

Allen Dutoit Technische Universität München Lehrstuhl für Angewandte Softwaretechnik February 2, 1998

Odds and Ends

***** February 6, lecture on Re-engineering by Prof. Bruegge

Outline

- A worm example
- * What is computer security?
- * Why is internet a security problem?
- Typical attacks
- * Solutions
- Summary
- * Security related courses at TUM
- ***** References

Internet worm 1988

- 3000-4000 computers were infected (about 5% of the internet)
- * Many ghost processes were consuming CPU time
- * Killing these processes did not seem to help
- Rebooting machines did not cure the problems
- The problem only occurred on sun's and vax'en

Internet worm overview

- * Internet worm propagated by exploiting three different vulnerabilities:
 - sendmail debug mode
 - fingerd buffer overrun
 - accounts with no or weak passwords
- * Several features were designed to conceal its identity
 - command shell was zero'ed out
 - all strings in the binary were XORed
- Once on the machine, the worm would collect information:
 - /etc/hosts
 - .rhost files

Internet worm: propagation

local attack

1. try passwords from a

dictionary

2. use rsh to exploit network of trust

sendmail attack:

- 1. put sendmail in debug mode
- 2. have sendmail fork sh
- 3. use the shell to download and compile a new worm

Internet worm: aftermath

- Settimated damage
 - **5% of the internet affected(80'000 nodes)**
 - Disrupted e-mail, work at many universities and research institutions
 - **•** Thousands of sysadmin hours
 - Possibly several millions of dollars in total costs.
 - **•** The internet took 1 week to recover.
- ***** Robert T. Morris was
 - suspended for 1 year from Cornell
 - convicted of 'Federal Computer Tampering'
 - \$10'000 of fine, 400 hours of community work, and 3 years probation
- CERT was created ...

CERT[®] (Computer Emergency Response Team)

- Created in 1988 in the aftermath of the Internet Worm
- Funded by DARPA (Defense Advanced Research Projects Agency)
- Provides incident response services to sites that have been the victims of attack
- Publishes security alerts
- Researches security and survivability in wide-areanetworked computing
- ***** Develops information to improve security at your site.

CERT: Trends

Why is internet security becoming an issue?

- Many more hosts
 - several millions of nodes,
 - doubles every 10-15 months)
- ***** WWW increased the popularity of the internet
- * Internet is not a research network anymore
 - buy computers, software, stocks, services
 - advertisement medium
 - news medium

What is computer security?

- Data confidentiality
 - passwords
 - credit card numbers
 - e-mail
- * Data integrity
 - •
- Availability of service
 - spamming
 - ping attacks
- Non repudiation
 - spoofing

Terms and concepts

Typical attacks

- Weak passwords
- * Bugs
- * Misconfiguration
- Protocol weaknesses
- Social engineering
- * Physical security

Passwords

- Typical setup
 - legitimate user / password combinations are stored in an encrypted file
 - users authenticate by typing a user / password combination
 - password is encrypted and compared to stored copy
- Important properties
 - encryption should be a one way function
 - encryption should be SLOW
 - a seed is appended to the password such that two users with the same password are encrypted differently

Password issues

- crypt()
 - 1 second in 1976
 - 1ms in 1990
 - 1 µs using DES hardware
- A dictionary of 250'000 can be encrypted in less than 5 minutes on a typical desktop machine.
- * /etc/passwd is world readable
- * Password guessing algorithms are easily distributed
- Typical users use short and common passwords (including their name)

Password attacks: crack 5.0

- * Fast crypt function
 - typically 1 encryption < 1ms</p>
- Large dictionary
- * Support for distributed computing
- Rules for generating combinations
 - hello -> olleh, h3llo, h3llo, 0Ll3H
- Given enough CPU time, can typically guess 15-25% of account passwords
- * First passwords are guessed within minutes

Specific bugs can be taken advantage of to have a server program execute code.

- * Example: buffer overrun:
 - usually causes the program to crash
 - by carefully choosing the input, can be used to modify the program and execute commands
- * Example: user input in shell scripts
 - user input is often included as is in shell scripts
 - by including characters such as "; \n, shell commands can be executed by the server

Bugs: NCSA httpd 1.5 and Apache 1.0.3

Attack

http://www.victim.com/cgi-bin/phf?Qalias=
x%0a/bin/cat%20/etc/passwd

- Vulnerability
 - The phf CGI program uses the URL to construct a shell command
 - **•** The line return character was NOT filtered out
 - Instead of executing:
 - % phf -m Qalias="x /bin/cat /etc/passwd"
 - It executed:
 - % phf -m Qalias=x
 - % /bin/cat /etc/passwd

Bugs: phf attack

- ***** Vulnerability discovered in February 1996.
- * Many web sites were still successfully attacked using this method in late 1996 and 1997.
- ***** Workarounds:
 - repair and recompile cgi scripts
 - remove phf and other related scripts

Misconfiguration

- Network services whose access rights are not configured properly
- ***** Examples:
 - Anonymous ftp
 - **Log files with world readable or world writable permissions**
 - Default accounts with well know passwords

Misconfiguration example: www.x.edu

- * Anonymous ftp could write files in incoming directory
- * www and ftp servers located on same machine
- * Logs were not reviewed on a regular basis
- -> ftp was used to store stolen files and used as a pirate distribution site

www.x.edu (continued)

- * The incident lasted several months.
- * The problem was discovered only when the site became popular.
- Once the problem was repaired, the attackers attempted to use www to retrieve the stolen files.
- * That attack failed, triggering other types of attacks.
- * The web server held fast, but was unsuable for more than a week due to the load.

Protocol weakness

- * Many protocols were not designed with security in mind.
 - **IP** spoofing
 - **TCP ACK**
 - ping
- Many programs (including web browsers) allow clear passwords to be transmitted on the network
- X11 allowed anybody to look at an arbitrary display including keystrokes

Social engineering

- * Email messages seeming to come from a system administrator asking to change a user's password to a specific password.
- Phone calls from persons impersonating system administrators or law officials asking for a password.

Physical security

- Unsecured terminals
- Unsecured backup tapes
- 'Lost' or recycled backup tapes
- Recycled hard disks

Solutions

- * Prevention
- Administration
- * Policy

Prevention: encryption

- Secret key encryption
 - **•** one key is known by both sender and receiver
 - selected key allows both encryption and decryption
 - drawback: key distribution
 - **Examples: DES, IDEAL**
- * Public key encryption
 - one key, known to everybody, is used to encrypt
 - one key, known only to the receiver, is used to decrypt
 - drawback: expensive in CPU time
 - **Example: RSA**

Encryption: example

1. Exchange of public keys

4. S_{encr2} is decrypted using priv2

5. Subsequent traffic is encrypted and decrypted with S

Prevention: firewall

intranet

internet

Detection: File integrity checking

- * Tripwire (coast.cs.purdue.edu):
 - computes signatures for a set of files (e.g., everything part of the operating system
 - in subsequent runs compares the original signature with the current signatures
- * Can be used to monitor which files change (e.g., new software installations)
- Can be used to detect intrusions (e.g., trapdoors, fake versions of login)

Detection: logs

- * Tcp wrappers (written Wietse Venema, win.tue.nl)
 - Allows logging of any tcp service request
 - Enables simple access rights for services that do not provide such functionaltiy
- * syslogd (unix daemon)
 - Provides a unified logging facility
 - Enables remote logging
 - **Enables logging of multiple machines**

Automated tools

- * Tools which scan networks of workstations for known security wholes (bugs or configuration).
 - **SATAN**
 - **ISS**
- * Double edge:
 - **Can be used for prevention as well as for attack**

Administration

- Responsibility for the comprehensive security of a service or a site
- * Most administration tasks should be centralized
 - Operating systems upgrades
 - Network software upgrades
 - Account creation and removal
 - Monitoring of advisories
 - Monitoring of logs
 - Point of contact in case of attack

Policy

- Define the responsibilities of the organization and the users
 - Is it ok to share an account?
 - Is email going to be read?
 - Are .rhosts file going to be read?
 - **What can of monitoring will be in place?**
 - What is the password policy?

Recovery

- Determine what happened from the logs
- Report the incident
- ***** Use backups to get rid of any backdoor, HOWEVER:
 - patch the holes which were used
 - make a new backup
- Improve infrastructure, procedures, and policy accordingly

Concluding remarks

- * Computer security IS an issue
- * It will get worse before it gets better
- There exist technical solutions for many security problems
- * Computer security is not only a technical issue, but also administrative, social, and legal.

Courses related to security at TUM

- * Cryptology by Dr. Gerold (Zenger)
- Secure computer systems by Dr. Eckert (Spies)
- Software for high security systems by Dr. Saglietti (Jessen)
- Data protection and safety by Dr. Dierstein (Bayer)

References

- FIRST
- ✤ CERT
- * AUSCERT
- * DFN-CERT

www.first.org www.cert.org www.auscert.org.au www.cert.dfn.de

* COAST coast.cs.purdue.edu