
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

USING NETWORK MANAGEMENT SYSTEMS TO DETECT

DISTRIBUTED DENIAL OF SERVICE ATTACKS

 by

Chandan Singh Negi

September 2001

 Thesis Advisor: Alex Bordetsky
 Associate Advisor: Paul Clark

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Using Network Management Systems To Detect Distributed
Denial Of Service Attacks
6. AUTHOR(S)
 Chandan Singh Negi

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement (mix case letters)PUT DISTRIBUTION STATEMENT HERE

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Distributed Denial of Service (DDoS) Attacks have been increasingly found to be
affecting the normal functioning of organizations causing billions of dollars of losses.
Organizations are trying their best to minimize their losses from these systems. However, most
of the organizations widely use the Network Management Systems (NMS) to observe and
manage their networks. One of the major functional areas of a NMS is Security Management.
This thesis examines how the Network Management Systems could aid in the detection of the
DDoS attacks so that the losses from these could be minimized. The thesis details the SNMP
MIB variables of importance for detecting these attacks and the MIB signatures of the specific
attack.

15. NUMBER OF
PAGES

137

14. SUBJECT TERMS
 Intrusion Detection, Network Management, Security Management, Denial Of Service,
Distributed Denial Of Service Attacks, Trinoo, TFN, TFN2K

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Distributed Denial of Service (DDoS) Attacks have been increasingly found to be

affecting the normal functioning of organizations causing billions of dollars of losses.

Organizations are trying their best to minimize their losses from these systems. However,

most of the organizations widely use the Network Management Systems (NMS) to

observe and manage their networks. One of the major functional areas of a NMS is

Security Management. This thesis examines how the Network Management Systems

could aid in the detection of the DDoS attacks so that the losses from these could be

minimized. The thesis details the SNMP MIB variables of importance for detecting these

attacks and the MIB signatures of the specific attack.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. VULNERABILITIES ..1
B. DISTRIBUTED DENIAL OF SERVICE ATTACKS2
C. SECURITY MANAGEMENT WITH NETWORK MANAGEMENT

SYSTEM ...3

II. APPLICATION DOMAIN ...7
A. NETWORK MANAGEMENT SYSTEMS ...7

1. Fault Management ...10
2. Accounting Management ...10
3. Configuration And Name Management ...11
4. Performance Management ..11
5. Security Management ..12

B. SNMP..13
C. DISTRIBUTED DENIAL OF SERVICE ATTACKS16

1. Denial of Service Attack Methodology...18
a. Bonk Attack...18
b. Ping of Death Attack...19
c. Smurf Attack/ Syn Flood ..19
d. UDP Flood...19
e. Land Attack ...20

2. Distributed Denial of Service Attacks Methodology.......................20
a. Trinoo ..20
b. Tribe Flood Network (TFN)...20
c. TFN2K...20
d. Stacheldracht...21
e. Shaft...21

III. RELATED WORK ..23
A. IMPROVING ROUTING ALGORITHMS ..23
B. IP TRACEBACK SCHEMES ..24

1. Packet Based Trace Back ..24
2. ICMP Trace Back Messages (itrace)..24
3. IP Trace Back using Probabilistic Packet Marking25
4. Advanced and Authenticated Marking Schemes for IP Trace

Back...25
C. INGRESS/ EGRESS FILTERING (RFC 2267/2827)................................26
D. TCP INTERCEPT ...27
E. PACKET FILTERING ...28
F. INTRUSION DETECTION SYSTEMS..29
G. ROUTE-BASED DISTRIBUTED PACKET FILTERING.......................29
H. THE NOZZLE ...30
I. CENTERTRACK ..31

viii

IV. EXPERIMENTAL SETUP ...33
A. HYPOTHESIS..33
B. AIM ...33
C. TESTBED ...34
D. METHODOLOGY ..35

1. Using the Spectrum Network Management System.......................35
2. Using the program ‘miblogger.c’..36

E. ROUND ROBIN DATABASE..36
F. DESCRIPTION OF THE PROGRAMS ...37

1. Logging of MIB variables values..37
2. Separating the MIB Time Series ..40
3. Plotting the MIB Time Series..42

V. RESULTS ...45
A. TRINOO ...45

1. Changes in the Target MIB variables..46
2. Changes in the Attacker1 MIB variables...48
3. Changes in the Attacker2 MIB variables...49

B. TFN..51
1. Ping (ICMP) Flood...51

a. Changes in the Target MIB variables52
b. Changes in the Attacker-1 MIB variables..............................54
c. Changes in the Attacker-2 MIB variables..............................55

2. SYN Flood...56
a. Changes in the Target MIB variables56
b. Changes in the Attacker-1 MIB variables..............................57
c. Changes in the Attacker-2 MIB variables..............................58

3. UDP Flood...59
a. Changes in the Target MIB variables60
b. Changes in the Attacker-1 MIB variables..............................62
c. Changes in the Attacker-2 MIB variables..............................63

C. TFN2K...64
1. Ping Flood...64

a. Changes in the Target MIB variables64
b. Changes in the Attacker-1 MIB variables..............................67
c. Changes in the Attacker-2 MIB variables..............................69

2. SYN Flood...71
a. Changes in the Target MIB variables71
b. Changes in the Attacker-1 MIB variables..............................73
c. Changes in the Attacker-2 MIB variables..............................75

3. UDP Flood...77
a. Changes in the Target MIB variables78
b. Changes in the Attacker-1 MIB variables..............................79
c. Changes in the Attacker-2 MIB variables..............................81

4. Targa Flood ..83
a. Changes in the Target MIB variables84
b. Changes in the Attacker-1 MIB variables..............................87

ix

c. Changes in the Attacker-2 MIB variables..............................89
5. Mix Flood..91

a. Changes in the Target MIB variables91
b. Changes in the Attacker-1 MIB variables..............................95
c. Changes in the Attacker-2 MIB variables..............................97

D. SUMMARY..99

VI. CONCLUSIONS AND RECOMMENDATIONS...103
A. CONCLUSIONS ..103
B. RECOMMENDATIONS...104

APPENDIX PROGRAMS ..105
A. MIBLOGGER.C ..105
B. REVERSE.PL...110
C. LOGSEPARATOR.PL..111
D. GRAPHER.PL..112

LIST OF REFERENCES ..115

INITIAL DISTRIBUTION LIST...119

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1. Elements of a Network Management System. “From Ref. [STALL]”9
Figure 2. Components Of A Distributed Denial Of Service Attack. “From Ref. [BELL -

00]”...17
Figure 3. Ingress/Egress Filtering. ...27
Figure 4. The Nozzle. “From Ref. [STROT-00]”...31
Figure 5. Experimental Setup. ..34
Figure 6. Trinoo Attack - Changes In Target MIB Variables. ...47
Figure 7. Trinoo Attack - Changes In Attacker1 MIB Variables. ...49
Figure 8. Trinoo Attack - Changes In Attacker2 MIB Variables. ...51
Figure 9. TFN Ping Flood Attack - Changes In Target MIB Variables.54
Figure 10. TFN Ping Flood Attack - Changes In Attacker1 MIB Variables.55
Figure 11. TFN Ping Flood Attack - Changes In Attacker2 MIB Variables.56
Figure 12. TFN Syn Flood Attack - Changes In Target MIB Variables..................................57
Figure 13. TFN Syn Flood Attack - Changes In Attacker1 MIB Variables.58
Figure 14. TFN Syn Flood Attack - Changes In Attacker2 MIB Variables.59
Figure 15. TFN UDP Flood Attack - Changes In Target MIB Variables.62
Figure 16. TFN UDP Flood Attack - Changes In Attacker1 MIB Variables.63
Figure 17. TFN UDP Flood Attack - Changes In Attacker2 MIB Variables.64
Figure 18. TFN2K Ping Flood Attack - Changes In Target MIB Variables............................67
Figure 19. TFN2K Ping Flood Attack - Changes In Attacker1 MIB Variables.69
Figure 20. TFN2K Ping Flood Attack - Changes In Attacker2 MIB Variables.71
Figure 21. TFN2K Syn Flood Attack - Changes In Target MIB Variables.............................73
Figure 22. TFN2K Syn Flood Attack - Changes In Attacker1 MIB Variables.75
Figure 23. TFN2K Syn Flood Attack - Changes In Attacker2 MIB Variables.77
Figure 24. TFN2K UDP Flood Attack - Changes In Target MIB Variables.79
Figure 25. TFN2K UDP Flood Attack - Changes In Attacker1 MIB Variables......................81
Figure 26. TFN2K UDP Flood Attack - Changes In Attacker2 MIB Variables......................83
Figure 27. TFN2K Targa Flood Attack - Changes in Target MIB variables...........................87
Figure 28. TFN2K Targa Flood Attack - Changes in Attacker1 MIB variables.89
Figure 29. TFN2K Targa Flood Attack - Changes in Attacker2 MIB variables.91
Figure 30. TFN2K Mix Flood Attack - Changes in Target MIB variables.95
Figure 31. TFN2K Mix Flood Attack - Changes in Attacker1 MIB variables.97
Figure 32. TFN2K Mix Flood Attack - Changes in Attacker2 MIB Variables.99

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF TABLES

Table 1. Affected MIB Variables In Trinoo Attack...45
Table 2. Affected MIB Variables In TFN Ping Flood Attack. ..51
Table 3. Affected MIB Variables In TFN Syn Flood Attack. ...56
Table 4. Affected MIB Variables In TFN UDP Flood Attack...60
Table 5. Affected MIB Variables In TFN2K Ping Flood Attack. ...64
Table 6. Affected MIB Variables In TFN2K Syn Flood Attack..71
Table 7. Affected MIB Variables In TFN2K UDP Flood Attack. ...77
Table 8. Affected MIB Variables In TFN2K Targa Flood Attack. ...84
Table 9. Affected MIB Variables In TFN2K Mix Flood Attack. ..91
Table 10. Summary Of Affected MIB Variables In Targets In DDoS Attacks.100
Table 11. Summary Of Affected MIB Variables In Attackers In DDoS Attacks..................101

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGEMENTS

I would first like to thank my parents and my family members for their

unconditional love and affection throughout my life, which has given me the inner

strength to complete this thesis.

I would also like to express my thanks to my advisors Professor Alex Bordetsky

and Paul Clark for their guidance and help. Special thanks goes to Paul Clark for also

providing me the resources to complete my experimentation.

And lastly I would like to express my gratitude and indebtedness to my teachers at

various stages of my life who imparted fundamental knowledge to me, which in no less

part enabled the timely completion of this thesis.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. VULNERABILITIES

The widespread usage of Internet and networking, whilst increasing the

productivity, efficiency and knowledge sharing has resulted in additional problems in the

hands of the computer security personnel. The increase in the vulnerability of the systems

connected to the Internet is not only due to the fact that more systems are available for

the attack, but also due to the fact that more systems are available from which the attack

could be carried out. Also, the advancement in technology has provided sophisticated

attack tools, which can be used even by people not having much competence. Hence, a

day probably does not pass without some sort of compromise in the private networks.

Even though each operating system usually comes with their own

implementations of Discretionary and/or Mandatory access control mechanisms,

experience has shown that intruders have often been able to compromise these systems

due to a variety of reasons, the most common being human related. Also, available are

third party software that sit on top of the system kernel and monitor the system activity,

looking for the specific security policy violations. The degree of protection that exists on

any given host depends on how much time and effort has been put into applying these

mechanisms. Often times, this requires much more time and effort than is desired by the

various system administrators and many systems are left in a quite open and extremely

vulnerable state. Also, many of these security mechanism have a significant effect on the

performance of a system and thus may not be used for this reason as well. Additional

layers of security are needed for the protection and so products like the Intrusion

2

Detection Systems (IDS), Firewalls and Virtual Private Networks (VPNs) are being used

by a lot of companies in response to the new threats.

Whilst big corporations do have a dedicated security staff to take care of the

security aspect, a large number of computers connected to the Internet at any time are

those of a common man who is largely ignorant of all these security aspects. With the

falling prices of obtaining a Digital Subscriber Line (DSL) connection or a cable modem

connection, more and more such people are having these high-speed connections with the

end result that these computers form very lucrative targets for any hacker.

B. DISTRIBUTED DENIAL OF SERVICE ATTACKS

Even though much progress has been made in the field of computer security, new

threats seem to be developing for the network. Some of the new threats have focused on

the Denial of Service (DoS), which is characterized by an explicit attempt by an attacker

to prevent legitimate users of a service from using the desired resources. Examples of

DoS attack include attempting to “flood” a network thereby preventing legitimate traffic,

attempts to disrupt connections between two machines thereby preventing access to a

service, attempts to prevent a particular individual from accessing a service and attempts

to disrupt service to a specific system or person.

In fact, a new variety of DoS attack called the Distributed Denial Of Service

attack (DDoS) has been found to be increasing. The DDoS attack is a DoS attack

multiplied by the number of attackers. These attacks first shot into prominence when

major sites like Yahoo, Amazon.com, CNN.com and others were targeted in February

2000. The Federal Bureau of Investigation has also indicated that most of the new threats

would be of the nature of DDoS attacks [NIPC-00]. The losses caused by DDoS attacks

3

are tremendous especially to e-commerce sites. According to Jupiter Communications,

46% of consumers report that poor site performance drove them away from their

preferred sites. Unacceptable download times often caused by DDoS are estimated to

have caused losses of up to $4.35 billion in U.S. e-commerce sales in 1999. And

worldwide businesses experienced about 3.3% of unplanned downtime in 1999,

translating to $1.6 trillion in lost revenue [EHAT-00].

One of the reasons for the increase in these new types of attacks is as mentioned

earlier, the ease of availability of low cost, high speed Internet access to the common man

who is not very well-versed with the aspects of computer security. On the technical side,

the reason for these attacks is the inherent trusting nature of the Internet. The Internet

protocols were not designed with security in mind, and most of the authentication is

based on the IP address, which as is well known, can be easily spoofed.

C. SECURITY MANAGEMENT WITH NETWORK MANAGEMENT
SYSTEM

More and more computer systems are being networked, and distributed

processing is increasing in importance. Within a given organization, the trend is towards

larger, more complex networks supporting more applications and more users. As these

networks grow in scale, it becomes increasingly difficult to manage them by human effort

alone. The complexity of such a system necessitates the use of automated network

management tools. Also, since the network of most of the organizations includes

equipment from multiple vendors, managing such networks without the aid of such

network management tools is nearly impossible.

As networked installations become larger, more complex and more

heterogeneous, the cost of network management rises. Therefore, most of the big

4

corporations have some sort of a Network Management System (NMS) in place. A NMS

has five major functional areas, Fault Management, Accounting Management,

Configuration and Name Management, Performance Management and Security

Management. Because of the ever increasing nature of the security attacks and threat,

Security Management (SM) is of growing interest in industry and research. Four general

methods are used in the SM:

• Scanning a network to determine known security loopholes in a network.

• On-line monitoring of the network to detect any suspicious events.

• Data encryption and secure passwords.

• Firewalls and perimeter defense.

Since the Network Management System (NMS) is so widely used it would be a

good idea if it could be used for detecting and preventing DDoS attacks. NMS uses the

Simple Network Management Protocol (SNMP) to carry out online monitoring of the

network to be able to manage it. This thesis looked into the aspect whether this online

monitoring of the network by NMS could give an indication of a Distributed Denial of

Service Attack (DDoS). In other words, this thesis tried to answer the question whether

and if yes, how could a Network Management System be used for detecting a DDoS

attack? Specifically, the thesis studied the changes in the various Management

Information Base (MIB) variables, which could be used for detection the DDOS attacks.

Whilst the thesis did not offer any methodology of response to the attempted Security

Violation, it is however expected that the NMS will also coordinate the response to the

attack. This could be an area for future work.

5

The rest of the thesis is organized as follows. Chapter II discusses the Network

Management Systems domain and also goes into the details of the nature of distributed

denial of service attacks. Chapter III gives a description of some of the work carried out

by the researchers in the related area of detecting/preventing the DDoS attacks. Chapter

IV details the experiments carried out for studying the various MIB variables which a

network management system would have to observe for detecting a distributed denial of

service attack. Chapter V discusses the results. Chapter VI offers some conclusive

statements and scope for future work.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. APPLICATION DOMAIN

A. NETWORK MANAGEMENT SYSTEMS

Network and distributed processing systems are of growing importance and have

become critical in many areas of our life. Within a given organization, the trend is

towards larger, more complex networks supporting more applications and more users. As

these networks grow in scale, there are more chances of things going wrong, disabling the

network or a portion of the network or degrading performance to an unacceptable level.

A large network cannot be put together and managed by human effort alone. The

complexity of such a system necessitates the use of automated network management

tools. A Network Management System (NMS) is a collection of tools for network

monitoring and control that is integrated in the following senses [STALL].

• It is a single operator interface with a powerful but user- friendly set of

commands for performing most or all network management tasks.

• A minimal amount of separate equipment is necessary. That is, most of the

hardware and software required for network management is incorporated into

the existing user equipment.

A NMS allows network managers to view the entire network as a unified

architecture, with addresses and labels assigned to each point and the specific attributes

of each element and link known to the system. It consists of two active entities, the

management station and the management agent. The management station is typically a

stand-alone device and serves as the interface for the human network manager into the

network management system. At a minimum a management station has a set of

8

management applications for data analysis, fault recovery, and so on. It also has the

capability of translating the network manager’s requirement into the actual monitoring

and control of elements in the network.

The other active element in the network management system is the management

agent. Key platforms such as hosts, bridges, routers, and hubs, may be equipped with the

management agents so that they may be managed from the management station. The

management agent responds to requests for information and actions from a management

station and may asynchronously provide the management station with important but

unsolicited information.

 The management station and agents are linked by a network management

protocol. The protocol used for the management of TCP/IP networks is the Simple

Network Management Protocol (SNMP).

A general architecture of a network management system is as shown in Figure 1

[STALL].

9

Figure 1. Elements of a Network Management System. “From Ref. [STALL]”

Network control
host (manager)

Comm

Server
 (agent)

Comm

Comm

WorkStation

Router

NMA = network management application
NME = network management entity
Appl = application
Comm = communiction software
OS = operating system

NMA

Appl NME

OS

NME Appl

OS

Appl NME

OS

Comm

NMA

OS

10

A Network Management System performs the following five key functions:

1. Fault Management

A NMS maintains proper operation of a complex network by :

• Determining exactly where the fault is.

• Isolating the rest of the network from the failure so that it can continue to

function without interference.

• Reconfiguring or modifying the network in such a way as to minimize the

impact of operation without the failed component or components.

• Repairing or replacing the failed components to restore the network to its

initial state.

2. Accounting Management

A NMS allows a network manager to track the use of network resources by end

user or end user class. This may be for a number of reasons, including the following:

• An end user or group of end users may be abusing their access privileges and

burdening the network at the expense of other end users.

• End users may be making inefficient use of the network, and the network

manager can assist in changing procedures to improve performance.

• The network manager is in a better position to plan for network growth if end

user activity is known in sufficient detail.

• Hence, the NMS should be able to record and provide the accounting

information as desired by the network manger.

11

3. Configuration And Name Management

Configuration management is concerned with initializing a network and

gracefully shutting down part or all of the network. It is also concerned with maintaining,

adding, and updating the relationships among components and the status of components

themselves during network operation. When changes in configuration occur, end users

should be notified of these changes. Configuration reports can be generated either on

some routine periodic basis or in response to a request for such a report. Before

reconfiguration, end users often want to inquire about the upcoming status of resources

and their attributes. Network managers usually want only authorized end users

(operators) to manage and control network operation.

4. Performance Management

Performance management of a computer network comprises two broad functional

categories – monitoring and controlling. Monitoring is the function that tracks activities

on the network. The controlling function enables performance management to make

adjustments to improve network performance. Some of the performance issues of concern

to the network manager are:

• What is the level of capacity ut ilization?

• Is there excessive traffic?

• Has throughput been reduced to unacceptable levels?

• Are there bottlenecks?

• Is response time increasing?

12

Performance management, must therefore, monitor many resources to provide

information in determining network operating level. By collecting this information,

analyzing it, and then using the resultant analysis as feedback to the prescribed set of

values, the network manger can become more adept at recognizing situations indicative

of present or impending performance degradation. The NMS should be able to give the

average and worst-case response times and the reliability of the network services. Thus,

performance must be known in sufficient detail to assess specific end user queries.

Performance statistics are used by the network managers to help them plan, manage and

maintain large networks. Performance statistics can be used to recognize potential

bottlenecks before they cause problems to the end users. Appropriate corrective action

can then be taken. This action can take the form of changing routing tables to balance or

redistribute traffic load during times of peak use or when a bottleneck is identified by a

rapidly growing load in one area.

5. Security Management

Security management is concerned with managing information protection and

access control facilities. These include generating, distributing, and storing encryption

keys. Passwords, and other authorizations or access control information, must be

maintained and distributed. Security management is also concerned with monitoring and

controlling access to computer networks and access to all or part of the network

management information obtained from the network nodes. Logs are an important

security tool, and therefore, security management is very much involved with the

collection, storage and examination of audit records and security logs, as well as with the

enabling and disabling of these logging facilities.

13

Security Management keeps account of activity, or attempted activity, with these

security objects in order to detect and recover from attempted or successful security

attacks. This includes the following functions related to the maintenance of security

information:

• Event logging

• Monitoring security audit trails

• Monitoring usage and users of security-related resources

• Reporting security violations

• Receiving notification of security violations

• Maintaining and examining security logs

• Maintaining backup copies for all or part of the security-related files

• Maintaining general network user profiles, and usage profiles for specific

resources, to enable references for conformance to designated security profiles

Security management manages the access-control service by maintaining general

network user profiles and usage profiles for specific resources and by setting priorities for

access. The security management function enables the user to create and delete security

related objects, change their attributes or state, and affect the relationships between

security objects.

B. SNMP

The network of most of the large organizations includes equipment from multiple

vendors, and therefore, the need for network management tools that can be used across a

14

broad spectrum of product types, including end systems, bridges, routers, and

telecommunications equipment increases. In response to this need, the simple network

management protocol (SNMP) was developed to provide a tool for multi-vendor,

interoperable network management [STALL]. SNMP includes the following key

capabilities:

• get - enables the management station to retrieve the value of objects at the

agent.

• set - enables the management station to set the value of objects at the agent.

• trap - enables an agent to notify the management station of significant events.

Resources in the network are managed by representing them as objects, which are

essentially data variables that represent different aspects of the managed agent. This

collection of objects is referred to as a Management Information Base (MIB). The MIB

functions as a collection of access points at the agent for the management station. All of

the values that are stored in the MIB are dynamic and are not stored in any file or registry

key. The information stored in the MIBs ranges from Object IDs (OIDs) to Protocol Data

Units (PDUs). The MIBs must be located at both the agent and the manager to work

effectively.

The MIB modules have been designed by the Internet Engineering Task Force

(IETF) for the standard tracks and protocol suites. Each protocol suite contains many

protocols, e.g., the Internet protocol suite contains the ICMP, UDP, TCP, RIP, OSPF,

EGP, and BGP protocols. A manufacturer of an equipment can come out with his/her

15

own set of MIBs, but these need to be made available at the agent as well as at the NMS.

The standard core management information is given in RFC1213.

Information stored by agents is made available to the management system by

means of the following two techniques:

• Polling - Polling is a request-response interaction between a manager and

agent. The manager can query any agent (for which it has authorization) and

request the values of various information elements; the agent responds with

information from its MIB. The request may be specific, listing one or more

named variables. A request may also be in the nature of search, asking the

agent to report information matching certain criteria, or to supply the manager

with information about the structure of the MIB at the agent. A manager

system may use polling to learn about the configuration it is managing, to

obtain periodically an update of conditions, or to investigate an area in detail

after being alerted to a problem.

• Event Reporting - With event reporting the initiative is with the agent, and the

manager is in the role of a listener, waiting for incoming information. An

agent may generate a report periodically (trap) to give the manager its current

status. The reporting period may be pre-configured or set by the manager. An

agent may also generate a report when a significant event (for example, a

change of state) or an unusual event (for example, a fault) occurs. Event

reporting is useful for detecting problems as soon as they occur. It is also

more efficient than polling for monitoring objects whose states or values

change relatively infrequently.

16

This thesis used only polling as a means to determine the changes taking place in

the various variables in response to the DDoS attacks. However, there exists a possibility

to modify the agents, to add some sort of intelligence in the agents, so as to raise a trap on

seeing some sudden variation (as mentioned in conclusions and future works).

C. DISTRIBUTED DENIAL OF SERVICE ATTACKS

A denial of service attack is characterized by an explicit attempt by an attacker to

prevent legitimate users from using resources. Examples of denial of service attacks

include [STROT-00]:

• attempts to “flood” a network, thereby preventing legitimate network traffic

• attempts to disrupt connections between two machines, thereby preventing

access to a service

• attempts to prevent a particular individual from accessing a service

• attempts to disrupt service to a specific system or person.

A distributed format amplifies these attacks by adding a “many to one” dimension

to these attacks, making them more difficult to prevent. A distributed denial of service

attack is composed of four elements, as shown in the Figure 2 [BELL –00].

• A victim - A victim is a target host that has been chosen to receive the brunt

of the attack.

• Attack daemons agents - These are the agent programs that actually conduct

the attack on the target victim. Attack daemons are usually deployed in host

computers (slaves or zombies). These daemons affect both the target and the

17

host computers. The task of deploying these attack daemons requires the

attacker to gain access and infiltrate the host computers.

 Figure 2. Components Of A Distributed Denial Of Service Attack. “From
Ref. [BELL - 00]”

• Control master program - Its task is to coordinate the attack and is deployed in

a host (master).

• Real attacker - The mastermind behind the attack. By using a control master

program, the real attacker can stay behind the scenes of the attack [LAU -00].

The DDOS attack sequence is as follows.

• The real attacker sends an “execute” message to the control master program.

Slave

Master

Real Attacker

 Victim

Slave

Slave

Slave

Slave

18

• The control master program receives the “execute” message and propagates

the command to the attack daemons under its control.

• Upon receiving the attack command, the attack daemons begin the attack on

the victim.

Even though it might appear that the real attacker doesn’t have much to do except

to send out the “execute” command, in reality he/she actually has to plan the execution of

a successful distributed denial of service attack. The attacker must infiltrate all the host

computers and networks where the daemon attackers are to be deployed. The attacker

must study the target’s network topology and search for the bottlenecks and

vulnerabilities that can be exploited during the attack. Because of the use of attack

daemons and control master programs, the real attacker is not directly involved during the

attack, which makes it difficult to trace who spawned the attack.

1. Denial of Service Attack Methodology

Some of the widely known basic denial of service attack methods that are

employed are as follows [STROT - 00]. These attacks take advantage of the inherent

flaws in the networking protocols.

 a. Bonk Attack

This attack takes advantage of the lack of bounds checking in the whole

fragmentation and reassembly, by sending fragments with offsets that do not align. This

makes reassembly of all the packets impossible since the positions overlap. Certain

operating systems do not handle this properly and will stop further communication until

the system is restarted.

19

b. Ping of Death Attack

This attack is aimed at the ICMP echo request. ICMP is used with a small

payload to provide a fast, low bandwidth test of connectivity. Because of this typical

usage, some software do not handle large payloads. If such software receives an ICMP

request packet with a payload greater than 4000 bytes the software generates an

exception and halts communication on the network.

c. Smurf Attack/ Syn Flood

In any TCP operation, before the handshake is complete, the receiver has

no idea how long the propagation delay is between itself and the other machine.

Therefore, once sending the ACK-SYN packet it will wait longer than usual (often up to

2 minutes) to receive a response. An attacker takes advantage of this and doesn’t respond

to the ACK-SYN packets. Thus the receiver will have to store information necessary to

correlate the expected ACK response with the packet sent. There is a limited amount of

space storage so if enough packets are received, without any response to the ACK-SYN

packets then this space will be exhausted and the machine will cease to receive any

additional SYN request. Therefore, no valid connections can be made during this period.

d. UDP Flood

This attack is based on UDP echo and character generator (chargen)

services. Forged UDP packets are used to connect the ‘echo service’ on one machine to

the ‘chargen service’ on the other machine. The result is that the two services consume all

available network bandwidth between the machines as they exchange characters between

themselves.

20

e. Land Attack

In this case the source and the destination address are the same, and so the

victim consumes all its resources talking to itself, and thereby blocks out side

conversations.

2. Distributed Denial of Service Attacks Methodology

In this section the various methods employed by the attackers in the various

distributed of denial service (DDoS) attacks are discussed [DITT -99], [DITT -00],

[BARL-00].

a. Trinoo

The communication between the master and the slaves is using TCP,

whereas the communication with the attack daemons is using the UDP packets. The

attack implemented is UDP flood.

b. Tribe Flood Network (TFN)

Communication between the master and the slaves is using ICMP echo

reply packets. The attack could be of smurf, SYN flood, UDP flood and ICMP flood

attacks.

c. TFN2K

This is the newer version of the TFN attack and it uses TCP, UDP, ICMP

or all three to communicate between the master and the slaves and the communication is

encrypted. The attacks implemented are the same as TFN.

21

d. Stacheldracht

It is based on the TFN attack. The communication between the master and

the slave is encrypted and uses TCP and ICMP. In this case also the attacks implemented

are the same as TFN.

e. Shaft

This attack is modeled after Trinoo. Communications between the master

and the slave is achieved using the UDP packets and the attack implemented is the UDP

flood attack. An important feature of this attack is its ability to switch control master

servers and ports in real time, thereby making the detection by intrusion detection tools

difficult.

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. RELATED WORK

The area of the distributed denial of service attacks has been the focus of much

research. Much study has been done ranging from the analysis of the various common

DDoS tools available to the simulation and proposals for solving the problems. Solutions

to DDoS are especially difficult because of the ability of the DDoS tools to spoof the IP

address and/or the port numbers. The usage of cryptography in the attack further

complicates the issues. In fact, many experts have stated that there are currently no

successful defenses against a fully distributed denial of service attack. Nevertheless some

of these works are discussed here, which propose some of the actions we can take to

minimize the impact of the DDoS attacks.

A. IMPROVING ROUTING ALGORITHMS

Changing/improving the routing algorithms in the routers has been proposed to

minimize the impact of the DDoS attacks. Felix Lau et al. simulated a DDoS attack using

ns-2 simulator (a discrete event simulator used for networking research and simulation of

TCP, routing, and multicast protocols over wired and wireless (local and satellite)

networks) and studied the performance of various routing algorithms during an attack in a

network router. They have found that the routing algorithms like Drop tail, Fair queuing,

Stochastic Fair queuing and Deficit Round Robin provide no bandwidth to the legitimate

user during the attack, while Class Based queuing and Random Early Detection provides

some limited bandwidth for certain classes of input flows. They have also found that

implementing queuing algorithms in network routers may provide bandwidth to the users

even in case of the DDoS attacks [LAU -00]. This approach however, doesn’t give any

indication of the attacking sources.

24

B. IP TRACEBACK SCHEMES

Some researchers have studied the methodology for tracing back the attacker. The

basis of these studies is that the DDoS attacks are on the rise because of the difficulty in

tracing back the attacking source. There have been many proposals to determine the

attacking hosts in spite of usage of address spoofing techniques to disguise the source of

origin. These proposals help determine the attacking hosts, not the actual attacker,

because the attacker might be hiding in some other host and sends the attack command,

much before the attack builds up. Some of these proposals are discussed below:

1. Packet Based Trace Back

In packet-based trace back, packets are marked with the addresses of intermediate

routers. The victim can use the information inscribed in packets to trace the attack back to

its source. The drawback of this method is the overhead resulting from the increase in the

number of packets.

2. ICMP Trace Back Messages (itrace)

In this method the routers generate information packets – separate from the data

packets – that convey analogous path information as ICMP trace back messages to the

victim [BELL-00-M]. An itrace router probabilistically generates an authenticated copy

of a packet, adds its own IP address as well as the IP of the previous and the next hop

routers, and forwards the packet either to the source or the destination address. This

approach does not need an upstream router map because the IP addresses of the routers

are encoded in the itrace packets. The victim can use the information in the itrace packets

to build an upstream router map. The main problem with this method also is the large

overhead resulting from the additional data packets.

25

3. IP Trace Back using Probabilistic Packet Marking

In this approach, the routers are allowed to probabilistically mark the packets with

partial path information during packet forwarding. The victim can then reconstruct the

complete path after receiving a modest number of packets containing the marking

[SAVA-00]. This approach has low overhead for routers and supports incremental

deployment, however it has a very high computation overhead for the victim to

reconstruct the attack paths. Another problem with this approach is that it has mainly

considered the denial-of-service with a single attacker site. The scheme becomes

inefficient and gives inaccurate results even under a minor increase in scale.

4. Advanced and Authenticated Marking Schemes for IP Trace Back

Dawn Xiaodong Song and Adrian Perrig have proposed two new schemes, the

Advanced Marking Scheme and the Authenticated Marking Scheme for tracing back the

approximate origin of the spoofed IP packets. This approach builds upon the previous

approach to overcome its shortcomings. A new encoding scheme is used, whereby

instead of the full IP address of a router, only its hash value is encoded. The schemes

have low network and router overhead, and support incremental deployment. These

schemes also result in lower computation overhead for the victim to reconstruct the attack

paths under large-scale distributed denial-of-service attacks. Also, the authenticated

marking scheme provides efficient authentication of routers’ markings such that even a

compromised router cannot forge or tamper markings from other un-compromised routers

[SONG - 01].

26

C. INGRESS/ EGRESS FILTERING (RFC 2267/2827)

Ferguson and Senie proposed ingress filtering in which only valid IP packets from

a valid source address are allowed by the routers to enter the Internet [FERG - 98].

Ingress traffic filtering at the periphery of Internet connected networks will reduce the

effectiveness of source address spoofing denial of service attacks. The problem with this

approach is that it requires the router to have sufficient power to verify the IP address of

each packet and to have sufficient knowledge to distinguish between legitimate and

illegitimate addresses. Also, the approach is effective only if deployed at a large scale.

Ingress filtering is basically from the viewpoint of the Internet Service Providers

(ISPs) or the administrators of the Autonomous systems. The same approach from a

company’s internal networks view point is the egress filtering in which only valid IP

source packets are allowed to leave the network (Figure 3).

27

Figure 3. Ingress/Egress Filtering.

D. TCP INTERCEPT

Cisco has implemented a feature called TCP Intercept to protect TCP servers from

TCP SYN – flooding attacks by intercepting and validating TCP connection requests

[CISC -99]. It can be used in two modes. In the intercept mode, the TCP synchronization

(SYN) packets from clients to servers are intercepted by the software and a connection

established on behalf of the destination server. If the connection is successful then the

software establishes the connection with the server on behalf of the client and knits the

two half connections transparently. Thus connection attempts from unreachable hosts will

never reach the server. The software continues to intercept and forward packets

Internal Network

ISP allows only valid
IP packets to enter – Ingress
filtering

Border Router

Firewall

Internet

Network Firewall
allows only valid IP packets
to exit – Egress filtering

28

throughout the duration of the connection. In the case of illegitimate requests, the

software goes into aggressive timeout modes for the half connections.

TCP intercept can also be used in watch mode, in which the software passively

watches the connection requests flowing through the router. If a connection fails to get

established in a configurable interval, the software intervenes and terminates the

connection attempt.

Thus, only the valid connection requests are allowed. Illegitimate requests and

half-open connections are discarded by having timeouts or resets. When under attack, the

TCP intercept feature becomes more aggressive in its protective behavior.

E. PACKET FILTERING

Packet filtering is a network security mechanism for controlling what data can

flow to and from network affected routers or firewalls. A firewall is a system deployed

between the company’s network and the Internet and has the ability to observe and

control all the incoming/outgoing packets.

A firewall can examine any packet moving between the internal network and the

Internet or a firewall can be configured to serve as a proxy for communications. A

firewall can limit the incoming network traffic from a particular source address thereby

reducing the risk of an attack. However, since there is no guarantee that the source

address is not spoofed, any filtering based on source address is subject to vulnerabilities.

A firewall also provides no method of limiting valid traffic such that a machine is not

simply overwhelmed with requests. But firewalls can block the type of traffic (protocols)

and thus reduce the attack sets.

29

F. INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems (IDS) monitor the network for known attack

signatures. An attack signature is a sequence of events, which is known to occur prior to

or during an attack. IDS have been used to prevent some of the DDoS attacks, but they

have their own limitations. There is no way of knowing the attack signature until at least

one site has been attacked. Moreover, the attack signature based on the port number of

the attack does not seem to be very effective in light of the new developments in the field

of the DDoS tools, in which the port number as well as the protocols used are random in

nature. IDS, which observe traffic for attack signatures are known as knowledge-based

systems.

If the system has the ability to learn attack signatures, it is called a behavior based

IDS. Problem with behavior-based systems is that to be effective the learning should be

in real time, which is difficult to achieve. Another problem with behavior based ID

systems is false positives reports. Whenever a system attempts to learn a behavior at the

same time as guarding against the behavior it runs the risk of falsely identifying an

occurrence. In most networks, the number of false positives must be sufficiently low so

as not to disrupt normal communications.

G. ROUTE-BASED DISTRIBUTED PACKET FILTERING

In this approach, routing information is used to determine if a packet arriving at a

router is valid with respect to its inscribed source/destination addresses, given the

reachability constraints imposed by routing and network topology. With a partial

coverage or deployment – about 20% in Internet Autonomous systems topologies – a

significant fraction of the spoofed packet flows can be filtered and prevented from

30

reaching other autonomous systems. This approach doesn’t require expanding IP header

fields to encode stamped link information [PARK-00]. However, it does require

compliance by a number of different autonomous systems to be effective.

H. THE NOZZLE

E. Strother has presented a protection method called a nozzle [STROT-00]. The

nozzle is based upon favorable aspects of firewalls and network pumps. It is to be

deployed similar to the firewall such that all conversations from an un-trusted user to a

critical resource are monitored. The main advantage of the nozzle is the ability to provide

a threshold for trusted traffic thus precluding new attacks. A nozzle consists of a series of

rings, each of which has a trusted and un-trusted buffer, rules for packet placement, and

rules for communication with the next level. Rings are placed in the protocol stack so that

they can protect particular protocols. Each ring looks into the irregularities in the

incoming packet for that particular protocol layer. If there is no defect then the packets

are allowed to pass through either to the next ring or to the destination, depending on the

configuration. A simplified diagram of the nozzle function is shown in Figure 4.

31

Figure 4. The Nozzle. “From Ref. [STROT-00]”

The nozzle’s performance is dependent on how it is configured.

I. CENTERTRACK

CenterTrack is an overlay network, consisting of IP tunnels, that is used to

selectively reroute interesting datagrams directly from edge routers to special tracking

routers. It requires input debugging and IP tunnel support on edge routers and special

“CenterTrack” routers. The tracking routers can easily determine the ingress edge router

by observing which tunnel the datagrams arrive on. The datagrams can be examined, then

dropped or forwarded to the appropriate egress point [STON-99].

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

IV. EXPERIMENTAL SETUP

A. HYPOTHESIS

Joao B.D. Cabrera, Lundy Lewis et al. proposed a methodology in which a

Network Management System can be used for early detection of Distributed Denial of

Service attacks [JOAO – 01]. Their hypothesis is that even though there are quite large

number of events that are prior to an attack (e.g. suspicious logons, start of processes,

addition of new files, sudden shifts in traffic, etc.), a DDoS attack could be detected on

the basis of shifts in the traffic patterns in some of the Management Information Base

(MIB) variables collected from the systems participating in the attack. Using domain

knowledge an experiment was carried out and it was observed by them that there are

indeed MIB-based precursors of DDoS attacks, that makes it possible to detect the attack

before the target is shut down. They have also described how the relevant MIB variables

at the attacker can be extracted automatically using Statistical tests for Causality. That is,

out of the various variables at the target and the attacker, which change over a period of

time, during a DDoS attack, the main variables which need to be monitored at the

attacker can be determined, which can then be used for detecting in advance, any

machine participating in the attack, using a simple anomaly detection scheme of the rate

of change of these key variables.

B. AIM

This thesis was phase two of the experiments suggested above. In phase one

above, the MIB variables to be studied were determined by the domain knowledge of the

various attacks. The phase three of the experiments would be to actually conduct attacks

over two different geographical locations. The aim of this thesis was to actually test all

34

the MIB variables, which change over a period of time during the DDoS attack in an

experimental test bed and determine the key MIB variables, which should be observed for

monitoring.

An offshoot of this experiment would also be to determine if the type of DDOS

attack could be identified by the observed type of the changes in the MIB variables (e.g.

if it is DOS SYN flood, or UDP flood etc.) so that a possibility exists of an entirely

automated procedure centered on Network Management systems for detecting precursors

of Distributed Denial of Service Attacks, and responding to them.

C. TESTBED

The experimental setup for the test bed consisted of a local area network as shown

in Figure 5.

Figure 5. Experimental Setup.

Red Hat
Linux

Red Hat
Linux

Red Hat
Linux

Win2K
Professional

Solaris -7 with
Spectrum NMS

Ethernet Hub

35

The Network Management system used was the Spectrum Network Management

system, manufactured by M/S Aprisma Technologies limited. The Operating system was

the Sun Solaris 7.0. Two Red Hat Linux hosts were used as attackers and the target was

the Windows 2000 professional system. The third Red Hat Linux host had the various

programs and was used to observe the MIB variables.

The attacking hosts were inserted with the DDoS zombie codes. In reality, before

carrying out the attack, the attacker would have to impregnate the attackers with the

zombie code and then from a master computer would give a command to attack the

target. However in this thesis the attacking hosts were assumed to have been infected

already and the master computer (needed for some attacks for giving a command) was

external to the setup.

D. METHODOLOGY

1. Using the Spectrum Network Management System

In the first approach the idea was to use the Spectrum Network Management

System to observe the deviant variations in the various MIB variables. The java based

MIB browser (which comes as a part of the Spectrum package) was used to browse the

values of the various MIB variables during the duration of different attacks to shortlist the

variables which undergo even a slightest change for each of the attacks. Thereafter, the

target was polled for the value of each of the MIB variable but, it was observed that the

NMS had the limitation of being able to poll at the time intervals of greater than or equal

to 30 seconds. This was considered inadequate for getting the clear picture of the

variation in the MIB variables and so the second approach of using a program

‘miblogger.c’ was resorted to.

36

2. Using the program ‘miblogger.c’

In the second approach, a program miblogger.c was written using the ucd-snmp

development library available with the Red Hat Linux and compiled and run on the same

platform (the third Linux box, different from the two attackers). The list of MIBs to be

queried was taken from the shortlist obtained from the first approach. The program

queried the attackers and the target for the value of these MIBs at a regular interval of

five seconds. The system time and the response obtained were recorded in a separate log

file for each host (but containing all the shortlisted MIBs). Perl scripts were used to

separate the logged MIBs into separate log files and to create the Round-Robin-Databases

(RRDs) using the RRD perl module. The graphing function of the RRDtool was used to

generate the graphs.

E. ROUND ROBIN DATABASE

Round Robin Database (RRD) [TOBI-00] is a system to store and display time-

series data (i.e. network bandwidth, machine-room temperature, server load average). It

stores the data in a very compact way that will not expand over time, and it presents

useful graphs by processing the data to enforce a certain data density. It can be used

either via simple wrapper scripts (from shell or Perl) or via frontends that poll network

devices and put a friendly user interface on it.

RRDtool refers to the Round Robin Database tool. Round robin is a technique that

works with a fixed amount of data, and a pointer to the current element. When the current

data is read or written, the pointer moves to the next element. Since the database is in the

form of a circular record file, there is neither beginning nor an end, one can go on and on.

37

After a while, when all the available places are used, the process automatically reuses old

locations. This way, the database does not grow in size and therefore requires no

maintenance. RRDtool works with Round Robin Databases (RRDs). It stores and

retrieves data from them.

On disk, the round robin database (RRD) is organized into sequential sections,

called round robin archives (RRA). Within each RRA is a section for each of the data

sources (input) stored in this RRD. Each RRA is defined by a consolidation function

which maps primary data points (PDP) to consolidated data points (CDP), which are then

plotted. The consolidation function could be the MAX, MIN, LAST or AVERAGE of the

values.

In this thesis the RRDtool is used for generating the RRD databases, updating

them with the logged data and for creating graphs in the ‘gif’ format. The RRD perl

module and simple perl scripts are used for this purpose.

F. DESCRIPTION OF THE PROGRAMS

1. Logging of MIB Variables Values

The program used to collect and log the values of the MIB variables was

‘miblogger.c’ in RedHat linux 7.0 (Kernel 2.2.16-22) and the GNU compiler gcc version

2.96. The program uses the UCD-SNMP library (also known as NET-SNMP). The

library is freely available and also comes with the standard Red-Hat installation.

 Initially load the various header files.

#include <ucd-snmp/ucd-snmp-config.h>
#include <ucd-snmp/ucd-snmp-includes.h>
#include <sys/time.h>

38

The polling interval is defined to be 5s and the total poll duration is for 20

minutes (20 x 60 / 5). This is a reasonable interval since the DDoS attacks result in very

sudden large changes in the MIB variables.

#define POLL_INTERVAL 5
#define POLL_COUNT 240

A list of hosts and their type (whether target or attacker) is declared and

populated. The type is required because the MIB variables to be observed for the attacker

and the target are different. The list of the MIB variables to be observed for both the type

of hosts was determined by both the domain knowledge of the attacks as well as by

observing them with a MIB browser when under attack.

struct host { char *name; char *type; }
struct oid { char *Name; oid Oid[MAX_OID_LEN]; int OidLen;

The main() routine first calls the initialize() subroutine which initializes the snmp

library. It also reads the various MIB variables and correlates them with their oid number,

thus ensuring that they are correct, returning error if incorrect.

 init_snmp("miblogger");
 .
 .
 while (op->Name) {
 op->OidLen = sizeof(op->Oid)/sizeof(op->Oid[0]);
 if (!read_objid(op->Name, op->Oid, &op->OidLen)) {
 snmp_perror("read_objid");
 exit(1);
 }
 }

The hosts are then polled ‘POLL_COUNT’ times, at ‘POLL_INTERVAL’

duration. The poll() subroutine initially declares the following variables:

39

• struct snmp_session – A structure that holds information about the host which

is to be queried. Two of these structures need to be declared, one to fill with

information and the second a pointer returned by the library.

• struct snmp_pdu – This structure holds all of the information that is sent

(received) to (from) the remote host.

• struct oid – The pointer for the oid. Could be oid_T (target) or oid_A

(attacker).

• FILE *f – The log file. The log file is different for each host.

The snmp-session is then initialized which prepares the input session data. The

first call to snmp_sess_init() initializes the Library, including the MIB parse trees, before

any SNMP sessions are created. The structure is populated with the snmp version type

(v1, v2c, v3 – v2c is used in the program as it is the most common one and has wide

spread support), the name of the host and the snmp community name) and a session is

then setup with the call snmp_synch_setup().

 snmp_sess_init(&ss);
 ss.version = SNMP_VERSION_2c;
 ss.peername = hp->name;
 ss.community = "public";
 snmp_synch_setup(&ss);

After establishing a session, it is opened. Opening it returns a pointer to another

session that is used in all the future calls.

sp = snmp_open(&ss)

Next, a Protocol Data Unit (PDU) is created which is sent to the remote host for

requesting the information needed. The PDU created is SNMP_PDU which retrieves a

40

value for each of the specified oid. A NULL value needs to be added to each oid for all

outgoing requests. This is achieved by the

snmp_add_null_var(req, op->Oid, op->OidLen);

Finally, the request is sent using the session pointer and the pdu. A status and a

response is returned which is stored in the second snmp_pdu (*resp) structure declared

earlier.

status = snmp_synch_response(sp, req, &resp);

The returned response, status, session pointer and the log file name are then

passed to the log_response() subroutine for logging purpose. The returned values are

logged only if there is no error (status = STAT_SUCCESS and response-> ==

SNMP_ERR_NOERROR). A new line is added to the log files after recording the group

of MIB values at a particular time, to facilitate the parsing of the log files easily.

2. Separating the MIB Time Series

The initial log files for the two attackers and the target contains the MIB values

logged over a period of time, with the latest time and the corresponding MIB value at the

beginning of the file. Two short perl scripts are used for this purpose. The first perl script

‘reverse.pl’ is for reversing the order of the logged data. This is required for creating the

RRD database. The RRD database functions only if the ordering of data values is in the

increasing order of the logged time i.e. the value recorded first should be at the beginning

of the file.

41

The script reverse.pl takes the log file and creates another file in which the data is

in the reverse order. The second script is given this reversed log file as the input and it

splits it into the various MIB values recorded in the log file.

Open the log file first:

open(LOG,"<$file") or die "could not open file";

Go through the file and determine the number of MIB variables in the log file, the

group of MIB variables is separated in the log file by a new line character. The script

looks for the first character in the line and if it is the new-line character then it exits the

loop.

while(<LOG>) {
 if ($_ !~ /^\n/){
 chomp;
 ($time,$ipadd,$mib_n_value) = split /:/;
 print "min_n_value = $mib_n_value\n";
 ($mib,$count) = split / = /, $mib_n_value;
 ($f,$m,$l) = split /\./, $mib;
 print "The value of log file name is $m.log\n";
 sleep 1;
 $array[$no] = $m.".log";
 print "The value of $no element in array is $array[$no]\n";
 $no++;
 }
 else {last;}
}
close(LOG);
$max_no_of_mibs = $no;

Determine the names of the MIB variables logged in the file and then create

corresponding log files for each of them.

for ($x = 1; $x <= $max_no_of_mibs; $x++) {
open(OUT."$x", ">". $array[$x-1]) || die "couldn't open $x.log \n";

}
$x = 1;

42

open(LOG,"<$file") or die "could not open file";
while(<LOG>) {
 if ($_ !~ /^\n/) {
 chomp;
 if ($x > $max_no_of_mibs) { $x = 1; }
 ($time,$ipadd,$mib_n_value) = split /:/;
 ($mib,$count) = split / = /, $mib_n_value;

 print "Updating $x.log\n";
 $FH = OUT."$x";
 print $FH "$time:$count\n";
 $x++;
 }
}
close(LOG);

3. Plotting the MIB Time Series

The time series for each of the MIB variable is plotted using the RRD tool

described earlier. It requires the usage of the perl::RRD module.

Use the perl RRD module.

use RRDs;
use strict;

Open the log file and determine the start time and the end time of the logging.

open(LOG,"<$file") or die "could not open file";
my($cnt)=1;
while(<LOG>) {
 chomp;
 ($time,$count) = split /:/;
 if ($cnt <2) { $start_time = $time-10;}
 $end_time = $time;
 $cnt++;
}
close(LOG);

43

Create and update the round-robin database for each of the MIB variable and print

error if any.

RRDs::create ($fname.".rrd","--start",$start_time, " --step",5,
 "DS:a:COUNTER:10:U:U",
 "RRA:AVERAGE:0.5:1:600");
$ERROR = RRDs::error;
die "$0: unable to create '$fname.'.rrd: $ERROR\n" if $ERROR;
print "Updating $fname.rrd\n";
open(LOG,"<$file") or die "could not open file" ;
while(<LOG>) {
 chomp;
 RRDs::update ($fname.".rrd", $_);
 if ($ERROR = RRDs::error) {
 die "$0: unable to update $fname.rrd: $ERROR\n";
 };
}
close(LOG);

Draw the graphs in gif format.

RRDs::graph ("$fname.gif"," --start", $start_time, "--end", $end_time,"--title",

"TFN_Syn_Flood - Rate of change of $fname with time", "--vertical-label",
"$fname(/s)","DEF:mibvalue=$fname.rrd:a:AVERAGE",
"LINE1:mibvalue#FF0000:\rAverage change in $fname per second");

if ($ERROR = RRDs::error) {
 die "$0: unable to draw graph $fname-AVG.gif: $ERROR\n";
};

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

V. RESULTS

This chapter describes the results of the experiments carried out on the

experimental setup. The results identify the affected MIB variables at the attackers and at

the target for each of the DDoS attack and also graphically illustrate the change in these

before during and after attack. The key variables (those which show large changes) are

highlighted. The attacks considered in the experiment were the Trinoo, TFN and the

TFN2K attacks. The graphical results clearly indicate the sudden abrupt change in the

key MIB variables during the attack.

A. TRINOO

The affected variables at the target and at the attacker in a trinoo attack are shown

in table 1.

Sl. No. Target Attacker
1. icmp.icmpOutDestUnreachs.0 icmp.icmpInDestUnreachs.0
2. icmp.icmpOutMsgs.0 icmp.icmpInMsgs.0
3. ip.ipInDelivers.0 ip.ipInDelivers.0
4. ip.ipInReceives.0 ip.ipInReceives.0
5. ip.ipOutRequests.0 ip.ipOutRequests.0
6. udp.udpInDatagrams.0 udp.udpInDatagrams.0
7. udp.udpNoPorts.0 udp.udpOutDatagrams.0
8. udp.udpOutDatagrams.0

Table 1. Affected MIB Variables In Trinoo Attack.

46

1. Changes in the Target MIB Variables

Figure 6 shows the average changes in the target MIB variables per five-second

interval in case of a trinoo attack.

47

Figure 6. Trinoo Attack - Changes In Target MIB Variables.

48

2. Changes in the Attacker1 MIB Variables

Figure 7 shows the average change in the attacker1 MIB variables per five-second

interval in case of a trinoo attack.

49

Figure 7. Trinoo Attack - Changes In Attacker1 MIB Variables.

3. Changes in the Attacker2 MIB Variables

Figure 8 shows the average change in the attacker2 MIB variables per five-second

interval in case of a trinoo attack.

50

51

Figure 8. Trinoo Attack - Changes In Attacker2 MIB Variables.

B. TFN

1. Ping (ICMP) Flood

The affected variables at the target and at the attacker in a TFN ping-flood attack

are shown in table 2.

Sl. No. Target Attacker
1. icmp.icmpInEchoReps.0 icmp.icmpInEchoReps.0
2. icmp.icmpInEchos.0 icmp.icmpInMsgs.0
3. icmp.icmpInErrors.0 ip.ipOutRequests.0
4. icmp.icmpInMsgs.0
5. icmp.icmpOutEchoReps.0
6. icmp.icmpOutMsgs.0
7. ip.ipInDelivers.0
8. ip.ipInReceives.0
9. ip.ipOutRequests.0
10. udp.udpNoPorts.0

Table 2. Affected MIB Variables In TFN Ping Flood Attack.

52

a. Changes in the Target MIB Variables

Figure 9 below shows the average change in the target MIB variables per

five-second interval for a TFN ping-flood attack.

53

54

Figure 9. TFN Ping Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 10 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN ping-flood attack.

55

Figure 10. TFN Ping Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 11 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN ping-flood attack.

56

Figure 11. TFN Ping Flood Attack - Changes In Attacker2 MIB Variables.

2. SYN Flood

The affected variables at the target and at the attacker in a TFN syn-flood attack

are shown in table 3.

Sl. No. Target Attacker
1. ip.ipInDelivers.0 icmp.icmpInEchoReps.0
2. ip.ipInReceives.0 icmp.icmpInMsgs.0
3. tcp.tcpInErrs.0 ip.ipOutRequests.0
4. tcp.tcpInSegs.0

Table 3. Affected MIB Variables In TFN Syn Flood Attack.

a. Changes in the Target MIB Variables

Figure 12 below shows the average change in the target MIB variables per

five-second interval for a TFN syn-flood attack.

57

Figure 12. TFN Syn Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 13 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN syn-flood attack.

58

Figure 13. TFN Syn Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 14 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN syn-flood attack.

59

Figure 14. TFN Syn Flood Attack - Changes In Attacker2 MIB Variables.

3. UDP Flood

The affected variables at the target and at the attacker in a TFN UDP-Flood attack

are shown in table 4.

Sl. No. Target Attacker

1. icmp.icmpInDestUnreachs.0 icmp.icmpInEchoReps.0
2. icmp.icmpInMsgs.0 icmp.icmpInMsgs.0
3. icmp.icmpOutDestUnreachs.0 ip.ipOutRequests.0
4. icmp.icmpOutMsgs.0

60

5. ip.ipInDelivers.0
6. ip.ipInReceives.0
7. ip.ipOutRequests.0
8. udp.udpInErrors.0
9. udp.udpNoPorts.0

Table 4. Affected MIB Variables In TFN UDP Flood Attack.

a. Changes in the Target MIB variables

Figure 15 below shows the average change in the target MIB variables per

five-second interval for a TFN UDP-flood attack.

61

62

Figure 15. TFN UDP Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 16 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN UDP-flood attack.

63

Figure 16. TFN UDP Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 17 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN UDP-flood attack.

64

Figure 17. TFN UDP Flood Attack - Changes In Attacker2 MIB Variables.

C. TFN2K

1. Ping Flood

The affected variables at the target and at the attacker in a TFN2K ping-flood

attack are shown in table 5.

Sl. No. Target Attacker
1. icmp.icmpInEchoReps.0 icmp.icmpInEchoReps.0
2. icmp.icmpInEchos.0 icmp.icmpInMsgs.0
3. icmp.icmpInErrors.0 ip.ipInDelivers.0
4. icmp.icmpInMsgs.0 ip.ipInReceives.0
5. icmp.icmpOutEchoReps.0 ip.ipOutRequests.0
6. icmp.icmpOutMsgs.0 tcp.tcpInSegs.0
7. ip.ipInDelivers.0 udp.udpInErrors.0
8. ip.ipInReceives.0
9. ip.ipOutRequests.0
10. udp.udpNoPorts.0

Table 5. Affected MIB Variables In TFN2K Ping Flood Attack.

a. Changes in the Target MIB Variables

Figure 18 below shows the average change in the target MIB variables per

five-second interval for a TFN2K ping-flood attack.

65

66

67

Figure 18. TFN2K Ping Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 19 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN2K ping-flood attack.

68

69

Figure 19. TFN2K Ping Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 20 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN2K ping-flood attack.

70

71

Figure 20. TFN2K Ping Flood Attack - Changes In Attacker2 MIB Variables.

2. SYN Flood

The affected variables at the target and at the attacker in a TFN2K syn-flood

attack are shown in table 6.

Sl. No. Target Attacker
1. ip.ipInDelivers.0 icmp.icmpInEchoReps.0
2. ip.ipInReceives.0 icmp.icmpInMsgs.0
3. ip.ipOutRequests.0 ip.ipInReceives.0
4. tcp.tcpInSegs.0 ip.ipInDelivers.0
5. tcp.tcpInErrs.0 ip.ipOutRequests.0
6. tcp.tcpOutRsts.0 tcp.tcpInSegs.0
7. tcp.tcpOutSegs.0 udp.udpInErrors.0

Table 6. Affected MIB Variables In TFN2K Syn Flood Attack.

a. Changes in the Target MIB Variables

Figure 21 below shows the average change in the target MIB variables per

five-second interval for a TFN2K syn-flood attack.

72

73

Figure 21. TFN2K Syn Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 22 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN2K syn-flood attack.

74

75

Figure 22. TFN2K Syn Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 13 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN2K syn-flood attack.

76

77

Figure 23. TFN2K Syn Flood Attack - Changes In Attacker2 MIB Variables.

3. UDP Flood

The affected variables at the target and at the attacker in a TFN2K UDP-Flood

attack are shown in table 7.

Sl. No. Target Attacker
1. icmp.icmpOutDestUnreachs.0 icmp.icmpInEchoReps.0
2. icmp.icmpOutMsgs.0 icmp.icmpInMsgs.0
3. ip.ipInDelivers.0 ip.ipInReceives.0
4. ip.ipInReceives.0 ip.ipInDelivers.0
5. ip.ipOutRequests.0 ip.ipOutRequests.0
6. udp.udpInErrors.0 tcp.tcpInSegs.0
7. udp.udpNoPorts.0 udp.udpInErrors.0

Table 7. Affected MIB Variables In TFN2K UDP Flood Attack.

78

a. Changes in the Target MIB Variables

Figure 24 below shows the average change in the target MIB variables per

five-second interval for a TFN2K UDP-flood attack.

79

Figure 24. TFN2K UDP Flood Attack - Changes In Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 25 shows the average changes in the attacker1 MIB variables per

five-second interval when under a TFN2K UDP-flood attack.

80

81

Figure 25. TFN2K UDP Flood Attack - Changes In Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 26 shows the average changes in the attacker2 MIB variables per

five-second interval when under a TFN2K UDP-flood attack.

82

83

Figure 26. TFN2K UDP Flood Attack - Changes In Attacker2 MIB Variables.

4. Targa Flood

The affected variables at the target and at the attacker in a TFN2K Targa-Flood

attack are shown in table 8.

Sl. No. Target Attacker
1. icmp.icmpInDestUnreachs.0 icmp.icmpInEchoReps.0
2. icmp.icmpInErrors.0 icmp.icmpInMsgs.0
3. icmp.icmpInMsgs.0 ip.ipInDelivers.0
4. icmp.icmpOutDestUnreachs.0 ip.ipInReceives.0
5. icmp.icmpOutMsgs.0 ip.ipOutRequests.0
6. ip.ipInDelivers.0 tcp.tcpInSegs.0
7. ip.ipInReceives.0 udp.udpInErrors.0
8. ip.ipInUnknownProtos.0 udp.udpOutDatagrams.0
9. ip.ipOutRequests.0
10. ip.ipReasmFails.0
11. ip.ipReasmReqds.0
12. tcp.tcpInErrs.0

84

13. tcp.tcpInSegs.0
14. udp.udpInErrors.0
15. udp.udpNoPorts.0
16. udp.udpOutDatagrams.0

Table 8. Affected MIB Variables In TFN2K Targa Flood Attack.

a. Changes in the Target MIB Variables

Figure 27 below shows the average change in the target MIB variables per

five-second interval for a TFN2K targa-flood attack.

85

86

87

Figure 27. TFN2K Targa Flood Attack - Changes in Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 28 below shows the average change in the attacker1 MIB variables

per five-second interval for a TFN2K targa-flood attack.

88

89

Figure 28. TFN2K Targa Flood Attack - Changes in Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 29 below shows the average change in the attacker2 MIB variables

per five-second interval for a TFN2K targa-flood attack.

90

91

Figure 29. TFN2K Targa Flood Attack - Changes in Attacker2 MIB Vvariables.

5. Mix Flood

The affected variables at the target and at the attacker in a TFN2K mix-flood

attack are shown in table 9.

Sl. No. Target Attacker
1. icmp.icmpInEchoReps.0 icmp.icmpInEchoReps.0
2. icmp.icmpInEchos.0 icmp.icmpInMsgs.0
3. icmp.icmpInErrors.0 ip.ipInDelivers.0
4. icmp.icmpInMsgs.0 ip.ipInReceives.0
5. icmp.icmpOutDestUnreachs.0 ip.ipOutRequests.0
6. icmp.icmpOutEchoReps.0 tcp.tcpInSegs.0
7. icmp.icmpOutMsgs.0 udp.udpInErrors.0
8. ip.ipInDelivers.0
9. ip.ipInReceives.0
10. ip.ipOutRequests.0
11. tcp.tcpInErrs.0
12. tcp.tcpInSegs.0
13. tcp.tcpOutRsts.0
14. tcp.tcpOutSegs.0
15. udp.udpNoPorts.0
16. udp.udpInErrors.0

Table 9. Affected MIB Variables In TFN2K Mix Flood Attack.

a. Changes in the Target MIB Variables

Figure 30 below shows the average change in the target MIB variables per

five-second interval for a TFN2K mix-flood attack.

92

93

94

95

Figure 30. TFN2K Mix Flood Attack - Changes in Target MIB Variables.

b. Changes in the Attacker-1 MIB Variables

Figure 31 below shows the average change in the attacker1 MIB variables

per five-second interval for a TFN2K mix-flood attack.

96

97

Figure 31. TFN2K Mix Flood Attack - Changes in Attacker1 MIB Variables.

c. Changes in the Attacker-2 MIB Variables

Figure 32 below shows the average change in the attacker2 MIB variables

per five-second interval for a TFN2K mix-flood attack.

98

99

Figure 32. TFN2K Mix Flood Attack - Changes in Attacker2 MIB Variables.

D. SUMMARY

The summary of the various MIB variables affected, is given in the Table 10 for

the attackers and in Table 11 for the targets for different attacks.

Sl MIB Tri

noo
TFN TFN2K

 Ping Syn UDP Ping Syn UDP Targa Mix

 ICMP
1. icmpInDestUnreachs XX XX
2. icmpInEchoReps X X X
3. icmpInEchos XX XX XX
4. icmpInErrors X XX XX XX
5. icmpInMsgs XX XX XX XX XX
6. icmpOutDestUnreachs XX XX X XX XX
7. icmpOutEchoReps XX XX XX
8. icmpOutMsgs XX XX XX XX X XX XX

 IP
1. ipInDelivers XX XX XX XX XX XX XX XX XX
2. ipInReceives XX XX XX XX XX XX XX XX XX
3. ipInUnknownProtos XX
4. ipOutRequests XX XX XX XX X X XX XX
5. ipReasmFails XX
6. ipReasmReqds XX

 TCP
1. tcpInErrs XX XX X XX
2. tcpInSegs XX XX X XX

100

3. tcpOutRsts XX XX
4. tcpOutSegs XX XX

 UDP
1. udpInDatagrams X
2. udpInErrors XX XX X XX
3. udpNoPorts XX X XX XX X XX X
4. udpOutDatagrams X X

 X – Small Variation XX – Large Variation

Table 10. Summary Of Affected MIB Variables In Targets In DDoS Attacks.

Sl
No.

MIB Tri
noo

TFN TFN2K

 Ping Syn UDP Ping Syn UDP Targa Mix

 ICMP
1. icmpInDestUnreachs XX
2. icmpInEchoReps X X X X X X X X
3. icmpInEchos
4. icmpInErrors
5. icmpInMsgs XX X X X X X X X X
6. icmpOutDestUnreachs
7. icmpOutEchoReps
8. icmpOutMsgs

 IP
1. ipInDelivers X X X X X X
2. ipInReceives XX X X X X
3. ipInUnknownProtos
4. ipOutRequests XX XX XX XX XX XX XX XX X

X
5. ipReasmFails
6. ipReasmReqds

 TCP
1. tcpInErrs
2. tcpInSegs X XX X X X
3. tcpOutRsts

101

4. tcpOutSegs

 UDP
1. udpInDatagrams X
2. udpInErrors X X X X X
3. udpNoPorts
4. udpOutDatagrams XX X

X – Small Variation XX – Large Variation

Table 11. Summary Of Affected MIB Variables In Attackers In DDoS Attacks.

The analyses of the result obtained shows that a large increase in the

ip.ipInReceives.0 and ip.ipInDelivers.0 MIBs on a particular network device is a sure

indication of it being attacked in a DDoS manner. On the other hand a large raise in the

ip.ipOutRequests.0 MIB variable means that the system has been compromised and is a

zombie participating in a DDoS/DoS attack against some other system. The monitoring

system can further home on to the exact type of attack based on the signatures of the

attacks as seen from the tables above.

Another, important property as noticed from the graphs is that before the attacker

commences the attack there are some minor changes in its MIB values. A mathematical

correlation between these values and the attack carried out has been shown

mathematically [JOAO-01]. This knowledge could be used to detect the DDoS attack

proactively.

102

THIS PAGE INTENTIONALLY LEFT BLANK

103

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis explored the usage of one commercial NMS (Spectrum) for observing

the DDoS attacks. However this NMS can poll the hosts only at an interval greater than

or equal to 30 seconds. Hence, it was found to be unsuitable for carrying out the

experiments. The program using ucd-snmp library was used thereafter to log the

variations in the various MIB variables and the results showed that there is indeed a large

and sudden variation in the various SNMP MIB variables. These could be monitored by a

NMS provided the sampling/querying time for the NMS is short enough to quickly detect

the peak pattern usage.

Even though a large number of MIB variables are affected in a DDoS attack this

thesis identified the MIB variables of importance (Key variables). These key variables

could be grouped together and monitored by the NMS for monitoring purpose so as to be

better able to carry out its Security Management tasks. Continuous monitoring of only

these MIBs by a NMS is required for achieving the desired result.

The thesis determined the key variables for not only the attacked systems but also

the attacker systems. Thus, a possibility exists for using NMS for preventing the hosts

within the network from taking part in attack against any external host, but the results

clearly show that most of the variables on the attackers have a very small change for a

short period of time and so the NMS will have to query the hosts at a shorter duration of

time. However, this shorter polling time will result in increase in the traffic in the internal

network and so a better alternative is to have intelligent SNMP agents which monitor the

104

normal variable profile and on observing any deviation raise a trap for the NMS. A large

number of such traps from a number of hosts within the network will be a sure indicator

of compromised hosts within the network.

B. RECOMMENDATIONS

Many areas remain for further research. Even though this thesis provided ample

evidence of the variation in the MIB traffic, which could be used by the Network

Management System, the actual automation of the NMS with the observed changes could

be an area of active research.

Another active area of research could be to actually determine the reactive action

which could be taken to prevent the Distributed Denial of Service attacks or at the very

least to minimize it. The NMS could trigger the firewall or any packet filter application to

stop these renegade packets from entering its network.

Going further ahead, as mentioned earlier, the SNMP agents in the host systems

could be modified to have some sort of intelligence to continuously monitor these key

variables and flag an alarm in case of any observed variation in their usage pattern. The

alarm could be flagged by means of raising a trap. A study could also be made to

determine if this is a more effective approach than current IDS technology.

105

APPENDIX PROGRAMS

A. MIBLOGGER.C

/*
 * Program Name: miblogger.c
 * Author: Chandan Singh Negi
 * Description: A simple program to query a list of hosts for the value of
 * mib variables at regular time intervals
 * Usage: Compile and run without any command line parameters.
 * You will have to modify the mib variables and the host
 * addresses in the code.
 * Platform: RedHat Linux 7.0 – kernel 2.2.16-22
 * Library: ucd-snmp
 * Compiler: gcc –v 2.96
 */

#include <ucd-snmp/ucd-snmp-config.h>
#include <ucd-snmp/ucd-snmp-includes.h>
#include <sys/time.h> // for finding the current time

#define POLL_INTERVAL 5 // our query interval

/*
 * A list of hosts and host-type to query
 */

struct host {
 char *name;
 char *type;
} hosts[] = {
 {"209.60.77.20","ATTACKER"},
 { "209.60.77.24", "ATTACKER" },
 { "209.60.77.23", "TARGET" },
 {NULL}
};

/*
 * A list of mib-variables to query the attacker and targets
 */

struct oid {

106

 char *Name;
 oid Oid[MAX_OID_LEN];
 int OidLen;
} oids_T[] = {
 { "udp.udpInDatagrams.0" },
 { "udp.udpOutDatagrams.0" },
 { "udp.udpNoPorts.0" },
 { "ip.ipInReceives.0" },
 { "ip.ipInDelivers.0" },
 { "ip.ipOutRequests.0"},
 { "icmpOutMsgs.0" },
 { "icmpOutDestUnreachs.0" },
 {NULL}
};

struct oid oids_A[] = {
 { "udp.udpInDatagrams.0" },
 { "udp.udpOutDatagrams.0" },
 { "ip.ipInReceives.0" },
 { "ip.ipInDelivers.0" },
 { "ip.ipOutRequests.0"},
 { "icmpInMsgs.0"},
 { "icmpInDestUnreachs.0" },
 { NULL}
};

/**/

/*
 * function: void initialize(void)
 * parameters: none
 * returns: none
 * description: Reads the various mib variables and correlates them
 * with their oid number
 */

void initialize (void)
{
 int i;
 struct oid *op;
 init_snmp("miblogger");

 for(i=0; i<2; i++) {
 switch(i) {
 case 0: op = oids_T;

107

 break;
 case 1: op = oids_A;
 } // end switch
 while (op->Name) {
 op->OidLen = sizeof(op->Oid)/sizeof(op->Oid[0]);
 if (!read_objid(op->Name, op->Oid, &op->OidLen)) {
 snmp_perror("read_objid");
 exit(1);
 } // end if
 op++;
 } // end while
 } // end for
} // end initialize

/**/

/*
 * function: int log_response (int status, struct snmp_session *sp,
 * struct snmp_pdu *pdu, FILE *f)
 * parameters: status - the status returned on querying the hosts.
 * *sp -
 * *pdu - pointer to the PDU returned by the host
 * *f - the file where the response is to be logged
 * returns: 0 - if the response PDU from the queried host contained
 * error
 * 1 - if no error, if there is timeout while querying host,
 * or if no specified host exists
 * description: logs the response returned by various hosts in their
 * respective log files
 *
 */

int log_response (int status, struct snmp_session *sp, struct snmp_pdu *pdu, FILE *f)
{
 char buf[128];
 struct variable_list *vp;
 int ix;
 time_t now;

 now = time(NULL);

 fprintf(stdout, "Logging the results\n");
 fprintf(stdout, "%u:",now);
 fprintf(f, "%u:",now);

108

 switch (status) {
 case STAT_SUCCESS:
 vp = pdu->variables;
 if (pdu->errstat == SNMP_ERR_NOERROR) {
 while (vp) {
 sprint_variable(buf, vp->name, vp->name_length, vp);
 fprintf(stdout, "%s: %s\n", sp->peername, buf);
 fprintf(f, "%s: %s\n", sp->peername, buf);
 vp = vp->next_variable;
 } //while
 } //if
 else {

for (ix = 1; vp && ix != pdu->errindex; vp = vp->next_variable, ix++);

 if (vp) sprint_objid(buf, vp->name, vp->name_length);
 else strcpy(buf, "(none)");
 fprintf(stdout, "%s: %s: %s\n",
 sp->peername, buf, snmp_errstring(pdu->errstat));
 fprintf(f, "%s: %s: %s\n",
 sp->peername, buf, snmp_errstring(pdu->errstat));
 } //else
 return 1;
 case STAT_TIMEOUT:
 fprintf(stdout, "%s: Timeout \n", sp->peername);
 return 0;
 case STAT_ERROR:
 snmp_perror(sp->peername);
 return 0;
 } //switch
 return 0;
}

/**/

/*
 * function: void print_new_line(FILE *f)
 * parameters: FILE *f - the file in which a new line is to be added
 * returns: none
 * description: adds a new line to the specified log file. This is being used
 * so as to make the parsing of the log files easier.
 */

void print_new_line(FILE *f)
{
 fprintf(f,"\n");

109

}

/**/

/*
 * function: void poll(void)
 * parameters: none
 * returns: none
 * description: polls the various hosts.
 */

void poll(void)
{
 struct host *hp;
 struct snmp_session ss, *sp;
 struct oid *op;

 FILE *f;
 int i;

 for (i = 0; i<3; i++) {
 hp = &hosts[i];
 //f = fp[i];
 if (i==0) f = fopen("a1.log","a");
 else if (i==1) f = fopen("a2.log","a");
 else f = fopen("t.log","a");

 snmp_sess_init(&ss); // initialize session
 ss.version = SNMP_VERSION_2c;
 ss.peername = hp->name;
 ss.community = "public";
 ss.community_len = strlen(ss.community);
 snmp_synch_setup(&ss);
 if (!(sp = snmp_open(&ss))) {
 snmp_perror("snmp_open");
 continue;
 } //if

 print_new_line(f);

 if (hp->type == "ATTACKER") op = oids_A;
 else op = oids_T;
 for (op; op->Name; op++) {
 struct snmp_pdu *req, *resp;
 int status;

110

 req = snmp_pdu_create(SNMP_MSG_GET);
 snmp_add_null_var(req, op->Oid, op->OidLen);
 status = snmp_synch_response(sp, req, &resp);
 if (!log_response(status, sp, resp,f)) break;
 snmp_free_pdu(resp);
 } //for
 snmp_close(sp);
 } //for
}

/**/

/*
 * function: int main (int argc, char *argv[])
 * parameters: argc - no of arguments
 * argv[] - an array of pointers to the command line
 * parameters
 * returns: 0 - if executes successfully
 * 1 - if execution unsuccessful
 * description: the main function. Doesn't use any command line
 * parameters.
 */

int main (int argc, char *argv[])
{
 int i;
 initialize();

 for (i=1; i<240; i++) {
 poll();
 sleep(POLL_INTERVAL);
 }
 return 0;
}

B. REVERSE.PL

#! perl –w
Author: Chandan Singh Negi
Description: A short script to reverse the log file to increasing order of time
Usage: perl –w reverse.pl logfilename

my (@array);
my ($x,$y) = 0;

111

open(IN, "<".$ARGV[0]) || die "Can't open input file\n";
open(OUT, ">". $ARGV[1]) || die "Can't open output file\n";

while(<IN>) {
 $array[$x++]= $_;
}

close(IN);

for ($y= $x-1; $y >=0; $y--) {
 print OUT $array[$y];
}

close(OUT);

C. LOGSEPARATOR.PL

#! perl -w
Author: Chandan Singh Negi
Description: A short script to create multiple log files, one for each mib to
facilitate the forming of RRDs
Usage: perl –w logseparator.pl logfilename

my($file) = $ARGV[0];
my($time,$ipadd,$mib_n_value,$mib,$count);
my(@array);
my($FH);
my($no,$x) =0;
my($max_no_of_mibs);

open(LOG,"<$file") or die "could not open file";
while(<LOG>) {
 if ($_ !~ /^\n/){
 chomp;
 ($time,$ipadd,$mib_n_value) = split /:/;
 print "min_n_value = $mib_n_value\n";
 ($mib,$count) = split / = /, $mib_n_value;
 ($f,$m,$l) = split /\./, $mib;
 print "The value of log file name is $m.log\n";
 sleep 1;
 $array[$no] = $m.".log";
 print "The value of $no element in array is $array[$no]\n";
 $no++;
 }
 else {last;}

112

}
close(LOG);
$max_no_of_mibs = $no;
print "No. of mibs = $max_no_of_mibs\n";
sleep 1;

print "Splitting log files \n";

for ($x = 1; $x <= $max_no_of_mibs; $x++) {
open(OUT."$x", ">". "$x.log") || die "couldn't open $x.log \n";
 open(OUT."$x", ">". $array[$x-1]) || die "couldn't open $x.log \n";
}

$x = 1;
open(LOG,"<$file") or die "could not open file";
while(<LOG>) {
 if ($_ !~ /^\n/) {
 chomp;
 if ($x > $max_no_of_mibs) { $x = 1; }
 ($time,$ipadd,$mib_n_value) = split /:/;
 ($mib,$count) = split / = /, $mib_n_value;

 print "Updating $x.log\n";
 $FH = OUT."$x";
 print $FH "$time:$count\n";
 $x++;
 }
}
close(LOG);

for ($x = 1; $x <= $max_no_of_mibs; $x++) {
 $FH = OUT."$x";
 close($FH);
}

D. GRAPHER.PL

#! perl -w
Author: Chandan Singh Negi
Description: A short perl script to create RRDs and Graphs. Uses perl::RRD
modules
Usage: perl –w grapher.pl miblogfilename

use RRDs;
use strict;

113

my($file) = $ARGV[0];
my($start_time,$end_time,$time,$count,$fname,$fext,$data,$x,$t);
my($ERROR);

($fname,$fext) = split /\./, $file;

print "The file is $file\n";
print "The filename is $fname\n";
print "The file extension is $fext\n";

open(LOG,"<$file") or die "could not open file";
my($cnt)=1;
while(<LOG>) {
 chomp;
 ($time,$count) = split /:/;
 if ($cnt <2) { $start_time = $time-10;}
 $end_time = $time;
 $cnt++;
}
close(LOG);

print "Creating Round-Robin-Database $fname.rrd \n";

RRDs::create ($fname.".rrd","--start",$start_time, "--step",5,
 "DS:a:COUNTER:10:U:U",
 "RRA:AVERAGE:0.5:1:600");
$ERROR = RRDs::error;
die "$0: unable to create '$fname.'.rrd: $ERROR\n" if $ERROR;

print "Updating $fname.rrd\n";

open(LOG,"<$file") or die "could not open file";
while(<LOG>) {
 chomp;
 RRDs::update ($fname.".rrd", $_);
 if ($ERROR = RRDs::error) {
 die "$0: unable to update $fname.rrd: $ERROR\n";
 };
}
close(LOG);

print " start time = $start_time\n";
print " end time = $end_time\n";

print "Making graphs \n";

114

Change the title name of the graph as desired.

RRDs::graph ("$fname.gif","--start", $start_time, "--end", $end_time,"--
title","TFN_Syn_Flood - Rate of change of $fname with time",
 "--vertical- label","$fname(/s)", "DEF:mibvalue=$fname.rrd:a:AVERAGE",
 "LINE1:mibvalue#FF0000:\rAverage change in $fname per second");
if ($ERROR = RRDs::error) {
 die "$0: unable to draw graph $fname-AVG.gif: $ERROR\n";
};

115

LIST OF REFERENCES

[BARL- 00] J. Barlow and W. Thrower, “TFN2K – an analysis,” Feb. 2000,

http://packetstorm.securify.com/distributed/TFN2k_Analysis.htm

[BELL – 00] S. Bellovin, “Distributed Denial of Service attacks,” Feb.2000,

http://www.research.att.com/~smb/talks

[BELL –00-M] S. Bellovin. ICMP traceback messages, March 2000. Internet

Draft: draft- ietf- itrace-00.txt

[CISC] CP Intercept -

http://www.cisco.com/univercd/cc/td/doc/product/software/ios112/intercpt

.htm

[CWRT –00-01] CERT Coordination Center, Cert Advisories: “CA-2000-01 denial-

of-service developments,” http://www.cert.org/advisories/CA-2000-

01.html

[DITT – 99] D. Dittrich, “ The Dos project’s ‘trinoo’ distributed denial of

service attack tool,” Oct. 1999, “ The ’Stacheldraht’ distributed denial of

service attack tool,” Dec. 1999, “ The ‘Tribe Flood Network’ distributed

denial of service attack tool,” Oct. 1999,

http://www.washington.edu/People/dad

[DITT – 00] S. Dietrich, D. Dittrich and N. Long, “ An analysis of the ‘Shaft’

distributed denial of service tool,” Mar. 2000,

http://www.adelphi.edu/~spock/shaft_analysis.txt

116

[EHAT – 00] http://www.ehatchery.com/press/ehatchery_09-13-00.html

[FERG – 98] P. Ferguson and D. Senie, “ Network ingress filtering : Defeating

denial of service attacks which employ ip source address spoofing,” RFC

2267, Jan 1998.

[JOAO – 01] Joao B. D. Cabrera, Lundy Lewis, Xinzhou Qin, Wenke Lee, Ravi

K. Prasanth, B. Ravichandran and Raman K. Mehra – Proactive Detection

of Distributed Denial of Service Attacks using MIB Traffic Variables – A

Feasibility Study – Proceedings of the 7th IFIP/IEEE international

Symposium on Integrated Network Management, Seattle, WA.

[LAU –00] F. Lau, S. H. Rubin, M. H. Smith, and Lj. Trajkovic, “Distributed denial

of service attacks” Proc. 2000 IEEE Int. Conf. On Systems, Man, and

Cybernetics, Nashville, TN, Oct. 2000, pp. 2275-2280.

[NIPC – 00] http ://www.nipc.gov/warnings/advisories/2000/00-063.htm

[PARK-00] Kihong Park, Heejo Lee – A Proactive Approach to Distributed

DoS Attack Prevention using Route-Based Packet Filtering.

[SAVA-00] S. Savage, D. wetherall, A. Karlin, and T. Anderson. Practical

network support for IP traceback. – Proc of ACM SIGCOMM, pages 295-

306- Aug 2000.

[SONG –01] Dawn Xiaodong Song and Adrian Perrig – Computer Science

Departmentn – Advanced and Authenticated Marking Schemes for IP

Traceback – IEEE INFOCOM 2001.

117

[STALL] SNMP, SNMPv2, SNMPv3, and RMON 1 and 2 Third Edition – William

Stallings.

[STROT – 00] Elizabeth Strother, NCSU , Aug 29 2000, Denial of Service

Protection – The Nozzle -

http://ieeexplore.ieee.org/iel5/7224/19469/00898855.pdf

[STON-99] Robert Stone – CenterTrack - An IP Overlay Network for Tracking DoS

Floods. –http://www.nanog.org/mtg-9910/robert.html

[TOBI-00] The RRDTool home page -

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool

118

THIS PAGE INTENTIONALLY LEFT

119

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Prof. Dan Boger

Naval Postgraduate School
 Monterey, CA 93943

dboger@nps.navy.mil

4. Prof. Carl R. Jones

Naval Postgraduate School
 Monterey, CA 93943

crjones@nps.navy.mil

5. Prof. Alex Bordetsky
 Naval Postgraduate School
 Monterey, CA 93943

abordets@nps.navy.mil

6. Lieutenant Commander Christopher S. Eagle
 Naval Postgraduate School

Monterey, CA 93943
cseagle@nps.navy.mil

7. Paul Clark
 Naval Postgraduate School
 Monterey, CA 93943
 pcclark@nps.navy.mil

8. The Chief of the Naval Staff
 (for DNT/DNI/ACOM(IT&S)/ACNS(IW(OPS)/Oi/C,IW Cell/DOS(W)/DOS(L))
 Naval Headquarters
 South Block
 New Delhi - 110 011, India
 dnt@nausena.mil.in
 dntnhq@ndb.vsnl.net.in
 dni@nausena.mil.in
 akbar62@del2.vsnl.net.in
 acomits@nausena.mil.in
 marine@del2.vsnl.net.in
 ajulka@nda.vsnl.net.in
 tulip@nausena.mil.in
 administrator@nausena.mil.in

120

9. Naval Attaché
 Embassy Of India

2107 Massachusetts Avenue, NW
 Washington DC – 20008

navwing@indiagov.org

10. The Commanding Officer
 INS Valsura
 Jamnagar
 Gujarat - 361 001, India

valsura@ad1.vsnl.net.in

11. The Commanding Officer
 INS Shivaji
 Tiger's Leap
 Lonavala - 410 402
 Pune, Maharashtra India
 postmaster@shivaji.ernet.in

12. Chandan Singh Negi
 csnegi@hotmail.com

