
Forensic Analysis Without an IDS: A Detailed Account of Blind Incident Response
Eric “Loki” Hines
Email: loki@fatelabs.com
Fri Jan 4 19:02:36 EST 2002

Overview
This paper documents the compromise and forensic analysis steps taken to ascertain the
motives, attack, and tools used by a Blackhat in the compromise of a military web server.

This paper hopes to introduce the Internet community to a new breed of sophisticated
hacker, a neoteric menace that is far beyond her Skript Kiddie foe, bringing to light the
strong line between the Blackhat and Skript Kiddie. This paper documents the systematic
compromise of over 20 computers and how the attack was so well laid out, planned, and
executed that it went unnoticed for 3 months.

Fate Labs had the opportunity to work with the NIPC and FBI regarding the further
investigation into identifying the alleged hacker. So this document will also provide
details on how the hacker's ISP was tracked down, identified, and eventually contacted.

The Knock at the Door
It was the morning of December 18th that we received notice that the machine was
possibly compromised as a bot appropriately labeled ^domain^ had joined a private
EFNET channel matching ^domain^.hostname.domain.com to our organization. To
ensure that the email we received was not in fact a hoax I decided to do an nmap portscan
of the box remembering to grab a list of open high ports with the following syntax.

[root@pa-lnx01 /]# nmap -sS -O -vv www.domain.com -p1-65535

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)
Host www.domain.com (192.168.0.1) appears to be up ... good.
Initiating SYN Stealth Scan against www.domain.com (192.168.0.1)
Adding TCP port 1198 (state open).
Adding TCP port 1028 (state open).
Adding TCP port 51000 (state open).
Adding TCP port 21 (state open).
Adding TCP port 50000 (state open).
Adding TCP port 54000 (state open).
Adding TCP port 139 (state open).
Adding TCP port 80 (state open).
Adding TCP port 443 (state open).
Adding TCP port 135 (state open).
Adding TCP port 1034 (state open).
Adding TCP port 1031 (state open).
The SYN Stealth Scan took 1177 seconds to scan 65535 ports.
For OSScan assuming that port 21 is open and port 1 is closed and neither are fi
rewalled

Interesting ports on www.domain.com (192.168.0.1):

(The 65523 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
80/tcp open http
135/tcp open loc-srv
139/tcp open netbios-ssn
443/tcp open https
1028/tcp open unknown
1031/tcp open iad2
1034/tcp open unknown
1198/tcp open unknown
50000/tcp open unknown
51000/tcp open unknown
54000/tcp open unknown

Remote operating system guess: Windows NT4 / Win95 / Win98
OS Fingerprint:
TSeq(Class=TD%gcd=1%SI=5%IPID=BI%TS=U)
T1(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=2017%ACK=S++%Flags=AS%Ops=M)
T4(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=N)

TCP Sequence Prediction: Class=trivial time dependency
 Difficulty=5 (Trivial joke)
TCP ISN Seq. Numbers: 446F2D98 446F2DA2 446F2DA8 446F2DB1 446F2DC4 446F2DD5
IPID Sequence Generation: Broken little-endian incremental

Nmap run completed -- 1 IP address (1 host up) scanned in 1178 seconds

Forensic Analysis Procedures
After I ran my nmap scan the ports 50000, 51000, and 54000 looked too suspicious to
leave alone. So, to get an idea of exactly what might be bound to those ports the only
resource I had was to telnet to each port that looked suspicious and see if I could get any
telnet banners. Amazingly enough, this is what I got.

[root@pa-lnx01 root]# telnet www.domain.com 50000
Trying 192.168.0.1...
Connected to www.domain.com.
Escape character is '^]'.

^domain^ (Eggdrop v1.6.8 (C) 1997 Robey Pointer (C) 2002 Eggheads)

Please enter your nickname.
Sorry, that nickname format is invalid.
Connection closed by foreign host.

[root@pa-lnx01 root]# telnet www.domain.com 54000
Trying 194.235.171.133...
Connected to www.domain.com (192.168.0.1).
Escape character is '^]'.
220 Serv-U FTP-Server v2.5k for WinSock ready

At this point the only real course of action was to try and ascertain how the hacker might
have got in, whether or not it was a w0rm or in fact it was individually picked out. The
first step was to identify the web server software running on the remote machine.

We will simply telnet to the machine and issue the GET HTTP /1.1 command and see
what our response is.

pa-obsd01# telnet www.domain.com 80
Trying 136.142.42.14...
Connected to www.domain.com.
Escape character is '^]'.

GET HTTP/1.1

HTTP/1.1 400 Bad Request
Server: Microsoft-IIS/5.0
Date: Mon, 21 Jan 2002 19:34:52 GMT
Content-Type: text/html
Content-Length: 87

Now that we have identified the machine as being an IIS/5 machine, let’s try the first
chapter of the bible to compromising Windows WWW servers.

Chapter 1: Trivial Compromises of Windows Machines with Unicode:

At this point I went ahead and just utilized a script I own that contains over 250 different
Unicode strings.

pa-obsd01# ./iis1
[root@pa-lnx01 exploits]# ./iis1

 Hackweiser global domination y2k+1
 This is 100% USDA Non-Approved Beef...
 Those Bastards... 263 checks. -Hackah Jak
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
 File Name: string-scan30b.pl 
 Version: 3.0b, Date: Friday May 18th 2001 
  *Look at source for more info. 
  
 Few Side Notes: 
 URL can be changed at anytime by typing URL. 
 The Webserver can be re-SCANed at anytime by typing SCAN. 
 Program can be QUIT at anytime by typing QUIT. 
 Also an easy way to backdoor is to type: copy c:\winnt\system32\cmd.exe cmd1.exe 
  Then goto www.server.com/vulndir/cmd1.exe?/c+dir 
 HELP prints this ...  
 ENJOY ! 
 
Host : www.domain.com 
Port : 80 
 
Command :dir 
HTTP://www.domain.com/msadc/root.exe?/c+dir 
OUTPUT FROM www.domain.com  
 
Server: Microsoft-IIS/4.0 
Date: Mon, 21 Jan 2002 19:52:27 GMT 
Content-Type: application/octet-stream 
Volume in drive C has no label. 
Volume Serial Number is 9637-F8AB 
 
 Directory of C:\Program Files\Common Files\system\msadc 
 
08/06/99  12:19p        <DIR>          . 
08/06/99  12:19p        <DIR>          .. 
10/02/97  09:28a                19,388 readme.txt 
01/06/02  06:13a                     0 TFTP1143 
01/06/02  06:24a                     0 TFTP842 
01/06/02  07:01a                     0 TFTP1000 

 
Well, it should be a bit obvious to us at this point that the attacker broke into the machine 
with a trivial Unicode attack. From the TFTP logs found in that directory as well as 
cmd.exe renamed and moved to one of the webroot subdirs, it should also be apparent 
that the individual also used TFTP to send/receive files back and forth from the machine. 
We will find those files a bit later in this document.  
 
Now that we have ascertained exactly how the machine was compromised, we will now 
move forward with going on-site to the machine to recover both an fport listing and 
possible IIS logs for Unicode GET requests, presupposing that the Hacker did not delete 
the log directory in Windows. 



 
 
First thing is first… A simple nmap scan will not tell us exactly what is bound to what 
ports. Well, it will.. sort of, but we want more information than just telneting to the 
individual ports. It’s not merely enough to know just the open ports on a system, but the 
programs bound to each port. This is accomplished by using the tool fport.exe by 
Foundstone (http://www.foundstone.com) 
 
Below is an output of the programs that were specifically bound to individual open ports 
on the machine. This is a great way to find where on the system Trojans have been 
hidden. See below. 
 
FPort v1.33 - TCP/IP Process to Port Mapper 
Copyright 2000 by Foundstone, Inc. 
http://www.foundstone.com 
 
Pid   Process            Port  Proto Path                           
2     System         ->  21    TCP                                  
2     System         ->  80    TCP                                  
2     System         ->  135   TCP                                  
71    RpcSs          ->  135   TCP   C:\WINNT\system32\RpcSs.exe    
2     System         ->  139   TCP                                  
2     System         ->  443   TCP                                  
71    RpcSs          ->  1025  TCP   C:\WINNT\system32\RpcSs.exe    
2     System         ->  1025  TCP                                  
71    RpcSs          ->  1026  TCP   C:\WINNT\system32\RpcSs.exe    
2     System         ->  1026  TCP                                  
2     System         ->  1027  TCP                                  
56    msdtc          ->  1027  TCP   C:\WINNT\System32\msdtc.exe    
2     System         ->  1028  TCP                                  
56    msdtc          ->  1028  TCP   C:\WINNT\System32\msdtc.exe    
2     System         ->  1029  TCP                                  
56    msdtc          ->  1029  TCP   C:\WINNT\System32\msdtc.exe    
2     System         ->  1030  TCP                                  
130   MSTask         ->  1030  TCP   C:\WINNT\system32\MSTask.exe   
130   MSTask         ->  1031  TCP   C:\WINNT\system32\MSTask.exe   
2     System         ->  1031  TCP                                  
130   MSTask         ->  1032  TCP   C:\WINNT\system32\MSTask.exe   
2     System         ->  1032  TCP                                  
2     System         ->  1033  TCP                                  
2     System         ->  1034  TCP                                  
2     System         ->  1184  TCP                                  
2     System         ->  1197  TCP                                  
183   alertsvc       ->  1197  TCP   C:\PROGRA~1\Navnt\alertsvc.exe 
2     System         ->  1198  TCP                                  
183   alertsvc       ->  1198  TCP   C:\PROGRA~1\Navnt\alertsvc.exe 
2     System         ->  1211  TCP                                  
183   alertsvc       ->  1211  TCP   C:\PROGRA~1\Navnt\alertsvc.exe 
2     System         ->  3013  TCP                                  
148   spsvc          ->  3013  TCP   C:\WINNT\system32\spsvc.exe    
2     System         ->  4118  TCP                                  
148   spsvc          ->  4118  TCP   C:\WINNT\system32\spsvc.exe    
2     System         ->  50000 TCP                                  
148   spsvc          ->  50000 TCP   C:\WINNT\system32\spsvc.exe    
2     System         ->  51000 TCP                                  
148   spsvc          ->  51000 TCP   C:\WINNT\system32\spsvc.exe    



2     System         ->  54000 TCP                                  
152   spsvc          ->  54000 TCP   C:\WINNT\system32\inetsrv\iisadmpwd\spsvc.exe 
 
71    RpcSs          ->  135   UDP   C:\WINNT\system32\RpcSs.exe    
2     System         ->  135   UDP                                  
2     System         ->  137   UDP                                  
2     System         ->  138   UDP                                  
2     System         ->  1035  UDP                                  
148   spsvc          ->  1035  UDP   C:\WINNT\system32\spsvc.exe    
 
 
The output above at first glance would not show anything that might look suspicious if 
quickly scanning the filenames for “malicious” looking names. (Trojan.exe, cmd.exe, 
command.com, nc.exe, etc). This is where things get really exciting. 
 
The immediate thing I noticed was the multiple instances of spsvc.exe. This sounds like 
something that might ship with Windows but wasn’t too quick to believe that it would 
bind itself to so many high number ports. First thing was first, checking to see if there 
was any native help for the command, if it was in fact a built-in Windows binary. 
 
 
  
C:\WinNT\System32>spsvc.exe /? 
'spsvc.exe' is not recognized as an internal or external command, 
operable program or batch file. 
 
 
Something I like to say a lot is that “the answer to life’s questions is on google.com.” ☺ I 
visit google.com on probably every single incident response case I investigate. What I did 
was I wanted to see if there was ANYTHING in the Google.com databases on this 
filename. I did a simple search for spsvc.exe hoping to find at least ONE hit matching 
that file if it was an actual program or something that came with Windows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Advanced Search    Preferences    Language Tools    Search Tips 

spsvc.exe Google Search

I'm Feeling Lucky
 

 
    

  
 

 Web     Images     Groups  Directory 
   

Did you mean: spsc.exe   
 
 
Your search - spsvc.exe - did not match any documents.  
 
Suggestions:  

• Make sure all words are spelled correctly.  
• Try different keywords.  
• Try more general keywords. 

 
 
 
 
At this point we’ve pretty much realized that it is most likely not a program that ships 
with Windows, nor is it a third party application. I guess we’ve already found this out by 
telneting to the host and seeing those Eggdrop telnet banners, but if you haven’t tried that 
yet, are sitting at localhost and just want to see what Trojans might be listening on 
particular ports that don’t answer to telnet requests, than this was a great exercise for you. 
 
All to often the details provided in the TASK MGR in Windows just doesn’t suffice for 
wanting to know exactly what those programs are, what the executables are named, or if 
you want something more than just active ports provided by ‘netstat –an’. This is where 
your fport.exe file comes into play. 
 
Taking a closer look at the fport listing, you quickly realize that the spsvc.exe file is 
conveniently concealed in C:\WINNT\system32\inetsrv\iisadmpwd\spsvc.exe and 
C:\WINNT\system32 
 
 
 
 
 



We can pretty much simply download this spsvc.exe file to our Linux machine and run a 
‘strings’ on the binary to find any human readable text located inside the binary file. This 
will help us to quickly identify key identifiers as to what the file is or does. Again, this 
information was provided by telneting to these ports, but this exercise is to merely point 
out different avenues of incident response capabilities. 
 
 
ade:g:G:hi:lLno:p:rs:tuvw:z 
wrong 
Cmd line:  
port numbers can be individual or ranges: m-n [inclusive] 
        -u              UDP mode 
        -v              verbose [use twice to be more verbose] 
        -w secs         timeout for connects and final net reads 
        -z              zero-I/O mode [used for scanning] 
        -t              answer TELNET negotiation 
        -g gateway      source-routing hop point[s], up to 8 
        -G num          source-routing pointer: 4, 8, 12, ... 
        -h              this cruft 
        -i secs         delay interval for lines sent, ports scanned 
        -l              listen mode, for inbound connects 
        -L              listen harder, re-listen on socket close 
        -n              numeric-only IP addresses, no DNS 
        -o file         hex dump of traffic 
        -p port         local port number 
        -r              randomize local and remote ports 
        -s addr         local source address 
        -e prog         inbound program to exec [dangerous!!] 
        -d              detach from console, stealth mode 
[v1.10 NT] 
connect to somewhere:   nc [-options] hostname port[s] [ports] ...  
listen for inbound:     nc -l -p port [options] [hostname] [port] 
options: 
GetNumberOfConsoleInputEvents 
CreateFileA 
SetEndOfFile 
LCMapStringA 
LCMapStringW 
own -l -p 99 -t -e cmd.exe 
 
 
This looks to be the modified Netcat by eEye Digital Security (ncx99.exe) 
This is a hacked netcat-based trojan used to exploit the eEye NT4+IIS4 URL remote 
buffer overflow (for use on port 99). 
 
 
 
 



Jumping over to the above directories I quickly noticed several files that well, pretty 
much should not have been there. It was at this point that the home directory of where the 
hacker was storing his files started to come into light. 
 
Located in C:\WINNT\System32 was not only the spsvc.exe file but several files 
containing the keyword *bot*. Remember, although the hacker can easily rename the 
Win-Eggdrop to a new filename, it’d be pretty ridiculous to try and attempt to decompile 
than recompile the Eggie to call a different configuration file. Therefore we know that the 
hacker must keep the default Eggdrop config filename the same or the Eggdrop will not 
be able to run as it wouldn’t be able to find its own configuration file. 
 
Familiar with running Eggdrop bots in the past, I knew that the Eggdrop calls its 
username file, my.user. This file was found in the same directory along with low and 
behold, eggdrop.conf 
 
One thing for those researchers out there who like tracking their culprits down on IRC, if 
you see a configuration file for an Eggdrop installed on your machine, open it up and 
look for the following line so you can /whois the nickname on an IRC server such as 
EFNet. Also, you never know… The hacker might even be stupid enough to put in his 
real email address and handle. 
 
 
 
# who's running this bot? 
set admin "lumepume <email: not@net.no>" 
 
 
Also, check out my.user you might find some interesting things in this file ;). The file is 
used by the Eggdrop to record the userID and host of every machine/user that 
authenticates with the Eggdrop. 
 
 
 
lumepuma   - fhjmnoptx                
--HOSTS *!raped@*.arcor-ip.net 
--HOSTS *ped@*.dip.t-dialin.net 
--HOSTS *!raped@*.dip.t-dialin.net 
--HOSTS *!lum3@*.waterbong.co.uk 
--HOSTS *!BuG@*.dip.t-dialin.net 
--HOSTS *!lum3@62.146.208.191 
--HOSTS *!BuG@*.daf.kun.nl 
--HOSTS *!avl@*.strath.ac.uk 
--HOSTS *!*inistra@*.t-dialin.net 
--HOSTS *!raped@*.dip0.t-ipconnect.de 
--XTRA auth 0 
--XTRA created 997684181 
--XTRA permident *!*@* 
--XTRA authnick lum3 
--XTRA authhost pD4B9ED10.dip.t-dialin.net 
--LASTON 1009997650 @^hub^ 
--PASS +zsAy6/sq9uX/ 



 
Located somewhere in this file might also be a connect from your hacker’s real dialin. 
You never know how lazy your kid might be. I went ahead and checked both *dialin* 
domains and found that one fo them was actually a dialup ISP located in Germany.  
 
 

 
 
If you can see closely enough you will notice that this directory is in fact full of several 
files that definitely should not be on this computer, legitimately. Also, look at the 
spsvc.exe binary and the ICON associated to it. This is the infamous green-U of the 
SERV-U FTP Daemon. This is an immediate indicator that the machine had SERV-U 
installed on it to transfer files to/from the machine. 
 
 
 
 
 
 
 



There are several other files there that I want all of you to pay particularly close attention 
to.  

1. kill.exe 
2. list.exe 
3. main.asp 
4. default.asp 
5. passwd.inc 

 
 
 
 
These (5) five files are definitely bad news.  
 

1. kill.exe allows you to kill a running PID from the command prompt (perfect if 
you don’t have a GUI to CNTRL-ALT-DEL forcekill running processes from 
within Windows) 

2. list.exe allows the user to list all processes in a Windows shell. This is obviously 
needed to utilize the kill.exe program. Hackers will typically use this to find out 
what processes are running on a machine (IIS/etc) kill them as needed should they 
require specific use of an active port. Who knows really, I guess you could pretty 
much have a great deal of reasons for using these 2 utilities. 

3. main.asp and default.asp both raised flags with me. Remember, we still don’t 
know that many details on the compromise or all the tools that were used. 

 
 
This is where much of this write-up will hopefully start to get interesting or possibly 
show you some new ways in which hackers are automating or making their lives 
much easier in the compromise of a remote machine. If you remember back earlier in 
this document, you will remember we found a bunch of tftp log files in the IIS 
directory. TFTP, or Trivial FTP is a simple way of sending and receiving files to or 
from the machine. What all of you need to remember is that when you have a 
Unicode shell to the machine through port 80, it isn’t a fully Interactive shell. 
Meaning, if you type, lets say ftp.. you won’t get the full response back.. actually it 
will just lock your connection to the machine and will force you to start another 
Unicode attack against the host. So in order to get around this, a hacker will want to 
bind cmd.exe (nt/2k/xp) or command.com (win95/98/me) to a port to connect to. 
Telneting to the port once cmd.exe is bound to it will obviously do one thing, drop 
you into a dos shell on the box. 
 
Lets go ahead and take a closer look at default.asp and main.asp. Both are web pages 
residing outside of the main wwwroot directory in a hidden directory created by the 
hacker. We’ll go ahead and assume it was the hacker who uploaded these asp scripts 
to the machine. Check out this lovely asp script below. I will be the first to admit, I’ve 
never seen anything this beautiful in my many years of incident response. 
 



 
 
 
 

 
 
At this point we will go ahead and take a look at the IIS logs we retrieved from the 
C:\WINNT\System32\LogFiles directory. We’ll want to check for cmd.exe access as 
we will assume the machine was compromised with the IIS/Unicode attack. 
 
Let’s take a look at a few of those logs now. 
 
 
13:33:18 192.168.0.5 GET /c/winnt/system32/cmd.exe 404 
13:33:18 192.168.0.5 GET /d/winnt/system32/cmd.exe 404 
13:33:18 192.168.0.5 GET 
/_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe 404 

 
 
 
 
 
 



 
Above you will see how IIS stores logs of all GET strings to the aforementioned 
System32 subdirectory. In this directory we basically just searched the folder for files 
containing cmd.exe. This was our first approach at actually identifying the hacker and 
where he came in from. Typically I find in forensic analysis incidents the hacker was 
too lazy to go through a web anonymizer and ran Unicode strings directly from his 
Internet Explorer or Netscape browser from his computer. This gave us the real IP 
address of the attacker who than came in through a netcat bound port on 99. Why the 
hacker did not just run a Unicode scanner from a hacked shell is beyond me, laziness 
maybe? 
 
After identifying the Eggdrop bot as being connected to an EFNet IRC server I than 
compared the IP address of the IIS logs to the alleged admin of the botnet I found in 
the IRC channel. Both addresses matched perfectly. Lets go ahead and meet our 
culprit. 
 
 
 
 
 
 
 
 
 
 
 

[lum3 has address spl33n@busfac32.busfac.calpoly.edu] 
Jan 04 00:12:50 <lum3>  i did a few pieces of 
Jan 04 00:13:01 <Loki-->   you are a good coder 
Jan 04 00:13:34 <lum3>  not realy 
Jan 04 00:13:38 <lum3>  i learn it atm 
Jan 04 00:14:28 <Loki-->        lum, i saw a crt.32 directory, what did you create that for? 
Jan 04 00:14:58 <lum3>  thats for crc checks of files 
Jan 04 00:15:01 <lum3>  if i need it 
 
<lum3> http://www.tellabs.dk/unicode.pdf 
<lum3> get thatone  
<lum3> cause i don´t want any maschine i could get 
<lum3> i could have ~15000 eggdrops in here 
<lum3> but for what? 
<lum3> i take thoose with nice hostnames hehe 
<lum3> protect them for unicode 
<lum3> install my eggdrop and serv-u and thats all 
<Loki--> what were you using serv-u for? 
<lum3> then they loose ~10-15megs of ram and ~150mb traffic a month 
<lum3> for uploading files to the eggdrop 
<lum3> updating the eggdrop 
<lum3> nothing more 



<lum3> uploading files means i add tcls and such stuff 
<lum3> i never looked for 
<lum3> seen some sensitie things on *.dfn.de 
<lum3> but thats too hot then 
<lum3> so i leave that servers 
<Loki--> too hot? 
<Loki--> :) 
<Loki--> lum3= hot?  
<lum3> sek 
<lum3> Subnet mask campus      Domain Name 
<lum3>        
<lum3> 129.171.0-31.0 255.255.224.0 RSMAS    miami.edu 
<lum3> 129.171.32-63.0 255.255.224.0 Gables    miami.edu 
<lum3> 129.171.64-95.0 255.255.224.0 Medical    miami.edu 
<lum3> 129.171.96-127.0 255.255.224.0 RSMAS    miami.edu 
<lum3> 129.171.128-159.0 255.255.224.0 Medical   miami.edu 
<lum3> 129.171.160-191.0 255.255.224.0 Gables   miami.edu 
<lum3> 129.171.192-223.0 255.255.224.0 Gables   miami.edu 
<lum3>        
<lum3> 192.239.208.0 255.255.255.0 RSMAS(UMIA)   miami.edu 
<lum3> 192.111.123.0 255.255.255.0 RSMAS(AOML)   aoml.erl.gov 
<lum3> 199.242.231.0 255.255.255.0 RSMAS(Fisheries)  sefsc.noaa.gov 
<lum3> 199.242.232.0 255.255.255.0 RSMAS(Fisheries)  sefsc.noaa.gov 
<lum3> 199.242.233.0 255.255.255.0 RSMAS(Fisheries)  sefsc.noaa.gov 
<lum3> 199.4.250.0 255.255.255.0 RSMAS(South Pole)  spole.gov 
<lum3> 199.4.251.0 255.255.255.0 RSMAS(South Pole)  spole.gov 
<lum3> 204.89.132.0 255.255.255.0 RSMAS(South Pole)  spole.gov 
<lum3> 204.89.133.0 255.255.255.0 RSMAS(South Pole)  spole.gov 
<lum3> 204.145.215.0 255.255.255.0 RSMAS(South Pole-Palmer) nsf.gov 
<lum3> 204.145.157.0 255.255.255.0     RSMAS(vBNS ONLY) NOTE: 
<lum3> BELLSOUTH.NET SHOULD NOT ADVERTISE. 
<lum3> 192.88.124.0 255.255.255.0 Gables(ECE)   ece.miami.edu 
<lum3> 192.70.171.0 255.255.255.0 Gables(MATH)   cs.miami.edu 
<lum3> 192.31.89.0 255.255.255.0 Gables(MATH)   cs.miami.edu 
<lum3>        
<lum3> 204.68.64.0 255.255.224.0 Medical(UMMS)   ummedical.edu   
<lum3> NOTE: Multi-homed to UUNET and NASA Science Internet with BGP-4. AS 
Number for all networks 
<lum3> above is 4511.      
<lum3> Prepared by Buddhi Abeysekera, Sr. Network Engineer 
<lum3>   University of Miami, Coral Gables, FL 
<lum3> Date: June 16, 1999 
<lum3> that was my first server 
<lum3> the pc of the network admin at miami.edu 
<lum3> rofl 
<lum3> thats the only thing i ever dloaded 
<lum3> never found anything interessting aterwards 
<lum3> only netbus, bo and other torjans on many nt4 servers 



<lum3> too many kiddies online 
 
 

The following table represents all known information about machines compromised by 
this Blackhat. All systems identified as being compromised were all University machines 
and several small companies. 
 

1. Opening up the Windows NT Task Manager showed two tasks running spsvc.exe 
which was suspicious as it is not an NT service. 

2. Opening up the NT Services Control Panel showed two apparently identical 
'Printer Spooler' services running which also seemed strange. 

3. The original \winnt\system32\spoolsvc.exe was apparently replaced on 9/8/01. 
4. fport showed the TCP port 21000 (a Serv-U FTP server) belonged to a service 

executed out of file \winnt\system32\inetsrv\iisadmpwd\spsvc.exe 
5. Besides a number of related files (serv-u-ini, dir.txt, enter.txt, quit.txt, kill.exe, 

list.exe, mu.exe, up.exe) in the directory \winnt\system32\inetsrv\iisadmpwd\ 
there was a subdirectory (crc.tmp) 

6. fport showed TCP ports 50000 and 51000 (an Eggdrop IRC "bot) belonged to a 
service executed out of file \winnt\system32\spsvc.exe -- which had several 
related (or modified) files in \winnt\system32: 

                cygwin1.dll             -       Cygnus Windows Unix library 
                cygz.dll                    -       Cygnus ??? library 
                eggdrop.conf            -       config file 
                my.user                     -       other IRC bots 
                my.user~bak             -       backup version of above 
                op.chan                 -       Channel operator commands 
                resolv.conf            -       DNS resolver file 
                tcl83.dll                 -       TCL interpreter DLL 
                tclpip83.dll            -       TCL interpreter DLL 
                up_stats.file           -       timestamps and IRC server name 
                                                (irc.colorado.edu in our case) 
 
        as well as the related subdirectories:  
                filesys         -       empty 
                help            -       Eggdrop IRC bot help files 
                modules         -       DLL files for the bot (incl. Blowfish crypto) 
                netbots         -       TCL scripts to program (add functionality to) the bot 
                scripts         -       More of the above. 
                text            -       motd (IRC bot message of the day file) 
                tmp             -       empty 
         

7. Registry entries for spool16 and spool32 (the Printer Spooler subsystem service in 
the Services control panel) had been modified with new values (Firestarter) to 
start these fake printer spooler services). 

 
 
 
 



 
Conclusion 
Everything from hidden iisadmpwd directories to Trojans renamed to what might look to 
be common system files, you will see the tactics of Blackhats and even Skript Kiddies 
progress further and further as security engineers gain more and more intel about their 
enemy. As security technology advances, as Intrusion Detection Systems gain more and 
more artificial intelligence, the tools of hackers will also shift in this often large labyrinth 
of incident response and forensic analysis. 
 
We saw this in a recent presentation at Defcon this last year where payload encrypters 
were presented to slide past Intrusion Detection Systems. How can an IDS inspect the 
payload of a packet when the payload is encrypted to prevent content matching for say, 
Unicode strings sent to web servers?  
 
Just like the incident covered in this paper where the attacker actually put his Eggdrops 
and Servu FTP daemon in the Windows Service Mgr set to startup on boot, covertly 
naming it Printer Spool services, we too as Security Engineers need to develop with 
them. Start taking a closer looks at files that you think were installed by IIS. Start 
wondering why certain directories were given an ATTRIB +H to hide it from your dir 
listings. Ask yourself “Why there are 3 Printer Spool services running in my services 
control panel?” What you see here is an example of how Crackers are becoming more 
and more sophisticated and clean when they compromise systems. Gone are the days 
where cmd.exe is renamed to root.exe or exploits are left in / or C:\ 
 
 
 
 
Appendix 
Fate Research Labs 
http://www.fatelabs.com 
 
Security Focus/Bugtraq Advisory on Unicode 
http://www.securityfocus.com/bid/1806 
 
Honeynet Project 
http://project.honeynet.org 
 
 
 
 
 

 


