Exploratory Android™ Surgery

Digging into droids.

Jesse Burns
Black Hat USA 2009

Android is a trademark of Google Inc.
https://www.isecpartners.com Use of this trademark is subject to Google Permissioy

http://www.google.com/permissions/index.html

Agenda

e Android Security Model
e Android’s new toys
e |solation basics
* Device information sources
e Exploring Droids
e Tracking down a Secret Code with Manifest Explorer
e Exploring what's available with Package Play
e Exploring what's going on with Intent sniffing
* Quick look at Intent Fuzzing
e Conclusion

e Hidden Packages, Root & proprietary bits
e Common Problems

Android Security Model

Android’s new toys

Isolation Basics
Device Information Sources

Android Security Model

e Linux+ Android’s Permissions
e Applicationisolation — note editor can’t read email
e Distinct UIDs and GIDs assigned on install

&8 cmd - adb shell -0 x|

root
v1+1
b1uetﬂﬂfh q4
radio 0)
root ' . 0 Z . D audmgr _rpc
root . 0 Z ' 0000 S mmcad
app_B 3 3 131380 5
oot / G52 /
rnnf / 4 2 0 0 . ngr_rpc
app_11 . ‘ 01844 (: om. gnng1~ process. gapps
shell . g 7 2 0 ; stem/bin/sh
--_1h .] : : om. google. android.veicesearch
0 , : ' com.android.im
5 android.process.im
7] 5 au.com.phil
hm 25918 868 3: c Rps

PARTNERS

Android Security Model

e Rights expressed as Permissions & Linux groups!

@8 cmd - adb shell o

B
A (shell) g9id=2000(shell) groups=1003(graphics) 1@@4(1nput]l
(log),112111(adb),EEﬁlinet_bt_adrnin],BEEZ?net_bt),éElElB(inet] !

GEE B M @ 5:09 PM
$ 1d

uid=10026(app_26) gid=10026(app_26) grou
ps=3003(1inet)

s B

android:/$

uid=10047(app_47) gid=10047(app_47)

Android’s New User Mode Toys

e Activities —Screens that do something, like the dialer

e Services— background features, like the IM service

e Broadcast Receivers — actionable notifications (startup!)
e Content Providers — shared relational data

e |Instrumentations —rare, useful for testing

All secured with Android Permissions like:

“android.permission.READ CONTACTS” or
“android.permission.BRICK”

See Manifest.permissions and AndroidManifests near you

IGEC

PARTNERS

Android’s New Toys: Intents

» Like hash tables, but with a little type / routing data
 Routes via an Action String and a Data URI

» Makes platform component replacement easy

- Eitherimplicitly or explicitly routed [targeted

Intent { action=android.intent.action.MAIN
categories={android.intent.category. LAUNCHER}
flags=o0x10200000
comp=§{au.com.phil/au.com.phil.Intro} }

Android’s Attack Surfaces

Isolated applications is like having multi-user system
Single Ul / Device = Secure sharing of Ul & 10
Principal maps to code, not user (like browsers)
Appeals to user for all security decisionsi.e. Dialer
Phishing style attack risks.

Linux, not Java, sandbox. Native code not a barrier.

Any java app can exec a shell, load JNI libraries, write
and exec programs — without finding a bug.

Android’s Attack Surfaces

« System Services — Not a subclass of Service
* Privileged: some native “servicemanager”
« Some writtenin Java, run in the system_server
« SystemManager.listServices() and getService()
» Exposedto all, secured at the Binder interfaces

44 on a Annalee’s Cupcakel.5r3 T-Mobile G1: activity, activity.broadcasts,
activity.providers, activity.senders, activity.services, alarm, appwidget, audio,
battery, batteryinfo, bluetooth, bluetooth _a2dp, checkin, clipboard,
connectivity, content, cpuinfo, devicestoragemonitor, hardware,
input_method, iphonesubinfo, isms, location, media.audio_flinger,
media.camera, media.player, meminfo, mount, netstat, notification, package,
permission, phone, power, search, sensor, simphonebook, statusbar,
SurfaceFlinger, telephony.registry, usagestats, wallpaper, wifi, window

IGEC

PARTNERS

System Service Attack Surface

e Some are trivial IClipboard.aidl - ClipboardService

Or “clipboard” to getService()
e CharSequence getClipboardText();
» setClipboardText(CharSequence text);
e boolean hasClipboardText();

public CharSequence gEIEIipbnardTE:{t-:a {
synchronized cni=

return mClipboard;

System Service Attack Surface

Some system services are complex, even with source:
SurfaceFlinger Native Code (C++)

no AIDL defining it or simple Stubs to call it with.

WindowManagerService. performEnableScreen ()

IBinder surfaceFlinger = ServiceManager.getService ("SurfaceFlinger"):;
if (surfaceFlinger != null) {
[/ Log.i(TAG, "****=*= TELLING SURFACE FLINGER WE ARE BOOTED! ");
Parcel data = Parcel.obtain():

data.writeInterfaceToken ("android.ui.ISurfaceComposer"™) ;
surfaceFlinger.transact (IBinder.FIRST CALL TRANSACTION,
data, null, 0);:

Android’s New Kernel Mode Toys

- Binder - /dev/binder
« AIDL: Object Oriented, Fast IPC, C/C++/ Java

« Atomic IPC-ids parties, moves Data, FDs &
Binders

« Similarto UNIX domain sockets

« Ashmem —Anonymous shared memory

« Shared memory that can be reclaimed (purged)
by the system under low memory conditions.

» Java support: android.os.MemoryFile

New Android Toys

18 Android devices by 8 or g manufacturers in 2009?

Images from High End Mobile Graphix blog.
http://highendmobilegrafix.blogspot.com/
Bottom right image from Gizmodo
http://www.Qizmodo.com

http://highendmobilegrafix.blogspot.com/
http://www.gizmodo.com/

Understanding New Devices

e What software is installed on my new phone?

e Anything new, cool, or dangerous added by the
manufacturer or new features for my apps to use?

e How will updates work? Do they have something for
deleting that copy of 1984(*) from my library.

e |sthe boot loader friendly?
e Will | have root? What about someone else?
e Which apps are system and which are data.

* Even if Amazon or Ahmadinejad intend to update you, it shouldn’t be a surprise

Exploratory Tools

e | ogcat or DDMS orthe "READ_LOGS"” permission!
e Android SystemProperties - property_service
e [inux
e /proc
e /sys(global device tree)
e [sys/class/leds/lcd-backlight/brightness
e dmesgi.e. calls to syslog / klogctl
e syscall interface
e File system o+r or groups we can join
e APKSsin [system/app

Exploratory Tools

e /data/system/packages.xml

e Details of everything installed, who shares
signatures, definitions of UIDs, and the location of
the install APKs for you to pull off and examine.

e /proc/binder—the binder transaction log, state, and
stats

e /proc/binder/proc/

e File for each process using binder, and details of
every binder in use — read binder.c

e /dev/socket - like zygote and property_service
e [system/etc/permissions/platform.xml

IGEC

PARTNERS

Exploratory Tools

e DUMP permission —adb shell or granted

public woid dumpiz_ile:"esc:ipt:: fd, String([] args) throws BRemoteException;

e dumpsys—dumps every system service
ServiceManager.listServices()

Example from “activity.provider” dump:

Provider android.server.checkin...

package=android process=system...uid=1000

clients=[ProcessRecord{4344fad0
1281:com.android.vending/10025}, ProcessRecord{433fd800
30419:com.google.process.gapps/10011},
ProcessRecord{43176210 100:com.android.phone/1001},
ProcessRecord{43474c68 31952:com.android.calendar/10006},
ProcessRecord{433e2398 30430:android.process.acore/10008}]

Exploratory Tools

e Android Manifest aka AndroidManifest.xml
e Notonly does the system have one, but every app
e Defines exported attack surface including:

o Activities, Services, Content Providers,
Broadcast Receivers, and Instrumentations

e SystemServices [those privileged System APIs
e Primarily what my tools use
e Package Manager - “"package” service
e Activity Manager —"activity”
e Some non-services like Settings

Looking at “"Secret Codes”

android.provider.Telephony (private @hide code)
caught my eye with this:

ll."=|'==|-=
* Broadcast Action: A "secret code” has been entered in the dialer. Secret codes are

* of the form *#*#<code=2*#£%*, The intent will have the data URI:</p=
e

* «zp>=<=code=android_secret_code:// <codedgt; </ code=</p=
*/
public static finzal String SECRET CODE ACTION =
"android.provider Telephony SECEET CODE™;

Grep also noticed SECRET_CODE_ACTION in:
/packages/apps/Contacts - SpecialCharSequenceMgr.java
/packages/app/VoiceDialer - VoiceDialerReceiver.java

IGEC

PARTNERS

Looking at “"Secret Codes”

SpecialCharSequenceMgr.java (From contacts)
ll."=|-==|'=
* Handles secret codes to launch arbitrary activities in the form of ¥*#2*#<code=2*2*,
* If a =ecret code i= encountered an Intent 15 started with the android_secret_code:// <code=
* URI.
E
* @param context the context to use
* @param input the text to check for a secret code in
* @return true If a secret code was encountered
*f
atatic boolean handIESEcrEtEﬂ'dE-:E:ntext context, String input) |
!/ Secret codes are in the form *2¥z<code=2%2*
int len = input.lengthi);
if {len > B && input_startasWith("*§*§"™) &2& input_endaWith("§*&*")) |
Intent intent = new Intent (Intents.SECRET CODE ACTION,
Uri.parse ("android secret code://™ + input.substring(4, len - 41));
context . sendBroadecast (intent) ;
return true;

1

return false;

iGEC

PARTNERS

Looking at “"Secret Codes”

VoiceDialer's use of Secret Code — start at the Manifest:

<recelver android:name="VoliceDlialerReceiver">

<!-- Voice Dialer Logging Enabled, *#*#VDL1#*#* -—->
<intent-filter>
<action android:name="android.provider.Telephony.SECRET CODE" />
<data android:scheme="android secret code" android:host="8351" />
</intent-filter:>
<!-- Voice Dialer Logging Disabled, *#*#VDLO#*#* —->
<intent-filter:>
<actlion androidi:name="android.provider.Telephony.SECRET CODE" />
<data android:scheme="android secret code" android:host="8350" />
</intent-filter:>
</recelver>

Exploring Droids

Tracking down a Secret Code with Manifest Explorer
Exploring what's available with Package Play
Exploring with Intent Sniffing

Quick look at Intent Fuzzing

Manifests and Manifest Explorer

Applications and System code has AndroidManifest
Defines permissions, and their use for the system
Defines attack surface

Critical starting point for understanding security

Stored in compressed XML (mobile = small) in .apk

Manifests and Manifest Explorer

] Al @ 6:asam [Al @ 6:asam [5 Ml € 6:49 AM

/sdcard/com.android.

com.android.providers.telephony (=) Save in File browser.txt

d.pnon g'"=

com.android.soundrecorder

sion.BROADCAST_STI

.CALL_PHONE"=

com.isecpartners.android.broadca '\;/,' u

.CALL_PRIVILEGED"=>

com.android.providers.drm
sion.WRITE_SETTIN

com.android.mms

Manifests and Manifest Explorer

Start of Browser’s Manifest (com.android.browser)

<l--

,-'"I*
ol
x %k
* &
ol
x %
El
ol
x %
x %
ol
x %
x %
ol
ol

*/

//device/apps/Browser/AndroidManifest.xml
Copyright 2006, The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License 1s distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

——>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.android.browser">

<uses-permission
android:name="com.google.androlid.googleapps.permission.GOOGLE AUTH" />
<uses-permission
android:name="androlid.permission.ACCESS COARSE LOCATION"/>

Manifests and Manifest Explorer

Manifest Explorer on Browser com.android.browser

Manifest Explorer

com.android.browser U '

Manifests and Manifest Explorer

"Contacts and myFaves storage” com.tmobile.myfaves
BOEED BHM@ 12z FEEGRE B G 12:06 Av

Manifest Explorer Manifest Explorer

com.tmobile.myfaves O

com.tmobile.myfaves O

mission.READ_COMNTACTS">

mission. WRITE_CONTACTS">

mission.SEND_SMS">

mission.RECEIVE_SMS">

mission.READ_SMS">

What does this “secret code” do?
Got some weird WAPPUSH SMS / PDU

Ripped Wappush

10490709

BXML version

IGEC

PARTNERS

Selective logcat for ~ six seconds around entering the code:

03.792: INFO/MyFaves(26963): starting service with intent: Intent {
comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}
(has extras) }

03.802: INFO/MyFaves(26963): handleMessage(4)

04.372: INFO/MyFaves(26963): sending msg:
16358279015013420001000000000000000000000000000000000000
000000000000000000000000 to 453

06.732: INFO/MyFaves(26963):
SMSStatusReceiver.onReceive(extras: Bundle[{id=100}]; resultCode: -
1); action: sent

06.762: INFO/MyFaves(26963): starting service with intent: Intent {
comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}
(has extras) }

06.762: INFO/MyFaves(26963): handleMessage(0)

06.832: INFO/ActivityManager(54): Stopping service:
com.tmobile.myfaves/.MyFavesService

09.122: INFO/MyFaves(26963): queuelnboundSMSMesssage: 05
09.152: INFO/MyFaves(26963): starting service with intent: Intent {
comp={com.tmobile.myfaves/com.tmobile.myfaves.MyFavesService}
(has extras) }

09.162: INFO/MyFaves(26963): handleMessage(6)

Forc)

o0 Package Play

e Shows you installed packages:

Easy way to start exported Activities
Shows defined and used permissions

Shows activities, services, receivers, providers
and instrumentation, their export and permission
status

Switches to Manifest Explorer or the Setting’s
applications view of the application.

=1 Package Play

Activities Exported By Package:
All

com.htc.fieldtest.FieldTestActi O

Start Activity |l See Manifest |8 System View

Package Mame: com.htc.fieldtest

android

au.com.phil

Pack dge USES No perm ssions.

com.ScanlLife

Package defines no new permssions.

com.ajaxie.lastfm

com.amazon.mp3

rom anAdraid alarmelnele

F}hﬁ

LAJ

<1 Playing with “FieldTest”

Lots of field tests in this FieldTest

@ Test Item

,
O

GSM page

Menu+a

GPRS / E-GPRS page

Menu+hb

AMR

Menu+c

3G Reselection Paramet
Menu+d

2G Reselection Paramet
Menu+e

3G Reselection Status

Men+f

@ Test Item

QO

(L= 1 ¥) b

WCDMA

Menu+h

Layer 3 RRC Signaling

Menu+i

PRACH/RACH informatic

Menu+j

3G DCH Status

Menu+k

3G NEIGHBOR List Statu:

Menu+l

U 3G Downlink Transport

Menu+n

O 3G Uplink Transport For

Menu+o

3G DL RLC AM Status

Menu+p

3G UL RLC AM Status

Menu+g

O HSDPA CQI Status

Menu+r

O 3G AGC Status

2] Playing with “FieldTest”

G5M page 3G Reselection Status

dsl |_|_—|| [r—||—-| 2 Cadllse

VERBOSE/FieldTestActivity(100): FT mode enabled
VERBOSE/FieldTestActivity(100): Response <- RIL: Query FT mode
n VERBOSE/FieldTestActivity(100): Start test request
S E c VERBOSE/FieldTestActivity(100): Request -> RIL
VERBOSE/FieldTestActivity(100): Response <- RIL

Fiiij Package Play — Program Rights

com.htc.fieldtest O
v

com.htc.fieldtest.FieldTestActi O

pS says:
radio 100 31 152088 17524 ffffffff afe0c824 S com.android.phone

IGEC

PARTNERS

a1 Intent Sniffer

e Monitoring of runtime routed broadcasts Intents
e Doesn't see explicit broadcast Intents
e Defaults to (mostly) unprivileged broadcasts

e Option to see recent tasks Intents (GET_TASKS)
e When started, Activity’'s intents are visible!

e Candynamically update Actions & Categories
e Types are wild-carded
e Schemes are hard-coded

a1 Intent Sniffer

e GET_TASKS
e Seesother Activity’s startup Intents:

Intent ;1-|rr =0x30200000
mrup {com. rr....rr|.— android.s n—ruu}n.iﬂ.n.—r.-.-.-ru google.android.systemupc
ater.SystemUpdateInstallD I-I|H"“Ih-l extras) } extras {first 'r--rn}l

I'|_._ 1”
8.Z1p)

Truru rn—- ent I-

e File can't be viewed before it is executed ®
e |sn'tinthe open code
e Perhaps for "Google Experience” devices only?

e Intent Sniffer

. Recent Activities . Broadcasts . Recent Activities . Broadcasts

. Show details . Show details

139 known actions, 17 categories, 29
schemes. Type uses wild card to match
all. Found 114 actions by reflection and
25 by walking manifest registrations.

Update Actions

Update Categories Show Stats

IGEC

PARTNERS

a1 Intent Sniffer

e |ntents source listed at
the bottom of each.

Recent Activities Broadcasts

Show details

e |ntents with
components obviously
come from recent tasks

|r|:n—r| actic r| A J T.ﬂ'-. '-_'~. ATE

)
wn action and data

‘ez Intent Fuzzing

e Fuzzing can be fun, java minimizes impacts
e Often finds crashing bugs or performance issues

Intent Fuzzer

ypes '-_'~.u}:|}:|.::ur':-.%r:i: ypes '-_'~_u};|};|.::|r:.5.-j; system_server

- =]

Broadcasts O Services :@uﬁm
v v

Componets (59)

com.android.phone.ProcessO O
v

Null Fuzz Single |l Null Fuzz All

Null Fuzz Single | Mull Fuzz All

Can't launch

com.android.phone.N
out permission

Concluding Thoughts

Hidden packages, root & proprietary bits
Common problems

Possible aardvark raffle

Questions

Android’s Private Parts

e Platforms need to change internals to evolve
e App developers should avoid the shakiest bits
e Security researchersdon’t

e We see this marker on classes, or individual methods

/
. * @hide Broadcast intent when the volume for a particular stream type changes.
@ h |d e * Includes the stream and the new volume

*

* @see #EXTRA_VOLUME_STREAM_TYPE
* @see #EXTRA_VOLUME_STREAM_VALUE
*/

@sdkConstant (SdkConstantType.BROADCAST INTENT ACTION)

public static final String VOLUME CHANGED ACTION = "android.media.VOLUME CHANGED ACTION";

This is to help developers avoid mistakes
NOT a security boundary, trivially bypassed

Root lockdown

Carriers or Manufacturers

 Locking down the phone means securing for — not
against users. Don't pick a fight with customers.

 People with root won’t upgrade & fix systems
« Schemes for maintaining root are dangerous

Market Enabler — little program to enable market
» Needs root to set system properties
» Only asks for "INTERNET"” permission

« Forthis to work the Linux sandbox was defeated

// Getting Root ;)
i S E c process = Runtime.getRuntime () .exec("su");

PARTNERS

Proprietary bits

 Radio firmware is private & highly privileged
Many WiFi cards are similar — GPL purity combat
« Computer bios too
« Think about the phone switches on the backend
» Do you really know what's in the heart of your CPU
Do you even know what VPRO is?
Keep perspective & a disassembler
Search the net for platform documentation

Common Problems

 Implicit vs. Explicit Intents
« Too many or few permissions
« Data source & destination

« Who sent this broadcast

« Who might be able to see this
 Trusting external storage (Fat-32 no security for you)
« Users with unpassworded setuid root shells, su, etc.
 Implementing non-standardized features

« OTA updates, application distribution & update

Special Thanks

e {SECPartners, especially Chris Palmer
e Thanks for all your help & feedback getting this ready

e Google’s Android Team
e They are awesome

e Special thanks to: Rich Cannings, Dianne Hackborn,
Brian Swetland, David Bort

e My clients who can’t be named; but who help keep
my mental hamster in shape.

e Sorry | can'tlist you in a compressed o+r manifest

Questions?

45

Questions?

Incase you need some sample questions:

What is Intent reflection?

How would | secure a root shell for users of my
distribution of Android?

How do | spy on users, without being publicly humiliated
like SS8 was in the United Arab Emirates?

How do | stop someone naughty from sending my app an
Intent?

What's the deal code signing that doesn’t require a
trusted root?

What's the parallel between the browser security model
and the Android security model you mentioned?

Thank you for coming!

Want a copy of the presentation/tool?

Email:
blackhat@isecpartners.com

...and get all the iSEC Partners BH USA 2009 presentations and tools
It is also be available on our web site: https://www.isecpartners.com.

Contact me about Android stuff at
AndroidSecurityPaper@isecpartners.com
or come introduce yourself

https://www.isecpartners.com/
mailto:AndroidSecurityPaper@isecpartners.com

