);
double 1lng = Double.parseDouble(coordinates([1]);
p = new GeoPoint (
(int) (lat * 1E6),
(int) (lng * 1E6));
mc.animateTo (p) ;

Implement an Overlay class and override the draw() method

/>

GeoPoint p = mapView.getProjection() .fromPixels (

(int)
(int)

event.getX(),
event.getY());

Use the Geocoder class

Summary | 329

TOPIC KEY CONCEPTS

Obtaining private LocationManager lm;

location data
/] ..

Im = (LocationManager)
getSystemService (Context.LOCATION_ SERVICE) ;

locationListener = new MyLocationListener();

Im.requestLocationUpdates (
LocationManager.GPS_PROVIDER,
0,
0,
locationListener) ;

/]

private class MyLocationListener implements LocationListener
{

@Override

public void onLocationChanged(Location loc) {
if (loc !'= null) {
}

@Override
public void onProviderDisabled(String provider) {
}

@Override
public void onProviderEnabled(String provider) {

}

@Override
public void onStatusChanged(String provider, int status,
Bundle extras) {

}

Monitoring a Im.addProximityAlert (37.422006, -122.084095, 5, -1, pendIntent);
location

Developing Android Services

WHAT YOU WILL LEARN IN THIS CHAPTER

How to create a service that runs in the background
How to perform long-running tasks in a separate thread

How to perform repeated tasks in a service

Y Y VY Y

How an activity and a service communicate

A service is an application in Android that runs in the background without needing to interact
with the user. For example, while using an application, you may want to play some background
music at the same time. In this case, the code that is playing the background music has no need
to interact with the user, and hence it can be run as a service. Services are also ideal for situa-
tions in which there is no need to present a Ul to the user. A good example of this scenario is
an application that continually logs the geographical coordinates of the device. In this case, you
can write a service to do that in the background. In this chapter, you will learn how to create
your own services and use them to perform background tasks asynchronously.

CREATING YOUR OWN SERVICES
The best way to understand how a service works is by creating one. The following Try It Out

shows you the steps to create a simple service. Subsequent sections will add more functionality
to this service. For now, you will learn how to start and stop a service.

Creating a Simple Service

codefile Services.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it as shown in Figure 10-1.

332 | CHAPTER10 DEVELOPING ANDROID SERVICES

& New Andeoid Preject s l_l'ulﬂ'
New Android Project imi
Creates o rew Andrcid Pregect reicurce. ok g

1 3
Preject rames Services
Canlents
Creste new project in workspace
Coatte praject om exbing st
1 Use defai lecation
C/Unert Wei-Meng e/ Beginning Andmmid/Sendces =
Create preject from exiting Mmple
Samplex | Accelemmesarlay
Buld Taeges
Andreid 21-upda.. Android Open Source Project L-upd. T
Goegle APl Google b, Mg T
Bndre=d 22 Anhioid Open Source Pragect 2 L)
Google 4Pl Googleine. 22]
GALAXY Talb Add... Samaung Blectronics Co. Lt 2 B
¥ Andread 33 Arndroid Open Source Project 3]
1 Google APl Googlebnt, 3]
‘Standard Android platform 2.3
Propeties
Application name Strvices
Packagerame netlesmidevelop Services
7] Crante Activity Mindctaty
Min SDK Versiens §
@ gk [peas | [pmsn][cancel

FIGURE 10-1

Add a new class file to the project and name it MyService.java

package net.learn2develop.Services;

import android.app.Service;

import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

public class MyService extends Service {

@Override

public IBinder onBind(Intent arg0) {

return null;

@Override

. Populate it with the following code:

public int onStartCommand(Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly

// stopped,

Toast .makeText (this,

so return sticky.
"Service Started", Toast.LENGTH LONG).show();

return START STICKY;

@Override

public void onDestroy() {
super.onDestroy() ;

Creating Your Own Services

| 333

Toast .makeText (this, "Service Destroyed", Toast.LENGTH LONG).show();

In the androidmanifest.xml file, add the following statement in bold:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Services"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon" android:label="€@string/app_name">

<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER"
</intent-filter>

</activity>
<service android:name=".MyService" />
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

In the main.xm1 file, add the following statements in bold:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<Button android:id="@+id/btnStartService"
android:layout_width="fill parent"”
android:layout_height="wrap_ content"
android:text="Start Service" />

<Button android:id="@+id/btnStopService"
android:layout_width="fill parent"
android:layout_height="wrap_ content"
android:text="Stop Service" />

</LinearLayout>

Add the following statements in bold to the MainActivity.java file:

package net.learn2develop.Services;

import android.app.Activity;
import android.os.Bundle;

import android.content.Intent;
import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override

/>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

334 | CHAPTER10 DEVELOPING ANDROID SERVICES

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener() {
public void onClick(View v) {
startService(new Intent (getBaseContext(), MyService.class));

}
})i

Button btnStop = (Button) findvViewById(R.id.btnStopService);
btnStop.setOnClickListener (new View.OnClickListener() {

public void onClick(View v) {
stopService (new Intent (getBaseContext(), MyService.class));

});

6. Press F11 to debug the application on the Android Emulator.

7. Clicking the Start Service button will start the service (see Figure 10-2). To stop the service, click
the Stop Service button.

-
| 5554:Android 23 Emulator

Services

Start Service

Stop Service

®®O A

Ll lels oo lola o

Service Starled

\

FIGURE 10-2

How It Works

This example demonstrated the simplest service that you can create. The service itself is not doing
anything useful, of course, but it serves to illustrate the creation process.

Creating Your Own Services | 335

First, you defined a class that extends the service base class. All services extend the service class:

public class MyService extends Service {

Within the Myservice class, you implemented three methods:

@Override
public IBinder onBind(Intent arg0) {...}

@Override

public int onStartCommand (Intent intent, int flags, int startId) {...}
@Override

public void onDestroy() {...}

The onBind () method enables you to bind an activity to a service. This in turn enables an activity
to directly access members and methods inside a service. For now, you simply return a null for this
method. Later in this chapter you will learn more about binding.

The onStartCommand () method is called when you start the service explicitly using the startService()
method (discussed shortly). This method signifies the start of the service, and you code it to do the
things you need to do for your service. In this method, you returned the constant START_STICKY so that
the service will continue to run until it is explicitly stopped.

The onbestroy () method is called when the service is stopped using the stopsService () method. This is
where you clean up the resources used by your service.

All services that you have created must be declared in the AndroidManifest.xml file, like this:

<gservice android:name=".MyService" />

If you want your service to be available to other applications, you can always add an intent filter with
an action name, like this:

<service android:name=".MyService">
<intent-filter>
<action android:name="net.learn2develop.MyService" />
</intent-filter>
</service>

To start a service, you use the startService() method, like this:

startService (new Intent (getBaseContext (), MyService.class));

If you are calling an external service, then the call to the startservice () method will look like this:

startService(new Intent("net.learn2develop.MyService"));

To stop a service, use the stopService () method, like this:

stopService (new Intent (getBaseContext(), MyService.class));

336 | CHAPTER10 DEVELOPING ANDROID SERVICES

Performing Long-Running Tasks in a Service

Because the service you created in the previous section does not do anything useful, in this section
you will modify the service so that it perform a task. In the following Try It Out, you will simulate
the service of downloading a file from the Internet.

Making Your Service Useful

1. Using the same project created in the previous section, add the following statements in bold to the
MainActivity.java file:

package net.learn2develop.Services;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.widget.Toast;

import java.net.MalformedURLException;
import java.net.URL;

public class MyService extends Service {
@Override
public IBinder onBind(Intent arg0) ({
return null;

@Override

public int onStartCommand(Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH_LONG) .show() ;

try {
int result = DownloadFile(new URL("http://www.amazon.com/somefile.pdf"));
Toast .makeText (getBaseContext (),
"Downloaded " + result + " bytes",
Toast . LENGTH_LONG) .show() ;
} catch (MalformedURLException e) {
// TODO Auto-generated catch block
e.printStackTrace():;

}

return START_STICKY;
}
@Override

public void onDestroy () {
super.onDestroy () ;
Toast.makeText (this, "Service Destroyed", Toast.LENGTH_LONG) .show() ;

private int DownloadFile (URL url) {
try {
//---simulate taking some time to download a file---

http://www.amazon.com/somefile.pdf

Creating Your Own Services | 337

Thread.sleep(5000);

} catch (InterruptedException e) {
e.printStackTrace();

}

//---return an arbitrary number representing
// the size of the file downloaded---
return 100;

}

2. Press F11 to debug the application on the Android Emulator.

3. Click the Start Service button to start the service to download the file. Observe that the activity will
be frozen for a few seconds (see Figure 10-3) before the Toast class displays the “Downloaded 100
bytes” message.

r v
§ | S55%Android_23_Emulator [

‘Services

Stop Service

FIGURE 10-3

How It Works

In this example, your service calls the Downloadrile () method to simulate downloading a file from a
given URL. This method returns the total number of bytes downloaded (which you have hardcoded as
100). To simulate the delays experienced by the service when downloading the file, you used the Thread
.Sleep () method to pause the service for five seconds (5,000 milliseconds).

As you start the service, note that the activity is suspended for about five seconds, which is the time taken
for the file to be downloaded from the Internet. During this time, the entire activity is not responsive,
proving a very important point: The service runs on the same thread as your activity. In this case, because
the service is suspended for five seconds, so is the activity.

338 | CHAPTER10 DEVELOPING ANDROID SERVICES

Hence, for a long-running service, it is important that you put all long-running code into a separate
thread so that it does not tie up the application that calls it. The following Try It Out shows you how.

Performing Tasks in a Service Asynchronously

1. Using the same project created in the previous section, add the following statements in bold to the
MyService.java file:

package net.learn2develop.Services;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.util.Log;
import android.widget.Toast;

import java.net.MalformedURLException;
import java.net.URL;

import android.os.AsyncTask;

public class MyService extends Service {
@Override
public IBinder onBind(Intent arg0) {
return null;

@Override
public int onStartCommand (Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH_LONG) .show() ;
try {
new DoBackgroundTask() .execute(
new URL("http://www.amazon.com/somefiles.pdf"),
new URL("http://www.wrox.com/somefiles.pdf"),
new URL("http://www.google.com/somefiles.pdf"),
new URL("http://www.learn2develop.net/somefiles.pdf"));
} catch (MalformedURLException e) {
e.printStackTrace();

}

return START_ STICKY;
}
@Override

public void onDestroy () {
super .onDestroy () ;
Toast.makeText (this, "Service Destroyed", Toast.LENGTH_LONG) .show() ;

private int DownloadFile (URL url) {

Creating Your Own Services | 339

try {
//---simulate taking some time to download a file---
Thread.sleep(5000) ;
} catch (InterruptedException e) {
e.printStackTrace() ;
}
//---return an arbitrary number representing
// the size of the file downloaded---
return 100;

private class DoBackgroundTask extends AsyncTask<URL, Integer, Long> {
protected Long doInBackground(URL... urls) {
int count = urls.length;
long totalBytesDownloaded = 0;
for (int i = 0; i < count; i++) {
totalBytesDownloaded += DownloadFile(urls[i]):;
//---calculate percentage downloaded and
// report its progress---
publishProgress((int) (((i+1l) / (float) count) * 100)):;
}
return totalBytesDownloaded;
}

protected void onProgressUpdate(Integer... progress) {
Log.d("Downloading files",
String.valueOf(progress[0]) + "% downloaded");
Toast .makeText (getBaseContext (),
String.valueOf(progress[0]) + "% downloaded",
Toast .LENGTH_ LONG) .show() ;
}

protected void onPostExecute(Long result) {
Toast .makeText (getBaseContext (),
"Downloaded " + result + " bytes",
Toast .LENGTH LONG) .show() ;
stopSelf();

Press F11 to debug the application on the Android Emulator.

Click the Start Service button. The Toast class will display a message indicating what percentage of the
download is completed (see Figure 10-4). You should see four of them: 25%, 50%, 75%, and 100%.

You will also observe the following output in the LogCat window:

01-16 02:56:29.051: DEBUG/Downloading files (8844
01-16 02:56:34.071: DEBUG/Downloading files (8844
01-16 02:56:39.106: DEBUG/Downloading files (8844
01-16 02:56:44.173: DEBUG/Downloading files (8844

: 25% downloaded
: 50% downloaded
: 75% downloaded
: 100% downloaded

340 | CHAPTER10 DEVELOPING ANDROID SERVICES

’
07 5554 Android 2.3 Frmolatos [

Services

Start Service

Stop Service

25% downloaded

\

FIGURE 10-4

How It Works

This example illustrates one way in which you can execute a task asynchronously within your service.
You do so by creating an inner class that extends the AsyncTask class. The asyncTask class enables you
to perform background execution without needing to manually handle threads and handlers.

The poBackgroundTask class extends the asyncTask class by specifying three generic types:

private class DoBackgroundTask extends AsyncTask<URL, Integer, Long> {

In this case, the three types specified are URL, Integer and Long. These three types specify the data type
used by the following three methods that you implement in an AsyncTask class:

> doInBackground() — This method takes an array of the first generic type specified earlier. In this
case, the type is URL. This method is executed in the background thread and is where you put your
long-running code. To report the progress of your task, you call the publishProgress () method,
which invokes the next method, onProgresstpdate (), which you implement in an asyncTask class.
The return type of this method takes the third generic type specified earlier, which is Long in this case.

> onProgressUpdate () — This method is invoked in the UI thread and is called when you call the
publishProgress () method. It takes an array of the second generic type specified earlier. In this
case, the type is Integer. Use this method to report the progress of the background task to the user.

> onPostExecute () — This method is invoked in the Ul thread and is called when the doInBackground ()
method has finished execution. This method takes an argument of the third generic type specified earlier,
which in this case is a Long.

Creating Your Own Services | 341

To download multiple files in the background, you created an instance of the DoBackgroundTask class
and then called its execute () method by passing in an array of URLs:

try {
new DoBackgroundTask () .execute (
new URL("http://www.amazon.com/somefiles.pdf"),
new URL("http://www.wrox.com/somefiles.pdf")
new URL("http://www.google.com/somefiles.pdf"),
new URL("http://www.learn2develop.net/somefiles.pdf"));
} catch (MalformedURLException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

The preceding causes the service to download the files in the background, and reports the progress as
a percentage of files downloaded. More important, the activity remains responsive while the files are
downloaded in the background, on a separate thread.

Note that when the background thread has finished execution, you need to manually call the stopself ()
method to stop the service:

protected void onPostExecute(Long result) {
Toast.makeText (getBaseContext (),
"Downloaded " + result + " bytes",
Toast.LENGTH_LONG) .show () ;
stopSelf();

The stopself () method is the equivalent of calling the stopService () method to stop the service.

Performing Repeated Tasks in a Service

Besides performing long-running tasks in a service, you might also perform some repeated tasks
in a service. For example, you may write an alarm clock service that runs persistently in the back-
ground. In this case, your service may need to periodically execute some code to check whether a
prescheduled time has been reached so that an alarm can be sounded. To execute a block of code to
be executed at a regular time interval, you can use the Timer class within your service. The following
Try It Out shows you how.

Running Repeated Tasks Using the Timer Class

1. Using the same project created in the previous section, add the following statements in bold to the
MyService.java file:

package net.learn2develop.Services;

import android.app.Service;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.IBinder;
import android.util.Log;

342 | CHAPTER10 DEVELOPING ANDROID SERVICES

import android.widget.Toast;
import java.net.URL;

import java.util.Timer;
import java.util.TimerTask;

public class MyService extends Service {
int counter = 0;
static final int UPDATE_INTERVAL = 1000;
private Timer timer = new Timer();

@Override
public IBinder onBind(Intent arg0) {
return null;

}

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH LONG) .show() ;
doSomethingRepeatedly();
return START_STICKY;

}

private void doSomethingRepeatedly () {
timer.scheduleAtFixedRate(new TimerTask() {
public void run() {
Log.d("MyService", String.valueOf(++counter));

}
}, 0, UPDATE_INTERVAL);
}
@Override

public void onDestroy () {
super .onDestroy () ;
if (timer != null)({
timer.cancel();
}
Toast.makeText (this, "Service Destroyed", Toast.LENGTH_LONG) .show() ;

Press F11 to debug the application on the Android Emulator.
Click the Start Service button.

Observe the output displayed in the LogCat window:

01-16 15:12:04.364: DEBUG/MyService(495): 1
01-16 15:12:05.384: DEBUG/MyService(495): 2
01-16 15:12:06.386: DEBUG/MyService(495): 3
01-16 15:12:07.389: DEBUG/MyService(495): 4
01-16 15:12:08.364: DEBUG/MyService(495): 5
01-16 15:12:09.427: DEBUG/MyService(495): 6
01-16 15:12:10.374: DEBUG/MyService(495): 7

Creating Your Own Services | 343

How It Works

In this example, you created a Timer object and called its scheduleatFixedRate () method inside the
doSomethingRepeatedly () method that you have defined:

private void doSomethingRepeatedly () {
timer.scheduleAtFixedRate (new TimerTask() {
public void run() {
Log.d("MyService", String.valueOf (++counter));
}
}, 0, UPDATE_INTERVAL) ;

You passed an instance of the TimerTask class to the scheduleAtFixedRate () method so that

you can execute the block of code within the run () method repeatedly. The second parameter to the
scheduleAtFixedRate () method specifies the amount of time, in milliseconds, before first execution.
The third parameter specifies the amount of time, in milliseconds, between subsequent executions.

In the preceding example, you essentially print out the value of the counter every one second (1,000
milliseconds). The service repeatedly prints the value of counter until the service is terminated:

@Override
public void onDestroy () {
super.onDestroy () ;
if (timer != null){
timer.cancel () ;
}
Toast.makeText (this, "Service Destroyed", Toast.LENGTH_LONG) .show() ;

For the scheduleAtFixedrate () method, your code is executed at fixed time intervals, regardless of
how long each task takes. For example, if the code within your run () method takes two seconds to
complete, then your second task will start immediately after the first task has ended. Similarly, if your
delay is set to three seconds and the task takes two seconds to complete, then the second task will wait
for one second before starting.

Executing Asynchronous Tasks on
Separate Threads Using IntentService

Earlier in this chapter, you saw how to start a service using the startService () method and stop a
service using the stopservice () method. You have also seen how you should execute long-running
task on a separate thread — not the same thread as the calling activities. It is important to note that
once your service has finished executing a task, it should be stopped as soon as possible so that it does
not unnecessarily hold up valuable resources. That’s why you use the stopself () method to stop the
service when a task has been completed. Unfortunately, a lot of developers often forgot to terminate
the service when it is done performing its task. To easily create a service that runs a task asynchro-
nously and terminates itself when it is done, you can use the Intentservice class.

344

| CHAPTER10 DEVELOPING ANDROID SERVICES

The IntentService class is a base class for service that handles asynchronous requests on demand.
It is started just like a normal service and it executes its task within a worker thread and terminates
itself when the task is completed.

The following Try It Out demonstrates how to use the IntentService class.

Using the IntentService Class to Auto-Stop a Service

1.

2.

Using the same project created in the previous section, add a new class file named
MyIntentService.java.

Populate the MyIntentService.java file as follows:

package net.learn2develop.Services;

import java.net.MalformedURLException;
import java.net.URL;

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;

public class MyIntentService extends IntentService {

public MyIntentService() {
super ("MyIntentServiceName") ;

}
@Override
protected void onHandleIntent (Intent intent) {
try {
int result =
DownloadFile (new URL("http://www.amazon.com/somefile.pdf"));
Log.d("IntentService", "Downloaded " + result + " bytes");
} catch (MalformedURLException e) {
e.printStackTrace();
}
}

private int DownloadFile (URL url) {

try {
//---simulate taking some time to download a file---
Thread.sleep(5000);

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

return 100;

Add the following statement in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.Services"
android:versionCode="1"

http://schemas.android.com/apk/res/android

Creating Your Own Services | 345

android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<service android:name=".MyService" />
<service android:name=".MyIntentService" />
</application>
<uses-sdk android:minSdkVersion="9" />
<uses-permission android:name="android.permission.INTERNET"></uses-permission>
</manifest>

4. Add the following statement in bold to the MainActivity. java file:

public class MainActivity extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
//startService(new Intent (getBaseContext(), MyService.class));
startService(new Intent (getBaseContext (), MyIntentService.class));

)

Button btnStop = (Button) findvViewById(R.id.btnStopService);
btnStop.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
stopService (new Intent (getBaseContext(), MyService.class));
}
)

5. Press F11 to debug the application on the Android Emulator.

6. Click the Start Service button. After about five seconds, you should observe the following statement
in the LogCat window:

01-17 03:05:21.244: DEBUG/IntentService(692): Downloaded 100 bytes

How It Works

First, you defined the MyIntentService class, which extends the IntentService class instead of the
Service class:

public class MyIntentService extends IntentService {

346 | CHAPTER10 DEVELOPING ANDROID SERVICES

You needed to implement a constructor for the class and call its superclass with the name of the intent
service (setting it with a string):

public MyIntentService() {
super ("MyIntentServiceName") ;

}

You then implemented the onHandleIntent () method, which is executed on a worker thread:

@Override
protected void onHandleIntent (Intent intent) {
try {
int result =
DownloadFile(new URL("http://www.amazon.com/somefile.pdf"));
Log.d("IntentService", "Downloaded " + result + " bytes");
} catch (MalformedURLException e) {
e.printStackTrace();
}

The onHandleIntent () method is where you place the code that needs to be executed on a separate
thread, such as downloading a file from a server. When the code has finished executing, the thread is
terminated and the service is stopped automatically.

COMMUNICATING BETWEEN A SERVICE AND AN ACTIVITY

Often a service simply executes in its own thread, independently of the activity that calls it. This doesn’t
pose any problem if you simply want the service to perform some tasks periodically and the activity does
not need to be notified of the status of the service. For example, you may have a service that periodically
logs the geographical location of the device to a database. In this case, there is no need for your service to
interact with any activities, because its main purpose is to save the coordinates into a database. However,
suppose you want to monitor for a particular location. When the service logs an address that is near the
location you are monitoring, it might need to communicate that information to the activity. In this case,
you would need to devise a way for the service to interact with the activity.

The following Try It Out demonstrates how a service can communicate with an activity using a
BroadcastReceiver.

ANl Invoking an Activity from a Service

1.

Using the same project created in the previous section, add the following statements in bold to the
MyIntentService.java file

package net.learn2develop.Services;

import java.net.MalformedURLException;
import java.net.URL;

Communicating between a Service and an Activity | 347

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;

public class MyIntentService extends IntentService {
public MyIntentService() {
super ("MyIntentServiceName") ;

@Override
protected void onHandleIntent (Intent intent) {
try {
int result =
DownloadFile (new URL("http://www.amazon.com/somefile.pdf"));
Log.d("IntentService", "Downloaded " + result + " bytes");

//---send a broadcast to inform the activity
// that the file has been downloaded---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction("FILE DOWNLOADED ACTION");
getBaseContext () . sendBroadcast (broadcastIntent);

} catch (MalformedURLException e) {
e.printStackTrace() ;

private int DownloadFile (URL url) {
try {
//---simulate taking some time to download a file---
Thread.sleep(5000) ;
} catch (InterruptedException e) {
e.printStackTrace() ;
}

return 100;

Add the following statements in bold to the Mainactivity.java file:

package net.learn2develop.Services;

import android.app.Activity;

import android.content.BroadcastReceiver;
import android.content.Context;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.Toast;

import android.content.IntentFilter;

public class MainActivity extends Activity {

348 | CHAPTER10 DEVELOPING ANDROID SERVICES

w

IntentFilter intentFilter;

/** Called when the activity is first created. */
@Override
public void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---intent to filter for file downloaded intent---
intentFilter = new IntentFilter();
intentFilter.addAction ("FILE_DOWNLOADED_ ACTION") ;

//---register the receiver---
registerReceiver(intentReceiver, intentFilter);

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {

//startService (new Intent (getBaseContext (), MyService.class));
startService (new Intent (getBaseContext (), MyIntentService.class));
}
1)
Button btnStop = (Button) findViewById(R.id.btnStopService);

btnStop.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
stopService (new Intent (getBaseContext (), MyService.class));

1)

private BroadcastReceiver intentReceiver = new BroadcastReceiver() {

@Override
public void onReceive (Context context, Intent intent) {
Toast .makeText (getBaseContext (), "File downloaded!",
Toast .LENGTH LONG) .show();

Press F11 to debug the application on the Android Emulator.

Click the Start Service button. After about five seconds, the Toast class will display a message
indicating that the file has been downloaded (see Figure 10-5).

How It Works

To notify an activity when a service has finished its execution, you broadcast an intent using the
sendBroadcast () method:

@Override
protected void onHandleIntent (Intent intent) {

try {
int result =
DownloadFile (new URL("http://www.amazon.com/somefile.pdf"));

Communicating between a Service and an Activity | 349

Log.d("IntentService", "Downloaded " + result + " bytes");

//---send a broadcast to inform the activity
// that the file has been downloaded---
Intent broadcastIntent = new Intent();
broadcastIntent.setAction("FILE DOWNLOADED ACTION");
getBaseContext () . sendBroadcast (broadcastIntent);

} catch (MalformedURLException e) {
e.printStackTrace() ;

The action of this intent that you are broadcasting is set to "FILE_DOWNLOADED_ACTION", which means
any activity that is listening for this intent will be invoked. Hence, in your MainActivity.3java file, you
listen for this intent using the registerReceiver () method from the IntentFilter class:

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R.layout.main) ;

//---intent to filter for file downloaded intent---
intentFilter = new IntentFilter();
intentFilter.addAction ("FILE_DOWNLOADED_ ACTION");
//---register the receiver---

registerReceiver (intentReceiver, intentFilter);

. -
" 555:Android_2.3_Emulator (=)

Services

Starl Service

Stop Service

File downloaded!

FIGURE 10-5

350 | CHAPTER10 DEVELOPING ANDROID SERVICES

When the intent is received, it invokes an instance of the BroadcastReceiver class that you have defined:

private BroadcastReceiver intentReceiver = new BroadcastReceiver () {

@Override
public void onReceive (Context context, Intent intent) {
Toast.makeText (getBaseContext (), "File downloaded!",

Toast.LENGTH_LONG) .show() ;

NOTE Chapter 8 discusses the BroadcastReceiver class in more detail.

In this case, you displayed the message “File downloaded!” Of course, if you need to pass some data
from the service to the activity, you can make use of the Intent object. The next section discusses this.

BINDING ACTIVITIES TO SERVICES

So far, you have seen how services are created and how they are called and terminated when they
are done with their task. All the services that you have seen are simple — either they start with a
counter and increment at regular intervals, or they download a fixed set of files from the Internet.
However, real-world services are usually much more sophisticated, requiring the passing of data
so that they can do the job correctly for you.

Using the service demonstrated earlier that downloads a set of files, suppose you now want to let the
calling activity determine what files to download, instead of hardcoding them in the service. Here is
what you need to do.

First, in the calling activity, you create an Intent object, specifying the service name:

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
Intent intent = new Intent(getBaseContext(), MyService.class):;
}
1)

You then create an array of URL objects and assign it to the Tntent object through its putExtra ()
method. Finally, you start the service using the Intent object:

Button btnStart = (Button) findvViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
Intent intent = new Intent (getBaseContext (), MyService.class);
try {
URL[] urls = new URL[] {

Binding Activities to Services | 351

new URL("http://www.amazon.com/somefiles.pdf"),
new URL("http://www.wrox.com/somefiles.pdf"),
new URL("http://www.google.com/somefiles.pdf"),
new URL("http://www.learn2develop.net/somefiles.pdf")};
intent.putExtra("URLs", urls);
} catch (MalformedURLException e) {
e.printStackTrace();
}
startService(intent);

1)

Note that the URL array is assigned to the Tntent object as an Object array.

On the service’s end, you need to extract the data passed in through the Tntent object in the
onStartCommand () method:

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH_LONG) .show() ;

Object[] objUrls = (Object[]) intent.getExtras().get("URLs");
URL[] urls = new URL[objUrls.length];
for (int i=0; i<objUrls.length-1; i++) {
urls[i] = (URL) objUrls[il];
}
new DoBackgroundTask() .execute(urls);
return START_STICKY;

The preceding first extracts the data using the getExtras () method to return a Bundle object. It
then uses the get () method to extract out the URL array as an Object array. Because in Java you can-
not directly cast an array from one type to another, you have to create a loop and cast each member
of the array individually. Finally, you execute the background task by passing the URL array into
the execute()lnethod.

This is one way in which your activity can pass values to the service. As you can see, if you have
relatively complex data to pass to the service, you have to do some additional work to ensure that
the data is passed correctly. A better way to pass data is to bind the activity directly to the service so
that the activity can call any public members and methods on the service directly. The following Try
It Out shows you how to bind an activity to a service.

Accessing Members of a Property Directly through Binding

1.

Using the same project created earlier, add the following statements in bold to the MyService.java file:

package net.learn2develop.Services;

import java.net.URL;
import java.util.Timer;

352 | CHAPTER10 DEVELOPING ANDROID SERVICES

import java.util.TimerTask;

import android.app.Service;
import android.content.Intent;
import android.os.AsyncTask;
import android.util.Log;
import android.widget.Toast;
import android.os.IBinder;

import android.os.Binder;

public class MyService extends Service {
int counter = 0;
URL[] urls;

static final int UPDATE_INTERVAL = 1000;
private Timer timer = new Timer();

private final IBinder binder = new MyBinder();

public class MyBinder extends Binder {
MyService getService() {
return MyService.this;

@Override

public IBinder onBind(Intent arg0) {
//return null;
return binder;

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH_LONG) .show() ;
new DoBackgroundTask() .execute(urls);
return START_ STICKY;

@Override

public void onDestroy () {

private int DownloadFile (URL url) {

private class DoBackgroundTask extends AsyncTask<URL, Integer, Long> ({

Binding Activities to Services | 353

In the MainActivity.java file, add the following statements in bold:

package net.learn2develop.Services;

import java.net.MalformedURLException;
java.net.URL;

import

import
import
import
import
import
import
import
import
import
import

import
import

public

android

android

android.
android.

.app.Activity;
android.
android.
android.
android.
android.
android.
android.
.widget.Button;
android.

content.BroadcastReceiver;
content.ComponentName;
content.Context;
content.Intent;
content.IntentFilter;
os.Bundle;

view.View;

widget.Toast;

os.IBinder;
content.ServiceConnection;

class MainActivity extends Activity {
IntentFilter intentFilter;

private MyService serviceBinder;
Intent i;

private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
//---called when the connection is made---
serviceBinder = ((MyService.MyBinder)service).getService();
try {

Y

}
public

URL[] urls = new URL[] {
new URL("http://www.amazon.com/somefiles.pdf"),
new URL("http://www.wrox.com/somefiles.pdf"),
new URL("http://www.google.com/somefiles.pdf"),
new URL("http://www.learn2develop.net/somefiles.
//---assign the URLs to the service through the
serviceBinder.urls = urls;

} catch (MalformedURLException e) {
e.printStackTrace();

}

startService(i);

void onServiceDisconnected (ComponentName className) {

//---called when the service disconnects---
serviceBinder = null;

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

pdf")};
serviceBinder object---

354 | CHAPTER10 DEVELOPING ANDROID SERVICES

setContentView(R.layout.main) ;

//---intent to filter for file downloaded intent---
intentFilter = new IntentFilter();
intentFilter.addAction ("FILE_DOWNLOADED_ACTION") ;

//---register the receiver---
registerReceiver (intentReceiver, intentFilter);

Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
i = new Intent(MainActivity.this, MyService.class);
bindService(i, connection, Context.BIND AUTO CREATE);

1)

Button btnStop = (Button) findvViewById(R.id.btnStopService);
btnStop.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {
stopService (new Intent (getBaseContext (), MyService.class));

1)

private BroadcastReceiver intentReceiver = new BroadcastReceiver () {

}i

3. Press F11 to debug the application. Clicking the Start Service button will start the service as normal.

How It Works
To bind activities to a service, you must first declare an inner class in your service that extends the
Binder class:

public class MyBinder extends Binder ({
MyService getService() {
return MyService.this;

Within this class you implemented the getService () method, which returns an instance of the service.

You then created an instance of the MyBinder class:

private final IBinder binder = new MyBinder();

You also modified the onBind () method to return the MyBinder instance:

@Override

public IBinder onBind(Intent arg0) {
//return null;
return binder;

Binding Activities to Services | 355

In the onstartcommand () method, you then call the execute () method using the urls array, which you
declared as a public member in your service:

public class MyService extends Service {
int counter = 0;
URL[] urls;

@Override

public int onStartCommand(Intent intent, int flags, int startId) {
// We want this service to continue running until it is explicitly
// stopped, so return sticky.
Toast.makeText (this, "Service Started", Toast.LENGTH LONG) .show();
new DoBackgroundTask() .execute(urls);
return START STICKY;

This URL array can be set directly from your activity, which you did next.

In the MainaActivity.java file, you first declared an instance of your service and an Intent object:

private MyService serviceBinder;
Intent i;

The serviceBinder object will be used as a reference to the service, which you accessed directly.

You then created an instance of the ServiceConnection class so that you could monitor the state of the
service:

private ServiceConnection connection = new ServiceConnection() {
public void onServiceConnected(ComponentName className, IBinder service) {
//---called when the connection is made---
serviceBinder = ((MyService.MyBinder)service).getService();
try {
URL[] urls = new URL[] {
new URL("http://www.amazon.com/somefiles.pdf"),
new URL("http://www.wrox.com/somefiles.pdf"),
new URL("http://www.google.com/somefiles.pdf"),
new URL("http://www.learn2develop.net/somefiles.pdf")};
//---assign the URLs to the service through the serviceBinder object---
serviceBinder.urls = urls;
} catch (MalformedURLException e) {
e.printStackTrace();
}
startService(i);
}
public void onServiceDisconnected(ComponentName className) {
//---called when the service disconnects---
serviceBinder = null;

356 | CHAPTER10 DEVELOPING ANDROID SERVICES

You need to ankﬂnenttVVOIncthOdS:onServiceConnected&) and onServiceDisconnected ().
The onserviceConnected () method is called when the activity is connected to the service; the
onServiceDisconnected () method is called when the service is disconnected from the activity.

In the onserviceconnected () method, when the activity is connected to the service, you obtained an
instance of the service by using the getService () method of the service argument and then assigning
it to the serviceBinder object. The serviceBinder object is a reference to the service, and all the mem-
bers and methods in the service can be accessed through this object. Here, you created an URL array
and then directly assigned it to the public member in the service:

URL[] urls new URL[] {

new URL("http://www.amazon.com/somefiles.pdf"),

new URL("http://www.wrox.com/somefiles.pdf"),

new URL("http://www.google.com/somefiles.pdf"),

new URL("http://www.learn2develop.net/somefiles.pdf")};

//---assign the URLs to the service through the serviceBinder object---
serviceBinder.urls = urls;

You then started the service using an Intent object:

startService (i) ;

Before you can start the service, you have to bind the activity to the service. This you did in the
onClick () method of the Start Service button:
Button btnStart = (Button) findViewById(R.id.btnStartService);
btnStart.setOnClickListener (new View.OnClickListener () {
public void onClick(View v) {

i = new Intent(MainActivity.this, MyService.class);
bindService(i, connection, Context.BIND AUTO CREATE);

)

The bindService () method enables your activity to be connected to the service. It takes three arguments:
an Intent object, a ServiceConnection object, and a flag to indicate how the service should be bound.

SUMMARY

In this chapter, you learned how to create a service in your Android project to execute long-running
tasks. You have seen the many approaches you can use to ensure that the background task is exe-
cuted in an asynchronous fashion, without tying up the main calling activity. You have also learned
how an activity can pass data into a service, and how you can alternatively bind to an activity so

that it can access a service more directly.

Summary | 357

EXERCISES

1. Why is it important to put long-running code in a service on a separate thread?
2. Whatis the use of the IntentService class?

3. Name the three methods you need to implement in an AsyncTask class.

4. How can a service notify an activity of an event happening?

Answers to Exercises can be found in Appendix C.

358 | CHAPTER10 DEVELOPING ANDROID SERVICES

TOPIC
Creating a service

Implementing the methods
in a service

Starting a service
Stopping a service

Performing long-running
tasks

Performing repeated tasks

Executing tasks on a separate
thread and auto-stopping a
service

Communicating between an
activity and a service

Binding an activity to a
service

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS
Create a class and extend the Service class.

Implement the following methods: onBind (), onStartCommand (),
and onDestroy () .

Use the startService () method.
Use the stopService () method.

Use the AsyncTask class and implement three methods:
doInBackground (), onProgressUpdate (), and onPostExecute ().

Use the Timer class and call its scheduleAtFixedRate () method.

Use the IntentService class.

Use the Intent object to pass data into the service. For a service,
broadcast an Intent to notify an activity.

Use the Binder class in your service and implement the
ServiceConnection class in your calling activity.

Publishing Android Applications

WHAT YOU WILL LEARN IN THIS CHAPTER

> How to prepare your application for deployment

> How to export your application as an APK file and sign it with a new
certificate

> How to distribute your Android application

> How to publish your application on the Android Market
So far you have seen quite a lot of interesting things you can do with Android. However, in
order to get your application running on users’ devices, you need a way to deploy it and dis-
tribute it. In this chapter, you will learn how to prepare your Android applications for deploy-

ment and get them onto your customer’s devices. In addition, you will learn how to publish
your applications on the Android Market, where you can sell them and make some money!

PREPARING FOR PUBLISHING

Google has made it relatively easy to publish your Android application so that it can be quickly
distributed to end users. The steps to publishing your Android application generally involve the
following:

1. Export your application as an APK (Android Package) file.

2. Generate your own self-signed certificate and digitally sign your application with it.
3. Deploy the signed application.

4. Use the Android Market for hosting and selling your application.

360 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

In the following sections, you will learn how to prepare your application for signing, and then learn
about the various ways to deploy your applications.

This chapter uses the 1.BS project created in Chapter 9 to demonstrate how to deploy an Android
application.

Versioning

Beginning with version 1.0 of the Android SDK, the AndroidManifest.xml file of every Android
application includes the android:versionCode and android:versionName attributes:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="@string/app_name">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
</manifest>

The android:versionCode attribute represents the version number of your application. For every revi-
sion you make to the application, you should increment this value by 1 so that you can programmatically
differentiate the newest version from the previous one. This value is never used by the Android system,
but is useful for developers as a means to obtain the version number of an application. However, the
android:versionCode attribute is used by Android Market to determine if there is a newer version of

your application available.

You can programmatically retrieve the value of the android:versionCode attribute by using the
getPackageInfo () method from the PackageManager class, like this:

PackageManager pm = getPackageManager () ;
try {
//---get the package info---
PackageInfo pi =
pm.getPackageInfo ("net.learn2develop.LBS", 0);
//---display the versioncode---
Toast.makeText (getBaseContext (),
"VersionCode: " +Integer.toString(pi.versionCode),
Toast.LENGTH_SHORT) .show () ;

http://schemas.android.com/apk/res/android

Preparing for Publishing | 361

} catch (NameNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;

The android:versionName attribute contains versioning information that is visible to the users. It
should contain values in the format: <major>.<minor>.<point>. If your application undergoes a
major upgrade, you should increase the <major> by 1. For small incremental updates, you can either
increase the <minor> or <point> by 1. For example, a new application may have a version name of
“1.0.0”. For a small incremental update, you might change to “1.1.0” or “1.0.1”. For the next major
update, you might change it “2.0.0”.

If you are planning to publish your application on the Android Market (www.android.com/market/),
the androidMani fest.xm1 file must have the following attributes:

> android:versionCode (within the <manifest> element)
> android:versionName (within the <manifest> element)
» android:icon (within the <application> element)
>

android:label (within the <application> element)

The android:label attribute specifies the name of your application. This name will be displayed
in the Settings & Applications = Manage Applications section of your Android device. For the 1L.BS
project, we’ll give the application the name “Where Am I”:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="net.learn2develop.LBS"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="Where Am I">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".MainActivity"
android:label="€Estring/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
</manifest>

In addition, if your application needs a minimum version of the SDK, you can specify it in the
AndroidManifest.xml file using the <uses-sdk> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

http://www.android.com/market/
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

362

| CHAPTER11 PUBLISHING ANDROID APPLICATIONS

package="net.learn2develop.LBS"

android:versionCode="1"

android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="Where Am I">
<uses-library android:name="com.google.android.maps" />

<activity android:name=".MainActivity"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-sdk android:minSdkVersion="7" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
</manifest>

In the preceding example, the application requires a minimum of SDK version 7, which is Android 2.1.
In general, it is always good to set this version number to the lowest one that your application can sup-
port. This ensures that a wider range of users will be able to run your application. Although the latest
version of Android at the time of writing is 2.3, a lot of devices are still running Android 2.1 and 2.2.

Digitally Signing Your Android Applications

All Android applications must be digitally signed before they are allowed to be deployed onto a device
(or emulator). Unlike some mobile platforms, you need not purchase digital certificates from a certifi-
cate authority (CA) to sign your applications. Instead, you can generate your own self-signed certificate
and use it to sign your Android applications.

When you use Eclipse to develop your Android application and then press F11 to deploy it to an emu-
lator, Eclipse automatically signs it for you. You can verify this by going to Windows = Preferences
in Eclipse, expanding the Android item, and selecting Build (see Figure 11-1). Eclipse uses a default
debug keystore (appropriately named “debug. keystore”) to sign your application. A keystore is com-
monly known as a digital certificate.

If you are publishing an Android application, you must sign it with your own certificate. Applications
signed with the debug certificate cannot be published. While you can manually generate your own
certificates using the keytool.exe utility provided by the Java SDK, Eclipse has made it easy for you
by including a wizard that walks you through the steps to generate a certificate. It will also sign your
application with the generated certificate (which you can also sign manually using the jarsigner.exe
tool from the Java SDK).

The following Try It Out demonstrates how to use Eclipse to export an Android application and
sign it with a newly generated certificate.

Preparing for Publishing | 363

Exporting and Signing an Android Application

Using Eclipse, open the 1.Bs projected created in Chapter 9.

s =
ﬂ Preterences l“—'lH “
[tvpe fiiver text Build S
b i‘:‘:’f['j = | Build Settings:
Sy l;::h'l [¥] Automatically refresh Resources and Assets folder on build
DOMS [¥1 Force error when external jars contain native ibranes
Editore Buikd output
Launch Bl) Silent
LegCat ") Normal
Usage Stats % Verhose
p Ant =
v Data Management Detault debug keystore: Ci\Users\Wes- Meng Lechandrond\debug keystore
Help
o Install/Update Custom debug keystore: Browsze..,
b Java
» Java EE
» lava Persistence.
b JavaSenpt
I+ Plug-in Development . [Aestore Dd‘”‘“' | Apply I
@ TS e
FIGURE 11-1

Select the LBS project in Eclipse and then select File > Export....

In the Export dialog, expand the Android item and select Export Android Application (see Figure 11-2).

Click Next.

-

8 Fxport

Select

(bype tikter best

Select an export destination:

+ (& General

4 & Android
b = EE

b Java

i B ImaEE

v [Run/Debug
v B Tavks

b [Team

b = Web

[Web Services
b B XML

[Plug-in Development
I [= Remote Syrtems

. Export Android Application|

@

< Back Finish

FIGURE 11-2

364 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

4. The 1BS project should now be displayed (see Figure 11-3). Click Next.

5. Select the “Create new keystore” option to create a new certificate (keystore) for signing your appli-
cation (see Figure 11-4). Enter a path to save your new keystore and then enter a password to pro-
tect the keystore. For this example, type in “password” as the password. Click Next.

6. Provide an alias for the private key (name it DistributionKeyStoreAlias; see Figure 11-5) and enter a
password to protect the private key. For this example, enter “password” as the password. You also
need to enter a validity period for the key. According to Google, your application must be signed
with a cryptographic private key whose validity period ends after 22 October 2033. Hence, enter a
number that is greater than 2033 minus the current year. Click Next.

7. Enter a path to store the destination APK file (see Figure 11-6). Click Finish. The APK file will now
be generated.

8.

Recall from Chapter 9 that the 1L.Bs application requires the use of the Google Maps API key, which
you applied by using your debug.keystore’s MD35 fingerprint. This means that the Google Maps
API key is essentially tied to the debug.keystore used to sign your application. Because you are now
generating your new keystore to sign your application for deployment, you need to apply for the
Google Maps API key again, using the new keystore’s MD3 fingerprint. To do so, go to the com-
mand prompt and enter the following command (the location of your keytool.exe utility might
differ slightly and you would need to replace the path of the keystore with the path you selected
earlier in step 3; see also Figure 11-7):

C:\Program Files\Java\jre6\bin>keytool.exe -list -alias DistributionKeyStoreAlias

-keystore "C:\Users\Wei-Meng Lee\Desktop\DistributionKeyStore" -storepass password
-keypass password

. —
18] Expon: Android Application [58] Export Android Application)
Project Checks Keystare selaction

Peafurms aset uf checks to make sure the applic tion can be expored.
1
Select the project to export: Use existing keystore
Project: LBS Browse.. B Create new keystore |
No erroes found. Click Next: Location: C\Users\Wei-Meng | e\ Deskloph DistributionKeySton [a——
| Password: ssssssss
I Confirm: sssssass
|
|
|
|
|
= E————— ' =——
® =l ® ComloEed e
| LS
. ; \
FIGURE 11-3 FIGURE 11-4

Preparing for Publishing | 365

Organizational Unit:
Organization:

City or Locality:
Ctate ar Province:

Country Code [0():

< [k

=)

First and Last Name: Wei-Meng Lee

T met> | Cancel | @ [

<« Back

s P
i®] Export Android Application |—E’@ @] Export Android Application M
Key Cranatinn Dastinatnn and key/cerhhcate checks
Alias: DistributionKeyStoreAlias Destination APK file: CALserd\Wei-Meng | e\ Desktophl BS.apk -
Password: [TTTTTTT
Certificate expires in 30 years.
Centirm: sessenen
Validity {years): 30

Einizh

| cancel -

FIGURE 11-5

FIGURE 11-6

9. Using the MDS fingerprint obtained from the previous step, go to http://code.google.com/
android/add-ons/google-apis/maps-api-signup.html and sign up for a new Maps API key.

10. Enter the new Maps API key in the main.xm1 file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:
android:
android:

>
<com.google

orientation="vertical"
layout_width="fill parent"
layout_height="fill_parent"

.android.maps.MapView
android:
android:
android:
android:
android:
android:

id="@+id/mapView"
layout_width="fill parent"
layout_height="fill_parent"
enabled="true"
clickable="true"
apiKey="<Your Key Here>" />

</LinearLayout>

m C\Windows\system32\emd exe asapele)

FIGURE 11-7

11. With the new Maps API key entered in the main.xml file, you now need to export the application
once more and re-sign it. Repeat steps 2 through 4. When you are asked to select a keystore,

http://code.google.com/android/add-ons/google-apis/maps-api-signup.html
http://schemas.android.com/apk/res/android
http://code.google.com/android/add-ons/google-apis/maps-api-signup.html

366 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

select the “Use existing keystore” option (see
Figure 11-8) and enter the password you used
earlier to protect your keystore (in this case,
“password”). Click Next.

12. Select the “Use existing key” option (see
Figure 11-9) and enter the password you
set earlier to secure the private key (enter
“password”). Click Next.

13. Click Finish (see Figure 11-10) to generate
the APK file again.

That’s it! The APK is now generated and it con-
tains the new Map API key that is tied to the new
keystore.

How It Works

Eclipse provides the Export Android Application
option, which helps you to both export your

18} Export Android Application)
Keysture selection -
@) Use existing keystore
") Create new keystore
Location: CAUsess\Wei-Meng Lee\Desktop\DistributionKeyStore Browse..

Paviwnnd: wwewwenw

Confirm:

@ <Back || Not> Finish

’ ; - FIGURE 11-8
Android application as an APK file and generate a
new keystore to sign the APK file. For applications
that use the Maps API key, note that the Maps API
key must be associated with the new keystore that
you use to sign your APK file.
[%3 Bxport Android Application [E=E—) 5@ Export Android Application 2
Key nlins seleaction o) Desfinntian and key/cerificnte checks &
EWR A, Destination file already exists. Bﬂwi
W s W
& Usewristing key ion APK file: C:\Users\Wei-Meng Lee\DesktophLBS apk | Browse...
Aliss: | distributionkeystorealias Y
Pastvcnt '““'“i Certificate expires on Tue Dec 18 00:11:48 5G1 2040,
& WARMING: dectination file already exists
_) Creste new key
@ [<back][mNet» Finish Cancel @ < Back Mot = Fnish |
FIGURE 11-9 FIGURE 11-10

Deploying APK Files | 367

DEPLOYING APK FILES

Once you have signed your APK files, you need a way to get them onto your users’ devices. The fol-
lowing sections describe the various ways to deploy your APK files. Three methods are covered:

> Deploying manually using the adb. exe tool
> Hosting the application on a web server

> Publishing through the Android Market

Besides the above methods, you can install your applications on users’ devices through e-mails, SD
card, etc. As long as you can transfer the APK file onto the user’s device, you can install the application.

Using the adb.exe Tool

Once your Android application is signed, you can deploy it to emulators and devices using the adb. exe
(Android Debug Bridge) tool (located in the platform-tools folder of the Android SDK).

Using the command prompt in Windows, navigate to the “<android_SDK>\platform-tools” folder.
To install the application to an emulator/device (assuming the emulator is currently up and running
or a device is currently connected), issue the following command:

adb install "C:\Users\Wei-Meng Lee\Desktop\LBS.apk"

EXPLORING THE ADB.EXE TOOL

The adb. exe tool is a very versatile tool that enables you to control Android devices
(and emulators) connected to your computer.

By default, when you use the adb command, it assumes that currently there is only
one connected device/emulator. If you have more than one device connected, the
adb command returns an error message:

error: more than one device and emulator

You can view the devices currently connected to your computer by using the
devices option with adb, like this:
D:\Android 2.3\android-sdk-windows\platform-tools>adb devices
List of devices attached
HT07YPY09335 device

emulator-5554 device
emulator-5556 device

As the preceding example shows, this returns the list of devices currently attached.
To issue a command for a particular device, you need to indicate the device using
the -s option, like this:

adb -s emulator-5556 install LBS.apk

continues

368 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

(continued)

If you try to install an APK file onto a device that already has the APK file, it will
display the following error message:

Failure [INSTALL_FAILED_ALREADY EXISTS]

Figure 11-11 shows an APK file successfully installed onto a real device.

B C\Windows\system3emd.cxe

FIGURE 11-11

When you inspect the Launcher on the Android device/emulator, you will be able to see the LBS icon
(on the left of Figure 11-12). If you select Settings=> Applicationst> Manage Applications on your
Android device/emulator, you will see the “Where Am I” application (on the right in Figure 11-12).

Y

Drowser Calculator Camera

TTS Service

User Dictionary

VPN Services
Email Hles Gallery o

ﬁ 5 terpal Storage

Where Am I

BHRHEWMAE

FIGURE 11-12

Besides using the adb. exe tool to install applications, you can also use it to remove an installed appli-
cation. To do so, you can use the shell option to remove an application from its installed folder:

adb shell rm /data/app/net.learn2develop.LBS.apk
Another way to deploy an application is to use the DDMS tool in Eclipse (see Figure 11-13). With an

emulator (or device) selected, use the File Explorer in DDMS to go to the /data/app folder and use
the “Push a file onto the device” button to copy the APK file onto the device.

Deploying APK Files | 369

) DOMS - RS/ AndrowdManiiersem « Fclipse pel &
File Edn Rum Nevigete Search Project Refactor Window Melp
L= s A BAR - &+~ i 45 Debug [0005 | &' v 72 Ima k2
B beices 11 O, Theeads | 1§ Meap | [Atccation Tracker | i baploves L1 W@l -- 8]
AR tHelm” s Tane Pervisions W05 _b i wots e decs |
Hame 4 > data 20101228 1548 drwarwn-a
emulates- 334 2 anr M0-11-35 ISH drarwry
- Byttem proceis & app M1 1T dewerrn
eomandeoid phone o LOSapk 18505 2010-12-25 1706 -re-reerwe
com.android inpatmethod fatin 2 app-private: MO 1858 drvreas
cemmanenid Luncher (& backup TS ES. R TR T
P —— = dabikecnche MOATB 10 drwarrens
e geagle procest gappe e srta HUALES 110 drwr
netbeaenddeveiopLES L= deetpanic W335 WSE drwrn—
] 1 focal 210-12-25 1456 devarencs

FIGURE 11-13

Using a Web Server

If you wish to host your application on your own, you can use a web server to do that. This is ideal if
you have your own web hosting services and want to provide the application free of charge to your users
(or you can restrict access to certain groups of people).

NOTE Even if you restrict your application to a certain group of people, there
is nothing to stop users from redistributing your application to other users after
they have downloaded your APK file.

To demonstrate this, I will use the Internet Information Server (IIS) on my Windows 7 computer.
Copy the signed 1BS. apk file to c:\inetpub\wwwroot\. In addition, create a new HTML file named
Install.html with the following content:

<html>

<title>Where Am I application</title>

<body>

Download the Where Am I application here
</body>

</html>

NOTE |If you are unsure how to set up the IIS on your Windows 7 computer,
check out the following link: http: //technet .microsoft.com/en-us/library/
cc725762.aspx.

On your web server, you may need to register a new MIME type for the APK file. The MIME type
for the .apk extension is application/vnd.android.package-archive.

NOTE To install APK files over the Web, you need an SD card installed on your
emulator or device. This is because the downloaded APK files will be saved to
the download folder created on the SD card.

http://technet.microsoft.com/en-us/library/cc725762.aspx
http://technet.microsoft.com/en-us/library/cc725762.aspx

370

| CHAPTER11 PUBLISHING ANDROID APPLICATIONS

By default, for online installation of Android applications, the Android Emulator or device only
allows applications to be installed from the Android Market (www.android.com/market/). Hence, for
installation over a web server, you need to configure your Android Emulator/device to accept appli-
cations from non-Market sources.

From the Application settings menu, check the “Unknown sources” item (see Figure 11-14). You will
be prompted with a warning message. Click OK. Checking this item will allow the Emulator/device
to install applications from other non-Market sources (such as from a web server).

o
8 555%Android_2.3_Emulator WithSD B 555%Android_232_Emulator WithSD. -
¥ wl B 133
‘Application settings |

Unknown sources

A Attention

Your phane and personal data
are more vulnerable to attack
Manage applications by applications from unknown
Manage and remove Installed applicatio sources. You agree that you

Quick launch

Running services damage to your phone or loss
Vlew At it T erd rtnmre Seritea of data that may result from
- using these applications.

FIGURE 11-14

To install the 1Bs.apk application from the IIS web server running on your computer, launch the
Browser application on the Android Emulator/device and navigate to the URL pointing to the APK
file. To refer to the computer running the emulator, you should use the special IP address of 10.0.2.2.
Alternatively, you can also use the IP address of the host computer. Figure 11-15 shows the Tnstall
.html file loaded on the web browser. Clicking the “here” link will download the APK file onto your
device. Drag the notification bar down to reveal the download status.

To install the downloaded application, simply tap on it and it will show the permission(s) required
by this application (see Figure 11-16).

Click the Install button to proceed with the installation. When the application is installed, you can
launch it by clicking the Open button (see Figure 11-17).

Besides using a web server, you can also e-mail your application to users as an attachment; when the
users receive the e-mail they can download the attachment and install the application directly onto
their device.

http://www.android.com/market/

Deploying APK Files | 371

57 5554Andraid_23_Frulator WithSD 5 5554Andraid_2.3 Tmulator WithsD) -
December 26, 2010

Bl http://10.0.2.2/Install.ht... | [Android | qeor |

Download the Where Am [application
here

1 LBS.apk
Download camplete

2:01 AM

L

FIGURE 11-15

8 5534:Android 2.3 Emulator WithSD

E Where Am [

Do you want to install this
application?

Allow this application to:

+ Your location

« Network communication

IFEmE
r"'”'r"rr"”ri"r”’
TR O X P

FIGURE 11-16

372 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

'8 s
B 3554:Androsd_2.3_Emulator_ WithSD l'—'l = M

B Where Am I

L

\/ ~ \ 4

Application installed

r"rr"@[—mr"fmrmr-a:r-rwr—y

(e sl e
T) [——

FIGURE 11-17

Publishing on the Android Market

So far, you have learned how to package your Android application and distribute it in various
ways — via web server, the adb. exe file, e-mail, SD card, and so on.

However, these methods do not provide a way for users to discover your applications easily. A better
way is to host your application on the Android Market, a Google-hosted service that makes it very
easy for users to discover and download (i.e., purchase) applications for their Android devices. Users
simply need to launch the Market application on their Android device in order to discover a wide

range of applications that they can install on their devices.

In this section, you will learn how to publish your Android application on the Android Market. I will
walk you through each of the steps involved, including the various items you need to prepare for your
application for submission to the Android Market.

Creating a Developer Profile

The first step toward publishing on the Android Market is to create a developer profile at http: //market
.android.com/publish/Home. For this, you need a Google account (such as your Gmail account). Once
you have logged in to the Android Market, you first create your developer profile (see Figure 11-18).
Click Continue after entering the required information.

For publishing on the Android Market, you need to pay a one-time registration fee, currently U.S.$25.
Click the Google Checkout button (see Figure 11-19) to be redirected to a page where you can pay the
registration fee. After paying, click the Continue link.

http://market.android.com/publish/Home
http://market.android.com/publish/Home

Deploying APK Files | 373

Next, you need to agree to the Android Market Developer Distribution Agreement. Check the “I agree”
checkbox and click the “I agree. Continue” link (see Figure 11-20).

T T—
| Devesoper Sgnup -
| & & C 0 marketandroldcom/ publissignip

srimansguoigmail com | Hi
an3aoin

D market

Gattir ted

Belore you can publal software on the Andrond Markst you st o theee thegs.

= Create 3 developer profile
« Pay a registration fee (525 00) with your credt cand (umng Google Checkout)
= Agres 1o the Androwd Markel Dessloper Distréation Agregrmen

Listing Detalls
“four developer prodly wit ¥ou appaar % inthe

Developer Nama: | Dywglaper Loaming Selutic
VWil Appaar 5 UNArS undse (e name of yeur appestion

Emall Address [e e g com
Wobaito URL g iy leaen2davelop o

Phone Nunber +BE-0R0065
Ichucke phis aign, country code and area code. Far snample, +1-650-253-0000. shy do we mak for thig?

Emall Updates [F Contact me y about P and Market opp

© 2010 Google - Apchoid Maikel Deveiooss Destribihon Agresman - Google Terms of Serace - Emacy Pobcy

FIGURE 11-18

e
| Devetoper Sgrup hL
| & 0 @ |0 manketandrold.com/nublish/signup

anaaoin

D market

ton fee; 526,00

Wioua registration foe snabies you 10 publsh goftwane in the market. The name and Billng address wed 10 regrster will bind you 1o the Ardiid Markey
Devsicoss Distribution Agreament. 5o make sure you doubls check!

Pay your registration fee with
(Gagle
Fan chec

Continue »

©.2010 Googht - Android Marhst Ovslopss Chatribulion Agreemant - Linoels Tams of Semvcs - Priacy Pabey

FIGURE 11-19

Submitting Your Apps

Once you have set up your profile, you are ready to submit your application to the Android Market.
If you intend to charge for your application, click the Setup Merchant Account link located at the
bottom of the screen. Here you enter additional information such as bank account and tax ID.

374 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

For free applications, click the Upload Application link, shown in Figure 11-21.

C - R
L &) marketandroid.com/ publish/zignup

—— ail.com | Home | H
S wwimenglesggmail.com | Home

D market

Read and agree (o the Android Market Developer Distnibution Agresmaent

an>=30I12

Android Market Developer Distribution Agreement |

=
Datinltons
Googhe: Google Inc., & Delawars corporation with princical place of business at 1600 Amphitheatrs Pariway.
Mountasn View. CA 84043, United States.

Parson registersd to this account
Lee Wei Meng

@ " mgree and | am willing to assoclats my cracis card and accouns above with the
Devaloper Distribution L

Lagres, Continue =

FIGURE 11-20

/| i Derdiepsr Comsle =
+ @ 0 madketandraideam/ publah/Home

D market

wimenglosggmalt,com | Home | Help | Andiid com

Your Registration to the Android Market is approved!
“Yow zan mow upizad and publih software to the Android Markst

& per L 2ol g Sy
‘wenenpeeQpTal con
£t proie

AH Androld Market listings

o applications ispioaded

Developmant phones
A5 a regestered developer, you can purchase an unlocked

Buy now »

Google checkout 2

Want 1o sell applications in the Androld Market?

Sat up 3 Maschant accound with Goegls Chackaut! You wil
tiwed 1o et additional information Bke your bank sccount
information and Tax 10

FIGURE 11-21

Deploying APK Files | 375

You will be asked to supply some details for your application. Figure 11-22 shows the first set of
details you need to provide. Among the information needed, the following are compulsory:

> The application in APK format

> At least two screenshots. You can use the DDMS perspective in Eclipse to capture screenshots
of your application running on the Emulator or real device.

> A high-resolution application icon. This size of this image must be 512x512 pixels.

The other information details are optional, and you can always supply them later.

)
Deveeper Consale o
* @ | marketandraldcom, nublis Homes APELICATION ria
A

Your Registration 1o the Android Market is approved! E
Yeu £AR nmw uplsad 3nd publish sefwars 1o the Andred Markst
Upload an Application
|
Drakt application apk e Upload an agk fe |
chek the putiialt bulton | Ghoass Fils | o sis chosen | Uptand |

0 pulblish drat apk file

Screemhots
at leatt 2

Migh Resolution Application
leon
[Lieatn: Mare]

Promo Graphic:

psd] 1M 170

Promotional Graphic

aptional

24 bt PNG or JPEG {no aipha!
i Bordat in an

Faoture Graphic
eptional

Ipha) |

o e

Promotionsl Video Add @ promotionsl vides bk
opional fpecn

arketing OptOut Dia nat pramais m,
| properties. | understar

wtion #xeapt i Andeoid Markat and in any Gosgie-gwnad online or mahds
hat any changes 1o this preferance may 1ake sinty days to taie effect

FIGURE 11-22

Figure 11-23 shows that I have uploaded the 1Bs. apk file to the Android Market site. In particular, note
that based on the APK file that you have uploaded, the user will be warned about any specific permis-
sions required, and your application’s features will be used to filter search results. For example, because
my application requires GPS access, it will not appear in the search result list if a user searches for my

application on a device that does not have a GPS receiver.

The next set of information you need to supply, shown in Figure 11-24, includes the title of your appli-
cation, its description, as well as recent changes’ details (useful for application updates). You can also
select the application type and the category in which it will appear in the Android Market.

On the last dialog, you indicate whether your application employs copy protection, and specify a
content rating. You also supply your website URL and your contact information (see Figure 11-25).

376 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

When you have given your consent to the two guidelines and agreements, click Publish to publish
your application on the Android Market.

* © | O rmarkerandroid.com) publish/ Homes EDIT_APPLICATIONTpkg s net learn?develop LBS

Upload assets

apk fila ot 55 ',] Dt
chck the publsh button Whare Am | {remave]
10 publesh draft agk fil Braal
VersionCode 1

Locaiized 10, defaull

B This apk requasts 3 parmissiana that ssaim will ba wamad ahedt
android pemission INTERNET
andrid pasmistion ACCESS,_FINE_LDCATION

andmid petmission ACCESS_COARSE_LOCATION

android hardwar location. network
android hattwars lozabon
andinid hastware Jozation
animid hasdware iouchscreen
Screenshots. — e Screenshots:
Py (T’ g I — 350 5 4601, 400 000,
el pencsthe w o 0w = 854h
Ry — 24 b PNG o FEG (o slpha)
i't“. Full blaad. ms barder o =1
Landscape thuminails ace cropped
o
T Et—
=
¥
s [0}
Beplacs thiz imags | selats
High Resalution Applicatian ngz Resolution Application lsan:
= pevere o
[Lanem Mara) b PNG o ima sipha)
ml ! r Mmmam: 1034 KB
FIGURE 11-23
opr Consols * E;“
* C | D marketandroid.com/ pubiiinhy HomeSEDIT_APPLICATION [I ¥

Listing detalls

Language | “English [an] |
eddlanguoge Star sign (') indicates the default (angaage

Title (e} [\hare Am |
10 chacacters (30 max)

Description (8] (Tnie appiicasscn allows you To vAAW varsaily vhers you are
lzcated using the Google MAps on your Andreid devise. You can
also Kmow the address of & location on the map by simply
touching of it.

TR BpPLicEtics i3 8 demc-applicaticn foo the upoiming buck -
Andsesd (Hzex) by Hel-Meng

Lee.
324 characters {2000 max)

Recent Changes (en) .
et} |This is whe ficen vecsion of this applicticn
Beaen Wois)

AE chugenctazs (500 max)

Froma Text {sn)

FIGURE 11-24

Deploying APK Files | 377

That’s it! Your application is now available on the Android Market. You will be able to monitor
any comments submitted about your application (see Figure 11-26), as well as bug reports and total
number of downloads.

L
€ =+ € | O maketandroid.com/publish/HomesEDIT_APPLUICATION A

Publishing opticns

Cogy Prosaction Q(Dﬂ'llppr_lilnn can be copad from the deace)
7) On {Heips prevent copying of thes. applicabion hom the device Incenases the amount of
mamagny on the phone required to install the appiication |
The copy pratection feature il be depecated soon, please use liggasing senica instead
Contant Rating o vnm
R Qv
a

———

Locations Seloct locations 1o list in:

1A locations

||n:um oy ripumtiien m-u'mm-d below. As the developer, you are tespanstle for complying
aabé of your application imo that eouniry,

muwmayw‘hnm- ity |

Contact infarmation
Wobsho g www. loaeriZdevelop net
Emall gimengiee@gmat com

Consant
¥ This appiication mests Andimid Content Gesdeinas

E | achnowiedge it my sultmare .wm may be .nwm £ Unied States wxpot lams, regardess of my location or naticnalty. | agres tht | o
il such laws. ey far weltware wih sncryplion lunctsne. | Bareky cartdy thal my apphestron o sulbenzad

umnmmwﬂmmmum [Lamm hdora]

FIGURE 11-25

ETeer——

I- <+ € | marketandroid.com/publisiy HomesLISTING CONSOLE

ansaos wnbmsngineggemail sam | e | Ml | A

D market

Deveioper Learning Solutions
wemargeeQinal e
Gt profie o

All Androld Market llstings

= WbeeAmi vl 0 Ersrerir e @ total
M Applications: Livstyle Gommants © active instals (0%)
n Upload Application

Development phones
s 3 registernd developer, you can purchase an unkscked

phane
Buy now »

Google checkout

Want to soll applications In the Amndrodd Market?

Set up a Marchant account with Googhe Checknutl You wil
e 0 wrter additional inkemation like your bank acteunt
mlormation and Tax

Setup Merchant Account »

'© 2010 Google « Android Markat Dwvslopsr Distibution Agresment - Google Terms of Sanace + Frvacy Polcy

FIGURE 11-26

378 | CHAPTER11 PUBLISHING ANDROID APPLICATIONS

Good luck! All you need to do now is wait for the good news; and hopefully you can laugh your
way to the bank soon!

SUMMARY

In this chapter, you have seen how you can export your Android application as an APK file and then
digitally sign it with a keystore created by yourself. You then learned about the various ways you
can distribute your application, and the advantages of each method. Finally, you walked through the
steps required to publish on the Android Market, which makes it possible for you to sell your appli-
cation and reach out to a wider audience. Hopefully, this exposure enables you to sell a lot of copies
and thereby make some decent money!

EXERCISES

1. How do you specify the minimum version of Android required by your application?
2. How do you generate a self-sign certificate for signing your Android application?
3. How do you configure your Android device to accept applications from non-Market sources?

Answers to Exercises can be found in Appendix C.

Summary | 379

TOPIC

Checklist for publishing
your apps

Applications must be
signed

Exporting an application
and signing it

Deploying APK files
Publishing your appli-

cation on the Android
Market

» WHAT YOU LEARNED IN THIS CHAPTER

KEY CONCEPTS

To publish an application on the Android Market, an application must
have the four required attributes in the AndroidManifest.xml file:
android:versionCode, android:versionName , android:icon, and
android:label.

All applications to be distributed must be signed with a self-signed
certificate. The debug keystore is not valid for distribution.

Use the Export feature of Eclipse to export the application as an APK
file and then sign it with a self-signed certificate.

You can deploy using various means — web server, e-mail, adb. exe,
DDMS, etc.

Apply for the Android Market with a one-time fee of US$25 and you
will be able to sell and host your apps on the Android Market.

Using Eclipse for Android
Development

Although Google supports the development of Android applications using IDEs such as Intelli],
or basic editors like Emacs, Google’s recommendation is to use the Eclipse IDE together with
the ADT Plugin. Doing so makes developing Android applications much easier and more pro-
ductive. This appendix describes some of the neat features available in Eclipse that can make
your development life much easier.

NOTE If you have not downloaded Eclipse yet, please start with Chapter 1,
where you will learn how to obtain Eclipse and configure it to work with the
Android SDK. This appendix assumes that you have already set up your Eclipse
environment for Android development.

GETTING AROUND IN ECLIPSE

Eclipse is a highly extensible multi-language software development environment that supports
application development of all sorts. Using Eclipse, you could write and test your applications
using a wide variety of languages, such as Java, C, C++, PHP, Ruby, and so on. Because of its
extensibility, new users of Eclipse often feel inundated with the IDE. Hence, the following sec-
tions aim to make you more at home with Eclipse when you develop your Android applications.

Workspaces

Eclipse adopts the concept of a workspace. A workspace is a folder that you have chosen to
store all your projects.

When you first start Eclipse, you are prompted to select a workspace (see Figure A-1).

382 | APPENDIXA USING ECLIPSE FOR ANDROID DEVELOPMENT

Workspace Launcher ﬁ‘

Helact n workspace

Eclipse stores your projects in a folder called & workspace,

Chose a wesrkspace lokder 1o use for this session,

[7] Use this as the default and do not ask again

FIGURE A-1

When Eclipse has finished launching the projects located in your workspace, it will display several
panes in the IDE (see Figure A-2).

& - b Moottty joa - Eckpee =
Bile fdn fun fource [rogete Lepch Breject Refacer Windew Help

el B B $-0-%r #@ &S S] 4 Oebug oonts [BTIRT] 12 deva b

¥ o i *hlr il
2 P 1 Mainsciay oo £ _ =)2 outine 5 =)

i package mer.learnidevelop.BasicViewsis . PRRY e X~
,: :::\‘M * + import android.apR.Aczivicys B x:"::‘:m""‘ A
- e @ Munnoiity

& . enCresteBundle) ot
G new OnChetlateneil) -]
vedlnstancests @ new OnCcklistenan]

+ B3 netleamddecelop TascViens]

8 gen [Ganetited lova Filed] - poblic void saCreate Bundle

mh Andreid 22 SUpAT, SRCTEATE (SaveAlnstancaSTate) ; @ new OnCheblatenail] (-]
s et setCenzentView (R, laysot. 2ain); @ new OnCheckedChangel it
fo e @ new OnClckLinenent) ()
il Andreidhanitest.amt i u DisplayToustitiring) i
[detui properie: R o= (Button) findViewByld(d
& Bkt bEACpen, aeEOnCliCKLstaner (e View.0nCl
o G - public veid onclickiView € {
. 13 BuscViewad DisplayTonss (“You have clicked ¢
i BusicViewsS :
23 BuriicViewsh o
i Gallery
& orid m—eMuEton viewsss
& - Butten braSave = (Sucton) findViewSyld(R
+ 16 Imagee BEASave. seTntlacklistents (now View,Gncl
i Menus i
1 Webliew a publie veid enflick(View v) [

DisplayTeast ("You bave =licked ¢
1 -
12 Pretiterss | @ Javwdoe | Dectaration | & Comele 12 Al @-r3>—0

FIGURE A-2

The following sections highlight some of the more important panes that you need to know about
when developing Android applications.

Package Explorer

The Package Explorer, shown in Figure A-3, lists all the projects currently in your workspace. To
edit a particular item in your project, you can double-click on it and the file will be displayed in the

respective editor.
You can also right-click on each item displayed in the Package Explorer to display context sensitive menu(s)

related to the selected item. For example, if you wish to add a new .java file to the project, you can right-
click on the package name in the Package Explorer and then select New = Class (see Figure A-4).

Getting Around in Eclipse | 383

B~
b AdditionalViews
a 3 BasicViewsl
@ [sre
4+ {3 netleamnldevelop.BasicViewsl
» ([Mooty
» @8 gen [Generated Java Files]
» B Androwd 2.2
& assets
i e

i AndroidManifestaml
[Z defaultproperties

& BasicViews2
12 BasicViews3
» i BasicViewsd
9 BasicViewss
b & BasicViewsh
» 12 Gallery
» & Grd
b 5 ImageSwitcher
FIGURE A-3
B Java - Basic L java - Eclipze
Dide Ldt Run Source Nawigate Search Project Refactor Window Lelp
- A BSE $-0-Q- #E@- ™0 P~ Ty % De
P) »olvTadaw -
S '!|E MainActivity jave 51 =] =
5 4| o “|[F vpackage nec.learnzdevelop,BasicViewsl: -
b 2 AdditionalViews s - S e
I fbﬂanlc'n'lm-sl import androdid.app.Activiey:
4 u?gﬂ_l_;_"ﬂ. T — | public class MainBorivivcy exlends Rotivity {
o [) MainActivit) Mew * i JavaProject
b @ gen [Generated Jov| Golnta & Andrsid Project
» =k Android 2.2 8 s
e assets Open in New Window £y Propscts:
b e Open Type Hierarchy F& | # Package
a AndroidManifestar Show In At+Shift«+ W » | (& Class
& detault.propertics
b 16 BasicViews2 [E Copy et e
p @ BesicViews3 |2 Copy Qualified Name & | Eour
0 k%“"‘if""“‘““ | @ Pate Cistey | & Annotation
: 'L_él!ni!c'hm-s& | % Delete Delete m Source Talder
b b:llhslc\'i!wﬁ 45 Java Working Set
» I Gallery Remave from Contest Ctrl+Alt+Shift+Down .
s 9 Folder
b g Grd Build Path B e
o 2 ImageSwitcher : [Hle
b T8 Menus Source AISSHISS Y | 0 niivied Tent Fle
b S WebView Refactor AlteShift= T4 |8 Andeoid XML File
| fag Tt [EY Junit Test Case
|Lh Export.. O Task
i
References » | CY Bample. —
—= e HEe othen. CubeN [
0 et lean2develog
G R
Aesign Werking Sets..
FIGURE A-4

Using Projects from Other Workspaces

There may be times when you have several workspaces created to store different projects. If you
need to access the project in another workspace, there are generally two ways to go about doing so.
First, you can switch to the desired workspace by selecting File &> Switch Workspace (see Figure A-5).

Specify the new workspace to work on and then restart Eclipse.

384 | APPENDIXA USING ECLIPSE FOR ANDROID DEVELOPMENT

The second method is to import the project from another workspace into the current one. To do so,
select File = Import... and then select General = Existing Projects into Workspace (see Figure A-6).

In the Select root directory textbox, enter the path of the workspace containing the project(s) you
want to import and tick the project(s) you want to import (see Figure A-7). To import the selected
project(s), click Finish.

[& Jove - Gclipse
IE Edit Run Mavigate Search Project Refactor Window Help
New AteSll=NE 00 L e Qv QL G ™
Open File...
Close Cll=W
Close A1l Cirls Shifte W
Save Cul-5
Save s
Seve All Ci-Shifts5
Revert
Move.
Rensme... L]
Refresh s
Convert Line Delimiters To »
Print... CtrsP
Switch Workspace Pl ChUsers\Wei-Meng Lee\workspaces
Restart C\Users\Wei-Meng Les\werkspace2
ik | e C:\Users\Wei-Meng Lee\workspace
uh Eport. Other._
Properties Alt+Enter
1 InvocationTargetException.cles [ja.]
2 Looperelass [andraid.aslooper]
3 SendSMSLab java [SendSMSLaby/sc/.|
4 View.clazs [android.view.View]
N Ext
FIGURE A-5
[&) impan: | & impont T |
Selnct \ Import Projects =1
Create new projects from an archive e or direstary, w Select a directary ta search for evisting Eclipse prajects. B‘
Select an import source @ Select roct directary: C\Users\Wei-Meng Lee\wurkspace | Browse.,
type filter text
E (7 Sebect archive file Browit..
& = General -
B, Archie File Projects:
17 Bainting Projects into Workspace 1 Activitylab (CAsms\Wei-heng Leetwork A= | [CaiuaceAk
'I_'} :':‘:"m“nm“] BasicUlLab (C:\Usern\Wei-Meng Lee Bas|
i u:-c;s (7] Databaselab (C: i-Meng L ' |5 l Dreselect All]
= E8 T] DislogsLab (C\Users\Wei-Meng Legworkspace\Dia l Refresh]
2 [FilestOLabs (€ L
b Java BE 1] HelloWortd (€L M s Lebahnest st sk
s 2 9
i :L‘Ea"':u"‘"“"“““ 7] Hitplab (C\Users\Wei-Meng Lee\warkspace\ HitpLs
& b bk A i sttt
b & Tesks L £ | L] J (]
b = Team — ol
& Web | Copy projests inte workspace
(53, Witk eamisns 2 Werking sets
[T Add project to working sets
arking szta = Zele:
FIGURE A-6 ©)

FIGURE A-7

Getting Around in Eclipse | 385

Note that even when you import a project from another workspace into the current workspace, the
physical location of the imported project remains unchanged. That is, it will still be located in its
original directory. To have a copy of the project in the current workspace, check the “Copy projects
into workspace” option.

Editors

Depending on the type of items you have double-clicked in the Package Explorer, Eclipse will open
the appropriate editor for you to edit the file. For example, if you double-click on a .java file, the

text editor for editing the source file will be opened (see Figure A-8).

Painkctiviby fevs - Eckiee

=t AddiionalViess
12 RaicViews
e
3 et leamddesslop BaseVie]
1] MainAcsivityjava
B8 gen [Genersted lova Tiles]
mh &ndreid 22
L etz
i e
il AndreidManifestami
[detus propedie:

PO T HEr WS A

e =0

package Get.les:

& 1 v i
Hie gdn Bun Source MNregate Sepch Preject Refactor Window Help
[& B Bad
PAlevEm S-jlror .
12 Package Explorer 51 =0\
Ehle”

import andzoid.spR.Assivicys
import apdroid.cs.Busdle;

IEpOTT ARArOLA.view.View:

import android.widget.Butten:

import apdroid.widget.CheckBox; |
tapart aRdroid.waiaget.RadioButten; -
1mpaTt ARdroid.widget.RAdiaGroup:

iMpart android.vidget.Toasts

impart arareld.widget. ToggleRutzons

1nport ABdicid, widger o

pablic class MinActivity mxtends Activizy |

e
publio vold caCreste(Bundle savedinstanceStatel |
super.onCreate (savedInatancedtatel ¢
setContentView (N, layout.main)
Butten bealpen = (Button) findViewSyTd(R.id bealpen)s
bestpen, secinllicklistenes (now View.OnSlicklistenes!) |
public void onClick(View ¥ [
DisplayTeast("Veu have elicked the Open butten®): s

FIGURE A-8

If you double-click on the icon.png file in the res/drawable-mdpi folder, the Windows Photo Viewer

application will be invoked to display the image (see Figure A-9).

] icon.pag - Windews Photo Viewer

B =)

File = Print = E-mail Bun

n * Open = (7]

FIGURE A-9

386 | APPENDIXA USING ECLIPSE FOR ANDROID DEVELOPMENT

If you double-click on the main.xm1 file in the res/1ayout folder, Eclipse will display the UI editor,
where you can graphically view and build the layout of your UI (see Figure A-10).

B tevn - BuecVimwt Lives lipout /o omi - fclpie. =3
[Bile fdn fun Mevigate Segrch Projest Refactor Window Help
rS> A Bax PO~ F#E M5 S [45 Debug (§ oowts (BT] 52 feva e
|| 12 Package Explorer 71 = O | mainanl £ =05 & =5
= % W 7| editing config: defeutt Exptenn | | Ovnna | [} i
i AddrionslViews 1 i f et -
1 = - -l I oY e (T w| Cieat
B9 Sl = > = | | [T Linearkyout
e Sy
B et lesinddevelop BacVient ||
4] Mainscsrityjoa) Aschutelayout
EB gan [Canersted Java Files (B ovaterrer
Wk Bndreed 22 [F] txpandastetistview
S - (F) FrameLayoun
' .’:mmnlrm [E] Grdiam
= drawablesldpi [A)HorizontaltorsilVies
2 drawable-mapl (Mismsgesnitcher
By iconpg [Minssageit
i loyout [Dintien
%, mainami -
i valuey 125 Views
i i G
[dfanis propentiog tiaios
F— {le s
tisVisut] Do
niciiowsd W vaensub
ticViewss ek
5 Swicinsd) Analogliock

& id) AuseCompleteTevien

i ImageSwitcher @ tutten
2 Manus {E) Checidiox
J3 WebView Layeut| maimsmi
-+ = v || Prestems | & lwvadoe |, Dectarstion | B Consete 11 Wil o @- == A

| L Linesriayout/dtet
-

FIGURE A-10

To edit the Ul manually using XML, you can switch to XML view by clicking on the main.xml tab
located at the bottom of the screen (see Figure A-11).

(8] o - Bbicews Ures/nyoutimainamed - Tekpin [T
Bl [da fum Sewce Mevgale Seprh Project Aelactor Mindow Help
=l & A B $-0-Q- WwE-

A 1 % Debug o 0oms [T | e

12 Package Explorer £ =8 = 0|gEe 1 e

i AddtionalViews sas. android. con/apk/res/d
i Bmickiensd
e
B netlearm2develep DaticViswtl
1] Muinactsty.jove
2 gen 4 v il
m Andieid 22

=1
L) LinaseLayeen

(& drawablemepi
By iconpng
i leyout
) msinaen
i wlues
4 AndreidManifestami
15 debait propedies
e Baic\iewal
]
15 Basickiensd
[-1
i Basieviensh
1 Gallary
i Grid
o ImagtSnitcher
12 Menus i
B Wi Layeust | mainml

. W + |20 Pretlema | & Jwvadoc | [Declartion | B Consele 5 abll*Br1r=0

(& Linearbayout/ TestView

FIGURE A-11

Getting Around in Eclipse | 387

Perspectives

In Eclipse, a perspective is a visual container for a set of views
and editors. When you edit your project in Eclipse, you are in
the Java perspective (see Figure A-12). SRR

The Java EE perspective is used for developing enterprise Java e

applications, and it includes other modules that are relevant to it. ~ FIGURE A-12

You can switch to other perspectives by clicking on the per-
spective name. If the perspective name is not shown, you can b e

click the Open Perspective button and add a new perspective B : -
. 4] %5 Debua 5 DOMS (FTTava | 8 Java EE

(see Figure A-13). T =

H : . . | %% Drbu 0|50 © =0
The DDMS perspective contains the tools for communicating 1es ,M,fmm 1 2 =
with Android emulators and devices. This is covered in more ras.d 4 | LevaScript llloe=|¢s
detail in Appendix B. The Debug perspective contains panes Othe... () tinenLagou
used for debugging your Android applications. You will learn
more about this later in this appendix. FIGURE A-13

Auto Import of Namespaces

The various classes in the Android library are organized into namespaces. As such, when you use a
particular class from a namespace, you need to import the appropriate namespaces, like this:

import android.app.Activity;
import android.os.Bundle;

Because the number of classes in the Android & manamt (iR R

Library is very large, remembering the correct [peckage oo drarn2develop.AesioVimeat
namespace for each class is not an easy task. # mport android.epp.Aectivity:[]

Fortunately, Eclipse can help find the correct | public olass MainRcrivivy extends Aouivicy |
namespace for you, enabling you to import it Aot gy e oSttt o

. h 1 k : wnid onfreate (Bundle savedTnstanceScate) {
wit]uSt a click. [super.onCreate (savedInatanceState) s

serContentView (R.layout.main) :

Figure A-14 shows that I have declared an

object of type Button. Because I did not import | o Bt o et o A
| i Button cannol be resolved 1o a type

the.corre'ct namespace for the Button class, 5 Tt e L

Eclipse signals an error beneath the statement. i e
| Create clavs "Buttun'

When you move the mouse over the Button © Cocate interface Dutton

. . . [Add ty ar; 1 'But MainActivity
class, Eclipse displays a list of suggested fixes. & A e ey P——
: : .] @ Creste cnum Button ckListener ()
In this case, I need to import the android ! = s kRl
.widget.Button namespace. Clicking the B P TX o1 Save Ebion®

! 3

“Import ‘Button’ (android.widget)” link will
add the import statement at the top of the file. FIGURE A-14

Alternatively, you can also use the following key combination: Control+Shift+o. This key combination
will cause Eclipse to automatically import all the namespaces required by your class.

388

| APPENDIX A USING ECLIPSE FOR ANDROID DEVELOPMENT

Code Completion

Another very useful feature of Eclipse is the support for code completion. Code completion displays
a context-sensitive list of relevant classes, objects, methods, and property names as you type in the
code editor. For example, Figure A-15 shows code-completion in action. As I type the word “fin,” I
can activate the code-completion feature by pressing Ctrl+Space. This will bring up a list of names
that begin with “fin.”

To select the required name, simply double-click on it or use your cursor to highlight it and press the
Enter key.

«© »

Code completion also works when you type a “.” after an object/class name. Figure A-16 shows an
example.

public void onCreate (Bundle savedTnatanceState) {
BﬂDer.ﬂn"rnl‘le[savedl = Statel public void onCreate (Hundle savedinatanceState) |
secContentView (R. layout. maia); super. onCreace (savedTnstanceStace) ;
¥ actContentView (R, layout.main) ;7
Button btnOpen = f£in Taast.
@ fincViewByld{int i) : View - Activity & tlass - Claws anchiclwidgel. Toast>
fimalize() : veid - Olijec | & LENGTH_LONG - int - Tosel
@ Tinish() = vosiel - & tivily S LENGTH_SHORT : inl - Trswst
@ finishAc tivity{int requed Code] < void - A il & makeTed (Contest context, CharSeguence ted, il duration) §
@ finishactivityFromChild{(Activity child, int request Code) < vai & il Test{Content corben, s, it ditationys Tosst=T
@ finishFromChild{Activity child) : void - Actiuity Ihis
< m 0 | m v
Press “Lhrl «Space’ to show femplate Proposals Press 'Ctri+ Space to show Template Proposals
FIGURE A-15 FIGURE A-16

Refactoring

Refactoring is a very useful feature that most mod-
ern IDEs support. Eclipse supports a whole slew of
refactoring features that make application develop-

Button zﬂ:uﬂ:ﬁn = (Button) faindviewhyld(R.id.btnlpen);
benOpen. setOnClickListener (new View.OnClickListener() {

In Eclipse, when you position the cursor at a par- Public void onClick(View v) {
. DisplayToaat ("You have clicked the Open button™):
ticular object/variable, the editor will highlight all '

ment efficient.

. . 3
occurrences of the selected object in the current
source (see Figure A-17). FIGURE A-17

This feature is very useful for identifying where a particular object is used in your code. To change
the name of an object, simply right-click on it and select Refactor &> Rename... (see Figure A-18).

After entering a new name for the object, all occurrences of the object will be changed dynamically
(see Figure A-19).

A detailed discussion of refactoring is beyond the scope of this book. For more information on refac-
toring in Eclipse, refer to www.ibm.com/developerworks/library/os-ecref/.

http://www.ibm.com/developerworks/library/os-ecref/

Debugging | 389

pubil i
A0verside
public void enCreate (Bundle savedInatanceState) [a AlleShilleR
super.onCreace (savedinscanceSTare): | it L+ Shifl+
setContentVie ¢ Undo Typing Ciele7 Meve.. Alts Shifts ¥
J et fient e Change Method Signature... At Shifts €
Butvon [N o Sne CtrieS Extract Method,.. Al Shifts M
Btnlgen. seL0n Ofieh Deéclaration B Batrnct Locat Varable. All+ShiftsL
public vo
Displ Open Type Hierarchy F4 Latract Constant...
3 Open Call Hiesarchy Ctrl+Alt+H Inline... Alt+Shift-1
)i i i
Show in Breadcrumb Al Shifes B Convert Local Vanable to hield...
s | Quick Outline Cil+0
5 PR Falract Tnlerface..,
Button btaSav Quick Type Hierarchy Ctrie 1
btnSave.setln Show In Al Shift+ W » Fatract Superchos.,
i Use Supertype Where Possible...
DUhl:,C vi Cut Ctre X Pull Up...
18]
’ P Copy CulsC Push Down...
P : Copy Qualified Name
Parte ClsV Extract Class...
ri CheckBax Introduce Parameter Object..,
CREEXRBOX Che e i Intraduce Parameter.
checkBox.secO Source Alt+Shift+5 »
i Refacton Ali+Shift+T ¥ Genevalize Declared Type...
B s "[": Surround With AlteShifts 2 b
o Local History v
FIGURE A-18
Button [ENUEN = (Button) findViewSyld(R.id.btnlpen);
| AL R S L i OntlickListener () 4
P Enter new name, press Enter to refactor + l
DiaplayToast ("You have clicked Che Open bubton®):
¥
3]
FIGURE A-19

DEBUGGING

Eclipse supports debugging your application on both the Android Emulators as well as on real Android
devices. When you press F11 in Eclipse, Eclipse will first determine whether an Android Emulator instance
is already running or a real device is connected. If at least one emulator (or device) is running, Eclipse will
deploy the application onto the running emulator or the connected device. If there is no emulator run-
ning and no connected device, Eclipse will automatically launch an instance of the Android Emulator and
deploy the application onto it.

If you have more than one emulator or device connected, Eclipse will prompt you to select the target
emulator/device on which to deploy the application (see Figure A-20). Select the target device you
want to use and click OK.

If you want to launch a new emulator instance to test the application, select Window = Android
SDK and AVD Manager to launch the AVD manager.

Setting Breakpoints

Setting breakpoints is a good way to temporarily pause the execution of the application and then examine
the content of variables and objects.

To set a breakpoint, double-click on the leftmost column in the code editor. Figure A-21 shows a break-
point set on a particular statement.

390 | APPENDIXA USING ECLIPSE FOR ANDROID DEVELOPMENT

18] Android Device Chooser ===

Select a device compatible with target Android 2.2,
@ Choose a running Android device

Serial Mumber AVD Name Target Debug State |
a:mulutm-bbﬂ Androwd_2.2_Emulatar « Android 2.2 Yes Online
E emulator 5556 Androwd_21_Emulater X Android 21 updatel Yes Online |

Launch a new Android Virtual Device

AVD Hame Target Name Platform AP Level Detailsi.:
Google/Pls 2.2 Emul.. Google APlz (GoogleInc,) 22 B
Hefresh
Manager.
ok || Concad |
FIGURE A-20
When the application is running and the first S —
. Button hinfpen = (Button) CindViewByTd(R.id.bLodpen)
breakpomt 1S I'CaChed, ECllpSC will dlsplay a | = ptnUpen. setUnClickListener (new View.UnClickListener() {
. . . . el public void onClick (View v) {
Confirm Perspective Switch dialog. Basically, : Siiilia e VAN NG e Lo e Chkn st
it wants to switch to the Debug perspective. i o R
To prevent this window from appearing again, h:
check the “Remember my decision” checkbox FIGURE A-21

at the bottom and click Yes.
Eclipse now highlights the breakpoint (see Figure A-22).

At this point, you can right-click on any selected object/variable and view its content using the vari-
ous options (Watch, Inspect, and Display) shown in Figure A-23.

Figure A-24 shows the Inspect option displaying the content of the str variable.
There are several options at this point to continue the execution:

> Step Into — Press F5 to step into the next method call/statement.

> Step Over — Press F6 to step over the next method call without entering it.
> Step Return — Press F7 to return from a method that has been stepped into.
>

Resume Execution — Press F8 to resume the execution.

Exceptions

As you develop in Android, you will encounter numerous run-time exceptions that prevent your pro-
gram from continuing. Examples of run-time exceptions include the following:

> Null reference exception (accessing an object which is null)
> Failure to specify the required permissions required by your application

> Arithmetic operation exceptions

Debugging | 391

8 oersy - e st - Eelipon [ESEr=)
fle Bt fun Sowre Bevgele Seach Pregect Refaciee Yindew Help

Mg A BFE $-0-%- &9~ PAcEN o [T) oows &l ie % JenEE
o e e,

T Oebog H . MSeven B) Variables | % Breskpoints | %7 Expressions £ .

i

yom |
null

null

null

You have clicked the Open ..

LRI T R TTTT

wRuVew~=O)

Button bunCpen = (Button) findViewByld(R.id.ptn:
BInCpen. setOnTiickiistenes (new v:n,mxemua & . enCrnstelBimdie) oid
publie vold onClick(View v | G roew OnlickListener() [}
String str = “You mave clicked the Open . enChekiView) : veid
DisplayToast aks) s G rew OnClickListenerd) [}
] G mew OnClickdistener]) [}
1 G row OnCheckedChangelListenerd) {..|

G rew OnClickdistenert) [}
n DuplayToast{Stnng] - o

Butien view

Sutton Benfave = (Butzon) findViewEyIdiR.id.ben

OEOeO +# ~ B =0

e R T e e
[2010-11-239 22:44154 - BasicViewsl] Andreid Launch!

o1 Launching Basicoemsd
FIGURE A-22
{f~—Button view—- Dec laratior i
Button btnlpen = | . =
btnOpen, aeLonClick — Add to Snippets...
i puplic void or Sten ko e
seeios By wten
DisplayTos ™ :
1 4, Inspect Chils Shift1
i) oisplay Ctrl+ShiftsD
J—Dutten view— QY Erecute Clil=ll
Button btasave = |~ Runtoline iR
hne Line Bk 4

FIGURE A-23

Nl Button view
Burton brnOpen = (Burron) findViewById(R.id.btndpen):
- btnlpen.setOnClicklistener (new View.OnClickListenex() 1
publio veild onClick(View v) {

Stxing str = “"You have clicked the Open buttom™:

bisplayToast
I 1 4 O str= “You have clicked the Open button” (jd-83006T779976)
| B o couni= 32
i /f——Button view—- M D it SSINALIE
S o offset=0
I Button btnsSave = (
I:. - Btnfave.setontlickiil[of value= (id=830057780008)
= pubilie void onCl oy fave clicked the Open hutton -
! DisplayToaat||
1 -
| 1 4 '
:
L

J 4 == ChmckBesien—

FIGURE A-24

Figure A-25 shows the current state of an application when an exception occurred. In this example,
I am trying to send an SMS message from my application and it crashes when the SMS message is
about to be sent.

392 | APPENDIXA USING ECLIPSE FOR ANDROID DEVELOPMENT

8 Debu - o nct .- e [EBI===)
Fle Bt Bun Heigee Serch Browct Relacter indow Heip =
Mries B Bl B-0-%r &5 7 £ (B Debug | 0OMS &' trve o2 lova EE
M=l Eea =
Bobug 1 BSemen| " O|ekvesbes S Sefmkpaes L oshE 0 o0
R Moo eS| ®] 0T ume Value *
ToerriSShubSProny (=S3006778685) L

i Thresd [<17 main] Sutpended (excepteon Secuntyfrcept = | a tho
= ing. String. Skring, Pendi @ _deta Parcel (= BIOGTE5176)
= SmbsnagersondToabergeCiing Suing, Soing fryl| @ _nply
= SendSMSLab sendShS{String, Sering) line 38 1 —_—

[2010-11-30 11310311 - SendSMSLAD] AutemATiZ TATGET 4 | [tog |

[2010-12-30 11:10:33 ~ SenaSusian] Applicaticn alite | g
. = v

I —— T —— e —
FIGURE A-25

The various windows do not really identify the cause of the exception. To find out more, press F6 in
Eclipse so that it can step over the current statement. The Variables window, shown in Figure A-26,
indicates the cause of the exception. In this case, the SEND_sMS permission is missing.

Fixcaption- fcipen [
[ih Broject Refactor Window Help

8 80d $-0-Q- @SS P Ivl £ [0bug | 4 000 §'ima 5% dma e
;"m.ﬁ‘ 8y ints| t-oh B ¥ ™ 0]
| mame alue
| » @ tha ImvocationTasgettception (s &3006TTAI36)

I G exception [k §R00ETTRIR6L)
I: ava.lang. Sending 3M5 message: User 1003% does not have androld.permission.SEND SMS. <
= m ¥
etEsces N = V(B Gutine 51" sAwYew "D
FIGURE A-26

To remedy this, all you need to do is to add the following permission statement in the
AndroidManifest.xml file:

<uses-permission
android:name="android.permission.SEND_SMS" />

Using the Android Emulator

The Android Emulator ships with the Android SDK and is an invaluable tool to help test your
application without requiring you to purchase a real device. While you should thoroughly test
your applications on real devices before you deploy them, the emulator mimics most of the
capabilities of real devices. It is a very handy tool that you should make use of during the devel-
opment stage of your project. This appendix provides some common tips and tricks for master-
ing the Android Emulator.

USES OF THE ANDROID EMULATOR

As discussed in Chapter 1, you can use the Android Emulator to emulate the different Android
configurations by creating Android Virtual Devices (AVDs).

You launch the Android Emulator by directly starting the AVD you have created in the Android
SDK and AVD Manager window (see Figure B-1). Simply select the AVD and click the Start
button. You have the option to scale the emulator to a particular size and monitor DPI.

Alternatively, when you run an Android project in Eclipse, the Android Emulator is automati-
cally invoked to test your application. You can customize the Android Emulator for each of
your Android projects in Eclipse. To do so, simply select Run & Run Configurations. Select
the project name listed under Android Application on the left (see Figure B-2), and on the right
you will see the Target tab. You can choose which AVD to use for testing your application, as
well as emulate different scenarios, such as network speed and network latency.

INSTALLING CUSTOM AVDS

Sometimes device manufacturers provide their own AVDs that you can use to emulate your applica-
tions running on their devices. A good example is Samsung, which provides the Samsung Galaxy
Tab add-on (http: //innovator.samsungmobile.com/galaxyTab.do) for emulating their Samsung
Galaxy Tab tablet. To install the Samsung Galaxy Tab add-on, first launch the Android SDK and
AVD Manager in Eclipse, and then select the Available Packages option on the left side of the dia-
log (see Figure B-3).

http://innovator.samsungmobile.com/galaxyTab.do

394 | APPENDIXB

USING THE ANDROID EMULATOR

8] Launch Uptions

Android SUK and AVD Manager e B

s | Lt oo existing Andmidd Vietual Devices located at CAUserd\Wei-Meng el ancdoid ave

Trestallend Pac kages. |

Ayailable Packages AVD Name Target Name Platform APILevel hew...
" Andioic_21_Frn.. Android 21 -upcate] 21eupda.. 7 T
w GoogledPh_21... Google APTs (Google Tnc) 2leupidas, T S——
o Andraid 2.2 .. Andreid 2.2 22 a Repair.,
~ GoogleAPls 22... Google APIs (Google Inc) 22 8 —t
 WVGABSH Google APIs (Google Inc.) 22 8 Detai,.. |
 SamsungGalaxy., GALAXY Tab Addon (Samsung [lect.. 2.2 8

Skin: HVGA (320x480)
Density: Medium (160)
[¥] Seale display to real size
E Sereen Size (ink 3 [
~ Avalid Android Monitor dpic 96 [
% An Ardroi Viet il
I Scale: LE
i
| Wipe user data
.
FIGURE B-1
B Run Configurations.
Create. manage. and run configurations .
i W
TR IRE S | Mame: 2dstenaiviess
pe e tea | oo 0 Tt 5 o) = =
[) Andreid Applicstion ||| Drgloyment Target Selection hode
I BasicViewsl Autoematic
[T} BasseViewsd . ered Device b
I BasicViews
[Baictiewsd Tacpit Hiie el
ﬁ m Andreid 23 2 ™
) B =] Google &%l (Geegine) 23
g g:w] Google APl {Booghelnc) 22
LA : 1] SamumgGalanyTal GALAXY Tab Addon (Semu.. 17
0 oS
m Ratresh
[} Senctstasiab
— k = o | |Momager
& Test Emuinar
& Apache Temest ¥
3 cligse Data Tocls Metwork Latency: [Neme]
5 Geneiic Serves] Wie User Data
¥ Generic ServerfExtemal L e .
5 HITH Prea 1] Diabie Bt Animmaticn
H o1 By Z
B Lava Applet
71 Java Apgication
i nit i P
B L] d L
[Fa v o2 toms S
® I =™
FIGURE B-2

At the bottom of the screen, click the Add Add-on Site... button and enter the following URL:
http://innovator.samsungmobile.com/android/repository/srepository.xml (see Figure B-4).

Click OK.

http://innovator.samsungmobile.com/android/repository/srepository.xml

Installing Custom AVDs | 395

£ Android SDK and AVD Manager =
[Vietual Devices

Sites, Packages and Archives

| Tnstaller Packag
fAvailable Packages m e https//dl-ssl.google. df

Description
SDK Source: hitp. |53k,

Add Add-on Site.. | | Delete Add-on Site.., | [¥] Display updat | Refresh imu Selected

FIGURE B-3

4 Android SDK and AVD Manager =8 =

Virtual Devid g 5 1 ; =
Installed Pa 4 i St YR
mmg.

This dialog lets you add the URL of a new add-on site. g

An add-on site can only provide new add-ons or "user” packages.
Alel-on sites e annot provide standard Androicd platfoems, docs o samples packages.
Trsenting a URL hece will not alluss you bo clone an official Andeaid repository.

Pleaze enter the URL of the repositoryxml for the new add-on site:

tp:

1T
D riptitin
SOK Source: hitps://dl-sslgoug)

A Addd-on Site... | | Delete Add-un Site. |] Display updats | Refresh | | Install Selected

FIGURE B-4

You should now see the additional package available (see Figure B-5). Check the package and click
Install Selected.

In the dialog that pops up, click “Accept” to accept the licensing agreement and then click Install to
download and install the package.

After the downloaded package is installed, you can create a new AVD based on the newly down-
loaded package. Select the Virtual Devices item in the Androids SDK and AVD Manager window
and click the New button.

Name the new AVD as shown in Figure B-6. Click the Create AVD button to create the AVD.

396 | APPENDIXB USING THE ANDROID EMULATOR

[# Android SDK and AVD Manager [ESEy==)
| Virtual Devices : -
| Installed Packages Sites, Packages and Archives
f'wailnhl: Packac 71§ hitps=//di-ssl.qoegle i i positonyml
+ [T hitgei bl i frepositary/ssepository.senl
| sy GALAXY Tab by 5 Electronics., Android APLE, revision1 |
D siatim
Android + Google APIs for GALAXY Tab, APIE, revision1
Add Add-on Site... | | Delete Add-on Site. | [¥] Display upeat | Refresh lhsull Selected

FIGURE B-5

ru Create new Android Virtual Deviee (AVD)

3l Name SarmsunyGalary Tab
1 Android SDK
; | Teraes [GALARY Tab Addon (Samsung Electronics Co, Ltd) - APILevels =]
|
|Installed Packag | SD Carck
omilable Packaj P
) File:] [Reovees E
B epair,.
| Skin:

@ Built-in: | Default (GALAXY Tab) -; | Details...
| 7 Resolution: x | Start..
|
| Hardware:

Property Value * | New.,

Absdracted LOD densily 740
| =f | Delete

Accelerometer yes E

W VM application hea.. 4
| yes

| Camera support yes . IEEM

["] Gverride the exicting AVD with the same name

FIGURE B-6

To launch the SamsungGalaxyTab AVD, select it and click the Start... button. The Launch Options
dialog, shown in Figure B-7, will appear.

Check the “Scale display to real size” option if you want to resize the emulator. This is very useful if
you are running the emulator on a small monitor (such as on a notebook computer). Specify a screen
size and click the Launch button to start the emulator. Figure B-8 shows the Samsung Galaxy Tab
emulator.

Installing Custom AVDs | 397

i Andricd SDK and A0 Manager

!In:talled Package:
| Available Packages

[Viruat Devices 1}

AVD Name

i
w Avalid Af
X An Andrg

FIGURE B-7

’

" Android_2.1_Emulator
“ GooglenPls_2.1_Emula..
“ Android_2.2_Emulator
“ GooglenPls_ 2.2 Emula..
~ SamsungGalawyTab

List of existing Android Virtual Devices located at C:\Users\Wei-Meng Lee\.andreid\avd

Target Name
Android 2.1-updatel

Android 2.2

Goegle APIz (Google Inc.)

Goegle APIz (Google Inc.)
GALAKXY Tab Addon (Samsun... 2.2

i T
4 | Detnils...

I8 Launch Ophons

Skin: GALAXY Tab (600:4024)
Density: Higgh (240)

[Scale display to real size

Screen Saze (in): 7
Menitor dpiz 56
Seale: 037

[7] Wipe user data

| Launch Cancel

==

[

|\frtual Device.

\fto sec the error.

4

S556&5amsungUalaxyTab

EEm

Sunday, December 5
€ Charging (50%)

Android

FIGURE B-8

398 | APPENDIXB USING THE ANDROID EMULATOR

EMULATING REAL DEVICES

Besides using the Android Emulator to test the different configurations of Android, you can also make
use of the emulator to emulate real devices, using the system images provided by device manufacturers.

For example, HTC provides images for their devices running Android 1.5 and 1.6 (http://developer
.htc.com/google-io-device.html#s3). You can download a device’s system image and then use the
Android Emulator to emulate it using the system image. Here is how this can be done (in theory, this
should work for any version of Android).

NOTE |If you use HTC’s image, you should be able to boot up the emulator with-
out problems. However, the network cannot be enabled. Some kind souls have
uploaded a modified image that works properly. You can try downloading it at
www . 4shared.com/get/x6pZm3-W/system.html.

First, using the Android SDK and AVD Manager, create a new AVD. In the case of HTC, create
an AVD using Android 1.6 as the platform. The AVD will be located in the c:\Users\<username>\
.android\avd\<avd_name>.avd folder. As shown in Figure B-9, a newly created AVD contains only
two files in the folder.

Using the downloaded system image, copy the system. ing file into the AVD folder, as shown in

Figure B-10.
[ESREN==) =18
AT | Cel -
@U‘ M) HECa - [42][5 @u-| « andwid b avil » HTC.awil v [4 || Sranh HTC v I
Organize v % =+ 0 @ Organize + & Bumdiscimage v Shaewith . Bum ® = o« (] @
Yo Favorites ; Naine & it o Name i Date modified Type 5
M Desktop | venfiy.ini M Dekiop ' B configini 12/6/2010 1030 P Configuration sett
i Downioads 4] userdataimg & Downloads 1° system.img 1/1/2009 1200 AM Disc Image File
Bl Recent Places . Recent Places 6} rserdntnimg 12/62010 109G PR Dise Tmage File
B Deophox B Oropbor
Libcac - i . 13 - m L
1 ez {
FIGURE B-9 FIGURE B-10

Launch the AVD and you should see it booting up (see Figure B-11).

You can proceed to sign in using your Google account (see Figure B-12). When prompted to slide
open the keyboard, press Ctrl+F11 to change the orientation of the emulator. This action tricks the
emulator into believing that you are sliding the keyboard open.

Once you have successfully signed in, you will be able to explore the Android Market on your emu-
lator (see Figure B-13)!

http://developer.htc.com/google-io-device.html#s3
http://developer.htc.com/google-io-device.html#s3
http://www.4shared.com/get/x6pZm3-W/system.html

SD Card Emulation | 399

S88aMTC

™0

P R T T[T TR TR Y

PR 7 e e g e e e e
S S) PR P FOUERR PR RV e T
o e S I L L]

— R _I.m.l

ALT

FIGURE B-11

W 555&HTC

Sign inw

Username

Password

VALY
DO D

hﬁ*ﬂhﬁ”*ﬁf
izl iz ol i i
redisdis m—— v

ALT

FIGURE B-12

SD CARD EMULATION

When you create a new AVD, you can emulate the existence of an SD card (see Figure B-14). Simply
enter the size of the SD card that you want to emulate (in the figure, it is 200MiB)

400 | APPENDIXB USING THE ANDROID EMULATOR

E“. market &

Browse Brain & Puzzle

@l Camera Fun Pro
Rel) spiceroop

:\ai- SkyGrid
skyGrid

@ Doodle Jump

FIGURE B-13
r -
[8] Create new Android Virtusl Device (AVD) =)
Name: AnduoidErmulator
Targer: [Android 22 - APl Level 8 -
SD Carcl:
viee
3 File: Rrense
Shan:
® Built-in: | Detautt (HVGA) -
() Resolution: x
Hardware:
Property Value

Abstracted LCD density 150

Delete

Overnde the existing AVD with the same name

G

FIGURE B-14

Alternatively, you can simulate the presence of an SD card in the Android Emulator by creating

a disk image first and then attaching it to the AVD. The mksdcard.exe utility (also located in the
tools folder of the Android SDK) enables you to create an ISO disk image. The following command
creates an ISO image that is 2GB in size (see also Figure B-15):

mksdcard 2048M sdcard.iso

Emulating Devices with Different Screen Sizes | 401

B C'Wrdomispsterddiemd ene B

FIGURE B-15

Once the image is created, you can specify the location of the ISO file, as shown in Figure B-16.

18] Create new Android Virtus! Device (AVD) ===

MNamie: Andradtmulater

Targel: |Amimi|l 22 - 4Pl Leveld

50 Card:
Se |20 Mg
@ Hle | 22%android-sdk-windowsitools\sHcard.iso wasf_...l
FIGURE B-16

EMULATING DEVICES WITH DIFFERENT SCREEN SIZES

Besides emulating an SD card, you can also emulate devices with different screen sizes. Figure B-17 indi-
cates that the AVD is emulating the WVGA854 skin, which has a resolution of 480x854 pixels. Note
that the LCD density is 240, which means that this screen has a pixel density of 240 pixels per inch.

- -~ y
Creste new Android Virtual Deviee (AVD) et]
Hame WVGARS
Target: [Gougle APLs (GoogleInc.) - API Level 8 - |
50 Card:
8 See: |min |
File: Rrinane
Skin:
W Built-in: | WVGABS =
Resalution: =
Hardware:
Property Value MNew..
Abstracted LCD density 40
Max VM application hea.. 24
Chverride the existing AVD with the same name
CorateaVD | | Cancel
e
\

FIGURE B-17

402 | APPENDIXB USING THE ANDROID EMULATOR

For each target that you select, a list of skins is available. The Android SDK supports the following
screen resolutions:

> QVGA —240x320
WQVGA400 — 240x400
WQVGA432 — 240x432
HVGA — 320x480
WVGAS800 — 480x800
WVGAS854 — 480x854

Y Y Y Y VY

Figure B-18 shows the Android Emulator using the WVGA854 skin.

W SSSEWVGARS [ES—]

see all your ap
Touch the La

D (A T [T R R [T T

FIGURE B-18

EMULATING PHYSICAL CAPABILITIES

In addition to emulating devices of different screen sizes, you also have the option to emulate differ-
ent hardware capabilities. When creating a new AVD, clicking the New button will display a dialog
for choosing the type of hardware that you want to emulate (see Figure B-19).

Sending SMS Messages to the Emulator | 403

For example, if you want to emulate an Android device with no touch screen, select the “Touch-
screen support” property and click OK. Back in the AVD dialog, change the value of the property
from yes to no (see Figure B-20).

E Create new Android Virtual Device (AVD) =2
MName: Andrordemulator
Tagel: [Android 22 - AP Level 3 -
5D Care:
O siee | 20 Mg = ' =
8 Create new Andraid Virtual Device (AVD) =
®e [t v
Marre: AnloidErrolaten
Skin:
ety (s = Tarqet: [Android 2.2 - APl Level8 -
) Resolution: X 25 G
o
Hardware: r'l -
(2 Files Bronwwr
Property Value lEI
Abstracted LCD density 160 Delete Shan:
. @ Built-in: Default (HVGA) =
w) Resolution: x
Hardware:
DPad suppoi LYy ki IEI
Accelerameter ol of vichual 5D Cards. Abstracted LED density 160
Maxirmurm hosizantal carmena picels Touschsstresss support no -
Cache partition size T
Audio playback support Cancel no
Track-ball support —r.
Maximum vertical camera proels —
Camer support i} | §
Battery suppart Cwverride the existing AVD with the zame name
Touse hesc e suppor
Audio recording support
GPS support
Cache partition support
Eeyboard support
Device ram size
GSM muder suppert
FIGURE B-19 FIGURE B-20

This will create an AVD with no touch-screen support (i.e., users won’t be able to use their mouse to
click on the screen).

You can also simulate location data using the Android Emulator. Chapter 9 discusses this in more details.

One useful tip to make your development more productive is to keep your Android Emulator run-
ning during development — avoid closing and restarting it. Because the emulator takes time to boot
up, it is much better to leave it running when you are debugging your applications.

SENDING SMS MESSAGES TO THE EMULATOR

You can emulate sending SMS messages to the Android Emulator using either the Dalvik Debug
Monitor Service (DDMS) tool available in Eclipse, or the Telnet client.

@ NOTE The Telnet client is not installed by default in Windows 7. To install it,
type the following command line in the Windows command prompt:
pkgmgr /iu:"TelnetClient".

404 | APPENDIXB USING THE ANDROID EMULATOR

KEYBOARD SHORTCUTS

The Android Emulator supports several keyboard shortcuts that enable you to mimic
the behavior of a real handset. The following list shows the list of shortcuts that you

can use with the emulator:

Ctrl+F5 — Ringer volume up

Ctrl+F6 — Ringer volume down

Y Y Y Y Y VY VY VY VY

F8 — Toggles data network (3G)

Esc — Back

Home — Main screen

F2 — Toggles context-sensitive menu
F3 — Call Log

F4 — Lock

F5 — Search

Ctrl+F11/Ctrl+F12 — Toggle orientation

For example, by pressing Ctrl+F11, you can change the orientation of the emulator

to landscape mode (see Figure B-21).

¥ 5554indroid_2.2_Emulator

Bl @ 11:53am

| See aII your apps.
nch

Touch the

1 7@ [7S TR R R T T
7ﬁhh{hhﬁ+u

\"'_I"_‘l‘_r"“,——*r'—r'—'r'""-
[] l_[—l'—'_f_[—*'_"f—
ALT 2 r— [_“l'_" | ALT

FIGURE B-21

Sending SMS Messages to the Emulator | 405

Take a look at how this is done in Telnet. First, ensure that the Android Emulator is running. In
order to Telnet to the emulator, you need to know the port number of the emulator. You can obtain
this by looking at the title bar of the Android Emulator window. It normally starts with 5554, with
each subsequent emulator having a port number incremented by two, such as 5556, 5558, and so on.
Assuming that you currently have one Android Emulator running, you can Telnet to it using the fol-
lowing command:

C:\telnet localhost 5554

To send an SMS message to the emulator, use the following command:

sms send +651234567 Hello my friend!

The syntax of the sms send command is as follows:

sms send <phone_number> <message>

Figure B-22 shows the emulator receiving the sent SMS message.

Besides using Telnet for sending SMS messages, you can also use the DDMS perspective in Eclipse. If
the DDMS perspective is not visible within Eclipse, you can display it by clicking the Open Perspective
button (see Figure B-23) and selecting Other.

5554%Androwd L2 Emulatar =

i) +651234567: Hello my friend!

[ESREy==
B Trinet localhast
15 Debug 2
4 Debug
see all your apps. 7 JavaBrowsing
Touch the Launcher icc & JavaScrpt
Other...

FIGURE B-22 FIGURE B-23

Select the DDMS perspective (see Figure B-24) and click OK.

Once the DDMS perspective is displayed, you will see the Devices tab (see Figure B-25), which shows the
list of emulators currently running. Select the emulator instance to which you want to send the SMS mes-
sage, and under the Emulator Control tab you will see the Telephony Actions section. In the Incoming
number field, enter an arbitrary phone number and check the SMS radio button. Enter a message and

click the Send button.

The selected emulator will now receive the incoming SMS message.

If you have multiple AVDs running at the same time, you can send SMS messages between each AVD
by using the port number of the emulator as the phone number. For example, if you have an emula-
tor running on port number 5554 and another on 5556, their phone numbers will be 5554 and 5556,
respectively.

406 | APPENDIXB USING THE ANDROID EMULATOR

& DOMS - Eciipse
Die Ldit Hun Mawgate Search Project Hefacior Window LHelp
M~ A Bld QU i0d-
Boois 22 K[@G A[22[S[MT”70|2
MName ok
B emulator-5554 Qnline Android_.. |
R ——— &0 600 |
ip-co.omronsoft.open 110 oL
com.android.phone 115 8602
com.android.launche 118 8603 |
cormandioid seltings 171 8604 IE |
android process.acare 155 8605
com.android.alarmele 165 8606 |
E Cpen Perspective |- B} com.android.music 178 8607
com.android quickse: 188 8508
B CVS Repository Exploring = cormandoid protips 195 609 [
| [ﬁtaDuhbusc Debug | andrord.process.meds 203 (0] |
~ com.android.-mms 214 8611 I
L.E.E;.‘;g""m"’ﬂf“f"‘ com.android.email 230 3612 “
RN = - sttt T
| % Debug @ Emuistor Control £ =)
B o v —
g\’hwn browsing clephoay titus r
4 Java LL (default = Voice: [home | speest [Ful]
| %ad
oo R v AN s
ava! E
HPA Telephony Actions
£ Planming Incoming number +651234567 ‘
4 Plug in UDevelopment) Voice L4
B remote system Bxplorer e
[P Resource 23 .
| &9 eam Synchronizing Mezmages Hello my friend|
O Wik i
= -
Send| | 11ang Up
FIGURE B-24 FIGURE B-25

MAKING PHONE CALLS

Besides sending SMS messages to the emulator, you can also use the Telnet client to make a phone
call to the emulator. To do so, simply use the following commands.

To Telnet to the emulator, use this command:

C:\telnet localhost 5554

To make a phone call to the emulator, use this command:

gsm call +651234567

The syntax of the gsm send command is as follows:

gsm call <phone_number>

Figure B-26 shows the emulator receiving an incoming call.

Likewise, you can also use the DDMS perspective to make a phone call to the emulator. Figure B-27
shows how to make a phone call using the Telephony Actions section.

As with sending SMS, you can also make phone calls between AVDs by using their port numbers as
phone numbers.

Transferring Files into and out of the Emulator | 407

FIGURE B-26

v
8] DDMS - Edlipse

File Edit Run Mavigate

Search Project Refactor Window

3= A - Bakd Ay o4~
@ Devices 2 &£ 0 B | e B~ "
Mame
emulator-5554 Online Android_...
system_process &0 8500
jp.co.omronsoft.open 110 8501
com.androitlphens 115 8607
com.android.launche 118 8503
com.andreid.settings 121 604
B emulator Control &2 =
Tebephany Status
Voice: [home v|Speect [Full]
Data: | i d '| Latency: ']
Telephony Actions
Incoming numben 651234567
@ ieicd
SMS
Helio my friend!
| call| | Hang Up |
FIGURE B-27

Help

m

| O

m

s

TRANSFERRING FILES INTO AND OUT OF THE EMULATOR

Occasionally, you may need to transfer files into or out of the emulator. The easiest way is to use the
DDMS perspective. From the DDMS perspective, select the emulator (or device if you have a real

Android device connected to your computer) and click the File Explorer tab to examine its file sys-
tems (see Figure B-28).

408 | APPENDIXB USING THE ANDROID EMULATOR

r -
B DOMS, - Folipa (o=]
Eile Edit Run Mavigate Search Project Refactor Window Help
o B Bald -6 AR SRR &5 [ooms *
@ Deviees 22 = O |[%, Thieads | [Heap | B Allocation Tracker |8 File Explorer, 22 =0
ITNIEEIE -~
Name * || Name Sze Uate =
B emulater-5554 Online tall| 4 & data 2010-11-19
wyslem_process 60 £ & amr 2010-11-19
jpenomransoft.open 110 £ o = app 2010-11-30 (=1
com.android.phone 113 E neticarnddevelop AdditionalViews- Lapk 13174 2010-11-2
com.android.launche 118 € v netlearn2develop.BasicViewsl-2.apk 15438 2010-11-29
com.android.cettings 121 £ net.learn2develop.Gallery-1.apk 193505 2000-11-30
android.process.acore 159 £~ W netleamn2develop.Grid-2.apk 132807 2010-11-20
‘ m v W netleam2develop ImageSwitcher-2.apk 183437 2010-11-2
o - = - nellearnZdevelop Menus-1.apk 14363 7010-11-29
Smulatoc Cantrod, 25 et a7 develop SendShSLabe] apk 14358 A0-11-30
Telephury Satus x4 w neblearnZdevelop. WebView-Zapk 14061 2010-11-29
Vuive |hum|: v| Speed: |Full '| B WP prvEe 2101118
3 £ = backup 2010-11-18
Data: [umegintered | Latency: | . G dalvik-cache 2010-12-06
. 4 (= data 010-11-30
| " Telephory Actiotn 1 2 andielits M0-1148
FIGURE B-28

The two buttons shown in Figure B-28 enable you to both pull a file from the emulator and push a
file into the emulator.

Alternatively, you can also use the adb. exe utility shipped with the Android SDK to push or pull
files to and from the emulator. This utility, like emulator.exe, is located in the <android Spk_
Folder>\tools\ folder.

To copy a file from the connected emulator/device onto the computer, use the following command:

adb.exe pull /data/app/<filename> c:\

NOTE When using the adb.exe utility to pull or push files from or into the emula-
tor, ensure that only one AVD is running.

Figure B-29 shows how you can extract an APK file from the emulator and save it onto your
computer.

i CWindewrisystemd Ziemd exe =3

FIGURE B-29

To copy a file into the connected emulator/device, use the following command:

adb.exe push NOTICE.txt /data/app

The preceding command copies the NOTICE. txt file located in the current directory and saves it onto
the emulator’s /data/app folder (see Figure B-30).

Resetting the Emulator | 409

Refactor Window Help
T . ek > rB o ™
= O || % Thieads | @ Heap | @ Allocation Tracker | File Fxplarer 4 -
e~ wdl -
* || Name Size Date >
» [data 2010-11-19
§E == anr 2010-11-18
f a (= app AND-12-06 |
E NOTICC.bt 185080 2010-11-17
g nctlcarnddevelop.AdditionalViews 2.apk 13174 2010-11-29
E net.learn2develop BasicViewsl-2 apk 15438 2010-11-20
E- nelleam?develop.Gallery-1.apk 193505 A010-11-30
b netleam2develop.Gnd-2.apk 152897 2010-11-29
e nct.lcarmddevclopImageSwitcher-2.apk 193437 2010-11-29
i net.learn2develop.Menus-1.apk 14363 2010-11-20
nel learmn?develop SendSMSLab-1.apk 14358 AM0-11-30
0 netleam2develop.WebView-2.apk 14061 2010-11-29
E 7 app-private 2010-11-18
[&> backup 010-11-18
FIGURE B-30

If you need to modify the permissions of the files in the emulator, you can use the adb.exe utility
together with the shell option, like this:

adb.exe shell

Figure B-31 shows how you can change the permissions of the NOTICE. txt file by using the chmod
command.

.
I C\Windowsystem P\emd.exe - adbeve shell

FIGURE B-31

Using the adb.exe utility, you can issue Unix commands against your Android Emulator.

RESETTING THE EMULATOR

All applications and files that you have deployed to the Android Emulator are stored in a file named
userdata-gemu.img located in the C:\Users\<username>\ .android\avd\<avd _name>.avd folder. For

example, [have an AVD named Android_2.2_Emulator; hence, the userdata-gemu. img file is located
in the C:\Users\Wei-Meng Lee\.android\avd\Android_2.2_Emulator.avd folder.

If you want to restore the emulator to its original state (to reset it, that is), simply delete the

userdata-gemu.img file.

Answers to Exercises

This appendix includes the answers to the end of chapter exercises.

CHAPTER 1 ANSWERS

1. An AVD is an Android Virtual Device. It represents an Android Emulator, which emu-
lates a particular configuration of an actual Android device.

2. The android:versionCode attribute is used to programmatically check if an application
can be upgraded. It should contain a running number (an updated application should
be set to a higher number than the older version). The android:versionName attribute
is used mainly for displaying to the user. It is a string, such as “1.0.1”.

3. The strings.xml file is used to store all string constants in your application. This
enables you to easily localize your application by simply replacing the strings and then
recompiling your application.

CHAPTER 2 ANSWERS

1. The Android OS will display a dialog from which users can choose which activity they
want to use.

2.

Intent i = new
Intent (android.content.Intent .ACTION_VIEW,
Uri.parse("http://www.amazon.com")) ;
startActivity (i) ;

3. Inan intent filter, you can specify the following: action, data, type, and category.

412 | APPENDIXC ANSWERS TO EXERCISES

4. The Toast class is used to display alerts to the user and disappears after a few seconds. The
NotificationManager class is used to display notifications on the device’s status bar. The alert
displayed by the NotificationManager class is persistent and can only be dismissed by the
user when selected.

1. The dp unit is density independent and 160dp is equivalent to one inch. The px unit corresponds
to an actual pixel on screen. You should always use the dp unit because it enables your activity
to scale properly when run on devices of varying screen size.

2. With the advent of devices with different screen sizes, using the AbsoluteLayout makes it dif-
ficult for your application to have a consistent look and feel across devices.

3. The onPause() event is fired whenever an activity is killed or sent to the background. The
onSaveInstanceState () event is like the onPause () event, except that it is not always called,
such as when the user presses the Back button to kill the activity.

4, The three events are onPause () , onSavelInstanceState(), and
onRetainNonConfigurationInstance().

1. You should check the ischecked () method of each RadioButton to determine if it has been
checked.

2. You can use the getResources () method.

3. The code snippet to obtain the current date is as follows:

//---get the current date---

Calendar today = Calendar.getInstance();
yr = today.get (Calendar.YEAR) ;

month = today.get (Calendar.MONTH) ;

day = today.get(Calendar.DAY_ OF_MONTH) ;
showDialog (DATE_DIALOG_ID) ;

CHAPTER 5 ANSWERS

1.

The ImageSwitcher enables images to be displayed with animation. You can animate the
image when it is being displayed, as well as when it is being replaced by another image.

The two methods are onCreateOptionsMenu () and onOptionsItemSelected().
The two methods are onCreateContextMenu () and onContextItemSelected().

To prevent launching the device’s web browser, you need to implement the WebviewClient
class and override the shouldoverrideUrlLoading () method.

Chapter 9 Answers | 413

CHAPTER 6 ANSWERS

1. The former allows the data to be shared among all the activities in an application, whereas
the latter is accessible only to the activity that created it.

2. ThcInethodluuneisgetExternalStorageDirectory(L

3. The permission is WRITE_EXTERNAL,_STORAGE.

CHAPTER 7 ANSWERS

1. The code is as follows:

Cursor ¢ = managedQuery (

allContacts,

projection,

ContactsContract.Contacts.DISPLAY NAME + " LIKE ?",
new String[] {"%jack%"} ,

ContactsContract.Contacts.DISPLAY NAME + " ASC");

2. ThenkxhodsaregetType(),onCreate(),query(),insert(),delete(),andupdate(L

3. The code is as follows:

<provider android:name="BooksProvider"
android:authorities="net.learn2develop.provider.Books" />

CHAPTER 8 ANSWERS

1. You can either programmatically send a SMS message from within your Android application
or invoke the built-in Messaging application to send it on your application’s behalf.

2. The two permissions are SEND_SMS and RECEIVE_SMS.

3. The Broadcast receiver should fire a new intent to be received by the activity. The activity
should implement another BroadcastReceiver to listen for this new intent.

4. The permission is INTERNET.

CHAPTER 9 ANSWERS

1. The likely reasons are as follows:
> No Internet connection
> Incorrect placement of the <uses-library> element in the androidManifest.xml file
> Missing INTERNET permission in the AndroidManifest.xml file

2. Geocoding is the act of converting an address into its coordinates (latitude and longitude).
Reverse geocoding converts a pair of location coordinates into an address.

414 | APPENDIXC ANSWERS TO EXERCISES

3. The two providers are as follows:
> LocationManager.GPS_PROVIDER
> LocationManager .NETWORK_PROVIDER
4, The method is addProximityAlert ().
1. This is because a service runs on the same process as the calling activity. If a service is long-
running, you need to run it on a separate thread so that it does not block the activity.
2. The IntentService class is similar to the Service class, except that it runs the tasks in a
separate thread and automatically stops the service when the task has finished execution.
3. The three methods are doInBackground () , onProgressUpdate (), and onPostExecute ().
4. The service can broadcast an intent, and the activity can register an intent using an
IntentFilter class.
1. You specify the minimum Android version required using the minsdkversion attribute in the
AndroidManifest.xml file.
2. You can either use the keytool.exe utility from the Java SDK, or use Eclipse’s Export feature
to generate a certificate.
3. Go to the Settings application and select the Applications item. Check the “Unknown

sources” item.

INDEX

. (period), APK naming
convention, 16

- (minus sign), TimePicker, 144

+ (plus sign), TimePicker, 144

abd.exe, 367-369, 408
AbsoluteLayout, 82, 87-89, 412
ACTION_PICK, 63
actions
<intent-filter>, 70, 411
intents, 61
ACTION_VIEW, 62, 70
activities, 22, 27-42
AndroidManifest.xml, 28
applications, 47
BroadcastReceiver, 273-280
categories, 71-73
debugging, 31
dialog windows, 34-38
EditText, 54, 55
hiding title, 33-34
intents, 43-78
life cycle, 30-32
orientation, 104-108, 110-111
progress dialog, 39-42
services
binding, 350-356
communication, 346-350
styles, 32-33
themes, 32-33

ViewGroups, 82-83
Views, 82-83
Activities, 32
Activity, 27-29
Context, 38
events, 28
ListActivity, 158
MainActivity, 180
managedQuery (), 242
MapActivity, 307
methods, 114-119
onCreate(), 82
onCreateDialog (), 34, 36
onKeyDown (), 117
setContentView(), 82
setRequestOrientation(),
110-111
<activity>, 33, 110-111
Activity.findviewById(),

132,134
adb, 367
add(), 188

addCategory (), 72
addProximityAlert (), 327
ADT. See Android Development
Tools
AlertDialog, 37
alias, 364
AnalogClock, 194
anchoring
orientation, 98-100
RelativeLayout, 98
Android 2.3, 22
Android Debug Bridge, 367-369

Android Development Tools
(ADT), 7-11
Android Device Chooser, 21
Android Emulator, 403-407
APK, 408
AVDs, 393-397
debugging, 36, 46, 52, 55, 69,
76, 116, 143, 144, 146,
148, 150, 157, 159, 162,
164, 174, 175, 180, 184,
189, 192, 196, 206-207,
212,241, 266, 272, 276,
279,287, 290, 294, 307,
309, 310, 314, 317, 324,
334, 337, 345, 393-409
devices, 398-399
file transfer, 407-409
localhost, 288
orientation, 106
permissions, 409
Phone button, 32
phone calls, 406-407
physical capabilities, 402-403
resetting, 409
screens, 401-402
SD, 399-401
shortcut keys, 404
SMS messaging, 403-406
testing, 18-19, 214
Android Hierarchy Viewer, 8
Android library, 387
Android Market, 6
AndroidManifest.xml, 361
applications, 359, 372-378
developer profile, 372-373

415

Android Packages — BroadcastReceiver

Android Packages (APK), 7, 16
Android Emulator, 408
application publishing, 359
deploying files, 367-378
MIME, 369
SD, 369

Android runtime, 4

11-14, 411
Android Emulator, 393-397
AVD Manager, 21, 266
customization, 393-397
testing, 21

.ACTION_VIEW, 61
, 361
, 108
, 70

LAUNCHER, 24
,22
, 361
android_layout_x, 88
android_layout_y, 88
android.location, 326
AndroidManifest.xml, 22, 251-252
activities, 28
<activity>, 33, 110-111
Android Market, 361
<application>, 308
<category>, 71
content providers, 241
<intent-filter>, 65-71
IntentService, 344-345
INTERNET, 305, 413
MyBrowserActivity, 70
networking, 284
permissions, 267, 270, 286
services, 333, 335
SMS messaging, 265, 270-271
SMS_SEND, 270
<uses-sdk>, 361

416

versions, 23, 360
WRITE_EXTERNAL_STORAGE, 216
android:minSdkvVersion, 24
android:orientation, 86
android.permission.CALL_PHONE,
62
android:screenOrientation,
110-111
android:theme, 33
android:versionCode, 360, 361,
411
android:versionName, 360, 361
android.view.ViewGroup, 82
animateTo (), 312, 315
anonymous class, 120
Apache License, 2
API key, 303-305
apiKkey, 306
APK. See Android Packages
.apk, 369
<application>, 308, 361
applications, 4
activities, 47
anatomy, 22-25
Android Market, 359, 372-378
built-in
intents, 56—-65
SMS messaging, 269
creating, 14-22
databases, 231-233
DDMS, 368
digital certificates, 359, 362-366
Export Android Application,
363-366
framework, 4
Gmail/Email, 281
icons, 375
launcher, 20
Manage applications, 48
market, 4
permissions, 280-281
publishing, 359-379
versions, 360-362
web servers, 369-372

Application name, 21
app_name, 24
architecture, 3-4
arguments, 61, 77
ArrayAdapter, 143, 165
assets, 22, 199, 231
asynchronous calls, 296-297
asynchronous services, 338-341,
343-346
AsyncTask, 296-297, 340
attributes
Button, 99
RelativeLayout, 92
AutoCompleteTextView, 141-144
ArrayAdapter, 143
debugging, 143
EditText, 141
MainActivity.java, 142
setThreshold (), 144
simple_dropdown_item_line, 143
Available Packages, 12
AVD Manager, 21, 266
AVDs. See Android Virtual
Devices

Back button, 32, 164

BackgroundTask, 297

Barnes and Noble, 4

BaseAdapter, 176, 181

binary data downloads, 286-288
debugging, 287
MainActivity.java, 287
main.xml, 286

Binder, 354

bindService(), 356

Bitmap, 287

BitmapFactory, 287

BooksProvider.java, 248-251

boolean, 118

breakpoints, 389-390

BroadcastReceiver, 269, 350
activities, 273-280

Browser — Dalvik Debug Monitor Service

intents, 276

MainActivity, 279-280
MainActivity.java, 277-278
main.xml, 279

onDestroy (), 280

onPause (), 277,279-280
onResume (), 277, 279-280

, 272
,278=279
, 243
, 243
, 68
, 37
, 309-310
, 310
Bundle

getExtras(), 56, 351
Intent, 56

key/value pairs, 56
onReceive (), 272
onSaveInstanceState, 108-109
putExtras (), 56

Button, 85, 113, 127-135
android_layout_x, 88
android_layout_y, 88
attributes, 99
DatePicker, 152
events, 117
FrameLayout, 93-94
id, 132
layout_width, 130
LinearLayout, 95-96
main.xml, 98-99
setOnCreateContextMenu

Listener(), 192

TimePicker, 146

byte stream, 213

CA. See certificate authority
callbacks
onCreateDialog (), 37
setOnClickListener (), 134
showDialog (), 37
CallLog, 237
CallLog.CONTENT_URI, 243
cancel (), 78
categories
activities, 71-73
Intent, 65
<intent-filter>, 70, 411
<category>, 71-73
cell tower triangulation, 322
certificate authority (CA), 362
character array, 213
CheckBox, 127-135
chmod, 409
classes
Android library, 387
anonymous, 120
MainActivity.java, 46
Notification, 77
Clear defaults button, 48
<com.google.android.maps
.MapView>, 307
commit (), 208
component name, 64
configuration change, orientation,
108-109
Confirm Perspective Switch
dialog, 390
connectivity, 3
constructors
Intent, 61
Notification, 77
Contacts, 238, 242, 243
contacts, 221
ContactsContract.Contacts
.CONTENT_URI, 243
ContactsContract.Contacts

.DISPLAY_NAME, 245

ContactsContract.Contacts
.HAS_PHONE_NUMBER, 246
ContactsContract
.Contacts._ID, 245
Content, 242
content providers, 237-262
AndroidManifest.xml, 241
creating, 247-260
data sharing, 237-238
debugging, 241
MainActivity (), 257-258
MainActivity.java, 240
main.xml, 239-240,256-257
queries, 238
ContentProvider, 247
ContentResolver, 253, 255
ContentUris, 243
Contentvalues, 223
Context, 38
Toast, 38
Context menu, 185, 190-193
debugging, 192
MainActivity.java, 191-192
CopyDB (), 232-233
counter, 343
Create Activity, 21
createFromPdu(), 272
CreateMenu ()
Menu, 188
onCreateContextMenu (), 192
Options menu, 189
cursor, 242
Cursor, 244
moveToFirst (), 226
queries, 223, 254
customization
AVDs, 393-397
Listview, 159-161
ProgressBar, 139-141

Dalvik Debug Monitor Service
(DDMS), 8
Android Emulator, 403-407

417

Dalvik Debug Monitor Service — DoBackgroundTask

Dalvik Debug Monitor
Service (continued)

applications, 368
databases, 233
internal storage, 214
Location Controls, 324
perspectives, 387
screenshots, 375

SMS messaging, 272, 276,279

<intent-filter>, 70, 411
intents, 61
path, 238
persistence, 203-235
databases, 218-233
files, 209-218
sharing, 237-238
types
Contentvalues, 223
getType (), 253
Intent, 64—65
<intent-filter>, 411
data, 54
/data/app, 368,408
databases
applications, 231-233
data persistence, 218-233
DDMS, 233
methods, 222-223
pre-creating, 230-233
Database Browser, 230
DATABASE_CREATE, 221
databases, 224
DATABASE_VERSION, 222, 230
DatePicker, 149-156
Button, 152
debugging, 150
dialog windows, 153-156
MainActivity.java, 150-151,
153-155
onDateSet (), 156
DatePickerDialog, 156
day, 156

418

DBAdapter, 218-223

deleteContact (), 228-229
getAllContacts (), 225-226
getContact (), 226-227
onCreate (), 221-222
onUpgrade (), 221-222
SQLiteOpenHelper, 221
updateContact (), 227-228

DDMS. See Dalvik Debug Monitor

Service

debugging. See also Dalvik Debug

Monitor Service

activities, 31

Android Debug Bridge, 367-369

Android Device Chooser, 21

Android Emulator, 36, 46, 52, 55,
69, 76, 116, 137, 143, 144,
146, 148, 150, 157, 159, 162,
164, 174, 175, 180, 184, 189,
192,196, 206-207, 212, 241,
266,272,276,279, 287,290,
294,307, 309, 310, 314, 317,
324, 334, 337, 345, 393-409

Android SDK, 303

AutoCompleteTextView, 143

binary data downloads, 287

built-in zoom controls, 309, 310

certificate, 303-304

content providers, 241

Context menu, 192

DatePicker, 150

Eclipse, 389

Gallery, 174

getSharedPreferences(),
206-207

Google Maps, 307, 314, 317

Gridview, 184

TmageSwitcher, 180

ImageView, 175

IntentService, 345

internal storage, 212

Listview, 157, 159

Location Manager, 324

Options menu, 189

perspectives, 387
ProgressBar, 137
services, 334, 337
SMS messaging, 266, 272,
276,279
SpinnervView, 164
strings.xml, 162
text file downloads, 290
TimePicker, 144, 146, 148
views, 128-129
Web services, 294
WebView, 196
debug.keystore, 304, 364-365
decodeStream(),
BitmapFactory, 287
<Definition>, 295-296
delete(), 413
content providers, 252, 255
deleteContact (), 228-229
deliveryIntent, 267
Dell, 4
density-independent pixel. See dp
Desire HD, 4
destinationAddress, 267
developer profile, 372-373
devices, 4-5
Android Emulator, 398-399
devices, 367
Devices tab, 325
dialog windows
activities, 34-38
DatePicker, 153-156
showDialog (), 148
TimePicker, 147-149
Dictionary Web service, 291
digital certificates
applications, 359, 362-366
keytool.exe, 362
DigitalClock, 194
Display, 110
Display Notification button, 76
DisplayContact (), 226
DistributionKeyStoreAlias, 364
DoBackgroundTask, 341

Document — getService()

Document, 294-295
DocumentBuilder, 294
DocumentBuilderFactory, 294
doInBackground (), 297, 340, 414
doSomethingRepeatedly (), 343
doSomeWork ()

progressStatus, 141

,138
, 369
, 337
,287
,291
,23

,22

Android Device Chooser, 21
breakpoints, 389-390
code completion, 388
debugging, 389
editors, 385-386
exceptions, 390-392
IDE for Java EE Developers, 6-7
Package Explorer, 382-383
perspectives, 387
refactoring, 388-389
R.java, 24
workspaces, 381-382
eclipse.exe, 7
Editor, 207
editors, Eclipse, 385-386
EditText, 127-135
activities, 54, 55
AutoCompleteTextView, 141
events, 117
internal storage, 212
LinearLayout, 95-96

onFocusChange (), 120-121
orientation, 106, 108
SeekBar, 207
setHint (), 56
e-mail, 281-283
Intent, 283
MainActivity.java, 282-283
main.xml, 282
putExtra(), 283
setData (), 283
setType(), 283
Emulator Control tab, 325
emulator.exe, 408
e-reader devices, 4-5
events
Activity, 28
Button, 117
EditText, 117
handlers, 120
views, 119-121, 133-135
exceptions, 390-392
execute (), 341, 351
onStartCommand (), 355
Export Android Application,
363-366
Export dialog, 363
external storage, 214-216

features, 3
files
data persistence, 209-218
transfer, 407-409
File Explorer tab, 407
FILE_DOWNLOAD_ACTION, 349
FileInputStream, 213
FileOutputStream, 213
fill_parent, 84, 130
filtering. See also <intent-filter>
IntentFilter, 349, 414
ListView, 160
setTextFilterEnabled (), 160
finish(), 53

Flash support, 3
flush(), 213
FrameLayout, 82, 93-95
fromPixels (), 319

Galaxy Tab, 4
Gallery, 170-176
debugging, 174
MainActivity.java, 172-174
main.xml, 171, 176
gen, 22
Geocoder, 320-321
geocoding, 320-322, 413
GeoPoint, 314, 318, 319
GET, 291
get (), 351
getAction(), 319
getActivity(), 77
getAllContacts (), 225-226
getBaseContext (), 38
getContact (), 226-227
getCurrentHour (), 146-147
getCurrentMinute (), 146
getDatal(), 54
getDayOfMonth (), 153
getDefault (), 267
getDefaultDisplay (), 110
getExternalStorageDirectory(),
215,413
getExtras(), 56, 351
getFromLocation(), 320-321
getFromLocationName (), 321
getIntent (), 56
getListview(), 160
getMonth (), 153
getOriginatingAddress (),
272-273
getPackageInfo (), 360-361
getPreferences (), 208-209
getProjection(), 319
getResources (), 162, 412
getService(), 354, 356

419

getSharedPreferences() — IntentService

getSharedPreferences (), 204-208
debugging, 206-207
MainActivity.java, 205-206
main.xml, 204-205

getString(), 56

getSystemService(), 326

getType (), 413
content providers, 253
data types, 253
MIME, 252

, 153

,138

Android SDK, 303
APT key, 303-305
built-in zoom controls, 308-310
debugging, 307, 314, 317
displaying, 305-308
geocoding, 320-322
INTERNET, 307
MainActivity.java, 306-307,
313-317

main.xml, 306
markers, 315-318
navigation, 312-315
reverse geocoding, 318, 320-322
views, 310-312

Google TV, 4

Gridview, 181-185

groupId, 188

hardware support, 3
helper methods, 186-188
hint text, 55
Home button, 19, 32
horizontal, 132
HTC, 4, 398
HTML, 198-199
HTTP, 284-286
GET, 291
WordDefinition(), 294

420

http://, 70
HTTP_OK, 286
HttpURLConnection, 286

icon.png, 23, 385
icons
android:icon, 361
applications, 375
id, 238
Button, 132
IDE. See integrated development
environment
I1S. See Internet Information
Server
ImageAdapter
BaseAdapter, 176, 181
Gridview, 184-185
ImageView, 181
ImageButton, 127-135
ImageSwitcher, 177-181, 412
debugging, 180
MainActivity.java, 178-180
main.xml, 177
makeView (), 180
onCreate (), 181
View, 181
ViewFactory, 180
ImageView, 170-176
AsyncTask, 296
debugging, 175
FrameLayout, 93
Gridview, 181
ImageAdapter, 181
MainActivity.java, 175
main.xml, 171, 176
import, namespaces, 387
InputStream, 233, 286
InputStreamReader, 213, 291
insert (), 252, 254-255, 413
insertContact (), 224
Install button, 281, 370

integrated development
environment (IDE), 6
Intent, 64—65
addCategory (), 72
arguments, 61
bindService(), 356
Bundle, 56
categories, 65
constructors, 61
data types, 64-65
e-mail, 283
key/value pairs, 77
MainActivity.java, 355
NotificationView, 76
Object, 351
onStartCommand (), 351
passing data, 54-56
request code, 53
setData(), 53, 64
SMS messaging, 272, 276
startActivityForResult(), 63
URL, 350-351
intents
actions, 61
activities, 43-78
BroadcastReceiver, 276
built-in applications, 56-65
data, 61
notifications, 73-78
resolution, 48-49, 64
results, 50-54
SMS messaging, 269-270
TextView, 277
IntentFilter, 349, 414
<intent-filter>, 24, 411
actions, 70
AndroidManifest.xml, 65-71
categories, 70
data, 70
intent resolution, 48—49
services, 335
Intent.FLAG_ACTIVITY
_NEW_TASK, 280
IntentService, 343-346, 414

internal storage — MainActivity

internal storage
DDMS, 214
debugging, 212
EditText, 212
MainActivity.java, 210-212
main.xml, 209
save, 209-214

, 305, 413

Server (I1IS), 369

, 315
, 138
, 135, 412
, 307
, 188
.java, 22, 385

Java EE, 6-7, 387
Java SE Development Kit (JDK), 7
java.io, 209

JDK. See Java SE Development Kit

KeyEvent . KEYCODE_DPAD_CENTER, 47
keystores, 304, 363-364
keytool.exe, 304-305

digital certificates, 362
key/value pairs

Bundle, 56

Contentvalues, 223

Intent, 77
keywords, 281

label view. See Textview

landscape orientation, 97,
102-103, 104

Launch my Browser button, 69
Launch Options dialog, 396
layout, 101-102
Layout view, 17
layout_alignLeft, 92
layout_alignParentBottom, 99
layout_alignParentLeft, 92, 99
layout_alignParentRight, 99
layout_alignParentTop, 92, 99
layout_alignRight, 92
layout_below, 92
layout_centerHorizontal, 92, 99
layout_centerVertical, 99
layout_gravity, 84, 85-86
layout_height, 83, 131
layout-land, 102-103
layout_marginBottom, 83
layout_marginLeft, 83
layout_marginRight, 83
layout_marginTop, 83
LayoutParams, 112, 113
layout_weight, 84, 85-86
layout_width, 83

Button, 130

fill_parent, 130

RadioButton, 132

wrap_content, 84, 130, 132
layout_x, 84
layout_y, 84
LBS. See location-based services
LG, 4
libraries, 4, 305, 387, 413
LinearLayout, 82, 83-87, 112-114

Button, 95-96

EditText, 95-96

layout_gravity, 85-86

LayoutParams, 113

layout_weight, 85-86

main.xml, 83

Scrollview, 95-96
<LinearLayout>, 83, 130
Linux kernel, 4

list views, 156-165
ListActivity, 158, 160
listener, 326
ListvView, 156-162, 242
customization, 159-161
debugging, 157, 159
filtering, 160
getListview(), 160
ListActivity, 158
MainActivity.java, 157, 159
main.xml, 158
onListItemClick(), 158
Scrollview, 95
setChoiceMode (), 160
simple_list_item_1, 158
Load button, 215-216
loadDataWithBaseURL (), 198-199
loadurl(), 196, 199
localhost, 288
Location Controls, 324
Location Manager, 281, 322-327
debugging, 324
MainActivity.java, 322-324
location-based services (LBS),
301-329
Google Maps, 13, 302-322
location data, 322-327
LocationListener, 326
LocationManager, 326, 327
LocationManager
.GPS_PROVIDER, 414
LocationManager .NETWORK_
PROVIDER, 414
LogCat, 31, 32,230
orientation, 106
PrintContacts (), 245
services, 339, 342
Start Service button, 345

MainActivity, 22
Activity, 180
BroadcastReceiver, 279-280

421

MainActivity — messaging

MainActivity (continued)
ListActivity, 158
onKeyDown (), 117
String, 143
MainActivity (), 257-258
MainActivity.java, 22, 30, 35, 45,
67-68
AutoCompleteTextView, 142
binary data downloads, 287
BroadcastReceiver, 277-278
built-in zoom controls, 309-310
class, 46
content providers, 240
Context menu, 191-192
DatePicker, 150-151, 153-155
e-mail, 282-283
Gallery, 172-174
getSharedPreferences(),
205-206
Google Maps, 306-307,
313-317
Gridview, 182-184
ImageSwitcher, 178-180
Intent, 355
IntentService, 345
internal storage, 210-212
ListView, 157, 159
Location Manager, 322-324
LocationManager, 326
networking, 284-285
onKeyDown, 47
OpenHttpConnection (), 285
Options menu, 188-189
orientation, 105-106
ProgressBar, 136-137, 139-140
services, 333-334, 336-337
SMS messaging, 265-266, 274-275
Spinnerview, 163-164
startActivityForResult (), 51
strings.xml, 162
text file downloads, 289-290
TimePicker, 145-148
Web services, 292-294
Webview, 195-196

422

main.xml, 17, 18,22, 23, 46,
66-67, 87-88
AutoCompleteTextView, 141-142
binary data downloads, 286
BroadcastReceiver, 279
Button, 98-99
content providers, 239-240,
256-257
copy, 44
e-mail, 282
FrameLayout, 93
Gallery, 171, 176
getSharedPreferences(),
204-205
Google Maps, 306
Gridview, 182
ImageSwitcher, 177
ImageView, 171, 176
internal storage, 209
layout, 101-102
layout-land, 102-103
LinearLayout, 83
ListView, 158
ProgressBar, 136, 139
<ProgressBar>, 138
RelativeLayout, 91-92
res/layout, 81-82, 126,
127-128, 136, 141-142,
144, 163, 386
R.layout.main, 25
Scrollview, 95-96
services, 333
setContentView(), 25
SMS messaging, 265, 273
Spinnerview, 163
startActivityForResult (), 50
TableLayout, 89-90
<TextView>, 126
TimePicker, 144
Ul, 112
WebView, 195
Make Calls button, 59
makeView(), 180

Manage applications, 48

managed cursor, 242

managedQuery ()
Activity, 242
ORDER BY, 247
projections, 246
WHERE, 246

<manifest>, 361

Manual tab, 325

MapActivity, 307

MapController, 310
animateTo (), 312, 315
MapView, 314

MapOverlay, 318, 319

maps.jar, 303

MapView, 310
invalidate(), 315
MapController, 314
MapOverlay, 318
onTouchEvent (), 319
setSatellite(), 310-311
Ul, 305

markers, 315-318

MDS
debug.keystore, 364-365
Keytool.exe, 304-305

measurement units, 85

media support, 3

MediaStore, 238

MediaStore.Images.Media

.EXTERNAL,_CONTENT_URT, 243

MediaStore.Images.Media

. INTERNAL,_CONTENT_URT, 243

Menu
CreateMenu (), 188
setQuertyMode (), 193
menus
helper methods, 186-188
views, 185-193
MENU button, 189, 190
MenuChoice (), 188, 189, 193
MenuTItem, 188
messaging. See SMS messaging

methods — onStartCommand()

methods
Activity, 114-119
add(), 188
databases, 222-223
MIME, 369

getType (), 252
setType (), 64-65

, 326
, 414
, 326
, 400

, 207,213
,213
, 156
,319
,226

MyBrowserActivity, 70, 72
MyBrowserActivity.Jjava, 65, 68—69
MyDB, 221, 224
MyLocationListener, 326

Name, 56

namespaces, 387

navigation, 312-315

netbooks, 4-5

net.learn2develop.MyBrowser, 70

networking, 284-297
AndroidManifest.xml, 284
asynchronous calls, 296-297
binary data downloads, 286-288
HTTP, 284-286
MainActivity.java, 284-285
text file downloads, 288-291
Web services, 291-296

NOOKcolor, 4
NOTICE.txt, 409
NotifcationManager, 73-78
Notification, 77
notifications

intents, 73-78

Ul, 114-121
notification bar. See status bar
NotificationManager, 77, 412
NotificationView, 76, 78
NotificationView.java, 73
notification.xml, 73
notify(), 78
notifyChange (), 255

Object, 351
onBind (), 335, 354
onCheckedChanged (), 135
onClick()
Load button, 215-216
Save button, 214
SD, 214
Start Service button, 356
views, 135
onContextItemSelected(), 193
onCreate(), 25,28, 413
Activity, 82
content providers, 252, 254
DBAdapter, 221-222
ImageSwitcher, 181
onRestoreInstanceState(), 108
orientation, 97, 111
setContentView(), 158
setListAdapter (), 158
Ul, 29, 82
views, 134
onCreateContextMenu (), 192
onCreateDialog (), 34, 36
callbacks, 37
showDialog (), 148
onCreateOptionsMenu (), 189, 412

onDateSet (), 156
onDestroy(), 28, 32

BroadcastReceiver, 280

stopService(), 335
onFocusChange (), 120-121
onHandleIntent (), 346
onKeyDown (), 114

Activity, 117

boolean, 118

built-in zoom controls, 310

MainActivity, 117

MainActivity.java, 47
onKeyUp, 114
onListItemClick(), 158
onLocationChanged (), 326
onMenuItemSelected, 114
onMenuOpened, 114
onNothingSelected(), 164
onOptionsTtemSelected (), 189, 412
onPause (), 28, 412

BroadcastReceiver, 277, 279-280

orientation, 106, 108
onPostExecute (), 297, 340, 414
onProgressUpdate (), 340, 414
onProviderDisabled(), 326
onProviderEnabled (), 326
onReceive (), 269

Bundle, 272

SMSReceiver, 280
onRestart (), 28, 32
onRestoreInstanceState(), 108
onResume (), 28, 32

BroadcastReceiver, 277, 279-280
onRetainNonConfiguration

Instance(), 109, 412

onSaveInstanceState(), 412

Bundle, 108-109

orientation, 108
onServiceConnected(), 356
onServiceDisconnected (), 356
onStart (), 28, 32
onStartCommand (), 335

execute(), 355

Intent, 351

423

onStatusChanged() — RadioButton

onStatusChanged (), 326
onStop (), 28

onTimeSet (), 149
onTouchEvent (), 319
onUpgrade (), 221-222
Open button, 370
openFileOutput (), 213

DownloadImage (), 287
InputStream, 286
MainActivity.java, 285

CreateMenu (), 189
debugging, 189
MainActivity.java, 188-189
, 188
, 247

activities, 104-108, 110-111
anchoring, 98-100
Android Emulator, 106
configuration change, 108-109
EditText, 106, 108
landscape, 97, 102-103, 104
LogCat, 106
MainActivity.java, 105-106
managing changes, 104-108
onCreate (), 97, 111
onPause (), 106, 108
onSaveInstanceState(), 108
persisting state, 108—-109
portrait, 97, 103
resizing and repositioning,
101-104
res/layout, 101
UI, 97-111
WindowManager, 109
XML, 104
orientation, 132
OutputStream, 233
overlay, 317-318

424

Package Explorer, 16, 382-383
Package name, 21
PackageManager, 360-361
parse(), 61
Paste, 44
PDU, 272
PendingIntent, 267, 269
getActivity(), 77
People of Lava, 4
permissions
Android Emulator, 409
AndroidManifest.xml, 267,
270, 286
android.permission
.CALL_PHONE, 62
applications, 280-281
Install button, 281
INTERNET, 286, 413
persisting state, 108-109
perspectives, 387
Phone application, 59
Phone button, 32
phone calls, 406-407
physical capabilities, 402-403
picker views, 144-156
pictures, 169-185
pixel. See px
placeholder text, 55
point. See pt
portrait, 111
portrait orientation, 97, 103
predefined constants, 243-246
PrintContacts (), 245
private keys, 364
progress dialog, 39-42
ProgressBar, 135-141
customization, 139-141
debugging, 137
MainActivity.java, 136-137,
139-140
setMax, 141

style, 141

Visibility, 138
<ProgressBar>, 138
ProgressDialog, 41
progressStatus, 141
Project name, 21
projections, 246
provider, 326
pt, 85
publishing applications, 359-379
Push a file onto the device

button, 368

put(), 223
putBoolean (), 207
putExtra(), 269, 350

e-mail, 283
PutExtras (), 56
putFloat (), 208
putInt(), 208
putLong (), 207
putString(), 207
px, 85,401

queries. See also managedQuery ()
Contacts, 243
content providers, 238
Cursor, 223, 254
strings, 238
predefined constants, 243-246
title, 254
query (), 413
content providers, 252, 254

RadioButton, 127-135
horizontal, 132
isChecked (), 135
layout_width, 132
onCheckedChanged (), 135

orientation, 132

RadioGroup — setPositiveButton()

RadioGroup, 131
setOnCheckedChange
Listener(), 135
RadioGroup, 127-135
RadioButton, 131
setOnCheckedChange
Listener(), 135
,213
,413

, 349
,82,91-92

,93
,98-99

, 326
,33
,22

, 25,44
main.xml, 81-82, 126, 127-128,
136, 141-142, 144, 163, 386
notification.xml, 73
orientation, 101
Ul, 28
Resolver getContentResolver (), 242
res/raw, 217-218
results, 50-54
RESULT_CANCELLED, 53
RESULT_OK, 53
res/values, 23
strings.xml, 161, 163
reverse geocoding, 318, 320-322
RIM. See Research In Motion
R.java, 18,22,24
R.layout.main, 25
RSS Reader, 288
run(), 343
doSomelork (), 138

Runnable, 138
runtime, 4

-s, 367
Samsung, 4
satellite view, 310-311
save
external storage, 214-216
internal storage, 209-214
onSavelnstanceState(),
108-109, 412
user preferences, 203-209
Save button, 214
scAddress, 267
scale-independent pixel. See sp
Scandinavia Android TV, 4
scheduleAtFixedRate (), 343
screens. See also orientation
Android Emulator, 401-402
screenshots, 375
Scrollview, 82, 95-97
FrameLayout, 95
LinearLayout, 95-96
ListView, 95
main.xml, 95-96
SD. See secure digital
secure digital (SD), 12, 214-216
Android Emulator, 399-401
APK, 369
onClick(), 214
SeekBar, 207
self-signed certificates, 359, 362
Send button, 325
Send Email button, 283
sendBroadcast (), 348-349
BroadcastReceiver, 272
SEND_SMS, 413
sendTextMessage (), 267
sensor, 111
sentIntent, 267
Service, 335, 344, 414

service, 356
services, 331-356
activities
binding, 350-356
communication, 346-350
AndroidManifest.xml, 333, 335
asynchronous, 338-341
IntentService, 343-346
debugging, 334, 337
<intent-filter>, 335
LogCat, 339, 342
long-running tasks, 336-341
MainActivity.java, 333-334,
336-337
main.xml, 333
repeated tasks, 341-343
serviceBinder, 355, 356
ServiceConnection, 355
bindService(), 356
setAlphabeticShortcut (), 188
setBuiltInZoomControls(),
196, 309
setChoiceMode (), 160
setContentView()
Activity, 82
main.xml, 25
onCreate(), 158
Ul, 112
setData(), 62
e-mail, 283
Intent, 53, 64
SetHint (), 56
setIs24HourView(), 146
setLatestEventInfo(), 78
setListAdapter (), 158
setMax, 141
setMultiChoiceTItems (), 38
setNegativeButton (), 38
setOnCheckedChangeListener (), 135
setOnClickListener (), 134
setOnCreateContextMenu
Listener(), 191, 192
setPositiveButton(), 38

425

setProgress() — Telnet

setProgress (), 141
setQuertyMode (), 193

setRequestOrientation(), 110-111

setResult (), 53

setSatellite(), 310-311

setStreetView(), 311-312

setTextFilterEnabled (), 160
, 144

Manage applications, 48

,243
,311-312
e-mail, 283
MIME, 64-65
,315
XML, 208
,203-209

Android Emulator, 404

setAlphabeticShortcut (), 188

setQueryMode (), 193
shouldOverrideUrlLoading (), 412
Show Map button, 59
showbDialog (), 37

callbacks, 37

dialog windows, 148

onCreateDialog(), 148
SimpleCursorAdapter, 242
simple_dropdown_item_line, 143
simple_list_item_1, 158
smartphones, 4-5
SMS messaging, 3, 263-281, 413

Android Emulator, 403-406

AndroidManifest.xml, 2635,

270-271

AVD Manager, 266

built-in applications, 269

DDMS, 272,276,279

debugging, 266, 272,276,279

feedback, 267-269

Intent, 272,276

426

intents, 269-270
TextView, 277
keywords, 281
MainActivity.java, 265-266,
274-275
main.xml, 265,273
MIME, 269
receiving, 270-280
sending programmatically,
264-267
TextView, 273, 276,277
Toast, 272
SMS_DELIVERED, 269
SmsManager, 267
SMSReceiver, 280
SMSReceiver.java, 273-274
BroadcastReceiver, 278-279
src, 271
SMS_SEND, 270
SMS_SENT, 269
Sony, 4
sp, 85
Spinnerview, 162-165
debugging, 164
MainActivity.java, 163-164
main.xml, 163
strings.xml, 163
SQLite, 3, 218
Database Browser, 230
SQLiteOpenHelper, 253
DBAdapter, 221
src, 22
TmageButton, 131
NotificationView.java, 73
SMSReceiver.java, 271
standard prefix, 238
Start Service button, 342
LogCat, 345
onClick(), 356
Toast, 337, 339, 348
startActivity(), 47, 48, 70
Intent.FLAG_ACTIVITY_NEW
TASK, 280

startActivityForResult (),
50-54,70
Intent, 63
MainActivity.java, 51
main.xml, 50
startService(), 335, 343
START_STICKY, 335
static resources, 217-218
status bar, 73-78
Display Notification button, 76
NotificationView, 76
ticket text, 77
Stop Service button, 334
stopself (), 341, 343
stopService (), 341, 343
onDestroy (), 335
storage, 3
external, 214-216
internal, 209-214
Streak, 4
street view, 311-312
String, 213
InputStreamReader, 291
MainActivity, 143
@string, 23
strings.xml, 23, 161-162, 411
app_name, 24
debugging, 162
getResources (), 162
MainActivity.java, 162
res/values, 163
SpinnerView, 163
style, 141
styles, 32-33
Switch Workspace, 383-385

TableLayout, 82, 89-91
<TableRow>, 89

tablets, 4-5

Telephony Actions, 406
Telnet, 403, 405

testing — WindowManager

testing. See also debugging
Android Emulator, 18-19, 214
AVDs, 21
tethering, 3
text, 267
text file downloads, 288-291
debugging, 290
,289-290
,217-218
, 85,113,126
,38
,242

intents, 277
,90
, 83
, 84
, 126
,90

,138
, 337

TimePicker, 144-149
Button, 146
debugging, 144, 146, 148
dialog windows, 147-149
MainActivity.java, 145-148
onTimeSet (), 149
Ul, 146

TimePickerDialog, 149

Timer, 343

TimerTask, 343

title, 188
queries, 254

Toast, 36, 174, 188, 412
Context, 38
Geocoder, 321
SMS messaging, 272
Start Service button, 337, 339,

348
ToggleButton, 127-135
tools, 400

UI. See user interface
update(), 413

content providers, 252, 255-256

updateContact (), 227-228

URI, 238

uri, 61

UriMatcher, 253

URL
Intent, 350-351
Object, 351

urls, 355

user interface (UI), 81-123
AbsoluteLayout, 88
creating programmatically,

111-114
main.xml, 17,22, 23, 46,
87-88, 112

MapView, 305
notifications, 114-121
onCreate(), 29, 82
orientation, 97-111
res/layout, 28
setContentView(), 112
TimePicker, 146
views, 125-168
XML, 82, 386

user preferences, 203-209

user-data-gemu.img, 409

<uses-library>, 305, 413

<uses-sdk>, 24, 361

values, 22
versions, 2
AndroidManifest.xml, 23, 360
android:minSdkVersion, 24
android:versionCode, 360,
361, 411
android:versionName, 360, 361

applications, 360-362

DATABASE_VERSION, 222, 230
Min SDK Version, 21
minSdkVersion, 414
view, 181
views. See also specific views
activities, 82-83
debugging, 128-129
events, 119-121, 133-135
Google Maps, 310-312
list, 156-165
menus, 185-193
onClick(), 135
onCreate (), 134
picker, 144-156
pictures, 169-185
UI, 125-168
ViewFactory, 180
View.findviewById(), 132
ViewGroups, 82-83
Visibility, 138

vnd.android-dir/mms-sms, 269

Web Browser button, 59
web servers, 369-372
Web services
debugging, 294
MainActivity.java, 292-294
networking, 291-296
WebSettings, 196
Webview, 194-200
debugging, 196
HTML, 198-199
loadurl(), 196, 199
MainActivity.java, 195-196
main.xml, 195
WebViewClient, 412
WHERE, 246
while, 141
Wi-Fi triangulation, 322
Window.FEATURE_NO_TITLE, 33
WindowManager, 109

427

withAppendedld() — zoomOut()

withAppendedId(), 243
WordDefinition(), 294
<WordDefinition>, 295-296
workspaces

Eclipse, 381-382

Switch Workspace, 383-385
wrap_content

layout_height, 131

layout_width, 84, 130, 132

,213

428

WRITE_EXTERNAL_STORAGE, 413
AndroidManifest.xml, 216

XML
downloads, 291
orientation, 104

shared preferences, 208
Ul, 82, 386

yr, 156

zoom. See built-in zoom controls
zoomIn (), 309, 310
zoomout (), 309, 310

	WroxBooks
	Beginning Android Application Development
	Introduction
	Chapter 1: Getting Started with Android Programming
	What Is Android?
	Obtaining the Required Tools
	Summary

	Chapter 2: Activities and Intents
	Understanding Activities
	Linking Activities Using Intents
	Calling Built-In Applications Using Intents
	Displaying Notifications
	Summary

	Chapter 3: Getting to Know the Android User Interface
	Understanding the Components of a Screen
	Adapting to Display Orientation
	Managing Changes to Screen Orientation
	Creating the User Interface Programmatically
	Listening for UI Notifications
	Summary

	Chapter 4: Designing Your User Interface Using Views
	Basic Views
	Picker Views
	List Views
	Summary

	Chapter 5: Displaying Pictures and Menus with Views
	Using Image Views to Display Pictures
	Using Menus with Views
	Some Additional Views
	Summary

	Chapter 6: Data Persistence
	Saving and Loading User Preferences
	Persisting Data to Files
	Creating and Using Databases
	Summary

	Chapter 7: Content Providers
	Sharing Data in Android
	Using a Content Provider
	Creating Your Own Content Providers
	Summary

	Chapter 8: Messaging and Networking
	SMS Messaging
	Sending E‑Mail
	Networking
	Summary

	Chapter 9: Location-Based Services
	Displaying Maps
	Getting Location Data
	Summary

	Chapter 10: Developing Android Services
	Creating Your Own Services
	Communicating between a Service and an Activity
	Binding Activities to Services
	Summary

	Chapter 11: Publishing Android Applications
	Preparing for Publishing
	Deploying APK Files
	Summary

	Appendix A: Using Eclipse for Android Development
	Getting Around in Eclipse
	Debugging

	Appendix B: Using the Android Emulator
	Uses of the Android Emulator
	Installing Custom AVDs
	Emulating Real Devices
	SD Card Emulation
	Emulating Devices with Different Screen Sizes
	Emulating Physical Capabilities
	Sending SMS Messages to the Emulator
	Making Phone Calls
	Transferring Files into and out of the Emulator
	Resetting the Emulator

	Appendix C: Answers to Exercises
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers

	Index

