CERIAS Security Seminar Jan. 17, 2001

Distributed Denial-of-Service Attack Prevention using Route-Based Distributed Packet Filtering

> Heejo Lee heejo@cerias.purdue.edu Network Systems Lab and CERIAS This is joint work with Prof. Kihong Park.

Outline

- Introduction to Denial-of-Service (DoS) attacks
- Related works and research motivation
- Route-based distributed packet filtering
- Effectiveness for DDoS attack prevention
- Concluding remarks

DoS Attack Reports

- 2000 Information Security Industry Survey, Sep. 2000
 51% companies experienced DoS attacks.
- Top 10 Security Stories of 2000, ZDNet News, Dec. 2000
 No.1 and No.2 stories are related to DoS.
- New Year's DDoS Advisory, NIPC, Dec. 2000
 - More effective DDoS exploits have been developed.
 - Trin00,Tribal Flood Net, TFN2K,MStream, Stacheldraht, Trinity V3, Shaft, Godswrath...

5/40

Related Works

- Resource management
 - Mitigating the impact on a victim [Schuba97, Banga99].
 - Does not eliminate the problem.

Edge filtering

- Ingress filtering in border gateways [Ferguson00].
- Requires prolonged period for broad deployment.
- IP traceback
 - Trace back to the origin of the attacking source.
 - Recently a few approaches have been proposed: Traffic analysis,ICMP trace messages, packet marking.

7/40

	Resource Manage	Ingress Filtering	Traffic Analysis	ICMP Messages	PPM	DPF
Cost	Х	0	Х	Δ	Δ	Δ
Deployment	0	Δ	Δ	Δ	0	0
Traceback	Х	Х	0	0	0	0
Protection	Δ	Δ	Х	X	X	0
Scalability	X	Х	Х	Х	X	0

Research Motivation

- Weaknesses of IP Traceback Mechanisms
 - Post-mortem: debilitating effect before corrective actions
 - Bad scalability: susceptible to DDoS
- Demand for DDoS protection
 - Find a protective and incrementally deployable approach

Routing Policies (R)

- Routing (R)
 - $R(u,v) \subseteq \mathcal{L}(u,v)$
 - where $\mathcal{L}(u, v)$ is set of all loop-free paths from *u* to *v*.
- Routing Policies
 - Tight: single shortest-path routing, |R(u,v)| = 1.
 - Multipath: multiple routing paths, $1 < |R(u,v)| < |\mathcal{L}(u,v)|$.

19/40

- Loose: any loop-free path routing, R(u,v) = L(u,v).

Route-Based Filters

- Maximal filter

 - Use of all (src/dst) pairs of routing paths.
 Huge filtering table O(n²), e.g., 4GB for 16bit AS's.

$$F_e(s,t) = \begin{cases} 0, & \text{if } e \in R(s,t); \\ 1, & \text{otherwise} \end{cases}$$

- Semi-maximal filter
 - Use of only source addresses coming via the link.
 - O(n), e.g., 8KB for all AS's.

$$F_e'(s,t) = \begin{cases} 0, & \text{if } e \in R(s,v) \text{ for some } v \in V; \\ 1, & \text{otherwise.} \end{cases}$$

21/40

Filtering Effect

- Attack a:(s,t)
- Attacker at node a sends (s, t) packets to node t.
- Spoofing range S_{a,t} attacker's point of view
 a set of nodes with which node a can send spoofed packets to node t.

Experimental Environments

- Topology G
 - Internet AS connectivities from 1997~1999.
 - Random topologies.
- Routing R
 - Tight, multi-path routing policies.
- T-nodes T
 - R30: 30 percent of nodes chosen randomly.
 - R50: 50 percent of nodes chosen randomly.

25/40

- *VC*: a vertex cover of G(V, E).

Metrics for Proactive Effect

• Perfect proactivity

$$\Phi_1(\boldsymbol{t}) = \frac{\left| \{ \boldsymbol{t} : \forall \boldsymbol{a} \in \boldsymbol{V}, \left| \boldsymbol{S}_{\boldsymbol{a}, \boldsymbol{t}} \right| \leq \boldsymbol{t} \right| }{\left| \{ \boldsymbol{t} : \forall \boldsymbol{a} \in \boldsymbol{V}, \left| \boldsymbol{S}_{\boldsymbol{a}, \boldsymbol{t}} \right| \leq \boldsymbol{t} \right| }$$

- $\Phi_1(1)$: fraction of AS's safe from spoofing attack
- DDoS prevention

$$\Phi_2(\mathbf{t}) = \frac{\left| \{a : \forall t \in V, \left| S_{a,t} \right| \le \mathbf{t} \right|}{n}$$

• $\Phi_2(1)$: fraction of AS's from which no spoofed packets coming

27/40

• Attack volume reduction

$$\Theta = \frac{\left|\{(a, s, t) : s \in S_{a, t}\right|}{n(n-1)^2} = \frac{\left|\{(a, s, t) : a \in C_{s, t}\right|}{n(n-1)^2}$$

• Θ : penetrating ratio of spoofed packets

- Inet Generator (http://topology.eecs.umich.edu/)
 - Generate a graph with power-law connectivity.
 - VC on Inet graphs requires 32% nodes.
 - Small VC has more effectiveness.

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>