
INSIDEINSIDE

∆ Under Attack
∆ The Buffer Overflow
∆ Getting the Heap Address
∆ Abusing the Glibc
∆ Now You See Me, Now You Don’t

An Analysis of the Slapper Worm Exploit
by
Frédéric Perriot and Peter Szor
Symantec Security Response

WHITE PAPER

Symantec Security Response

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

Table of Contents

Introduction . 3

Under Attack . 4

The Buffer Overflow . 6

Double-Take . 8

Getting the Heap Address . 10

Abusing the Glibc . 13

The Shell Code and Infection . 18

Now You See Me, Now You Don’t . 18

Per-to-Peer Network . 19

Conclusion . 19

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

3

List of Figures

Figure 1: Overview of the infection process . 3

Figure 2: Global Offset Table (GOT) 1 . 5

Figure 3: Global Offset Table (GOT) 2 . 6

Figure 4: SSLv2 handshake: Attack phase 1 . 7

Figure 5: SSL_SESSION structure on the heap . 8

Figure 6: Pool of Apache Web servers and their heap layout, Creation of a new
server process, Creation of multiple new server processes . 9

Figure 7: SSL_SESSION structure after the first overflow . 11

Figure 8: SSL_SESSION structure on the heap, SSL_SESSION structure after the
second overflow . 12

Figure 9: SSLv2 Handshake: Attack phase 2 . 13

Figure 10: SSL_SESSION structure after the second overflow 14

Figure 11: Allocating memory . 15

Figure 12: Freeing memory before a used block . 16

Figure 13: Freeing memory before a used block, Freeing memory before an unused 17

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

4

Overview Of The Infection Process (2)

Worm Instance

Attacking New System

31.41.59.26

31.41.59.27

31.41.59.28

Exploit SSL buffer overflow

Leak heap pointers

√ 1.0 Introduction

On July 30, 2002, a security advisory from A.L. Digital, Ltd. and The Bunker disclosed four critical

vulnerabilities in the OpenSSL package. OpenSSL is a free implementation of the Secure Socket

Layer protocol used to secure network communications. It also provides cryptographic primitives to

many popular software packages, one of which is the Apache Web server.

Less than two months later, the Linux/Slapper worm successfully exploited one of the buffer overflows

described in the advisory and, in a matter of days, spread to thousands of machines around the world.

So far, Linux/Slapper is one of the most significant outbreaks on Linux systems. The worm could have

infected many more machines, but it intentionally skipped private network classes, such as

192.168.0.0/16. As such, the outbreak will not spread on local networks. The Slapper worm is similar

to the FreeBSD/Scalper worm, thus, the namesake.

√ 2.0 Under attack

Linux/Slapper spreads to Linux machines by exploiting the long SSL2 key argument buffer overflow

in the libssl library, which the mod_ssl module of the Apache 1.3 Web servers used. When attacking

a machine, the worm attempts to fingerprint the system by first sending an invalid GET request to the

http port—port 80—and expecting Apache to return its version number, as well as the Linux distribution

on which it was compiled with an error status.

Overview Of The Infection Process (1)

Worm Instance

Scanning for Vulnerable Systems

31.41.59.26

31.41.59.27

31.41.59.28

probe on port 80

probe on port 80

probe on port 80

Overview Of The Infection Process

31.41.59.26

31.41.59.27

31.41.59.28

infected

New Worm Instance

Attacking New Systems

Overview Of The Infection Process (3)

Worm Instance

Attacking New System

31.41.59.26

31.41.59.27

31.41.59.28

Exploit SSL buffer overflow

again

Provide remote
shell

Inject worm code

Refer to Figure 1 for illustrations of the “Overview of the infection process.”

Figure 1: Overview of the infection process

The worm contains a hard-coded list of 23 architectures, on which it was tested, and compares the

returned version number to the list. Later, it uses this version information to tune the attack parameters.

If Apache is configured to not return its version number, or if the worm does not know the version, it will

select a default architecture (Apache 1.3.23 on Red Hat), as well as the “magic” value associated with

it. This “magic” value is important for the worm, as it is the address of the Global Offset Table (GOT)

entry of the free() library function. The GOT entries of the ELF files are the equivalent of the Import

Address Table (IAT) entries of the Portable Executable (PE) files on Windows systems. They hold the

addresses of the library functions to call. The address of each function is placed into the GOT entries

when the system loader maps the image for execution.

Refer to Figure 2 and Figure 3 for illustrations of the “Global Offset Table (GOT) 1”

and “Global Offset Table (GOT) 2,” respectively.

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

5

The Global Offset Table (GOT) (1)

.text

p = malloc(200)

free(p)

.data

.got

{heap}

{libc}
malloc:

free:

Figure 2: Global Offset Table (GOT) 1

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

6

Figure 3: Global Offset Table (GOT) 2

Slapper wants to hijack the free() library function calls to run its own shell code on the remote machine.

The Global Offset Table (GOT) (2)

.text

p = malloc(200)

free(p)

.data

.got

{heap}

{libc}
malloc:

free:

Section Headers:

...

[20] .got 0809ad94 000330

...

Relocation section contains 145
entries:

Offset Symbol's Name

...

0809adf8 fork

0809ae64 malloc

0809af8c free

0809afa8 fopen

0809afbc socket

...

0809ad94

√ 3.0 The Buffer Overflow

In the past, some worms have exploited stacked-based buffer overflows. Stack-based overflows are

the low-hanging fruits compared to second-generation overflows, exploiting the heap structures. As

the OpenSSL vulnerability affected a heap-allocated structure, the author of the worm encountered

was not trivial and required a technically experienced individual.

When Apache is compiled and configured to use SSL, it listens on port 443.

The Slapper worm does the following:

• Opens a connection to this port and initiates an SSLv2 handshake.

• Sends a client “hello” message, advertising eight different ciphers (although, the worm sup

ports only one; that is, the RC4 128-bit with MD5) and gets the server’s certificate in response.

• Sends the client master key and key argument, specifying a key argument length greater than

the maximum allowed, SSL_MAX_KEY_ARG_LENGTH (8 bytes).

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

7

When the packet data is parsed in the get_client_master_key() function of libssl on the server, the

code does not do a boundary check on the key argument length and copies the key argument from

the packet to a fixed-length buffer key_arg[] of size SSL_MAX_KEY_ARG_LENGTH, in a heap-allocated

SSL_SESSION structure.

As such, arbitrary bytes can overwrite any information following key_arg[]. This includes both the

elements after key_arg[], in the SSL_SESSION structure, and the heap management data, which follows

the memory block that contains the structure.

Figure 4: SSLv2 handshake: Attack phase 1

SSLv2 Handshake: Attack phase 1

Client hello

cipher suite, challenge

Server hello

cipher suite, connection id, certificate

Send server verify

E(master key, challenge)

Send client finished

E(master key, connection id)

Send server finished

E(master key, session id+leaked information)

Client Server Listens

On Port 443/TCP

Send client master key

E(server public key, master key), cipher, key argument Buffer
overflow!

leaked values

*cipher

*ciphers

Refer to Figure 4 for an illustration of the “SSLv2 handshake: Attack phase 1.”

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

8

The manipulation of the elements in the SSL_SESSION structure is crucial to the success of the

buffer overflow. The author of the exploit took great care to overwrite these fields in a way that does

not grossly affect the SSL handshake.

√ 4.0 Double-Take

Interestingly, instead of using this overflow mechanism only once, the worm uses it twice:

• First, to locate the heap in the Apache process address space.

• Next, to inject its attack buffer and shell code.

There are two good reasons for splitting the exploit in two phases:

1. The attack buffer must contain the absolute address of the shell code, which is hardly

predictable across all the servers, because the shell code is placed in memory that is

dynamically allocated on the heap.

To overcome this problem, the worm causes the server to leak the address where the shell code will

eventually reside, and then sends an attack buffer that is patched accordingly.

2. The exploit requires overwriting the cipher field of the SSL_SESSION structure located after the

unchecked key_arg[] buffer. Refer to “Figure 5: SSL_SESSION structure on the heap” for an illustration.

Figure 5: SSL_SESSION structure on the heap

SSL_SESSION Structure on the Heap

int ssl_version;

unsigned int key_arg_length;

unsigned char key_arg[8];

int master_key_length;

unsigned char master_key[48];

unsigned int session_id_length;

unsigned char session_id[32];

[…other fields 68 bytes long…]

SSL_CIPHER *cipher;

unsigned long cipher_id;

STACK_OF(SSL_CIPHER) *ciphers;

[…more fields 16 bytes long…]

2

8

{ random }

48

{ random }

32

{ random }

…

0x081fxxxx

n

0x081f3698

…

prev_size

size + PREV_INUSE bit

200

20 + 1

STACK_OF(SSL_CIPHER)

0x081f35c8

0x081f3690

0x081f3698

Refer to Figure 5 for an illustration of the “SSL_SESSION structure on the heap.”

This field identifies the cipher to use during the secure communication, and if its value were to

become lost, the session would come to an abrupt end. So, the worm collects the value of this field

during the first phase, and then re-injects it at the correct location within the SSL_SESSION structure,

during the second phase.

This two-phased approach requires two separate connections to the server and only succeeds

because Apache 1.3 is a process-based server as opposed to a thread-based server.

The spawn of Apache that handles the two successive connections will inherit the same heap layout

from their parent process. Therefore, all other things being equal, the structures allocated on the

heap will end up at the same addresses during both connections.

This step assumes that Apache spawns two fresh “identical twin” processes to handle the two con-

nections. However, under normal conditions, this may not always be the case, as Apache maintains

a pool of running servers, which wait for the requests to handle.

To force Apache to create two fresh processes, the worm exhausts Apache’s pool of servers before

attacking, by opening a succession of 20 connections at 100 millisecond intervals.

Refer to Figure 6 for illustrated examples of the “Pool of Apache Web servers and their heap layout,”

“Creation of a new server process,” and “Creation of multiple new server processes.”

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

9

Pool Of Apache Web Servers And Their Heap
Layout

httpd

httpd httpd httpd

Parent Process Server Pool

New TCP Connections

busy busy busy

Pool Of Apache Web Servers And Their Heap
Layout

httpd

httpd httpd httpd

Parent Process Server Pool

Heap Layouts Are Different Because

The Processes Have A Different History

Creation Of A New Server Process

New TCP Connection

httpd

httpd httpd httpd

Parent Process

busybusybusy

Server Pool

httpd

spawn new
child

Pool Of Apache Web Servers And Their Heap
Layout

httpd

httpd httpd httpd

Parent Process Server Pool

busy busy busy

Connection-related data ends up

in different locations on the heap

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

10

√ 5.0 Getting the Heap Address

The first use of the buffer overflow by the worm causes OpenSSL to reveal the location of the heap.

The worm does this by overflowing the key_arg[] buffer by 56 bytes, up to the session_id_length field

in the SSL_SESSION structure.

The session_id_length field describes the length of the 32-bytes-long session_id[] buffer, which is

the next field in the SSL_SESSION structure. The worm overwrites the session_id_length with the

value, 0x70 (112). Then, the SSL conversation continues normally until the worm sends a “client

finished” message to the server, indicating that it wants to terminate the connection.

Creation Of Multiple New Server Processes

httpd

httpd httpd httpd

Parent Process

busybusybusy

Server Pool

httpd httpd httpd httpd

Heap Layouts Are The Same

Creation Of Multiple New Server Processes

httpd

httpd httpd httpd

Parent Process

busybusybusy

Server Pool

httpd httpd httpd httpd

Connection-related Data Ends Up

In The Same Locations On The Heap

Creation Of Multiple New Server Processes

httpd

httpd httpd httpd

Parent Process

busybusybusy

Server Pool

httpd

spawn new
children

httpd

New TCP Connections

httpd httpd

Figure 6: Pool of Apache Web servers and their heap layout, Creation of a
new server process, Creation of multiple new server processes

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

11

Refer to Figure 7 for an illustration of the “SSL_SESSION structure after the first overflow.”

SSL_SESSION Structure After The First Overflow

int ssl_version;

unsigned int key_arg_length;

unsigned char key_arg[8];

int master_key_length;

unsigned char master_key[48];

unsigned int session_id_length;

unsigned char session_id[32];

[…other fields 68 bytes long…]

SSL_CIPHER *cipher;

unsigned long cipher_id;

STACK_OF(SSL_CIPHER) *ciphers;

[…more fields 16 bytes long…]

2

64

{ random }

‘AAAA’

‘AAAAAA…AAA’

112

{ random }

…

0x081fxxxx

n

0x081f3698

…

prev_size

size + PREV_INUSE bit

200

20 + 1

STACK_OF(SSL_CIPHER)

0x081f35c8

0x081f3690

0x081f3698

112 bytes

Figure 7: SSL_SESSION structure after the first overflow

Upon receiving the “client finished” message, the server replies with a “server finished” message,

including the session_id[] data. Once again, boundary checking is not performed on the

session_id_length, and the server sends not only the content of the session_id[] buffer, but the entire

112 bytes of the SSL_SESSION structure, starting at session_id[].

Among other things, a field called ciphers points to the structure allocated on the heap directly after

the SSL_SESSION structure, where the shell code will go, as well as to a field called cipher, which

identifies the encryption method to use.

The worm extracts the two heap addresses from the session_id data received from the server and

places them in its attack buffer. The TCP port of the attacker’s end of the connection is also patched

into the attack buffer for the shell code to use later. Then, the worm performs the second SSL hand-

shake and retriggers the buffer overflow.

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

12

Refer to Figure 8 for illustrations of the “SSL_SESSION structure on the heap”
and “SSL_SESSION structure after the second overflow.”

SSL_SESSION Structure On The Heap

int ssl_version;

unsigned int key_arg_length;

unsigned char key_arg[8];

int master_key_length;

unsigned char master_key[48];

unsigned int session_id_length;

unsigned char session_id[32];

[…other fields 68 bytes long…]

SSL_CIPHER *cipher;

unsigned long cipher_id;

STACK_OF(SSL_CIPHER) *ciphers;

[…more fields 16 bytes long…]

2

8

{ random }

48

{ random }

32

{ random }

…

0x081fxxxx

n

0x081f3698

…

prev_size

size + PREV_INUSE bit

200

20 + 1

STACK_OF(SSL_CIPHER)

0x081f35c8

0x081f3690

0x081f3698

SSL_SESSION Structure After The Second
Overflow

int ssl_version;

unsigned int key_arg_length;

unsigned char key_arg[8];

int master_key_length;

unsigned char master_key[48];

unsigned int session_id_length;

unsigned char session_id[32];

[…other fields 68 bytes long…]

SSL_CIPHER *cipher;

unsigned long cipher_id;

STACK_OF(SSL_CIPHER) *ciphers;

[…more fields 16 bytes long…]

2

332

‘AAAAAAAA’

‘AAAA’

‘AAAAAA…AAA’

‘AAAA’

‘AAAAAA…AAA’

…

0x081fxxxx

‘AAAA’

0x081f3698

…

prev_size

size + PREV_INUSE bit

0

16 + 1

forward ptr, backward ptr

prev_size

size + PREV_INUSE bit

shellcode

0x081f35c8

0x081f3690

0x081f3698 0x080994cc, 0x081f36a8

16

16 + 0

… execve(“/bin/sh”) …0x081f36a8

Values leaked in the
first phase

shellcode address

GOT entry of free()-12

architecture-dependent

Figure 8: SSL_SESSION structure on the heap, SSL_SESSION structure after the second overflow

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

13

√ 6.0 Abusing the Glibc

The second use of the buffer overflow is more subtle than the first. It can be seen as three steps lead-

ing to the execution of the shell code:

1. Corrupting the heap management data.

2. Abusing the free() library call to patch an arbitrary dword in memory, which will be the

GOT entry of free() itself.

3. Causing free() to be called again, this time to redirect control to the shell code location.

Refer to Figure 9 for an illustration of the “SSLv2 Handshake: Attack phase 2.”

Figure 9: SSLv2 Handshake: Attack phase 2

The attack buffer used in the second overflow is composed of three parts:

1. The items to be placed in the SSL_SESSION structure after the key_arg[] buffer

2. 24 bytes of specially crafted data

3. 124 bytes of shell code

When the buffer overflow occurs, all the members of the SSL_SESSION structure, after the key_arg[]

buffer, are overwritten. The numeric fields are filled with “A” bytes and the pointer fields are set to

NULL, with the exception of the cipher field. This field is restored to the same value that was leaked in

the first phase.

Client Server Listens

On Port 443/TCP

SSLv2 Handshake: Attack Phase 2

Client hello

cipher suite, challenge

Server hello

cipher suite, connection id, certificate

Send server verify

E(master key, challenge)

Send client finished

E(master key, bad connection id)

New TCP connection

for shell control

Send client master key

E(server public key, master key), cipher, key argument Buffer
overflow!

shell

1) GOT patched

2) shellcode

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

14

Refer to Figure 10 for an illustration of the “SSL_SESSION structure after the second overflow.”

Figure 10: SSL_SESSION structure after the second overflow

Fake heap management data overwrites the 24 bytes of memory following the SSL_SESSION struc-

ture. (Refer to “Figure 10: SSL_SESSION structure after the second overflow” for an illustration.)

The glibc allocation routines maintain so-called “boundary tags” in between memory blocks for

management purposes. Each tag consists of the sizes of the memory blocks before and after it, plus

one bit indicating whether the block before it is in use or available (the PREV_IN_USE bit).

SSL_SESSION Structure After The Second
Overflow

int ssl_version;

unsigned int key_arg_length;

unsigned char key_arg[8];

int master_key_length;

unsigned char master_key[48];

unsigned int session_id_length;

unsigned char session_id[32];

[…other fields 68 bytes long…]

SSL_CIPHER *cipher;

unsigned long cipher_id;

STACK_OF(SSL_CIPHER) *ciphers;

[…more fields 16 bytes long…]

2

332

‘AAAAAAAA’

‘AAAA’

‘AAAAAA…AAA’

‘AAAA’

‘AAAAAA…AAA’

…

0x081fxxxx

‘AAAA’

0x081f3698

…

prev_size

size + PREV_INUSE bit

0

16 + 1

forward ptr, backward ptr

prev_size

size + PREV_INUSE bit

shellcode

0x081f35c8

0x081f3690

0x081f3698 0x080994cc, 0x081f36a8

16

16 + 0

… execve(“/bin/sh”) …0x081f36a8

Values leaked in the
first phase

shellcode address

GOT entry of free()-12

architecture-dependent

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

15

Refer to Figure 11 for an illustration of memory allocation.

Figure 11: Allocating memory

Additionally, free blocks are kept in doubly linked lists formed by forward and backward pointers,

which are maintained in the free blocks themselves.

Allocating Memory

malloc()

malloc()

malloc()

prev_size
size P

prev_size
size P

PREV_INUSE bit

a “chunk”

32 bytes

= 32

64 bytes

= 64 =1

16 bytes

= 64
= 16 =1

0x00000000

0xffffffff

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

16

Refer to Figure 12 for an illustration of “Freeing memory before a used block.”

Figure 12: Freeing memory before a used block

The fake heap management data injected by the worm after the SSL_SESSION structure poses a

minimal-sized unallocated block, only containing the forward and backward pointers set respectively

to the address of the GOT entry of free() minus 12, as well as the address of the shell code.

The address of the GOT entry is the “magic” value determined by fingerprinting. And, the address of

the shell code is the value of the ciphers field leaked by OpenSSL in the first phase of the attack, plus

16 to account for the size of the fake block content and trailing boundary tag.

After the aforementioned conditions are set up on the server, the worm sends a “client finished”

message specifying a bogus connection ID. This causes the server to abort the session and attempt

to free the memory associated with it. The SSL_SESSION_free() function of the OpenSSL library is

invoked, which in turn calls as an argument the glibc free() function with a pointer to the modified

SSL_SESSION structure.

One may think that freeing memory is a simple task, but in fact, free() performs considerable book-

keeping when a memory block is released. Among other tasks, free() takes care of consolidating

blocks; that is, merging contiguous free blocks into one to avoid fragmentation.

The consolidation operation uses the forward and backward pointers to manipulate the linked lists of

free blocks. The operation trusts these to be pointing to heap memory, at least in the release build.

Allocating Memory

malloc()

malloc()

malloc()

prev_size
size P

prev_size
size P

PREV_INUSE bit

a “chunk”

32 bytes

= 32

64 bytes

= 64 =1

16 bytes

= 64
= 16 =1

0x00000000

0xffffffff

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

17

Refer to Figure 13 for illustrations on “Freeing memory before a used block” and
“Freeing memory before an unused block.”

Figure 13: Freeing memory before a used block, Freeing memory before an unused block

The exploit takes advantage of the forward consolidation of the SSL_SESSION memory block, with

the fake block created after it, by appropriately setting the PREV_IN_USE bits of the boundary tags.

The forward pointer in the fake block, which points to the GOT, is treated as a pointer to a block head-

er, de-referenced. Also, the value of the backward pointer (the shell code address) is written to offset

12 of the headers. Thus, the shell code address ends up in the GOT entry of free().

Note: The fake backward pointer is also de-referenced, so that the beginning of the shell code is treated

as a block header as well. And, it is patched at offset 8 with the value of the fake forward pointer.

Freeing Memory Before An Unused Block
(Links Creation)

free()

prev_size
size P

prev_size
size P

= 32
= 64 =1

= 64
= 16 =1

fd ptr

bk ptr

forward ptr
backward ptr

forward ptr
backward ptr

0

Freeing Memory Before A Used Block

free()

prev_size
size P

prev_size
size P

= 32
= 64 =1

= 64
= 16 =1

forward ptr
backward ptr

0

fd ptr

bk ptr

fd ptr

bk ptr

Freeing Memory Before An Unused Block
(Consolidation)

free()

prev_size
size P

prev_size
size P

= 32
= 64 =1

= 64
= 16 =0

fd ptr

bk ptr

forward ptr
backward ptr

forward ptr
backward ptr

Pointer copy

0

4

8

12

Freeing Memory Before An Unused Block
(Consolidation)

forward ptr
backward ptr

free()

prev_size
size P

prev_size
size P

= 32
= 64 =1

= 64
= 16 =0

fd ptr

bk ptr

forward ptr
backward ptr

Freeing Memory Before An Unused Block
(Consolidation)

free()

prev_size
size P

= 32
= 64 =1

fd ptr

bk ptr

forward ptr
backward ptr

88

Freeing Memory Before An Unused Block
(Consolidation)

fd ptr

bk ptr

free()

prev_size
size P

prev_size
size P

= 32
= 64 =1

= 64
= 16 =0

forward ptr
backward ptr

forward ptr
backward ptr

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

18

To avoid corrupting the shell code during this operation, the shell code will start with a short jump fol-

lowed by 10 unused bytes filled with NOPs, so the shell code instructions are not corrupted during

the consolidation.

Finally, on the next call to free() by the server, the modified address in the GOT entry of free() is used and

the control flow is directed to the shell code.

√ 7.0 The Shell Code and Infection

When the shell code is executed, it first searches for the socket of the TCP connection with the

attacking machine, by cycling through all the file descriptors and issuing a getpeername() call on

each until the call succeeds and indicates that the peer TCP port is the patched one in the shell code.

Then, the shell code duplicates the socket descriptor to the standard input, output, and error.

Next, it attempts to gain root privileges by calling setresuid() with the UIDs all set to zero. Apache

usually starts running as root, and then switches to the identity of an unprivileged user “apache”

using the setuid() function. Thus, the setresuid() call will fail, as setuid() is irreversible and contrary to

the seteuid() function. The author of the shell code ostensibly overlooked this fact, however, the

worm does not need root privileges to spread, because it only writes to the /tmp folder.

Finally, a standard shell “/bin/sh” is executed with an execve() system call. The worm issues a few

shell commands to upload itself to the server in uu-encoded form, as well as to decode, compile, and

execute itself. The recompilation of the source on the various platforms makes identifying the worm

in binary form more difficult. The operations are performed in the /tmp folder, in which the worm files

reside as the names, .uubugtraq, .bugtraq.c, and .bugtraq—notice the leading period marks, “.”, to

hide the files from a simple “ls” command.

√ 8.0 Now You See Me, Now You Don’t!

As the worm hijacks an SSL connection to send itself, a valid concern is whether it travels on the net-

work in encrypted form. This issue is particularly crucial for authors of IDS systems who rely on

detecting signatures in raw packets. Fortunately, the buffer overflow occurs early enough in the SSL

handshake, before the socket is used in encrypted mode. Therefore, the attack buffer and the shell

code are clear on the wire.

Later on, the same socket is used to transmit the shell commands, as well as the uu-encoded worm

in plain text. The “server verify,” “client finished,” and “server finished” packets are the only encrypted

traffic, but they are not particularly relevant for detection purposes.

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

19

√ 9.0 Peer-to Peer Network

When an instance of the worm is executed on a new machine, it binds to port 2002/UDP and

becomes part of a peer-to-peer network.

Note: Although a vulnerable machine can be hit multiple times and exploited again, the binding to

port 2002 prevents multiple copies of the worm from running at the same time.

The parent of the worm on the attacking machine sends to its offspring the list of all the hosts on the

peer-to-peer network and broadcasts the address of the new instance worm to the network. Then,

periodic updates to the host list are exchanged between the machines on the network. The new

instance of the worm also starts scanning the network for other vulnerable machines, sweeping ran-

domly chosen Class B-sized networks.

The protocol used in the peer-to-peer network is built on top of the UDP and provides reliability

through the use of checksums, sequence numbers, and acknowledgment packets. The code has

been taken from an earlier tool and each worm instance acts as a Distributed Denial of Service

(DDoS) agent and a backdoor.

√ 10.0 Conclusion

Linux/Slapper is an interesting patchwork of a DDoS agent, with some functions taken straight from

the OpenSSL source code and a shell code, which the author claims is not his own. This amalgama-

tion results in a substantial amount of code, which is difficult to quickly comprehend.

Like FreeBSD/Scalper, most of the worm’s code was probably previously written when the exploit

became available. For the author, it was just a matter of integrating the exploit as an independent

component.

And similar to Scalper, which exploited the BSD memcpy() implementation, the target of the exploit

is not only an application, but rather a combination of an application and a run-time library under-

neath it. Perhaps one would expect memcpy() and free() to behave in a certain way, consistent with

routine programming experience; however, when used in an unusual state or in passed invalid

parameters, both memcpy() and free() behave erratically.

Linux/Slapper shows that Linux machines can become the target of worms that spread in the wild as

easily as Windows machines do. For those with Slapper-infected Linux servers, it is a day to remember.

SYMANTEC, THE WORLD LEADER IN INTERNET SECURITY TECHNOLOGY, PROVIDES A BROAD RANGE OF CONTENT AND NETWORK
SECURITY SOFTWARE AND APPLIANCE SOLUTIONS TO INDIVIDUALS, ENTERPRISES AND SERVICE PROVIDERS. THE COMPANY IS A
LEADING PROVIDER OF VIRUS PROTECTION, FIREWALL AND VIRTUAL PRIVATE NETWORK, VULNERABILITY ASSESSMENT,
INTRUSION PREVENTION, INTERNET CONTENT AND EMAIL FILTERING, AND REMOTE MANAGEMENT TECHNOLOGIES AND SECURITY
SERVICES TO ENTERPRISES AND SERVICE PROVIDERS AROUND THE WORLD. SYMANTEC’S NORTON BRAND OF CONSUMER
SECURITY PRODUCTS IS A LEADER IN WORLDWIDE RETAIL SALES AND INDUSTRY AWARDS. HEADQUARTERED IN CUPERTINO,
CALIF., SYMANTEC HAS WORLDWIDE OPERATIONS IN 38 COUNTRIES.

FOR MORE INFORMATION, PLEASE VISIT WWW.SYMANTEC.COM

Symantec and the Symantec logo are U.S. registered trademarks of Symantec Corporation. All other brands and products are trademarks of their
respective holder/s. © 2003 Symantec Corporation. 04/03 All rights reserved. Printed in the U.S.A. All product information is subject to change. 10087613

WORLD HEADQUARTERS

20330 Stevens Creek Blvd.

Cupertino, CA 95014 U.S.A.

408.517.8000

800.721.3934

www.symantec.com

For Product Information

In the U.S., call toll-free

800.745.6054

Symantec has worldwide

operations in 38 countries.

For specific country

offices and contact numbers

please visit our Web site.

Symantec ANALYSIS OF THE SLAPPER WORM EXPLOIT

