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Abstract

This white paper describes a significant new feature of libsafe version 2.0: the ability to detect and
handle format string vulnerability exploits. Such exploits have recently garnered attention in security
advisories, discussion lists, web sites devoted to security, and even conventional media such as television
and newspapers. Examples of vulnerable software include wu-ftpd (a common FTP daemon) and bind

(A DNS [Domain Name System] server). This paper describes the vulnerability and the technique libsafe
uses to detect and handle exploits.

NOTE: This paper only describes one particular feature of libsafe version 2.0: the ability to detect and
handle format string vulnerability exploits. Other features include support for code compiled
without frame pointer instructions, extra debugging facilities, and bug fixes. See [1] for details
of the original version of libsafe.

1 Introduction

Buffer overflow exploits constitute perhaps the most common form of computer security attack [4, 5, 6]. Such
exploits take advantage of programming errors to overflow buffers, thus writing unintended data to the part
of memory that immediately follows the targeted buffers. If the targeted buffer exists on the process stack,
then the exploit often attempts to overwrite a return address on the stack, which often results in obtaining
root access to that machine. The original version of libsafe, version 1.3 [1], presented a significant advance
in the detection and handling of buffer overflow attacks by offering a solution that detects a large number
of exploits with low overhead and tremendous ease of use1.

Recently, another widespread vulnerability has received a great deal of attention: the format string
vulnerability[2, 7]. The latest version of libsafe, version 2.0, implements a solution for detecting and handling
the most dangerous format string vulnerability exploits, while preserving the low overhead and ease of use
of the original libsafe.

The most common source of this vulnerability is the ubiquitous printf() function. Consider the following
vulnerable piece of code:

printf("%x %x %x %x\n");

The above code will usually compile with no warnings2, even though it obviously lacks the required
number of arguments. If this code is executed, it will print out four hexadecimal numbers, corresponding
to the values on the stack where it expects the missing arguments to be present. This allows an attacker to
examine the contents of the stack.

The following code illustrates an even more insidious form of the format string vulnerability:

1Libsafe requires no specific security expertise and can be installed in under one minute!
2For gcc, warnings are produced with the -Wall option, but not with the default warning level.
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printf("%.*d%n\n", (int) start_attack_code, 0, return_addr_ptr);

The above example takes advantage of a relatively seldom used printf() specifier: %n. This specifier
calculates the current number of characters produced by the printf() function and writes this number to
the memory location indicated by the corresponding pointer in the argument list. In our example, the pointer
is return addr ptr. The astute observer may realize at this point that a malicious attacker can potentially
overwrite any memory location, including locations containing return addresses. Furthermore, the above form
of the printf() statement controls the exact number that is written to the memory location. Our example
writes the value start attack code to the location return addr ptr. Assuming that start attack code

is the starting address for some attack code, the next return from that exploited function will cause the
attack code to be executed. Often, this attack code causes a shell to be started, and if the process under
attack is privileged (as is the case with many daemon process), then an attacker can obtain a root shell.

Fortunately, it takes a bit more ingenuity to actually take advantage of this vulnerability. Usually,
vulnerable code occurs in a form similar to the following:

if (illegal_command(command)) {

sprintf(error_msg, "Illegal command: %s", command);

...

syslog(LOG_WARNING, error_msg);

return;

}

In this example, command is a character buffer that contains a command from the user. If the command
is illegal, then the sprintf() statement forms an error message that is passed to syslog(). Under normal
circumstances, syslog() will simply append error msg to the appropriate log file. However, if command
contains printf() specifiers, such as those in the first two code examples, then bad things can happen.

Such code vulnerabilities exist in real life, and the corresponding exploits also exist. In fact, existence of
these and similar vulnerabilities and the relative ease of obtaining exploits has largely led to the prevalence of
so-called “script kiddies,” or attackers who systematically attack remote machines using downloaded scripts
in the hopes of finding a machine that is vulnerable. Such attackers often possess only a rudimentary knowl-
edge of networks and systems. However, they often find great success due to the surprisingly large number
of Internet-connected machines that execute vulnerable software. Part of the problem is the complexity of
system maintenance. Making sure that one’s machine has the latest version of every software package is not
simple, especially since system maintenance is often a secondary responsibility. Also, some vulnerabilities
are still mostly unknown, and software updates to fix the problem may not yet be available.

This is where libsafe version 2.0 is valuable. Libsafe version 2.0 will foil all format string vulnerability
exploits that attempt to overwrite return addresses on the stack. If such an attack is attempted, libsafe will
log a warning and terminate the targeted process. As with version 1.3, installation is extremely easy and
requires no knowledge of the system, applications, exploits, or even libsafe itself. Also, because libsafe incurs
relatively little overhead, it can be used to protect all processes on a machine, thereby potentially detecting
instances of vulnerabilities that may yet be unknown.

2 Implementation

The implementation of format string vulnerability detection in libsafe version 2.0 borrows heavily from the
basic detection mechanism in version 1.3. There are three main steps in the detection mechanism:

Interception: Libsafe executes its own version of selected vulnerable functions.

Safety check: Libsafe determines if the function can be safely executed.

Violation handling: If the function cannot be safely executed, libsafe executes warning and termination ac-
tions.
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2.1 Interception

The basic idea behind libsafe is the interception of vulnerable functions by safer alternatives that first check
to make sure that the functions can be safely executed based on their arguments. If the check passes, libsafe
either calls the original function or executes code that is functionally equivalent. Otherwise, warnings are
posted and the process is terminated.

Libsafe is able to intercept functions (i.e., substitute its alternatives in place of the original functions)
because it is implemented as a shared library that is loaded into memory before the standard library (i.e.,
/lib/libc.so). For Linux systems, the run-time loader, ld.so, is responsible for loading the various
program code and libraries into memory. For programs that require the standard library, ld.so loads this
library into memory and links all references to library functions in the program code to the library functions.
If libsafe is activated, ld.so loads the libsafe library into memory before the standard library. Because the
libsafe alternative functions have the same names as the original standard library functions, ld.so uses the
libsafe functions in place of the standard library functions.

Most of the libsafe functions perform a safety check and then call the original function or a safer alter-
native (e.g., snprintf() is called in place of sprintf()). However, two functions are treated differently:
IO vfprintf() and IO vfscanf()3. For IO vfprintf() and IO vfscanf(), the original source code
from libc-2.1.3-91 is incorporated directly into libsafe. Libsafe needs the original source code because the
safety checks for these two functions require knowledge of local variables.

2.2 Safety check

The safety checks for each function are highly specific to each function. For IO vfprintf(), libsafe performs
two checks:

Return address and frame pointer check:

For each %n specifier, libsafe checks the associated pointer argument. Each such pointer ar-
gument is passed to libsafe raVariableP(void *addr), where addr is the pointer argument.
libsafe raVariableP(void *addr) returns 1 only if it determines that addr points to a return
address or a frame pointer on the stack. Otherwise, it returns 0, which means that addr points to
an address that is either not on the stack or which is on the stack, but which is not a return address
or a frame pointer. If libsafe raVariableP() returns 1, then libsafe has found a violation.

Frame span check:

The argument list for any function should always be contained within a single stack frame. Thus, at-
tacks that attempt to probe the stack using statements such as printf("%x %x ...") might require
arguments that extend beyond the current stack frame. The libsafe span stack frames(void

*start addr, void *end addr) function returns 1 only if start addr and end addr are located
in two different stack frames. If libsafe span stack frames() returns 1, then libsafe has found
a violation.

To perform these two checks, libsafe determines the locations and sizes of the frames on the stack.
Figure 1 illustrates the organization of a process stack. The beginning of each stack frame is indicated by
the presence of a frame pointer that points back to the previous stack frame. Libsafe finds each stack frame
by starting at the top-most frame and traversing the frame pointers until it finds the stack frame for main().
The top-most frame corresponds to a libsafe function. Within this libsafe function, the frame pointer is
found by using the gcc function builtin frame pointer(0). The return address back into the calling
function is located immediately before each frame pointer. This technique works for most processes, with a
few exceptions. Certain compilers may not produce code that places frame pointers on the stack (e.g., gcc
-fomit-frame-pointer), and some customized compilers may not locate return addresses immediately next
to the frame pointer (e.g., the StackGuard compiler [3]).

3 IO vfprintf() and IO vfscanf() are the core functions that all other *printf() and *scanf() functions eventually call.

Thus, intercepting these two core functions effectively intercepts the entire family of *printf() and *scanf() functions. Note:

syslog() also eventually calls IO vfprintf()
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Figure 1: Stack Frames

2.3 Violation handling

If libsafe finds a violation during a safety check, then it performs the actions in Table 1.

Table 1: Libsafe Actions After Finding a Violation
Action Default Optional?

Terminate process Off/On Not optional
Add a entry to /var/log/secure using syslog() On Optional
Print a warning to stderr On Not optional
Dump a hexadecimal version of the stack contents to a file Off Optional
Send email to a list of recipients Off Optional
Produce a core dump by calling abort() Off Optional

The main libsafe action after detecting a violation is to terminate the process. Data integrity after
a violation cannot be assured, and therefore, the safest course of action is to terminate the entire process.
However, for violations of the return address and frame pointer check, libsafe can optionally allow the process
to continue execution. This exception is based on the assumption that programmers will almost never (or at
least should never) produce code that attempts to use the %n specifier to overwrite a return address or frame
pointer. In practice, most occurrences of such attacks result from processing user input that unexpectedly
contains the %n specifier. In such instances, since the input is garbage, libsafe can usually allow the process
to continue to process the input as long as the %n specifier is not permitted to write to memory.

2.4 Notes

1. Libsafe relies on the location of frame pointers on the stack to determine the location of stack frames
and return addresses. Some programs have been compiled without code to embed frame pointers on
the stack (e.g., by using gcc -fomit-frame-pointer). For such code, libsafe will automatically detect
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the absence of frame pointers on the stack and allow the program to execute normally. However, it
will not be able to detect any exploits for such programs.

2. Libsafe is linked with glibc and is incompatible with libc5. If you have a program that is linked with
libc5, you will need to either obtain an updated version linked with glibc or recompile the source code
yourself with glibc.

3 Software Availability

Libsafe version 2.0 has not yet been released to the general public. However, it is our intention to release the
software under the Lesser GNU Public License sometime in the near future. Please contact Timothy Tsai
(ttsai@avaya.com) if you have any questions or are interested in evaluating the software.
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