

Debian CLI Policy
Mirco Bauer <meebey@debian.org>

Brandon Hale <brandon@smarterits.com>
Sebastian Dröge <slomo@debian.org>

Dylan R. E. Moonfire <debian@mfgames.com>

Version 0.7

Abstract

This document lays out basic policies regarding packaging Mono, other CLRs and CLI based applications/libraries on
Debian GNU/Linux.

Copyright Notice

Copyright © 2005-2009 Mirco Bauer Copyright © 2005 Brandon Hale Copyright © 2006 Sebastian Dröge Copyright © 2006
Dylan R. E. Moonfire.

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of
merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL in the Debian GNU/Linux
distribution or on the World Wide Web at the GNU General Public Licence. You can also obtain it by writing to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

i

Contents

1 Policy History 1

2 Used Terms 3

2.1 CLI - Common Language Infrastructure . 3

2.2 CLR - Common Language Runtime . 3

2.3 CIL - Common Intermediate Language . 3

2.4 “.NET” or long “Microsoft .NET Framework” . 3

2.5 GAC - Global Assembly Cache . 3

2.6 Package Names . 4

3 Packaging Policy 5

3.1 General Packaging . 5

3.1.1 Architecture . 5

3.1.2 File Locations . 5

3.1.3 File Permissions . 5

3.1.4 Build Dependencies . 6

3.2 GAC Library Packaging . 6

3.2.1 Naming & Versioning . 6

3.2.2 Policy Files . 7

3.2.3 clilibs Control File . 7

3.2.4 pkg-config File . 7

3.2.5 Signing . 7

3.3 non-GAC Library Packaging . 7

3.3.1 Naming . 8

4 Mono Specific Packaging help 9

4.1 Naming . 9

4.2 DLL Maps . 9

4.2.1 Introduction . 9

4.2.2 Solution: DLL map config file . 9

4.3 MONO_DISABLE_SHM . 10

5 DotGNU Portable.NET Packaging help 11

5.1 Naming . 11

CONTENTS ii

6 Appendix 13

6.1 Helper Scripts: cli-common-dev . 13

6.1.1 dh_makeclilibs . 13

6.1.2 dh_clideps . 13

6.1.3 dh_installcligac . 13

6.2 Examples . 14

6.2.1 debhelper 5/6 Example . 14

6.2.2 debhelper 7 Example . 14

6.2.3 cdbs Example . 14

6.2.4 Executable Wrapper Script Example . 14

6.2.5 API Compatibility Check Example . 14

6.2.6 GAC Policy File Example . 15

6.3 Migrating Existing Packages . 15

1

Chapter 1

Policy History

Here are the changes to the Debian CLI Policy document.

Changes from 0.5.1 to 0.7:

• ‘File Locations’ on page 5: GAC libraries must now go in /usr/lib/cli/assembly_name-X.Y instead of
/usr/lib/cli/upstream_package_name-X.Y, as one source package might ship many assemblies with different ABI
versions. This would produce very confusing directory names.

• ‘Naming & Versioning’ on page 6: Late-GAC install is now mandatory.

• ‘Build Dependencies’ on page 6: Added CLI SDKs as alternative to the compiler.

• ‘Signing’ on page 7: Using the mono.snk key of cli-common-dev is now mandatory if upstream doesn’t ship one.

• ‘MONO_DISABLE_SHM’ on page 10: Replaced MONO_SHARED_DIR workaround with cli.make and
MONO_DISABLE_SHM.

• ‘debhelper 7 Example’ on page 14: Added debhelper 7 example.

• ‘Policy Files’ on page 7: Added reference to the mono-api-check tool and made raising clilibs version mandatory.

• “‘.NET” or long “Microsoft .NET Framework”’ on page 3: Updated URL to Microsoft .NET Guidelines.

• ‘Package Names’ on page 4: Made upstream tarball names clearer.

• ‘File Permissions’ on page 5: Replaced find commands with dh + cli.make.

• ‘Naming & Versioning’ on page 6: Removed ASP.NET as it’s not a programming language and added IronPython and
IronRuby.

Changes from 0.5.0 to 0.5.1:

• ‘Package Names’ on page 4: Added examples for the different meanings of package name.

• ‘Naming & Versioning’ on page 6: Explicitly name the “lib” prefix requirement for library packages.

Changes from 0.4.4 to 0.5.0:

• Removed DRAFT tag, the policy is now official.

• ‘Build Dependencies’ on page 6: Added C# 3.0 to the compiler list.

• ‘File Permissions’ on page 5: Added dh_clifixperms as alternative to the find command.

Changes from 0.4.2 to 0.4.3:

• ‘dh_installcligac’ on page 13: Fixed order of dh_installcligac calls.

• ‘debhelper 5/6 Example’ on page 14: Fixed debhelper example (order).

Chapter 1. Policy History 2

• ‘cdbs Example’ on page 14: Fixed cdbs example (order).

Changes from 0.4.1 to 0.4.2:

• ‘GAC Policy File Example’ on page 15: Fixed naming of the policy files.

Changes from 0.4.0 to 0.4.1:

• ‘debhelper 5/6 Example’ on page 14: Fixed typo.

Changes from 0.3.0 to 0.4.0:

• ‘Build Dependencies’ on page 6: Added nemerle to the compilers.

• ‘Packaging Policy’ on page 5: Added a packaging chapter that includes some of the old chapter and some new.

• ‘GAC Library Packaging’ on page 6: Added informations about signing and policy files.

• ‘dh_installcligac’ on page 13: Added and consolidated the information on dh_installcligac.

• ‘File Locations’ on page 5: Require that files are installed into /usr/lib/package or /usr/lib/cli
/package-X.Y now.

Changes from 0.2.1 to 0.3.0:

• “‘.NET” or long “Microsoft .NET Framework”’ on the next page: Added URL for the “.NET” term.

• ‘GAC - Global Assembly Cache’ on the facing page: Added explanation of GAC.

• ‘GAC Library Packaging’ on page 6: Added section for naming of GAC packages.

Changes from 0.2.0 to 0.2.1:

• ‘Helper Scripts: cli-common-dev’ on page 13: Added examples for debhelper and CDBS.

Changes from 0.1.1 to 0.2.0:

• ‘Policy History’ on the previous page: Added chapter “Policy History”

• ‘Build Dependencies’ on page 6: Compiler dependency is no longer strict on mono-mcs

• ‘Helper Scripts: cli-common-dev’ on page 13: Note that dh_makeclilibs must be called before dh_clideps

• ‘Build Dependencies’ on page 6: Moved dh_clideps and dh_makeclilibs into their own subsections

• ‘File Permissions’ on page 5: Added chapter “File Permissions”

• ‘Migrating Existing Packages’ on page 15: cli-wrapper is now deprecated

• ‘Introduction’ on page 9: Added an external link for DllNotFoundException

3

Chapter 2

Used Terms

The “.NET” area uses its own set of abbreviations, which can look confusing to other people. This chapter lists some of the
terms along with their explanations:

2.1 CLI - Common Language Infrastructure

This is what most people mean when they say “.NET”. The CLI defines mainly the virtual machine, the bytecode
and how everything works together. It is both an ISO (http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=36769) and ECMA (http://www.ecma-international.org/publications/
standards/Ecma-335.htm) standard.

2.2 CLR - Common Language Runtime

The CLR is an implementation of the CLI (often with a lot of add-ons or tools for developers). Mono and Microsoft .NET
Framework are CLRs.

2.3 CIL - Common Intermediate Language

The CIL is the format of the bytecode for binaries and libraries used by the CLI.

2.4 “.NET” or long “Microsoft .NET Framework”

The “.NET” word is a Microsoft marketing phrase and mostly is a CLR with added Microsoft technologies like: ASP.NET,
VB.NET, System.Windows.Forms, Passport plus a lot of other things.

We highly discourage from using any form of the word “.NET”, it is burdened by copyright and marketing. We advice
to use the correct term instead, which is usually CLI.

If you really want to use the “.NET” term in a correct form please refer to the Microsoft .NET Guidelines (http://www.
microsoft.com/about/legal/trademarks/usage/net.mspx).

2.5 GAC - Global Assembly Cache

The GAC contains and manages the libraries for the CLR. It allows users to install multiple versions of the same library and
enables loading of the right version when an application is executed.

Mono stores the GAC at /usr/lib/mono/gac

DotGNU Portable.NET stores the GAC at /usr/lib/cscc/lib

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36769

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36769

http://www.ecma-international.org/publications/standards/Ecma-335.htm

http://www.ecma-international.org/publications/standards/Ecma-335.htm

http://www.microsoft.com/about/legal/trademarks/usage/net.mspx

http://www.microsoft.com/about/legal/trademarks/usage/net.mspx

Chapter 2. Used Terms 4

2.6 Package Names

There are different set of package names we refer in this policy to. Here a list of examples for the different names:

• assembly (file) names:

gtk-sharp.dll

log4net.dll

FlickrNet.dll

• (debian) source package names:

gtk-sharp2

log4net

libflickrnet

• (debian) binary package names:

libgtk2.0-cil

libgnome2.0-cil

liblog4net1.2-cil

libflickrnet2.1.5-cil

• upstream package names (a good indicator is the pkg-config file name):

gtk-sharp-2.0

log4net

flickrnet

• upstream tarball names (without version and file extension):

gtk-sharp-2.12.9.tar.gz -> gtk-sharp

log4net-1.2.0-beta8.zip -> log4net

FlickrNet-25207.zip -> FlickrNet

5

Chapter 3

Packaging Policy

This section describes the additions to the Debian Policy (http://www.debian.org/doc/debian-policy/) that are
required for CLI packages.

3.1 General Packaging

3.1.1 Architecture

For packages that consist of 100% managed code, “Architecture: all” must be chosen in debian/control.

Packages containing a mix of managed and native code must be “Architecure: any” or depending on the specific package a
more restricted set of architectures is valid.

3.1.2 File Locations

The package’s applications, libraries and meta-data must be installed into /usr/lib/upstream_package_name.

Libraries that will be installed into the GAC must be installed into /usr/lib/cli/assembly_name-X.Y (for more details
about the X.Y version see GAC versioning). assembly_name is the assembly name without the file extension (.dll). The
commonly seen /usr/lib/mono/upstream_package_name path should only be used for Mono project packages.

Example path for the log4net package:

/usr/lib/cli/log4net-1.2

Never install native “glue” libraries into /usr/lib, instead install them at /usr/lib/cli/assembly_name-X.Y. When
moving libraries update the references to the new location using a DLL Map. See the Mono DLL maps section for an
example.

The only exception here is for native libraries that are of wider use; can be used other packages. Native libraries
should be packaged according to the Library Packaging Guide (http://www.netfort.gr.jp/~dancer/column/
libpkg-guide/libpkg-guide.html) in a Debian Policy conformant way.

You must not install application files (.exe) directly into /usr/bin. Instead create a wrapper script into /usr/bin to
allow them to be run without path and the .exe suffix.

3.1.3 File Permissions

Source code files (*.cs, *.vb, *.boo, etc.) should be non-executable.

Library files (*.dll) should be non-executable.

Debug symbol files (*.mdb) should be non-executable.

Assembly config files (*.config) should be non-executable.

Application files (*.exe) must have the executable flag (+x) set to enable compatiblity with direct invokation as .
/foo.exe using Linux’s BINFMT support.

http://www.debian.org/doc/debian-policy/

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html

Chapter 3. Packaging Policy 6

To ensure that all files have correct permissions, you should use Debhelper’s /usr/bin/dh combined with cli.make.
Otherwise you should add dh_clifixperms after dh_fixperms in the binary-* targets of debian/rules.

3.1.4 Build Dependencies

At a minimum, CLI packages should Build-Depends on cli-common-dev (>= 0.7) and the appropriate CLI compiler or
CLI SDK package.

Current CLI compilers in Debian:

• C#: mono-mcs (>= 1.0) | c-sharp-compiler

• C# 2.0: mono-gmcs (>= 1.1.8) | c-sharp-2.0-compiler

• C# 3.0: mono-gmcs (>= 1.2.5) | c-sharp-3.0-compiler

• Nemerle: nemerle (>= 0.9)

• Boo: boo (>= 0.5.6)

Current CLI SDKs in Debian:

• Mono: mono-devel (>= 2.4.2.3)

Software that uses Mono via the C interface library (libmono.so) or requires the /usr/lib/pkgconfig/mono.pc file
must Build-Depends on libmono-dev (>= 1.0)

Note that there are architectures for which no CLR is available and thus you may have to restrict the Build-Depends for
your package to the architectures available.

If your package is Architecture: all, you should specify this as Build-Depends-Indep. Never put debhelper,
cdbs, dpatch and quilt into Build-Depends-Indep. See the Debian Policy Manual (http://www.debian.org/doc/
debian-policy/ch-relationships.html#s-sourcebinarydeps) for more information on this.

3.2 GAC Library Packaging

Libraries that are installed into the GAC should provide decent ABI stability and be useful for other packages. Otherwise,
they should remain private to the package.

3.2.1 Naming & Versioning

Libraries that are installed into the GAC must be strong-named, i.e. signed.

Libraries must to be installed into the GAC at package install time (postinst) which is provided by the dh_installcligac tool
of the cli-common-dev package.

Each of the libraries in the GAC has an assembly version number that consists of 4 parts (major, minor, build and revision
number). When loading libraries from the GAC all 4 parts and the public signing key fingerprint must match.

It is general practice and recommended by Microsoft (http://msdn.microsoft.com/netframework/programming/
deployment/default.aspx?pull=/library/en-us/dndotnet/html/dplywithnet.asp#dplywithnet_
version) that a library is ABI compatible when only the build and revision number change and the major and minor
number stay the same.

The library package name must be prefixed with lib.

To reflect the ABI stability and prevent breakages when a ABI-incompatible version is released, a similar solution for
native library packages (http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#
naminglibpkg) is used. The major and minor number must mirror the SONAME version and the resulting package
name should be libfooX.Y-cil, where X is the major and Y the minor number of the assembly version.

One notable exception for this naming are assemblies that end on a number (Mono.C5 for example). In this case the package
should be named libfoo123-X.Y-cil (i.e. libmono-c5-0.5-cil) to improve the readability.

http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps

http://www.debian.org/doc/debian-policy/ch-relationships.html#s-sourcebinarydeps

http://msdn.microsoft.com/netframework/programming/deployment/default.aspx?pull=/library/en-us/dndotnet/html/dplywithnet.asp#dplywithnet_version

http://msdn.microsoft.com/netframework/programming/deployment/default.aspx?pull=/library/en-us/dndotnet/html/dplywithnet.asp#dplywithnet_version

http://msdn.microsoft.com/netframework/programming/deployment/default.aspx?pull=/library/en-us/dndotnet/html/dplywithnet.asp#dplywithnet_version

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#naminglibpkg

http://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html#naminglibpkg

Chapter 3. Packaging Policy 7

The -cil suffix is chosen to prevent confusion with native library package names. Never use “sharp” in the package name
as it does not represent the language, and a CLI library can be used with all CLI implemented / enabled languages such as
C#, IronPython, IronRuby, Boo, Nemerle, J#, VB.NET (full list (http://www.mono-project.com/Languages)).

Unnecessary package renames should be avoided. Existing package names that do not follow this policy should not be
renamed until the next incompatible ABI change, at which point the new naming scheme should be used.

If the upstream software does not use major and minor number to reflect ABI stability or breaks ABI with a change in build
or revision, the package must be renamed to either libfooA.B.C-cil or libfooA.B.C.D-cil (where A, B, C, D are the
complete assembly version numbers), depending at which point (major or minor) the breakage occurred. All Policy Files
must be dropped at this stage until a new major or minor version is released.

The upstream software may use wildcards in the assembly versions (1.2.* for example) which are filled by the compiler with
a random value. You must replace these wildcards with 0 (1.2.0.0 in the example) to make it possible to use Policy Files and
make predictable version numbers.

More than one library can be installed in one package but it is required that they must all have the same assembly version
and belong together.

3.2.2 Policy Files

As explained above a exact match of the version number is required to load a library from the GAC. To override
this behaviour and make different versions of ABI-compatible library packages really ABI-compatible you have to
use Policy Files (http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconcreatingpublisherpolicyfile.asp). These files have to be named policy.X.Y.foo.dll (where X and Y
are the major and minor number of the assembly it should be compatible with), it must be signed with the same signing
key as the original assembly and it must be installed into the GAC. For information on how to create policy files look at the
previous Policy Files link or at the example below.

Overriding the GAC policy should only be done when the different library versions are really ABI-compatible. This can be
checked using mono-api-check of the mono-devel package. You must also raise the version in the clilibs control file to the
minimum version when new interfaces/classes/methods were added.

3.2.3 clilibs Control File

The clilibs control file MUST be present in all GAC library packages. It can be created with the dh_makeclilibs helper
script and has a format similar to the shlibs file created by dh_makeshlibs(1) and also has a similar use: it is used by
dh_clideps helper script to find the correct dependencies.

You should always set the minimum required version of the library in the clilibs file.

3.2.4 pkg-config File

Many libraries deliver a .pc file for use by the pkg-config helper utility, which aids other libraries and applications to
link against libraries.

All GAC library packages should have a pkg-config .pc file located in /usr/lib/pkgconfig. The filename must be
identical to that shipped by upstream.

3.2.5 Signing

When installing libraries into the GAC signing is required. The signing key should be supplied by upstream. If upstream
is not supplying the key then you must use the mono.snk key from the cli-common-dev package. This key must be used
for all following versions of the library to maintain ABI compatbility.

Unnecessary ABI breakages should be avoided. Existing keys shipped by the source package should not be replaced (with
mono.snk) until the next incompatible ABI change.

3.3 non-GAC Library Packaging

This includes libraries that are not ABI-stable, may be not strong-named and are usually in an early stage of development.
They must not include a clilibs control file.

http://www.mono-project.com/Languages

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcreatingpublisherpolicyfile.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcreatingpublisherpolicyfile.asp

Chapter 3. Packaging Policy 8

3.3.1 Naming

The package should be named libfoo-cil (without a version in the package name) and libraries should not be installed
into the GAC but only into /usr/lib/upstream_package_name.

Applications using non-GAC libraries must copy the libraries they need into their own application directory. You can
compare this with static linking of native libraries.

9

Chapter 4

Mono Specific Packaging help

This section offers help with common problems encountered when packaging Mono-specific applications for Debian.

4.1 Naming

The official name of the Mono Project is: Mono, mono:: or mono. To keep this consistent for users, it should always be called
“Mono” (not MONO, mono, mono:: or mixed with the .NET name). The explanation of what Mono is, should be in the
package long description.

4.2 DLL Maps

Often times, upstream software developers are not packagers, and vice versa. Developers do not necessarily test their
software with packaging issues in mind. The most common problem we see from this are missing DLL exceptions.

4.2.1 Introduction

When Mono code invokes an external library, it usually calls something like [DllImport(“foo”)] which expands “foo” to a
shared library name such as “libfoo.so” which is then searched for in the library search path.

In Debian and some other binary Linux distributions, packages are split into runtime and developer (-dev) packages. Since
the versioned library libfoo.so.X is usually used at runtime, and libfoo.so is a symlink only used when building against the
library, the libfoo.so symlink is in the libfoo-dev package.

When packaging an application which uses libfoo.so normal users should not need the -dev packages installed just to run
the application. However, Mono defaults to looking for the unversioned libfoo.so, which is unavailable in the runtime
package.

When the DLL map is missing or upstream forgets to install the DLL map, it will result in a DllNotFoundException (http:
//www.mono-project.com/DllNotFoundException) which will stop the execution of the program.

4.2.2 Solution: DLL map config file

This can be fixed by creating a DLL map for the application exe or for the library DLL that is trying to invoke libfoo.so. If
libfoo.so is invoked by the DLL bar.dll, create an xml file, bar.dll.config to tell Mono which .so should be loaded at runtime.
bar.dll.config should be installed to the same directory as bar.dll.

<configuration>
<dllmap dll="foo" target="libfoo.so.0"/>
</configuration>

A config file can contain as many dllmap directives as are needed. If the upstream developer already ships a config file, but
it is incomplete, you should create a patch against it in your package.

Most Mono software developers are very helpful people, and will readily accept patches to solve this type of bug if you
bring it to their attention. Please be sure to inform them of all these changes.

http://www.mono-project.com/DllNotFoundException

http://www.mono-project.com/DllNotFoundException

Chapter 4. Mono Specific Packaging help 10

4.3 MONO_DISABLE_SHM

The Mono runtime uses a shared directory, by default ~/.wapi. This directory will be created/used when any CLI appli-
cation is executed (like the C# compiler mcs).

There are 2 problems with this:

• In an autobuilder environment often the running user has no home directory.

• Mono uses the wrong home directory when running within fakeroot (it tries /root/.wapi instead of $HOME/.wapi).

In these cases, the package building will fail, applications will hang, die with strange Mono runtime errors or segfault. This
includes dh_clideps or dh_makeclilibs, since they run monodis.

The solution is to include cli.make from cli-common-dev in debian/rules or to manually set the
MONO_DISABLE_SHM environment variable.

export MONO_DISABLE_SHM = 1

11

Chapter 5

DotGNU Portable.NET Packaging help

This section offers help to common problems encountered when packaging DotGNU Portable.NET-specific applications for
Debian.

5.1 Naming

The official name of the DotGNU Portable.NET project is exactly that. To keep this consistent for users, it should be always
called “DotGNU Portable.NET” (not pnet or Portable.NET). The explanation of what DotGNU Portable.NET is, should be
in the package long description.

Chapter 5. DotGNU Portable.NET Packaging help 12

13

Chapter 6

Appendix

6.1 Helper Scripts: cli-common-dev

When using cli-common-dev and the included dh_* scripts packages must Build-Depends on cli-common-dev (>= 0.7)
(this version may change later, when cli-common-dev has changes which are required to be used by all CLI packages, the
CLI Policy version will represent such changes).

6.1.1 dh_makeclilibs

dh_makeclilibs is used to create the clilibs control files which are used later by dh_clideps for this or other packages. It
must only be used when your package contains libraries that other packages may link against.

It has the same use (and very similar parameters) to dh_makeshlibs. You should always use the most minimal version
necessary.

This program must be called before dh_clideps.

See dh_makeclilibs(1) for details.

6.1.2 dh_clideps

dh_clideps is used to discover the native and managed dependencies of the packages. It uses the clilibs control files, the
.config of assemblies and the shlibs files created by dh_makeshlibs. The discovered dependencies are written into
the ${cli:Depends} variable.

dh_shlibdeps must be run before dh_clideps. dh_makeshlibs and dh_makeclilibs must be run before dh_clideps.
If not, when two binary packages from the same source package depend on one another, dh_clideps will not be able to
determine the dependencies.

dh_clideps can remove duplicate dependencies created by running dh_clideps and dh_shlibsdeps when run given
the -d parameter.

See dh_clideps(1) for details.

6.1.3 dh_installcligac

dh_installcligac is used to facilitate the installation of strong-named assemblies into the various caches installed on
the user’s machine. Its primary purpose is to install the assemblies at the point of installation instead of pre-packing them
inside the Debian package; this is also known as late-GAC install.

To identify which assemblies need to be installed into the GAC, dh_installcligac uses the debian/installcligac
or the debian/packagename.installcligac to list the assemblies to install or uninstall at installation or removal
respectivly.

The file format of the installcligac is simple: the full installed path of every assembly to install into the GAC. For
example, the liblog4net1.2-cil package would have this in the debian/installcligac file:

/usr/lib/cli/log4net-1.2/log4net.dll

Chapter 6. Appendix 14

dh_installcligac needs to be called after dh_install and before dh_clideps. See dh_installcligac(1) for
details.

6.2 Examples

6.2.1 debhelper 5/6 Example

For binary-arch packages:

binary-arch: build install
...
dh_shlibdeps -a
dh_makeclilibs -a -V
dh_installcligac -a
dh_clideps -a
...

For binary-indep packages:

binary-indep: build install
...
dh_makeclilibs -i -V
dh_installcligac -i
dh_clideps -i
...

6.2.2 debhelper 7 Example

With debhelper’s 7 /usr/bin/dh you don’t need to add any extra commands to debian/rules yourself as debhelper
has an API that allows to extend it. cli-common-dev as of version 0.5.7 can extend debhelper 7 with all commands that
are needed. You can enable this by passing “cli” to dh in debian/rules like this:

%:
dh $@ --with cli

That’s it, you are done! :-)

6.2.3 cdbs Example

common-binary-predeb-arch common-binary-predeb-indep::
dh_shlibdeps
dh_makeclilibs -V
dh_installcligac
dh_clideps

6.2.4 Executable Wrapper Script Example

#!/bin/sh
exec /usr/bin/cli /usr/lib/package/package.exe "$@"

6.2.5 API Compatibility Check Example

You need to install following packages for this example: mono-devel libmono-sharpzip0.6-cil libmono-sharpzip0.84-cil

mono-api-check /usr/lib/mono/gac/ICSharpCode.SharpZipLib/0.6.0.0__1b03e6acf1164f73/ICSharpCode.SharpZipLib.dll \
/usr/lib/mono/gac/ICSharpCode.SharpZipLib/0.84.0.0__1b03e6acf1164f73/ICSharpCode.SharpZipLib.dll

CLI API Check
Assembly Name: ICSharpCode.SharpZipLib
Missing Interfaces: 44
Additional Interfaces: 79

The two assemblies you compared are not API compatible!
You must use a new package name!

The new assembly has additional interfaces. You must raise
the minimal version in clilibs!

Chapter 6. Appendix 15

The mono-api-check wrapper script checks whether there are new public/protected interfaces (where interface in this con-
text means namespace, class, method, interface, delegate, etc) or any missing ones. When an interface is changed it will
show up as missing and additional. You should follow the instructions, in this case you must create a new versioned
package for the library and raise the minimal version number for the dh_makeclilibs call.

6.2.6 GAC Policy File Example

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="foo" publicKeyToken="35e10195dab3c99f" />
<bindingRedirect oldVersion="1.2.0.0-1.2.10.0" newVersion="1.3.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

The above example would be used for a policy file for the “foo” assembly and would tell the GAC that version 1.3.0.0 is
compatible with versions 1.2.0.0 to 1.2.10.0. You have to compile and install it with

al -link:policy.1.2.foo.config -out:policy.1.2.foo.dll -keyfile:path/to/keyfile
gacutil /i policy.1.2.foo.dll

Keep in mind that the filenames must be policy.X.Y.foo.config and policy.X.Y.foo.dll where foo is the assembly name and
X.Y is the major and minor version number you want to be compatible with.

6.3 Migrating Existing Packages

Many CLI packages already exist in Debian, or are in ITP, and conform to the deprecated Mono Conventions (http:
//wiki.debian.org/?MonoConventions).

Any debian/rules hacks or patches that exist to redirect files to /usr/share/dotnet should be removed, and
adjusted according to upstream file locations (/usr/lib). See Mono Debian Plan (http://wiki.debian.org/
?MonoDebianPlan) for the rationale behind this change.

Also, be sure to replace references to dh_netdepends, dh_makenetlibs, and ${net:Depends} with the newer names described
in the policy above.

Please remove any build-deps on mono-jit, mono-mint, mono-utils (this one had the dh_* helper scripts which are
now in cli-common-dev) and libmono-dev (use this one only if the package really links against mono or requires the
mono.pc file).

http://wiki.debian.org/?MonoConventions

http://wiki.debian.org/?MonoConventions

http://wiki.debian.org/?MonoDebianPlan

http://wiki.debian.org/?MonoDebianPlan

		Policy History

		Used Terms

		CLI - Common Language Infrastructure

		CLR - Common Language Runtime

		CIL - Common Intermediate Language

		``.NET'' or long ``Microsoft .NET Framework''

		GAC - Global Assembly Cache

		Package Names

		Packaging Policy

		General Packaging

		Architecture

		File Locations

		File Permissions

		Build Dependencies

		GAC Library Packaging

		Naming & Versioning

		Policy Files

		clilibs Control File

		pkg-config File

		Signing

		non-GAC Library Packaging

		Naming

		Mono Specific Packaging help

		Naming

		DLL Maps

		Introduction

		Solution: DLL map config file

		MONO_DISABLE_SHM

		DotGNU Portable.NET Packaging help

		Naming

		Appendix

		Helper Scripts: cli-common-dev

		dh_makeclilibs

		dh_clideps

		dh_installcligac

		Examples

		debhelper 5/6 Example

		debhelper 7 Example

		cdbs Example

		Executable Wrapper Script Example

		API Compatibility Check Example

		GAC Policy File Example

		Migrating Existing Packages

