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1 
 Introduction 

Today alone, Dell Computer will sell more than $18 million worth of 
computer equipment through the Internet. In 1999, nine million 
Americans traded stocks online, accounting for one-third of all retail 
stock trades. And more than 200,000 Web sites worldwide (includ-
ing sites belonging to 98 of the Fortune 100) can accept e-commerce 
transactions. Commercial use of the Web continues to grow at an as-
tonishing pace, and securing Web transactions has become increas-
ingly critical to businesses, organizations, and individual users. 

Fortunately, an extremely effective and widely deployed communica-
tions protocol provides exactly that security. It is the Secure Sockets 
Layer protocol, more commonly known simply as ssl. The ssl pro-
tocol—along with its successor, the Transport Layer Security (tls) 
protocol—is the subject of this book. 

This chapter introduces ssl and tls, and provides the essential con-
text for both. It begins with a very brief look at Web security and 
electronic commerce, focusing on the issues that led to the creation 
of ssl. The next section follows up with a quick history of ssl and its 
transformation into tls. The relationship of ssl to other network se-
curity technologies is the subject of the third section. The forth sec-
tion, “Protocol Limitations,” is an important one. Especially with 
security technologies, it is critical to understand what they cannot do. 
The chapter closes with an overview of the rest of this book. 
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1.1 Web Security and Electronic Commerce 

Know the enemy. Sun Tzu could not have offered any advice more ap-
propriate to security professionals. Specific security services are nec-
essarily effective against only specific threats; they may be completely 
inappropriate for other security threats. To understand ssl, therefore, 
it is essential to understand the environment for which it has been 
designed. 

Even though ssl is a flexible protocol that is finding use in many dif-
ferent applications, the original motivation for its development was 
the Internet. The protocol’s designers needed to secure electronic 
commerce and other Web transactions. That environment is certainly 
perilous enough. Consider, for example, what happens when a user in 
Berlin places an online order from a Web site in San Jose, California. 
Table 1-1 lists the systems through which the user’s messages might 
pass. 

Table 1-1  Internet Systems in Path from Berlin to San Jose 

Step IP Address System Name (if known) 

1 212.211.70.7  

2 212.211.70.254  

3 195.232.91.66 fra-ppp2-fas1-0-0.wan.wcom.net 

4 212.211.30.29  

5 206.175.73.45 hil-border1-atm4-0-2.wan.wcom.net 

6 205.156.223.41 dub-border1-hss2-0.wan.wcom.net 

7 204.70.98.101 borderx1-hssi2-0.northroyalton.cw.net 

8 204.70.98.49 core2-fddi-0.northroyalton.cw.net 

9 204.70.9.138 corerouter1.westorange.cw.net 

10 204.70.4.101 core5.westorange.cw.net 

11 204.70.10.230 sprint4-nap.westorange.cw.net 

12 192.157.69.85 sprint-nap.home.net 

13 24.7.72.113 c1-pos9-1.cmdnnj1.home.net 

14 24.7.67.153 c1-pos6-2.clevoh1.home.net 

15 24.7.64.173 c1-pos3-0.chcgil1.home.net 

16 24.7.64.141 c1-pos1-0.omahne1.home.net 
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Step IP Address System Name (if known) 

17 24.7.66.173 c1-pos8-3.lnmtco1.home.net 

18 24.7.64.57 c1-pos1-0.slkcut1.home.net 

19 24.7.66.77 c1-pos5-3.snjsca1.home.net 

20 24.7.72.18 bb1-pos6-0-0.rdc1.sfba.home.net 

21 172.16.6.194  

22 10.252.84.3  

23 10.252.10.150  

24 209.219.157.152 www.sj-downtown.com 

Figure 1-1 highlights the fact that messages containing the user’s in-
formation, including sensitive information such as credit card num-
bers, may travel a complex path from Germany to California, 
crossing through many countries, over various networks, and on 
many different facilities. Some of those facilities are likely to belong 
to private enterprises, many of which are not subject to any regula-
tion or other laws governing the privacy of the information they 
transport. 

Neither the user nor the Web server has any control over the path 
their messages take, nor can they control who examines the message 
contents along the route. From a security standpoint, it’s as if the 
user wrote her credit card number on a postcard and then delivered 

Web Server Web Browser  

Figure 1-1  Messages travel complex paths through the Internet. 
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the postcard as a message in a bottle. The user has no control over 
how the message reaches its destination, and anyone along the way 
can easily read its contents. Electronic commerce cannot thrive in 
such an insecure environment; sensitive information must be kept 
confidential as it traverses the Internet. 

Eavesdropping isn’t the only security threat to Web users. It is theo-
retically possible to divert Web messages to a counterfeit Web site. 
Such a counterfeit site could provide false information, collect data 
such as credit card numbers with impunity, or create other mischief.1 
The Internet needs a way to assure users of a Web site’s true identity; 
likewise, many Web sites need to verify the identity of their users. 

A final security challenge facing Web users is message integrity. A 
user placing an online stock trade certainly wouldn’t want his 
instructions garbled in such a way as to change “Sell when the price 
reaches $200” to “Sell when the price reaches $20.” The missing zero 
can make a significant difference in the user’s fortunes. 

1.2 History of SSL and TLS 

Fortunately, engineers were thinking about these security issues from 
the Web’s beginnings. Netscape Communications began considering 
Web security while developing its very first Web browser. To address 
the concerns of the previous section, Netscape designed the Secure 
Sockets Layer protocol. 

Figure 1-2 shows the evolution of ssl in the context of general Web 
development. The timeline begins in November 1993, with the release 
of Mosaic 1.0 by the National Center for Supercomputing Applica-
tions (ncsa). Mosaic was the first popular Web browser. Only eight 
months later, Netscape Communications completed the design for 

_________________ 
1 This security threat isn’t unique to the Web. In Computer-Related Risks (Addison-
Wesley, 1995), Peter G. Neumann recounts the story of two criminals who set up a 
bogus atm in a Connecticut mall. The machine didn’t dispense much cash, but it 
did capture the account number and pin of unsuspecting victims. The crooks then 
fabricated phony atm cards and allegedly withdrew over $100 000. 
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ssl version 1.0; five months after that, Netscape shipped the first 
product with support for ssl version 2.0—Netscape Navigator. 

Other milestones in the timeline include the publication of version 
1.0 of the Private Communication Technology (pct) specification. 
Microsoft developed pct as a minor enhancement to ssl version 2.0. 
It addressed some of the weaknesses of ssl 2.0, and many of its ideas 
were later incorporated into ssl version 3.0. 

The later events on the timeline represent a shift in focus for the ssl 
standard. Netscape Communications developed the first three ver-
sions of ssl with significant assistance from the Web community. Al-
though ssl’s development was open, and Netscape encouraged others 
in the industry to participate, the protocol technically belonged to 
Netscape. (Indeed, Netscape has been granted a u.s. patent for ssl.) 
Beginning in May 1996, however, ssl development became the re-
sponsibility of an international standards organization—the Internet 
Engineering Task Force (ietf). The ietf develops many of the pro-
tocol standards for the Internet, including, for example, tcp and ip. 

SSL 1.0
design complete

1993 1994 1995 1996 1997 1998 1999

SSL 2.0
product ships

PCT 1.0
published

SSL 3.0
published

TLS 1.0
published

TLS WG
formed

NCSA
Mosaic
released

Netscape
Navigator
released

Internet
Explorer
released

 

Figure 1-2  SSL was developed along with early Web browsers. 



6 SSL & TLS Essentials: Securing the Web 

 

SSL vs. TLS 

Because SSL is 
more widely 
used and much 
better known 
than TLS, the 
main text of this 
book describes 
SSL rather than 
TLS. The differ-
ences between 
the two are very 
minor, however. 
Sidebars such as 
this one will note 
all those differ-
ences. 

To avoid the appearance of bias toward any particular company, the 
ietf renamed ssl to Transport Layer Security (tls). The final version 
of the first official tls specification was released in January 1999. 

Despite the change of names, tls is nothing more than a new ver-
sion of ssl. In fact, there are far fewer differences between tls 1.0 
and ssl 3.0 than there are between ssl 3.0 and ssl 2.0. Section 5.4 
details the differences between ssl and tls, but check the sidebars 
for more information. 

Support for ssl is now built in to nearly all browsers and Web serv-
ers. For users of Netscape Navigator or Microsoft’s Internet Explorer, 
ssl operates nearly transparently. Observant users might notice the 
“https:” prefix for an ssl-secured url, or they may see a small icon 
that each browser displays when ssl is in use. (Figure 1-3 shows the 
padlock symbol that Internet Explorer displays in the bottom status 
bar; Navigator shows a similar icon.) For the most part, however, ssl 
simply works, safely providing confidentiality, authentication, and 
message integrity to its Web users. 

Today’s popular Web servers also include support for ssl. It’s usually 
a simple task to enable ssl in the server. As we’ll see, though, to sup-
port secure Web browsing, a Web server must do more than simply 
enable the ssl protocol. The server must also obtain a public key cer-
tificate from an organization that Web browsers trust. For users on 
the public Internet, those organizations are generally public certifi-
cate authorities. Popular certificate authorities include at&t Certifi-
cate Services, gte CyberTrust, KeyWitness International, Microsoft, 
Thawte Consulting, and VeriSign. The next chapter includes further 
discussions of certificate authorities (primarily in section 2.3.2), and 
appendix a provides details on public key certificates. 

1.3 Approaches to Network Security 

The Secure Sockets Layer protocol provides effective security for 
Web transactions, but it is not the only possible approach. The Inter-
net architecture relies on layers of protocols, each building on the 
services of those below it. Many of these different protocol layers can 
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support security services, though each has its own advantages and 
disadvantages. As we’ll see in this section, the designers of ssl chose 
to create an entirely new protocol layer for security. It is also possible 
to include security services in the application protocol or to add them 
to a core networking protocol. As another alternative, applications 
can rely on parallel protocols for some security services. All of these 
options have been considered for securing Web transactions, and ac-
tual protocols exist for each alternative. Table 1-2 summarizes the ad-
vantages of each approach, and this section considers each of the 
possible approaches in more detail. 

Table 1-2  Different Approaches to Network Security 

Protocol Architecture Example A B C D E 

Separate Protocol Layer SSL � � � � � 

Application Layer S-HTTP � � � � � 

Integrated with Core IPSEC � � � � � 

Parallel Protocol Kerberos � � � � � 

Benefits: A – Full Security   B – Multiple Applications   C – Tailored Services    
D – Transparent to Application  E – Easy to Deploy 

 

Figure 1-3  Web browsers such as Internet Explorer include SSL. 
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1.3.1 Separate Security Protocol 

The designers of the Secure Sockets Layer decided to create a sepa-
rate protocol just for security. In effect, they added a layer to the 
Internet’s protocol architecture. The left side of figure 1-4 shows the 
key protocols for Web communications. At the bottom is the Inter-
net Protocol (ip). This protocol is responsible for routing messages 
across networks from their source to their destination. The Transmis-
sion Control Protocol (tcp) builds on the services of ip to ensure 
that the communication is reliable. At the top is the Hypertext 
Transfer Protocol; http understands the details of the interaction 
between Web browsers and Web servers. 

As the right side of the figure indicates, ssl adds security by acting as 
a separate security protocol, inserting itself between the http appli-
cation and tcp. By acting as a new protocol, ssl requires very few 
changes in the protocols above and below. The http application in-
terfaces with ssl nearly the same way it would with tcp in the ab-
sence of security. And, as far as tcp is concerned, ssl is just another 
application using its services. 

In addition to requiring minimal changes to existing implementa-
tions, this approach has another significant benefit: It allows ssl to 
support applications other than http. The main motivation behind 
the development of ssl was Web security, but, as figure 1-5 shows, ssl 

HTTP

IP

TCP

HTTP

IP

TCP

SSL

Not Secure Secure

 

Figure 1-4  SSL is a separate protocol layer just for security. 



Introduction 9 

 

is also used to add security to other Internet applications, including 
those of the Net News Transfer Protocol (nntp) and the File Trans-
fer Protocol (ftp). 

1.3.2 Application-Specific Security 

Although the designers of ssl chose a different strategy, it is also 
possible to add security services directly in an application protocol. 
Indeed, standard http does include some extremely rudimentary se-
curity features; however, those security features don’t provide ade-
quate protection for real electronic commerce. At about the same 
time Netscape was designing ssl, another group of protocol design-
ers was working on an enhancement to http known as Secure http. 
Figure 1-6 shows the resulting protocol architecture. The Secure 
http standard has been published by the ietf as an experimental 

HTTP

IP

TCP

SSL

NNTP FTP

 

Figure 1-5  SSL can add security to applications other than HTTP. 

security

IP

TCP

HTTP

IP

TCP

Not Secure Secure

HTTP

 

Figure 1-6  Security can be added directly within an application protocol. 
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protocol, and a few products support it. It never caught on to the 
same degree as ssl, however, and oday it is rare to find Secure http 
anywhere on the Internet. 

One of the disadvantages of adding security to a specific application 
is that the security services are available only to that particular appli-
cation. Unlike ssl, for example, it is not possible to secure nntp, ftp, 
or other application protocols with Secure http. Another disadvan-
tage of this approach is that it ties the security services tightly to the 
application. Every time the application protocol changes, the security 
implications must be carefully considered, and, frequently, the secu-
rity functions of the protocol must be modified as well. A separate 
protocol like ssl isolates security services from the application proto-
col, allowing each to concentrate on solving its own problems most 
effectively. 

1.3.3 Security within Core Protocols 

The separate protocol approach of ssl can be taken one step further 
if security services are added directly to a core networking protocol. 
That is exactly the approach of the ip security (ipsec) architecture; 
full security services become an optional part of the Internet Protocol 
itself. Figure 1-7 illustrates the ipsec architecture. 

The ipsec architecture has many of the same advantages as ssl. It is 
independent of the application protocol, so any application may use 
it. In most cases, the application does not need to change at all to 

IP

TCP

HTTP

IP with IPSec

TCP

Not Secure Secure

HTTP

 

Figure 1-7  IPSEC adds security to a core network protocol. 
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take advantage of ipsec. In fact, it may even be completely unaware 
that ipsec is involved at all. This feature does create its own chal-
lenges, however, as ipsec must be sufficiently flexible to support all 
applications. This complexity may be a big factor in the delays in de-
velopment and deployment of ipsec. 

Another concern with the ipsec approach is that it provides too 
much isolation between the application and security services. At least 
in its simplest implementations, ipsec tends to assume that secure 
requirements are a function of a particular system, and that all appli-
cations within that system need the same security services. The ssl 
approach provides isolation between applications and security, but it 
allows some interaction between the two. The internal behavior of an 
application such as http need not change when security is added, 
but the application typically has to make the decision to use ssl or 
not. Such interaction makes it easier for each application to direct 
the security services most appropriate to its needs. 

Despite these drawbacks, ipsec adds powerful new security tools to 
the Internet, and it will undoubtedly see widespread deployment. 
The ssl protocol, however, has significant benefits as well, and its 
deployment is also expected to grow substantially in the future. 

1.3.4 Parallel Security Protocol 

There is yet a fourth approach to adding security services to an appli-
cation—a parallel security protocol. The most popular example of 
this strategy is the Kerberos protocol developed by the Massachusetts 
Institute of Technology. Researchers developed Kerberos to provide 
authentication and access control for resources in a distributed envi-
ronment. The Kerberos protocol acts as a toolkit that other protocols 
can use for those security services. A remote login protocol such as 
Telnet, for example, can use Kerberos to securely identify its user. 

In the very early days of Web browser development, some effort was 
made to incorporate Kerberos support within http. Figure 1-8 shows 
the resulting architecture. This work was never completed, though. 
Instead, there have been recent efforts to combine Kerberos with tls. 
In such applications, Kerberos provides a trusted key exchange 
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mechanism for Transport Layer Security. Note, though, that Kerbe-
ros alone is not a complete security solution. It does not have access 
to the actual information exchanged by the communicating parties. 
Without that access, Kerberos cannot provide encryption and de-
cryption services. 

1.4 Protocol Limitations 

The ssl protocol, like any technology, has its limitations. And be-
cause ssl provides security services, it is especially important to un-
derstand its limits. After all, a false sense of security may be worse 
than no security. The limitations of ssl fall generally into three cate-
gories. First are fundamental constraints of the ssl protocol itself. 
These are a consequence of the design of ssl and its intended appli-
cation. The ssl protocol also inherits some weaknesses from the tools 
its uses, namely encryption and signature algorithms. If these algo-
rithms have weaknesses, ssl generally cannot rehabilitate them. Fi-
nally, the environments in which ssl is deployed have their own 
shortcomings and limitations, some of which ssl is helpless to ad-
dress. 

1.4.1 Fundamental Protocol Limitations 

Though its design includes considerations for many different 
applications, ssl is definitely focused on securing Web transactions. 
Some of its characteristics reflect that concentration. For example, 

IP

TCP

HTTP

IP

TCP and UDP

Not Secure Secure

KerberosHTTP

 

Figure 1-8  Kerberos supplements application protocols. 
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of its characteristics reflect that concentration. For example, ssl re-
quires a reliable transport protocol such as tcp. That is a completely 
reasonable requirement in the world of Web transactions, because the 
Hypertext Transfer Protocol itself requires tcp. The decision means, 
however, that ssl cannot operate using a connectionless transport 
protocol like udp.2 With this significant exception, Web transactions 
are representative of general network computing environments. The 
ssl protocol, therefore, can effectively accommodate most common 
applications quite well. Indeed, ssl is in use today for securing vari-
ous applications, including file transfer, network news reading, and 
remote login. 

Another role that ssl fails to fill is support for a particular security 
service known as non-repudiation. Non-repudiation associates the 
digital equivalent of a signature with data, and when used properly, it 
prevents the party that creates and “signs” data from successfully de-
nying that after the fact. The ssl protocol does not provide non-
repudiation services, so ssl alone would not be appropriate for an 
application that required it. 

1.4.2 Tool Limitations 

The Secure Sockets Layer is simply a communication protocol, and 
any ssl implementation will rely on other components for many 
functions, including the cryptographic algorithms. These algorithms 
are the mathematical tools that actually perform tasks such as en-
cryption and decryption. No ssl implementation can be any stronger 
than the cryptographic tools on which it is based. 

As of this writing, ssl itself has no known significant weaknesses. 
Some common cryptographic algorithms, however, have been suc-
cessfully attacked, at least in the context of academics or other re-
search. (There are no publicly acknowledged cases of anyone 

_________________ 
2 Although neither ssl nor tls can use udp, the Wireless Application Forum, an in-
dustry group developing standards for Internet access protocols for wireless devices 
such as mobile phones, has created a variation of tls known as Wireless tls (wtls), 
which can support udp. More information is available at http://www.wapforum.org. 

http://www.wapforum.org
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exploiting these theoretical weaknesses in a commercial context.) 
Appendix b describes the publicly reported attacks in more detail, 
but, in general, ssl implementations must consider not only the secu-
rity of ssl, but also that of the cryptographic services on which it is 
built. 

1.4.3 Environmental Limitations 

A network protocol alone can only provide security for information 
as it transits a network. No network protocol protects data before it is 
sent or after it arrives at its destination. This is the only known 
weakness in Web security that has been successfully exploited in an 
actual commercial setting. Unfortunately, it has been exploited more 
than once.3 

Security in any computer network, whether the public Internet or 
private facilities, is a function of all the elements that make up that 
network. It depends on the network security protocols, the computer 
systems that use those protocols, and the human beings who use 
those computers. No network security protocol can protect against 
the confidential printout carelessly left on a cafeteria table. 

The Secure Sockets Layer protocol is a strong and effective security 
tool, but it is only a single tool. True security requires many such 
tools, and a comprehensive plan to employ them. 

1.5 Organization of This Book 

Four more chapters and two appendices make up the rest of this 
book. Chapter 2 looks at some of the essential principles of cryptog-
raphy and cryptographic algorithms. Although, strictly speaking, 
these algorithms are not part of the ssl protocol, a good bit of the 
protocol’s design depends on general cryptographic principles. With-
out getting too deep into the mathematics of cryptography, chapter 2 

_________________ 
3 See, for example, the 8 November 1996 edition of The Wall Street Journal (page b6) 
or the 11 July 1997 issue of The San Francisco Chronicle (page c3). 
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examines those essential principles. Chapter 3 begins the examination 
of ssl in earnest. It describes the ssl protocol in operation. It dis-
cusses the contents of ssl messages, but only in general terms. The 
chapter explains what ssl does without getting bogged down in the 
details of how it does it. Chapter 4, on the other hand, focuses exclu-
sively on those details. It documents the format of all ssl messages, 
as well as the cryptographic calculations ssl uses to construct them. 
Chapter 5 provides additional details about ssl. It describes how the 
current version of ssl operates with previous ssl versions, and how 
Netscape and Microsoft have each augmented ssl with techniques 
that promote strong encryption worldwide, while adhering to United 
States export restrictions. This chapter also provides complete cover-
age of Transport Layer Security, detailing all the differences between 
tls and ssl. 

Appendix a provides additional details on public key certificates. 
These certificates, which conform to the x.509 standard, are critical 
to the operation of ssl, even though they are not part of the protocol 
itself. The appendix includes a brief introduction to Abstract Syntax 
Notation One, the language that the x.509 standard uses to docu-
ment certificates. Appendix b presents a security checklist for ssl. It 
includes a list of good practices for the development of ssl imple-
mentations, and defenses against all known attacks against ssl-
secured systems. 
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2 
 Basic Cryptography 

The Web may be a relatively new way to communicate, but securing 
the Web relies on the same principles that have secured other com-
munications media for thousands of years. In fact, the digital nature 
of the Web actually makes it easier to apply these techniques. In ad-
dition, systems on the Web can take advantage of new and powerful 
security technology. This chapter takes a brief look at the important 
principles that govern communications security. 

The scientific discipline that studies communications security is cryp-
tography, and several concepts from modern cryptography are indis-
pensable to the Secure Sockets Layer protocol. The first of the 
following three sections describes the uses of cryptography. The next 
section looks in more detail at two particular types of cryptography—
secret key cryptography and public key cryptography. As the names 
imply, keys are an important part of both types, and this chapter con-
cludes by discussing the management of these keys. Key manage-
ment plays a critical role in the operation of ssl. 

As the following text implies, cryptography relies heavily on a 
mathematical foundation. But understanding the mathematics of 
cryptography is not essential for understanding ssl. For that reason, 
this chapter contains very little mathematics. Readers who are inter-
ested in a more thorough understanding of cryptography are invited 
to consult the texts described in the References section of this book. 



18 SSL & TLS Essentials: Securing the Web 

 

2.1 Using Cryptography 

The word cryptography is derived from the Greek for “secret writ-
ing.” The task of keeping information secret is probably the one most 
often associated with cryptography. Indeed, protecting secret infor-
mation is an important mission for cryptographers, but, as this sec-
tion shows, cryptography has other uses as well. Two that are 
particularly important to ssl are proving identity and verifying 
information. Table 2-1 summarizes the main topics of this section. 

Table 2-1  Important Uses of Cryptography 

Use Service Protects Against 

Keeping secrets Confidentiality Eavesdropping 

Proving identity Authentication Forgery and masquerade 

Verifying information Message integrity Alteration 

2.1.1 Keeping Secrets 

To continue with a convention that has become almost universal in 
cryptography texts, consider the dilemma facing Alice and Bob in 
figure 2-1. Alice needs to send Bob some important information. The 

Alice Bob

Charles

 

Figure 2-1  Cryptography can protect information from eavesdroppers. 
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information is extremely confidential, and it is important that no one 
other than Bob receive it. If, as in this example, the only way that Al-
ice can communicate with Bob is by postcard, how can she send him 
the information without exposing it to mail carriers, snooping 
neighbors, or anyone else that happens to see the vital postcard? 

Cryptography gives Alice and Bob the means to protect their ex-
change. Before sending the postcard, Alice uses a secret code, or ci-
pher, that only she and Bob understand. The cipher scrambles the 
information, rendering it unintelligible to parties such as Charles 
that do not know the secret code. Bob, however, knows the secret 
code and can decipher the necessary information. 

2.1.2 Proving Identity 

Now consider the situation in figure 2-2. Bob receives a postcard with 
important information, purportedly from Alice. But how does he 
know that the postcard really came from Alice? Might Charles have 
forged the card to make it appear as if from Alice? Again, cryptogra-
phy provides a solution.  

Alice

Charles

Bob

 

Figure 2-2  Cryptography can help verify a sender’s identity. 
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Through the use of cryptography, Alice can attach special informa-
tion, such as a secret phrase, to the postcard. This secret phrase is in-
formation that only she and Bob know. Since Charles does not know 
the secret phrase, he will not be able to attach it to any forgery. Now 
all Bob has to do is look for the secret phrase. If it is present, then 
the postcard is genuine; if it is absent, he should be suspicious. 

2.1.3 Verifying Information 

Proving identity is one thing, but suppose Charles is able to intercept 
a genuine message to Bob from Alice. Charles could then modify the 
message and forward the altered message on to Bob, as in figure 2-3. 
Charles’s changes might alter the meaning of the message signifi-
cantly, yet not destroy the secret phrase that “proves” Alice was the 
sender. To protect against this kind of behavior, there must be a way 
to not only verify the identity of the message source, but also to en-
sure that the message contents have not been altered in any way. 
Again, cryptography offers a solution. 

To validate the information on her postcard, Alice can use a special 
type of cryptographic function known as a hash function. A hash 
function creates a special mathematical summary of information. If 
the information is modified and the hash function recalculated, a dif-
ferent summary will result. To prevent Charles from successfully 
tampering with her postcard, Alice calculates the hash function for 
the information on the card, plus a secret value only she and Bob 

Alice Bob

Charles

 

Figure 2-3  Cryptography can ensure information has not been altered. 
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know. She then adds the resulting summary to the postcard. When 
Bob receives the card, he can also calculate the hash function. If his 
summary matches that on the card, the information is valid. 

Cryptographic hash functions resemble checksums or cyclic redun-
dancy check (crc) codes that are common error detection mecha-
nisms for traditional communication protocols. There is an 
important difference, though. Checksums and crc codes are de-
signed to detect accidental alterations, such as might occur on an un-
reliable transmission medium. Cryptographic hashes, on the other 
hand, are optimized to detect deliberate alterations. Because they as-
sume the malicious attacker has full knowledge of the algorithm, and 
can thus exploit any weakness, effective hash functions are considera-
bly harder to devise than standard error detection algorithms. 

Two particular hash functions are essential to ssl implementations. 
The first is Message Digest 5 (md5), devised by Ron Rivest. The 
other important hash function is the Secure Hash Algorithm (sha), 
proposed by the u.s. National Institute of Science and Technology. 
Both will make their appearance in chapters 4 and 5 when we look at 
the details of the ssl and tls specifications. 

2.2 Types of Cryptography 

As even the preceding brief introduction makes clear, one essential 
element of cryptography is the use of secret codes that are shared 
only by the communicating parties. Whether it’s keeping secrets, 
proving identity, or verifying information, Alice and Bob must know 
some secret information that Charles does not. Cryptographers call 
that information a key. 

Cryptographic techniques fall into two classifications, depending on 
the type of keys they use: secret key cryptography and public key cryptog-
raphy. The following subsections describe each separately, then dis-
cuss how practical implementations often use a combination of the 
two approaches. 
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2.2.1 Secret Key Cryptography 

With secret key cryptography, both parties know the same informa-
tion—the key—and both endeavor to keep that key secret from eve-
ryone else. This is how most people think of cryptography in general, 
and, for nearly all of the several-thousand-year history of secret 
codes, it was the only form of cryptography known. The critical as-
pect of secret key cryptography is that both parties know the same 
secret information. For this reason, it has the technical name symmet-
ric encryption. 

Encryption algorithms, or ciphers, based on secret key techniques are 
usually just mathematical transformations on the data to be en-
crypted, combined with the secret key itself. The approach resembles 
a carnival shell game, with the secret key serving as the initial loca-
tion of the pea. Bits are swapped around and combined with each 
other in very complicated ways, and yet the various transformations 
can readily be undone, provided one knows the key. As a hint of the 
complexities involved, Figure 2-4 illustrates one of the more common 
encryption algorithms. The figure also introduces two common cryp-
tographic terms—plaintext, information before encryption, and ci-
phertext, information in its encrypted form. Plaintext is vulnerable to 
attackers; ciphertext, at least in theory, is not. 

An important quality that determines the effectiveness of a cipher is 
the size of the secret key. The larger the key, the more difficult it is to 
break the code. To understand why this is the case, consider an algo-
rithm with an extremely small key size: 2 bits. In this example, the 
algorithm itself really wouldn’t matter. After all, with 2 bits there are 
only four possible keys. An attacker who obtained encrypted data 
could simply try all four possibilities. 

Cryptographers also characterize symmetric encryption algorithms 
according to how they process input data. Ciphers may be either 
stream ciphers or block ciphers. Stream ciphers process input data a byte 
at a time, and can accept any size of input for encryption. Block ci-
phers, in contrast, operate only on fixed-sized blocks of data—
typically 8 bytes in size. Block ciphers are require less computation 
resources, and they are generally slightly less vulnerable to attack 
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(and, thus, are by far the more common type). They are, however, 
slightly less convenient to use. The input data itself is the source of 
the inconvenience; it is rarely the same size as the cipher’s block. En-
crypting data using a block cipher requires breaking the data into 
blocks, and, if the last block doesn’t contain exactly the right amount 
of data, adding dummy data, known as padding, to fill it out. 

Block ciphers also usually require an initialization vector of dummy 
data to begin the encryption process. The initialization vector primes 

plaintext

initial permutation

L0 R0

+ f

L1 = R0 R1 = L0 + f(R0,K1)

K1

+ f

L2 = R1 R2 = L1 + f(R1,K2)

K2

+ f

L15 = R14 R15 = L14 + f(R14,K15)

K15

[repeated 12 more times]

+ f

L15 = R15R16 = L15 + f(R15,K16)

K16

inverse permutation

ciphertext

Secret
Key

Data to
Protect

Hidden
Data  

Figure 2-4  The DES cipher hides data by scrambling it with a secret key. 
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the algorithm with irrelevant information, enabling the cipher to 
build up to full strength before the actual plaintext appears. 

Table 2-2 lists the symmetric ciphers most commonly used with the 
Secure Sockets Layer protocol. 

Table 2-2  Symmetric Encryption Algorithms 

Abbreviation Algorithm Type 

DES Data Encryption Standard Block 

3DES Triple-Strength Data Encryption Standard Block 

RC2 Rivest Cipher 2 Block 

RC4 Rivest Cipher 4 Stream 

2.2.2 Public Key Cryptography 

Most of the difficulties with traditional secret key cryptography are 
caused by the keys themselves. Both Alice and Bob need to have the 
same secret key, but under no circumstances should Charles have this 
key as well. That implies that before Alice and Bob can communicate 
information securely, they must be able to communicate the secret 
key securely. The problem mimics the classic chicken-or-egg di-
lemma. After all, if there’s a secure way for Alice and Bob to com-
municate the secret key, why can’t they use that same method to 
communicate the information, and dispense with the complexities of 
cryptography altogether? (In some situations, such as cloak-and-
dagger spying, the two parties can agree on the key beforehand, while 
they’re physically together; for obvious reasons, this approach isn’t 
practical for situations in which the parties never meet face-to-face, 
such as Web-based commerce.) 

A relatively new development in cryptography has eliminated the key 
distribution impasse and has made technology such as ssl and e-
commerce possible. That development is public key cryptography. Pub-
lic key cryptography or, more technically, asymmetric encryption, actu-
ally has each of the two parties use separate keys—one for encryption 
and a different one for decryption. The critical aspect of public key 
cryptography is that only one of these two keys needs to be kept se-
cret. The other key, the public key, need not be secret at all. 



Basic Cryptography 25 

 

Although it seems a bit like magic, this has a solid mathematical ba-
sis. Fundamentally, asymmetric encryption is based on mathematical 
problems that are mush easier to generate than they are to solve. As 
an example, anyone with a pocket calculator can compute the prod-
uct of 113 and 293 and get the correct answer of 33 109. It is much 
more difficult, however, to use the same pocket calculator to work a 
similar problem in reverse. Which two whole numbers, when multi-
plied together, yield the product 29 213?1 

Figure 2-5 shows how public key encryption can work. When Bob 
wants Alice to send him information securely, he generates two keys. 

_________________ 
1 The answer, for the insatiably curious, is 131 and 223. 
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Figure 2-5  Public key cryptography uses published keys to encrypt data. 
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One is the private key, which Bob keeps completely to himself. Con-
versely, Bob advertises the public key, conceptually even by publishing 
it in a newspaper. Alice reads the newspaper to find out the public 
key, then uses it to encrypt the information. When Bob receives Al-
ice’s postcard, his private key enables him to decipher the message. 
Since only Bob has his private key, only Bob can successfully decrypt 
the information. Even Alice would be unable to do so. 

Some public key encryption algorithms, notably the Rivest Shamir 
Adleman (rsa) algorithm commonly used with ssl, also work in re-
verse. Information encrypted with a private key can be decrypted 
with the corresponding public key. This feature has several powerful 
applications, most importantly for ssl, as a way to prove identity. 
Imagine, as in figure 2-6, that Bob encrypts some well-known infor-
mation using his private key and sends the resulting ciphertext to Al-
ice. Alice can use Bob’s public key to decipher the information. She 
then compares the result with the well-known information she was 
expecting. If there is a match, then Alice is assured that the informa-
tion was encrypted with Bob’s private key. Only that key would have 
yielded the successful decryption. And, since Bob is the only person 
who knows his private key, Alice is further assured that Bob was the 
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Figure 2-6  Public key ciphers verify identity using published keys. 
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one who sent the information. Through this approach, Bob has 
proven his identity to Alice. 

Reversible public key algorithms such as rsa can also provide an-
other important service: the digital equivalent of a signature. Suppose 
that Bob needs information from Alice. And further suppose that it 
is important that Alice not be able to later deny sending him the in-
formation, either to Bob or to an independent third party (such as a 
judge). In effect, Bob needs Alice to sign the information. To accom-
plish this, Alice can encrypt the information with her private key. 
Since anyone can obtain her public key, anyone can decipher the in-
formation. Only Alice, however, knows her private key, so only Alice 
could have encrypted the information in the first place. 

Some public key algorithms can only be used for digital signatures; 
they cannot provide encryption services. One such algorithm impor-
tant to ssl is the Digital Signature Algorithm (dsa). 

2.2.3 Combining Secret and Public Key Cryptography 

Public key encryption is a powerful tool, but in most practical im-
plementations it suffers from one serious disadvantage—the encryp-
tion operation is extremely complex. Complex mathematical 
operations can place a strain on some systems, requiring more proc-
essing capacity than the systems would otherwise need. If there were 
no alternatives, then most implementations requiring security might 
accept the higher system cost; fortunately, there is a relatively simple 
way to get the benefits of public key encryption while avoiding most 
of the system performance costs. The optimum approach uses a 
combination of secret key and public key cryptography. 

Figure 2-7 shows how this combination can work in practice. To be-
gin, Bob creates a public and private key, and then he publicizes the 
public key. He does not share the private key with anyone. Alice, who 
wishes to send confidential data to Bob, retrieves his public key. She 
also generates a collection of random numbers. Once Alice has Bob’s 
public key, she encrypts those random numbers and sends them to 
Bob. Since only Bob has his private key, only Bob can decipher Al-
ice’s message and extract the random numbers. 
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Once Alice and Bob have successfully exchanged the random num-
bers, they no longer need public key encryption. Instead, they can use 
the random numbers as secret keys for standard symmetric encryp-
tion. Alice and Bob can communicate securely as long as they wish. 
And since symmetric encryption does not need nearly as much pro-
cessing power as asymmetric encryption, the encryption comes at a 
much lower cost. 

There is an important variation to this process that relies on a differ-
ent type of public key algorithm. The special type of algorithm is 
known as a key exchange algorithm, and the most famous example is 
the Diffie-Hellman algorithm. Diffie-Hellman is usually thought of 
as a public key algorithm, even though it cannot be used for encryp-
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Figure 2-7  Effective security combines secret and public key techniques. 
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tion or for digital signatures. Rather, Diffie-Hellman allows two par-
ties to securely establish a secret number using only public messages. 
Diffie-Hellman is an alternative to steps 1–4 of figure 2-7. 

One final note on figure 2-7: As the next chapter details, this is actu-
ally a simplified view of basic ssl operation. Figure 3-1 shows a dif-
ferent version of the same process. 

2.3 Key Management 

Key management is a challenge to all forms of cryptography. Public 
key cryptography improves the situation; at least the keys that the 
parties exchange do not have to be kept secret from the rest of the 
world. Still, the public key must be exchanged reliably. 

In the previous examples, Alice has hypothetically retrieved Bob’s 
public keys from the newspaper. Suppose, however, that the nefarious 
Charles was able to print a phony newspaper (with a phony public 
key for Bob) and sneak it into Alice’s driveway in the morning in 
place of her real paper. How would Alice know of the fraud? 

It is exactly this problem that has led to the creation of public key 
certificates and certificate authorities. Although unnoticed by most 
casual Internet users, these are critical to the Secure Sockets Layer 
protocol and Web commerce. 

2.3.1 Public Key Certificates 

In many ways, public key certificates are the digital equivalent of a 
driver’s license. Although certificates may belong to computer sys-
tems instead of individuals, they share three important characteristics 
with driver’s licenses. First, they each identify their subjects by in-
cluding the subjects’ names. Second, they assert key information 
about the subject. A driver’s license declares that the subject has cer-
tain privileges (i.e., driving a car), while a certificate affirms the sub-
ject’s public key (and perhaps other privileges). Finally, both a 
certificate and a driver’s license are issued by a trusted organization, 
either a governmental agency or a certificate authority. 



30 SSL & TLS Essentials: Securing the Web 

 

Figure 2-8 shows the contents of a typical public key certificate. Ap-
pendix a discusses this particular certificate format in detail, but only 
a few of the fields are truly important. The first of those is the issuer 
field, which identifies the organization that has issued the certificate. 
This information is critical to a person or computer system that ex-
amines a certificate because it determines whether the certificate can 
be trusted. The next important field is the period of validity. Like 
driver’s licenses, certificates expire after a certain time. The next field 
identifies the subject of the certificate, and it is followed by the sub-
ject’s public key. 

The final field of the certificate is also important. That field is the is-
suer’s signature, which is a digital signature of the contents of the cer-
tificate. The issuer creates this signature by encrypting a hash of the 
certificate with its private key. Any system that knows the issuer’s 
public key can verify the signature and ensure the validity of the cer-
tificate. Since this field can be a bit confusing, it is worthwhile to 
emphasize that the issuer creates the signature using its own private 
key, while the certificate itself contains the subject’s public key. 
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Figure 2-8  A public key certificate validates a subject’s public key. 
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2.3.2 Certificate Authorities 

The issuer of a public key certificate is traditionally known as a cer-
tificate authority (ca), and certificate authorities play a vital role in es-
tablishing trust among a community of users. As the previous 
subsection indicates, the certificate authority digitally signs all cer-
tificates, attesting to the validity of the public keys they contain. If 
users trust the certificate authority, they can trust any certificate that 
ca issues. 

In many cases, a certificate authority can be identified as either a pri-
vate or a public ca. Private authorities include organizations that is-
sue certificates strictly for their own users. A corporation, for 
example, may issue public key certificates for its employees. (Actually, 
they would issue the certificates for the employees’ computers.) The 
company could then set up its internal network to require appro-
priate certificates before granting access to critical data. Although 
systems within the company’s computer network could trust the 
company’s certificates, outside systems, including, for example, public 
Web servers, would be unlikely to do so. A private certificate author-
ity issues certificates for use on its own private networks. 

But the Internet is a public network, and Web security generally re-
lies on public certificate authorities. A public certificate authority is-
sues certificates to the general public, and it can certify the identity 
of both individuals and organizations. Public authorities act as the 
digital equivalent of notary publics, certifying the identity of any 
party that presents appropriate credentials. For a company that 
wishes to establish a secure Web site, those credentials may include a 
Dun & Bradstreet d-u-n-s number, a business license, articles of in-
corporation, or sec filings that establish the company’s corporate 
identity. 

Certificate authorities are themselves frequently identified by their 
certificates, but their certificates differ from standard certificates in 
one important respect: the subject and the issuer are one and the 
same. The certificate authority certifies its own identity. Figure 2-9 
highlights the fact that the public key in a ca certificate is also the 
public key that verifies the certificate’s signature. This is a critical 
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distinction from normal certificates. Any party that receives a normal 
certificate can check the certificate’s signature to decide whether to 
trust the public key in that certificate. As long as the certificate’s sig-
nature is valid and the issuer is trustworthy, then the receiving party 
can safely trust the public key. With a ca certificate, on the other 
hand, verifying the certificate’s signature does not help to establish 
trust. Any party that could forge a ca certificate would know the 
forged private key, and could thus easily generate the matching cer-
tificate signature. The validity of ca certificates must be established 
by other methods. 

In the case of Web commerce security, the validity of certificate au-
thorities depends largely on the browser manufacturers. Both Micro-
soft’s Internet Explorer and Netscape’s Navigator by default 
recognize the certificates from important public certificate authori-
ties. Figure 2-10 shows some of the certificate authorities Netscape 
recognizes. (The full list, as of this writing, includes more than 50 au-
thorities.) Although both Netscape and Microsoft allow users to in-
stall additional certificate authorities into their browsers, most secure 
Web sites elect to use a certificate that doesn’t require this extra ef-
fort from their users. 
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Figure 2-9  CA certificates have the same issuer and subject. 
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2.3.3 Certificate Hierarchies 

Sometimes, it becomes difficult for a certificate authority to effec-
tively track all the parties whose identities it certifies. Especially as 
the number of certificates grows, a single authority may become an 
unacceptable bottleneck in the certification process. Fortunately, 
public key certificates support the concept of certificate hierarchies, 
which alleviate the scalability problems of a single, monolithic au-
thority. 

With a hierarchy in place, a certificate authority does not have to 
certify all identities itself. Instead, it designates one or more subsidi-
ary authorities. These authorities may, in turn, designate their own 
subsidiaries, the hierarchy continuing until an authority actually cer-
tifies end users. Figure 2-11 illustrates a simple three-level hierarchy, 
one that might occur within a large corporation. As the figure shows, 
the acme Corporation has a master certificate authority and two 
subordinate authorities, one for Human Resources and another for 
Research and Development. The subordinate authorities are respon-
sible for entities within their domains. 

 

Figure 2-10  Netscape Navigator recognizes many certificate authorities. 
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A particularly powerful feature of certificate hierarchies is that they 
do not require that all parties automatically trust all the certificate 
authorities. Indeed, the only authority whose trust must be estab-
lished throughout the enterprise is the master certificate authority. 
Because of its position in the hierarchy, this authority is generally 
known as the root authority. 

To see this process in action, consider what happens when a client in 
the r&d department needs to verify the identity of the Benefits 
server. The server presents its certificate, issued (and signed) by the 
hr department’s authority. The r&d client does not trust the hr au-
thority, however, so it asks to see that authority’s certificate. When 
the client receives the hr authority’s certificate, it can verify that the 
hr authority was certified by the corporation’s root ca. Since the 
r&d client does trust the root ca, it can trust the Benefits server. 
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Figure 2-11  Certificate hierarchies divide responsibility for certificates. 
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2.3.4 Certificate Revocation Lists 

Before leaving the subject of public key certificates, there is one loose 
end to tie up. So far, we’ve seen how certificate authorities issue cer-
tificates, but what about the reverse process? What happens if a ca 
issues a certificate by mistake and wants to correct itself? Or what if a 
subject accidentally reveals its private key, so its certified public key is 
no longer safe to use? To solve these types of problems, certificate au-
thorities use certificate revocation lists. A certificate revocation list, 
or crl for short, is a list of certificates that the authority has previ-
ously issued, but no longer considers valid. The certificates them-
selves still appear legitimate; their signatures are correct, and their 
validity periods are appropriate. Nonetheless, the ca needs to indi-
cate that they can no longer be trusted. The authority cannot change 
the certificates since they’ve already been issued, so the best it can do 
is maintain a list of these revoked certificates. It is the responsibility 
of any party that trusts another’s certificate to check with the certifi-
cate authority to make sure the certificate has not been revoked. This 
function is not the responsibility of the ssl protocol, so we won’t dis-
cuss it in any depth. It is noteworthy to consider, though, that the 
current Web commerce infrastructure does not have an effective (and 
widely supported) means for systems to check a certificate against a 
crl. For that reason, there is no practical way to revoke a traditional 
Web commerce certificate. 
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3 
 SSL Operation 

With an understanding of some of the key concepts of cryptography, 
we can now look closely at the operation of the Secure Sockets Layer 
(ssl) protocol. Although ssl is not an extremely complicated proto-
col, it does offer several options and variations. This chapter explains 
ssl by starting with the simplest case: establishing an encrypted 
communications channel. It then considers successively more com-
plex options, including authenticating the communicating parties, 
separating encryption from authentication, and resuming a previously 
established session. Within these sections, you will discover the full 
power of ssl. 

The ssl protocol consists of a set of messages and rules about when 
to send (and not to send) each one. In this chapter, we consider what 
those messages are, the general information they contain, and how 
systems use the different messages in a communications session. We 
do not, however, explore the detailed message formats: the bits and 
bytes that make up ssl messages as they transit across a network. 
That detail is the subject of chapter 4. Neither do we spend time here 
on the detailed cryptographic computations ssl requires; those, too, 
are a topic for the next chapter. This chapter concentrates on the big 
picture. The details will be much easier to understand once you have 
an appreciation of the overall operation of the Secure Sockets Layer. 

3.1 SSL Roles 

The Secure Sockets Layer protocol defines two different roles for the 
communicating parties. One system is always a client, while the other 
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is a server. The distinction is very important, because ssl requires the 
two systems to behave very differently. The client is the system that 
initiates the secure communications; the server responds to the cli-
ent’s request. In the most common use of ssl, secure Web browsing, 
the Web browser is the ssl client and the Web site is the ssl server. 
These same two roles apply to all applications that use ssl, and the 
examples in this chapter (indeed, throughout the book) will clearly 
distinguish them. 

For ssl itself, the most important distinctions between clients and 
servers are their actions during the negotiation of security parame-
ters. Since the client initiates a communication, it has the 
responsibility of proposing a set of ssl options to use for the 
exchange. The server selects from the client’s proposed options, 
deciding what the two systems will actually use. Although the final 
decision rests with the server, the server can only choose from among 
those options that the client originally proposed. 

3.2 SSL Messages 

When ssl clients and servers communicate, they do so by exchang-
ing ssl messages. Technically, ssl defines different levels of messages, 
but that topic is best left for Chapter 4. Since this chapter concen-
trates strictly on functionality, distinguishing between the various ssl 
levels is not critical. Table 3-1 lists the ssl messages at all levels of the 
protocol, in alphabetical order. The remaining sections in this chapter 
show how systems use these messages in their communications. 

Table 3-1  SSL Messages 

Message Description 

Alert Informs the other party of a possible security 
breach  or communication failure. 

ApplicationData Actual information that the two parties ex-
change, which is encrypted, authenticated, 
and/or verified by SSL. 

Certificate A message that carries the sender’s public key 
certificate. 
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Message Description 

CertificateRequest A request by the server that the client provide 
its public key certificate. 

CertificateVerify A message from the client that verifies that it 
knows the private key corresponding to its pub-
lic key certificate. 

ChangeCipherSpec An indication to begin using agreed-upon secu-
rity services (such as encryption). 

ClientHello A message from the client indicating the secu-
rity services it desires and is capable of support-
ing. 

ClientKeyExchange A message from the client carrying crypto-
graphic keys for the communications. 

Finished An indication that all initial negotiations are 
complete and secure communications have 
been established. 

HelloRequest A request by the server that the client start (or 
restart) the SSL negotiation process. 

ServerHello A message from the server indicating the secu-
rity services that will be used for the communi-
cations. 

ServerHelloDone An indication from the server that it has com-
pleted all its requests of the client for establish-
ing communications. 

ServerKeyExchange A message from the server carrying crypto-
graphic keys for the communications. 

3.3 Establishing Encrypted Communications 

The most basic function that an ssl client and server can perform is 
establishing a channel for encrypted communications. Figure 3-1 
shows the ssl message exchange this operation requires, and table 3-2 
summarizes the steps in the figure. This section looks at these steps 
in more detail by considering each message in the exchange. 
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Table 3-2  Negotiation of Encrypted Communications 

Step Action 

1 Client sends ClientHello message proposing SSL options. 

2 Server responds with ServerHello  message selecting the SSL 
options. 

3 Server sends its public key information in ServerKeyExchange 
message. 

4 Server concludes its part of the negotiation with ServerHello-
Done message. 

5 Client sends session key information (encrypted with server’s 
public key) in ClientKeyExchange message. 

6 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

Server

ClientHello

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

 

Figure 3-1  SSL uses 9 messages to establish encrypted communications. 
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SSL vs. TLS 

The TLS proto-
col uses a ver-
sion value of 
3.1 instead of 
3.0. 

Step Action 

7 Client sends Finished message to let the server check the newly 
activated options. 

8 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

9 Server sends Finished message to let the client check the newly 
activated options. 

3.3.1 ClientHello 

The ClientHello message starts the ssl communication between the 
two parties. The client uses this message to ask the server to begin 
negotiating security services by using ssl. Table 3-3 lists the impor-
tant components of a ClientHello message. 

Table 3-3  ClientHello Components 

Field Use 

Version Identifies the highest version of the SSL proto-
col that the client can support. 

RandomNumber A 32-byte random number used to seed the 
cryptographic calculations. 

SessionID Identifies a specific SSL session. 

CipherSuites A list of cryptographic parameters that the cli-
ent can support. 

CompressionMeth-
ods 

Identifies data compression methods that the 
client can support. 

The Version field of the ClientHello message contains the highest 
version number of ssl that the client can support. The current ssl 
version is 3.0, and it is by far the most widely deployed on the Inter-
net. (But see the sidebar for information on tls.) Note that a server 
may assume that the client can support all ssl versions up to and in-
cluding the value of this field. If, for example, a client sends a version 
3.0 ClientHello to a server that only supports version 2.0 of ssl, the 
server may respond with version 2.0 messages that it expects the cli-
ent to understand. In such cases, that client can decide to continue 
with the ssl session using version 2.0 functionality, or it can abandon 
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the communication attempt. Section 5.1 includes additional informa-
tion about compatibility with previous versions. 

The RandomNumber field, as you might expect, contains a random 
number. This random value, along with a similar random value that 
the server creates, provides the seed for critical cryptographic calcula-
tions. Chapter 4 has the details. The ssl specification suggests that 
four of this field’s 32 bytes consist of the time and date. The ssl pro-
tocol does not require a particular level of accuracy for this value, as it 
is not intended to provide an accurate time indication. Instead, the 
specification suggests using the date and time as a way to ensure that 
the client never uses the same random value twice. This precaution 
protects against an impostor copying old ssl messages from a legiti-
mate client and reusing them to establish a counterfeit session. 

The remaining 28 bytes of this value should be a “cryptographically 
secure” random number. Security is not something we ordinarily as-
sociate with randomness, but it is important in this case. Most com-
puter programs use a technique known as pseudorandom number 
generation to create random numbers. When used correctly, this ap-
proach does yield numbers that have the appearance of randomness. 
However, the technique does have a serious flaw when used in a se-
curity context: if an attacker knows the exact algorithm and one ran-
dom value, that attacker can correctly predict all future random 
values. This knowledge might allow the attacker to anticipate a par-
ticular future value and prepare an attack against it. To prevent this 
type of attack, ssl implementations should use a different technique 
for generating random numbers; typically, they use one based on 
cryptographic algorithms. 

The next field in the ClientHello message is SessionID. Although all 
ClientHello messages may include this field, in this example, the 
field is meaningless and would be empty. Section 3.8 presents an ex-
ample of how the SessionID field may be used. 

The CipherSuites field allows a client to list the various cryptographic 
services that the client can support, including exact algorithms and 
key sizes. The server actually makes the final decision as to which 
cryptographic services will be used for the communication, but it is 
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limited to choosing from this list. Chapter 4 describes the format of 
this field in detail, including the various algorithms and key size op-
tions that ssl defines. 

The CompressionMethods field is, in theory, similar to the Cipher-
Suites field. In it, the client may list all of the various data compres-
sion methods that it can support. Compression methods are an 
important part of ssl because encryption has significant conse-
quences on the effectiveness of any data compression techniques. En-
cryption changes the mathematical properties of information in a 
way that makes data compression virtually impossible. In fact, if it 
were possible to compress encrypted data, that would likely indicate a 
security weakness in the encryption algorithm. For this reason, if two 
parties are going to employ data compression for a communication, it 
is important that they compress their data before encrypting it. The 
ssl protocol accommodates this behavior by including the capacity 
for data compression, and by making sure that the compression oc-
curs before encryption. In the current version of ssl, however, no ac-
tual compression methods have been defined. This field, therefore, 
currently is of limited use. In the future, additional compression 
methods may be defined and added to the tls (but not ssl) specifi-
cations. 

3.3.2 ServerHello 

When the server receives the ClientHello message, it responds with a 
ServerHello. As table 3-4 shows, the contents of a ServerHello are 
much the same as a ClientHello. There are a few important differ-
ences, though, which we’ll examine in this subsection. In general, 
where the client makes suggestions in its ClientHello message, the 
server makes the final decision in its ServerHello. 

Table 3-4  ServerHello Components 

Field Use 

Version Identifies the version of the SSL protocol to be 
used for this communication. 

RandomNumber A 32-byte random number used to seed the 
cryptographic calculations. 
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SSL vs. TLS 

The TLS proto-
col uses a ver-
sion value of 
3.1 instead of 
3.0. 

Field Use 

SessionID Identifies the specific SSL session. 

CipherSuite The cryptographic parameters to be used for this 
communication. 

Compression-
Method 

The data compression method to be used for this 
communication. 

The Version field is the first example of a server making a final deci-
sion for the communications. The ClientHello’s version simply iden-
tifies which ssl versions the client can support. The ServerHello’s 
version, on the other hand, determines the ssl version that the com-
munication will use. A server is not completely free to choose any ssl 
version, however; it cannot pick a version newer than the latest that 
the client can support. If the client does not like the server’s choice, it 
may abandon the communication. As of this writing, nearly all ssl 
clients and servers support version 3.0 of the ssl protocol. 

The RandomNumber field of the ServerHello is essentially the same 
as in the ClientHello, though this random value is chosen by the 
server.  Along with the client’s value, this number seeds important 
cryptographic calculations. The server’s value does share the same 
properties as in the ClientHello. Four of the 32 bytes are the date and 
time (to avoid repeating random values); the remaining bytes should 
be created by a cryptographically secure random number generator. 

The SessionID field of a ServerHello may contain a value, unlike the 
ClientHello’s field just discussed. The value in this case uniquely 
identifies this particular ssl communication, or session. The main rea-
son for explicitly identifying a particular ssl session is to refer to it 
again later. Section 3.8 shows an example of how a client can use this 
facility to speed up the ssl negotiation process. If the server does not 
intend the session to ever be reused, it can omit the SessionID field 
from its ServerHello message. 

The CipherSuite field (note that the name is singular, not plural, as in 
the case of a ClientHello) determines the exact cryptographic pa-
rameters, specifically algorithms and key sizes, to be used for the ses-
sion. The server must select a single cipher suite from among those 
listed by the client in its ClientHello message. 
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The CompressionMethod field is also singular for a ServerHello. In 
theory, the server uses this field to identify the data compression to 
be used for the session. Again, the server must pick from among 
those listed in the ClientHello. Current ssl versions have not defined 
any compression methods, however, so this field has no practical util-
ity. 

3.3.3 ServerKeyExchange 

In this example, the server follows its ServerHello message with a 
ServerKeyExchange message. This message complements the Cipher-
Suite field of the ServerHello. While the CipherSuite field indicates 
the cryptographic algorithms and key sizes, this message contains the 
public key information itself. The exact format of the key informa-
tion depends on the particular public key algorithm used. For the rsa 
algorithm, for example, the server includes the modulus and public 
exponent of the server’s rsa public key. 

Note that the ServerKeyExchange message is transmitted without 
encryption, so that only public key information can be safely in-
cluded within it. The client will use the server’s public key to encrypt 
a session key, which the parties will use to actually encrypt the appli-
cation data for the session. 

3.3.4 ServerHelloDone 

The ServerHelloDone message tells the client that the server has fin-
ished with its initial negotiation messages. The message itself con-
tains no other information, but it is important to the client, because 
once the client receives a ServerHelloDone, it can move to the next 
phase of establishing the secure communications. 

3.3.5 ClientKeyExchange 

When the server has finished its part of the initial ssl negotiation, 
the client responds with a ClientKeyExchange message. Just as the 
ServerKeyExchange provides the key information for the server, the 
ClientKeyExchange tells the server the client’s key information. In 
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this case, however, the key information is for the symmetric encryp-
tion algorithm both parties will use for the session. Furthermore, the 
information in the client’s message is encrypted using the public key 
of the server. This encryption protects the key information as it tra-
verses the network, and it allows the client to verify that the server 
truly possesses the private key corresponding to its public key. Oth-
erwise, the server won’t be able to decrypt this message. This opera-
tion is an important protection against an attacker that intercepts 
messages from a legitimate server and pretends to be that server by 
forwarding the messages to an unsuspecting client. Since a fake 
server won’t know the real server’s private key, it won’t be able to de-
crypt the ClientKeyExchange message. Without the information in 
that message, communication between the two parties cannot suc-
ceed. 

3.3.6 ChangeCipherSpec 

After the client sends key information in a ClientKeyExchange mes-
sage, the preliminary ssl negotiation is complete. At that point, the 
parties are ready to begin using the security services they have nego-
tiated. The ssl protocol defines a special message—
ChangeCipherSpec—to explicitly indicate that the security services 
should now be invoked. 

Since the transition to secured communication is critical, and both 
parties have to get it exactly right, the ssl specification is very precise 
in describing the process. First, it identifies the set of information 
that defines security services. That information includes a specific 
symmetric encryption algorithm, a specific message integrity algo-
rithm, and specific key material for those algorithms. The ssl specifi-
cation also recognizes that some of that information (in particular, 
the key material) will be different for each direction of communica-
tion. In other words, one set of keys will secure data the client sends 
to the server, and a different set of keys will secure data the server 
sends to the client. (In principle, the actual algorithms could differ as 
well, but ssl does not define a way to negotiate such an option.) For 
any given system, whether it is a client or a server, ssl defines a write 
state and a read state. The write state defines the security information 
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for data that the system sends, and the read state defines the security 
information for data that the system receives. 

The ChangeCipherSpec message serves as the cue for a system to 
begin using its security information. Before a client or server sends a 
ChangeCipherSpec message, it must know the complete security in-
formation it is about to activate. As soon as the system sends this 
message, it activates its write state. Similarly, as soon as a system re-
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Figure 3-2  Clients build pending cipher suites while using active ones. 
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ceives a ChangeCipherSpec from its peer, the system activates its 
read state. Figures 3-2 and 3-3 illustrate this process in more detail. 
The first shows how the client views the process, while the second 
takes the server’s perspective. 

In both figures, the matrices on the side show the systems’ read and 
write states. The events shown in black (as opposed to gray) cause 
the systems to update their states. As the figures indicate, ssl actually 
defines two separate read and write states for each system. One of 
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Figure 3-3  SSL servers also build pending cipher suites. 



SSL Operation 49 

 

the states is active and the second is pending. Both the client and the 
server, therefore, maintain a total of four different states: the active 
write state, the pending write state, the active read state, and the 
pending read state. (The figures use the abbreviations “Act” and 
“Pnd” for active and pending, respectively.) 

The figures also show the key elements of a state. They are the en-
cryption algorithm (abbreviated “Encr”), the message integrity algo-
rithm (abbreviated “mac” for Message Authentication Code), and 
the key material. In figures 3-2 and 3-3, the systems agree to use the 
Data Encryption Standard (des) for symmetric encryption and Mes-
sage Digest 5 (md5) for message integrity. 

As the figures show, all systems start out in active states with no se-
curity services whatsoever. This initial condition is necessary for the 
systems to begin any communication; until they have negotiated se-
curity services and parameters, secure communication is not possible. 
As the systems exchange ssl messages, they begin building the pend-
ing state. First they agree on encryption and message integrity algo-
rithms, then they exchange key information. Only then, when both 
the client and the server have full pending states, can the systems ac-
tivate those pending states with ChangeCipherSpec messages. 

Table 3-5 details the client processing that figure 3-2 illustrates. It de-
scribes the steps in the figure that are shown in solid black; those are 
the steps that result in a change of the client’s states. 

Table 3-5  Client State Processing 

Step Description 

1 When the client initiates an SSL communication by sending a 
ClientHello message, it sets both of its active states to null (no 
security); initially, its pending states are unknown. 

2 When the client receives a ServerHello message, it knows the 
algorithms that the server has selected for the session. It up-
dates both of its pending states accordingly.  Key information 
for the pending states is still unknown at this point. 

5 Once the client has built and transmitted a ClientKeyExchange 
message, it knows the key material that will be used for the 
communication, so it updates the pending states. 
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6 When the client sends a ChangeCipherSpec message, it moves 
its pending write state to the active write state and resets the 
pending state to unknown. No changes are made to the read 
states. From this point on, all data the client sends will use DES 
encryption and MD5 authentication as indicated by the now ac-
tive write state. 

8 When the client receives a ChangeCipherSpec, it updates the 
active read state with the pending values and resets the pend-
ing read state to unknown. From this point on, the client will 
expect received data to be secured with DES encryption and 
MD5 authentication. 

Table 3-6 outlines the processing that takes place in the server. It cor-
responds to figure 3-3. 

Table 3-6  Server State Processing 

Step Description 

1 When the server first receives a ClientHello message, it sets 
both of its active states to null; its pending states are unknown. 

2 When the server sends its ServerHello message, it knows the 
algorithms that will be used for the session, and it updates both 
of its pending states accordingly. Key information for the pend-
ing states is still unknown at this point. 

5 Once the server has received a ClientKeyExchange message, it 
knows the key material that will be used for the communica-
tion, so it updates the pending states appropriately. 

6 When the server receives a ChangeCipherSpec message, it 
moves its pending read state to the active read state and resets 
the pending state to unknown. No changes are made to the 
write states. From this point on, the server will expect received 
data to be secured with DES encryption and MD5 authentication. 

8 When the server sends its own ChangeCipherSpec, it updates 
the active write state with the pending values and resets the 
pending state to unknown. From this point on, all data the 
server sends will use DES encryption and MD5 authentication as 
indicated by the now active write state. 

Notice from the figures that one system’s active write state is the 
same as the other system’s active read state—with one exception. The 
exception occurs during the transmission of a ChangeCipherSpec 
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message. As soon as one system sends this message, it updates its ac-
tive states. The other system, however, does not change its active 
states until it receives the message. In the interim, the two systems 
are temporarily out of synchronization. 

3.3.7 Finished 

Immediately after sending their ChangeCipherSpec messages, each 
system also sends a Finished message. The Finished messages allow 
both systems to verify that the negotiation has been successful and 
that security has not been compromised. Two aspects of the Finished 
message contribute to this security. First, as the previous subsection 
explained, the Finished message itself is subject to the negotiated ci-
pher suite. That means that it is encrypted and authenticated accord-
ing to that suite. If the receiving party cannot successfully decrypt 
and verify the message, then clearly something has gone awry with 
the security negotiation. 

The contents of the Finished message also serve to protect the secu-
rity of the ssl negotiation. Each Finished message contains a crypto-
graphic hash of important information about the just-finished 
negotiation. Table 3-7 details the information that is secured by the 
hash. Notice that protected data includes the exact content of all 
handshake messages used in the exchange (though ChangeCipher-
Spec messages are not considered “handshake” messages in the strict 
sense of the word, and thus are not included). This protects against 
an attacker who manages to insert fictitious messages or remove le-
gitimate messages from the communication. If an attacker were able 
to do so, the client’s and server’s hash calculations would not match, 
and they would detect the compromise. Chapter 4 describes the de-
tails of the hash calculation. 

Table 3-7  Information Authenticated by Finished Message 

• Key information 

• Contents of all previous SSL handshake messages exchanged by 
the systems 

• A special value indicating whether the sender is a client or server 
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3.4 Ending Secure Communications 

Although as a practical matter it is rarely used (primarily due to the 
nature of Web sessions), ssl does have a defined procedure for end-
ing a secure communication between two parties. As figure 3-4 
shows, the two systems each send a special ClosureAlert to the other. 
Explicitly closing a session protects against a truncation attack, in 
which an attacker is able to compromise security by prematurely ter-
minating a communication. Imagine, for example, that an attacker 
was able to delete just the second phrase of the following sentence: 
“Please destroy all the documents, unless you hear from me tomor-
row.” The ClosureAlert message helps systems detect such attacks. If 
a system received the message “Please destroy all documents” but did 
not receive a ClosureAlert, it would recognize that the complete 
message may not have arrived. As mentioned, it is not always possi-
ble to receive ClosureAlert messages reliably for Web transactions. 
Appendix b describes other steps Web servers and clients can take to 
protect against these truncation attacks. 

3.5 Authenticating the Server’s Identity 

Although section 3.4 explained how ssl can establish encrypted 
communications between two parties, that may not really add that 
much security to the communication. With encryption alone neither 
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Figure 3-4  ClosureAlert messages indicate the end of a secure session. 
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party can really be sure of the other’s identity. The typical reason for 
using encryption in the first place is to keep information secret from 
some third party. But if that third party were able to successfully 
masquerade as the intended recipient of the information, then en-
cryption would serve no purpose. The data would be encrypted, but 
the attacker would have all the data necessary to decrypt it. 

To avoid this type of attack, ssl includes mechanisms that allow each 
party to authenticate the identity of the other. With these mecha-
nisms, each party can be sure that the other is genuine, and not a 
masquerading attacker. In this section, we’ll look at how ssl enables a 
server to authenticate itself.  

A natural question is, of course, if authenticating identities is so im-
portant, why don’t we always authenticate both parties? The answer 
lies in the nature of Web commerce. When you want to purchase 
something using your Web browser, it’s very important that the Web 
site you’re browsing is authentic. You wouldn’t want to send your 
credit card number to some imposter posing as your favorite mer-
chant. The merchant, on the other hand, has other means for 
authenticating your identity. Once it receives a credit card number, 
for example, it can validate that number. Since the server doesn’t 
need ssl to authenticate your identity, the ssl protocol allows for 
server authentication only. (The protocol does define a process for 
authenticating clients. Section 3.7. discusses that process.) 

Table 3-8 summarizes the actions each system takes to authenticate a 
server. The same steps are shown graphically in figure 3-5. The pro-
cess isn’t all that different from simple encryption. (Compare figure 
3-5 with figure 3-1.) The two messages in black are different when au-
thenticating a server. Those messages, the Certificate message and 
the ClientKeyExchange message, are discussed next. All other mes-
sages are the same as described in section 3.3. 

Table 3-8  Authenticating a Server 

Step Action 

1 Client sends ClientHello message proposing SSL options. 

2 Server responds with ServerHello  selecting the SSL options. 
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Step Action 

3 Server sends its public key certificate in Certificate message. 

4 Server concludes its part of the negotiation with ServerHello-
Done message. 

5 Client sends session key information (encrypted with server’s 
public key) in ClientKeyExchange message. 

6 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

7 Client sends Finished message to let the server check the newly 
activated options. 

8 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

9 Server sends Finished message to let the client check the newly 
activated options. 
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Figure 3-5  Two SSL messages authenticate a server's identity. 
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3.5.1 Certificate 

When authenticating its identity, the server sends a Certificate mes-
sage instead of the ServerKeyExchange message section 3.3.3 de-
scribed. The Certificate message simply contains a certificate chain 
that begins with the server’s public key certificate and ends with the 
certificate authority’s root certificate. 

The client has the responsibility to make sure it can trust the certifi-
cate it receives from the server. That responsibility includes verifying 
the certificate signatures, validity times, and revocation status. It also 
means ensuring that the certificate authority is one that the client 
trusts. Typically, clients make this determination by knowing the 
public key of trusted certificate authorities in advance, through some 
trusted means. Netscape and Microsoft, for example, preload their 
browser software with public keys for well-known certificate authori-
ties. Web servers that want to rely on this trust mechanism can only 
obtain their certificates (at least indirectly) from one of these well-
known authorities. 

One additional detail in the certificate verification process can some-
times seem subtle, but is nonetheless crucial for real security: The cli-
ent must ensure not only that the certificate is issued by a trusted 
authority, but that the certificate also unambiguously identifies the 
party with whom it wants to communicate. Consider, for example, a 
malicious company that receives a legitimate certificate from a 
trusted certificate authority under its own name, but then turns 
around and uses that certificate illegitimately to masquerade as a 
competitor. The unsuspecting client that communicates with this 
malicious company (believing that it is communicating with the 
competitor) will receive a legitimate certificate as part of the ssl ex-
change. The client, however, must be intelligent enough to detect 
that the certificate does not belong to the real competitor. For Web 
commerce, the key to solving this problem normally relies on the 
domain name of the server. Respected certificate authorities include 
the Internet domain name of the Web server in the certificates they 
issue. And Web browsers check the domain name in certificates they 
receive against the domain name their users attempt to contact. If, 



56 SSL & TLS Essentials: Securing the Web 

 

for example, a browser tries to connect to www.goodcompany.com 
and receives a certificate for www.badcompany.com, the browser 
knows something is amiss no matter how valid the certificate other-
wise appears. Appendix b contains additional information on verify-
ing certificates. 

3.5.2 ClientKeyExchange 

The client’s ClientKeyExchange message also differs in server au-
thentication, though the difference is not major. When encryption 
only is to be used, the client encrypts the information in the Client-
KeyExchange using the public key the server provides in its 
ServerKeyExchange message. In this case, of course, the server is au-
thenticating itself and, thus, has sent a Certificate message instead of 
a ServerKeyExchange. The client, therefore, encrypts its Client-
KeyExchange information using the public key contained in the 
server’s certificate. This step is important because it allows the client 
to make sure that the party with whom it is communicating actually 
possesses the server’s private key. Only a system with the actual pri-
vate key will be able to decrypt this message and successfully con-
tinue the communication. 

3.6 Separating Encryption from Authentication 

The previous section explained how a server can send a Certificate 
message instead of a ServerKeyExchange message to authenticate it-
self. One consequence of this approach is that the same public key 
information used to verify the server’s identity is also used to encrypt 
key material in the client’s ClientKeyExchange message. This con-
straint is not always desirable; indeed, in some cases it is actually im-
possible to support. 

The impossible cases are easiest to describe. Some public key algo-
rithms (such as the Digital Signature Algorithm) can only be used 
for signing. By their very design, they cannot be used for encryption. 
In such cases, it will be impossible for the client to encrypt its Cli-
entKeyExchange information using the server’s public key. 
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This limitation alone would be sufficient to require greater flexibility 
from the ssl protocol, but it is worthwhile to understand why com-
bining signing and encryption might be undesirable, even when the 
public key algorithm supports both operations. The most common 
reason for separating encryption from signing is based not on techni-
cal considerations, but on legal ones. Some countries, including im-
portant producers of cryptographic products such as the United 
States (at least at the time of this writing), control the use or the ex-
port of products that include cryptography. In particular, the United 
States makes it more difficult for suppliers to export cryptographic 
products that use encryption key lengths greater than a certain 
minimum. (Key lengths less than or equal to these limits are said to 
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Figure 3-6  Three SSL messages isolate authentication from encryption. 
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be exportable.) In principle, at least, the United States does not im-
pose the same restrictions on keys used for digital signatures. Systems 
that fall under u.s. jurisdiction, therefore, may prefer to use the long-
est practical keys for authenticating their identity (thus providing the 
strongest practical authentication), but use encryption keys that con-
form to the weaker export restrictions. 

Whatever the reason, ssl does provide a mechanism for separating 
server authentication from the encryption. Table 3-9 outlines the 
steps involved, and figure 3-6 illustrates the entire process. The figure 
highlights the three messages that are significant for separating en-
cryption and server authentication. They are the Certificate, 
ServerKeyExchange, and ClientKeyExchange messages. 

Table 3-9  Separating Server Authentication from Encryption 

Step Action 

1 Client sends ClientHello message proposing SSL options. 

2 Server responds with ServerHello  message selecting the SSL 
options. 

3 Server sends its public key certificate in Certificate message. 

4 Server sends the public key that the client should use to en-
crypt the symmetric key information in a ServerKeyExchange; 
this public key is signed with the public key in the server’s cer-
tificate. 

5 Server concludes its part of the negotiation with ServerHello-
Done message. 

6 Client sends session key information (encrypted with the public 
key provided by the server) in a ClientKeyExchange message. 

7 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

8 Client sends Finished message to let the server check the newly 
activated options. 

9 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send. 

10 Server sends Finished message to let the client check the newly 
activated options. 
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3.6.1 Certificate 

The Certificate message in this example is identical to the example 
in section 3.5, except that the public key in the server’s certificate will 
only be used to verify its identity. The client still has all the responsi-
bilities section 3.5.1 discussed, however. It must verify the certificate’s 
signatures, validity times, and revocation status, and it must ensure 
that the certificate authority is trusted, and that the certificate was is-
sued to the party with whom it wishes to communicate. 

3.6.2 ServerKeyExchange 

The server follows its Certificate message with a ServerKeyExchange 
message. It is this second message that contains the public key the 
client should use to encrypt session key information. The 
ServerKeyExchange is the same message that we saw when no au-
thentication was involved, and the information contained in the mes-
sage is the same as described in section 3.3.3—with one significant 
difference: Unlike the example of section 3.3, in which the server keys 
were sent by themselves, in this scenario, the key information is 
signed using the public key contained in the server’s certificate. This 
step is essential to give the client a way to verify that the server really 
does possess the private key corresponding to its public key certifi-
cate. 

3.6.3 ClientKeyExchange 

The client uses a ClientKeyExchange message to finish the negotia-
tion process, just as it does in other scenarios. As before, this message 
contains the key information for the symmetric encryption algorithm 
the two parties have selected. Also as before, this information is en-
crypted using the server’s public key. It is important to note that the 
public key used for this encryption is the public key from the 
ServerKeyExchange message, not the public key from the server’s 
Certificate message (even if that public key algorithm supports en-
cryption). 
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3.7 Authenticating the Client’s Identity 

Since ssl includes mechanisms to authenticate a server’s identity, it is 
natural to expect that the protocol also defines a way to authenticate 
a client’s identity. Indeed, that is the case; the mechanism is very 
similar to that for server authentication. You can see the whole proc-
ess in figure 3-7, which highlights the messages that are significantly 
different from the message flows we’ve considered so far. Those mes-
sages are the CertificateRequest, the client’s Certificate message, and 
the CertificateVerify. Table 3-10 highlights the role of those messages 
by summarizing the entire message flow. The rest of this section de-
scribes them in more detail. 

Table 3-10  Client Authentication 

Step Action 

1 Client sends ClientHello message proposing SSL options. 

2 Server responds with ServerHello  selecting the SSL options. 

3 Server sends its public key certificate in Certificate message. 

4 Server sends a CertificateRequest message to indicate that it 
wants to authenticate the client. 

5 Server concludes its part of the negotiation with ServerHello-
Done message. 

6 Client sends its public key certificate in a Certificate message. 

7 Client sends session key information (encrypted with the 
server’s public key) in a ClientKeyExchange message. 

8 Client sends a CertificateVerify message, which signs importa-
tion information about the session using the client’s private 
key; the server uses the public key from the client’s certificate 
to verify the client’s identity. 

9 Client sends a ChangeCipherSpec message to activate the ne-
gotiated options for all future messages it will send. 

10 Client sends a Finished message to let the server check the 
newly activated options. 

11 Server sends a ChangeCipherSpec message to activate the ne-
gotiated options for all future messages it will send. 

12 Server sends a Finished message to let the client check the 
newly activated options. 
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3.7.1 CertificateRequest 

In any ssl exchange, the server determines whether client authenti-
cation is required. The client has no choice of its own; it simply com-
plies with the server's wishes. If the server does require client 
authentication, it indicates that by sending a CertificateRequest mes-
sage as part of its hello negotiation.  

As figure 3-7 indicates, the server sends the CertificateRequest after 
its own Certificate message. Although not shown in the figure, the 

Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

5

7

12

CertificateRequest 4

Certificate6

CertificateVerify8

10

11

Client

9

 

Figure 3-7  Three SSL messages authenticate a client's identity. 
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CertificateRequest would also follow any ServerKeyExchange mes-
sage the server sends. Note, however, that the ssl specification for-
bids a server from sending a CertificateRequest if it is not also 
authenticating itself (by sending a Certificate message). This restric-
tion ensures that the client will know the server’s identity before re-
vealing its own. 

The CertificateRequest message contains two fields: a list of certifi-
cate types and a list of distinguished names, as table 3-11 indicates. 

Table 3-11  CertificateRequest Components 

Field Use 

CertificateTypes A list of certificate types acceptable to the 
server. 

Distinguished-
Names 

A list of distinguished names of certificate au-
thorities acceptable to the server. 

The CertificateTypes field lists the various types of certificates (dif-
ferentiated by the particular signature algorithm employed) that the 
server will accept. The certificate types are listed in order of decreas-
ing preference. The DistinguishedNames field identifies the certifi-
cate authorities (denoted by their distinguished name; see appendix a) 
that the server will accept. No preference is implied by the order in 
which the different authorities appear in this list. 

3.7.2 Certificate 

A client normally responds to the certificate request by sending its 
own Certificate message immediately after receiving the ServerHel-
loDone. The format of the client’s Certificate message is identical to 
the server’s Certificate message that section 3.5.1 discussed; both con-
tain a certificate chain beginning with the local system’s certificate 
and ending with the certificate authority’s root certificate. If a client 
does not possess a certificate that meets the server’s criteria (or if it 
has no certificate at all), it responds with a NoCertificateAlert. The 
server can choose to ignore this alert and continue with the commu-
nication (though it will be unable to verify the client’s identity), or it 
can terminate the session at that point. 
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Note that ssl only uses the client’s public key for digital signatures. 
Unlike for the server’s public key, there is no protocol function that 
uses the client’s public key for encryption. There is no need, there-
fore, to explicitly separate client authentication from encryption, so 
ssl has no client equivalent for the ServerKeyExchange message. 
(The ClientKeyExchange, as we’ve seen, transfers symmetric key in-
formation, not public key information.) 

3.7.3 CertificateVerify 

Simply sending a client Certificate message does not complete the 
process of authenticating the client’s identity. The client must also 
prove that it possesses the private key corresponding to the certifi-
cate’s public key. For its proof, the client uses a CertificateVerify mes-
sage. This message contains a digitally signed cryptographic hash of 
information available to both the client and the server. Specifically, 
the client signs a hash of the information table 3-12 lists. The server 
also has this information, and it will receive (in the Certificate mes-
sage) the client’s public key. The server can then verify the signature 
and make sure that the client possesses the appropriate private key. 

Table 3-12  Information Authenticated by CertificateVerify Message 

• Key information. 

• Contents of all previous SSL handshake messages exchanged by 
the systems. 

From looking at figure 3-7, you might wonder why the Certificat-
eVerify message doesn’t immediately follow the Certificate message. 
Instead of this seemingly natural order, ssl has the client send a Cli-
entKeyExchange message between the two. The reason for this mes-
sage order is based on the cryptographic contents of the messages. 
The CertificateVerify message relies on cryptographic values that are 
computed and transferred to the server in the ClientKeyExchange. 
Until the server receives the ClientKeyExchange, it cannot validate 
the CertificateVerify message. (Chapter 4 contains a more detailed 
discussion of the specific computations each side employs.) 
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3.8 Resuming a Previous Session 

As this chapter has demonstrated, establishing an ssl session may be 
complex, requiring sophisticated cryptographic calculations and a 
significant number of protocol messages. To minimize the overhead 
of these calculations and messages, ssl defines a mechanism by 
which two parties can reuse previously negotiated ssl parameters. 
With this method, the parties do not need to repeat the crypto-
graphic negotiations or authentication calculations; they simply con-
tinue from where they left off before. As table 3-13 and figure 3-8 
show, resuming earlier sessions notably streamlines the negotiation. 

Table 3-13  Resuming a Session 

Step Action 

1 Client sends ClientHello message specifying a previously estab-
lished SessionID. 

2 Server responds with ServerHello  message agreeing to this 
SessionID. 
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Figure 3-8  It only takes six messages to resume an SSL session. 
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Step Action 

3 Server sends ChangeCipherSpec message to reactivate the ses-
sion’s security options for messages it will send. 

4 Server sends Finished message to let the client check the newly 
reactivated options. 

5 Client sends ChangeCipherSpec message to reactivate the ne-
gotiated options for all future messages it will send. 

6 Client sends Finished message to let the server check the newly 
reactivated options. 

As the figure indicates, after the server sends it ServerHello message, 
it immediately sends ChangeCipherSpec and Finished messages. 
Similarly, the client only sends ChangeCipherSpec and Finished 
messages once it receives the ServerHello. In both cases, the 
ChangeCipherSpec directs each party to make the previously active 
cipher suite active once again. 

The key to session resumption is the ClientHello message. The client 
proposes to resume a previous session by including that session’s Ses-
sionID value in its ClientHello. (Recall from the discussion in sec-
tion 3.3.1 that this value is left empty when an ssl session is first 
established; the server can supply a value in its ServerHello re-
sponse.) If the server wishes to accept the client’s proposal and re-
sume the earlier session, it indicates its acceptance by including the 
same SessionID value in its own ServerHello. If the server elects not 
to resume the earlier session, it sends a different SessionID value and 
the full negotiation then takes place. 

Although session resumption offers a great deal of convenience and 
efficiency to the systems that use it, those systems should exercise 
some care in employing it. When a single key is employed, encryp-
tion inevitably becomes less secure, both as more information is pro-
tected and as time passes. Potential attackers gain more data to 
analyze and more time to perform the analysis. Systems that consider 
using ssl session resumption should weigh those considerations 
against the expected efficiency and convenience gains. 
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4 
 Message Formats 

With chapter 3’s description of the various ssl messages and how 
they’re used in mind, it is time to turn our attention to the detailed 
formats of those messages. Unfortunately, at least for those used to 
reading protocol specifications, the ssl standard uses a novel ap-
proach for describing that formatting, and although concise and easy 
to present in textual documents, the ssl descriptions may be a bit 
confusing for many networking professionals. For that reason, we’ll 
use a more conventional approach—pictures—in this chapter. 

The ssl protocol itself consists of several different components or-
ganized as figure 4-1 illustrates. Four different sources create ssl mes-
sages: the ChangeCipherSpec protocol, the Alert protocol, the 
Handshake protocol, and applications like http. The Record Layer 
protocol accepts all of these messages, then formats and frames them 
appropriately, and passes them to a transport layer protocol such as 
tcp for transmission. 
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Figure 4-1  SSL consists of several component protocols. 
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This chapter begins with a discussion of the requirements ssl im-
poses on the transport protocol. It then describes the details of each 
ssl component. The final subsections document the cryptographic 
calculations and options available with ssl. 

4.1 Transport Requirements 

The Secure Sockets Layer does not exist as a protocol in isolation. 
Rather, it depends on additional lower-level protocols to transport its 
messages between peers. The ssl protocol requires that the lower 
layer be reliable; that is, it must guarantee the successful transmission 
of ssl messages without errors and in the appropriate order. In all 
practical implementations, ssl relies on the Transmission Control 
Protocol (tcp) to meet those requirements. 
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Figure 4-2  SSL can combine messages within TCP segments. 
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Like all protocols that use tcp, ssl is self-delimiting. That means 
that ssl can determine the beginning and end of its own messages 
without assistance from the transport layer. To mark these beginnings 
and endings, ssl puts its own explicit length indicator in every mes-
sage. This explicit delimiter lets ssl combine multiple ssl messages 
into single tcp segments. Figure 4-2 shows a typical ssl handshake 
sequence. Note that nine separate ssl messages result in only four 
tcp segments. This combination conserves network resources and in-
creases the efficiency of the ssl protocol. 

4.2 Record Layer 

The Secure Sockets Layer uses its Record Layer protocol to encapsu-
late all messages. Figure 4-3 emphasizes the Record Layer’s position 
in the ssl architecture. It provides a common format to frame Alert, 
ChangeCipherSpec, Handshake, and application protocol messages. 

The Record Layer formatting consists of 5 bytes that precede other 
protocol messages and, if message integrity is active, a message au-
thentication code at the end of the message. The Record Layer is 
also responsible for encryption if that service is active. 

Figure 4-4 shows the structure of Record Layer formatting. Table 4-1 
describes the figure’s individual fields, with the exception of encryp-
tion and message authentication codes. Those fields are the subject of 
section 4.7. In the previous figure, multibyte fields are shown in net-
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Figure 4-3  The Record Layer formats and frames all SSL messages. 
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work byte order, sometimes known as big endian. Higher-order bytes 
(those that are most significant) appear first in the figures. 

Table 4-1  SSL Record Layer Fields 

Field Size Usage 

Protocol 1 byte Indicates which higher-layer protocol is 
contained in this SSL Record Layer message. 

Version 2 bytes The major and minor version of the SSL 
specification to which this message con-
forms. The current SSL version is 3.0 (but see 
the sidebar). 

Length 2 bytes The length of the following higher-layer 
protocol messages as a 16-bit binary num-
ber. The SSL specification requires that this 
value not exceed 214 (16 384). 

Protocol 
Messages 

n bytes Up to 214 (16 384) bytes of higher-layer pro-
tocol messages, including message authen-
tication codes; the SSL Record Layer may 
concatenate multiple higher-layer mes-
sages into a single Record Layer message. 
Those messages must all belong to the 
same higher-layer protocol. Also, as a con-
sequence of this potential concatenation, 
each higher-layer protocol itself must be 
self-delimiting. 

The ssl specification defines the four different higher-layer protocols 
that the Record Layer can encapsulate. For any particular message, 
the Protocol field indicates the specific higher-layer protocol. Table 
4-2 lists the values for that field. 

Length...

...Length

Protocol Version
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Protocol Message(s)

Encrypted
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Figure 4-4  SSL’s Record Layer encapsulates all protocol messages. 

SSL vs. TLS 

The TLS protocol 
uses a version 
value of 3.1 in-
stead of 3.0. 
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Table 4-2  Record Layer Protocol Types 

Type Value Protocol 

20 ChangeCipherSpec protocol 

21 Alert protocol 

22 Handshake protocol 

23 Application protocol data 

4.3 ChangeCipherSpec Protocol 

The ChangeCipherSpec protocol is the simplest possible protocol—
it has only one message. That message is the ChangeCipherSpec 
message introduced in chapter 3. Despite this simplicity, though, ssl 
treats ChangeCipherSpec as a separate protocol. As figure 4-5 shows, 
it has the same position in the ssl architecture as other protocols, in-
cluding the Alert, Handshake, and application data. 

At first glance, this approach might seem like overkill. Why not just 
consider the ChangeCipherSpec message to be part of the Hand-
shake protocol, for example? More careful analysis, however, reveals 
that ChangeCipherSpec messages must be a separate protocol. Oth-
erwise, ssl couldn’t function. The requirement arises because of the 
record layer encapsulation. The ssl protocol applies security services 
such as encryption to entire Record Layer messages at once. The 
ChangeCipherSpec message, however, indicates a change in those 
services. (Typically, it activates them.) Since encryption cannot be 
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Figure 4-5  ChangeCipherSpec messages are a separate protocol. 
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applied to parts of a message, it is impossible for any other message 
to follow a ChangeCipherSpec message within a Record Layer mes-
sage. The most effective way to outlaw such combinations is to de-
fine ChangeCipherSpec as a separate protocol, and that is exactly 
what the ssl specification does.1 

The ChangeCipherSpec message itself is quite simple, as figure 4-6 
shows. The figure also shows how the entire message is encapsulated 
in a Record Layer message. (The Record Layer header is shaded in 
the figure.) The Record Layer has a protocol type value of 20, a pro-
tocol version of 3.0, and a length of 1. The ChangeCipherSpec mes-
sage itself consists only of a single byte. It has the value 1. 

4.4 Alert Protocol 

Systems use the Alert protocol to signal an error or caution condition 
to the other party in their communication. This function is impor-
tant enough to warrant its own protocol, and ssl assigns it protocol 
type 21. As figure 4-7 illustrates, the Alert protocol, like all ssl proto-
cols, uses the Record Layer to format its messages. Figure 4-8 shows 
the resulting message format. The Alert protocol itself defines two 
fields: a severity level and an alert description. 

4.4.1 Severity Level 

The first field indicates the severity of the condition that caused the 
alert. Alerts can either be warnings (with a severity level of 1) or fatal 

_________________ 
1 The ssl specification theoretically allows multiple ChangeCipherSpec messages in 
a single Record Layer message. That would create the same problems described 
above. Fortunately, however, there is no practical reason to combine messages that 
way, so the problem does not arise in real implementations. 
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CCS: 1
 

Figure 4-6  The ChangeCipherSpec message is very simple. 
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(severity level 2). Fatal alerts represent significant problems with the 
communication, and require that both parties terminate the session 
immediately. Warning alerts are not quite as drastic. A system receiv-
ing such an alert may decide to allow the present session to continue; 
however, both parties must invalidate the ssl session for any future 
connections, and they must not try to resume the session later. 

4.4.2 Alert Description 

The second field in an Alert protocol describes the specific error in 
more detail. The field is a single byte, and it can take on the values 
listed in table 4-3. 

Table 4-3  Alert Protocol Descriptions 

Value Name Meaning 

0 CloseNotify The sending party indicates explicitly that it is 
closing the connection; closure alerts have a 
warning severity level. 

10 Unexpected-
Message 

The sending party indicates that it received 
an improper message; this alert is always fatal. 
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Figure 4-7  The Alert protocol signals error conditions. 
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Figure 4-8  Alert protocol messages have only two fields. 
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SSL vs. TLS 

The TLS protocol 
eliminates alert 
description 41 
(NoCertificate) 
and adds a 
dozen other val-
ues. 

Value Name Meaning 

20 BadRecord-
MAC 

The sending party indicates that its has re-
ceived a message for which the message au-
thentication code failed; this alert is always 
fatal. 

30 Decompres-
sionFailure 

The sending party indicates that it received 
data that it could not decompress; this alert is 
always fatal. 

40 Hand-
ShakeFailure 

The sending party indicates that it was not 
able to negotiate an acceptable set of security 
services for the session; this alert is always fa-
tal. 

41 NoCertificate The sending party (which is always a client) 
indicates that it has no certificate that can sat-
isfy the server’s CertificateRequest. 

42 BadCertifi-
cate 

The sending party received a certificate that 
was corrupt (e.g. , its signature could not be 
verified). 

43 Unsupported 
Certificate 

The sending party received a certificate of a 
type that it could not support. 

44 Certificate-
Revoked 

The sending party received a certificate that 
has been revoked by the certificate authority. 

45 Certificate-
Expired 

The sending party received a certificate that 
has expired. 

46 Certificate-
Unknown 

The sending party indicates an unspecified 
problem with a certificate it received. 

47 IllegalParam-
eter 

The sending party indicates that it received a 
handshake message with a parameter value 
that was illegal or inconsistent with other pa-
rameters. 

4.5 Handshake Protocol 

Most of the ssl specification describes the Handshake protocol, as it 
is the one primarily responsible for negotiating ssl sessions. As figure 
4-9 shows, the Handshake protocol relies on the Record Layer to en-
capsulate its messages. Figure 4-10 illustrates their general format, 
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and indicates that multiple handshake messages may be (and fre-
quently are) combined into a single Record Layer message. 

Each handshake message begins with a single byte that defines the 
specific type of handshake message. Table 4-4 lists the values that ssl 
defines. The type byte is followed by 3 bytes that define the length of 
the body of the handshake message. This length is measured in bytes 
and it does not include the type or length fields of the message. The 
remainder of this section describes each handshake message in detail. 
With one exception, the text follows the order of table 4-4. Client-
KeyExchange is discussed before the CertificateVerify, since the Cer-
tificateVerify message relies on information from the ClientKey-

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

 

Figure 4-9  The Handshake protocol handles session negotiation. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Msg Length...
Msg
Type

Msg
Type

Msg Length

Handshake Message

Handshake Message

...  

Figure 4-10  Handshake protocol messages may be combined. 
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Exchange. This approach also follows the order of messages in actual 
communication sessions more closely. 

Table 4-4  Handshake Protocol Types 

Value Handshake Protocol Type 

0 HelloRequest 

1 ClientHello 

2 ServerHello 

11 Certificate 

12 ServerKeyExchange 

13 CertificateRequest 

14 ServerHelloDone 

15 CertificateVerify 

16 ClientKeyExchange 

20 Finished 

4.5.1 HelloRequest 

The HelloRequest allows a server to ask a client to restart the ssl 
handshake negotiation. The message is not often used (and thus does 
not appear in any of the example scenarios of chapter 3), but it does 
give servers additional options. If a particular connection has been in 
use for so long that its security is unacceptably weakened, for exam-
ple, the server can send a HelloRequest to force to client to negotiate 
new session keys. Figure 4-11 shows the format of the HelloRequest 
message. As is clear from the figure, the HelloRequest is quite sim-
ple. It has a handshake message type of 0, and, since its message 
body is empty, its handshake message length is also 0. 

Len: 0

4

Prot: 22 Vers: 3 0

Type: 0 Len: 0 0

0
 

Figure 4-11  HelloRequest messages use a simple format. 
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SSL vs. TLS 

The TLS protocol 
uses a version 
value of 3.1 in-
stead of 3.0. 

4.5.2 ClientHello 

The ClientHello message normally begins an ssl handshake negotia-
tion. Figure 4-12 shows the fields that make up a ClientHello mes-
sage. ClientHello messages have a handshake message type of 1, and 
a variable message body size. Two bytes immediately following the 
message length identify the ssl protocol version. Values of 3 and 0 
for this field indicate ssl version 3.0. Although this information is 
essentially the same as that in the Record Layer encapsulation, in 
theory, at least, it allows the Record Layer and Handshake protocols 
to evolve independently. 

After the protocol version, the client inserts a 32-byte random num-
ber. The ssl specification suggests that clients use the current date 
and time (up to the second) as the first 4 bytes of this random num-
ber, but it does not demand any particular degree of accuracy. Includ-
ing the date and time reduces the possibility of duplicating the 
random value, which, if it were to inadvertently occur, could com-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 1 Length...

Vers: 3 0

ClientRandomValue
(32 bytes)

ID len

Session ID

CipherSuite length CipherSuite 1

CipherSuite 2

CipherSuite n Cmp len Cmp 1

Cmp 2 Cmp n...
 

Figure 4-12  The ClientHello message proposes CipherSuites. 
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promise security. A client, for example, might not be able to remem-
ber previous values in between reboots or resets. Including the date 
and time eliminates the possibility of duplicating an old value (as-
suming that the reboot or reset process takes at least one second). 

The byte after the random value contains the length, in bytes, of the 
session id; the session id itself follows next. Unless a client wishes to 
resume a previous session, it leaves out the session id (and sets the id 
length to 0). The ssl protocol limits session ids to 32 bytes or fewer, 
but it places no constraints on their content. Note, though, that since 
session ids are transmitted in ClientHellos before any encryption is 
enabled, implementations should not place any information in the 
session id that might, if revealed, compromise security. 

The client’s list of proposed cipher suites follows the session id. The 
list begins with a single byte indicating the size of the list. The size is 
measured in bytes, even though cipher suites themselves are 2-byte 
quantities. A client proposing five cipher suites, for example, would 
set the CipherSuite length field to 10. Table 4-5 lists the ssl version 
3.0 cipher suites; for details on each suite, refer to section 4.7. 

Table 4-5  SSL Version 3.0 CipherSuite Values 

Value Cipher Suite 

0,0 SSL_NULL_WITH_NULL_NULL 

0,1 SSL_RSA_WITH_NULL_MD5 

0,2 SSL_RSA_WITH_NULL_SHA 

0,3 SSL_RSA_EXPORT_WITH_RC4_40_MD5 

0,4 SSL_RSA_WITH_RC4_128_MD5 

0,5 SSL_RSA_WITH_RC4_128_SHA 

0,6 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 

0,7 SSL_RSA_WITH_IDEA_CBC_SHA 

0,8 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 

0,9 SSL_RSA_WITH_DES_CBC_SHA 

0,10 SSL_RSA_WITH_3DES_EDE_CBC_SHA 

0,11 SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA 

0,12 SSL_DH_DSS_WITH_DES_CBC_SHA 
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SSL vs. TLS 

The TLS protocol, 
by default, does 
not include sup-
port for the For-
tezza/DMS cipher 
suites, the last 3 
listed in the ta-
ble. In addition, 
the TLS stan-
dardization 
process makes it 
much easier to 
define new ci-
pher suites. As of 
this writing, doz-
ens have been 
proposed. In a 
similar manner, 
TLS makes it eas-
ier to define 
compression 
methods.

Value Cipher Suite 

0,13 SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA 

0,14 SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA 

0,15 SSL_DH_RSA_WITH_DES_CBC_SHA 

0,16 SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA 

0,17 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA 

0,18 SSL_DHE_DSS_WITH_DES_CBC_SHA 

0,19 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA 

0,20 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA 

0,21 SSL_DHE_RSA_WITH_DES_CBC_SHA 

0,22 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA 

0,23 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 

0,24 SSL_DH_anon_WITH_RC4_128_MD5 

0,25 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA 

0,26 SSL_DH_anon_WITH_DES_CBC_SHA 

0,27 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA 

0,28 SSL_FORTEZZA_DMS_WITH_NULL_SHA 

0,29 SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA 

0,30 SSL_FORTEZZA_DMS_WITH_RC4_128_SHA 

The final fields of a ClientHello message list the compression meth-
ods that the client proposes for the session. The list begins with a 
length byte; individual compression methods follow as single-byte 
values. As a practical matter, though, no compression methods other 
than the null compression have been defined for ssl version 3. Con-
sequently, all current implementations set the compression length to 1 
and the next byte to 0, indicating no compression. 

4.5.3 ServerHello 

The ServerHello message closely resembles the ClientHello message, 
as figure 4-13 shows. The only significant differences are the value of 
the handshake message type (2 instead of 1) and the fact that the 
server specifies a single cipher suite and compression method rather 
than a  list. The values identified by the server are those that the par-
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ties will use for the session; the server must pick from among the 
choices the client proposed. 

The server may include, at its own discretion, a SessionID in the 
ServerHello message. If the server includes this field, it will allow the 
client to attempt to reuse the session at some point in the future. 
Servers that don’t wish to allow a session to be reused may omit the 
SessionID field by specifying a length of 0. 

4.5.4 Certificate 

The Certificate message is relatively straightforward, as figure 4-14 
makes clear. Its Handshake protocol message type is 11, and it begins 
with that message type and the standard handshake message length. 
The body of the message contains a chain of public key certificates. 
That chain begins with 3 bytes that indicate its length. (The value for 
the chain length is always three less than the value of the message 
length.) Each certificate in the chain also begins with a 3-byte field 
that holds the size of the certificate. The message first indicates the 
overall length of the certificate chain. Then it indicates the length of 
each certificate with 3 bytes immediately preceding the certificate.  

Certificate chains allow ssl to support certificate hierarchies. The 
first certificate in the chain is always that of the sender. The next cer-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 2 Length...

Vers: 3 0

ServerRandomValue
(32 bytes)

ID len

Session ID

CipherSuite Compr
 

Figure 4-13  The ServerHello message designates the CipherSuite. 
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tificate is that of the authority that issued the sender’s certificate. The 
third certificate (if one is present) belongs to the ca for that author-
ity, and so on. The chain continues until it reaches a certificate for a 
root certificate authority. 

4.5.5 ServerKeyExchange 

The ServerKeyExchange message carries key information from the 
server to the client. Its exact format depends on the cryptographic al-
gorithms being used to exchange key information. The various for-
mats—which correspond to Diffie-Hellman, rsa, and Fortezza key 
exchange protocols—are illustrated in figures 4-15, 4-16, and 4-17. In 
all cases, the handshake message type has the value 12. Note that 
there is no explicit indication in the message itself of the particular 
format it employs. Clients must use knowledge they possess from 
previous handshake messages (the key exchange algorithm from the 
selected cipher suite in the ServerHello message and the signing al-
gorithm, if relevant, from the Certificate message) to interpret a 
ServerKeyExchange message correctly. 

The first of the three figures, figure 4-15, shows a ServerKeyExchange 
message for Diffie-Hellman key exchange. The three Diffie-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 11 Message Length...

Certificate n

Certificate Chain Length

Certificate 1 Length

Certificate 1

Certificate n Length

...

 

Figure 4-14  The Certificate message contains a certificate chain. 
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Hellman parameters (p, q, and ys) make up the first six fields after 
the message length. Each parameter includes its own length, fol-
lowed by the actual value.  

For rsa key exchange messages (figure 4-16), the key information 
consists of the rsa modulus and public exponent. Each of those pa-
rameters is carried in the message as a length, followed by the value. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 12 Length...

RSA mod len RSA ...

... mod value RSA exp length

RSA exp value

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash [if RSA or DSA signing]
(20 bytes)

 

Figure 4-16  ServerKeyExchange carries RSA parameters. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 12 Length...

DH p length DH p ...

...value DH q length

DH q value DH Y  length

DH Y  value

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash [if RSA or DSA signing]
(20 bytes)

s

s

 

Figure 4-15  ServerKeyExchange carries Diffie-Hellman parameters. 
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When the systems employ Fortezza/dms key exchange, the 
ServerKeyExchange message carries the Fortezza rs value. Since rs is 
always 128 bytes in size, there is no need for a separate length pa-
rameter in the ServerKeyExchange message. The handshake message 
length of 128 is sufficient, as figure 4-17 indicates. 

The figures also show that a ServerKeyExchange may include signed 
parameters. Again, the exact format of those parameters depends on 
the specific signature algorithm the server supports. If server authen-
tication is not part of a particular ssl session, then no signing is em-
ployed, and the ServerKeyExchange message ends with the Diffie-
Hellman, rsa, or Fortezza parameters. This option corresponds to 
the encryption-only scenario of section 3.3. 

If the server is not acting anonymously and has sent a Certificate 
message, however, then the signed parameters format depends on the 
signature algorithm indicated in the server’s certificate. If the server’s 
certificate is for rsa signing, then the signed parameters consist of 
the concatenation of two hashes: an md5 hash and a sha hash. Note 
that a single signature for the combined hashes is included, not sepa-
rate signatures for each hash. If the server’s certificate is for dsa sign-
ing, then the signed parameters consist solely of a sha hash. In either 
case, the input to the hash functions (and, thus, the data being 
signed) is constructed as in figure 4-18. 

That data consists of the client’s random value (from the Client-
Hello), followed by the server’s random value (in the ServerHello), 
followed by the key exchange parameters (either the Diffie-Hellman 
parameters of figure 4-15 or the rsa parameters of figure 4-16). No 
signed parameters are included for Fortezza/dms key exchange. 

128

132

Prot: 22 Vers: 3 0

Type: 12

Fortezza rs

(128 bytes)

Len: 0 0

Len: 0

 

Figure 4-17  ServerKeyExchange carries Fortezza/DMS parameters. 
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4.5.6 CertificateRequest 

To authenticate a client’s identity, a server first sends a CertificateRe-
quest message. This message not only asks a client to send its certifi-
cate (and to sign information using the private key for that 
certificate), it also tells the client which certificates are acceptable to 
the server. Figure 4-19 shows the format for this information. 

The CertificateRequest message is handshake message type 13; after 
the handshake type and length, the message contains a list of accept-
able certificate types. This type list begins with its own length (a 
one-byte value), and consists of one or more single-byte values that 
identify specific certificate types. Table 4-6 lists the defined certifi-
cate type values and their meanings. 

ClientHello Random Value ServerHello Random Value Server Key Parameters

H( )

hash  

Figure 4-18  The server signs a hash of ServerKeyExchange parameters. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 13 Length...

CT len CT 1 CT 2

... CT n CAs length

CA 1 length

DN of CA 1

...  

Figure 4-19  The CertificateRequest message asks for specific certificates. 
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Table 4-6  Certificate Types 

CT Value Certificate Type 

1 RSA signing and key exchange 

2 DSA signing only 

3 RSA signing with fixed Diffie-Hellman key exchange 

4 DSA signing with fixed Diffie-Hellman key exchange 

5 RSA signing with ephemeral Diffie-Hellman key exchange 

6 DSA signing with ephemeral Diffie-Hellman exchange 

20 Fortezza/DMS signing and key exchange 

In addition to certificate types, the CertificateRequest message also 
indicates which certificate authorities the server considers appropri-
ate. This list begins with its own 2-byte length field and then con-
tains one or more distinguished names. Each distinguished name has 
its own length field, and unambiguously identifies a certificate au-
thority. For more details on distinguished names, see appendix a. 

4.5.7 ServerHelloDone 

The ServerHelloDone message concludes the server’s part of a hand-
shake negotiation. This message does not carry any additional infor-
mation; it takes the simple form of figure 4-20. The handshake 
message type is 14, and the message body length is 0. 

4.5.8 ClientKeyExchange 

With a ClientKeyExchange message, the client provides the server 
with the key materials necessary for securing the communication; the 
exact format of the message depends on the specific key exchange al-
gorithm the parties are using. The three possibilities that ssl allows 
are rsa, Diffie-Hellman, and Fortezza/dms key exchange. Figures 

0

Len: 0

4

Prot: 22 Vers: 3 0

Type: 14 Len: 0 0

 

Figure 4-20  A ServerHelloDone message ends the server’s negotiation. 
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4-21, 4-22, and 4-23 show the message formats for each. Note that the 
ClientKeyExchange message does not include an explicit indication 
of the format or key exchange algorithm. Rather, both parties infer 
the format by knowing the key exchange algorithm of the negotiated 
cipher suite. 

The first message format is for rsa key exchange. As figure 4-21 indi-
cates, the message has a handshake message type of 16, and the stan-
dard handshake message length. The message body itself consists 
solely of the encrypted premaster secret. This premaster secret is en-
crypted using the public key of the server, as received in the 
ServerKeyExchange or Certificate message. 

The premaster secret is a preliminary step in deriving the master se-
cret for the session. (The master secret, discussed in detail in the next 
subsection, is the source of all the essential cryptographic data for the 
session.) For rsa key exchange, the premaster secret is simply 2 bytes 
for the version of ssl the client supports (3 and 0, for version 3.0) fol-
lowed by 46 securely generated random bytes. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

Encrypted Premaster Secret

 

Figure 4-21  For RSA, the ClientKeyExchange carries a premaster secret. 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

DH Y  value

DH Y  lengthc

c

 

Figure 4-22  For ephemeral Diffie-Hellman, ClientKeyExchange carries Yc. 
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When the key exchange protocol is Diffie-Hellman, there are two 
possibilities for the ClientKeyExchange message. If the Diffie-
Hellman exchange is ephemeral, then the message takes the format 
of figure 4-22. As the figure shows, the message body contains the 
client’s yc value, preceded by the length of that value. If the Diffie-
Hellman exchange is explicit, then the yc value is carried in the cli-
ent’s certificate. In that case, the ClientKeyExchange will be empty. 

For Fortezza/dms key exchange, the ClientKeyExchange message of 
figure 4-23 requires a set of parameters. Table 4-7 lists the details. 

Table 4-7  Fortezza/DMS ClientKeyExchange Parameters 

Parameter Size 

Size of the Yc value 2 bytes 

The Yc value (between 64 and 128 bytes), or nothing if 

Yc is in the client’s certificate 

0 – 128 bytes 

The client’s Rc value 128 bytes 

The Key Encryption Algorithm’s public key, signed with 
the client’s DSS private key 

20 bytes 

The client’s write key, wrapped by the Token Encryp-
tion Key (TEK) 

12 bytes 

The client’s read key, wrapped by the Token Encryption Key 12 bytes 

The client’s initialization vector 24 bytes 

The server’s initialization vector 24 bytes 

The master secret initialization vector used for en-
crypting the premaster secret 

24 bytes 

The premaster secret, which is a securely generated 
random value, encrypted by the TEK 

48 bytes 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

Fortezza Key Material
(10 values)

 

Figure 4-23  For Fortezza, the ClientKeyExchange carries key material. 
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4.5.9 CertificateVerify 

A client proves that it possesses the private key corresponding to its 
public key certificate with a CertificateVerify message. The message, 
as figure 4-24 shows, consists of hashed information digitally signed 
by the client. The exact format of the information depends on 
whether the client’s certificate indicates rsa or dsa signing. For rsa 
certificates, two separate hashes are combined and signed: an md5 
hash and a sha hash. One signature covers both hashes; there are not 
two separate signatures. For dsa certificates, only a sha hash is cre-
ated and signed. 

In all cases, the information that serves as input to the hash functions 
(and, thus, is the information that is digitally signed) is the same. 
Clients build the information in three steps. First they compute a 
special value known as the master secret. Section 4.6.3 describes how 
this master secret is used in various cryptographic computations; for 
now, we’re only concerned with how systems create a master secret. 
To calculate the master secret value, the client follows the process 
given in table 4-8. Figure 4-25 shows the calculation as an equation. 

Table 4-8  Master Secret Calculation 

Step Action 

1 Begin with the 48-byte premaster secret. The client creates this 
value and sends it to the server in the ClientKeyExchange mes-
sage. (See the previous section for details.) 

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 15 Length...

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash
(20 bytes)

 

Figure 4-24  The CertificateVerify message contains a signed hash. 
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SSL vs. TLS 

The TLS protocol 
uses a slightly 
different hash 
calculation for 
the Certificate-
Verify hash; it 
does not involve 
the master se-
cret.

Step Action 

2 Calculate the SHA hash of the ASCII character ‘A’ followed by the 
premaster secret, the client’s random value (from the Client-
Hello) and the server’s random value (from the ServerHello). 

3 Calculate the MD5 hash of the premaster secret, followed by the 
output of step 2. 

4 Calculate the SHA hash of the two ASCII characters ‘BB’, the pre-
master secret, the client’s random value (from the ClientHello), 
and the server’s random value (from the ServerHello). 

5 Calculate the MD5 hash of the premaster secret followed by the 
output of step 4. 

6 Concatenate the results from step 5 to the results from step 3. 

7 Calculate the SHA hash of the three ASCII characters ‘CCC’ fol-
lowed by the premaster secret, the client’s random value (from 
the ClientHello), and the server’s random value (from the 
ServerHello). 

8 Calculate the MD5 hash of the premaster secret, followed by the 
output of step 7. 

9 Concatenate the results from step 8 to the results from step 6. 

Once the client has the master secret value, it moves to the next stage 
in building the CertificateVerify message. The client creates a hash of 
the full contents of all previous ssl handshake messages exchanged 
during the session, followed by the master secret, followed by the 
single-byte value 001100110, repeated 48 times for md5 and 40 times 
for sha. In the third step, the client creates a new hash using the 
same master secret, followed by the binary value 01011100, repeated 
48 times for md5 and 40 times for sha, followed by the output of the 
intermediate hash. Figure 4-26 summarizes the entire process. 

master secret =  MD5(premaster secret + SHA(‘A’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(premaster secret + SHA(‘BB’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(premaster secret + SHA(‘CCC’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 

Figure 4-25  The master secret requires six hash calculations. 
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4.5.10 Finished 

The final handshake message is type 20, the Finished message. This 
message indicates that the ssl negotiation is complete and that the 
negotiated cipher suite is in effect. Indeed, the Finished message is 
itself encrypted using the cipher suite parameters. Figure 4-27 shows 
the format of a Finished message. As the figure indicates, though, 
the actual contents may be encrypted. When an encrypted message 
traverses networks, it contents are not visible. 

The Finished message body consists of two hash results, one using 
the md5 hash algorithm and the other using the sha hash algorithm. 
Both hash calculations use the same information as input, and both 
are calculated in two stages. Figure 4-28 illustrates the process each 
system uses to calculate the sha hash for its Finished message. The 
md5 calculation is similar. 

First, the sender creates a hash of the full contents of all previous ssl 
handshake messages exchanged during the session, followed by an 
indication of the sender’s role, the master secret, and padding. The 
sender’s role is the hexadecimal value 434c4e54 if the sender is a 

Handshake Messages... Master Secret 48 bytes of 0x36

MD5

hashMaster Secret 48 bytes of 0x5C

MD5

hash  

Figure 4-26  CertificateVerify has a signed hash of handshake messages. 
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SSL vs. TLS 

The TLS protocol 
uses a slightly 
different hash 
calculation for 
the Finished 
message. 

client, 53525652 if a server. The padding is the binary value 001100110, 
repeated 48 times for md5 and 40 times for sha. 

For the second stage, the sender creates a new hash using the master 
secret, followed by an alternate padding and the output of the inter-
mediate hash. The second-stage padding is the binary value 01011100, 
repeated 48 times for md5 and 40 times for sha. 

36

Len: 0

56

Prot: 22 Vers: 3 0

Type: 20

SHA hash
(20 bytes)

Len: 0 0

MD5 hash
(16 bytes)

Handshake
message

MAC

Encrypted

MD5
Message Authentication Code

(16 bytes)

 

Figure 4-27  The Finished message uses negotiated security services. 

Handshake Messages... Master Secret 40 bytes of 0x36

SHA

hashMaster Secret 40 bytes of 0x5C

SHA

hash

Sender's Role

 

Figure 4-28  The Finished messages includes a signed hash. 
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Note the similarity between this calculation and the hash calculation 
for the CertificateVerify message (see section 4.5.9). There are two 
differences, however. First, the Finished hash includes the sender’s 
role while the CertificateVerify hash does not. (Of course, only cli-
ents can send CertificateVerify messages.) Second, the set of hand-
shake messages will be different when the two hashes are calculated. 
In either case, note that ssl does not consider ChangeCipherSpec 
messages to be handshake messages (they are not part of the Hand-
shake protocol), so their contents are not included in the hash. 

4.6 Securing Messages 

The Finished message is the first to actually use the security services 
that ssl negotiates. Once those services are in place, however, all sub-
sequent messages in the session also make use of them—even addi-
tional handshake messages, should the parties want to renegotiate 
new security parameters. The most important messages, though, are 
application protocol messages. Those messages contain the actual 
data that the two parties want to exchange; the security requirements 
of that data are what make ssl necessary. Figure 4-29 shows how ap-
plication data fits in the ssl architecture. The ssl protocol provides 
both encryption and message authentication codes for the data, en-
suring that it is kept confidential and that it is not altered. The fol-
lowing two subsections detail each of these services. 

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

 

Figure 4-29  Applications use the Record Layer directly. 
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4.6.1 Message Authentication Code 

The Secure Sockets Layer supports two different algorithms for a 
message authentication code (mac). As figures 4-30 and 4-31 indicate, 
those algorithms are rsa’s Message Digest 5 (md5) and the Secure 
Hash Algorithm (sha). The particular algorithm for any given com-
munications is determined by the negotiated cipher suite. Other than 
the algorithm itself, the only difference between the two is the size of 
the hash. The md5 algorithm generates a 16-byte hash value, while 
sha creates a 20-byte value. In both cases, the hash result is simply 
appended to the application data. The ssl Record Layer length value 
includes both the application data and the authentication code. Also, 
as the figures highlight, both the application data and the check 
value are encrypted. 

To calculate (or verify) the message authentication code, a system 
uses a two-stage hash very similar to hash computations in the hand-
shake messages. It starts with a special value known as the mac write 
secret, followed by padding, a 64-bit sequence number, a 16-bit value 
with the length of the content, and, finally, by the content itself. The 
padding is the single-byte value 001100110, repeated 48 times for md5 
and 40 times for sha. For the second stage, the system uses the mac 
write secret, padding, and the output of the intermediate hash. This 
time, the padding is the binary value 01011100, repeated 48 times for 
md5 and 40 times for sha. This result is the mac value that appears 
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...Length
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Message Authentication Code

(16 bytes)

MD5
MAC

Encrypted
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Figure 4-30  The MD5 MAC protects the integrity of application data. 
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SSL vs. TLS 

The TLS protocol 
uses a com-
pletely different 
calculation for 
the message au-
thentication 
codes. See sec-
tion 5.4.3.

in the ssl messages. Figure 4-32 shows the process for an md5 mes-
sage authentication code. 

The two special values included in this calculation are the mac write 
secret and the sequence number. Section 4.6.3 discusses the mac 
write secret, along with other important cryptographic parameters. 
The sequence number is a count of the number of messages the par-

message dataMAC secret 48 bytes of 0x36

MD5

hashMAC secret 48 bytes of 0x5C

MD5

MAC

seq. num. proto. type msg. len.

 

Figure 4-32  SSL calculates a message authentication code in two stages. 
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Figure 4-31  The SHA MAC also protects application data integrity. 
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ties have exchanged. Its value is set to 0 with each ChangeCipher-
Spec message, and it is incremented once for each subsequent ssl 
Record Layer message in the session. 

4.6.2 Encryption 

The ssl protocol supports both stream and block encryption ciphers, 
although the message formats differ slightly. The examples illustrated 
so far show stream encryption algorithms; they represent the simplest 
case. Figure 4-33 shows that the information to be encrypted is sim-
ply the application data, followed by the message authentication 
code. With stream encryption algorithms, no other parameters are 
required. 

For block encryption, on the other hand, the data to be encrypted 
must be a multiple of the block size. And, since application data can 
rarely be forced into specific sizes, block encryption algorithms rely 
on padding. In this case, padding is used in the sense described in 
section 2.2.1. Dummy data added to the application data to force its 
length to be a multiple of the block size. In order to successfully ex-
tract the actual application data once the information has been en-
crypted, the recipient must know where the application data ends 
and the padding begins. This requirement leads to the format of fig-
ure 4-34. As that figure indicates, the very last byte of the encrypted 
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...Length
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Encrypted
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Figure 4-33  SSL can use stream encryption to protect application data. 
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information contains the length of the padding. After decrypting the 
block, a recipient counts backward from the padding length byte to 
find the end of application data. 

4.6.3 Creating Cryptographic Parameters 

The Secure Socket Layer’s encryption and message authentication 
code algorithms rely on a collection of secret information known only 
to the communicating parties. Indeed, establishing that information 
securely is one of the three major purposes of the ssl handshake. 
(The other two are authenticating identity and negotiating cipher 
suites.) 

The starting point for all the shared secret information is the master 
secret, previously discussed in the context of the CertificateVerify 
message. The master secret is, in turn, based on the premaster secret. 
In most cases, the client picks the premaster secret by generating a 
secure random number. The client then encrypts this value using the 
server’s public key, and sends it to the server in the ClientKeyEx-
change message. (For Diffie-Hellman key exchange, the result of the 
conventional Diffie-Hellman calculation serves as the premaster se-

Message Padding

Application Data

Length...

...Length

Prot: 23 Vers: 3 0

Message Authentication Code

Encrypted

Record
Layer

Pad len
 

Figure 4-34  SSL can also use block encryption ciphers. 
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cret. The ClientKeyExchange completes the Diffie-Hellman calcula-
tion.) In all cases, once the server has received the Client-
KeyExchange message, both parties know the same premaster secret. 
Each then takes the premaster secret and inputs it, along with the 
random values each chose for its Hello message, into secure hash 
functions. After combining the hash outputs in prescribed ways, both 
systems will have the same master secret. Tables 4-9 and 4-10 show 
the details of these two processes. The first summarizes the rules for 
creating the premaster secret. 

Table 4-9  Creating the Premaster Secret 

Key Exchange Action 

RSA Client generates the premaster secret as 2 bytes 
containing the SSL version (binary 3 and then 0), fol-
lowed by 46 securely generated random bytes. 

Fortezza/DMS Client generates the premaster secret as 48 securely 
generated random bytes. 

Diffie-Hellman The key created by the Diffie-Hellman computation 
(usually referred to as Z) is used as the premaster se-
cret. 

Table 4-10 shows how each party calculates the master secret from 
the premaster secret. Figure 4-35 illustrates the information graphi-
cally, and figure 4-36 shows the same steps in the form of an equa-
tion. 

Table 4-10  Calculating the Master Secret 

Step Action 

1 Calculate the SHA hash of the ASCII character ‘A’ followed by the 
premaster secret, followed by the client’s random value (from 
the ClientHello), followed by the server’s random value (from 
the ServerHello). 

2 Calculate the MD5 hash of the premaster secret, followed by the 
output of step 1. 

3 Calculate the SHA hash of the two ASCII characters ‘BB’ followed 
by the premaster secret, followed by the client’s random value 
(from the ClientHello), followed by the server’s random value 
(from the ServerHello). 
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Step Action 

4 Calculate the MD5 hash of the premaster secret followed by the 
output of step 3. 

5 Concatenate the results from step 4 to those from step 2. 

6 Calculate the SHA hash of the three ASCII characters ‘CCC’ fol-
lowed by the premaster secret, followed by the client’s random 
value (from the ClientHello), followed by the server’s random 
value (from the ServerHello). 

7 Calculate the MD5 hash of the premaster secret, followed by the 
output of step 6. 

8 Concatenate the results from step 7 to the results from step 5. 

'A' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

'BB' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

'CCC' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

Master Secret  

Figure 4-35  SSL uses hash functions to generate the master secret. 
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SSL vs. TLS 

The TLS protocol 
defines a com-
pletely new 
process for gen-
erating key ma-
terial. See section
5.4.4.

Once each system has calculated the master secret, it is ready to gen-
erate the actual secret information needed for the communication. 
The first step in that process is determining how much secret infor-
mation is necessary. The exact amount depends on the particular ci-
pher suite and parameters that the two parties have negotiated, but 
generally consists of the information that table 4-11 lists. Each party 
selects from that table the information that is appropriate for the ne-
gotiated cipher suite, and then counts the number of bytes each value 
requires based on the negotiated cipher suite parameters. The result 
is the size of the required secret information. 

Table 4-11  Shared Secret Information 

Parameter Secret Information 

client write MAC 
secret 

The secret value included in the message authenti-
cation code for messages generated by the client. 

server write MAC 
secret 

The secret value included in the message authenti-
cation code for messages generated by the server. 

client write key The secret key used to encrypt messages gener-
ated by the client. 

server write key The secret key used to encrypt messages gener-
ated by the server. 

client write IV The initialization vector for encryption performed 
by the client. 

server write IV The initialization vector for encryption performed 
by the server. 

To create shared secret information, both parties use a process very 
similar to the one that yields the master secret in the first place. Fig-
ure 4-37 illustrates the approach. They first calculate the sha hash of 

master secret =  MD5(premaster secret + SHA(‘A’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(premaster secret + SHA(‘BB’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(premaster secret + SHA(‘CCC’ + premaster secret + 
                     ClientHello.random + ServerHello.random)) 

Figure 4-36  The master secret requires six hash calculations. 
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the ascii character ‘a’ followed by the master secret, followed by the 
server’s random value (from the ServerHello), followed by the client’s 
random value (from the ClientHello). 

Systems then calculate the md5 hash of the master secret, followed by 
the results of the intermediate hash. If the resulting 16-byte value is 
not sufficient for all the secret information, they repeat the process, 
but with the ascii characters ‘bb’ instead of ‘a.’ The parties continue 
repeating this calculation (with ‘ccc,’ then ‘dddd,’ then ‘eeeee,’ and 
so on) as many times as necessary to generate enough secret informa-
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SHA

hash

Client Random
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hash

'BB' Master Secret Server Random

SHA

hash

Client Random
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hash
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Key Material

hash hash ...

.
.

.

 

Figure 4-37  The master secret allows SSL to calculate key material. 
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tion. Figure 4-38 shows the calculations as an equation. The results 
yield the values of table 4-11 in order, as figure 4-39 indicates. 

In many cases, the values of table 4-11 directly supply the secret in-
formation needed for the cryptographic computations. One particu-
lar class of cipher suites, however, requires an additional refinement. 
Those cipher suites are known as exportable, and generally use smaller 
key sizes for encryption. (Such cipher suites are said to be exportable 
because systems that only use such cipher suites are, due to u.s. laws 
and regulations, generally easier to export from the United States.) 

For exportable cipher suites, the final secret key used for messages 
encrypted by the client is the md5 hash of the client write key from 
table 4-11, followed by the client’s random value (from the Client-
Hello), and followed by the server’s random value (from the Server-
Hello). Similarly, the final secret key for messages encrypted by the 
server is the md5 hash of the server write key from the table, followed 
by the server’s random value, and followed by the client’s random 
value. Note, the initialization vectors are not taken from table 4-11, 
but are simply the md5 hash of the client and server’s random values 

key material    =  MD5(master secret + SHA(‘A’ + master secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(master secret + SHA(‘BB’ + master secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 MD5(master secret + SHA(‘CCC’ + master secret + 
                     ClientHello.random + ServerHello.random)) 
 + 
 … 

Figure 4-38  The master secret seeds calculation of key material. 

hash hash hash

Key Material

hash hash

client MAC server MAC client cipher server cipher client IV server IV

hash hash hash hash hash hash hash

 

Figure 4-39  SSL extracts secret values from key material. 
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(for the client write iv) or the server and client’s random values (for 
the server write iv). 

4.7 Cipher Suites 

Version 3.0 of the ssl specification defines 31 different cipher suites, 
representing a varied selection of cryptographic algorithms and pa-
rameters. Table 4-12 lists those cipher suites, and indicates the key ex-
change, encryption, and hash algorithms each employs. The first 
three columns, when combined, form the official ssl name of the ci-
pher suite. The rightmost column marks those cipher suites consid-
ered exportable. 

Table 4-12  Cipher Suite Algorithms 

Key Exchange Encryption Hash Exportable 

SSL_NULL_ WITH_NULL_ NULL •  

SSL_RSA_ WITH_NULL_ MD5 •  

SSL_RSA_ WITH_NULL_ SHA •  

SSL_RSA_EXPORT_ WITH_RC4_40_ MD5 •  

SSL_RSA_ WITH_RC4_128_ MD5  

SSL_RSA_ WITH_RC4_128_ SHA  

SSL_RSA_EXPORT_ WITH_RC2_CBC_40_ MD5 •  

SSL_RSA_ WITH_IDEA_CBC_ SHA  

SSL_RSA_EXPORT_ WITH_DES40_CBC_ SHA •  

SSL_RSA_ WITH_DES_CBC_ SHA  

SSL_RSA_ WITH_3DES_EDE_CBC_ SHA  

SSL_DH_DSS_EXPORT_ WITH_DES40_CBC_ SHA •  

SSL_DH_DSS_ WITH_DES_CBC_ SHA  

SSL_DH_DSS_ WITH_3DES_EDE_CBC_ SHA  

SSL_DH_RSA_EXPORT_ WITH_DES40_CBC_ SHA •  

SSL_DH_RSA_ WITH_DES_CBC_ SHA  

SSL_DH_RSA_ WITH_3DES_EDE_CBC_ SHA  

SSL_DHE_DSS_EXPORT_ WITH_DES40_CBC_ SHA •  

SSL_DHE_DSS_ WITH_DES_CBC_ SHA  

SSL_DHE_DSS_ WITH_3DES_EDE_CBC_ SHA  

SSL_DHE_RSA_EXPORT_ WITH_DES40_CBC_ SHA •  

SSL_DHE_RSA_ WITH_DES_CBC_ SHA  

SSL_DHE_RSA_ WITH_3DES_EDE_CBC_ SHA  

SSL_DH_anon_EXPORT_ WITH_RC4_40_ MD5 •  

SSL_DH_anon_ WITH_RC4_128_ MD5  
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Key Exchange Encryption Hash Exportable 

SSL_DH_anon_EXPORT_ WITH_DES40_CBC_ SHA  

SSL_DH_anon_ WITH_DES_CBC_ SHA  

SSL_DH_anon_ WITH_3DES_EDE_CBC_ SHA  

SSL_FORTEZZA_DMS_ WITH_NULL_ SHA  

SSL_FORTEZZA_DMS_ WITH_FORTEZZA_CBC_ SHA  

SSL_FORTEZZA_DMS_ WITH_RC4_128_ SHA  

4.7.1 Key Exchange Algorithms 

The ssl specification defines a total of 14 different key exchange al-
gorithms, counting the available variations. Table 4-13 lists those al-
gorithms. For those key exchange algorithms that are part of 
exportable cipher suites, the table also indicates the size limit that 
u.s. export policy defines for the algorithm.2 

Table 4-13  Key Exchange Algorithms 

Algorithm Description Key Size Limit 

DHE_DSS Ephemeral Diffie-Hellman with DSS signa-
tures 

none 

DHE_DSS_EXPORT Ephemeral Diffie-Hellman with DSS signa-
tures 

DH: 512 bits 

DHE_RSA Ephemeral Diffie-Hellman with RSA signa-
tures 

none 

DHE_RSA_EXPORT Ephemeral Diffie-Hellman with RSA signa-
tures 

DH: 512 bits 
RSA: none 

DH_anon Anonymous Diffie-Hellman none 

DH_anon_EXPORT Anonymous Diffie-Hellman DH: 512 bits 

DH_DSS Diffie-Hellman with DSS certificates none 

DH_DSS_EXPORT Diffie-Hellman with DSS certificates DH: 512 bits 

DH_RSA Diffie-Hellman with RSA certificates none 

DH_RSA_EXPORT Diffie-Hellman with RSA certificates DH: 512 bits 
RSA: none 

FORTEZZA_DMS Fortezza/DMS  

NULL No key exchange  

RSA RSA key exchange none 

RSA_EXPORT RSA key exchange RSA: 512 bits 

_________________ 
2 During the writing of this book, the u.s. government announced its intention to 
revise its export policy so as to eliminate these restrictions in many, but not all, cases. 
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SSL vs. TLS 

The TLS standard 
does not include 
definitions for 
the Fortezza/DMS 
cipher suites. In 
addition, the TLS 
standardization 
process allows 
for many more 
cipher suites to 
be added to the 
protocol. 

4.7.2 Encryption Algorithms 

The ssl protocol supports nine different encryption algorithms, 
counting variations. They can be found in table 4-14. The table also 
shows the key material size (derived from the master secret, as sec-
tion 4.6.3 describes), the effective key size, and the initialization vec-
tor size. (In all cases other than fortezza_cbc, the iv size is also the 
block size.) 

Table 4-14  Encryption Algorithms 

Algorithm Type Key Material Key Size IV Size 

3DES_EDE_CBC Block 24 bytes 168 bits 8 bytes 

DES_CBC Block 8 bytes 56 bits 8 bytes 

DES40_CBC Block 5 bytes 40 bits 8 bytes 

FORTEZZA_CBC Block  96 bits 20 bytes 

IDEA_CBC Block 16 bytes 128 bits 8 bytes 

NULL Stream 0 bytes 0 bits  

RC2_CBC_40 Block 5 bytes 40 bits 8 bytes 

RC4_128 Stream 16 bytes 128 bits  

RC4_40 Stream 5 bytes 40 bits  

4.7.3 Hash Algorithms 

The final component of an ssl cipher suite is the hash algorithm 
used for the message authentication code. Table 4-15 shows the three 
different hash algorithms ssl defines. It also shows the padding size 
used in several ssl calculations, including the mac itself. 

Table 4-15  Hash Algorithms 

Algorithm Hash Size Padding Size  

MD5 16 bytes 48 bytes  

NULL 0 bytes 0 bytes  

SHA 20 bytes 40 bytes  
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5 
 Advanced SSL 

In the two previous chapters, we’ve seen how ssl normally operates 
and examined the detailed format of its messages. This chapter ex-
amines some additional facets of the protocol, advanced features that 
augment its normal operation. Those advanced features include com-
patibility with earlier versions of the ssl protocol and special support 
for strong cryptography under u.s. export restrictions. The chapter 
concludes with a comprehensive explanation of the difference be-
tween ssl and tls. 

5.1 Compatibility with Previous Versions 

The latest version of the ssl specification is the third major version 
of the ssl protocol. And, although ssl version 3.0 is well established, 
some existing systems may support only earlier versions of the proto-
col. One of the decisions facing developers of current ssl systems is 
whether to support communication with those older implementa-
tions. Adding such support will require additional work, and may re-
sult in slightly weaker security. Supporting older versions will provide 
the greatest degree of interoperability, however. Fortunately, ssl ver-
sion 3.0 mechanisms can easily accommodate compatibility with ear-
lier versions. 

The details of ssl versions prior to 3.0 are outside the scope of this 
book. However, since compatibility with version 2.0 remains a feature 
of the latest popular Web browsers, even engineers whose only con-
cern is version 3.0 may find it useful to understand some aspects of 
version 2.0 compatibility. Network engineers looking at captured 



106 SSL & TLS Essentials: Securing the Web 

 

protocol traces, for example, may well discover version 2.0 Client-
Hello messages crossing their networks. To aid in such understand-
ing, this section looks at how systems negotiate ssl versions, the 
details of the version 2.0 ClientHello message, and version 2.0 cipher 
suites. 

5.1.1 Negotiating SSL Versions 

If a system wants to interoperate with both ssl version 2.0 and ssl 
version 3.0 systems, one obvious requirement is that the system itself 
must implement both ssl version 2.0 and version 3.0. It uses the ver-
sion 2.0 implementation to communicate with other version 2.0 sys-
tems, and the version 3.0 implementation to communicate with 
version 3.0 systems. This simple statement raises the obvious ques-
tion: How does the system know which is which? 

The answer lies in the very first message that the two parties ex-
change—the ClientHello. The next subsection describes the format 
of this message in detail, but the essential element of this message is 
this: a client prepared to support either version 2.0 or version 3.0 
sends a version 2.0 ClientHello message. The message is a perfectly 
legitimate version 2.0 message, but it contains enough hints so that a 
version 3.0 server, if it’s paying attention, can recognize that the cli-
ent also supports version 3.0. Such a server responds using the ssl 
version 3.0 protocol, and a normal version 3.0 handshake ensues. 

Figure 5-1 shows how this negotiation works when the server only 
implements ssl version 2.0. Such a server recognizes the version 2.0 
ClientHello message, but it is oblivious to the special 3.0 hints. The 
server treats it like any other version 2.0 message and continues the 
version 2.0 handshake negotiation. In contrast, Figure 5-2 shows how 
a version 3.0 server responds. The server is not only capable of under-
standing the version 2.0 ClientHello, it also understands the special 
hints. The server, therefore, recognizes that the client is capable of 
ssl version 3.0. It uses the standard version 3.0 handshake process for 
the rest of the communication. 

The server’s responsibilities are fairly simple. If it receives a standard 
version 2.0 ClientHello (without the version 3.0 hints), it responds 
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using ssl version 2.0. If it receives a version 3.0 ClientHello or a ver-
sion 2.0 ClientHello with the special hints, it responds using version 
3.0. Even servers that do not support ssl version 2.0 should still ac-
cept and respond to the version 2.0 ClientHello with the special 
hints. Such servers can reject other version 2.0 messages. 

There is one final twist to this process. Since version 3.0 has security 
improvements over version 2.0, systems should ensure that they’re 
using version 3.0 in every possible circumstance, even when a mali-

v2 Server

v2 ClientHello (with hints)

v2 ServerHello

1

2

Dual Version Client

v2 handshake continues ...  

Figure 5-1  Clients can successfully negotiate with a version 2.0 server. 

v3 Server

v2 ClientHello (with hints)

v3 ServerHello

1

2

Dual Version Client

v3 handshake continues ...  

Figure 5-2  Clients can also negotiate with a version 3.0 server. 
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cious party tries to trick them into falling back to version 2.0. The 
most likely threat is from a malicious system that interposes itself be-
tween the client and server. During the negotiation phase, it pretends 
to be a server when talking to the client, then turns around and pre-
tends to be the client when talking to the server. Figure 5-3 shows 
how such a man-in-the-middle attack might unfold. As the figure 
shows, the attacker modifies the ClientHello to remove the special 
version 3.0 hints. This modification will force the client and server to 
use ssl version 2.0, even though both are capable of the newer (and 
more secure) version 3.0. 

The ssl specification defines a special technique that allows two sys-
tems to detect the attack if it were to occur. The client takes the first 
step. When a dual-version client ends up using ssl version 2.0 rather 
than version 3.0, it uses special padding values in the version 2.0 Cli-
entKeyExchange message. In particular, it sets the last 8 bytes of the 
padding to the special binary value 00000011. This value indicates 
that the client could have supported version 3.0. Normal version 2.0 
servers will be oblivious to the padding value. Dual version servers 

Dual Version
Server

v2 ClientHello

v2 ServerHello

1

3

v2 handshake continues ...

Dual Version Client Man-in-the-Middle
Attacker

v2 ClientHello
2

v2 ServerHello
4

(with v3 hints) (hints removed)

 

Figure 5-3  SSL protects against a version rollback attack like this one. 
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that receive a version 2.0 ClientKeyExchange, however, can look for 
the special padding value. If the server finds it, then an attack is oc-
curring. Note that the attacker will not be able to modify the padding 
(and thus remove the incriminating 00000011 bytes) because the cli-
ent encrypts that information using the server’s public key. 

5.1.2 SSL Version 2.0 ClientHello 

Even servers that support only ssl version 3.0 may still need to un-
derstand version 2.0 ClientHello messages. As the previous subsec-
tion indicated, they may receive such a message from a dual version 
client. The actual message contents are similar to those of the version 
3.0 ClientHello, but the format is significantly different. 

Figure 5-4 shows a typical version 2.0 ClientHello as a dual version 
client might build it. As the figure shows, the Record Layer is only 2 
bytes, and consists of a protocol type (128 is used for handshake mes-
sages) and a single byte for the message length. The actual handshake 

... 2

cipher suite ...

cipher...

sess. ...0

3128

cipher suites length

1

Session ID

Len

... id len challenge length

...suite 1

Challenge

cipher suite n

v2.0 Record Layer ClientHello

Handshake
Protocol

minor version

major version

cipher suites

 

Figure 5-4  Version 2.0 ClientHello messages differ from version 3.0. 
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message follows, beginning with the message type of 1. This value in-
dicates a ClientHello message. A 2-byte version indication follows. 
Notice that the version is set to 3.0, even though this is a version 2.0 
ClientHello. In effect, the client lies about the version number for 
the message. 

This version number is the hint mentioned previously. It tells the 
server that, even though the client is sending a version 2.0 message, 
the client is capable of using version 3.0. A version 2.0 server will be 
able to parse the message. When it sees a version number greater 
than it can support, though, it just responds with a version 2.0 
ServerHello. That response directs the client to fall back to version 
2.0. 

The rest of the message is relatively straightforward, but note that 
version 2.0 cipher suites are 3 bytes in length, rather than 2. This fact 
provides a convenient way for dual version clients to propose version 
3.0 cipher suites within a version 2.0 ClientHello. The client simply 
prepends a single byte of 0 to the 2-byte cipher suite value from table 
4-5. For example, the cipher suite ssl_ssl_rsa_with_rc4_128_md5 
(represented in version 3.0 messages as 0,4) becomes, in version 2.0 
messages, 0,0,4. Since all legitimate 2.0 cipher suites begin with a 
value other than 0, a dual version server will be able to recognize the 
modified version 3.0 cipher suites correctly. 

5.1.3 SSL Version 2.0 Cipher Suites 

To thoroughly understand version 2.0 ClientHello messages in the 
context of version 3.0 compatibility, it is necessary to recognize the 
version 2.0 cipher suites. Table 5-1 lists the values defined in the ssl 
version 2.0 specification. 

Table 5-1  SSL Version 2.0 Cipher Suite Values 

Value Cipher Suite 

1,0,128 SSL_RC4_128_WITH_MD5 

2,0,128 SSL_RC4_128_EXPORT40_WITH_MD5 

3,0,128 SSL_RC2_CBC_128_CBC_WITH_MD5 

4,0,128 SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5 
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5,0,128 SSL_IDEA_128_CBC_WITH_MD5 

6,0,64 SSL_DES_64_CBC_WITH_MD5 

7,0,192 SSL_DES_192_EDE3_CBC_WITH_MD5 

5.2 Netscape International Step-Up 

One of the challenges facing ssl implementations, and indeed, secu-
rity products in general, is complying with various laws and regula-
tions that restrict the use of cryptography. The United States, for 
example, currently treats cryptography like weapons and limits the 
ability of u.s. companies to export cryptographic products. In princi-
ple, the goal of this policy is to avoid letting cryptographic products 
fall into the hands of terrorists and other criminals, thereby hamper-
ing the ability of intelligence agencies to combat such criminals.1 

The problem is particularly acute for companies such as Netscape 
and Microsoft. Those companies would like to make their Web 
browsers as widely available as possible, including making them 
downloadable from the Internet. Browser developers would also like 
to include the strongest possible cryptography in their products, 
however, and those two goals are in direct conflict with each other. 
Laws and regulations prevent browser developers from exporting 
software with strong cryptography, including distributing software 
using the Internet. 

Such laws, while perhaps hindering the ability of criminals to com-
mit crimes, certainly interfere with legitimate commerce. A bank, for 
example, might like to offer banking services over the Internet, even 
to customers outside the United States. Potential customers might 
balk, however, if they knew that their Web transactions were secured 
only by the deliberately weakened cryptography required to satisfy 
u.s. export laws. 

_________________ 
1 During the writing of this book, the u.s. government announced its intention to 
revise its export policy so as to eliminate these restrictions in many, but not all, cases. 
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Both Netscape and Microsoft have worked with the u.s. government 
to develop a compromise approach. The Netscape approach is known 
as International Step-Up, and it is the subject of this section. (Micro-
soft’s very similar Server Gated Cryptography is the topic of the next 
section.) 

5.2.1 Server Components 

International Step-Up requires no changes at all to an ssl server im-
plementation. The server simply responds normally to all ssl version 
3.0 messages. The server does supply a critical element in the Inter-
national Step-Up process, though—a special International Step-Up 
certificate. Note that the ssl protocol itself does not address the con-
tents of public key certificates. It simply carries them (whatever their 
contents) in Certificate messages. 

International Step-Up server certificates are special in two important 
ways. First, they contain a special attribute in the extended key usage 
(extKeyUsage) field. Appendix a discusses this field (and certificates 
in general) in more detail, but the special attribute for Netscape’s In-
ternational Step-Up includes the object identifier value of 2.16.840 
.1.113730.4.1. The second important characteristic of International 
Step-Up server certificates is the certificate authority that issues 
them. All such certificates must be issued under the VeriSign Class 3 
authority. (In theory, it would be possible for any authority to issue 
International Step-Up certificates; however, as of this writing, Net-
scape’s web browser clients are pre-configured to only recognize 
VeriSign as a legitimate International Step-Up certificate authority.) 

5.2.2 Client Components 

Most of the action with International Step-Up happens in the client. 
Clients that wish to use International Step-Up are generally those 
that have been licensed for export (otherwise, they would not be sub-
ject to export laws restricting the strength of their cryptography). 
Such clients are not free to use strong cryptography in all cases. If 
they support International Step-Up, however, the client has a latent 
capability to support strong cryptography. The client is designed to 
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keep this capability hidden from normal servers (thus it conforms to 
u.s. export regulations), but when it recognizes a server’s Interna-
tional Step-Up certificate, it reveals its hidden capability and negoti-
ates strong cryptography. 

Figure 5-5 shows the complete message exchange. Note that in mes-
sage 1, the client only proposes to support export strength encryption. 
The client does this even though it is actually capable of stronger en-
cryption; clients must do this to obtain the necessary u.s. export li-
censes. The server has no choice but to select a cipher suite from 
among those proposed by the client, so the ServerHello message will 
indicate export-strength encryption. (At this point, the server does 
not know that the client supports International Step-Up.) 

Once the client receives message 3, however, it knows that the server 
is capable of supporting International Step-Up. It continues with the 
regular handshake negotiation (messages 4 through 9), but instead of 
beginning the exchange of application data, it starts a new negotia-
tion with a second ClientHello message (message 10). This message 
proposes full-strength cipher suites. The server responds to this ap-
propriately, and at the end of the second handshake with message 18, 
both parties have negotiated a full-strength cipher suite. 

5.2.3 Controlling Full-Strength Encryption 

International Step-Up is a compromise between the needs of the u.s. 
government to limit the use of full-strength cryptography abroad and 
the desire of browser manufactures to offer the strongest possible 
product to the widest possible audience. Because the u.s. government 
has verified that Netscape’s Web browser only renegotiates full-
strength cryptography after the server has produced a special Interna-
tional Step-Up certificate, Netscape is free to distribute its browser 
worldwide, even by Internet download. Controlling the use of full-
strength encryption becomes a matter of controlling the issuance of 
International Step-Up certificates. Currently, only one certificate au-
thority (VeriSign) is able to issue International Step-Up certificates, 
and the u.s. government controls which companies are allowed to 
purchase those certificates. 
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Figure 5-5  International Step-Up negotiates cipher suites twice. 
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5.3 Microsoft Server Gated Cryptography 

Microsoft’s Internet Explorer has a capability very similar to Net-
scape’s International Step-Up. Microsoft calls its technology Server 
Gated Cryptography (sgc), which reflects the role the server plays in 
enabling the client to use full-strength cryptography. 

The principles behind Server Gated Cryptography are identical to 
those of International Step-Up. Clients begin a negotiation by pro-
posing only export-strength cipher suites. When they see a special 
object in the server’s certificate, however, they renegotiate the cipher 
suite using full-strength encryption algorithms.  There are, however, 
two important details in which Server Gated Cryptography differs 
from International Step-Up: the specific object identifier in the 
server certificate and the exact mechanism the client uses to renego-
tiate the handshake. 

5.3.1 Server Gated Cryptography Certificates 

Like International Step-Up, servers that qualify for Server Gated 
Cryptography use certificates with a special object identifier in the 
extended key usage field. The particular value for sgc is 1.3.6.1.4.1.-
311.10.3.3. Equally important, those certificates are issued by a certifi-
cate authority approved by u.s. export regulators. As of this writing, 
the only authority that has the necessary approval is VeriSign, the 
same authority that issues International Step-Up certificates. In fact, 
VeriSign does not issue separate certificates for International Step-
Up and Server Gated Cryptography. It issues a single certificate, 
which VeriSign calls a Global Secure ID, that has both extended key 
usage objects included in it. The same server certificate, therefore, 
supports both International Step-Up and Server Gated Cryptogra-
phy. 

5.3.2 Cipher Suite Renegotiation 

Another difference between Server Gated Cryptography and Inter-
national Step-Up is the approach used to renegotiate the cipher suite 
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to a full-strength version. Figure 5-6 shows the sequence of messages 
for Server Gated Cryptography. 

A comparison with figure 5-5 shows that the key difference begins 
with step 5. While International Step-Up completes the initial hand-
shake for export-strength ciphers and renegotiates after that hand-
shake is complete, Server Gated Cryptography effectively aborts the 
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Figure 5-6  Server Gated Cryptography resets cipher suite negotiation. 
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initial handshake and sends a new ClientHello message at step 5. 
This new ClientHello proposes stronger encryption parameters, al-
lowing the server to select full-strength security for the session. 

Two aspects of this approach to cipher suite renegotiation are worth 
elaboration. First, some of the documentation on Server Gated 
Cryptography available from Microsoft appears to imply that a spe-
cial “reset” message precedes the second ClientHello of step 5. This is 
not the case, at least with versions 4.01 and 5.0 of Internet Explorer. 
The client simply sends a new ClientHello as soon as it receives the 
ServerHelloDone. There is nothing special about this ClientHello 
message. (It does not, for example, include a tcp reset.) With Server 
Gated Cryptography, any “reset” is merely implied by the second Cli-
entHello. Second, the ssl standard is not completely clear as to 
whether the sgc approach is permitted. It is not clearly illegal, how-
ever, and it does work appropriately. Given the widespread deploy-
ment of Internet Explorer and Microsoft Web servers, the point is 
probably academic anyway. 

5.4 The Transport Layer Security Protocol 

Although the Secure Sockets Layer protocol was originally 
developed primarily by Netscape, the protocol has become so critical 
to the operation of the Internet that the Internet Engineering Task 
Force (ietf) has, with Netscape’s blessing, taken over future 
development of ssl standards. For several reasons, including a desire 
to more clearly distinguish ssl from ongoing work with the ip 
Security (ipsec) protocol, the ietf rechristened the protocol with the 
name Transport Layer Security, or tls. 

The tls specification represents a relatively modest, incremental im-
provement to the ssl protocol. There is far less difference, for exam-
ple, between ssl version 3.0 and tls than there is between ssl 
versions 2.0 and 3.0. In fact, there are really only a few significant 
changes between ssl and tls, which table 5-2 summarizes. The re-
mainder of this section details these changes in seven subsections, 
which correspond to the items in table 5-2. 
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Table 5-2  Differences between SSL and TLS 

 SSL v3.0 TLS v1.0 

Protocol version in messages 3.0 3.1 

Alert protocol message types 12 23 

Message authentication ad hoc standard 

Key material generation ad hoc PRF 

CertificateVerify complex simple 

Finished ad hoc PRF 

Baseline cipher suites includes Fortezza no Fortezza 

5.4.1 TLS Protocol Version 

Perhaps it is unfortunate that the ietf decided to rename ssl to tls. 
That decision has certainly introduced some confusion in the version 
numbers for the tls protocol. The existing Transport Layer Security 
standard is named version 1.0. Indeed, it is the first version of tls. 
However, in order to maintain interoperability with ssl version 3.0 
systems (see section 5.4.8), the protocol version reported in the actual 
protocol messages must be greater than 3.0. Because tls is a modest 
rather than a drastic improvement over ssl, tls designers have speci-
fied that the protocol version that appears in tls messages be 3.1. 
Presumably, should tls ever undergo a major revision itself, the new 
protocol would be named version 2.0, but would be indicated in the 
protocol messages as 4.0. 

5.4.2 Alert Protocol Message Types 

One of the areas in which tls improves on ssl is in its procedures 
for notification of potential and actual security alerts. In particular, 
tls defines almost twice as many alert descriptions. Table 5-3 pro-
vides the complete list of tls alerts. It also marks which of those are 
new to tls (with a bullet in the leftmost column), and it emphasizes 
the fact that alert description 41 (NoCertificate) was deleted in tls. 
The tls specification removed this alert because, in practice, it was 
difficult to implement. Successfully interpreting the NoCertificate 
alert requires a high level of synchronization between the Alert and 
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Handshake protocols, a synchronization that is otherwise not 
needed. To eliminate the requirement for this synchronization, tls 
has clients that do not have appropriate certificates simply return an 
empty Certificate message. 

Table 5-3  TLS Alert Descriptions 

 Value Name Meaning 

 0 CloseNotify The sending party indicates explicitly that 
it is closing the connection; closure alerts 
have a warning severity level. 

 10 Unexpect-
edMessage 

The sending party indicates that it re-
ceived an improper message; this alert is 
always fatal. 

 20 BadRecord-
MAC 

The sending party indicates that it re-
ceived a message with a bad message au-
thentication code; this alert is always fatal. 

•  21 Decryption-
Failed 

The sending party indicates that a mes-
sage it decrypted was invalid (e.g., it was 
not a multiple of the block size or had 
invalid padding); this alert is always fatal. 

•  22 RecordOver-
flow 

The sending party indicates that a mes-
sage it received was, after decryption or 
decompression, more than 214+2048 bytes; 
this message is always fatal. 

 30 Decompres-
sionFailure 

The sending party indicates that it re-
ceived data that it could not decompress; 
this alert is always fatal. 

 40 Hand-
ShakeFailure 

The sending party indicates that it was not 
able to negotiate an acceptable set of se-
curity services for the session; this alert is 
always fatal. 

 41 NoCertificate The sending party (which is always a cli-
ent) indicates that it has no certificate that 
can satisfy the server’s CertificateRequest. 

 42 BadCertifi-
cate 

The sending party received a certificate 
that was corrupt (e.g., its signature could 
not be verified). 

 43 Unsupport-
edCertificate 

The sending party received a certificate of 
a type that it could not support. 
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 Value Name Meaning 

 44 Certificate- 
Revoked 

The sending party received a certificate 
that has been revoked by the certificate 
authority. 

 45 Certificate-
Expired 

The sending party received a certificate 
that has expired. 

 46 Certificate-
Unknown 

The sending party indicates an unspecified 
problem with a received certificate. 

 47 IllegalParam-
eter 

The sending party indicates that it re-
ceived a handshake message with a pa-
rameter value that was illegal or 
inconsistent with other parameters. 

•  48 UnknownCA The sending party indicates that it could 
not identify or does not trust the certifi-
cate authority of a received certificate 
chain; this message is always fatal. 

•  49 Access-
Denied 

The sending party indicates that the party 
identified in the peer’s certificate does not 
have access rights to continue negotiation; 
this error is always fatal. 

•  50 DecodeError The sending party indicates that a re-
ceived message could not be decoded be-
cause a field value was out of the 
permitted range or the message length 
was invalid; this message is always fatal. 

•  51 DecryptError The sending party indicates that a crypto-
graphic operation essential to the hand-
shake negotiation failed. 

•  60 ExportRe-
striction 

The sending party indicates that it de-
tected a negotiation parameter not in 
compliance with applicable U.S. export re-
strictions; this message is always fatal. 

•  70 Protocol-
Version 

The sending party indicates that it cannot 
support the requested TLS protocol ver-
sion; this message is always fatal. 

•  71 Insufficient-
Security 

The sending party (always a server) indi-
cates that it requires cipher suites more 
secure than those supported by the client; 
this message is always fatal. 
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 Value Name Meaning 

•  80 InternalError The sending party indicates that an error 
local to its operation and independent of 
the TLS protocol (such as a memory alloca-
tion failure) makes it impossible to con-
tinue; this message is always fatal. 

•  90 UserCan-
celed 

The sending party indicates that it wishes 
to cancel the handshake negotiation for 
reasons other than a protocol failure; this 
message is typically a warning and should 
be followed by a CloseNotify. 

•  100 NoRenego-
tiation 

The sender indicates that it cannot comply 
with the peer’s request to renegotiate the 
TLS handshake; this message is always a 
warning. 

5.4.3 Message Authentication 

Another area in which tls improves on ssl is in the algorithms for 
message authentication. The way ssl message authentication com-
bines key information and application data is rather ad hoc, created 
just for the ssl protocol. The tls protocol, on the other hand, relies 
on a standard message authentication code known as h-mac (for 
Hashed Message Authentication Code). The h-mac algorithm is a 
defined standard, and has been subjected to rigorous cryptographic 
analysis. The h-mac specification (see the References section) in-
cludes a precise description of the approach, as well as sample source 
code, but figure 5-7 illustrates h-mac in a format that can be com-
pared with other figures in this text. Note that h-mac does not spec-
ify a particular hash algorithm (such as md5 or sha); rather, it works 
effectively with any competent hash algorithm. 

The tls message authentication code is a straightforward application 
of the h-mac standard. The mac is the result of the h-mac ap-
proach, using whatever hash algorithm the negotiated cipher suite 
requires. The h-mac secret is the mac write secret derived from the 
master secret. Table 5-4 lists the information that is protected. 
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Table 5-4  Data Protected by TLS Message Authentication Code 

Data Protected by H-MAC 

•  Sequence number 

•  TLS protocol message type 

•  TLS version (e.g., 3.1) 

•  Message length 

•  Message contents 

secret 0, 0, 0, ..., 0 64 bytes of 0x36

64 bytes 64 bytes

exclusive-OR output

Exclusive-OR

data to protect

H( )

64 bytes of 0x5C

exclusive-OR output

H( )

hash

MAC

Exclusive-OR

 

Figure 5-7  Hashed MAC works with any hash algorithm. 
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5.4.4 Key Material Generation 

Building on the h-mac standard, tls defines a procedure for using 
h-mac to create pseudorandom output. This procedure takes a secret 
value and an initial seed value (which can be quite small), and se-
curely generates random output. The procedure can create as much 
random output as necessary. Figure 5-8 illustrates the procedure, and 
table 5-5 lists its steps. As with the h-mac standard, the procedure 
does not rely on a particular hash algorithm. Any hash algorithm, in-
cluding md5 and sha may be used for the pseudorandom output. 

Table 5-5  Creating Intermediate Pseudorandom Output 

Step Procedure 

1 Calculate H-MAC of the secret and the seed. 

2 Calculate H-MAC of the secret and the results of the previous 
step; the result is the first part of the pseudorandom output. 

3 Calculate H-MAC of the secret and the results of the previous 
step; the result is the next part of the pseudorandom output. 

4 Repeat step 3 as many times as required to product sufficient 
pseudorandom output. 

secret seed
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MAC

H-
MAC

H-
MAC

H-MAC

H-MAC

.

.

.

H-
MAC

H-MAC

pseudo-
random
output

 

Figure 5-8  TLS uses H-MAC to generate pseudorandom output. 
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For one additional refinement, tls uses the pseudorandom output 
procedure to create a pseudorandom function, or prf. The prf com-
bines two separate instances of the pseudorandom output procedure; 
one uses the md5 hash algorithm and the other uses the sha hash al-
gorithm. The tls standard specifies a function that uses both algo-
rithms just in case one of the two is ever found to be insecure. 
Should that happen, the other algorithm will still protect the data. 
The prf appears in figure 5-9. It starts with a secret value, a seed 
value, and a label. As the figure shows, the function splits the secret 
into two parts, one for the md5 hash and the other for the sha hash. 
It also combines the label and the seed into a single value. Table 5-6 
lists the detailed steps. Note that the md5 and sha hash outputs are 
of different lengths (16 and 20 bytes, respectively), so the pseudo-
random output generation may require a different number of itera-
tions for steps 2 and 3 in the table. 

secret seedlabel

label seedS1 S2

P-
MD5

P-
SHA

P-MD5 P-SHA

PRF

Exclusive-OR

 

Figure 5-9  TLS’s Pseudorandom function uses both MD5 and SHA. 
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Table 5-6  TLS Pseudorandom Function 

Step Procedure 

1 Split the secret into two equal parts; if the secret consists of an 
odd number of bytes, include the middle byte in each part. (It’s 
the last byte of the first part and the first byte of the second 
part.) 

2 Generate pseudorandom output using the first part of the se-
cret, the MD5 hash function, and the combined label and seed. 

3 Generate pseudorandom output using the second part of the 
secret, the SHA hash function, and the combined label and seed. 

4 Exclusive-OR the results from steps 2 and 3. 

With an understanding of the tls prf, it now possible to describe 
how tls creates key material. The principle is the same as with ssl. 
Each system starts with the premaster secret; next it creates the mas-
ter secret. Then, it generates the required key material from the mas-
ter secret. To generate the key material, tls relies on the prf. Input 
values to the prf are the master secret (as the secret), the ascii string 
“key expansion” (as the label), and the concatenation of the server’s 
random value and the client’s random value for the seed. 

The 48-byte master secret itself is also computed using the prf. The 
input values, in this case, are the premaster secret, the ascii string 
“master secret” (as the label), and the concatenation of the client’s 
random value and the server’s random value. Figure 5-10 illustrates 
both steps in the process. 

5.4.5 CertificateVerify 

Transport Layer Security also differs from ssl in the details of the 
CertificateVerify function. In ssl, the signed information in the Cer-
tificateVerify function consists of a complex, two-level hash of hand-
shake messages, master secrets, and padding. (See section 4.5.8.) In 
the case of tls, the signed information is simply the handshake mes-
sages previously exchanged during the session. 
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5.4.6 Finished 

The tls specification also simplifies, slightly, the contents of the 
Finished message. For tls, the sole contents of the Finished message 
are 12 bytes created by applying the prf to the master secret, the label 
“client finished” (for clients) or “server finished” (for servers), and the 
concatenation of the md5 hash of all handshake messages and the 
sha hash of all handshake messages. Figure 5-11 shows the calcula-
tion graphically. 

5.4.7 Baseline Cipher Suites 

As a baseline, tls supports nearly the same set of cipher suites as ssl; 
however, explicit support for Fortezza/dms cipher suites has been 
removed. The set of defined tls cipher suites will likely expand as 
new cipher suites are developed and implemented. Because the ietf 
has a well-defined process for evaluating these proposals, enhance-
ments will be much easier to add to tls than they were to ssl. Table 
5-7 lists the baseline tls cipher suites, along with their values in hello 
messages. 

premaster secret client random"master secret"

PRF

server random

master secret server random"key expansion"

PRF

client random

key material  

Figure 5-10  TLS uses its PRF to create the master secret and key material. 
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Table 5-7  TLS Version 1.0 Baseline CipherSuite Values 

Value Cipher Suite 

0,0 TLS_NULL_WITH_NULL_NULL 

0,1 TLS_RSA_WITH_NULL_MD5 

0,2 TLS_RSA_WITH_NULL_SHA 

0,3 TLS_RSA_EXPORT_WITH_RC4_40_MD5 

0,4 TLS_RSA_WITH_RC4_128_MD5 

0,5 TLS_RSA_WITH_RC4_128_SHA 

0,6 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 

0,7 TLS_RSA_WITH_IDEA_CBC_SHA 

0,8 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA 

0,9 TLS_RSA_WITH_DES_CBC_SHA 

0,10 TLS_RSA_WITH_3DES_EDE_CBC_SHA 

0,11 TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA 

0,12 TLS_DH_DSS_WITH_DES_CBC_SHA 

0,13 TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 

0,14 TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA 

master secret MD5 hashclient/server label

PRF

SHA hash

verify data (12 bytes)

Handshake Messages...

MD5 SHA

 

Figure 5-11  TLS uses the PRF for Finished messages. 
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0,15 TLS_DH_RSA_WITH_DES_CBC_SHA 

0,16 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 

0,17 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA 

0,18 TLS_DHE_DSS_WITH_DES_CBC_SHA 

0,19 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 

0,20 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA 

0,21 TLS_DHE_RSA_WITH_DES_CBC_SHA 

0,22 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 

0,23 TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 

0,24 TLS_DH_anon_WITH_RC4_128_MD5 

0,25 TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA 

0,26 TLS_DH_anon_WITH_DES_CBC_SHA 

0,27 TLS_DH_anon_WITH_3DES_EDE_CBC_SHA 

5.4.8 Interoperability with SSL 

As was the case with the transition from ssl version 2.0 to ssl ver-
sion 3.0, there is a well-defined approach for systems to support both 
ssl 3.0 and tls 1.0 in an interoperable manner. Indeed, the process is 
essentially the same as that described in section 5.1.1. A client that 
supports both ssl version 3.0 and tls version 1.0 should send an ssl 
version 3.0 ClientHello, but with the protocol version set to 3.1. If the 
server understands tls, it responds with a tls ServerHello; other-
wise, it responds with an ssl ServerHello, and the client knows to 
fall back to ssl version 3.0. Servers that support tls, even if they 
don’t support ssl, should still be prepared to accept an ssl v3.0 Cli-
entHello. If they receive such a message with the version set to 3.1, 
they can safely proceed with a tls handshake. 

5.5 The Future of SSL and TLS 

The future evolution of ssl and tls is clearly in the hands of the 
ietf, as well as developers of Web browsers, Web servers, and other 
Internet systems that require security. Version 3.0 of ssl is well estab-
lished in these areas, and, as more systems connect to the Internet 
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and more Internet transactions require security, ssl’s influence will 
only grow. Already, devices ranging from WebTV receivers to Palm 
computers include implementations of ssl or tls. In addition, appli-
cations other than for regular Web commerce are realizing the bene-
fits of an effective network security protocol. The Open Settlement 
Protocol,2 for example, relies on ssl to secure ip-based telephony ser-
vices; and the Wireless Application Protocol Forum has defined a 
variation of tls3 for securing handheld devices. 

The shift from ssl as a proprietary technology to tls as an open 
standard will also strengthen the protocol. Now that tls is adminis-
tered by an international standards organization, participation in its 
development is open to any interested party. The tls standardization 
process gives the network security community much more freedom 
to improve and enhance the protocol’s operation. Should a new vul-
nerability be discovered, or should new, more effective cryptographic 
algorithms be developed, it will be much easier to modify tls appro-
priately. This benefit alone insures that, under its new name, ssl will 
continue to secure Internet communications for years to come. 

 

_________________ 
2 Technical Specification ts 101 321 from the European Telecommunications Stan-
dards Institute, available at http://www.etsi.org. 
3 The Wireless Transport Layer Security (wtls) specification is available at 
http://www.wapforum.org. 

http://www.etsi.org
http://www.wapforum.org
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Appendix A 
X.509 Certificates 

The Secure Sockets Layer protocol does not depend on a particular 
format for the public key certificates it exchanges. As far as ssl is 
concerned, a certificate is just an arbitrary set of bytes. Practical ssl 
deployments and implementations, however, depend heavily on the 
specifics of those certificates. Client implementations, for example, 
must verify a server’s certificate and extract the server’s public key in-
formation from the certificate in order to encrypt the Client-
KeyExchange contents. And, although the ssl protocol itself does 
not worry about certificate details, a thorough understanding of pub-
lic key certificates is critical to any ssl implementation. 

One particular international standard is widely accepted as the ap-
propriate format for public key certificates. That standard is from the 
International Telecommunications Union (itu), and it is universally 
known by its itu specification number: x.509. This appendix takes a 
closer look at the x.509 standard. It begins with an overview of x.509 
certificates; the overview provides a high-level description of the cer-
tificate format, but it does not include extensive detail. For readers 
who want to understand x.509 at a detailed level, the following two 
sections are included. Section a.2 explains Abstract Syntax Notation 
One (asn.1), a special data description language used extensively in 
the x.509 (and many other itu) specifications. Some understanding 
of asn.1 is essential for the third section of this appendix, which 
looks at x.509 certificates in depth. The fourth and final section in-
cludes a complete example certificate, which shows how to read the 
actual certificate byte by byte. This section also discusses important 
aspects of constructing and interpreting x.509 certificates. 
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A.1 X.509 Certificate Overview 

Certificates that conform to the latest x.509 standard can contain as 
many as 11 different fields. Their order in the certificate corresponds 
to the illustration of figure a-1. Note though, that the field names in 
the figure are not the same as the names in the x.509 standard. To 
this writer, some of the x.509 field names seem quite confusing. Re-
luctantly, therefore, the figure and the following discussion take the 
liberty of renaming the fields to more reasonable labels.1 

A.1.1 Version 

The Version field identifies the particular version of the x.509 stan-
dard to which the certificate conforms. As of this writing, the latest 
version of the x.509 standard is 3. Note, though, that for this field 
within the certificate, version numbers begin with 0 rather than 1. 
Consequently, the version number that appears in x.509 version 3 
certificates is 2. 

_________________ 
1 Other authors, including Kaufman, Perlman, and Speciner (see References), have 
also adopted this approach. 

Version

Serial Number

Algorithm Identifier

Issuer

Period of Validity

Subject

Subject's Public Key

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Called "Signature" in standard

Called "Encrypted" in standard
 

Figure A-1  An X.509 certificate contains fewer than a dozen items. 
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A.1.2 Serial Number 

The Serial Number is a value assigned by the certificate authority to 
an individual certificate. Presumably, the ca ensures that the value is 
unique for every certificate it issues. The certificate authority has 
complete control over this field, though, and can put any value what-
soever here. 

A.1.3 Algorithm Identifier 

The Algorithm Identifier is one of the fields that is named differently 
in the standard. The x.509 specification calls this field the Signature. 
That choice is particularly inappropriate, because the field doesn’t 
contain a signature at all. Instead, as the name used here implies, the 
field simply identifies the algorithm used to sign the certificate, as 
well as any parameters pertinent to that algorithm. This information 
is actually repeated in the “encrypted” part of the certificate. Most 
implementations choose to use the information from that section, ef-
fectively ignoring this value. 

A.1.4 Issuer 

The Issuer field identifies the certificate authority that issued the cer-
tificate. It takes the form of a distinguished name. A distinguished 
name is a hierarchy, often starting with a country and then dividing 
into state or province, organizations, organizational units, and so on. 
Theoretically, a distinguished name may extend all the way to an in-
dividual. Certificate authorities have historically been rather liberal in 
their interpretation of this hierarchy. The organizational unit ele-
ment, for example, is often used to hold miscellaneous information 
relating to the authority. The example certificate of section a.4 dem-
onstrates this practice. 

A.1.5 Period of Validity 

The Period of Validity identifies both the earliest and latest times that 
the certificate is valid. Outside of the bounds this field asserts, the 
certificate should not be considered valid. 
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A.1.6 Subject 

The Subject field identifies the entity that owns the private key being 
certified. Like the Issuer field, this field takes the form of a distin-
guished name, and, as with the Issuer, certificate authorities have his-
torically interpreted the distinguished name hierarchy quite liberally. 
Generally, the most important element in the subject’s name is the 
element known as the commonName. The commonName is typically 
the actual name of the subject being certified. 

A.1.7 Subject’s Public Key 

This field contains the subject’s public key, and is, in effect, the whole 
reason for the certificate. This field also identifies the algorithm and 
its parameters. As an example, if the public key algorithm is rsa, 
then this field will contain the modulus and public exponent. Note 
that this information is different from the information in the Signa-
ture and Algorithm Identifier fields of the certificate. Those two 
fields identify the algorithm of the certificate authority’s public key, 
the key used to sign the certificate. This field identifies the subject’s 
public key. 

A.1.8 Issuer Unique Identifier 

This optional field, which was introduced in x.509 version 2, permits 
two different issuers to have the same Issuer distinguished name. 
Such issuers would be distinguished from each other by having dif-
ferent values for the Issuer Unique Identifier. As a practical matter, 
this field is rarely used. 

A.1.9 Subject Unique Identifier 

This optional field, also introduced in x.509 version 2, permits two 
different subjects to have the same distinguished name. For example, 
two different people in the same organization might be named 
Stephen Thomas. Such subjects would be distinguished by different 
values for this field. As a practical matter, like the Issuer Unique 
Identifier, the Subject Unique Identifier field is rarely used. 
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A.1.10 Extensions 

The Extensions field was introduced in version 3 of x.509 (the latest 
version as of this writing). It provides a place for issuers to add their 
own private information to the certificate. As discussed in Chapter 5, 
this is the area where the special object identifiers for Netscape’s In-
ternational Step-Up and Microsoft’s Server Gated Cryptography ap-
pear. Certificate authorities frequently use this area for miscellaneous 
information related to the certificate. The sample certificate of sec-
tion a.4 includes examples of this type of information. 

A.1.11 Signature 

The Signature itself is the final element of an x.509 certificate. As the 
figure notes, the specification names this field “encrypted.” The field 
contains the algorithm identifier, a secure hash of the other fields in 
the certificate, and a digital signature of that hash. 

A.2 Abstract Syntax Notation One 

The x.509 standard describes certificates using a special notation 
known as Abstract Syntax One, or asn.1 for short. asn.1 has been 
called many things (not all of them nice, as it can be a very complex 
tool), but it resembles, in many respects, a programming language. It 
is not a true programming language, because asn.1 really only defines 
data structures; it cannot effectively describe execution logic. For 
those familiar with the c programming language, asn.1 is roughly 
analogous to the c source code that one typically finds in header (.h) 
files. It has the equivalent of structs, unions, typedefs, and 
even #defines; asn.1, however, does not include the equivalent of 
functions. 

Like the c language, asn.1 has well-defined primitive types, and it 
has methods to define complex combinations of those primitive 
types. Those topics, plus the rules for encoding asn.1 objects for 
transmission on a network, are the subject of the following subsec-
tions. Please note that this entire section contains only the briefest 
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possible introduction to asn.1. Readers requiring an in-depth discus-
sion of asn.1 should consult the References section. 

A.2.1 Primitive Objects 

The asn.1 specification defines a few key objects as primitive objects. 
These objects, in fact, are the only objects defined by asn.1 itself. All 
other objects are created from combinations of the primitive objects. 
The asn.1 primitive objects play the same role that types such as int 
and char play in the c language. Table a-1 lists some of the asn.1 
primitive objects commonly encountered in x.509 certificates. 

Table A-1 Important ASN.1 Primitive Objects 

Object Description 

BIT STRING An array of bits. 

BOOLEAN A value that is either TRUE or FALSE. 

IA5String An OCTET STRING in which the octets are re-
stricted to be valid ASCII characters. 

INTEGER A positive or negative number (ASN.1 INTEGERs 
have no maximum size). 

NULL An empty object used as a placeholder. 

OBJECT IDENTIFIER A sequence of integers that uniquely identifies 
a particular object registered (directly or indi-
rectly) with the ITU. 

OCTET STRING An array of bytes (which ASN.1 calls octets). 

PrintableString An OCTET STRING in which the octets are re-
stricted to be printable characters. 

TeletexString An OCTET STRING in which the octets are re-
stricted to be characters reproducible by 
Teletex machines. 

UTCTime A special ASCII string containing a universal 
time value (popularly known as Greenwich 
Mean Time), in the format YYMMDDHHMMSSZ. 

A.2.2 Constructed Objects 

The asn.1 language allows users to build upon its primitive objects by 
combining them into more complex objects. Just as the c language 
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(to continue the earlier example) allows various combinations such as 
struct, union, and arrays, asn.1 also provides for constructed ob-
jects. Table a-2 lists the most common ways to combine asn.1 primi-
tive types. 

Table A-2 Important ASN.1 Constructions 

Construct Description 

CHOICE Exactly one of the following individual objects; cor-
responds to a C union.

SEQUENCE An ordered combination of several individual ob-
jects; corresponds to a C struct. 

SEQUENCE OF Zero or more of the same individual object (possibly 
with different values) in which the order of the ob-
jects is important; corresponds to a C array, though 
the size need not be specified. 

SET An unordered combination of several individual ob-
jects. 

SET OF Zero or more of the same individual object (possibly 
with different values) in which the order of the ob-
jects does not matter. 

In x.509 certificates, the only constructions that commonly appear 
are sequence, set, and choice. The example certificate of section 
a.4 includes examples of both types. 

A.2.3 The Object Identifier Hierarchy 

The object identifier primitive type is a special feature of asn.1 
that is not part of standard programming languages such as c. An 
object identifier value refers to a specific place in a special hierar-
chy of objects. Every object within this hierarchy has its own unique 
object identifier value, and, with only this value, it is possible to 
unambiguously identify the corresponding object. 

The itu has defined an initial hierarchy for these objects. In graphi-
cal form, the object hierarchy looks like figure a-2. At the highest 
level, the hierarchy recognizes the itu, the International Standards 
Organization (iso), and joint itu-iso objects. Many other public and 
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private organizations (including, for example, the ietf, the European 
Telecommunications Standards Institute, and others) have their own 
object hierarchies beneath one of the three top-level organizations. 

The figure details one example hierarchy under the joint itu/iso 
subtree. That hierarchy consists of directory services (ds), modules, 
an authentication framework, and, finally, x.509. This is the main 
path for x.509 objects. 

As you can see, the object identifier hierarchy is a little like the 
Internet’s domain name system (dns). In that system, the domain 
name www.ibm.com refers (reading backward) to commercial or-
ganizations in general (.com), then a particular company (ibm), and 
then a specific system belonging to that company (www.). Borrowing 
from the dns tradition, object identifier values may be written us-
ing a dot notation. A period separates different levels of the hierar-
chy. Unlike domain names, object identifier values are normally 
written from most general to most specific. Furthermore, levels in the 
object identifier hierarchy are represented by numbers rather than 
names. The x.509 branch from the tree above, therefore, commonly 
appears as 2.5.1.7.3. 

iso(1) joint-iso-itu(2)itu(0)

ds(5)

module(1)

authFrame(7)

x509(3)

root

 

Figure A-2  OBJECT IDENTIFIER values are organized as a hierarchy. 
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A.2.4 Tagging 

Another unique asn.1 characteristic is tagging. A tag associates a 
unique value with a specific asn.1 object or element within an object. 
This function sounds similar to that of an object identifier, but 
the two concepts are really quite different. The object identifier 
hierarchy is a global, distributed hierarchy that is actually independ-
ent of the asn.1 language. The asn.1 language happens to have a na-
tive, primitive type that represents object identifier values, but 
other languages could support the object identifier hierarchy 
equally well. Tags, on the other hand, are an intimate and essential 
part of asn.1. The asn.1 language has greater flexibility than many 
data description languages, and tags are one of the essential tools 
asn.1 needs to support that flexibility. 

The easiest way to sort this out is with an example, so let’s take a 
look at some samples of asn.1. Table a-3 shows an asn.1 description 
of a complex object. The example object (which is somewhat artifi-
cial in order to clarify the important concepts) has two optional 
components and one printable string. The two optional components 
are both object identifier values, and they could be used to indi-
cate the governmental level of a location. The itu, for example, has 
defined object identifier values for country, state or province, and 
locality, and either of these components could indicate whether the 
location is a country, state, city, or other. The important thing to note 
is that the sample asn.1 defines both the primaryLevel and the sec-
ondaryLevel to be optional. That means that a Location object 
could have both, neither, or one or the other of these elements. 

Table A-3  Tagging within an Object 

ASN.1 Source 

Location ::= SEQUENCE { 

 primaryLevel [0] OBJECT IDENTIFIER OPTIONAL, 

 secondaryLevel [1] OBJECT IDENTIFIER OPTIONAL, 

 placeName PrintableString } 

Now, consider how to interpret a Location instance that contains 
only a single element of type object identifier. Perhaps the Loca-
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tion has an object identifier value of 2.5.4.6, which the itu defines 
to be “country.” Does this object identifier value mean that the 
location’s primary level is a country; or is it the secondary level that’s 
the country? The answer lies in the bracketed numbers immediately 
before each object identifier keyword. Those numbers are tags. 
All primaryLevel elements will have a tag value of 0, and secondary-
Level elements have a tag of 1. Any valid Location instance will in-
clude the appropriate tag value along with the object identifier 
value. A quick check of the tag value is enough to tell which object 
identifier is present in the Location object. 

To summarize, the object identifier hierarchy is a globally admin-
istered way to unambiguously refer to any object, and asn.1 happens 
to have some built-in features that make working with the hierarchy 
easy. Tags, on the other hand, are an integral part of asn.1 and are 
used to distinguish particular asn.1 objects or elements from each 
other. 

The previous example is only one way that tags distinguish asn.1 ob-
jects from each other. The language actually has four different types 
of tags: universal, application-specific, context-specific, and private-
use. What we’ve been discussing so far are context-specific tags. The 
0 and 1 of table a-3 only have meaning in the context of a Location 
object. Different objects could safely reuse these tag values without 
the risk of confusion. 

Two of the other types of tags—application-specific and private-
use—are rarely used in any asn.1, and are not relevant to x.509 cer-
tificates, so we won’t discuss them further here. Universal tags, on the 
other hand, are important. They are used to distinguish between 
asn.1’s primitive types and constructed objects. The asn.1 standards 
define specific universal tag values for all the primitive types and 
construction operations. Table a-4 lists some that are important for 
x.509 certificates. Note that universal tags have the same numeric 
values as context-specific tags. (The universal tag for a boolean ob-
ject is the same value, 1, as the context-specific tag for secon-
daryLevel object identifier values in the previous example.) That’s 
not really a problem, though. As we’ll see, asn.1 has ways to indicate 
whether a particular tag is universal or context-specific. 
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Table A-4  ASN.1 Universal Tags 

Universal Tag ASN.1 Object 

1  BOOLEAN 

2  INTEGER 

3  BIT STRING 

4  OCTET STRING 

5  NULL 

6  OBJECT IDENTIFIER 

16  SEQUENCE, SEQUENCE OF 

17  SET, SET OF 

19  PrintableString 

20  TeletexString 

22  IA5String 

23  UTCTime 

In addition to belonging to a class, tags are either implicit or ex-
plicit. By default, all tags are explicit, so the object identifier 
elements of Location objects are both explicitly tagged. That means 
that all primaryLevel elements will have two separate tags. The first 
is a context-specific tag of 0 just described; the second is a universal 
tag of 6, indicating an object identifier. Most of the time, the sec-
ond tag is not necessary. In our example, by identifying the element 
as primaryLevel, the context-specific tag alone also implies that the 
element is an object identifier. The universal tag that indicates 
the element is an object identifier value is unnecessary. This idea 
leads to the asn.1 of table a-5. The implicit keyword with each ele-
ment indicates that the second tag for the type itself is not needed. 
So, if Location is defined as in table a-5, a primaryLevel element will 
only have a single tag, the context-specific tag of 0. The universal tag 
for object identifier is merely implied and not actually present. 

Table A-5  Marking Tags as Implicit 

ASN.1 Source 

Location ::= SEQUENCE { 

 primaryLevel [0] IMPLICIT OBJECT IDENTIFIER OPTIONAL, 

 secondaryLevel [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL, 

 placeName PrintableString } 
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A.2.5 Encoding Rules 

When asn.1 is used to define actual objects that are transferred 
across a communications network, it must be possible to represent 
those objects to computers. Representing asn.1 objects is known as 
encoding, and asn.1 defines several different approaches. For x.509 
certificates, the approach is that of the Distinguished Encoding Rules, 
or der for short. 

The Distinguished Encoding Rules for asn.1 are relatively straight-
forward. Nearly all objects consist of the three parts that figure a-3 
shows: a tag, a length, and a value. (der also has a method of encod-
ing objects whose final length is unknown when the encoding pro- 
cess begins, but this method doesn’t apply to x.509 certificates.) 

The first part of any encoded object is the object’s tag. Tags are en-
coded in one of two ways, depending on whether their numeric value 
is less than 31. Figure a-4 shows how tag values less than 31 are en-
coded. The two most significant bits indicate the class of the tag; ta-
ble a-6 spells out their values. The next bit indicates whether the 
object is primitive or constructed, and the five least significant bits 
carry the tag value itself. For example, the tag for sequence is en-
coded as a hexadecimal 0x30. The class bits 00 indicate a universal 
tag. The next bit is a 1 to indicate that the object is constructed, and 
the five remaining bits are 10000 for the universal tag of 16. 

Table A-6  Class Encoding Bit Values for Tags 

Bits Class 

0 0 Universal Tag 

0 1 Application-Specific Tag 

1 0 Context-Specific Tag 

1 1 Private-Use Tag 

Tag Length Value

Encoded ASN.1 Object  

Figure A-3  ASN.1 encodes objects as a tag, a length, and a value. 
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When the tag value is greater than 30, the format shown in the bot-
tom of figure a-5 encodes the tag. The class and primitive bits are the 
same as before, but the five least significant bits of the first byte are 
all ones. The value itself is present in the subsequent bytes. The most 
significant bit of these bytes is the extension bit. This extension bit is 
set to 1 in all bytes but the last. The remaining bits, when concate-
nated together, form the complete tag value. There is no theoretical 
limit to the number of bytes der uses to encode tag values, so der 
can successfully encode arbitrarily large tag values. 

The length component of each object follows a similar (but not iden-
tical) strategy. If the length is less than 128, it is encoded as a single 
byte with a value equal to the length. For objects greater than 127 
bytes in length, the most significant bit of the first byte is set to 1, 
and the rest of that byte indicates the number of bytes in the length. 
The length itself then follows. For example, a length of 100 00o bytes 
appears as the hexadecimal value 0x830186a0. The first byte (0x83) 
indicates that the length is greater than 127, and that it is present in 
the next 3 bytes. Those bytes (0x0186a0, which is the hexadecimal 
representation of 100 000) hold the value itself. 

Tag

Class Prim. Value

0 to 30

 

Figure A-4  Small tag values are encoded as a single byte. 

...1 1 1 11

Tag

Class Prim. ValueExt.indicates multi-byte  

Figure A-5  Tag values greater than 30 use a multi-byte encoding. 
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The encoding of the object’s value depends on the object’s type, but 
the process is relatively straightforward. String objects such as octet 
string, ia5string, and utctime simply encode the individual bytes 
of the string. The integer object uses two’s complement binary no-
tation, while bit string objects are encoded like octet string ob-
jects, except that the first byte after the length contains the number 
of unused bits in the final byte. 

The only primitive type with a tricky encoding is the object identi-
fier. For an object identifier, the encoding rules are sufficiently 
complicated that they are best explained by an example. Figure a-6 
shows the steps involved in encoding the object identifier value 
1.0.8571.2. The first step combines the first two components of the 
value (the 1 and the 0) by multiplying the first by 40 and adding the 
second.2 Then each of the resulting components is converted to a bi-
nary value, which is, in turn, grouped into 7-bit quantities. Each of 
these 7-bit quantities becomes a single byte in the encoding. The 
most significant bit of each byte is set to 0 on the last 7-bit quantity 

_________________ 
2 The asn.1 designers had a reason for this approach, but, in hindsight, the resulting 
complexity and political repercussions would probably cause them to reconsider if 
they could. What’s done is done, however. 

40 8571 2

00000100101000

0000010011110110100001001010000 1

1000010 1111011

0 8571 21

×40 +

. . .

 

Figure A-6  Encoding OBJECT IDENTIFIER values takes several steps. 
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of each component, and it is set to 1 on all other bytes. The final en-
coding of the object identifier value 1.0.8571.2 is 0x28c27b02. 

Constructed objects defined as a sequence and set use the tag for 
the appropriate construction, the length of the entire construction, 
and then normal der encodings of the individual objects within the 
construction. Again, an actual example such as that of section a.4 
provides the best illustration of such encodings. 

A.3 X.509 Certificate Definition 

Although the x.509 specification contains more than 70 pages, the 
essential definition of an x.509 certificate consists of only 45 lines of 
asn.1 source code that define 10 objects. This section examines each 
of those major objects. 

A.3.1 The Certificate Object 

The primary object for an x.509 certificate is the Certificate object 
itself. Table a-7 shows the 14 lines of asn.1 that make up its defini-
tion. Line 1 highlights two key aspects of the Certificate object. First, 
it is digitally signed. The signed construction is an asn.1 parameter-
ized type, essentially the same as a c-language macro. In this case, it 
indicates that the information to be signed (the asn.1 sequence that 
follows) is itself followed by an AlgorithmIdentifier, then by the bit 
string containing the results of the signing algorithm. 

Table A-7  X.509 Certificate Object 

Line ASN.1 Source 

1  Certificate ::= SIGNED { SEQUENCE { 
2   version [0] Version DEFAULT v1, 
3   serialNumber CertificateSerialNumber, 
4   signature AlgorithmIdentifier, 
5   issuer Name, 
6   validity Validity, 
7   subject Name, 
8   subjectPublicKeyInfo SubjectPublicKeyInfo, 
9   issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OP-

TIONAL, 
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Line ASN.1 Source 

10     -- if present, version must be v2 or v3 
11   subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OP-

TIONAL, 
12     -- if present, version must be v2 or v3 
13   extensions [3] Extensions OPTIONAL 
14     -- If present, version must be v3 -- } } 

Line 1 also shows that the Certificate object is a sequence of other 
objects. Those other objects are defined by lines 2 through 14 of the 
asn.1; each is discussed in following subsections. Note also that lines 
10, 12, and 14 begin with a double dash, or --. This is the asn.1 nota-
tion for a comment. Comments continue to the end of the line, or, as 
in line 14, until another double dash is encountered. 

Most of the components of a Certificate object are a straightforward 
application of their respective objects, and thus are discussed in the 
following subsections. The “signature” component in line 4, however, 
is a bit tricky. It merely identifies the signature algorithm that the is-
suer uses to sign the certificate; it is not actually a signature for the 
certificate. Its value is also repeated as part of the signed construc-
tion, although that second occurrence is not included in the data be-
ing signed. Because of this repetition, and because the 
AlgorithmIdentifier object has historically been the subject of con-
siderable confusion, many implementations simply ignore this field 
in the certificate, and instead rely on the value in the signed con-
struction. 

A.3.2 The Version Object 

The Version object identifies which version of the x.509 standard the 
certificate complies with. As table a-8 indicates, the object is a simple 
integer. It takes on the values 0, 1, or 2—for version 1, 2, or 3 of 
x.509, respectively. 

Table A-8  X.509 Version Object 

Line ASN.1 Source 

15 Version := INTEGER { v1(0), v2(1), v3(2) } 
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A.3.3 The CertificateSerialNumber Object 

The CertificateSerialNumber is, as table a-9 shows, an integer. 

Table A-9  X.509 CertificateSerialNumber Object 

Line ASN.1 Source 

16 CertificateSerialNumber ::= INTEGER 

A.3.4 The AlgorithmIdentifier Object 

The AlgorithmIdentifier object has caused a lot of confusion for ssl 
implementations. Part of the reason is that, as table a-10 shows, the 
x.509 specification does not fully define the object. Rather, it pro-
vides a framework for defining AlgorithmIdentifier objects, and 
leaves the messy details up to other specifications. That has left the 
door open for many different bodies, including the itu, the ietf, in-
dustry consortia, and proprietary vendors, to devise their own algo-
rithm identifiers. What makes the situation particularly frustrating is 
that there really aren’t that many practical algorithms; the result has 
been many different ways to refer to the same few algorithms. 

Table A-10  X.509 AlgorithmIdentifier Object 

Line ASN.1 Source 

17 AlgorithmIdentifier ::= SEQUENCE { 
18  algorithm ALGORITHM.&id ({SupportedAlgorithms}), 
19  parameters ALGORITHM.&Type ({SupportedAlgorithms}{ 

@algorithm}) OPTIONAL } 
20 -- Definition of the following information object set is deferred, 

perhaps to standardized 
21 -- profiles or to protocol implementation conformance statements. 

The set is required to 
22 -- specify a table constraint on the parameters component of Algo-

rithmIdentifier 
23 -- SupportedAlgorithms ALGORITHM ::= { ... } 

Fortunately in this case, the void left by de jure standards has been 
filled by de facto implementations. The majority of existing ssl im-
plementations rely on certificates issued by VeriSign or one of its 
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partners. And VeriSign is generally consistent in using the following 
two algorithm identifiers. For public keys, the object identifier (1 
2 840 113549 1 1 1) indicates rsa public key encryption. And for digital 
signatures, the object identifier (1 2 840 113549 1 1 4) represents the 
combination of md5 hash and rsa signing. The sample certificate of 
section a.4 includes examples of both AlgorithmIdentifier objects. 
Issuers other than VeriSign are likely to use the same identifiers to 
ensure interoperability with existing implementations. 

A.3.5 The Validity Object 

The Validity object, whose definition appears in table a-11, is a se-
quence of two times. The first is the notBefore time; the certificate 
should not be considered valid until that time is reached. The second 
element of the sequence is the notAfter time. This is the expiration 
time for the certificate. Section a.3.7 below shows the definition of 
each time value. 

Table A-11  X.509 Validity Object 

Line ASN.1 Source 

24 Validity ::= SEQUENCE { 
25  notBefore Time, 
26  notAfter Time } 

A.3.6 The SubjectPublicKeyInfo Object 

The subject’s public key information is carried within a SubjectPub-
licKeyInfo object. As table a-12 shows, that object contains an Algo-
rithmIdentifier, followed by the public key itself. 

Table A-12  X.509 SubjectPublicKeyInfo Object 

Line ASN.1 Source 

27 SubjectPublicKeyInfo ::= SEQUENCE { 
28  algorithm AlgorithmIdentifier, 
29  subjectPublicKey BIT STRING } 
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A.3.7 The Time Object 

Table a-13 shows how a Time object can be described in either of two 
formats: as a universal time string or as a generalized time string. 
Nearly all implementations choose the universal time string alterna-
tive. 

Table A-13  X.509 Time Object 

Line ASN.1 Source 

30 Time  ::= CHOICE {  
31  utcTime UTCTime,  
32  generalizedTime GeneralizedTime } 

A.3.8 The Extensions Object 

The x.509 Extensions object is, as table a-14 indicates, a sequence of 
one or more individual Extension objects. (Note the change from 
plural to singular.) Each Extension consists of an identifier, an indi-
cation of whether the particular extension is critical, and the exten-
sion value. The critical element assists systems that receive a 
certificate with extensions they do not understand. If the critical 
element is false, then those systems can simply ignore the exten-
sions they cannot interpret. An extension that is critical, however, 
should not be ignored. A system that doesn’t understand a critical ex-
tension should play it safe and treat the entire certificate as invalid. 

Table A-14  X.509 Extensions 

Line ASN.1 Source 

33 Extensions ::= SEQUENCE OF Extension 
34 Extension ::= SEQUENCE { 
35  extnId EXTENSION.&id ({ExtensionSet}), 
36  critical BOOLEAN DEFAULT FALSE, 
37  extnValue OCTET STRING 
38  -- contains a DER encoding of a value of type &ExtnType 
39  -- for the extension object identified by extnId -- } 

Two particular extensions that are important to ssl are the extended 
key usage extensions that indicate International Step-Up and Server 
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Gated Cryptography. (See sections 5.2 and 5.3.) Currently, any certifi-
cate that supports International Step-Up also supports Server Gated 
Cryptography. Such certificates include both extensions. The extKe-
yUsage object identifier is (2 5 29 37), and its value, in this case, 
consists of the sequence of object identifier values (2 16 840 1 
113730 4 1) and (1 3 6 1 4 1 311 10 3 3). The example certificate of sec-
tion a.4 shows this extension in full context. 

A.3.9 The UniqueIdentifier Object 

The x.509 certificate includes a few objects that are not defined in 
the x.509 specification itself, but are instead found in other itu rec-
ommendations. The UniqueIdentifier object is one of those exter-
nally defined objects. For completeness, table a-15 shows its 
definition. Note that a UniqueIdentifier is simply an arbitrary bit 
string. 

Table A-15  X.500 UniqueIdentifier Object 

Line ASN.1 Source 

40 UniqueIdentifier ::= BIT STRING 

A.3.10 The Name Object 

A more significant object defined outside of the x.509 specification is 
the Name object. Names are used to identify both subjects and issu-
ers of certificates. As table a-16 shows, a Name is a series of Rela-
tiveDistinguishedName objects, where each of these objects is a set 
of one or more attributes.  

Table A-16  X.500 Name Object 

Line ASN.1 Source 

41 Name ::= SEQUENCE OF RelativeDistinguishedName 
42 RelativeDistinguishedName ::= SET OF AttributeValueAssertion 
43 AttributeValueAssertion ::= SEQUENCE { 
44  attributeType OBJECT IDENTIFIER 
45  attributeValue ANY } 
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The important organizing concept behind Name objects is a hierar-
chy. An example makes this clearer. I live in the town of Marietta. 
That information alone, though, is not really enough to identify my 
current hometown. There are at least 11 different cities in the United 
States alone named Marietta. A complete identification would be the 
town of Marietta, the state of Georgia, and the country of the United 
States. 

Figure a-7 shows this organization graphically. In x.509 terms, the 
Name for my town would be something like country=us, state=ga, 
city=Marietta. That full name consists of three separate Rela-
tiveDistinguishedName objects: country=us, state=ga, and city= 
Marietta. To take the last of these RelativeDistinguishedName ob-
jects, it is a single AttributeValueAssertion where the attributeType is 
city and the attributeValue is Marietta. 

Of course, certificates are not normally issued to or by cities. They 
typically identify a person or an organization, frequently in a business 
context. Various official and unofficial standards define many differ-
ent attributes that can appear in an x.509 certificate. Table a-17 lists 
some of the more common ones. Each type in the list consists of an 
object identifier and an object for its value. 

Country:
United States

State:
Georgia

City:
Marietta

State:
Florida

State:
Hawaii

City:
Macon

City:
Newnan

 

Figure A-7  Distinguished names are organized in a hierarchy. 
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Table A-17  Typical X.509 Name Attribute Types 

Attribute ASN.1 Description 

countryName ::= SEQUENCE { { 2 5 4 6 },  
StringType( SIZE( 2 ) ) } 

organization ::= SEQUENCE { { 2 5 4 10 },  
StringType( SIZE( 1...64 ) ) } 

organizationalUnitName ::= SEQUENCE { { 2 5 4 11 },  
StringType( SIZE( 1...64 ) ) } 

commonName ::= SEQUENCE { { 2 5 4 3 },  
StringType( SIZE( 1...64 ) ) } 

localityName ::= SEQUENCE { { 2 5 4 7 },  
StringType( SIZE( 1...64 ) ) } 

stateOrProvinceName ::= SEQUENCE { { 2 5 4 8 },  
StringType( SIZE( 1...64 ) ) } 

emailAddress ::= SEQUENCE { { 1 2 840 113549 1 9 1 }, 
IA5String } 

A.4 Example Certificate 

Although descriptions of asn.1 and x.509 certificates can be helpful, 
full understanding comes from actually looking at a real certificate. 
This section presents a complete x.509 certificate actually used for 
ssl security. Table a-18 shows the full certificate, matching the en-
coded bytes with the appropriate asn.1 source. The leftmost column 
in the table indicates the offset (in hexadecimal) from the beginning 
of the certificate. This value is important, as further discussion in this 
section refers to specific components of the certificate by reference to 
their offset. 

Table A-18  Example X.509 Certificate 
Offset Certificate Contents ASN.1 

0000 30 82 05 64             SEQUENCE, len=0x564 

     30 82 04 CD          SEQUENCE, len=0x4CD 

         A0 03         EXPLICIT TAG [0], len=3 

           02 01        INTEGER, len=1 

             02        2 

              02 10    INTEGER, len=0x10 
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Offset Certificate Contents ASN.1 

                3E    value=0x3E29... 

0010 29 CF 54 69 08 2B 0F AB 73 2D 95 39 A5 97 2C                

                30   SEQUENCE, len=0xD 

0020 0D                              

  06 09                 OBJECT IDENTIFIER, len=9 

    2A 86 48 86 F7 0D 01 01 04         1.2.840.113549.1.1.4 

             05 00      NULL, len=0 

               30 81   SEQUENCE, len=0xBA 

0030 BA                              

  31 1F                 SET, len=0x1F 

    30 1D                SEQUENCE, len=0x1D 

      06 03               OBJECT IDENTIFIER, len=3 

        55 04 0A             2.5.4.10 

           13 16          PrintableString, len=0x16 

             56 65 72 69       "VeriSign Trust Network" 

0040 53 69 67 6E 20 54 72 75 73 74 20 4E 65 74 77 6F               

0050 72 6B                             

   31 17                SET, len=0x17 

     30 15               SEQUENCE, len=0x15 

       06 03              OBJECT IDENTIFIER, len=3 

         55 04 0B            2.5.4.11  

            13 0E         PrintableString, len=0xE 

              56 65 72       "VeriSign, Inc." 

0060 69 53 69 67 6E 2C 20 49 6E 63 2E                    

            31 33       SET, len=0x33 

              30 31      SEQUENCE, len=0x31 

                06      OBJECT IDENTIFIER, len=3 

0070 03                              

  55 04 0B                   2.5.4.11 

     13 2A                PrintableString, len=0x2A 

       56 65 72 69 53 69 67 6E 20 49       "VeriSign International 

0080 6E 74 65 72 6E 61 74 69 6F 6E 61 6C 20 53 65 72       Server CA = Class 3" 

0090 76 65 72 20 43 41 20 2D 20 43 6C 61 73 73 20 33               

00A0 31 49                  SET, len=0x49 

   30 47                 SEQUENCE, len=0x47 

     06 03                OBJECT IDENTIFIER, len=3 

       55 04 0B              2.5.4.11 

          13 40           PrintableString, len=0x40 

            77 77 77 2E 76       "www.verisign.com/CPS 

00B0 65 72 69 73 69 67 6E 2E 63 6F 6D 2F 43 50 53 20       Incorp.by Ref. 

00C0 49 6E 63 6F 72 70 2E 62 79 20 52 65 66 2E 20 4C       LIABILITY LTD.(c)97 

00D0 49 41 42 49 4C 49 54 59 20 4C 54 44 2E 28 63 29       VeriSign" 

00E0 39 37 20 56 65 72 69 53 69 67 6E                    
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Offset Certificate Contents ASN.1 

            30 1E      SEQUENCE, len=0x1E 

              17 0D     UTCTime, len=0xD 

                39     "981203000000Z" 

00F0 38 31 32 30 33 30 30 30 30 30 30 5A                   

             17 0D      UTCTime, len=0xD 

               39 39     "991211235959Z" 

0100 31 32 31 31 32 33 35 39 35 39 5A                    

            30 81 89     SEQUENCE, len=0x89 

               31 0B    SET, len=0xB 

0110 30 09                   SEQUENCE, len=9 

   06 03                  OBJECT IDENTIFIER, len=3 

     55 04 06                2.5.4.6 

        13 02             PrintableString, len=2 

          4E 5A            "NZ" 

            31 11       SET, len=0x11 

              30 0F      SEQUENCE, len=0xF 

                06      OBJECT IDENTIFIER, len=3 

0120 03                              

  55 04 08                   2.5.4.8 

     13 08                PrintableString, len=8 

       41 75 63 6B 6C 61 6E 64         "Auckland" 

               31 11    SET, len=0x11 

0130 30 0F                   SEQUENCE, len=0xF 

   06 03                  OBJECT IDENTIFIER, len=3 

     55 04 07                2.5.4.7 

        14 08             TeletexString, len=8 

          41 75 63 6B 6C 61 6E       "Auckland" 

0140 64                              

  31 19                 SET, len=0x19 

    30 17                SEQUENCE, len=0x17 

      06 03               OBJECT IDENTIFIER, len=3 

        55 04 0A             2.5.4.10 

           14 10          TeletexString, len=0x10 

             41 53 42 20       "ASB Bank Limited" 

0150 42 61 6E 6B 20 4C 69 6D 69 74 65 64                   

             31 1D      SET, len=0x1D 

               30 1B     SEQUENCE, len=0x1B 

0160 06 03                    OBJECT IDENTIFIER, len=3 

   55 04 0B                  2.5.4.11 

      14 14               TeletexString, len=0x14 

        49 6E 66 6F 72 6D 61 74 69       "Information Services" 

0170 6F 6E 20 53 65 72 76 69 63 65 73                    

            31 1A       SET, len=0x1A 
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Offset Certificate Contents ASN.1 

              30 18      SEQUENCE, len=0x18 

                06      OBJECT IDENTIFIER, len=3 

0180 03                       

  55 04 03                   2.5.4.3 

     14 11                TeletexString, len=0x11 

       77 77 77 2E 61 73 62 62 61 6E       "www.asbbank.co.nz" 

0190 6B 2E 63 6F 2E 6E 7A                        

        30 81 9E         SEQUENCE, len=0x9E 

           30 0D        SEQUENCE, len=0xD 

             06 09       OBJECT IDENTIFIER, len=9 

               2A 86      1.2.840.113549.1.1.1 

01A0 48 86 F7 0D 01 01 01                        

        05 00            NULL, len=0 

          03 81 8C 00       BIT STRING, len=0x8C, unused=0 

              30 81 88     0x308188... 

01B0 02 81 80 6C BE 1F AF 40 43 3F 8C B9 77 77 40 16               

01C0 9A CF C7 5B 9B E9 5F D8 E5 2E A0 CC A5 85 09 F6               

01D0 67 27 EC C9 78 BF 74 96 B0 38 6C C6 93 C4 62 82               

01E0 F8 3B 84 EB 82 1D 48 C3 2A 68 C3 08 D5 6B E3 55               

01F0 2C AA A3 8B 81 EE 77 17 12 0A F0 03 CE CE A6 14               

0200 DF AB EC E0 C4 B4 77 8B 97 88 A3 12 29 A2 36 A2               

0210 9E F9 66 A0 5E 8E FD 6D FB 83 51 41 C9 0B F8 7B               

0220 E4 15 13 D9 C8 8D 2C 83 1A A6 CE 6A A4 90 FD 11               

0230 25 86 73 02 03 01 00 01                       

         A3 82 02 99       EXPLICIT TAG [3], len=0x299 

             30 82 02 95    SEQUENCE, len=0x295 

0240 30 09                   SEQUENCE, len=9 

   06 03                  OBJECT IDENTIFER, len=3 

     55 1D 13                2.5.29.19 

        04 02             OCTET STRING, len=2  

          30 00            SEQUENCE, len=0 

            30 82 02 1F      SEQUENCE, len=0x21F 

                06      OBJECT IDENTIFIER, len=3 

0250 03                              

  55 1D 03                   2.5.29.3 

     04 82 02 16              OCTET STRING, len=0x216 

         30 82 02 12           SEQUENCE, len=0x212 

             30 82 02 0E        SEQUENCE, len=0x20E 

0260 30 82 02 0A                     SEQUENCE, len=0x20A 

     06 0B                    OBJECT ID., len=0xB 

       60 86 48 01 86 F8 45 01 07 01           2.16.840.1.113733.1.7.1.1 

0270 01                              

  30 82 01 F9                     SEQUENCE, len=0x1F9 
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Offset Certificate Contents ASN.1 

      16 82 01 A7                  IA5String, len=0x1A7 

          54 68 69 73 20 63 65            "This certificate 

0280 72 74 69 66 69 63 61 74 65 20 69 6E 63 6F 72 70            incorporates by 

0290 6F 72 61 74 65 73 20 62 79 20 72 65 66 65 72 65            reference, and its 

02A0 6E 63 65 2C 20 61 6E 64 20 69 74 73 20 75 73 65            use is strictly 

02B0 20 69 73 20 73 74 72 69 63 74 6C 79 20 73 75 62            subject to, the 

02C0 6A 65 63 74 20 74 6F 2C 20 74 68 65 20 56 65 72            VeriSign Certification 

02D0 69 53 69 67 6E 20 43 65 72 74 69 66 69 63 61 74            Practice Statement 

02E0 69 6F 6E 20 50 72 61 63 74 69 63 65 20 53 74 61            (CPS), available at: 

02F0 74 65 6D 65 6E 74 20 28 43 50 53 29 2C 20 61 76            https://www.verisign 

0300 61 69 6C 61 62 6C 65 20 61 74 3A 20 68 74 74 70            .com /CPS; by E-mail at 

0310 73 3A 2F 2F 77 77 77 2E 76 65 72 69 73 69 67 6E            CPS-requests@verisign.  

0320 2E 63 6F 6D 2F 43 50 53 3B 20 62 79 20 45 2D 6D            com; or by mail at  

0330 61 69 6C 20 61 74 20 43 50 53 2D 72 65 71 75 65            VeriSign, Inc., 2593  

0340 73 74 73 40 76 65 72 69 73 69 67 6E 2E 63 6F 6D            Coast Ave., Mountain  

0350 3B 20 6F 72 20 62 79 20 6D 61 69 6C 20 61 74 20            View, CA 94043 USA  

0360 56 65 72 69 53 69 67 6E 2C 20 49 6E 63 2E 2C 20            Tel. +1 (415) 961-8830  

0370 32 35 39 33 20 43 6F 61 73 74 20 41 76 65 2E 2C            Copyright (c) 1996  

0380 20 4D 6F 75 6E 74 61 69 6E 20 56 69 65 77 2C 20            VeriSign, Inc  All Rights  

0390 43 41 20 39 34 30 34 33 20 55 53 41 20 54 65 6C            Reserved. CERTAIN  

03A0 2E 20 2B 31 20 28 34 31 35 29 20 39 36 31 2D 38            WARRANTIES  

03B0 38 33 30 20 43 6F 70 79 72 69 67 68 74 20 28 63            DISCLAIMED and  

03C0 29 20 31 39 39 36 20 56 65 72 69 53 69 67 6E 2C            LIABILITY LIMITED." 

03D0 20 49 6E 63 2E 20 20 41 6C 6C 20 52 69 67 68 74               

03E0 73 20 52 65 73 65 72 76 65 64 2E 20 43 45 52 54               

03F0 41 49 4E 20 57 41 52 52 41 4E 54 49 45 53 20 44               

0400 49 53 43 4C 41 49 4D 45 44 20 61 6E 64 20 4C 49               

0410 41 42 49 4C 49 54 59 20 4C 49 4D 49 54 45 44 2E               

0420 A0 0E                         TAG [0], len=0xE 

   06 0C                        OBJECT ID., len=0xC 

     60 86 48 01 86 F8 45 01 07 01 01 01             2.16.840.1.113733.1.7.1.1.1 

0430 A1 0E                         TAG [1], len=0xE 

   06 0C                        OBJECT ID. len=0xC 

     60 86 48 01 86 F8 45 01 07 01 01 02             2.16.840.1.113733.1.7.1.1.2 

0440 30 2C                         SEQUENCE, len=0x2C 

   30 2A                        SEQUENCE, len=0x2A 

     16 28                       IA5String, len=0x28 

       68 74 74 70 73 3A 2F 2F 77 77              "https://www. 

0450 77 2E 76 65 72 69 73 69 67 6E 2E 63 6F 6D 2F 72              verisign.com  

0460 65 70 6F 73 69 74 6F 72 79 2F 43 50 53 20                /repository/CPS " 

               30 11     SEQUENCE, len=0x11 

0470 06 09                    OBJECT IDENTIFIER, len=9 

   60 86 48 01 86 F8 42 01 01            2.16.840.1.113730.1.1 

            04 04         OCTET STRING, len=4 

https://www.verisign
https://www
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Offset Certificate Contents ASN.1 

              03 02 06       BIT STRING, len=2, unused=6 

0480 40                       '01'B 

  30 20                  SEQUENCE, len=0x20 

    06 03                 OBJECT IDENTIFIER, len=3 

      55 1D 25               2.5.29.37 

         04 19            OCTET STRING, len=0x19 

           30 17           SEQUENCE, len=0x17 

             06 09          OBJECT IDENTIFIER, len=9 

               60 86         2.16.840.1.113730.4.1 

0490 48 01 86 F8 42 04 01                        

        06 0A               OBJECT IDENTIFIER, len=0xA 

          2B 06 01 04 01 82 37         1.3.6.1.4.1.311.10.3.3 

04A0 0A 03 03                            

    30 30                SEQUENCE, len=0x30 

      06 0A               OBJECT IDENTIFIER, len=0xA 

        60 86 48 01 86 F8 45 01 06       2.16.840.1.113733.1.6.7 

04B0 07                              

  04 22                   OCTET STRING, len=0x22 

    16 20                  IA5String, len=0x20 

      34 36 30 36 66 63 33 35 34 38 37        "4606fc354874e3d1 

04C0 34 65 33 64 31 64 62 64 38 36 39 66 32 32 64 30        dbd869f22d0f273f" 

04D0 66 32 37 33 66                          

      30 0D           SEQUENCE, len=0xD 

        06 09          OBJECT IDENTIFIER, len=9 

          2A 86 48 86 F7 0D 01    1.2.840.113549.1.1.4 

04E0 01 04                             

   05 00               NULL, len=0 

     03 81 81 00          BIT STRING, len=0x81, unused=0 

         4C 21 70 CC D6 3F EC 73   0x4C2170... 

04F0 07 83 B2 78 3B C0 86 06 15 C1 97 ED 90 D7 3C B2               

0500 0F 6E DE 94 10 46 FD F1 1E 67 76 0D A3 DD 5D 92               

0510 DC 66 EC 4A 7A 61 03 AC E4 EF 00 7B 21 83 94 BE               

0520 AB A7 22 07 58 F8 0C 39 11 31 B3 A4 22 F5 BB 20               

0530 E2 BA C1 C2 3B 02 3A 26 95 C3 D0 2C 67 D3 F3 34               

0540 A3 C8 44 35 37 E9 E2 5E 5B ED 53 A8 07 07 79 D7               

0550 17 96 52 D3 50 14 5C C1 E1 41 88 CA A4 D6 17 84               

0560 46 49 AC B1 5C C8 3B 5A                       

To clarify the relationship between the x.509 standard’s definition of 
a certificate and an actual certificate, table a-19 repeats the asn.1 
definition. It then identifies the offset of each major asn.1 compo-
nent within the certificate. 
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Table A-19  Offsets of X.509 Certificate Components 

Offset ASN.1 Source 

0004 Certificate ::= SIGNED { SEQUENCE { 
0008  Version [0] Version DEFAULT v1, 
000D  serialNumber CertificateSerialNumber, 
001F  signature AlgorithmIdentifier, 
002E  issuer Name, 
00EB  validity Validity, 
010B  subject Name, 
0197  subjectPublicKeyInfo SubjectPublicKeyInfo, 
n.a.  issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL, 

    -- if present, version must be v2 or v3 
n.a.  subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OP-

TIONAL, 
    -- if present, version must be v2 or v3 

0238  extensions [3] Extensions OPTIONAL 
    -- If present, version must be v3 -- } } 

The example certificate includes several object identifier values. 
Table a-20 lists those that occur in the example certificate, along 
with a brief description of each. Some of the values in the actual cer-
tificate are privately administered, and thus their meanings are not 
publicly known. 

Table A-20  OBJECT IDENTIFIER values in Example Certificate 

OBJECT IDENTIFIER Description Offset(s) 

1.2.840.113549.1.1.1 rsaEncryption 019C 

1.2.840.113549.1.1.4 md5withRSAEncryption 0021, 
04D7 

1.3.6.1.4.1.311.10.3.3 Server Gated Cryptography 0497 

2.5.4.3 commonName 017F 

2.5.4.6 countryName 0112 

2.5.4.7 localityName 0132 

2.5.4.8 stateOrProvinceName 0121 

2.5.4.10 organizationName 0035, 
0145 

2.5.4.11 organizationalUnitName 0056, 
0071, 



X.509 Certificates 159 

 

OBJECT IDENTIFIER Description Offset(s) 
00A4, 
0160 

2.5.29.3 certificatePolicies 024F 

2.5.29.19 basicConstraints 0242 

2.5.29.37 extKeyUsage 0483 

2.16.840.1.113730.1.1 netscape-cert-type 0470 

2.16.840.1.113730.4.1 International Step-Up 048C 

2.16.840.1.113733.1.6.7 VeriSign unknown 04A5 

2.16.840.1.113733.1.7.1.1 VeriSign certificatePolicy 0264 

2.16.840.1.113733.1.7.1.1.1 VeriSign policy qualifier 0422 

2.16.840.1.113733.1.7.1.1.2 VeriSign policy qualifier 0432 

To conclude this section, table a-21 shows the logical content of the 
example certificate. It strips away the encoding information to focus 
on the essential elements of the certificate. 

Table A-21  Contents of Example Certificate 

Version X.509 version 3 

Serial Number 0x3E29... 

Algorithm Identifier MD5 hash and RSA signing 

Issuer:  

 Organization VeriSign Trust Network 

 Organizational 
Unit 

VeriSign, Inc. 

 Organizational 
Unit 

VeriSign International Server CA = Class 3 

 Organizational 
Unit 

www.verisign.com/CPS ... 

Validity:  

 Not Before 1998-12-03 00:00.00 UTC 

 Not After 1999-12-11 23:59.59 UTC 

Subject:  

 Country New Zealand 

 State or Province Auckland 
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 Locality Auckland 

 Organization ASB Bank Limited 

 Organizational 
Unit 

Information Services 

 Common Name www.asbbank.co.nz 

Public Key Information:  

 Algorithm RSA 

 Public Key 0x308188... 

Extensions:  

 International Step-Up 

 Server Gated Cryptography 

 various VeriSign extensions 

Algorithm Identifier MD5 hash with RSA signing 

Signature 0x4C2170... 
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Appendix B 
SSL Security Checklist 

The Secure Sockets Layer protocol has been in use for Web com-
merce for three years now, and under its new name of Transport 
Layer Security, the protocol is now in its fourth revision. Engineers 
now have quite a lot of experience with ssl and tls implementa-
tions, much of which has helped to improve the security of the pro-
tocol through its revisions. Security specialists have also learned quite 
a lot about the relationship of ssl to other aspects of the systems that 
implement it. In fact, although there are no known security flaws in 
the ssl or tls protocols themselves, other weaknesses in systems us-
ing ssl have been successfully exploited, at least in academic or re-
search environments. This appendix considers those other 
weaknesses. It presents them in the form of an ssl security checklist, 
primarily for those readers who are designing or evaluating ssl im-
plementations. Of course, the following list is not exhaustive, and 
new threats and attacks are likely to arise in the future. Readers 
should certainly stay up to date with security news and events to 
make sure that their implementations do not become vulnerable as 
new attacks are discovered. 

This appendix considers security issues related to both the authenti-
cation and the encryption services of ssl. Each service receives its 
own section. In some cases, the distinction between the two is a bit 
artificial, as several issues have important effects for both services. 
For these, the appendix concludes with a section of general issues 
that are not easily characterized. 

B.1 Authentication Issues 

Authentication often seems to take a back seat to encryption in secu-
rity discussions, especially in the trade press, where reports of crack-
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ing cryptographic algorithms receive prominent coverage. Ultimately, 
however, authentication is more critical to security. How secure, after 
all, is a system that establishes full-strength, encrypted communica-
tions with an attacker masquerading as the intended recipient? No 
amount of encryption can prevent an unsuspecting party sending an 
unauthenticated (or improperly authenticated) attacker the session 
keys. Although it may be tempting to overlook them, addressing au-
thentication issues is vital to secure communication. 

As this section makes clear, many of the issues of ssl authentication 
revolve around x.509 certificates. There are, however, some authenti-
cation issues specific to ssl that are independent of public key certifi-
cates. 

B.1.1 Certificate Authority 

A certificate authority (ca) signs all x.509 certificates, and any ssl 
implementation must decide whether it can trust the ca of its com-
municating peer. Typically, implementations compare the peer’s ca 
with an internal list of authorities that the implementation “knows” 
to be trustworthy. With this approach, it is important that the im-
plementation use the public key from its internal store to verify the 
certificate, rather than the public key from the ca certificate provided 
by the peer. Attackers can construct fake ca certificates that are iden-
tical to real certificates in all areas except the public key, substituting 
a public key corresponding to the attacker’s private key. Only by re-
trieving ca public keys from its internal store would an implementa-
tion prevent such an attack. 

If an implementation does decide to keep an internal list of trusted 
certificate authorities, it must carefully consider how, if at all, it will 
allow users to update that list. For short-lived implementations, such 
updates may not be needed. In general, however, users will need a 
way to revise the set of trusted authorities. Even ca certificates, for 
example, expire eventually. 
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B.1.2 Certificate Signature 

This point may seem obvious, but it can be easy to overlook: an ssl 
implementation must validate all certificates it receives by verifying 
the ca signature within them. 

B.1.3 Certificate Validity Times 

All ssl implementations should also check the validity period for all 
certificates. The validity period includes both a “not before” and a 
“not after” time; both should be verified. As an additional twist, note 
that the asn.1 object used for time in x.509 certificates (the utctime 
string) only provides two decimal digits for the year. All appropriate 
y2k concerns apply. 

B.1.4 Certificate Revocation Status 

Implementations that operate in environments that support certifi-
cate revocation should check the revocation status of any certificate 
before accepting it. Unfortunately, not all environments effectively 
support certificate revocation. The Web, for example, does not have a 
widely deployed mechanism for disseminating certificate revocation 
lists. In such cases, an implementation may want to provide users an 
alternative, perhaps by permitting the manual import of certificate 
revocation lists. 

B.1.5 Certificate Subject 

Perhaps it should go without saying, but an implementation must not 
only ensure that a certificate is valid; the implementation must also 
make sure that it certifies the right party. An attacker may well be 
able to get a perfectly valid certificate from a legitimate certificate 
authority. That certificate will simply be a certificate for the attacker. 
An implementation that tries to communicate with confidant.com, 
and instead receives a certificate for evilhacker.com, had better notice 
the discrepancy, no matter how valid the certificate. 
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Exactly how an implementation verifies that the certificate is for the 
intended subject depends on the policies of the certificate authority. 
VeriSign Class 3 certificates, for example, place the host name of the 
certified Web site in the commonName field of the certificate’s sub-
ject. Both Netscape Navigator and Internet Explorer check this field 
against the host name that the user enters in the url (or that appears 
in the referring link). 

B.1.6 Diffie-Hellman Trapdoors 

When ssl implementations use ephemeral Diffie-Hellman key ex-
change, the server specifies a full set of Diffie-Hellman parameters. 
There are, however, legitimate disagreements about what constitutes 
sufficiently secure Diffie-Hellman parameters.1 Clients that support 
ephemeral Diffie-Hellman key exchange should check the parame-
ters they receive from the server. They should ensure that the server 
has chosen values that the client believes will provide adequate secu-
rity. 

B.1.7 Algorithm Rollback 

With a ServerKeyExchange message, an ssl server sends the client 
public key information the client needs to encrypt the premaster se-
cret for the server. This key information is signed by the server using 
the private key corresponding to the public key in the server’s Cer-
tificate message. The public key algorithm the client is to use, how-
ever, is not specified explicitly in the ServerKeyExchange message, so 
that information is not signed by the server. This could make the ssl 
protocol vulnerable to an algorithm rollback attack. 

In an algorithm rollback attack, the attacker forces the two parties to 
have different opinions as to which public key algorithm is to be used 

_________________ 
1 For example, in Network Security (Prentice-Hall, 1995), C. Kaufman, R. Perlman, 
and M. Speciner suggest that Diffie-Hellman prime numbers should have a special 
property that makes them strong primes. Bruse Schneier, on the other hand, argues in 
Applied Cryptography (John Wiley & Sons, 1996) that strong primes do not improve 
the security. 
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to sign the premaster secret. The client, for example, might be fooled 
into believing that rsa encryption is appropriate, while the server ex-
pects Diffie-Hellman. David Wagner and Bruce Schneier show2 how 
this scenario leads to a complete breakdown of all cryptographic 
protection. The attacker is able to read all information for the session 
or to forge fake data in the name of either party. 

To protect against this algorithm rollback attack, ssl client imple-
mentations should verify the length and number of parameters in any 
ServerKeyExchange message. As figures 4-10 and 4-11 indicated, rsa 
encryption requires only two parameters, while Diffie-Hellman uses 
three. If, in any received message, the lengths of the individual pa-
rameters and the signed hash values do not add up to the correct 
length of the whole message, then the client should reject the session 
and generate an appropriate alert. 

B.1.8 Dropped ChangeCipherSpec Messages 

The ssl protocol does not include ChangeCipherSpec messages in 
the handshake authentication code that Finished messages carry. 
ChangeCipherSpec messages are omitted because ssl does not con-
sider them to be Handshake protocol messages. (Recall that 
ChangeCipherSpec messages belong to their own separate ssl sub-
protocol.) This omission does leave ssl implementations vulnerable 
to a particular attack when the parties use authentication-only (i.e., 
no encryption) sessions. 

To take advantage of this vulnerability, the attacker simply deletes 
the ChangeCipherSpec messages from the communication stream. 
Both parties will receive an apparently valid Finished message and 
begin transferring application data, without ever activating the cipher 
suite they have negotiated. (This attack is not feasible when the ses-
sion uses encryption. In that case, the party sending a Finished mes-
sage will encrypt it, while the party receiving the Finished message, 

_________________ 
2 In “Analysis of the ssl 3.0 Protocol” (see the References section); this paper was 
the first to publish a description of this attack. 
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not having seen the missing ChangeCipherSpec message, will expect 
it unencrypted.) 

Fortunately, combating this attack is very straightforward. An ssl 
implementation should not accept a Finished message unless it has 
also received a ChangeCipherSpec message. 

B.2 Encryption Issues 

Aside from the contentious legal issues that can limit the effective-
ness of any security implementation, ssl is very effective in protect-
ing the confidentiality of information. There are a few minor points 
to consider, however. This section reviews the importance of encryp-
tion key size, and examines two other concerns about ssl encryption: 
a potential traffic analysis weakness and an attack first identified by 
Daniel Bleichenbacher. 

B.2.1 Encryption Key Size 

One important issue that arises repeatedly is the strength of the en-
cryption that ssl offers. That strength depends most directly on the 
size of the keys used by the symmetric encryption algorithms, such as 
rc4 and des. In theory, developers could create ssl implementations 
that only used sufficiently large key sizes, and such implementations 
would be practically unbreakable. Some governments, however, place 
restrictions on the use or export of cryptography. The laws and regu-
lations of the United States (home to many key ssl developers) 
forced the creation of the “export strength” ssl cipher suites, which, 
because of their limited key size, are much weaker than the protocol 
allows. Indeed, sessions encrypted using these cipher suites were suc-
cessfully attacked as early as 1995,3 and most security professionals 
today consider the ssl export strength cipher suites to offer only 

_________________ 
3 Reported in “Netscape Security Encryption is Cracked—Breach Spurs Concern for 
Commerce on Internet,” San Jose Mercury News, 17 August 1995. Information is also 
available at http://pauillac.inria.fr/~doligez/ssl/. 

http://pauillac.inria.fr/~doligez/ssl/
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marginal security. The situation did not improve significantly when 
the u.s. government relaxed its regulations to allow export of stronger 
cryptography. The stronger 56-bit encryption was compromised in 
1998.4 

Secure Socket Layer implementations should carefully evaluate the 
value of the information they will protect and weigh that against the 
strength of the security they can offer. If the information is suffi-
ciently valuable, and if the implementation would be subject to laws 
or regulations that would restrict its encryption strength, compromise 
solutions might be the most viable. Netscape’s International Step-Up 
and Microsoft’s Server Gated Cryptography are both examples of 
how stronger security is possible in the context of laws and regula-
tions. 

B.2.2 Traffic Analysis 

Attackers may learn a lot about a target just by observing the traffic 
to and from that target, even if they cannot actually decrypt the in-
formation. Traffic analysis, as such attacks are known, is difficult to 
defend against in an open environment such as the Internet. (Indeed, 
many Web sites like to publicize the amount and type of traffic they 
receive.) In any environment, however, the ssl protocol itself intro-
duces an additional traffic analysis vulnerability. When ssl uses a 
stream cipher for encryption, the size of the encrypted messages can 
reveal the size of the unencrypted data; the attacker needs only to 
subtract the size of the message authentication code. Bennet Yee5 has 
noted how this weakness could allow an attacker to discover some in-
formation about an encrypted session, including, for example, which 
specific Web pages were retrieved by a user (though not the contents 
of those pages). This weakness is not present if block encryption ci-
phers are used, since the padding they introduce effectively hides the 
exact size of the plaintext data. If the application warrants it, ssl im-

_________________ 
4 See Cracking DES: Secrets of Encryption Research, Wiretap Politics & Chip Design by 
the Electronic Frontier Foundation, published by O’Reilly & Associates in 1998. 
5 As reported in Wagner and Schneier. 
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plementations may choose to support only block encryption cipher 
suites in order to protect against this traffic analysis attack. 

B.2.3 The Bleichenbacher Attack 

In 1998, Daniel Bleichenbacher, a researcher at Lucent’s Bell Labora-
tories, reported a specific active attack against security protocols that 
use rsa encryption, including the ssl protocol.6 The attack takes ad-
vantage of the way the rsa encryption algorithm encodes data before 
encrypting it. The encoded data (which ssl uses as a symmetric en-
cryption key) always begins with the two bytes 00 and 02. Table b-1 
shows how an attacker can exploit this characteristic. 

Table B-1  The Bleichenbacher Attack 

Step Action 

1  The attacker carefully constructs many artificial ciphertext 
blocks and sends them to the target. (Since the attacker doesn’t 
know the target’s private key, the attacker won’t know how 
these ciphertext blocks will be decrypted. At this point, that is 
not important, though.) 

2  The target receives the artificial ciphertext blocks and decrypts 
them.  

 a For most of the blocks, the resulting “plaintext” will not con-
form to the RSA encoding format. (It won’t begin with the bytes 
00 and 02.) In those cases, the target generates an error or per-
haps ignores the communication. 

 b Occasionally a ciphertext block will happen to decrypt into 
plaintext that begins with the magic 00 and 02 bytes. In those 
cases, the target treats the decryption as successful and at-
tempts to use the rest of the “plaintext” for its intended pur-
pose. (Since the plaintext is effectively just random data, the 
target is likely to eventually realize that something is wrong 
with its data. By that time, however, it may be too late.) 

_________________ 
6 Details can be found in Bleichenbacher’s paper “Chosen Ciphertext Attacks against 
Protocols Based on rsa Encryption Standard pkcs #1” in Advances in Cryptology—
Crypto'98, lncs vol. 1462, pp. 1–12, 1998, published by Springer-Verlag. The attack is 
also described in rsa Laboratories’ Bulletin Number 7 (26 June 1998), available at 
this writing from the rsa Web site at http://www.rsasecurity.com/rsalabs/bulletins/. 

http://www.rsasecurity.com/rsalabs/bulletins/
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Step Action 

3  The attacker observes the target’s reaction to each artificial ci-
phertext block, noting which blocks cause response 2a and 
which cause response 2b.  

4  By carefully choosing its artificial ciphertext blocks, and by re-
fining those choices as the attack progresses, the attacker can 
use sophisticated mathematical analyses to decipher a related 
ciphertext block, perhaps one that was actually sent to the tar-
get as part of legitimate communications. 

In practice, Bleichenbacher’s strategy does have a significant limita-
tion. The number of artificial ciphertext blocks it requires can be 
quite large. For a 1024-bit rsa modulus (the standard key size for 
Web security not subject to u.s. export restrictions), the attacker 
must generate about 220 (just over 1 million) different artificial cipher-
text blocks. This limitation will likely warn any reasonably vigilant 
target that an attack may be under way. 

In addition, there are several other steps that ssl implementations 
can take to reduce their exposure to this attack. One step is to rigor-
ously check the decrypted plaintext before accepting it as a valid de-
cryption. In the case of received ClientKeyExchange messages, 
implementations should ensure that the premaster secret is the cor-
rect size (48 bytes) and that the first 2 bytes are the ssl version num-
ber, in addition to verifying the presence of the 00 and 02 bytes. 
Those steps alone will increase the number of artificial ciphertext 
blocks the attack requires from 220 to more than 240 (about 20 mil-
lion). 

Another design principle that can thwart this attack is to be very par-
simonious in sending error responses. Ideally, an ssl implementation 
would behave consistently, whether it was unable to decrypt a Cli-
entKeyExchange message or it decrypted successfully but found the 
resulting plaintext to be invalid. One possible implementation is to 
ignore the fact that decrypted ClientKeyExchange data does not 
conform to the rsa encoding format. (In other words, it does not be-
gin with 00 02.) A convenient way to achieve this may be to replace 
any such invalid data with random data that does conform. The server 
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will then detect and respond to the error just as if the invalid data 
had been appropriately formatted. 

Finally, please note that the symmetric encryption key that is en-
crypted by the rsa algorithm is the only information at risk from this 
attack. The attack does not compromise any rsa private keys. 

B.3 General Issues 

A few important issues do not easily fit the categories of either au-
thentication or encryption. This section discusses those issues, in-
cluding the problems of rsa key size, version rollback attacks, 
premature closures, session id values, random number generation, 
and random number seeding. 

B.3.1 RSA Key Size 

The majority of ssl implementations today use the rsa encryption 
algorithm for digital signatures and public key encryption. The 
strength of the rsa algorithm depends directly on the size of the rsa 
public key. Longer keys yield more secure implementations. As the 
availability of computing power has increased and its cost has de-
creased, key sizes that were once thought adequately secure are now 
susceptible to brute-force attacks. While the author was preparing 
this manuscript, a team of researchers announced that they had suc-
cessfully cracked an rsa key of 512 bits,7 the same key size that (due 
to u.s. export restrictions) is commonly used to secure most Web 
transactions. The team used several hundred computers full-time for 
seven months, so there may not be an immediate practical threat to 
existing systems, but rsa Laboratories recommends 768 bits as the 
minimum acceptable key size for the rsa algorithm. 

It is important to understand that a weakness or compromise of the 
rsa algorithm may be far more severe than one in symmetric encryp-

_________________ 
7 See http://www.rsasecurity.com/rsalabs/factoring/rsa155.html. 

http://www.rsasecurity.com/rsalabs/factoring/rsa155.html
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tion algorithms such as rc4 or des. Symmetric algorithms provide 
the encryption for individual ssl sessions. If a particular symmetric 
encryption key is compromised, only information from the session 
that used the key is exposed. The rsa public key algorithm, however, 
is used both to authenticate parties and to securely exchange all ses-
sion keys. If a particular rsa private key is compromised, then the 
owner of that key is vulnerable to impersonation, and the informa-
tion from all ssl sessions with that party may be exposed. 

B.3.2 Version Rollback Attacks 

Secure Sockets Layer version 3.0 introduced several improvements to 
version 2.0, including those that increased the security of the proto-
col. It is important, therefore, that two parties that are capable of us-
ing version 3.0 actually do so, instead of falling back to the less secure 
version 2.0. As section 5.1.1 indicated, the ssl specification outlines a 
very specific approach to protect against attacks that force a version 
rollback. There is, however, one area that the specification does not 
address: resumption of prior sessions. A cursory ssl implementation 
might allow a session that had previously been established using ver-
sion 3.0 to be resumed using version 2.0. Such an implementation 
would comply with the ssl standard. Careful implementations, 
though, should not allow this behavior. If a session is established us-
ing ssl version 3.0, then the implementation should ensure that all 
attempts to resume the session also use ssl version 3.0. 

B.3.3 Premature Closure 

Another general security issue is the threat of truncation attacks due 
to the premature closure of an ssl session. If an attacker can delete 
protocol messages in transit, that attacker could create a scenario in 
which one or both of the communicating parties only receive partial 
information. If the missing information is vital to the communica-
tions, the attacker will have compromised the overall security of the 
exchange. As section 3.4 discussed, the ssl protocol defines the Clo-
sureAlert message to protect against this type of attack. (Although 
the ClosureAlert can’t prevent the attack, the absence of a Clo-
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sureAlert message at least alerts the parties to the potential problem.) 
Unfortunately, not all environments can rely on the ClosureAlert. 
Web browsing users, for example, may simply turn off their personal 
computer after completing a transaction, before that computer has a 
chance to send a ClosureAlert message. More thorough protection 
requires that applications using ssl security be sensitive to the possi-
bility of premature closures. Web servers that support the HyperText 
Transfer Protocol (http), for example, include a Content-Length 
field with each page they send to a client. Clients should verify that 
the amount of data they receive is consistent with this field’s value. 

B.3.4 SessionID Values 

The ssl specification gives servers complete flexibility to choose par-
ticular SessionID values. In making this choice, server implementa-
tion should be careful not to include any critical security information. 
SessionID values are transferred in ClientHello and ServerHello 
messages before any encryption is active. Their values, therefore, are 
completely exposed to any potential attacker. 

B.3.5 Random Number Generation 

Random numbers are critical to the operation of the Secure Sockets 
Layer protocol. The random numbers exchanged in ClientHello and 
ServerHello messages ultimately determine the encryption key for 
the session. Random numbers, however, present an interesting chal-
lenge to computer systems; software cannot do anything truly ran-
domly. Instead, software implementations typically rely on 
algorithms known as pseudorandom number generators. These algo-
rithms simulate true randomness with complex mathematical calcu-
lations. 

There are two problems with pseudorandom number generators that 
should concern ssl and other security implementations. The first 
problem is the effectiveness of the algorithms themselves. Most 
software libraries generate pseudorandom numbers using a linear 
congruential generator algorithm. Although such algorithms can be ef-
fective pseudorandom number generators, they can also be quite 
ineffective. Furthermore, many developers seek to improve on the 
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effective. Furthermore, many developers seek to improve on the basic 
algorithm in ways that can, in fact, be quite disastrous. Press, Teukol-
sky, Vetterling, and Flannery report on one widely used pseudoran-
dom number generator that, in an extreme case, effectively generated 
only 11 distinct random values.8 

A more serious problem with linear congruential generators is that 
they are sequential, and completely predictable. If you know the pa-
rameters of the algorithm and one specific value, it is easy to predict 
all future values that the algorithm will generate. Predictable random 
numbers are a serious problem for any security protocol, as they allow 
attackers to plan and prepare well into the future, waiting, perhaps, 
for a single, compromised value to appear. Implementations of ssl, 
therefore, should be careful not to use common pseudorandom num-
ber generator libraries. Fortunately, standard cryptography algo-
rithms, including both encryption and hash algorithms, can be 
modified to provide effective random numbers.9 

B.3.6 Random Number Seeding 

Regardless of the algorithm implementations used to generate ran-
dom numbers, implementations typically must provide that algo-
rithm with an initial starting point, or seed. For applications other 
than security, the primary requirement for this seed is that it be dif-
ferent each time it is generated. That ensures, for example, that a 
computer game does not act the same at each playing. That has led 
many developers to use some form of the time of day as the seed. For 
security applications, however, random seeds not only must be differ-
ent, they must also be unpredictable. The time of day is rarely unpre-
dictable. Indeed, Matthew Schmid10 reports a successful attack 

_________________ 
8 In the second edition of Numerical Recipes in C: The Art of Scientific Computing 
(Cambridge University Press, 1992), p. 277. Chapter 7 includes a thorough (and so-
bering) discussion of random number generation. 
9 More information is available from rsa Laboratories’ Bulletins Number 1 (22 Janu-
ary 1996) and Number 8 (3 September 1998), available as of this writing at 
http://www.rsasecurity.com/rsalabs/bulletins/. 
10 In a posting to the Risks Forum at http://catless.ncl.ac.uk/Risks/20.56.html. 

http://www.rsasecurity.com/rsalabs/bulletins/
http://catless.ncl.ac.uk/Risks/20.56.html
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against several online gambling sites that rely on flawed software for 
their online poker games. The software used the time of day to seed 
its random number generator and, as a result, attackers were able to 
successfully predict the cards in every player’s hand. Although not 
strictly ssl-related, the lesson is clear: using the time of day for ran-
dom seeds is totally unacceptable for ssl implementations.11 

 

 

_________________ 
11 Bulletins from rsa Laboratories, in this case Numbers 1 (22 January 1996) and 3 (25 
January 1996), offer detailed advice on seeding random number generators. See 
http://www.rsasecurity.com/rsalabs/bulletins/. 

http://www.rsasecurity.com/rsalabs/bulletins/
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Glossary 

Abstract Syntax Notation One (ASN.1). A language for describing 
data and data objects, used to define x.509 public key certifi-
cates. 

Active Attack. An attack against a secure communications session in 
which the attacker creates and sends his or her own messages 
or modifies legitimate messages in transit between the 
communicating parties. 

Alert Description. A single-byte value that identifies the type of ssl 
alert. 

Alert Message. An ssl message that indicates that the sender has 
detected an error condition. 

Alert Protocol. A component of the ssl protocol that defines the 
format of Alert messages. 

Alteration. An attack in which the attacker attempts to modify in-
formation without being detected. 

Asymmetric Encryption. The technical term for public key encryp-
tion in which two different keys are used for encryption and 
decryption; one of the keys can be revealed publicly without 
compromising security. 

Asymmetric Key Cryptography. Cryptography based on asymmet-
ric encryption; depending on the particular algorithms em-
ployed, asymmetric key cryptography can provide 
encryption/decryption or digital signature services. 

Attack. An attempt to compromise or defeat the security of a com-
munications session. 

Authentication. A security service that validates the identity of a 
communicating party. 
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BIT STRING. An asn.1 primitive object that represents an arbitrary 
number of bits. 

Block Cipher. A cipher that encrypts and decrypts data only in 
fixed-size blocks. 

BOOLEAN. An asn.1 primitive object that represents a value that can 
only be true or false. 

Certificate. A public key certificate, digital information that identi-
fies a subject and that subject’s public key and is digitally 
signed by an authority that certifies the information it con-
tains. 

Certificate Authority (CA). An organization that issues certificates 
and vouches for the identities of the subjects of those certifi-
cates; also known as an issuer. 

Certificate Chain. A series of certificates including a subject’s cer-
tificate, the certificate for the root authority, and any inter-
mediate certificate authorities; it establishes a chain of trust 
from the subject all the way to the root. 

Certificate Message. An ssl handshake message that carries a cer-
tificate chain. 

CertificateRequest Message. An ssl handshake message that the 
server sends to ask the client to authenticate its identity. 

Certificate Type. Part of an ssl CertificateRequest message that in-
dicates the digital signature and public key algorithms that 
the sender will accept. 

CertificateVerify Message. An ssl handshake message that the cli-
ent sends to verify that it possesses the private key corre-
sponding to its certificate; the client digitally signs part of 
the message using that private key. 

ChangeCipherSpec Message. An ssl message that activates the 
negotiated security parameters; those parameters will be in 
effect for the next message that the sender transmits. 
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ChangeCipherSpec Protocol. The ssl protocol for Change-
CipherSpec messages. 

CHOICE. An asn.1 construction that specifies that exactly one of the 
indicated objects may be present. 

Cipher. An algorithm that encrypts and decrypts information. 

Cipher Suite. A cipher algorithm and the parameters necessary to 
specify its use (e.g., size of keys.) 

Ciphertext. Information that has been encrypted using a cipher. 

Class (of a tag). The context under which an asn.1 tag is defined: 
universal, application-specific, private, and context-specific. 

Client. The party that initiates communications; clients communi-
cate with servers. 

ClientHello Message. An ssl handshake message that the client 
sends to propose cipher suites for the communication. 

ClientKeyExchange Message. An ssl message that the client sends 
to give the server information needed to construct key mate-
rial for the communication. 

Compression Method. A particular data compression algorithm 
and parameters needed to specify its use. 

Confidentiality. A security service that protects information from 
being correctly interpreted by parties other than those par-
ticipating in the communication. 

Cryptanalysis. The science concentrating on the study of methods 
and techniques to defeat cryptography. 

Cryptography. The science concentrating on the study of methods 
and techniques to provide security by mathematical manipu-
lation of information. 

Cryptology. The science encompassing both cryptography and 
cryptanalysis. 

Data Encryption Standard (DES). A symmetric encryption algo-
rithm published by the National Institutes of Science and 
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Technology as a United States standard; des is a block ci-
pher operating on 56-bit blocks. 

Decipher. To decrypt encrypted information. 

Decryption. The complement of encryption, recovering the original 
information from encrypted data. 

Diffie-Hellman. A key exchange algorithm developed by W. Diffie 
and M.E. Hellman; first published in 1976. 

Digest Function. A cryptographic function that creates a digital 
summary of information so that, if the information is altered, 
the summary (known as a hash) will also change; also known 
as a hash function. 

Digital Signature. The result of encrypting information with the 
private key of a public/private key pair; the public key can be 
used to successfully decrypt the signature, proving that only 
someone possessing the private key could have created it. 

Digital Signature Algorithm (DSA). An asymmetric encryption al-
gorithm published as a u.s. standard by the National Insti-
tutes of Science and Technology; dsa can only be used to 
sign data. 

Distinguished Encoding Rules (DER). A process for unambiguously 
converting an object specified in asn.1 into binary values for 
storage or transmission on a network. 

Distinguished Name. The identity of a subject or issuer specified 
according to a hierarchy of objects defined by the itu. 

Eavesdropping. An attack against the security of a communication 
in which the attacker attempts to “overhear” the communica-
tion. 

Encipher. To encrypt information by applying a cipher algorithm; 
the result is unintelligible, and the original information can 
only be recovered by someone who can decipher the result. 

Encryption. The process of applying a cipher algorithm to informa-
tion, resulting in data that is unintelligible to anyone who 
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does not have sufficient information to reverse the encryp-
tion. 

Ephemeral Diffie-Hellman. Diffie-Hellman key exchange in which 
the necessary parameters are created just for a single com-
munications session. 

Explicit Diffie-Hellman. Diffie-Hellman key exchange in which 
some of the parameters are established in advance. 

Explicit Tag. A type of asn.1 tag in which the tag value for the 
tagged object’s type is also included in the encoding. 

Exportable. Said of security products that may be easily licensed for 
export from the United States, generally those with encryp-
tion algorithms that only use limited key sizes. 

File Transfer Protocol (FTP). An Internet application protocol for 
transferring files among computer systems; ssl can provide 
security for ftp communications. 

Finished Message. An ssl handshake message that indicates the 
sender has completed security negotiations. 

Forgery. An attack against secure communications in which the at-
tacker tries to create data that appears to come from one of 
the communicating parties. 

Fortezza. A classified encryption and key exchange algorithm de-
veloped by the u.s. government, the details of which are not 
publicly known. 

Global Secure ID. The brand name for Web security certificates, is-
sued by VeriSign, that support International Step-Up and 
Server Gated Cryptography. 

Handshake Protocol. A component protocol of ssl responsible for 
negotiating security parameters. 

Hash Function. A cryptographic function that creates a digital 
summary of information so that, if the information is altered, 
the summary (known as a hash) will also change; also known 
as a digest function. 
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Hashed MAC. A standard approach to using hash algorithms to cre-
ate secure message authentication codes. 

HelloRequest Message. An ssl handshake message with which the 
server requests that a client restart negotiations. 

HyperText Transfer Protocol (HTTP). The application protocol for 
Web browsing; ssl can add security to http applications. 

IA5String. An asn.1 primitive object representing a character string 
from the ascii character set. 

Implicit Tag. A type of asn.1 tag in which the tag value for the 
tagged object’s type is not included in the encoding. 

Initialization Vector (IV). Random data that serves as the initial in-
put to an encryption algorithm so that the algorithm may 
build up to full strength before it encrypts actual data. 

INTEGER. An asn.1 object that represents a whole number. 

International Step-Up. Developed by Netscape; an addition to 
normal ssl procedures that allows servers to determine 
whether a client can exercise latent security services that are 
otherwise not permitted by u.s. export laws; similar (but not 
identical) to Server Gated Cryptography. 

International Telecommunications Union (ITU). An international 
standards body responsible for telecommunications proto-
cols; the itu publishes the x.509 standards for public key cer-
tificates. 

Internet Engineering Task Force (IETF). An international standards 
body responsible for Internet protocols; the ietf publishes 
the Transport Layer Security specifications. 

Internet Protocol (IP). The core network protocol for the Internet; 
ip is responsible for routing messages from their source to 
their destination. 

IP Security Protocol (IPSEC). Enhancements to the Internet Proto-
col that allow it to provide security services. 
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Issuer. An organization that issues certificates and vouches for the 
identities of the subjects of those certificates; also known as a 
certificate authority. 

Kerberos. A network security protocol designed to provide authori-
zation and access control services. 

Key. Information needed to encrypt or decrypt data; to preserve se-
curity, symmetric encryption algorithms must protect the 
confidentiality of all keys, while asymmetric encryption algo-
rithms need only protect private keys. 

Key Exchange Algorithm. An algorithm that allows two parties to 
agree on a secret key without actually transferring the key 
value across an insecure channel; the best known example is 
the Diffie-Hellman key exchange. 

Key Management. The procedures for creating and distributing 
cryptographic keys. 

MAC Read Secret. A secret value input to a message authentication 
code algorithm for verifying the integrity of received data; 
one party’s mac write secret is the other party’s mac read se-
cret. 

MAC Write Secret. A secret value input to a message authentication 
code algorithm to generate message authentication codes for 
data that is to be transmitted; one party’s mac write secret is 
the other party’s mac read secret. 

Man-in-the-Middle Attack. An attack against secure communica-
tions in which the attacker interposes itself between the 
communicating parties, relaying information between them; 
the attacker can seek either to read the secured data or to 
modify it. 

Masquerade. An attack against secure communications in which 
the attacker attempts to assume the identity of one of the 
communicating parties. 

Master Secret. The value created as the result of ssl security nego-
tiations, from which all secret key material is derived. 
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Message Authentication Code (MAC). An algorithm that uses 
cryptographic technology to create a digital summary of in-
formation so that, if the information is altered, the summary 
(known as a hash) will also change. 

Message Digest 5 (MD5). A digest function designed by Ron Rivest 
and used extensively by ssl. 

Message Integrity. A security service that allows detection of any 
alteration of protected data. 

Net News Transfer Protocol (NNTP). An Internet application for 
transfer of news and news group information; nntp can be 
secured with ssl. 

Non-repudiation. A security service that prevents a party from 
falsely denying that it was the source of data that it did in-
deed create. 

NULL. An asn.1 primitive object that represents no information. 

OBJECT IDENTIFIER. An asn.1 primitive type that represents objects 
in an internationally administered registry of values. 

OCTET STRING. An asn.1 primitive type representing an arbitrary 
array of bytes. 

Padding. Extra data added to information to force a specific block 
size. 

Passive Attack. An attack against secure communications in which 
the attacker merely observes and monitors the communicat-
ing parties without actively participating in the communica-
tions. 

Plaintext. Information in its unencrypted (and vulnerable) form be-
fore encryption or after decryption. 

Premaster Secret. An intermediate value ssl implementation uses 
in the process of calculating key material for a session; the 
client usually creates the premaster secret from random data 
and sends it to the server in a ClientKeyExchange message. 
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PrintableString. An asn.1 primitive type that represents an array of 
characters, all of which have textual representations. 

Private Communication Technology (PCT). A technology devel-
oped by Microsoft that borrows from and improves upon ssl 
version 2.0; many of its features were incorporated into ssl 
version 3.0. 

Private Key. One of the keys used in asymmetric cryptography; it 
cannot be publicly revealed without compromising security, 
but only one party to a communication needs to know its 
value. 

Pseudorandom Function (PRF). An algorithm tls defines to gen-
erate random numbers for use in key material message integ-
rity. 

Pseudorandom Number. A number generated by a computer that 
has all the properties of a true random number. 

Public Key. One of the keys used in asymmetric cryptography; it can 
be publicly revealed without compromising security. 

Public Key Certificate. Digital information that identifies a subject 
and that subject’s public key and that is digitally signed by an 
authority that certifies the information it contains. 

Public Key Cryptography. Cryptography based on asymmetric  en-
cryption in which two different keys are used for encryption 
and decryption; one of the keys can be revealed publicly 
without compromising the other key. 

Record Layer. The component of the ssl protocol responsible for 
formatting and framing all ssl messages. 

Rivest Cipher 2 (RC2). A block cipher developed by Ron Rivest. 

Rivest Cipher 4 (RC4). A stream cipher developed by Ron Rivest. 

Rivest Shamir Adleman (RSA). An asymmetric encryption algo-
rithm named after its three developers; rsa supports both 
encryption and digital signatures. 
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Secret Key. A key used in symmetric encryption algorithms and 
other cryptographic functions in which both parties must 
know the same key information. 

Secret Key Cryptography. Cryptography based on symmetric en-
cryption in which both parties must possess the same key in-
formation. 

Secure Hash Algorithm (SHA). A hash algorithm published as a u.s. 
standard by the National Institutes of Science and Technol-
ogy. 

Secure HyperText Transfer Protocol (S-HTTP). An addition to the 
HyperText Transfer Protocol application that provides secu-
rity services. 

Secure Sockets Layer (SSL). A separate network security protocol 
developed by Netscape and widely deployed for securing 
Web transactions. 

SEQUENCE. An asn.1 construction that represents an ordered collec-
tion of more primitive objects. 

SEQUENCE OF. An asn.1 construction representing a collection of 
multiple instances of a single, more primitive object, in 
which the order of the instances is important. 

Server. The party in a communication that receives and responds to 
requests initiated by the other party. 

Server Gated Cryptography (SGC). Developed by Microsoft, an 
addition to normal ssl procedures that allows servers to de-
termine whether a client can exercise latent security services 
that are otherwise not permitted by u.s. export laws; similar 
(but not identical) to International Step-Up. 

ServerHello Message. An ssl handshake message in which the 
server identifies the security parameters that will be used for 
the session. 

ServerHelloDone Message. An ssl handshake message that the 
server sends to indicate it has concluded its part of the hand-
shake negotiations. 
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ServerKeyExchange Message. An ssl handshake message in 
which the server sends public key information that the client 
should use to encrypt the premaster secret. 

SessionID. The value ssl servers assign to a particular session so that 
it may be resumed at a later point with full renegotiation. 

SET. An asn.1 construction that represents an unordered collection of 
more primitive objects. 

SET OF. An asn.1 construction that represents a collection of multi-
ple instances of a single, more primitive object, in which the 
order of the instances is not important. 

Severity Level. A component of an ssl alert message that indicates 
whether the alert condition is fatal or merely a warning. 

Signature. The encryption of information with a private key; any-
one possessing the corresponding public key can verify that 
the private key was used, but only a party with the private 
key can create the signature. 

Stream Cipher. A cipher that can encrypt and decrypt arbitrary 
amounts of data, in contrast to block ciphers. 

Subject. The party who possesses a private key and whose identity is 
certified by a public key certificate. 

Symmetric Encryption. The technical term for secret key encryp-
tion in which encryption and decryption require the same 
key information. 

Symmetric Key Cryptography. Cryptography based on symmetric 
encryption; depending on the particular algorithms em-
ployed, symmetric key cryptography can provide encryp-
tion/decryption and message integrity services. 

Tag. A value associated with an asn.1 object that allows that particu-
lar object to be unambiguously identified in encoded data. 

TeletexString. An asn.1 primitive type representing character 
strings limited to Teletex characters. 
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Traffic Analysis. A passive attack against secure communications in 
which the attacker seeks to compromise security merely by 
observing the patterns and volume of traffic between the 
parties, without knowing the contents of the communica-
tion. 

Transmission Control Protocol (TCP). A core protocol of the Inter-
net that ensures the reliable transmission of data from source 
to destination. 

Transport Layer Security (TLS). The ietf standard version of the 
Secure Sockets Layer protocol. 

UTCTime. An asn.1 primitive object that represents time according 
the universal standard (formerly known as Greenwich Mean 
Time). 

X.509. An itu standard for public key certificates. 
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ware except as expressly provided for in this License; (e) transfer, resell, sublicense, lease, or grant any other 
rights of any kind to any individual copy of the Software to any other persons; (f) remove any proprietary no-
tices, labels, or marks on the Software. You shall take reasonable measures to maintain the security of the 
Software. 

5. Proprietary Rights. You acknowledge and agree that the Software is the sole and exclusive property of 
Wiley, and the Software is licensed to you only for the term of this License and strictly under the terms 
hereof. Wiley owns all right, title, and interest in and to the content of the Software. Except for the limited 
rights given to you herein, all rights are reserved by Wiley. 

6. Warranties, Indemnities, and Limitation of Liability. The software is provided “as is,” without 
warranty of any kind, express or implied, including but not limited to the implied warranties 
of merchantability or fitness for a particular purpose. Wiley neither gives nor makes any 
other warranties or representations under or pursuant to this license. Wiley does not warrant, 
guarantee or make any representations that the functions contained in the Software will meet your particular 
requirements or that the operation of the Software will be uninterrupted or error free. The entire risk as to 
the results and performance of the Software is assumed by you. If the Software disc is defective in workman-
ship or materials and Wiley is given timely notice thereof, Wiley’s sole and exclusive liability and your sole 
and exclusive remedy, shall be to replace the defective disc. In the event of a defect in a disc covered by this 
warranty, Wiley will replace the disc provided that you return the defective disc to Wiley together with a 
copy of your receipt. If Wiley is unable to provide a disc that is free from such defects, you may terminate 
this License by returning the disc and all associated documentation to Wiley for a full refund. The foregoing 
states your sole remedy and Wiley’s sole obligation in the event of the occurrence of a defect coming within 
the scope of the limited warranty. 

In no event shall wiley, its suppliers, or anyone else who has been involved in the creation, 
production or delivery of the software or documentation be liable for any loss or inaccuracy 
of data of any kind or for lost profits, lost savings, or any direct, indirect, special, conse-
quential or incidental damages arising out or related in any way to the use or inability to 
use the software or data, even if wiley or its suppliers have been advised of the possiblity of 
such damages. This limitation of liability shall apply to any claim or cause whatsoever 
whether such claim or cause is in contract, tort or otherwise. 

The limited warranty set forth above is in lieu of all other express warranties, whether oral or written. 

(Some states do not allow exclusions or limitations of implied warranties or liability in certain cases, so the 
above exclusions and limitations may not apply to you.) 

7. General.  

(a) This License may not be assigned by the Licensee except upon the written consent of Wiley. 

(b) The License shall be governed by the laws of the State of New York. 

(c) The above warranties and indemnities shall survive the termination of this License. 

(d) If the Licensee is located in Canada, the parties agree that it is their wish that this License, as well as all 
other documents relating hereto, including notices, have been and shall be drawn up in the English language 
only. 
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