
SSL and TLS
Essentials

Securing the Web

Stephen Thomas

SSL & TLS Essentials

Securing the Web

Stephen A. Thomas

Wiley Computer Publishing
John Wiley & Sons, Inc.
New York •••• Chichester •••• Weinheim •••• Brisbane •••• Singapore •••• Toronto

Publisher: Robert Ipsen
Editor: Marjorie Spencer
Assistant Editor: Margaret Hendrey
Text Design & Composition: Stephen Thomas

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2000 by Stephen A. Thomas. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, re-
cording, scanning or otherwise, except as permitted under Section 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, ma 01923, (978) 750-
8400, fax (978) 750-4744. Requests to the Publisher for permission should be ad-
dressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue,
New York, ny 10158-0012, (212) 850-6011, fax (212) 850-6008, email perm-
req@wiley.com.

This publication is designed to provide accurate and authoritative information in re-
gard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

Library of Congress Cataloging-in-Publication Data:

Thomas, Stephen A., 1962-
ssl and tls essentials : securing the Web / Stephen A. Thomas.
 p. cm.
Includes index.
isbn 0-471-38354-6 (pbk./cd-rom : alk. paper)
1. Computer networks--Security measures. 2. World Wide Web--Security
measures. 3. Computer network protocols. I. Title.
tk5105.59 .t49 2000
005.8--dc21 99-058910

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

For Kelsie,
Zookeeper of Mango the Flamingo.

 ix

Contents

Chapter 1: Introduction 1

1.1 Web Security and Electronic Commerce 2
1.2 History of ssl and tls 4
1.3 Approaches to Network Security 6

1.3.1 Separate Security Protocol 8
1.3.2 Application-Specific Security 9
1.3.3 Security within Core Protocols 10
1.3.4 Parallel Security Protocol 11

1.4 Protocol Limitations 12
1.4.1 Fundamental Protocol Limitations 12
1.4.2 Tool Limitations 13
1.4.3 Environmental Limitations 14

1.5 Organization of This Book 14

Chapter 2: Basic Cryptography 17

2.1 Using Cryptography 18
2.1.1 Keeping Secrets 18
2.1.2 Proving Identity 19
2.1.3 Verifying Information 20

2.2 Types of Cryptography 21
2.2.1 Secret Key Cryptography 22
2.2.2 Public Key Cryptography 24
2.2.3 Combining Secret & Public Key Cryptography 27

2.3 Key Management 29
2.3.1 Public Key Certificates 29
2.3.2 Certificate Authorities 31
2.3.3 Certificate Hierarchies 33
2.3.4 Certificate Revocation Lists 35

x SSL & TLS Essentials: Securing the Web

Chapter 3: SSL Operation 37

3.1 SSL Roles 37
3.2 SSL Messages 38
3.3 Establishing Encrypted Communications 39

3.3.1 ClientHello 41
3.3.2 ServerHello 43
3.3.3 ServerKeyExchange 45
3.3.4 ServerHelloDone 45
3.3.5 ClientKeyExchange 45
3.3.6 ChangeCipherSpec 46
3.3.7 Finished 51

3.4 Ending Secure Communications 52
3.5 Authenticating the Server’s Identity 52

3.5.1 Certificate 55
3.5.2 ClientKeyExchange 56

3.6 Separating Encryption from Authentication 56
3.6.1 Certificate 59
3.6.2 ServerKeyExchange 59
3.6.3 ClientKeyExchange 59

3.7 Authenticating the Client’s Identity 60
3.7.1 CertificateRequest 61
3.7.2 Certificate 62
3.7.3 CertificateVerify 63

3.8 Resuming a Previous Session 64

Chapter 4: Message Formats 67

4.1 Transport Requirements 68
4.2 Record Layer 69
4.3 ChangeCipherSpec Protocol 71
4.4 Alert Protocol 72

4.4.1 Severity Level 72
4.4.2 Alert Description 73

4.5 Handshake Protocol 74
4.5.1 HelloRequest 76
4.5.2 ClientHello 77

Contents xi

4.5.3 ServerHello 79
4.5.4 Certificate 80
4.5.5 ServerKeyExchange 81
4.5.6 CertificateRequest 84
4.5.7 ServerHelloDone 85
4.5.8 ClientKeyExchange 85
4.5.9 CertificateVerify 88
4.5.10 Finished 90

4.6 Securing Messages 92
4.6.1 Message Authentication Code 93
4.6.2 Encryption 95
4.6.3 Creating Cryptographic Parameters 96

4.7 Cipher Suites 102
4.7.1 Key Exchange Algorithms 103
4.7.2 Encryption Algorithms 104
4.7.3 Hash Algorithms 104

Chapter 5: Advanced SSL 105

5.1 Compatibility with Previous Versions 105
5.1.1 Negotiating ssl Versions 106
5.1.2 SSL Version 2.0 ClientHello 109
5.1.3 SSL Version 2.0 Cipher Suites 110

5.2 Netscape International Step-Up 111
5.2.1 Server Components 112
5.2.2 Client Components 112
5.2.3 Controlling Full-Strength Encryption 113

5.3 Microsoft Server Gated Cryptography 115
5.3.1 Server Gated Cryptography Certificates 115
5.3.2 Cipher Suite Renegotiation 115

5.4 The Transport Layer Security Protocol 117
5.4.1 TLS Protocol Version 118
5.4.2 Alert Protocol Message Types 118
5.4.3 Message Authentication 121
5.4.4 Key Material Generation 123
5.4.5 CertificateVerify 125
5.4.6 Finished 126

xii SSL & TLS Essentials: Securing the Web

5.4.7 Baseline Cipher Suites 126
5.4.8 Interoperability with SSL 128

5.5 The Future of ssl and tls 128

Appendix A: X.509 Certificates 131

A.1 X.509 Certificate Overview 132
A.1.1 Version 132
A.1.2 Serial Number 133
A.1.3 Algorithm Identifier 133
A.1.4 Issuer 133
A.1.5 Period of Validity 133
A.1.6 Subject 134
A.1.7 Subject’s Public Key 134
A.1.8 Issuer Unique Identifier 134
A.1.9 Subject Unique Identifier 134
A.1.10 Extensions 135
A.1.11 Signature 135

A.2 Abstract Syntax Notation One 135
A.2.1 Primitive Objects 136
A.2.2 Constructed Objects 136
A.2.3 The Object Identifier Hierarchy 137
A.2.4 Tagging 139
A.2.5 Encoding Rules 142

A.3 X.509 Certificate Definition 145
A.3.1 The Certificate Object 145
A.3.2 The Version Object 146
A.3.3 The CertificateSerialNumber Object 147
A.3.4 The AlgorithmIdentifier Object 147
A.3.5 The Validity Object 148
A.3.6 The SubjectPublicKeyInfo Object 148
A.3.7 The Time Object 149
A.3.8 The Extensions Object 149
A.3.9 The UniqueIdentifier Object 150
A.3.10 The Name Object 150

A.4 Example Certificate 152

Contents xiii

Appendix B: SSL Security Checklist 161

B.1 Authentication Issues 161
B.1.1 Certificate Authority 162
B.1.2 Certificate Signature 163
B.1.3 Certificate Validity Times 163
B.1.4 Certificate Revocation Status 163
B.1.5 Certificate Subject 163
B.1.6 Diffie-Hellman Trapdoors 164
B.1.7 Algorithm Rollback 164
B.1.8 Dropped ChangeCipherSpec Messages 165

B.2 Encryption Issues 166
B.2.1 Encryption Key Size 166
B.2.2 Traffic Analysis 167
B.2.3 The Bleichenbacher Attack 168

B.3 General Issues 170
B.3.1 RSA Key Size 170
B.3.2 Version Rollback Attacks 171
B.3.3 Premature Closure 171
B.3.4 SessionID Values 172
B.3.5 Random Number Generation 172
B.3.6 Random Number Seeding 173

References 175

Protocol Standards 175
Certificate Formats 176
Cryptographic Algorithms 177
SSL Implementations 178

Glossary 179

Index 191

 1

1
 Introduction

Today alone, Dell Computer will sell more than $18 million worth of
computer equipment through the Internet. In 1999, nine million
Americans traded stocks online, accounting for one-third of all retail
stock trades. And more than 200,000 Web sites worldwide (includ-
ing sites belonging to 98 of the Fortune 100) can accept e-commerce
transactions. Commercial use of the Web continues to grow at an as-
tonishing pace, and securing Web transactions has become increas-
ingly critical to businesses, organizations, and individual users.

Fortunately, an extremely effective and widely deployed communica-
tions protocol provides exactly that security. It is the Secure Sockets
Layer protocol, more commonly known simply as ssl. The ssl pro-
tocol—along with its successor, the Transport Layer Security (tls)
protocol—is the subject of this book.

This chapter introduces ssl and tls, and provides the essential con-
text for both. It begins with a very brief look at Web security and
electronic commerce, focusing on the issues that led to the creation
of ssl. The next section follows up with a quick history of ssl and its
transformation into tls. The relationship of ssl to other network se-
curity technologies is the subject of the third section. The forth sec-
tion, “Protocol Limitations,” is an important one. Especially with
security technologies, it is critical to understand what they cannot do.
The chapter closes with an overview of the rest of this book.

2 SSL & TLS Essentials: Securing the Web

1.1 Web Security and Electronic Commerce

Know the enemy. Sun Tzu could not have offered any advice more ap-
propriate to security professionals. Specific security services are nec-
essarily effective against only specific threats; they may be completely
inappropriate for other security threats. To understand ssl, therefore,
it is essential to understand the environment for which it has been
designed.

Even though ssl is a flexible protocol that is finding use in many dif-
ferent applications, the original motivation for its development was
the Internet. The protocol’s designers needed to secure electronic
commerce and other Web transactions. That environment is certainly
perilous enough. Consider, for example, what happens when a user in
Berlin places an online order from a Web site in San Jose, California.
Table 1-1 lists the systems through which the user’s messages might
pass.

Table 1-1 Internet Systems in Path from Berlin to San Jose

Step IP Address System Name (if known)

1 212.211.70.7

2 212.211.70.254

3 195.232.91.66 fra-ppp2-fas1-0-0.wan.wcom.net

4 212.211.30.29

5 206.175.73.45 hil-border1-atm4-0-2.wan.wcom.net

6 205.156.223.41 dub-border1-hss2-0.wan.wcom.net

7 204.70.98.101 borderx1-hssi2-0.northroyalton.cw.net

8 204.70.98.49 core2-fddi-0.northroyalton.cw.net

9 204.70.9.138 corerouter1.westorange.cw.net

10 204.70.4.101 core5.westorange.cw.net

11 204.70.10.230 sprint4-nap.westorange.cw.net

12 192.157.69.85 sprint-nap.home.net

13 24.7.72.113 c1-pos9-1.cmdnnj1.home.net

14 24.7.67.153 c1-pos6-2.clevoh1.home.net

15 24.7.64.173 c1-pos3-0.chcgil1.home.net

16 24.7.64.141 c1-pos1-0.omahne1.home.net

Introduction 3

Step IP Address System Name (if known)

17 24.7.66.173 c1-pos8-3.lnmtco1.home.net

18 24.7.64.57 c1-pos1-0.slkcut1.home.net

19 24.7.66.77 c1-pos5-3.snjsca1.home.net

20 24.7.72.18 bb1-pos6-0-0.rdc1.sfba.home.net

21 172.16.6.194

22 10.252.84.3

23 10.252.10.150

24 209.219.157.152 www.sj-downtown.com

Figure 1-1 highlights the fact that messages containing the user’s in-
formation, including sensitive information such as credit card num-
bers, may travel a complex path from Germany to California,
crossing through many countries, over various networks, and on
many different facilities. Some of those facilities are likely to belong
to private enterprises, many of which are not subject to any regula-
tion or other laws governing the privacy of the information they
transport.

Neither the user nor the Web server has any control over the path
their messages take, nor can they control who examines the message
contents along the route. From a security standpoint, it’s as if the
user wrote her credit card number on a postcard and then delivered

Web Server Web Browser

Figure 1-1 Messages travel complex paths through the Internet.

4 SSL & TLS Essentials: Securing the Web

the postcard as a message in a bottle. The user has no control over
how the message reaches its destination, and anyone along the way
can easily read its contents. Electronic commerce cannot thrive in
such an insecure environment; sensitive information must be kept
confidential as it traverses the Internet.

Eavesdropping isn’t the only security threat to Web users. It is theo-
retically possible to divert Web messages to a counterfeit Web site.
Such a counterfeit site could provide false information, collect data
such as credit card numbers with impunity, or create other mischief.1
The Internet needs a way to assure users of a Web site’s true identity;
likewise, many Web sites need to verify the identity of their users.

A final security challenge facing Web users is message integrity. A
user placing an online stock trade certainly wouldn’t want his
instructions garbled in such a way as to change “Sell when the price
reaches $200” to “Sell when the price reaches $20.” The missing zero
can make a significant difference in the user’s fortunes.

1.2 History of SSL and TLS

Fortunately, engineers were thinking about these security issues from
the Web’s beginnings. Netscape Communications began considering
Web security while developing its very first Web browser. To address
the concerns of the previous section, Netscape designed the Secure
Sockets Layer protocol.

Figure 1-2 shows the evolution of ssl in the context of general Web
development. The timeline begins in November 1993, with the release
of Mosaic 1.0 by the National Center for Supercomputing Applica-
tions (ncsa). Mosaic was the first popular Web browser. Only eight
months later, Netscape Communications completed the design for

1 This security threat isn’t unique to the Web. In Computer-Related Risks (Addison-
Wesley, 1995), Peter G. Neumann recounts the story of two criminals who set up a
bogus atm in a Connecticut mall. The machine didn’t dispense much cash, but it
did capture the account number and pin of unsuspecting victims. The crooks then
fabricated phony atm cards and allegedly withdrew over $100 000.

Introduction 5

ssl version 1.0; five months after that, Netscape shipped the first
product with support for ssl version 2.0—Netscape Navigator.

Other milestones in the timeline include the publication of version
1.0 of the Private Communication Technology (pct) specification.
Microsoft developed pct as a minor enhancement to ssl version 2.0.
It addressed some of the weaknesses of ssl 2.0, and many of its ideas
were later incorporated into ssl version 3.0.

The later events on the timeline represent a shift in focus for the ssl
standard. Netscape Communications developed the first three ver-
sions of ssl with significant assistance from the Web community. Al-
though ssl’s development was open, and Netscape encouraged others
in the industry to participate, the protocol technically belonged to
Netscape. (Indeed, Netscape has been granted a u.s. patent for ssl.)
Beginning in May 1996, however, ssl development became the re-
sponsibility of an international standards organization—the Internet
Engineering Task Force (ietf). The ietf develops many of the pro-
tocol standards for the Internet, including, for example, tcp and ip.

SSL 1.0
design complete

1993 1994 1995 1996 1997 1998 1999

SSL 2.0
product ships

PCT 1.0
published

SSL 3.0
published

TLS 1.0
published

TLS WG
formed

NCSA
Mosaic
released

Netscape
Navigator
released

Internet
Explorer
released

Figure 1-2 SSL was developed along with early Web browsers.

6 SSL & TLS Essentials: Securing the Web

SSL vs. TLS

Because SSL is
more widely
used and much
better known
than TLS, the
main text of this
book describes
SSL rather than
TLS. The differ-
ences between
the two are very
minor, however.
Sidebars such as
this one will note
all those differ-
ences.

To avoid the appearance of bias toward any particular company, the
ietf renamed ssl to Transport Layer Security (tls). The final version
of the first official tls specification was released in January 1999.

Despite the change of names, tls is nothing more than a new ver-
sion of ssl. In fact, there are far fewer differences between tls 1.0
and ssl 3.0 than there are between ssl 3.0 and ssl 2.0. Section 5.4
details the differences between ssl and tls, but check the sidebars
for more information.

Support for ssl is now built in to nearly all browsers and Web serv-
ers. For users of Netscape Navigator or Microsoft’s Internet Explorer,
ssl operates nearly transparently. Observant users might notice the
“https:” prefix for an ssl-secured url, or they may see a small icon
that each browser displays when ssl is in use. (Figure 1-3 shows the
padlock symbol that Internet Explorer displays in the bottom status
bar; Navigator shows a similar icon.) For the most part, however, ssl
simply works, safely providing confidentiality, authentication, and
message integrity to its Web users.

Today’s popular Web servers also include support for ssl. It’s usually
a simple task to enable ssl in the server. As we’ll see, though, to sup-
port secure Web browsing, a Web server must do more than simply
enable the ssl protocol. The server must also obtain a public key cer-
tificate from an organization that Web browsers trust. For users on
the public Internet, those organizations are generally public certifi-
cate authorities. Popular certificate authorities include at&t Certifi-
cate Services, gte CyberTrust, KeyWitness International, Microsoft,
Thawte Consulting, and VeriSign. The next chapter includes further
discussions of certificate authorities (primarily in section 2.3.2), and
appendix a provides details on public key certificates.

1.3 Approaches to Network Security

The Secure Sockets Layer protocol provides effective security for
Web transactions, but it is not the only possible approach. The Inter-
net architecture relies on layers of protocols, each building on the
services of those below it. Many of these different protocol layers can

Introduction 7

support security services, though each has its own advantages and
disadvantages. As we’ll see in this section, the designers of ssl chose
to create an entirely new protocol layer for security. It is also possible
to include security services in the application protocol or to add them
to a core networking protocol. As another alternative, applications
can rely on parallel protocols for some security services. All of these
options have been considered for securing Web transactions, and ac-
tual protocols exist for each alternative. Table 1-2 summarizes the ad-
vantages of each approach, and this section considers each of the
possible approaches in more detail.

Table 1-2 Different Approaches to Network Security

Protocol Architecture Example A B C D E

Separate Protocol Layer SSL � � � � �

Application Layer S-HTTP � � � � �

Integrated with Core IPSEC � � � � �

Parallel Protocol Kerberos � � � � �

Benefits: A – Full Security B – Multiple Applications C – Tailored Services
D – Transparent to Application E – Easy to Deploy

Figure 1-3 Web browsers such as Internet Explorer include SSL.

8 SSL & TLS Essentials: Securing the Web

1.3.1 Separate Security Protocol

The designers of the Secure Sockets Layer decided to create a sepa-
rate protocol just for security. In effect, they added a layer to the
Internet’s protocol architecture. The left side of figure 1-4 shows the
key protocols for Web communications. At the bottom is the Inter-
net Protocol (ip). This protocol is responsible for routing messages
across networks from their source to their destination. The Transmis-
sion Control Protocol (tcp) builds on the services of ip to ensure
that the communication is reliable. At the top is the Hypertext
Transfer Protocol; http understands the details of the interaction
between Web browsers and Web servers.

As the right side of the figure indicates, ssl adds security by acting as
a separate security protocol, inserting itself between the http appli-
cation and tcp. By acting as a new protocol, ssl requires very few
changes in the protocols above and below. The http application in-
terfaces with ssl nearly the same way it would with tcp in the ab-
sence of security. And, as far as tcp is concerned, ssl is just another
application using its services.

In addition to requiring minimal changes to existing implementa-
tions, this approach has another significant benefit: It allows ssl to
support applications other than http. The main motivation behind
the development of ssl was Web security, but, as figure 1-5 shows, ssl

HTTP

IP

TCP

HTTP

IP

TCP

SSL

Not Secure Secure

Figure 1-4 SSL is a separate protocol layer just for security.

Introduction 9

is also used to add security to other Internet applications, including
those of the Net News Transfer Protocol (nntp) and the File Trans-
fer Protocol (ftp).

1.3.2 Application-Specific Security

Although the designers of ssl chose a different strategy, it is also
possible to add security services directly in an application protocol.
Indeed, standard http does include some extremely rudimentary se-
curity features; however, those security features don’t provide ade-
quate protection for real electronic commerce. At about the same
time Netscape was designing ssl, another group of protocol design-
ers was working on an enhancement to http known as Secure http.
Figure 1-6 shows the resulting protocol architecture. The Secure
http standard has been published by the ietf as an experimental

HTTP

IP

TCP

SSL

NNTP FTP

Figure 1-5 SSL can add security to applications other than HTTP.

security

IP

TCP

HTTP

IP

TCP

Not Secure Secure

HTTP

Figure 1-6 Security can be added directly within an application protocol.

10 SSL & TLS Essentials: Securing the Web

protocol, and a few products support it. It never caught on to the
same degree as ssl, however, and oday it is rare to find Secure http
anywhere on the Internet.

One of the disadvantages of adding security to a specific application
is that the security services are available only to that particular appli-
cation. Unlike ssl, for example, it is not possible to secure nntp, ftp,
or other application protocols with Secure http. Another disadvan-
tage of this approach is that it ties the security services tightly to the
application. Every time the application protocol changes, the security
implications must be carefully considered, and, frequently, the secu-
rity functions of the protocol must be modified as well. A separate
protocol like ssl isolates security services from the application proto-
col, allowing each to concentrate on solving its own problems most
effectively.

1.3.3 Security within Core Protocols

The separate protocol approach of ssl can be taken one step further
if security services are added directly to a core networking protocol.
That is exactly the approach of the ip security (ipsec) architecture;
full security services become an optional part of the Internet Protocol
itself. Figure 1-7 illustrates the ipsec architecture.

The ipsec architecture has many of the same advantages as ssl. It is
independent of the application protocol, so any application may use
it. In most cases, the application does not need to change at all to

IP

TCP

HTTP

IP with IPSec

TCP

Not Secure Secure

HTTP

Figure 1-7 IPSEC adds security to a core network protocol.

Introduction 11

take advantage of ipsec. In fact, it may even be completely unaware
that ipsec is involved at all. This feature does create its own chal-
lenges, however, as ipsec must be sufficiently flexible to support all
applications. This complexity may be a big factor in the delays in de-
velopment and deployment of ipsec.

Another concern with the ipsec approach is that it provides too
much isolation between the application and security services. At least
in its simplest implementations, ipsec tends to assume that secure
requirements are a function of a particular system, and that all appli-
cations within that system need the same security services. The ssl
approach provides isolation between applications and security, but it
allows some interaction between the two. The internal behavior of an
application such as http need not change when security is added,
but the application typically has to make the decision to use ssl or
not. Such interaction makes it easier for each application to direct
the security services most appropriate to its needs.

Despite these drawbacks, ipsec adds powerful new security tools to
the Internet, and it will undoubtedly see widespread deployment.
The ssl protocol, however, has significant benefits as well, and its
deployment is also expected to grow substantially in the future.

1.3.4 Parallel Security Protocol

There is yet a fourth approach to adding security services to an appli-
cation—a parallel security protocol. The most popular example of
this strategy is the Kerberos protocol developed by the Massachusetts
Institute of Technology. Researchers developed Kerberos to provide
authentication and access control for resources in a distributed envi-
ronment. The Kerberos protocol acts as a toolkit that other protocols
can use for those security services. A remote login protocol such as
Telnet, for example, can use Kerberos to securely identify its user.

In the very early days of Web browser development, some effort was
made to incorporate Kerberos support within http. Figure 1-8 shows
the resulting architecture. This work was never completed, though.
Instead, there have been recent efforts to combine Kerberos with tls.
In such applications, Kerberos provides a trusted key exchange

12 SSL & TLS Essentials: Securing the Web

mechanism for Transport Layer Security. Note, though, that Kerbe-
ros alone is not a complete security solution. It does not have access
to the actual information exchanged by the communicating parties.
Without that access, Kerberos cannot provide encryption and de-
cryption services.

1.4 Protocol Limitations

The ssl protocol, like any technology, has its limitations. And be-
cause ssl provides security services, it is especially important to un-
derstand its limits. After all, a false sense of security may be worse
than no security. The limitations of ssl fall generally into three cate-
gories. First are fundamental constraints of the ssl protocol itself.
These are a consequence of the design of ssl and its intended appli-
cation. The ssl protocol also inherits some weaknesses from the tools
its uses, namely encryption and signature algorithms. If these algo-
rithms have weaknesses, ssl generally cannot rehabilitate them. Fi-
nally, the environments in which ssl is deployed have their own
shortcomings and limitations, some of which ssl is helpless to ad-
dress.

1.4.1 Fundamental Protocol Limitations

Though its design includes considerations for many different
applications, ssl is definitely focused on securing Web transactions.
Some of its characteristics reflect that concentration. For example,

IP

TCP

HTTP

IP

TCP and UDP

Not Secure Secure

KerberosHTTP

Figure 1-8 Kerberos supplements application protocols.

Introduction 13

of its characteristics reflect that concentration. For example, ssl re-
quires a reliable transport protocol such as tcp. That is a completely
reasonable requirement in the world of Web transactions, because the
Hypertext Transfer Protocol itself requires tcp. The decision means,
however, that ssl cannot operate using a connectionless transport
protocol like udp.2 With this significant exception, Web transactions
are representative of general network computing environments. The
ssl protocol, therefore, can effectively accommodate most common
applications quite well. Indeed, ssl is in use today for securing vari-
ous applications, including file transfer, network news reading, and
remote login.

Another role that ssl fails to fill is support for a particular security
service known as non-repudiation. Non-repudiation associates the
digital equivalent of a signature with data, and when used properly, it
prevents the party that creates and “signs” data from successfully de-
nying that after the fact. The ssl protocol does not provide non-
repudiation services, so ssl alone would not be appropriate for an
application that required it.

1.4.2 Tool Limitations

The Secure Sockets Layer is simply a communication protocol, and
any ssl implementation will rely on other components for many
functions, including the cryptographic algorithms. These algorithms
are the mathematical tools that actually perform tasks such as en-
cryption and decryption. No ssl implementation can be any stronger
than the cryptographic tools on which it is based.

As of this writing, ssl itself has no known significant weaknesses.
Some common cryptographic algorithms, however, have been suc-
cessfully attacked, at least in the context of academics or other re-
search. (There are no publicly acknowledged cases of anyone

2 Although neither ssl nor tls can use udp, the Wireless Application Forum, an in-
dustry group developing standards for Internet access protocols for wireless devices
such as mobile phones, has created a variation of tls known as Wireless tls (wtls),
which can support udp. More information is available at http://www.wapforum.org.

http://www.wapforum.org

14 SSL & TLS Essentials: Securing the Web

exploiting these theoretical weaknesses in a commercial context.)
Appendix b describes the publicly reported attacks in more detail,
but, in general, ssl implementations must consider not only the secu-
rity of ssl, but also that of the cryptographic services on which it is
built.

1.4.3 Environmental Limitations

A network protocol alone can only provide security for information
as it transits a network. No network protocol protects data before it is
sent or after it arrives at its destination. This is the only known
weakness in Web security that has been successfully exploited in an
actual commercial setting. Unfortunately, it has been exploited more
than once.3

Security in any computer network, whether the public Internet or
private facilities, is a function of all the elements that make up that
network. It depends on the network security protocols, the computer
systems that use those protocols, and the human beings who use
those computers. No network security protocol can protect against
the confidential printout carelessly left on a cafeteria table.

The Secure Sockets Layer protocol is a strong and effective security
tool, but it is only a single tool. True security requires many such
tools, and a comprehensive plan to employ them.

1.5 Organization of This Book

Four more chapters and two appendices make up the rest of this
book. Chapter 2 looks at some of the essential principles of cryptog-
raphy and cryptographic algorithms. Although, strictly speaking,
these algorithms are not part of the ssl protocol, a good bit of the
protocol’s design depends on general cryptographic principles. With-
out getting too deep into the mathematics of cryptography, chapter 2

3 See, for example, the 8 November 1996 edition of The Wall Street Journal (page b6)
or the 11 July 1997 issue of The San Francisco Chronicle (page c3).

Introduction 15

examines those essential principles. Chapter 3 begins the examination
of ssl in earnest. It describes the ssl protocol in operation. It dis-
cusses the contents of ssl messages, but only in general terms. The
chapter explains what ssl does without getting bogged down in the
details of how it does it. Chapter 4, on the other hand, focuses exclu-
sively on those details. It documents the format of all ssl messages,
as well as the cryptographic calculations ssl uses to construct them.
Chapter 5 provides additional details about ssl. It describes how the
current version of ssl operates with previous ssl versions, and how
Netscape and Microsoft have each augmented ssl with techniques
that promote strong encryption worldwide, while adhering to United
States export restrictions. This chapter also provides complete cover-
age of Transport Layer Security, detailing all the differences between
tls and ssl.

Appendix a provides additional details on public key certificates.
These certificates, which conform to the x.509 standard, are critical
to the operation of ssl, even though they are not part of the protocol
itself. The appendix includes a brief introduction to Abstract Syntax
Notation One, the language that the x.509 standard uses to docu-
ment certificates. Appendix b presents a security checklist for ssl. It
includes a list of good practices for the development of ssl imple-
mentations, and defenses against all known attacks against ssl-
secured systems.

 17

2
 Basic Cryptography

The Web may be a relatively new way to communicate, but securing
the Web relies on the same principles that have secured other com-
munications media for thousands of years. In fact, the digital nature
of the Web actually makes it easier to apply these techniques. In ad-
dition, systems on the Web can take advantage of new and powerful
security technology. This chapter takes a brief look at the important
principles that govern communications security.

The scientific discipline that studies communications security is cryp-
tography, and several concepts from modern cryptography are indis-
pensable to the Secure Sockets Layer protocol. The first of the
following three sections describes the uses of cryptography. The next
section looks in more detail at two particular types of cryptography—
secret key cryptography and public key cryptography. As the names
imply, keys are an important part of both types, and this chapter con-
cludes by discussing the management of these keys. Key manage-
ment plays a critical role in the operation of ssl.

As the following text implies, cryptography relies heavily on a
mathematical foundation. But understanding the mathematics of
cryptography is not essential for understanding ssl. For that reason,
this chapter contains very little mathematics. Readers who are inter-
ested in a more thorough understanding of cryptography are invited
to consult the texts described in the References section of this book.

18 SSL & TLS Essentials: Securing the Web

2.1 Using Cryptography

The word cryptography is derived from the Greek for “secret writ-
ing.” The task of keeping information secret is probably the one most
often associated with cryptography. Indeed, protecting secret infor-
mation is an important mission for cryptographers, but, as this sec-
tion shows, cryptography has other uses as well. Two that are
particularly important to ssl are proving identity and verifying
information. Table 2-1 summarizes the main topics of this section.

Table 2-1 Important Uses of Cryptography

Use Service Protects Against

Keeping secrets Confidentiality Eavesdropping

Proving identity Authentication Forgery and masquerade

Verifying information Message integrity Alteration

2.1.1 Keeping Secrets

To continue with a convention that has become almost universal in
cryptography texts, consider the dilemma facing Alice and Bob in
figure 2-1. Alice needs to send Bob some important information. The

Alice Bob

Charles

Figure 2-1 Cryptography can protect information from eavesdroppers.

Basic Cryptography 19

information is extremely confidential, and it is important that no one
other than Bob receive it. If, as in this example, the only way that Al-
ice can communicate with Bob is by postcard, how can she send him
the information without exposing it to mail carriers, snooping
neighbors, or anyone else that happens to see the vital postcard?

Cryptography gives Alice and Bob the means to protect their ex-
change. Before sending the postcard, Alice uses a secret code, or ci-
pher, that only she and Bob understand. The cipher scrambles the
information, rendering it unintelligible to parties such as Charles
that do not know the secret code. Bob, however, knows the secret
code and can decipher the necessary information.

2.1.2 Proving Identity

Now consider the situation in figure 2-2. Bob receives a postcard with
important information, purportedly from Alice. But how does he
know that the postcard really came from Alice? Might Charles have
forged the card to make it appear as if from Alice? Again, cryptogra-
phy provides a solution.

Alice

Charles

Bob

Figure 2-2 Cryptography can help verify a sender’s identity.

20 SSL & TLS Essentials: Securing the Web

Through the use of cryptography, Alice can attach special informa-
tion, such as a secret phrase, to the postcard. This secret phrase is in-
formation that only she and Bob know. Since Charles does not know
the secret phrase, he will not be able to attach it to any forgery. Now
all Bob has to do is look for the secret phrase. If it is present, then
the postcard is genuine; if it is absent, he should be suspicious.

2.1.3 Verifying Information

Proving identity is one thing, but suppose Charles is able to intercept
a genuine message to Bob from Alice. Charles could then modify the
message and forward the altered message on to Bob, as in figure 2-3.
Charles’s changes might alter the meaning of the message signifi-
cantly, yet not destroy the secret phrase that “proves” Alice was the
sender. To protect against this kind of behavior, there must be a way
to not only verify the identity of the message source, but also to en-
sure that the message contents have not been altered in any way.
Again, cryptography offers a solution.

To validate the information on her postcard, Alice can use a special
type of cryptographic function known as a hash function. A hash
function creates a special mathematical summary of information. If
the information is modified and the hash function recalculated, a dif-
ferent summary will result. To prevent Charles from successfully
tampering with her postcard, Alice calculates the hash function for
the information on the card, plus a secret value only she and Bob

Alice Bob

Charles

Figure 2-3 Cryptography can ensure information has not been altered.

Basic Cryptography 21

know. She then adds the resulting summary to the postcard. When
Bob receives the card, he can also calculate the hash function. If his
summary matches that on the card, the information is valid.

Cryptographic hash functions resemble checksums or cyclic redun-
dancy check (crc) codes that are common error detection mecha-
nisms for traditional communication protocols. There is an
important difference, though. Checksums and crc codes are de-
signed to detect accidental alterations, such as might occur on an un-
reliable transmission medium. Cryptographic hashes, on the other
hand, are optimized to detect deliberate alterations. Because they as-
sume the malicious attacker has full knowledge of the algorithm, and
can thus exploit any weakness, effective hash functions are considera-
bly harder to devise than standard error detection algorithms.

Two particular hash functions are essential to ssl implementations.
The first is Message Digest 5 (md5), devised by Ron Rivest. The
other important hash function is the Secure Hash Algorithm (sha),
proposed by the u.s. National Institute of Science and Technology.
Both will make their appearance in chapters 4 and 5 when we look at
the details of the ssl and tls specifications.

2.2 Types of Cryptography

As even the preceding brief introduction makes clear, one essential
element of cryptography is the use of secret codes that are shared
only by the communicating parties. Whether it’s keeping secrets,
proving identity, or verifying information, Alice and Bob must know
some secret information that Charles does not. Cryptographers call
that information a key.

Cryptographic techniques fall into two classifications, depending on
the type of keys they use: secret key cryptography and public key cryptog-
raphy. The following subsections describe each separately, then dis-
cuss how practical implementations often use a combination of the
two approaches.

22 SSL & TLS Essentials: Securing the Web

2.2.1 Secret Key Cryptography

With secret key cryptography, both parties know the same informa-
tion—the key—and both endeavor to keep that key secret from eve-
ryone else. This is how most people think of cryptography in general,
and, for nearly all of the several-thousand-year history of secret
codes, it was the only form of cryptography known. The critical as-
pect of secret key cryptography is that both parties know the same
secret information. For this reason, it has the technical name symmet-
ric encryption.

Encryption algorithms, or ciphers, based on secret key techniques are
usually just mathematical transformations on the data to be en-
crypted, combined with the secret key itself. The approach resembles
a carnival shell game, with the secret key serving as the initial loca-
tion of the pea. Bits are swapped around and combined with each
other in very complicated ways, and yet the various transformations
can readily be undone, provided one knows the key. As a hint of the
complexities involved, Figure 2-4 illustrates one of the more common
encryption algorithms. The figure also introduces two common cryp-
tographic terms—plaintext, information before encryption, and ci-
phertext, information in its encrypted form. Plaintext is vulnerable to
attackers; ciphertext, at least in theory, is not.

An important quality that determines the effectiveness of a cipher is
the size of the secret key. The larger the key, the more difficult it is to
break the code. To understand why this is the case, consider an algo-
rithm with an extremely small key size: 2 bits. In this example, the
algorithm itself really wouldn’t matter. After all, with 2 bits there are
only four possible keys. An attacker who obtained encrypted data
could simply try all four possibilities.

Cryptographers also characterize symmetric encryption algorithms
according to how they process input data. Ciphers may be either
stream ciphers or block ciphers. Stream ciphers process input data a byte
at a time, and can accept any size of input for encryption. Block ci-
phers, in contrast, operate only on fixed-sized blocks of data—
typically 8 bytes in size. Block ciphers are require less computation
resources, and they are generally slightly less vulnerable to attack

Basic Cryptography 23

(and, thus, are by far the more common type). They are, however,
slightly less convenient to use. The input data itself is the source of
the inconvenience; it is rarely the same size as the cipher’s block. En-
crypting data using a block cipher requires breaking the data into
blocks, and, if the last block doesn’t contain exactly the right amount
of data, adding dummy data, known as padding, to fill it out.

Block ciphers also usually require an initialization vector of dummy
data to begin the encryption process. The initialization vector primes

plaintext

initial permutation

L0 R0

+ f

L1 = R0 R1 = L0 + f(R0,K1)

K1

+ f

L2 = R1 R2 = L1 + f(R1,K2)

K2

+ f

L15 = R14 R15 = L14 + f(R14,K15)

K15

[repeated 12 more times]

+ f

L15 = R15R16 = L15 + f(R15,K16)

K16

inverse permutation

ciphertext

Secret
Key

Data to
Protect

Hidden
Data

Figure 2-4 The DES cipher hides data by scrambling it with a secret key.

24 SSL & TLS Essentials: Securing the Web

the algorithm with irrelevant information, enabling the cipher to
build up to full strength before the actual plaintext appears.

Table 2-2 lists the symmetric ciphers most commonly used with the
Secure Sockets Layer protocol.

Table 2-2 Symmetric Encryption Algorithms

Abbreviation Algorithm Type

DES Data Encryption Standard Block

3DES Triple-Strength Data Encryption Standard Block

RC2 Rivest Cipher 2 Block

RC4 Rivest Cipher 4 Stream

2.2.2 Public Key Cryptography

Most of the difficulties with traditional secret key cryptography are
caused by the keys themselves. Both Alice and Bob need to have the
same secret key, but under no circumstances should Charles have this
key as well. That implies that before Alice and Bob can communicate
information securely, they must be able to communicate the secret
key securely. The problem mimics the classic chicken-or-egg di-
lemma. After all, if there’s a secure way for Alice and Bob to com-
municate the secret key, why can’t they use that same method to
communicate the information, and dispense with the complexities of
cryptography altogether? (In some situations, such as cloak-and-
dagger spying, the two parties can agree on the key beforehand, while
they’re physically together; for obvious reasons, this approach isn’t
practical for situations in which the parties never meet face-to-face,
such as Web-based commerce.)

A relatively new development in cryptography has eliminated the key
distribution impasse and has made technology such as ssl and e-
commerce possible. That development is public key cryptography. Pub-
lic key cryptography or, more technically, asymmetric encryption, actu-
ally has each of the two parties use separate keys—one for encryption
and a different one for decryption. The critical aspect of public key
cryptography is that only one of these two keys needs to be kept se-
cret. The other key, the public key, need not be secret at all.

Basic Cryptography 25

Although it seems a bit like magic, this has a solid mathematical ba-
sis. Fundamentally, asymmetric encryption is based on mathematical
problems that are mush easier to generate than they are to solve. As
an example, anyone with a pocket calculator can compute the prod-
uct of 113 and 293 and get the correct answer of 33 109. It is much
more difficult, however, to use the same pocket calculator to work a
similar problem in reverse. Which two whole numbers, when multi-
plied together, yield the product 29 213?1

Figure 2-5 shows how public key encryption can work. When Bob
wants Alice to send him information securely, he generates two keys.

1 The answer, for the insatiably curious, is 131 and 223.

Alice Bob

1

2
3

4
5

Create
keys.

Publish
public
key.

Decipher
with
private
key.

Encipher
with

public
key.

Send
encrypted

message.

Figure 2-5 Public key cryptography uses published keys to encrypt data.

26 SSL & TLS Essentials: Securing the Web

One is the private key, which Bob keeps completely to himself. Con-
versely, Bob advertises the public key, conceptually even by publishing
it in a newspaper. Alice reads the newspaper to find out the public
key, then uses it to encrypt the information. When Bob receives Al-
ice’s postcard, his private key enables him to decipher the message.
Since only Bob has his private key, only Bob can successfully decrypt
the information. Even Alice would be unable to do so.

Some public key encryption algorithms, notably the Rivest Shamir
Adleman (rsa) algorithm commonly used with ssl, also work in re-
verse. Information encrypted with a private key can be decrypted
with the corresponding public key. This feature has several powerful
applications, most importantly for ssl, as a way to prove identity.
Imagine, as in figure 2-6, that Bob encrypts some well-known infor-
mation using his private key and sends the resulting ciphertext to Al-
ice. Alice can use Bob’s public key to decipher the information. She
then compares the result with the well-known information she was
expecting. If there is a match, then Alice is assured that the informa-
tion was encrypted with Bob’s private key. Only that key would have
yielded the successful decryption. And, since Bob is the only person
who knows his private key, Alice is further assured that Bob was the

Alice Bob

3

1

Encipher
with
private
key.

Decipher
with

public
key.

2

Publish
public
key.

Figure 2-6 Public key ciphers verify identity using published keys.

Basic Cryptography 27

one who sent the information. Through this approach, Bob has
proven his identity to Alice.

Reversible public key algorithms such as rsa can also provide an-
other important service: the digital equivalent of a signature. Suppose
that Bob needs information from Alice. And further suppose that it
is important that Alice not be able to later deny sending him the in-
formation, either to Bob or to an independent third party (such as a
judge). In effect, Bob needs Alice to sign the information. To accom-
plish this, Alice can encrypt the information with her private key.
Since anyone can obtain her public key, anyone can decipher the in-
formation. Only Alice, however, knows her private key, so only Alice
could have encrypted the information in the first place.

Some public key algorithms can only be used for digital signatures;
they cannot provide encryption services. One such algorithm impor-
tant to ssl is the Digital Signature Algorithm (dsa).

2.2.3 Combining Secret and Public Key Cryptography

Public key encryption is a powerful tool, but in most practical im-
plementations it suffers from one serious disadvantage—the encryp-
tion operation is extremely complex. Complex mathematical
operations can place a strain on some systems, requiring more proc-
essing capacity than the systems would otherwise need. If there were
no alternatives, then most implementations requiring security might
accept the higher system cost; fortunately, there is a relatively simple
way to get the benefits of public key encryption while avoiding most
of the system performance costs. The optimum approach uses a
combination of secret key and public key cryptography.

Figure 2-7 shows how this combination can work in practice. To be-
gin, Bob creates a public and private key, and then he publicizes the
public key. He does not share the private key with anyone. Alice, who
wishes to send confidential data to Bob, retrieves his public key. She
also generates a collection of random numbers. Once Alice has Bob’s
public key, she encrypts those random numbers and sends them to
Bob. Since only Bob has his private key, only Bob can decipher Al-
ice’s message and extract the random numbers.

28 SSL & TLS Essentials: Securing the Web

Once Alice and Bob have successfully exchanged the random num-
bers, they no longer need public key encryption. Instead, they can use
the random numbers as secret keys for standard symmetric encryp-
tion. Alice and Bob can communicate securely as long as they wish.
And since symmetric encryption does not need nearly as much pro-
cessing power as asymmetric encryption, the encryption comes at a
much lower cost.

There is an important variation to this process that relies on a differ-
ent type of public key algorithm. The special type of algorithm is
known as a key exchange algorithm, and the most famous example is
the Diffie-Hellman algorithm. Diffie-Hellman is usually thought of
as a public key algorithm, even though it cannot be used for encryp-

Alice Bob

12

3 4

Publish
public
key.

Decipher
secret
keys with
private
key.

Generate
random

numbers
for secret

keys.

Encrypt
secret

keys with
Bob's

public key.

5 5

Encipher
and
decipher
data with
secret keys.

Encipher
and

decipher
data with

secret keys.

Figure 2-7 Effective security combines secret and public key techniques.

Basic Cryptography 29

tion or for digital signatures. Rather, Diffie-Hellman allows two par-
ties to securely establish a secret number using only public messages.
Diffie-Hellman is an alternative to steps 1–4 of figure 2-7.

One final note on figure 2-7: As the next chapter details, this is actu-
ally a simplified view of basic ssl operation. Figure 3-1 shows a dif-
ferent version of the same process.

2.3 Key Management

Key management is a challenge to all forms of cryptography. Public
key cryptography improves the situation; at least the keys that the
parties exchange do not have to be kept secret from the rest of the
world. Still, the public key must be exchanged reliably.

In the previous examples, Alice has hypothetically retrieved Bob’s
public keys from the newspaper. Suppose, however, that the nefarious
Charles was able to print a phony newspaper (with a phony public
key for Bob) and sneak it into Alice’s driveway in the morning in
place of her real paper. How would Alice know of the fraud?

It is exactly this problem that has led to the creation of public key
certificates and certificate authorities. Although unnoticed by most
casual Internet users, these are critical to the Secure Sockets Layer
protocol and Web commerce.

2.3.1 Public Key Certificates

In many ways, public key certificates are the digital equivalent of a
driver’s license. Although certificates may belong to computer sys-
tems instead of individuals, they share three important characteristics
with driver’s licenses. First, they each identify their subjects by in-
cluding the subjects’ names. Second, they assert key information
about the subject. A driver’s license declares that the subject has cer-
tain privileges (i.e., driving a car), while a certificate affirms the sub-
ject’s public key (and perhaps other privileges). Finally, both a
certificate and a driver’s license are issued by a trusted organization,
either a governmental agency or a certificate authority.

30 SSL & TLS Essentials: Securing the Web

Figure 2-8 shows the contents of a typical public key certificate. Ap-
pendix a discusses this particular certificate format in detail, but only
a few of the fields are truly important. The first of those is the issuer
field, which identifies the organization that has issued the certificate.
This information is critical to a person or computer system that ex-
amines a certificate because it determines whether the certificate can
be trusted. The next important field is the period of validity. Like
driver’s licenses, certificates expire after a certain time. The next field
identifies the subject of the certificate, and it is followed by the sub-
ject’s public key.

The final field of the certificate is also important. That field is the is-
suer’s signature, which is a digital signature of the contents of the cer-
tificate. The issuer creates this signature by encrypting a hash of the
certificate with its private key. Any system that knows the issuer’s
public key can verify the signature and ensure the validity of the cer-
tificate. Since this field can be a bit confusing, it is worthwhile to
emphasize that the issuer creates the signature using its own private
key, while the certificate itself contains the subject’s public key.

Version

Serial Number

Algorithm Identifier

Issuer

Period of Validity

Subject

Subject's Public Key

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Figure 2-8 A public key certificate validates a subject’s public key.

Basic Cryptography 31

2.3.2 Certificate Authorities

The issuer of a public key certificate is traditionally known as a cer-
tificate authority (ca), and certificate authorities play a vital role in es-
tablishing trust among a community of users. As the previous
subsection indicates, the certificate authority digitally signs all cer-
tificates, attesting to the validity of the public keys they contain. If
users trust the certificate authority, they can trust any certificate that
ca issues.

In many cases, a certificate authority can be identified as either a pri-
vate or a public ca. Private authorities include organizations that is-
sue certificates strictly for their own users. A corporation, for
example, may issue public key certificates for its employees. (Actually,
they would issue the certificates for the employees’ computers.) The
company could then set up its internal network to require appro-
priate certificates before granting access to critical data. Although
systems within the company’s computer network could trust the
company’s certificates, outside systems, including, for example, public
Web servers, would be unlikely to do so. A private certificate author-
ity issues certificates for use on its own private networks.

But the Internet is a public network, and Web security generally re-
lies on public certificate authorities. A public certificate authority is-
sues certificates to the general public, and it can certify the identity
of both individuals and organizations. Public authorities act as the
digital equivalent of notary publics, certifying the identity of any
party that presents appropriate credentials. For a company that
wishes to establish a secure Web site, those credentials may include a
Dun & Bradstreet d-u-n-s number, a business license, articles of in-
corporation, or sec filings that establish the company’s corporate
identity.

Certificate authorities are themselves frequently identified by their
certificates, but their certificates differ from standard certificates in
one important respect: the subject and the issuer are one and the
same. The certificate authority certifies its own identity. Figure 2-9
highlights the fact that the public key in a ca certificate is also the
public key that verifies the certificate’s signature. This is a critical

32 SSL & TLS Essentials: Securing the Web

distinction from normal certificates. Any party that receives a normal
certificate can check the certificate’s signature to decide whether to
trust the public key in that certificate. As long as the certificate’s sig-
nature is valid and the issuer is trustworthy, then the receiving party
can safely trust the public key. With a ca certificate, on the other
hand, verifying the certificate’s signature does not help to establish
trust. Any party that could forge a ca certificate would know the
forged private key, and could thus easily generate the matching cer-
tificate signature. The validity of ca certificates must be established
by other methods.

In the case of Web commerce security, the validity of certificate au-
thorities depends largely on the browser manufacturers. Both Micro-
soft’s Internet Explorer and Netscape’s Navigator by default
recognize the certificates from important public certificate authori-
ties. Figure 2-10 shows some of the certificate authorities Netscape
recognizes. (The full list, as of this writing, includes more than 50 au-
thorities.) Although both Netscape and Microsoft allow users to in-
stall additional certificate authorities into their browsers, most secure
Web sites elect to use a certificate that doesn’t require this extra ef-
fort from their users.

Version

Serial Number

Algorithm Identifier

Issuer

Period of Validity

Subject

Subject's Public Key

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Issuer and
Subject are
the same.

Subject's
Public Key
verifies the
certificate's
Signature.

Figure 2-9 CA certificates have the same issuer and subject.

Basic Cryptography 33

2.3.3 Certificate Hierarchies

Sometimes, it becomes difficult for a certificate authority to effec-
tively track all the parties whose identities it certifies. Especially as
the number of certificates grows, a single authority may become an
unacceptable bottleneck in the certification process. Fortunately,
public key certificates support the concept of certificate hierarchies,
which alleviate the scalability problems of a single, monolithic au-
thority.

With a hierarchy in place, a certificate authority does not have to
certify all identities itself. Instead, it designates one or more subsidi-
ary authorities. These authorities may, in turn, designate their own
subsidiaries, the hierarchy continuing until an authority actually cer-
tifies end users. Figure 2-11 illustrates a simple three-level hierarchy,
one that might occur within a large corporation. As the figure shows,
the acme Corporation has a master certificate authority and two
subordinate authorities, one for Human Resources and another for
Research and Development. The subordinate authorities are respon-
sible for entities within their domains.

Figure 2-10 Netscape Navigator recognizes many certificate authorities.

34 SSL & TLS Essentials: Securing the Web

A particularly powerful feature of certificate hierarchies is that they
do not require that all parties automatically trust all the certificate
authorities. Indeed, the only authority whose trust must be estab-
lished throughout the enterprise is the master certificate authority.
Because of its position in the hierarchy, this authority is generally
known as the root authority.

To see this process in action, consider what happens when a client in
the r&d department needs to verify the identity of the Benefits
server. The server presents its certificate, issued (and signed) by the
hr department’s authority. The r&d client does not trust the hr au-
thority, however, so it asks to see that authority’s certificate. When
the client receives the hr authority’s certificate, it can verify that the
hr authority was certified by the corporation’s root ca. Since the
r&d client does trust the root ca, it can trust the Benefits server.

Issuer:
ACME Corp.

Subject:
ACME Corp.

Issuer:
ACME Corp.

Subject:
HR Dept.

Issuer:
ACME Corp.

Subject:
R&D Dept.

Issuer:
HR Dept.

Subject:
Intranet

Issuer:
R&D Dept.

Subject:
Documents

Issuer:
HR Dept.

Subject:
Benefits

Issuer:
R&D Dept.

Subject:
Software

Figure 2-11 Certificate hierarchies divide responsibility for certificates.

Basic Cryptography 35

2.3.4 Certificate Revocation Lists

Before leaving the subject of public key certificates, there is one loose
end to tie up. So far, we’ve seen how certificate authorities issue cer-
tificates, but what about the reverse process? What happens if a ca
issues a certificate by mistake and wants to correct itself? Or what if a
subject accidentally reveals its private key, so its certified public key is
no longer safe to use? To solve these types of problems, certificate au-
thorities use certificate revocation lists. A certificate revocation list,
or crl for short, is a list of certificates that the authority has previ-
ously issued, but no longer considers valid. The certificates them-
selves still appear legitimate; their signatures are correct, and their
validity periods are appropriate. Nonetheless, the ca needs to indi-
cate that they can no longer be trusted. The authority cannot change
the certificates since they’ve already been issued, so the best it can do
is maintain a list of these revoked certificates. It is the responsibility
of any party that trusts another’s certificate to check with the certifi-
cate authority to make sure the certificate has not been revoked. This
function is not the responsibility of the ssl protocol, so we won’t dis-
cuss it in any depth. It is noteworthy to consider, though, that the
current Web commerce infrastructure does not have an effective (and
widely supported) means for systems to check a certificate against a
crl. For that reason, there is no practical way to revoke a traditional
Web commerce certificate.

 37

3
 SSL Operation

With an understanding of some of the key concepts of cryptography,
we can now look closely at the operation of the Secure Sockets Layer
(ssl) protocol. Although ssl is not an extremely complicated proto-
col, it does offer several options and variations. This chapter explains
ssl by starting with the simplest case: establishing an encrypted
communications channel. It then considers successively more com-
plex options, including authenticating the communicating parties,
separating encryption from authentication, and resuming a previously
established session. Within these sections, you will discover the full
power of ssl.

The ssl protocol consists of a set of messages and rules about when
to send (and not to send) each one. In this chapter, we consider what
those messages are, the general information they contain, and how
systems use the different messages in a communications session. We
do not, however, explore the detailed message formats: the bits and
bytes that make up ssl messages as they transit across a network.
That detail is the subject of chapter 4. Neither do we spend time here
on the detailed cryptographic computations ssl requires; those, too,
are a topic for the next chapter. This chapter concentrates on the big
picture. The details will be much easier to understand once you have
an appreciation of the overall operation of the Secure Sockets Layer.

3.1 SSL Roles

The Secure Sockets Layer protocol defines two different roles for the
communicating parties. One system is always a client, while the other

38 SSL & TLS Essentials: Securing the Web

is a server. The distinction is very important, because ssl requires the
two systems to behave very differently. The client is the system that
initiates the secure communications; the server responds to the cli-
ent’s request. In the most common use of ssl, secure Web browsing,
the Web browser is the ssl client and the Web site is the ssl server.
These same two roles apply to all applications that use ssl, and the
examples in this chapter (indeed, throughout the book) will clearly
distinguish them.

For ssl itself, the most important distinctions between clients and
servers are their actions during the negotiation of security parame-
ters. Since the client initiates a communication, it has the
responsibility of proposing a set of ssl options to use for the
exchange. The server selects from the client’s proposed options,
deciding what the two systems will actually use. Although the final
decision rests with the server, the server can only choose from among
those options that the client originally proposed.

3.2 SSL Messages

When ssl clients and servers communicate, they do so by exchang-
ing ssl messages. Technically, ssl defines different levels of messages,
but that topic is best left for Chapter 4. Since this chapter concen-
trates strictly on functionality, distinguishing between the various ssl
levels is not critical. Table 3-1 lists the ssl messages at all levels of the
protocol, in alphabetical order. The remaining sections in this chapter
show how systems use these messages in their communications.

Table 3-1 SSL Messages

Message Description

Alert Informs the other party of a possible security
breach or communication failure.

ApplicationData Actual information that the two parties ex-
change, which is encrypted, authenticated,
and/or verified by SSL.

Certificate A message that carries the sender’s public key
certificate.

SSL Operation 39

Message Description

CertificateRequest A request by the server that the client provide
its public key certificate.

CertificateVerify A message from the client that verifies that it
knows the private key corresponding to its pub-
lic key certificate.

ChangeCipherSpec An indication to begin using agreed-upon secu-
rity services (such as encryption).

ClientHello A message from the client indicating the secu-
rity services it desires and is capable of support-
ing.

ClientKeyExchange A message from the client carrying crypto-
graphic keys for the communications.

Finished An indication that all initial negotiations are
complete and secure communications have
been established.

HelloRequest A request by the server that the client start (or
restart) the SSL negotiation process.

ServerHello A message from the server indicating the secu-
rity services that will be used for the communi-
cations.

ServerHelloDone An indication from the server that it has com-
pleted all its requests of the client for establish-
ing communications.

ServerKeyExchange A message from the server carrying crypto-
graphic keys for the communications.

3.3 Establishing Encrypted Communications

The most basic function that an ssl client and server can perform is
establishing a channel for encrypted communications. Figure 3-1
shows the ssl message exchange this operation requires, and table 3-2
summarizes the steps in the figure. This section looks at these steps
in more detail by considering each message in the exchange.

40 SSL & TLS Essentials: Securing the Web

Table 3-2 Negotiation of Encrypted Communications

Step Action

1 Client sends ClientHello message proposing SSL options.

2 Server responds with ServerHello message selecting the SSL
options.

3 Server sends its public key information in ServerKeyExchange
message.

4 Server concludes its part of the negotiation with ServerHello-
Done message.

5 Client sends session key information (encrypted with server’s
public key) in ClientKeyExchange message.

6 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

Server

ClientHello

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

Figure 3-1 SSL uses 9 messages to establish encrypted communications.

SSL Operation 41

SSL vs. TLS

The TLS proto-
col uses a ver-
sion value of
3.1 instead of
3.0.

Step Action

7 Client sends Finished message to let the server check the newly
activated options.

8 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

9 Server sends Finished message to let the client check the newly
activated options.

3.3.1 ClientHello

The ClientHello message starts the ssl communication between the
two parties. The client uses this message to ask the server to begin
negotiating security services by using ssl. Table 3-3 lists the impor-
tant components of a ClientHello message.

Table 3-3 ClientHello Components

Field Use

Version Identifies the highest version of the SSL proto-
col that the client can support.

RandomNumber A 32-byte random number used to seed the
cryptographic calculations.

SessionID Identifies a specific SSL session.

CipherSuites A list of cryptographic parameters that the cli-
ent can support.

CompressionMeth-
ods

Identifies data compression methods that the
client can support.

The Version field of the ClientHello message contains the highest
version number of ssl that the client can support. The current ssl
version is 3.0, and it is by far the most widely deployed on the Inter-
net. (But see the sidebar for information on tls.) Note that a server
may assume that the client can support all ssl versions up to and in-
cluding the value of this field. If, for example, a client sends a version
3.0 ClientHello to a server that only supports version 2.0 of ssl, the
server may respond with version 2.0 messages that it expects the cli-
ent to understand. In such cases, that client can decide to continue
with the ssl session using version 2.0 functionality, or it can abandon

42 SSL & TLS Essentials: Securing the Web

the communication attempt. Section 5.1 includes additional informa-
tion about compatibility with previous versions.

The RandomNumber field, as you might expect, contains a random
number. This random value, along with a similar random value that
the server creates, provides the seed for critical cryptographic calcula-
tions. Chapter 4 has the details. The ssl specification suggests that
four of this field’s 32 bytes consist of the time and date. The ssl pro-
tocol does not require a particular level of accuracy for this value, as it
is not intended to provide an accurate time indication. Instead, the
specification suggests using the date and time as a way to ensure that
the client never uses the same random value twice. This precaution
protects against an impostor copying old ssl messages from a legiti-
mate client and reusing them to establish a counterfeit session.

The remaining 28 bytes of this value should be a “cryptographically
secure” random number. Security is not something we ordinarily as-
sociate with randomness, but it is important in this case. Most com-
puter programs use a technique known as pseudorandom number
generation to create random numbers. When used correctly, this ap-
proach does yield numbers that have the appearance of randomness.
However, the technique does have a serious flaw when used in a se-
curity context: if an attacker knows the exact algorithm and one ran-
dom value, that attacker can correctly predict all future random
values. This knowledge might allow the attacker to anticipate a par-
ticular future value and prepare an attack against it. To prevent this
type of attack, ssl implementations should use a different technique
for generating random numbers; typically, they use one based on
cryptographic algorithms.

The next field in the ClientHello message is SessionID. Although all
ClientHello messages may include this field, in this example, the
field is meaningless and would be empty. Section 3.8 presents an ex-
ample of how the SessionID field may be used.

The CipherSuites field allows a client to list the various cryptographic
services that the client can support, including exact algorithms and
key sizes. The server actually makes the final decision as to which
cryptographic services will be used for the communication, but it is

SSL Operation 43

limited to choosing from this list. Chapter 4 describes the format of
this field in detail, including the various algorithms and key size op-
tions that ssl defines.

The CompressionMethods field is, in theory, similar to the Cipher-
Suites field. In it, the client may list all of the various data compres-
sion methods that it can support. Compression methods are an
important part of ssl because encryption has significant conse-
quences on the effectiveness of any data compression techniques. En-
cryption changes the mathematical properties of information in a
way that makes data compression virtually impossible. In fact, if it
were possible to compress encrypted data, that would likely indicate a
security weakness in the encryption algorithm. For this reason, if two
parties are going to employ data compression for a communication, it
is important that they compress their data before encrypting it. The
ssl protocol accommodates this behavior by including the capacity
for data compression, and by making sure that the compression oc-
curs before encryption. In the current version of ssl, however, no ac-
tual compression methods have been defined. This field, therefore,
currently is of limited use. In the future, additional compression
methods may be defined and added to the tls (but not ssl) specifi-
cations.

3.3.2 ServerHello

When the server receives the ClientHello message, it responds with a
ServerHello. As table 3-4 shows, the contents of a ServerHello are
much the same as a ClientHello. There are a few important differ-
ences, though, which we’ll examine in this subsection. In general,
where the client makes suggestions in its ClientHello message, the
server makes the final decision in its ServerHello.

Table 3-4 ServerHello Components

Field Use

Version Identifies the version of the SSL protocol to be
used for this communication.

RandomNumber A 32-byte random number used to seed the
cryptographic calculations.

44 SSL & TLS Essentials: Securing the Web

SSL vs. TLS

The TLS proto-
col uses a ver-
sion value of
3.1 instead of
3.0.

Field Use

SessionID Identifies the specific SSL session.

CipherSuite The cryptographic parameters to be used for this
communication.

Compression-
Method

The data compression method to be used for this
communication.

The Version field is the first example of a server making a final deci-
sion for the communications. The ClientHello’s version simply iden-
tifies which ssl versions the client can support. The ServerHello’s
version, on the other hand, determines the ssl version that the com-
munication will use. A server is not completely free to choose any ssl
version, however; it cannot pick a version newer than the latest that
the client can support. If the client does not like the server’s choice, it
may abandon the communication. As of this writing, nearly all ssl
clients and servers support version 3.0 of the ssl protocol.

The RandomNumber field of the ServerHello is essentially the same
as in the ClientHello, though this random value is chosen by the
server. Along with the client’s value, this number seeds important
cryptographic calculations. The server’s value does share the same
properties as in the ClientHello. Four of the 32 bytes are the date and
time (to avoid repeating random values); the remaining bytes should
be created by a cryptographically secure random number generator.

The SessionID field of a ServerHello may contain a value, unlike the
ClientHello’s field just discussed. The value in this case uniquely
identifies this particular ssl communication, or session. The main rea-
son for explicitly identifying a particular ssl session is to refer to it
again later. Section 3.8 shows an example of how a client can use this
facility to speed up the ssl negotiation process. If the server does not
intend the session to ever be reused, it can omit the SessionID field
from its ServerHello message.

The CipherSuite field (note that the name is singular, not plural, as in
the case of a ClientHello) determines the exact cryptographic pa-
rameters, specifically algorithms and key sizes, to be used for the ses-
sion. The server must select a single cipher suite from among those
listed by the client in its ClientHello message.

SSL Operation 45

The CompressionMethod field is also singular for a ServerHello. In
theory, the server uses this field to identify the data compression to
be used for the session. Again, the server must pick from among
those listed in the ClientHello. Current ssl versions have not defined
any compression methods, however, so this field has no practical util-
ity.

3.3.3 ServerKeyExchange

In this example, the server follows its ServerHello message with a
ServerKeyExchange message. This message complements the Cipher-
Suite field of the ServerHello. While the CipherSuite field indicates
the cryptographic algorithms and key sizes, this message contains the
public key information itself. The exact format of the key informa-
tion depends on the particular public key algorithm used. For the rsa
algorithm, for example, the server includes the modulus and public
exponent of the server’s rsa public key.

Note that the ServerKeyExchange message is transmitted without
encryption, so that only public key information can be safely in-
cluded within it. The client will use the server’s public key to encrypt
a session key, which the parties will use to actually encrypt the appli-
cation data for the session.

3.3.4 ServerHelloDone

The ServerHelloDone message tells the client that the server has fin-
ished with its initial negotiation messages. The message itself con-
tains no other information, but it is important to the client, because
once the client receives a ServerHelloDone, it can move to the next
phase of establishing the secure communications.

3.3.5 ClientKeyExchange

When the server has finished its part of the initial ssl negotiation,
the client responds with a ClientKeyExchange message. Just as the
ServerKeyExchange provides the key information for the server, the
ClientKeyExchange tells the server the client’s key information. In

46 SSL & TLS Essentials: Securing the Web

this case, however, the key information is for the symmetric encryp-
tion algorithm both parties will use for the session. Furthermore, the
information in the client’s message is encrypted using the public key
of the server. This encryption protects the key information as it tra-
verses the network, and it allows the client to verify that the server
truly possesses the private key corresponding to its public key. Oth-
erwise, the server won’t be able to decrypt this message. This opera-
tion is an important protection against an attacker that intercepts
messages from a legitimate server and pretends to be that server by
forwarding the messages to an unsuspecting client. Since a fake
server won’t know the real server’s private key, it won’t be able to de-
crypt the ClientKeyExchange message. Without the information in
that message, communication between the two parties cannot suc-
ceed.

3.3.6 ChangeCipherSpec

After the client sends key information in a ClientKeyExchange mes-
sage, the preliminary ssl negotiation is complete. At that point, the
parties are ready to begin using the security services they have nego-
tiated. The ssl protocol defines a special message—
ChangeCipherSpec—to explicitly indicate that the security services
should now be invoked.

Since the transition to secured communication is critical, and both
parties have to get it exactly right, the ssl specification is very precise
in describing the process. First, it identifies the set of information
that defines security services. That information includes a specific
symmetric encryption algorithm, a specific message integrity algo-
rithm, and specific key material for those algorithms. The ssl specifi-
cation also recognizes that some of that information (in particular,
the key material) will be different for each direction of communica-
tion. In other words, one set of keys will secure data the client sends
to the server, and a different set of keys will secure data the server
sends to the client. (In principle, the actual algorithms could differ as
well, but ssl does not define a way to negotiate such an option.) For
any given system, whether it is a client or a server, ssl defines a write
state and a read state. The write state defines the security information

SSL Operation 47

for data that the system sends, and the read state defines the security
information for data that the system receives.

The ChangeCipherSpec message serves as the cue for a system to
begin using its security information. Before a client or server sends a
ChangeCipherSpec message, it must know the complete security in-
formation it is about to activate. As soon as the system sends this
message, it activates its write state. Similarly, as soon as a system re-

ClientHello

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

MAC

Encr

key

Act Pnd Act Pnd

Write Read

DES

MD5

xxx

?

?

?

DES

MD5

xxx

?

?

?

MAC

Encr

key

Act Pnd Act Pnd

Write Read

DES

MD5

xxx

?

?

?

null

null

null

DES

MD5

xxx

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

DES

MD5

xxx

null

null

null

DES

MD5

xxx

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

?

?

?

null

null

null

?

?

?

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

DES

MD5

?

null

null

null

DES

MD5

?

Figure 3-2 Clients build pending cipher suites while using active ones.

48 SSL & TLS Essentials: Securing the Web

ceives a ChangeCipherSpec from its peer, the system activates its
read state. Figures 3-2 and 3-3 illustrate this process in more detail.
The first shows how the client views the process, while the second
takes the server’s perspective.

In both figures, the matrices on the side show the systems’ read and
write states. The events shown in black (as opposed to gray) cause
the systems to update their states. As the figures indicate, ssl actually
defines two separate read and write states for each system. One of

Server

ClientHello

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9
MAC

Encr

key

Act Pnd Act Pnd

Write Read

DES

MD5

xxx

?

?

?

DES

MD5

xxx

?

?

?

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

DES

MD5

xxx

null

null

null

DES

MD5

xxx

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

DES

MD5

xxx

null

null

null

DES

MD5

xxx

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

?

?

?

null

null

null

?

?

?

MAC

Encr

key

Act Pnd Act Pnd

Write Read

null

null

null

DES

MD5

?

null

null

null

DES

MD5

?

Figure 3-3 SSL servers also build pending cipher suites.

SSL Operation 49

the states is active and the second is pending. Both the client and the
server, therefore, maintain a total of four different states: the active
write state, the pending write state, the active read state, and the
pending read state. (The figures use the abbreviations “Act” and
“Pnd” for active and pending, respectively.)

The figures also show the key elements of a state. They are the en-
cryption algorithm (abbreviated “Encr”), the message integrity algo-
rithm (abbreviated “mac” for Message Authentication Code), and
the key material. In figures 3-2 and 3-3, the systems agree to use the
Data Encryption Standard (des) for symmetric encryption and Mes-
sage Digest 5 (md5) for message integrity.

As the figures show, all systems start out in active states with no se-
curity services whatsoever. This initial condition is necessary for the
systems to begin any communication; until they have negotiated se-
curity services and parameters, secure communication is not possible.
As the systems exchange ssl messages, they begin building the pend-
ing state. First they agree on encryption and message integrity algo-
rithms, then they exchange key information. Only then, when both
the client and the server have full pending states, can the systems ac-
tivate those pending states with ChangeCipherSpec messages.

Table 3-5 details the client processing that figure 3-2 illustrates. It de-
scribes the steps in the figure that are shown in solid black; those are
the steps that result in a change of the client’s states.

Table 3-5 Client State Processing

Step Description

1 When the client initiates an SSL communication by sending a
ClientHello message, it sets both of its active states to null (no
security); initially, its pending states are unknown.

2 When the client receives a ServerHello message, it knows the
algorithms that the server has selected for the session. It up-
dates both of its pending states accordingly. Key information
for the pending states is still unknown at this point.

5 Once the client has built and transmitted a ClientKeyExchange
message, it knows the key material that will be used for the
communication, so it updates the pending states.

50 SSL & TLS Essentials: Securing the Web

6 When the client sends a ChangeCipherSpec message, it moves
its pending write state to the active write state and resets the
pending state to unknown. No changes are made to the read
states. From this point on, all data the client sends will use DES
encryption and MD5 authentication as indicated by the now ac-
tive write state.

8 When the client receives a ChangeCipherSpec, it updates the
active read state with the pending values and resets the pend-
ing read state to unknown. From this point on, the client will
expect received data to be secured with DES encryption and
MD5 authentication.

Table 3-6 outlines the processing that takes place in the server. It cor-
responds to figure 3-3.

Table 3-6 Server State Processing

Step Description

1 When the server first receives a ClientHello message, it sets
both of its active states to null; its pending states are unknown.

2 When the server sends its ServerHello message, it knows the
algorithms that will be used for the session, and it updates both
of its pending states accordingly. Key information for the pend-
ing states is still unknown at this point.

5 Once the server has received a ClientKeyExchange message, it
knows the key material that will be used for the communica-
tion, so it updates the pending states appropriately.

6 When the server receives a ChangeCipherSpec message, it
moves its pending read state to the active read state and resets
the pending state to unknown. No changes are made to the
write states. From this point on, the server will expect received
data to be secured with DES encryption and MD5 authentication.

8 When the server sends its own ChangeCipherSpec, it updates
the active write state with the pending values and resets the
pending state to unknown. From this point on, all data the
server sends will use DES encryption and MD5 authentication as
indicated by the now active write state.

Notice from the figures that one system’s active write state is the
same as the other system’s active read state—with one exception. The
exception occurs during the transmission of a ChangeCipherSpec

SSL Operation 51

message. As soon as one system sends this message, it updates its ac-
tive states. The other system, however, does not change its active
states until it receives the message. In the interim, the two systems
are temporarily out of synchronization.

3.3.7 Finished

Immediately after sending their ChangeCipherSpec messages, each
system also sends a Finished message. The Finished messages allow
both systems to verify that the negotiation has been successful and
that security has not been compromised. Two aspects of the Finished
message contribute to this security. First, as the previous subsection
explained, the Finished message itself is subject to the negotiated ci-
pher suite. That means that it is encrypted and authenticated accord-
ing to that suite. If the receiving party cannot successfully decrypt
and verify the message, then clearly something has gone awry with
the security negotiation.

The contents of the Finished message also serve to protect the secu-
rity of the ssl negotiation. Each Finished message contains a crypto-
graphic hash of important information about the just-finished
negotiation. Table 3-7 details the information that is secured by the
hash. Notice that protected data includes the exact content of all
handshake messages used in the exchange (though ChangeCipher-
Spec messages are not considered “handshake” messages in the strict
sense of the word, and thus are not included). This protects against
an attacker who manages to insert fictitious messages or remove le-
gitimate messages from the communication. If an attacker were able
to do so, the client’s and server’s hash calculations would not match,
and they would detect the compromise. Chapter 4 describes the de-
tails of the hash calculation.

Table 3-7 Information Authenticated by Finished Message

• Key information

• Contents of all previous SSL handshake messages exchanged by
the systems

• A special value indicating whether the sender is a client or server

52 SSL & TLS Essentials: Securing the Web

3.4 Ending Secure Communications

Although as a practical matter it is rarely used (primarily due to the
nature of Web sessions), ssl does have a defined procedure for end-
ing a secure communication between two parties. As figure 3-4
shows, the two systems each send a special ClosureAlert to the other.
Explicitly closing a session protects against a truncation attack, in
which an attacker is able to compromise security by prematurely ter-
minating a communication. Imagine, for example, that an attacker
was able to delete just the second phrase of the following sentence:
“Please destroy all the documents, unless you hear from me tomor-
row.” The ClosureAlert message helps systems detect such attacks. If
a system received the message “Please destroy all documents” but did
not receive a ClosureAlert, it would recognize that the complete
message may not have arrived. As mentioned, it is not always possi-
ble to receive ClosureAlert messages reliably for Web transactions.
Appendix b describes other steps Web servers and clients can take to
protect against these truncation attacks.

3.5 Authenticating the Server’s Identity

Although section 3.4 explained how ssl can establish encrypted
communications between two parties, that may not really add that
much security to the communication. With encryption alone neither

Server

ClosureAlert

ClosureAlert

Client

Figure 3-4 ClosureAlert messages indicate the end of a secure session.

SSL Operation 53

party can really be sure of the other’s identity. The typical reason for
using encryption in the first place is to keep information secret from
some third party. But if that third party were able to successfully
masquerade as the intended recipient of the information, then en-
cryption would serve no purpose. The data would be encrypted, but
the attacker would have all the data necessary to decrypt it.

To avoid this type of attack, ssl includes mechanisms that allow each
party to authenticate the identity of the other. With these mecha-
nisms, each party can be sure that the other is genuine, and not a
masquerading attacker. In this section, we’ll look at how ssl enables a
server to authenticate itself.

A natural question is, of course, if authenticating identities is so im-
portant, why don’t we always authenticate both parties? The answer
lies in the nature of Web commerce. When you want to purchase
something using your Web browser, it’s very important that the Web
site you’re browsing is authentic. You wouldn’t want to send your
credit card number to some imposter posing as your favorite mer-
chant. The merchant, on the other hand, has other means for
authenticating your identity. Once it receives a credit card number,
for example, it can validate that number. Since the server doesn’t
need ssl to authenticate your identity, the ssl protocol allows for
server authentication only. (The protocol does define a process for
authenticating clients. Section 3.7. discusses that process.)

Table 3-8 summarizes the actions each system takes to authenticate a
server. The same steps are shown graphically in figure 3-5. The pro-
cess isn’t all that different from simple encryption. (Compare figure
3-5 with figure 3-1.) The two messages in black are different when au-
thenticating a server. Those messages, the Certificate message and
the ClientKeyExchange message, are discussed next. All other mes-
sages are the same as described in section 3.3.

Table 3-8 Authenticating a Server

Step Action

1 Client sends ClientHello message proposing SSL options.

2 Server responds with ServerHello selecting the SSL options.

54 SSL & TLS Essentials: Securing the Web

Step Action

3 Server sends its public key certificate in Certificate message.

4 Server concludes its part of the negotiation with ServerHello-
Done message.

5 Client sends session key information (encrypted with server’s
public key) in ClientKeyExchange message.

6 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

7 Client sends Finished message to let the server check the newly
activated options.

8 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

9 Server sends Finished message to let the client check the newly
activated options.

Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

Figure 3-5 Two SSL messages authenticate a server's identity.

SSL Operation 55

3.5.1 Certificate

When authenticating its identity, the server sends a Certificate mes-
sage instead of the ServerKeyExchange message section 3.3.3 de-
scribed. The Certificate message simply contains a certificate chain
that begins with the server’s public key certificate and ends with the
certificate authority’s root certificate.

The client has the responsibility to make sure it can trust the certifi-
cate it receives from the server. That responsibility includes verifying
the certificate signatures, validity times, and revocation status. It also
means ensuring that the certificate authority is one that the client
trusts. Typically, clients make this determination by knowing the
public key of trusted certificate authorities in advance, through some
trusted means. Netscape and Microsoft, for example, preload their
browser software with public keys for well-known certificate authori-
ties. Web servers that want to rely on this trust mechanism can only
obtain their certificates (at least indirectly) from one of these well-
known authorities.

One additional detail in the certificate verification process can some-
times seem subtle, but is nonetheless crucial for real security: The cli-
ent must ensure not only that the certificate is issued by a trusted
authority, but that the certificate also unambiguously identifies the
party with whom it wants to communicate. Consider, for example, a
malicious company that receives a legitimate certificate from a
trusted certificate authority under its own name, but then turns
around and uses that certificate illegitimately to masquerade as a
competitor. The unsuspecting client that communicates with this
malicious company (believing that it is communicating with the
competitor) will receive a legitimate certificate as part of the ssl ex-
change. The client, however, must be intelligent enough to detect
that the certificate does not belong to the real competitor. For Web
commerce, the key to solving this problem normally relies on the
domain name of the server. Respected certificate authorities include
the Internet domain name of the Web server in the certificates they
issue. And Web browsers check the domain name in certificates they
receive against the domain name their users attempt to contact. If,

56 SSL & TLS Essentials: Securing the Web

for example, a browser tries to connect to www.goodcompany.com
and receives a certificate for www.badcompany.com, the browser
knows something is amiss no matter how valid the certificate other-
wise appears. Appendix b contains additional information on verify-
ing certificates.

3.5.2 ClientKeyExchange

The client’s ClientKeyExchange message also differs in server au-
thentication, though the difference is not major. When encryption
only is to be used, the client encrypts the information in the Client-
KeyExchange using the public key the server provides in its
ServerKeyExchange message. In this case, of course, the server is au-
thenticating itself and, thus, has sent a Certificate message instead of
a ServerKeyExchange. The client, therefore, encrypts its Client-
KeyExchange information using the public key contained in the
server’s certificate. This step is important because it allows the client
to make sure that the party with whom it is communicating actually
possesses the server’s private key. Only a system with the actual pri-
vate key will be able to decrypt this message and successfully con-
tinue the communication.

3.6 Separating Encryption from Authentication

The previous section explained how a server can send a Certificate
message instead of a ServerKeyExchange message to authenticate it-
self. One consequence of this approach is that the same public key
information used to verify the server’s identity is also used to encrypt
key material in the client’s ClientKeyExchange message. This con-
straint is not always desirable; indeed, in some cases it is actually im-
possible to support.

The impossible cases are easiest to describe. Some public key algo-
rithms (such as the Digital Signature Algorithm) can only be used
for signing. By their very design, they cannot be used for encryption.
In such cases, it will be impossible for the client to encrypt its Cli-
entKeyExchange information using the server’s public key.

SSL Operation 57

This limitation alone would be sufficient to require greater flexibility
from the ssl protocol, but it is worthwhile to understand why com-
bining signing and encryption might be undesirable, even when the
public key algorithm supports both operations. The most common
reason for separating encryption from signing is based not on techni-
cal considerations, but on legal ones. Some countries, including im-
portant producers of cryptographic products such as the United
States (at least at the time of this writing), control the use or the ex-
port of products that include cryptography. In particular, the United
States makes it more difficult for suppliers to export cryptographic
products that use encryption key lengths greater than a certain
minimum. (Key lengths less than or equal to these limits are said to

Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

5

6

7

8

9

10

ServerKeyExchange 4

Client

Figure 3-6 Three SSL messages isolate authentication from encryption.

58 SSL & TLS Essentials: Securing the Web

be exportable.) In principle, at least, the United States does not im-
pose the same restrictions on keys used for digital signatures. Systems
that fall under u.s. jurisdiction, therefore, may prefer to use the long-
est practical keys for authenticating their identity (thus providing the
strongest practical authentication), but use encryption keys that con-
form to the weaker export restrictions.

Whatever the reason, ssl does provide a mechanism for separating
server authentication from the encryption. Table 3-9 outlines the
steps involved, and figure 3-6 illustrates the entire process. The figure
highlights the three messages that are significant for separating en-
cryption and server authentication. They are the Certificate,
ServerKeyExchange, and ClientKeyExchange messages.

Table 3-9 Separating Server Authentication from Encryption

Step Action

1 Client sends ClientHello message proposing SSL options.

2 Server responds with ServerHello message selecting the SSL
options.

3 Server sends its public key certificate in Certificate message.

4 Server sends the public key that the client should use to en-
crypt the symmetric key information in a ServerKeyExchange;
this public key is signed with the public key in the server’s cer-
tificate.

5 Server concludes its part of the negotiation with ServerHello-
Done message.

6 Client sends session key information (encrypted with the public
key provided by the server) in a ClientKeyExchange message.

7 Client sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

8 Client sends Finished message to let the server check the newly
activated options.

9 Server sends ChangeCipherSpec message to activate the nego-
tiated options for all future messages it will send.

10 Server sends Finished message to let the client check the newly
activated options.

SSL Operation 59

3.6.1 Certificate

The Certificate message in this example is identical to the example
in section 3.5, except that the public key in the server’s certificate will
only be used to verify its identity. The client still has all the responsi-
bilities section 3.5.1 discussed, however. It must verify the certificate’s
signatures, validity times, and revocation status, and it must ensure
that the certificate authority is trusted, and that the certificate was is-
sued to the party with whom it wishes to communicate.

3.6.2 ServerKeyExchange

The server follows its Certificate message with a ServerKeyExchange
message. It is this second message that contains the public key the
client should use to encrypt session key information. The
ServerKeyExchange is the same message that we saw when no au-
thentication was involved, and the information contained in the mes-
sage is the same as described in section 3.3.3—with one significant
difference: Unlike the example of section 3.3, in which the server keys
were sent by themselves, in this scenario, the key information is
signed using the public key contained in the server’s certificate. This
step is essential to give the client a way to verify that the server really
does possess the private key corresponding to its public key certifi-
cate.

3.6.3 ClientKeyExchange

The client uses a ClientKeyExchange message to finish the negotia-
tion process, just as it does in other scenarios. As before, this message
contains the key information for the symmetric encryption algorithm
the two parties have selected. Also as before, this information is en-
crypted using the server’s public key. It is important to note that the
public key used for this encryption is the public key from the
ServerKeyExchange message, not the public key from the server’s
Certificate message (even if that public key algorithm supports en-
cryption).

60 SSL & TLS Essentials: Securing the Web

3.7 Authenticating the Client’s Identity

Since ssl includes mechanisms to authenticate a server’s identity, it is
natural to expect that the protocol also defines a way to authenticate
a client’s identity. Indeed, that is the case; the mechanism is very
similar to that for server authentication. You can see the whole proc-
ess in figure 3-7, which highlights the messages that are significantly
different from the message flows we’ve considered so far. Those mes-
sages are the CertificateRequest, the client’s Certificate message, and
the CertificateVerify. Table 3-10 highlights the role of those messages
by summarizing the entire message flow. The rest of this section de-
scribes them in more detail.

Table 3-10 Client Authentication

Step Action

1 Client sends ClientHello message proposing SSL options.

2 Server responds with ServerHello selecting the SSL options.

3 Server sends its public key certificate in Certificate message.

4 Server sends a CertificateRequest message to indicate that it
wants to authenticate the client.

5 Server concludes its part of the negotiation with ServerHello-
Done message.

6 Client sends its public key certificate in a Certificate message.

7 Client sends session key information (encrypted with the
server’s public key) in a ClientKeyExchange message.

8 Client sends a CertificateVerify message, which signs importa-
tion information about the session using the client’s private
key; the server uses the public key from the client’s certificate
to verify the client’s identity.

9 Client sends a ChangeCipherSpec message to activate the ne-
gotiated options for all future messages it will send.

10 Client sends a Finished message to let the server check the
newly activated options.

11 Server sends a ChangeCipherSpec message to activate the ne-
gotiated options for all future messages it will send.

12 Server sends a Finished message to let the client check the
newly activated options.

SSL Operation 61

3.7.1 CertificateRequest

In any ssl exchange, the server determines whether client authenti-
cation is required. The client has no choice of its own; it simply com-
plies with the server's wishes. If the server does require client
authentication, it indicates that by sending a CertificateRequest mes-
sage as part of its hello negotiation.

As figure 3-7 indicates, the server sends the CertificateRequest after
its own Certificate message. Although not shown in the figure, the

Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

5

7

12

CertificateRequest 4

Certificate6

CertificateVerify8

10

11

Client

9

Figure 3-7 Three SSL messages authenticate a client's identity.

62 SSL & TLS Essentials: Securing the Web

CertificateRequest would also follow any ServerKeyExchange mes-
sage the server sends. Note, however, that the ssl specification for-
bids a server from sending a CertificateRequest if it is not also
authenticating itself (by sending a Certificate message). This restric-
tion ensures that the client will know the server’s identity before re-
vealing its own.

The CertificateRequest message contains two fields: a list of certifi-
cate types and a list of distinguished names, as table 3-11 indicates.

Table 3-11 CertificateRequest Components

Field Use

CertificateTypes A list of certificate types acceptable to the
server.

Distinguished-
Names

A list of distinguished names of certificate au-
thorities acceptable to the server.

The CertificateTypes field lists the various types of certificates (dif-
ferentiated by the particular signature algorithm employed) that the
server will accept. The certificate types are listed in order of decreas-
ing preference. The DistinguishedNames field identifies the certifi-
cate authorities (denoted by their distinguished name; see appendix a)
that the server will accept. No preference is implied by the order in
which the different authorities appear in this list.

3.7.2 Certificate

A client normally responds to the certificate request by sending its
own Certificate message immediately after receiving the ServerHel-
loDone. The format of the client’s Certificate message is identical to
the server’s Certificate message that section 3.5.1 discussed; both con-
tain a certificate chain beginning with the local system’s certificate
and ending with the certificate authority’s root certificate. If a client
does not possess a certificate that meets the server’s criteria (or if it
has no certificate at all), it responds with a NoCertificateAlert. The
server can choose to ignore this alert and continue with the commu-
nication (though it will be unable to verify the client’s identity), or it
can terminate the session at that point.

SSL Operation 63

Note that ssl only uses the client’s public key for digital signatures.
Unlike for the server’s public key, there is no protocol function that
uses the client’s public key for encryption. There is no need, there-
fore, to explicitly separate client authentication from encryption, so
ssl has no client equivalent for the ServerKeyExchange message.
(The ClientKeyExchange, as we’ve seen, transfers symmetric key in-
formation, not public key information.)

3.7.3 CertificateVerify

Simply sending a client Certificate message does not complete the
process of authenticating the client’s identity. The client must also
prove that it possesses the private key corresponding to the certifi-
cate’s public key. For its proof, the client uses a CertificateVerify mes-
sage. This message contains a digitally signed cryptographic hash of
information available to both the client and the server. Specifically,
the client signs a hash of the information table 3-12 lists. The server
also has this information, and it will receive (in the Certificate mes-
sage) the client’s public key. The server can then verify the signature
and make sure that the client possesses the appropriate private key.

Table 3-12 Information Authenticated by CertificateVerify Message

• Key information.

• Contents of all previous SSL handshake messages exchanged by
the systems.

From looking at figure 3-7, you might wonder why the Certificat-
eVerify message doesn’t immediately follow the Certificate message.
Instead of this seemingly natural order, ssl has the client send a Cli-
entKeyExchange message between the two. The reason for this mes-
sage order is based on the cryptographic contents of the messages.
The CertificateVerify message relies on cryptographic values that are
computed and transferred to the server in the ClientKeyExchange.
Until the server receives the ClientKeyExchange, it cannot validate
the CertificateVerify message. (Chapter 4 contains a more detailed
discussion of the specific computations each side employs.)

64 SSL & TLS Essentials: Securing the Web

3.8 Resuming a Previous Session

As this chapter has demonstrated, establishing an ssl session may be
complex, requiring sophisticated cryptographic calculations and a
significant number of protocol messages. To minimize the overhead
of these calculations and messages, ssl defines a mechanism by
which two parties can reuse previously negotiated ssl parameters.
With this method, the parties do not need to repeat the crypto-
graphic negotiations or authentication calculations; they simply con-
tinue from where they left off before. As table 3-13 and figure 3-8
show, resuming earlier sessions notably streamlines the negotiation.

Table 3-13 Resuming a Session

Step Action

1 Client sends ClientHello message specifying a previously estab-
lished SessionID.

2 Server responds with ServerHello message agreeing to this
SessionID.

Server

ClientHello

ServerHello

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

Client

Figure 3-8 It only takes six messages to resume an SSL session.

SSL Operation 65

Step Action

3 Server sends ChangeCipherSpec message to reactivate the ses-
sion’s security options for messages it will send.

4 Server sends Finished message to let the client check the newly
reactivated options.

5 Client sends ChangeCipherSpec message to reactivate the ne-
gotiated options for all future messages it will send.

6 Client sends Finished message to let the server check the newly
reactivated options.

As the figure indicates, after the server sends it ServerHello message,
it immediately sends ChangeCipherSpec and Finished messages.
Similarly, the client only sends ChangeCipherSpec and Finished
messages once it receives the ServerHello. In both cases, the
ChangeCipherSpec directs each party to make the previously active
cipher suite active once again.

The key to session resumption is the ClientHello message. The client
proposes to resume a previous session by including that session’s Ses-
sionID value in its ClientHello. (Recall from the discussion in sec-
tion 3.3.1 that this value is left empty when an ssl session is first
established; the server can supply a value in its ServerHello re-
sponse.) If the server wishes to accept the client’s proposal and re-
sume the earlier session, it indicates its acceptance by including the
same SessionID value in its own ServerHello. If the server elects not
to resume the earlier session, it sends a different SessionID value and
the full negotiation then takes place.

Although session resumption offers a great deal of convenience and
efficiency to the systems that use it, those systems should exercise
some care in employing it. When a single key is employed, encryp-
tion inevitably becomes less secure, both as more information is pro-
tected and as time passes. Potential attackers gain more data to
analyze and more time to perform the analysis. Systems that consider
using ssl session resumption should weigh those considerations
against the expected efficiency and convenience gains.

 67

4
 Message Formats

With chapter 3’s description of the various ssl messages and how
they’re used in mind, it is time to turn our attention to the detailed
formats of those messages. Unfortunately, at least for those used to
reading protocol specifications, the ssl standard uses a novel ap-
proach for describing that formatting, and although concise and easy
to present in textual documents, the ssl descriptions may be a bit
confusing for many networking professionals. For that reason, we’ll
use a more conventional approach—pictures—in this chapter.

The ssl protocol itself consists of several different components or-
ganized as figure 4-1 illustrates. Four different sources create ssl mes-
sages: the ChangeCipherSpec protocol, the Alert protocol, the
Handshake protocol, and applications like http. The Record Layer
protocol accepts all of these messages, then formats and frames them
appropriately, and passes them to a transport layer protocol such as
tcp for transmission.

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-1 SSL consists of several component protocols.

68 SSL & TLS Essentials: Securing the Web

This chapter begins with a discussion of the requirements ssl im-
poses on the transport protocol. It then describes the details of each
ssl component. The final subsections document the cryptographic
calculations and options available with ssl.

4.1 Transport Requirements

The Secure Sockets Layer does not exist as a protocol in isolation.
Rather, it depends on additional lower-level protocols to transport its
messages between peers. The ssl protocol requires that the lower
layer be reliable; that is, it must guarantee the successful transmission
of ssl messages without errors and in the appropriate order. In all
practical implementations, ssl relies on the Transmission Control
Protocol (tcp) to meet those requirements.

Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

TCP
Segment

TCP
Segment

TCP
Segment

TCP
Segment

Figure 4-2 SSL can combine messages within TCP segments.

Message Formats 69

Like all protocols that use tcp, ssl is self-delimiting. That means
that ssl can determine the beginning and end of its own messages
without assistance from the transport layer. To mark these beginnings
and endings, ssl puts its own explicit length indicator in every mes-
sage. This explicit delimiter lets ssl combine multiple ssl messages
into single tcp segments. Figure 4-2 shows a typical ssl handshake
sequence. Note that nine separate ssl messages result in only four
tcp segments. This combination conserves network resources and in-
creases the efficiency of the ssl protocol.

4.2 Record Layer

The Secure Sockets Layer uses its Record Layer protocol to encapsu-
late all messages. Figure 4-3 emphasizes the Record Layer’s position
in the ssl architecture. It provides a common format to frame Alert,
ChangeCipherSpec, Handshake, and application protocol messages.

The Record Layer formatting consists of 5 bytes that precede other
protocol messages and, if message integrity is active, a message au-
thentication code at the end of the message. The Record Layer is
also responsible for encryption if that service is active.

Figure 4-4 shows the structure of Record Layer formatting. Table 4-1
describes the figure’s individual fields, with the exception of encryp-
tion and message authentication codes. Those fields are the subject of
section 4.7. In the previous figure, multibyte fields are shown in net-

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-3 The Record Layer formats and frames all SSL messages.

70 SSL & TLS Essentials: Securing the Web

work byte order, sometimes known as big endian. Higher-order bytes
(those that are most significant) appear first in the figures.

Table 4-1 SSL Record Layer Fields

Field Size Usage

Protocol 1 byte Indicates which higher-layer protocol is
contained in this SSL Record Layer message.

Version 2 bytes The major and minor version of the SSL
specification to which this message con-
forms. The current SSL version is 3.0 (but see
the sidebar).

Length 2 bytes The length of the following higher-layer
protocol messages as a 16-bit binary num-
ber. The SSL specification requires that this
value not exceed 214 (16 384).

Protocol
Messages

n bytes Up to 214 (16 384) bytes of higher-layer pro-
tocol messages, including message authen-
tication codes; the SSL Record Layer may
concatenate multiple higher-layer mes-
sages into a single Record Layer message.
Those messages must all belong to the
same higher-layer protocol. Also, as a con-
sequence of this potential concatenation,
each higher-layer protocol itself must be
self-delimiting.

The ssl specification defines the four different higher-layer protocols
that the Record Layer can encapsulate. For any particular message,
the Protocol field indicates the specific higher-layer protocol. Table
4-2 lists the values for that field.

Length...

...Length

Protocol Version

Message Authentication Code
(Optional)

Protocol Message(s)

Encrypted
(Optional)

Figure 4-4 SSL’s Record Layer encapsulates all protocol messages.

SSL vs. TLS

The TLS protocol
uses a version
value of 3.1 in-
stead of 3.0.

Message Formats 71

Table 4-2 Record Layer Protocol Types

Type Value Protocol

20 ChangeCipherSpec protocol

21 Alert protocol

22 Handshake protocol

23 Application protocol data

4.3 ChangeCipherSpec Protocol

The ChangeCipherSpec protocol is the simplest possible protocol—
it has only one message. That message is the ChangeCipherSpec
message introduced in chapter 3. Despite this simplicity, though, ssl
treats ChangeCipherSpec as a separate protocol. As figure 4-5 shows,
it has the same position in the ssl architecture as other protocols, in-
cluding the Alert, Handshake, and application data.

At first glance, this approach might seem like overkill. Why not just
consider the ChangeCipherSpec message to be part of the Hand-
shake protocol, for example? More careful analysis, however, reveals
that ChangeCipherSpec messages must be a separate protocol. Oth-
erwise, ssl couldn’t function. The requirement arises because of the
record layer encapsulation. The ssl protocol applies security services
such as encryption to entire Record Layer messages at once. The
ChangeCipherSpec message, however, indicates a change in those
services. (Typically, it activates them.) Since encryption cannot be

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-5 ChangeCipherSpec messages are a separate protocol.

72 SSL & TLS Essentials: Securing the Web

applied to parts of a message, it is impossible for any other message
to follow a ChangeCipherSpec message within a Record Layer mes-
sage. The most effective way to outlaw such combinations is to de-
fine ChangeCipherSpec as a separate protocol, and that is exactly
what the ssl specification does.1

The ChangeCipherSpec message itself is quite simple, as figure 4-6
shows. The figure also shows how the entire message is encapsulated
in a Record Layer message. (The Record Layer header is shaded in
the figure.) The Record Layer has a protocol type value of 20, a pro-
tocol version of 3.0, and a length of 1. The ChangeCipherSpec mes-
sage itself consists only of a single byte. It has the value 1.

4.4 Alert Protocol

Systems use the Alert protocol to signal an error or caution condition
to the other party in their communication. This function is impor-
tant enough to warrant its own protocol, and ssl assigns it protocol
type 21. As figure 4-7 illustrates, the Alert protocol, like all ssl proto-
cols, uses the Record Layer to format its messages. Figure 4-8 shows
the resulting message format. The Alert protocol itself defines two
fields: a severity level and an alert description.

4.4.1 Severity Level

The first field indicates the severity of the condition that caused the
alert. Alerts can either be warnings (with a severity level of 1) or fatal

1 The ssl specification theoretically allows multiple ChangeCipherSpec messages in
a single Record Layer message. That would create the same problems described
above. Fortunately, however, there is no practical reason to combine messages that
way, so the problem does not arise in real implementations.

Len: 0

1

Prot: 20 Vers: 3 0

CCS: 1

Figure 4-6 The ChangeCipherSpec message is very simple.

Message Formats 73

(severity level 2). Fatal alerts represent significant problems with the
communication, and require that both parties terminate the session
immediately. Warning alerts are not quite as drastic. A system receiv-
ing such an alert may decide to allow the present session to continue;
however, both parties must invalidate the ssl session for any future
connections, and they must not try to resume the session later.

4.4.2 Alert Description

The second field in an Alert protocol describes the specific error in
more detail. The field is a single byte, and it can take on the values
listed in table 4-3.

Table 4-3 Alert Protocol Descriptions

Value Name Meaning

0 CloseNotify The sending party indicates explicitly that it is
closing the connection; closure alerts have a
warning severity level.

10 Unexpected-
Message

The sending party indicates that it received
an improper message; this alert is always fatal.

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-7 The Alert protocol signals error conditions.

Len: 0

2

Prot: 21 Vers: 3 0

Level Desc.

Figure 4-8 Alert protocol messages have only two fields.

74 SSL & TLS Essentials: Securing the Web

SSL vs. TLS

The TLS protocol
eliminates alert
description 41
(NoCertificate)
and adds a
dozen other val-
ues.

Value Name Meaning

20 BadRecord-
MAC

The sending party indicates that its has re-
ceived a message for which the message au-
thentication code failed; this alert is always
fatal.

30 Decompres-
sionFailure

The sending party indicates that it received
data that it could not decompress; this alert is
always fatal.

40 Hand-
ShakeFailure

The sending party indicates that it was not
able to negotiate an acceptable set of security
services for the session; this alert is always fa-
tal.

41 NoCertificate The sending party (which is always a client)
indicates that it has no certificate that can sat-
isfy the server’s CertificateRequest.

42 BadCertifi-
cate

The sending party received a certificate that
was corrupt (e.g. , its signature could not be
verified).

43 Unsupported
Certificate

The sending party received a certificate of a
type that it could not support.

44 Certificate-
Revoked

The sending party received a certificate that
has been revoked by the certificate authority.

45 Certificate-
Expired

The sending party received a certificate that
has expired.

46 Certificate-
Unknown

The sending party indicates an unspecified
problem with a certificate it received.

47 IllegalParam-
eter

The sending party indicates that it received a
handshake message with a parameter value
that was illegal or inconsistent with other pa-
rameters.

4.5 Handshake Protocol

Most of the ssl specification describes the Handshake protocol, as it
is the one primarily responsible for negotiating ssl sessions. As figure
4-9 shows, the Handshake protocol relies on the Record Layer to en-
capsulate its messages. Figure 4-10 illustrates their general format,

Message Formats 75

and indicates that multiple handshake messages may be (and fre-
quently are) combined into a single Record Layer message.

Each handshake message begins with a single byte that defines the
specific type of handshake message. Table 4-4 lists the values that ssl
defines. The type byte is followed by 3 bytes that define the length of
the body of the handshake message. This length is measured in bytes
and it does not include the type or length fields of the message. The
remainder of this section describes each handshake message in detail.
With one exception, the text follows the order of table 4-4. Client-
KeyExchange is discussed before the CertificateVerify, since the Cer-
tificateVerify message relies on information from the ClientKey-

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-9 The Handshake protocol handles session negotiation.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Msg Length...
Msg
Type

Msg
Type

Msg Length

Handshake Message

Handshake Message

...

Figure 4-10 Handshake protocol messages may be combined.

76 SSL & TLS Essentials: Securing the Web

Exchange. This approach also follows the order of messages in actual
communication sessions more closely.

Table 4-4 Handshake Protocol Types

Value Handshake Protocol Type

0 HelloRequest

1 ClientHello

2 ServerHello

11 Certificate

12 ServerKeyExchange

13 CertificateRequest

14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange

20 Finished

4.5.1 HelloRequest

The HelloRequest allows a server to ask a client to restart the ssl
handshake negotiation. The message is not often used (and thus does
not appear in any of the example scenarios of chapter 3), but it does
give servers additional options. If a particular connection has been in
use for so long that its security is unacceptably weakened, for exam-
ple, the server can send a HelloRequest to force to client to negotiate
new session keys. Figure 4-11 shows the format of the HelloRequest
message. As is clear from the figure, the HelloRequest is quite sim-
ple. It has a handshake message type of 0, and, since its message
body is empty, its handshake message length is also 0.

Len: 0

4

Prot: 22 Vers: 3 0

Type: 0 Len: 0 0

0

Figure 4-11 HelloRequest messages use a simple format.

Message Formats 77

SSL vs. TLS

The TLS protocol
uses a version
value of 3.1 in-
stead of 3.0.

4.5.2 ClientHello

The ClientHello message normally begins an ssl handshake negotia-
tion. Figure 4-12 shows the fields that make up a ClientHello mes-
sage. ClientHello messages have a handshake message type of 1, and
a variable message body size. Two bytes immediately following the
message length identify the ssl protocol version. Values of 3 and 0
for this field indicate ssl version 3.0. Although this information is
essentially the same as that in the Record Layer encapsulation, in
theory, at least, it allows the Record Layer and Handshake protocols
to evolve independently.

After the protocol version, the client inserts a 32-byte random num-
ber. The ssl specification suggests that clients use the current date
and time (up to the second) as the first 4 bytes of this random num-
ber, but it does not demand any particular degree of accuracy. Includ-
ing the date and time reduces the possibility of duplicating the
random value, which, if it were to inadvertently occur, could com-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 1 Length...

Vers: 3 0

ClientRandomValue
(32 bytes)

ID len

Session ID

CipherSuite length CipherSuite 1

CipherSuite 2

CipherSuite n Cmp len Cmp 1

Cmp 2 Cmp n...

Figure 4-12 The ClientHello message proposes CipherSuites.

78 SSL & TLS Essentials: Securing the Web

promise security. A client, for example, might not be able to remem-
ber previous values in between reboots or resets. Including the date
and time eliminates the possibility of duplicating an old value (as-
suming that the reboot or reset process takes at least one second).

The byte after the random value contains the length, in bytes, of the
session id; the session id itself follows next. Unless a client wishes to
resume a previous session, it leaves out the session id (and sets the id
length to 0). The ssl protocol limits session ids to 32 bytes or fewer,
but it places no constraints on their content. Note, though, that since
session ids are transmitted in ClientHellos before any encryption is
enabled, implementations should not place any information in the
session id that might, if revealed, compromise security.

The client’s list of proposed cipher suites follows the session id. The
list begins with a single byte indicating the size of the list. The size is
measured in bytes, even though cipher suites themselves are 2-byte
quantities. A client proposing five cipher suites, for example, would
set the CipherSuite length field to 10. Table 4-5 lists the ssl version
3.0 cipher suites; for details on each suite, refer to section 4.7.

Table 4-5 SSL Version 3.0 CipherSuite Values

Value Cipher Suite

0,0 SSL_NULL_WITH_NULL_NULL

0,1 SSL_RSA_WITH_NULL_MD5

0,2 SSL_RSA_WITH_NULL_SHA

0,3 SSL_RSA_EXPORT_WITH_RC4_40_MD5

0,4 SSL_RSA_WITH_RC4_128_MD5

0,5 SSL_RSA_WITH_RC4_128_SHA

0,6 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

0,7 SSL_RSA_WITH_IDEA_CBC_SHA

0,8 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

0,9 SSL_RSA_WITH_DES_CBC_SHA

0,10 SSL_RSA_WITH_3DES_EDE_CBC_SHA

0,11 SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA

0,12 SSL_DH_DSS_WITH_DES_CBC_SHA

Message Formats 79

SSL vs. TLS

The TLS protocol,
by default, does
not include sup-
port for the For-
tezza/DMS cipher
suites, the last 3
listed in the ta-
ble. In addition,
the TLS stan-
dardization
process makes it
much easier to
define new ci-
pher suites. As of
this writing, doz-
ens have been
proposed. In a
similar manner,
TLS makes it eas-
ier to define
compression
methods.

Value Cipher Suite

0,13 SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA

0,14 SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

0,15 SSL_DH_RSA_WITH_DES_CBC_SHA

0,16 SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA

0,17 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

0,18 SSL_DHE_DSS_WITH_DES_CBC_SHA

0,19 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

0,20 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

0,21 SSL_DHE_RSA_WITH_DES_CBC_SHA

0,22 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

0,23 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

0,24 SSL_DH_anon_WITH_RC4_128_MD5

0,25 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

0,26 SSL_DH_anon_WITH_DES_CBC_SHA

0,27 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

0,28 SSL_FORTEZZA_DMS_WITH_NULL_SHA

0,29 SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA

0,30 SSL_FORTEZZA_DMS_WITH_RC4_128_SHA

The final fields of a ClientHello message list the compression meth-
ods that the client proposes for the session. The list begins with a
length byte; individual compression methods follow as single-byte
values. As a practical matter, though, no compression methods other
than the null compression have been defined for ssl version 3. Con-
sequently, all current implementations set the compression length to 1
and the next byte to 0, indicating no compression.

4.5.3 ServerHello

The ServerHello message closely resembles the ClientHello message,
as figure 4-13 shows. The only significant differences are the value of
the handshake message type (2 instead of 1) and the fact that the
server specifies a single cipher suite and compression method rather
than a list. The values identified by the server are those that the par-

80 SSL & TLS Essentials: Securing the Web

ties will use for the session; the server must pick from among the
choices the client proposed.

The server may include, at its own discretion, a SessionID in the
ServerHello message. If the server includes this field, it will allow the
client to attempt to reuse the session at some point in the future.
Servers that don’t wish to allow a session to be reused may omit the
SessionID field by specifying a length of 0.

4.5.4 Certificate

The Certificate message is relatively straightforward, as figure 4-14
makes clear. Its Handshake protocol message type is 11, and it begins
with that message type and the standard handshake message length.
The body of the message contains a chain of public key certificates.
That chain begins with 3 bytes that indicate its length. (The value for
the chain length is always three less than the value of the message
length.) Each certificate in the chain also begins with a 3-byte field
that holds the size of the certificate. The message first indicates the
overall length of the certificate chain. Then it indicates the length of
each certificate with 3 bytes immediately preceding the certificate.

Certificate chains allow ssl to support certificate hierarchies. The
first certificate in the chain is always that of the sender. The next cer-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 2 Length...

Vers: 3 0

ServerRandomValue
(32 bytes)

ID len

Session ID

CipherSuite Compr

Figure 4-13 The ServerHello message designates the CipherSuite.

Message Formats 81

tificate is that of the authority that issued the sender’s certificate. The
third certificate (if one is present) belongs to the ca for that author-
ity, and so on. The chain continues until it reaches a certificate for a
root certificate authority.

4.5.5 ServerKeyExchange

The ServerKeyExchange message carries key information from the
server to the client. Its exact format depends on the cryptographic al-
gorithms being used to exchange key information. The various for-
mats—which correspond to Diffie-Hellman, rsa, and Fortezza key
exchange protocols—are illustrated in figures 4-15, 4-16, and 4-17. In
all cases, the handshake message type has the value 12. Note that
there is no explicit indication in the message itself of the particular
format it employs. Clients must use knowledge they possess from
previous handshake messages (the key exchange algorithm from the
selected cipher suite in the ServerHello message and the signing al-
gorithm, if relevant, from the Certificate message) to interpret a
ServerKeyExchange message correctly.

The first of the three figures, figure 4-15, shows a ServerKeyExchange
message for Diffie-Hellman key exchange. The three Diffie-

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 11 Message Length...

Certificate n

Certificate Chain Length

Certificate 1 Length

Certificate 1

Certificate n Length

...

Figure 4-14 The Certificate message contains a certificate chain.

82 SSL & TLS Essentials: Securing the Web

Hellman parameters (p, q, and ys) make up the first six fields after
the message length. Each parameter includes its own length, fol-
lowed by the actual value.

For rsa key exchange messages (figure 4-16), the key information
consists of the rsa modulus and public exponent. Each of those pa-
rameters is carried in the message as a length, followed by the value.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 12 Length...

RSA mod len RSA ...

... mod value RSA exp length

RSA exp value

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash [if RSA or DSA signing]
(20 bytes)

Figure 4-16 ServerKeyExchange carries RSA parameters.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 12 Length...

DH p length DH p ...

...value DH q length

DH q value DH Y length

DH Y value

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash [if RSA or DSA signing]
(20 bytes)

s

s

Figure 4-15 ServerKeyExchange carries Diffie-Hellman parameters.

Message Formats 83

When the systems employ Fortezza/dms key exchange, the
ServerKeyExchange message carries the Fortezza rs value. Since rs is
always 128 bytes in size, there is no need for a separate length pa-
rameter in the ServerKeyExchange message. The handshake message
length of 128 is sufficient, as figure 4-17 indicates.

The figures also show that a ServerKeyExchange may include signed
parameters. Again, the exact format of those parameters depends on
the specific signature algorithm the server supports. If server authen-
tication is not part of a particular ssl session, then no signing is em-
ployed, and the ServerKeyExchange message ends with the Diffie-
Hellman, rsa, or Fortezza parameters. This option corresponds to
the encryption-only scenario of section 3.3.

If the server is not acting anonymously and has sent a Certificate
message, however, then the signed parameters format depends on the
signature algorithm indicated in the server’s certificate. If the server’s
certificate is for rsa signing, then the signed parameters consist of
the concatenation of two hashes: an md5 hash and a sha hash. Note
that a single signature for the combined hashes is included, not sepa-
rate signatures for each hash. If the server’s certificate is for dsa sign-
ing, then the signed parameters consist solely of a sha hash. In either
case, the input to the hash functions (and, thus, the data being
signed) is constructed as in figure 4-18.

That data consists of the client’s random value (from the Client-
Hello), followed by the server’s random value (in the ServerHello),
followed by the key exchange parameters (either the Diffie-Hellman
parameters of figure 4-15 or the rsa parameters of figure 4-16). No
signed parameters are included for Fortezza/dms key exchange.

128

132

Prot: 22 Vers: 3 0

Type: 12

Fortezza rs

(128 bytes)

Len: 0 0

Len: 0

Figure 4-17 ServerKeyExchange carries Fortezza/DMS parameters.

84 SSL & TLS Essentials: Securing the Web

4.5.6 CertificateRequest

To authenticate a client’s identity, a server first sends a CertificateRe-
quest message. This message not only asks a client to send its certifi-
cate (and to sign information using the private key for that
certificate), it also tells the client which certificates are acceptable to
the server. Figure 4-19 shows the format for this information.

The CertificateRequest message is handshake message type 13; after
the handshake type and length, the message contains a list of accept-
able certificate types. This type list begins with its own length (a
one-byte value), and consists of one or more single-byte values that
identify specific certificate types. Table 4-6 lists the defined certifi-
cate type values and their meanings.

ClientHello Random Value ServerHello Random Value Server Key Parameters

H()

hash

Figure 4-18 The server signs a hash of ServerKeyExchange parameters.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 13 Length...

CT len CT 1 CT 2

... CT n CAs length

CA 1 length

DN of CA 1

...

Figure 4-19 The CertificateRequest message asks for specific certificates.

Message Formats 85

Table 4-6 Certificate Types

CT Value Certificate Type

1 RSA signing and key exchange

2 DSA signing only

3 RSA signing with fixed Diffie-Hellman key exchange

4 DSA signing with fixed Diffie-Hellman key exchange

5 RSA signing with ephemeral Diffie-Hellman key exchange

6 DSA signing with ephemeral Diffie-Hellman exchange

20 Fortezza/DMS signing and key exchange

In addition to certificate types, the CertificateRequest message also
indicates which certificate authorities the server considers appropri-
ate. This list begins with its own 2-byte length field and then con-
tains one or more distinguished names. Each distinguished name has
its own length field, and unambiguously identifies a certificate au-
thority. For more details on distinguished names, see appendix a.

4.5.7 ServerHelloDone

The ServerHelloDone message concludes the server’s part of a hand-
shake negotiation. This message does not carry any additional infor-
mation; it takes the simple form of figure 4-20. The handshake
message type is 14, and the message body length is 0.

4.5.8 ClientKeyExchange

With a ClientKeyExchange message, the client provides the server
with the key materials necessary for securing the communication; the
exact format of the message depends on the specific key exchange al-
gorithm the parties are using. The three possibilities that ssl allows
are rsa, Diffie-Hellman, and Fortezza/dms key exchange. Figures

0

Len: 0

4

Prot: 22 Vers: 3 0

Type: 14 Len: 0 0

Figure 4-20 A ServerHelloDone message ends the server’s negotiation.

86 SSL & TLS Essentials: Securing the Web

4-21, 4-22, and 4-23 show the message formats for each. Note that the
ClientKeyExchange message does not include an explicit indication
of the format or key exchange algorithm. Rather, both parties infer
the format by knowing the key exchange algorithm of the negotiated
cipher suite.

The first message format is for rsa key exchange. As figure 4-21 indi-
cates, the message has a handshake message type of 16, and the stan-
dard handshake message length. The message body itself consists
solely of the encrypted premaster secret. This premaster secret is en-
crypted using the public key of the server, as received in the
ServerKeyExchange or Certificate message.

The premaster secret is a preliminary step in deriving the master se-
cret for the session. (The master secret, discussed in detail in the next
subsection, is the source of all the essential cryptographic data for the
session.) For rsa key exchange, the premaster secret is simply 2 bytes
for the version of ssl the client supports (3 and 0, for version 3.0) fol-
lowed by 46 securely generated random bytes.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

Encrypted Premaster Secret

Figure 4-21 For RSA, the ClientKeyExchange carries a premaster secret.

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

DH Y value

DH Y lengthc

c

Figure 4-22 For ephemeral Diffie-Hellman, ClientKeyExchange carries Yc.

Message Formats 87

When the key exchange protocol is Diffie-Hellman, there are two
possibilities for the ClientKeyExchange message. If the Diffie-
Hellman exchange is ephemeral, then the message takes the format
of figure 4-22. As the figure shows, the message body contains the
client’s yc value, preceded by the length of that value. If the Diffie-
Hellman exchange is explicit, then the yc value is carried in the cli-
ent’s certificate. In that case, the ClientKeyExchange will be empty.

For Fortezza/dms key exchange, the ClientKeyExchange message of
figure 4-23 requires a set of parameters. Table 4-7 lists the details.

Table 4-7 Fortezza/DMS ClientKeyExchange Parameters

Parameter Size

Size of the Yc value 2 bytes

The Yc value (between 64 and 128 bytes), or nothing if

Yc is in the client’s certificate

0 – 128 bytes

The client’s Rc value 128 bytes

The Key Encryption Algorithm’s public key, signed with
the client’s DSS private key

20 bytes

The client’s write key, wrapped by the Token Encryp-
tion Key (TEK)

12 bytes

The client’s read key, wrapped by the Token Encryption Key 12 bytes

The client’s initialization vector 24 bytes

The server’s initialization vector 24 bytes

The master secret initialization vector used for en-
crypting the premaster secret

24 bytes

The premaster secret, which is a securely generated
random value, encrypted by the TEK

48 bytes

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 16 Length...

Fortezza Key Material
(10 values)

Figure 4-23 For Fortezza, the ClientKeyExchange carries key material.

88 SSL & TLS Essentials: Securing the Web

4.5.9 CertificateVerify

A client proves that it possesses the private key corresponding to its
public key certificate with a CertificateVerify message. The message,
as figure 4-24 shows, consists of hashed information digitally signed
by the client. The exact format of the information depends on
whether the client’s certificate indicates rsa or dsa signing. For rsa
certificates, two separate hashes are combined and signed: an md5
hash and a sha hash. One signature covers both hashes; there are not
two separate signatures. For dsa certificates, only a sha hash is cre-
ated and signed.

In all cases, the information that serves as input to the hash functions
(and, thus, is the information that is digitally signed) is the same.
Clients build the information in three steps. First they compute a
special value known as the master secret. Section 4.6.3 describes how
this master secret is used in various cryptographic computations; for
now, we’re only concerned with how systems create a master secret.
To calculate the master secret value, the client follows the process
given in table 4-8. Figure 4-25 shows the calculation as an equation.

Table 4-8 Master Secret Calculation

Step Action

1 Begin with the 48-byte premaster secret. The client creates this
value and sends it to the server in the ClientKeyExchange mes-
sage. (See the previous section for details.)

...Length

Length...

...Length

Prot: 22 Vers: 3 0

Type: 15 Length...

Signed MD5 hash [if RSA signing]
(16 bytes)

Signed SHA hash
(20 bytes)

Figure 4-24 The CertificateVerify message contains a signed hash.

Message Formats 89

SSL vs. TLS

The TLS protocol
uses a slightly
different hash
calculation for
the Certificate-
Verify hash; it
does not involve
the master se-
cret.

Step Action

2 Calculate the SHA hash of the ASCII character ‘A’ followed by the
premaster secret, the client’s random value (from the Client-
Hello) and the server’s random value (from the ServerHello).

3 Calculate the MD5 hash of the premaster secret, followed by the
output of step 2.

4 Calculate the SHA hash of the two ASCII characters ‘BB’, the pre-
master secret, the client’s random value (from the ClientHello),
and the server’s random value (from the ServerHello).

5 Calculate the MD5 hash of the premaster secret followed by the
output of step 4.

6 Concatenate the results from step 5 to the results from step 3.

7 Calculate the SHA hash of the three ASCII characters ‘CCC’ fol-
lowed by the premaster secret, the client’s random value (from
the ClientHello), and the server’s random value (from the
ServerHello).

8 Calculate the MD5 hash of the premaster secret, followed by the
output of step 7.

9 Concatenate the results from step 8 to the results from step 6.

Once the client has the master secret value, it moves to the next stage
in building the CertificateVerify message. The client creates a hash of
the full contents of all previous ssl handshake messages exchanged
during the session, followed by the master secret, followed by the
single-byte value 001100110, repeated 48 times for md5 and 40 times
for sha. In the third step, the client creates a new hash using the
same master secret, followed by the binary value 01011100, repeated
48 times for md5 and 40 times for sha, followed by the output of the
intermediate hash. Figure 4-26 summarizes the entire process.

master secret = MD5(premaster secret + SHA(‘A’ + premaster secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(premaster secret + SHA(‘BB’ + premaster secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(premaster secret + SHA(‘CCC’ + premaster secret +
 ClientHello.random + ServerHello.random))

Figure 4-25 The master secret requires six hash calculations.

90 SSL & TLS Essentials: Securing the Web

4.5.10 Finished

The final handshake message is type 20, the Finished message. This
message indicates that the ssl negotiation is complete and that the
negotiated cipher suite is in effect. Indeed, the Finished message is
itself encrypted using the cipher suite parameters. Figure 4-27 shows
the format of a Finished message. As the figure indicates, though,
the actual contents may be encrypted. When an encrypted message
traverses networks, it contents are not visible.

The Finished message body consists of two hash results, one using
the md5 hash algorithm and the other using the sha hash algorithm.
Both hash calculations use the same information as input, and both
are calculated in two stages. Figure 4-28 illustrates the process each
system uses to calculate the sha hash for its Finished message. The
md5 calculation is similar.

First, the sender creates a hash of the full contents of all previous ssl
handshake messages exchanged during the session, followed by an
indication of the sender’s role, the master secret, and padding. The
sender’s role is the hexadecimal value 434c4e54 if the sender is a

Handshake Messages... Master Secret 48 bytes of 0x36

MD5

hashMaster Secret 48 bytes of 0x5C

MD5

hash

Figure 4-26 CertificateVerify has a signed hash of handshake messages.

Message Formats 91

SSL vs. TLS

The TLS protocol
uses a slightly
different hash
calculation for
the Finished
message.

client, 53525652 if a server. The padding is the binary value 001100110,
repeated 48 times for md5 and 40 times for sha.

For the second stage, the sender creates a new hash using the master
secret, followed by an alternate padding and the output of the inter-
mediate hash. The second-stage padding is the binary value 01011100,
repeated 48 times for md5 and 40 times for sha.

36

Len: 0

56

Prot: 22 Vers: 3 0

Type: 20

SHA hash
(20 bytes)

Len: 0 0

MD5 hash
(16 bytes)

Handshake
message

MAC

Encrypted

MD5
Message Authentication Code

(16 bytes)

Figure 4-27 The Finished message uses negotiated security services.

Handshake Messages... Master Secret 40 bytes of 0x36

SHA

hashMaster Secret 40 bytes of 0x5C

SHA

hash

Sender's Role

Figure 4-28 The Finished messages includes a signed hash.

92 SSL & TLS Essentials: Securing the Web

Note the similarity between this calculation and the hash calculation
for the CertificateVerify message (see section 4.5.9). There are two
differences, however. First, the Finished hash includes the sender’s
role while the CertificateVerify hash does not. (Of course, only cli-
ents can send CertificateVerify messages.) Second, the set of hand-
shake messages will be different when the two hashes are calculated.
In either case, note that ssl does not consider ChangeCipherSpec
messages to be handshake messages (they are not part of the Hand-
shake protocol), so their contents are not included in the hash.

4.6 Securing Messages

The Finished message is the first to actually use the security services
that ssl negotiates. Once those services are in place, however, all sub-
sequent messages in the session also make use of them—even addi-
tional handshake messages, should the parties want to renegotiate
new security parameters. The most important messages, though, are
application protocol messages. Those messages contain the actual
data that the two parties want to exchange; the security requirements
of that data are what make ssl necessary. Figure 4-29 shows how ap-
plication data fits in the ssl architecture. The ssl protocol provides
both encryption and message authentication codes for the data, en-
suring that it is kept confidential and that it is not altered. The fol-
lowing two subsections detail each of these services.

HTTP

TCP

Record Layer

Change
Cipher

Alert
Hand-
shake

Appli-
cation

Secure
Sockets

Layer

Figure 4-29 Applications use the Record Layer directly.

Message Formats 93

4.6.1 Message Authentication Code

The Secure Sockets Layer supports two different algorithms for a
message authentication code (mac). As figures 4-30 and 4-31 indicate,
those algorithms are rsa’s Message Digest 5 (md5) and the Secure
Hash Algorithm (sha). The particular algorithm for any given com-
munications is determined by the negotiated cipher suite. Other than
the algorithm itself, the only difference between the two is the size of
the hash. The md5 algorithm generates a 16-byte hash value, while
sha creates a 20-byte value. In both cases, the hash result is simply
appended to the application data. The ssl Record Layer length value
includes both the application data and the authentication code. Also,
as the figures highlight, both the application data and the check
value are encrypted.

To calculate (or verify) the message authentication code, a system
uses a two-stage hash very similar to hash computations in the hand-
shake messages. It starts with a special value known as the mac write
secret, followed by padding, a 64-bit sequence number, a 16-bit value
with the length of the content, and, finally, by the content itself. The
padding is the single-byte value 001100110, repeated 48 times for md5
and 40 times for sha. For the second stage, the system uses the mac
write secret, padding, and the output of the intermediate hash. This
time, the padding is the binary value 01011100, repeated 48 times for
md5 and 40 times for sha. This result is the mac value that appears

Application Data

Length...

...Length

Prot: 23 Vers: 3 0

MD5
Message Authentication Code

(16 bytes)

MD5
MAC

Encrypted

Record
Layer

Figure 4-30 The MD5 MAC protects the integrity of application data.

94 SSL & TLS Essentials: Securing the Web

SSL vs. TLS

The TLS protocol
uses a com-
pletely different
calculation for
the message au-
thentication
codes. See sec-
tion 5.4.3.

in the ssl messages. Figure 4-32 shows the process for an md5 mes-
sage authentication code.

The two special values included in this calculation are the mac write
secret and the sequence number. Section 4.6.3 discusses the mac
write secret, along with other important cryptographic parameters.
The sequence number is a count of the number of messages the par-

message dataMAC secret 48 bytes of 0x36

MD5

hashMAC secret 48 bytes of 0x5C

MD5

MAC

seq. num. proto. type msg. len.

Figure 4-32 SSL calculates a message authentication code in two stages.

Application Data

Length...

...Length

Prot: 23 Vers: 3 0

SHA
Message Authentication Code

(20 bytes)

SHA
MAC

Encrypted

Record
Layer

Figure 4-31 The SHA MAC also protects application data integrity.

Message Formats 95

ties have exchanged. Its value is set to 0 with each ChangeCipher-
Spec message, and it is incremented once for each subsequent ssl
Record Layer message in the session.

4.6.2 Encryption

The ssl protocol supports both stream and block encryption ciphers,
although the message formats differ slightly. The examples illustrated
so far show stream encryption algorithms; they represent the simplest
case. Figure 4-33 shows that the information to be encrypted is sim-
ply the application data, followed by the message authentication
code. With stream encryption algorithms, no other parameters are
required.

For block encryption, on the other hand, the data to be encrypted
must be a multiple of the block size. And, since application data can
rarely be forced into specific sizes, block encryption algorithms rely
on padding. In this case, padding is used in the sense described in
section 2.2.1. Dummy data added to the application data to force its
length to be a multiple of the block size. In order to successfully ex-
tract the actual application data once the information has been en-
crypted, the recipient must know where the application data ends
and the padding begins. This requirement leads to the format of fig-
ure 4-34. As that figure indicates, the very last byte of the encrypted

Application Data

Length...

...Length

Prot: 23 Vers: 3 0

Message Authentication Code

Encrypted

Record
Layer

Figure 4-33 SSL can use stream encryption to protect application data.

96 SSL & TLS Essentials: Securing the Web

information contains the length of the padding. After decrypting the
block, a recipient counts backward from the padding length byte to
find the end of application data.

4.6.3 Creating Cryptographic Parameters

The Secure Socket Layer’s encryption and message authentication
code algorithms rely on a collection of secret information known only
to the communicating parties. Indeed, establishing that information
securely is one of the three major purposes of the ssl handshake.
(The other two are authenticating identity and negotiating cipher
suites.)

The starting point for all the shared secret information is the master
secret, previously discussed in the context of the CertificateVerify
message. The master secret is, in turn, based on the premaster secret.
In most cases, the client picks the premaster secret by generating a
secure random number. The client then encrypts this value using the
server’s public key, and sends it to the server in the ClientKeyEx-
change message. (For Diffie-Hellman key exchange, the result of the
conventional Diffie-Hellman calculation serves as the premaster se-

Message Padding

Application Data

Length...

...Length

Prot: 23 Vers: 3 0

Message Authentication Code

Encrypted

Record
Layer

Pad len

Figure 4-34 SSL can also use block encryption ciphers.

Message Formats 97

cret. The ClientKeyExchange completes the Diffie-Hellman calcula-
tion.) In all cases, once the server has received the Client-
KeyExchange message, both parties know the same premaster secret.
Each then takes the premaster secret and inputs it, along with the
random values each chose for its Hello message, into secure hash
functions. After combining the hash outputs in prescribed ways, both
systems will have the same master secret. Tables 4-9 and 4-10 show
the details of these two processes. The first summarizes the rules for
creating the premaster secret.

Table 4-9 Creating the Premaster Secret

Key Exchange Action

RSA Client generates the premaster secret as 2 bytes
containing the SSL version (binary 3 and then 0), fol-
lowed by 46 securely generated random bytes.

Fortezza/DMS Client generates the premaster secret as 48 securely
generated random bytes.

Diffie-Hellman The key created by the Diffie-Hellman computation
(usually referred to as Z) is used as the premaster se-
cret.

Table 4-10 shows how each party calculates the master secret from
the premaster secret. Figure 4-35 illustrates the information graphi-
cally, and figure 4-36 shows the same steps in the form of an equa-
tion.

Table 4-10 Calculating the Master Secret

Step Action

1 Calculate the SHA hash of the ASCII character ‘A’ followed by the
premaster secret, followed by the client’s random value (from
the ClientHello), followed by the server’s random value (from
the ServerHello).

2 Calculate the MD5 hash of the premaster secret, followed by the
output of step 1.

3 Calculate the SHA hash of the two ASCII characters ‘BB’ followed
by the premaster secret, followed by the client’s random value
(from the ClientHello), followed by the server’s random value
(from the ServerHello).

98 SSL & TLS Essentials: Securing the Web

Step Action

4 Calculate the MD5 hash of the premaster secret followed by the
output of step 3.

5 Concatenate the results from step 4 to those from step 2.

6 Calculate the SHA hash of the three ASCII characters ‘CCC’ fol-
lowed by the premaster secret, followed by the client’s random
value (from the ClientHello), followed by the server’s random
value (from the ServerHello).

7 Calculate the MD5 hash of the premaster secret, followed by the
output of step 6.

8 Concatenate the results from step 7 to the results from step 5.

'A' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

'BB' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

'CCC' Premaster Secret Client Random

SHA

hash

Server Random

Premaster Secret

MD5

hash

Master Secret

Figure 4-35 SSL uses hash functions to generate the master secret.

Message Formats 99

SSL vs. TLS

The TLS protocol
defines a com-
pletely new
process for gen-
erating key ma-
terial. See section
5.4.4.

Once each system has calculated the master secret, it is ready to gen-
erate the actual secret information needed for the communication.
The first step in that process is determining how much secret infor-
mation is necessary. The exact amount depends on the particular ci-
pher suite and parameters that the two parties have negotiated, but
generally consists of the information that table 4-11 lists. Each party
selects from that table the information that is appropriate for the ne-
gotiated cipher suite, and then counts the number of bytes each value
requires based on the negotiated cipher suite parameters. The result
is the size of the required secret information.

Table 4-11 Shared Secret Information

Parameter Secret Information

client write MAC
secret

The secret value included in the message authenti-
cation code for messages generated by the client.

server write MAC
secret

The secret value included in the message authenti-
cation code for messages generated by the server.

client write key The secret key used to encrypt messages gener-
ated by the client.

server write key The secret key used to encrypt messages gener-
ated by the server.

client write IV The initialization vector for encryption performed
by the client.

server write IV The initialization vector for encryption performed
by the server.

To create shared secret information, both parties use a process very
similar to the one that yields the master secret in the first place. Fig-
ure 4-37 illustrates the approach. They first calculate the sha hash of

master secret = MD5(premaster secret + SHA(‘A’ + premaster secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(premaster secret + SHA(‘BB’ + premaster secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(premaster secret + SHA(‘CCC’ + premaster secret +
 ClientHello.random + ServerHello.random))

Figure 4-36 The master secret requires six hash calculations.

100 SSL & TLS Essentials: Securing the Web

the ascii character ‘a’ followed by the master secret, followed by the
server’s random value (from the ServerHello), followed by the client’s
random value (from the ClientHello).

Systems then calculate the md5 hash of the master secret, followed by
the results of the intermediate hash. If the resulting 16-byte value is
not sufficient for all the secret information, they repeat the process,
but with the ascii characters ‘bb’ instead of ‘a.’ The parties continue
repeating this calculation (with ‘ccc,’ then ‘dddd,’ then ‘eeeee,’ and
so on) as many times as necessary to generate enough secret informa-

'A' Master Secret Server Random

SHA

hash

Client Random

Master Secret

MD5

hash

'BB' Master Secret Server Random

SHA

hash

Client Random

Master Secret

MD5

hash

'CCC' Master Secret Server Random

SHA

hash

Client Random

Master Secret

MD5

hash

Key Material

hash hash ...

.
.

.

Figure 4-37 The master secret allows SSL to calculate key material.

Message Formats 101

tion. Figure 4-38 shows the calculations as an equation. The results
yield the values of table 4-11 in order, as figure 4-39 indicates.

In many cases, the values of table 4-11 directly supply the secret in-
formation needed for the cryptographic computations. One particu-
lar class of cipher suites, however, requires an additional refinement.
Those cipher suites are known as exportable, and generally use smaller
key sizes for encryption. (Such cipher suites are said to be exportable
because systems that only use such cipher suites are, due to u.s. laws
and regulations, generally easier to export from the United States.)

For exportable cipher suites, the final secret key used for messages
encrypted by the client is the md5 hash of the client write key from
table 4-11, followed by the client’s random value (from the Client-
Hello), and followed by the server’s random value (from the Server-
Hello). Similarly, the final secret key for messages encrypted by the
server is the md5 hash of the server write key from the table, followed
by the server’s random value, and followed by the client’s random
value. Note, the initialization vectors are not taken from table 4-11,
but are simply the md5 hash of the client and server’s random values

key material = MD5(master secret + SHA(‘A’ + master secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(master secret + SHA(‘BB’ + master secret +
 ClientHello.random + ServerHello.random))
 +
 MD5(master secret + SHA(‘CCC’ + master secret +
 ClientHello.random + ServerHello.random))
 +
 …

Figure 4-38 The master secret seeds calculation of key material.

hash hash hash

Key Material

hash hash

client MAC server MAC client cipher server cipher client IV server IV

hash hash hash hash hash hash hash

Figure 4-39 SSL extracts secret values from key material.

102 SSL & TLS Essentials: Securing the Web

(for the client write iv) or the server and client’s random values (for
the server write iv).

4.7 Cipher Suites

Version 3.0 of the ssl specification defines 31 different cipher suites,
representing a varied selection of cryptographic algorithms and pa-
rameters. Table 4-12 lists those cipher suites, and indicates the key ex-
change, encryption, and hash algorithms each employs. The first
three columns, when combined, form the official ssl name of the ci-
pher suite. The rightmost column marks those cipher suites consid-
ered exportable.

Table 4-12 Cipher Suite Algorithms

Key Exchange Encryption Hash Exportable

SSL_NULL_ WITH_NULL_ NULL •

SSL_RSA_ WITH_NULL_ MD5 •

SSL_RSA_ WITH_NULL_ SHA •

SSL_RSA_EXPORT_ WITH_RC4_40_ MD5 •

SSL_RSA_ WITH_RC4_128_ MD5

SSL_RSA_ WITH_RC4_128_ SHA

SSL_RSA_EXPORT_ WITH_RC2_CBC_40_ MD5 •

SSL_RSA_ WITH_IDEA_CBC_ SHA

SSL_RSA_EXPORT_ WITH_DES40_CBC_ SHA •

SSL_RSA_ WITH_DES_CBC_ SHA

SSL_RSA_ WITH_3DES_EDE_CBC_ SHA

SSL_DH_DSS_EXPORT_ WITH_DES40_CBC_ SHA •

SSL_DH_DSS_ WITH_DES_CBC_ SHA

SSL_DH_DSS_ WITH_3DES_EDE_CBC_ SHA

SSL_DH_RSA_EXPORT_ WITH_DES40_CBC_ SHA •

SSL_DH_RSA_ WITH_DES_CBC_ SHA

SSL_DH_RSA_ WITH_3DES_EDE_CBC_ SHA

SSL_DHE_DSS_EXPORT_ WITH_DES40_CBC_ SHA •

SSL_DHE_DSS_ WITH_DES_CBC_ SHA

SSL_DHE_DSS_ WITH_3DES_EDE_CBC_ SHA

SSL_DHE_RSA_EXPORT_ WITH_DES40_CBC_ SHA •

SSL_DHE_RSA_ WITH_DES_CBC_ SHA

SSL_DHE_RSA_ WITH_3DES_EDE_CBC_ SHA

SSL_DH_anon_EXPORT_ WITH_RC4_40_ MD5 •

SSL_DH_anon_ WITH_RC4_128_ MD5

Message Formats 103

Key Exchange Encryption Hash Exportable

SSL_DH_anon_EXPORT_ WITH_DES40_CBC_ SHA

SSL_DH_anon_ WITH_DES_CBC_ SHA

SSL_DH_anon_ WITH_3DES_EDE_CBC_ SHA

SSL_FORTEZZA_DMS_ WITH_NULL_ SHA

SSL_FORTEZZA_DMS_ WITH_FORTEZZA_CBC_ SHA

SSL_FORTEZZA_DMS_ WITH_RC4_128_ SHA

4.7.1 Key Exchange Algorithms

The ssl specification defines a total of 14 different key exchange al-
gorithms, counting the available variations. Table 4-13 lists those al-
gorithms. For those key exchange algorithms that are part of
exportable cipher suites, the table also indicates the size limit that
u.s. export policy defines for the algorithm.2

Table 4-13 Key Exchange Algorithms

Algorithm Description Key Size Limit

DHE_DSS Ephemeral Diffie-Hellman with DSS signa-
tures

none

DHE_DSS_EXPORT Ephemeral Diffie-Hellman with DSS signa-
tures

DH: 512 bits

DHE_RSA Ephemeral Diffie-Hellman with RSA signa-
tures

none

DHE_RSA_EXPORT Ephemeral Diffie-Hellman with RSA signa-
tures

DH: 512 bits
RSA: none

DH_anon Anonymous Diffie-Hellman none

DH_anon_EXPORT Anonymous Diffie-Hellman DH: 512 bits

DH_DSS Diffie-Hellman with DSS certificates none

DH_DSS_EXPORT Diffie-Hellman with DSS certificates DH: 512 bits

DH_RSA Diffie-Hellman with RSA certificates none

DH_RSA_EXPORT Diffie-Hellman with RSA certificates DH: 512 bits
RSA: none

FORTEZZA_DMS Fortezza/DMS

NULL No key exchange

RSA RSA key exchange none

RSA_EXPORT RSA key exchange RSA: 512 bits

2 During the writing of this book, the u.s. government announced its intention to
revise its export policy so as to eliminate these restrictions in many, but not all, cases.

104 SSL & TLS Essentials: Securing the Web

SSL vs. TLS

The TLS standard
does not include
definitions for
the Fortezza/DMS
cipher suites. In
addition, the TLS
standardization
process allows
for many more
cipher suites to
be added to the
protocol.

4.7.2 Encryption Algorithms

The ssl protocol supports nine different encryption algorithms,
counting variations. They can be found in table 4-14. The table also
shows the key material size (derived from the master secret, as sec-
tion 4.6.3 describes), the effective key size, and the initialization vec-
tor size. (In all cases other than fortezza_cbc, the iv size is also the
block size.)

Table 4-14 Encryption Algorithms

Algorithm Type Key Material Key Size IV Size

3DES_EDE_CBC Block 24 bytes 168 bits 8 bytes

DES_CBC Block 8 bytes 56 bits 8 bytes

DES40_CBC Block 5 bytes 40 bits 8 bytes

FORTEZZA_CBC Block 96 bits 20 bytes

IDEA_CBC Block 16 bytes 128 bits 8 bytes

NULL Stream 0 bytes 0 bits

RC2_CBC_40 Block 5 bytes 40 bits 8 bytes

RC4_128 Stream 16 bytes 128 bits

RC4_40 Stream 5 bytes 40 bits

4.7.3 Hash Algorithms

The final component of an ssl cipher suite is the hash algorithm
used for the message authentication code. Table 4-15 shows the three
different hash algorithms ssl defines. It also shows the padding size
used in several ssl calculations, including the mac itself.

Table 4-15 Hash Algorithms

Algorithm Hash Size Padding Size

MD5 16 bytes 48 bytes

NULL 0 bytes 0 bytes

SHA 20 bytes 40 bytes

 105

5
 Advanced SSL

In the two previous chapters, we’ve seen how ssl normally operates
and examined the detailed format of its messages. This chapter ex-
amines some additional facets of the protocol, advanced features that
augment its normal operation. Those advanced features include com-
patibility with earlier versions of the ssl protocol and special support
for strong cryptography under u.s. export restrictions. The chapter
concludes with a comprehensive explanation of the difference be-
tween ssl and tls.

5.1 Compatibility with Previous Versions

The latest version of the ssl specification is the third major version
of the ssl protocol. And, although ssl version 3.0 is well established,
some existing systems may support only earlier versions of the proto-
col. One of the decisions facing developers of current ssl systems is
whether to support communication with those older implementa-
tions. Adding such support will require additional work, and may re-
sult in slightly weaker security. Supporting older versions will provide
the greatest degree of interoperability, however. Fortunately, ssl ver-
sion 3.0 mechanisms can easily accommodate compatibility with ear-
lier versions.

The details of ssl versions prior to 3.0 are outside the scope of this
book. However, since compatibility with version 2.0 remains a feature
of the latest popular Web browsers, even engineers whose only con-
cern is version 3.0 may find it useful to understand some aspects of
version 2.0 compatibility. Network engineers looking at captured

106 SSL & TLS Essentials: Securing the Web

protocol traces, for example, may well discover version 2.0 Client-
Hello messages crossing their networks. To aid in such understand-
ing, this section looks at how systems negotiate ssl versions, the
details of the version 2.0 ClientHello message, and version 2.0 cipher
suites.

5.1.1 Negotiating SSL Versions

If a system wants to interoperate with both ssl version 2.0 and ssl
version 3.0 systems, one obvious requirement is that the system itself
must implement both ssl version 2.0 and version 3.0. It uses the ver-
sion 2.0 implementation to communicate with other version 2.0 sys-
tems, and the version 3.0 implementation to communicate with
version 3.0 systems. This simple statement raises the obvious ques-
tion: How does the system know which is which?

The answer lies in the very first message that the two parties ex-
change—the ClientHello. The next subsection describes the format
of this message in detail, but the essential element of this message is
this: a client prepared to support either version 2.0 or version 3.0
sends a version 2.0 ClientHello message. The message is a perfectly
legitimate version 2.0 message, but it contains enough hints so that a
version 3.0 server, if it’s paying attention, can recognize that the cli-
ent also supports version 3.0. Such a server responds using the ssl
version 3.0 protocol, and a normal version 3.0 handshake ensues.

Figure 5-1 shows how this negotiation works when the server only
implements ssl version 2.0. Such a server recognizes the version 2.0
ClientHello message, but it is oblivious to the special 3.0 hints. The
server treats it like any other version 2.0 message and continues the
version 2.0 handshake negotiation. In contrast, Figure 5-2 shows how
a version 3.0 server responds. The server is not only capable of under-
standing the version 2.0 ClientHello, it also understands the special
hints. The server, therefore, recognizes that the client is capable of
ssl version 3.0. It uses the standard version 3.0 handshake process for
the rest of the communication.

The server’s responsibilities are fairly simple. If it receives a standard
version 2.0 ClientHello (without the version 3.0 hints), it responds

Advanced SSL 107

using ssl version 2.0. If it receives a version 3.0 ClientHello or a ver-
sion 2.0 ClientHello with the special hints, it responds using version
3.0. Even servers that do not support ssl version 2.0 should still ac-
cept and respond to the version 2.0 ClientHello with the special
hints. Such servers can reject other version 2.0 messages.

There is one final twist to this process. Since version 3.0 has security
improvements over version 2.0, systems should ensure that they’re
using version 3.0 in every possible circumstance, even when a mali-

v2 Server

v2 ClientHello (with hints)

v2 ServerHello

1

2

Dual Version Client

v2 handshake continues ...

Figure 5-1 Clients can successfully negotiate with a version 2.0 server.

v3 Server

v2 ClientHello (with hints)

v3 ServerHello

1

2

Dual Version Client

v3 handshake continues ...

Figure 5-2 Clients can also negotiate with a version 3.0 server.

108 SSL & TLS Essentials: Securing the Web

cious party tries to trick them into falling back to version 2.0. The
most likely threat is from a malicious system that interposes itself be-
tween the client and server. During the negotiation phase, it pretends
to be a server when talking to the client, then turns around and pre-
tends to be the client when talking to the server. Figure 5-3 shows
how such a man-in-the-middle attack might unfold. As the figure
shows, the attacker modifies the ClientHello to remove the special
version 3.0 hints. This modification will force the client and server to
use ssl version 2.0, even though both are capable of the newer (and
more secure) version 3.0.

The ssl specification defines a special technique that allows two sys-
tems to detect the attack if it were to occur. The client takes the first
step. When a dual-version client ends up using ssl version 2.0 rather
than version 3.0, it uses special padding values in the version 2.0 Cli-
entKeyExchange message. In particular, it sets the last 8 bytes of the
padding to the special binary value 00000011. This value indicates
that the client could have supported version 3.0. Normal version 2.0
servers will be oblivious to the padding value. Dual version servers

Dual Version
Server

v2 ClientHello

v2 ServerHello

1

3

v2 handshake continues ...

Dual Version Client Man-in-the-Middle
Attacker

v2 ClientHello
2

v2 ServerHello
4

(with v3 hints) (hints removed)

Figure 5-3 SSL protects against a version rollback attack like this one.

Advanced SSL 109

that receive a version 2.0 ClientKeyExchange, however, can look for
the special padding value. If the server finds it, then an attack is oc-
curring. Note that the attacker will not be able to modify the padding
(and thus remove the incriminating 00000011 bytes) because the cli-
ent encrypts that information using the server’s public key.

5.1.2 SSL Version 2.0 ClientHello

Even servers that support only ssl version 3.0 may still need to un-
derstand version 2.0 ClientHello messages. As the previous subsec-
tion indicated, they may receive such a message from a dual version
client. The actual message contents are similar to those of the version
3.0 ClientHello, but the format is significantly different.

Figure 5-4 shows a typical version 2.0 ClientHello as a dual version
client might build it. As the figure shows, the Record Layer is only 2
bytes, and consists of a protocol type (128 is used for handshake mes-
sages) and a single byte for the message length. The actual handshake

... 2

cipher suite ...

cipher...

sess. ...0

3128

cipher suites length

1

Session ID

Len

... id len challenge length

...suite 1

Challenge

cipher suite n

v2.0 Record Layer ClientHello

Handshake
Protocol

minor version

major version

cipher suites

Figure 5-4 Version 2.0 ClientHello messages differ from version 3.0.

110 SSL & TLS Essentials: Securing the Web

message follows, beginning with the message type of 1. This value in-
dicates a ClientHello message. A 2-byte version indication follows.
Notice that the version is set to 3.0, even though this is a version 2.0
ClientHello. In effect, the client lies about the version number for
the message.

This version number is the hint mentioned previously. It tells the
server that, even though the client is sending a version 2.0 message,
the client is capable of using version 3.0. A version 2.0 server will be
able to parse the message. When it sees a version number greater
than it can support, though, it just responds with a version 2.0
ServerHello. That response directs the client to fall back to version
2.0.

The rest of the message is relatively straightforward, but note that
version 2.0 cipher suites are 3 bytes in length, rather than 2. This fact
provides a convenient way for dual version clients to propose version
3.0 cipher suites within a version 2.0 ClientHello. The client simply
prepends a single byte of 0 to the 2-byte cipher suite value from table
4-5. For example, the cipher suite ssl_ssl_rsa_with_rc4_128_md5
(represented in version 3.0 messages as 0,4) becomes, in version 2.0
messages, 0,0,4. Since all legitimate 2.0 cipher suites begin with a
value other than 0, a dual version server will be able to recognize the
modified version 3.0 cipher suites correctly.

5.1.3 SSL Version 2.0 Cipher Suites

To thoroughly understand version 2.0 ClientHello messages in the
context of version 3.0 compatibility, it is necessary to recognize the
version 2.0 cipher suites. Table 5-1 lists the values defined in the ssl
version 2.0 specification.

Table 5-1 SSL Version 2.0 Cipher Suite Values

Value Cipher Suite

1,0,128 SSL_RC4_128_WITH_MD5

2,0,128 SSL_RC4_128_EXPORT40_WITH_MD5

3,0,128 SSL_RC2_CBC_128_CBC_WITH_MD5

4,0,128 SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5

Advanced SSL 111

5,0,128 SSL_IDEA_128_CBC_WITH_MD5

6,0,64 SSL_DES_64_CBC_WITH_MD5

7,0,192 SSL_DES_192_EDE3_CBC_WITH_MD5

5.2 Netscape International Step-Up

One of the challenges facing ssl implementations, and indeed, secu-
rity products in general, is complying with various laws and regula-
tions that restrict the use of cryptography. The United States, for
example, currently treats cryptography like weapons and limits the
ability of u.s. companies to export cryptographic products. In princi-
ple, the goal of this policy is to avoid letting cryptographic products
fall into the hands of terrorists and other criminals, thereby hamper-
ing the ability of intelligence agencies to combat such criminals.1

The problem is particularly acute for companies such as Netscape
and Microsoft. Those companies would like to make their Web
browsers as widely available as possible, including making them
downloadable from the Internet. Browser developers would also like
to include the strongest possible cryptography in their products,
however, and those two goals are in direct conflict with each other.
Laws and regulations prevent browser developers from exporting
software with strong cryptography, including distributing software
using the Internet.

Such laws, while perhaps hindering the ability of criminals to com-
mit crimes, certainly interfere with legitimate commerce. A bank, for
example, might like to offer banking services over the Internet, even
to customers outside the United States. Potential customers might
balk, however, if they knew that their Web transactions were secured
only by the deliberately weakened cryptography required to satisfy
u.s. export laws.

1 During the writing of this book, the u.s. government announced its intention to
revise its export policy so as to eliminate these restrictions in many, but not all, cases.

112 SSL & TLS Essentials: Securing the Web

Both Netscape and Microsoft have worked with the u.s. government
to develop a compromise approach. The Netscape approach is known
as International Step-Up, and it is the subject of this section. (Micro-
soft’s very similar Server Gated Cryptography is the topic of the next
section.)

5.2.1 Server Components

International Step-Up requires no changes at all to an ssl server im-
plementation. The server simply responds normally to all ssl version
3.0 messages. The server does supply a critical element in the Inter-
national Step-Up process, though—a special International Step-Up
certificate. Note that the ssl protocol itself does not address the con-
tents of public key certificates. It simply carries them (whatever their
contents) in Certificate messages.

International Step-Up server certificates are special in two important
ways. First, they contain a special attribute in the extended key usage
(extKeyUsage) field. Appendix a discusses this field (and certificates
in general) in more detail, but the special attribute for Netscape’s In-
ternational Step-Up includes the object identifier value of 2.16.840
.1.113730.4.1. The second important characteristic of International
Step-Up server certificates is the certificate authority that issues
them. All such certificates must be issued under the VeriSign Class 3
authority. (In theory, it would be possible for any authority to issue
International Step-Up certificates; however, as of this writing, Net-
scape’s web browser clients are pre-configured to only recognize
VeriSign as a legitimate International Step-Up certificate authority.)

5.2.2 Client Components

Most of the action with International Step-Up happens in the client.
Clients that wish to use International Step-Up are generally those
that have been licensed for export (otherwise, they would not be sub-
ject to export laws restricting the strength of their cryptography).
Such clients are not free to use strong cryptography in all cases. If
they support International Step-Up, however, the client has a latent
capability to support strong cryptography. The client is designed to

Advanced SSL 113

keep this capability hidden from normal servers (thus it conforms to
u.s. export regulations), but when it recognizes a server’s Interna-
tional Step-Up certificate, it reveals its hidden capability and negoti-
ates strong cryptography.

Figure 5-5 shows the complete message exchange. Note that in mes-
sage 1, the client only proposes to support export strength encryption.
The client does this even though it is actually capable of stronger en-
cryption; clients must do this to obtain the necessary u.s. export li-
censes. The server has no choice but to select a cipher suite from
among those proposed by the client, so the ServerHello message will
indicate export-strength encryption. (At this point, the server does
not know that the client supports International Step-Up.)

Once the client receives message 3, however, it knows that the server
is capable of supporting International Step-Up. It continues with the
regular handshake negotiation (messages 4 through 9), but instead of
beginning the exchange of application data, it starts a new negotia-
tion with a second ClientHello message (message 10). This message
proposes full-strength cipher suites. The server responds to this ap-
propriately, and at the end of the second handshake with message 18,
both parties have negotiated a full-strength cipher suite.

5.2.3 Controlling Full-Strength Encryption

International Step-Up is a compromise between the needs of the u.s.
government to limit the use of full-strength cryptography abroad and
the desire of browser manufactures to offer the strongest possible
product to the widest possible audience. Because the u.s. government
has verified that Netscape’s Web browser only renegotiates full-
strength cryptography after the server has produced a special Interna-
tional Step-Up certificate, Netscape is free to distribute its browser
worldwide, even by Internet download. Controlling the use of full-
strength encryption becomes a matter of controlling the issuance of
International Step-Up certificates. Currently, only one certificate au-
thority (VeriSign) is able to issue International Step-Up certificates,
and the u.s. government controls which companies are allowed to
purchase those certificates.

114 SSL & TLS Essentials: Securing the Web

Server

ClientHello (export cipher suites)

ServerHello (export cipher suite)

Certificate (International Step-Up)

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

1

2

3

4

5

6

7

8

9

Client

ClientHello (full-strength ciphers)

ServerHello (full-strength cipher)

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

10

14

15

16

11

12

13

17

18

secured
with

export
cipher

suite secured
with
export
cipher
suite

not
secured

secured
with full-
strength

cipher
suite

not
secured

full-
strength

Figure 5-5 International Step-Up negotiates cipher suites twice.

Advanced SSL 115

5.3 Microsoft Server Gated Cryptography

Microsoft’s Internet Explorer has a capability very similar to Net-
scape’s International Step-Up. Microsoft calls its technology Server
Gated Cryptography (sgc), which reflects the role the server plays in
enabling the client to use full-strength cryptography.

The principles behind Server Gated Cryptography are identical to
those of International Step-Up. Clients begin a negotiation by pro-
posing only export-strength cipher suites. When they see a special
object in the server’s certificate, however, they renegotiate the cipher
suite using full-strength encryption algorithms. There are, however,
two important details in which Server Gated Cryptography differs
from International Step-Up: the specific object identifier in the
server certificate and the exact mechanism the client uses to renego-
tiate the handshake.

5.3.1 Server Gated Cryptography Certificates

Like International Step-Up, servers that qualify for Server Gated
Cryptography use certificates with a special object identifier in the
extended key usage field. The particular value for sgc is 1.3.6.1.4.1.-
311.10.3.3. Equally important, those certificates are issued by a certifi-
cate authority approved by u.s. export regulators. As of this writing,
the only authority that has the necessary approval is VeriSign, the
same authority that issues International Step-Up certificates. In fact,
VeriSign does not issue separate certificates for International Step-
Up and Server Gated Cryptography. It issues a single certificate,
which VeriSign calls a Global Secure ID, that has both extended key
usage objects included in it. The same server certificate, therefore,
supports both International Step-Up and Server Gated Cryptogra-
phy.

5.3.2 Cipher Suite Renegotiation

Another difference between Server Gated Cryptography and Inter-
national Step-Up is the approach used to renegotiate the cipher suite

116 SSL & TLS Essentials: Securing the Web

to a full-strength version. Figure 5-6 shows the sequence of messages
for Server Gated Cryptography.

A comparison with figure 5-5 shows that the key difference begins
with step 5. While International Step-Up completes the initial hand-
shake for export-strength ciphers and renegotiates after that hand-
shake is complete, Server Gated Cryptography effectively aborts the

Server

ClientHello (export cipher suites)

ServerHello (export cipher suite)

Certificate (with SGC)

ServerHelloDone

1

2

3

4

Client

ClientHello (full-strength ciphers)

ServerHello (full-strength cipher)

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

10

11

12

13

5

6

7

8

9

not
secured

full-
strength

not
secured

full-
strength

Figure 5-6 Server Gated Cryptography resets cipher suite negotiation.

Advanced SSL 117

initial handshake and sends a new ClientHello message at step 5.
This new ClientHello proposes stronger encryption parameters, al-
lowing the server to select full-strength security for the session.

Two aspects of this approach to cipher suite renegotiation are worth
elaboration. First, some of the documentation on Server Gated
Cryptography available from Microsoft appears to imply that a spe-
cial “reset” message precedes the second ClientHello of step 5. This is
not the case, at least with versions 4.01 and 5.0 of Internet Explorer.
The client simply sends a new ClientHello as soon as it receives the
ServerHelloDone. There is nothing special about this ClientHello
message. (It does not, for example, include a tcp reset.) With Server
Gated Cryptography, any “reset” is merely implied by the second Cli-
entHello. Second, the ssl standard is not completely clear as to
whether the sgc approach is permitted. It is not clearly illegal, how-
ever, and it does work appropriately. Given the widespread deploy-
ment of Internet Explorer and Microsoft Web servers, the point is
probably academic anyway.

5.4 The Transport Layer Security Protocol

Although the Secure Sockets Layer protocol was originally
developed primarily by Netscape, the protocol has become so critical
to the operation of the Internet that the Internet Engineering Task
Force (ietf) has, with Netscape’s blessing, taken over future
development of ssl standards. For several reasons, including a desire
to more clearly distinguish ssl from ongoing work with the ip
Security (ipsec) protocol, the ietf rechristened the protocol with the
name Transport Layer Security, or tls.

The tls specification represents a relatively modest, incremental im-
provement to the ssl protocol. There is far less difference, for exam-
ple, between ssl version 3.0 and tls than there is between ssl
versions 2.0 and 3.0. In fact, there are really only a few significant
changes between ssl and tls, which table 5-2 summarizes. The re-
mainder of this section details these changes in seven subsections,
which correspond to the items in table 5-2.

118 SSL & TLS Essentials: Securing the Web

Table 5-2 Differences between SSL and TLS

 SSL v3.0 TLS v1.0

Protocol version in messages 3.0 3.1

Alert protocol message types 12 23

Message authentication ad hoc standard

Key material generation ad hoc PRF

CertificateVerify complex simple

Finished ad hoc PRF

Baseline cipher suites includes Fortezza no Fortezza

5.4.1 TLS Protocol Version

Perhaps it is unfortunate that the ietf decided to rename ssl to tls.
That decision has certainly introduced some confusion in the version
numbers for the tls protocol. The existing Transport Layer Security
standard is named version 1.0. Indeed, it is the first version of tls.
However, in order to maintain interoperability with ssl version 3.0
systems (see section 5.4.8), the protocol version reported in the actual
protocol messages must be greater than 3.0. Because tls is a modest
rather than a drastic improvement over ssl, tls designers have speci-
fied that the protocol version that appears in tls messages be 3.1.
Presumably, should tls ever undergo a major revision itself, the new
protocol would be named version 2.0, but would be indicated in the
protocol messages as 4.0.

5.4.2 Alert Protocol Message Types

One of the areas in which tls improves on ssl is in its procedures
for notification of potential and actual security alerts. In particular,
tls defines almost twice as many alert descriptions. Table 5-3 pro-
vides the complete list of tls alerts. It also marks which of those are
new to tls (with a bullet in the leftmost column), and it emphasizes
the fact that alert description 41 (NoCertificate) was deleted in tls.
The tls specification removed this alert because, in practice, it was
difficult to implement. Successfully interpreting the NoCertificate
alert requires a high level of synchronization between the Alert and

Advanced SSL 119

Handshake protocols, a synchronization that is otherwise not
needed. To eliminate the requirement for this synchronization, tls
has clients that do not have appropriate certificates simply return an
empty Certificate message.

Table 5-3 TLS Alert Descriptions

 Value Name Meaning

 0 CloseNotify The sending party indicates explicitly that
it is closing the connection; closure alerts
have a warning severity level.

 10 Unexpect-
edMessage

The sending party indicates that it re-
ceived an improper message; this alert is
always fatal.

 20 BadRecord-
MAC

The sending party indicates that it re-
ceived a message with a bad message au-
thentication code; this alert is always fatal.

• 21 Decryption-
Failed

The sending party indicates that a mes-
sage it decrypted was invalid (e.g., it was
not a multiple of the block size or had
invalid padding); this alert is always fatal.

• 22 RecordOver-
flow

The sending party indicates that a mes-
sage it received was, after decryption or
decompression, more than 214+2048 bytes;
this message is always fatal.

 30 Decompres-
sionFailure

The sending party indicates that it re-
ceived data that it could not decompress;
this alert is always fatal.

 40 Hand-
ShakeFailure

The sending party indicates that it was not
able to negotiate an acceptable set of se-
curity services for the session; this alert is
always fatal.

 41 NoCertificate The sending party (which is always a cli-
ent) indicates that it has no certificate that
can satisfy the server’s CertificateRequest.

 42 BadCertifi-
cate

The sending party received a certificate
that was corrupt (e.g., its signature could
not be verified).

 43 Unsupport-
edCertificate

The sending party received a certificate of
a type that it could not support.

120 SSL & TLS Essentials: Securing the Web

 Value Name Meaning

 44 Certificate-
Revoked

The sending party received a certificate
that has been revoked by the certificate
authority.

 45 Certificate-
Expired

The sending party received a certificate
that has expired.

 46 Certificate-
Unknown

The sending party indicates an unspecified
problem with a received certificate.

 47 IllegalParam-
eter

The sending party indicates that it re-
ceived a handshake message with a pa-
rameter value that was illegal or
inconsistent with other parameters.

• 48 UnknownCA The sending party indicates that it could
not identify or does not trust the certifi-
cate authority of a received certificate
chain; this message is always fatal.

• 49 Access-
Denied

The sending party indicates that the party
identified in the peer’s certificate does not
have access rights to continue negotiation;
this error is always fatal.

• 50 DecodeError The sending party indicates that a re-
ceived message could not be decoded be-
cause a field value was out of the
permitted range or the message length
was invalid; this message is always fatal.

• 51 DecryptError The sending party indicates that a crypto-
graphic operation essential to the hand-
shake negotiation failed.

• 60 ExportRe-
striction

The sending party indicates that it de-
tected a negotiation parameter not in
compliance with applicable U.S. export re-
strictions; this message is always fatal.

• 70 Protocol-
Version

The sending party indicates that it cannot
support the requested TLS protocol ver-
sion; this message is always fatal.

• 71 Insufficient-
Security

The sending party (always a server) indi-
cates that it requires cipher suites more
secure than those supported by the client;
this message is always fatal.

Advanced SSL 121

 Value Name Meaning

• 80 InternalError The sending party indicates that an error
local to its operation and independent of
the TLS protocol (such as a memory alloca-
tion failure) makes it impossible to con-
tinue; this message is always fatal.

• 90 UserCan-
celed

The sending party indicates that it wishes
to cancel the handshake negotiation for
reasons other than a protocol failure; this
message is typically a warning and should
be followed by a CloseNotify.

• 100 NoRenego-
tiation

The sender indicates that it cannot comply
with the peer’s request to renegotiate the
TLS handshake; this message is always a
warning.

5.4.3 Message Authentication

Another area in which tls improves on ssl is in the algorithms for
message authentication. The way ssl message authentication com-
bines key information and application data is rather ad hoc, created
just for the ssl protocol. The tls protocol, on the other hand, relies
on a standard message authentication code known as h-mac (for
Hashed Message Authentication Code). The h-mac algorithm is a
defined standard, and has been subjected to rigorous cryptographic
analysis. The h-mac specification (see the References section) in-
cludes a precise description of the approach, as well as sample source
code, but figure 5-7 illustrates h-mac in a format that can be com-
pared with other figures in this text. Note that h-mac does not spec-
ify a particular hash algorithm (such as md5 or sha); rather, it works
effectively with any competent hash algorithm.

The tls message authentication code is a straightforward application
of the h-mac standard. The mac is the result of the h-mac ap-
proach, using whatever hash algorithm the negotiated cipher suite
requires. The h-mac secret is the mac write secret derived from the
master secret. Table 5-4 lists the information that is protected.

122 SSL & TLS Essentials: Securing the Web

Table 5-4 Data Protected by TLS Message Authentication Code

Data Protected by H-MAC

• Sequence number

• TLS protocol message type

• TLS version (e.g., 3.1)

• Message length

• Message contents

secret 0, 0, 0, ..., 0 64 bytes of 0x36

64 bytes 64 bytes

exclusive-OR output

Exclusive-OR

data to protect

H()

64 bytes of 0x5C

exclusive-OR output

H()

hash

MAC

Exclusive-OR

Figure 5-7 Hashed MAC works with any hash algorithm.

Advanced SSL 123

5.4.4 Key Material Generation

Building on the h-mac standard, tls defines a procedure for using
h-mac to create pseudorandom output. This procedure takes a secret
value and an initial seed value (which can be quite small), and se-
curely generates random output. The procedure can create as much
random output as necessary. Figure 5-8 illustrates the procedure, and
table 5-5 lists its steps. As with the h-mac standard, the procedure
does not rely on a particular hash algorithm. Any hash algorithm, in-
cluding md5 and sha may be used for the pseudorandom output.

Table 5-5 Creating Intermediate Pseudorandom Output

Step Procedure

1 Calculate H-MAC of the secret and the seed.

2 Calculate H-MAC of the secret and the results of the previous
step; the result is the first part of the pseudorandom output.

3 Calculate H-MAC of the secret and the results of the previous
step; the result is the next part of the pseudorandom output.

4 Repeat step 3 as many times as required to product sufficient
pseudorandom output.

secret seed

H-
MAC

H-
MAC

H-
MAC

H-MAC

H-MAC

.

.

.

H-
MAC

H-MAC

pseudo-
random
output

Figure 5-8 TLS uses H-MAC to generate pseudorandom output.

124 SSL & TLS Essentials: Securing the Web

For one additional refinement, tls uses the pseudorandom output
procedure to create a pseudorandom function, or prf. The prf com-
bines two separate instances of the pseudorandom output procedure;
one uses the md5 hash algorithm and the other uses the sha hash al-
gorithm. The tls standard specifies a function that uses both algo-
rithms just in case one of the two is ever found to be insecure.
Should that happen, the other algorithm will still protect the data.
The prf appears in figure 5-9. It starts with a secret value, a seed
value, and a label. As the figure shows, the function splits the secret
into two parts, one for the md5 hash and the other for the sha hash.
It also combines the label and the seed into a single value. Table 5-6
lists the detailed steps. Note that the md5 and sha hash outputs are
of different lengths (16 and 20 bytes, respectively), so the pseudo-
random output generation may require a different number of itera-
tions for steps 2 and 3 in the table.

secret seedlabel

label seedS1 S2

P-
MD5

P-
SHA

P-MD5 P-SHA

PRF

Exclusive-OR

Figure 5-9 TLS’s Pseudorandom function uses both MD5 and SHA.

Advanced SSL 125

Table 5-6 TLS Pseudorandom Function

Step Procedure

1 Split the secret into two equal parts; if the secret consists of an
odd number of bytes, include the middle byte in each part. (It’s
the last byte of the first part and the first byte of the second
part.)

2 Generate pseudorandom output using the first part of the se-
cret, the MD5 hash function, and the combined label and seed.

3 Generate pseudorandom output using the second part of the
secret, the SHA hash function, and the combined label and seed.

4 Exclusive-OR the results from steps 2 and 3.

With an understanding of the tls prf, it now possible to describe
how tls creates key material. The principle is the same as with ssl.
Each system starts with the premaster secret; next it creates the mas-
ter secret. Then, it generates the required key material from the mas-
ter secret. To generate the key material, tls relies on the prf. Input
values to the prf are the master secret (as the secret), the ascii string
“key expansion” (as the label), and the concatenation of the server’s
random value and the client’s random value for the seed.

The 48-byte master secret itself is also computed using the prf. The
input values, in this case, are the premaster secret, the ascii string
“master secret” (as the label), and the concatenation of the client’s
random value and the server’s random value. Figure 5-10 illustrates
both steps in the process.

5.4.5 CertificateVerify

Transport Layer Security also differs from ssl in the details of the
CertificateVerify function. In ssl, the signed information in the Cer-
tificateVerify function consists of a complex, two-level hash of hand-
shake messages, master secrets, and padding. (See section 4.5.8.) In
the case of tls, the signed information is simply the handshake mes-
sages previously exchanged during the session.

126 SSL & TLS Essentials: Securing the Web

5.4.6 Finished

The tls specification also simplifies, slightly, the contents of the
Finished message. For tls, the sole contents of the Finished message
are 12 bytes created by applying the prf to the master secret, the label
“client finished” (for clients) or “server finished” (for servers), and the
concatenation of the md5 hash of all handshake messages and the
sha hash of all handshake messages. Figure 5-11 shows the calcula-
tion graphically.

5.4.7 Baseline Cipher Suites

As a baseline, tls supports nearly the same set of cipher suites as ssl;
however, explicit support for Fortezza/dms cipher suites has been
removed. The set of defined tls cipher suites will likely expand as
new cipher suites are developed and implemented. Because the ietf
has a well-defined process for evaluating these proposals, enhance-
ments will be much easier to add to tls than they were to ssl. Table
5-7 lists the baseline tls cipher suites, along with their values in hello
messages.

premaster secret client random"master secret"

PRF

server random

master secret server random"key expansion"

PRF

client random

key material

Figure 5-10 TLS uses its PRF to create the master secret and key material.

Advanced SSL 127

Table 5-7 TLS Version 1.0 Baseline CipherSuite Values

Value Cipher Suite

0,0 TLS_NULL_WITH_NULL_NULL

0,1 TLS_RSA_WITH_NULL_MD5

0,2 TLS_RSA_WITH_NULL_SHA

0,3 TLS_RSA_EXPORT_WITH_RC4_40_MD5

0,4 TLS_RSA_WITH_RC4_128_MD5

0,5 TLS_RSA_WITH_RC4_128_SHA

0,6 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

0,7 TLS_RSA_WITH_IDEA_CBC_SHA

0,8 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

0,9 TLS_RSA_WITH_DES_CBC_SHA

0,10 TLS_RSA_WITH_3DES_EDE_CBC_SHA

0,11 TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA

0,12 TLS_DH_DSS_WITH_DES_CBC_SHA

0,13 TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

0,14 TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA

master secret MD5 hashclient/server label

PRF

SHA hash

verify data (12 bytes)

Handshake Messages...

MD5 SHA

Figure 5-11 TLS uses the PRF for Finished messages.

128 SSL & TLS Essentials: Securing the Web

0,15 TLS_DH_RSA_WITH_DES_CBC_SHA

0,16 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

0,17 TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

0,18 TLS_DHE_DSS_WITH_DES_CBC_SHA

0,19 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

0,20 TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

0,21 TLS_DHE_RSA_WITH_DES_CBC_SHA

0,22 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

0,23 TLS_DH_anon_EXPORT_WITH_RC4_40_MD5

0,24 TLS_DH_anon_WITH_RC4_128_MD5

0,25 TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA

0,26 TLS_DH_anon_WITH_DES_CBC_SHA

0,27 TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

5.4.8 Interoperability with SSL

As was the case with the transition from ssl version 2.0 to ssl ver-
sion 3.0, there is a well-defined approach for systems to support both
ssl 3.0 and tls 1.0 in an interoperable manner. Indeed, the process is
essentially the same as that described in section 5.1.1. A client that
supports both ssl version 3.0 and tls version 1.0 should send an ssl
version 3.0 ClientHello, but with the protocol version set to 3.1. If the
server understands tls, it responds with a tls ServerHello; other-
wise, it responds with an ssl ServerHello, and the client knows to
fall back to ssl version 3.0. Servers that support tls, even if they
don’t support ssl, should still be prepared to accept an ssl v3.0 Cli-
entHello. If they receive such a message with the version set to 3.1,
they can safely proceed with a tls handshake.

5.5 The Future of SSL and TLS

The future evolution of ssl and tls is clearly in the hands of the
ietf, as well as developers of Web browsers, Web servers, and other
Internet systems that require security. Version 3.0 of ssl is well estab-
lished in these areas, and, as more systems connect to the Internet

Advanced SSL 129

and more Internet transactions require security, ssl’s influence will
only grow. Already, devices ranging from WebTV receivers to Palm
computers include implementations of ssl or tls. In addition, appli-
cations other than for regular Web commerce are realizing the bene-
fits of an effective network security protocol. The Open Settlement
Protocol,2 for example, relies on ssl to secure ip-based telephony ser-
vices; and the Wireless Application Protocol Forum has defined a
variation of tls3 for securing handheld devices.

The shift from ssl as a proprietary technology to tls as an open
standard will also strengthen the protocol. Now that tls is adminis-
tered by an international standards organization, participation in its
development is open to any interested party. The tls standardization
process gives the network security community much more freedom
to improve and enhance the protocol’s operation. Should a new vul-
nerability be discovered, or should new, more effective cryptographic
algorithms be developed, it will be much easier to modify tls appro-
priately. This benefit alone insures that, under its new name, ssl will
continue to secure Internet communications for years to come.

2 Technical Specification ts 101 321 from the European Telecommunications Stan-
dards Institute, available at http://www.etsi.org.
3 The Wireless Transport Layer Security (wtls) specification is available at
http://www.wapforum.org.

http://www.etsi.org
http://www.wapforum.org

 131

Appendix A
X.509 Certificates

The Secure Sockets Layer protocol does not depend on a particular
format for the public key certificates it exchanges. As far as ssl is
concerned, a certificate is just an arbitrary set of bytes. Practical ssl
deployments and implementations, however, depend heavily on the
specifics of those certificates. Client implementations, for example,
must verify a server’s certificate and extract the server’s public key in-
formation from the certificate in order to encrypt the Client-
KeyExchange contents. And, although the ssl protocol itself does
not worry about certificate details, a thorough understanding of pub-
lic key certificates is critical to any ssl implementation.

One particular international standard is widely accepted as the ap-
propriate format for public key certificates. That standard is from the
International Telecommunications Union (itu), and it is universally
known by its itu specification number: x.509. This appendix takes a
closer look at the x.509 standard. It begins with an overview of x.509
certificates; the overview provides a high-level description of the cer-
tificate format, but it does not include extensive detail. For readers
who want to understand x.509 at a detailed level, the following two
sections are included. Section a.2 explains Abstract Syntax Notation
One (asn.1), a special data description language used extensively in
the x.509 (and many other itu) specifications. Some understanding
of asn.1 is essential for the third section of this appendix, which
looks at x.509 certificates in depth. The fourth and final section in-
cludes a complete example certificate, which shows how to read the
actual certificate byte by byte. This section also discusses important
aspects of constructing and interpreting x.509 certificates.

132 SSL & TLS Essentials: Securing the Web

A.1 X.509 Certificate Overview

Certificates that conform to the latest x.509 standard can contain as
many as 11 different fields. Their order in the certificate corresponds
to the illustration of figure a-1. Note though, that the field names in
the figure are not the same as the names in the x.509 standard. To
this writer, some of the x.509 field names seem quite confusing. Re-
luctantly, therefore, the figure and the following discussion take the
liberty of renaming the fields to more reasonable labels.1

A.1.1 Version

The Version field identifies the particular version of the x.509 stan-
dard to which the certificate conforms. As of this writing, the latest
version of the x.509 standard is 3. Note, though, that for this field
within the certificate, version numbers begin with 0 rather than 1.
Consequently, the version number that appears in x.509 version 3
certificates is 2.

1 Other authors, including Kaufman, Perlman, and Speciner (see References), have
also adopted this approach.

Version

Serial Number

Algorithm Identifier

Issuer

Period of Validity

Subject

Subject's Public Key

Issuer Unique ID

Subject Unique ID

Extensions

Signature

Called "Signature" in standard

Called "Encrypted" in standard

Figure A-1 An X.509 certificate contains fewer than a dozen items.

X.509 Certificates 133

A.1.2 Serial Number

The Serial Number is a value assigned by the certificate authority to
an individual certificate. Presumably, the ca ensures that the value is
unique for every certificate it issues. The certificate authority has
complete control over this field, though, and can put any value what-
soever here.

A.1.3 Algorithm Identifier

The Algorithm Identifier is one of the fields that is named differently
in the standard. The x.509 specification calls this field the Signature.
That choice is particularly inappropriate, because the field doesn’t
contain a signature at all. Instead, as the name used here implies, the
field simply identifies the algorithm used to sign the certificate, as
well as any parameters pertinent to that algorithm. This information
is actually repeated in the “encrypted” part of the certificate. Most
implementations choose to use the information from that section, ef-
fectively ignoring this value.

A.1.4 Issuer

The Issuer field identifies the certificate authority that issued the cer-
tificate. It takes the form of a distinguished name. A distinguished
name is a hierarchy, often starting with a country and then dividing
into state or province, organizations, organizational units, and so on.
Theoretically, a distinguished name may extend all the way to an in-
dividual. Certificate authorities have historically been rather liberal in
their interpretation of this hierarchy. The organizational unit ele-
ment, for example, is often used to hold miscellaneous information
relating to the authority. The example certificate of section a.4 dem-
onstrates this practice.

A.1.5 Period of Validity

The Period of Validity identifies both the earliest and latest times that
the certificate is valid. Outside of the bounds this field asserts, the
certificate should not be considered valid.

134 SSL & TLS Essentials: Securing the Web

A.1.6 Subject

The Subject field identifies the entity that owns the private key being
certified. Like the Issuer field, this field takes the form of a distin-
guished name, and, as with the Issuer, certificate authorities have his-
torically interpreted the distinguished name hierarchy quite liberally.
Generally, the most important element in the subject’s name is the
element known as the commonName. The commonName is typically
the actual name of the subject being certified.

A.1.7 Subject’s Public Key

This field contains the subject’s public key, and is, in effect, the whole
reason for the certificate. This field also identifies the algorithm and
its parameters. As an example, if the public key algorithm is rsa,
then this field will contain the modulus and public exponent. Note
that this information is different from the information in the Signa-
ture and Algorithm Identifier fields of the certificate. Those two
fields identify the algorithm of the certificate authority’s public key,
the key used to sign the certificate. This field identifies the subject’s
public key.

A.1.8 Issuer Unique Identifier

This optional field, which was introduced in x.509 version 2, permits
two different issuers to have the same Issuer distinguished name.
Such issuers would be distinguished from each other by having dif-
ferent values for the Issuer Unique Identifier. As a practical matter,
this field is rarely used.

A.1.9 Subject Unique Identifier

This optional field, also introduced in x.509 version 2, permits two
different subjects to have the same distinguished name. For example,
two different people in the same organization might be named
Stephen Thomas. Such subjects would be distinguished by different
values for this field. As a practical matter, like the Issuer Unique
Identifier, the Subject Unique Identifier field is rarely used.

X.509 Certificates 135

A.1.10 Extensions

The Extensions field was introduced in version 3 of x.509 (the latest
version as of this writing). It provides a place for issuers to add their
own private information to the certificate. As discussed in Chapter 5,
this is the area where the special object identifiers for Netscape’s In-
ternational Step-Up and Microsoft’s Server Gated Cryptography ap-
pear. Certificate authorities frequently use this area for miscellaneous
information related to the certificate. The sample certificate of sec-
tion a.4 includes examples of this type of information.

A.1.11 Signature

The Signature itself is the final element of an x.509 certificate. As the
figure notes, the specification names this field “encrypted.” The field
contains the algorithm identifier, a secure hash of the other fields in
the certificate, and a digital signature of that hash.

A.2 Abstract Syntax Notation One

The x.509 standard describes certificates using a special notation
known as Abstract Syntax One, or asn.1 for short. asn.1 has been
called many things (not all of them nice, as it can be a very complex
tool), but it resembles, in many respects, a programming language. It
is not a true programming language, because asn.1 really only defines
data structures; it cannot effectively describe execution logic. For
those familiar with the c programming language, asn.1 is roughly
analogous to the c source code that one typically finds in header (.h)
files. It has the equivalent of structs, unions, typedefs, and
even #defines; asn.1, however, does not include the equivalent of
functions.

Like the c language, asn.1 has well-defined primitive types, and it
has methods to define complex combinations of those primitive
types. Those topics, plus the rules for encoding asn.1 objects for
transmission on a network, are the subject of the following subsec-
tions. Please note that this entire section contains only the briefest

136 SSL & TLS Essentials: Securing the Web

possible introduction to asn.1. Readers requiring an in-depth discus-
sion of asn.1 should consult the References section.

A.2.1 Primitive Objects

The asn.1 specification defines a few key objects as primitive objects.
These objects, in fact, are the only objects defined by asn.1 itself. All
other objects are created from combinations of the primitive objects.
The asn.1 primitive objects play the same role that types such as int
and char play in the c language. Table a-1 lists some of the asn.1
primitive objects commonly encountered in x.509 certificates.

Table A-1 Important ASN.1 Primitive Objects

Object Description

BIT STRING An array of bits.

BOOLEAN A value that is either TRUE or FALSE.

IA5String An OCTET STRING in which the octets are re-
stricted to be valid ASCII characters.

INTEGER A positive or negative number (ASN.1 INTEGERs
have no maximum size).

NULL An empty object used as a placeholder.

OBJECT IDENTIFIER A sequence of integers that uniquely identifies
a particular object registered (directly or indi-
rectly) with the ITU.

OCTET STRING An array of bytes (which ASN.1 calls octets).

PrintableString An OCTET STRING in which the octets are re-
stricted to be printable characters.

TeletexString An OCTET STRING in which the octets are re-
stricted to be characters reproducible by
Teletex machines.

UTCTime A special ASCII string containing a universal
time value (popularly known as Greenwich
Mean Time), in the format YYMMDDHHMMSSZ.

A.2.2 Constructed Objects

The asn.1 language allows users to build upon its primitive objects by
combining them into more complex objects. Just as the c language

X.509 Certificates 137

(to continue the earlier example) allows various combinations such as
struct, union, and arrays, asn.1 also provides for constructed ob-
jects. Table a-2 lists the most common ways to combine asn.1 primi-
tive types.

Table A-2 Important ASN.1 Constructions

Construct Description

CHOICE Exactly one of the following individual objects; cor-
responds to a C union.

SEQUENCE An ordered combination of several individual ob-
jects; corresponds to a C struct.

SEQUENCE OF Zero or more of the same individual object (possibly
with different values) in which the order of the ob-
jects is important; corresponds to a C array, though
the size need not be specified.

SET An unordered combination of several individual ob-
jects.

SET OF Zero or more of the same individual object (possibly
with different values) in which the order of the ob-
jects does not matter.

In x.509 certificates, the only constructions that commonly appear
are sequence, set, and choice. The example certificate of section
a.4 includes examples of both types.

A.2.3 The Object Identifier Hierarchy

The object identifier primitive type is a special feature of asn.1
that is not part of standard programming languages such as c. An
object identifier value refers to a specific place in a special hierar-
chy of objects. Every object within this hierarchy has its own unique
object identifier value, and, with only this value, it is possible to
unambiguously identify the corresponding object.

The itu has defined an initial hierarchy for these objects. In graphi-
cal form, the object hierarchy looks like figure a-2. At the highest
level, the hierarchy recognizes the itu, the International Standards
Organization (iso), and joint itu-iso objects. Many other public and

138 SSL & TLS Essentials: Securing the Web

private organizations (including, for example, the ietf, the European
Telecommunications Standards Institute, and others) have their own
object hierarchies beneath one of the three top-level organizations.

The figure details one example hierarchy under the joint itu/iso
subtree. That hierarchy consists of directory services (ds), modules,
an authentication framework, and, finally, x.509. This is the main
path for x.509 objects.

As you can see, the object identifier hierarchy is a little like the
Internet’s domain name system (dns). In that system, the domain
name www.ibm.com refers (reading backward) to commercial or-
ganizations in general (.com), then a particular company (ibm), and
then a specific system belonging to that company (www.). Borrowing
from the dns tradition, object identifier values may be written us-
ing a dot notation. A period separates different levels of the hierar-
chy. Unlike domain names, object identifier values are normally
written from most general to most specific. Furthermore, levels in the
object identifier hierarchy are represented by numbers rather than
names. The x.509 branch from the tree above, therefore, commonly
appears as 2.5.1.7.3.

iso(1) joint-iso-itu(2)itu(0)

ds(5)

module(1)

authFrame(7)

x509(3)

root

Figure A-2 OBJECT IDENTIFIER values are organized as a hierarchy.

X.509 Certificates 139

A.2.4 Tagging

Another unique asn.1 characteristic is tagging. A tag associates a
unique value with a specific asn.1 object or element within an object.
This function sounds similar to that of an object identifier, but
the two concepts are really quite different. The object identifier
hierarchy is a global, distributed hierarchy that is actually independ-
ent of the asn.1 language. The asn.1 language happens to have a na-
tive, primitive type that represents object identifier values, but
other languages could support the object identifier hierarchy
equally well. Tags, on the other hand, are an intimate and essential
part of asn.1. The asn.1 language has greater flexibility than many
data description languages, and tags are one of the essential tools
asn.1 needs to support that flexibility.

The easiest way to sort this out is with an example, so let’s take a
look at some samples of asn.1. Table a-3 shows an asn.1 description
of a complex object. The example object (which is somewhat artifi-
cial in order to clarify the important concepts) has two optional
components and one printable string. The two optional components
are both object identifier values, and they could be used to indi-
cate the governmental level of a location. The itu, for example, has
defined object identifier values for country, state or province, and
locality, and either of these components could indicate whether the
location is a country, state, city, or other. The important thing to note
is that the sample asn.1 defines both the primaryLevel and the sec-
ondaryLevel to be optional. That means that a Location object
could have both, neither, or one or the other of these elements.

Table A-3 Tagging within an Object

ASN.1 Source

Location ::= SEQUENCE {

 primaryLevel [0] OBJECT IDENTIFIER OPTIONAL,

 secondaryLevel [1] OBJECT IDENTIFIER OPTIONAL,

 placeName PrintableString }

Now, consider how to interpret a Location instance that contains
only a single element of type object identifier. Perhaps the Loca-

140 SSL & TLS Essentials: Securing the Web

tion has an object identifier value of 2.5.4.6, which the itu defines
to be “country.” Does this object identifier value mean that the
location’s primary level is a country; or is it the secondary level that’s
the country? The answer lies in the bracketed numbers immediately
before each object identifier keyword. Those numbers are tags.
All primaryLevel elements will have a tag value of 0, and secondary-
Level elements have a tag of 1. Any valid Location instance will in-
clude the appropriate tag value along with the object identifier
value. A quick check of the tag value is enough to tell which object
identifier is present in the Location object.

To summarize, the object identifier hierarchy is a globally admin-
istered way to unambiguously refer to any object, and asn.1 happens
to have some built-in features that make working with the hierarchy
easy. Tags, on the other hand, are an integral part of asn.1 and are
used to distinguish particular asn.1 objects or elements from each
other.

The previous example is only one way that tags distinguish asn.1 ob-
jects from each other. The language actually has four different types
of tags: universal, application-specific, context-specific, and private-
use. What we’ve been discussing so far are context-specific tags. The
0 and 1 of table a-3 only have meaning in the context of a Location
object. Different objects could safely reuse these tag values without
the risk of confusion.

Two of the other types of tags—application-specific and private-
use—are rarely used in any asn.1, and are not relevant to x.509 cer-
tificates, so we won’t discuss them further here. Universal tags, on the
other hand, are important. They are used to distinguish between
asn.1’s primitive types and constructed objects. The asn.1 standards
define specific universal tag values for all the primitive types and
construction operations. Table a-4 lists some that are important for
x.509 certificates. Note that universal tags have the same numeric
values as context-specific tags. (The universal tag for a boolean ob-
ject is the same value, 1, as the context-specific tag for secon-
daryLevel object identifier values in the previous example.) That’s
not really a problem, though. As we’ll see, asn.1 has ways to indicate
whether a particular tag is universal or context-specific.

X.509 Certificates 141

Table A-4 ASN.1 Universal Tags

Universal Tag ASN.1 Object

1 BOOLEAN

2 INTEGER

3 BIT STRING

4 OCTET STRING

5 NULL

6 OBJECT IDENTIFIER

16 SEQUENCE, SEQUENCE OF

17 SET, SET OF

19 PrintableString

20 TeletexString

22 IA5String

23 UTCTime

In addition to belonging to a class, tags are either implicit or ex-
plicit. By default, all tags are explicit, so the object identifier
elements of Location objects are both explicitly tagged. That means
that all primaryLevel elements will have two separate tags. The first
is a context-specific tag of 0 just described; the second is a universal
tag of 6, indicating an object identifier. Most of the time, the sec-
ond tag is not necessary. In our example, by identifying the element
as primaryLevel, the context-specific tag alone also implies that the
element is an object identifier. The universal tag that indicates
the element is an object identifier value is unnecessary. This idea
leads to the asn.1 of table a-5. The implicit keyword with each ele-
ment indicates that the second tag for the type itself is not needed.
So, if Location is defined as in table a-5, a primaryLevel element will
only have a single tag, the context-specific tag of 0. The universal tag
for object identifier is merely implied and not actually present.

Table A-5 Marking Tags as Implicit

ASN.1 Source

Location ::= SEQUENCE {

 primaryLevel [0] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 secondaryLevel [1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,

 placeName PrintableString }

142 SSL & TLS Essentials: Securing the Web

A.2.5 Encoding Rules

When asn.1 is used to define actual objects that are transferred
across a communications network, it must be possible to represent
those objects to computers. Representing asn.1 objects is known as
encoding, and asn.1 defines several different approaches. For x.509
certificates, the approach is that of the Distinguished Encoding Rules,
or der for short.

The Distinguished Encoding Rules for asn.1 are relatively straight-
forward. Nearly all objects consist of the three parts that figure a-3
shows: a tag, a length, and a value. (der also has a method of encod-
ing objects whose final length is unknown when the encoding pro-
cess begins, but this method doesn’t apply to x.509 certificates.)

The first part of any encoded object is the object’s tag. Tags are en-
coded in one of two ways, depending on whether their numeric value
is less than 31. Figure a-4 shows how tag values less than 31 are en-
coded. The two most significant bits indicate the class of the tag; ta-
ble a-6 spells out their values. The next bit indicates whether the
object is primitive or constructed, and the five least significant bits
carry the tag value itself. For example, the tag for sequence is en-
coded as a hexadecimal 0x30. The class bits 00 indicate a universal
tag. The next bit is a 1 to indicate that the object is constructed, and
the five remaining bits are 10000 for the universal tag of 16.

Table A-6 Class Encoding Bit Values for Tags

Bits Class

0 0 Universal Tag

0 1 Application-Specific Tag

1 0 Context-Specific Tag

1 1 Private-Use Tag

Tag Length Value

Encoded ASN.1 Object

Figure A-3 ASN.1 encodes objects as a tag, a length, and a value.

X.509 Certificates 143

When the tag value is greater than 30, the format shown in the bot-
tom of figure a-5 encodes the tag. The class and primitive bits are the
same as before, but the five least significant bits of the first byte are
all ones. The value itself is present in the subsequent bytes. The most
significant bit of these bytes is the extension bit. This extension bit is
set to 1 in all bytes but the last. The remaining bits, when concate-
nated together, form the complete tag value. There is no theoretical
limit to the number of bytes der uses to encode tag values, so der
can successfully encode arbitrarily large tag values.

The length component of each object follows a similar (but not iden-
tical) strategy. If the length is less than 128, it is encoded as a single
byte with a value equal to the length. For objects greater than 127
bytes in length, the most significant bit of the first byte is set to 1,
and the rest of that byte indicates the number of bytes in the length.
The length itself then follows. For example, a length of 100 00o bytes
appears as the hexadecimal value 0x830186a0. The first byte (0x83)
indicates that the length is greater than 127, and that it is present in
the next 3 bytes. Those bytes (0x0186a0, which is the hexadecimal
representation of 100 000) hold the value itself.

Tag

Class Prim. Value

0 to 30

Figure A-4 Small tag values are encoded as a single byte.

...1 1 1 11

Tag

Class Prim. ValueExt.indicates multi-byte

Figure A-5 Tag values greater than 30 use a multi-byte encoding.

144 SSL & TLS Essentials: Securing the Web

The encoding of the object’s value depends on the object’s type, but
the process is relatively straightforward. String objects such as octet
string, ia5string, and utctime simply encode the individual bytes
of the string. The integer object uses two’s complement binary no-
tation, while bit string objects are encoded like octet string ob-
jects, except that the first byte after the length contains the number
of unused bits in the final byte.

The only primitive type with a tricky encoding is the object identi-
fier. For an object identifier, the encoding rules are sufficiently
complicated that they are best explained by an example. Figure a-6
shows the steps involved in encoding the object identifier value
1.0.8571.2. The first step combines the first two components of the
value (the 1 and the 0) by multiplying the first by 40 and adding the
second.2 Then each of the resulting components is converted to a bi-
nary value, which is, in turn, grouped into 7-bit quantities. Each of
these 7-bit quantities becomes a single byte in the encoding. The
most significant bit of each byte is set to 0 on the last 7-bit quantity

2 The asn.1 designers had a reason for this approach, but, in hindsight, the resulting
complexity and political repercussions would probably cause them to reconsider if
they could. What’s done is done, however.

40 8571 2

00000100101000

0000010011110110100001001010000 1

1000010 1111011

0 8571 21

×40 +

. . .

Figure A-6 Encoding OBJECT IDENTIFIER values takes several steps.

X.509 Certificates 145

of each component, and it is set to 1 on all other bytes. The final en-
coding of the object identifier value 1.0.8571.2 is 0x28c27b02.

Constructed objects defined as a sequence and set use the tag for
the appropriate construction, the length of the entire construction,
and then normal der encodings of the individual objects within the
construction. Again, an actual example such as that of section a.4
provides the best illustration of such encodings.

A.3 X.509 Certificate Definition

Although the x.509 specification contains more than 70 pages, the
essential definition of an x.509 certificate consists of only 45 lines of
asn.1 source code that define 10 objects. This section examines each
of those major objects.

A.3.1 The Certificate Object

The primary object for an x.509 certificate is the Certificate object
itself. Table a-7 shows the 14 lines of asn.1 that make up its defini-
tion. Line 1 highlights two key aspects of the Certificate object. First,
it is digitally signed. The signed construction is an asn.1 parameter-
ized type, essentially the same as a c-language macro. In this case, it
indicates that the information to be signed (the asn.1 sequence that
follows) is itself followed by an AlgorithmIdentifier, then by the bit
string containing the results of the signing algorithm.

Table A-7 X.509 Certificate Object

Line ASN.1 Source

1 Certificate ::= SIGNED { SEQUENCE {
2 version [0] Version DEFAULT v1,
3 serialNumber CertificateSerialNumber,
4 signature AlgorithmIdentifier,
5 issuer Name,
6 validity Validity,
7 subject Name,
8 subjectPublicKeyInfo SubjectPublicKeyInfo,
9 issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OP-

TIONAL,

146 SSL & TLS Essentials: Securing the Web

Line ASN.1 Source

10 -- if present, version must be v2 or v3
11 subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OP-

TIONAL,
12 -- if present, version must be v2 or v3
13 extensions [3] Extensions OPTIONAL
14 -- If present, version must be v3 -- } }

Line 1 also shows that the Certificate object is a sequence of other
objects. Those other objects are defined by lines 2 through 14 of the
asn.1; each is discussed in following subsections. Note also that lines
10, 12, and 14 begin with a double dash, or --. This is the asn.1 nota-
tion for a comment. Comments continue to the end of the line, or, as
in line 14, until another double dash is encountered.

Most of the components of a Certificate object are a straightforward
application of their respective objects, and thus are discussed in the
following subsections. The “signature” component in line 4, however,
is a bit tricky. It merely identifies the signature algorithm that the is-
suer uses to sign the certificate; it is not actually a signature for the
certificate. Its value is also repeated as part of the signed construc-
tion, although that second occurrence is not included in the data be-
ing signed. Because of this repetition, and because the
AlgorithmIdentifier object has historically been the subject of con-
siderable confusion, many implementations simply ignore this field
in the certificate, and instead rely on the value in the signed con-
struction.

A.3.2 The Version Object

The Version object identifies which version of the x.509 standard the
certificate complies with. As table a-8 indicates, the object is a simple
integer. It takes on the values 0, 1, or 2—for version 1, 2, or 3 of
x.509, respectively.

Table A-8 X.509 Version Object

Line ASN.1 Source

15 Version := INTEGER { v1(0), v2(1), v3(2) }

X.509 Certificates 147

A.3.3 The CertificateSerialNumber Object

The CertificateSerialNumber is, as table a-9 shows, an integer.

Table A-9 X.509 CertificateSerialNumber Object

Line ASN.1 Source

16 CertificateSerialNumber ::= INTEGER

A.3.4 The AlgorithmIdentifier Object

The AlgorithmIdentifier object has caused a lot of confusion for ssl
implementations. Part of the reason is that, as table a-10 shows, the
x.509 specification does not fully define the object. Rather, it pro-
vides a framework for defining AlgorithmIdentifier objects, and
leaves the messy details up to other specifications. That has left the
door open for many different bodies, including the itu, the ietf, in-
dustry consortia, and proprietary vendors, to devise their own algo-
rithm identifiers. What makes the situation particularly frustrating is
that there really aren’t that many practical algorithms; the result has
been many different ways to refer to the same few algorithms.

Table A-10 X.509 AlgorithmIdentifier Object

Line ASN.1 Source

17 AlgorithmIdentifier ::= SEQUENCE {
18 algorithm ALGORITHM.&id ({SupportedAlgorithms}),
19 parameters ALGORITHM.&Type ({SupportedAlgorithms}{

@algorithm}) OPTIONAL }
20 -- Definition of the following information object set is deferred,

perhaps to standardized
21 -- profiles or to protocol implementation conformance statements.

The set is required to
22 -- specify a table constraint on the parameters component of Algo-

rithmIdentifier
23 -- SupportedAlgorithms ALGORITHM ::= { ... }

Fortunately in this case, the void left by de jure standards has been
filled by de facto implementations. The majority of existing ssl im-
plementations rely on certificates issued by VeriSign or one of its

148 SSL & TLS Essentials: Securing the Web

partners. And VeriSign is generally consistent in using the following
two algorithm identifiers. For public keys, the object identifier (1
2 840 113549 1 1 1) indicates rsa public key encryption. And for digital
signatures, the object identifier (1 2 840 113549 1 1 4) represents the
combination of md5 hash and rsa signing. The sample certificate of
section a.4 includes examples of both AlgorithmIdentifier objects.
Issuers other than VeriSign are likely to use the same identifiers to
ensure interoperability with existing implementations.

A.3.5 The Validity Object

The Validity object, whose definition appears in table a-11, is a se-
quence of two times. The first is the notBefore time; the certificate
should not be considered valid until that time is reached. The second
element of the sequence is the notAfter time. This is the expiration
time for the certificate. Section a.3.7 below shows the definition of
each time value.

Table A-11 X.509 Validity Object

Line ASN.1 Source

24 Validity ::= SEQUENCE {
25 notBefore Time,
26 notAfter Time }

A.3.6 The SubjectPublicKeyInfo Object

The subject’s public key information is carried within a SubjectPub-
licKeyInfo object. As table a-12 shows, that object contains an Algo-
rithmIdentifier, followed by the public key itself.

Table A-12 X.509 SubjectPublicKeyInfo Object

Line ASN.1 Source

27 SubjectPublicKeyInfo ::= SEQUENCE {
28 algorithm AlgorithmIdentifier,
29 subjectPublicKey BIT STRING }

X.509 Certificates 149

A.3.7 The Time Object

Table a-13 shows how a Time object can be described in either of two
formats: as a universal time string or as a generalized time string.
Nearly all implementations choose the universal time string alterna-
tive.

Table A-13 X.509 Time Object

Line ASN.1 Source

30 Time ::= CHOICE {
31 utcTime UTCTime,
32 generalizedTime GeneralizedTime }

A.3.8 The Extensions Object

The x.509 Extensions object is, as table a-14 indicates, a sequence of
one or more individual Extension objects. (Note the change from
plural to singular.) Each Extension consists of an identifier, an indi-
cation of whether the particular extension is critical, and the exten-
sion value. The critical element assists systems that receive a
certificate with extensions they do not understand. If the critical
element is false, then those systems can simply ignore the exten-
sions they cannot interpret. An extension that is critical, however,
should not be ignored. A system that doesn’t understand a critical ex-
tension should play it safe and treat the entire certificate as invalid.

Table A-14 X.509 Extensions

Line ASN.1 Source

33 Extensions ::= SEQUENCE OF Extension
34 Extension ::= SEQUENCE {
35 extnId EXTENSION.&id ({ExtensionSet}),
36 critical BOOLEAN DEFAULT FALSE,
37 extnValue OCTET STRING
38 -- contains a DER encoding of a value of type &ExtnType
39 -- for the extension object identified by extnId -- }

Two particular extensions that are important to ssl are the extended
key usage extensions that indicate International Step-Up and Server

150 SSL & TLS Essentials: Securing the Web

Gated Cryptography. (See sections 5.2 and 5.3.) Currently, any certifi-
cate that supports International Step-Up also supports Server Gated
Cryptography. Such certificates include both extensions. The extKe-
yUsage object identifier is (2 5 29 37), and its value, in this case,
consists of the sequence of object identifier values (2 16 840 1
113730 4 1) and (1 3 6 1 4 1 311 10 3 3). The example certificate of sec-
tion a.4 shows this extension in full context.

A.3.9 The UniqueIdentifier Object

The x.509 certificate includes a few objects that are not defined in
the x.509 specification itself, but are instead found in other itu rec-
ommendations. The UniqueIdentifier object is one of those exter-
nally defined objects. For completeness, table a-15 shows its
definition. Note that a UniqueIdentifier is simply an arbitrary bit
string.

Table A-15 X.500 UniqueIdentifier Object

Line ASN.1 Source

40 UniqueIdentifier ::= BIT STRING

A.3.10 The Name Object

A more significant object defined outside of the x.509 specification is
the Name object. Names are used to identify both subjects and issu-
ers of certificates. As table a-16 shows, a Name is a series of Rela-
tiveDistinguishedName objects, where each of these objects is a set
of one or more attributes.

Table A-16 X.500 Name Object

Line ASN.1 Source

41 Name ::= SEQUENCE OF RelativeDistinguishedName
42 RelativeDistinguishedName ::= SET OF AttributeValueAssertion
43 AttributeValueAssertion ::= SEQUENCE {
44 attributeType OBJECT IDENTIFIER
45 attributeValue ANY }

X.509 Certificates 151

The important organizing concept behind Name objects is a hierar-
chy. An example makes this clearer. I live in the town of Marietta.
That information alone, though, is not really enough to identify my
current hometown. There are at least 11 different cities in the United
States alone named Marietta. A complete identification would be the
town of Marietta, the state of Georgia, and the country of the United
States.

Figure a-7 shows this organization graphically. In x.509 terms, the
Name for my town would be something like country=us, state=ga,
city=Marietta. That full name consists of three separate Rela-
tiveDistinguishedName objects: country=us, state=ga, and city=
Marietta. To take the last of these RelativeDistinguishedName ob-
jects, it is a single AttributeValueAssertion where the attributeType is
city and the attributeValue is Marietta.

Of course, certificates are not normally issued to or by cities. They
typically identify a person or an organization, frequently in a business
context. Various official and unofficial standards define many differ-
ent attributes that can appear in an x.509 certificate. Table a-17 lists
some of the more common ones. Each type in the list consists of an
object identifier and an object for its value.

Country:
United States

State:
Georgia

City:
Marietta

State:
Florida

State:
Hawaii

City:
Macon

City:
Newnan

Figure A-7 Distinguished names are organized in a hierarchy.

152 SSL & TLS Essentials: Securing the Web

Table A-17 Typical X.509 Name Attribute Types

Attribute ASN.1 Description

countryName ::= SEQUENCE { { 2 5 4 6 },
StringType(SIZE(2)) }

organization ::= SEQUENCE { { 2 5 4 10 },
StringType(SIZE(1...64)) }

organizationalUnitName ::= SEQUENCE { { 2 5 4 11 },
StringType(SIZE(1...64)) }

commonName ::= SEQUENCE { { 2 5 4 3 },
StringType(SIZE(1...64)) }

localityName ::= SEQUENCE { { 2 5 4 7 },
StringType(SIZE(1...64)) }

stateOrProvinceName ::= SEQUENCE { { 2 5 4 8 },
StringType(SIZE(1...64)) }

emailAddress ::= SEQUENCE { { 1 2 840 113549 1 9 1 },
IA5String }

A.4 Example Certificate

Although descriptions of asn.1 and x.509 certificates can be helpful,
full understanding comes from actually looking at a real certificate.
This section presents a complete x.509 certificate actually used for
ssl security. Table a-18 shows the full certificate, matching the en-
coded bytes with the appropriate asn.1 source. The leftmost column
in the table indicates the offset (in hexadecimal) from the beginning
of the certificate. This value is important, as further discussion in this
section refers to specific components of the certificate by reference to
their offset.

Table A-18 Example X.509 Certificate
Offset Certificate Contents ASN.1

0000 30 82 05 64 SEQUENCE, len=0x564

 30 82 04 CD SEQUENCE, len=0x4CD

 A0 03 EXPLICIT TAG [0], len=3

 02 01 INTEGER, len=1

 02 2

 02 10 INTEGER, len=0x10

X.509 Certificates 153

Offset Certificate Contents ASN.1

 3E value=0x3E29...

0010 29 CF 54 69 08 2B 0F AB 73 2D 95 39 A5 97 2C

 30 SEQUENCE, len=0xD

0020 0D

 06 09 OBJECT IDENTIFIER, len=9

 2A 86 48 86 F7 0D 01 01 04 1.2.840.113549.1.1.4

 05 00 NULL, len=0

 30 81 SEQUENCE, len=0xBA

0030 BA

 31 1F SET, len=0x1F

 30 1D SEQUENCE, len=0x1D

 06 03 OBJECT IDENTIFIER, len=3

 55 04 0A 2.5.4.10

 13 16 PrintableString, len=0x16

 56 65 72 69 "VeriSign Trust Network"

0040 53 69 67 6E 20 54 72 75 73 74 20 4E 65 74 77 6F

0050 72 6B

 31 17 SET, len=0x17

 30 15 SEQUENCE, len=0x15

 06 03 OBJECT IDENTIFIER, len=3

 55 04 0B 2.5.4.11

 13 0E PrintableString, len=0xE

 56 65 72 "VeriSign, Inc."

0060 69 53 69 67 6E 2C 20 49 6E 63 2E

 31 33 SET, len=0x33

 30 31 SEQUENCE, len=0x31

 06 OBJECT IDENTIFIER, len=3

0070 03

 55 04 0B 2.5.4.11

 13 2A PrintableString, len=0x2A

 56 65 72 69 53 69 67 6E 20 49 "VeriSign International

0080 6E 74 65 72 6E 61 74 69 6F 6E 61 6C 20 53 65 72 Server CA = Class 3"

0090 76 65 72 20 43 41 20 2D 20 43 6C 61 73 73 20 33

00A0 31 49 SET, len=0x49

 30 47 SEQUENCE, len=0x47

 06 03 OBJECT IDENTIFIER, len=3

 55 04 0B 2.5.4.11

 13 40 PrintableString, len=0x40

 77 77 77 2E 76 "www.verisign.com/CPS

00B0 65 72 69 73 69 67 6E 2E 63 6F 6D 2F 43 50 53 20 Incorp.by Ref.

00C0 49 6E 63 6F 72 70 2E 62 79 20 52 65 66 2E 20 4C LIABILITY LTD.(c)97

00D0 49 41 42 49 4C 49 54 59 20 4C 54 44 2E 28 63 29 VeriSign"

00E0 39 37 20 56 65 72 69 53 69 67 6E

154 SSL & TLS Essentials: Securing the Web

Offset Certificate Contents ASN.1

 30 1E SEQUENCE, len=0x1E

 17 0D UTCTime, len=0xD

 39 "981203000000Z"

00F0 38 31 32 30 33 30 30 30 30 30 30 5A

 17 0D UTCTime, len=0xD

 39 39 "991211235959Z"

0100 31 32 31 31 32 33 35 39 35 39 5A

 30 81 89 SEQUENCE, len=0x89

 31 0B SET, len=0xB

0110 30 09 SEQUENCE, len=9

 06 03 OBJECT IDENTIFIER, len=3

 55 04 06 2.5.4.6

 13 02 PrintableString, len=2

 4E 5A "NZ"

 31 11 SET, len=0x11

 30 0F SEQUENCE, len=0xF

 06 OBJECT IDENTIFIER, len=3

0120 03

 55 04 08 2.5.4.8

 13 08 PrintableString, len=8

 41 75 63 6B 6C 61 6E 64 "Auckland"

 31 11 SET, len=0x11

0130 30 0F SEQUENCE, len=0xF

 06 03 OBJECT IDENTIFIER, len=3

 55 04 07 2.5.4.7

 14 08 TeletexString, len=8

 41 75 63 6B 6C 61 6E "Auckland"

0140 64

 31 19 SET, len=0x19

 30 17 SEQUENCE, len=0x17

 06 03 OBJECT IDENTIFIER, len=3

 55 04 0A 2.5.4.10

 14 10 TeletexString, len=0x10

 41 53 42 20 "ASB Bank Limited"

0150 42 61 6E 6B 20 4C 69 6D 69 74 65 64

 31 1D SET, len=0x1D

 30 1B SEQUENCE, len=0x1B

0160 06 03 OBJECT IDENTIFIER, len=3

 55 04 0B 2.5.4.11

 14 14 TeletexString, len=0x14

 49 6E 66 6F 72 6D 61 74 69 "Information Services"

0170 6F 6E 20 53 65 72 76 69 63 65 73

 31 1A SET, len=0x1A

X.509 Certificates 155

Offset Certificate Contents ASN.1

 30 18 SEQUENCE, len=0x18

 06 OBJECT IDENTIFIER, len=3

0180 03

 55 04 03 2.5.4.3

 14 11 TeletexString, len=0x11

 77 77 77 2E 61 73 62 62 61 6E "www.asbbank.co.nz"

0190 6B 2E 63 6F 2E 6E 7A

 30 81 9E SEQUENCE, len=0x9E

 30 0D SEQUENCE, len=0xD

 06 09 OBJECT IDENTIFIER, len=9

 2A 86 1.2.840.113549.1.1.1

01A0 48 86 F7 0D 01 01 01

 05 00 NULL, len=0

 03 81 8C 00 BIT STRING, len=0x8C, unused=0

 30 81 88 0x308188...

01B0 02 81 80 6C BE 1F AF 40 43 3F 8C B9 77 77 40 16

01C0 9A CF C7 5B 9B E9 5F D8 E5 2E A0 CC A5 85 09 F6

01D0 67 27 EC C9 78 BF 74 96 B0 38 6C C6 93 C4 62 82

01E0 F8 3B 84 EB 82 1D 48 C3 2A 68 C3 08 D5 6B E3 55

01F0 2C AA A3 8B 81 EE 77 17 12 0A F0 03 CE CE A6 14

0200 DF AB EC E0 C4 B4 77 8B 97 88 A3 12 29 A2 36 A2

0210 9E F9 66 A0 5E 8E FD 6D FB 83 51 41 C9 0B F8 7B

0220 E4 15 13 D9 C8 8D 2C 83 1A A6 CE 6A A4 90 FD 11

0230 25 86 73 02 03 01 00 01

 A3 82 02 99 EXPLICIT TAG [3], len=0x299

 30 82 02 95 SEQUENCE, len=0x295

0240 30 09 SEQUENCE, len=9

 06 03 OBJECT IDENTIFER, len=3

 55 1D 13 2.5.29.19

 04 02 OCTET STRING, len=2

 30 00 SEQUENCE, len=0

 30 82 02 1F SEQUENCE, len=0x21F

 06 OBJECT IDENTIFIER, len=3

0250 03

 55 1D 03 2.5.29.3

 04 82 02 16 OCTET STRING, len=0x216

 30 82 02 12 SEQUENCE, len=0x212

 30 82 02 0E SEQUENCE, len=0x20E

0260 30 82 02 0A SEQUENCE, len=0x20A

 06 0B OBJECT ID., len=0xB

 60 86 48 01 86 F8 45 01 07 01 2.16.840.1.113733.1.7.1.1

0270 01

 30 82 01 F9 SEQUENCE, len=0x1F9

156 SSL & TLS Essentials: Securing the Web

Offset Certificate Contents ASN.1

 16 82 01 A7 IA5String, len=0x1A7

 54 68 69 73 20 63 65 "This certificate

0280 72 74 69 66 69 63 61 74 65 20 69 6E 63 6F 72 70 incorporates by

0290 6F 72 61 74 65 73 20 62 79 20 72 65 66 65 72 65 reference, and its

02A0 6E 63 65 2C 20 61 6E 64 20 69 74 73 20 75 73 65 use is strictly

02B0 20 69 73 20 73 74 72 69 63 74 6C 79 20 73 75 62 subject to, the

02C0 6A 65 63 74 20 74 6F 2C 20 74 68 65 20 56 65 72 VeriSign Certification

02D0 69 53 69 67 6E 20 43 65 72 74 69 66 69 63 61 74 Practice Statement

02E0 69 6F 6E 20 50 72 61 63 74 69 63 65 20 53 74 61 (CPS), available at:

02F0 74 65 6D 65 6E 74 20 28 43 50 53 29 2C 20 61 76 https://www.verisign

0300 61 69 6C 61 62 6C 65 20 61 74 3A 20 68 74 74 70 .com /CPS; by E-mail at

0310 73 3A 2F 2F 77 77 77 2E 76 65 72 69 73 69 67 6E CPS-requests@verisign.

0320 2E 63 6F 6D 2F 43 50 53 3B 20 62 79 20 45 2D 6D com; or by mail at

0330 61 69 6C 20 61 74 20 43 50 53 2D 72 65 71 75 65 VeriSign, Inc., 2593

0340 73 74 73 40 76 65 72 69 73 69 67 6E 2E 63 6F 6D Coast Ave., Mountain

0350 3B 20 6F 72 20 62 79 20 6D 61 69 6C 20 61 74 20 View, CA 94043 USA

0360 56 65 72 69 53 69 67 6E 2C 20 49 6E 63 2E 2C 20 Tel. +1 (415) 961-8830

0370 32 35 39 33 20 43 6F 61 73 74 20 41 76 65 2E 2C Copyright (c) 1996

0380 20 4D 6F 75 6E 74 61 69 6E 20 56 69 65 77 2C 20 VeriSign, Inc All Rights

0390 43 41 20 39 34 30 34 33 20 55 53 41 20 54 65 6C Reserved. CERTAIN

03A0 2E 20 2B 31 20 28 34 31 35 29 20 39 36 31 2D 38 WARRANTIES

03B0 38 33 30 20 43 6F 70 79 72 69 67 68 74 20 28 63 DISCLAIMED and

03C0 29 20 31 39 39 36 20 56 65 72 69 53 69 67 6E 2C LIABILITY LIMITED."

03D0 20 49 6E 63 2E 20 20 41 6C 6C 20 52 69 67 68 74

03E0 73 20 52 65 73 65 72 76 65 64 2E 20 43 45 52 54

03F0 41 49 4E 20 57 41 52 52 41 4E 54 49 45 53 20 44

0400 49 53 43 4C 41 49 4D 45 44 20 61 6E 64 20 4C 49

0410 41 42 49 4C 49 54 59 20 4C 49 4D 49 54 45 44 2E

0420 A0 0E TAG [0], len=0xE

 06 0C OBJECT ID., len=0xC

 60 86 48 01 86 F8 45 01 07 01 01 01 2.16.840.1.113733.1.7.1.1.1

0430 A1 0E TAG [1], len=0xE

 06 0C OBJECT ID. len=0xC

 60 86 48 01 86 F8 45 01 07 01 01 02 2.16.840.1.113733.1.7.1.1.2

0440 30 2C SEQUENCE, len=0x2C

 30 2A SEQUENCE, len=0x2A

 16 28 IA5String, len=0x28

 68 74 74 70 73 3A 2F 2F 77 77 "https://www.

0450 77 2E 76 65 72 69 73 69 67 6E 2E 63 6F 6D 2F 72 verisign.com

0460 65 70 6F 73 69 74 6F 72 79 2F 43 50 53 20 /repository/CPS "

 30 11 SEQUENCE, len=0x11

0470 06 09 OBJECT IDENTIFIER, len=9

 60 86 48 01 86 F8 42 01 01 2.16.840.1.113730.1.1

 04 04 OCTET STRING, len=4

https://www.verisign
https://www

X.509 Certificates 157

Offset Certificate Contents ASN.1

 03 02 06 BIT STRING, len=2, unused=6

0480 40 '01'B

 30 20 SEQUENCE, len=0x20

 06 03 OBJECT IDENTIFIER, len=3

 55 1D 25 2.5.29.37

 04 19 OCTET STRING, len=0x19

 30 17 SEQUENCE, len=0x17

 06 09 OBJECT IDENTIFIER, len=9

 60 86 2.16.840.1.113730.4.1

0490 48 01 86 F8 42 04 01

 06 0A OBJECT IDENTIFIER, len=0xA

 2B 06 01 04 01 82 37 1.3.6.1.4.1.311.10.3.3

04A0 0A 03 03

 30 30 SEQUENCE, len=0x30

 06 0A OBJECT IDENTIFIER, len=0xA

 60 86 48 01 86 F8 45 01 06 2.16.840.1.113733.1.6.7

04B0 07

 04 22 OCTET STRING, len=0x22

 16 20 IA5String, len=0x20

 34 36 30 36 66 63 33 35 34 38 37 "4606fc354874e3d1

04C0 34 65 33 64 31 64 62 64 38 36 39 66 32 32 64 30 dbd869f22d0f273f"

04D0 66 32 37 33 66

 30 0D SEQUENCE, len=0xD

 06 09 OBJECT IDENTIFIER, len=9

 2A 86 48 86 F7 0D 01 1.2.840.113549.1.1.4

04E0 01 04

 05 00 NULL, len=0

 03 81 81 00 BIT STRING, len=0x81, unused=0

 4C 21 70 CC D6 3F EC 73 0x4C2170...

04F0 07 83 B2 78 3B C0 86 06 15 C1 97 ED 90 D7 3C B2

0500 0F 6E DE 94 10 46 FD F1 1E 67 76 0D A3 DD 5D 92

0510 DC 66 EC 4A 7A 61 03 AC E4 EF 00 7B 21 83 94 BE

0520 AB A7 22 07 58 F8 0C 39 11 31 B3 A4 22 F5 BB 20

0530 E2 BA C1 C2 3B 02 3A 26 95 C3 D0 2C 67 D3 F3 34

0540 A3 C8 44 35 37 E9 E2 5E 5B ED 53 A8 07 07 79 D7

0550 17 96 52 D3 50 14 5C C1 E1 41 88 CA A4 D6 17 84

0560 46 49 AC B1 5C C8 3B 5A

To clarify the relationship between the x.509 standard’s definition of
a certificate and an actual certificate, table a-19 repeats the asn.1
definition. It then identifies the offset of each major asn.1 compo-
nent within the certificate.

158 SSL & TLS Essentials: Securing the Web

Table A-19 Offsets of X.509 Certificate Components

Offset ASN.1 Source

0004 Certificate ::= SIGNED { SEQUENCE {
0008 Version [0] Version DEFAULT v1,
000D serialNumber CertificateSerialNumber,
001F signature AlgorithmIdentifier,
002E issuer Name,
00EB validity Validity,
010B subject Name,
0197 subjectPublicKeyInfo SubjectPublicKeyInfo,
n.a. issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- if present, version must be v2 or v3
n.a. subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OP-

TIONAL,
 -- if present, version must be v2 or v3

0238 extensions [3] Extensions OPTIONAL
 -- If present, version must be v3 -- } }

The example certificate includes several object identifier values.
Table a-20 lists those that occur in the example certificate, along
with a brief description of each. Some of the values in the actual cer-
tificate are privately administered, and thus their meanings are not
publicly known.

Table A-20 OBJECT IDENTIFIER values in Example Certificate

OBJECT IDENTIFIER Description Offset(s)

1.2.840.113549.1.1.1 rsaEncryption 019C

1.2.840.113549.1.1.4 md5withRSAEncryption 0021,
04D7

1.3.6.1.4.1.311.10.3.3 Server Gated Cryptography 0497

2.5.4.3 commonName 017F

2.5.4.6 countryName 0112

2.5.4.7 localityName 0132

2.5.4.8 stateOrProvinceName 0121

2.5.4.10 organizationName 0035,
0145

2.5.4.11 organizationalUnitName 0056,
0071,

X.509 Certificates 159

OBJECT IDENTIFIER Description Offset(s)
00A4,
0160

2.5.29.3 certificatePolicies 024F

2.5.29.19 basicConstraints 0242

2.5.29.37 extKeyUsage 0483

2.16.840.1.113730.1.1 netscape-cert-type 0470

2.16.840.1.113730.4.1 International Step-Up 048C

2.16.840.1.113733.1.6.7 VeriSign unknown 04A5

2.16.840.1.113733.1.7.1.1 VeriSign certificatePolicy 0264

2.16.840.1.113733.1.7.1.1.1 VeriSign policy qualifier 0422

2.16.840.1.113733.1.7.1.1.2 VeriSign policy qualifier 0432

To conclude this section, table a-21 shows the logical content of the
example certificate. It strips away the encoding information to focus
on the essential elements of the certificate.

Table A-21 Contents of Example Certificate

Version X.509 version 3

Serial Number 0x3E29...

Algorithm Identifier MD5 hash and RSA signing

Issuer:

 Organization VeriSign Trust Network

 Organizational
Unit

VeriSign, Inc.

 Organizational
Unit

VeriSign International Server CA = Class 3

 Organizational
Unit

www.verisign.com/CPS ...

Validity:

 Not Before 1998-12-03 00:00.00 UTC

 Not After 1999-12-11 23:59.59 UTC

Subject:

 Country New Zealand

 State or Province Auckland

160 SSL & TLS Essentials: Securing the Web

 Locality Auckland

 Organization ASB Bank Limited

 Organizational
Unit

Information Services

 Common Name www.asbbank.co.nz

Public Key Information:

 Algorithm RSA

 Public Key 0x308188...

Extensions:

 International Step-Up

 Server Gated Cryptography

 various VeriSign extensions

Algorithm Identifier MD5 hash with RSA signing

Signature 0x4C2170...

 161

Appendix B
SSL Security Checklist

The Secure Sockets Layer protocol has been in use for Web com-
merce for three years now, and under its new name of Transport
Layer Security, the protocol is now in its fourth revision. Engineers
now have quite a lot of experience with ssl and tls implementa-
tions, much of which has helped to improve the security of the pro-
tocol through its revisions. Security specialists have also learned quite
a lot about the relationship of ssl to other aspects of the systems that
implement it. In fact, although there are no known security flaws in
the ssl or tls protocols themselves, other weaknesses in systems us-
ing ssl have been successfully exploited, at least in academic or re-
search environments. This appendix considers those other
weaknesses. It presents them in the form of an ssl security checklist,
primarily for those readers who are designing or evaluating ssl im-
plementations. Of course, the following list is not exhaustive, and
new threats and attacks are likely to arise in the future. Readers
should certainly stay up to date with security news and events to
make sure that their implementations do not become vulnerable as
new attacks are discovered.

This appendix considers security issues related to both the authenti-
cation and the encryption services of ssl. Each service receives its
own section. In some cases, the distinction between the two is a bit
artificial, as several issues have important effects for both services.
For these, the appendix concludes with a section of general issues
that are not easily characterized.

B.1 Authentication Issues

Authentication often seems to take a back seat to encryption in secu-
rity discussions, especially in the trade press, where reports of crack-

162 SSL & TLS Essentials: Securing the Web

ing cryptographic algorithms receive prominent coverage. Ultimately,
however, authentication is more critical to security. How secure, after
all, is a system that establishes full-strength, encrypted communica-
tions with an attacker masquerading as the intended recipient? No
amount of encryption can prevent an unsuspecting party sending an
unauthenticated (or improperly authenticated) attacker the session
keys. Although it may be tempting to overlook them, addressing au-
thentication issues is vital to secure communication.

As this section makes clear, many of the issues of ssl authentication
revolve around x.509 certificates. There are, however, some authenti-
cation issues specific to ssl that are independent of public key certifi-
cates.

B.1.1 Certificate Authority

A certificate authority (ca) signs all x.509 certificates, and any ssl
implementation must decide whether it can trust the ca of its com-
municating peer. Typically, implementations compare the peer’s ca
with an internal list of authorities that the implementation “knows”
to be trustworthy. With this approach, it is important that the im-
plementation use the public key from its internal store to verify the
certificate, rather than the public key from the ca certificate provided
by the peer. Attackers can construct fake ca certificates that are iden-
tical to real certificates in all areas except the public key, substituting
a public key corresponding to the attacker’s private key. Only by re-
trieving ca public keys from its internal store would an implementa-
tion prevent such an attack.

If an implementation does decide to keep an internal list of trusted
certificate authorities, it must carefully consider how, if at all, it will
allow users to update that list. For short-lived implementations, such
updates may not be needed. In general, however, users will need a
way to revise the set of trusted authorities. Even ca certificates, for
example, expire eventually.

SSL Security Checklist 163

B.1.2 Certificate Signature

This point may seem obvious, but it can be easy to overlook: an ssl
implementation must validate all certificates it receives by verifying
the ca signature within them.

B.1.3 Certificate Validity Times

All ssl implementations should also check the validity period for all
certificates. The validity period includes both a “not before” and a
“not after” time; both should be verified. As an additional twist, note
that the asn.1 object used for time in x.509 certificates (the utctime
string) only provides two decimal digits for the year. All appropriate
y2k concerns apply.

B.1.4 Certificate Revocation Status

Implementations that operate in environments that support certifi-
cate revocation should check the revocation status of any certificate
before accepting it. Unfortunately, not all environments effectively
support certificate revocation. The Web, for example, does not have a
widely deployed mechanism for disseminating certificate revocation
lists. In such cases, an implementation may want to provide users an
alternative, perhaps by permitting the manual import of certificate
revocation lists.

B.1.5 Certificate Subject

Perhaps it should go without saying, but an implementation must not
only ensure that a certificate is valid; the implementation must also
make sure that it certifies the right party. An attacker may well be
able to get a perfectly valid certificate from a legitimate certificate
authority. That certificate will simply be a certificate for the attacker.
An implementation that tries to communicate with confidant.com,
and instead receives a certificate for evilhacker.com, had better notice
the discrepancy, no matter how valid the certificate.

164 SSL & TLS Essentials: Securing the Web

Exactly how an implementation verifies that the certificate is for the
intended subject depends on the policies of the certificate authority.
VeriSign Class 3 certificates, for example, place the host name of the
certified Web site in the commonName field of the certificate’s sub-
ject. Both Netscape Navigator and Internet Explorer check this field
against the host name that the user enters in the url (or that appears
in the referring link).

B.1.6 Diffie-Hellman Trapdoors

When ssl implementations use ephemeral Diffie-Hellman key ex-
change, the server specifies a full set of Diffie-Hellman parameters.
There are, however, legitimate disagreements about what constitutes
sufficiently secure Diffie-Hellman parameters.1 Clients that support
ephemeral Diffie-Hellman key exchange should check the parame-
ters they receive from the server. They should ensure that the server
has chosen values that the client believes will provide adequate secu-
rity.

B.1.7 Algorithm Rollback

With a ServerKeyExchange message, an ssl server sends the client
public key information the client needs to encrypt the premaster se-
cret for the server. This key information is signed by the server using
the private key corresponding to the public key in the server’s Cer-
tificate message. The public key algorithm the client is to use, how-
ever, is not specified explicitly in the ServerKeyExchange message, so
that information is not signed by the server. This could make the ssl
protocol vulnerable to an algorithm rollback attack.

In an algorithm rollback attack, the attacker forces the two parties to
have different opinions as to which public key algorithm is to be used

1 For example, in Network Security (Prentice-Hall, 1995), C. Kaufman, R. Perlman,
and M. Speciner suggest that Diffie-Hellman prime numbers should have a special
property that makes them strong primes. Bruse Schneier, on the other hand, argues in
Applied Cryptography (John Wiley & Sons, 1996) that strong primes do not improve
the security.

SSL Security Checklist 165

to sign the premaster secret. The client, for example, might be fooled
into believing that rsa encryption is appropriate, while the server ex-
pects Diffie-Hellman. David Wagner and Bruce Schneier show2 how
this scenario leads to a complete breakdown of all cryptographic
protection. The attacker is able to read all information for the session
or to forge fake data in the name of either party.

To protect against this algorithm rollback attack, ssl client imple-
mentations should verify the length and number of parameters in any
ServerKeyExchange message. As figures 4-10 and 4-11 indicated, rsa
encryption requires only two parameters, while Diffie-Hellman uses
three. If, in any received message, the lengths of the individual pa-
rameters and the signed hash values do not add up to the correct
length of the whole message, then the client should reject the session
and generate an appropriate alert.

B.1.8 Dropped ChangeCipherSpec Messages

The ssl protocol does not include ChangeCipherSpec messages in
the handshake authentication code that Finished messages carry.
ChangeCipherSpec messages are omitted because ssl does not con-
sider them to be Handshake protocol messages. (Recall that
ChangeCipherSpec messages belong to their own separate ssl sub-
protocol.) This omission does leave ssl implementations vulnerable
to a particular attack when the parties use authentication-only (i.e.,
no encryption) sessions.

To take advantage of this vulnerability, the attacker simply deletes
the ChangeCipherSpec messages from the communication stream.
Both parties will receive an apparently valid Finished message and
begin transferring application data, without ever activating the cipher
suite they have negotiated. (This attack is not feasible when the ses-
sion uses encryption. In that case, the party sending a Finished mes-
sage will encrypt it, while the party receiving the Finished message,

2 In “Analysis of the ssl 3.0 Protocol” (see the References section); this paper was
the first to publish a description of this attack.

166 SSL & TLS Essentials: Securing the Web

not having seen the missing ChangeCipherSpec message, will expect
it unencrypted.)

Fortunately, combating this attack is very straightforward. An ssl
implementation should not accept a Finished message unless it has
also received a ChangeCipherSpec message.

B.2 Encryption Issues

Aside from the contentious legal issues that can limit the effective-
ness of any security implementation, ssl is very effective in protect-
ing the confidentiality of information. There are a few minor points
to consider, however. This section reviews the importance of encryp-
tion key size, and examines two other concerns about ssl encryption:
a potential traffic analysis weakness and an attack first identified by
Daniel Bleichenbacher.

B.2.1 Encryption Key Size

One important issue that arises repeatedly is the strength of the en-
cryption that ssl offers. That strength depends most directly on the
size of the keys used by the symmetric encryption algorithms, such as
rc4 and des. In theory, developers could create ssl implementations
that only used sufficiently large key sizes, and such implementations
would be practically unbreakable. Some governments, however, place
restrictions on the use or export of cryptography. The laws and regu-
lations of the United States (home to many key ssl developers)
forced the creation of the “export strength” ssl cipher suites, which,
because of their limited key size, are much weaker than the protocol
allows. Indeed, sessions encrypted using these cipher suites were suc-
cessfully attacked as early as 1995,3 and most security professionals
today consider the ssl export strength cipher suites to offer only

3 Reported in “Netscape Security Encryption is Cracked—Breach Spurs Concern for
Commerce on Internet,” San Jose Mercury News, 17 August 1995. Information is also
available at http://pauillac.inria.fr/~doligez/ssl/.

http://pauillac.inria.fr/~doligez/ssl/

SSL Security Checklist 167

marginal security. The situation did not improve significantly when
the u.s. government relaxed its regulations to allow export of stronger
cryptography. The stronger 56-bit encryption was compromised in
1998.4

Secure Socket Layer implementations should carefully evaluate the
value of the information they will protect and weigh that against the
strength of the security they can offer. If the information is suffi-
ciently valuable, and if the implementation would be subject to laws
or regulations that would restrict its encryption strength, compromise
solutions might be the most viable. Netscape’s International Step-Up
and Microsoft’s Server Gated Cryptography are both examples of
how stronger security is possible in the context of laws and regula-
tions.

B.2.2 Traffic Analysis

Attackers may learn a lot about a target just by observing the traffic
to and from that target, even if they cannot actually decrypt the in-
formation. Traffic analysis, as such attacks are known, is difficult to
defend against in an open environment such as the Internet. (Indeed,
many Web sites like to publicize the amount and type of traffic they
receive.) In any environment, however, the ssl protocol itself intro-
duces an additional traffic analysis vulnerability. When ssl uses a
stream cipher for encryption, the size of the encrypted messages can
reveal the size of the unencrypted data; the attacker needs only to
subtract the size of the message authentication code. Bennet Yee5 has
noted how this weakness could allow an attacker to discover some in-
formation about an encrypted session, including, for example, which
specific Web pages were retrieved by a user (though not the contents
of those pages). This weakness is not present if block encryption ci-
phers are used, since the padding they introduce effectively hides the
exact size of the plaintext data. If the application warrants it, ssl im-

4 See Cracking DES: Secrets of Encryption Research, Wiretap Politics & Chip Design by
the Electronic Frontier Foundation, published by O’Reilly & Associates in 1998.
5 As reported in Wagner and Schneier.

168 SSL & TLS Essentials: Securing the Web

plementations may choose to support only block encryption cipher
suites in order to protect against this traffic analysis attack.

B.2.3 The Bleichenbacher Attack

In 1998, Daniel Bleichenbacher, a researcher at Lucent’s Bell Labora-
tories, reported a specific active attack against security protocols that
use rsa encryption, including the ssl protocol.6 The attack takes ad-
vantage of the way the rsa encryption algorithm encodes data before
encrypting it. The encoded data (which ssl uses as a symmetric en-
cryption key) always begins with the two bytes 00 and 02. Table b-1
shows how an attacker can exploit this characteristic.

Table B-1 The Bleichenbacher Attack

Step Action

1 The attacker carefully constructs many artificial ciphertext
blocks and sends them to the target. (Since the attacker doesn’t
know the target’s private key, the attacker won’t know how
these ciphertext blocks will be decrypted. At this point, that is
not important, though.)

2 The target receives the artificial ciphertext blocks and decrypts
them.

 a For most of the blocks, the resulting “plaintext” will not con-
form to the RSA encoding format. (It won’t begin with the bytes
00 and 02.) In those cases, the target generates an error or per-
haps ignores the communication.

 b Occasionally a ciphertext block will happen to decrypt into
plaintext that begins with the magic 00 and 02 bytes. In those
cases, the target treats the decryption as successful and at-
tempts to use the rest of the “plaintext” for its intended pur-
pose. (Since the plaintext is effectively just random data, the
target is likely to eventually realize that something is wrong
with its data. By that time, however, it may be too late.)

6 Details can be found in Bleichenbacher’s paper “Chosen Ciphertext Attacks against
Protocols Based on rsa Encryption Standard pkcs #1” in Advances in Cryptology—
Crypto'98, lncs vol. 1462, pp. 1–12, 1998, published by Springer-Verlag. The attack is
also described in rsa Laboratories’ Bulletin Number 7 (26 June 1998), available at
this writing from the rsa Web site at http://www.rsasecurity.com/rsalabs/bulletins/.

http://www.rsasecurity.com/rsalabs/bulletins/

SSL Security Checklist 169

Step Action

3 The attacker observes the target’s reaction to each artificial ci-
phertext block, noting which blocks cause response 2a and
which cause response 2b.

4 By carefully choosing its artificial ciphertext blocks, and by re-
fining those choices as the attack progresses, the attacker can
use sophisticated mathematical analyses to decipher a related
ciphertext block, perhaps one that was actually sent to the tar-
get as part of legitimate communications.

In practice, Bleichenbacher’s strategy does have a significant limita-
tion. The number of artificial ciphertext blocks it requires can be
quite large. For a 1024-bit rsa modulus (the standard key size for
Web security not subject to u.s. export restrictions), the attacker
must generate about 220 (just over 1 million) different artificial cipher-
text blocks. This limitation will likely warn any reasonably vigilant
target that an attack may be under way.

In addition, there are several other steps that ssl implementations
can take to reduce their exposure to this attack. One step is to rigor-
ously check the decrypted plaintext before accepting it as a valid de-
cryption. In the case of received ClientKeyExchange messages,
implementations should ensure that the premaster secret is the cor-
rect size (48 bytes) and that the first 2 bytes are the ssl version num-
ber, in addition to verifying the presence of the 00 and 02 bytes.
Those steps alone will increase the number of artificial ciphertext
blocks the attack requires from 220 to more than 240 (about 20 mil-
lion).

Another design principle that can thwart this attack is to be very par-
simonious in sending error responses. Ideally, an ssl implementation
would behave consistently, whether it was unable to decrypt a Cli-
entKeyExchange message or it decrypted successfully but found the
resulting plaintext to be invalid. One possible implementation is to
ignore the fact that decrypted ClientKeyExchange data does not
conform to the rsa encoding format. (In other words, it does not be-
gin with 00 02.) A convenient way to achieve this may be to replace
any such invalid data with random data that does conform. The server

170 SSL & TLS Essentials: Securing the Web

will then detect and respond to the error just as if the invalid data
had been appropriately formatted.

Finally, please note that the symmetric encryption key that is en-
crypted by the rsa algorithm is the only information at risk from this
attack. The attack does not compromise any rsa private keys.

B.3 General Issues

A few important issues do not easily fit the categories of either au-
thentication or encryption. This section discusses those issues, in-
cluding the problems of rsa key size, version rollback attacks,
premature closures, session id values, random number generation,
and random number seeding.

B.3.1 RSA Key Size

The majority of ssl implementations today use the rsa encryption
algorithm for digital signatures and public key encryption. The
strength of the rsa algorithm depends directly on the size of the rsa
public key. Longer keys yield more secure implementations. As the
availability of computing power has increased and its cost has de-
creased, key sizes that were once thought adequately secure are now
susceptible to brute-force attacks. While the author was preparing
this manuscript, a team of researchers announced that they had suc-
cessfully cracked an rsa key of 512 bits,7 the same key size that (due
to u.s. export restrictions) is commonly used to secure most Web
transactions. The team used several hundred computers full-time for
seven months, so there may not be an immediate practical threat to
existing systems, but rsa Laboratories recommends 768 bits as the
minimum acceptable key size for the rsa algorithm.

It is important to understand that a weakness or compromise of the
rsa algorithm may be far more severe than one in symmetric encryp-

7 See http://www.rsasecurity.com/rsalabs/factoring/rsa155.html.

http://www.rsasecurity.com/rsalabs/factoring/rsa155.html

SSL Security Checklist 171

tion algorithms such as rc4 or des. Symmetric algorithms provide
the encryption for individual ssl sessions. If a particular symmetric
encryption key is compromised, only information from the session
that used the key is exposed. The rsa public key algorithm, however,
is used both to authenticate parties and to securely exchange all ses-
sion keys. If a particular rsa private key is compromised, then the
owner of that key is vulnerable to impersonation, and the informa-
tion from all ssl sessions with that party may be exposed.

B.3.2 Version Rollback Attacks

Secure Sockets Layer version 3.0 introduced several improvements to
version 2.0, including those that increased the security of the proto-
col. It is important, therefore, that two parties that are capable of us-
ing version 3.0 actually do so, instead of falling back to the less secure
version 2.0. As section 5.1.1 indicated, the ssl specification outlines a
very specific approach to protect against attacks that force a version
rollback. There is, however, one area that the specification does not
address: resumption of prior sessions. A cursory ssl implementation
might allow a session that had previously been established using ver-
sion 3.0 to be resumed using version 2.0. Such an implementation
would comply with the ssl standard. Careful implementations,
though, should not allow this behavior. If a session is established us-
ing ssl version 3.0, then the implementation should ensure that all
attempts to resume the session also use ssl version 3.0.

B.3.3 Premature Closure

Another general security issue is the threat of truncation attacks due
to the premature closure of an ssl session. If an attacker can delete
protocol messages in transit, that attacker could create a scenario in
which one or both of the communicating parties only receive partial
information. If the missing information is vital to the communica-
tions, the attacker will have compromised the overall security of the
exchange. As section 3.4 discussed, the ssl protocol defines the Clo-
sureAlert message to protect against this type of attack. (Although
the ClosureAlert can’t prevent the attack, the absence of a Clo-

172 SSL & TLS Essentials: Securing the Web

sureAlert message at least alerts the parties to the potential problem.)
Unfortunately, not all environments can rely on the ClosureAlert.
Web browsing users, for example, may simply turn off their personal
computer after completing a transaction, before that computer has a
chance to send a ClosureAlert message. More thorough protection
requires that applications using ssl security be sensitive to the possi-
bility of premature closures. Web servers that support the HyperText
Transfer Protocol (http), for example, include a Content-Length
field with each page they send to a client. Clients should verify that
the amount of data they receive is consistent with this field’s value.

B.3.4 SessionID Values

The ssl specification gives servers complete flexibility to choose par-
ticular SessionID values. In making this choice, server implementa-
tion should be careful not to include any critical security information.
SessionID values are transferred in ClientHello and ServerHello
messages before any encryption is active. Their values, therefore, are
completely exposed to any potential attacker.

B.3.5 Random Number Generation

Random numbers are critical to the operation of the Secure Sockets
Layer protocol. The random numbers exchanged in ClientHello and
ServerHello messages ultimately determine the encryption key for
the session. Random numbers, however, present an interesting chal-
lenge to computer systems; software cannot do anything truly ran-
domly. Instead, software implementations typically rely on
algorithms known as pseudorandom number generators. These algo-
rithms simulate true randomness with complex mathematical calcu-
lations.

There are two problems with pseudorandom number generators that
should concern ssl and other security implementations. The first
problem is the effectiveness of the algorithms themselves. Most
software libraries generate pseudorandom numbers using a linear
congruential generator algorithm. Although such algorithms can be ef-
fective pseudorandom number generators, they can also be quite
ineffective. Furthermore, many developers seek to improve on the

SSL Security Checklist 173

effective. Furthermore, many developers seek to improve on the basic
algorithm in ways that can, in fact, be quite disastrous. Press, Teukol-
sky, Vetterling, and Flannery report on one widely used pseudoran-
dom number generator that, in an extreme case, effectively generated
only 11 distinct random values.8

A more serious problem with linear congruential generators is that
they are sequential, and completely predictable. If you know the pa-
rameters of the algorithm and one specific value, it is easy to predict
all future values that the algorithm will generate. Predictable random
numbers are a serious problem for any security protocol, as they allow
attackers to plan and prepare well into the future, waiting, perhaps,
for a single, compromised value to appear. Implementations of ssl,
therefore, should be careful not to use common pseudorandom num-
ber generator libraries. Fortunately, standard cryptography algo-
rithms, including both encryption and hash algorithms, can be
modified to provide effective random numbers.9

B.3.6 Random Number Seeding

Regardless of the algorithm implementations used to generate ran-
dom numbers, implementations typically must provide that algo-
rithm with an initial starting point, or seed. For applications other
than security, the primary requirement for this seed is that it be dif-
ferent each time it is generated. That ensures, for example, that a
computer game does not act the same at each playing. That has led
many developers to use some form of the time of day as the seed. For
security applications, however, random seeds not only must be differ-
ent, they must also be unpredictable. The time of day is rarely unpre-
dictable. Indeed, Matthew Schmid10 reports a successful attack

8 In the second edition of Numerical Recipes in C: The Art of Scientific Computing
(Cambridge University Press, 1992), p. 277. Chapter 7 includes a thorough (and so-
bering) discussion of random number generation.
9 More information is available from rsa Laboratories’ Bulletins Number 1 (22 Janu-
ary 1996) and Number 8 (3 September 1998), available as of this writing at
http://www.rsasecurity.com/rsalabs/bulletins/.
10 In a posting to the Risks Forum at http://catless.ncl.ac.uk/Risks/20.56.html.

http://www.rsasecurity.com/rsalabs/bulletins/
http://catless.ncl.ac.uk/Risks/20.56.html

174 SSL & TLS Essentials: Securing the Web

against several online gambling sites that rely on flawed software for
their online poker games. The software used the time of day to seed
its random number generator and, as a result, attackers were able to
successfully predict the cards in every player’s hand. Although not
strictly ssl-related, the lesson is clear: using the time of day for ran-
dom seeds is totally unacceptable for ssl implementations.11

11 Bulletins from rsa Laboratories, in this case Numbers 1 (22 January 1996) and 3 (25
January 1996), offer detailed advice on seeding random number generators. See
http://www.rsasecurity.com/rsalabs/bulletins/.

http://www.rsasecurity.com/rsalabs/bulletins/

 175

References

The following sources have more detailed information on many top-
ics in this text. Individual references, with commentary, are grouped
by protocol standards, certificate formats, cryptographic algorithms,
and ssl implementations.

Protocol Standards

The official specification for the Secure Sockets Layer Protocol (ver-
sion 3.0) is available in several formats from the Netscape Web site at
http://www.netscape.com/eng/ssl3/.

Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL Pro-
tocol Version 3.0. Netscape Communications Corporation. 4
March 1996.

Please note that some of the formats include errata to the original
specification. The errata itself are also available from the same site.

SSL 3.0 Errata. 26 August 1996.

The Transport Layer Security specification is a proposed standard of
the Internet Engineering Task Force (ietf). ietf documents may be
found from the organization’s Web site at http://www.ietf.org.

T. Dierks and C. Allen. The TLS Protocol Version 1.0 [rfc 2246].
The Internet Engineering Task Force, January 1999.

Additional information on tls, including other related documents,
meeting minutes, and mailing list archives, is available on the ietf
Web site at http://www.ietf.org/html.charters/tls-charter.html.

Formal, detailed documents on Netscape’s International Step-Up or
Microsoft’s Server Gated Cryptography are not available as of this
writing; however, each company’s Web site does include some infor-
mation. The information Netscape makes available may be found at

http://www.netscape.com/eng/ssl3/
http://www.ietf.org
http://www.ietf.org/html.charters/tls-charter.html

176 SSL & TLS Essentials: Securing the Web

http://developer.netscape.com/tech/security/stepup/, while Microsoft
describes sgc at http://www.microsoft.com/security/tech/sgc/. In ad-
dition, VeriSign has some information on both enhancements in the
description of its Global Site id available from its home page at
http://www.verisign.com.

Finally, the definitive security analysis of the Secure Sockets Layer
protocol is that of David Wagner and Bruce Schneier. Their paper is
available at http://www.counterpane.com/ssl.html.

David Wagner and Bruce Schneier. “Analysis of the ssl 3.0
Protocol,” The Second USENIX Workshop on Electronic
Commerce Proceedings, usenix Press, November 1996, pp. 29–

40.

Certificate Formats

The x.509 specifications for public key certificates are available, for a
fee, from the International Telecommunications Union. These can be
purchased directly from the itu Web site at www.itu.ch. (Yes, the
itu does use ssl to secure this electronic commerce!). The x.509
standard itself contains the definition of a certificate; x.680 through
x.683 define the Abstract Syntax Notation One, and x.690 defines
the distinguished encoding rules for encoding asn.1. Note that many
of the itu specifications have amendments and corrections (which
the itu calls corrigenda) which are also available from the itu.

Recommendation X.509 (08/97) - Information technology - Open
Systems Interconnection - The Directory: Authentication frame-
work. The International Telecommunications Union, August
1997.

Recommendation X.680 (12/97) - Information technology - Abstract
Syntax Notation One (ASN.1): Specification of basic notation.
The International Telecommunications Union, December
1997.

Recommendation X.681 (12/97) - Information technology - Abstract
Syntax Notation One (ASN.1): Information object specification.

http://developer.netscape.com/tech/security/stepup/
http://www.microsoft.com/security/tech/sgc/
http://www.verisign.com
http://www.counterpane.com/ssl.html

References 177

The International Telecommunications Union, December
1997.

Recommendation X.682 (12/97) - Information technology - Abstract
Syntax Notation One (ASN.1): Constraint specification. The In-
ternational Telecommunications Union, December 1997.

Recommendation X.683 (12/97) - Information technology - Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifi-
cations. The International Telecommunications Union, De-
cember 1997.

Recommendation X.690 (12/97) - Information technology - ASN.1
encoding rules; Specification of Basic Encoding Rules (BER), Ca-
nonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER). The International Telecommunications Union,
December 1997.

Cryptographic Algorithms

Three cryptographic algorithms of particular importance to many ssl
implementations are the md5 and sha hash algorithms and the rsa
public key encryption (and digital signature) algorithm. Descriptions
of these algorithms may be found in the following references.

National Institute of Standards and Technology. "Secure Hash
Standard [nist fips pub 180-1].” u.s. Department of Com-
merce. Work in progress, May 31, 1994.

R. Rivest. The MD5 Message-Digest Algorithm [rfc 1321]. Internet
Engineering Task Force, April 1992.

R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems.”
Communications of the ACM, 21(2), pp. 120–126, February 1978.

In addition, the following two books cover these cryptographic algo-
rithms, as well as many others. Schneier’s work is thorough and
comprehensive; the Kaufman et al. text is more introductory in na-

178 SSL & TLS Essentials: Securing the Web

ture, with particular emphasis on security for network communica-
tions.

C. Kaufman, R. Perlman, and M. Speciner. Network Security:
Private Communications in a Public World. Prentice Hall, 1995.

Bruce Schneier. Applied Cryptography Second Edition: Protocols,
Algorithms, and Source Code in C. John Wiley and Sons, Inc.,
1996.

SSL Implementations

In addition to reference text, some readers may appreciate actual
software source code implementations of the ssl protocol. Although
many vendors offer commercial software that implements ssl, two
source code implementations are available for free. Netscape provides
a reference implementation of ssl (currently restricted to the United
States). As of this writing, information is available from Netscape at
http://www.netscape.com/products/security/ssl/reference.html.
Additionally, the OpenSSL Project is a collaborative effort to
develop an ssl toolkit available as open source software. The project’s
home page is http://www.openssl.org/.

http://www.netscape.com/products/security/ssl/reference.html
http://www.openssl.org/

 179

Glossary

Abstract Syntax Notation One (ASN.1). A language for describing
data and data objects, used to define x.509 public key certifi-
cates.

Active Attack. An attack against a secure communications session in
which the attacker creates and sends his or her own messages
or modifies legitimate messages in transit between the
communicating parties.

Alert Description. A single-byte value that identifies the type of ssl
alert.

Alert Message. An ssl message that indicates that the sender has
detected an error condition.

Alert Protocol. A component of the ssl protocol that defines the
format of Alert messages.

Alteration. An attack in which the attacker attempts to modify in-
formation without being detected.

Asymmetric Encryption. The technical term for public key encryp-
tion in which two different keys are used for encryption and
decryption; one of the keys can be revealed publicly without
compromising security.

Asymmetric Key Cryptography. Cryptography based on asymmet-
ric encryption; depending on the particular algorithms em-
ployed, asymmetric key cryptography can provide
encryption/decryption or digital signature services.

Attack. An attempt to compromise or defeat the security of a com-
munications session.

Authentication. A security service that validates the identity of a
communicating party.

180 SSL & TLS Essentials: Securing the Web

BIT STRING. An asn.1 primitive object that represents an arbitrary
number of bits.

Block Cipher. A cipher that encrypts and decrypts data only in
fixed-size blocks.

BOOLEAN. An asn.1 primitive object that represents a value that can
only be true or false.

Certificate. A public key certificate, digital information that identi-
fies a subject and that subject’s public key and is digitally
signed by an authority that certifies the information it con-
tains.

Certificate Authority (CA). An organization that issues certificates
and vouches for the identities of the subjects of those certifi-
cates; also known as an issuer.

Certificate Chain. A series of certificates including a subject’s cer-
tificate, the certificate for the root authority, and any inter-
mediate certificate authorities; it establishes a chain of trust
from the subject all the way to the root.

Certificate Message. An ssl handshake message that carries a cer-
tificate chain.

CertificateRequest Message. An ssl handshake message that the
server sends to ask the client to authenticate its identity.

Certificate Type. Part of an ssl CertificateRequest message that in-
dicates the digital signature and public key algorithms that
the sender will accept.

CertificateVerify Message. An ssl handshake message that the cli-
ent sends to verify that it possesses the private key corre-
sponding to its certificate; the client digitally signs part of
the message using that private key.

ChangeCipherSpec Message. An ssl message that activates the
negotiated security parameters; those parameters will be in
effect for the next message that the sender transmits.

Glossary 181

ChangeCipherSpec Protocol. The ssl protocol for Change-
CipherSpec messages.

CHOICE. An asn.1 construction that specifies that exactly one of the
indicated objects may be present.

Cipher. An algorithm that encrypts and decrypts information.

Cipher Suite. A cipher algorithm and the parameters necessary to
specify its use (e.g., size of keys.)

Ciphertext. Information that has been encrypted using a cipher.

Class (of a tag). The context under which an asn.1 tag is defined:
universal, application-specific, private, and context-specific.

Client. The party that initiates communications; clients communi-
cate with servers.

ClientHello Message. An ssl handshake message that the client
sends to propose cipher suites for the communication.

ClientKeyExchange Message. An ssl message that the client sends
to give the server information needed to construct key mate-
rial for the communication.

Compression Method. A particular data compression algorithm
and parameters needed to specify its use.

Confidentiality. A security service that protects information from
being correctly interpreted by parties other than those par-
ticipating in the communication.

Cryptanalysis. The science concentrating on the study of methods
and techniques to defeat cryptography.

Cryptography. The science concentrating on the study of methods
and techniques to provide security by mathematical manipu-
lation of information.

Cryptology. The science encompassing both cryptography and
cryptanalysis.

Data Encryption Standard (DES). A symmetric encryption algo-
rithm published by the National Institutes of Science and

182 SSL & TLS Essentials: Securing the Web

Technology as a United States standard; des is a block ci-
pher operating on 56-bit blocks.

Decipher. To decrypt encrypted information.

Decryption. The complement of encryption, recovering the original
information from encrypted data.

Diffie-Hellman. A key exchange algorithm developed by W. Diffie
and M.E. Hellman; first published in 1976.

Digest Function. A cryptographic function that creates a digital
summary of information so that, if the information is altered,
the summary (known as a hash) will also change; also known
as a hash function.

Digital Signature. The result of encrypting information with the
private key of a public/private key pair; the public key can be
used to successfully decrypt the signature, proving that only
someone possessing the private key could have created it.

Digital Signature Algorithm (DSA). An asymmetric encryption al-
gorithm published as a u.s. standard by the National Insti-
tutes of Science and Technology; dsa can only be used to
sign data.

Distinguished Encoding Rules (DER). A process for unambiguously
converting an object specified in asn.1 into binary values for
storage or transmission on a network.

Distinguished Name. The identity of a subject or issuer specified
according to a hierarchy of objects defined by the itu.

Eavesdropping. An attack against the security of a communication
in which the attacker attempts to “overhear” the communica-
tion.

Encipher. To encrypt information by applying a cipher algorithm;
the result is unintelligible, and the original information can
only be recovered by someone who can decipher the result.

Encryption. The process of applying a cipher algorithm to informa-
tion, resulting in data that is unintelligible to anyone who

Glossary 183

does not have sufficient information to reverse the encryp-
tion.

Ephemeral Diffie-Hellman. Diffie-Hellman key exchange in which
the necessary parameters are created just for a single com-
munications session.

Explicit Diffie-Hellman. Diffie-Hellman key exchange in which
some of the parameters are established in advance.

Explicit Tag. A type of asn.1 tag in which the tag value for the
tagged object’s type is also included in the encoding.

Exportable. Said of security products that may be easily licensed for
export from the United States, generally those with encryp-
tion algorithms that only use limited key sizes.

File Transfer Protocol (FTP). An Internet application protocol for
transferring files among computer systems; ssl can provide
security for ftp communications.

Finished Message. An ssl handshake message that indicates the
sender has completed security negotiations.

Forgery. An attack against secure communications in which the at-
tacker tries to create data that appears to come from one of
the communicating parties.

Fortezza. A classified encryption and key exchange algorithm de-
veloped by the u.s. government, the details of which are not
publicly known.

Global Secure ID. The brand name for Web security certificates, is-
sued by VeriSign, that support International Step-Up and
Server Gated Cryptography.

Handshake Protocol. A component protocol of ssl responsible for
negotiating security parameters.

Hash Function. A cryptographic function that creates a digital
summary of information so that, if the information is altered,
the summary (known as a hash) will also change; also known
as a digest function.

184 SSL & TLS Essentials: Securing the Web

Hashed MAC. A standard approach to using hash algorithms to cre-
ate secure message authentication codes.

HelloRequest Message. An ssl handshake message with which the
server requests that a client restart negotiations.

HyperText Transfer Protocol (HTTP). The application protocol for
Web browsing; ssl can add security to http applications.

IA5String. An asn.1 primitive object representing a character string
from the ascii character set.

Implicit Tag. A type of asn.1 tag in which the tag value for the
tagged object’s type is not included in the encoding.

Initialization Vector (IV). Random data that serves as the initial in-
put to an encryption algorithm so that the algorithm may
build up to full strength before it encrypts actual data.

INTEGER. An asn.1 object that represents a whole number.

International Step-Up. Developed by Netscape; an addition to
normal ssl procedures that allows servers to determine
whether a client can exercise latent security services that are
otherwise not permitted by u.s. export laws; similar (but not
identical) to Server Gated Cryptography.

International Telecommunications Union (ITU). An international
standards body responsible for telecommunications proto-
cols; the itu publishes the x.509 standards for public key cer-
tificates.

Internet Engineering Task Force (IETF). An international standards
body responsible for Internet protocols; the ietf publishes
the Transport Layer Security specifications.

Internet Protocol (IP). The core network protocol for the Internet;
ip is responsible for routing messages from their source to
their destination.

IP Security Protocol (IPSEC). Enhancements to the Internet Proto-
col that allow it to provide security services.

Glossary 185

Issuer. An organization that issues certificates and vouches for the
identities of the subjects of those certificates; also known as a
certificate authority.

Kerberos. A network security protocol designed to provide authori-
zation and access control services.

Key. Information needed to encrypt or decrypt data; to preserve se-
curity, symmetric encryption algorithms must protect the
confidentiality of all keys, while asymmetric encryption algo-
rithms need only protect private keys.

Key Exchange Algorithm. An algorithm that allows two parties to
agree on a secret key without actually transferring the key
value across an insecure channel; the best known example is
the Diffie-Hellman key exchange.

Key Management. The procedures for creating and distributing
cryptographic keys.

MAC Read Secret. A secret value input to a message authentication
code algorithm for verifying the integrity of received data;
one party’s mac write secret is the other party’s mac read se-
cret.

MAC Write Secret. A secret value input to a message authentication
code algorithm to generate message authentication codes for
data that is to be transmitted; one party’s mac write secret is
the other party’s mac read secret.

Man-in-the-Middle Attack. An attack against secure communica-
tions in which the attacker interposes itself between the
communicating parties, relaying information between them;
the attacker can seek either to read the secured data or to
modify it.

Masquerade. An attack against secure communications in which
the attacker attempts to assume the identity of one of the
communicating parties.

Master Secret. The value created as the result of ssl security nego-
tiations, from which all secret key material is derived.

186 SSL & TLS Essentials: Securing the Web

Message Authentication Code (MAC). An algorithm that uses
cryptographic technology to create a digital summary of in-
formation so that, if the information is altered, the summary
(known as a hash) will also change.

Message Digest 5 (MD5). A digest function designed by Ron Rivest
and used extensively by ssl.

Message Integrity. A security service that allows detection of any
alteration of protected data.

Net News Transfer Protocol (NNTP). An Internet application for
transfer of news and news group information; nntp can be
secured with ssl.

Non-repudiation. A security service that prevents a party from
falsely denying that it was the source of data that it did in-
deed create.

NULL. An asn.1 primitive object that represents no information.

OBJECT IDENTIFIER. An asn.1 primitive type that represents objects
in an internationally administered registry of values.

OCTET STRING. An asn.1 primitive type representing an arbitrary
array of bytes.

Padding. Extra data added to information to force a specific block
size.

Passive Attack. An attack against secure communications in which
the attacker merely observes and monitors the communicat-
ing parties without actively participating in the communica-
tions.

Plaintext. Information in its unencrypted (and vulnerable) form be-
fore encryption or after decryption.

Premaster Secret. An intermediate value ssl implementation uses
in the process of calculating key material for a session; the
client usually creates the premaster secret from random data
and sends it to the server in a ClientKeyExchange message.

Glossary 187

PrintableString. An asn.1 primitive type that represents an array of
characters, all of which have textual representations.

Private Communication Technology (PCT). A technology devel-
oped by Microsoft that borrows from and improves upon ssl
version 2.0; many of its features were incorporated into ssl
version 3.0.

Private Key. One of the keys used in asymmetric cryptography; it
cannot be publicly revealed without compromising security,
but only one party to a communication needs to know its
value.

Pseudorandom Function (PRF). An algorithm tls defines to gen-
erate random numbers for use in key material message integ-
rity.

Pseudorandom Number. A number generated by a computer that
has all the properties of a true random number.

Public Key. One of the keys used in asymmetric cryptography; it can
be publicly revealed without compromising security.

Public Key Certificate. Digital information that identifies a subject
and that subject’s public key and that is digitally signed by an
authority that certifies the information it contains.

Public Key Cryptography. Cryptography based on asymmetric en-
cryption in which two different keys are used for encryption
and decryption; one of the keys can be revealed publicly
without compromising the other key.

Record Layer. The component of the ssl protocol responsible for
formatting and framing all ssl messages.

Rivest Cipher 2 (RC2). A block cipher developed by Ron Rivest.

Rivest Cipher 4 (RC4). A stream cipher developed by Ron Rivest.

Rivest Shamir Adleman (RSA). An asymmetric encryption algo-
rithm named after its three developers; rsa supports both
encryption and digital signatures.

188 SSL & TLS Essentials: Securing the Web

Secret Key. A key used in symmetric encryption algorithms and
other cryptographic functions in which both parties must
know the same key information.

Secret Key Cryptography. Cryptography based on symmetric en-
cryption in which both parties must possess the same key in-
formation.

Secure Hash Algorithm (SHA). A hash algorithm published as a u.s.
standard by the National Institutes of Science and Technol-
ogy.

Secure HyperText Transfer Protocol (S-HTTP). An addition to the
HyperText Transfer Protocol application that provides secu-
rity services.

Secure Sockets Layer (SSL). A separate network security protocol
developed by Netscape and widely deployed for securing
Web transactions.

SEQUENCE. An asn.1 construction that represents an ordered collec-
tion of more primitive objects.

SEQUENCE OF. An asn.1 construction representing a collection of
multiple instances of a single, more primitive object, in
which the order of the instances is important.

Server. The party in a communication that receives and responds to
requests initiated by the other party.

Server Gated Cryptography (SGC). Developed by Microsoft, an
addition to normal ssl procedures that allows servers to de-
termine whether a client can exercise latent security services
that are otherwise not permitted by u.s. export laws; similar
(but not identical) to International Step-Up.

ServerHello Message. An ssl handshake message in which the
server identifies the security parameters that will be used for
the session.

ServerHelloDone Message. An ssl handshake message that the
server sends to indicate it has concluded its part of the hand-
shake negotiations.

Glossary 189

ServerKeyExchange Message. An ssl handshake message in
which the server sends public key information that the client
should use to encrypt the premaster secret.

SessionID. The value ssl servers assign to a particular session so that
it may be resumed at a later point with full renegotiation.

SET. An asn.1 construction that represents an unordered collection of
more primitive objects.

SET OF. An asn.1 construction that represents a collection of multi-
ple instances of a single, more primitive object, in which the
order of the instances is not important.

Severity Level. A component of an ssl alert message that indicates
whether the alert condition is fatal or merely a warning.

Signature. The encryption of information with a private key; any-
one possessing the corresponding public key can verify that
the private key was used, but only a party with the private
key can create the signature.

Stream Cipher. A cipher that can encrypt and decrypt arbitrary
amounts of data, in contrast to block ciphers.

Subject. The party who possesses a private key and whose identity is
certified by a public key certificate.

Symmetric Encryption. The technical term for secret key encryp-
tion in which encryption and decryption require the same
key information.

Symmetric Key Cryptography. Cryptography based on symmetric
encryption; depending on the particular algorithms em-
ployed, symmetric key cryptography can provide encryp-
tion/decryption and message integrity services.

Tag. A value associated with an asn.1 object that allows that particu-
lar object to be unambiguously identified in encoded data.

TeletexString. An asn.1 primitive type representing character
strings limited to Teletex characters.

190 SSL & TLS Essentials: Securing the Web

Traffic Analysis. A passive attack against secure communications in
which the attacker seeks to compromise security merely by
observing the patterns and volume of traffic between the
parties, without knowing the contents of the communica-
tion.

Transmission Control Protocol (TCP). A core protocol of the Inter-
net that ensures the reliable transmission of data from source
to destination.

Transport Layer Security (TLS). The ietf standard version of the
Secure Sockets Layer protocol.

UTCTime. An asn.1 primitive object that represents time according
the universal standard (formerly known as Greenwich Mean
Time).

X.509. An itu standard for public key certificates.

 191

Index

A

Abstract Syntax Notation One

(asn.1), 131, 135–147, 163

important constructions in, 137

primitive objects in, 136

tags in, 139–141

Alert message, 38

Alert protocol, 67, 69, 71–74

message types, 118–121

AlgorithmIdentifier, 133, 145–147

Algorithm rollback attack, 164–165

Algorithms. See also specific algo-

rithms

cryptography, 104

Data Encryption Standard (des),

49–50

Diffie-Hellman, 28–29

Digital Signature Algorithm

(dsa), 27, 56

Fortezza/dms, 81, 83, 85, 87, 104

hash, 104

key exchange, 103

linear congruential generator, 172

Message Digest 5 (md5), 21, 49–

50, 90, 93–94, 100–101, 124

Rivest Shamir Adleman (rsa)

algorithm, 26, 45, 81–83, 85–86

Secure Hash Algorithm (sha), 21,

90–91, 93–94, 124

ApplicationData message, 38

Application protocol data, 69, 71

Application-specific tags, 140

Asymmetric cryptography, 24–25, 28

at&t Certificate Services, 6

AttributeValueAssertion, x.509, 151

Authentication:

of client’s identity, 60–61

of messages, 121

Secure Sockets Layer (ssl) proto-

col and, 161–162

separation of cryptography from,

56–58

of server, 52–54

B

Big endian, 70

bit string, 136, 141, 144–145

Bleichenbacher attack, 166, 168–170

Block ciphers, 22–23

Block cryptography, 95–96

boolean, 136, 140

C

Certificate authorities (ca), 6, 29, 31–

32, 80–81, 162

public key, x.509, 134

root authorities and, 34

Certificate chains, 80

Certificate hierarchies, 33–34, 80

Certificate message, 39, 55–56, 58–59,

62, 80–81, 86

Certificate object, x.509, 145–146

192 SSL & TLS Essentials: Securing the Web

CertificateRequest message, 39, 61–

62, 84

Certificate revocation lists (crl), 35

Certificate revocation status, 163

Certificates, 29–30, 115, 163

CertificateSerialNumber object,

x.509, 147

Certificate types, 85

Certificate validity times, 163

CertificateVerify message, 39, 63, 75,

88–90, 92, 125

ChangeCipherSpec message, 39, 46–

51, 65, 72, 92, 95, 165–166

ChangeCipherSpec protocol, 67, 69–

70

choice, 137

Ciphers, 19, 22–23

Cipher suites, 48–49, 77–79, 86, 93,

102, 166

algorithms, 102–103

baseline, 126–128

exportable, 101

renegotiation of, 115–117

ssl version 2.0 and, 110–111

supported by ssl, 78–79, 102–104

supported by tls, 126–128

Ciphertext information, 22

Client, vs. server, 37

Client components, 112

ClientHello message, 39, 65, 83, 113,

117, 128

components of, 41–43

recognition of ssl versions and,

106–108

SessionID values and, 172

ssl cipher suites and, 77–79

ssl version 2.0 and, 109–110

ClientKeyExchange message, 39, 85–

87, 96–97, 108, 131, 169

ssl operation and, 45–46, 56, 58–

59, 63

Client’s identity, authentication of,

60–61

Client state processing, 49–50

ClosureAlert message, 52, 171–172

CommonName, 134

Compression methods, 43

Constructed objects, x.509, 136–137

Constructions, asn.1, 137

Core protocols, security within, 10

Cryptographic parameters, creation

of, 96–102

Cryptography, 17–35, 95–96, 166

algorithms, 22, 104

asymmetric, 24–25, 28

full-strength, control of, 113

issues in, 166

public key, 17, 21, 24–25, 27, 29

secret key, 17, 21–24, 27

symmetric, 22, 28

types of, 21–29

Cyclic redundancy check (crc), 21

D

Data Encryption Standard (des),

49–50

Diffie-Hellman, 81, 83, 85–87, 96–97,

165

algorithm, 28–29

ephemeral, 86

trapdoors in, 164

Digital signature, 135

Digital Signature Algorithm (dsa),

27, 56

Index 193

Distinguished Encoding Rules

(der), 142–143

Distinguished name, 62, 133

E

Electronic commerce, 2–4

Encoding rules, 142

Encrypted communications, 39–41

Encryption algorithms. See algo-

rithms

Environmental limitations, security

and, 14

European Telecommunication Stan-

dards Institute, 138

Extension bit, 143

Extensions field, x.509, 135

Extensions object, x.509, 149

extKeyUsage, x.509, 149

F

File Transfer Protocol (ftp), 9–10

Finished message, 39, 51, 65, 90, 92,

126, 165–166

Fortezza/dms, 81, 83, 85, 104

ClientKeyExchange parameters,

87

G

Global Secure id, 115

gte CyberTrust, 6

H

Handshake message, 165

Handshake protocol, 67, 69, 74–77,

80, 92

Hash, 89, 91–92. See also Message

Digest 5 (md5)

Hash algorithms, 104

Hashed Message Authentication

Code (h-mac), 121–122

Hash functions, 20–21, 97

Hello message. See ClientHello mes-

sage; ServerHello message

HelloRequest message, 39, 76

h-mac. See Hashed Message Au-

thentication Code (h-mac)

Hypertext Transfer Protocol (http),

8–11, 13, 67

I

IA5String, 136, 141, 144

Identity, proving, 19–20

Information, verifying, 20

Initialization vector, 23

integer, 136, 141, 144

International Standards Organiza-

tion (iso), 137

International Step-Up, 111–116, 135,

149, 167

International Telecommunications

Union (itu), 131

Internet Engineering Task Force

(ietf), 5, 9, 117–118, 126, 128, 137

Internet Explorer. See Microsoft,

Internet Explorer

Internet Protocol (ip), 8, 117

ip Security (ipsec), 10–11, 117

Issuer field, x.509, 133

Issuer Unique Identifier, x.509, 134

194 SSL & TLS Essentials: Securing the Web

K

Kerberos, 11–12

Key, 21–22

exchange algorithms, 28, 103

expansion, 125

management of, 29

private, 26

public, 26–27

size, encryption and, 166

size, Rivest Shamir Adleman

(rsa) algorithm and, 170–171

Key material, 101, 123, 125–126

KeyWitness International, 6

L

Linear congruential generator algo-

rithm, 172

Location, tags and, 140

M

Man-in-the-middle attack, 108

Master secret, 86, 88–89, 91, 96, 100–

101, 121, 125–126

calculation of, 97–99

Message authentication, 121

Message Authentication Code

(mac), 49, 93–95, 104

write secret, 93–94

Message Digest 5 (md5), 21, 49–50,

90, 93–94, 100–101, 124

Message formats, 67–104

Microsoft, 5–6, 55, 111–112, 117

Internet Explorer, 6, 32, 117, 164

Private Communication Technol-

ogy (pct), 5

Server Gated Cryptography

(sgc), 112, 115–117, 135, 149, 167

N

Name attribute types, x.509, 152

Name object, x.509, 150

National Center for Supercomputing

Applications (ncsa), 4

Net News Transfer Protocol (nntp),

9–10

Netscape, 4–5, 55, 111–113

International Step-Up, 111–116

Navigator, 4, 6, 32, 164

Network security, approaches to, 6–7

NoCertificateAlert message, 62

NoCertificate message, 118

Non-repudiation, 13

null, 136, 141

O

object identifier, 136–141, 144–145,

147

x.509, 149, 151, 158

Object Identifier Hierarchy, 137–138

octet string, 136, 141, 144

Open Settlement Protocol, 129

P

Padding, 23, 91, 95

Parameterized type, 145

Period of Validity, x.509, 133

Plaintext information, 22

Premaster secret, 86, 96–97, 125

Previous session, resumption of, 64–

65

Primitive objects, asn. 1, 136

Index 195

PrintableString, 136, 141

Private Communication Technology

(pct), 5

Private-use tags, 140

Protocol limitations, 12–14

Pseudo-random function (prf), 124–

125

Pseudo-random number generation,

42

Pseudo-random output, 123–124

Public key certificates, 29–30

Public key cryptography, 17, 21, 24–25,

27, 29

R

Random numbers, 27–28, 172–174

Read state, 46–47

Record Layer message, 71–72, 74–75,

77, 95

Record Layer protocol, 67, 69–71, 93

RelativeDistinguishedName, x.509,

151

Rivest Shamir Adleman (rsa) algo-

rithm, 26, 45, 81–83, 85–86

key size and, 170–171

Root authority, 34

S

Secret key cryptography, 17, 21–24, 27

Secure communications, ending of,

52

Secure Hash Algorithm (sha), 21,

90–91, 93–94, 124

Secure Sockets Layer (ssl) protocol,

1, 37–38, 68–69, 121, 128–129

security checklist for, 161–174

Securing messages, 92

Separate Security Protocol, 8–9

sequence, 137, 141, 145–146, 148

sequence of, 137, 141

Serial Number, x.509 Certificates

and, 133

Server, vs. client, 38

Server Gated Cryptography (sgc),

112, 115–117, 149, 167

certificates, 115

x.509, 135

ServerHelloDone message, 39, 45, 62,

85, 117

ServerHello message, 39, 43–45, 65,

79–81, 83, 113, 128

CipherSuite field of, 44

CompressionMethod field of, 44–

45

RandomNumber field of, 43–44

SessionID field of, 44

SessionID values and, 172

ssl version 2.0 and, 110

version field of, 43–44

ServerKeyExchange message, 81–84,

164–165

CipherSuite field of, 45

ssl operation and, 39, 45, 55–56,

58–59, 62–63

Server’s identity, authentication of,

52–54

Server state processing, 50

SessionID, 65, 78, 80, 172

set, 137, 141, 145

set of, 137, 141

Shared secret information, 99

Signature field, x.509, 135

196 SSL & TLS Essentials: Securing the Web

ssl messages, 38–51. See also specific

messages

ssl version 2.0, 4–6, 41, 105–111, 117,

128, 171

ssl version 3.0, 5–6, 41, 77–79, 102,

105–107, 109, 117, 128, 171

ssl versions, negotiating between,

106–109

ssl vs. tls, 6, 41, 44, 70, 74, 77, 79, 89,

91, 94, 99, 104, 118

Stream ciphers, 22

Stream cryptography algorithms, 95

Subject, x.509, 134

SubjectPublicKeyInfo object, x.509,

148

Subject’s public key, x.509, 134

Subject Unique Identifier, x.509, 134

Symmetric cryptography, 22, 24, 28

T

Tags, 139–143, 145

TeletexString, 136, 141

Thawte Consulting, 6

Time object, x.509, 148–149

tls Message Authentication Code,

122

tls protocol version, 118

Tool limitations, 13–14

Traffic analysis, 167

Transport Control Protocol (tcp), 8,

13, 67–68

Transport Layer Security (tls) Pro-

tocol, 5, 117, 121

alert descriptions, 119–121

future of, 128–129

Transport requirements, 68–69

Truncation attack, 52

U

UniqueIdentifier object, x.509, 150

Universal tags, 140

UTCTime, 136, 141, 144

V

Validity object, x.509, 148

VeriSign, 6, 112–113, 115, 147, 164

Version object, x.509, 146

Version rollback attacks, 171

W

Web security, 2–4

WebTV, 128

Wireless Application Protocol Fo-

rum, 129

Write state, 46–47

X

x.509 Certificates, 131–159, 163

Algorithm Identifier field of, 133

AlgorithmIdentifier object and,

147

AttributeValueAssertion and, 151

authentication and, 162

Certificate authority’s public key

and, 134

CertificateSerialNumber object

and, 147

components of, 157–158

constructed objects and, 136–137

contents, examples of, 159

definition of, 145

example of, 152–157

Extensions field and, 135

Extensions object and, 149

Index 197

extKeyUsage and, 149

International Step-Up and, 135

Issuer field of, 133

Issuer Unique Identifier and, 134

name attribute types and, 152

Name object and, 150

object identifier and, 149, 151,

158

Period of Validity field and, 133

primitive objects and, 136

RelativeDistinguishedName and,

151

sequence and, 148

Serial Number field of, 133

Server Gated Cryptography (sgc)

and, 135

Signature field and, 135

Subject field and, 134

SubjectPublicKeyInfo object and,

148

subject’s public key and, 134

Subject Unique Identifier and, 134

Time object and, 148–149

UniqueIdentifier object and, 150

Validity object and, 148

Version field and, 132

Version object and, 146

About the CD-ROM

The cd-rom includes electronic editions of the full text of this book.
Due to memory constraints, illustrations in the printed book are not
available in all formats; however, key illustrations are recreated in the
electronic editions as tables. System requirements for each format are
listed below.

PalmOS

• Handheld computer such as the Handspring Visor, 3Com
PalmPilot Pro, Palm III, Palm IIIe, Palm IIIx, Palm V, Palm
Vx, Palm VII, or IBM WorkPad running PalmOS Version
2.0 or later.

• At least 220k of free memory.

Windows CE

• Windows CE computer (Handheld, Palm, or Handheld Pro)
running Windows CE Version 2.0 or later.

• At least 260k of free storage space.

• At least 256k of free program space.

Other Platforms

• Adobe Acrobat Reader version 3.0 or later, available for
download at http://www.adobe.com.

http://www.adobe.com

Electronic Edition License Agreement
1. License. John Wiley & Sons, Inc. (“Wiley”) hereby grants you, and you accept, a non-exclusive and non-
transferable license, to use the accompanying CD-ROM, referred to as the “Software”.

2. Term. This License Agreement is effective until terminated. You may terminate it at any time by destroy-
ing the Software and all copies made (with or without authorization).

3. Authorized Use of Software. You shall have the right to load the [Software] on a single computer and at
single location designated by you. You may not use the Software on a network or multi-user basis. Upon
termination of this License, you agree to destroy all copies in any form. If you transfer possession of
any copy of the software to another party, your license is automatically terminated.

4. Use Restrictions. You may not (a) copy the Software, except to load it into a computer in accordance with
instructions set forth in the User’s Manual; (b) distribute copies of the Software to any other person; (c)
modify, adapt, translate, reverse, engineer, decompile, disassemble, or create derivative works based on the
Software (d) copy, download, store in a retrieval Software, publish, transmit, or otherwise reproduce, trans-
fer, store, disseminate, or use, in any form or by any means, any part of the data contained within the Soft-
ware except as expressly provided for in this License; (e) transfer, resell, sublicense, lease, or grant any other
rights of any kind to any individual copy of the Software to any other persons; (f) remove any proprietary no-
tices, labels, or marks on the Software. You shall take reasonable measures to maintain the security of the
Software.

5. Proprietary Rights. You acknowledge and agree that the Software is the sole and exclusive property of
Wiley, and the Software is licensed to you only for the term of this License and strictly under the terms
hereof. Wiley owns all right, title, and interest in and to the content of the Software. Except for the limited
rights given to you herein, all rights are reserved by Wiley.

6. Warranties, Indemnities, and Limitation of Liability. The software is provided “as is,” without
warranty of any kind, express or implied, including but not limited to the implied warranties
of merchantability or fitness for a particular purpose. Wiley neither gives nor makes any
other warranties or representations under or pursuant to this license. Wiley does not warrant,
guarantee or make any representations that the functions contained in the Software will meet your particular
requirements or that the operation of the Software will be uninterrupted or error free. The entire risk as to
the results and performance of the Software is assumed by you. If the Software disc is defective in workman-
ship or materials and Wiley is given timely notice thereof, Wiley’s sole and exclusive liability and your sole
and exclusive remedy, shall be to replace the defective disc. In the event of a defect in a disc covered by this
warranty, Wiley will replace the disc provided that you return the defective disc to Wiley together with a
copy of your receipt. If Wiley is unable to provide a disc that is free from such defects, you may terminate
this License by returning the disc and all associated documentation to Wiley for a full refund. The foregoing
states your sole remedy and Wiley’s sole obligation in the event of the occurrence of a defect coming within
the scope of the limited warranty.

In no event shall wiley, its suppliers, or anyone else who has been involved in the creation,
production or delivery of the software or documentation be liable for any loss or inaccuracy
of data of any kind or for lost profits, lost savings, or any direct, indirect, special, conse-
quential or incidental damages arising out or related in any way to the use or inability to
use the software or data, even if wiley or its suppliers have been advised of the possiblity of
such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause is in contract, tort or otherwise.

The limited warranty set forth above is in lieu of all other express warranties, whether oral or written.

(Some states do not allow exclusions or limitations of implied warranties or liability in certain cases, so the
above exclusions and limitations may not apply to you.)

7. General.

(a) This License may not be assigned by the Licensee except upon the written consent of Wiley.

(b) The License shall be governed by the laws of the State of New York.

(c) The above warranties and indemnities shall survive the termination of this License.

(d) If the Licensee is located in Canada, the parties agree that it is their wish that this License, as well as all
other documents relating hereto, including notices, have been and shall be drawn up in the English language
only.

	Contents
	Chapter 1: Introduction
	1.1	Web Security and Electronic Commerce
	1.2	History of SSL and TLS
	1.3	Approaches to Network Security
	1.3.1	Separate Security Protocol
	1.3.2	Application-Specific Security
	1.3.3	Security within Core Protocols
	1.3.4	Parallel Security Protocol

	1.4	Protocol Limitations
	1.4.1	Fundamental Protocol Limitations
	1.4.2	Tool Limitations
	1.4.3	Environmental Limitations

	1.5	Organization of This Book

	Chapter 2: Basic Cryptography
	2.1	Using Cryptography
	2.1.1	Keeping Secrets
	2.1.2	Proving Identity
	2.1.3	Verifying Information

	2.2	Types of Cryptography
	2.2.1	Secret Key Cryptography
	2.2.2	Public Key Cryptography
	2.2.3	Combining Secret and Public Key Cryptography

	2.3	Key Management
	2.3.1	Public Key Certificates
	2.3.2	Certificate Authorities
	2.3.3	Certificate Hierarchies
	2.3.4	Certificate Revocation Lists

	Chapter 3: SSL Operation
	3.1	SSL Roles
	3.2	SSL Messages
	3.3	Establishing Encrypted Communications
	3.3.1	ClientHello
	3.3.2	ServerHello
	3.3.3	ServerKeyExchange
	3.3.4	ServerHelloDone
	3.3.5	ClientKeyExchange
	3.3.6	ChangeCipherSpec
	3.3.7	Finished

	3.4	Ending Secure Communications
	3.5	Authenticating the Server’s Identity
	3.5.1	Certificate
	3.5.2	ClientKeyExchange

	3.6	Separating Encryption from Authentication
	3.6.1	Certificate
	3.6.2	ServerKeyExchange
	3.6.3	ClientKeyExchange

	3.7	Authenticating the Client’s Identity
	3.7.1	CertificateRequest
	3.7.2	Certificate
	3.7.3	CertificateVerify

	3.8	Resuming a Previous Session

	Chapter 4: Message Formats
	4.1	Transport Requirements
	4.2	Record Layer
	4.3	ChangeCipherSpec Protocol
	4.4	Alert Protocol
	4.4.1	Severity Level
	4.4.2	Alert Description

	4.5	Handshake Protocol
	4.5.1	HelloRequest
	4.5.2	ClientHello
	4.5.3	ServerHello
	4.5.4	Certificate
	4.5.5	ServerKeyExchange
	4.5.6	CertificateRequest
	4.5.7	ServerHelloDone
	4.5.8	ClientKeyExchange
	4.5.9	CertificateVerify
	4.5.10	Finished

	4.6	Securing Messages
	4.6.1	Message Authentication Code
	4.6.2	Encryption
	4.6.3	Creating Cryptographic Parameters

	4.7	Cipher Suites
	4.7.1	Key Exchange Algorithms
	4.7.2	Encryption Algorithms
	4.7.3	Hash Algorithms

	Chapter 5: Advanced SSL
	5.1	Compatibility with Previous Versions
	5.1.1	Negotiating SSL Versions
	5.1.2	SSL Version 2.0 ClientHello
	5.1.3	SSL Version 2.0 Cipher Suites

	5.2	Netscape International Step-Up
	5.2.1	Server Components
	5.2.2	Client Components
	5.2.3	Controlling Full-Strength Encryption

	5.3	Microsoft Server Gated Cryptography
	5.3.1	Server Gated Cryptography Certificates
	5.3.2	Cipher Suite Renegotiation

	5.4	The Transport Layer Security Protocol
	5.4.1	TLS Protocol Version
	5.4.2	Alert Protocol Message Types
	5.4.3	Message Authentication
	5.4.4	Key Material Generation
	5.4.5	CertificateVerify
	5.4.6	Finished
	5.4.7	Baseline Cipher Suites
	5.4.8	Interoperability with SSL

	5.5	The Future of SSL and TLS

	Appendix A: X.509 Certificates
	A.1	X.509 Certificate Overview
	A.1.1	Version
	A.1.2	Serial Number
	A.1.3	Algorithm Identifier
	A.1.4	Issuer
	A.1.5	Period of Validity
	A.1.6	Subject
	A.1.7	Subject’s Public Key
	A.1.8	Issuer Unique Identifier
	A.1.9	Subject Unique Identifier
	A.1.10	Extensions
	A.1.11	Signature

	A.2	Abstract Syntax Notation One
	A.2.1	Primitive Objects
	A.2.2	Constructed Objects
	A.2.3	The Object Identifier Hierarchy
	A.2.4	Tagging
	A.2.5	Encoding Rules

	A.3	X.509 Certificate Definition
	A.3.1	The Certificate Object
	A.3.2	The Version Object
	A.3.3	The CertificateSerialNumber Object
	A.3.4	The AlgorithmIdentifier Object
	A.3.5	The Validity Object
	A.3.6	The SubjectPublicKeyInfo Object
	A.3.7	The Time Object
	A.3.8	The Extensions Object
	A.3.9	The UniqueIdentifier Object
	A.3.10	The Name Object

	A.4	Example Certificate

	Appendix B: SSL Security Checklist
	B.1	Authentication Issues
	B.1.1	Certificate Authority
	B.1.2	Certificate Signature
	B.1.3	Certificate Validity Times
	B.1.4	Certificate Revocation Status
	B.1.5	Certificate Subject
	B.1.6	Diffie-Hellman Trapdoors
	B.1.7	Algorithm Rollback
	B.1.8	Dropped ChangeCipherSpec Messages

	B.2	Encryption Issues
	B.2.1	Encryption Key Size
	B.2.2	Traffic Analysis
	B.2.3	The Bleichenbacher Attack

	B.3	General Issues
	B.3.1	RSA Key Size
	B.3.2	Version Rollback Attacks
	B.3.3	Premature Closure
	B.3.4	SessionID Values
	B.3.5	Random Number Generation
	B.3.6	Random Number Seeding

	References
	Protocol Standards
	Certificate Formats
	Cryptographic Algorithms
	SSL Implementations

	Glossary
	Index
	About the CD-ROM
	PalmOS
	Windows CE
	Other Platforms

	Electronic Edition License Agreement

