

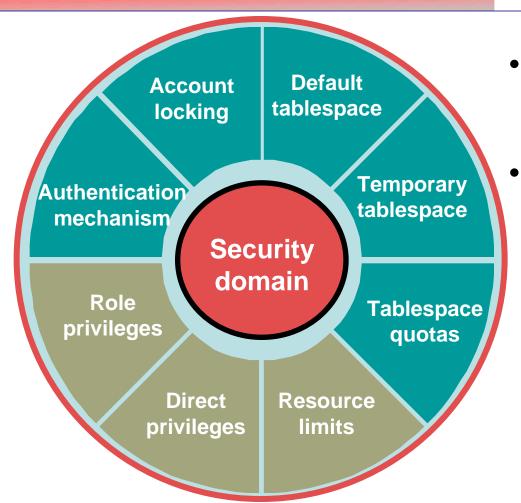
User Management and Database Security

" Mets THE REVOLUTION

Oracle database security management

2

- Controlling access to data (authorization)
- Authenticating users
- Ensuring data integrity
- Auditing user's actions
- Managing enterprise security



- Creating new database users
- Altering and dropping existing database users
- Monitoring information about existing users

- DBA defines users who can access db
- Security domain defines the settings that apply to users

- Schema: named collection of objects like tables, views, procedures, etc.
- When a user is created a schema with same name is created
- Hence username and schema name used interchangeably
- Some of the objects a user can own

- Choose a username and authentication mechanism.
- Identify tablespaces in which the user needs to store objects.
- Decide on quotas for each tablespace.
- Assign default tablespace and temporary tablespace.
- Create a user.
- Grant privileges and roles to the user.
- If no default tablespace is assign to the user the System tablespace becomes the default for that user.

Creating a New User: Server Authentication

7

- Set the initial password:
- Expires at login forcing user to change password

CREATE USER anil

IDENTIFIED BY panil

DEFAULT TABLESPACE data01

TEMPORARY TABLESPACE temp

QUOTA 15m ON data01

PASSWORD EXPIRE;

Creating a New User: Operating System Authentication

8

- Use OS_AUTHENT_PREFIX (in parameter file)
- Example: O/S User = user15

OS_AUTHENT_ PREFIX	Database User	Remote Login Possible
OS_	OS_USER15	No
empty string ""	USER15	No
OPS\$ (default)	OPS\$USER15 (default)	Yes

Creating a New User: Operating System Authentication (contd.)

9

- E.g., An OS user tikekarr;
- Use IDENTIFIED EXTERNALLY clause with create user
- Also exists as a database user
- Oracle will not validate
- To use sql*plus say
 - Sqlplus /

- Choose a standard password initially; use O/S authentication sparingly.
- Use the EXPIRE keyword to force users to reset their passwords.
- Always assign temporary tablespace.
- Restrict quotas to few users; use QUOTA UNLIMITED with caution.
- Educate users:
 - To connect
 - To change password

Controlling Account Lock and Password

11

ALTER USER anil
IDENTIFIED BY hisgrandpa
PASSWORD EXPIRE;

ALTER USER anil
IDENTIFIED BY hisgrandpa
ACCOUNT LOCK | UNLOCK;

- To get a user out of system (fired/resigned):
 - Use password expiration
 - Lock account
 - Alter password
 - Change profile
 - Export/import user schema elsewhere

ALTER USER anil
QUOTA 0 ON data01;

Dropping a User

13

Use the CASCADE clause if the schema contains objects.

DROP USER anil;

DROP USER anil CASCADE;

User currently connected cannot be dropped

DBA_USERS

USERNAME

USER ID

CREATED

ACCOUNT_STATUS

LOCK_DATE

EXPIRY_DATE

DEFAULT_TABLESPACE

TEMPORARY_TABLESPACE

DBA_TS_QUOTAS

USERNAME

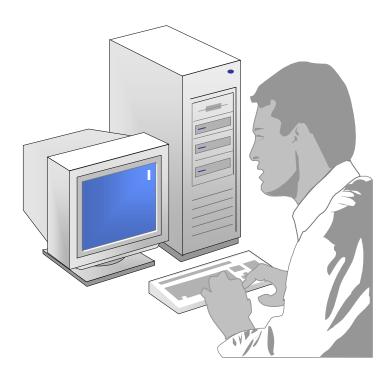
TABLESPACE NAME

BYTES

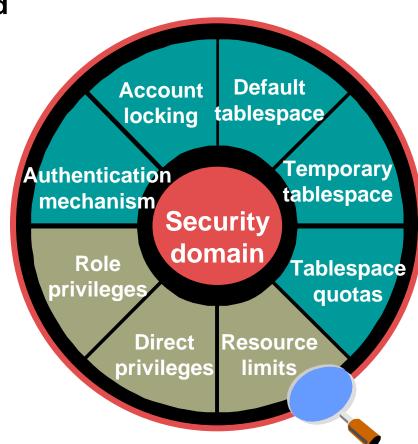
MAX_BYTES

BLOCKS

MAX_BLOCKS



- Select tablespace_name, blocks, max_blocks, bytes,
 max_bytes From dba_ts_quota Where username = 'SCOTT';
- -1 in MAX_BLOCKS or MAX_BYTES indicates unlimited quota
- Select username, account_status, temporary_tablespace From dba_users;
- Lists all users, their account status and temp. ts



 Are named sets of resource and password limits

- Are assigned to users by the CREATE/ALTER USER command
- Can be enabled or disabled
- Can relate to the DEFAULT profile
- Can limit system resources on session or call level

Managing Resources with Profiles

18

1. Create profiles.

2. Assign profiles to the user.

3. Enable resource limits.

Creating a Profile: Resource Limit

19

CREATE PROFILE developer_prof LIMIT
SESSIONS_PER_USER 2
CPU_PER_SESSION 10000
IDLE_TIME 60
CONNECT_TIME 480;

Resource	Description
CPU_PER_SESSION	Total CPU time measured in hundredths of seconds
SESSIONS_PER_USER	Number of concurrent sessions allowed for each username
CONNECT_TIME	Elapsed connect time measured in minutes
IDLE_TIME	Periods of inactive time measured in minutes
LOGICAL_READS_PER _SESSION	Number of data blocks (physical and logical reads)
PRIVATE_SGA	Private space in the SGA measured in bytes (for MTS only)

Resource	Description
CPU_PER_CALL	CPU time per call in hundredths of seconds
LOGICAL_READS_PER _CALL	Number of data blocks

Composite_limit

- A composite limit is a sum of several of the resource parameters, measured in service units.
- These resources are weighted by their importance.
- Oracle takes into account four parameters to compute a weighted composite_limit:
 - Cpu_per_session
 - Connect_time
 - Logical_reads_per_session
 - Private_sga.
- You can set a weight for these four parameter by using the alter resource cost statement.

Assigning Profiles to a User

23

CREATE USER user3 IDENTIFIED BY user3

DEFAULT TABLESPACE data01

TEMPORARY TABLESPACE temp

QUOTA unlimited ON data01

PROFILE developer_prof;

ALTER USER scott

PROFILE developer_prof;

- Set the initialization parameter RESOURCE_LIMIT to TRUE
 - or
- Enforce the resource limits by enabling the parameter with the ALTER SYSTEM command

ALTER SYSTEM SET RESOURCE_LIMIT=TRUE;

ALTER PROFILE default LIMIT SESSIONS_PER_USER 5
CPU_PER_CALL 3600
IDLE_TIME 30;

Dropping a Profile

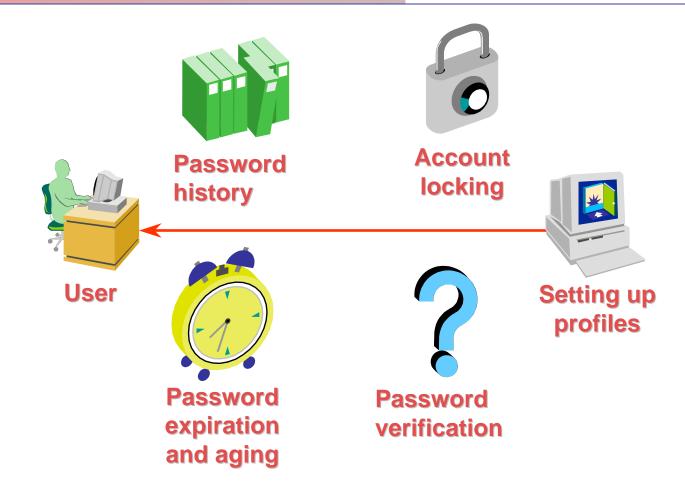
26

DROP PROFILE developer_prof;

DROP PROFILE developer_prof CASCADE;

DBA_USERS

- profile
- username


DBA_PROFILES

- profile
- resource_name
- resource_type (KERNEL)
- limit

Password Management

- Set up password management by using profiles and assigning them to users.
- Lock, unlock, and expire accounts using the CREATE USER or ALTER USER command.
- Password limits are always enforced, even if
 RESOURCE LIMIT for an instance is set to FALSE.

Creating a Profile: Password Settings

30

CREATE PROFILE grace_5 LIMIT

FAILED_LOGIN_ATTEMPTS 3

PASSWORD_LIFE_TIME 30

PASSWORD_REUSE_TIME 30

PASSWORD_VERIFY_FUNCTION verify_function
PASSWORD_GRACE_TIME 5;

Parameter	Description
FAILED_LOGIN_ATTEMPTS	Number of failed login attempts before lockout of the account
PASSWORD_LOCK_TIME	Number of days for which the account remains locked upon password expiration
PASSWORD_LIFE_TIME	Lifetime of the password in days after which the password expires
PASSWORD_GRACE_TIME	Grace period in days for changing the password after the first successful login after the password has expired

Parameter	Description
PASSWORD_REUSE_TIME	Number of days before a password can be reused
PASSWORD_REUSE_MAX	Maximum number of times a password can be reused
PASSWORD_VERIFY_FUNCTION	PL/SQL function that makes a password complexity check before a password is assigned

User- Provided Password Function

33

 Function must be created in the SYS schema and must have the following specification:

```
function_name(
    userid_parameter IN VARCHAR2(30),
    password_parameter IN VARCHAR2(30),
    old_password_parameter IN VARCHAR2(30))

RETURN BOOLEAN
```


- Minimum length is four characters
- Password should not be equal to username
- Password should have at least one alpha, one numeric, and one special character
- Password should differ from the previous password by at least three letters

DBA_USERS

- profile
- username
- account_status
- lock_date
- expiry_date
- DBA_PROFILES
 - profile
 - resource_name
 - resource_type (PASSWORD)
 - limit

Resource Management Problem for Production Database

36

- Batch job's are taking up most of the available resources, which is hurting other, more critical jobs that need to run at the same time.
- Excessive loads at peak times are causing critical processes to run for an unacceptably long period of time.
- You schedule large jobs and really can't predict when they might be launched.
- Some users are using an excessive amount of CPU, causing you to kill their session abruptly.
- Some users are using a very high degree of parallelism in their operations, which is hurting the performance of the system as a whole.
- You want to prioritize jobs according to some scheme, but you can't do so using operating system resources.

- Guarantee certain users a minimum amount of processing resources regardless of the load on the system and the number of users
- Distribute available processing resources by allocating percentages of CPU time to different users and applications.
 - In a data warehouse, a higher percentage may be given to ROLAP (relational on-line analytical processing) applications than to batch jobs.
- Limit the degree of parallelism of any operation performed by members of a group of users
- Create an active session pool.
 - This pool consists of a specified maximum number of user sessions allowed to be concurrently active within a group of users.

- Allow automatic switching of users from one group to another group based on administrator-defined criteria.
 - If a member of a particular group of users creates a session that runs for longer than a specified amount of time, that session can be automatically switched to another group of users with different resource requirements.
- Prevent the execution of operations that are estimated to run for a longer time than a predefined limit
- Create an undo pool.
 - This pool consists of the amount of undo space that can be consumed in by a group of users.
- Configure an instance to use a particular method of allocating resources.
 - You can dynamically change the method, for example, from a daytime setup to a nighttime setup, without having to shut down and restart the instance.

Database Resource Manager Overview

39

- Resources are allocated to users according to a resource plan specified by the database administrator.
- The following terms are used in specifying a resource plan:
- A resource plan
 - specifies how the resources are to be distributed among various users (resource consumer groups).
- Resource consumer groups
 - allow the administrator to group user sessions together by resource requirements. Resource consumer groups are different from user roles; one database user can have different sessions assigned to different resource consumer groups.
- Resource allocation methods
 - determine what policy to use when allocating for any particular resource. Resource allocation methods are used by resource plans and resource consumer groups.

Database Resource Manager Overview (contd.)

40

- Resource plan directives
 - are a means of assigning consumer groups to particular plans and partitioning resources among consumer groups by specifying parameters for each resource allocation method.
- The Database Resource Manager also allows for creation of plans within plans, called subplans.
- Subplans allow further subdivision of resources among different users of an application.
- Levels provide a mechanism to specify distribution of unused resources among available users. Up to eight levels of resource allocation can be specified.

- A DBA can manage the Database Resource Manager through executing procedures in the Oracle-supplied DBMS_RESOURCE_MANAGER package.
- Sequence of actions need to take to start using the Database Resource Manager
 - Create a pending area.
 - Create a consumer group.
 - Create a resource plan.
 - Create a plan directive.
 - Validate the pending area.
 - Submit the pending area.

- Before you can modify an old plan or create a new plan, you need to activate or create a pending area using the Database Resource Manager package.
- All resource plans created will be stored in the data dictionary.

SQL> execute dbms_resource_manager.create_pending_area; PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.clear_pending_area; PL/SQL procedure successfully completed.

Creating Consumer Groups

- Once the pending area is active, create the consumer groups to which users are allocated.
- You can assign users initially to one group, and you can later switch them to other groups if necessary.

Checking what groups exist in your database

44

 Use DBA_RSRC_CONSUMER_GROUPS view for information relating to what groups currently exist in your database.

SQL> SELECT consumer_group, status FROM dba_rscr_consumer_groups;

Other_groups

- This isn't really a group, because you can't assign users to it.
- When a resource plan is active, other_groups is the catchall term for all sessions that don't belong to this active resource plan.
- Default_consumer_groups
 - If you don't assign users to any group, they will, by default, become members of the default group.
- Sys_group and low_group
 - These are part of the default system_plan that exists in every database.
 - Oracle supplies three plans for each database
 - SYSTEM_PLAN: Plan to give system sessions priority.
 - INTERNAL_QUIESCE: Plan to internally quiesce system.
 - INTERNAL_PLAN : Plan to give system sessions priority

- Once you create the groups, you can then validate your pending area.
- Once the changes are accepted as being correct, you can submit the changes through the Database Resource Manager.

SQL> execute dbms_resource_manager.validate_pending_area;

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.submit_pending_area;

PL/SQL procedure successfully completed.

SQL> select consumer_group, status from

dba_rsrc_consumer_groups;

- First grant the users privileges to switch their groups using dbms_resource_manager_privs.grant_switch_consumer_group procedure.
- Use dbms_resource_manager_privs.set_initial_consumer_group procedure to switch.

```
SQL> execute dbms_resource_manager_privs.grant_switch_
consumer_group ('anil','local',TRUE);
```

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.set_inital_
consumer_group('anil','local');

PL/SQL procedure successfully completed.

Verify Consumer Group Membership of Users

SQL> select username, initial_rsrc_consumer_group from dba_users;

Creating Resource Plans

- Resource plans enable you to set limits on resource use by specifying limits on four variables: CPU, active session pool, degree of parallelism, and the order in which queued sessions will execute.
- Currently, for all four parameters, only the default levels and methods provided by Oracle can be used.

SQL> execute dbms_resource_manager.create_pending_area;

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.create_plan (plan => 'membership_plan', comment => 'New Membership

Recruitment');

PL/SQL procedure successfully completed.

- Creating a Plan Directive
 - The plan directive assigns 70 percent of the available CPU at the first level to the local group and the rest, 30 percent, to the regional group.
 - It allocates 100 percent of the CPU at the second level to the national group.
 - In addition to the preceding three groups, you need to add a plan directive for the default other_groups for the Database Resource Manager to accept your plan directives.
- If you don't include a resource directive for other_groups,
 Oracle won't let you use your directives for the other groups if the plan directives is for a primary or top plan.

Create Resource Plans and Plan Directives (contd.)

50

```
SQL> execute dbms_resource_manager.create_plan_directive
    (plan => 'membership_plan', GROUP_OR_SUBPLAN =>
        'local', COMMENT => 'LOCAL GROUP', CPU_P1 => 70);

SQL> execute dbms_resource_manager.create_plan_directive
    (plan => 'membership_plan', GROUP_OR_SUBPLAN =>
        'REGIONAL', COMMENT => 'regional group', CPU_P1 => 30);

SQL> execute dbms_resource_manager.create_plan_directive
    (plan => 'membership_plan', GROUP_OR_SUBPLAN =>
        'national', COMMENT => 'NATIONAL GROUP', CPU_P2 => 100);
```

SQL> execute dbms_resource_manager.create_plan_directive
(plan => 'membership_plan', GROUP_OR_SUBPLAN =>
'OTHER_GROUPS', comment => 'Default plan',CPU_P3 => 100);

- You can now validate and submit your new top-level plan, membership_plan.
- Determining the status of the Resource Plans from dba_rsrc_plan_directives

SQL> execute dbms_resource_manager.validate_pending_area;

PL/SQL procedure successfully completed.

SQL> execute dbms_resource_manager.submit_pending_area;

PL/SQL procedure successfully completed.

SQL> select plan, group_or_subplan, cpu_p1, cpu_p2,cpu_p3, status from dba_rsrc_plan_directives;

- Oracle will not automatically enforce the resource plans.
- Explicitly activate the Database Resource Manager, either by specifying the initialization parameter resource_manager_plan in the init.ora file or by using the alter system command.
- Query V\$RSRC_CONSUMER_GROUP to see what resource usage among the consumers groups looks like.

SQL> alter system set resource_manager_plan=MEMBERSHIP_PLAN; System altered.

SQL select * from v\$rsrc_plan;

SQL> select name, active_sessions, cpu_wait_time, consumed_cpu_time, current_undo_consumption from v\$rsrc_consumer_group;

- Two types of privileges:
 - SYSTEM: enables users to perform particular actions in the database
 - create, alter, drop, etc.
 - OBJECT: enables users to access and manipulate a specific object
 - select, update, insert, exec, etc.

- There are about 126 system privileges.
- The ANY-keyword in the privileges signifies that users have the privilege in every schema.
- The GRANT command adds a privilege to a user or a group of users.
- The REVOKE command deletes the privileges.
- Users with ANY privilege can access data dictionary tables

Category	Examples
INDEX	CREATE ANY INDEX, ALTER ANY INDEX DROP ANY INDEX
TABLE	CREATE TABLE (includes dropping privilege, create index) CREATE ANY TABLE, ALTER ANY TABLE DROP ANY TABLE (need this for truncating) SELECT ANY TABLE, UPDATE ANY TABLE DELETE ANY TABLE
SESSION	CREATE SESSION (need this to do anything) ALTER SESSION RESTRICTED SESSION(when db in restricted mode)
TABLESPACE	CREATE TABLESPACE ALTER TABLESPACE DROP TABLESPACE UNLIMITED TABLESPACE

Granting System Privileges

56

GRANT CREATE SESSION, CREATE TABLE TO user1;

GRANT CREATE SESSION TO scott
WITH ADMIN OPTION; (enables scott to grant the privilege
or role to other users or roles)

Category	Examples			
SYSOPER	STARTUP SHUTDOWN ALTER DATABASE OPEN MOUNT ALTER DATABASE BACKUP CONTROLFILE ALTER TABLESPACE BEGIN/END BACKUP RECOVER DATABASE, ALTER DATABASE ARCHIVELOG RESTRICTED SESSION			
SYSDBA	SYSOPER privileges WITH ADMIN OPTION CREATE DATABASE RECOVER DATABASE UNTIL (any operation on db or objects in db)			
user SYSTEM not as powerful as SYS				

SYSDBA and SYSOPER Privileges (contd.)

58

User SYS:

- Owner of data dictionary, can make changes
- Granted SYSOPER and SYSDBA roles
- Can start and shutdown database

User STSTEM:

- Not granted SYSOPER and SYSDBA roles
- Cannot start/shutdown database
- Cannot modify data dictionary
- Safer to be SYSTEM than SYS

- Create the password file and set the REMOTE_LOGIN_PASSWORDFILE parameter.
- Set REMOTE_LOGIN_ PASSWORD_FILE=EXCLUSIVE.
- Grant SYSOPER and SYSDBA privileges to users.
- Query V\$PWFILE_USERS to verify the password file members.

Displaying System Privileges

60

- Select * from dba_sys_privs;
- Select * from session_privs; (current session)

Database Level

DBA_SYS_PRIVS

- GRANTEE
- PRIVILEGE
- ADMIN OPTION

Session Level

SESSION_PRIVS

PRIVILEGE

- O7_DICTIONARY_ACCESSIBILITY = TRUE
 - Reverts to Oracle7 behavior
 - Removes the restrictions on system privileges with the ANY keyword
 - Defaults to TRUE

Revoking System Privileges

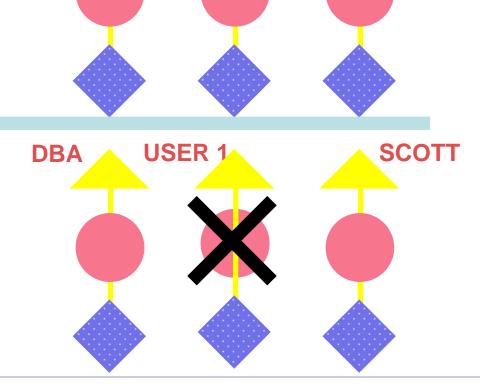
62

REVOKE CREATE TABLE FROM user1;

(can REVOKE privileges granted with GRANT command)

REVOKE CREATE SESSION FROM scott;

Revoking System Privileges Using WITH ADMIN OPTION


DBA

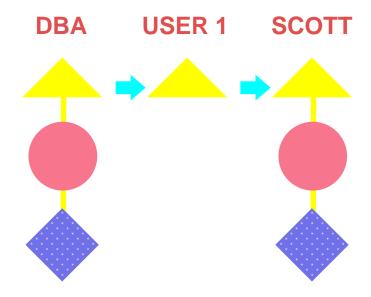
63

SCOTT

GRANT

REVOKE (doesn't cascade)

USER 1



Revoking System Privileges Using WITH ADMIN OPTION (contd.)

34

RESULT

Object Privileges

65

Object priv.	Table	View	Sequence	Procedure
ALTER	V		√	
DELETE	√	V		
EXECUTE				√
INDEX	V			
INSERT	1	1		
REFERENCES	V			
SELECT	1	1	√	
UPDATE	1	1		

Granting Object Privileges

66

GRANT EXECUTE ON dbms_pipe TO public;

GRANT UPDATE(ename,sal) ON emp TO user1
WITH GRANT OPTION;

Column (field) level grants

DBA_TAB_PRIVS

GRANTEE
OWNER
TABLE_NAME
GRANTOR
PRIVILEGE
GRANTABLE

DBA_COL_PRIVS

GRANTEE
OWNER
TABLE_NAME
COLUMN_NAME
GRANTOR
PRIVILEGE
GRANTABLE

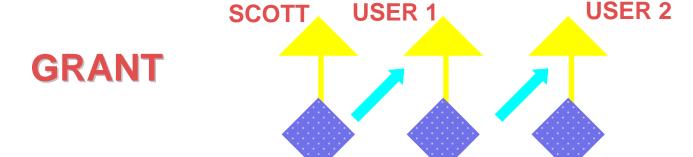
Object privileges

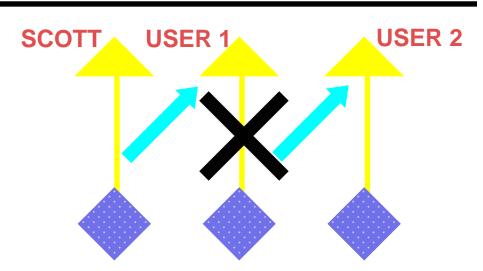
Col specific privileges

Revoking Object Privileges

68

- Select * from dba_tab_privs where grantee = 'SCOTT';
- Select * from dba_col_privs;

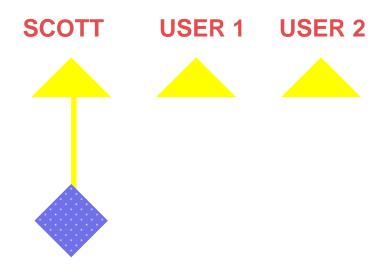

REVOKE execute ON dbms_pipe FROM scott;



Revoking Object Privileges Using WITH GRANT OPTION

69

REVOKE



Revoking Object Privileges Using WITH GRANT OPTION (contd.)

70

RESULT

Summary: revoking object privileges will cascade

- Role: named groups of related privileges
 - Granted/revoked with same commands as for privileges
 - Maybe granted to user or role (except itself)
 - Can consist of object and system privileges
 - May be enabled/disabled
 - Can require password to enable
 - Not owned by anyone

Roles (contd.)

Users Roles HR_MGR HR_CLERK **Privileges** SELECT ON **INSERT ON EMP EMP UPDATE ON CREATE** CREATE **EMP SESSION TABLE**

© CMS INSTITUTE, 2004. All rights reserved. No part of this material may be reproduced, stored or emailed without the prior permission of Programme Director, CMS Institute

70

- Reduced granting of privileges
- Dynamic privilege management
- Selective availability of privileges
- Granted through the OS
- No cascading revokes
- Improved performance

Creating Roles

74

CREATE ROLE sales_clerk;

CREATE ROLE hr_clerk IDENTIFIED BY bonus;

CREATE ROLE hr_manager IDENTIFIED EXTERNALLY;

Using Predefined Roles

Role Name	Description
CONNECT	These two roles are provided
RESOURCE	for backward compatibility.
DBA	All system privileges WITH ADMIN OPTION
EXP_FULL_DATABASE	Privileges to export the DB
IMP_FULL_DATABASE	Privileges to import the DB
DELETE_CATALOG_ROLE	DELETE privileges on DD tables
EXECUTE_CATALOG_ROLE	EXECUTE privilege on DD packages
SELECT_CATALOG_ROLE	SELECT privilege on DD tables

ALTER ROLE sales_clerk IDENTIFIED BY commission;

ALTER ROLE hr_clerk

IDENTIFIED EXTERNALLY;

ALTER ROLE hr_manager **NOT IDENTIFIED**;

Assigning Roles

77

GRANT sales_clerk TO scott;

GRANT hr_clerk, TO hr_manager;

GRANT hr_manager TO scott WITH ADMIN OPTION;

Assigning Privileges to Roles

78

GRANT create table, create any index TO hr_clerk;

GRANT create_session TO hr_manager;

- Disable a role to temporarily revoke the role from a user.
- Enable a role to temporarily grant it.
- The SET ROLE command enables and disables roles.
- Default roles are enabled for a user at login.
- A password may be required to enable a role.

Enabling and Disabling Roles: Examples

80

SET ROLE sales_clerk IDENTIFIED BY commission;

Enable: this is how users would activate their role

SET ROLE ALL EXCEPT sales_clerk;

SET ROLE NONE;

Disable all roles for current session

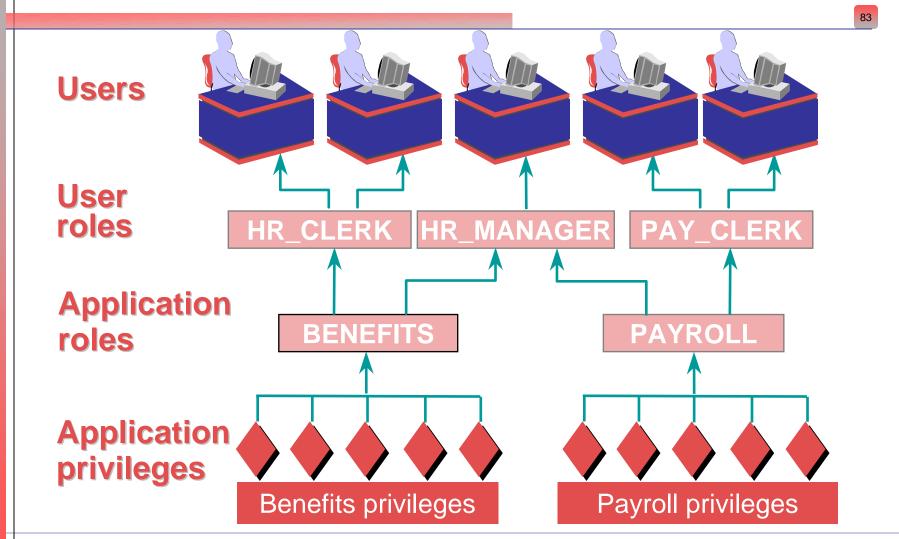
Removing Roles from Users

31

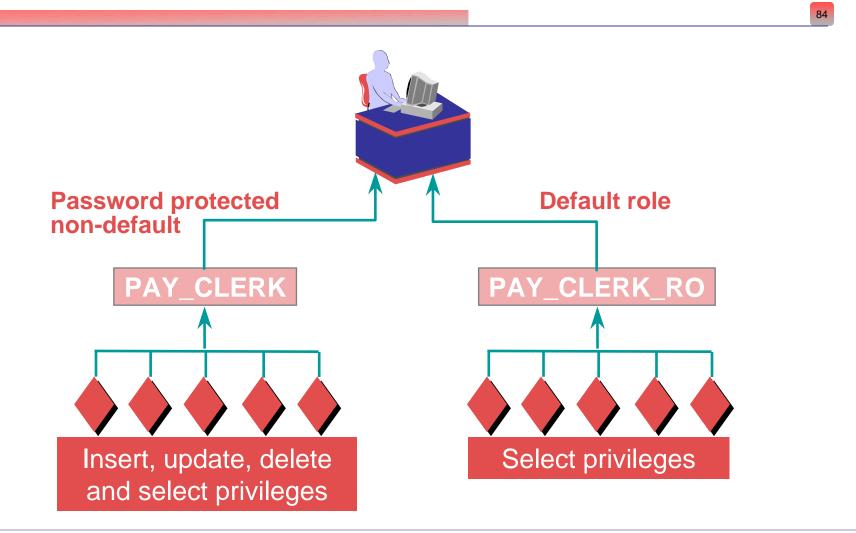
REVOKE sales_clerk FROM scott;

REVOKE hr_manager FROM PUBLIC;

Removing Roles


32

DROP ROLE hr_manager;

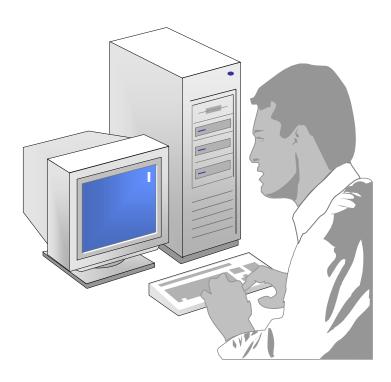

Guidelines for Creating Roles

Guidelines for using Passwords and Default Roles

The PUBLIC User Group and Roles

 To give a certain privilege or role to all the users in the database, simple grant this privilege/role to the user group PUBLIC, which exists in every database by default.

- Using Secure Application Roles
 - Secure application roles in Oracle9i are roles that are implemented through a package.



Role View	Description
DBA_ROLES	All roles which exist in the database
DBA_ROLE_PRIVS	Roles granted to users and roles
ROLE_ROLE_PRIVS	Roles which are granted to roles
DBA_SYS_PRIVS	System privileges granted to users and roles
ROLE_SYS_PRIVS	System privileges granted to roles
ROLE_TAB_PRIVS	Table privileges granted to roles
SESSION_ROLES	Roles which the user currently has enabled.

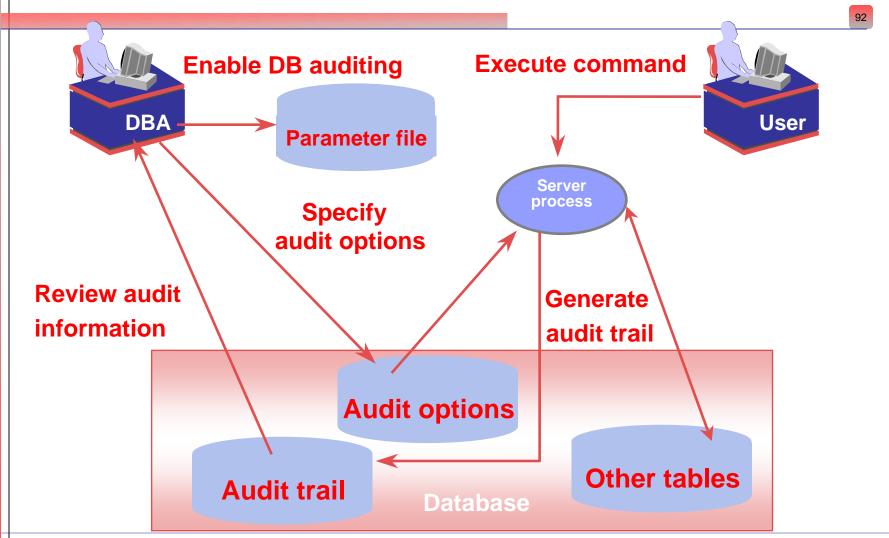
Select role, password_required from dba_roles;

- Oracle9i database provides a lower level security of data using fine-grained data security techniques.
- You can allow all users to access a central table such as payroll table, but transparent to the users you can institute security policies that limit access of an individual user to only those rows in a table.
- Oracle uses two main concepts to enforce fine-grained security within database:
 - An application context.
 - A fine-grained access control policy.
- Oracle uses the term Virtual Private Database to refer to the implementation of the fine-grained access control policies through application contexts.

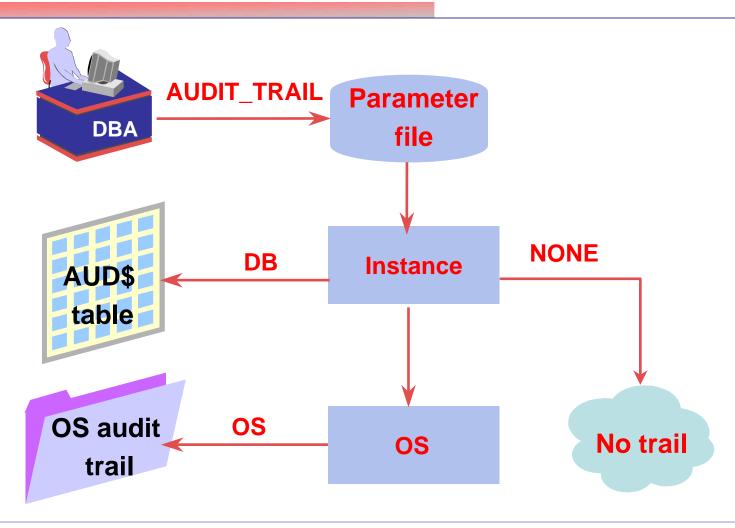
- Auditing privileged operations
 - Always audited
 - Startup, shutdown, and SYSDBA or SYSOPER connections
- Database auditing
 - Enabled by DBA
 - Cannot record column values
- Value-based or application auditing
 - Implemented through code
 - Can record column values
 - Used to track changes to tables

- Database start-up triggers :
 - These triggers are used to execute code that you want to execute immediately after database start-up.
- Logon triggers:
 - Provide you with information regarding the logon times of a user, along with details about the user's session.
- Logoff triggers:
 - Similar to the logon triggers, but they execute right before the user's session logs off.
- DDL triggers:
 - To capture all database object changes with these triggers.
- Server error triggers:
 - Capture all major PL/SQL code errors into a special table.

Value-Based Auditing: An Example


91

```
CREATE TRIGGER scott.auditemployee
AFTER INSERT OR DELETE OR UPDATE
ON scott.emp
 FOR EACH ROW
BEGIN
INSERT INTO scott.audit_employee
 VALUES (:OLD.empno,:OLD.name,...,
                  :NEW.empno, :NEW.name,...,
                USER, SYSDATE);
END;
```



Database Auditing

93

Enabling Auditing Options

94

Statement auditing

AUDIT user;

Privilege auditing

AUDIT select any table

BY scott BY ACCESS;

Schema object auditing

AUDIT LOCK ON scott.emp BY ACCESS WHENEVER SUCCESSFUL;

Auditing Schema Objects

95

Object Option	Table	View	Seq- uence	Stored Pro- gram	Snap- shot
ALTER	Х		Χ		Х
AUDIT	X	X	X	X	Χ
COMMENT	X	X			Χ
DELETE	X	Χ			Χ
EXECUTE				X	
GRANT	X	X	X	X	Χ
INDEX	X				Χ
INSERT	X	Χ			Χ
LOCK	X	X			Χ
READ					
RENAME	X	X			Χ
SELECT	X	X	X	X	Χ
UPDATE	X	X			Х

Viewing Auditing Options

96

Data Dictionary View	Description
ALL_DEF_AUDIT_OPTS	Default audit options
DBA_STMT_AUDIT_OPTS	Statement auditing options
DBA_PRIV_AUDIT_OPTS	Privilege auditing options
DBA_OBJ_AUDIT_OPTS	Schema object auditing options

Disabling Auditing Options

97

NOAUDIT user WHENEVER SUCCESSFUL;

NOAUDIT create table BY scott;

NOAUDIT LOCK ON emp;

- Stores the records generated by statement, privilege, and object auditing
- The audit records are stored in the SYS.AUD\$ data dictionary table or in the OS audit trail
- Each record in the audit trail includes:
 - The user who executed the statement
 - The command issued (action code)
 - Any system or object privilege used
 - The objects referenced in the statement
 - The date and time the statement was issued

- When you don't specify any type of logging, by default Oracle will log three types of database actions under all circumstances.
- The auditing actions and the audit records are written to the default \$ORACLE_HOME/rdbms/audit directory.
 - Connections as SYSOPER or SYSDBA.
 - Database start-up
 - Database shutdown

Viewing Auditing Results

100

Audit Trail View	Description
DBA_AUDIT_TRAIL	All audit trail entries
DBA_AUDIT_EXISTS	Records for AUDIT EXISTS/NOT EXISTS
DBA_AUDIT_OBJECT	Records concerning schema objects
DBA_AUDIT_SESSION	All connect and disconnect entries
DBA_AUDIT_STATEMENT	Statement auditing records

Focus auditing

- Object auditing, where possible
- Only specific users
- By session
- Successful or unsuccessful
- Maintain the audit trail
 - Monitor the growth of the audit trail
 - Protect the audit trail from unauthorized access
 - Cleaning OS audit files

The Password File

102

- Use orapwd to create the password file.
- The remote_login_passwordfile initialization parameter.
- None
 - No password file is used.
 - This is the default, and it permits only operating systemauthenticated users to perform DBA task.
- Shared
 - Creates a shared password file with a single user: SYS.
 - Any user who wants to perform privileged tasks has to log in as SYS.
- Exclusive
 - Uses a password file.
 - Any user can be granted the SYSDBA and SYSOPER privileges, and when the user SYS does so, the user is automatically added to the password file.

Encrypted Passwords

103

- By default, Oracle user passwords aren't encrypted, which leaves them vulnerable to unauthorized usage.
- ora_encrypt_login=true (client)
- dblink_encrypt_login=true (server)
- Oracle will always encrypt a password when it's sending it across a network.

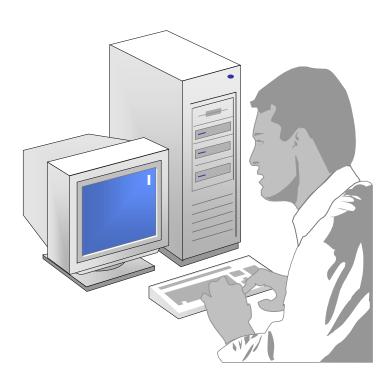
Authentication Methods

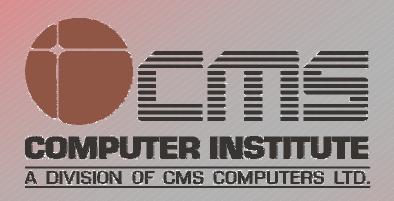
104

- External Authentication
- Proxy Authentication
- Centralized User Authorization using LDAP

Database Security Do's Don'ts

105


- User Accounts default lock except SYS and SYSTEM.
- Passwords, don't hard-code
- Operating System Authentication
- Audit your Database
- Grant Privileges Appropriately.
- Set appropriate Permissions.
- Safeguard the Network and the Listener.
- Keep Up-to-Date for latest news about new security vulnerabilities and the patches to overcome them..
- Use Oracle's Advanced Security Feature.
- Take Care of Application Security.


Exercise V Auditing the database Usage

106

Design & Published by:

CMS Institute, Design & Development Centre, CMS House, Plot No. 91, Street No.7, MIDC, Marol, Andheri (E), Mumbai –400093, Tel: 91-22-28216511, 28329198

Email: courseware.inst@cmail.cms.co.in

www.cmsinstitute.co.in