

## Phase 4 – Traceback the Attack

# Six Phases to ISP Security Incident Response

- Preparation
- Identification
- Classification
- Traceback
- Reaction
- Post Mortem

#### **Traceback Attacks to their Source**

- Valid IPv4 Source Addresses are Easy.
  - Gets harder with DDOS where there are a multitude of source addresses.
- Spoofed IPv4 Source Addresses are more challenging.
  - ✓ Backscatter Traceback technique makes a difference.
- Inter-Provider Hand off of the traceback is the big challenge today (end of 2001).

#### **Traceback Essentials**

Cisco.com

#### If source prefix is not spoofed:

- -> Routing table
- -> Internet Routing Registry (IRR)
- -> direct site contact
- If source prefix is spoofed:
  - -> Trace packet flow through the network -> Find upstream ISP
  - -> Upstream needs to continue tracing

#### **Traceback Valid IPv4 Source Addresses**

Cisco.com

madrid% whois -h whois.arin.net 64.103.0.0 Cisco Systems, Inc. (NETBLK-CISCO-GEN-6) 170 West Tasman Drive San Jose, CA 95134 US

Netname: CISCO-GEN-6 Netblock: 64.100.0.0 - 64.104.255.255

Coordinator: Huegen, Craig (CAH5-ARIN) chuegen@cisco.com +1-408-526-8104 (FAX) +1 408 525 2597

Domain System inverse mapping provided by:

NS1.CISCO.COM192.31.7.92NS2.CISCO.COM192.135.250.69DNS-SJ6.CISCO.COM192.31.7.93DNS-RTP4.CISCO.COM192.135.250.70

Record last updated on 11-Jan-2001. Database last updated on 2-Aug-2001 23:12:13 EDT.

- Use Regional Internet Registries (RIRs):
  - Europe: whois.ripe.net
  - Asia-Pac: whois.apnic.net
  - ✓ USA and rest: whois.arin.net

#### **Traceback Valid IPv4 Source Addresses**

Cisco.com

madrid% whois -h whois.arin.net "as 109" Cisco Systems, Inc. (ASN-CISCO) 170 W. Tasman Drive San Jose, CA 95134 US

Autonomous System Name: CISCOSYSTEMS Autonomous System Number: 109

Coordinator:

Koblas, Michelle (MRK4-ARIN) mkoblas@CISCO.COM (408) 526-5269 (FAX) (408) 526-4575

Record last updated on 20-May-1997. Database last updated on 2-Aug-2001 23:12:13 EDT.

#### Also, if domain known: abuse@domain

#### **Traceback Spoofed IPv4 Addresses**

- From where are we being attacked (inside or outside)?
  - Once you have a fundamental understanding of the type of attack (source address and protocol type), you then need to track back to the ingress point of the network
  - Two techniques—hop by hop and jump to ingress

#### **Traceback via Hop by Hop Technique**

- Hop by hop tracebacks takes time
  - Starts from the beginning and traces to the source of the problem
  - Needs to be done on each router
  - Often requires splitting—tracing two separate paths
  - Speed is the limitation of the technique



#### **Traceback via Hop by Hop Technique**



### Traceback via the Jump to Ingress Technique

- Jump to ingress tracebacks divides the problem in half
  - Is the attack originating from inside the ISP or outside the ISP?
  - Jumps to the ISP's ingress border routers to see if the attack is entering the network from the outside
  - Advantage of speed—are we the source or someone else the source?



# Traceback via the Jump to Ingress Technique



#### **Traceback Spoofed IPv4 Addresses**

Cisco.com

#### Three techniques

 Apply temporary ACLs with log-input and examine the logs (like step 2)

Query Netflow's flow table (if show ip cache-flow is turned on)

Backscatter Traceback Technique

#### **Traceback with ACLs**

1.....Cisco.com

access-list 170 permit icmp any any echo access-list 170 permit icmp any any echo-reply log-input access-list 170 permit udp any any eq echo access-list 170 permit udp any eq echo any access-list 170 permit tcp any any established access-list 170 permit tcp any any access-list 170 permit tcp any any

interface serial 0

ip access-group 170 out

! Wait a short time - (i.e 10 seconds)

no ip access-group 170 out

- Original technique for doing tracebacks
- Hazard—inserting change into a network that is under attack
- Hazard—log-input requires the forwarding ASIC to punt the packet to capture log information
- BCP is to apply the filter, capture just enough information, then remove the filter

Cisco.com

#### • Using Netflow for hop-by-hop traceback:

| Beta-7200-2>S                                                                              | sh ip cache                                                           | 198.13                                                                          | 3.219.0                                                    | 255.2                                                    | 55.255.0                                                                               | verbose                                                                                                           | flow                                                                          |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IP packet siz                                                                              | e distributi                                                          | ion (1709                                                                       | 3 total p                                                  | ackets                                                   | A                                                                                      |                                                                                                                   |                                                                               |
| 1-32 64                                                                                    | 96 128 1                                                              | L60 192                                                                         | 224 256                                                    | 288                                                      | 32 352                                                                                 | 384 416                                                                                                           | 448 480                                                                       |
| .000 .735                                                                                  | .088 .054 .0                                                          | 000.000                                                                         | .008 .046                                                  | .054                                                     | .000 . ~                                                                               | .000 .000                                                                                                         | .000 .000                                                                     |
|                                                                                            |                                                                       |                                                                                 |                                                            |                                                          | $\sim$                                                                                 | $\sim$                                                                                                            |                                                                               |
| 512 544                                                                                    | 576 1024 15                                                           | 536 2048                                                                        | 2560 3072                                                  | 3584                                                     | 4096 4608                                                                              | $\setminus$ $\setminus$                                                                                           |                                                                               |
| .000 .000                                                                                  | .000 .000 .0                                                          | 000.000                                                                         | .000 .000                                                  | .000                                                     | .000 .000                                                                              |                                                                                                                   |                                                                               |
| IP Flow Swite                                                                              | hing Cache,                                                           | 1257536                                                                         | bytes                                                      |                                                          |                                                                                        | Spoof                                                                                                             | ed Flows                                                                      |
| 3 active, 1                                                                                | .5549 inactiv                                                         | ve, 12992                                                                       | added                                                      |                                                          |                                                                                        | oro T                                                                                                             | rooko in                                                                      |
| 210043 ager                                                                                | polls, 0 fl                                                           | Low alloc                                                                       | failures                                                   | 5                                                        |                                                                                        | arei                                                                                                              | racks in                                                                      |
| last cleari                                                                                | ng of statis                                                          | stics new                                                                       | ver                                                        |                                                          |                                                                                        | No                                                                                                                | flow                                                                          |
| Protocol                                                                                   | Total                                                                 | Flows                                                                           | Packets                                                    | Bytes                                                    | Packets                                                                                | INE                                                                                                               |                                                                               |
|                                                                                            | Flows                                                                 | /500                                                                            | /Flow                                                      | _<br>/Db+                                                |                                                                                        |                                                                                                                   |                                                                               |
|                                                                                            | FIOWS                                                                 | / Dec                                                                           | / F TOW                                                    | /FrL                                                     | / 560                                                                                  | /FIOW                                                                                                             | / F LOW                                                                       |
| TCP-Telnet                                                                                 | 35                                                                    | 0.0                                                                             | 80                                                         | 41                                                       | 0.0                                                                                    | /FIOW<br>14.5                                                                                                     | 12.7                                                                          |
| TCP-Telnet<br>UDP-DNS                                                                      | 35<br>20                                                              | 0.0                                                                             | 80 1                                                       | 41<br>67                                                 | 0.0                                                                                    | 14.5<br>0.0                                                                                                       | 12.7<br>15.3                                                                  |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP                                                           | 35<br>20<br>1223                                                      | 0.0<br>0.0<br>0.0                                                               | 80<br>1<br>1                                               | 41<br>67<br>76                                           | 0.0<br>0.0<br>0.0                                                                      | 14.5<br>0.0<br>0.0                                                                                                | 12.7<br>15.3<br>15.5                                                          |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other                                              | 10ws<br>35<br>20<br>1223<br>11709                                     | 0.0<br>0.0<br>0.0<br>0.0                                                        | 80<br>1<br>1                                               | 41<br>67<br>76<br>87                                     | 0.0<br>0.0<br>0.0<br>0.0                                                               | 14.5<br>0.0<br>0.0<br>0.1                                                                                         | 12.7<br>15.3<br>15.5<br>15.5                                                  |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP                                      | 10ws<br>35<br>20<br>1223<br>11709<br>2                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                 | 80<br>1<br>1<br>1                                          | 41<br>67<br>76<br>87<br>56                               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 14.5<br>0.0<br>0.0<br>0.1<br>0.0                                                                                  | 12.7<br>15.3<br>15.5<br>15.5<br>15.2                                          |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP<br>Total:                            | 1223<br>11709<br>12989                                                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                          | 80<br>1<br>1<br>1<br>1                                     | 41<br>67<br>76<br>87<br>56<br>78                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                 | 14.5<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1                                                                           | 12.7<br>15.3<br>15.5<br>15.5<br>15.2<br>15.4                                  |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP<br>Total:                            | 1203<br>35<br>20<br>1223<br>11709<br>2<br>12989                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                          | 80<br>1<br>1<br>1<br>1<br>1                                | 41<br>67<br>76<br>87<br>56<br>78                         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                 | 7 F13W<br>14.5<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1                                                                 | 12.7<br>15.3<br>15.5<br>15.5<br>15.2<br>15.4                                  |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP<br>Total:<br>SrcIf                   | 35<br>20<br>1223<br>11709<br>2<br>12989<br>SrcIPaddres                | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                   | 80<br>1<br>1<br>1<br>1<br>1<br>1                           | 41<br>67<br>76<br>87<br>56<br>78<br>Dstl                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                          | 7 F16W         14.5         0.0         0.1         0.0         0.1         Pr SrcP                               | 12.7<br>15.3<br>15.5<br>15.5<br>15.2<br>15.4<br>DstP Pkts                     |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP<br>Total:<br>SrcIf<br>Fal/1          | 35<br>20<br>1223<br>11709<br>2<br>12989<br>SrcIPaddres<br>192.168.45. | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>55 Dst                                | 80<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1       | 41<br>67<br>76<br>87<br>56<br>78<br>Dst1<br>198.         | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>2Paddress<br>133.219.25                      | Pr SrcP<br>14.5<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1                                                                | 12.7<br>15.3<br>15.5<br>15.5<br>15.2<br>15.4<br>DstP Pkts<br>008A 1           |
| TCP-Telnet<br>UDP-DNS<br>UDP-NTP<br>UDP-other<br>ICMP<br>Total:<br>SrcIf<br>Fal/1<br>Fal/1 | 35<br>20<br>1223<br>11709<br>2<br>12989<br>SrcIPaddres<br>192.168.45. | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>55 Dst<br>.142 POS<br>.113 POS | 80<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>51/0<br>51/0 | 41<br>67<br>76<br>87<br>56<br>78<br>Dst1<br>198.<br>198. | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>7Paddress<br>133.219.25<br>133.219.25 | 14.5         0.0         0.1         0.0         0.1         10.0         11         008A         11         0208 | 12.7<br>15.3<br>15.5<br>15.5<br>15.2<br>15.4<br>DstP Pkts<br>008A 1<br>0208 1 |

© 2002, Cisco Systems, Inc. All rights reserved.

#### **Tracing Back with Netflow**

Cisco.com

#### Routers need Netflow enabled



### show ip cache flow

Cisco.com

| router_A#sh i  | p cache flow   |         |        |        |        |        |        |        |             |        |        |
|----------------|----------------|---------|--------|--------|--------|--------|--------|--------|-------------|--------|--------|
| IP packet siz  | e distribution | n (8543 | 35 tot | tal pa | ackets | s):    |        |        |             |        |        |
| 1-32 64        | 96 128 16      | 0 192   | 224    | 256    | 288    | 320    | 352    | 384    | 416         | 448    | 480    |
| .000 .000      | .000 .000 .000 | 0.000   | .000   | .000   | .000   | .000   | .000   | .000   | .000        | .000   | .000   |
|                |                |         |        |        |        |        |        |        |             |        |        |
| 512 544        | 576 1024 153   | 6 2048  | 2560   | 3072   | 3584   | 4096   | 4608   |        |             |        |        |
| .000 .000      | .000 .000 1.00 | 0.000   | .000   | .000   | .000   | .000   | .000   |        |             |        |        |
|                |                |         |        |        |        |        |        |        |             |        |        |
| IP Flow Switc. | hing Cache, 2  | /8544 k | bytes  |        |        | Prot   | ocol   |        |             |        |        |
| 2728 active    | , 1368 inactiv | ve, 853 | 310 ac | daea   |        |        |        |        |             |        |        |
| 463824 ager    | polls, U Ilor  | w alloo | c Ial. | lures  |        |        |        | w inf  |             | mma    |        |
| Active flow    | s timeout in . | 30 mini | ites   |        | -      |        |        | W IIII | <u>0 Su</u> | 111110 | u y    |
| Inactive fl    | ows timeout i  | n 15 se | conds  | 5      |        |        |        |        |             |        |        |
| last cleari    | ng of statist  | lcs her | ver    |        | /      |        |        |        | ( ~         |        |        |
| Protocol       | 'l'otal        | F'LOWS  | Pack   | kets I | Bytes  | Pack   | tets A | Active | e(Sec       | ) Idle | e(Sec) |
|                | Flows          | /Sec    | / I    | FLOW   | 7Pkt   | /      | /Sec   | / E    | vo⊥         | / F    | 'Low   |
| TCP-X          | 2              | 0.0     |        | 1      | 1440   |        | 0.0    |        | 0.0         |        | 9.5    |
| TCP-other      | 82580          | 11.2    |        | 1      | 1440   |        | 1.2    |        | 0.0         | 1      | 2.0    |
| Total:         | 82582          |         | Flow   | deta   | nils   | -      | 11.2   |        | 0.0         | 1      | 2.0    |
|                |                |         |        |        |        |        |        |        |             |        | _      |
| SrcIf          | SrcIPaddress   | Dst     | ΞÍ     |        | Dst]   | [Padd] | ress   | Pr     | SrcP        | DstP   | Pkts   |
| Et0/0          | 132.122.25.6   | 0 Se(   | 0/0    |        | 192.   | .168.1 | 1.1    | 06     | 9AEE        | 0007   | 1      |
|                |                | ~ ~ /   |        |        |        |        | -      | ~ ~    |             |        | -      |
| ECU/U          | 139.57.220.2   | 8 Sel   | )/()   |        | 192.   | .168.1 | L.I    | 06     | 708D        | 0007   | T      |

© 2002, Cisco Systems, Inc. All rights reserved.

#### show ip cache verbose flow

Cisco.com

IP Flow Switching Cache, 278544 bytes 1323 active, 2773 inactive, 23533 added 151644 ager polls, 0 flow alloc failures Active flows timeout in 30 minutes Inactive flows timeout in 15 seconds last clearing of statistics never

| Protocol  | Total | Flows | Packets | Bytes | Packets | Active(Sec) | Idle(Sec) |
|-----------|-------|-------|---------|-------|---------|-------------|-----------|
|           | Flows | /Sec  | /Flow   | /Pkt  | /Sec    | /Flow       | /Flow     |
| TCP-other | 22210 | 3.1   | 1       | 1440  | 3.1     | 0.0         | 12.9      |
| Total:    | 22210 | 3.1   | 1       | 1440  | 3.1     | 0.0         | 12.9      |

| SrcIf       | SrcIPaddress    | DstIf    |    | DstIPaddress | Pr | TOS | S Fla | s Pkts |
|-------------|-----------------|----------|----|--------------|----|-----|-------|--------|
| Port Msk AS | <               | Port Msk | AS | NextHop      |    |     | 3/Pk  | Active |
| Et0/0       | 216.120.112.114 | Se0/0    |    | 192.168.1.1  | 06 | 00  | 10    | 1      |
| 5FA7 /0 0   |                 | 0007 /0  | 0  | 0.0.0        |    | -   | 1440  | 0.0    |
| Et0/0       | 175.182.253.65  | Se0/0    |    | 192.168.1.1  | 06 | 00  | 10    | 1      |

Cisco.com

Generic ways to use the Netflow command:

- show ip cache <addr> <mask> verbose flow
- show ip cache flow | include <addr>
- Proactive approach—create scripts ……

ssh -x -t -c [des|3des] -l <username> <IPAddr>
"show ip cache <addr> <mask> verbose flow"

- GSR Netflow on the GSR is executed and exported from the Line Cards – not the GRP. Use the show controllers with sample Netflow (if LC supports SNF)
  - ✓ GSR-2# exec slot 0 sh ip cache <addr> <mask> verbose flow
- 7500 with dCEF CSCdp91364.
  - ✓ 7500# exec slot 0 sh ip cache <addr> <mask> verbose flow
- Remember! execute-on all to get Netflow from all the LC/VIPs.

- Key advantage of Netflow:
  - No changes to the router while the network is under attack; passive monitoring
  - Scripts can be used to poll and sample throughout the network
  - ✓ IDS products can plug into Netflow
  - Working on a MIB for SNMP access

#### **Backscatter Traceback Technique**

- Three key advantages:
  - Reduced Operational Risk to the Network while traceback is in progress.
  - Speedy Traceback
  - Ability to hand off from one ISP to another potentially tracing back to it's source.

#### **Backscatter Traceback Technique**

Cisco.com

Created by Chris Morrow and Brian Gemberling
 @ UUNET as a means of finding the entry point of a spoofed DOS/DDOS.

/ http://www.secsup.org/Tracking/

 Combines the Sink Hole router, Backscatter Effects of Spoofed DOS/DDOS attacks, and remote triggered Black Hole Filtering to create a traceback system that provides a result within 10 minutes.

#### **Backscatter Traceback Technique**



unreachable (even Null0) will have a ICMP Unreachable sent back. This "unreachable noise" is backscatter.

- 1. Sink Hole Router/Network connected to the network and ready to classify the traffic. Like before, BGP Route Reflector Client, device to analyze logs, etc.
  - Can use one router to do both the route advertisement and logging OR break them into two separation routers – one for route advertisement and the other to accept/log traffic
  - Can be used for other Sink Hole functions while not using the traceback technique.
  - Sink Hole Router can be a iBGP Route Reflector into the network.



```
Cisco.com
```

```
router bgp 31337
```

```
!
```

! set the static redistribution to include a route-map so we can filter

```
! the routes somewhat... or at least manipulate them
```

```
! redistribute static route-map static-to-bgp
```

```
!
! add a stanza to the route-map to set our special next hop
!
route-map static-to-bgp permit 5
match tag 666
set ip next-hop 172.20.20.1
set local-preference 50
```

set origin igp

- 2. All edge devices (routers, NAS, IXP Routers, etc) with a static route to Nullo. The Test-Net is a safe address to use (192.0.2.0/24) since no one is using it.
  - Cisco: ip route 172.20.20.1 255.255.255.255 Nullo
  - Routers also need to have ICMP Unreachables working. If you have ICMP Unreachables turned off (i.e. *no ip unreachables* on a Cisco), then make sure they are on.
  - If ICMP Unreachable Overloads are a concern, use a ICMP Unreachable Rate Limit (i.e. *ip icmp rate-limit unreachable* command on a Cisco).

All Cisco.com



1

3. Sink Hole Router advertising a large block of unallocated address space with the BGP no-export community and BGP Egress route filters to keep the block inside. 96.0.0.0/3 is an example.

> Check with IANA for unallocated blocks: www.iana.org/assignments/ipv4-address-space

BGP Egress filter should keep this advertisement inside your network.

Use BGP no-export community to insure it stays inside your network.



#### **Backscatter Traceback** <u>Activation</u>

- Activation happens when an attack has been identified.
- Basic Classification should be done to see if the backscatter traceback will work:
  - May need to adjust the advertised block.
  - Statistically, most attacks have been spoofed using the entire Internet block.

#### **Backscatter Traceback** <u>Activation</u>

Cisco.com

1. Sink Hole Router Advertises the /32 under attack into iBGP with.

Advertised with a static route with the "666" tag:

ip route victimip 255.255.255.255 Null0 tag 666

# The static triggers the routers to advertise the customer's prefix

#### **Backscatter Traceback** Activation



#### Backscatter Traceback <u>Activation</u>

Cisco.com

2. Black Hole Filtering is triggered by BGP through out the network. Packets to the target get dropped. ICMP Unreachable Backscatter starts heading for 96.0.0.0/3.

# Access list is used on the router to find which routers are dropping packets.

access-list 101 permit icmp any any unreachables log

access-list 101 permit ip any any

#### **Backscatter Traceback** Activation



#### **Backscatter Traceback** <u>Activation</u>

- SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.47.251.104 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.70.92.28 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.222.127.7 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.96.223.54 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.14.21.8 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.105.33.126 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18 -> 96.77.198.85 (3/1), 1 packet SLOT 5:3w1d: %SEC-6-IPACCESSLOGDP: list 150 permitted icmp 171.68.66.18
- -> 96.50.106.45 (3/1), 1 packet

#### Questions

- Pulling down all the traffic into a Sink Hole could be very dangerous.
  - ✓ Yes. Make sure you've integrated in the network so when it melts down, it will not impact the network.
- Advertising large chunks of address space (I.e. 64/8) to do the backscatter traceback could be dangerous.
  - Murphy's Law of Networking Layered checks should be used – Egress BGP filtering + no-export community.