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Agenda 
 Android Security Model

 Android’s new toys

 Isolation basics

 Device information sources

 Exploring Droids
 Tracking down a Secret Code with Manifest Explorer

 Exploring what’s available with Package Play

 Exploring what’s going on with Intent sniffing 

 Quick look at Intent Fuzzing

 Conclusion
 Hidden Packages, Root & proprietary bits

 Common Problems



Android Security Model
Android’s new toys

Isolation Basics

Device Information Sources
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Android Security Model
 Linux +  Android’s Permissions

 Application isolation – note editor can’t read email

 Distinct UIDs and GIDs assigned on install
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Android Security Model

 Rights expressed as Permissions & Linux groups!



6

Android’s New User Mode Toys

 Activities – Screens that do something, like the dialer

 Services – background features, like the IM service

 Broadcast Receivers – actionable notifications  (startup!)

 Content Providers – shared relational data

 Instrumentations – rare, useful for testing

All secured with Android Permissions like:

“android.permission.READ_CONTACTS” or 

“android.permission.BRICK”

See Manifest.permissions and AndroidManifests near you
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Android’s New Toys: Intents

• Like hash tables, but with a little type / routing data

• Routes via an Action  String and a Data URI

• Makes platform component replacement easy

• Either implicitly or explicitly routed / targeted

Intent { action=android.intent.action.MAIN
categories={android.intent.category.LAUNCHER} 
flags=0x10200000 
comp={au.com.phil/au.com.phil.Intro} }
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Android’s Attack Surfaces

• Isolated applications is like having multi-user system

• Single UI / Device  Secure sharing of UI & IO

• Principal maps to code, not user (like browsers)

• Appeals to user for all security decisions i.e. Dialer

• Phishing style attack risks.

• Linux, not Java, sandbox. Native code not a barrier.

• Any java app can exec a shell, load JNI libraries, write 
and exec programs – without finding a bug.
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Android’s Attack Surfaces

• System Services – Not a subclass of Service

• Privileged: some native “servicemanager”

• Some written in Java, run in the system_server

• SystemManager.listServices() and getService()

• Exposed to all, secured at the Binder interfaces

44 on a Annalee’s Cupcake1.5r3 T-Mobile G1: activity, activity.broadcasts, 

activity.providers, activity.senders, activity.services, alarm, appwidget, audio, 

battery, batteryinfo, bluetooth, bluetooth_a2dp, checkin, clipboard, 

connectivity, content, cpuinfo, devicestoragemonitor, hardware, 

input_method, iphonesubinfo, isms, location, media.audio_flinger, 

media.camera, media.player, meminfo, mount, netstat, notification, package, 

permission, phone, power, search, sensor, simphonebook, statusbar, 

SurfaceFlinger, telephony.registry, usagestats, wallpaper, wifi, window
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System Service Attack Surface

 Some are trivial IClipboard.aidl – ClipboardService

Or “clipboard” to getService()

 CharSequence getClipboardText();

 setClipboardText(CharSequence text);

 boolean hasClipboardText();
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System Service Attack Surface

Some system services are complex, even with source:

SurfaceFlinger Native Code (C++)

no AIDL defining it or simple Stubs to call it with.

WindowManagerService. performEnableScreen () 
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Android’s New Kernel Mode Toys

• Binder - /dev/binder

• AIDL: Object Oriented, Fast IPC, C / C++ / Java

• Atomic IPC – ids parties, moves Data, FDs & 
Binders

• Similar to UNIX domain sockets

• Ashmem – Anonymous shared memory

• Shared memory that can be reclaimed (purged) 
by the system under low memory conditions.

• Java support: android.os.MemoryFile
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New Android Toys

18 Android devices by 8 or 9 manufacturers in 2009?

Images from High End Mobile Graphix blog.

http://highendmobilegrafix.blogspot.com/

Bottom right image from Gizmodo

http://www.gizmodo.com

http://highendmobilegrafix.blogspot.com/
http://www.gizmodo.com/
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Understanding New Devices

 What software is installed on my new phone?

 Anything new, cool, or dangerous added by the 
manufacturer or new features for my apps to use?

 How will updates work? Do they have something for 
deleting that copy of 1984(*) from my library.

 Is the boot loader friendly?

 Will I have root? What about someone else?

 Which apps are system and which are data.

* Even if Amazon or Ahmadinejad intend to update you, it shouldn’t be a surprise
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Exploratory Tools 

 Logcat or DDMS or the “READ_LOGS” permission!

 Android SystemProperties - property_service

 Linux 

 /proc

 /sys (global device tree)

 /sys/class/leds/lcd-backlight/brightness

 dmesg i.e. calls to syslog / klogctl

 syscall interface 

 File system o+r or groups we can join

 APKs in /system/app
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Exploratory Tools

 /data/system/packages.xml

 Details of everything installed, who shares 
signatures, definitions of UIDs, and the location of 
the install APKs for you to pull off and examine.

 /proc/binder – the binder transaction log, state, and 
stats

 /proc/binder/proc/

 File for each process using binder, and details of 
every binder in use – read binder.c

 /dev/socket – like zygote and property_service

 /system/etc/permissions/platform.xml
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Exploratory Tools

 DUMP permission – adb shell or granted

 dumpsys – dumps every system service 
ServiceManager.listServices()

Example from “activity.provider” dump:
Provider android.server.checkin… 

package=android process=system…uid=1000

clients=[ProcessRecord{4344fad0 
1281:com.android.vending/10025}, ProcessRecord{433fd800 
30419:com.google.process.gapps/10011}, 
ProcessRecord{43176210 100:com.android.phone/1001}, 
ProcessRecord{43474c68 31952:com.android.calendar/10006}, 
ProcessRecord{433e2398 30430:android.process.acore/10008}]
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Exploratory Tools

 Android Manifest aka AndroidManifest.xml

 Not only does the system have one, but every app

 Defines exported attack surface including:

 Activities, Services, Content Providers, 
Broadcast Receivers, and Instrumentations

 SystemServices / those privileged System APIs

 Primarily what my tools use

 Package Manager - “package” service

 Activity Manager – “activity”

 Some non-services like Settings
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Looking at “Secret Codes”

android.provider.Telephony (private  @hide code)

caught my eye with this:

Grep also noticed SECRET_CODE_ACTION in:

/packages/apps/Contacts - SpecialCharSequenceMgr.java

/packages/app/VoiceDialer - VoiceDialerReceiver.java
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Looking at “Secret Codes”

SpecialCharSequenceMgr.java (From contacts)
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Looking at “Secret Codes”

VoiceDialer’s use of Secret Code – start at the Manifest:



Exploring Droids
Tracking down a Secret Code with Manifest Explorer

Exploring what’s available with Package Play

Exploring with Intent Sniffing

Quick look at Intent Fuzzing
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Manifests and Manifest Explorer

 Applications and System code has AndroidManifest

 Defines permissions, and their use for the system

 Defines attack surface

 Critical starting point for understanding security

 Stored in compressed XML (mobile  small) in .apk
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Manifests and Manifest Explorer
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Manifests and Manifest Explorer
Start of Browser’s Manifest (com.android.browser)
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Manifests and Manifest Explorer
Manifest Explorer on Browser com.android.browser
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Manifests and Manifest Explorer
“Contacts and myFaves storage” com.tmobile.myfaves
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What does this “secret code” do?
Got some weird WAPPUSH SMS / PDU

Selective logcat for ~ six seconds around entering the code:

03.792: INFO/MyFaves(26963): starting service with intent: Intent { 

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService} 

(has extras) }

03.802: INFO/MyFaves(26963): handleMessage(4)

04.372: INFO/MyFaves(26963): sending msg: 

16358279015013420001000000000000000000000000000000000000

000000000000000000000000 to 453

06.732: INFO/MyFaves(26963): 

SMSStatusReceiver.onReceive(extras: Bundle[{id=100}]; resultCode: -

1); action: sent

06.762: INFO/MyFaves(26963): starting service with intent: Intent { 

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService} 

(has extras) }

06.762: INFO/MyFaves(26963): handleMessage(0)

06.832: INFO/ActivityManager(54): Stopping service: 

com.tmobile.myfaves/.MyFavesService

09.122: INFO/MyFaves(26963): queueInboundSMSMesssage: 05

09.152: INFO/MyFaves(26963): starting service with intent: Intent { 

comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService} 

(has extras) }

09.162: INFO/MyFaves(26963): handleMessage(6)
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Package Play

 Shows you installed packages:

 Easy way to start exported Activities

 Shows defined and used permissions

 Shows activities, services, receivers, providers 
and instrumentation, their export and permission 
status

 Switches to Manifest Explorer or the Setting’s 
applications view of the application.
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Package Play
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Playing with “FieldTest”

Lots of field tests in this FieldTest
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Playing with “FieldTest”

VERBOSE/FieldTestActivity(100): FT mode enabled

VERBOSE/FieldTestActivity(100): Response <- RIL: Query FT mode

VERBOSE/FieldTestActivity(100): Start test request

VERBOSE/FieldTestActivity(100): Request -> RIL

VERBOSE/FieldTestActivity(100): Response <- RIL
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Package Play – Program Rights

ps says: 

radio    100   31    152088 17524 ffffffff afe0c824 S com.android.phone
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Intent Sniffer

 Monitoring of runtime routed broadcasts Intents

 Doesn’t see explicit broadcast Intents

 Defaults to (mostly) unprivileged broadcasts

 Option to see recent tasks Intents (GET_TASKS)

 When started, Activity’s intents are visible!

 Can dynamically update Actions & Categories

 Types are wild-carded

 Schemes are hard-coded
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Intent Sniffer

 GET_TASKS

 Sees other Activity’s startup Intents:

 File can’t be viewed before it is executed 

 Isn’t in the open code

 Perhaps for “Google Experience” devices only?
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Intent Sniffer
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Intent Sniffer

 Intents source listed at 
the bottom of each.

 Intents with 
components obviously 
come from recent tasks
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Intent Fuzzing

 Fuzzing can be fun, java minimizes impacts 

 Often finds crashing bugs or performance issues



Concluding Thoughts
Hidden packages, root & proprietary bits

Common problems

Possible aardvark raffle

Questions
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Android’s Private Parts

 Platforms need to change internals to evolve

 App developers should avoid the shakiest bits

 Security researchers don’t

 We see this marker on classes, or individual methods 

@hide 

This is to help developers avoid mistakes

NOT a security boundary, trivially bypassed
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Root lockdown

Carriers or Manufacturers

• Locking down the phone means securing for – not 
against users. Don’t pick a fight with customers.

• People with root won’t upgrade & fix systems

• Schemes for maintaining root are dangerous

Market Enabler – little program to enable market

• Needs root to set system properties

• Only asks for “INTERNET” permission

• For this to work the Linux sandbox was defeated
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Proprietary bits

• Radio firmware is private & highly privileged

• Many WiFi cards are similar – GPL purity combat

• Computer bios too

• Think about the phone switches on the backend

• Do you really know what’s in the heart of your CPU

• Do you even know what VPRO is?

Keep perspective & a disassembler

Search the net for platform documentation
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Common Problems

• Implicit vs. Explicit Intents

• Too many or few permissions

• Data source & destination

• Who sent this broadcast

• Who might be able to see this

• Trusting external storage (Fat-32 no security for you)

• Users with unpassworded setuid root shells, su, etc.

• Implementing non-standardized features

• OTA updates, application distribution & update
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Special Thanks

 iSEC Partners, especially Chris Palmer

 Thanks for all your help & feedback getting this ready

 Google’s Android Team

 They are awesome

 Special thanks to: Rich Cannings, Dianne Hackborn, 
Brian Swetland, David Bort

 My clients who can’t be named; but who help keep 
my mental hamster in shape.

 Sorry I can’t list you in a compressed o+r manifest



45

Questions?
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Questions?
Incase you need some sample questions:

 What is Intent reflection?

 How would I secure a root shell for users of my 
distribution of Android?

 How do I spy on users, without being publicly humiliated 
like SS8 was in the United Arab Emirates?

 How do I stop someone naughty from sending my app an 
Intent?

 What’s the deal code signing  that doesn’t require a 
trusted root?

 What’s the parallel between the browser security model 
and the Android security model you mentioned?



Thank you for coming!

Want a copy of the presentation/tool?

Email:

blackhat@isecpartners.com

…and get all the iSEC Partners BH USA 2009 presentations and tools
It is also be available on our web site: https://www.isecpartners.com.

Contact me about Android stuff at

AndroidSecurityPaper@isecpartners.com
or come introduce yourself

https://www.isecpartners.com/
mailto:AndroidSecurityPaper@isecpartners.com

