
https://www.isecpartners.com

Digging into droids.

Jesse Burns
Black Hat USA 2009

Exploratory Android™ Surgery

Android is a trademark of Google Inc.

Use of this trademark is subject to Google Permissions.

http://www.google.com/permissions/index.html

2

Agenda
 Android Security Model

 Android’s new toys

 Isolation basics

 Device information sources

 Exploring Droids
 Tracking down a Secret Code with Manifest Explorer

 Exploring what’s available with Package Play

 Exploring what’s going on with Intent sniffing

 Quick look at Intent Fuzzing

 Conclusion
 Hidden Packages, Root & proprietary bits

 Common Problems

Android Security Model
Android’s new toys

Isolation Basics

Device Information Sources

4

Android Security Model
 Linux + Android’s Permissions

 Application isolation – note editor can’t read email

 Distinct UIDs and GIDs assigned on install

5

Android Security Model

 Rights expressed as Permissions & Linux groups!

6

Android’s New User Mode Toys

 Activities – Screens that do something, like the dialer

 Services – background features, like the IM service

 Broadcast Receivers – actionable notifications (startup!)

 Content Providers – shared relational data

 Instrumentations – rare, useful for testing

All secured with Android Permissions like:

“android.permission.READ_CONTACTS” or

“android.permission.BRICK”

See Manifest.permissions and AndroidManifests near you

7

Android’s New Toys: Intents

• Like hash tables, but with a little type / routing data

• Routes via an Action String and a Data URI

• Makes platform component replacement easy

• Either implicitly or explicitly routed / targeted

Intent { action=android.intent.action.MAIN
categories={android.intent.category.LAUNCHER}
flags=0x10200000
comp={au.com.phil/au.com.phil.Intro} }

8

Android’s Attack Surfaces

• Isolated applications is like having multi-user system

• Single UI / Device  Secure sharing of UI & IO

• Principal maps to code, not user (like browsers)

• Appeals to user for all security decisions i.e. Dialer

• Phishing style attack risks.

• Linux, not Java, sandbox. Native code not a barrier.

• Any java app can exec a shell, load JNI libraries, write
and exec programs – without finding a bug.

9

Android’s Attack Surfaces

• System Services – Not a subclass of Service

• Privileged: some native “servicemanager”

• Some written in Java, run in the system_server

• SystemManager.listServices() and getService()

• Exposed to all, secured at the Binder interfaces

44 on a Annalee’s Cupcake1.5r3 T-Mobile G1: activity, activity.broadcasts,

activity.providers, activity.senders, activity.services, alarm, appwidget, audio,

battery, batteryinfo, bluetooth, bluetooth_a2dp, checkin, clipboard,

connectivity, content, cpuinfo, devicestoragemonitor, hardware,

input_method, iphonesubinfo, isms, location, media.audio_flinger,

media.camera, media.player, meminfo, mount, netstat, notification, package,

permission, phone, power, search, sensor, simphonebook, statusbar,

SurfaceFlinger, telephony.registry, usagestats, wallpaper, wifi, window

10

System Service Attack Surface

 Some are trivial IClipboard.aidl – ClipboardService

Or “clipboard” to getService()

 CharSequence getClipboardText();

 setClipboardText(CharSequence text);

 boolean hasClipboardText();

11

System Service Attack Surface

Some system services are complex, even with source:

SurfaceFlinger Native Code (C++)

no AIDL defining it or simple Stubs to call it with.

WindowManagerService. performEnableScreen ()

12

Android’s New Kernel Mode Toys

• Binder - /dev/binder

• AIDL: Object Oriented, Fast IPC, C / C++ / Java

• Atomic IPC – ids parties, moves Data, FDs &
Binders

• Similar to UNIX domain sockets

• Ashmem – Anonymous shared memory

• Shared memory that can be reclaimed (purged)
by the system under low memory conditions.

• Java support: android.os.MemoryFile

13

New Android Toys

18 Android devices by 8 or 9 manufacturers in 2009?

Images from High End Mobile Graphix blog.

http://highendmobilegrafix.blogspot.com/

Bottom right image from Gizmodo

http://www.gizmodo.com

http://highendmobilegrafix.blogspot.com/
http://www.gizmodo.com/

14

Understanding New Devices

 What software is installed on my new phone?

 Anything new, cool, or dangerous added by the
manufacturer or new features for my apps to use?

 How will updates work? Do they have something for
deleting that copy of 1984(*) from my library.

 Is the boot loader friendly?

 Will I have root? What about someone else?

 Which apps are system and which are data.

* Even if Amazon or Ahmadinejad intend to update you, it shouldn’t be a surprise

15

Exploratory Tools

 Logcat or DDMS or the “READ_LOGS” permission!

 Android SystemProperties - property_service

 Linux

 /proc

 /sys (global device tree)

 /sys/class/leds/lcd-backlight/brightness

 dmesg i.e. calls to syslog / klogctl

 syscall interface

 File system o+r or groups we can join

 APKs in /system/app

16

Exploratory Tools

 /data/system/packages.xml

 Details of everything installed, who shares
signatures, definitions of UIDs, and the location of
the install APKs for you to pull off and examine.

 /proc/binder – the binder transaction log, state, and
stats

 /proc/binder/proc/

 File for each process using binder, and details of
every binder in use – read binder.c

 /dev/socket – like zygote and property_service

 /system/etc/permissions/platform.xml

17

Exploratory Tools

 DUMP permission – adb shell or granted

 dumpsys – dumps every system service
ServiceManager.listServices()

Example from “activity.provider” dump:
Provider android.server.checkin…

package=android process=system…uid=1000

clients=[ProcessRecord{4344fad0
1281:com.android.vending/10025}, ProcessRecord{433fd800
30419:com.google.process.gapps/10011},
ProcessRecord{43176210 100:com.android.phone/1001},
ProcessRecord{43474c68 31952:com.android.calendar/10006},
ProcessRecord{433e2398 30430:android.process.acore/10008}]

18

Exploratory Tools

 Android Manifest aka AndroidManifest.xml

 Not only does the system have one, but every app

 Defines exported attack surface including:

 Activities, Services, Content Providers,
Broadcast Receivers, and Instrumentations

 SystemServices / those privileged System APIs

 Primarily what my tools use

 Package Manager - “package” service

 Activity Manager – “activity”

 Some non-services like Settings

19

Looking at “Secret Codes”

android.provider.Telephony (private @hide code)

caught my eye with this:

Grep also noticed SECRET_CODE_ACTION in:

/packages/apps/Contacts - SpecialCharSequenceMgr.java

/packages/app/VoiceDialer - VoiceDialerReceiver.java

20

Looking at “Secret Codes”

SpecialCharSequenceMgr.java (From contacts)

21

Looking at “Secret Codes”

VoiceDialer’s use of Secret Code – start at the Manifest:

Exploring Droids
Tracking down a Secret Code with Manifest Explorer

Exploring what’s available with Package Play

Exploring with Intent Sniffing

Quick look at Intent Fuzzing

23

Manifests and Manifest Explorer

 Applications and System code has AndroidManifest

 Defines permissions, and their use for the system

 Defines attack surface

 Critical starting point for understanding security

 Stored in compressed XML (mobile  small) in .apk

24

Manifests and Manifest Explorer

25

Manifests and Manifest Explorer
Start of Browser’s Manifest (com.android.browser)

26

Manifests and Manifest Explorer
Manifest Explorer on Browser com.android.browser

27

Manifests and Manifest Explorer
“Contacts and myFaves storage” com.tmobile.myfaves

28

What does this “secret code” do?
Got some weird WAPPUSH SMS / PDU

Selective logcat for ~ six seconds around entering the code:

03.792: INFO/MyFaves(26963): starting service with intent: Intent {

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}

(has extras) }

03.802: INFO/MyFaves(26963): handleMessage(4)

04.372: INFO/MyFaves(26963): sending msg:

16358279015013420001000000000000000000000000000000000000

000000000000000000000000 to 453

06.732: INFO/MyFaves(26963):

SMSStatusReceiver.onReceive(extras: Bundle[{id=100}]; resultCode: -

1); action: sent

06.762: INFO/MyFaves(26963): starting service with intent: Intent {

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}

(has extras) }

06.762: INFO/MyFaves(26963): handleMessage(0)

06.832: INFO/ActivityManager(54): Stopping service:

com.tmobile.myfaves/.MyFavesService

09.122: INFO/MyFaves(26963): queueInboundSMSMesssage: 05

09.152: INFO/MyFaves(26963): starting service with intent: Intent {

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}

(has extras) }

09.162: INFO/MyFaves(26963): handleMessage(6)

29

Package Play

 Shows you installed packages:

 Easy way to start exported Activities

 Shows defined and used permissions

 Shows activities, services, receivers, providers
and instrumentation, their export and permission
status

 Switches to Manifest Explorer or the Setting’s
applications view of the application.

30

Package Play

31

Playing with “FieldTest”

Lots of field tests in this FieldTest

32

Playing with “FieldTest”

VERBOSE/FieldTestActivity(100): FT mode enabled

VERBOSE/FieldTestActivity(100): Response <- RIL: Query FT mode

VERBOSE/FieldTestActivity(100): Start test request

VERBOSE/FieldTestActivity(100): Request -> RIL

VERBOSE/FieldTestActivity(100): Response <- RIL

33

Package Play – Program Rights

ps says:

radio 100 31 152088 17524 ffffffff afe0c824 S com.android.phone

34

Intent Sniffer

 Monitoring of runtime routed broadcasts Intents

 Doesn’t see explicit broadcast Intents

 Defaults to (mostly) unprivileged broadcasts

 Option to see recent tasks Intents (GET_TASKS)

 When started, Activity’s intents are visible!

 Can dynamically update Actions & Categories

 Types are wild-carded

 Schemes are hard-coded

35

Intent Sniffer

 GET_TASKS

 Sees other Activity’s startup Intents:

 File can’t be viewed before it is executed 

 Isn’t in the open code

 Perhaps for “Google Experience” devices only?

36

Intent Sniffer

37

Intent Sniffer

 Intents source listed at
the bottom of each.

 Intents with
components obviously
come from recent tasks

38

Intent Fuzzing

 Fuzzing can be fun, java minimizes impacts

 Often finds crashing bugs or performance issues

Concluding Thoughts
Hidden packages, root & proprietary bits

Common problems

Possible aardvark raffle

Questions

40

Android’s Private Parts

 Platforms need to change internals to evolve

 App developers should avoid the shakiest bits

 Security researchers don’t

 We see this marker on classes, or individual methods

@hide

This is to help developers avoid mistakes

NOT a security boundary, trivially bypassed

41

Root lockdown

Carriers or Manufacturers

• Locking down the phone means securing for – not
against users. Don’t pick a fight with customers.

• People with root won’t upgrade & fix systems

• Schemes for maintaining root are dangerous

Market Enabler – little program to enable market

• Needs root to set system properties

• Only asks for “INTERNET” permission

• For this to work the Linux sandbox was defeated

42

Proprietary bits

• Radio firmware is private & highly privileged

• Many WiFi cards are similar – GPL purity combat

• Computer bios too

• Think about the phone switches on the backend

• Do you really know what’s in the heart of your CPU

• Do you even know what VPRO is?

Keep perspective & a disassembler

Search the net for platform documentation

43

Common Problems

• Implicit vs. Explicit Intents

• Too many or few permissions

• Data source & destination

• Who sent this broadcast

• Who might be able to see this

• Trusting external storage (Fat-32 no security for you)

• Users with unpassworded setuid root shells, su, etc.

• Implementing non-standardized features

• OTA updates, application distribution & update

44

Special Thanks

 iSEC Partners, especially Chris Palmer

 Thanks for all your help & feedback getting this ready

 Google’s Android Team

 They are awesome

 Special thanks to: Rich Cannings, Dianne Hackborn,
Brian Swetland, David Bort

 My clients who can’t be named; but who help keep
my mental hamster in shape.

 Sorry I can’t list you in a compressed o+r manifest

45

Questions?

46

Questions?
Incase you need some sample questions:

 What is Intent reflection?

 How would I secure a root shell for users of my
distribution of Android?

 How do I spy on users, without being publicly humiliated
like SS8 was in the United Arab Emirates?

 How do I stop someone naughty from sending my app an
Intent?

 What’s the deal code signing that doesn’t require a
trusted root?

 What’s the parallel between the browser security model
and the Android security model you mentioned?

Thank you for coming!

Want a copy of the presentation/tool?

Email:

blackhat@isecpartners.com

…and get all the iSEC Partners BH USA 2009 presentations and tools
It is also be available on our web site: https://www.isecpartners.com.

Contact me about Android stuff at

AndroidSecurityPaper@isecpartners.com
or come introduce yourself

https://www.isecpartners.com/
mailto:AndroidSecurityPaper@isecpartners.com

