
Introduction to i18n
Tomohiro KUBOTA <debianattmaildotplaladotordotjp(retiredDD)>

29 Dezember 2009

Abstract

This document describes basic concepts for i18n (internationalization), how to write an inter-
nationalized software, and how to modify and internationalize a software. Handling of char-
acters is discussed in detail. There are a few case-studies in which the author internationalized
softwares such as TWM.

Copyright Notice

Copyright © 1999-2001 Tomohiro KUBOTA. Chapters and sections whose original author is
not KUBOTA are copyright by their authors. Their names are written at the top of the chapter
or the section.

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2,
or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as
/usr/share/common-licenses/GPL in the Debian GNU/Linux distribution or on
the World Wide Web at http://www.gnu.org/copyleft/gpl.html. You can also obtain
it by writing to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html

i

Contents

1 About This Document 1

1.1 Scope . 1

1.2 New Versions of This Document . 1

1.3 Feedback and Contributions . 2

2 Introduction 3

2.1 General Concepts . 3

2.2 Organization . 6

3 Important Concepts for Character Coding Systems 9

3.1 Basic Terminology . 9

3.2 Stateless and Stateful . 12

3.3 Multibyte encodings . 12

3.4 Number of Bytes, Number of Characters, and Number of Columns 13

4 Coded Character Sets And Encodings in the World 15

4.1 ASCII and ISO 646 . 15

4.2 ISO 8859 . 16

4.3 ISO 2022 . 17

4.3.1 EUC (Extended Unix Code) . 21

4.3.2 ISO 2022-compliant Character Sets . 21

4.3.3 ISO 2022-compliant Encodings . 23

4.4 ISO 10646 and Unicode . 24

4.4.1 UCS as a Coded Character Set . 24

4.4.2 UTF as Character Encoding Schemes . 25

CONTENTS ii

4.4.3 Problems on Unicode . 27

4.5 Other Character Sets and Encodings . 30

4.5.1 Big5 . 30

4.5.2 UHC . 30

4.5.3 Johab . 30

4.5.4 HZ, aka HZ-GB-2312 . 31

4.5.5 GBK . 31

4.5.6 GB18030 . 31

4.5.7 GCCS . 31

4.5.8 HKSCS . 31

4.5.9 Shift-JIS . 32

4.5.10 VISCII . 32

4.5.11 TRON . 32

4.5.12 Mojikyo . 32

5 Characters in Each Country 33

5.1 Japanese language / used in Japan . 34

5.1.1 Characters used in Japanese . 34

5.1.2 Character Sets . 34

5.1.3 Encodings . 35

5.1.4 How These Encodings Are Used — Information for Programmers 37

5.1.5 Columns . 38

5.1.6 Writing Direction and Combined Characters 38

5.1.7 Layout of Characters . 39

5.1.8 LANG variable . 39

5.1.9 Input from Keyboard . 39

5.1.10 More Detailed Discussions . 41

5.2 Spanish language / used in Spain, most of America and Equatorial Guinea . . . 42

5.2.1 Characters used in Spanish . 43

5.2.2 Character Sets . 43

5.2.3 Codesets . 43

CONTENTS iii

5.2.4 How These Codesets Are Used — Information for Programmers 43

5.2.5 Columns . 44

5.2.6 Writing Direction . 44

5.2.7 Layout of Characters . 44

5.2.8 LANG variable . 45

5.2.9 Input from Keyboard . 45

5.2.10 More Detailed Discussions . 45

5.3 Languages with Cyrillic script . 47

6 LOCALE technology 49

6.1 Locale Categories and setlocale() . 50

6.2 Locale Names . 51

6.3 Multibyte Characters and Wide Characters . 51

6.4 Unicode and LOCALE technology . 54

6.5 nl_langinfo() and iconv() . 55

6.6 Limit of Locale technology . 57

7 Output to Display 59

7.1 Console Softwares . 59

7.1.1 Encoding . 60

7.1.2 Number of Columns . 61

7.2 X Clients . 61

7.2.1 Xlib programming . 61

7.2.2 Athena widgets . 62

7.2.3 Gtk and Gnome . 63

7.2.4 Qt and KDE . 63

8 Input from Keyboard 65

8.1 Non-X Softwares . 66

8.2 X Softwares . 67

8.2.1 Developing XIM clients . 67

8.2.2 Examples of XIM softwares . 67

8.2.3 Using XIM softwares . 67

8.3 Emacsen . 68

CONTENTS iv

9 Internal Processing and File I/O 71

9.1 Stream I/O of Characters . 71

9.2 Character Classification . 72

9.3 Length of String . 73

9.4 Extraction of Characters . 75

10 the Internet 79

10.1 Mail/News . 79

10.2 WWW . 81

11 Libraries and Components 83

11.1 Gettext and Translation . 83

11.1.1 Gettext-ization of A Software . 85

11.1.2 Translation . 85

11.2 Readline Library . 85

11.3 Ncurses Library . 86

12 Softwares Written in Other than C/C++ 87

12.1 Fortran . 87

12.2 Pascal . 87

12.3 Perl . 87

12.4 Python . 87

12.5 Ruby . 88

12.6 Tcl/Tk . 88

12.7 Java . 88

12.8 Shell Script . 88

12.9 Lisp . 88

13 Examples of I18N 89

13.1 TWM – usage of XFontSet instead of XFontStruct 89

13.1.1 Introduction . 89

13.1.2 Locale Setting - A Routine Work . 90

13.1.3 Font Preparation . 90

CONTENTS v

13.1.4 Automatic Font Guessing . 93

13.1.5 Font Preparation (continued) . 94

13.1.6 Drawing Text using MyFont . 94

13.1.7 Geting Size of Texts . 96

13.1.8 Getting Window Titles . 96

13.1.9 Getting Icon Names . 97

13.1.10 Configuration File Parser . 97

13.2 8bit-clean-ize of Minicom . 98

13.2.1 8bit-clean-ize . 98

13.2.2 Not to break continuity of multibyte characters 98

13.2.3 Catalog in EUC-JP and SHIFT-JIS . 98

13.3 user-ja – two sets of messages in ASCII and native codeset in the same language 98

13.3.1 Introduction . 98

13.3.2 Strategy . 99

13.3.3 Implementation . 99

13.4 A Quasi-Wrapper to Internationalize Text Output of X Clients 101

13.4.1 Introduction . 101

13.4.2 Strategy . 101

13.4.3 Usage of the wrapper . 102

13.4.4 The Header File of the Wrapper . 103

13.4.5 The Source File of the Wrapper . 104

14 References 113

CONTENTS vi

1

Chapter 1

About This Document

1.1 Scope

This document describes the basic ideas of I18N; it’s written for programmers and package
maintainers of Debian GNU/Linux and other UNIX-like platforms. The aim of this document
is to offer an introduction to the basic concepts, character codes, and points where care should
be taken when one writes an I18N-ed software or an I18N patch for an existing software. There
are many know-hows and case-studies on internationalization of softwares. This document
also tries to introduce the current state and existing problems for each language and country.

Minimum requirements - for example, that characters should be displayed with fonts of the
proper charset (users of the software must be able to at least guess what is written), that char-
acters must be inputed from keyboard, and that softwares must not destroy characters - are
stressed in the document. I am trying to describe a HOWTO to satisfy these requirements.

This document is strongly related to programming languages such as C and standardized I18N
methods such as using locales and gettext.

1.2 New Versions of This Document

The current version of this document is available at DDP (Debian Documentation Project)
(http://www.debian.org/doc/ddp) page.

Note that the author rewrote this document in November 2000.

Since then, Debian had several releases and its packages support I18N better with their sup-
ports of UTF-8. This document does not cover these new developments but is kept here since
this helps understandings of fundamental I18N issues.

http://www.debian.org/doc/ddp

Chapter 1. About This Document 2

1.3 Feedback and Contributions

This document needs contributions, especially for a chapter on each languages (‘Characters in
Each Country’ on page 33) and a chapter on instances of I18N (‘Examples of I18N’ on page 89).
These chapters consist of contributions.

Otherwise, this will be a document only on Japanization, because the original author Tomohiro
KUBOTA (<kubota@debian.org>, retired DD and this is not a working e-mail address any
more) speaks Japanese and live in Japan.

‘Spanish language / used in Spain, most of America and Equatorial Guinea’ on page 42 is
written by Eusebio C Rufian-Zilbermann <eusebio@acm.org>.

Discussions are held at debian-devel@lists.debian.org and
debian-i18n@lists.debian.org mailing list. Please contact
debian-doc@lists.debian.org if you wish to update this document.

3

Chapter 2

Introduction

2.1 General Concepts

Debian includes many pieces of software. Though many of them have the ability to process,
input, and output text data, some of these programs assume text is written in English (ASCII).
For people who use non-English languages, these programs are barely usable. And more,
though many softwares can handle not only ASCII but also ISO-8859-1, some of them cannot
handle multibyte characters for CJK (Chinese, Japanese, and Korean) languages, nor combined
characters for Thai.

So far, people who use non-English languages have given up using their native languages and
have accepted computers as they were. However, we should now forget such a wrong idea. It
is absurd that a person who wants to use a computer has to learn English in advance.

I18N is needed in the following places.

• Displaying characters for the users’ native languages.

• Inputing characters for the users’ native languages.

• Handling files written in popular encodings 1 that are used for the users’ native lan-
guages.

• Using characters from the users’ native languages for file names and other items.

• Printing out characters from the users’ native languages.

• Displaying messages by the program in the users’ native languages.

• Formatting input and output of numbers, dates, money, etc., in a way that obeys customs
of the users’ native cultures.

1There are a few terms related to character code, such as character set, character code, charset, encoding, code-
set, and so on. These words are explained later.

Chapter 2. Introduction 4

• Classifying and sorting characters, in a way that obey customs of the users’ native cul-
tures.

• Using typesetting and hyphenation rules appropriate for the users’ native languages.

This document puts emphasis on the first three items. This is because these three items are
the basis for the other items. An another reason is that you cannot use softwares lacking the
first three items at all, while you can use softwares lacking the other items, albeit inconve-
niently. This document will also mention translation of messages (item 6) which is often called
as ’I18N’. Note that the author regards the terminology of ’I18N’ for calling translation and
gettextization as completely wrong. The reason may be well explained by the fact that the
author did not include translation and gettextization in the important first three items.

Imagine a word processor which can display error and help messages in your native language
while cannot process your native language. You will easily understand that the word processor
is not usable. On the other hand, a word processor which can process your native language,
but only displays error and help messages in English, is usable, though it is not convenient.
Before we think of developing convenient softwares, we have to think of developing usable
softwares.

The following terminology is widely used.

• I18N (internationalization) means modification of a software or related technologies so
that a software can potentially handle multiple languages, customs, and so on in the
world.

• L10N (localization) means implementation of a specific language for an already interna-
tionalized software.

However, this terminology is valid only for one specific model out of a few models which we
should consider for I18N. Now I will introduce a few models other than this I18N-L10N model.

a. L10N (localization) model This model is to support two languages or character codes, En-
glish (ASCII) and another specific one. Examples of softwares which is developed using
this model are: Nemacs (Nihongo Emacs, an ancestor of MULE, MULtilingual Emacs)
text editor which can input and output Japanese text files, and Hanterm X terminal em-
ulator which can display and input Korean characters via a few Korean encodings. Since
each programmer has his or her own mother tongue, there are numerous L10N patches
and L10N programs written to satisfy his or her own need.

b. I18N (internationalization) model This model is to support many languages but only two
of them, English (ASCII) and another one, at the same time. One have to specify the ’an-
other’ language, usually by LANG environmental variable. The above I18N-L10N model
can be regarded as a part of this I18N model. gettextization is categorized into I18N
model.

Chapter 2. Introduction 5

c. M17N (multilingualization) model This model is to support many languages at the same
time. For example, Mule (MULtilingual Enhancement to GNU Emacs) can handle a text
file which contains multiple languages - for example, a paper on differences between
Korean and Chinese whose main text is written in Finnish. GNU Emacs 20 and XEmacs
now include Mule. Note that the M17N model can only be applied in character-related
instances. For example, it is nonsense to display a message like ’file not found’ in many
languages at the same time. Unicode and UTF-8 are technologies which can be used for
this model. 2

Generally speaking, the M17N model is the best and the second-best is the I18N model. The
L10N model is the worst and you should not use it except for a few fields where the I18N
and M17N models are very difficult, like DTP and X terminal emulator. In other words, it is
better for text-processing softwares to handle many languages at the same time, than handle
two (English and another language).

Now let me classify approaches for support of non-English languages from another viewpoint.

A. Implementation without knowledge of each language This approach is done by utilizing
standardized methods supplied by the kernel or libraries. The most important one is lo-
cale technology which includes locale category, conversion between multibyte and wide
characters (wchar_t), and so on. Another important technology is gettext. The ad-
vantages of this approach are (1) that when the kernel or libraries are upgraded, the soft-
ware will automatically support new additional languages, (2) that programmers need
not know each language, and (3) that a user can switch the behavior of softwares with
common method, like LANG variable. The disadvantage is that there are categories or
fields where a standardized method is not available. For example, there are no standard-
ized methods for text typesetting rules such as line-breaking and hyphenation.

B. Implementation using knowledge of each language This approach is to directly imple-
ment information about each language based on the knowledge of programmers and
contributors. L10N almost always uses this approach. The advantage of this approach
is that a detailed and strict implementation is possible beyond the field where standard-
ized methods are available, such as auto-detection of encodings of text files to be read.
Language-specific problems can be perfectly solved; of course, it depends on the skill of
the programmer). The disadvantages are (1) that the number of supported languages is
restricted by the skill or the interest of the programmers or the contributors, (2) that labor
which should be united and concentrated to upgrade the kernel or libraries is dispersed
into many softwares, that is, re-inventing of the wheel, and (3) a user has to learn how to
configure each software, such as LESSCHARSET variable, .emacs file, and other meth-
ods. This approach can cause problems: for example, GNU roff (before version 1.16)
assumes 0xad as a hyphen character, which is valid only for ISO-8859-1. However, a
majestic M17N software such as Mule can be built using this approach.

2I recommend not to implement Unicode and UTF-8 directly. Instead, use locale technology and your software
will support not only UTF-8 but also many encodings in the world. If you implement UTF-8 directly, your software
can handle UTF-8 only. Such a software is not convenient.

Chapter 2. Introduction 6

Using this classification, let me consider the L10N, I18N, and M17N models from the program-
mer’s point of view.

The L10N model can be realized only using his or her own knowledge on his or her language
(i.e. approach B). Since the motivation of L10N is usually to satisfy the programmer’s own
need, extendability for the third languages is often ignored. Though L10N-ed softwares are
primarily useful for people who speaks the same language to the programmer, it is sometimes
useful for other people whose coding system is similar to the programmer’s. For example, a
software which doesn’t recognize EUC-JP but doesn’t break EUC-JP, will not break EUC-KR
also.

The main part of the I18N model is, in the case of a C program, achieved using standardized
locale technology and gettext. An locale approach is classified into I18N because functions
related to locale change their behavior by the current locales for six categories which are set
by setlocale(). Namely, approach A is emphasized for I18N. For field where standardized
methods are not available, however, approach B cannot be avoided. Even in such a case, the
developers should be careful so that a support for new languages can be easily added later
even by other developers.

The M17N model can be achieved using international encodings such as ISO 2022 and Unicode.
Though you can hard-code these encodings for your software (i.e. approach B), I recommend
to use standardized locale technology. However, using international encodings is not sufficient
to achieve the M17N model. You will have to prepare a mechanism to switch input methods.
You will also want to prepare an encoding-guessing mechanism for input files, such as jless
and emacs have. Mule is the best software which achieved M17N (though it does not use
locale technology).

2.2 Organization

Let’s preview the contents of each chapter in this document.

As I wrote, this document will put stress on correct handling of characters and character codes
for users’ native languages. To achieve this purpose, I will start the real contents of this docu-
ment by discussing basic important concepts on characters in ‘Important Concepts for Charac-
ter Coding Systems’ on page 9. Since this chapter includes many terminologies, all of you will
need to this chapter. The next chapter, ‘Coded Character Sets And Encodings in the World’ on
page 15, introduces many national and international standards of coded character sets and encod-
ings. I think almost of you can do without reading this chapter, since LOCALE technology will
enable us to develop international softwares without knowledges on these character sets and
encodings. However, knowing about these standards will help you to understand the merit
and necessity of LOCALE technology.

The following chapter of ‘Characters in Each Country’ on page 33 describes the detailed infor-
mations for each language. These informations will help people who develop high-quality text
processing softwares such as DTP and Web Browsers.

Chapter of ‘LOCALE technology’ on page 49 describes the most important concept for I18N.
Not only concepts but also many important C functions are introduced in this chapter.

Chapter 2. Introduction 7

A few following chapters of ‘Output to Display’ on page 59, ‘Input from Keyboard’ on page 65,
‘Internal Processing and File I/O’ on page 71, and ‘the Internet’ on page 79 are important and
frequent applications of LOCALE technology. You can get solutions for typical problems on
I18N in these chapters.

You may need to develop software using some special libraries or other languages than C/C++.
Chapters of ‘Libraries and Components’ on page 83 and ‘Softwares Written in Other than
C/C++’ on page 87 are written for such purposes.

Next chapter of ‘Examples of I18N’ on page 89 is a collection of case studies. Both of generic
and special technologies will be discussed. You can also contribute writing a section for this
chapter.

You may want to study more; The last chapter of ‘References’ on page 113 is supplied for this
purpose. Some of references listed in the chapter are very important.

Chapter 2. Introduction 8

9

Chapter 3

Important Concepts for Character
Coding Systems

Character coding system is one of the fundamental elements of the software and information
processing. Without proper handling of character codes, your software is far from realization
of internationalization. Thus the author begins this document with the story on character
codes.

In this chapter, basic concepts such as coded character set and encoding are introduced. These
terms will be needed to read this document and other documents on internationalization and
character codes including Unicode.

3.1 Basic Terminology

At first I begin this chapter by defining a few very important word.

As many people point out, there is a confusion on terminology, since words are used in various
different ways. The author does not want to add a new terminology to a confusing ocean
of various terminologies. Otherwise, terminology of RFC 2130 (http://www.faqs.org/
rfcs/rfc2130.html) will be adopted in this document, besides one exception of a word
’character set’.

Character Character is an individual unit of which sentence and text consist. Character is an
abstract notion.

Glyph Glyph is a specific instance of character. Character and glyph is a pair of words. Some-
times a character has multiple glyphs (for example, ’$’ may have one or two vertical
bar. Arabic characters have four glyphs for each character. Some of CJK ideograms have
many glyphs). Sometimes two or more characters construct one glyph (for example, lig-
ature of ’fi’). For almost cases, text data, which intend to contain not visual information
but abstract idea, don’t have to have information on glyphs, since difference between

http://www.faqs.org/rfcs/rfc2130.html
http://www.faqs.org/rfcs/rfc2130.html

Chapter 3. Important Concepts for Character Coding Systems 10

glyphs does not affect the meaning of the text. However, distinction between different
glyphs for a single CJK ideogram may be sometimes important for proper noun such as
names of persons and places. However, there are no standardized method for plain text
to have informations on glyphs so far. This makes plain texts cannot be used for some
special fields such as citizen registration system, serious DTP such as newspaper system,
and so on.

Encoding Encoding is a rule where characters and texts are expressed in combinations of bits
or bytes in order to treat characters in computers. Words of character coding system, char-
acter code, charset, and so on are used to express the same meaning. Basically, encoding
takes care of characters, not glyphs. There are many official and de-facto standards of en-
codings such as ASCII, ISO 8859-{1,2,. . . ,15}, ISO 2022-{JP, JP-1, JP-2, KR, CN, CN-EXT,
INT-1, INT-2}, EUC-{JP, KR, CN, TW}, Johab, UHC, Shift-JIS, Big5, TIS 620, VISCII, VSCII,
so-called ’CodePages’, UTF-7, UTF-8, UTF-16LE, UTF-16BE, KOI8-R, and so on so on. To
construct an encoding, we have to consider the following concepts. (Encoding = one or
more CCS + one CES).

Character Set Character set is a set of characters. This determines a range of characters where
the encoding can handle. In contrast to coded character set, this is often called as non-coded
character set.

Coded Character Set (CCS) Coded character set (CCS) is a word defined in RFC 2050 (http:
//www.faqs.org/rfcs/rfc2050.html) and means a character set where all charac-
ters have unique numbers by some method. There are many national and international
standards for CCS. Many national standards for CCS adopt the way of coding so that
they obey some of international standards such as ISO 646 or ISO 2022. ASCII, BS 4730,
JISX 0201 Roman, and so on are examples of ISO-646 variants. All ISO-646 variants, ISO
8859-*, JISX 0208, JISX 0212, KSX 1001, GB 2312, CNS 11643, CCCII, TIS 620, TCVN 5712,
and so on are examples of ISO 2022-compliant CCS. VISCII and Big5 are examples of
non-ISO 2022-compliant CCS. UCS-2 and UCS-4 (ISO 10646) are also examples of CCS.

Character Encoding Scheme (CES) Character Encoding Scheme is also a word defined in RFC
2050 (http://www.faqs.org/rfcs/rfc2050.html) to call methods to construct an
encoding using one or more CCS. This is important when two or more CCS are used to
construct an encoding. ISO 2022 is a method to construct an encoding from one or more
ISO 2022-compliant CCS. ISO 2022 is very complex system and subsets of ISO 2022 are
usually used such as EUC-JP (ASCII and JISX 0208), ISO-2022-KR (ASCII and KSX 1001),
and so on. CES is not important for encodings with only one 8bit CCS. UTF series (UTF-8,
UTF-16LE, UTF-16BE, and so on) can be regarded as CES whose CCS is Unicode or ISO
10646.

Some other words are usually used related to character codes.

Character code is a widely-used word to mean encoding. This is an primitive and crude word
to call the way a computer handles characters with assigning numbers. For example, character
code can call encoding and can call coded character set. Thus this word can be used only in the
case when both of them can be regard in the same category. This word should be avoided in
serious discussions. This document will not use this word hereafter.

http://www.faqs.org/rfcs/rfc2050.html
http://www.faqs.org/rfcs/rfc2050.html
http://www.faqs.org/rfcs/rfc2050.html

Chapter 3. Important Concepts for Character Coding Systems 11

Codeset is a word to call encoding or character encoding scheme. 1

charset is also a well-used word. This word is used very widely, for example, in MIME
(like Content-Type: text/plain, charset=iso8859-1), in XLFD (X Logical Font
Description) font name (CharSetResigtry and CharSetEncoding fields), and so on. Note that
charset in MIME is encoding, while charset in XLFD font name is coded character set. This is very
confusing. In this document, charset and character set are used in XLFD meaning, since I think
character set should mean a set of characters, not encoding.

Ken Lunde’s “CJKV Information Processing” uses a word encoding method. He says that
ISO-2022, EUC, Big5, and Shift-JIS are examples of encoding methods. It seems that his encod-
ing method is CES in this document. However, we should notice that Big5 and Shift-JIS are
encodings while ISO-2022 and EUC are not. 2

Character Encoding Model, Unicode Technical Report #17 (http://www.unicode.org/
unicode/reports/tr17/) (hereafter, “the Report”) suggests five-level model.

• ACR: abstract character repertoire

• CCS: Coded Character Set

• CEF: Character Encoding Form

• CES: Character Encoding Scheme

• TES: Transfer Encoding Syntax

TES is also suggested in RFC 2130 (http://www.faqs.org/rfcs/rfc2130.html). Some
examples of TES are: base64, uuencode, BinHex, quoted-printable, gzip, and so on. TES means a
transform of encoded data which may (or may not) include textual data. Thus, TES is not a
part of character encoding. However, TES is important in the Internet data exchange.

When using a computer, we rarely have a chance to face with ACR. Though it is true that CJK
people have their national standard of ACR (for example, standard for ideograms which can
be used for personal names) and some of us may need to handle these ACR with computers
(for example, citizen registration system), this is too heavy theme for this document. This is
because there are no standardized or encouraged methods to handle these ACR. You may have
to build the whole system for such purposes. Good luck!

CCS in “the Report” is same as what I wrote in this document. It has concrete examples: ASCII,
ISO 8859-{1,2,. . . ,15}, JISX 0201, JISX 0208, JISX 0212, KSX 1001, KSX 1002, GB 2312, Big5, CNS
11643, TIS 620, VISCII, TCVN 5712, UCS2, UCS4, and so on. Some of them are national stan-
dards, some are international standards, and others are de-facto standards.

1This document used a word codeset before Novermber 2000 to call encoding. I changed terminology since I
could not find a word codeset in documents written in English (I adopted this word from a book in Japanese).
encoding seems more popular.

2During I18N programming, we will frequently meet with EUC-JP or EUC-KR, while we well rarely meet with
EUC. I think it is not appropriate to stress EUC, a class of encodings, over EUC-JP, EUC-KR, and so on, concrete
encodings. It is just like regarding ISO 8859 as a concrete encoding, though ISO 8859 is a class of encodings of ISO
8859-{1,2,. . . ,15}.

http://www.unicode.org/unicode/reports/tr17/
http://www.unicode.org/unicode/reports/tr17/
http://www.faqs.org/rfcs/rfc2130.html

Chapter 3. Important Concepts for Character Coding Systems 12

CEF and CES in “the Report” correspond to CES in this document. This document will not
distinguish these two, since I think there are no inconvenience. An encoding with a significant
CEF doesn’t have a significant CES (in “the Report” meaning), and vice versa. Then why should
we have to distinguish these two? The only exception is UTF-16 series. In UTF-16 series, UTF-
16 is a CEF and UTF-16BE is a CES. This is the only case where we need distinction between
CEF and CES.

Now, CES is a concrete concept with concrete examples: ASCII, ISO 8859-{1,2,. . . ,15}, EUC-JP,
EUC-KR, ISO 2022-JP, ISO 2022-JP-1, ISO 2022-JP-2, ISO 2022-CN, ISO 2022-CN-EXT, ISO 2022-
KR, ISO 2022, VISCII, UTF-7, UTF-8, UTF-16LE, UTF-16BE, and so on. Now they are encodings
themselves.

The most important concept in this section is distinction between coded character set and encod-
ing. Coded character set is a component of encoding. Text data are described in encoding, not coded
character set.

3.2 Stateless and Stateful

To construct an encoding with two or more CCS, CES has to supply a method to avoid collision
between these CCS. There are two ways to do that. One is to make all characters in the all CCS
have unique code points. The other is to allow characters from different CCS to have the same
code point and to have a code such as escape sequence to switch SHIFT STATE, that is, to
select one character set.

An encoding with shift states is called STATEFUL and one without shift states is called STATE-
LESS.

Examples of stateful encodings are: ISO 2022-JP, ISO 2022-KR, ISO 2022-INT-1, ISO 2022-INT-2,
and so on.

For example, in ISO 2022-JP, two bytes of 0x24 0x2cmay mean a Japanese Hiragana character
’GA’ or two ASCII character of ’$’ and ’,’ according to the shift state.

3.3 Multibyte encodings

Encodings are classified into multibyte ones and the others, according to the relationship be-
tween number of characters and number of bytes in the encoding.

In non-multibyte encoding, one character is always expressed by one byte. On the other hand,
one character may expressed in one or more bytes in multibyte encoding. Note that the number
is not fixed even in a single encoding.

Examples of multibyte encodings are: EUC-JP, EUC-KR, ISO 2022-JP, Shift-JIS, Big5, UHC,
UTF-8, and so on. Note that all of UTF-* are multibyte.

Examples of non-multibyte encodings are: ISO 8859-1, ISO 8859-2, TIS 620, VISCII, and so on.

Chapter 3. Important Concepts for Character Coding Systems 13

Note that even in non-multibyte encoding, number of characters and number of bytes may
differ if the encoding is stateful.

Ken Lunde’s “CJKV Information Processing” 3 classifies encoding methods into the following
three categories:

• modal

• non-modal

• fixed-length

Modal corresponds to stateful in this document. Other two are stateless, where non-modal is
multibyte and fixed-length is non-multibyte. However, I think stateful - stateless and multibyte -
non-multibyte are independent concept. 4

3.4 Number of Bytes, Number of Characters, and Number of
Columns

One ASCII character is always expressed by one byte and occupies one column on console
or X terminal emulators (fixed font for X). One must not make such an assumption for I18N
programming and have to clearly distinguish number of bytes, characters, and columns.

Speaking of relationship between characters and bytes, in multibyte encodings, two or more
bytes may be needed to express one character. In stateful encodings, escape sequences are not
related to any characters.

Number of columns is not defined in any standards. However, it is usual that CJK ideograms,
Japanese Hiragana and Katakana, and Korean Hangul occupy two columns in console or X
terminal emulators. Note that ’Full-width forms’ in UCS-2 and UCS-4 coded character set will
occupy two columns and ’Half-width forms’ will occupy one column. Combining characters
used for Thai and so on can be regarded as zero-column characters. Though there are no stan-
dards, you can use wcwidth() and wcswidth() for this purpose. See ‘Number of Columns’
on page 61 for detail.

3ISBN 1-56592-224-7, O’Reilly, 1999
4though there are no existing encodings which is stateful and non-multibyte.

Chapter 3. Important Concepts for Character Coding Systems 14

15

Chapter 4

Coded Character Sets And Encodings in
the World

Here major coded character sets and encodings are introduced. Note that you don’t have to
know the detail of these character codes if you use LOCALE and wchar_t technology.

However, these knowledge will help you to understand why number of bytes, characters, and
columns should be counted separately, why strchr() and so on should not be used, why
you should use LOCALE and wchar_t technology instead of hard-code processing of existing
character codes, and so on so on.

These varieties of character sets and encodings will tell you about struggles of people in the
world to handle their own languages by computers. Especially, CJK people could not help
working out various technologies to use plenty of characters within ASCII-based computer
systems.

If you are planning to develop a text-processing software beyond the fields which the LO-
CALE technology covers, you will have to understand the following descriptions very well.
These fields include automatic detection of encodings used for the input file (Most of Japanese-
capable text viewers such as jless and lv have this mechanism) and so on.

4.1 ASCII and ISO 646

ASCII is a CCS and also an encoding at the same time. ASCII is 7bit and contains 94 printable
characters which are encoded in the region of 0x21-0x7e.

ISO 646 is the international standard of ASCII. Following 12 characters of

• 0x23 (number),

• 0x24 (dollar),

• 0x40 (at),

Chapter 4. Coded Character Sets And Encodings in the World 16

• 0x5b (left square bracket),

• 0x5c (backslash),

• 0x5d (right square bracket),

• 0x5e (caret),

• 0x60 (backquote),

• 0x7b (left curly brace),

• 0x7c (vertical line),

• 0x7d (right curly brace), and

• 0x7e (tilde)

are called IRV (International Reference Version) and other 82 (94 - 12 = 82) characters are called
BCT (Basic Code Table). Characters at IRV can be different between countries. Here is a few
examples of versions of ISO 646.

• UK version (BS 4730)

• US version (ASCII): 0x23 is pound currency mark, and so on.

• Japanese version (JISX 0201 Roman): 0x5c is yen currency mark, and so on.

• Italian version (UNI 0204-70): 0x7b is ’a’ with grave accent, and so on.

• French version (NF Z 62-010): 0x7b is ’e’ with acute accent, and so on.

As far as I know, all encodings (besides EBCDIC) in the world are compatible with ISO 646.

Characters in 0x00 - 0x1f, 0x20, and 0x7f are control characters.

Nowadays usage of encodings incompatible with ASCII is not encouraged and thus ISO 646-*
(other than US version) should not be used. One of the reason is that when a string is converted
into Unicode, the converter doesn’t know whether IRVs are converted into characters with
same shapes or characters with same codes. Another reason is that source codes are written in
ASCII. Source code must be readable anywhere.

4.2 ISO 8859

ISO 8859 is both a series of CCS and a series of encodings. It is an expansion of ASCII using all
8 bits. Additional 96 printable characters encoded in 0xa0 - 0xff are available besides 94 ASCII
printable characters.

There are 10 variants of ISO 8859 (in 1997).

Chapter 4. Coded Character Sets And Encodings in the World 17

ISO-8859-1 Latin alphabet No.1 (1987) characters for western European languages

ISO-8859-2 Latin alphabet No.2 (1987) characters for central European languages

ISO-8859-3 Latin alphabet No.3 (1988)

ISO-8859-4 Latin alphabet No.4 (1988) characters for northern European languages

ISO-8859-5 Latin/Cyrillic alphabet (1988)

ISO-8859-6 Latin/Arabic alphabet (1987)

ISO-8859-7 Latin/Greek alphabet (1987)

ISO-8859-8 Latin/Hebrew alphabet (1988)

ISO-8859-9 Latin alphabet No.5 (1989) same as ISO-8859-1 except for Turkish instead of Ice-
landic

ISO-8859-10 Latin alphabet No.6 (1993) Adds Inuit (Greenlandic) and Sami (Lappish) letters
to ISO-8859-4

ISO-8859-11 Latin/Thai alphabet (2001) same as TIS-620 Thai national standard

ISO-8859-13 Latin alphabet No.7 (1998)

ISO-8859-14 Latin alphabet No.8 (Celtic) (1998)

ISO-8859-15 Latin alphabet No.9 (1999)

ISO-8859-16 Latin alphabet No.10 (2001)

A detailed explanation is found at http://park.kiev.ua/mutliling/ml-docs/
iso-8859.html.

4.3 ISO 2022

Using ASCII and ISO 646, we can use 94 characters at most. Using ISO 8859, the number
includes to 190 (= 94 + 96). However, we may want to use much more characters. Or, we may
want to use some, not one, of these character sets. One of the answer is ISO 2022.

ISO 2022 is an international standard of CES. ISO 2022 determines a few requirement for CCS
to be a member of ISO 2022-based encodings. It also defines a very extensive (and complex)
rules to combine these CCS into one encoding. Many encodings such as EUC-*, ISO 2022-*,
compound text, 1 and so on can be regarded as subsets of ISO 2022. ISO 2022 is so complex
that you may be not able to understand this. It is OK; What is important here is the concept of
ISO 2022 of building an encoding by switching various (ISO 2022-compliant) coded character
sets.

1Compound text is a standard for text exchange between X clients.

http://park.kiev.ua/mutliling/ml-docs/iso-8859.html
http://park.kiev.ua/mutliling/ml-docs/iso-8859.html

Chapter 4. Coded Character Sets And Encodings in the World 18

The sixth edition of ECMA-35 is fully identical with ISO 2022:1994 and you can find the official
document at http://www.ecma.ch/ecma1/stand/ECMA-035.HTM.

ISO 2022 has two versions of 7bit and 8bit. At first 8bit version is explained. 7bit version is a
subset of 8bit version.

The 8bit code space is divided into four regions,

• 0x00 - 0x1f: C0 (Control Characters 0),

• 0x20 - 0x7f: GL (Graphic Characters Left),

• 0x80 - 0x9f: C1 (Control Characters 1), and

• 0xa0 - 0xff: GR (Graphic Characters Right).

GL and GR is the spaces where (printable) character sets are mapped.

Next, all character sets, for example, ASCII, ISO 646-UK, and JIS X 0208, are classified into
following four categories,

• (1) character set with 1-byte 94-character,

• (2) character set with 1-byte 96-character,

• (3) character set with multibyte 94-character, and

• (4) character set with multibyte 96-character.

Characters in character sets with 94-character are mapped into 0x21 - 0x7e. Characters in 96-
character set are mapped into 0x20 - 0x7f.

For example, ASCII, ISO 646-UK, and JISX 0201 Katakana are classified into (1), JISX 0208
Japanese Kanji, KSX 1001 Korean, GB 2312-80 Chinese are classified into (3), and ISO 8859-*
are classified to (2).

The mechanism to map these character sets into GL and GR is a bit complex. There are four
buffers, G0, G1, G2, and G3. A character set is designated into one of these buffers and then a
buffer is invoked into GL or GR.

Control sequences to ’designate’ a character set into a buffer are determined as below.

• A sequence to designate a character set with 1-byte 94-character

– into G0 set is: ESC 0x28 F,

– into G1 set is: ESC 0x29 F,

– into G2 set is: ESC 0x2a F, and

– into G3 set is: ESC 0x2b F.

http://www.ecma.ch/ecma1/stand/ECMA-035.HTM

Chapter 4. Coded Character Sets And Encodings in the World 19

• A sequence to designate a character set with 1-byte 96-character

– into G1 set is: ESC 0x2d F,

– into G2 set is: ESC 0x2e F, and

– into G3 set is: ESC 0x2f F.

• A sequence to designate a character set with multibyte 94-character

– into G0 set is: ESC 0x24 0x28 F (exception: ’ESC 0x24 F’ for F = 0x40, 0x41, 0x42.),

– into G1 set is: ESC 0x24 0x29 F,

– into G2 set is: ESC 0x24 0x2a F, and

– into G3 set is: ESC 0x24 0x2b F.

• A sequence to designate a character set with multibyte 96-character

– into G1 set is: ESC 0x24 0x2d F,

– into G2 set is: ESC 0x24 0x2e F, and

– into G3 set is: ESC 0x24 0x2f F.

where ’F’ is determined for each character set:

• character set with 1-byte 94-character

– F=0x40 for ISO 646 IRV: 1983

– F=0x41 for BS 4730 (UK)

– F=0x42 for ANSI X3.4-1968 (ASCII)

– F=0x43 for NATS Primary Set for Finland and Sweden

– F=0x49 for JIS X 0201 Katakana

– F=0x4a for JIS X 0201 Roman (Latin)

– and more

• character set with 1-byte 96-character

– F=0x41 for ISO 8859-1 Latin-1

– F=0x42 for ISO 8859-2 Latin-2

– F=0x43 for ISO 8859-3 Latin-3

– F=0x44 for ISO 8859-4 Latin-4

– F=0x46 for ISO 8859-7 Latin/Greek

– F=0x47 for ISO 8859-6 Latin/Arabic

– F=0x48 for ISO 8859-8 Latin/Hebrew

– F=0x4c for ISO 8859-5 Latin/Cyrillic

Chapter 4. Coded Character Sets And Encodings in the World 20

– and more

• character set with multibyte 94-character

– F=0x40 for JISX 0208-1978 Japanese

– F=0x41 for GB 2312-80 Chinese

– F=0x42 for JISX 0208-1983 Japanese

– F=0x43 for KSC 5601 Korean

– F=0x44 for JISX 0212-1990 Japanese

– F=0x45 for CCITT Extended GB (ISO-IR-165)

– F=0x46 for CNS 11643-1992 Set 1 (Taiwan)

– F=0x48 for CNS 11643-1992 Set 2 (Taiwan)

– F=0x49 for CNS 11643-1992 Set 3 (Taiwan)

– F=0x4a for CNS 11643-1992 Set 4 (Taiwan)

– F=0x4b for CNS 11643-1992 Set 5 (Taiwan)

– F=0x4c for CNS 11643-1992 Set 6 (Taiwan)

– F=0x4d for CNS 11643-1992 Set 7 (Taiwan)

– and more

The complete list of these coded character set is found at International Register of Coded Char-
acter Sets (http://www.itscj.ipsj.or.jp/ISO-IR/).

Control codes to ’invoke’ one of G{0123} into GL or GR is determined as below.

• A control code to invoke G0 into GL is: (L)SO ((Locking) Shift Out)

• A control code to invoke G1 into GL is: (L)SO ((Locking) Shift In)

• A control code to invoke G2 into GL is: LS2 (Locking Shift 2)

• A control code to invoke G3 into GL is: LS3 (Locking Shift 3)

• A control code to invoke one character in G2 into GL is: SS2 (Single Shift 2)

• A control code to invoke one character in G3 into GL is: SS3 (Single Shift 3)

• A control code to invoke G1 into GR is: LS1R (Locking Shift 1 Right)

• A control code to invoke G2 into GR is: LS2R (Locking Shift 2 Right)

• A control code to invoke G3 into GR is: LS3R (Locking Shift 3 Right)

http://www.itscj.ipsj.or.jp/ISO-IR/

Chapter 4. Coded Character Sets And Encodings in the World 21

2

Note that a code in a character set invoked into GR is or-ed with 0x80.

ISO 2022 also determines announcer code. For example, ’ESC 0x20 0x41’ means ’Only G0
buffer is used. G0 is already invoked into GL’. This simplify the coding system. Even this
announcer can be omitted if people who exchange data agree.

7bit version of ISO 2022 is a subset of 8bit version. It does not use C1 and GR.

Explanation on C0 and C1 is omitted here.

4.3.1 EUC (Extended Unix Code)

EUC is a CES which is a subset of 8bit version of ISO 2022 except for the usage of SS2 and SS3
code. Though these codes are used to invoke G2 and G3 into GL in ISO 2022, they are invoked
into GR in EUC. EUC-JP, EUC-KR, EUC-CN, and EUC-TW are widely used encodings which
use EUC as CES.

EUC is stateless.

EUC can contain 4 CCS by using G0, G1, G2, and G3. Though there is no requirement that
ASCII is designated to G0, I don’t know any EUC codeset in which ASCII is not designated to
G0.

For EUC with G0-ASCII, all codes other than ASCII are encoded in 0x80 - 0xff and this is
upward compatible to ASCII.

Expressions for characters in G0, G1, G2, and G3 character sets are described below in binary:

• G0: 0???????

• G1: 1??????? [1??????? [. . .]]

• G2: SS2 1??????? [1??????? [. . .]]

• G3: SS3 1??????? [1??????? [. . .]]

where SS2 is 0x8e and SS3 is 0x8f.

4.3.2 ISO 2022-compliant Character Sets

There are many national and international standards of coded character sets (CCS). Some of
them are ISO 2022-compliant and can be used in ISO 2022 encoding.

ISO 2022-compliant CCS are classified into one of them:

• 94 characters
2WHAT IS THE VALUE OF THESE CONTROL CODES?

Chapter 4. Coded Character Sets And Encodings in the World 22

• 96 characters

• 94x94x94x. . . characters

The most famous 94 character set is US-ASCII. Also, all ISO 646 variants are ISO 2022-
compliant 94 character sets.

All ISO 8859-* character sets are ISO 2022-compliant 96 character sets.

There are many 94x94 character sets. All of them are related to CJK ideograms.

JISX 0208 (aka JIS C 6226) National standard of Japan. 1978 version contains 6802 characters
including Kanji (ideogram), Hiragana, Katakana, Latin, Greek, Cyrillic, numeric, and
other symbols. The current (1997) version contains 7102 characters.

JISX 0212 National standard of Japan. 6067 characters (almost of them are Kanji). This char-
acter set is intended to be used in addition to JISX 0208.

JISX 0213 Japanese national standard. Released in 2000. This includes JISX 0208 characters
and additional thousands of characters. Thus, this is intended to be an extension and a
replacement of JISX 0208. This has two 94x94 character sets, one of them inclucdes JISX
0208 plus about 2000 characters and the another includes about 2400 characters. Exactly
speaking, JISX 0213 is not a simple superset of JISX 0208 because a few tens of Kanji
variants which is unified and share the same code points in JISX 0208 are dis-unified and
have separate code points in JISX 0213. Share many characters with JISX 0212.

KSX 1001 (aka KSC 5601) National standard of South Korea. 8224 characters including 2350
Hangul, Hanja (ideogram), Hiragana, Katakana, Latin, Greek, Cyrillic, and other sym-
bils. Hanja are ordered in reading and Hanja with multiple readings are coded multiple
times.

KSX 1002 National standard of South Korea. 7659 characters including Hangul and Hanja.
Intended to be used in addition to KSX 1001.

KPS 9566 National standard of North Korea. Similar to KSX 1001.

GB 2312 National standard of China. 7445 characters including 6763 Hanzi (ideogram), Latin,
Greek, Cyrillic, Hiragana, Katakana, and other symbols.

GB 7589 (aka GB2) National standard of China. 7237 Hanzi. Intended to be used in addition
to GB 2312.

GB 7590 (aka GB4) National standard of China. 7039 Hanzi. Intended to be used in addition
to GB 2312 and GB 7589.

GB 12345 (aka GB/T 12345, GB1 or GBF) National standard of China. 7583 characters. Tradi-
tional characters version which correspond to GB 2312 simplified characters.

GB 13131 (aka GB3) National standard of China. Traditional characters version which corre-
spond to GB 7589 simplified characters.

Chapter 4. Coded Character Sets And Encodings in the World 23

GB 13132 (aka GB5) National standard of China. Traditional characters version which corre-
spond to GB 7590 simplified characters.

CNS 11643 National standard of Taiwan. Has 7 plains. Plain 1 and 2 includes all characters
included in Big5. Plain 1 includes 6085 characters including Hanzi (ideogram), Latin,
Greek, and other symbols. Plain 2 includes 7650. Number of character for plain 3 is 6184,
plain 4 is 7298, plain 5 is 8603, plain 6 is 6388, and plain 7 is 6539.

There is a 94x94x94 character set. This is CCCII. This is national standard of Taiwan. Now
73400 characters are included. (The number is increasing.)

Non-ISO 2022-compliant character sets are introduced later in ‘Other Character Sets and En-
codings’ on page 30.

4.3.3 ISO 2022-compliant Encodings

There are many ISO 2022-compliant encodings which are subsets of ISO 2022.

Compound Text This is used for X clients to communicate each other, for example, copy-paste.

EUC-JP An EUC encoding with ASCII, JISX 0208, JISX 0201 Kana, and JISX 0212 coded charac-
ter sets. There are many systems which does not support JISX 0201 Kana and JISX 0212.
Widely used in Japan for POSIX systems.

EUC-KR An EUC encoding with ASCII and KSX 1001.

CN-GB (aka EUC-CN) An EUC encoding with ASCII and GB 2312. The most popular encod-
ing in R. P. China. This encoding is sometimes referred as simply ’GB’.

EUC-TW An extended EUC encoding with ASCII, CNS 11643 plain 1, and other (2-7) plains
of CNS 11643.

ISO 2022-JP Described in. RFC 1468 (http://www.faqs.org/rfcs/rfc1468.html).

***** Not written yet *****

ISO 2022-JP-1 (upward compatible to ISO 2022-JP) Described in RFC 2237 (http://www.
faqs.org/rfcs/rfc2237.html).

***** Not written yet *****

ISO 2022-JP-2 (upward compatible to ISO 2022-JP-1) Described in RFC 1554 (http://www.
faqs.org/rfcs/rfc1554.html).

***** Not written yet *****

ISO 2022-KR aka Wansung. Described in RFC 1557 (http://www.faqs.org/rfcs/
rfc1557.html).

***** Not written yet *****

http://www.faqs.org/rfcs/rfc1468.html
http://www.faqs.org/rfcs/rfc2237.html
http://www.faqs.org/rfcs/rfc2237.html
http://www.faqs.org/rfcs/rfc1554.html
http://www.faqs.org/rfcs/rfc1554.html
http://www.faqs.org/rfcs/rfc1557.html
http://www.faqs.org/rfcs/rfc1557.html

Chapter 4. Coded Character Sets And Encodings in the World 24

ISO 2022-CN Described in RFC RFC 1922 (http://www.faqs.org/rfcs/rfc1922.
html).

***** Not written yet *****

Non-ISO 2022-compliant encodings are introduced later in ‘Other Character Sets and Encod-
ings’ on page 30.

4.4 ISO 10646 and Unicode

ISO 10646 and Unicode are an another standard so that we can develop international softwares
easily. The special features of this new standard are:

• A united single CCS which intends to include all characters in the world. (ISO 2022
consists of multiple CCS.)

• The character set intends to cover all conventional (or legacy) CCS in the world. 3

• Compatibility with ASCII and ISO 8859-1 is considered.

• Chinese, Japanese, and Korean ideograms are united. This comes from a limitation of
Unicode. This is not a merit.

ISO 10646 is an official international standard. Unicode is developed by Unicode Consortium
(http://www.unicode.org). These two are almost identical. Indeed, these two are exactly
identical at code points which are available in both two standards. Unicode is sometimes
updated and the newest version is 3.0.1.

4.4.1 UCS as a Coded Character Set

ISO 10646 defines two CCS (coded character sets), UCS-2 and UCS-4. UCS-2 is a subset of
UCS-4.

UCS-4 is a 31bit CCS. These 31 bits are divided into 7, 8, 8, and 8 bits and each of them has
special term.

• The top 7 bits are called Group.

• Next 8 bits are called Plane.

• Next 8 bits are Row.

• The smallest 8 bits are Cell.
3This is obviously not true for CNS 11643 because CNS 11643 contains 48711 characters while Unicode 3.0.1

contains 49194 characters, only 483 excess than CNS 11643.

http://www.faqs.org/rfcs/rfc1922.html
http://www.faqs.org/rfcs/rfc1922.html
http://www.unicode.org

Chapter 4. Coded Character Sets And Encodings in the World 25

The first plane (Group = 0, Plane = 0) is called BMP (Basic Multilingual Plane) and UCS-2 is
same to BMP. Thus, UCS-2 is a 16bit CCS.

Code points in UCS are often expressed as u+????, where ???? is hexadecimal expression of
the code point.

Characters in range of u+0021 - u+007e are same to ASCII and characters in range of u+0xa0
- u+0xff are same to ISO 8859-1. Thus it is very easy to convert between ASCII or ISO 8859-1
and UCS.

Unicode (version 3.0.1) uses a 20bit subset of UCS-4 as a CCS. 4

The unique feature of these CCS compared with other CCS is open repertoire. They are develop-
ing even after they are released. Characters will be added in future. However, already coded
characters will not changed. Unicode version 3.0.1 includes 49194 distinct coded characters.

4.4.2 UTF as Character Encoding Schemes

A few CES are used to construct encodings which use UCS as a CCS. They are UTF-7, UTF-
8, UTF-16, UTF-16LE, and UTF-16BE. UTF means Unicode (or UCS) Transformation Format.
Since these CES always take UCS as the only CCS, they are also names for encodings. 5

UTF-8

UTF-8 is an encoding whose CCS is UCS-4. UTF-8 is designed to be upward-compatible to
ASCII. UTF-8 is multibyte and number of bytes needed to express one character is from 1 to 6.

Conversion from UCS-4 to UTF-8 is performed using a simple conversion rule.

UCS-4 (binary) UTF-8 (binary)
00000000 00000000 00000000 0??????? 0???????
00000000 00000000 00000??? ???????? 110????? 10??????
00000000 00000000 ???????? ???????? 1110???? 10?????? 10??????
00000000 000????? ???????? ???????? 11110??? 10?????? 10?????? 10??????
000000?? ???????? ???????? ???????? 111110?? 10?????? 10?????? 10?????? 10??????
0??????? ???????? ???????? ???????? 1111110? 10?????? 10?????? 10?????? 10?????? 10??????

Note the shortest one will be used though longer representation can express smaller UCS val-
ues.

UTF-8 seems to be one of the major candidates for standard codesets in the future. For exam-
ple, Linux console and xterm supports UTF-8. Debian package of locales (version 2.1.97-1)
contains ko_KR.UTF-8 locale. I think the number of UTF-8 locale will increase.

4Exactly speaking, u+000000 - u+10ffff.
5Compare UTF and EUC. There are a few variants of EUC whose CCS are different (EUC-JP, EUC-KR, and so

on). This is why we cannot call EUC as an encoding. In other words, calling of ’EUC’ cannot specify an encoding.
On the other hands, ’UTF-8’ is the name for a specific concrete encoding.

Chapter 4. Coded Character Sets And Encodings in the World 26

UTF-16

UTF-16 is an encoding whose CCS is 20bit Unicode.

Characters in BMP are expressed using 16bit value of code point in Unicode CCS. There are
two ways to express 16bit value in 8bit stream. Some of you may heard a word endian. Big
endian means an arrangement of octets which are part of a datum with many bits from most
significant octet to least significant one. Little endian is opposite. For example, 16bit value of
0x1234 is expressed as 0x12 0x34 in big endian and 0x34 0x12 in little endian.

UTF-16 supports both endians. Thus, Unicode character of u+1234 can be expressed either
in 0x12 0x34 or 0x34 0x12. Instead, the UTF-16 texts have to have a BOM (Byte Order
Mark) at first of them. The Unicode character u+feff zero width no-break space is called
BOM when it is used to indicate the byte order or endian of texts. The mechanism is easy: in
big endian, u+feff will be 0xfe 0xff while it will be 0xff 0xfe in little endian. Thus you
can understand the endian of the text by reading the first two bytes. 6

Characters not included in BMP are expressed using surrogate pair. Code points of u+d800 -
u+dfff are reserved for this purpose. At first, 20 bits of Unicode code point are divided into
two sets of 10 bits. The significant 10 bits are mapped to 10bit space of u+d800 - u+dbff. The
smaller 10 bits are mapped to 10bit space of u+dc00 - u+dfff. Thus UTF-16 can express 20bit
Unicode characters.

UTF-16BE and UTF-16LE

UTF-16BE and UTF-16LE are variants of UTF-16 which are limited to big and little endians,
respectively.

UTF-7

UTF-7 is designed so that Unicode can be communicated using 7bit communication path.

***** Not written yet *****

UCS-2 and UCS-4 as encodings

Though I introduced UCS-2 and UCS-4 are CCS, they can be encodings.

In UCS-2 encoding, Each UCS-2 character is expressed in two bytes. In UCS-4 encoding, Each
UCS-4 character is expressed in four bytes.

6I heard that BOM is mere a suggestion by a vendor. Read Markus Kuhn’s UTF-8 and Unicode FAQ for
Unix/Linux (http://www.cl.cam.ac.uk/~mgk25/unicode.html) for detail.

http://www.cl.cam.ac.uk/~mgk25/unicode.html

Chapter 4. Coded Character Sets And Encodings in the World 27

4.4.3 Problems on Unicode

All standards are not free from politics and compromise. Though a concept of united single
CCS for all characters in the world is very nice, Unicode had to consider compatibility with
preceding international and local standards. And more, unlike the ideal concept, Unicode
people considered efficiency too much. IMHO, surrogate pair is a mess caused by lack of 16bit
code space. I will introduce a few problems on Unicode.

Han Unification

This is the point on which Unicode is criticized most strongly among many Japanese people.

A region of 0x4e00 - 0x9fff in UCS-2 is used for Eastern-Asian ideographs (Japanese Kanji,
Chinese Hanzi, and Korean Hanja). There are similar characters in these four character sets.
(There are two sets of Chinese characters, simplified Chinese used in P. R. China and traditional
Chinese used in Taiwan). To reduce the number of these ideograms to be encoded (the region
for these characters can contain only 20992 characters while only Taiwan CNS 11643 standard
contains 48711 characters), these similar characters are assumed to be the same. This is Han
Unification.

However these characters are not exactly the same. If fonts for these characters are made from
Chinese one, Japanese people will regard them wrong characters, though they may be able
to read. Unicode people think these united characters are the same character with different
glyphs.

An example of Han Unification is available at U+9AA8 (http://www.unicode.org/
cgi-bin/GetUnihanData.pl?codepoint=9AA8). This is a Kanji character for ’bone’.
U+8FCE (http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=
8FCE) is an another example of a Kanji character for ’welcome’. The part from left side
to bottom side is ’run’ radical. ’Run’ radical is used for many Kanjis and all of them have
the same problem. U+76F4 (http://www.unicode.org/cgi-bin/GetUnihanData.
pl?codepoint=76F4) is an another example of a Kanji character for ’straight’. I, a native
Japanese speaker, cannot recognize Chiense version at all.

Unicode font vendors will hesitate to choose fonts for these characters, simplified Chinese char-
acter, traditional Chinese one, Japanese one, or Korean one. One method is to supply four fonts
of simplified Chinese version, traditional Chinese version, Japanese version, and Korean ver-
sion. Commercial OS vendor can release localized version of their OS — for example, Japanese
version of MS Windows can include Japanese version of Unicode font (this is what they are
exactly doing). However, how should XFree86 or Debian do? I don’t know. . . 7 8

7XFree86 4.0 includes Japanese and Korean versions of ISO 10646-1 fonts.
8I heard that Chinese and Korean people don’t mind the glyph of these characters. If this is always true,

Japanese glyphs should be the default glyphs for these problematic characters for international systems such as
Debian.

http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=9AA8
http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=9AA8
http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=8FCE
http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=8FCE
http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=76F4
http://www.unicode.org/cgi-bin/GetUnihanData.pl?codepoint=76F4

Chapter 4. Coded Character Sets And Encodings in the World 28

Cross Mapping Tables

Unicode intents to be a superset of all major encodings in the world, such as ISO-8859-*, EUC-*,
KOI8-*, and so on. The aim of this is to keep round-trip compatibility and to enable smooth
migration from other encodings to Unicode.

Only providing a superset is not sufficient. Reliable cross mapping tables between Unicode
and other encodings are needed. They are provided by Unicode Consortium (http://www.
unicode.org/Public/MAPPINGS/).

However, tables for East Asian encodings are not provided. They were provided but now are
obsolete (http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/).

You may want to use these mapping tables even though they are obsolete, because there are
no other mapping tables available. However, you will find a severe problem for these tables.
There are multiple different mapping tables for Japanese encodings which include JIS X 0208
character set. Thus, one same character in JIS X 0208 will be mapped into different Unicode
characters according to these mapping tables. For example, Microsoft and Sun use different
table, which results in Java on MS Windows sometimes break Japanese characters.

Though we Open Source people should respect interoperativity, we cannot achieve sufficient
interoperativity because of this problem. All what we can achieve is interoperativity between
Open Source softwares.

GNU libc uses JIS/JIS0208.TXT (http://www.unicode.org/Public/MAPPINGS/
OBSOLETE/EASTASIA/JIS/JIS0208.TXT) with a small modification. The modifica-
tion is that

• original JIS0208.TXT: 0x815F 0x2140 0x005C # REVERSE SOLIDUS

• modified: 0x815F 0x2140 0xFF3C # FULLWIDTH REVERSE SOLIDUS

The reason of this modification is that JIS X 0208 character set is almost always
used with combination with ASCII in form of EUC-JP and so on. ASCII 0x5c, not
JIS X 0208 0x2140, should be mapped into U+005C. This modified table is found at
/usr/share/i18n/charmaps/EUC-JP.gz in Debian system. Of course this mapping ta-
ble is NOT authorized nor reliable.

I hope Unicode Consortium to release an authorized reliable unique mapping table between
Unicode and JIS X 0208. You can read the detail of this problem (http://www.debian.or.
jp/~kubota/unicode-symbols.html).

Combining Characters

Unicode has a way to synthesize a accented character by combining an accent symbol and a
base character. For example, combining ’a’ and ’~’ makes ’a’ with tilde. More than two accent
symbol can be added to a base character.

http://www.unicode.org/Public/MAPPINGS/
http://www.unicode.org/Public/MAPPINGS/
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT
http://www.unicode.org/Public/MAPPINGS/OBSOLETE/EASTASIA/JIS/JIS0208.TXT
http://www.debian.or.jp/~kubota/unicode-symbols.html
http://www.debian.or.jp/~kubota/unicode-symbols.html

Chapter 4. Coded Character Sets And Encodings in the World 29

Languages such as Thai need combining characters. Combining characters are the only method
to express characters in these languages.

However, a few problems arises.

Duplicate Encoding There are multiple ways to express the same character. For example, u
with umlaut can be expressed as u+00fc and also as u+0075 + U+0308. How can we
implement ’grep’ and so on?

Open Repertoire Number of expressible characters grows unlimitedly. Non-existing charac-
ters can be expressed.

Surrogate Pair

The first version of Unicode had only 16bit code space, though 16bit is obviously insufficient
to contain all characters in the world. 9 Thus surrogate pair is introduced in Unicode 2.0, to
expand the number of characters, with keeping compatibility with former 16bit Unicode.

However, surrogate pair breaks the principle that all characters are expressed with the same
width of bits. This makes Unicode programming more difficult.

Fortunately, Debian and other UNIX-like systems will use UTF-8 (not UTF-16) as a usual en-
coding for UCS. Thus, we don’t need to handle UTF-16 and surrogate pair very often.

ISO 646-* Problem

You will need a codeset converter between your local encodings (for example, ISO 8859-* or
ISO 2022-*) and Unicode. For example, Shift-JIS encoding 10 consists from JISX 0201 Roman
(Japanese version of ISO 646), not ASCII, which encodes yen currency mark at 0x5c where
backslash is encoded in ASCII.

Then which should your converter convert 0x5c in Shift-JIS into in Unicode, u+005c (back-
slash) or u+00a5 (yen currency mark)? You may say yen currency mark is the right solution.
However, backslash (and then yen mark) is widely used for escape character. For example,
’new line’ is expressed as ’backslash - n’ in C string literal and Japanese people use ’yen cur-
rency mark - n’. You may say that program sources must written in ASCII and the wrong point
is that you tried to convert program source. However, there are many source codes and so on
written in Shift-JIS encoding.

Now Windows comes to support Unicode and the font at u+005c for Japanese version of
Windows is yen currency mark. As you know, backslash (yen currency mark in Japan) is
vitally important for Windows, because it is used to separate directory names. Fortunately,

9There are a few projects such as Mojikyo (http://www.mojikyo.gr.jp/) (about 90000 characters), TRON
project (http://www.tron.org/index-e.html) (about 130000 characters), and so on to develop a CCS which
contains sufficient characters for professional usage in CJK world.

10The standard encoding for Macintosh and MS Windows.

http://www.mojikyo.gr.jp/
http://www.tron.org/index-e.html

Chapter 4. Coded Character Sets And Encodings in the World 30

EUC-JP, which is widely used for UNIX in Japan, includes ASCII, not Japanese version of ISO
646. So this is not problem because it is clear 0x5c is backslash.

Thus all local codesets should not use character sets incompatible to ASCII, such as ISO 646-*.

Problems and Solutions for Unicode and User/Vendor Defined Characters (http://www.
opengroup.or.jp/jvc/cde/ucs-conv-e.html) discusses on this problem.

4.5 Other Character Sets and Encodings

Besides ISO 2022-compliant coded character sets and encodings described in ‘ISO 2022-
compliant Character Sets’ on page 21 and ‘ISO 2022-compliant Encodings’ on page 23, there
are many popular encodings which cannot be classified into an international standard (i.e.,
not ISO 2022-compliant nor Unicode). Internationalized softwares should support these en-
codings (again, you don’t need to be aware of encodings if you use LOCALE and wchar_t
technology). Some organizations are developing systems which go father than limitations of
the current international standards, though these systems may be not diffused very much so
far.

4.5.1 Big5

Big5 is a de-facto standard encoding for Taiwan (1984) and is upward-compatible with ASCII.
It is also a CCS.

In Big5, 0x21 - 0x7e means ASCII characters. 0xa1 - 0xfe makes a pair with the following
byte (0x40 - 0x7e and 0xa1 - 0xfe) and means an ideogram and so on (13461 characters).

Though Taiwan has ISO 2022-compliant new standard CNS 11643, Big5 seems to be more pop-
ular than CNS 11643. (CNS 11643 is a CCS and there are a few ISO 2022-derived encodings
which include CNS 11643.)

4.5.2 UHC

UHC is an encoding which is an upward-compatible with EUC-KR. Two-byte characters (the
first byte: 0x81 - 0xfe; the second byte: 0x41 - 0x5a, 0x61 - 0x7a, and 0x81 - 0xfe) include
KSX 1001 and other Hangul so that UHC can express all 11172 Hangul.

4.5.3 Johab

Johab is an encoding whose character set is identical with UHC, i.e., ASCII, KSX 1001, and all
other Hangul character. Johab means combination in Korean. In Johab, code point of a Hangul
can be calculated from combination of Hangul parts (Jamo).

http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html
http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html

Chapter 4. Coded Character Sets And Encodings in the World 31

4.5.4 HZ, aka HZ-GB-2312

HZ is an encoding described in RFC 1842 (http://www.faqs.org/rfcs/rfc1842.html).
CCS (Coded character sets) of HZ is ASCII and GB2312. This is 7bit encoding.

Note that HZ is not upward-compatible with ASCII, since ’~{’ means GB2312 mode, ’~}’
means ASCII mode, and ’~~’ means ASCII ’~’.

4.5.5 GBK

GBK is an encoding which is upward-compatible to CN-GB. GBK covers ASCII, GB2312, other
Unicode 1.0 ideograms, and a bit more. The range of two-byte characters in GBK is: 0x81 -
0xfe for the first byte and 0x40 - 0x7e and 0x80 - 0xfe for the second byte. 21886 code
points out of 23940 in two-byte region are defined.

GBK is one of popular encodings in R. P. China.

4.5.6 GB18030

GB 18030 is an encoding which is upward-compatible to GBK and CN-GB. It is an recent na-
tional standard (released on 17 March 2000) of China. It adds four-byte characters to GBK. Its
range is: 0x81 - 0xfe for the first byte, 0x30 - 0x39 for the second byte, 0x81 - 0xfe for the
third byte, and 0x30 - 0x39 for the forth byte.

It includes all characters of Unicode 3.0’s Unihan Extension A. And more, GB 18030 supplies
code space for all used and unused code points of Unicode’s plane 0 (BMP) and 16 additional
planes.

A detailed explanation on GB18030 (ftp://ftp.oreilly.com/pub/examples/
nutshell/cjkv/pdf/GB18030_Summary.pdf) is available.

4.5.7 GCCS

GCCS is a standard of coded character set by Hong Kong (HKSAR: Hong Kong Special Ad-
ministrative Region). It includes 3049 characters. It is an abbreviation of Government Common
Character Set. It is defined as an additional character set for Big5. Characters in GCCS are coded
in User-Defined Area (just like Private Use Area for UCS) in Big5.

4.5.8 HKSCS

HKSCS is an expansion and amendment of GCCS. It includes 4702 characters. It means Hong
Kong Supplementary Character Set.

In addition to a usage in User-Defined Area in Big5, HKSCS defines a usage in Private Use
Area in Unicode.

http://www.faqs.org/rfcs/rfc1842.html
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/pdf/GB18030_Summary.pdf
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/pdf/GB18030_Summary.pdf

Chapter 4. Coded Character Sets And Encodings in the World 32

4.5.9 Shift-JIS

Shift-JIS is one of popular encodings in Japan. Its CCS are JISX 0201 Roman, JISX 0201 Kana,
and JISX 0208.

JISX 0201 Roman is Japanese version of ISO 646. It defines yen currency mark for 0x5c, where
ASCII has backslash. 0xa1 - 0xdf is one-byte character and is JISX 0201 Kana. Two-byte
character (the first byte: 0x81 - 0x9f and 0xe0 - 0xef; the second byte: 0x40 - 0x7e and
0x80 - 0xfc) is JISX 0208.

Japanese version of MS DOS, MS Windows and Macintosh use this encoding, though this
encoding is not often used in POSIX systems.

4.5.10 VISCII

Vietnamese language uses 186 characters (Latin alphabets with accents) and other symbols. It
is a bit more than the limit of ISO 8859-like encoding.

VISCII is a standard for Vietnamese. It is upward-compatible with ASCII. It is 8bit and state-
less, like ISO 8859 series. However, it uses code points of not only 0x21 - 0x7e and 0xa0 -
0xff but also 0x02, 0x05, 0x06, 0x14, 0x19, 0x1e, and 0x80 - 0x9f. This makes VISCII
not-ISO 2022-compliant.

Vietnam has a new, ISO 2022-compliant character set TCVN 5712 VN2 (aka VSCII). In TCVN
5712 VN2, accented characters are expressed as a combined character. Note that some of ac-
cented characters have their own code points.

4.5.11 TRON

TRON (http://www.tron.org/index-e.html) is a project to develop a new operating
system, founded as a collaboration of industries and academics in Japan since 1984.

The most diffused version of TRON operating system families is ITRON, a real-time OS for
embedded systems. However, our interest is not on ITRON now. TRON determines a TRON
encoding.

TRON’s encoding is stateful. Each state is assigned to each language. It has already defined
about 130000 characters (January 2000).

4.5.12 Mojikyo

Mojikyo (http://www.mojikyo.gr.jp/) is a project to develop an environment by which
a user can use many characters in the world. Mojikyo project has released an application
software for MS Windows to display and input about 90000 characters. You can download the
software and TrueType, TeX, and CID fonts, though they are not DFSG-free.

http://www.tron.org/index-e.html
http://www.mojikyo.gr.jp/

33

Chapter 5

Characters in Each Country

This chapter describes a specific information for each language. If you are developing a serious
DTP software or planning to support detailed I18N, this chapter may help you. Contributions
from people speaking each language are welcome. If you are to write a section on your lan-
guage, please include these points:

1 kinds and number of characters used in the language,

2 explanation on coded character set(s) which is (are) standardized,

3 explanation on encoding(s) which is (are) standardized,

4 usage and popularity for each encoding,

5 de-facto standard, if any, on how many columns characters occupy,

6 writing direction and combined characters,

7 how to layout characters (word wrapping and so on),

8 widely used value for LANG environmental variable,

9 the way to input characters from keyboard and whether you want to input yes/no (and
so on) in your language or in English,

10 a set of information needed for beautiful displaying, for example, where to break a line,
hyphenation, word wrapping, and so on, and

11 other topics.

Writers whose languages are written in different direction from European languages or needs
a combined characters (I heard that is used in Thai) are encouraged to explain how to treat
such languages.

Chapter 5. Characters in Each Country 34

5.1 Japanese language / used in Japan

This section is the text written by Tomohiro KUBOTA <kubota@debian.org> (no more
reachable).

Japanese is the only official language used in Japan. People in Okinawa islands and Ainu eth-
nic group in Hokkaido region have each language, though they are used among few number
of people and they don’t have own letters.

Japan is the only region where Japanese language is widely used.

5.1.1 Characters used in Japanese

There are three kinds of characters used in Japan, Hiragana, Katakana, and Kanji. Arabic
numerical characters (same as European languages) are widely used in Japanese, though we
have Kanji numerical characters. Though Latin alphabets are not a part of Japanese characters,
they are widely used for proper nouns for companies and so on.

Hiragana and Katakana are phonogram derived from Kanji. Hiragana and Katakana charac-
ters have one-to-one correspondence each other like upper and lower case of Latin alphabets.
However, toupper() and tolower() should not convert Hiragana and Katakana each other.
Hiragana contains about 100 characters and of course Katakana does. (FYI: about 50 regular
characters, 20 characters with voiced consonant symbol, 5 characters with semi-voiced conso-
nant symbol, and 9 small characters.)

Kanji is ideogram imported from China roughly about 1 - 2 thousands years ago. Nobody
knows the whole number of Kanji and almost all of adult Japanese people know several thou-
sands of Kanji characters. Though the origin of Kanji is Chinese character, shapes are changed
from original ancient Chinese Kanji. Almost all Kanji have several ways to read, according to
the word the Kanji is contained.

5.1.2 Character Sets

JIS (Japan Industrial Standards) is an organization responsible for coded character sets (CCS)
and encodings used in Japan. The major coded character sets in Japan are:

• JIS X 0201-1976 Roman characters (Almost same to ASCII but 0x5c is Yen mark instead of
backslash and 0x7e is upper bar instead of tilde)

• JIS X 0201-1976 Kana (about 60 KATAKANA characters),

• JIS X 0208-1997 1st and 2nd levels (about 7000 characters including symbols, numeric
characters, Latin, Cyrillic and Greek alphabets, Japanese HIRAGANA, KATAKANA, and
KANJI),

• JIS X 0212 (about 6000 characters including KANJI, which are not included in JIS X 0208),
and

Chapter 5. Characters in Each Country 35

• JIS X 0213:2000 (aka JIS 3rd and 4th levels).

JIS X 0201 Roman is the Japanese version of ISO 646. Though JIS X 0201 is included in SHIFT-
JIS encoding (explained later) and widely used for Windows/Macintosh, usage of this is not
encouraged in UNIX.

JIS X 0201 Kana defines about 60 KATAKANA characters. This is widely used by old 8bit
computers. In deed, SHIFT-JIS encoding was designed to be upward-compatible with 8-bit
encoding of JISX 0201 Roman and JISX 0201 Kana. Note this CCS is not included in ISO 2022-
JP encoding which is used for e-mail and so on.

JIS X 0212 is not widely used, probably because it cannot be included in SHIFT-JIS, the stan-
dard encoding for Japanese version of Windows and Macintosh. And more, this CCS may be
obsolete when JIS X 0213 will be popular, since JIS X 0213 has many characters which are in-
cluded in JIS X 0212. However, the advantage of JIS X 0212 over JIS X 0213 is that all characters
in JIS X 0212 are included in the current Unicode (version 3.0.1) while not all characters in JIS
X 0213 are.

JIS X 0208 (aka JIS C 6226) is the main standard for Japanese characters. Strictly speaking,
it was originally defined in 1978 and revised on 1983, 1990, and 1997. Though 1997 version
has 77 more characters than original 1976 version and shape of more than 200 characters are
changed, almost softwares don’t have to care about the difference between them. However, be
careful of that ISO-2022-JP encoding (explained below) contains both JIS X 0208-1978 and JIS X
0208-1983. 1978 version is called ’old JIS’ and later is called ’new JIS’. Characters in JIS X 0208
are divided into two levels, 1st and 2nd. Old 8bit computers rarely implemented the 2nd level.

Usage of numeric characters and Latin alphabets in JIS X 0208 is not encouraged because these
characters are also included in ASCII and JIS X 0201 Roman, either of which is included in all
encodings. When converting into Unicode, these characters are mapped into ’fullwidth forms’.

All of these coded character sets (except for JIS X 0213) are included in Unicode 3.0.1. A part
of JIS X 0213 characters are not included in Unicode 3.0.1.

There are a few different tables for conversion between non-letter characters in JIS X 0208 and
Unicode. This is a problem because this may deny ’round-trip compatiblilty’. Problems and
Solutions for Unicode and User/Vendor Defined Characters (http://www.opengroup.or.
jp/jvc/cde/ucs-conv-e.html) discusses this problem in detail.

5.1.3 Encodings

There are three popular encodings widely used in Japan.

• ISO-2022-JP (aka JIS code or JUNET code)

– stateful

– subset of 7bit version of ISO-2022, where ASCII, JIS X 0201-1976 Roman, JIS X 0208-
1978, and JIS X 0208-1983 are supported.

http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html
http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html

Chapter 5. Characters in Each Country 36

– 7bit, which means the most significant bit (MSB) of each byte is always zero.
– used for e-mail and net-news and preferred for HTML.
– Determined in RFC 1468.

• EUC-JP (Japanese version of Extended UNIX Code)

– stateless
– an implementation of EUC where G0, G1, G2, and G3 are ASCII, JIS X 0208, JIS

X 0201 Kana, and JIS X 0212 respectively. There are many implementation which
cannot use JIS X 0201 Kana and JIS X 0212.

– 8bit
– preferred encoding for UNIX. For example, almost all Japanese message catalogs for

gettext is written in EUC-JP.
– Japanese code is mapped in 0xa0 - 0xff. This is important for programmer because

one doesn’t need to care there are fake ’\’ or ’/’ (which can be treated in a special
way in various context) in the Japanese code.

• SHIFT-JIS (aka Microsoft Kanji Code)

– stateless
– NOT subset of ISO-2022
– 8bit
– JIS X 0201 Roman, JIS X 0201 Kana, and JIS X 0208 can be expressed, but JIS X 0212

cannot.
– The standard encoding for Windows/Macintosh. This makes SHIFT-JIS the most

popular encoding in Japan. Though MS is thinking about transition to UNICODE,
it is suspicious that it can be done successfully.

ISO-2022-JP is a subset of 7bit version of ISO 2022, where only G0 is used and G0 is assumed
to be invoked into GL. Character sets included in ISO-2022-JP are:

• ASCII (ESC 0x28 0x42),

• JIS X 0201-1976 Roman (ESC 0x28 0x4a),

• JIS X 0208-1978 (old JIS) (ESC 0x24 0x40), and

• JIS X 0208-1983 (new JIS) (ESC 0x24 0x42).

Note that JIS X 0208-1978 and JIS X 0208-1983 are almost identical and ASCII and JIS X 0201-
1976 Roman are also almost identical. A line (stream of bytes between ’newline’ control code)
must start by ASCII status and to end by ASCII status. See ‘ISO 2022’ on page 17 for detail.

ISO-2022-JP-2 (RFC 1554) is a subset of 7bit version of ISO 2022 and superset of ISO-2022-
JP. Difference between ISO-2022-JP and ISO-2022-JP-2 is that ISO-2022-JP-2 has more coded
character sets than ISO-2022-JP. Character sets included in ISO-2022-JP-2 are:

Chapter 5. Characters in Each Country 37

• ASCII (ESC 0x28 0x42)

• JIS X 0201-1976 Roman (ESC 0x28 0x4a),

• JIS X 0208-1978 (old JIS) (ESC 0x24 0x40),

• JIS X 0208-1983 (new JIS) (ESC 0x24 0x42),

• GB2312-80 (simplified Chinese) (ESC 0x24 0x41),

• KS C 5601 (Korean) (ESC 0x24 0x28 0x43),

• JIS X 0212-1990 (ESC 0x24 0x28 0x44),

• ISO 8859-1 (Latin-1) (ESC 0x2e 0x41), and

• ISO 8859-7 (Greek) (ESC 0x2e 0x46).

Though JIS X 0212-1990 may sometimes be used, ISO-2022-JP-2 is rarely used.

ISO-2022-INT-1 is a superset of ISO-2022-JP-2 which has CNS 11643-1986-1 and CNS 11643-
1986-2 (traditional Chinese).

EUC-JP is a version of EUC, where G0 is ASCII, G1 is JIS X 0208, G2 is JIS X 0201 Kana, and G3
is JIS X 0212. G2 and G3 are sometimes not implemented. This is the most popular encoding
for Linux/Unix. See ‘EUC (Extended Unix Code)’ on page 21 for detail.

SHIFT-JIS is designed to be a superset of encodings for old 8bit computers which includes JIS
X 0201 Roman and JIS X 0201 Kana. 0x20 - 0x7f is JIS X 0201 Roman and 0xa0 - 0xdf is JIS
X 0201 Kana. 0x80 - 0x9f and 0xe0 - 0xff is the first byte of doublebyte characters. The
second byte is 0x40 - 0x7e and 0x80 - 0xfc. This code space is used for JIS X 0208.

UNICODE is not popular in Japan at all, probably because conversion from these codes into
Unicode is a bit difficult. However MS Windows uses Unicode in a limited field, for example,
internal code for file names. I guess more and more softwares will come to support Unicode in
the future.

You can convert files written in these encodings one another using nkf or kcc package. Us-
ing options -j, -s, and -e, nkf convert a file into ISO-2022-JP (aka JIS), SHIFT-JIS (aka MS-
KANJI), and EUC-JP, respectively. Note that difference between JIS X 0201 Roman and ASCII
is ignored. Though nkf can guess the encoding of the input file, you can specify the encoding
by command option. This is because there are no algorithm to completely distinguish EUC-JP
and SHIFT-JIS, though nkf usually guesses correctly. tcs can also convert these encodings,
though without guessing input encoding. Conversion between these encodings can be done
with a simple algorithm since all of them are based on the same character sets. You need a
table for code conversion between these encodings and Unicode.

5.1.4 How These Encodings Are Used — Information for Programmers

Since EUC-JP is widely used for UNIX, EUC-JP should be supported. Exceptions are shown
below. Of course direct implementation of knowledge on EUC-JP is not encouraged. If you
can implement without the knowledge by use of wchar_t and so on, you should do so.

Chapter 5. Characters in Each Country 38

• the body of mail and news messages must be written in ISO-2022-JP.

• De-facto standard of ICQ is SHIFT-JIS.

• WWW browser must recognize all encodings.

• Softwares which communicate with Windows/Macintosh should use SHIFT-JIS.

• SHIFT-JIS is widely used for BBS. (BBS is a service like Compuserve).

• File names for Joliet-format CD-ROM used for Windows is written in Unicode.

5.1.5 Columns

In consoles which are able to display Japanese characters (kon, jfbterm, kterm, krxvt, and so
on), characters in JIS X 0201 (Roman and Kana) occupy 1 column and characters in JIS X 0208,
JIS X 0212, and JIS X 0213 occupy 2 columns.

5.1.6 Writing Direction and Combined Characters

Japanese language can be written in vertical direction. A line goes downward and the row of
lies goes from right to left. This direction is the traditional style. For example, most Japanese
books, magazines and newspapers except for in the field of natural science (or ones contain-
ing many Latin words or equations) are written in vertical direction. Thus a word processor
is strongly recommended to support this direction. DTP systems which don’t support this
direction are almost useless.

Japanese language can also written in the same direction to Latin languages. Japanese books
and magazines on science and technology are written in this direction. It is enough for almost
usual softwares to support this direction only.

A few Japanese characters have to have different fonts for vertical direction. They are reason-
able characters — parentheses and ’long syllable’ symbol whose shape is like dash in English
or mathematical ’minus’ sign. Symbols equivalent to period and comma also have different
style for horizontal and vertical direction.

In Japan, Arabic numerical characters are widely used, like European languages, though we
have Kanji (ideogram) numerical characters. Latin characters can also appear in Japanese texts.
If a row of 1 - 3 (or 4) characters of Arabic and Latin appear in Japanese vertical text, these
characters can be crowded into one column. If more characters appear (large numbers or long
words), the paper is rotated 90 degree in anticlockwise and the characters are written in Euro-
pean way. Sometimes Latin characters which appears in vertical text are written in the same
way as Japanese character, i.e., vertical direction. This is not so strong custom. Arabic and
Latin characters can always be written in both normal and rotated way in vertical text. 1 DTP
system should support all of them.

A version of Japanized TeX (developed by ASCII, a publishing company in Japan) can use
vertical direction. This can also treat a page containing both vertical and horizontal texts.

1I HAVE TO SHOW EXAMPLE USING GRAPHICS.

Chapter 5. Characters in Each Country 39

5.1.7 Layout of Characters

In Japanese language, words are not separated by space and a line can be broken anywhere,
with a few exceptions, unlike European languages. Thus hyphenation is not needed for
Japanese.

Characters like open parentheses cannot come to the end of a line. Characters like close paren-
theses and sorts of sentence-separating marks such as period and comma cannot come to the
top of a line. This rule and processing is called ’kinsoku’ in Japanese.

In European languages, a break of line is equivalent to a space. In Japanese language, a break of
line should be neglected. For example, when rendering an HTML file, line-breaking character
in the HTML source should not be converted into whitespace.

5.1.8 LANG variable

Different value of LANG used for different encodings.

Following values are used for EUC-JP.

• LANG=ja_JP.eucJP (major for Linux and *BSD)

• LANG=ja_JP.ujis (used to be major for Linux)

• LANG=ja_JP (because EUC-JP is the de-facto standard for UNIX; not recommended)

• LANG=ja (because EUC-JP is the de-facto standard for UNIX; not recommended)

LANG=ja_JP.jis is used for ISO-2022-JP (aka JIS code or JUNET code).

LANG=ja_JP.sjis is used for SHIFT-JIS (aka Microsoft Kanji Code).

Setting LANG is not sufficient for a Japanese user who has just installed Linux to get a mini-
mal Japanese environment. There are several books on establishing Japanese environment on
Linux/BSD and magazines on Linux often have feature articles on how to establish Japanese
environment. Nowadays many Japanized Linux distributions which are optimized so that
many basic software can display and input Japanese are popular. Debian GNU/Linux has
user-ja (for potato) and language-env (for woody and following versions) packages to
establish basic Japanese environment.

5.1.9 Input from Keyboard

Since Japanese characters cannot be inputed directly from a keyboard, a software is needed to
convert ASCII characters into Japanese. WNN, Canna, and SKK are popular free softwares to
input Japanese language. Though T-Code is also available, it is difficult to use. Since these
adopt server/client model and implement their own protocols, we cannot input Japanese only
with wnn, canna, or skk (and their depending packages).

Chapter 5. Characters in Each Country 40

In X Window System environment, kinput2-* and skkinput packages connects these pro-
tocols and XIM, which is the standard input protocol for X. Kinput2 also has an original proto-
col and kterm and so on can be a client of kinput2 protocol. Kinput2 protocol was developed
before international standards such as XIM (or Ximp or Xsi) became available.

On console, there are no standard and each software has to support wnn and/or
canna protocol. For example, jvim-canna, xemacs21-mule-canna, and emacs20 with
emacs-dl-canna or emacs-dl-wnn. Thus the ways to operate are different between soft-
wares. skkfep provides a general way to input Japanese on console.

Then the way to input Japanese is explained.

Since almost Hiraganas and Katakanas represents a pair of a vowel and a consonant with
one character, we can input one Hiragana or one Katakana with two Latin alphabets. A few
Hiraganas and Katakanas need one or three alphabets.

Kanji is obtained by converting from Hiragana. There are many Japanese words which are
expressed by two or more Kanjis and almost recent converting softwares can convert such
words at a time. (Old softwares can convert one Kanji at a time. You must be patient to use this
way.) Softwares with good grammar/context analyzer and large dictionary can convert longer
phrases or even a whole sentence at a time. However, we usually have to select one Kanji or
word from candidates the software shows, because Japanese language has many homophones.
For example, 61 Kanjis whose readings are ’KAN’ and 6 words whose readings are ’KOUKOU’
are registered in dictionary of canna. (Today, 2 Oct 1999, I saw a TV advertisement film of
Japanese word processor which insists the software can correctly convert an input into ’a cafe
which opened today’, not ’a cafe which rotated today’. Though Japanese word ’KAITEN’
means both ’open (a shop)’ and ’rotate’, the software knows it is more usual for a cafe to open
than to rotate.)

The conversion from Hiragana to Kanji needs a large dictionary which contains the Kanji
spelling and readings of Japanese major words and conjugation or inflection. Thus propri-
etary softwares tend to efficiently convert. They usually have dictionaries larger than few
megabytes. Some of these recent proprietary softwares even analyze the topic or meaning
of the inputed Hiragana sentence and choose the most appropriate homophone, though they
often choose wrong ones.

Nowadays several proprietary conversion softwares such as ATOK, WNN6, and VJE for Linux
are sold in Japan.

Since it is complex and hard work for users to input Japanese characters, we don’t want to
input Y (for YES) or N (for NO) in Japanese. We prefer learning such basic English words to in-
puting Japanese words by invoking conversion software, inputing Latin alphabetic expression
of Japanese, converting it into Hiragana, converting it into Kanji, choosing the correct Kanji,
determining the correct Kanji, and ending the conversion software each time we need to input
yes or no or similar words.

Chapter 5. Characters in Each Country 41

5.1.10 More Detailed Discussions

Width of Characters

Different from European languages, Japanese characters should written in a fixed width. Ex-
ceptions arises when two symbols such as parentheses, periods and commas continue. Kerning
should be done for such cases if the software is a word processor. A text editor need not.

Ruby

Ruby is a small (usually 1/2 in length and 1/4 in area or a bit smaller) characters written above
(in horizontal direction) or at right side (in vertical direction) of the main text. This is usually
used to show a reading of difficult Kanji.

Japanized TeX can use ruby by using an extra macro. Word processors should have Ruby
faculty.

Upper And Lower Cases

Japanese character does not have upper and lower case although there two sets of phonograms,
Hiragana and Katakana.

Thus tolower() and toupper() should not convert between Hiragana and Katakana.

Hiragana is used for usual text. Katakana is used mainly for express foreign or imported
words, for example, KONPYU-TA for computer, MAIKUROSOFUTO for Microsoft, and AIN-
SYUTAIN for Einstein.

Sorting

Phonograms (Hiragana and Katakana) have sorting order. The order is same to defined in JIS
X 0208, with a few exceptions.

Ideograms (Kanji) sorting is difficult. They should be sorted by their reading but almost all
kanji have a few readings according to the context. So if you want to sort Japanese text, you
will need a dictionary of whole Japanese Kanji words. And more, a few Japanese words written
in Kanji have different readings with exactly same series of Kanjis, this can occur especially for
names of person. So it is usual that addressbook databases have two ’name’ columns, one for
Kanji expression and the other for Hiragana.

I know no softwares which can sort Japanese words in perfect way, including free and propri-
etary softwares.

Chapter 5. Characters in Each Country 42

Ro-ma ji (Alphabetic expression of Japanese)

We have a phonetic alphabetic expression of Japanese, Ro-ma ji. It has almost one-to-one cor-
respondence to Japanese phonogram. It can be used to display Japanese text on Linux console
and so on. Since Japanese have many homophones this expression can be crabbed.

There are several variants of Ro-ma ji.

The first distinguishing point is on handling of long syllable. For example, long syllable of ’E’
is expressed in:

• ’E’ with caret,

• ’E’ with upper bar,

• only ’E’ in which long syllable mark is ignored,

• ’EE’,

• and so on.

The second distinguishing point is some special pairs of vowel and consonant. For example,
Hiragana character for combination of ’T’ and ’I’ is pronounced like ’CHI’.

• TI or CHI, as described above,

• TU or TSU,

• SI or SHI,

• HU or FU,

• WO or O,

• TYA or CHA, and

• N or M.

5.2 Spanish language / used in Spain, most of America and Equato-
rial Guinea

Section written by Eusebio C Rufian-Zilbermann <eusebio@acm.org>.

Spanish is one of the official languages in Spain, the official language in most of the coun-
tries in the American continent and the official language in Equatorial Guinea. It is spoken in
many other regions where it is not the official language. Other official languages in Spain are
Galician, Catalan and Basque. These other languages each have their own specific issues with
regards to Localization. They are not described in this section of the document.

Chapter 5. Characters in Each Country 43

The Spanish Language derives from the variation spoken in the Castille region. The term
Castillian is sometimes used to refer to the Spanish language (particularly when an author
wants to stress the fact that there are other languages spoken in Spain). Both Castillian and
Spanish language refer to the same language, they are not different things.

5.2.1 Characters used in Spanish

Spanish uses a Latin alphabet. The numerical characters used in Spanish are the Arabic nu-
merals.

The character that distinguishes Spanish from other Latin alphabets is the Ñ (’N’ with tilde),
which exists in uppercase and lowercase versions. Vowels in Spanish may have a mark (the
accent) on top of them to indicate intensity intonation. This accent is required for orthography
(written correctness) on lowercase vowels but it is optional in uppercase vowels. The letter ’u’
may have a dieresis (like the German umlaut), both in uppercase and lowercase forms.

Some punctuation signs are characteristic of the Spanish language. The opening question mark
and the opening exclamation sign look like the English question mark and exclamation sign
rotated 180 degrees. The English question mark and exclamation sign are referred to as closing
question mark and exclamation sign. The small underlined ’a’ and ’o’ are used mainly for
ordinal numbers, similar to the small ’th’ in English ordinals.

5.2.2 Character Sets

UNE (Una Norma Española) is the National Standards Organization in Spain. UNE is a mem-
ber of the ISO and standards that have one-to-one correspondence are usually called by their
ISO number, rather than their UNE number.

ISO 8859-1, also known as ISO Latin-1, contains the characters required for Spanish.

5.2.3 Codesets

The codeset mostly used for Spanish is ISO 8859-1. The codepage Windows 1252 a.k.a. Win-
dows Latin-1 is a superset of ISO 8859-1 that adds some characters in the range 128 to 159.
Other codesets are Unicode, Macintosh Roman (codepage 1000), MS-DOS Latin-1 (codepage
850) or less frequently MS-DOS Latin US (codepage 437) which contains accented lowercase
characters but not uppercase. Some additional Latin codesets are EBCDIC CP500 and CP
1026 (used in IBM mainframes and terminal emulators), Adobe Standard (used as default for
Postscript documents), Nextstep Latin, HP Roman 8 (for HPUX and Laserjet resident printer
fonts) and the Latin codepage in OS/2. They are all stateless, 8-bit codepages (with the excep-
tion of Unicode that is 16-bit).

5.2.4 How These Codesets Are Used — Information for Programmers

In most cases it is safe to use ISO 8859-1 characters. Some exceptions are

Chapter 5. Characters in Each Country 44

• WWW browsers should recognize all codesets.

• Software which communicates with IBM mainframes, Macintosh, MS-DOS, Nextstep,
HPUX, OS/2 should handle the corresponding encoding.

• File names for Joliet-format CD-ROM used for Windows is written in Unicode.

• Postscript interpreters should handle the Adobe Standard character set.

• Printer filters or drivers for HP printers should handle the Roman-8 character set if using
the internal fonts.

5.2.5 Columns

On console displays, each character occupies one column. Printed text can be equally spaced
(one column per character) or proportionally spaced (a character can occupy fractionally more
or less than a column, depending on its shape).

Note: Even when using Traditional Sorting, ch and ll occupy two columns. See the comment
on Traditional sorting in ‘Sorting’ on the facing page.

5.2.6 Writing Direction

Spanish is normally written in left to right lines arranged from top to bottom of the page. For
artistic purposes it might be written in top to bottom columns arranged left to right within
the page. This columnar arrangement would be expected only in graphic and charting pro-
grams (e.g., a drawing program, a spreadsheet graph or a page layout program for composing
brochures) but regular text editors wouldn’t be expected to implement this style.

5.2.7 Layout of Characters

In the Spanish language, words are separated by spaces and a line can be broken at a space, a
punctuation sign or a hyphenated word.

There are several sets of paired characters in Spanish. Unlike English, question marks and
exclamation signs are also paired. Other paired characters are the same as English (parenthe-
sis, square brackets, and so forth). Opening characters shouldn’t appear at the end of a line.
Closing characters and punctuation signs such as period and comma shouldn’t appear at the
beginning of a line.

Words can be broken at a syllabus and hyphenated. Unlike English, syllabi in Spanish end in
a vowel more often than in a consonant. Syllabi that end in a consonant letter are typically at
the end of a word or followed by a syllabus that starts with another consonant. Anyway, the
rules are not completely consistent and a hyphenation dictionary has to be used.

Chapter 5. Characters in Each Country 45

5.2.8 LANG variable

For Bash

set meta-flag on # keep all 8 bits for keyboard input
set output-meta on # keep all 8 bits for terminal output
set convert-meta off # don’t convert escape sequences
export LC_CTYPE=ISO_8859_1

For Tcsh

setenv LANG C
setenv LC_CTYPE "iso_8859_1"

5.2.9 Input from Keyboard

For the Spanish keyboard to work correctly, you need the command loadkeys
/usr/lib/kbd/keytables/es.map in the corresponding startup (rc) file.

Most of the Spanish characters are input from the keyboard with a single stroke. A two-key
combination is used for accent and dieresis marks above vowels. Traditional typewriter ma-
chines used a ’dead key’ system with keys that would strike the paper without advancing
the carriage to the next character. Typing on a computer keyboard simulates this behavior,
typing the accent or dieresis key does not produce any visible output until a vowel is typed
afterwards. Usually if the accent or dieresis key is followed by a consonant, the accent key is
ignored. Accented or dieresis characters cannot be used for shortcut keys for selecting options.

The words for Yes and No are Sí (the character next to S is ’i’ with acute accent) and No. We
would commonly use the S and N keys for a Sí/No choice.

Spanish keyboards usually allow for typing not only the Spanish accent signs, but also the
accent signs in French and other languages (grave accent, circumflex accent, umlaut on letters
other than the u). Other character that is typically available is the cedilla C (that looks like a
C with a comma underneath, used for Catalan, Portuguese and French words, for example).
There is a Latin-American keyboard layout that does not contain the grave accent and the
cedilla C.

5.2.10 More Detailed Discussions

Sorting

Traditional Spanish considered the combinations CH and LL individual single letters. For
usage in computers, this required an additional effort for sorting and character counting al-
gorithms. It was decided that the savings in not requiring special algorithms was significant
enough and that it would be acceptable to treat them as 2 separate letters. Some software

Chapter 5. Characters in Each Country 46

that already had incorporated the special sorting algorithms now allows for choosing between
’Traditional Spanish Sort’ and ’Modern Spanish Sort’.

Accents and dieresis are ignored for sorting purposes. The only exception is the rare case
where two words are exactly the same and the accent is the only difference, the word with
the unaccented character should be sorted first. E.g., camión (c-a-m-i-o with acute accent-n),
camionero, este, éste (e with acute accent-s-t-e).

The ñ (n with tilde) is always sorted after the n and before the l. It cannot be intermixed with
the n.

Number format, date and currency symbols

The use of the dot and the comma as a thousands separator and for decimal places is usually
the opposite of US English. E.g., 1.000,00 instead of 1,000.00. Some Spanish-speaking countries,
notably Mexico, follow the same standards as the US. It is desirable that programs can handle
both forms as an independent setting.

The usual date format is DD-MM-YYYY rather than MM-DD-YYYY, but again this depends on
the specific country. It is desirable to have the date format as a configurable parameter.

The currency symbol can be prepended or appended to the number and it can be one or several
characters long. E.g., 100 PTA for Spanish pesetas or N$ 100 for Mexican pesos. It is desirable
that the symbol and position can be individually defined and to allow for currency symbols
longer than 1-character.

Varieties of Spanish

Spanish is spoken by a tremendous variety of people. Academics through the different
Spanish-speaking countries realized that this could lead to a dismemberment of the language
and founded the Academy of the Spanish Language. This academy has branches in most of the
Spanish-speaking countries, there is a Royal Academy of the Spanish Language of Spain, an
Academy of the Spanish Language of Mexico, et cetera. The members of this Academy study
the local evolution of the languages in each country. They meet together to maintain a body of
knowledge of what should be considered the Standard Spanish Language and what should be
considered local or regional terms and slang terms.

In most cases, software can use terms that are within the Standard set by the Academy. When
new terms appear (e.g., when a new product is created that has no previous name in the Span-
ish language) each region typically starts using a new word. When there is one or two terms
that become the de-facto standard, the Academy would incorporate the new term into the Stan-
dard. This is a very slow process and there will be temporary usages in different regions within
the Spanish-speaking worlds that conflict with each other. Some people speak about Spain-
Spanish and American-Spanish but most of the time it doesn’t really make sense to make this
distinction. First of all, even within America, there are differences between the local varieties
that may be greater than the differences with Spain itself. E.g., Spanish as spoken in Mexico,
Colombia and Argentina may have between them as much differences as each of them when

Chapter 5. Characters in Each Country 47

compared to how it is spoken in Spain. A computer user in Ecuador may feel more comfort-
able overall with the terms used in Spain than with the terms used in Mexico (and of course,
most comfortable with the terms used in Ecuador itself!). The options are to either produce one
Spanish version of a software product that is an acceptable compromise (maybe not perfect) for
all Spanish-speaking countries or to produce multiple versions to account for all the regional
variations.

A plea to all the people who are localizing software into Spanish: Let’s use our efforts judi-
ciously and create one Spanish version and not many. Let’s strive for a version that conforms
to the Standards and that can be as widely accepted as possible for the areas not covered by
the Standards. Wouldn’t you rather have a new product translated, instead of two versions of
a product where one matches your local variety of the language?

5.3 Languages with Cyrillic script

Section written by Alexander Voropay <a.voropay@globalone.ru>.

First of all, there are a lot of languages with Cyrillic script.

Slavic languages : Russian (ru), Ukrainian (uk), Belarussian (be), Bulgarian (bg), Serbian (sr),
and Macedonian (mk).

Another Slavic languages (Polish(pl), Czech(cz), Croatian(hr)) uses Latin script : mainly ISO-
8859-2 (Central-European).

During USSR time some non-slavic languages got own alpabets, based on modifyed cyrillic
characters. Azerbaijani (az), Turkmen (tk), Kurdish (ku), Uzbek (uz), Kazakh (kk), Kirghiz
(ky), Tajik (tg) and Mongolian (mn) Komi (kv) e.t.c.

• http://www.peoples.org.ru/eng_index.html

• http://www-hep.fzu.cz/~piska/

• http://www.srpsko-pismo.org/

• http://www.hr/hrvatska/language/CroLang.html

• http://ftp.fi.muni.cz/pub/localization/charsets/cs-encodings-faq

UNICODE has rich Cyrillic section.

Ufortunately, there are a lot of 8-bit Cyrillic Charsets. There is no one universal 8-
bit Cyrillic charset, because, for example, there are about 260 Cyrillic characters in
Adobe Glyph List (http://partners.adobe.com/asn/developer/PDFS/TN/5013.
Cyrillic_Font_Spec.pdf).

The overview “The Cyrillic Charset Soup (http://czyborra.com/charsets/cyrillic.
html)”.

The main problem with Russian : there are at least six live Charsets:

http://www.peoples.org.ru/eng_index.html
http://www-hep.fzu.cz/~piska/
http://www.srpsko-pismo.org/
http://www.hr/hrvatska/language/CroLang.html
http://ftp.fi.muni.cz/pub/localization/charsets/cs-encodings-faq
http://partners.adobe.com/asn/developer/PDFS/TN/5013.Cyrillic_Font_Spec.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/5013.Cyrillic_Font_Spec.pdf
http://czyborra.com/charsets/cyrillic.html
http://czyborra.com/charsets/cyrillic.html

Chapter 5. Characters in Each Country 48

• KOI8-R

• Windows-1251

• CP-866

• ISO-8859-5

• MAC-CYRILLIC

• ISO-IR-111

So, Russian computers really live in “Charset mix”, like Japanese : Shift-JIS, ISO2022-JP, EUC-
JP. You can get e-mail in any charset, so your Mail Agent should understand all this charsets.
Takasiganai.

In POSIX environment you should setup FULL locale name (with .Charset field) :

LANG=ru_RU.KOI8-R
LANG=ru_RU.ISO_8859-5
LANG=ru_RU.CP1251

e.t.c. for proper sorting, character classification and for readable messages. Any form of
abbreviations (“ru”, “ru_RU” e.t.c.) are sourse of misunderstanding. I hope, Unicode
LANG=ru_RU.UTF-8 will save us in near future. . .

49

Chapter 6

LOCALE technology

LOCALE is a basic concept introduced into ISO C (ISO/IEC 9899:1990). The standard is ex-
panded in 1995 (ISO 9899:1990 Amendment 1:1995). In LOCALE model, the behaviors of some
C functions are dependent on LOCALE environment. LOCALE environment is divided into a
few categories and each of these categories can be set independently using setlocale().

POSIX also determines some standards around i18n. Almost of POSIX and ISO C standards
are included in XPG4 (X/Open Portability Guide) standard and all of them are included in
XPG5 standard. Note that XPG5 is included in UNIX specifications version 2. Thus support
of XPG5 is mandatory to obtain Unix brand. In other words, all versions of Unix operating
systems support XPG5.

The merit of using locale technology over hard-coding of Unicode is:

• The software can be written encoding-independent way. This means that this software
can support all encodings which the OS supports, including 7bit, 8bit, multibyte, stateful,
and stateless encodings such as ASCII, ISO 8859-*, EUC-*, ISO 2022-*, Big5, VISCII, TIS
620, UTF-*, and so on.

• The software will provides a common unified method to configure locale and encoding.
This benefits users. Otherwise, users will have to remember the method to enable UTF-8
mode for each software. Some softwares need -u8 switch, other need X resource setting,
other need .foobarrc file, other need a special environmental variable, other use UTF-8
for default. It is nonsense!

• The advancement of the OS means the advancement of the software. Thus, you can use
new locale without recompiling your software.

You can read the Unicode support in the Solaris Operating Environment (http://docs.
sun.com/ab2/coll.651.1/SOLUNICOSUPPT) whitepapaer and understand the merit of
this model. Bruno Haible’s Unicode HOWTO (ftp://ftp.ilog.fr/pub/Users/haible/
utf8/Unicode-HOWTO.html) also recommends this model.

http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT
http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT
ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html
ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html

Chapter 6. LOCALE technology 50

6.1 Locale Categories and setlocale()

In LOCALE model, the behaviors of some C functions are dependent on LOCALE environ-
ment. LOCALE environment is divided into six categories and each of these categories can be
set independently using setlocale().

The followings are the six categories:

LC_CTYPE Category related to encodings. Characters which are encoded by LC_CTYPE-
dependent encoding is called multibyte characters. Note that multibyte character
doesn’t need to be multibyte.

LC_CTYPE-dependent functions are: character testing functions such as islower() and
so on, multibyte character functions such as mblen() and so on, multibyte string func-
tions such as mbstowcs() and so on, and so on.

LC_COLLATE Category related to sorting. strcoll() and so on are LC_COLLATE-
dependent.

LC_MESSAGES Category related to the language for messages the software outputs. This
category is used for gettext.

LC_MONETARY Category related to format to show monetary numbers, for example, cur-
rency mark, comma or period, columns, and so on. localeconv() is the only function
which is LC_MONETARY-dependent.

LC_NUMERIC Category related to format to show general numbers, for example, character
for decimal point.

Formatted I/O functions such as printf(), string conversion functions such as
atof(), and so on are LC_NUMERIC-dependent.

LC_TIME Category related to format to show time and date, such as name of months and
weeks, order of date, month, and year, and so on.

strftime() and so on are LC_TIME-dependent.

setlocale() is a function to set LOCALE. Usage is char *setlocale(int category, const
char *locale);. Header file of locale.h is needed for prototype declaration and definition of
macros for category names. For example, setlocale(LC_TIME, “de_DE”);.

For category, the following macros can be used: LC_CTYPE, LC_COLLATE, LC_MONETARY,
LC_NUMERIC, LC_TIME, and LC_ALL. For locale, specific locale name, NULL, or “” can be
specified.

Giving NULL for locale will return the current value of the specified locale category. Otherwise,
setlocale() returns the newly set locale name, or NULL for error.

Given “” for locale, setlocale() will determine the locale name in the following manner:

• At first, consult LC_ALL environmental variable.

Chapter 6. LOCALE technology 51

• If LC_ALL is not available, consult environmental variable same as the name of the locale
category. For example, LC_COLLATE.

• If none of them are available, consult LANG environmental variable.

This is why a user is expected to set LANG variable. In other words, all what a user has to do is
to set LANG variable so that all locale-compliant softwares work well for desired way.

Thus, I recommend strongly to call setlocale(LC_ALL, “”); at the first of your softwares,
if the softwares are to be international.

6.2 Locale Names

We can specify locale names for these six locale categories. Then, which name should we
specify?

The syntax to build a locale name is determined as follows:

language[_territory][.codeset][@modifier]

where language is two lowercase alphabets described in ISO639, such as en for English, eo for
Esperanto, and zh for Chinese, territory is two uppercase alphabets described in ISO3166, such
as GB for United Kingdom, KR for Republic of Korea (South Korea), CN for China. There are no
standard for codeset and modifier. GNU libc uses ISO-8859-1, ISO-8859-13, eucJP, SJIS,
UTF8, and so on for codeset, and euro for modifier.

However, it is depend on the system which locale names are valid. In other words, you have
to install locale database for locale you want to use. Type locale -a to display all supported
locale names on the system.

Note that locale names of “C” and “POSIX” are determined for the names for default behav-
ior. For example, when your software need to parse the output of date(1), you’d better call
setlocale(LC_TIME, “C”); before invocation of date(1).

6.3 Multibyte Characters and Wide Characters

Now we will concentrate on LC_CTYPE, which is the most important category in six locale
categories.

Many encodings such as ASCII, ISO 8859-*, KOI8-R, EUC-*, ISO 2022-*, TIS 620, UTF-8, and
so on are used widely in the world. It is inefficient and a cause of bugs, even not impossi-
ble, for every softwares to implement all these encodings. Fortunately, we can use LOCALE
technology to solve this problem. 1

1Usage of UCS-4 is the second best solution for this problem. Sometimes LOCALE technology cannot be used
and UCS-4 is the best. I will discuss this solution later.

Chapter 6. LOCALE technology 52

Multibyte characters is a term to call characters encoded in locale-specific encoding. It is
nothing special. It is mere a word to call our daily encodings. In ISO 8859-1 locale, ISO 8859-
1 is multibyte character. In EUC-JP locale, EUC-JP is multibyte character. In UTF-8 locale,
UTF-8 is multibyte character. In short, multibyte character is defined by LC_CTYPE locale
category. Multibyte characters is used when your software inputs or outputs text data from/to
everywhere out of your software, for example, standard input/output, display, keyboard, file,
and so on, as you are doing everyday. 2

You can handle multibyte characters using ordinal char or unsigned char types and ordi-
nal character- and string-oriented functions. It is just like you used to do for ASCII and 8bit
encodings.

Then why we call it with a special term of multibyte character? The answer is, ISO C specifies
a set of functions which can handle multibyte characters properly. On the other hand, it is
obvious that usual C functions such as strlen() cannot handle multibyte characters properly.

Then what is these functions which can handle multibyte characters properly? Please wait a
minute. Multibyte character may be stateful or stateless and multibyte or non-multibyte, since
it includes all encodings ever used and will be used on the earth. Thus it is not convenient
for internal processing. It needs complex algorithm even for, for example, character extraction
from a string, addition and division of a string, or counting of number of character in a string.
Thus, wide characters should be used for internal processing. And, the main part of these
C functions which can handle multibyte characters are functions for interconversion between
multibyte characters and wide characters. These functions are introduced later. Note that you
may be able to do without these functions, since ISO C supplies I/O functions with conversion.

Wide character is defined in ISO C

• that all characters are expressed in fixed width of bits.

• that it is stateless, i.e., it doesn’t have shift states.

There are two types for wide characters: wchar_t and wint_t. wchar_t is a type which
can contain one wide character. It is just like ’char’ type can be used for contain one character.
wint_t can contain one wide character or WEOF, an substitution of EOF.

A string of wide characters is achieved by an array of wchar_t, just like a string of characters
is achieved by an array of char.

There are functions for wchar_t, substitute for functions for char.

• strcat(), strncat() -> wcscat(), wcsncat()

• strcpy(), strncpy() -> wcscpy(), wcsncpy()

• strcmp(), strncmp() -> wcscmp(), wcsncmp()

2There are a few exceptions. Compound text should be used for communication between X clients. UTF-8
would be the standard for file names in Linux.

Chapter 6. LOCALE technology 53

• strcasecmp(), strncasecmp() -> wcscasecmp(), wcsncasecmp()

• strcoll(), strxfrm() -> wcscoll(), wcsxfrm()

• strchr(), strrchr() -> wcschr(), wcsrchr()

• strstr(), strpbrk() -> wcsstr(), wcspbrk()

• strtok(), strspn(), strcspn() -> wcstok(), wcsspn(), wcscspn()

• strtol(), strtoul(), strtod() -> wcstol(), wcstoul(), wcstod()

• strftime() -> wcsftime()

• strlen() -> wcslen()

• toupper(), tolower() -> towupper(), towlower()

• isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit() ->
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit()
(isascii() doesn’t have its wide character version).

• memset(), memcpy(), memmove, memmove(), memchr() -> wmemset(), wmemcpy(),
wmemmove, wmemmove(), wmemchr()

There are additional functions for wchar_t.

• wcwidth(), wcswidth()

• wctrans(), towctrans()

You cannot assume anything on the concrete value of wchar_t, besides 0x21 - 0x7e are iden-
tical to ASCII. 3 You may feel this limitation is too strong. If you cannot do under this limita-
tion, you can use UCS-4 as the internal encoding. In such a case, you can write your software
emulating the locale-sensible behavior using setlocale(), nl_langinfo(CODESET), and
iconv(). Consult the section of ‘nl_langinfo() and iconv()’ on page 55. Note that it is
generally easier to use wide character than implement UCS-4 or UTF-8.

You can write wide character in the source code as L’a’ and wide string as L“string”. Since
the encoding for the source code is ASCII, you can only write ASCII characters. If you’d like
to use other characters, you should use gettext.

There are two ways to use wide characters:

3Some of you may know GNU libc uses UCS-4 for the internal expression of wchar_t. However, you should
not use the knowledge. It may differ in other systems.

Chapter 6. LOCALE technology 54

• I/O is described using multibyte characters. Inputed data are converted into wide char-
acter immediately after reading and data for output are converted from wide charac-
ter to multibyte character immediately before writing. Conversion can be achieved us-
ing functions of mbstowcs(), mbsrtowcs(), wcstombs(), wcsrtombs(), mblen(),
mbrlen(), mbsinit(), and so on. Please consult the manual pages for these functions.

• Wide characters are directly used for I/O, using wide character functions such as
getwchar(), fgetwc(), getwc(), ungetwc(), fgetws, putwchar(), fputwc(),
putwc(), and fputws(), formatted I/O functions for wide characters such as
fwscanf(), wscanf(), swscanf(), fwprintf(), wprintf(), swprintf(),
vfwprintf(), vwprintf(), and vswprintf(), and wide character identifier of %lc,
%C, %ls, %S for conventional formatted I/O functions. By using this approach, you don’t
need to handle multibyte characters at all. Please consult the manual pages for these
functions.

Though latter functions are also determined in ISO C, these functions have became newly
available since GNU libc 2.2. (Of course all UNIX operating systems have all functions de-
scribed here.)

Note that very simple softwares such as echo doesn’t have to care about multibyte character.
and wide characters. Such software can input and output multibyte character as is. Of course
you may modify these softwares using wide characters. It may be a good practice of wide
character programming. Examples of a fragment of source codes will be discussed in ‘Internal
Processing and File I/O’ on page 71.

There is an explanation of multibyte and wide characters also in Ken Lunde’s “CJKV Informa-
tion Processing” (p25). However, the explanation is entirely wrong.

6.4 Unicode and LOCALE technology

UTF-8 is considered as the future encoding and many softwares are coming to support UTF-8.
Though some of these softwares implement UTF-8 directly, I recommend you to use LOCALE
technology to support UTF-8.

How this can be achieved? It is easy! If you are a developer of a software and your software
has already written using LOCALE technology, you don’t have to do anything!

Using LOCALE technology benefits not only developers but also users. All a user has to do is
set locale environment properly. Otherwise, a user has to remember the method to use UTF-8
mode for each software. Some softwares need -u8 switch, other need X resource setting, other
need .foobarrc file, other need a special environmental variable, other use UTF-8 for default.
It is nonsense!

Solaris has been already developed using this model. Please consult Unicode sup-
port in the Solaris Operating Environment (http://docs.sun.com/ab2/coll.651.1/
SOLUNICOSUPPT) whitepapaer.

http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT
http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT

Chapter 6. LOCALE technology 55

However, it is likely that some of upstream developers of softwares of which you are main-
taining a Debian package refuses to use wchar_t for some reasons, for example, that they
are not familiar with LOCALE programming, that they think it is troublesome, that they are
not keen on I18N, that it is much easier to modify the software to support UTF-8 than to
modify it to use wchar_t, that the software must work even under non-internationalized
OS such as MS-DOS, and so on. Some developers may think that support of UTF-8 is suffi-
cient for I18N. 4 Even in such cases, you can rewrite such a software so that it checks LC_*
and LANG environmental variables to emulate the behavior of setlocale(LC_ALL, “”);.
You can also rewrite the software to call setlocale(), nl_langinfo(), and iconv() so
that the software supports all encodings which the OS supports, as discussed later. Consult
the discussion in the Groff mailing list on the support of UTF-8 and locale-specific encod-
ings (http://ffii.org/archive/mails/groff/2000/Oct/0056.html), mainly held
by Werner LEMBERG, an experienced developer of GNU roff, and Tomohiro KUBOTA, the
author of this document.

6.5 nl_langinfo() and iconv()

Though ISO C defines extensive LOCALE-related functions, you may want more extensive
support. You may also want conversion between different encodings. There are C functions
which can be used for such purposes.

char *nl_langinfo(nl_item item) is an XPG5 function to get LOCALE-related informa-
tions. You can get the following informations using the following macros for item defined
in langinfo.h header file:

• names for days in week (DAY_1 (Sunday), DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, and
DAY_7)

• abbreviated names for days in week (ABDAY_1 (Sun), ABDAY_2, ABDAY_3, ABDAY_4,
ABDAY_5, ABDAY_6, and ABDAY_7)

• names for months in year (MON_1 (January), MON_2, MON_3, MON_4, MON_5, MON_6,
MON_7, MON_8, MON_9, MON_10, MON_11, and MON_12)

• abbreviated names for months in year (ABMON_1 (January), ABMON_2, ABMON_3,
ABMON_4, ABMON_5, ABMON_6, ABMON_7, ABMON_8, ABMON_9, ABMON_10, ABMON_11,
and ABMON_12)

• name for AM (AM_STR)

• name for PM (PM_STR)

• name of era (ERA)
4In such a case, do they think of abolishing support of 7bit or 8bit non-multibyte encodings? If no, it may

be unfair that 8bit language speakers can use both UTF-8 and conventional (local) encodings while speakers of
multibyte languages, combining characters, and so on cannot use their popular locale encodings. I think such a
software cannot be called “internationalized”.

http://ffii.org/archive/mails/groff/2000/Oct/0056.html

Chapter 6. LOCALE technology 56

• format of date and time (D_T_FMT)

• format of date and time (era-based) (ERA_D_T_FMT)

• format of date (D_FMT)

• format of date (era-based) (ERA_D_FMT)

• format of time (24-hour format) (T_FMT)

• format of time (am/pm format) (T_FMT_AMPM)

• format of time (era-based) (ERA_T_FMT)

• radix (RADIXCHAR)

• thousands separator (THOUSEP)

• alternative characters for numerics (ALT_DIGITS)

• affirmative word (YESSTR)

• affirmative response (YESEXPR)

• negative word (NOSTR)

• negative response (NOEXPR)

• encoding (CODESET)

For example, you can get names for months and use them for your original output algorithm.
YESEXPR and NOEXPR are convenient for softwares expecting Y/N answer from users.

iconv_open(), iconv(), and iconv_close() are functions to perform conversion be-
tween encodings. Please consult manpages for them.

Combining nl_langinfo() and iconv(), you can easily modify Unicode-enabled software
into locale-sensible truly internationalized software.

At first, add a line of setlocale(LC_ALL, “”); at the first of the software. If it returns
non-NULL, enable UTF-8 mode of the software.

int conversion = FALSE;
char *locale = setlocale(LC_ALL, "");

:
:

(original code to determine UTF-8 mode or not)
:
:

if (locale != NULL && utf_mode == FALSE) {
utf8_mode = TRUE;
conversion = TRUE;

}

Chapter 6. LOCALE technology 57

Then modify input routine as following:

#define INTERNALCODE "UTF-8"
if (conversion == TRUE) {

char *fromcode = nl_langinfo(CODESET);
iconv_t conv = iconv_open(INTERNALCODE, fromcode);
(reading and conversion...)
iconv_close(conv);

} else {
(original reading routine)

}

Finally modify the output routine as following:

if (conversion == TRUE) {
char *tocode = nl_langinfo(CODESET);
iconv_t conv = iconv_open(tocode, INTERNALCODE);
(conversion and writing...)
iconv_close(conv);

} else {
(original writing routine)

}

Note that whole reading should be done at once since otherwise you may divide multibyte
character. You can consult the iconv_prog.c file in the distribution of GNU libc for usage of
iconv().

Though nl_langinfo() is a standard function of XPG5 and GNU libc supports it, it is not
very portable. And more, there are no standard for encoding names for nl_langinfo() and
iconv_open(). If this is a problem, you can use Bruno Haible’s libiconv (http://www.
gnu.org/software/libiconv/). It has iconv(), iconv_open(), and iconv_close().
And more, it has locale_charset(), a replacement of nl_langinfo(CODESET).

6.6 Limit of Locale technology

Locale model has a limit. That is, it cannot handle two locales at the same time. Especially, it
cannot handle relationship between two locales at all.

For example, EUC-JP, ISO 2022-JP, and Shift-JIS are popular encodings in Japan. EUC-JP is
the de-facto standard for UNIX systems, ISO 2022-JP is the standard for Internet, and Shift-
JIS is the encoding for Windows and Macintosh. Thus, Japanese people have to handle texts
with these encodings. Text viewers such as jless and lv and editors such as emacs can
automatically understand the encoding to be read. You cannot write such a software using
Locale technology.

http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/libiconv/

Chapter 6. LOCALE technology 58

59

Chapter 7

Output to Display

Here ’Output to Display’ does not mean translation of messages using gettext. I will concern
on whether characters are correctly displayed so that we can read it. For example, install
libcanna1g package and display /usr/doc/libcanna1g/README.jp.gz on console or
xterm (of course after ungzipping). This text file is written in Japanese but even Japanese
people can not read such a row of strange characters. Which you would prefer if you were a
Japanese speaker, an English message which can be read with a dictionary or such a row of
strange characters which is a result of gettextization? 1

Problems on displaying non-English (non-ASCII) characters are discussed below.

7.1 Console Softwares

In this section, problems on displaying characters on console are discussed. 2 Here, console
includes a bare Linux console including framebuffer and conventional version, special con-
soles such as kon2, jfbterm, chdrv, and so on constructed by special softwares, and X terminal
emulators such as xterm, kterm, hanterm, xiterm, rxvt, xvt, gnome-terminal, wterm, aterm,
eterm, and so on. Remote environments via telnet and secure shell such as NCSA telnet for
Macintosh and Tera Term for Windows are also regarded as consoles.

The feature of console is that:

• All what a software has to do is to send a correct encoding to standard output. Softwares
on console don’t need to care about fonts and so on.

• Fonts with fixed sizes are used. The unit of the width of the font is called ’column’.
’Doublewidth’ fonts, i.e., fonts whose width is 2 columns, are used for CJK ideograms,
Japanese Hiragana and Katakana, Korean Hangul, and related symbols. Combined char-
acters used for Thai and so on can be regarded as ’zero’-column characters.

1(Yes, there are ways to display Japanese characters correctly – kon (in kon2 package) for console and kterm
for X, and Japanese people are happy with gettextized Japanese messages.)

2This section does not include problems on developing console; This section includes problems on developing
softwares which run on console.

Chapter 7. Output to Display 60

7.1.1 Encoding

Softwares running on the console are not responsible for displaying. The console itself is re-
sponsible. There are consoles which can display encodings other than ASCII such as

kon in kon2 package EUC-JP, Shift-JIS, and ISO-2022-JP

jfbterm EUC-JP, ISO 2022-JP, and ISO 2022 (including any 94, 96, and 94x94 coded character
sets whose fonts are available)

kterm EUC-JP, Shift-JIS, ISO 2022-JP, and ISO 2022 (including ISO8859-{1,2,3,4,5,6,7,8,9}, JISX
0201, JISX 0208, JISX 0212, GB 2312, and KSC 5601)

krxvt in rxvt-ml package EUC-JP

crxvt-gb in rxvt-ml package CN-GB

crxvt-big5 in rxvt-ml package Big5

cxtermb5 in cxterm-big5 package Big5

xcinterm-big5 in xcin package Big5

xcinterm-gb in xcin package CN-GB

xcinterm-gbk in xcin package GBK

xcinterm-big5hkscs in xcin package Big5 with HKSCS

hanterm EUC-KR, Johab, and ISO 2022-KR

xiterm and txiterm in xiterm+thai package TIS 620

xterm UTF-8

However, there are no way for a software on console to know which encoding is available. I
think it is a responsibility for a user to properly set LC_CTYPE locale (i.e. LC_ALL, LC_CTYPE,
or LANG environmental variable). Provided LC_CTYPE locale is set properly, a software can
use it to know which encoding to be supported by the console.

Concerning the translated messages by gettext, the software does not need anything. It
works well if the user properly set LC_CTYPE and LC_MESSAGES locale.

If you are handling a string in non-ASCII encoding (using multibyte character, UTF-8 directly,
and so on), you will have to care about points which you don’t have to care about if you are
using ASCII.

• 8-bit cleanness. I think everyone understand this.

• Continuity of multibyte characters. In multibyte encodings such as EUC-JP and UTF-8,
one character may consist from more than two bytes. These bytes should be outputed
continued. Insertion of additional codes between the continuing bytes can break the
character. I have seen a software which outputs location control code everytime it out-
puts one byte. It breaks multibyte character.

Chapter 7. Output to Display 61

7.1.2 Number of Columns

Internationalized console software cannot assume that a character always occupy one col-
umn. You can get the number of column of a character of a string using wcwidth() and
wcswidth(). Note that you have to use wchar_t-style programming since these functions
have a wchar_t parameter.

Additional cares have to be taken not to destroy multicolumn characters. For example, imagine
your software displayed a double-column character at (row, column) = (1, 1). What will occur
when your software then display a single-column character at (row, column) = (1, 2) or at (1, 1)
? The single-column character erases the half of the double-column character? Nobody knows
the answer. It depends on the implementation of the console. All what I can tell is that your
software should avoid such cases.

If your software inputs a string from keyboard, you will have to take more cares. All of num-
bers of characters, bytes, and columns differ. For example, in UTF-8 encoding, one character
of ’a’ with acute accent occupies two bytes and one column. One character of CJK-ideograph
occupies three bytes and two columns. For example, if the user types ’Backspace’, how many
backspace code (0x08) should the software outputs? How many bytes should the software
erase from the internal buffer? Don’t be nervous; you can use wchar_t which assures one
character occupy one wchar_t everytime and you can use wcwidth() to know the number
of columns. Note that control codes such as ’backspace’ (0x08) and so on are column-oriented
everytime. It backs ’one’ column even if the character at the position is a doublewidth charac-
ter.

7.2 X Clients

The way to develop X clients can differ drastically dependent on the toolkits to be used. At
first, Xlib-style programming is discussed since Xlib is the fundamental for all other toolkits.
Then a few toolkits are discussed.

7.2.1 Xlib programming

X itself is already internationalized. X11R5 has introduced an idea of ’fontset’ for internation-
alized text output. Thus all what X clients have to do is to use the ’fontset’-related functions.

The most important part for internationalization of displaying for X clients is the usage of
internationalized XFontSet-related functions introduced since X11R5 instead of conventional
XFontStruct-related functions.

The main feature of XFontSet is that it can handle multiple fonts at the same time. This is
related to the distinction between coded character set (CCS) and character encoding scheme
(CES) which I wrote at the section of ‘Basic Terminology’ on page 9. Some encodings in the
world use multiple coded character sets at the same time. This is the reason we have to handle

Chapter 7. Output to Display 62

multiple X fonts at the same time. 3

Another significant feature of XFontSet is that it is locale (LC_CTYPE)-sensible. This means
that you have to call setlocale() before you use XFontSet-related functions. And more,
you have to specify the string you want to draw as a multibyte character or a wide character.

In the conventional XFontStructmodel, an X client opens a font using XLoadQueryFont(),
draw a string using XDrawString(), and close the font using XFreeFont(). On the
other hand, in the internationalized XFontSet model, an X client opens a font using
XCreateFontSet(), draw a string using XmbDrawString(), and close the font using
XFreeFontSet(). The following are a concise list of substitution.

• XFontStruct -> XFontSet

• XLoadQueryFont() -> XCreateFontSet()

• both of XDrawString() and XDrawString16 -> either of XmbDrawString() or
XwcDrawString()

• both of XDrawImageString() and XDrawImageString16 -> either of
XmbDrawImageString() or XwcDrawImageString()

Note that XFontStruct is usually used as a pointer, while XFontSet itself is a pointer.

Some people (ISO-8859-1-language speakers) may think that XFontSet-related functions are
not 8-bit clean. This is wrong. XFontSet-related functions work according to LC_CTYPE
locale. The default LC_CTYPE locale uses ASCII. Thus, if a user doesn’t set LANG, LC_CTYPE,
nor LC_ALL environmental variable, XFontSet-related functions will use ASCII, i.e., not 8-bit
clean. The user has to set LANG, LC_CTYPE, or LC_ALL environmental variable properly (for
example, LANG=en_US).

The upstream developers of X clients sometimes hate to enforce users to set such environ-
mental variables. 4 In such a case, The X clients should have two ways to output text,
i.e., XFontStruct-related conventional way and XFontSet-related internationalized way.
If setlocale() returns NULL, “C”, or “POSIX”, use XFontStruct way. Otherwise use
XFontSet way. The author implemented this algorithm to a few window managers such as
TWM (version 4.0.1d), Blackbox (0.60.1), IceWM (1.0.0), sawmill (0.28), and so on.

Window managers need more modifications related to inter-clients communication. This topic
will be described later.

7.2.2 Athena widgets

Athena widget is already internationalized.

***** Not written yet *****
3Though UTF-8 is an encoding with single CCS, the current version of XFree86 (4.0.1) needs multiple fonts to

handle UTF-8.
4IMHO, all users will have to set LANG properly when UTF-8 will become popular.

Chapter 7. Output to Display 63

7.2.3 Gtk and Gnome

Gtk is already internationalized.

***** Not written yet *****

7.2.4 Qt and KDE

Though internationalized version of Qt was available for a long time, it could not be the official
version of Qt. The license of Qt of those days inhibited to distribute internationalized version
of Qt. However, Troll Tech at last changed their mind and Qt’s license and now the official
version of Qt is internationalized.

***** Not written yet *****

Chapter 7. Output to Display 64

65

Chapter 8

Input from Keyboard

it is obvious that a text editor needs ability to input text from keyboard, otherwise the text
editor is entirely useless. Similarly, an internationalized text editor needs ability to input char-
acters used for various languages. Other softwares such as shells, libraries such as readline,
environments such as consoles and X terminal emulators, script languages such as perl, tcl/tk,
python, and ruby, and application softwares such as word processors, draw and paints, file
managers such as Midnight Commander, web browsers, mailers, and so on also need ability
to input internationalized text. Otherwise these softwares are entirely useless.

There are various languages in the world. Thus, proper input methods vary from languages to
languages.

• Some languages such as English doesn’t need any special input methods. All characters
for the language can be inputted by a single key on a keyboard. Keymap is all which a
user has to care.

• Some other languages such as German need a simple extension. For example, u with
umlaut can be inputted with two strokes of ’:’ and ’u’. A way to switch ordinal input
mode (key strokes of ’:’ and ’u’ inputs ’:’ and ’u’) and the extension input mode (key
strokes of ’:’ and ’u’ bears u with umlaut) has to be supplied. Almost languages in the
world can be inputted with this method.

• Other languages such as Chinese and Japanese need a complicated input method, since
they use thousands of characters. Since it is very difficult and challenging problem to
develop a clever input method, a few companies are developing Japanese input meth-
ods. Typical Japanese input methods are shipped with tens of megabytes of conversion
dictionary. It is often very troublesome to set up an input method for these languages. 1

You also have to be practiced to use these input methods.

Different technologies are used for these languages. The aim of this chapter is to introduce
technologies for them.

1This is a field where proprietary systems such as MS Windows and Macintosh are much easier than free
systems such as Debian and FreeBSD.

Chapter 8. Input from Keyboard 66

8.1 Non-X Softwares

Ideally, it is a responsibility for console and X terminal emulators to supply an input method.
This situation is already achieved for simple languages which don’t need complicated input
methods. Thus, non-X softwares don’t need to care about input methods.

There are a few Debian packages for consoles and X terminal emulators which supply input
methods for particular languages.

xiterm in xiterm+thai package Thai characters

hanterm Korean Hangul

cxtermb5 in cxterm-big5 package Big5 traditional Chinese ideograms

cce CN-GB simplified Chinese ideograms

And more, there are a few softwares which supply input methods for existing console envi-
ronment.

skkfep Japanese (needs SKK as a conversion engine)

uum Japanese (needs Wnn as a conversion engine; not avaliable as a Debian package)

canuum Japanese (needs Canna as a conversion engine; not avaliable as a Debian package)

However, since input methods for complex languages have not been available historically, a
few non-X softwares have been developed with input methods.

jvim-canna A text editor which can input Japanese (needs Canna as a conversion engine.)

jed-canna A text editor which can input Japanese (needs Canna as a conversion engine.)

nvi-m17n-canna A text editor which can input Japanese (needs Canna as a conversion engine.)

You have to take care of the differences between number of characters, columns, and bytes. For
example, you can find immediately that bash cannot handle UTF-8 input properly when you
invoke bash on UTF-8 Xterm and push BackSpace key. This is because readline always
erase one column on the screen and one byte in the internal buffer for one stroke of ’BackSpace’
key. To solve this problem, wide character should be used for internal processing. One stroke
of ’BackSpace’ should erase wcwidth() columns on the screen and one wchar_t unit in the
internal buffer.

Chapter 8. Input from Keyboard 67

8.2 X Softwares

X11R5 is the first internationalized version of X Window System. However, X11R5 supplied
two sample implements of international text input. They are Xsi and Ximp. Existence of two
different protocols was an annoying situation. However, X11R6 determined XIM, a new pro-
tocol for internationalized text input, as the standard. Internationalized X softwares should
support text input using XIM.

They are designed using server-client model. The client calls the server when necessary. The
server supplies conversion from key stroke to internationalized text.

Kinput and kinput2 are protocols for Japanese text input, which existed before X11R5. Some
softwares such as kterm and so on supports kinput2 protocol. kinput2 is the server software.
Since the current version of kinput2 supports XIM protocol, you don’t need to support kinput
protocol.

8.2.1 Developing XIM clients

***** Not written yet *****

Development of XIM client is a bit complicated. You can read source code for rxvt and xedit
to study.

Programming for Japanse characters input (http://www.ainet.or.jp/~inoue/im/
index-e.html) is a good introduction to XIM programming.

8.2.2 Examples of XIM softwares

The following are examples of softwares which can work as XIM clients.

• X Terminal Emulators such as krxvt, kterm, and so on.

• Text editors such as xedit, gedit, and so on.

• Web rowser mozilla.

The following are examples of softwares which can work as XIM servers.

• kinput and skkinput for Japanese.

8.2.3 Using XIM softwares

Here I will explain how to use XIM input with Debian system. This will help developers and
package maintainers who want to test XIM facility of their softwares. Debian Woody or later
systems are assumed.

http://www.ainet.or.jp/~inoue/im/index-e.html
http://www.ainet.or.jp/~inoue/im/index-e.html

Chapter 8. Input from Keyboard 68

At first, locale database has to be prepared. Uncomment ja_JP.EUC-JP EUC-JP,
ko_KR.EUC-KR EUC-KR, zh_CN.GB2312, and zh_TW BIG5 lines in /etc/locale.gen
and invoke /usr/sbin/locale-gen. This will prepare locale database under
/usr/share/locale/. For systems other than Debian Woody or later, please take the valid
procedure for these systems to prepare locale database.

Basic Chinese, Japanese, and Korean X fonts are included in xfonts-base package for Debian
Woody and later.

XIM server must be installed. For Japanese, kinput2 or skkinput packages are available.
kinput2 supports Japanese input engines of Canna and FreeWnn and skkinput supports
SKK. For Korean, ami is available. For traditional Chinese and simplified Chinese, xcin is
available.

Of course you need an XIM client software. xedit in xbase-clients package is an example
of XIM client.

Then, login as a non-root user. Environment variables of LC_ALL (or LANG) and XMODIFIERS
must be set as following.

• for Japanese/kinput2: LC_ALL=ja_JP.eucJP and XMODIFIERS=@im=kinput2

• for Korean/ami: LC_ALL=ko_KR.eucKR and XMODIFIERS=@im=Ami

• for traditional Chinese/xcin: LC_ALL=zh_TW.Big5 and XMODIFIERS=@im=xcin

• for simplified Chinese/xcin: LC_ALL=zh_CN.GB2312 and
XMODIFIERS=@im=xcin-zh_CN.GB2312

Then invoke the XIM server. Just invoke it with background mode (with &). kinput2 and ami
don’t open a new window while xcin opens a new window and outputs some messages.

Then invoke the XIM client. Focus on an input area of the software. Hit Shift-Space or Control-
Space and type something. Did some strange characters appear? This document is too brief
to explain how to input valid CJK characters and sentences with these XIM servers. Please
consult documents of XIM servers.

8.3 Emacsen

GNU Emacs and XEmacs take an entirely different model for international input.

They supply all input methods for various languages. Instead of relying on console
or XIM, they use these input methods. These input methods can be selected by M-x
set-input-method command. The selected input method can be switched on and off by
M-x toggle-input-method command.

GNU Emacs supplies input methods for British, Catalan, Chinese (array30, 4corner, b5-quick,
cns-quick, cns-tsangchi, ctlau, ctlaub, ecdict, etzy, punct, punct-b5, py, py-b5, py-punct,

Chapter 8. Input from Keyboard 69

py-punct-b5, qj, qj-b5, sw, tonepy, ziranma, zozy), Czech, Danish, Devanagari, Esperanto,
Ethiopic, Finnish, French, German, Greek, Hebrew, Icelandic, IPA, Irish, Italian, Japanese (egg-
wnn, skk), Korean (hangul, hangul3, hanja, hanja3), Lao, Norwegian, Portuguese, Romanian,
Scandinavian, Slovak, Spanish, Swedish, Thai, Tibetan, Turkish, Vietnamese, Latin-{1,2,3,4,5},
Cyrillic (beylorussian, jcuken, jis-russian, macedonian, serbian, transit, transit-bulgarian, ul-
rainian, yawerty), and so on.

Chapter 8. Input from Keyboard 70

71

Chapter 9

Internal Processing and File I/O

There are many text-processing softwares, such as grep, groff, head, sort, wc, uniq, nl,
expand, and so on. There are also many script languages which are often used for text pro-
cessing, such as sed, awk, perl, python, ruby, and so on. These softwares need to be inter-
nationalized.

From a user’s point of view, a software can use any internal encodings if I/O is done correctly.
It is because a user cannot be aware of which kind of internal code is used in the software.

There are two candidate for internal encoding. One is wide character and the another is UCS-4.
You can also use Mule-type encoding, where a pair of a number to express CCS and a number
to express a character consist a unit.

I recommend to use wide character, for reasons I alread explained in ‘LOCALE technology’ on
page 49, i.e., wide character can be encoding-independent and can support various encodings
in the world including UTF-8, can supply a common united way for users to choose encodings,
and so on.

Here a few examples of handling of wchar_t are shown.

9.1 Stream I/O of Characters

The following program is a small example of stream I/O of wide characters.

#include <stdio.h>
#include <wchar.h>
#include <locale.h>
main()
{
wint_t c;

setlocale(LC_ALL, "");

Chapter 9. Internal Processing and File I/O 72

while(1) {
c = getwchar();
if (c == WEOF) break;
putwchar(c);
}

}

I think you can easily imagine a corresponding version using char. Since this software does
not do any character manipulation, you can use ordinal char for this software.

There are a few points. At first, never forget to call setlocale(). Then, putwchar(),
getwchar(), and WEOF are the replacements of putchar(), getchar(), and EOF, respec-
tively. Use wint_t instead of int for getwchar().

9.2 Character Classification

Here is an example of character clasification using wchar_t. At first, this is a non-
internationalized version.

/*
* wc.c

*
* Word Counter

*
*/

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{
int n, p=0, d=0, c=0, w=0, l=0;

while ((n=getchar()) != EOF) {
c++;
if (isdigit(n)) d++;
if (strchr(" \t\n", n)) w++;
if (n == ’\n’) l++;
}

printf("%d characters, %d digits, %d words, and %d lines\n",
c, d, w, l);

}

Here is the internationalized version.

Chapter 9. Internal Processing and File I/O 73

/*
* wc-i.c

*
* Word Counter (internationalized version)

*
*/

#include <stdio.h>
#include <string.h>
#include <locale.h>

int main(int argc, char **argv)
{
int p=0, d=0, c=0, w=0, l=0;
wint_t n;

setlocale(LC_ALL, "");

while ((n=getwchar()) != EOF) {
c++;
if (iswdigit(n)) d++;
if (wcschr(L" \t\n", n)) w++;
if (n == L’\n’) l++;
}

printf("%d characters, %d digits, %d words, and %d lines\n",
c, d, w, l);

}

This example shows that iswdigit() is used instead of isdigit(). And more, L“string”
and L’char’ for wide character string and wide character.

9.3 Length of String

The following is a sample program to obtain the length of the inputed string. Note that number
of bytes and number of characters are not distinguished.

/* length.c

*
* a sample program to obtain the length of the inputed string

* NOT INTERNATIONALIZED

*/

#include <stdio.h>

Chapter 9. Internal Processing and File I/O 74

#include <string.h>

int main(int argc, char **argv)
{
int len;

if (argc < 2) {
printf("Usage: %s [string]\n", argv[0]);
return 0;
}

printf("Your string is: \"%s\".\n", argv[1]);

len = strlen(argv[1]);
printf("Length of your string is: %d bytes.\n", len);
printf("Length of your string is: %d characters.\n", len);
printf("Width of your string is: %d columns.\n", len);
return 0;

}

The following is a internationalized version of the program using wide characters.

/* length-i.c

*
* a sample program to obtain the length of the inputed string

* INTERNATIONALIZED

*/

#include <stdio.h>
#include <string.h>
#include <locale.h>

int main(int argc, char **argv)
{
int len, n;
wchar_t *wp;

/* All softwares using locale should write this line */
setlocale(LC_ALL, "");

if (argc < 2) {
printf("Usage: %s [string]\n", argv[0]);
return 0;
}

Chapter 9. Internal Processing and File I/O 75

printf("Your string is: \"%s\".\n", argv[1]);

/* The concept of ’byte’ is universal. */
len = strlen(argv[1]);
printf("Length of your string is: %d bytes.\n", len);

/* To obtain number of characters, it is the easiest way */
/* to convert the string into wide string. The number of */
/* characters is equal to the number of wide characters. */
/* It does not exceed the number of bytes. */
n = strlen(argv[1]) * sizeof(wchar_t);
wp = (wchar_t *)malloc(n);
len = mbstowcs(wp, argv[1], n);
printf("Length of your string is: %d characters.\n", len);

printf("Width of your string is: %d columns.\n", wcswidth(wp, len));

return 0;
}

This program can count multibyte characters correctly. Of course the user has to set LANG
variable properly.

For example, on UTF-8 xterm. . .

$ export LANG=ko_KR.UTF-8
$./length-i (a Hangul character)
Your string is: "(the character)"
Length of your string is: 3 bytes.
Length of your string is: 1 characters.
Width of your string is: 2 columns.

9.4 Extraction of Characters

The following program extracts all characters contained in the given string.

/* extract.c

*
* a sample program to extract each character contained in the string

* not internationalized

*/

#include <stdio.h>
#include <string.h>

Chapter 9. Internal Processing and File I/O 76

int main(int argc, char **argv)
{
char *p;
int c;

if (argc < 2) {
printf("Usage: %s [string]\n", argv[0]);
return 0;
}

printf("Your string is: \"%s\".\n", argv[1]);

c = 0;
for (p=argv[1] ; *p ; p++) {
printf("Character #%d is \"%c\".\n", ++c, *p);
}
return 0;

}

Using wide characters, the program can be rewritten as following.

/* extract-i.c

*
* a sample program to extract each character contained in the string

* INTERNATIONALIZED

*/

#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
wchar_t *wp;
char p[MB_CUR_MAX+1];
int c, n, len;

/* Don’t forget. */
setlocale(LC_ALL, "");

if (argc < 2) {
printf("Usage: %s [string]\n", argv[0]);
return 0;

Chapter 9. Internal Processing and File I/O 77

}

printf("Your string is: \"%s\".\n", argv[1]);

/* To obtain each character of the string, it is easy to convert */
/* the string into wide string and re-convert each of the wide */
/* string into multibyte characters. */
n = strlen(argv[1]) * sizeof(wchar_t);
wp = (wchar_t *)malloc(n);
len = mbstowcs(wp, argv[1], n);
for (c=0; c<len; c++) {
/* re-convert from wide character to multibyte character */
int x;
x = wctomb(p, wp[c]);
/* One multibyte character may be two or more bytes. */
/* Thus "%s" is used instead of "%c". */
if (x>0) p[x]=0;
printf("Character #%d is \"%s\" (%d byte(s)) \n", c, p, x);
}

return 0;
}

Note that this program doesn’t work well if the multibyte character is stateful.

Chapter 9. Internal Processing and File I/O 78

79

Chapter 10

the Internet

The Internet is a world-wide network of computer. Thus the text data exchanged via the Inter-
net must be internationalized.

The concept of internationalization did not exist at the dawn of the Internet, since it was devel-
oped in US. Protocols used in the Internet were developed to be upward-compatible with the
existing protocols.

One of the key technology of the internationalization of the Internet data exchange is MIME.

10.1 Mail/News

Internet mail uses SMTP (RFC 821 (http://www.faqs.org/rfcs/rfc821.html)) and
ESMTP (RFC 1869 (http://www.faqs.org/rfcs/rfc1869.html)) protocols. SMTP is
7bit protocol and ESMTP is 8bit.

Original SMTP can only send ASCII characters. Thus non-ASCII characters (ISO 8859-*, Asian
characters, and so on) have to be converted into ASCII characters.

MIME (RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html), 2046 (http://
www.faqs.org/rfcs/rfc2046.html), 2047 (http://www.faqs.org/rfcs/rfc2047.
html), 2048 (http://www.faqs.org/rfcs/rfc2048.html), and 2049 (http://www.
faqs.org/rfcs/rfc2049.html)) deals with this problem.

At first RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html) determines three new
headers.

• MIME-Version:

• Content-Type:

• Content-Transfer-Encoding:

Now MIME-Version is 1.0 and thus all MIME mails have a header like this:

http://www.faqs.org/rfcs/rfc821.html
http://www.faqs.org/rfcs/rfc1869.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2047.html
http://www.faqs.org/rfcs/rfc2047.html
http://www.faqs.org/rfcs/rfc2048.html
http://www.faqs.org/rfcs/rfc2049.html
http://www.faqs.org/rfcs/rfc2049.html
http://www.faqs.org/rfcs/rfc2045.html

Chapter 10. the Internet 80

MIME-Version: 1.0

Content-Type describes the type of content. For example, an usual mail with Japanese text
has a header like that:

Content-Type: text/plain; charset="iso-2022-jp"

Available types are described in RFC 2046 (http://www.faqs.org/rfcs/rfc2046.
html). Content-Transfer-Encoding describes the way to convert the contents. Avail-
able values are BINARY, 7bit, 8bit, BASE64, and QUOTED-PRINTABLE. Since SMTP cannot
handle 8bit data, 8bit and BINARY cannot be used. ESMTP can use them. Base64 and quoted-
printable are ways to convert 8bit data into 7bit and 8bit data have to be converted using either
of them to sent by SMTP.

RFC 2046 (http://www.faqs.org/rfcs/rfc2046.html) describes media type and sub
type for Content-Type header. Available types are text, image, audio, video, and
application. Now we are interested in text because we are discussing about i18n. Sub
types for text are plain, enriched, html, and so on. charset parameter can also be
added to specify encodings. US-ASCII, ISO-8859-1, ISO-8859-2, . . . , ISO-8859-10 are
defined by RFC 2046 (http://www.faqs.org/rfcs/rfc2046.html) for charset. This
list can be added by writing a new RFC.

• RFC 1468 (http://www.faqs.org/rfcs/rfc1468.html) ISO-2022-JP

• RFC 1554 (http://www.faqs.org/rfcs/rfc1554.html) ISO-2022-JP-2

• RFC 1557 (http://www.faqs.org/rfcs/rfc1557.html) ISO-2022-KR

• RFC 1922 (http://www.faqs.org/rfcs/rfc1922.html) ISO-2022-CN

• RFC 1922 (http://www.faqs.org/rfcs/rfc1922.html) ISO-2022-CN-EXT

• RFC 1842 (http://www.faqs.org/rfcs/rfc1842.html) HZ-GB-2312

• RFC 1641 (http://www.faqs.org/rfcs/rfc1641.html) UNICODE-1-1

• RFC 1642 (http://www.faqs.org/rfcs/rfc1642.html) UNICODE-1-1-UTF-7

• RFC 1815 (http://www.faqs.org/rfcs/rfc1815.html) ISO-10646-1

RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html) and and RFC 2046 (http://
www.faqs.org/rfcs/rfc2046.html) determine the way to write non-ASCII characters
in the main text of mail. On the other hand, RFC 2047 (http://www.faqs.org/rfcs/
rfc2045.html) describes ’encoded words’ which is the way to write non-ASCII characters in
the header. It is like that: =?encoding?conversion algorithm?data?=, where encoding is selected
from the list of charset of Content-Type header, algorithm is Q or q for quoted-printable
or B or b for base64, and data is encoded data whose length is less than 76 bytes. If the data is
longer than 75 bytes, it must be divided into multiple encoded words. For example,

http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc1468.html
http://www.faqs.org/rfcs/rfc1554.html
http://www.faqs.org/rfcs/rfc1557.html
http://www.faqs.org/rfcs/rfc1922.html
http://www.faqs.org/rfcs/rfc1922.html
http://www.faqs.org/rfcs/rfc1842.html
http://www.faqs.org/rfcs/rfc1641.html
http://www.faqs.org/rfcs/rfc1642.html
http://www.faqs.org/rfcs/rfc1815.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2046.html
http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc2045.html

Chapter 10. the Internet 81

Subject: =?ISO-2022-JP?B?GyRCNEE7eiROJTUlViU4JSclLyVIGyhC?=

reads ’a subject written in Kanji’ in Japanese (ISO-2022-JP, encoded by base64). Of course hu-
man cannot read it.

10.2 WWW

WWW is a system that HTML documents (mainly; and files in other formats) are transferred
using HTTP protocol.

HTTP protocol is defined by RFC 2068 (http://www.faqs.org/rfcs/rfc2068.html).
HTTP uses headers like mails and Content-Type header is used to describe the type of the
contents. Though charset parameter can be described in the header, it is rarely used.

RFC 1866 (http://www.faqs.org/rfcs/rfc1866.html) describes that the default en-
coding for HTML is ISO-8859-1. However, many web pages are written in, for example,
Japanese and Korean using (of course) encodings different from ISO-8859-1. Sometimes the
HTML document describes:

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-2022=jp">

which declares that the page is written in ISO-2022-JP. However, there many pages without
any declaration of encoding.

Web browsers have to deal with such a circumstance. Of course web browsers have to be
able to deal with every encodings in the world which is listed in MIME. However, many web
browsers can only deal with ASCII or ISO-8859-1. Such web browsers are useless at all for
non-ASCII or non-ISO-8859-1 people.

URL should be written in ASCII character, though non-ASCII characters can be expressed us-
ing %nn sequence where nn is hexadecimal value. This is because there are no way to specify
encoding. Wester-European people would treat it as ISO-8859-1, while Japanese people would
treat it as EUC-JP or SHIFT-JIS.

http://www.faqs.org/rfcs/rfc2068.html
http://www.faqs.org/rfcs/rfc1866.html

Chapter 10. the Internet 82

83

Chapter 11

Libraries and Components

We sometimes use libraries and components which are not very popular. We may have to pay
special attention for internationalization of these libraries and components.

On the other hand, we can use libraries and components for improvement of internationaliza-
tion. This chapter introduces such a libraries and components.

11.1 Gettext and Translation

GNU Gettext is a tool to internationalize messages a software outputs according to locale status
of LC_MESSAGES. A gettextized software contains messages written in various languages
(according to available translators) and a user can choose them using environmental variables.
GNU gettext is a part of Debian system.

Install gettext package and read info pages for details.

Don’t use non-ASCII characters for ’msgid’. Be careful because you may tend to use ISO-8859-
1 characters. For example, ’©’ (copyright mark; you may be not able to read the copyright mark
NOW in THIS document) is non-ASCII character (0xa9 in ISO-8859-1). Otherwise, translators
may feel difficulty to edit catalog files because of conflict between encodings for msgid and in
msgstr.

Be sure the message can be displayed in the assumed environment. In other words, you
have to read the chapter of ’Output to Display’ in this document and internationalize the out-
put mechanism of your software prior to gettextization. ENGLISH MESSAGES ARE PRE-
FERRED EVEN FOR NON-ENGLISH-SPEAKING PEOPLE, THAN MEANINGLESS BROKEN
MESSAGES.

The 2nd (3rd, . . .) byte of multibyte characters or all bytes of non-ASCII characters in stateful
encodings can be 0x5c (same to backslash in ASCII) or 0x22 (same to double quote in ASCII).
These characters have to properly escaped because present version of GNU gettext doesn’t care
the ’charset’ subitem of ’Content-Type’ item for ’msgstr’.

Chapter 11. Libraries and Components 84

A gettexted message must not used in multiple contexts. This is because a word may have
different meaning in different context. For example, a verb means an order or a command if
it appears at the top of the sentence in English. However, different languages have different
grammar. If a verb is gettexted and it is used both in a usual sentence and in an imperative
sentence, one cannot translate it.

If a sentence is gettexted, never divide the sentence. If a sentence is divided in the original
source code, connect them so as to single string contains the full sentence. This is because the
order of words in a sentence is different among languages. For example, a routine

printf("There ");
switch(num_of_files) {
case 0:

printf("are no files ");
break;

case 1:
printf("is 1 file ");
break;

default:
printf("are %d files ", num_of_files);
break;

}
printf("in %s directory.\n", dir_name);

has to be written like that:

switch(num_of_files) {
case 0:

printf("There are no files in %s directory", dir_name);
break;

case 1:
printf("There is 1 file in %s directory", dir_name);
break;

default:
printf("There are %d files in %s directory", num_of_files, dir_name);
break;

}

before it is gettextized.

A software with gettexted messages should not depend on the length of the messages. The
messages may get longer in different language.

When two or more ’%’ directive for formatted output functions such as printf() appear in
a message, the order of these ’%’ directives may be changed by translation. In such a case, the
translator can specify the order. See section of ’Special Comments preceding Keywords’ in info
page of gettext for detail.

Chapter 11. Libraries and Components 85

Now there are projects to translate messages in various softwares. For example, Translation
Project (http://www.iro.umontreal.ca/~pinard/po/HTML/).

11.1.1 Gettext-ization of A Software

At first, the software has to have the following lines.

int main(int argc, char **argv)
{

...
setlocale (LC_ALL, ""); /* This is not for gettext but

all i18n software should have
this line. */

bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);
...

}

where PACKAGE is the name of the catalog file and LOCALEDIR is “/usr/share/locale”
for Debian. PACKAGE and LOCALEDIR should be defined in a header file or Makefile.

It is convenient to prepare the following header file.

#include <libintl.h>
#define _(String) gettext((String))

and messages in source files should be written as _(“message”), instead of “message”.

Next, catalog files have to be prepared.

At first, a template for catalog file is prepared using xgettext. At default a template file
message.po is prepared. 1

11.1.2 Translation

Though gettextization of a software is a temporal work, translation is a continuing work
because you have to translate new (or modified) messages when (or before) a new version of
the software is released.

11.2 Readline Library

***** Not written yet *****

Readline library need to be internationalized.
1I HAVE TO WRITE EXPLANATION.

http://www.iro.umontreal.ca/~pinard/po/HTML/

Chapter 11. Libraries and Components 86

11.3 Ncurses Library

***** Not written yet *****

Ncurses is a free implementation of curses library. Though this library is now maintained by
Free Software Foundation, it is not covered by GNU General Public License.

Ncurses library need to be internationalized.

87

Chapter 12

Softwares Written in Other than C/C++

Though C and C++ was, is, and will be the main language for software development for UNIX-
like platforms, other languages, especially scripting languages, are often used.

Generally, languages other than C/C++ have less support for I18N then C/C++. However,
nowadays other languages than C/C++ are coming to support Locale and Unicode.

12.1 Fortran

***** Not written yet *****

12.2 Pascal

***** Not written yet *****

12.3 Perl

Perl is one of the most important languages. Indeed, Debian system defines Perl as essential.

Perl 5.6 can handle UTF-8 characters. Declaration of use utf8; will enable it. For example,
length() will return the number of characters, not the number of bytes.

However, it does not work well for me. . . why?

***** Not written yet *****

12.4 Python

***** Not written yet *****

Chapter 12. Softwares Written in Other than C/C++ 88

12.5 Ruby

***** Not written yet *****

12.6 Tcl/Tk

***** Not written yet *****

Tcl/Tk is already internationalized. It is locale-sensible. It automatically uses proper font for
various characters. Though it uses UTF-8 as internal encoding, users of Tcl/Tk don’t have to
aware of it. This is because Tcl/Tk converts encodings.

12.7 Java

Full internationalization is naturally lead from Java’s “Write Once, Run Anywhere” principle.
To achieve this, Java uses Unicode as internal code for char and String. It is important
that Unicode is internal code. Java obeys the current LOCALE and encoding is automatically
converted for I/O. Thus, users of applications written in Java doesn’t need to be aware of
Unicode.

Then how about developers? They also don’t need to be aware of the internal encoding. Char-
acter processings such as counting of number of characers in a string work well. And more,
you don’t have to worry about display/input.

However, you may want to handle specified encodings for, for example, MIME encod-
ing/decoding. For such purposes, I/O can be done by specifying external encoding.
Check InputStreamReader and OutputStreamReader classes. You can also convert be-
tween the internal encoding and specified encodings by String.getBytes(encoding) and
String(byte [] bytes,encoding).

12.8 Shell Script

***** Not written yet *****

12.9 Lisp

***** Not written yet *****

89

Chapter 13

Examples of I18N

Programmers who have internationalized softwares, have written a patch of L10N, and so on
are encouraged to contribute to this chapter.

13.1 TWM – usage of XFontSet instead of XFontStruct

The author of this section is Tomohiro KUBOTA (<kubota@debian.org>).

13.1.1 Introduction

TWM is Tabbed (or Tom’s) Window Manager, one of the most well-known window managers
in the world. It is included in the XFree86 distribution. Since it was not internationalized, I
wrote a patch for TWM included in XFree86 version 4.0.1. The patch was adopted in XFree86
version 4.0.1d.

Note: a bug is found for I18N_FetchName() and I18N_GetIconName() of my patch. The
bug is fixed since XFree86 version 4.1.0. This document is also fixed.

The contents of the internationalization are:

• Usage of XFontSet-related functions instead of XFontStruct, so that font handling
will be locale-sensible. This is the main part of the patch.

• Addition of automatic font guessing mechanism (the simplest version). This avoids lack
of font caused by ISO8859-1-based font specification in configuration files.

• Usage of XGetWMName() and XmbTextPropertyToTextList() instead of
XFetchName(), so that Compound Text can be used for inter-client communica-
tion of window title names. This enables TWM to properly receive the internationalized
window text names from X clients.

Chapter 13. Examples of I18N 90

• Usage of XGetWMIconName() and XmbTextPropertyToTextList() for inter-client
communication of window icon names. This enables TWM to properly receive the inter-
nationalized window icon names from X clients.

• 8bit-cleanization of the configuration file parser. This enables usage of internationalized
texts for menus and so on.

The following will present these items.

13.1.2 Locale Setting - A Routine Work

At first, I added a small part to call setlocale() at the beginning of main() function.

loc = setlocale(LC_ALL, "");
if (!loc || !strcmp(loc, "C") || !strcmp(loc, "POSIX") ||

!XSupportsLocale()) {
use_fontset = False;

} else {
use_fontset = True;

}

loc is char *-type auto (local) variable. use_fontset is Bool-type global variable, for
which I wrote a declaration in twm.h.

extern Bool use_fontset;

I also added inclusion of X11/Xlocale.h header file. By including of this header file, lo-
cale feature of X11 will be used when compiled in OS without locale features. Otherwise,
X11/Xlocale will use locale features of the OS. Thus, you can include X11/Xlocale.h re-
gardless of whether the OS support locale.

Checking of NULL, “C”, and “POSIX” locales will enable TWM to work 8bit through when
the user does not configure locale properly. Under “C” or “POSIX” locale, or without
proper configuration of locale, XFontSet-related functions will work under 7bit ASCII en-
coding and these functions will regard all 8bit characters as invalid. In such cases, my patch
won’t use XFontSet-related functions by checking the value of use_fontset. Checking of
XSupportLocale() is needed for cases when the OS support the locale while X doesn’t sup-
port the locale.

13.1.3 Font Preparation

Almost functions related to XFontStruct can be easily substituted by XFontSet-related
functions.

Fortunately, TWM used a tailored MyFont type for font handling. Thus the amount of labor
was decreased. The original MyFont definition was:

Chapter 13. Examples of I18N 91

typedef struct MyFont
{

char *name; /* name of the font */
XFontStruct *font; /* font structure */
int height; /* height of the font */
int y; /* Y coordinate to draw characters */

} MyFont;

I added a few lines.

typedef struct MyFont
{

char *name; /* name of the font */
XFontStruct *font; /* font structure */
XFontSet fontset; /* fontset structure */
int height; /* height of the font */
int y; /* Y coordinate to draw characters */
int ascent;
int descent;

} MyFont;

Then one of the main part of this patch – font preparation. The font preparation is done in the
GetFont() function in util.c. This function is almost entirely rewritten.

void
GetFont(font)
MyFont *font;
{

char *deffontname = "fixed";
char **missing_charset_list_return;
int missing_charset_count_return;
char *def_string_return;
XFontSetExtents *font_extents;
XFontStruct **xfonts;
char **font_names;
register int i;
int ascent;
int descent;
int fnum;
char *basename2;

if (use_fontset) {
if (font->fontset != NULL){

XFreeFontSet(dpy, font->fontset);
}

Chapter 13. Examples of I18N 92

basename2 = (char *)malloc(strlen(font->name) + 3);
if (basename2) sprintf(basename2, "%s,*", font->name);
else basename2 = font->name;
if((font->fontset = XCreateFontSet(dpy, basename2,

&missing_charset_list_return,
&missing_charset_count_return,
&def_string_return)) == NULL) {

fprintf (stderr, "%s: unable to open fontset \"%s\"\n",
ProgramName, font->name);

exit(1);
}
if (basename2 != font->name) free(basename2);
for(i=0; i<missing_charset_count_return; i++){

printf("%s: warning: font for charset %s is lacking.\n",
ProgramName, missing_charset_list_return[i]);

}

font_extents = XExtentsOfFontSet(font->fontset);
fnum = XFontsOfFontSet(font->fontset, &xfonts, &font_names);
for(i = 0, ascent = 0, descent = 0; i<fnum; i++){

if (ascent < (*xfonts)->ascent) ascent = (*xfonts)->ascent;
if (descent < (*xfonts)->descent) descent = (*xfonts)->descent;
xfonts++;

}
font->height = font_extents->max_logical_extent.height;
font->y = ascent;
font->ascent = ascent;
font->descent = descent;
return;

}

if (font->font != NULL)
XFreeFont(dpy, font->font);

if ((font->font = XLoadQueryFont(dpy, font->name)) == NULL)
{

if (Scr->DefaultFont.name) {
deffontname = Scr->DefaultFont.name;

}
if ((font->font = XLoadQueryFont(dpy, deffontname)) == NULL)
{

fprintf (stderr, "%s: unable to open fonts \"%s\" or \"%s\"\n",
ProgramName, font->name, deffontname);

exit(1);
}

Chapter 13. Examples of I18N 93

}
font->height = font->font->ascent + font->font->descent;
font->y = font->font->ascent;
font->ascent = font->font->ascent;
font->descent = font->font->descent;

}

This function can be divided into two large parts by if (use_fontset). The part inside the
if is for internationalized version and other part is for conventional version. Conventional
version is used when use_fontset is false, as you can see. This part is almost the same as
the original TWM.

Now let’s study the internationalized part of GetFont(). It is convenient to compare the in-
ternationalized part and conventional part, to study it. The first check and XFreeFontSet()
is a replacement of XFreeFont(). The next several lines is the automatic font guessing mech-
anism (the simplest version), the second item of the whole patch. It only adds “,*” to the font
query string. Then the added string is passed into XCreateFontSet(), the key function of
font preparation.

13.1.4 Automatic Font Guessing

Let’s imagine how this “,*” works. Assume ja_JP.eucJP locale, where EUC-JP encoding is
used. In EUC-JP encoding, three fonts of

• a font with charset (in XLFD meaning) of ISO8859-1 or JISX0201.1976-0,

• a font with charset of JISX0208.1983-0 or JISX0208.1990-0, and

• a font with charset of JISX0201.1976-0

are used. 1 Again assume that GetFont received a string of “-adobe-helvetica-bold-r-normal–
-120--*-*-*-*-*” as font->name. This string is a very likely specification of font. Actu-
ally, I got the example from the default title font for TWM. Now review the behavior of
XLoadQueryFont(). Since it always gets at most one font, it can succeed or fail. How-
ever, since XCreateFontSet() may get multiple fonts, it may success only to get a part of
the set of requred fonts. The assumed calling of XCreateFontSet() with the font->name
in ja_JP.eucJP locale goes into just such a situation. For usual systems, only a font
for ISO8859-1 or JISX0201.1976-0 is available. 2 It is easy to solve this situation. Unlike
XLoadQueryFont(), XCreateFontSet() can take a list of patterns of fonts with wildcards.
XCreateFontSet() chooses necessary fonts from the set of fonts which match the patterns.
“*” can match all fonts. This works for character sets for which the given font->name failed
to match any fonts.

There were two solutions I imagined.
1Read /usr/X11R6/lib/X11/locale/ja/XLC_LOCALE for detail.
2In such a case, XCreateFontSet() does not fail. Instead, it returns informations on missing fonts.

Chapter 13. Examples of I18N 94

• Adding “,*” for all font specifications in the configuration file.

• Adding “,*” just before calling XCreateFontSet(). (the solution I took.)

The first solution may fail because users can rewrite the configuration file. Though it is likely
that a user knows necessary character sets for the encoding (s)he uses, the second way is safer.
And more, recent window managers are coming to support themes where a set of configuration
is packaged and distributed, just as in http://www.themes.org/. It is very unlikely that
all developers of these themes know this problem and adds “,*” for every font specifications.
Thus, window managers which support themes must take the 2nd solution, though TWM does
not support themes.

Which font exactly is choosed for wild cards? It depends on the configuration of X Window
System. I imagine that the first font in the list generated by xlsfonts. You may think the
choice of the font should be cleverer. It would be adequate to say that “,*” mechanism is not
less cleverer; it has entirely no intelligence. It is not clever at all. Yes, though I didn’t implement
it to TWM, I also wrote a cleverer guessing mechanism. 3

13.1.5 Font Preparation (continued)

After calling XCreateFontSet(), GetFont() builds a few member variables of MyFont,
i.e., font->height, font->y, font->ascent, and font->descent. These parameters
are easily get from members of XFontStruct structure and are actually often used in TWM.
Thus I had to prepare substitutions for XFontSet version. These variables also build for
XFontStruct version so that a united method can be used to get these parameters.

13.1.6 Drawing Text using MyFont

To draw a text, XDrawString() and XDrawImageString() are used for conven-
tional XFontStruct. On the other hand, XmbDrawString()/XwcDrawString()
and XmbDrawImageString()/XwcDrawImageString() are used for internationalized
XFontSet. The difference between mb and wc versions are whether the text is given in multi-
byte characters or in wide characters. Since TWM does not perform any text processing, I didn’t
use wide characters and treat strings as they are (in multibyte characters).

TWM has many calls of these functions. Thus I decided to write wrappers
which checks use_fontset and calls proper version of X function. They are
MyFont_DrawString() and MyFont_DrawImageString(). Thus all calling of
XDrawString() and XDrawImageString() are replaced with the wrappers. Since these
two are almost identical, I will explain one of them.

3I implemented cleverer mechanism to window managers such as Blackbox, Sawfish, and so on where I think
beauty is important than simplicity. The intended algorithm is:

• Choose a font with similar pixel sizes.

• If availavle, choose a font with similar weight and slant.

http://www.themes.org/

Chapter 13. Examples of I18N 95

void
MyFont_DrawString(dpy, d, font, gc, x, y, string, len)

Display *dpy;
Drawable d;
MyFont *font;
GC gc;
int x,y;
char *string;
int len;

{
if (use_fontset) {

XmbDrawString(dpy, d, font->fontset, gc, x, y, string, len);
return;

}
XDrawString (dpy, d, gc, x, y, string, len);

}

Very simple function! However note that the required paramaters are different in these two
functions of conventional version and internationalized version. Font is needed for interna-
tionalized version.

Then, is GC not used for specifying a font for internationalized version? Right. This causes
to increase the labor. The original version of TWM use a macro of FBF to set up the GC.
Fortunately, font specification is always performed just before the drawing of the texts. I wrote
a function MyFont_ChangeGC() for substitution.

void
MyFont_ChangeGC(fix_fore, fix_back, fix_font)

unsigned long fix_fore, fix_back;
MyFont *fix_font;

{
Gcv.foreground = fix_fore;
Gcv.background = fix_back;
if (use_fontset) {

XChangeGC(dpy, Scr->NormalGC, GCForeground|GCBackground, &Gcv);
return;

}
Gcv.font = fix_font->font->fid;
XChangeGC(dpy, Scr->NormalGC, GCFont|GCForeground|GCBackground,&Gcv);

}

You may wonder why this is needed. You may think just do as use_fontset is false and it
will work well. No, because fix_font->font is indefinite.

I had to modify one more part related to GC in gc.c.

Chapter 13. Examples of I18N 96

13.1.7 Geting Size of Texts

TWM calls XTextWidth() many times. It returns the width in pixels for a text. The interna-
tionalized version of the function is XmbTextExtent() and XwcTextExtent(), where the
difference between mb version and wc version is same as XmbDrawString() and so on.

I wrote a wrapper, as I did for other functions.

13.1.8 Getting Window Titles

General discussions have finished. The following discussions are specific to window man-
agers.

Window managers have to get the names for window titles from X clients. XFetchName() is
the function for this purpose.

Window title names are communicated using property mechanism of X. XA_STRING and
XA_COMPOUND_TEXT are types to be used for this purpose. XA_STRING means the text data is
in ISO8859-1 encoding and XA_COMPOUND_TEXT means the data is in compound text. Com-
pound text is a subset of ISO 2022 and can handle international text data.

Now, XFetchName() can handle XA_STRING type only. Thus we should use XGetWMName().
Since handling of compound text needs several lines of source codes, I wrote a wrapper func-
tion.

/*
* The following functions are internationalized substitutions

* for XFetchName and XGetIconName using XGetWMName and

* XGetWMIconName.

*
* Please note that the third arguments have to be freed using free(),

* not XFree().

*/
Status
I18N_FetchName(dpy, w, winname)

Display *dpy;
Window w;
char ** winname;

{
int status;
XTextProperty text_prop;
char **list;
int num;

status = XGetWMName(dpy, w, &text_prop);
if (!status || !text_prop.value || !text_prop.nitems) return 0;
status = XmbTextPropertyToTextList(dpy, &text_prop, &list, &num);

Chapter 13. Examples of I18N 97

if (status < Success || !num || !*list) return 0;
XFree(text_prop.value);

*winname = (char *)strdup(*list);
XFreeStringList(list);
return 1;

}

13.1.9 Getting Icon Names

Window managers need to get not only window titles but also icon names.

TWM used XGetWindowProperty() with XA_STRING to get icon names. However, interna-
tionalized function XGetWMIconName() is available for this purpose and I rewrote using this
function. Just like XGetWMName(), I wrote a wrapper.

Status
I18N_GetIconName(dpy, w, iconname)

Display *dpy;
Window w;
char ** iconname;

{
int status;
XTextProperty text_prop;
char **list;
int num;

status = XGetWMIconName(dpy, w, &text_prop);
if (!status || !text_prop.value || !text_prop.nitems) return 0;
status = XmbTextPropertyToTextList(dpy, &text_prop, &list, &num);
if (status < Success || !num || !*list) return 0;
XFree(text_prop.value);

*iconname = (char *)strdup(*list);
XFreeStringList(list);
return 1;

}

13.1.10 Configuration File Parser

The parser for configuration file was not 8bit clean. I modified it. It was a very minor
change. In parse.c, global variables of buff[], overflowbuff[], stringListSource,
and currentString and auto variable of sl in ParseStringList() are changed from
char to unsigned char.

Chapter 13. Examples of I18N 98

13.2 8bit-clean-ize of Minicom

The author of this section is Tomohiro KUBOTA (<kubota@debian.org>).

I needed a serial communication software to connect to BBS, though I had a MS-DOS version.
I tried several softwares and found Minicom but it could not display Japanese characters in
kterm. Thus I decided to modify the source of Minicom. Though it was dirty ’quick hacking’,
I sent the patch to the upstream developer.

13.2.1 8bit-clean-ize

Minicom is written in C.

At first I explore the source code to find the way for characters to be displayed. I found that it
implements a ’ncurses’-like functions.

Since Minicom is used for BBS it seemed to have a conversion table so as to IBM-PC graphics
characters (I guess) can be displayed correctly. I made an another pass for characters to go
without any modification and added a new command option to activate the pass.

13.2.2 Not to break continuity of multibyte characters

The ’ncurses’-like functions in Minicom outputs location code every time a character is out-
putted. This breaks continuity of multibyte characters.

13.2.3 Catalog in EUC-JP and SHIFT-JIS

13.3 user-ja – two sets of messages in ASCII and native codeset in
the same language

The author of this section is Tomohiro KUBOTA (<kubota@debian.or.jp>).

13.3.1 Introduction

user-ja is a Debian-specific software which establishes basic settings for Japanese-speaking
beginners. user-ja does not automatically establishes the settings. A user who needs
Japanese environment has to invoke user-ja-conf.

Since user-ja-conf is a software to establish Japanese environment, the environment where
user-ja runs may be poor Japanese environment. For example, user-ja-conf must not as-
sume that Japanese character can be displayed. However, Japanese character should be used
in environments where it is possible.

Chapter 13. Examples of I18N 99

user-ja is a simple example which switches two sets of messages, one is written using ASCII
characters and the other Japanese characters. Note that both of them are written in Japanese
language. This is beyond what gettext can do.

Though user-ja is a Japanese-specific software, this problem of ability to display non-ASCII
character is common to non-ASCII languages.

13.3.2 Strategy

The following environments can display Japanese characters: kon (Kanji Console), kterm, and
krxvt (in rxvt-ml package). And more, telnet softwares for Windows and so on may be able
to display Japanese characters.

At first, user-ja-conf detects the environment. If it can display Japanese characters, go
ahead. If not, try to establish a new environment and invoke itself in it. If detection is failed,
display Japanese characters and ask the user whether he/she can read it.

13.3.3 Implementation

user-ja-conf is a perl script. Here shows a function which check whether Japanese native
characters can be displayed or not and try to establish an environment where native characters
can be displayed, if not.

sub isNC($$)
{

my ($KANJI, $TTY, $TERM, $DISPLAY, $WHICH);
$TTY = ‘/usr/bin/tty‘;
$TERM = $ENV{TERM};
$DISPLAY = $ENV{DISPLAY};
$WHICH = ’/usr/bin/which’;
$THIS = $_[0];
$OPT = $_[1];

if ($TERM eq ’kon’ || $TERM eq ’kterm’) {
$KANJI=1;

} elsif ($DISPLAY ne ’’ && system("$WHICH kterm >/dev/null")==0) {
exec("kterm -km euc -e $THIS $OPT");

} elsif ($DISPLAY ne ’’ && system("$WHICH krxvt >/dev/null")==0) {
exec("krxvt -km euc -e $THIS $OPT");

} else {
print STDERR &sourceset2displayset(

"Japanese sentence in Japanese characters ’Can you read this sentence?’\n");
print STDERR

"Japanese sentence in ASCII characters ’Can you read the above sentence written in Kanji? [y/N] ";
$a = <>;

Chapter 13. Examples of I18N 100

if ($a =~ /y|Y/) {
$KANJI=1;

} elsif ($TTY =~ m#/dev/tty[0-9]+#) {
print STDERR
"Japanese sentence in ASCII characters ’Shall I invoke \’KON\’? [Y/n] ";

$a = <>;
exec("kon -e $THIS $OPT") if ($a !~ /n|N/);
$KANJI=0;

} else {
$KANJI=0;

}
}
$KANJI;

}

&sourceset2displayset($) is a function to convert a string from codeset for source code
into codeset for display. This is needed because codeset for program source (in this case, perl
script) and dotfiles may be different. 4

The following function is prepared to display messages in appropriate codeset. Don’t care
’Lang::’ package.

sub disp ($$) {
if ($NC) {print STDERR &Lang::sourceset2displayset($_[1]);}
else {print STDERR $_[0];}

}

This is an example how the disp function is used.

sub disp_finish()
{

&Sub::disp(<<EOF1,<<EOF2);

[Enter] key WO OSUTO KONO user-ja-conf HA SYUURYOU SHIMASU.
EOF1

Japanese sentence in Japanese characters ’Push [Enter] key to finish.’
EOF2
}

4There are three popular codesets for Japanese — ISO-2022-JP, EUC-JP, and SHIFT-JIS. EUC-JP should be used
for perl source code because all non-ASCII characters in EUC-JP do not have values in 0x21 - 0x7e. However,
ISO-2022-JP is the safest codeset to display because EUC-JP and SHIFT-JIS have to be used exclusively. However,
ISO-2022-JP is the most difficult codeset to implement and there may be a terminal environment which does not
understand ISO-2022-JP (for example, Minicom). On the other hand, dotfiles may be written in any codesets,
according to one’s favorite and purpose.

Chapter 13. Examples of I18N 101

Here the sentence ’[Enter] key WO OSUTO. . . ’ is the Latin alphabet expression of Japanese.

Thus almost all messages are duplicated using disp function.

13.4 A Quasi-Wrapper to Internationalize Text Output of X Clients

The author of this section is Tomohiro KUBOTA (<kubota@debian.or.jp>).

13.4.1 Introduction

X11 supplies XFontSet-related internationalized functions for text output. However, many
X clients use conventional XFontStruct-related non-internationalized functions and cannot
output languages which need multiple fonts (Chinese, Japanese, and Korean).

Now I introduce a wrapper which easily modify non-internationalized X clients to use inter-
nationalized X11 functions.

13.4.2 Strategy

Almost XFontStruct-related functions can be replaced easily by XFontSet-related func-
tions.

• XFontStruct -> XFontSet

• XLoadQueryFont() -> XCreateFontSet()

• XFreeFont() -> XFreeFontSet()

• XDrawString() -> XmbDrawString()

• XDrawImageString() -> XmbImageString()

• XTextExtents() -> XmbTextExtents()

• XTextWidth() -> XmbTextEscapement()

However, there were several problems.

1 The font for XDrawString is specified by GC parameter, while XFontSet parameter is
used for XmbDrawString.

2 XFontSet does not have structure members of ascent and descent, while
XFontStruct has them and these members are often referred.

3 Many software specify font name with iso8859-1-specific way. This avoids ’fontset’-
related functions work fully and disables non-iso8859-1 languages be displayed.

Chapter 13. Examples of I18N 102

Though it is possible to solve the first problem, this problem may make the wrapper very
complex. Thus, I decided to modify the original source and leave the wrapper simple, instead
of writing a complete wrapper. However, if XGCValues.font is set and XCreateGC() is
called, it is needed to avoid XCreateGC to fail because of null font specification. Thus I wrote
a wrapper of XCreateGC.

To solve the second problem, I wrote a wrapper of XFontSet which has structure members of
ascent and descent. Thus all wrapper functions are related to this wrapper structure.

To solve the third problem, I wrote a wrapper of XCreateFontSet(). This part can be used
for many X clients which are already internationalized using fontset-related functions, because
these softwares have the same problem. Explanation on this problem and solution will be
supplied in other section.

13.4.3 Usage of the wrapper

Replace the following structure and functions. You can use replacement faculty of your text
editor.

• XFontStruct -> QuasiXFontStruct

• XLoadQueryFont() -> QuasiXLoadQueryFont()

• XFreeFont() -> QuasiXFreeFont()

• XTextExtents() -> QuasiXTextExtents()

• XTextWidth() -> QuasiXTextWidth()

• XGetWMIconName() -> QuasiXGetWMIconName()

• XGetWMName() -> QuasiXGetWMName()

• XFetchName() -> QuasiXFetchName()

• XGetIconName() -> QuasiXGetIconName()

• XChangeGC() -> QuasiXChangeGC()

• XCreateGC() -> QuasiXCreateGC()

The following two wrapper functions need an additional parameter.

• XDrawString(Display *d, Window w, GC gc, int x, int y, const char *string, int len) ->
QuasiXDrawString(Display *d, Window w, QuasiXFontStruct *q, GC gc, int x, int y, char
*string, int len)

• XDrawImageString(Display *d, Window w, GC gc, int x, int y, const char *string, int len)
-> QuasiXDrawImageString(Display *d, Window w, QuasiXFontStruct *q, GC gc, int x,
int y, char *string, int len)

Chapter 13. Examples of I18N 103

13.4.4 The Header File of the Wrapper

This is the header file of the wrapper.

/* fontset.h */

#ifndef __fontset__h__
#define __fontset__h__

#include <X11/Xlocale.h>
#include <X11/Xlib.h>
#include <X11/Xatom.h>

typedef struct {
Font fid; /* dummy */
XFontSet fs;
int ascent, descent;

} QuasiXFontStruct;

#define FONT_ELEMENT_SIZE 50

QuasiXFontStruct *QuasiXLoadQueryFont(Display *d, const char *fontset_name);
void QuasiXFreeFont(Display *d, QuasiXFontStruct *qxfs);
void QuasiXDrawString(Display *d, Window w,

QuasiXFontStruct *qxfs, GC gc,
int x, int y, const char* s, int l);

void QuasiXDrawImageString(Display *d, Window w,
QuasiXFontStruct *qxfs, GC gc,
int x, int y, char* s, int l);

void QuasiXTextExtents(QuasiXFontStruct *qxfs, char *string, int nchars,
int *direction_return, int *font_ascent_return,
int *font_descent_return, XCharStruct *overall_return);

int QuasiXTextWidth(QuasiXFontStruct *qxfs, const char *s, int cnt);

Status QuasiXGetWMIconName(Display *d, Window w,
XTextProperty *text_prop_return);

Status QuasiXGetWMName(Display *d, Window w,
XTextProperty *text_prop_return);

Status QuasiXFetchName(Display *d, Window w, char **winname);
Status QuasiXGetIconName(Display *d, Window w,char **iconname);
GC QuasiXCreateGC(Display *d, Drawable dr, unsigned long mask, XGCValues *xgc);
int QuasiXChangeGC(Display *d, GC gc, unsigned long mask, XGCValues * xgc);

#else /* !FONTSET */

#define QuasiXFontStruct XFontStruct

Chapter 13. Examples of I18N 104

#define QuasiXLoadQueryFont XLoadQueryFont
#define QuasiXFreeFont XFreeFont
#define QuasiXTextExtents XTextExtents
#define QuasiXTextWidth XTextWidth
#define QuasiXGetWMIconName XGetWMIconName
#define QuasiXGetWMName XGetWMName
#define QuasiXFetchName XFetchName
#define QuasiXGetIconName XGetIconName
#define QuasiXChangeGC XChangeGC
#define QuasiXCreateGC XCreateGC
#define QuasiXDrawString(d, w, qxfs, gc, x, y, s, l) \

XDrawString(d, w, gc, x, y, s, l)
#define QuasiXDrawImageString(d, w, qxfs, gc, x, y, s, l) \

XDrawImageString(d, w, gc, x, y, s, l)

#endif /* __fontset__h__ */

13.4.5 The Source File of the Wrapper

This is the source file of the wrapper.

/* fontset.c */

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include "fontset.h"

static const char * i_strstr(const char *str, const char *ptn)
{

const char *s2, *p2;
for(; *str; str++) {

for(s2=str,p2=ptn; ; s2++,p2++) {
if (!*p2) return str;
if (toupper(*s2) != toupper(*p2)) break;

}
}
return NULL;

}

Chapter 13. Examples of I18N 105

static const char * Font_GetElement(const char *pattern, char *buf, int bufsiz, ...)
{

const char *p, *v;
char *p2;
va_list va;

va_start(va, bufsiz);
buf[bufsiz-1] = 0;
buf[bufsiz-2] = ’*’;
while((v = va_arg(va, char *)) != NULL) {
p = i_strstr(pattern, v);
if (p) {

strncpy(buf, p+1, bufsiz-2);
p2 = strchr(buf, ’-’);
if (p2) *p2=0;
va_end(va);
return p;

}
}
va_end(va);
strncpy(buf, "*", bufsiz);
return NULL;

}

static const char * Font_GetSize(const char *pattern, int *size)
{

const char *p;
const char *p2=NULL;
int n=0;

for (p=pattern; 1; p++) {
if (!*p) {

if (p2!=NULL && n>1 && n<72) {

*size = n; return p2+1;
} else {

*size = 16; return NULL;
}

} else if (*p==’-’) {
if (n>1 && n<72 && p2!=NULL) {

*size = n;
return p2+1;

}
p2=p; n=0;

} else if (*p>=’0’ && *p<=’9’ && p2!=NULL) {
n *= 10;
n += *p-’0’;

Chapter 13. Examples of I18N 106

} else {
p2=NULL; n=0;

}
}

}

static XFontSet XCreateFontSetWithGuess(Display *d, const char *pattern, char ***miss, int *n_miss, char **def)
{

XFontSet fs;
char *pattern2;
int pixel_size, bufsiz;
char weight[FONT_ELEMENT_SIZE], slant[FONT_ELEMENT_SIZE];

/* No problem? or ’fs’ for pattern analysis */
fs = XCreateFontSet(d, pattern, miss, n_miss, def);
if (fs && !*n_miss) return fs; /* no need for font guessing */

/* for non-iso8859-1 language and iso8859-1 specification */
/* This ’fs’ is only for pattern analysis. */
if (!fs) {

if (*n_miss) XFreeStringList(*miss);
setlocale(LC_CTYPE, "C");
fs = XCreateFontSet(d, pattern, miss, n_miss, def);
setlocale(LC_CTYPE, "");

}

/* make XLFD font name for pattern analysis */
if (fs) {

XFontStruct **fontstructs;
char **fontnames;
XFontsOfFontSet(fs, &fontstructs, &fontnames);
pattern = fontnames[0];

}

/* read elements of font name */
Font_GetElement(pattern, weight, FONT_ELEMENT_SIZE,
"-medium-", "-bold-", "-demibold-", "-regular-", NULL);
Font_GetElement(pattern, slant, FONT_ELEMENT_SIZE,
"-r-", "-i-", "-o-", "-ri-", "-ro-", NULL);
Font_GetSize(pattern, &pixel_size);

/* modify elements of font name to fit usual font names */
if (!strcmp(weight, "*")) strncpy(weight, "medium", FONT_ELEMENT_SIZE);
if (!strcmp(slant, "*")) strncpy(slant, "r", FONT_ELEMENT_SIZE);
if (pixel_size<3) pixel_size=3; else if (pixel_size>97) pixel_size=97;

Chapter 13. Examples of I18N 107

/* build font pattern for better matching for various charsets */
bufsiz = strlen(pattern) + FONT_ELEMENT_SIZE*2 + 2*2 + 58;
pattern2 = (char *)malloc(bufsiz);
if (pattern2) {
snprintf(pattern2, bufsiz-1, "%s,"

"-*-*-%s-%s-*-*-%d-*-*-*-*-*-*-*,"
"-*-*-*-*-*-*-%d-*-*-*-*-*-*-*,*",
pattern,
weight, slant, pixel_size,
pixel_size);

pattern = pattern2;
}
if (*n_miss) XFreeStringList(*miss);
if (fs) XFreeFontSet(d, fs);

/* create fontset */
fs = XCreateFontSet(d, pattern, miss, n_miss, def);
if (pattern2) free(pattern2);
return fs;

}

QuasiXFontStruct *QuasiXLoadQueryFont(Display *d, const char *fontset_name)
{

char **miss, *def, *pattern;
int n_miss;
XFontSet fontset;
QuasiXFontStruct *wxfs;
int pixel_size=16, bufsiz;
char family[FONT_ELEMENT_SIZE], weight[FONT_ELEMENT_SIZE],

slant[FONT_ELEMENT_SIZE];

wxfs = (QuasiXFontStruct *)malloc(sizeof(QuasiXFontStruct));
if (!wxfs) return NULL;

/* create fontset */
fontset = XCreateFontSetWithGuess(d, fontset_name, &miss, &n_miss, &def);
if (!fontset) {free(wxfs); return NULL;}

if (n_miss) {
int j;
fprintf(stderr,
"QuasiXLoadQueryFont: lacks the font(s) for the following charset(s)\n");
for (j=0; j<n_miss; j++) {

fprintf(stderr, " %s\n", miss[j]);
}
XFreeStringList(miss);

Chapter 13. Examples of I18N 108

}
/* emulating XFontStruct */
wxfs->fs = fontset;
wxfs->ascent =-XExtentsOfFontSet(fontset)->max_logical_extent.y;
wxfs->descent = XExtentsOfFontSet(fontset)->max_logical_extent.height

+XExtentsOfFontSet(fontset)->max_logical_extent.y;
return wxfs;

}

void QuasiXFreeFont(Display *d, QuasiXFontStruct *wxfs)
{

if (!wxfs) return;
XFreeFontSet(d, wxfs->fs);
free(wxfs);

}

void QuasiXDrawString(Display *d, Window w, QuasiXFontStruct *qxfs, GC gc,
int x, int y, const char* s, int l)

{
XmbDrawString(d, w, qxfs->fs, gc, x, y, s, l);

}

void QuasiXDrawImageString(Display *d, Window w, QuasiXFontStruct *qxfs, GC gc,
int x, int y, char* s, int l)

{
XmbDrawImageString(d, w, qxfs->fs, gc, x, y, s, l);

}

void QuasiXTextExtents(QuasiXFontStruct *qxfs, char *string, int nchars,
int *direction_return, int *font_ascent_return,
int *font_descent_return, XCharStruct *overall_return)

{
XRectangle overall_ink_return;
XRectangle overall_logical_return;

XmbTextExtents(qxfs->fs, string, nchars,
&overall_ink_return, &overall_logical_return);

*font_ascent_return = -overall_logical_return.y;

*font_descent_return = overall_logical_return.height
+overall_logical_return.y;

direction_return = FontLeftToRight; / unsupported */

overall_return; / unsupported */
}

int QuasiXTextWidth(QuasiXFontStruct *wxfs, const char *s, int cnt)

Chapter 13. Examples of I18N 109

{
return XmbTextEscapement(wxfs->fs, s, cnt);

}

Status QuasiXGetWMName(Display *d, Window w, XTextProperty *text_prop_return)
{

int status;
char **list;
int num;

status = XGetWMName(d, w, text_prop_return);

if (!status || !text_prop_return->value || text_prop_return->nitems <= 0) {
return 0; /* failure */

}
if (text_prop_return->encoding == XA_STRING) return 1;
text_prop_return->nitems = strlen((char *)text_prop_return->value);
status = XmbTextPropertyToTextList(d, text_prop_return,

&list, &num);
if (status >= Success && num > 0 && *list) {
XFree(text_prop_return->value);
text_prop_return->value = (unsigned char*)strdup(*list);
text_prop_return->nitems = strlen(*list);
XFreeStringList(list);
return 1; /* success */

}
return 0;

}

Status QuasiXGetWMIconName(Display *d, Window w,
XTextProperty *text_prop_return)

{
int status;
char **list;
int num;

status = XGetWMIconName(d, w, text_prop_return);

if (!status || !text_prop_return->value || text_prop_return->nitems <= 0) {
return 0;

}
if (text_prop_return->encoding == XA_STRING) return 1;
text_prop_return->nitems = strlen((char *)text_prop_return->value);
status = XmbTextPropertyToTextList(d, text_prop_return,

&list, &num);
if (status >= Success && num > 0 && *list) {

Chapter 13. Examples of I18N 110

XFree(text_prop_return->value);
text_prop_return->value = (unsigned char*)strdup(*list);
text_prop_return->nitems = strlen(*list);
XFreeStringList(list);
return 1;

}
return 0;

}

Status QuasiXGetIconName(Display *d, Window w, char **iconname)
{

XTextProperty text_prop;
char **list;
int num;

if (QuasiXGetWMIconName(d, w, &text_prop) != 0) {
if (text_prop.value && text_prop.nitems) {

*iconname = (char *)text_prop.value;
return 1;

}
}

*iconname = NULL;
return 0;

}

Status QuasiXFetchName(Display *d, Window w, char ** winname)
{

XTextProperty text_prop;
char **list;
int num;

if (QuasiXGetWMName(d, w, &text_prop) != 0) {
if (text_prop.value && text_prop.nitems > 0) {

*winname = (char *)text_prop.value;
return 1;

}
}

*winname = NULL;
return 0;

}

GC QuasiXCreateGC(Display *d, Drawable dr, unsigned long mask, XGCValues *xgc)
{

return XCreateGC(d, dr, mask & ~GCFont, xgc);
}

Chapter 13. Examples of I18N 111

int QuasiXChangeGC(Display *d, GC gc, unsigned long mask, XGCValues * xgc)
{

return XChangeGC(d, gc, mask & ~GCFont, xgc);
}

Chapter 13. Examples of I18N 112

113

Chapter 14

References

General

• Unicode support in the Solaris Operating Environment (http://docs.sun.com/ab2/
coll.651.1/SOLUNICOSUPPT) shows what is needed for software developers to sup-
port UTF-8.

• The Open Group’s summary of ISO C Amendment 1 (http://www.unix-systems.
org/version2/whatsnew/login_mse.html) is a detailed explanation on locale and
wide character technologies.

• Markus Kuhn’s UTF-8 and Unicode FAQ for Unix/Linux (http://www.cl.cam.ac.
uk/~mgk25/unicode.html) is a detailed explanation on UTF-8 and Unicode.

• Bruno Haible’s Unicode HOWTO (ftp://ftp.ilog.fr/pub/Users/haible/
utf8/Unicode-HOWTO.html)

• Tomohiro KUBOTA (original author of this Introduction to I18N), What is MO-
JIBAKE (http://www8.plala.or.jp/tkubota1/mojibake/) shows what occurs
when character handling is improper. Mojibake is a Japanese word which almost all
computer users (not only Linux/BSD/Unix but also Windows/Macintosh) know.

• Ken Lunde, “CJKV Information Processing”, ISBN 1-56592-224-7, O’Reilly, 1999

• Mikiko NISHIKIMI, Naoto TAKAHASHI, Satoru TOMURA, Ken’ichi HANDA, Seiji
KUWARI, Shin’ichi MUKAIGAWA, and Tomoko YOSHIDA, “MARUCHIRINGARU
KANKYOU NO JITSUGEN - X Window/Wnn/Mule/WWW BURAUZA DENO
TAKOKUGO KANKYO (http://web.kyoto-inet.or.jp/people/tomoko-y/
biwa/multi/)” or “Realization of Multilingual Environment - Multilingual Environ-
ment in X Window/Wnn/Mule/WWW Browser” (in Japanese), ISBN4-88735-020-1,
TOPPAN, 1996

• Yoshihiro KIYOKANE and Youichi SUEHIRO, “KOKUSAIKA PUROGU-
RAMINGU - I18N HANDOBUKKU (http://www.geocities.co.jp/

http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT
http://docs.sun.com/ab2/coll.651.1/SOLUNICOSUPPT
http://www.unix-systems.org/version2/whatsnew/login_mse.html
http://www.unix-systems.org/version2/whatsnew/login_mse.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html
http://www.cl.cam.ac.uk/~mgk25/unicode.html
ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html
ftp://ftp.ilog.fr/pub/Users/haible/utf8/Unicode-HOWTO.html
http://www8.plala.or.jp/tkubota1/mojibake/
http://web.kyoto-inet.or.jp/people/tomoko-y/biwa/multi/
http://web.kyoto-inet.or.jp/people/tomoko-y/biwa/multi/
http://www.geocities.co.jp/SiliconValley-PaloAlto/8090/
http://www.geocities.co.jp/SiliconValley-PaloAlto/8090/

Chapter 14. References 114

SiliconValley-PaloAlto/8090/)” or “Internationalization Programming - I18N
Handbook” (in Japanese), ISBN4-320-02904-6, KYORITSU, 1998

• Syuuji SADO and Tomoko YOSHIDA, “Linux/FreeBSD NIHONGO KANKYOU
NO KOUCHIKU TO KATSUYOU (http://web.kyoto-inet.or.jp/people/
tomoko-y/japanese/index.html)” or “Construction and Utilization of
Linux/FreeBSD Japanese Environment” (in Japanese), ISBN4-7973-0480-4, SOFTBANK,
1997

• Kouichi YASUOKA and Motoko YASUOKA “MOJI KOODO NO SEKAI (http://www.
dendai.ac.jp/press/book_da/ISBN4-501-53060-X.html)” or “The World of
Character Codes” (in Japanese), ISBN4-501-53060-X, Tokyo Denki University Press Cen-
ter, 1999

Characters (general)

• Character Tables (http://www.kudpc.kyoto-u.ac.jp/~yasuoka/CJK.html)
Graphic images for various character sets in the world.

• Ken Lunde’s CJK info (ftp://ftp.ora.com/pub/examples/nutshell/ujip/
doc/cjk.inf) information on CJK (Chinese, Japanese, and Korean) character set stan-
dards, written by the writer of “CJKV Information Processing” published by O’Reilly.

• IANA character set registry (http://www.isi.edu/in-notes/iana/
assignments/character-sets) Note that both coded character sets (for ex-
ample, KS_C_5601-1987, MIBenum 36) and encodings (for example, ISO-2022-KR,
MIBenum: 37) are registered. How confusing!

• International Register of Coded Character Sets (http://www.itscj.ipsj.or.jp/
ISO-IR/) A complete list of registered CCS, with ISO 2022 escape sequences. PDF files
for these CCS are also available.

Characters (ISO 8859)

• ISO 8859 Alphabet Soup (http://czyborra.com/charsets/iso8859.html)

Characters (ISO 2022)

• http://www.ecma.ch/ecma1/stand/ECMA-035.HTM

Characters (ISO 10646 and Unicode)

• Unicode Consortium (http://www.unicode.org/)

• Problems and Solutions for Unicode and User/Vendor Defined Characters (http://
www.opengroup.or.jp/jvc/cde/ucs-conv-e.html)

http://www.geocities.co.jp/SiliconValley-PaloAlto/8090/
http://www.geocities.co.jp/SiliconValley-PaloAlto/8090/
http://web.kyoto-inet.or.jp/people/tomoko-y/japanese/index.html
http://web.kyoto-inet.or.jp/people/tomoko-y/japanese/index.html
http://www.dendai.ac.jp/press/book_da/ISBN4-501-53060-X.html
http://www.dendai.ac.jp/press/book_da/ISBN4-501-53060-X.html
http://www.kudpc.kyoto-u.ac.jp/~yasuoka/CJK.html
ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf
ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf
http://www.isi.edu/in-notes/iana/assignments/character-sets
http://www.isi.edu/in-notes/iana/assignments/character-sets
http://www.itscj.ipsj.or.jp/ISO-IR/
http://www.itscj.ipsj.or.jp/ISO-IR/
http://czyborra.com/charsets/iso8859.html
http://www.ecma.ch/ecma1/stand/ECMA-035.HTM
http://www.unicode.org/
http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html
http://www.opengroup.or.jp/jvc/cde/ucs-conv-e.html

Chapter 14. References 115

Softwares

• Arena-i18n (http://www.wg.omron.co.jp/~shin/Arena-CJK-doc/) Multilin-
gual web browser.

• Mozilla (http://www.mozilla.org/) is also a multilingual web browser.

• Mule (http://www.m17n.org/mule/) Multilingual editor whose function is included
in GNU Emacs 20 and XEmacs 20. Mule is the most advanced m17n software in my
knowledge.

• JFBTERM (http://www3.justnet.ne.jp/~nmasu/linux/jfbterm/indexn.
html) (in Japanese) is a multilingual terminal for Linux framebuffer console. Sup-
ported encodings are ISO 2022, EUC-JP, CN-GB, and EUC-KR. Supported CCS are ISO
8859-{1,2,3,4,5,6,7,8,9,10}, JISX 0201, JISX 0208, GB 2312, and KSX 1001.

• UNICON Project (http://www.gnu.org/directory/UNICON.html) intends to im-
plement display/input CJK(Chinese/Japanese/Korean) characters under the Frame-
buffer under Linux.

• CCE - Chinese Console Environment (http://programmer.lib.sjtu.edu.cn/
cce/cce.html) enables CN-GB Chinese to be displayed on Linux and FreeBSD con-
sole. It also supplies input methods for Chinese.

• Xterm (http://dickey.his.com/xterm/) is a part of XFree86 distribution. It can
display UTF-8 encoding including doublewidth characters and combining characters.

• Rxvt (http://www.rxvt.org/) can display multibyte encodings such as EUC-JP,
Shift-JIS, CN-GB, and Big-5.

• libiconv (http://www.gnu.org/software/libiconv/) provides iconv() imple-
mentation for systems which don’t have one. It supports various encodings like
ASCII, ISO 8859-*, KOI8-*, EUC-*, ISO 2022-*, Big5, Shift-JIS, TIS 620, UTF-*, UCS-*,
CP*, Mac*, and so on. This library also has locale_charset(), a replacement of
nl_langinfo(CODESET).

• libutf8 - a Unicode/UTF-8 locale plugin (http://clisp.cons.org/~haible/
packages-libutf8.html) provides UTF-8 locale support for systems which don’t
have UTF-8 locales.

• Pango (http://www.pango.org/) is a project to develop a portable high-quality text
rendering engine.

Projects and Organizations

• Linux Internationalization Initiative (http://www.li18nux.org/), or Li18nux, fo-
cuses on the i18n of a core set of APIs and components of Linux distributions. The results
will be proposed to LSB.

http://www.wg.omron.co.jp/~shin/Arena-CJK-doc/
http://www.mozilla.org/
http://www.m17n.org/mule/
http://www3.justnet.ne.jp/~nmasu/linux/jfbterm/indexn.html
http://www3.justnet.ne.jp/~nmasu/linux/jfbterm/indexn.html
http://www.gnu.org/directory/UNICON.html
http://programmer.lib.sjtu.edu.cn/cce/cce.html
http://programmer.lib.sjtu.edu.cn/cce/cce.html
http://dickey.his.com/xterm/
http://www.rxvt.org/
http://www.gnu.org/software/libiconv/
http://clisp.cons.org/~haible/packages-libutf8.html
http://clisp.cons.org/~haible/packages-libutf8.html
http://www.pango.org/
http://www.li18nux.org/

Chapter 14. References 116

• LI18NUX 2000 Globalization Specification (http://www.li18nux.org/
li18nux2k/) is the first fruits of Li18nux. focuses on the i18n of a core set of
APIs and components of Linux distributions. The results will be proposed to LSB.

• Citrus Project (http://citrus.bsdclub.org/) is a project to implement lo-
cale/iconv for BSD series OSes so that these OSes conform to ISO C / SUSV2.

• Translation Project (http://www.iro.umontreal.ca/~pinard/po/HTML/)

• Mojikyo (http://www.mojikyo.org/)

• TRON project (http://www.tron.org/index-e.html)

http://www.li18nux.org/li18nux2k/
http://www.li18nux.org/li18nux2k/
http://citrus.bsdclub.org/
http://www.iro.umontreal.ca/~pinard/po/HTML/
http://www.mojikyo.org/
http://www.tron.org/index-e.html

	About This Document
	Scope
	New Versions of This Document
	Feedback and Contributions

	Introduction
	General Concepts
	Organization

	Important Concepts for Character Coding Systems
	Basic Terminology
	Stateless and Stateful
	Multibyte encodings
	Number of Bytes, Number of Characters, and Number of Columns

	Coded Character Sets And Encodings in the World
	ASCII and ISO 646
	ISO 8859
	ISO 2022
	EUC (Extended Unix Code)
	ISO 2022-compliant Character Sets
	ISO 2022-compliant Encodings

	ISO 10646 and Unicode
	UCS as a Coded Character Set
	UTF as Character Encoding Schemes
	Problems on Unicode

	Other Character Sets and Encodings
	Big5
	UHC
	Johab
	HZ, aka HZ-GB-2312
	GBK
	GB18030
	GCCS
	HKSCS
	Shift-JIS
	VISCII
	TRON
	Mojikyo

	Characters in Each Country
	Japanese language / used in Japan
	Characters used in Japanese
	Character Sets
	Encodings
	How These Encodings Are Used --- Information for Programmers
	Columns
	Writing Direction and Combined Characters
	Layout of Characters
	LANG variable
	Input from Keyboard
	More Detailed Discussions

	Spanish language / used in Spain, most of America and Equatorial Guinea
	Characters used in Spanish
	Character Sets
	Codesets
	How These Codesets Are Used --- Information for Programmers
	Columns
	Writing Direction
	Layout of Characters
	LANG variable
	Input from Keyboard
	More Detailed Discussions

	Languages with Cyrillic script

	LOCALE technology
	Locale Categories and setlocale()
	Locale Names
	Multibyte Characters and Wide Characters
	Unicode and LOCALE technology
	nl_langinfo() and iconv()
	Limit of Locale technology

	Output to Display
	Console Softwares
	Encoding
	Number of Columns

	X Clients
	Xlib programming
	Athena widgets
	Gtk and Gnome
	Qt and KDE

	Input from Keyboard
	Non-X Softwares
	X Softwares
	Developing XIM clients
	Examples of XIM softwares
	Using XIM softwares

	Emacsen

	Internal Processing and File I/O
	Stream I/O of Characters
	Character Classification
	Length of String
	Extraction of Characters

	the Internet
	Mail/News
	WWW

	Libraries and Components
	Gettext and Translation
	Gettext-ization of A Software
	Translation

	Readline Library
	Ncurses Library

	Softwares Written in Other than C/C++
	Fortran
	Pascal
	Perl
	Python
	Ruby
	Tcl/Tk
	Java
	Shell Script
	Lisp

	Examples of I18N
	TWM -- usage of XFontSet instead of XFontStruct
	Introduction
	Locale Setting - A Routine Work
	Font Preparation
	Automatic Font Guessing
	Font Preparation (continued)
	Drawing Text using MyFont
	Geting Size of Texts
	Getting Window Titles
	Getting Icon Names
	Configuration File Parser

	8bit-clean-ize of Minicom
	8bit-clean-ize
	Not to break continuity of multibyte characters
	Catalog in EUC-JP and SHIFT-JIS

	user-ja -- two sets of messages in ASCII and native codeset in the same language
	Introduction
	Strategy
	Implementation

	A Quasi-Wrapper to Internationalize Text Output of X Clients
	Introduction
	Strategy
	Usage of the wrapper
	The Header File of the Wrapper
	The Source File of the Wrapper

	References

