
VIRUS BULLETIN APRIL 2002 • 9

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Unix Shell Scripting Malware
Marius van Oers
McAfee AVERT, The Netherlands

Unix/Linux binary malware can be very dependent upon
distribution flavour and kernel version. Furthermore, the
use of binary files as a starting point for virus infection
may not always be very successful – starting off with a
coredump will result in a rapid failure.

In the past we have seen worms (for example Linux/Adore)
make use of a combination of ELF binary files and scripts.
Usually scripts are independent of distribution flavour and
kernel version, and most are likely to have few problems
running on the target machine.

For some worm packages, scripts act as the ‘fire-starters’ on
the target PC. The scripts may execute directly, or may call
other script files and binaries. Sometimes local files are
replaced by compromised ones that are included in the
worm package.

So what are the possibilities in the Unix world for mali-
cious code using scripting?

Unix Scripting

There are a number of different Unix/Linux distributions,
the majority of which support scripting. Similarly, there are
a number of different forms of scripting.

Javascript is supported on both Windows and on most
Unix/Linux systems. Therefore, the creation of Javascript
malware that will work in both operating system environ-
ments is technically possible, and it should be relatively
easy to accomplish.

The binary infector W32/Lindose was a 32-bit PE
Windows-based infector that searched the system for binary
ELF files to infect, however Lindose does not operate in the
opposite direction (i.e Unix to Windows). Technically, this
should have been achievable – consider, for example,
that emulator programs exist on Unix systems to run
Win32 code. However, a considerable level of technical
expertise would be needed to achieve this and, more
importantly, it would be a significantly time-consuming
process. It would be both quicker and easier to write a
Javascript virus that can run natively in both the Windows
and Unix environments.

The powerful Perl scripting is supported on a lot of Unix
systems, either installed directly or using an add-on
package. A sample file might be called ‘runme.pl’.

Unix shell scripting is very powerful too; it may control
program configuration and start/kill services. Unix shell

scripting has many flavours, for example Bourne (sh),
Bourne Again (Bash), Korn, C and Tops C shell scripting.
Also it is possible to create a completely new shell inter-
preter. However, the most common is the Bourne Again
shell scripting, using the ‘/bin/sh’ interpreter. A sample file
might be called ‘runme.sh’.

A virus writer making the assumption that Bourne Again is
the default shell interpreter runs the risk, should this not be
the case, of the virus producing errors and crashing. A
simple way to avoid this situation is to insert a ‘#!/bin/sh’
line at the start of the file.

On Linux systems ‘#!/bin/sh’ will act as a redirect to Bash,
but on other Unix systems there are differences between sh
and Bash. An alternative shell interpreter can be specified,
for example using ‘#!/bin/csh’. On Solaris systems the Korn
shell, ksh, is used widely.

Now let’s take a closer look at Bourne shell scripting and
the malware making use of it.

Unix Shell Malware

Creating malware using shell scripting is relatively easy.
Simple viruses may be very short, consisting of only a few
lines, and even less code is needed to construct a Trojan.

Another aspect is that, unlike binaries, the Bourne shell
scripts will (usually) work on a large number of different
Unix flavours (or will do so with a few very minor
modifications).

By examining some samples that were distributed in the
latest publication of a well-known virus-writing group, we
can take a look at what possibilities and techniques exist for
shell viruses.

Determining Which Files to Infect

With the support of ‘if-then-else’ and ‘for-do’ loops it is
easy to create viruses that search files for suitable targets.
The search can be carried out both in the current directory
and in others, using directory walking loops.

Suppose we have a simple Bourne shell virus; without
filtering the viral shell code could be added to binary files.
So, in order to prevent unexpected results, proper filtering
is required.

Grep

Usually Bourne shell scripts start with a reference to the
interpreter, ‘/bin/sh’, in the file header. So a quick check for
files that start with ‘#!/bin/sh’ would provide a good subset
of initial target files for infection.

TECHNICAL FEATURE

10 • VIRUS BULLETIN APRIL 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

This search is possible using the ‘grep’ command. For
example:

‘grep –s #!/bin/sh $targetfiles’

In this case the ‘–s’ option is used to suppress any error
messages.

Head

Instead of examining the complete file, the head of the file
can provide useful information for faster filtering.

The ‘head’ command returns information on the beginning
of a file. For example, ‘head –20 $file’ returns the first
20 lines of the file, while ‘head –c20 $file’ returns the
first 20 characters of the file.

File

Using the command ‘file’ it is possible to determine
whether the filetype of a target file is of Bourne shell
format. However, this technique is rarely used; it is not a
perfect technique, as it reads file headers to determine the
file type.

In some cases, for example with .sh scripts, it is not
necessary for shell scripts to have lines such as ‘ #!/bin/sh’
at the beginning of the file. Although this command
interpreter line is encountered frequently, it is not manda-
tory. Files without the expected command interpreter line
could be judged by ‘file’ to be regular ASCII files rather
than shell script files.

Find

Unix systems have a wide range of protection techniques,
so, in addition to this file checking, a virus should investi-
gate the target file’s permissions – for example, determine
whether these are set to read (-r-) , write (-w-) and/or
executable (-x-).

Some viruses walk through directories/folder trees but upon
infection fail to check whether the target is a file or direc-
tory, which may result in crashes.

The ‘find’ command can be used to search for specific
target files. And, not only can ‘find’ filter on files with
specific attributes (-r -w -x etc.), but it can also execute a
command on the target files that are found. However,
making use of ‘find’ may result in a noticeable decrease in
the speed of the system.

To prevent an early discovery by a user, it is possible to
launch processes in the background, using the ‘&’ shell
script symbol.

Temp Files

To avoid speed reduction, script viruses may create tempo-
rary files. The viral code can be copied to these and any

time-consuming routines can be run from there in the
background. This way the process remains transparent to
the user – there is no obvious decrease in the speed of the
host application.

Another reason for making use of temporary files is to
differentiate between the pure viral body and those files that
are being infected. Some viruses copy the target file to the
temp folder, modify it, and write back, replacing the now
infected target file.

If there are errors, or corrupted files, it’s easier to hide them
by using a central, temporary, location than it is when
working directly in the target file directory. Although error
messages can be caught and redirected to null.

Bash allows redirection of the standard output to other files,
by making use of ‘>’. Redirecting standard error output is
possible also by using the ‘2>’ symbol – for example,
‘2>/dev/null’ (for sh and similar shells).

So a specific search selector could resemble the following:

… if [“$(head –c9 $F 2>/dev/null)” = “#!/bin/sh”] …

This translates as: find files ($F), examine the first nine
characters of the file and verify whether it is #!/bin/sh (the
Bourne shell command line interpreter), while redirecting
error messages to null.

To mark an infection, a simple, yet specific, marking can be
used. Searching for the presence of an infection marker can
also be done by using ‘grep’ or a similar technique as
described above.

Infection Spectra

Unix shell viruses can:

• Prepend the viral code. Prepending viral code is pretty
easy to do, the viral code is always executed. However,
the drawback is that prepending viruses are easy
to spot.

• Append the viral code. A simple tail –n 25 $0 >> target
file will append 25 lines of the viral code to the target
file. However, appending viral code might not always
be called. If there’s an error in the ‘host’ program, or it
terminates with an exit code, the appended viral code
won’t be called. Usually script file code is executed
from the beginning to the end of the file though, so
both the host and the viral code will be called by
the interpreter.

• Overwrite the target file with the viral code.
Overwriting target files is, as such, already a rudimen-
tary method but without proper file-type checking it
may replace ELF-type binary files with ASCII-type
script code.

• Insert the viral code somewhere inside the target file.
This is more difficult for a user to detect, and might
result in errors if certain host program code can’t

VIRUS BULLETIN APRIL 2002 • 11

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

complete (due, for example, to a crash by the inserted
viral code).

• Create companion files. Usually the original file
becomes hidden, the viral code takes the original host
file name, while maintaining the same file attributes as
the original host.

• Insert a call in the target file, in so doing leaving the
real viral code in another file.

• Have encrypted/polymorphic code. Encrypting files can
be easy. A simple ASCII-HEX conversion would make
the code unreadable for most end users. ASCII to Hex
conversions are possible using the ‘printf’ (\x123)
command. Creating ‘polymorphic’ script viruses is
pretty easy to do. One can insert random comments, or
change variable names. Usually the random generator
is supported, but other variables such as current date
can be used as well.

• Use Sendmail. So far the use of Sendmail in Unix shell
scripting malware is limited. In fact, this is quite
remarkable as Unix systems can control mail programs
often and are easy to call. A single line of code could
call the program. Luckily, no successful Unix shell
scripting mass-mailing worm has yet been encountered
in the wild.

• Use another shell interpreter and recompile its code on
a current system to avoid the incompatibility between
its binaries and the operating system (see Unix/Cliph).

• Exploit security vulnerabilities in order to compromise
the root account (see Unix/Cliph).

Sample 1: Unix/Zerto

This sample (filename elfo.sh) was included in a recent
publication by a popular viral group.

The elfo.sh file starts with its identifier, marker (#;P) and
Bourne shell interpreter, #!/bin/sh. Then the code performs
a search on suitable files to check for the infection
marker using:

[-f $F] && [-x $F] && [“$(head -c3 $F)” != “#;P”]

It searches for (-f) present, normal files that are flagged as
(-x) executable and whose first three characters are not
‘#;P’, thus checking that the specific file hasn’t been
infected already.

The virus takes the prepended viral code, the top 27 lines of
the file, and copies the code to a tmp file. It then marks the
file as executable/runnable and starts it.

Possible errors are redirected to null, thus hiding any error
messages. The infector process runs in the background, this
is mainly for speed considerations.

Host files are copied to the tmp directory and infected. Then
the virus moves the tmp file back to the (now infected) host,
and deletes the tmp file.

At this stage the viral script code should be prepended to an
executable file, for example a shell script or ELF binary file.

However, when the virus sample that was provided was
run on a Linux RedHat 7.0 test system, a number of errors
were produced.

Sample 2: Unix/Cliph

This backdoor sample (filename smlix.sh) came from a
virus collection site and was discovered in August 2001. It
is a Linux kernel 2.2.X (X<=15) & sendmail <= 8.10.1 local
root exploit.

The malicious code starts with a reference to the shell
command line interpreter ‘#!/bin/sh’. However, the code
uses another shell interpreter in addition, namely tcsh:
SHELL=/bin/tcsh.

The virus creates an anti-noexec library called ‘capdrop.c’
and attempts to compile it into a binary called ‘capdrop.so’.
Local recompilation is used to prevent problems that
could be encountered when running binaries on different
Linux distributions.

However, when the virus sample that was provided was
run on a Linux test system, a number of errors were
produced.

General Issues with Infecting

Creating a shell script virus sounds straightforward, but in
practice a lot can go wrong during execution.

Apart from access rights, the viral file itself can sometimes
be tricky to run successfully. One of the items that is
overlooked sometimes is the exact end of the file. Without
the new line symbol some viruses may fail to execute
properly, resulting in errors.

Conclusion

Unix shell script viruses are relatively easy to create, yet
powerful enough to create big problems.

Power users are likely to be alerted to malicious changes to
their systems pretty quickly, but as more novice users
migrate to popular Linux distributions such as RedHat, shell
script malware may go unnoticed. More importantly, the
novice users provide the less secure environments for
malware to exploit.

At this stage, Unix shell script malware as such is more
targeted at the specific machine – currently it doesn’t spread
its code to other machines natively. So far, it couldn’t
survive on its own.

Unix viral packages that have been successful have con-
sisted of both binaries and scripts. However, there is no
technical reason why Unix shell script malware cannot be
successful in the future – it is a matter of proper coding
combined with suitable (less secure) environments.

