
UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 1

UNIX Security: Security in
Programming

Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA 95616-8562

phone (916) 752-8060
email bishop@cs.ucdavis.edu

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 2

Show you how to write programs which are to
be run:

by root (or some other user)
are setuid or setgid to you (or root, or …)

and can't be tricked into doing what they are not
intended to do

Goal of Tutorial

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 3

Several reasons
• a "bug" here can endanger the system
• programs interact with system,

environment, one another in sometimes
unexpected ways

• assumptions which are true or irrelevant
for regular programs aren't for these

Why is This Hard?

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 4

• a change of privilege
example: setuid programs

• an assumption of atomicity of some
functions
example: check of access permission and opening of a file

• a trust of environment
example: programs which assume they are loaded as compiled

What Do These Programs
Involve?

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 5

Security Policy

l What the program is allowed to do
Access a particular directory

l What the program is not allowed to do
Access any other files

Constraints imposed by the system administration, law,
etc.

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 6

Example: Message Transfer Agent

Goal: accept and deliver mail
l Where to put it?

Any file allows it to be appended to /etc/passwd
Any program allows remote user to take arbitrary action
Must constrain delivery to known mailboxes, programs

l Forwarding Mail
How much information about system to include?
To which sites is it to be forwarded?
How to implement RFC 821’s address rewriting requirements?

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 7

Design Principles

l Determine threats
to Confidentiality (best protected by end to end mechanism)
to Integrity (same comment)
to Availability (taking up disk space; mail-bombing)
delivery to unauthorized places (constrain where mail can go)

l Design with those threats in mind
l Include system constraints

Access to port 25 requires root privileges
Access to mailboxes requires extra privileges

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 8

Key Concepts

privilege running with rights other than those
obtained by logging in; or running as
superuser

protection domain
all objects to which the process has
access, and the type of access the
process has

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 9

Security Design Principles

Control design of all security-related programs
l principle of least privilege
l principle of fail-safe defaults
l principle of economy of mechanism
l principle of complete mediation
l principle of open design
l principle of separation of privilege
l principle of least common mechanism
l principle of psychological acceptability

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 10

Principle of Least Privilege

Process executes with only those privileges it needs
l what identity to assume
l what resources to access
l requires a privilege to be relinquished when no longer

needed
“Need-to-know” rule

SMTP server runs as root to open the socket, but then
reverts to smtp user (not root)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 11

Principle of Fail-Safe Defaults

Privileges by default are denied; they must be explicitly
granted
A failure should cause the original protection domain
state to be restored

In both cases, if the program fails, the system is safe
MTA’s spool directory should be read/write only by smtp user,
not by anyone else (so the default is to deny access to queued
mail)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 12

Principle of Economy of Mechanism

Same as KISS principle
The simpler the design/mechanism, the easier it is to
verify correctness and the fewer attributes or actions to
go wrong
Common problem points: interfaces, interaction with
external entities

MTA split into multiple programs: server (to accept mail),
client (to deliver mail)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 13

Principle of Complete Mediation

Every access to every object must be checked
UNIX OS violates this rule; checks only at open, not at reads
Program should check data after each access for validity

On programs running as root, nothing is checked, so
the program must do it

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 14

Principle of Open Design

Do not depend upon concealment of details or of
security measures for security

Okay to use passwords, cryptographic keys, etc.

Security through obscurity:
» adds some (easily overcome) protection
» gives false assurance

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 15

Principle of Separation of Privilege

Grant access based upon multiple conditions
root access depends on membership in group wheel as well as
knowledge of the password
access to operator conditioned on time, point of access,
password, entry in authorization file
use of a Kerberos ticket depends on time, authenticator

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 16

Principle of Least Common
Mechanism

Minimize shared channels or resources

» Avoid shared resources; some cannot be eliminated
(common file system, CPU, memory, etc.)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 17

Principle of Psychological
Acceptability

Be kind to your users
» Make the mechanism no more inconvenient than not using it
» Make it acceptable to users
» Make interfaces simple, intuitive

If mechanism too complex or cumbersome, users will try
to evade it or will weaken it

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 18

Users and UIDs

Real UID: UID of user running program
Effective UID: UID of user with whose privileges

the process runs
Login/Audit UID: UID of user who originally logged in
Saved UID: UID before last change by program
Example:

User holly logs in and executes file owned by user
matt.
The resulting process has both a real and an
effective UID of holly.

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 19

% ls -lg a.out

–rwsr–sr–x matt sys 512 Nov 5 1988 a.out

example:
User holly executes this file. The process has:
Real UID: holly
Effective UID: matt
Login UID: holly
Saved UID: matt

Setuid, Setgid Bits

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 20

Obtaining These UIDs

getuid() return real UID
geteuid() return effective UID
getauid() return audit (login) UID (varies)

On Solaris, must be root to run this

getlogin() return login (audit) UID
Warning: on some systems, getlogin returns the name of the
user associated with the terminal connected to stdin, stdout, or
stderr(which is very different than the above)

getsuid() returns saved UID (on some systems)
On others, your program must save this if you plan to refer to it
later

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 21

Setting UIDs

setuid(uid) set UID
if root, sets real, effective, saved; if not root, sets effective

setruid(uid) set real UID
seteuid(uid) set effective, saved UID
setauid(uid) set audit (login) UID (varies)

On Solaris, must be root to run this

setlogin(uid) set login (audit) UID
setreuid(rid,eid) set real (rid), effective, saved UID (eid)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 22

Groups and GIDs

Similar to users; group permissions apply to groups
Calls are analogous, with “g” replacing “u”.
getgid() return real UID
getegid() return effective UID
getsgid() returns saved UID (on some systems)
getgroups(int ngroups, int grouplist[])

Get list of groups of current process; if ngroups too
small, error is EINVAL

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 23

More Groups

setgid(gid) set GID
if root, sets real, effective, saved; if not root, sets effective

setrgid(uid) set real GID
setegid(uid) set effective, saved GID
setregid(rid,eid) set real (rid), effective, saved GID (eid)
setgroups(int ngroups, int grouplist[])

Set list of groups of current process; if ngroups too
large, error is EINVAL

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 24

Getting User Names

#include <pwd.h>
struct passwd *getpwent(void);

up = getpwuid(getuid());

user_name = up->pw_name;
Returns first user with that UID

up = getpwnam(user_name)

user_uid = up->pw_uid
Returns first user with that name

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 25

Getting Group Names

#include <grp.h>
struct group *getgrent(void);

gp = getgrgid(getgid());

group_name = gp->gr_name;

group_members = gp->gr_mem;
Returns first group with that GID

gp = getgrnam(group_name)

group_name = gp->gr_name;

group_members = gp->gr_mem;
Returns first group with that name

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 26

char *getlogin(void)

char *cuserid(void)

Returns who is logged into the terminal associated with
stdio, not the login name of the owner of the process

» if stdin is associated with a terminal, get terminal name, look
in /etc/utmp for user name

» else if stdout is associated with a terminal ...
» else if stderr is associated with a terminal ...
» else return NULL

Getting Login Names

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 27

Goal: forge mail from Peter to Dorothy
Environment: Peter is logged into /dev/ttyha
Problem: mail program uses getlogin to get login name
for return address

mail dorothy < letter > /dev/ttyha

No output, so Peter will see nothing; but letter comes to
Dorothy from him!

Fixed on all 4.x BSD and System V systems that I know of

Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 28

Setuid program gives privileges for the life of the
process, plus any descendants

Effect is same as if owner (not user) ran it

So … owner must dictate initial protection domain

Starting Safe

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 29

Here, it means program runs with rights not normally
associated with user running it

Example: in vi, user cannot write to buffer storage area
where file is to be put when user hangs up

so the process is given privileges (additional rights) to do it

Review: What Is Privilege

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 30

setuid vs. a root (owner) process
• root process starts in root's environment

need not worry about change of environment

• setuid process starts in user's environment
must worry about change of environment

Key Difference

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 31

In theory, major
you can assume the trusted owner won't compromise system

In practise, relatively minor
even root can make mistakes ...

Need to guard against stupid initial environments

How Important?

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 32

Games very popular, owned as root
» Needed to be setuid to update high score files

Discovered that effective UID not reset when a subshell
spawned

» So we could start a game which kept a high score file, and
run a subshell – as root!

Example: the Purdue Games
Incident

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 33

• Trust the Users
» Claim there is no problem as no user would ever do anything

untoward in that case
» Overlooks nasty people who may gain access to your site

• Delete the Games
» Lots of support for this, but students had their own copies,

and would have given one another setuid privileges ...

• Create a Restricted User
• Create a Restricted Group

Ways to Fix The Problem

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 34

User games owns files in games directory, and no
others

» All game programs setuid to this user
» High score files writable only by owner (games)

That user can delete games or score files but nothing
else

Create a Restricted User

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 35

Group games is GID of files in games directory, and no
others

» All games setgid to this group; may be owned
by anyone

» High score files writable by this group

That group can delete games or score files but nothing
else

» Further protection: make games unwriteable by group
» Note high score files must be writeable by group and so can

be deleted

Create a Restricted Group

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 36

If no need to log in, use group (not user)
» Groups generally more restricted than owner

If group compromised, usually much less dangerous
» Due to usual system configuration; not inherent

Application of privilege of least principle

Setuid vs. Setgid

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 37

Example: The crash(8) Attack

problem: crash is setgid to kmem, which is the group
of the memory device files

If you get a subshell, the effective group id is not reset
host% crash

dumpfile=/dev/mem, namelist=/vmunix, outfile=stdout

> !sh

and you can now read /dev/mem (or worse, write it)

Fixes: • turn off setgid bit on crash
• turn off all group permissions on memory

devices

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 38

Goal: read any location in kernel memory

ps accesses process table by:
» opening symbol table in /vmunix
» looking up location of variable _proc

ps setgid to group kmem
User can specify where vmunix file is
So supply your own /vmunix and read any file that
group kmem can read ...

Example: The ps(1) Attack

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 39

• A setgid program can be just as dangerous as a
setuid one

• A non-privileged program run by a privileged user
can be as dangerous as a setuid program

• Protection domain includes user and group identity

Design Tip: Use of Setgid

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 40

UID and GID are preserved across execs
setuid changes EUID and saved UID, setgid changes EGID
and saved GID; these stay with process when interpreter
overlaid

UID, GID preserved across fork(2)
all are unchanged; new process has those of the old parent
process

fork, exec, and UIDs and GIDs

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 41

Reset UID, GID after fork to the real UID, GID
… unless there is a very good reason not to

Programming Tip: Spawning
Subprocesses

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 42

Environment

process/system interaction
» via system calls

process/process interaction
» via shared files, signals, etc.

process/descendant interaction
» via forking, pipes, shared resources, etc.

Note environment variables fall under third class

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 43

vi file
… edit it, then hang up without saving it …

• vi invokes expreserve, which saves buffer in
protected area
... which is inaccessible to ordinary users, including editor of

the file

• expreserve invokes mail to send letter to user

Starting Example

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 44

vi is not setuid to root
» you don't need that to edit your files

expreserve is setuid to root
» the buffer is saved in a protected area so expreserve needs

enough privileges to copy the file there

mail is run by expreserve
» so unless reset, it runs with root privileges

Where Is the Privilege?

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 45

$ cat > ./mail
#! /bin/sh
cp /bin/sh /usr/attack/.sh
chmod 4755 /usr/attack/.sh
^D
$ PATH=.:$PATH
$ export PATH

… and then run vi and hang up.

The First Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 46

Don't trust the setting of the user's PATH variable
» if your program will run any system commands, either give

the full path name or reset this variable explicitly
» This by itself is not enough, however ...

Design Tip: The PATH
Environment Variable

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 47

Instead of resetting PATH, change
system("mail user")

to
system("/bin/mail user")

But … still uses Bourne shell …

So vi Fixed it …

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 48

Bourne shell determines whitespace with IFS
Using same program as before, but called m, do:

% IFS="/binal\t\n "; export IFS

% PATH=.:$PATH; export PATH

… and then run vi and hang up.

The Second Attack

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 49

Don't trust the setting of the user's IFS variable
» if your program will run any system commands, reset this

variable explicitly
» must still deal with PATH

Design Tip: The IFS
Environment Variable

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 50

Fix given in most books is:
system("IFS='\n\t ';PATH=/bin:/usr/bin;\

 export IFS PATH;command");

This sets IFS, PATH; you may want to fix more

WRONG

Fixing This

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 51

How to Break This

Before invoking your program plugh, I do:
% IFS=“I$IFS”

% PATH=“.:$PATH”

% plugh

Now your IFS is unchanged since the Bourne shell
interprets the I in IFS='\n\t ' as a blank, and reads
the first part as FS='\n\t '

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 52

Look for any code using environment variables:

main(argc, argv, envp)

extern char **environ

getenv("variable")

putenv("variable")

The only time you should use them is when they do not
affect the security of the program

Programming Tip: Explicit
Environment Variables

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 53

Programming Tip: More on
Environment Variables

Can add them directly to environment, so multiple
instances of a variable may occur:

PATH=/bin:/usr/bin:/usr/etc

TZ=PST8PST

SHELL=/bin/sh

PATH=.:/bin:/usr/bin

Now which PATH is used for the search path?
Answer varies but it is usually the second

If PATH is deleted or replaced, which one is affected?
Usually the first ...

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 54

These functions call the shell or use PATH:
system(3), popen(3)

Call the Bourne shell

execlp(3), execvp(3)
These use PATH

any exec derivative
These may implicitly pass the environment along

Programming Tip: Implicit
Environment Variables

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 55

Use execve(2)
You then reset what parts of the environment you want:
envp[0] = NULL;

if (execve(path_name, argv, envp) < 0) ...

Note: may have to set TZ on System V based systems

Use msystem(3) or mpopen(3)
These provide interfaces to execve; discussed later

Never use system(3) or popen(3)
unless you clean out your own environment first

Programming Tip: Controlling
Environment Variables

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 56

Programs run with more privileges but in an
environment set up by a user with fewer privileges

This means programs trust and (implicitly or explicitly)
use this environment

Analysis of These Problems

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 57

General assumption: programs loaded as written
this means parts of it don't change once it is compiled

Dynamic loading has the opposite intent
load the most current versions of the libraries, or allow users to
create their own versions of the libraries

Dynamic Loading and Environment

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 58

On execution, library functions not loaded
Instead, a stub is put in its place

When library function called, stub loads it
Stub figures out where to look, pulls file out of library archive,
puts it into memory

Execution then jumps to the loaded function

How Dynamic Loading Works

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 59

Where is this new routine obtained from? Possibly an
environment variable …

On Suns: check libraries in directories named in the variables
LD_LIBRARY_PATH, LD_PRELOAD; those directories are
searched in order, just like PATH
Other systems have similar mechanism (ELF_ variables, etc.)

This puts execution of parts of a setuid program under
user control

... as the user controls what is loaded and run

The Problem

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 60

Attack: the Setup

• Find a setuid program that uses dynamic loading
(here, we’ll use /bin/login, which dynamically loads
the routine fgets to read the login name)

• Build a dynamic library with your own version of
fgets.o:
fgets(char *buf, int n, FILE *fp)

{

execl("/bin/sh", "-sh", 0);

}

• Put it into a library libme.so in current directory

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 61

Execute the following
% LD_PRELOAD=.:$LD_PRELOAD

% /bin/login

#

You now have a login shell with privileges of the owner
of login, namely root

The Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 62

Problem: Dynamic loading allows an unprivileged user
to ater a privileged process by controlling what is loaded
Idea: Disallow this control by having setuid programs
ignore environment variables

Here, they would dynamically load libraries from a preset set of
directories only

Reasoning: Users can control what is dynamically
loaded on their programs, but not on anyone else’s,
since everything you do is executed under your UID or
is setuid to someone else …

The Obvious Fix

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 63

Flaw in the Analysis: Suppose a setuid program runs a
non-setuid program?

Login does this (it spawns the login shell, or some other
designated program, which is not setuid)

Result: The non-secure variable is ignored by the setuid
program and is propagated to the non-setuid program
But the non-setuid program is not running with the
privileges of the user; the setuid program can change
these, especially if run by root

Close, But No Cigar

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 64

How login works:
l By default, login clears current environment
l –p option preserves current environment

Can use any account for what follows, but need to
complete login; as sync has no passowrd on most
systems, an obvious candidate

User is UID 1 (daemon); login shell is /bin/sync
dynamically loads the system call sync()

The sync Account

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 65

• Execute the following
% LD_PRELOAD=.:$LD_PRELOAD

% /bin/login -p sync

%

You now have a shell running with daemon privileges

The Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 66

• login ignores LD_PRELOAD and works as expected
since it is setuid

• /bin/sync uses LD_PRELOAD since it is not setuid,
even though it executes as sync

Effect: current user can control execution of another user’s
program

What Happens?

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 67

$ PATH=.:$PATH
$ cat > /bin/ld
#! /bin/sh
sh
^D
$ cp /usr/openwin/loadmodule/evqload
evqload

$ cp /usr/kvm/sys/sun4m/OBJ/sd.o sd.o
$ loadmodule evqload sd.o
#

Another Example: Loadmodule

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 68

First one we’ve seen
• program not specified fully

a full path name not given; probably IFS not protected either

This one’s been implicit, but now it’s explicit
• environment not reset to trusted state

should turn off dynamic loading as loadmodule is setuid to root;
dynamic loading involves a loading program which is trusted,
so make sure the assumption of trust is incorrect (ie, use a fake
program)

What Are the Causes

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 69

Most loaders on such systems have an option which
specifies static binding

On Suns, it's –Bstatic; with gcc, it’s –static

Use it on anything that will be run setuid or setgid

Programming Tip: Don't
Dynamically Load

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 70

Know where your trust is!
• if dynamic loading is a possibility, and you can

disable it, do so
• if you can eliminate dependence on environment, or

check assumptions about the environment, do so
• if you can't, warn the installer and/or user

Moral: identify trust points in design and implementation

Design Tip: Know What You Trust

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 71

Class of flaws is “improper change”
Violates design principles (least privilege, least common
mechanism, fail-safe defaults)

Whenever you change privileges (such as with a setuid
program), you cannot trust the old, unprivileged
environment

Best to avoid any such programs if you can
More on this later

To Sum Up

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 72

General class is improper choice of initial protection
domain
... as users can reset protection domain at will

Fix: force a specific protection domain into the program

Minimizes trust in environment

A Second Point of View

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 73

Distrust anything the user provides
ps: if using /vmunix, namelist is (probably) okay; if using

something else, namelist is (probably) not okay
» Why? Because first assumed writeable only by trusted

user (who can read memory (root; this should be checked
both at /vmunix and at /dev/kmem). Assumption for other
users is likely to be wrong at both points.

» Effectively, above fix allows user to supply alternate
namelist only if user could read memory file anyway

Validation and Verification

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 74

Declaration in login.c is:
char name[80], passwd[80], hash[13];

• user types name
• hash loaded with corresponding password hash
• user types password, hash for that password

password and hash validate; she's in!

The (Apocryphal?) Login Bug

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 75

input stored in a character array allocated as
char buf[256]

• fingerd uses gets to read buf
• enter 289 chars, not 256

This overflows buf , overwriting return address

The Fingerd Bug

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 76

The syslogd Bug

l syslogd reads message from a socket
does not use gets, so no overflow there

l message formatted with PID,date, etc.
uses sprintf with an array line2 allocated at 2048 characters

Array for sprintf can overflow just as in previous slide

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 77

In all cases, string put into array without being checked
for overflow

• if passwd not overflowed, hash not altered and correct
password validated

• if buf not overflowed, stack uncorrupted and return made to
main

• if line2 not overflowed, stack uncorrupted and return made to
caller

The Problem

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 78

Assume input may overflow an input buffer
Design to prevent overflow

In general, don't trust input to be of the right form or
length

Called an improper validation condition

Design Tip: Buffer Overflow

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 79

Use a function that respects buffer bounds
Avoid these:
gets strcpy strcat sprintf
Use these instead:
fgets strncpy strncat
(no real good replacement for sprintf; snprintf on some
systems)

To find good (bad) functions, look for those which
handle arrays and do not check length

» checking for termination character is not enough

Programming Tip: Handing Arrays

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 80

Invalid Input

Get IP address 555.1212.555.1212; want host name
Use gethostby addr, which uses Directory Name Server
Response p used as:

sprintf(cmd, “echo %s | mail bishop”, p);

if (msystem(cmd) != BAD) ...

Assumption: gethostbyaddr is reliable, meaning DNS is
reliable

» but it’s not under our control

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 81

The Faulty DNS

Say host name resolves to
info.mabell.com; rm -rf *

Command executed is
echo info.mabell.com; rm -rf * | mail bishop

Attacker has executed command on my system

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 82

Need to check any string being used as a command
and originating elsewhere

Good example: when user supplies value for environmental
variable DISPLAY

Say string has any metacharacter meaningful to shell
Examples: | ^ & ; ` < >

If user gives a recipient for mail as
bishop | cp /bin/sh .sh; chmod 4755 .sh

then using this as an address to mail command gives a
setuid to (process EUID) shell

Bug in Version 7 UUCP, some versions of sendmail, some
versions of Web browsers

User Specifying Arbitrary Input

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 83

Programming Tip: Unreliable
Information

Whenever data is read from a source the process (or a
trusted user) does not control, always perform sanity
checking

» for buffers, check length of data
» for numbers, check magnitude, sign
» for network infrastructure data, check validity as allowed by

the relevant RFCs; in DNS example, ; * ‘ ‘ all illegal
characters in name

Example of improper verification of data

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 84

Other Sources

Not just data; also information from system
l assuming ownership implies other things, such as

permission
» okay if the owner had to copy file or affirmatively initiate the

action; not okay otherwise

l assuming a name is tightly bound to an object
» for file descriptors, this is true
» for hard links, this is false
» for symbolic links, this is really false

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 85

on one system, at queued requests; atrun executed
them

• at not setuid; instead, at directory world writable
• atrun setuid, so it could run job as right user

atrun took owner of queue file as the name of the user
who made the request, and executed with that user’s
permission

Bad assumption!
Users can write to files owned by others; eg. mailboxes

Ownership and Permission

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 86

l Mail set of shell commands to root
More generally, put commands into a file owned by another

l Link file into at directory with correct name
As mail and at directory on same device, real easy

l atrun will execute the mail file commands
and as root owns the mailbox, commands execute with root
privileges

The At Attack

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 87

Problem: atrun's validation technique flawed
as anyone can create or link a file into the at directory, can't
trust that at put all files (and hence all jobs) there

Solution: make at setgid and at directory group writable,
but not world writable

then at must be used to do the queueing and the owner stays
associated with the command file

What Happened

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 88

• Lpr spool files are identified by a 3-digit unique
number assigned sequentially (essentially, the job
number)

• Lpr was setuid to root and opened the spool files for
writing without checking to see if the spool file
already existed

• Lpr allowed queueing of symbolic link as well as
regular file

Another Failure to Check

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 89

• Create a small file x containing the password file
for best results, make the root password field empty

• Start printing a big file using a symbolic link
• Queue the password file, again using a symbolic link:

lpr -s /etc/passwd

• Print 999 files
this must be done before the big file finishes printing

• Now print x
lpr x

password file overwritten

Overwriting Any File

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 90

Lpr writes the contents of x into the spool file that is a
symbolic link to /etc/passwd; and writing to a symbolic
link alters the file that the link points to
Lpr can alter any file as it is setuid to root; /etc/passwd
is modified
Assumptions:
• Never be more than 999 files queued at a single time
• Lpr will never overwrite anything not in the spool

directory

Why?

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 91

Fixes

Fixes:
• Make lpr setgid to daemon, etc.
• Check that the spool file being written to does not

exist; if it does, stop, or delete it and then write
Note:
• Increasing the number from 3 digits to more will make

this attack less likely to work (i.e., more difficult to
execute) but will not block it

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 92

Opening Files

Flags to modify open system call:
O_APPEND append data to file when writing
O_CREAT create file if it does not exist

ignored if file exists

O_CREAT|O_EXCL create file if it does not exist
give E_EXIST error if it does exist; symbolic links not followed

On creation, owner and group set as follows:
l owner set to EUID of creating process
l group set to EGID of creating process

some systems: if directory is setgid, file gets directory’s group

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 93

File can change between access check and printing

Fix #1: modify lpd to check access mode of file being
printed relative to user who queued request

Fix #2: Make lpr setgid to daemon
• requires daemon to be able to read any file you want to

print
• can still print any file daemon can read, even if you can't
Many vendors do this (System V variants)

Problem

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 94

If storing information, do not do so in a file or directory
that an untrusted user can write to

sufficient to control access if you do so completely
In at case:
• information here is owner of file
• user can write to directory, so access not completely

controlled
In lpd case:
• user can effectively write to queued file, so access not

completely controlled

Design Tip: Directory and File
Permissions

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 95

Think through very carefully how you check access and
data

Never trust the user to give you correct information or to
abide by your program's expectations

Do not trust data from non-secure servers in the
network (especially the DNS!)

Design Tip: Verification

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 96

Goal: read any file on the system
l sendmail ran setuid to root
l –C option used to test (and debug) sendmail.cf file
l excellent error diagnostics, giving line and pointer to

the error

Sendmail Hole

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 97

sendmail –C protected_file

Output is:
when in the course of human events

---error: bad format

it becomes necessary for a people to declare

---error: bad format

so delete every other line!

Sendmail Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 98

use access(2) system call:
access(config_file, R_OK)

if < 0, real user can't read file; so sendmail shouldn't
read it on his/her behalf

Warning: this solution is probably flawed!
The hole exists only under very specific conditions (more on
this later) and is much smaller, but still exists

One Partial Fix

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 99

When checking for access, check for file type also
• if file is symbolic link, check access on each component in

the links until you reach the end

When checking for ability to write, check ancestor
directories also

more on this later

When checking for ability to read or write, check for real
UID's (GID’s) access, not effective UID's (GID’s) access

Programming Tip: Files and
Directories

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 100

4.2 BSD line printer spooling system:
• Lpr queued files, lpd printed them
• Lpr was setuid to root and spool directory not world-

writable
• Lpr allowed queueing of symbolic link as well as

regular file

Co-operating Processes

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 101

Relied on assumption lpd made about identity of
requester

Specific assumption was that lpr checked it and file could not
be changed afterwards

% ln -s x y
% lpr some_huge_file
% lpr -s x
% rm -f y
% ln -s y some_unreadable_file

and out comes some_unreadable_file …

The Lpr Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 102

Specific Problem

lpr checks file attributes and permissions and assumes
they won’t change

as file in protected directory, seems reasonable

using a symbolic link protects the link and not the object
(file)

so we change the referent after the check (by lpr) and before
the use (by lpd)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 103

Previous fix is roughly
if (access(config_file, R_OK) < 0) error

fp = fopen(config_file, "r");

But may not be good enough ...

Attack: change files between access and fopen

Similar Problem in sendmail

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 104

Want to check permissions and open as a single
operation; cannot be done unless check is for effective
UID/GID

checking for access based on real UID/GID requires access(2)
followed by open(2), and there is a window of vulnerability
between the two; no guarantee that the object opened is the
same as the one checked

Example of class of improper indivisibility flaws

Why This Can Work

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 105

From UNIX Version 7:
l no mkdir(2) system call to create a directory
l used a 2 step process:

mknod(2) to make directory
chown(2) to change owner from root to user

Very Old Bug

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 106

To wind up owning the password file:
l make . writable
l execute mkdir

after mknod, but before chown:
» delete directory made with mknod
» make a link to /etc/passwd

Result: user owns /etc/passwd

Flaw

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 107

In Version 7, mknod(2) had to be executed by root
l must mknod, chown in one operation
l UNIX V7 doesn't have such a primitive
l So add it: mkdir(2) primitive

that's why it was added in BSD

How To Fix This

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 108

When designing, think of what operations must be
atomic

• use atomic primitives when possible
• when not, warn installers (and users) and minimize window

of vulnerability

Design Tip: Atomicity

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 109

Favor system calls over library functions
the former are atomic, the latter usually not

Don't be afraid to fork, reset UID, and use pipes
idea is the unprivileged process does the I/O and other risky
operations; more on this later

Programming Tip: Atomicity

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 110

How executed on most systems:
Kernel picks out interpreter

first line of script is #! /bin/sh

Kernel starts interpreter with setuid bits applied
Kernel gives interpreter the script as argument

Another Race Condition: Shell
Scripts

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 111

Between second and third step, replace script with file
of your choosing

cp /bin/sh .sh; chmod 4755 .sh

You've now compromised the user

Window of Vulnerability

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 112

In general, don't
too easy to create a security hole

If you must, provide a wrapper which is setuid and
which will honor the setuid bits on the script

then simply exec the interpreter yourself, open the script, and
use fstat to check the bits

Design Tip: Setuid Scripts

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 113

Problem: privileged program wants to write to a file
owned by the real (not effective) UID

may have to create it

Why? Allows logging (very useful for system facilities)

Logging from a Privileged Program

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 114

Xterm must run setuid to root to access device files
else, others can interfere with it; also needs to update
protected files

Xterm also want to let user log session (input and
output)

The Xterm Logging Facility

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 115

Xterm did not check access protections on log files
$ cat >! /tmp/imin
newroot::0:0:Watch this, turkeys!:/:/bin/csh
^D
$ xterm -l -lf /etc/passwd -e cat /tmp/imin

… and now you can su to newroot

Saw this before (with sendmail)
Moral: problems recur

Xterm and Logfiles

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 116

New sequence to replace the old one (X11R5?)

if (access(log_file, R_OK) < 0) …

fd = creat(log_file, 2, 0644);
if file doesn't exist

chown(log_file, bishop, sys);
fd = open(log_file, 2);

if file exists

Better: checks access.

First Iteration

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 117

Notice window between access and chown, or creat
and chown

» Attacker uses symbolic link for log file
» Process passes access
» Before chown, make link point to /etc/passwd
» Proceed as in attack #1

But It’s Not Over

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 118

Do open(creat) first, then access check and chown
if ((fd = open(file, O_WRONLY)) > -1){

if (faccess(fd, W_OK) < 0 ||

 (fchown(fd, uid, gid) < 0)){

close file...

Must use faccess and fchown for this!
many systems do not have them

Will not work if fchown or faccess is replaced by chown
or access

Next Iteration

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 119

Eliminate the problem by having the check and open
done atomically (by the kernel)
Idea is to make real UID the effective one

» create pipe
» fork
» setuid of child to real UID (real UID now = effective UID)
» child opens the file for writing, and copies from the pipe to

the file
» parent logs by writing to pipe to child, not directly to file

Better Solution

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 120

These occur when:
• privileged process acts on information that changes between

validation and use
• the checking and use is not atomic

To prevent this hole, ensure checking and passing of
information is atomic

simulated with faccess and fchown
simulated with pipes; OS does the checking

Design Tip: Closing Windows
of Vulnerability

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 121

File descriptors are not synonyms for file names!

File (data + inode information) is object
File descriptor is variable containing object

Bound once, at file descriptor creation; hence, once open, a
file's name being changed doesn't affect what the descriptor
refers to

File name is pointer to object, with loose binding
Name rebound at every reference

Key Point

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 122

More precisely, in something like
if (access("xyz", R_OK) == 0)

 fp = fopen("xyz", "r");

if user can change binding of xyz between the check
(access) and the use (open), the check becomes
irrelevant

Precise Problem

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 123

A Classic Race Condition

Problem:
• access control check done on object bound to name
• open done on object bound to name

no assurance this binding has not changed!!!

Solution: use file descriptors whenever possible, as
once object is bound to file descriptor the binding
does not change.

Warning:
names and file descriptors don’t mix!!!

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 124

Another Instance

Warning:
names and file descriptors don’t mix!!!

fp = fopen(“xyz”, “r”);
if (access("xyz", R_OK) == 0)

... use fp ...

still has the race condition, as opening an object binds
the descriptor to the object, not to the name

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 125

Use faccess(int fd, int mode) if your system
has it

fp = fopen("xyz", "r")

if (faccess(fileno(fp), R_OK) < 0)

fclose(fp)

Safe if path is a regular file/directory or device, and it
and all ancestor directories are unwritable by any
untrusted user
If not safe, open pipe, fork, reset effective UID, access
through the subprocess

access(2) Safe Usage

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 126

Just because you can do it doesn't mean you should!
• Don't rely on access in general

you can in the specific case where no untrusted user can write
to a directory or any of its ancestor directories
If directory or any ancestor is symbolic link, check link, then
repeat full check on referent

• Use subprocesses freely

Programming Tip: Using access(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 127

• These are not closed across fork or exec
• Threat is when privileged parent opens

sensitive file and then spawns a subshell

File Descriptors and Subprocesses

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 128

main()

{

int fd;
fd = open(priv_file, 0); dup(9, fd);
(void) msystem("/bin/sh");

}

Running this and typing
% cat <&9

prints the contents of priv_file

Example of Problem

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 129

Access privileges checked on open or creat only
not checked on read, write, etc.

This is how pipes work; also useful for log files
» open rotected log file as root
» drop privileges to user
» can still log data in protected file

Design Tip: Open Files

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 130

Close sensitive files across execs:
fcntl(9, F_SETFD, 1)

on System V and 4.xBSD; or
ioctl(9, FIOCLEX, NULL)

on 4.xBSD

Programming Tip: Closing Across
exec

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 131

Used to clobber permission bits when creating files:

requested mode

umask (023)

1

1 1 11 11 1 11

1 1 11 1 0 00 resulting mode

File Creation Permissions

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 132

If not set to a safe state (preventing reading or writing
for world), the exec'ed program may create world-
readable/writable core files, or world-writable root-
owned files and/or directories.

May enable attacks (at hole) or allow confidential
information to be seen (in a core dump)

Umask Is Inherited

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 133

Reset this to a safe state
» definitely turn off world write permission; turning off group

write is usually good too
» can turn off read permission for those folks; definitely do so if

there is sensitive information, like passwords, in memory

How?
umask(022)

turns off group, world write

Programming Tip: umask

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 134

By default, root has umask of 0
Daemons start up with logs created mode 666 (a=rw) so
system manager can configure permissions
So, in /etc/rc.whatever, say

umask 022

to make logs mode 644 (u=rw,go=r)

Programming Tip: For root

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 135

There's more to an environment than environment
variables

UIDs root directory of process
GIDs file system paths of referenced files
umask network information
open file descriptors process name

Essentially, environment is the protection state of the
system plus anything that affects that state

A General Observation

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 136

Interaction with environment too complex:
• need to handle environment variables
• need to worry about loaded routines
Goal: minimize interactions

make the program as self-contained as possible

Example of the principle of least common mechanism

Design Principle: KISS

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 137

Very dangerous even when done with wrappers

Shells are too powerful and interaction with environment
can produce unexpected results

example: if arg 0 begins with '–' it's a login (interactive)
shell

Setuid Shell Scripts

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 138

% ls –l /etc/reboot

–rwsr–xr–x 1 root 17 Jul 1992 /etc/reboot

% ln /etc/reboot /tmp/-x

% cd /tmp

% –x

#

And on Some Systems

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 139

Don't assume user cannot control the name of the
program

Here, assuming user can't put a "–" in char 0 of arg 0; also
assuming login shell must be interactive

Don't assume user will enter a valid part of a command
Here, just a name and not a name plus more
Yopu saw this one earlier, too

Design Tip: Assumptions

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 140

Don't base user's ability to control actions of program on
program name

• Okay to have name determine what program does
• Not okay to allow user to alter program's actions during run

based solely on name

Example of Principle of Separation of Privilege
• base such permission on more than one check, such as

name and password

Programming Tip: Names

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 141

If su could not open password file, assumed
catastrophic problem and gave you root to let you fix
system

Attack: open 19 files, then exec su root
At most 19 open files per process, so …

Note: Possibly apocryphal; a non-standard Version 6
UNIX system, if true

That Old su Bug (Apocryphal?)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 142

With privileged programs, it's very simple:
DON'T

Why? Because assumptions made to recover may not
be right

In above, error was to assume open fails only because
password file gone

Example of Principle of Fail-Safe Defaults

Design Tip: Error Recovery

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 143

Track what can cause an error as you write the program

Ask "What should be done if this does go wrong?"

If you can't handle all cases, or determine precisely why
the error occurred, or make assumptions that can't be
verified, STOP

Design Tip: When to Recover

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 144

#include <errno.h>

extern int errno;

Precise cause of failure often put in here
for su, example sets errno to EMFILE
for su, no password file sets errno to ENOENT

Warning: not automatically cleared, so program must
clear it (set it to ENONE or 0)

Programming Tip: Errno

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 145

Programming Tip: General Use of
System Calls

•
.

Never assume a system call will succeed!!!

• If the success of a system call (such as read) is
crucial to the program's success or failure, check the
return code to be sure it is not -1.

• This applies to library calls, functions defined within
the program, and everything

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 146

Next slides give tips about using some functions not
discussed earlier

Format:
include files
call
exact meaning/effect

Non-network calls only here!

Programming Tips: System and
Library Calls

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 147

int access(char *path, int mode)
returns 0 if mode access to path allowed to real UID/GID
returns –1 if not
mode: 4 (read), 2 (write), 1 (execute), 0 (exist)

Warning: dangerous call, unless used carefully; see
earlier discussion

» file must be writeable only by trusted users
» all ancestor directories must be writeable only by trusted

users
» if any component is a symbolic link, iterate on referent

access(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 148

int chmod(char *path, int mode)

int fchmod(int fd, int mode)
» changes mode of file to mode
» if file is open, use fchmod not chmod
» umask ignored

l Warning: if EUID not root, this may turn off setuid,
setgid bits

l Warning: if sticky bit set on directory, only root or
owner of file can delete or rename file

l Warning: follows symbolic links

chmod(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 149

int chown(char *path, int mode)

int fchown(int fd, int uid, int gid)
changes UID, GID as specified; set either to –1 to leave alone
if file is open, use fchown not chown

l Warning: this may turn off setuid, setgid bits
l Warning: changes owner of symbolic link, not what

link points to

chown(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 150

chroot(char *dirname)

Changes the process' notion of root directory "/" to be
dirname

Problems:
» can be used to acquire superuser status
» may not work right if directory tree set up badly

Warning: Don’t do this to restrict superuser
» superuser can issue mknod system call to build device

corresponding to kernel memory
» superuser can then edit root directory field of process in

process table

chroot(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 151

Goal: switch to root
% mkdir /etc

% echo 'root::0:0:0:me:/:/bin/sh' > /etc/passwd

% exec su root

As root directory is inherited across forks and passed
along execs, su uses new /etc/passwd; user is root

chroot Problem #1

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 152

Goal: break out of restricted subtree
Superuser can create (hard) link to directories

Here, "a" was initially
subdirectory of "/x". Superuser
linked it into the tree rooted at
"/y".
User logs in and is chrooted to
have "/y" as her root. She
does:
cd /a/..
and her current working
directory is "/x".

/ (y) /y

a

chroot Problem #2

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 153

Manual says creat can be used for locking, as
you can't creat an existing file:

Idea is user B's fails as B cannot creat a file A
has created

124

User A: User B:
if ((fd = creat("/tmp/x",0))<0)

locked out
if ((fd = creat("/tmp/x",0))<0)

locked out

creat(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 154

User A: User B:
if (link("/etc/rc","/tmp/x")<0)

locked out
if (link("/etc/rc","/tmp/x")<0)

locked out

The Right Way to Do File Locking

Use link(2), which always prevents creation of
an existing link:

If /etc and /tmp are on the same file system,
B's link fails if A's succeeds even if B is root

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 155

int flock(int fd, int operation)

returns 0 if operation succeeds, –1 if not
Operation is any of:

1 (shared) 4 (non-blocking)
2 (exclusive) 8 (unlock)

Warning: advisory lock only; processes may ignore it!

Other Ways to Lock Things

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 156

new process inherits:
real UID, GID seconday group list
working, root dir umask
blocked signals environment variables
effective, saved UID, GID (unless setuid/setgid file)
open file descriptors (unless marked closed on exec)

exec(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 157

#include <fcntl.h>

int fcntl(int fd, F_SETFD, int closeit)

if closeit is 1, close fd on exec
if closeit is 0, leave file open on exec

use fcntl(int fd, F_GETFD, 0) to see status

fcntl(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 158

int fork(void)

inherits a copy of everything from parent

Note: private copy of open file descriptors, environment
variables

so closing them doesn't affect parent

fork(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 159

int fsync(int fd)

Synchronizes disk copy with any in-core modifications
Useful when files need to be updated on disk to keep
consistent with in-core copies

fsync(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 160

int getpgrp(int pid)

Returns group number of process (in effect)
Any process in this group can signal this process

Useful for controlling who can suspend or terminate
process as well as read or write controlling terminal

getpgid(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 161

int ioctl(int tty_fd, TIOC?PGRP, int pid)

get/set process group number
if process not in process group tries to read controlling
tty, gets a SIGTTIN
if process not in process group tries to write controlling
tty, and LTOSTOP bit set in tty local modes, and
process not in vfork(2), gets a SIGTTOU

TIOCGPGRP, TIOCSPGRP

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 162

Always named /dev/tty; refers to terminal from which
process is run

How to change:
• if no associated control terminal, first one opened

becomes control terminal
• disassociate by

ioctl(tty_fd, TIOCNOTTY, 0);

• to pretend a char was typed at tty, use
ioctl(tty_fd, TIOCSTI, &ch)

Control Terminal

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 163

Goal: to run date(1) as though typed at console
char *str = "date\n";

ioctl(tty_fd, TIOCNOTTY, 0);

fd = open("/dev/console", O_WRONLY)

while(*str)
ioctl(fd, TIOCSTI, str);

Now any process in the process group which is
reading the terminal will take date as input

Attack

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 164

Make all terminal devices unwritable by other
Make all terminal devices in group tty
Make all programs which write to terminal setgid to tty

Such as talk, write, etc.

Then open fails; so will TIOCSTI

Fix

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 165

int kill(int pid, int signo)

Sends signal number signo to process pid
l sender’s RUID or EUID must match receiver’s RUID

or saved UID (except if superuser)
l pid = 0 sends to all processes of same process group
l pid < -1 sends to all processes with process group id

of | pid |
l pid = -1 sends to all processes with RUID equal to

sender’s EUID; if EUID = 0, goes to all except init

kill(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 166

int link(char *name, char *newname)

Creates another directory entry for name called
newname

» Both names must be on the same file system
» Superuser can do link to directory
» newname cannot exist

Means that file system really a general graph, not a tree

link(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 167

int read(int fd, char *buf, int nchars)

int write(int fd, char *buf, int nchars)

l File access permissions not rechecked
l Tied to file descriptor, not name
l Can do this to deleted file

... since the file object is not deleted until both the file name is
deleted and all file descriptors for that file object are closed

read(2), write(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 168

Secure Temporary File

create file, open for reading and writing (descriptor fd)
delete file (use unlink)

as file is open, its directory entry is removed but the file is not
yet actually deleted (only files not open used can be deleted)

write data to the file
rewind the file

do this with fseek or rewind; do not close andre open it, or it
will go away!

read data back from the file
close the file

this will delete it automatically

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 169

Advantages and Disadvantages

l file cannot be accessed by any other user
if they can get to the raw device and find the inode, they can
get the data directly; but that means you’re compromised
anyway

l at end of program, temp file automatically deleted
» good: ciel cleanup automatic
» bad: may make PM analysis harder on abnormal termination

+ race condition eliminated
– hides use of disk space

» you see it is gone, but not where

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 170

Problem: how to atomically move a file
Why? Replacing password file

System crash could leave no password file

int rename(char *oldname, char *newname)

Removes newname, names oldname newname
Newname is guaranteed to exist even if system crashes

rename(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 171

void (*signal)(int signo, int (*func)(int signo))

On some versions of the UNIX system:

setuid program
dumps core

core file owned
by owner of
setuid program

⇒

Catch all signals here to prevent such a dump

Note: not possible on Version 7 as on
interrupt, trap reset to default value, then
handler called

On these systems, you can ignore signals,
though

signal(2 or 3)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 172

More on Signals

Why prevent core dumps?
• If world writable, attacker may be able to trick

programs into executing commands as you
• If not, may contain sensitive data (like your password

or secret cryptoigraphic key)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 173

More on Signal

Signals like
SIGTSTP stop signal from keyboard
SIGTTIN stop on background read
SIGTTOU stop on background write

suspend program

Do not rely on data files across these if they,or any
ancestor directory, can be modified by untrusted users.

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 174

int stat(char *path, struct stat *buf)

Returns information (mode, last mod time, etc.) about
file
If path is symbolic link, returns info about what link
points to
Use lstat for info about the link itself
Use fstat to do this with a file descriptor

stat(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 175

if (lstat("/usr/spool/lpr/queuedfile", &stbuf) < 0)

… error handling …

if ((stbuf.st_mode&S_IFMT) == S_IFLNK)

… it's a symbolic link …

… it's not a symbolic link …

Example

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 176

Warning: fstat, stat and lstat may present race
conditions if:
• the file (or any of its ancestor directories) is writeable

by an untrusted user
• taking some action is based on the file characteristics

returned by these calls; and
• any reference is by name, not file descriptor

This means the other system call involved too

Safe: use file descriptors for all system calls involved

stat(2) Races

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 177

int umask(int newumask)

Resets process umask
Note: newumask is interpreted by rules of C, so don't
forget leading "0" for octal numbers!

umask(2)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 178

int utimes(char *file, struct timeval tvp[2])

Changes time of last access (r/w) and update (w) of file
Only owner, superuser can issue this call

... but anyone who can write to disk, memory can change times
in inode

Does not change inode modification (creation) time
... but anyone who can write to disk, memory can change this

time

utimes(2)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 179

char *crypt(char *key, char *salt)

Useful for password validation
l key is cleartext password
l salt is first 2 chars of hashed password

can just give pointer to hashed password, as only first 2
characters used

l hash of key with salt is returned

crypt(3)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 180

This returns 1 if given is correct password, else 0

int ispassword(char *given, char *hash)

{

return(strcmp(hash, crypt(given, hash) == 0)

}

Password Testing

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 181

Note: cleartext password left in memory
Bad news if there’s a core dump, so …
for(g = given; *g; g++)

*g = ‘\0’;

Can also use bzero(3) or memset(3) if you know
that the password is under some specific length:
(void) bzero(given, sizeof(given))

Memory Use

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 182

char *getusershell(void)

If your program needs a shell, use environment variable
SHELL but first check it is legal

Otherwise you might exec something you don't plan to

while((sp = getusershell()) != NULL)

if (strcmp(proposedshell, sp) == 0)

…it's okay …

… it's not a legal shell …

getusershell(3)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 183

char *mktemp(char *template)

This makes a unique file name
Race condition between making file name and opening it in
program

int mkstemp(char *template)

Like mktemp, but returns file descriptor of opened temp
file

Avoids race condition in program; may or may not eliminate
race condition completely (depends on implementation)

mktemp(3), mkstemp(3)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 184

int rand()

Generates a pseudorandom integer between 0 and
2147483647 (= 2 —1)

Warning: low order bits not very random
Use rand48, random instead. Even these are not
suitable for cryptographic purposes, though

31

Pseudo-Random Number Generation

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 185

Seeding the PRNG

Do not use time of day, process ID, or any function of
known (or easily obtained) information

Attacker can guess the seed, and regenerate the
sequence, and use that as a key to regerate the
relevant random numbers.

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 186

Programming Tip: Good Style

• use a system like lint to check your code
If using ANSI C, the GNU compiler has many wonderful options
that have a similar effect; I recommend -Wall -Wshadow
-Wpointer-arith -Wcast-qual -W

• test using random input and any bogosities you
can think about

See the marvelous article "An Empirical Study of the Reliability of
Unix Utilities," by Miller, Fredriksen, and So in Communications
of the ACM 33(12) pp. 32-45 (Dec. 1990)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 187

Example programs/functions

• lsu, program to give user privileges of a
restricted account

• mpopen, function to run popen or system
safely

• settcpdump, program to give tcpdump setuid
setting

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 188

lsu Suite

lsu, su, nsu

A suite of programs to implement a new version of
su and a group account manager lsu

• lsu

Allow a user to su to a second account with
knowledge only of his/her password

• nsu

Like su, but HOME and USER environment
variables are always reset

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 189

Design Considerations #1

Principle:

• separation of privilege

Constrain access upon: authorization, time place

Implementation:

• use an access control file (see “lsu/perm.c”):

userid userlist locations times

account to change to

who can change to that account
which ttys they can(not) use

when they can do it

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 190

Design Considerations #2

Principle:

• least privilege

Cannot require this but instead strongly
recommend … do not use this to control access to
the superuser account

Why:

• superuser can alter access control file, but no-one
else can (the program enforces this; see function
chkperm() in file “lsu/perm.c”, lines 209-301)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 191

Design Considerations #3

Guideline:

• changing privileges should be an auditable event

this means it should be logged

Why:

• in case there is a need to determine who accessed
a particular account using any of this suite's
programs, the log can tell who accessed what
when.

Implementation:

• see the file “lsu/log.c”

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 192

Design Considerations #4

Guideline:

• changing should be traceable to an individual

Not possible to enforce, but it can be enforced to
the granularity of a single account.

Implementation:

• only users of specifically authorized accounts may
change to a specific account (see the routine
perms() in lsu/perm.c, lines 23-176); note a
wildcard mechanism is available (see isinlist() in
lsu/util.c, lines 64-113)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 193

Design Considerations #5

Principle:

• separation of privilege again

how can we be sure the user of lsu is authorized to
use the account under which lsu is being run?

Implementation:

• require the user to supply the correct password for
the account being used (lsu) or the new account
(su, nsu) (see line 118 in “lsu/lsu.c”, which call
chkpasswd() (“lsu/perms.c”, lines 197-203), which
call vfypwd (“lsu/util.c”, lines 115-142)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 194

Design Considerations #6

Guideline:

• protect against strange environments

The PATH and SHELL must be properly set,
especially if suing to root

Implementation:

• simply reset both to a pristine state; which depends
on the specific type of system being run (see
“lsu/sysdep.h”, the macro LSUPATH), and the
routines getshell(), envdoit(), and chkpath() in
“lsu/lsu.c”, lines 230-381)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 195

Notes

• User identity obtained from getpwuid(getuid()), not
getlogin (see lines 213-223 of “lsu/lsu.c”)

• No indication of why access is denied if it is; that
way, you can't use these programs to guess
passwords

• Note you can log even after the setuid to new
identity (which may not be root) because the log
file is still open, and access is checked only at
open (but line 172 of “lsu/lsu.c” may fail)

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 196

More Notes

• Note the use of execve (“lsu/lsu.c”, line 166) to
reset the new environment

• Were I to do it again, I would change the
environment check to clear everything, and reset
the umask, IFS, SHELL, and PATH (and any
LD_ variables or their ilk) to known values that
included only trusted directories. Not done at
the time because we needed to preserve the
user’s existing environment as much as possible
(and all these users were trusted)

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 197

Some Reflections

Is this the best way to solve the problem?
First, what do we want?

How would we do it on a really secure system?
Then, how can we do it?

Should we use setuid/setgid or something else?

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 198

Reference Monitor

A security mechanism sitting between the program
and the resource being protected:

• tamperproof

• complete (ie, always invoked)

• verifiable

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 199

Last implies:

• the privileged code should be as small and as
simple as possible

• code accessing the resource should be in a
separate module

Applications to UNIX System
Programming

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 200
Writing Privileged Programs (Bishop, ©1994)

Privileged Servers

Create a privileged server to access and manipulate
the resource

+ isolates all privileged code from the application or
system program

+ need no longer worry about changing privilege
That is, user environment is no longer relevant as all
manipluations are done under the server's environment

+ other systems can use it, too

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 201

More Privileged Servers

– Lots harder to assure that data sent over a
network is authentic and unmodified than to give
such assurances for data internal to the computer

In other words, there is a direct path from the prigvileged system
program to the kernel, so in an attack either the kernel or the
program must be compromised; with a server, the attacker can
now compromise the server and, if it is on a network, this is quite
easy …

– Another server to feed and care for (increasing
administrative load)

– other systems can use it, too

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 202

Compartmentalization

Whenever a setuid program is necessary:

• isolate all code that needs to be privileged into a
small module

• write a small program to implement these
functions

You also have to put any special access control in here, too

• make your program not setuid and the small one
setuid, and have your program invoke this small
setuid program

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 203

What UNIX Systems Really
Need

A way to make some modules
(functions, whatever) within a
program privileged without making
the entire program privileged

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 204

Applying This to lsu

Why not a server?
Idea: have the server execute the commands for us

Problem: network authentication problem too hard
Compartmentalization

All checking and resetting done in getshell() and its minions
Good modularization throughout

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 205

mpopen

Goal: provide a safe version of popen(3)

Implementation: reset environment completely

Example:
setproc("PATH=/bin:/usr/bin");

setproc("IFS=' \t\n'");

setproc("HOME");

pp = mpopen("date", "r");

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 206

Design Consideration #1

Server or routine?
Written as function because server too
complex due to authentication problem

Compartmentalization
Tight; 5 routines do everything, all are very
small
mpopen, mpclose set up call to (or wait for) child
schild invoke child, reset environment and

file descriptors
setenv, setumask reset environment

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 207

Design Consideration #2

Guideline: Fail-Safe Defaults
Defaults provided for PATH, SHELL, and IFS
Caller can override these

See "mpopen/setproc.c", lines 9–12; overriding
is done in mpopen(), lines 53–84

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 208

Design Consideration #3

Guideline: Environment reset completely

Use of execve in schild, along with closing of all
unused file descriptors

See lines 38–44, 63 and 64 in schild()

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 209

settcpdump

Goal: need to make a specific program setuid to
root

• Only 3 users (a, b, and c) will ever
compile and run tcpdump
All are trusted users

Problem: if anyone else finds this, they can run
it too …

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 210

Goal: assume a is using it. How can we keep
him from being tricked into making an arbitrary
setuid to root program?

Approach: check to be sure tcpdump is a
regular file that is executable by all and is newer
than 1 minute old, and only owner and group
can write to ancestor directories.

Problem: a can still be tricked, but window of
vulnerability is very small

Implementation Consideration #1

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 211

Implementation Consideration #1 (con't)

Use lstat(2)to:
• check for owner (lines 91–95)

be sure the runner is the owner

• check for file type (lines 96–100)
be sure the file is a regular file (not a symbolic link)

• check for age (lines 108–113)
be sure time of last modification is under 1 minute old

All lines are in main() in
"settcpdump/settcpdump.c"

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 212

Implementation Consideration #2

Who can write the directory?
• Check permissions not only of current directory but also

of all ancestors
• If anyone other than the runner or his/her group can

write, exit

See lines 115–125 of main(), and issafedir() in
"settcpdump/issafedir.c"

UNIX Security: Writing Secure Programs

May 13, 1996SANS ‘96

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 213

Implementation Consideration #3

Goal: be sure one of a, b, c is running the
program

Approach: use getpwuid(getuid()) to get runner;
after verifying it is allowed used, validate with
password. Note on error, password is required
anyway

See lines 55–81 in main() in
"settcpdump/settcpdump.c"

UNIX Security: Programming (Bishop, ©1994-1996) SANS ‘96, Mon-5, # 214

For More Information

Kochan and Wood, UNIX™ System Security, Hayden
Books ©1985; ISBN 0-8104-6267-2
Rather dated, and quite specific for System V; but it's the only
book with anything substantial for secure programming

Ferbrache and Shearer, UNIX Installation, Security &
Integrity, Prentice-Hall ©1993; ISBN 0-13-015389-3
Good overview of functions, but limitedto those; no design
principles

