
Information Security Bulletin May 2000, Page 39

An Analysis of the Shaft
Distributed Denial of Service

Tool
By Sven Dietrich, Neil Long

and David Dittrich

Introduction
This is an analysis of the Shaft distributed denial
of service(DDoS) tool. Denial of service is a tech-
nique to deny access to a resource by overloading
it, such as packet flooding in the network context.
Denial of service tools have existed for a while,
whereas distributed variants are relatively recent.
The distributed nature adds the “many to one”
relationship. Throughout this analysis, most ac-
tual host names have been modified or removed.

Historical overview
Shaft belongs in the family of tools discussed
earlier, such as Trinoo, TFN, Stacheldraht, and
TFN2K. As in these related tools, there are hand-
ler (or master) and agent programs. The general
concepts related to these tools can be found in a
Distributed Intruder Tools Workshop Report held in
November 1999 at the Computer Emergency Re-
sponse Team Coordination Center (CERT/CC) in
Pittsburgh, Pennsylvania, USA:
http://www.cert.org/reports/dsit_workshop.pdf.

The chronological order of development is:
Trinoo, TFN, Stacheldraht, Shaft, and TFN2K.
Trinoo, TFN, and Stacheldraht were analyzed in
[5], [6], and [7] respectively. TFN2K was recently
analyzed in [1].

In the first two months of 2000, DDoS attacks
against major Internet sites (such as CNN,
ZDNet, Amazon etc.) have brought these tools
further into the limelight. A few papers covering
DDoS can be found at:

http://packetstorm.securify.com/distributed/
http://staff.washington.edu/dittrich/misc/ddos/
http://www.cert.org/advisories/CA-99-17-denial-
of-service-tools.html

Analysis
Shaftnode was recovered, initially in binary
form, in late November 1999, then in source
code form for the agent. Distinctive features are
the ability to switch handler servers and handler
ports on the fly, making detection by intrusion
detection tools difficult from that perspective, a
“ticket” mechanism to link transactions, and the
particular interest in packet statistics.

The network:
client(s)�handler(s)�agent(s)�victim(s)
The Shaft network is made up of one or more
handler programs (shaftmaster) and a large set of
agents (shaftnode). The attacker uses a telnet pro-
gram (client) to connect to and communicate
with the handlers.

A Shaft network is depicted in Figure 1.

Network Communication
Client to handler(s): 20432/tcp
Handler to agent(s): 18753/udp
Agent to handler(s): 20433/udp

Shaft (in the analyzed version, 1.72) is modeled
after Trinoo, in that communication between han-
dlers and agents is achieved using the unreliable
IP protocol UDP. (See Stevens [18] for an exten-
sive discussion of the TCP and UDP protocols).
Remote control is via a simple telnet connection
to the handler. Shaft uses tickets for keeping track
of its individual agents. Both passwords and
ticket numbers must match for the agent to exe-
cute the request. A simple letter-shifting (Caesar
cipher, see Schneier [17]) is also used.

Commands
The command structure is divided into the agent
and handler command syntax groups. The attacker
interacts with the handler via a command line.

Agent Command Syntax
Accepted by agent and replies generated back to
the handler:

size <size>
Size of the flood packets.

MALWARE

39

CLIENT

AGENT

CLIENT

HANDLER

AGENT AGENTAGENT AGENT

HANDLERHANDLER

Figure 1 - Shaft Network



May 2000, Page 40 Information Security Bulletin

Generates a “size” reply.

type <0|1|2|3>
Type of DoS to run:

0 UDP,
1 TCP,
2 UDP/TCP/ICMP,
3 ICMP

Generates a “type” reply.

time <length>
Length of DoS in seconds

Generates a “time” reply.

own <victim>
Add victim to list of hosts to perform
denial of service on

Generates a “owning” reply.

end <victim>
Removes victim from list of hosts (see
“own” above)

Generates a “done” reply.

stat
Requests packet statistics from agent

Generates a “pktstat” reply.

alive
Are you alive?

Generates a “alive blah” reply.

switch <handler> <port>
Switch the agent to a new handler and
handler port

Generates a “switching” reply.

pktres <host>
Request packet results for that host at
the end of the flood

Generates a “pktres” reply.

Sent by agent:

new <password>
Reporting for duty

pktres <password><sock><ticket>
<packets sent>

Packets sent to the host identified by
<ticket> number

Handler (shaftmaster) Command Syntax
Little is known about the handler, but this is a
speculation, pieced together from clues, of how
its command structure could look like:

mdos <host list>
Start a distributed denial of service
attack (mdos = massive denial of
service?) directed at <host list>.

Sends out “own host” messages to
all agents.

edos <host list>
End the above attack on <host list>.

Sends out “end host” messages to all
agents.

time <length>
Set the duration of the attack.

Sends out “time <length>” to all
agents.

size <packetsize>
Set the packetsize for the attack (8K
maximum as seen in source).

Sends out “size packetsize” to all
agents.

type <UDP|TCP|ICMP|BOTH>
Set the type of attack:

UDP packet flooding,
TCP SYN packet flooding,
ICMP packet flooding, or
all three (here BOTH = ICMP and IP
protocols)

Sends “type <type>” to all agents.

+node <host list>
Add new agents

-node <host list>
Remove agents from pool

ns <host list>
Perform a DNS lookup on <host list>

lnod
List all agents

ltic
List all tickets (transactions?)

pkstat
Show total packet statistics for agents

Sends out “stat” request to all
agents.

alive
Send an “alive” to all agents.

A possible argument to alive is “hi”

stat
show status?

switch
become the handler for agents

Send “switch” to all agents.

ver
show version

exit

Password protection
After connecting to the handler using the telnet
client, the attacker is prompted with “login:”.
Too little is known about the handler or its en-
cryption method for logging in. A cleartext con-

MALWARE



May 2000, Page 42 Information Security Bulletin

nection to the handler port is obviously a weak-
ness.

Detection

Binaries and their behavior
As with previous DDoS tools, the methods used
to install the handler/agent are the same as in-
stalling any program on a compromised Unix sys-
tem, with all the standard options for concealing
the programs and files (use of hidden directories,
“root kits”, kernel modules, etc.) See Dittrich’s
Trinoo analysis [5] for a description of possible in-
stallation methods for this type of tool.

Precautions have been taken to hide the default
handler in the binary code. In the analyzed code,
the default handler could be defined as follows:

#define MASTER “2:3/279/1/2"
which would translate into 192.168.0.1 (fictitious
address used here) using the same simple cipher
mentioned above. Port numbers are munged
before actual use, e.g.

#define MASTER_PORT 20483
is really port 20433.

All these techniques intend to hide the critical
information from prying eyes performing foren-
sics on the code. The program itself tries to hide
itself as a legitimate Unix process (httpd in the
default configuration).

Looking at strings in the shaftnode application
reveals the following:

>strings -n 3 shaftnode
pktres
switch
alive
stat
end
own
time
type
size
httpd
23:/33/75/28
Unable to fork. (do it manually)
shift
new %s
size %s %s %s %s
type %s %s %s %s
time %s %s %s %s
owning %s %s %s %s
switched %s %s %s
done %s %s %s %s
pktstat %s %s %s %lu
alive %s %s %s blah
%d.%d.%d.%d
Error sending tcp packet from %s:%i to
%lu:%i
pktres %s %i %i %lu

Upon launch, the Shaft agent (the shaftnode) re-
ports back to its default handler (its shaftmaster)
by sending a “new <upshifted password>”
command. The default password of “shift” found

in the analyzed code would thus be “tijgu”.
Therefore a new agent sends “new tijgu” and all
subsequent messages transmit that password.
Only in one case does the agent shift in the op-
posite direction for one particular command, e.g.
“pktres rghes”. It is unclear at the moment
whether this is intentional or not.

Incoming commands arrive in the format:

“command <upshifted password>
<command arg><socket><ticket>
<optional args>”

For most commands, the password and socket/
ticket need to have the right magic to generate a
reply and the command to be executed.

Message flow diagram between handler H and
agent A:

Initial phase: A�H: “new”, f(password)
Running loop: H�A: cmd, f(password),

[args], Na, Nb
A�H: cmdrep, f(password),

Na, Nb, [args]

- f(X) is the Caesar cipher function on X
- Na, Nb are numbers (tickets, socket

numbers)
- cmd, cmdrep are commands and command

acknowledgments
- args are command arguments.

The flooding occurs in bursts of 100 packets per
host, with the source port and source address
randomized. This number is hard-coded, but
need not be. Whereas the source port spoofing
works only if the agent is running as a root privi-
lege process, the author has added provisions for
packet flooding using the UDP protocol and
with the correct source address in the case the
process is running as a simple user process. It is
noteworthy that the random function is not prop-
erly seeded, which may lead to predictable source
port sequences and source host IP sequences.

Source port = (rand() % (65535-1024)+1024),
where % is the mathematical ‘mod’ operator.
This will generate source ports greater than 1024
at all times.

Source IP = rand()%255.rand()%255.rand()%255.rand()%255

The source IP numbers can (and will) contain a
zero in the leading octet.

Additionally, the sequence number for all TCP
packets, namely 0x28374839, is fixed. This helps
with respect to detection at the network level.
The ACK and URGENT flags are randomly set,
except on some platforms. Destination ports for
TCP and UDP packet floods are randomized.

The client must choose the duration (“time”),
size of packets, and type of packet flooding di-
rected at the victim hosts. Each set of hosts has
its own duration, which gets divided evenly
across all hosts. This is unlike TFN [2], which
forks an individual process for each victim host.

MALWARE



May 2000, Page 43 Information Security Bulletin

For the type, the client can select UDP, TCP
SYN, or ICMP packet flooding, or the combina-
tion of all three. Even though there is the poten-
tial of having a different type and packet size for
each set of victim hosts, this feature is not ex-
ploited in this version.

The author of Shaft seems to have a particular
interest in statistics, namely packet generation
rates of its individual agents. The statistics on
packet generation rates are possibly used to de-
termine the “yield” of the DDoS network as a
whole. This would allow the attacker to stop
adding hosts to the attack network when it
reached the necessary size to overwhelm the vic-
tim network, and also to know when it is neces-
sary to add more agents to compensate for loss
of agents due to attrition during an attack (as the
agent systems are identified and taken off-line.)

Currently, the ability to switch host IP and port
for the handler exists, but the listening port for
the agent remains the same. This may, however,
change in the future.

A sample attack
In this section we will look at a practical example
of a Shaft attack, as seen from the attacking net-
work’s perspective. Figure 2 shows what the
Unix “lsof” command [10] will show about a
shaftnode agent:

As one can see, the agent is waiting to receive
commands on its default UDP port number
18753. The TCP connection back to the handler
remains unexplained to date.

Packet flows are listed in Figure 3.

There is considerable activity between the han-
dler (z.z.z.z) and the agent (x.x.x.x) as
they go through the command request and ac-
knowledgement phases. A test of the impact of
ICMP packet flooding on the local network itself
may also occur, although the sheer volume of
data preclude a listing in this paper.

Let us look at the individual phases from a later
attack.

Setup and configuration phase
This is illustrated in Figure 4. The handler issues
an “alive” command, and says “hi” to its agent,
assigning a socket number of 5 and a ticket num-
ber of 8170. We will see that this ”socket num-
ber" will persist throughout this attack. A time
period of 700 seconds is assigned to the agent,
which is acknowledged. A packet size of 4096
bytes is specified, which is again confirmed. The
last line indicates the type of attack, in this case
“the works”, i.e. UDP, TCP SYN and ICMP
packet flooding combined. Failure to specify the
type would make the agent default to UDP
packet flooding.

MALWARE

# lsof -c shaftnode

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

shaftnode 13489 root cwd VDIR 0,0 400 2 /tmp

shaftnode 13489 root txt VREG 0,0 19492 10 /tmp (swap)

shaftnode 13489 root txt VREG 32,0 662764 182321 /usr/lib/libc.so.1

shaftnode 13489 root txt VREG 32,0 17480 210757
/usr/platform/sun4u/lib/libc_psr.so.1

shaftnode 13489 root txt VREG 32,0 566700 182335 /usr/lib/libnsl.so.1

shaftnode 13489 root txt VREG 32,0 39932 182348 /usr/lib/libw.so.1

shaftnode 13489 root txt VREG 32,0 15720 182334 /usr/lib/libmp.so.1

shaftnode 13489 root txt VREG 32,0 15720 182327 /usr/lib/libintl.so.1

shaftnode 13489 root txt VREG 32,0 68780 182342 /usr/lib/libsocket.so.1

shaftnode 13489 root txt VREG 32,0 2564 182324 /usr/lib/libdl.so.1

shaftnode 13489 root txt VREG 32,0 137160 182315 /usr/lib/ld.so.1

shaftnode 13489 root 0u inet 0x507dc770 0t116 TCP hostname:ftp->handler:53982
(CLOSE_WAIT)

shaftnode 13489 root 1u inet 0x507dc770 0t116 TCP hostname:ftp->handler:53982
(CLOSE_WAIT)

shaftnode 13489 root 2u inet 0x507dc770 0t116 TCP hostname:ftp->handler:53982
(CLOSE_WAIT)

shaftnode 13489 root 3u inet 0x5032c7d8 0t0 UDP *:18753 (Idle)

Figure 2 - Information about a shaftnode agent, produced by lsof



Information Security Bulletin May 2000, Page 44

Next is the list of hosts to attack and the ones
from which statistics are to be obtained upon
completion (Figure 5).

Now that all other parame-
ters are set, the handler is-
sues several own commands,
in effect specifying the vic-
tim hosts. Those commands
are acknowledged by the
agent with an owning reply.
The flooding occurs as soon
as the first victim host gets
added. The handler also re-
quests packet statistics from
the agents for certain victim
hosts (e.g. pktres tijgu
207.229.143.6 5 1993). Note
that the reply comes back
with the same identifiers (5
1993) at the end of the 700
second packet flood, indicat-
ing that 51600 sets of packets
were sent. One should real-
ize that, if successful, this
means 51600 x 3 packets due
to the configuration of all
three (UDP, TCP, and ICMP)
types of packets. In turn, this
results in roughly 220 4096
byte packets per second per
host, or about 900 kilobytes
per second per victim host
from this agent alone, about
4.5 megabytes per second to-
tal for this little
exercise.

Note the reverse
shift (“shift” be-
comes “rghes”,
rather than
“tijgu”) for the
password on the
packet statistics.

Detection at the network level
Scanning the network for open port 20432 will
reveal the presence of a handler on your LAN.

MALWARE

Date Time Protocol Source Flow Destination
IP/Port IP/Port

Sun 11/28 21:39:22 tcp z.z.z.z.53982 <-> x.x.x.x.21
Sun 11/28 21:39:56 udp x.x.x.x.33198 -> z.z.z.z.20433
Sun 11/28 21:45:20 udp z.z.z.z.1765 -> x.x.x.x.18753
Sun 11/28 21:45:20 udp x.x.x.x.33199 -> z.z.z.z.20433
Sun 11/28 21:45:59 udp z.z.z.z.1866 -> x.x.x.x.18753
Sun 11/28 21:45:59 udp x.x.x.x.33200 -> z.z.z.z.20433
Sun 11/28 21:45:59 udp z.z.z.z.1968 -> x.x.x.x.18753
Sun 11/28 21:45:59 udp z.z.z.z.1046 -> x.x.x.x.18753
Sun 11/28 21:45:59 udp z.z.z.z.1147 -> x.x.x.x.18753
Sun 11/28 21:45:59 udp z.z.z.z.1248 -> x.x.x.x.18753
Sun 11/28 21:45:59 udp z.z.z.z.1451 -> x.x.x.x.18753
Sun 11/28 21:46:00 udp x.x.x.x.33201 -> z.z.z.z.20433
Sun 11/28 21:46:00 udp x.x.x.x.33202 -> z.z.z.z.20433
Sun 11/28 21:46:01 udp x.x.x.x.33203 -> z.z.z.z.20433
Sun 11/28 21:48:37 udp z.z.z.z.1037 -> x.x.x.x.18753
Sun 11/28 21:48:37 udp z.z.z.z.1239 -> x.x.x.x.18753
Sun 11/28 21:48:37 udp z.z.z.z.1340 -> x.x.x.x.18753
Sun 11/28 21:48:37 udp z.z.z.z.1442 -> x.x.x.x.18753
Sun 11/28 21:48:38 udp x.x.x.x.33204 -> z.z.z.z.20433
Sun 11/28 21:48:38 udp x.x.x.x.33205 -> z.z.z.z.20433
Sun 11/28 21:48:38 udp x.x.x.x.33206 -> z.z.z.z.20433
Sun 11/28 21:48:56 udp z.z.z.z.1644 -> x.x.x.x.18753
Sun 11/28 21:48:56 udp x.x.x.x.33207 -> z.z.z.z.20433
Sun 11/28 21:49:59 udp x.x.x.x.33208 -> z.z.z.z.20433
Sun 11/28 21:50:00 udp x.x.x.x.33209 -> z.z.z.z.20433
Sun 11/28 21:50:14 udp z.z.z.z.1747 -> x.x.x.x.18753
Sun 11/28 21:50:14 udp x.x.x.x.33210 -> z.z.z.z.20433

Figure 3 - Packet Flows

Date Time Source Dest Dest-port Command
4 Dec 1999 18:06:40 z.z.z.z x.x.x.x 18753 alive tijgu hi 5 8170
4 Dec 1999 18:09:14 z.z.z.z x.x.x.x 18753 time tijgu 700 5 6437
4 Dec 1999 18:09:14 x.x.x.x z.z.z.z 20433 time tijgu 5 6437 700
4 Dec 1999 18:09:16 z.z.z.z x.x.x.x 18753 size tijgu 4096 5 8717
4 Dec 1999 18:09:16 x.x.x.x z.z.z.z 20433 size tijgu 5 8717 4096
4 Dec 1999 18:09:23 z.z.z.z x.x.x.x 18753 type tijgu 2 5 9003

Figure 4 - Set-up and Configuration

Date Time Source Dest Dest-port Command

4 Dec 1999 18:09:24 z.z.z.z x.x.x.x 18753 own tijgu 207.229.143.6 5 5256
4 Dec 1999 18:09:24 x.x.x.x z.z.z.z 20433 owning tijgu 5 5256 207.229.143.6
4 Dec 1999 18:09:24 z.z.z.z x.x.x.x 18753 pktres tijgu 207.229.143.6 5 1993
4 Dec 1999 18:09:24 z.z.z.z x.x.x.x 18753 own tijgu 24.7.231.128 5 78
4 Dec 1999 18:09:24 z.z.z.z x.x.x.x 18753 pktres tijgu 24.218.58.101 5 8845
4 Dec 1999 18:09:24 z.z.z.z x.x.x.x 18753 own tijgu 18.85.13.107 5 6247
4 Dec 1999 18:09:25 z.z.z.z x.x.x.x 18753 own tijgu 24.218.52.44 5 419
4 Dec 1999 18:09:25 z.z.z.z x.x.x.x 18753 own tijgu 207.175.72.15 5 2376
4 Dec 1999 18:09:25 x.x.x.x z.z.z.z 20433 owning tijgu 5 78 24.7.231.128
4 Dec 1999 18:09:26 x.x.x.x z.z.z.z 20433 owning tijgu 5 6247 18.85.13.107
4 Dec 1999 18:09:27 x.x.x.x z.z.z.z 20433 owning tijgu 5 4190 24.218.52.44
4 Dec 1999 18:09:28 x.x.x.x z.z.z.z 20433 owning tijgu 5 2376 207.175.72.15
4 Dec 1999 18:21:04 x.x.x.x z.z.z.z 20433 pktres rghes 5 1993 51600
4 Dec 1999 18:21:04 x.x.x.x z.z.z.z 20433 pktres rghes 0 0 51400
4 Dec 1999 18:21:07 x.x.x.x z.z.z.z 20433 pktres rghes 0 0 51500
4 Dec 1999 18:21:07 x.x.x.x z.z.z.z 20433 pktres rghes 0 0 51400
4 Dec 1999 18:21:07 x.x.x.x z.z.z.z 20433 pktres rghes 0 0 51400

Figure 5 - Host Attack Specifications



May 2000, Page 45 Information Security Bulletin

For detecting idle agents, one could write a pro-
gram similar to George Weaver’s trinoo detector.
Sending out “alive” messages with the default
password to all nodes on a network on the de-
fault UDP port 18753 will generate traffic back to
the detector, making the agent believe the detec-
tor is a handler.

This program does not provide for code updates
(like TFN or Stacheldraht). This may imply “rcp”
or “ftp” connections during the initial intrusion
phase (see also [5]).

The program uses UDP traffic for its communica-
tion between the handlers and the agents. Con-
sidering that the traffic is not encrypted, it can
easily be detected based on certain keywords.
Performing an “ngrep” [11] for the keywords
mentioned in the syntax sections above, will lo-
cate the control traffic, and looking for TCP pack-
ets with sequence numbers of 0x28374839 may
locate the TCP SYN packet flood traffic. Source
ports are always above 1024, and source IP num-
bers can include zeroes in the leading octet.

Strings in this control traffic can be detected
with the “ngrep” program using the same tech-
nique shown in [5], [6], and [7]. For example,

# ngrep -i -x “alive tijgu” udp
# ngrep -i -x “pktres|pktstat” udp

will locate the control traffic between the han-
dler and the agent, independently of the port
number used.

There are also two excellent scanners for detect-
ing DDoS agents on the network: Dittrich’s dds
[8] and Brumley’s rid [2].

dds was written to provide a more portable and
less dependent means of scanning for various
DDoS tools. (Many people encountered prob-
lems with Perl and the Net::RawIP library [15]
on their systems, which prevented them from
using the scripts provided in [5], [6], and [7].)
Due to time contraints during coding, dds does
not have the flexibility necessary to specify arbi-
trary protocols, ports, and payloads. A modified
version of dds, geared towards detecting only
Shaft agents, can be found at:

http://sled.gsfc.nasa.gov/~spock/

A better means of detecting Shaft handlers and
agents would be to use a program like rid, which
uses a more flexible configuration file mecha-
nism to define ports, protocols, and payloads.

A sample configuration for rid to detect the Shaft
control traffic as described:

start shaft
send udp dport=18753 data="alive
tijgu hi 5 1918"
recv udp sport=20433 data="alive"
nmatch=1

end shaft

Defenses
To protect against the effects of the multiple types
of denial of service, we suggest that you review
the other papers (see [1, 3, 5, 6, 7]) and other
methods of dealing with DDoS attacks being dis-
cussed and promoted (see [9]). For example,
rate-limiting is considered effective against ICMP
packet flooding attacks, while anti-spoof filters and
egress filters at the border routers can limit the
problems caused by attacking agents faking source
addresses. Regular scanning for the presence of
DDoS tools is another excellent strategy.

Further evolution
While the author(s) of this tool did not pursue
the use of encryption of its control traffic, such
an evolution is conceivable, since a Caesar cipher
is used to obfuscate the password. A transition to
Blowfish or other stream ciphers is realistic, and
changing the communication protocol to ICMP,
much like TFN, is conceivable. The use of
multicast protocols for both communication and
packet flooding is also possible.

To date, no source code for the Shaft handler
(shaftmaster) has been obtained or analyzed.

At this stage, we believe that the code is private.
This would mean that the authors could likely
change defaults; the probability of detecting
“script kiddie” copycats using default values as
analyzed here is low. This provides strong impe-
tus for rapid and widespread detection efforts to
identify agents before this change.

Conclusion
Shaft is another DDoS variant with independent
origins. The code recovered appeared to be still
in development. Several key features indicate
evolutionary trends as the genre develops. Of
significance is the priority placed on packet gen-
eration statistics which would allow host selec-
tion to be refined. The analysis of the code and
binary was greatly enhanced by the capture of
attack preparation and command packets. The
captured packets made it possible to assess the
impact of a single agent that managed to satu-
rate the network pipe. The version analyzed had
hooks which would allow for dynamic changes
to the master host and control port but not the
agent control port. However such items are trivi-
ally incorporated and must not be taken to be in-
dicative of any current versions which may be in
active use. The obfuscation of master IP, ports
and passwords used a relatively simple form of
encryption but this could easily be strengthened.

The detection of DDoS installations will become
very much more difficult as such metamorphosis
techniques progress, the presence of such agents
will still be more readily determined by analysis
of traffic anomalies with a consequent pressure
on time and resources for site administrators and
security teams.

MALWARE



Information Security Bulletin May 2000, Page 47

References
[1] Barlow, Jason and Woody Thrower. TFN2K - An
Analysis
http://www2.axent.com/swat/News/TFN2k_Analysis.htm

[2] Brumley, David. Remote Intrusion Detector.
http://theorygroup.com/Software/RID

[3] CERT Distributed System Intruder Tools Workshop
Report
http://www.cert.org/reports/dsit_workshop.pdf

[4] CERT Advisory CA-99-17 Denial-of-Service Tools
http://www.cert.org/advisories/CA-99-17-denial-of-ser-
vice-tools.html

[5] Dittrich, David. The DoS Project’s trinoo distrib-
uted denial of service attack tool
http://staff.washington.edu/dittrich/misc/trinoo.analysis

[6] Dittrich, David. The “Tribe Flood Network” distrib-
uted denial of service attack tool
http://staff.washington.edu/dittrich/misc/tfn.analysis

[7] Dittrich, David. The “Stacheldraht” distributed de-
nial of service attack tool
http://staff.washington.edu/dittrich/misc/stacheldraht.analysis

[8] Dittrich, David, Marcus Ranum, George Weaver,
David Brumley et al.
http://staff.washington.edu/dittrich/dds

[9] Dittrich, David, Distributed Denial of Service
(DDoS) Attacks/Tools
http://staff.washington.edu/dittrich/misc/ddos/

[10] lsof:
http://vic.cc.purdue.edu/

[11] ngrep:
http://www.packetfactory.net/Projects/ngrep/

[12] Packet Storm Security, Distributed denial of ser-
vice attack tools
http://packetstorm.securify.com/distributed/

[13] Phrack Magazine, Volume Seven, Issue
Forty-Nine, File 06 of 16, [Project Loki]
http://www.phrack.com/search.phtml?view&article=p49-6

[14] Phrack Magazine Volume 7, Issue 51 September
01, 1997, article 06 of 17 [LOKI2 (the implementation)]
http://www.phrack.com/search.phtml?view&article=p51-6

[15] Net::RawIP:
http://quake.skif.net/RawIP

[16] tcpdump:
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z

[17] Schneier, Bruce. Applied Cryptography, 2nd edi-
tion, Wiley.

[18] Stevens, W. Richard and Gary R. Wright. TCP/IP
Illustrated, Vol. I, II, and III., Addison-Wesley.

[19] Zuckerman, M.J. Net hackers develop destructive
new tools. USA Today, 7 December 1999.
http://www.usatoday.com/life/cyber/tech/review/crg681.htm

MALWARE

Dr. Sven Dietrich is a Senior Secu-
rity Architect working for Raytheon
ITSS at the NASA Goddard Space
Flight Center. He received a B.Sc. in
Mathematics and Computer Science,
a M.S. and a Doctor of Arts in Math-
ematics from Adelphi University,
New York. Dr. Dietrich’s primary ef-
forts focus on deployment of pub-
lic-key technology, the building of a
public-key infrastructure (PKI) for
NASA, intrusion detection, and the
security of Internet Protocol (IP)
communications in space. For his in-

volvement in the latter he has recently received the NASA
GSFC National Resource Group Achievement Award. Before
joining Raytheon ITSS in 1997, he served on the faculty at
Adelphi University for six years. He is actively involved in
the computer security field inside and outside of NASA and
randomly gives presentations and talks on the subject.

Dr. Neil Long is a Senior Systems Administrator at Oxford
University, England and a former academic (Ph.D., B.Sc. Ma-
terials Science) who has been involved in computer security
incident handling for about 8 years. He is a member of
OxCERT (Oxford University computer emergency response
team and member of FIRST) and serves on the steering com-
mittee member for the FIRST organisation (Forum of Inci-
dent Response and Security Teams). Since the career switch
there has been little need to publish although he has given
several presentations and seminars and views computer se-
curity as an endless source of new research material.

Dave Dittrich is a Senior Security
Consultant at the University of
Washington, supporting Unix
workstation users on campus.
Dave has spoken at various user
groups and computer conferences
from Seattle, Washington to as far
away as Darwin, Australia. In his
spare time, Dave enjoys photogra-
phy (a side business) and telemark
skiing (ski mountaineering and
racing.) Dave is most widely
known for his technical analyses
of the Trinoo, Tribe Flood Net-
work, and Stacheldraht distributed

denial of service attack tools. His home page can be found at
http//staff.washington.edu/dittrich


