
November 23, 1998

UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part IV

Python Gist Graphics Manual

Written by

Zane Motteler
Lee Busby

Fred N. Fritsch

2

Python Gist Graphics Manual

Copyright (c) 1996.

The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1
Using the Python Graphics Interface 2
About This Manual 3

CHAPTER 2: Introduction to Python Gist Graphics 5
PyGist 2-D Graphics 5
PyGist 3-D Graphics 7
General overview of module pl3d 7
Overview of module plwf 8
Overview of module slice3 9
movie.py: PyGist 3-D Animation 9
Function Summary 12

CHAPTER 3: Control Functions 17
Device Control 17
Window Control 17
Hard Copy and File Control 19
Other Controls 21
animate: Control Animation Mode 21
palette: Set or Retrieve Palette 21
plsys: Set Coordinate System 22
redraw: Redraw X window 22

CHAPTER 4: Plot Limits and Scaling 23
Setting Plot Limits 23
limits: Save or Restore Plot Limits 23
ylimits: Set y-axis Limits 24
Scaling and Grid Lines 24
logxy: Set Linear/Log Axis Scaling 24
gridxy: Specify Grid Lines 25
Zooming Operations 25

CHAPTER 5: Two-Dimensional Plotting Functions 27
Output Primitives 27
plg: Plot a Graph 27
1

plmesh: Set Default Mesh 29
plm: Plot a Mesh 30
plc: Plot Contours 32
plv: Plot a Vector Field 33
plf: Plot a Filled Mesh 35
plfc: Plot filled contours 37
plfp: Plot a List of Filled Polygons 39
pli: Plot a Cell Array 40
pldj: Plot Disjoint Lines 42
plt: Plot Text 43
pltitle: Plot a Title 44
Plot Function Keywords 45

CHAPTER 6: Inquiry and Miscellaneous Functions 49
Inquiry and Editing Functions 49
plq: Query Plot Element Status 49
pledit: Change Plotting Properties 49
pldefault: Set Default Values 50
Miscellaneous Functions 52
bytscl: Convert to Color Array 52
histeq_scale: Histogram Equalized Scaling 52
mesh_loc: Get Mesh Location 52
mouse: Handle Mouse Click 53
moush: Mouse in a Mesh 54
pause: Pause 54

CHAPTER 7: Three-Dimensional Plotting Functions 55
Setting Up For 3-D Graphics 55
The Plotting List 55
Functions For Setting Viewing Parameters 56
Lighting Parameters 57
Display List 58
3-D Graphics Control Functions 58
Getting a Window 58
Displaying the Gnomon 58
Plotting the Display List 59
The variable _draw3 and the idler 60
Data Setup Functions for Plotting 61
Creating a Plane 61
Creating a mesh3 argument 61
The Slicing Functions 64
slice3mesh: Pseudo-slice for a surface 64
slice3: Plane and Isosurface Slices of a 3-D mesh 65
2

slice2 and slice2x: Slicing Surfaces with planes 66
At Last - the 3-D Plotting Functions 67
plwf: plot a wire frame 67
pl3surf: plot a 3-D surface 71
pl3tree: add a surface to a plotting tree 74
Contour Plotting on Surfaces: plzcont and pl4cont 77
Animation: movie and spin3 80
The movie module and function 80
The spin3 function 83
Syntactic Sugar: Some Helpful Functions 85
Specifying the palette to be split: split_palette 85
Saving and restoring the view and lighting: save3, restore3 85

CHAPTER 8: Useful Functions for Developers 87
Find 3D Lighting: get3_light 87
Get Normals to Polygon Set: get3_normal 87
Get Centroids of Polygon Set: get3_centroid 88
Get Viewer’s Coordinates: get3_xy 88
Add object to drawing list: set3_object 88
Sort z Coordinates: sort3d 89
Set the cmax parameter: lightwf 89
Return a Wire Frame Specification: xyz_wf 90
Calculate Chunks of Mesh: iterator3 90
Get Vertex Values of Function: getv3 91
Get Cell Values of Function: getc3 92
Controlling Points Close to the Slicing Plane: _slice2_precision 92
Scale variables to a palette: bytscl, split_bytscl 93
Return Vertex Coordinates for a Chunk: xyz3 93
Find Corner Indices of List of Cells: to_corners3 94
Timing: timer, timer_print 94

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know 95
The Workhorse: gistCmodule 95
Memory Maintenance: PyObjects 95
Memory Management: ArrayObjects 97
Memory Management: naked memory 98
Computing contour curves: contour 98
Computing slices: slice2, slice2x, _slice2_part 99
Some Yorick-like Functions: yorick.py 101
Additional Array Operations: arrayfnsmodule 102
Counting Occurrences of a Value: histogram 102
Assigning to an Arbitrary Subset of an Array: array_set 103
Sorting an array: index_sort 103
3

Interpolating Values: interp 103
Digitizing an array: digitize 104
Reversing a Two-Dimensional array: reverse 104
Obtaining an Equally-Spaced Array of Floats: span 104
Effective Length of an Array: nz 105
Finding Edges Cut by Isosurfaces: find_mask 105
Order Cut Edges of a cell: construct3 105
Expand cell-centered values to node-centered values: to_corners 106
More slice3 details 107
Standard ordering for the four types of mesh cells 107
Standard numbering of cells in a regular rectangular mesh 108
How slice3 works 109
4

5

6

UCRL-MA-128569, Manual 4

ies for
ctions of
 labels,
ation,
graphics
details
s, but
rticular
f what

lotting
rfaces,
tter ob-

graph-
ser can
to open
LOT; it
 Basis
til they

 Plotter
e which
e lower-

Na-
color)
(writ-
ick
r maps
 and col-
e anima-
CHAPTER 1: The Python Graphics
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilit
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross se
three dimensional meshes, with many options regarding line widths and styles, markings and
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rot
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to
which are relatively independent of the underlying graphics engine, concealing the technical
from all but the most intrepid users. Obviously different graphics engines offer different feature
the intention is that when a user requests a particular type of plot which is not available on a pa
engine, the low level interface will make an intelligent guess and give some approximation o
was asked for.

There are two such graphics packages which are relatively independent of the underlying p
library. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Su
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plo
jects, which receive geometric objects to plot from Graph objects, and which interface with the
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable u
create one or more, handy when one wishes (for instance) to plot on a remote machine, or
graphics windows of different types at the same time. The second such package is called EZP
is built on top of OOG, and provides an interface similar to the command-line interface of the
EZN package. Some of our long-time users may be more comfortable with this package, un
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the
objects need know about graphics engines. At present we have two types of Plotter objects, on
knows about Gist and one which knows about Narcisse. Some power users may prefer to use th
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore
tional Laboratory. It features support for three common graphics output devices: Xwindows, (
PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small
ten directly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with ‘‘good’’ t
marks and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolo
on such meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded
ored surface plots, isosurface and plane cross sections of meshes containing data, and real-tim
November 23, 1998

CHAPTER 1: The Python Graphics Interface

-

ecially
luding
tions of
ctions of

, Nar-
ough it
ever,

o write

t have

n, you
e excel-
 way

follows.

n-

ci-

h will
et the

. Nar-
hich the

se.
tion (moving light sources and rotations). The Python Gist module gist.py and the associated Py
thon extension gistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is esp
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, inc
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combina
these are also possible. We have also added the capability of doing isosurfaces and plane se
meshes, which is not available in the original Narcisse. The Python Narcisse module narcissemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist
cisse does not currently write automatically to standard files such as PostScript or CGM, alth
writes profusely to its own type of files unless inhibited from doing so, as described below. How
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you t
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do no
Python, you can obtain it free from the Python pages at http://www.python.org . You may
need the help of your system administrator to install it on your machine. Once you have Pytho
have to know at least a smattering of the language. The best way to do this is to download th
lent tutorial from the Python pages, sit down at your computer or terminal, and work your
through it.

Before using the Python Graphics Interface, you should set some environment variables as

• Your PATH variable should contain the path to the python executable.

• You should set a PYTHONPATH variable to point to all directories that contain Python exte
sions or modules that you will be loading, which may include the OOG modules, ezplot , and
narcissemodule or gistCmodule . Check with your System Manager for the exact spe
fications on your local systems.

• Unless you create your own plotter objects, PyGraph will create a default Gist Plotter whic
plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter, then s
variable PYGRAPH to Nar or Narcisse .

A Gist Plotter object automatically creates its own Gist window and then plots to that window
cisse, however, works differently. Narcisse is established as a separately running process, to w

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a Narcis1 To
do so, you need to go through the following steps:

1. Set your environment variable PORT_SERVEUR2 to 0.

1. I am going to assume that you already have Narcisse installed on your system, and its directory path in your PATH variable.

2. We did tell you that Narcisse was French, didn’t we?
2

About This Manual

ing
our
e-

off a

raph).

age in
he re-
ntists

er their
ine.

ations,
d So-
French
 yet been

ay be

Py-
2. Start up Narcisse by typing in the command Narcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking its OK button.

3. You will note that there is a server port number given on the GUI. Set your PORT_SERVEUR vari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notify
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up y
quota. In addition, the running commentary on file writing and computation on the GUI is tim
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn
number of options via the GUI before you begin. They are all under the STATE submenu of the
FILE menu, and should be set as follows: set ‘‘Socket compute ’’ to ‘‘ no ,’’ set ‘‘ File
save ’’ to ‘‘ nothing ,’’ set ‘‘ Config save ’’ to ‘‘ no ,’’ and set ‘‘Ihm compute ’’ to ‘‘ no .’’
(‘‘IHM’’ are the French initials for ‘‘GUI.’’)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyG
They are:

• I. EZPLOT User Manual

• II. Object-Oriented Graphics Manual

• III. Plotter Objects Manual

• IV. Python Gist Graphics Manual

• V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics pack
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. T
maining manuals give low-level plotting details that should be of interest only to computer scie
developing new user-level plot commands, or to power users desiring more precise control ov
graphics or wanting to do exotic things such as opening a graphics window on a remote mach

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workst
and some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP an
laris boxes, however, and Narcisse is not available for distribution outside this laboratory. Our
colleagues are going through the necessary procedures for public release, but these have not
crowned with success. Gist, however, is publicly available as part of the Yorick release, and m
obtained by anonymous ftp from ftp-icf.llnl.gov ; look in the subdirectory /ftp/pub/
Yorick .

A great many people have helped create PyGraph and its documentation. These include

• Lee Busby of LLNL, who wrote gistCmodule , and wrought the necessary changes in the
thon kernel to allow it to work correctly;
3

CHAPTER 1: The Python Graphics Interface

r
ot bla-

d
oble,

men-

riat A
Jean-

col-
stolen
ission

er num-
• Zane Motteler of LLNL, who wrote narcissemodule , ezplot , the OOG, and some othe
auxiliary routines, and who wrote much of the documentation, at least the part that was n
tantly stolen from David Munro and Steve Langer (see below);

• Paul Dubois of LLNL, who wrote the PDB and Ranf modules, and who worked with Konra
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Gren
France) and James Hugunin (Massachusetts Institute of Technology) on NumPy, the numeric ex-
tension to Python, without which this work could not have been done;

• Fred Fritsch of LLNL, who produced the templates and did some of the writing of this docu
tation;

• Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commissa
L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Courtaud,
Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

• David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly
from their Gist documentation; however, any inaccuracies which crept in during the transm
remain the authors’ responsibility.

 The authors of this manual stand as representative of their efforts and those of a much larg
ber of minor contributors.

Send any comments about these documents to ‘‘support@icf.llnl.gov ’’ on the Internet or
to ‘‘ support ’’ on Lasnet.
4

UCRL-MA-128569, Manual 4

nal
 Post-
ritten
ick
ds, or
on Gist

 which

ese

 final

ons of

ed by

.

CHAPTER 2: Introduction to
Python Gist Graphics

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore Natio
Laboratory. It features support for three common graphics output devices: X-Windows, (color)
script, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (w
directly to Xlib), portable, efficient, and full-featured. It produces x-vs-y plots with ‘‘good’’ t
marks and tick labels, 2-D quadrilateral mesh plots with contours, filled contours, vector fiel
pseudocolor maps on such meshes. Some 3-D plot capabilities are also available. The Pyth
module gist.py and the Python extension gistCmodule provide a low-level Python interface to
this library as far as 2-D is concerned. In addition, there are several other Python modules
interface with the 2-D graphics to produce 3-D graphics and animation: movie.py (supporting ani-
mation), pl3d.py (basic 3-D plotting algorithms), plwf.py (wire frame plotting), and
slice3.py (providing mesh capability with isosurface and plane slicing). Collectively all of th
interface modules are known as PyGist.

This chapter will summarize the plotting features that are available in PyGist, and list (in the
section) the functions that are to be described in future chapters.

2.1 PyGist 2-D Graphics

In two dimensions, PyGist supplies functions to plot curves, meshes (with various combinati
contours, filled mesh cells, and vector fields on the mesh, with color-filled contours in the future), sets
of filled polygons, cell arrays, sets of disjoint lines, text strings, and a title. These are all provid
the Python module gist.py .

We will show a couple of simple examples below to give the reader a flavor of the interface

Example 1

In the first example we simply plot a straight line from (1, 0) to (2, 1) . Note that only two coor-
dinates are specified for y ; x is not specified. In such a case, the values of x default to the integers
from 1 to len (y) .

from gist import * # Put plot functions in name space.
pldefault (marks = 1, width = 0, type = 1, style = "work.gs",
 dpi = 100) # Set some defaults.
winkill (0) # Kill any existing window.
window (0, wait = 1, dpi = 75)
November 23, 1998

CHAPTER 2: Introduction to Python Gist Graphics

number
he form
iven

colors.
plg ([0, 1]) # The first positional argument is y.

As can be deduced from this example, most PyGist function calls can be augmented with a
of optional keyword arguments. These can (usually) be supplied in any order, and each is of t
keyword= value . Throughout this manual, a list of the available keywords for a function is g
with the description of the function.

Example 2

The next example computes and plots a set of nested cardioids in the primary and secondary

fma()
x = 2 * pi * arange (200, typecode = Float) / 199.0
for i in range (1, 7):
 r = 0.5 * i - (5 - 0.5 * i) * cos (x)
 s = 'curve ' + `i` #Backticks produce something printable.
 plg (r * sin (x), r * cos (x), marks = 0, color = - 4 - i,
 legend = s) # Curves unmarked, in colors.
(See next page.)
6

PyGist 3-D Graphics

f the
ns to
en ask
he fol-

e

s (e. g.,
built
nts for
cution.
plot-

 or not
deter-
2.2 PyGist 3-D Graphics

2.2.1 General overview of module pl3d

The Python module pl3d.py contains the basic 3-D plotting algorithms and is the workhorse o
PyGist 3-D graphics. The philosophy behind 3-D plotting is to instruct the 3-D plotting functio
accumulate information about the plot until such time as the information is complete, and th
that the picture be drawn. The information about the plot is stored in a Python list containing t
lowing information:

• The orientation of the axes, the location of the origin, and the distance of the viewpoint;

• A set of pairs of plot functions to call and their argument lists; and

• A collection of one or more quintuples specifying the lighting (it is possible to specify multipl
light sources).

The first and third items above default to reasonable values if the user does not call function
rot3 , mov3, aim3 , set3_light ., etc.) to set them. The list described in the second bullet is
by a set of one or more calls to the various plotting functions, which create the list of argume
each call and then add the function name and argument list pair to the plot list for future exe
When the list is complete, a call to draw3 causes the list to be traversed, and at this point each
ting function on the list executes with the argument list that was built when it was first called.

2.2.2 Overview of module plwf

The main function of interest in plwf.py is the function plwf (‘‘plot wire frame’’), which enables
the user to plot an arbitrary wire frame on a quadrilateral grid. The grid may be see-through
(cells filled with the background color). In the latter case, the drawing order of the zones is
7

CHAPTER 2: Introduction to Python Gist Graphics

arly
pective
ndered

lues set
ight or

until
to
t

mined by a simple ‘‘painter’s algorithm’’, which works fairly well if the mesh is reasonably ne
rectilinear, but can fail even then if the viewpoint is chosen to produce extreme fisheye pers
effects. One must look at the resulting plot carefully to be sure the algorithm has correctly re
the model in each case.

A 3-D wire mesh can also be plotted using shading and lighting effects as determined by va
in the pl3d module; or the zones can be colored (using the current palette) by their average he
by the values of some function, which may be zone-centered or node-centered.

Examples

The following is a fairly simple example of a wire mesh plot.

from pl3d import *
set_draw3_ (0)
x = span (-1, 1, 64, 64)
y = transpose (x)
z = (x + y) * exp (-6.*(x*x+y*y))
orient3 ()
light3 ()
from plwf import *
plwf (z, y, x)
[xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)

Calling set_draw3_ with argument zero tells the 3d plotting routines not to draw the graph
asked (by a call to draw3). orient3 and light3 set the orientation and lighting parameters
default values when called with no arguments. (light3 is irrelevant for this durface, since it is no
shaded.) The plwf call puts this surface on the drawing list (plwf = ‘‘plot wire frame.’’) The
8

movie.py: PyGist 3-D Animation

e
s-

 (Cur-
adrilat-
 to be
 to
val-
 more

ace the

 an
. These
f the in-

ted

t

awing
me pre-
nt of time
draw3 call then causes the drawing list to be plotted. draw3 returns the maxima and minima of th
x and y variables, which must then be sent to the limits function to prevent the plot appearing di
torted. (Ah, the perils of using low level graphics.)

2.2.3 Overview of module slice3

Module slice3.py contains two plotting functions of interest. First, pl3surf can be used for
graphing surfaces on an arbitrary two-dimensional mesh with filled cells and no mesh lines.
rently plwf can be used to do the same thing in the case of a mesh all of whose cells are qu
eral, and has more flexibility, in that it allows mesh lines to be drawn and/or allows for the mesh
see-through.) Secondly, pl3tree is a plotting function that can be called multiple times in order
have several surfaces drawn on the same graph. pl3tree (as its name suggests) creates a tree of
ues sorted as to when they will be plotted on the screen; if the algorithm works correctly, then
distant cells are plotted first, then covered by closer cells which are plotted later, giving the surf
correct appearance.

Surfaces to be plotted by pl3surf or pl3tree can be generated by taking plane sections of
arbitrary mesh or by creating isosurfaces for some function or functions defined on the mesh
planes and isosurfaces can themselves be sliced and portions discarded, to enhance visibility o
terior. The functions mesh3 and slice3mesh take raw input data and put it into the form accep
by slice3 , which can form plane sections or isosurfaces through the mesh. Functions slice2
(which returns the portion of a surface in front of the slicing plane) and slice2x (which returns the
two parts of a surface sliced by a plane) complete the triumvirate of slicing functions.

The algorithms in slice3 are independent of the underlying graphics. Thus slice3 may equal-
ly well be used with Narcisse graphics.

2.3 movie.py : PyGist 3-D Animation

The module movie.py supports 3-D real time animation. Function movie accepts as argumen
the name of a drawing function which has as its single argument a frame number; movie then calls
this drawing function within a loop, halting when the function returns zero. The idea is that the dr
function increments from the previous frame and draws the new frame, returning zero when so
defined event takes place, e. g., some set number of frames has been drawn, or a certain amou
has elapsed. The function spin3 in module pl3d calls movie ; the drawing function _spin3 draws
the successive frames of a rotating 3-D plot. The demonstration module demo5.py contains an ex-
ample of a shaded surface with a moving light source; the drawing function, demo5_light , moves
the light and draws the next frame.

Examples

The following example is explained by comments in the code. It is taken from demo5.py . (To
repeat, demo5_light is a function which appears in demo5.py .)

First we define the mesh and functions on it.
(Note: nx == ny == nz == 20)
9

CHAPTER 2: Introduction to Python Gist Graphics
xyz = zeros ((3, nx, ny, nz), Float)
xyz [0] = multiply.outer (span (-1, 1, nx),
 ones ((ny, nz), Float))
xyz [1] = multiply.outer (ones (nx, Float),
 multiply.outer (span (-1, 1, ny), ones (nz, Float)))
xyz [2] = multiply.outer (ones ((nx, ny), Float),
 span (-1, 1, nz))
r = sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
theta = arccos (xyz [2] / r)
phi = arctan2 (xyz [1] , xyz [0] + logical_not (r))
y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)
mesh3 creates an object which slice3 can slice. The
isosurfaces will be with respect to constant values
of the function r * (1. + y32)].
m3 = mesh3 (xyz, funcs = [r * (1. + y32)])
[nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50)
 # (inner isosurface)
[nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.)
 # (outer isosurface)
pxy = plane3 (array ([0, 0, 1], Float), zeros (3, Float))
pyz = plane3 (array ([1, 0, 0], Float), zeros (3, Float))
[np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
 # (pseudo-colored plane slice)
[np, xyzp, vp] = slice2 (pxy, np, xyzp, vp)
 # (cut slice in half, discard "back" part)
[nv, xyzv, d1, nvb, xyzvb, d2] = \
 slice2x (pxy, nv, xyzv, None) # halve inner isosurface
[nv, xyzv, d1] = \
 slice2 (- pyz, nv, xyzv, None)
 # (...halve one of those halves)
[nw, xyzw, d1, nwb, xyzwb, d2] = \
 slice2x (pxy , nw, xyzw, None)
 # (split outer isosurface in halves)
[nw, xyzw, d1] = \
 slice2 (- pyz, nw, xyzw, None) # discard half of one half
fma () # frame advance
split_palette causes isosurfaces to be shaded in grey
scale, plane sections to be colored by function values
split_palette ("earth.gp")
gnomon (1) # show small set of axes
clear3 () # clears drawing list
set_draw3_ (0) # Make sure we don't draw till ready
Create a tree of objects and put on drawing list
pl3tree (np, xyzp, vp, pyz)
pl3tree (nvb, xyzvb)
10

movie.py: PyGist 3-D Animation

t pos-
pl3tree (nwb, xyzwb)
pl3tree (nv, xyzv)
pl3tree (nw, xyzw)
orient3 ()
set lighting parameters for isosurfaces
light3 (diffuse = .2, specular = 1)
limits (square=1)
demo5_light (1) # Causes drawing to appear

demo5.py also contains code which rotates the above object in real-time animation. It is no
sible to illustrate that here.
11

CHAPTER 2: Introduction to Python Gist Graphics
2.4 Function Summary

Here is a summary of the functions which are described in the remainder of this manual.

• Control functions (CHAPTER 3: “Control Functions”)

window ([n] [, <keylist>]) # open or select device n
keywords: display, dpi, dump, hcp, legends, private,

style, wait
winkill ([n]) # delete device n
n = current_window () # determine active device
fma () # frame advance

• Plot limits and scaling (CHAPTER 4: “Plot Limits and Scaling”)

old_limits = limits ()
old_limits = limits (xmin [, xmax[, ymin[, ymax]]]

[, <keylist>])
keywords: square, nice, restrict

limits (old_limits)
ylimits (ymin[, ymax])
logxy (xflag[, yflag])
gridxy (flag)
gridxy (xflag, yflag)
zoom_factor (factor)
unzoom ()

• Two-dimensional plotting functions (CHAPTER 5: “Two-Dimensional Plotting Functions”)

plg (y [, x][, <keylist>]) # plot a graph
keywords: legend, hide, type, width, color, closed,

smooth, marks, marker, mspace, mphase, rays
plmesh ([y, x][, ireg][, triangle=tri_array])
 # set default mesh
plmesh () # delete default mesh
plm ([y, x][, ireg][, <keylist>])
 # plot mesh

keywords: boundary, inhibit, legend, hide, type, width,
color, region

plc (z[, y, x][, ireg][, <keylist>])
 # plot contours

keywords: levs, triangle, legend, hide, type, width,
color, smooth, marks, marker, mspace, mphase,
region

plfc (z[, y, x][, ireg][, <keylist>])
 # plot filled contours

keywords: contours, colors, region, triangle, scale
12

Function Summary

”)
plv (vy, vx[, y, x][, ireg][, <keylist>])
 # plot vector field

keywords: scale, hollow, aspect, legend, hide, type,
width, color, smooth, marks, marker, mspace,
mphase, triangle, region

plf (z[, y, x][, ireg][, <keylist>])
 # Plot a filled mesh

keywords: edges, ecolor, ewidth, legend, hide, region,
top, cmin, cmax

plfp (z, y, x, n[, <keylist>])
 # Plot filled polygons

keywords: legend, hide, top, cmin, cmax
pli (z[[, x0, y0], x1, y1][, <keylist>])
 # Plot a cell array

keywords: legend, hide, top, cmin, cmax
pldj (x0, y0, x1, y1[, <keylist>])
 # Plot disjoint lines

keywords: legend, hide, type, width, color
plt (text, x, y[, <keylist>])

keywords: tosys, font, height, opaque, path, justify,
legend, hide, color

pltitle (title) # Plot a title

• Inquiry and Miscellaneous functions (CHAPTER 6: “Inquiry and Miscellaneous Functions

plq () # Query plot element status
legend_list = plq ()
 **** RETURN VALUE NOT YET IMPLEMENTED ****
plq (n_element[, n_contour])
properties = plq (n_element[, n_contour])
pledit ([n_element[, n_contour],] <keylist>)

 # Change Plotting Properties of Current Element
The keywords can be any of the keywords that apply to the current element.

pldefault (key1=value1, key2=value2, ...)
 # Set default values
The keywords can be most of the keywords that can be passed to the plotting

commands.
bytscl (z[, top=max_byte][, cmin=lower_cutoff]

[, cmax=upper_cutoff])
 # Convert data to color array

histeq_scale (z[, top=top_value][, cmin=cmin][,
cmax=cmax]) **** NOT YET IMPLEMENTED ****
 # Histogram Equalized Scaling

mesh_loc (y0, x0[, y, x[, ireg]])
 # Get zone index of (x0, y0)

result = mouse (system, style, prompt)
13

CHAPTER 2: Introduction to Python Gist Graphics

ns”)
 # Handle Mouse Click
moush ([y, x[, ireg]])

 # Return zone index of point clicked in mesh
pause (milliseconds) # self-explanatory

• Three-dimensional plotting functions (CHAPTER 7: “Three-Dimensional Plotting Functio

orient3 (phi = angle 1, theta = angle 2)

rot3 (xa = angle x, ya = angle y, za = angle z)

mov3 (xa = val 1, ya = val 2, za = val 3)

aim3 (xa = val 1, ya = val 2, za = val 3)

light3 (ambient=a_level, diffuse=d_level,
specular=s_level, spower=n, sdir=xyz)

clear3 ()
window3 ([n] [, dump = val] [, hcp = filename])
gnomon ([onoff] [, chr = <labels>])
set_default_gnomon ([onoff])
[lims =] draw3 ([called_as_idler = <val>])
limits (lims [0], lims [1], lims [2], lims [3])
set_draw3 (n)
n = get_draw3 ()
clear_idler ()
set_idler (func_name)
set_default_idler ()
call_idler ()
plane3 (<normal>, <point>)
mesh3 (x, y, z)
mesh3 (x, y, z, funcs = [f1, f2, ...], [verts = <spec>])
mesh3 (xyz, funcs = [f1, f2, ...])
mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [f1, f2, ...])
slice3mesh (z [, color])
slice3mesh (nxny, dxdy, x0y0, z [, color])
slice3mesh (x, y, z [, color])
slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]]

[, value = <val>] [, node = flg 2])

[nverts, xyzverts, values] = slice2 (plane, nv, xyzv, vals)
[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =

slice2x (plane, nv, xyzv, vals)
plwf (z [, y, x] [, <keylist>])

keywords: fill, shade, edges, ecolor, ewidth, cull,
scale, cmax

pl3surf (nverts, xyzverts [, values] [, <keylist>])
keywords: cmin, cmax
14

Function Summary
pl3tree (nverts, xyzverts [, values] [, <keylist>])
keywords: plane, cmin, cmax, split

• Animation functions (7.7 “Animation: movie and spin3”)

movie (draw_frame [, time_limit = 120.]
 [, min_interframe = 0.0]
 [, bracket_time = array ([2., 2.], Float)]
 [, lims = None]
 [, timing = 0])
spin3 (nframes = 30,
 axis = array ([-1, 1, 0], Float),
 tlimit = 60.,
 dtmin = 0.0,
 bracket_time = array ([2., 2.], Float),
 lims = None,
 timing = 0,
 angle = 2. * pi)

• Syntactic Sugar (7.8 “Syntactic Sugar: Some Helpful Functions”)

split_palette ([palette_name])
view = save3 ()
restore3 (view)
15

CHAPTER 2: Introduction to Python Gist Graphics
16

UCRL-MA-128569, Manual 4

of the

 on the
e

-
he
 actu-
hen
CHAPTER 3: Control Functions

This chapter contains all the information you need to control PyGist devices. Device refers to an X
window or a hard copy file. In addition, we describe functions which control some aspects
appearance of the graph.

3.1 Device Control

3.1.1 Window Control

Calling Sequences

window ([n] [, <keylist>])
winkill ([n])
n = current_window ()
fma()

Description

The window function selects device n as the current graphics device. n may range from 0 to 7, inclu-
sive. Each graphics device corresponds to an X window, a hardcopy file, or both, depending
values of the keyword arguments described below. If n is omitted, it defaults to the current activ
device, if any. window returns the number of the currently active device. winkill deletes the cur-
rent graphics device, or device n if n is specified. current_window returns the number of the cur
rent active device, or -1 if there is none. fma frame advances the current graphics device. T
current picture remains displayed in the associated X window (if any) until the next element is
ally plotted. An fma must be given after the last plot to a hardcopy file for that plot to appear w
the file is printed.

The keywords accepted by the window function are

display, dpi, dump, hcp, legends, private, style, wait

and are described in the next subsection.

Keyword Arguments

The following keyword arguments can be specified with this function.

display

A string of the form "host:server.screen" which tells where the X window will
November 23, 1998

CHAPTER 3: Control Functions

y

 this if

-

rdcopy
-

ndow
to the
cify-

 the
rd-
lt

te that

r plot-

yGist
mon

) with
 to

sheet
oor-
appear (for example, "icf.llnl.gov:0.0"). If not specified, uses your default displa
(which it gets from your DISPLAY environment variable). Use display = "" (the null
string) to create a graphics device which has no associated X window. (You should do
you want to make plots in a non-interactive batch mode.)

dpi

The allowed values for dpi are 75 and 100 . The X window will appear on your default dis
play at 75 dpi, unless you specify the display and/or dpi keywords. A dpi = 100 X win-
dow is larger than a dpi = 75 X window; both represent the same thing on paper.

dump

The dump keyword, if present, controls whether all colors are converted to a gray scale (dump
= 0, the default), or the current palette is dumped at the beginning of each page of ha
output. Set dump to 1 if you are doing color plots. The dump keyword applies only to the spe
cific hardcopy file defined using the hcp keyword (see below) -- use the dump keyword in the
hcp_file command to get the same effect in the default hardcopy file.

hcp

The value of this keyword is a quoted string giving a file name. By default, a graphics wi
does NOT have a hardcopy file of its own -- any requests for hardcopy are directed
default hardcopy file, so hardcopy output from any window goes to a single file. By spe
ing the hcp keyword, however, a hardcopy file unique to this window will be created. If
hcp filename ends in ‘‘.ps ’’, then the hardcopy file will be a PostScript file; otherwise, ha
copy files are in binary CGM format. Use hcp = "" (the null string) to revert to the defau
hardcopy file (closing the window specific file, if any).

In the next section of this manual we shall consider the hardcopy and file functions. No
the PyGist default is to write to a hardcopy file only on demand. (See function hcp , page 20.)

legends

The legends keyword, if present, controls whether the curve legends are (legends = 1,
the default) or are not (legends = 0) dumped to the hardcopy file. The legends keyword
applies to all pictures dumped to hardcopy from this graphics window. Legends are neve
ted to the X window.

private

By default, an X window will attempt to use shared colors, which permits several P
graphics windows (including windows from multiple instances of Python) to use a com
palette. You can force an X window to post its own colormap (set its colormap attribute
the private = 1 keyword. You will most likely have to fiddle with your window manager
understand how it handles colormap focus if you do this. Use private = 0 to return to
shared colors.

style

The style keyword, if present, specifies (as a quoted string) the name of a Gist style
file; the default is "work.gs" . The style sheet determines the number and location of c
18

Device Control

ailable

es a

 100 dpi
dinate systems, tick and label styles, and the like. Here are brief descriptions of the av
stylesheets:

axes.gs : axes with labeled tick marks along bottom and left of graph.

boxed.gs : lines all the way around the plot with tick marks, labeled along bottom and
left.

boxed2.gs : same as boxed.gs but no tick marks on the top and right sides.

l_nobox.gs : no box, axes, or ticks; graph extends all the way to edge of window.

nobox.gs : indistinguishable from l_nobox.gs .

vg.gs : large tick marks all the way around the graph, but no lines, with large in-
frequent labels on the bottom and left.

vgbox.gs : same as vg.g s except with lines all the way around as well

work.gs : small tick marks with small, frequent labels on bottom and left, no lines.

work2.gs : similar to work.gs , but no ticks along top and right.

wait

By default, Python will not wait for the X window to become visible. Code which creat
new window, then plots a series of frames to that window should use wait = 1 to assure that
all frames are actually plotted.

Examples

The first example ensures that an old window 0 is not hanging around, and then creates a new
window.

winkill(0)
window (0, wait = 1, dpi = 100)

The second example changes the style sheet of window 2.

window (2, style = "vgbox.gs")

3.1.2 Hard Copy and File Control

Calling Sequences

eps (name)
hcp ()
hcp_file ([filename] [, dump = 0/1])
filename = hcp_finish ([n])
hcp_out ([n] [, keep = 0/1])
hcpon ()
hcpoff ()
19

CHAPTER 3: Control Functions

 file
cted.
urrent
d

copy

ame

 have

 of the

s
d by
Descriptions

eps (name)

Write the picture in the current graphics window to the Encapsulated PostScript file name +
".epsi" (i.e., the suffix .epsi is added to name). The eps function requires the
ps2epsi utility which comes with the project GNU Ghostscript program. Any hardcopy
associated with the current window is first closed, but the default hardcopy file is unaffe
As a side effect, legends are turned off and color table dumping is turned on for the c
window. The environment variable PS2EPSI_FORMAT contains the format for the comman
to start the ps2epsi program.

hcp ()

The hcp function sends the picture displayed in the current graphics window to the hard
file. (The name of the default hardcopy file can be specified using hcp_file ; each individ-
ual graphics window may have its own hardcopy file as specified by the window function.)

hcp_file ([filename] [, dump = 0/1])

Sets the default hardcopy file to filename . If filename ends with ‘‘.ps ’’, the file will
be a PostScript file, otherwise it will be a binary CGM file. By default, the hardcopy file n
will be ‘‘ Aa00.cgm ’’, or ‘‘ Ab00.cgm ’’ if that exists, or ‘‘Ac00.cgm ’’ if both exist, and so
on. The default hardcopy file gets hardcopy from all graphics windows which do not
their own specific hardcopy file (see the window function). If the dump keyword is present
and non-zero, then the current palette will be dumped at the beginning of each frame
default hardcopy file. This is what you want to do when you want color plots. With dump = 0,
the default behavior of converting all colors to a gray scale is restored.

filename = hcp_finish ([n])

Close the current hardcopy file and return the filename. If n is specified, close the hcp file
associated with window n and return its name; use hcp_finish (-1) to close the default
hardcopy file.

hcp_out ([n] [, keep = 0/1])

**** NOT YET IMPLEMENTED ****
Finishes the current hardcopy file and sends it to the printer. If n is specified, prints the hcp
file associated with window n; use hcp_out (-1) to print the default hardcopy file. Unles
the keep keyword is supplied and non-zero, the file will be deleted after it is processe
gist and sent to lpr .

hcpon ()

The hcpon function causes every fma (frame advance) function call to do an implicit hcp ,
so that every frame is sent to the hardcopy file.

hcpoff ()

The hcpoff command reverts to the default ‘‘demand only’’ mode.
20

Other Controls

; with
aphics

er ani-

 pal-

ber
p-

n 0 and
h
ise, the

sive),
3.2 Other Controls

3.2.1 animate : Control Animation Mode

Calling Sequence

animate ([0/1])

Description

Without any arguments, toggle animation mode; with argument 0, turn off animation mode
argument 1 turn on animation mode. In animation mode, the X window associated with a gr
window is actually an offscreen pixmap which is bit-blitted onscreen when an fma() command is
issued. This is confusing unless you are actually trying to make a movie, but results in smooth
mation if you are. Generally, you should turn animation on, run your movie, then turn it off.

3.2.2 palette : Set or Retrieve Palette

Calling Sequence

palette (filename)
palette (source_window_number)
palette (red , green , blue [, gray][, query = 1]

[, ntsc = 1/0])

Description

Set (or retrieve with query = 1) the palette for the current graphics window. The filename is
the name of a Gist palette file; the standard palettes are "earth.gp" , "stern.gp" , "rain-
bow.gp" , "heat.gp" , "gray.gp" , and "yarg.gp" . Use the maxcolors keyword in the
pldefault command to put an upper limit on the number of colors which will be read from the
ette in filename .

In the second form, the palette for the current window is copied from window num
source_window_number . If the X colormap for the window is private, there will still be two se
arate X colormaps for the two windows, but they will have the same color values.

In the third form, red , green , and blue are 1-D arrays of unsigned char (Python typecode "b")
and of the same length specifying the palette you wish to install; the values should vary betwee
255, and your palette should have no more than 240 colors. If ntsc=0 , monochrome devices (suc
as most laser printers) will use the average brightness to translate your colors into gray; otherw
NTSC (television) averaging will be used (.30*red +.59*green +.11*blue). Alternatively, you can
specify gray explicitly.

Ordinarily, the palette is not dumped to a hardcopy file (color hardcopy is still rare and expen
but you can force the palette to dump using the window() or hcp_file() commands.
21

CHAPTER 3: Control Functions

. The
 is

te sys-
ample.
-

 When
he two
3.2.3 plsys : Set Coordinate System

Calling Sequence

plsys (n)

Description

Set the current coordinate system to number n in the current graphics window. If n equals 0, subse-
quent elements will be plotted in absolute NDC coordinates outside of any coordinate system
default style sheet "work.gs" defines only a single coordinate system, so the only other choicen
equal 1.

You can make up your own style sheet (using a text editor) which defines multiple coordina
tems. You need to do this if you want to display four plots side by side on a single page, for ex
The standard style sheets "work2.gs" and "boxed2.gs" define two overlayed coordinate sys
tems with the first labeled to the right of the plot and the second labeled to the left of the plot.
using overlayed coordinate systems, it is your responsibility to ensure that the x-axis limits in t
systems are identical.

3.2.4 redraw : Redraw X window

Calling Sequence

redraw ()

Description

Redraw the X window associated with the current graphics window.
22

UCRL-MA-128569, Manual 4

 tuple

 string
 Argu-
)

s

zoom
drag)
tricted
ft-left
ftware
mid-

n

n

CHAPTER 4: Plot Limits and
Scaling

4.1 Setting Plot Limits

4.1.1 limits : Save or Restore Plot Limits

Calling Sequence

old_limits = limits()
old_limits = limits(xmin [, xmax[, ymin [, ymax]]]

[, <keylist>])
limits(old_limits)

Description

In the first form, restore all four plot limits to extreme values, and save the previous limits in the
old_limits .

In the second form, set the plot limits in the current coordinate system to xmin , xmax, ymin ,
ymax, which may each be a number to fix the corresponding limit to a specified value, or the
"e" to make the corresponding limit take on the extreme value of the currently displayed data.
ments may be omitted from the right end only. (But see ylimits , below, to set limits on the y-axis.

limits() always returns a tuple of 4 doubles and an integer; old_limits [0:3] are the previ-
ous xmin , xmax, ymin , and ymax, and old_limits [4] is a set of flags indicating extreme value
and the square , nice , restrict , and log flags. This tuple can be saved and passed back to lim-
its() in a future call to restore the limits to a previous state.

In an X window, the limits may also be adjusted interactively with the mouse. Drag left to
in and pan (click left to zoom in on a point without moving it), drag middle to pan, and click (and
right to zoom out (and pan). If you click just above or below the plot, these operations will be res
to the x-axis; if you click just to the left or right, the operations are restricted to the y-axis. A shi
click, drag, and release will expand the box you dragged over to fill the plot (other popular so
zooms with this paradigm). If the rubber band box is not visible with shift-left zooming, try shift-
dle or shift-right for alternate XOR masks. Such mouse-set limits are equivalent to a limits com-
mand specifying all four limits except that the unzoom command (see “Zooming Operations” o
page 25) can revert to the limits before a series of mouse zooms and pans.

The limits you set using the limits or ylimits functions carry over to the next plot; that is, a
November 23, 1998

CHAPTER 4: Plot Limits and Scaling

ll be

ues

n the
 which
osite

-

fma operation does not reset the limits to extreme values.

Keyword Arguments

The following keyword arguments can be specified with this function.

square = 0/1

If present, the square keyword determines whether limits marked as extreme values wi
adjusted to force the x and y scales to be equal (square=1) or not (square=0 , the default).

nice = 0/1

If present, the nice keyword determines whether limits will be adjusted to nice val
(nice=1) or not (nice=0 , the default).

restrict = 0/1

There is a subtlety in the meaning of "extreme value" when one or both of the limits o
OPPOSITE axis have fixed values: does the "extreme value" of the data include points
will not be plotted because their other coordinate lies outside the fixed limit on the opp
axis (restrict=0 , the default), or not (restrict=1)?

4.1.2 ylimits : Set y-axis Limits

Calling Sequence

ylimits (ymin [, ymax])

Description

Set the y-axis plot limits in the current coordinate system to ymin , ymax, which may each be a num
ber to fix the corresponding limit to a specified value, or the string "e" to make the corresponding
limit take on the extreme value of the currently displayed data.

Arguments may be omitted only from the right. Use limits(xmin , xmax) to accomplish
the same function for the x-axis plot limits.

Note that the corresponding Yorick function for ylimits is range . Since this word is a Python
built-in function, the name has been changed to avoid the collision.

4.2 Scaling and Grid Lines

4.2.1 logxy : Set Linear/Log Axis Scaling

Calling Sequence

logxy(xflag [, yflag])
24

Zooming Operations

 In
 In
at all

tems,
e of the

et of
or ex-
machin-
 scale.

ibed
Description

logxy sets the linear/log axis scaling flags for the current coordinate system. xflag and yflag
may be 0 to select linear scaling, or 1 to select log scaling. yflag may be omitted (but not xflag).

4.2.2 gridxy : Specify Grid Lines

Calling Sequence

gridxy(flag)
gridxy(xflag , yflag)

Description

Turns on or off grid lines according to flag . In the first form, both the x and y axes are affected.
the second form, xflag and yflag may differ to have different grid options for the two axes.
either case, a flag value of 0 means no grid lines (the default), a value of 1 means grid lines
major ticks (the level of ticks which get grid lines can be set in the style sheet), and a flag value of 2
means that the coordinate origin only will get a grid line. In styles with multiple coordinate sys
only the current coordinate system is affected. The keywords can be used to affect the styl
grid lines.

You can also turn the ticks off entirely. (You might want to do this to plot your own custom s
tick marks when the automatic tick generating machinery will never give the ticks you want. F
ample a latitude axis in degrees might reasonably be labeled "0, 30, 60, 90", but the automatic
ery considers 3 an "ugly" number - only 1, 2, and 5 are "pretty" - and cannot make the required
In this case, you can turn off the automatic ticks and labels, and use plsys , pldj , and plt to gen-
erate your own.)

To fiddle with the tick flags in this general manner, set the 0x200 bit of flag (or xflag or
yflag), and "or-in" the 0x1ff bits however you wish. The meaning of the various flags is descr
in the "work.gs" Gist style sheet. Additionally, you can use the 0x400 bit to turn on or off the
frame drawn around the viewport. Here are some examples:

gridxy(0x233) work.gs default setting
gridxy(0, 0x200) like work.gs , but no y-axis ticks or labels
gridxy(0, 0x231) like work.gs , but no y-axis ticks on right
gridxy(0x62b) boxed.gs default setting

4.3 Zooming Operations

Calling Sequences

zoom_factor(factor)
unzoom()
25

CHAPTER 4: Plot Limits and Scaling

efault

ely us-
Descriptions

zoom_factor sets the zoom factor for mouse-click zoom in and zoom out operations. The d
factor is 1.5; factor should always be greater than 1.0.

unzoom restores limits to their values before zoom and pan operations performed interactiv
ing the mouse. Use

old_limits = limits()
 ...
limits(old_limits)

to save and restore plot limits generally.
26

UCRL-MA-128569, Manual 4

 plots.
e that

e spac-

ve

points
CHAPTER 5: Two-Dimensional
Plotting Functions

This chapter describes the Gist output primitives are available for drawing two-dimensional
Keyword arguments that apply only to a single function are described with that function; thos
apply to several are collected in a separate section at the end of the chapter.

5.1 Output Primitives

5.1.1 plg : Plot a Graph

Calling Sequence

plg(y [, x][, <keylist>])

Description

Plot a graph of y versus x . y and x must be 1-D arrays of equal length. If x is omitted, it defaults to
[1, 2, ..., len(y)].

Keyword Arguments

The following keyword argument(s) apply only to this function.

rspace = <float value>
rphase = <float value>
arroww = <float value>
arrowl = <float value>

Select the spacing, phase, and size of occasional ray arrows placed along polylines. Th
ing and phase are in NDC units (0.0013 NDC equals 1.0 point); the default rspace is 0.13,
and the default rphase is 0.11375, but rphase is automatically incremented for successi
curves on a single plot. The arrowhead width, arroww , and arrowhead length, arrowl are in
relative units, defaulting to 1.0, which translates to an arrowhead 10 points long and 4
in half-width.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, closed, smooth,
marks, marker, mspace, mphase, rays
November 23, 1998

CHAPTER 5: Two-Dimensional Plotting Functions
See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Examples

The following example simply plots two straight lines..

>>> from gist import *
>>> window (0, wait=1, dpi=75)
0
>>> plg([0, 1])
>>> plg([1, 0])

28

Output Primitives

,
t mesh
e

The following draws the graph of a sine curve:

fma()
x = 10*pi*arange(200, typecode = Float)/199.0
plg(sin(x), x)

5.1.2 plmesh : Set Default Mesh

Calling Sequence

plmesh([y, x][, ireg][, triangle= tri_array])

plmesh()

Description

Set the default mesh for subsequent plm , plc , plv , plf , and plfc calls. In the second form
plmesh deletes the default mesh (until you do this, or switch to a new default mesh, the defaul
arrays persist and takes up space in memory). The y, x , and ireg arrays should all be the sam
shape; y and x will be converted to double, and ireg will be converted to int.

If ireg is omitted, it defaults to ireg (0,)= ireg (,0)=0 , ireg (1:,1:)=1 ; that is, region
number 1 is the whole mesh. The triangulation array tri_array is used by plc and plfc ; the
29

CHAPTER 5: Two-Dimensional Plotting Functions

 default
-

age 31).

w and

ecent
correspondence between tri_array indices and zone indices is the same as for ireg , and its de-
fault value is all zero. The ireg or tri_array arguments may be supplied without y and x to
change the region numbering or triangulation for a given set of mesh coordinates. However, a
y and x must already have been defined if you do this. If y is supplied, x must be supplied, and vice
versa.

Example

The following example creates a mesh whose graph we will see later (see the example on p
For convenience, we show the functions span and a3 , which are used to build the data.

def span(lb,ub,n):
 if n < 2: raise ValueError, '3rd arg must be at least 2'
 b = lb
 a = (ub - lb)/(n - 1.0)
 return map(lambda x,A=a,B=b: A*x + B, range(n))
def a3(lb,ub,n):
 return reshape (array(n*span(lb,ub,n), Float), (n,n))
fma()
limits()
x = a3(-1, 1, 26)
y = transpose (x)
z = x+1j*y
z = 5.*z/(5.+z*z)
xx = z.real
yy = z.imaginary
plmesh(yy, xx)

5.1.3 plm : Plot a Mesh

Calling Sequence

plm([y, x][, ireg][, <keylist>])

Description

Plot a mesh of y versus x . y and x must be 2-D arrays with equal dimensions. If present, ireg must
be a 2-D region number array for the mesh, with the same dimensions as x and y. The values of
ireg should be positive region numbers, and zero for zones which do not exist. The first ro
column of ireg never correspond to any zone, and should always be zero. The default ireg is 1
everywhere else.

 The y, x , and ireg arguments may all be omitted to default to the mesh set by the most r
plmesh call.
30

Output Primitives

tted

ply
Keyword Arguments

The following keyword argument(s) apply only to this function.

boundary = 0/1

If present, the boundary keyword determines whether the entire mesh is to be plo
(boundary=0 , the default), or just the boundary of the selected region (boundary=1).

inhibit = 0/1/2/3

If present, the inhibit keyword causes the (x(,j), y(,j)) lines to not be plotted
(inhibit=1), the (x(i,), y(i,)) lines to not be plotted (inhibit=2), or both sets of
lines not to be plotted (inhibit=3). By default (inhibit=0), mesh lines in both logical
directions are plotted.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, region

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Example

The mesh set by the plmesh function call in the preceding example (page 30) may be plotted sim
by calling plm with no arguments:

plm ()
31

CHAPTER 5: Two-Dimensional Plotting Functions

o

e

he
s is the

es, in
other
ose a
 to be

 with

mples.
ult, is
5.1.4 plc : Plot Contours

Calling Sequence

plc(z[, y, x][, ireg][, <keylist>])

Description

Plot contours of z on the mesh y versus x . y, x , and ireg are as for plm . The z array must have the
same shape as y and x . The function being contoured takes the value z at each point (x ,y); that is,
the z array is presumed to be point-centered. The y, x , and ireg arguments may all be omitted t
default to the mesh set by the most recent plmesh call.

Keyword Arguments

The following keyword argument(s) apply only to this function.

levs = z_values

The levs keyword specifies a list of the values of z at which you want contour curves. Th
default is eight contours spanning the range of z .

triangle = triangle

Set the triangulation array for a contour plot. triangle must be the same shape as t
ireg (region number) array, and the correspondence between mesh zones and indice
same as for ireg . The triangulation array is used to resolve the ambiguity in saddle zon
which the function z being contoured has two diagonally opposite corners high, and the
two corners low. The triangulation array element for a zone is 0 if the algorithm is to cho
triangulation, based on the curvature of the first contour to enter the zone. If zone (i,j) is
triangulated from point (i-1,j-1) to point (i,j), then triangle (i,j)=1, while if it is to be trian-
gulated from (i-1,j) to (i,j-1), then triangle (i,j)=-1. Contours will never cross this ‘‘trian-
gulation line’’.

You should rarely need to fiddle with the triangulation array; it is a hedge for dealing
pathological cases.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, smooth, marks, mark-
er, mspace, mphase, region

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Examples

The following example gives a contour plot of the same mesh used in the preceding two exa
Calling plm with boundary = 1 and region = 1 plots the boundary of the mesh (which, by defa
one region); then calling plc plots a default number of contours (8).
32

Output Primitives

to
fma()
def mag(*args):
 r = 0
 for i in range(len(args)):
 r = r + args[i]*args[i]
 return sqrt(r)
plm(region=1,boundary=1)
plc (mag(x+.5,y-.5), marks=1, region=1)
plm(inhibit=3,boundary=1,region=1)
plm(boundary=1,region=1)

5.1.5 plv : Plot a Vector Field

Calling Sequence

plv(vy , vx [, y, x][, ireg][, <keylist>])

Description

Plot a vector field (vx ,vy) on the mesh (x ,y). y, x , and ireg are as for plm . The vy and vx arrays
must have the same shape as y and x . The y, x, and ireg arguments may all be omitted to default
the mesh set by the most recent plmesh call.
33

CHAPTER 5: Two-Dimensional Plotting Functions

of

 "typ-
e

Keyword Arguments

The following keyword argument(s) apply only to this function.

scale = dt

The scale keyword is the conversion factor from the units of (vx ,vy) to the units of (x ,y) --
a time interval if (vx ,vy) is a velocity and (x ,y) is a position -- which determines the length
the vector "darts" plotted at the (x ,y) points.

If omitted, scale is chosen so that the longest ray arrows have a length comparable to a
ical" zone size. You can use the scalem keyword in pledit to make adjustments to th
scale factor computed by default.

hollow = 0/1
aspect = <float value>

Set the appearance of the "darts" of a vector field plot. The default darts, hollow=0 , are
filled; use hollow=1 to get just the dart outlines. The default is aspect=0.125 ; aspect
is the ratio of the half-width to the length of the darts. Use the color keyword to control the
color of the darts.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, smooth, marks, mark-
er, mspace, mphase, triangle, region

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Example

This example applies to the same mesh that we have considered in the last three examples.

plv(x+.5, y-.5)

The plot appears on the next page.
34

Output Primitives

pe

-

 order
5.1.6 plf : Plot a Filled Mesh

Calling Sequence

plf(z[, y , x][, ireg][, <keylist>])

Description

Plot a filled mesh y versus x . y, x , and ireg are as for plm . The z array must have the same sha
as y and x , or one smaller in both dimensions. If z is of type unsigned char (Python typecode ’b’),
it is used "as is"; otherwise, it is linearly scaled to fill the current palette, as with the bytscl func-
tion. The mesh is drawn with each zone in the color derived from the z function and the current pal
ette; thus z is interpreted as a zone-centered array. The y, x , and ireg arguments may all be omitted
to default to the mesh set by the most recent plmesh call.

A solid edge can optionally be drawn around each zone by setting the edges keyword non-zero.
ecolor and ewidth determine the edge color and width. The mesh is drawn zone by zone in
from ireg (2+imax) to ireg (jmax*imax) (the latter is ireg (imax,jmax)), so you can
achieve 3D effects by arranging for this order to coincide with back-to-front order. If z is nil, the mesh
zones are filled with the background color, which you can use to produce 3D wire frames.
35

CHAPTER 5: Two-Dimensional Plotting Functions

t is

ee the

ceding
Keyword Arguments

The following keyword argument(s) apply only to this function.

edges = 0/1
ecolor = <color value>
ewidth = <float value>

Set the appearance of the zone edges in a filled mesh plot (plf). By default, edges=0 , and
the zone edges are not plotted. If edges=1 , a solid line is drawn around each zone after i
filled; the edge color and width are given by ecolor and ewidth , which are "fg" and 1.0
by default.

The following additional keyword arguments can be specified with this function.

legend, hide, region, top, cmin, cmax

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (S
bytscl function description on page 52 for explanation of top , cmin , cmax.)

Examples

The following gives a filled mesh plot of the same mesh we have been considering in the pre
examples.

plf (mag(x+.5,y-.5))
36

Output Primitives

 to
our

ywords

 com-
5.1.7 plfc : Plot filled contours

Calling Sequence

plfc (z, y, x, ireg, contours = 20, colors = None,
 region = 0, triangle = None, scale = "lin")

Description

Unlike the other plotting primitives, plfc is implemented in Python code. It calls a C module
compute the contours, then uses plfp (described in the next subsection) to draw the filled cont
lines. It does not use the mesh plotting routines; hence the arguments z , y , x , and ireg must be given
explicitly. They will not default to the values set by plmesh .

Keyword Arguments

The values given above for the keyword arguments are the defaults. The meanings of the ke
are as follows:

contours

If an integer, specifies the number of contour lines desired. The contour levels will be
puted automatically. If an array of floats, specifies the actual contour levels.
37

CHAPTER 5: Two-Dimensional Plotting Functions

ifying
sent)

uted:
-
n).
colors

An array of unsigned char (Python typecode ’b’) with values between 0 and 199 spec
the indices into the current palette of the fill colors to use. The size of this array (if pre
must be one larger than the number of contours specified.

triangle

As described for the mesh plots.

scale

If the number of contours was given, this keyword specifies how they are to be comp
"lin" (linearly), "log" (logarithmically) and "normal" (based on the normal distribu
tion; the minimum and maximum contours will be two standard deviations from the mea
38

Output Primitives

, since
 defect
Example

In the following example, we have to explicitly compute and pass an ireg array. We plot filled con-
tours and then plot contour lines on top of them. Note that the contour divisions do not coincide
the two routines use different algorithms for computing contour levels. Perhaps someday this
will be remedied.

 ireg = ones (xx.shape, Int)
 ireg [0, :] = 0
 ireg [:, 0] = 0
 plfc(mag(x+.5,y-.5),yy,xx,ireg,contours=8)
 plc (mag(x+.5,y-.5), marks=1)
39

CHAPTER 5: Two-Dimensional Plotting Functions

f

ee the
5.1.8 plfp : Plot a List of Filled Polygons

Calling Sequence

plfp(z, y, x, n[, <keylist>])

Description

Plot a list of filled polygons y versus x , with colors z . The n array is a 1D list of lengths (number o
corners) of the polygons; the 1D colors array z has the same length as n. The x and y arrays have
length equal to the sum of all dimensions of n.

If z is of type unsigned char (Python typecode "b"), it is used ‘‘as is’’; otherwise, it is linearly
scaled to fill the current palette, as with the bytscl function.

Keyword Arguments

The following keyword arguments can be specified with this function.

legend, hide, top, cmin, cmax

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (S
bytscl function description on page 52 for explanation of top , cmin , cmax.)

Example

This example gives a sort of "stained glass window" effect;.

z = array([190,100,130,100,50,190,160,100,50,100,130],'b')
y = array ([1.0, 2.0, 7.0, 8.0, 1.0, 1.0, 2.0, 0.0, 1.0, 1.0,
1.0, 1.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 8.0, 7.0, 2.0, 2.0,
7.0, 7.0, 7.0, 8.0, 8.0, 7.0, 7.0, 8.0, 7.0, 8.0, 8.0, 8.0,
8.0, 9.0])
x = array ([0.0, 1.0, 1.0, 0.0, 0.0, 1.5, 1.0, 1.5, 3.0, 0.0,
1.5, 3.0, 2.0, 1.5, 2.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 2.0,
2.0, 1.0, 2.0, 3.0, 1.5, 1.0, 2.0, 1.5, 1.0, 1.5, 0.0, 0.0,
3.0, 1.5])
n = array ([4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3])
plfp (z, y, x, n)
40

Output Primitives

 array

ge. If
by de-
5.1.9 pli : Plot a Cell Array

Calling Sequence

pli(z[[, x0 , y0], x1 , y1][, <keylist>])

Description

Plot the image z as a cell array: an array of equal rectangular cells colored according to the 2-D
z . The first dimension of z is plotted along x, the second dimension is along y.

If z is of type unsigned char (Python typecode "b"), it is used ‘‘as is’’; otherwise, it is linearly
scaled to fill the current palette, as with the bytscl function.

If x1 and y1 are given, they represent the coordinates of the upper right corner of the ima
x0 , and y0 are given, they represent the coordinates of the lower left corner, which is at (0,0)
41

CHAPTER 5: Two-Dimensional Plotting Functions

f the

ee the
fault. If only the z array is given, each cell will be a 1x1 unit square, with the lower left corner o
image at (0,0).

Keyword Arguments

The following keyword arguments can be specified with this function.

legend, hide, top, cmin, cmax

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (S
bytscl function description on page 52 for explanation of top , cmin , cmax.)

Example

The following example computes and draws an interesting cell array.

fma()
unzoom()
x = a3 (-6,6,200)
y = transpose (x)
r = mag(y,x)
theta = arctan2 (y, x)
funky = cos(r)**2 * cos(3*theta)
pli(funky)
42

Output Primitives

t

ee the
5.1.10 pldj : Plot Disjoint Lines

Calling Sequence

pldj(x0 , y0, x1 , y1 [, <keylist>])

Description

Plot disjoint lines from (x0 ,y0) to (x1 ,y1). x0 , y0 , x1 , and y1 may have any dimensionality, bu
all must have the same number of elements.

Keyword Arguments

The following keyword arguments can be specified with this function.

legend, hide, type, width, color

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (S
bytscl function description on page 52 for explanation of top , cmin , cmax.)

Example

This example draws a set of seventeen-pointed stars.

theta = a2(0, 2*pi, 18)
x = cos(theta)
y = sin(theta)
pldj(x, y, transpose (x), transpose (y))
pltitle("Seventeen Pointed Stars")
limits(square = 1)
43

CHAPTER 5: Two-Dimensional Plotting Functions

s-
ich

s

r-

nts
 and

 New
 is
to get

, 14,
 screen
5.1.11 plt : Plot Text

Calling Sequence

plt(text , x, y[, <keylist>])

Description

Plot text (a string) at the point (x ,y). The exact relationship between the point (x ,y) and the text
is determined by the justify keyword. text may contain newline ("\n") characters to output
multiple lines of text with a single call.

The coordinates (x ,y) are NDC coordinates (outside of any coordinate system) unless the tosys
keyword is present and non-zero, in which case the text will be placed in the current coordinate sy
tem. However, the character height is never affected by the scale of the coordinate system to wh
the text belongs.

Note that the pledit command (see “pledit: Change Plotting Properties” on page 49) takedx
and/or dy keywords to adjust the position of existing text elements.

Keyword Arguments

The following keyword argument(s) apply only to this function.

tosys = 0/1

Establish the interpretation of (x ,y). If tosys=0 (the default), use Normalized Device Coo
dinates; if nonzero, use the current coordinate system.

font =
height = <float value>
opaque = 0/1
path = 0/1
orient = <integer value>
justify = (see text description)

Select text properties. The font can be any of the strings "courier" , "times" , "hel-
vetica" (the default), "symbol" , or "schoolbook" . Append "B" for boldface and
"I" for italic, so "courierB" is boldface Courier, "timesI" is Times italic, and "hel-
veticaBI" is bold italic (oblique) Helvetica. Your X server should have the Adobe fo
(available free from the MIT X distribution tapes) for all these fonts, preferably at both 75
100 dpi. Occasionally, a PostScript printer will not be equipped for some fonts; often
Century Schoolbook is missing. The font keyword may also be an integer: 0 is Courier, 4
Times, 8 is Helvetica, 12 is Symbol, 16 is New Century Schoolbook, and you add 1
boldface and/or 2 to get italic (or oblique).

The height is the font size in points; 14.0 is the default. X windows only has 8, 10, 12
18, and 24 point fonts, so don't stray from these sizes if you want what you see on the
to be a reasonably close match to what will be printed.
44

Output Primitives

l
-

-
rmal

he

ue
t are

 the

ll need
By default, opaque=0 and text is transparent. Set opaque=1 to white-out a box before
drawing the text.

The default path (path=0) is left-to-right text; set path=1 for top-to-bottom text.

The default text justification, justify="NN" is normal in both the horizontal and vertica
directions. Other possibilities are "L" , "C" , or "R" for the first character, meaning left, cen
ter, and right horizontal justification, and "T" , "C" , "H" , "A" , or "B" for the second charac
ter, meaning top, capline, half, baseline, and bottom vertical justification. The no
justification "NN" is equivalent to "LA" if path=0 , and to "CT" if path=1 . Common val-
ues are "LA" , "CA" , and "RA" for garden variety left, center, and right justified text, with t
y coordinate at the baseline of the last line in the string presented to plt . The characters
labeling the right axis of a plot are "RH" , so that the y value of the text will match the y val
of the corresponding tick. Similarly, the characters labeling the bottom axis of a plo
"CT" . The justification may also be a number, horizontal+vertical, where horizontal is 0 for
"N" , 1 for "L" , 2 for "C" , or 3 for "R" , and vertical is 0 for "N" , 4 for "T" , 8 for "C" , 12
for "H" , 16 for "A" , or 20 for "B" .

The integer value orient (default 0) specifies one of four angles that the text makes with
horizontal (0 is horizontal, 1 is ninety degrees, 2 is 180 degrees, and 3 is 270 degrees).

The following additional keyword arguments can be specified with this function.

legend, hide, color

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Example

Description of example(s).

first line of code
middle lines of code
last line of code

Whatever.

5.1.12 pltitle : Plot a Title

Calling Sequence

pltitle(title)

Description

Plot title centered above the coordinate system for any of the standard Gist styles. You wi
to customize this for other plot styles.
45

CHAPTER 5: Two-Dimensional Plotting Functions

com-

otted to
ard-

t
lay

ly-

ness
Example

Description of example(s).

first line of code
middle lines of code
last line of code

Whatever.

5.2 Plot Function Keywords

In addition to the keyword arguments described above with individual Gist primitive plotting
mands, the following keywords are available to modify the details of the plots.

legend = "text destined for the legend"

Set the legend for a plot. There are no default legends in PyGist. Legends are never pl
the X window; use the plq command to see them interactively. Legends will appear in h
copy output unless they have been explicitly turned off.

Plotting Commands: plg , plm , plc , plv , plf , pli , plt , pldj

See Also: hide

hide = 0/1

Set the visibility of a plotted element. The default is hide=0 , which means that the elemen
will be visible. Use hide=1 to remove the element from the plot (but not from the disp
list).

Plotting Commands: plg , plm , plc , plv , plf , pli ,plt , pldj

See Also: legend

type = <line type value>

Select line type. Valid values are the strings "solid" , "dash" , "dot" , "dashdot" ,
"dashdotdot" , and "none" . The "none" value causes the line to be plotted as a po
marker. The type value may also be a number; 0 is "none" , 1 is "solid" , 2 is "dash" , 3
is "dot" , 4 is "dashdot" , and 5 is "dashdotdot" .

Plotting Commands: plg , plm , plc , pldj

See Also: width , color , marks , marker , rays , closed , smooth

width = <floating point value>

Select line width. Valid values are positive floating point numbers giving the line thick
relative to the default line width of one half point, which is width = 1.0 .

Plotting Commands: plg , plm , plc , pldj , plv (only if hollow=1)

See Also: type , color , marks , marker , rays , closed , smooth
46

Plot Function Keywords

the
 -

 and

rker if

 some

its

r

lor
color = <color value>

Select line or text color. Valid values are the strings "bg" , "fg" , "black" , "white" ,
"red" , "green" , "blue" , "cyan" , "magenta" , "yellow" , or a 0-origin index into
the current palette. The default is "fg" . Negative numbers may be used instead of
strings: -1 is "bg" (background), -2 is "fg" (foreground), -3 is black, -4 is white, -5 is red,
6 is green, -7 is blue, -8 is cyan, -9 is magenta, and -10 is yellow.

Plotting Commands: plg , plm , plc , pldj , plt

See Also: type , width , marks , marker , mcolor , rays , closed , smooth

marks = 0/1

Select unadorned lines (marks=0), or lines with occasional markers (marks=1). Ignored if
type is "none" (indicating polymarkers instead of occasional markers). The spacing
phase of the occasional markers can be altered using the mspace and mphase keywords; the
character used to make the mark can be altered using the marker keyword.

Plotting Commands: plg , plc

See Also: type , width , color , marker , rays , mspace , mphase, msize , mcolor

marker = <character or integer value>

Select the character used for occasional markers along a polyline, or for the polyma
type="none" . The special values '\1' , '\2' , '\3' , '\4' , and '\5' stand for point,
plus, asterisk, circle, and cross, which are prettier than text characters on output to
devices. The default marker is the next available capital letter: 'A' , 'B' , ..., 'Z' .

Plotting Commands: plg , plc

See Also: type , width , color , marks , rays , mspace , mphase, msize , mcolor

mspace = <float value>
mphase = <float value>
msize = <float value>

Select the spacing, phase, and size of occasional markers placed along polylines. Themsize
also selects polymarker size if type is "none" . The spacing and phase are in NDC un
(0.0013 NDC equals 1.0 point); the default mspace is 0.16, and the default mphase is 0.14,
but mphase is automatically incremented for successive curves on a single plot. The msize
is in relative units, with the default msize of 1.0 representing 10 points.

Plotting Commands: plg , plc

See Also: type , width , color , marks , marker , rays

mcolor = <color value>

The mcolor keyword is the same as the color keyword, but controls the marker colo
instead of the line color. Setting the color automatically sets the mcolor to the same value,
so you only need to use mcolor if you want the markers for a curve to be a different co
than the curve itself.

Plotting Commands: plg , plc

See Also: type , width , color , marks , marker , rays
47

CHAPTER 5: Two-Dimensional Plotting Functions

ng the
 the

tted to
osed
urves
 of the

ing
speci-
rays = 0/1

Select unadorned lines (rays=0), or lines with occasional ray arrows (rays=1). Ignored if
type is "none" . The spacing and phase of the occasional arrows can be altered usi
rspace and rphase keywords; the shape of the arrowhead can be modified using
arroww and arrowl keywords.

Plotting Commands: plg , plc

See Also: type , width , color , marker , marks , rspace , rphase , arroww , arrowl

closed = 0/1
smooth = 0/1/2/3/4

Select closed curves (closed=1) or default open curves (closed=0), or Bezier smoothing
(smooth>0) or default piecewise linear curves (smooth=0). The value of smooth can be
1, 2, 3, or 4 to get successively more smoothing. Only the Bezier control points are plo
an X window; the actual Bezier curves will show up in PostScript hardcopy files. Cl
curves join correctly, which becomes more noticeable for wide lines; non-solid closed c
may look bad because the dashing pattern may be incommensurate with the length
curve.

PLOTTING COMMANDS: plg , plc (smooth only)

SEE ALSO: type , width , color , marks , marker , rays

region = <region number>

Select the part of mesh to consider. The region should match one of the numbers in theireg
array. Putting region=0 (the default) means to plot the entire mesh; that is, everyth
EXCEPT region zero (non-existent zones). Any other number means to plot only the
fied region number; region=3 would plot region 3 only.

Plotting Commands: plm , plc , plv , plf
48

UCRL-MA-128569, Manual 4

ol vari-

 an

m-

s win-
CHAPTER 6: Inquiry and
Miscellaneous
Functions

This chapter describes functions that are available to inquire about the state of PyGist contr
ables and set their values. It also describes other miscellaneous functions.

6.1 Inquiry and Editing Functions

6.1.1 plq : Query Plot Element Status

Calling Sequence

plq()
legend_list = plq() **** RETURN VALUE NOT YET IMPLEMENTED ****
plq(n_element [, n_contour])
properties = plq(n_element [, n_contour])

Description

Called as a subroutine, plq prints the list of legends for the current coordinate system (with
"(H)" to mark hidden elements), or prints a list of current properties of element n_element (such
as line type, width, font, etc.), or of contour number n_contour of element number n_element
(which must be contours generated using the plc command). Elements and contours are both nu
bered starting with one; hidden elements or contours are included in this numbering.

The plq function always operates on the current coordinate system in the current graphic
dow; use window and plsys to change these.

6.1.2 pledit : Change Plotting Properties

Calling Sequence

pledit([n_element [, n_contour],] <keylist>)

where, as usual, <keylist> has the form key1= value1 , key2= value2 , ...
November 23, 1998

CHAPTER 6: Inquiry and Miscellaneous Functions

t

y

Description

pledit changes some property or properties of element number n_element (and contour number
n_contour of that element). If n_element and n_contour are omitted, the default is the mos
recently added element, or the element specified in the most recent plq query command.

The keywords can be any of the keywords that apply to the current element. These are:

plg: color, type, width, marks, mcolor, marker,
 msize, mspace, mphase, rays, rspace, rphase, arrowl,
 arroww, closed, smooth

plm: region, boundary, inhibit, color, type, width
plc: region, color, type, width, marks, mcolor, marker,

 msize, mspace, mphase, smooth, levs
(For contours, if you aren't talking about a particular n_contour , any changes will
affect ALL the contours.)

plv: region, color, hollow, width, aspect, scale
plf: region
pldj: color, type, width
plt: color, font, height, path, justify, opaque

A plv (vector field) element can also take the scalem keyword to multiply all vector lengths by
a specified factor.

A plt (text) element can also take the dx and/or dy keywords to adjust the text position b
(dx ,dy).

6.1.3 pldefault : Set Default Values

Calling Sequence

pldefault(key1= value1 , key2= value2 , ...)

Description

Set default values for the various properties of graphical elements.

The keywords can be most of the keywords that can be passed to the plotting commands:

plg: color, type, width, marks, mcolor, msize, mspace,
 mphase, rays, rspace, rphase, arrowl, arroww

plm: color, type, width
plc: color, type, width, marks, mcolor, marker, msize,

 mspace, mphase
plv: color, hollow, width, aspect
plf: edges, ecolor, ewidth
pldj: color, type, width
plt: color, font, height, path, justify, opaque
50

Inquiry and Editing Functions
The initial default values are:

color="fg", type="solid", width=1.0 (1/2 point),
marks=1, mcolor="fg", msize=1.0 (10 points), mspace=0.16,

mphase=0.14,
rays=0, arrowl=1.0 (10 points), arroww=1.0 (4 points), rspace=0.13,

rphase=0.11375,
font="helvetica", height=12.0, path=0, justify="NN",

opaque=0,
hollow= 0, aspect=0.125,
edges=0, ecolor="fg", ewidth=1.0 (1/2 point)

Additional default keywords are:

dpi, style, legends (see window command)
palette (to set default filename as in palette command)
maxcolors (default 200)
51

CHAPTER 6: Inquiry and Miscellaneous Functions

n

e

e
 to

he
6.2 Miscellaneous Functions

6.2.1 bytscl : Convert to Color Array

Calling Sequence

bytscl(z[, top= max_byte][, cmin= lower_cutoff]
[, cmax= upper_cutoff])

Description

bytscl returns an unsigned char array of the same shape as z , with values linearly scaled to the
range 0 to one less than the current palette size. If max_byte is specified, the scaled values will ru
from 0 to max_byte instead.

If lower_cutoff and/or upper_cutoff are specified, z values outside this range ar
mapped to the cutoff value; otherwise the linear scaling maps the extreme values of z to 0 and
max_byte .

6.2.2 histeq_scale: Histogram Equalized Scaling

**** NOT YET IMPLEMENTED ****

Calling Sequence

histeq_scale(z[, top= top_value][, cmin= cmin][, cmax= cmax])

Description

histeq_scale returns a byte-scaled version of the array z having the property that each byt
occurs with equal frequency (z is histogram equalized). The result bytes range from 0
top_value , which defaults to one less than the size of the current palette (or 255 if no pli , plf , or
palette command has yet been issued).

If non-nil cmin and/or cmax is supplied, values of z beyond these cutoffs are not included in t
frequency counts.

6.2.3 mesh_loc : Get Mesh Location

Calling Sequence

mesh_loc(y0 , x0 [, y, x[, ireg]])
52

Miscellaneous Functions

.
-

re

ed. It

 For
ouse

) in the
it be-
ordi-

n-

en re-

nd (if
 the left

d.

5 are

ration:
Description

mesh_loc returns the zone index (=i+imax*(j-1)) of the zone of the mesh (x ,y) (with optional
region number array ireg) containing the point (x0 ,y0). If (x0 ,y0) lies outside the mesh, returns 0
For example, ireg (mesh_loc(x0 , y0 , y, x, ireg)) is the region number of the region con
taining (x0 ,y0). If no mesh specified, uses default. x0 and y0 may be arrays as long as they a
conformable.

6.2.4 mouse: Handle Mouse Click

This function is useful in developing interactive graphics applications.

Calling Sequence

result = mouse(system , style , prompt)

Description

mouse displays the specified prompt , then waits for a mouse button to be pressed, then releas
returns a tuple of length eleven:

result = [x_pressed, y_pressed, x_released, y_released,
xndc_pressed, yndc_pressed, xndc_released,
yndc_released, system, button, modifiers]

If system >=0, the first four coordinate values will be relative to that coordinate system.
system <0, the first four coordinate values will be relative to the coordinate system under the m
when the button was pressed.

The second four coordinates are always normalized device coordinates, which start at (0,0
lower left corner of the 8.5x11 sheet of paper the picture will be printed on, with 0.0013 NDC un
ing 1/72.27 inch (1.0 point). Look in the style sheet for the location of the viewport in NDC co
nates (see the style keyword).

If style is 0, there will be no visual cues that the mouse command has been called; this is i
tended for a simple click. If style is 1, a rubber band box will be drawn; if style is 2, a rubber band
line will be drawn. These disappear when the button is released.

Clicking a second button before releasing the first cancels the mouse function, which will th
turn nil. Ordinary text input also cancels the mouse function, which again returns nil.

The left button reverses forground for background (by XOR) in order to draw the rubber ba
any). The middle and right buttons use other masks, in case the rubber band is not visible with
button.

result[8] is the coordinate system in which the first four coordinates are to be interprete

result[9] is the button which was pressed, 1 for left, 2 for middle, and 3 for right (4 and
also possible).

result[10] is a mask representing the modifier keys which were pressed during the ope
53

CHAPTER 6: Inquiry and Miscellaneous Functions

 for

mesh

 key-
1 for shift, 2 for shift lock, 4 for control, 8 for mod1 (alt or meta), 16 for mod2, 32 for mod3, 64
mod4, and 128 for mod5.

6.2.5 moush: Mouse in a Mesh

Calling Sequence

moush([y, x[, ireg]])

Description

moush returns the 1-origin zone index for the point clicked in for the default mesh, or for the
(x ,y) (region array ireg).

6.2.6 pause : Pause

Calling Sequence

pause(milliseconds)

Description

Pause for the specified number of milliseconds of wall clock time, or until input arrives from the
board. This is intended for use in creating animated sequences.

Examples

Description of example(s).

first line code
middle lines of code
last line of code

Whatever.
54

UCRL-MA-128569, Manual 4

utines
, it will
r of op-

per-

ontents
 func-
a final
uxiliary

n access
 to

n of
his list
 how it
CHAPTER 7: Three-Dimensional
Plotting Functions

The PyGist 3-D graphics uses the PyGist 2-D graphics to draw its pictures; most of the 3-D ro
are computational, and take 3-D data in one form or another and massage it until, when plotted
appear to be a correct two-dimensional projection of a three-dimensional graph. The usual orde
eration in 3-D PyGist is

• retrieve or compute your data;

• tell PyGist orientation and lighting information;

• call the appropriate PyGist computational routines;

• call one or more PyGist 3-D plotting routines;

• call the master function draw3 , which actually displays the graph.

PyGist builds a list of information about the graph which you wish to plot, but in its normal o
ating mode, does not actually draw the graph until you ask it to do so, by invoking draw3 . Meanwhile,
it stores the information about the graph in a Python list. In this chapter we shall describe the c
of this list in general terms, and the commands which you use to build it (orientation and lighting
tions); the setup functions for complicated 3-D plots; and the plotting functions themselves. In
section, for people who may some day be maintaining or adding to this code, we describe the a
functions which everyday users will seldom if ever use.

7.1 Setting Up For 3-D Graphics

7.1.1 The Plotting List

The 3-D PyGist graphics keeps an internal list called _draw3_list containing complete informa-
tion about the currently active frame (which may or may not be visible depending on whether draw3
has been invoked). Regular users should never need to access this list; however, there is a
function available called get_draw3_list_ which code developers and maintainers may use
get at the list; get_draw3_n_ returns the number of elements in the viewing and lighting portio
the list, described below. Likewise, ordinary users do not really need to know the structure of t
in detail; however, every user of the 3-D graphics should be aware of the contents of the list,
affects the graph, and what functions to use to alter it.

_draw3_list is a Python list, organized as follows:

[rotation, origin, camera_dist, ambient, diffuse, specular,
spower, sdir, fnc 1, args 1, fnc 2, args 2,...]
November 23, 1998

CHAPTER 7: Three-Dimensional Plotting Functions

.

dless
 own.

ween
er are
shaded

e light

 3-D
ls the

may be

e

The elements of this list are divided into the viewing transformation, lighting specifications, and dis-
play information, as follows:

Viewing:

rotation : a 3-by-3 rotation matrix giving the angles of view.
origin : a 3-vector giving the coordinates of the origin in the user’s coordinate system
camera_dist : A real number giving the camera distance; the value None (the default)
translates to infinity.

Lighting:

ambient : a light level (in arbitrary units) that is added to every part of the surface regar
of its orientation. It might be said to be the amount of light which a surface exudes on its
A surface with ambient of 0 is totally black unless illuminated.
diffuse : a light level which is proportional to cos(theta), where theta is the angle bet
the surface normal and the viewing direction, so that surfaces directly facing the view
bright, while surfaces viewed edge on are unlit (and surfaces facing away, if drawn, are
as if they faced the viewer).
specular : a light level proportional to a high power spower of 1 + cos (alpha), where
alpha is the angle between the specular reflection angle and the viewing direction. Th
source for the calculation of alpha lies in the direction sdir (a 3 element vector) in the
viewer's coordinate system at infinite distance. You can have ns light sources by making
specular , spower , and sdir (or any combination) be vectors of length ns (3-by-ns in
the case of sdir).

Display:

fnc 1, fnc 2, etc.: Plotting function(s) (whose argument lists are arg 1, arg 2, etc., respec-
tively) defining the component(s) of this graph. During its normal operating mode, the
graphics accumulates information about calls to plotting functions until the user cal
function draw3 . These calls are then executed when draw3 is invoked.

7.1.2 Functions For Setting Viewing Parameters

Angular orientation

orient3 (phi = angle 1, theta = angle 2)

rot3 (xa = angle x, ya = angle y, za = angle z)

Description

Note that most of the functions in 3-D PyGist accept keyword arguments. These arguments
entered in any order; omitted arguments will default to a sensible value.

orient3 sets the orientation of the object to (angle 1, angle 2). Orientations are a subset of th
56

Setting Up For 3-D Graphics

t is, the
to

,
t

n both

l to give
.
possible rotation matrices in which the z axis of the object appears vertical on the screen (tha
object z axis projects onto the viewer y axis). The theta angle is the angle from the viewer y axis
the object z axis, positive if the object z axis is tilted towards you (toward viewer +z). phi is zero when
the object x axis coincides with the viewer x axis. If neither phi nor theta is specified, phi defaults
to - pi / 4 and theta defaults to pi / 6. If only phi is specified, theta remains unchanged
unless the current theta is near pi / 2, in which case theta returns to pi / 6, or unless the curren
orientation does not have a vertical z axis, in which case theta returns to its default. If only theta is
specified, phi retains its current value. Unlike rot3 , orient3 is not a cumulative operation.

rot3 rotates the current 3D plot by angle x about viewer's x axis, angle y about viewer's y axis,
and angle z about viewer's z-axis.

Physical orientation

mov3 (xa = val 1, ya = val 2, za = val 3)

aim3 (xa = val 1, ya = val 2, za = val 3)

setz3 (zc = dist)

Description

mov3 moves the current 3D plot by val 1 along the viewer's x axis, val 2 along the viewer's y axis,
and val 3 along the viewer's z axis. aim3 moves the current 3D plot to put the point (val 1, val 2,
val 3) in object coordinates at the point (0, 0, 0) -- the aim point -- in the viewer's coordinates. I
functions, if any of the val 1, val 2, or val 3 is missing, it defaults to 0.

setz3 sets the camera position to dist (x = y = 0) in the viewer's coordinate system. If dist is
None or if zc is missing, set the camera to infinity (default).

Examples

Our examples are postponed until later in the chapter, when we have covered enough materia
complete sequences of computations and PyGraph function calls, and show the resulting plots

7.1.3 Lighting Parameters

Calling Sequence

light3 (ambient=a_level, diffuse=d_level, specular=s_level,
 spower=n, sdir=xyz)

This function is used to set the lighting parameters for the current drawing list.
57

CHAPTER 7: Three-Dimensional Plotting Functions

e
en this
 a

ht-

named

r
ots will

ist,
f a 3-D
7.1.4 Display List

Calling Sequences

<plot function> (arg 1, arg 2, arg 3, ...)

clear3 ()

When one of the plotting functions (plwf , pl3surf , pl3tree) is called and the internal variabl
_draw3 has been set to zero, or else if it is nonzero and the idler is a do-nothing routine, Th
plot call will add <plot function> to the display list, and will process the arguments into
Python list, which will be added to the display list after the function name.

The function clear3 clears the display list of all plotting functions. It leaves orientation and lig
ing information unchanged.

7.2 3-D Graphics Control Functions

7.2.1 Getting a Window

Calling Sequence

window3 ([n] [, dump = val] [, hcp = filename])

Description

If n is specified, make window n the active window (open a window if necessary). If n is not speci-
fied, connect to the active window, or open one if none is active. Associate the hardopy file
filename with the window if hcp is specified; this will be postscript if the name ends in .ps , or
cgm if it ends in .cgm . The style sheet associated with the window will be "nobox.gs" , i. e., a
plain window with no axes (except possibly a gnomon). The dump keyword, if 1, causes the colo
palette to be dumped to the hcp file with each frame that is sent there (otherwise hardcopy pl
be in greyscale).

7.2.2 Displaying the Gnomon

Webster’s defines a gnomon as ‘‘an object that by its position...serves as an indicator.’’ In 3-D PyG
the gnomon is a small diagram of the coordinate axes that appears in the lower left corner o
plot, if this capability has been turned on.

Calling Sequence

gnomon ([onoff] [, chr = <labels>])
set_default_gnomon ([onoff])
58

3-D Graphics Control Functions

n
lt
nd the

ons
 the
on is

ways:
creen,

rol, set

e list
 by this

he new

alling
 per-

ink the
look,

ulties
ing our
Description

gnomon toggles the gnomon display if onoff is omitted. If onoff is present and non-zero turn o
the gnomon. If zero, turn it off. set_default_gnomon allows the user to specify what the defau
gnomon is to be when the default idler is called (see the discussion in “The variable _draw3 a
idler” on page 60, and “The Default Idler” on page 60.)

The gnomon shows the x , y, and z axis directions in the object coordinate system. The directi
are labeled. The labels default to X, Y, and Z, but may be specified to be something else by using
keyword chr . <labels> must be a Python list consisting of three character strings.The gnom
always infinitely far behind the object (away from the camera).

There is a mirror-through-the-screen-plane ambiguity in the display which is resolved in two
(1) the (x , y, z) coordinate system is right-handed, and (2) If the tip of an axis projects into the s
its label is drawn in opposite polarity to the other text in the screen.

7.2.3 Plotting the Display List

The only way that the display list can be plotted is by an invocation of the function draw3 . The user
may control when this function gets called. To have a new plot appear totally under user cont
_draw3 to 0 (i. e., execute set_draw3_ (0)) and then call draw3 only when you want the plot to
appear. To have a plot appear automatically after each plot command is given, _draw3 should be set
to 1 and the idler should be set to some function which calls draw3 . The details are in “The variable
_draw3 and the idler” on page 60.

Calling Sequence

[lims =] draw3 ([called_as_idler = <val>])
limits (lims [0], lims [1], lims [2], lims [3])

Description

The function draw3 traverses the display list and executes each function on the list with th
of arguments supplied. Assuming that the list is not empty, this means that the frame specified
list will be displayed. If the parameter called_as_idler is present and is nonzero, then a fma
(frame advance) call will be made first, meaning that the current display will be erased before t
one is plotted. Otherwise the new display will appear on top of the old.

draw3 always attempts to return a list of four items [xmin, xmax, ymin, ymax] which give
the maximum and minimum of the x and y coordinates actually plotted to the PyGist window. C
the limits function with these four values as limits will scale the graph properly. One could also
form computations with these limits (for example, to force x and y to the same scale, or to shr
graph a little to force it well inside the borders of the window). If you like the way your graphs
then there is no reason to deal with these numbers.

We apologize for this messy kludge; we have encountered timing problems and other diffic
with the Gist limits calculating process which we have not been able to solve except by comput
own limits.
59

CHAPTER 7: Three-Dimensional Plotting Functions

s func-
er,
n takes
t will

ing.

lled

 call
 if
is
7.2.4 The variable _draw3 and the idler

_draw3 is an internal 3-D PyGist variable accessible to the user only by means of the acces
tions described below. _draw3 , in conjunction with a function called an idler, determines wheth
after a plot function and its arguments have been placed on the display list, some further actio
place. The default idler (see below) will cause the graph to be plotted each time it is called; and i
be called immediately after the plot function has been added to the display list, provided _draw3 is
nonzero.

Calling Sequences for _draw3 Access Functions

set_draw3 (n)
n = get_draw3 ()

Description

The first function is used to set _draw3 to n (default 0), and the second, to read its current sett

Calling Sequences to Set Idlers

clear_idler ()
set_idler (func_name)
set_default_idler ()
call_idler ()

Description

The function clear_idler sets the idler function to a routine which does nothing. It will be ca
after each plot function adds to the display list (if _draw3 is nonzero), but will do nothing.
set_idler allows the user to define an action for 3-D PyGist to take after each plot function
adds to the display list. func_name must be callable with no arguments. It will be called only
_draw3 is nonzero. set_default_idler will set the idler to call the function whose code
given below. call_idler gives you the capability to call the idler yourself, if you wish.

The Default Idler

Below is the code for the default idler.

def _draw3_idler () :
 global _default_gnomon
 orient3 ()
 if current_window () == -1 :
 window3 (0)
 else :
 window3 (current_window ())
 gnomon (_default_gnomon)
 lims = draw3 (1)
60

Data Setup Functions for Plotting

 is the

 on
e it can
 types of

 of a reg-
ment
tan-
s of
he
ripts
. The
 if lims == None :
 return
 else :
 limits (lims [0], lims [1], lims [2], lims [3])

7.3 Data Setup Functions for Plotting

7.3.1 Creating a Plane

Calling Sequence

plane3 (<normal>, <point>)

Description

This function returns the coefficients of the equation of a plane as a vector of length four. This
form of a plane argument as expected by the slicing functions. <normal> is a vector of length three
giving the direction numbers of the normal to the plane; <point> is a vector of length three giving
the coordinates of a point in the plane.

7.3.2 Creating a mesh3 argument

The function mesh3 is used to create a mesh3 object from your data. A mesh3 object is required as
an input to a number of routines, most importantly, the various slicing functions.

Calling Sequence (1)

mesh3 (x, y, z)
mesh3 (x, y, z, funcs = [f1, f2, ...], [verts = <spec>])

Description

mesh3 creates a mesh3 object as expected by the various functions slice3 , xyz3 , getv3 , etc.
The form of a mesh3 object will be described below (See “Description of a mesh3 object”
page 63). Note that Python is able to determine which of the above calls is intended becaus
check for the presence of optional and keyword arguments and can check the dimensions and
the arguments.

In the first two forms of the call, x , y , and z are coordinate arrays specifying the mesh. If x , y , and
z are three dimensional of the same shape, then they represent the coordinates of the vertices
ular rectangular mesh. If x , y , and z are one dimensional of the same size, then the keyword argu
verts determines how they are interpreted. If verts is not present, then we have a structured reec
gular mesh with unequally spaced nodes. If verts is present, then they represent the coordinate
an unstructured mesh, and the keyword argument verts must be used to pass information about t
cells to the mesh3 function. <spec> can be either a single two dimensional array of integer subsc
into x , y , and z , or a Python list of up to four such objects, one for each type of cell in the mesh
61

CHAPTER 7: Three-Dimensional Plotting Functions

er;
rst side
er).

or
 side in
.

or
se in in-

er;
hen the

defining
 total

n-
h, these

ng each
e same
p-
he same
 same as
format of the two dimensional array for each type of cell shape is as follows:

• hexahedra: the array is no_hex_cells by 8. The first subscript is the hexahedron cell numb
for each value of this subscript, the second indexes the vertices in canonical order (the fi
in outward normal order, the opposite side’s correcponding vertices in inward normal ord

• prisms: the array is no_prism_cells by 6. The first subscript is the prism cell number; f
each value of this subscript, the second indexes the vertices in canonical order (the first
outward normal order, the opposite side’s correcponding vertices in inward normal order)

• pyramids: the array is no_pyr_cells by 5. The first subscript is the pyramid cell number; f
each value of this subscript, the second indexes first the apex, then the vertices of the ba
ward normal order.

• tetrahedra: the array is no_tet_cells by 4. The first subscript is the tetrahedron cell numb
for each value of this subscript, the second indexes first some arbitrary cell as the apex, t
vertices of the base in inward normal order.

Each type of cell has a relative cell number running from 0 to no_celltype_cells - 1. The cells
are also assumed to have absolute cell numbers, which depend on the order in which the
arrays appear, but will run consecutively starting from 0 in the first cell of the first type up to the
number of cells - 1 for the last cell of the last type.

The optional keyword funcs defines f1 , f2 , etc., which are arrays of function values (e.g. de
sity, temperature) defined on the mesh. In the case of a regular (or structured) rectangular mes
functions are 3-D arrays. If they represent cell-centered data, they will have one less value alo
dimension than the coordinate arrays. If they are vertex-centered data, then they will have th
dimensions. In the case of an unstructured mesh, f1 , f2 , etc. are one-dimensional arrays. If they re
resent cell-centered data, then they are indexed by the absolute cell number, and must be t
length as the number of cells. If they represent vertex-centered data, then they are indexed the
the vertices, and must be the same length as the vertex arrays.

Calling Sequence (2)

mesh3 (xyz, funcs = [f1, f2, ...])

Description

In this case xyz is a four dimensional array specifying the mesh; xyz [0] is the three dimensional x
coordinate, xyz [1] is the three dimensional y coordinate, and xyz [2] is the three dimensional z
coordinate. (mesh3 actually converts the x , y, z arguments of the first two calls into this xyz form in
a mesh3 object; see “Description of a mesh3 object” on page 63. The funcs keyword operates as
previously described.

Calling Sequence (3)

mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [f1, f2, ...])
62

Data Setup Functions for Plotting

tire
,

ured,

rn us at
r

mes are
mainder
ere are

if-
ght be
e mesh

g

Description

nxnynz is a vector of 3 integers, specifying the number of cells of a uniform 3D mesh in the x , y,
and z directions, respectively. dxdydz is an array of three reals, specifying the size of the en
mesh, not the size of one cell, in each of the three directions, and x0y0z0 is an array of three reals
representing the point of minimum x , y, and z where the mesh begins. The funcs keyword operates
as previously described.

Description of a mesh3 object

The form of a mesh3 object varies according to whether the mesh specified was uniform, struct
or unstructured.

Uniform case, node equally spaced:

[[xyz3_unif, getv3_rect, getc3_rect, iterator3_rect],
[(nxnynz [0], nxnynz [1], nxnynz [2]),
array ([dxdydz, x0y0z0])], [f1, f2, ...]]

The four items in the first list are the names of functions. The details of these need not conce
this time except in their broad outlines. The iterator3 function will split the mesh into chunks fo
processing by the slicing functions, if necessary, in order to save space. xyz3 returns the vertex coor-
dinates of a chunk. getv3 returns the vertex values of a function on the chunk; getc3 returns cell
values. Because these routines necessarily differ depending on the type of mesh, their na
passed along with the mesh specifications to that the apporopriate ones can be called. The re
of the items in the object specify the mesh and the function(s) defined on the mesh (if any; if th
none, the final list will be []).

Uniform case, nodes unequally spaced:

[[xyz3_unif, getv3_rect, getc3_rect, iterator3_rect],
[(len (x) - 1, len (y) - 1, len (z) - 1),
array ([x, y, z])], [f1, f2, ...]]

The functions’ purpose is as described above. x , y, and z are one-dimensional arrays, possibly of d
ferent lengths, specifying the node coordinates of a uniform rectangular mesh, which mi
unequally spaced. The triple consisting of the three array lengths minus one gives the size of th
in cells.

Structured case:

[[xyz3_rect, getv3_rect, getc3_rect, iterator3_rect],
[dim_cell, xyz], [f1, f2, ...]]

The functions’ purpose is as described above. dim_cell is an integer vector of length three givin
the size of the mesh in cells, dim_cell [0] being the x direction size, dim_cell [1] the y, and
dim_cell [2] the z . xyz is a four dimensional array of coordinates; xyz [0] is the three dimen-
sional x coordinate array, xyz [1] is the three dimensional y coordinate array, and xyz [2] is the
three dimensional z coordinate array.
63

CHAPTER 7: Three-Dimensional Plotting Functions

ertices
esh,
olute

mesh

 e.,
ext

r-
ed
Unstructured case:

[[xyz3_irreg, getv3_irreg, getc3_irreg, iterator3_irreg],
[dims, array ([x, y, z]), sizes, totals], [f1, f2, ...]]

The functions’ purpose is as described above. dims is the value of the keyword argument verts , i.
e., it represents one array, or a list of up to four arrays, specifying the subscripts of the cell v
into arrays x , y, and z in canonical order. If there is only one type of cell in the unstructured m
then sizes and totals will not be present; otherwise, they are used to help recover the abs
cell number from a cell’s index in the list of cells of the same type. sizes [i] is the number of cells
of type i ; totals [i] is the total number of cells up to and including type i .

7.4 The Slicing Functions

The slicing functions must be called in order to create data appropriate for the pl3surf (plot a 3-D
surface) and pl3tree (add a plot to a tree) routines. In general, the slicing routines take a
specification of some sort and return a list of the form

[nverts, xyzverts, color]

which specifies a set of polygonal cells and how to color them.

nverts is no_cells long and the ith entry tells how many vertices the ith cell has.

xyzverts is sum (nverts) by 3 and gives the vertex coordinates of the cells in order, i.
the first nverts [0] entries in xyzverts are the coordinates of the first polygon’s vertices, the n
nverts [1] entries are the coordinates of the second polygon’s vertices, etc.

color , if present, is no_cells long and contains a color value for each cell in the mesh.

7.4.1 slice3mesh : Pseudo-slice for a surface

The function slice3mesh is designed specifically to produce an input argument for pl3surf ,
although if you want more than one surface in a picture, it can also be fed to pl3tree . It has several
distinct calling sequences, which Python can distinguish with its type savvy.

Calling Sequence (1)

slice3mesh (z [, color])

Description

z is a two dimensional array of function values, assumed to be on a uniform mesh nx by ny cells
(assuming z is nx by ny) nx being the number of cells in the x direction, ny the number in the y
direction. color , if specified, is either an nx by ny array of cell-centered values by which the su
face is to be colored, or an nx + 1 by ny + 1 array of vertex-centered values, which will be averag
over each cell to give cell-centered values.
64

The Slicing Functions

-

e two

 be

ng
s

es. In the

s

Calling Sequence (2)

slice3mesh (nxny, dxdy, x0y0, z [, color])

Description

In this case, slice3mesh accepts the specification for a regular 2-D mesh: nxny is the number of
cells in the x direction and the y direction; x0y0 are the initial values of x and y ; and dxdy are the
increments in the two directions. z is the height of a surface above the xy plane and must be dimen
sioned nx + 1 by ny + 1. color , if specified, is as above.

Calling Sequence (3)

slice3mesh (x, y, z [, color])

Description

z is as above, an nx by ny array of function values on a mesh of the same dimensions. There ar
choices for x and y : they can both be one-dimensional, dimensioned nx and ny respectively, in
which case they represent a mesh whose edges are parallel to the axes; or else they can bothnx by
ny, in which case they represent a general quadrilateral mesh.

Examples

Postponed until later in the chapter.

7.4.2 slice3 : Plane and Isosurface Slices of a 3-D mesh

Calling Sequence

[nverts, xyzverts, color] = \
 slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]]

 [, value = <val>] [, node = flg 2])

Description

Slice the 3-D mesh m3 as specified by fslice , returning the list [nverts , xyzverts , color] .
nverts is the number of vertices in each polygon of the slice, and xyzverts is the 3-by-sum
(nverts) list of polygon vertices. If the fcolor argument is present, the values of that colori
function on the polygons are returned as the value of color . color will have the same size a
nverts , i. e., the number of polygons in the slice, except that the keyword argument node , if
present and nonzero, is a signal to return node-centered values rather than cell-centered valu
latter case color will be sum (nverts) long and entries in color will be associated with the
corresponding coordinates in xyzverts . nv and xyzv are not needed; None should be passed a
their values (this is a leftover from an older version of the code).

fslice can be a function, a vector of 4 reals, or an integer number. If fslice is a function, it
65

CHAPTER 7: Three-Dimensional Plotting Functions

n slice

urn

 of

g., by a

rtex
should be of the form:

def fslice (m3, chunk)

or, in the case of an isosurface slice,

def fslice (m3, chunk, iso_index, _value)

or for a plane slice,

def fslice (m3, chunk, normal, projection)

and should return a list of function values on the specified chunk of the mesh m3. Module slice3
offers plane and isosurface slicers (for descriptions, see page 110). If you wish to write your ow
routine, you should bear in mind that the format of chunk depends on the type of m3 mesh, so you
should use only the approriate mesh functions xyz3 and getv3 which take that type of m3 and
chunk as arguments. The return value of fslice should have the same dimensions as the ret
value of getv3 ; the return value of xyz3 has an additional first dimension of length 3.

If fslice is a list of 4 reals, it is taken as a slicing plane as returned by plane3 .

If fslice is a single integer, the slice will be an isosurface for the fslice th function associated
with the mesh m3. In this case, the keyword value must also be present, representing the value
that function on the isosurface.

If fcolor is omitted or has value None, then slice3 returns None as the value of color .. If
you want to color the polygons in a manner that depends only on their vertex coordinates (e.
3-D shading calculation), use this mode.

fcolor can be a function or a single integer. If fcolor is a function, it should be of the form:

def fcolor (m3, cells, l, u, fsl, fsu, ihist)

and should return a list of function values on the specified cells of the mesh m3. If the optional argu-
ment flg 1 after fcolor is not missing or None and is non-zero, then the fcolor function is
called with only two arguments:

def fcolor (m3, cells)

The cells argument will be the list of cell indices in m3 at which values are to be returned. l , u,
fsl , fsu , and ihist are interpolation coefficients which can be used to interpolate from ve
centered values to the required cell centered values, ignoring the cells argument. See getc3
source code. The return values should always have the same size and shape as cells .

If fcolor is a single integer, then the slice will be an isosurface for the fcolor th variable asso-
ciated with the mesh m3.

7.4.3 slice2 and slice2x : Slicing Surfaces with planes

The functions slice2 and slice2x allow one to slice surfaces specified by slice3 -type output.
slice2 will return the portion on one side of the slicing plane; slice2x will return both portions.
66

At Last - the 3-D Plotting Functions

re the

the
d
 plane.

g: one
e.

e, the
ing
alue

ith
r-

e

 show
Calling Sequences

[nverts, xyzverts, values] = slice2 (plane, nv,
xyzv, vals)

[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =
slice2x (plane, nv, xyzv, vals)

Description

The argument plane can be either a scalar or a plane3 (see “Creating a Plane” on page 61); nv is

an array of integers, the ith entry of which gives the number of vertices of the ith polygonal cell; xyzv
are the vertices of the coordinatesof the cells, with each consecutive nv [i] entries representing the

vertices of the ith cell; and vals being a set of values as explained below. These arguments a
same format as returned by slice3 and slice3mesh .

If plane is a plane3 , then vals (if not None) is a cell-centered set of values expressing
color of each cell, and the outputs nverts , xyzverts , and values represent the polygons an
their colors (if any) describing the portion of the sliced surface that is on the positive side of the
That’s all you get with slice2 . With slice2x , you get in addition nvertb , xyzvertb , and
valueb , which describe the part of the surface on the negative side of the slicing plane. Warnin
of these specifications could be None, None, None if the entire surface lies on one side of the plan

If plane is a scalar value, then vals must be present and must be node-centered. In this cas
outputs nverts , xyzverts , and values represent the polygons and their colors (if any) describ
the portion of the sliced surface where vals on the vertices are greater than or equal to the scalar v
plane . (This actually allows you to form an arbitrary two-dimensional slice of a surface.) W
slice2x , you get in addition nvertb , xyzvertb , and valueb , which describe the part of the su
face where vals on the vertices are less than the scalar value plane .

7.5 At Last - the 3-D Plotting Functions

7.5.1 plwf : plot a wire frame

Calling Sequence

plwf (z [, y, x] [, <keylist>])

Description

plwf plots a 3-D wire frame of the given 2-D array z . If x and y are given, then they must be th
same shape as z or else len (x) should be the first dimension of z and len (y) the second. If x
and y are not given, they default to the first and second indices of z , respectively. plwf calls
clear3 before putting the plot command on the display list, which means that PyGist can only
one wire frame at a time using this function. (See pl3tree for graphs with multiple components).

plwf accepts the following keyword arguments:
67

CHAPTER 7: Three-Dimensional Plotting Functions

ension
vertex-

s the

set to

cale

 is;
er

d then
e wire
fill, shade, edges, ecolor, ewidth, cull, scale, cmax

A description of the keywords follows:

fill : optional colors to use (default is to make zones have background color), same dim
options as for z argument to plf function, i. e., it should be the same dimension as the mesh (
centered values) or one smaller in each dimension (cell-centered values).

shade : set non-zero to compute shading from the current 3-D lighting sources.

edges : default is 1 (draw edges), but if you provide fill colors, you may set to 0 to supres
edges.

ecolor , ewidth : color and width of edges.

cull : default is 1 (cull back surfaces), but if you want to see the ‘‘underside’’ of the model,
0.

scale : by default, z is scaled to ‘‘reasonable’’ maximum and minimum values related to the s
of (x , y) . This keyword alters the default scaling factor, in the sense that scale = 2.0 will produce
twice the z -relief of the default scale = 1.0 .

cmax: the ambient keyword in light3 can be used to control how dark the darkest surface
use this to control how light the lightest surface is. The lightwf routine can change this paramet
interactively.

Examples

The following example computes the information for a surface with a peak and a valley, an
plots the resulting wire frame with various options. In the first case, we see simply an opaqu
frame.

set_draw3_ (0)
x = span (-1, 1, 64, 64)
y = transpose (x)
z = (x + y) * exp (-6.*(x*x+y*y))
orient3 ()
light3 ()
plwf (z, y, x)
[xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)
plt("opaque wire mesh", .30, .42)
68

At Last - the 3-D Plotting Functions
69

CHAPTER 7: Three-Dimensional Plotting Functions

’s right

oming
Next, we see the same surface shaded from a default light source (roughly over the viewer
shoulder) and with the mesh lined in red.

plwf(z,y,x,shade=1,ecolor="red")
[xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)

Finally, the following sequence plots the same surface with no edges, and with lighting c
from the back.

plwf(z,y,x,shade=1,edges=0)
light3 (diffuse=.1, specular=1., sdir=array([0,0,-1]))
[xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)
70

At Last - the 3-D Plotting Functions

 the

that

te its
7.5.2 pl3surf : plot a 3-D surface

Calling Sequence

pl3surf (nverts, xyzverts [, values] [, <keylist>])

Description

Perform simple 3-D rendering of an object created by slice3 (possibly followed by slice2).
nverts and xyzverts are polygon lists as returned by slice3 , so xyzverts is sum
(nverts) -by-3, where nverts is a list of the number of vertices in each polygon. If present,
values should have the same length as nverts ; they are used to color the polygon. If values is
not specified, the 3-D lighting calculation set up using the light3 function will be carried out. Key-
words cmin and cmax as for plf , pli , or plfp are also accepted. (If you do not supply values ,
you probably want to use the ambient keyword to light3 instead of cmin here, but cmax may
still be useful.)

pl3surf calls clear3 before putting the plot command on the display list, which means
PyGist can only show one surface at a time using this function. (See pl3tree below for graphs with
multiple components).

Example

The following example is the familiar sombrero function. The first few lines of code compu
value.

nc1 = 100
71

CHAPTER 7: Three-Dimensional Plotting Functions
nv1 = nc1 + 1
br = - (nc1 / 2)
tr = nc1 / 2 + 1
x = arange (br, tr, typecode = Float) * 40. / nc1
y = arange (br, tr, typecode = Float) * 40. / nc1
z = zeros ((nv1, nv1), Float)
r = sqrt (add.outer (x ** 2, y **2)) + 1e-6
z = sin (r) / r

In order to use pl3surf , we need to construct a mesh using mesh3. The way we shall do that is
to define a function on the 3d mesh so that the sombrero function is its 0-isosurface.

z0 = min (ravel (z))
z0 = z0 - .05 * abs (z0)
maxz = max (ravel (z))
maxz = maxz + .05 * abs (maxz)
zmult = max (max (abs (x)), max (abs (y)))
dz = (maxz - z0)
nxnynz = array ([nc1, nc1, 1], Int)
dxdydz = array ([1.0, 1.0, zmult*dz], Float)
x0y0z0 = array ([float (br), float (br), z0*zmult], Float)
meshf = zeros ((nv1, nv1, 2), Float)
meshf [:, :, 0] = zmult*z - (x0y0z0 [2])
meshf [:, :, 1] = zmult*z - (x0y0z0 [2] + dxdydz [2])

Finally, we create the mesh and call the plotting functions.

m3 = mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [meshf])
fma ()
Make sure we don't draw till ready
set_draw3_ (0)
pldefault(edges=0)
[nv, xyzv, col] = slice3 (m3, 1, None, None, value = 0.)
orient3 () # (default orientation)
pl3surf (nv, xyzv)
lim = draw3 (1)
dif = 0.5 * (lim [3] - lim [2])
dif is used to compress the y scale a bit.
limits (lim [0], lim [1], lim [2] - dif, lim [3] + dif)
palette ("gray.gp")

The graph that results from this sequence of code is on the next page.
72

At Last - the 3-D Plotting Functions

olygons
This next sequence of functions uses slice3mesh to draw the same surface; this time the p
that make up the surface are colored according to height (using the rainbow palette).

Try new slicing function to get color graph
[nv, xyzv, col] = slice3mesh (nxnynz [0:2], dxdydz [0:2],
 x0y0z0 [0:2], zmult * z, color = zmult * z)
pl3surf (nv, xyzv, values = col)
lim = draw3 (1)
dif = 0.5 * (lim [3] - lim [2])
limits (lim [0], lim [1], lim [2] - dif, lim [3] + dif)
palette ("rainbow.gp")
73

CHAPTER 7: Three-Dimensional Plotting Functions

ay as to
nd this
x-

d

n.
haded

l of the

of some
r leaf on
 When
es reach
 the tree,
s closest

tted in

 cur-
o 199
rs
cified
y

7.5.3 pl3tree : add a surface to a plotting tree

pl3tree accepts surfaces and slices of surfaces in the slice2 /slice3 format, and, as its name
suggests, builds a b-tree. Its purpose is to attempt to analyze multiple surface plots in such a w
determine the order of plotting, so that hidden portions of the surfaces will be graphed first, a
covered by later portions. pl3tree may be called multiple times to build plots of arbitrary comple
ity.

Calling Sequence

pl3tree (nverts, xyzverts [, values] [, <keylist>])

Description

pl3tree accepts the following keywords:

plane, cmin, cmax, split

pl3tree adds the polygon list specified by nverts (number of vertices in each polygon) an
xyzverts (3-by-sum (nverts) vertex coordinates) to the currently displayed b-tree. If values
is specified, it must have the same dimension as nverts , and represents the color of each polygo
If values is not specified, then the polygons are assumed to form an isosurface which will be s
by the current 3-D lighting model; the isosurfaces are at the leaves of he b-tree, sliced by al
planes. If plane (in the format returned by a call to plane3) is specified, then the xyzverts must
all lie in that plane, and that plane becomes a new slicing plane in the b-tree.

Each leaf of the b-tree consists of a set of sliced isosurfaces. A node of the b-tree consists
polygons in one of the planes, a b-tree or leaf entirely on one side of that plane, and a b-tree o
the other side. The first plane you add becomes the root node, slicing any existing leaf in half.
you add an isosurface, it propagates down the tree, getting sliced at each node, until its piec
the existing leaves, to which they are added. When you add a plane, it also propagates down
getting sliced at each node, until its pieces reach the leaves, which it slices, becoming the node
to the leaves.

This structure is relatively easy to plot, since from any viewpoint, a node can always be plo
the order from one side, then the plane, then the other side.

If keyword split is set nonzero (the default), then this routine assumes a ‘‘split palette’’; the
rent palette will be ‘‘split’’ or truncated so that its colors are numbered 0 to 99, while colors 100 t
will be greyscale. Colors for the values will be scaled to fit from color 0 to color 99, while the colo
from the shading calculation will be scaled to fit from color 100 to color 199. (If values is spe
as an unsigned char array (Python typecode "b"), however, it will be used without scaling.) You ma
specifiy a cmin or cmax keyword to affect the scaling; cmin is ignored if values is not specified
(use the ambient keyword from light3 for that case).
74

At Last - the 3-D Plotting Functions

ta on

e 1.0)

 to slice
Example

In the following example, nx , ny, and nz are each 20. First we compute the mesh and some da
the mesh.

xyz = zeros ((3, nx, ny, nz), Float)
xyz [0] = multiply.outer (span (-1, 1, nx),
 ones ((ny, nz), Float))
xyz [1] = multiply.outer (ones (nx, Float),
 multiply.outer (span (-1, 1, ny),
 ones (nz, Float)))
xyz [2] = multiply.outer (ones ((nx, ny), Float),
 span (-1, 1, nz))
r = sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
theta = arccos (xyz [2] / r)
phi = arctan2 (xyz [1] , xyz [0] + logical_not (r))
y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)
m3 = mesh3 (xyz, funcs = [r * (1. + y32)])

Next we construct two isosorfaces, an inner (function value .5) and an outer (function valu
using slice3 .

[nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50)
 # (inner isosurface)
[nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.)
 # (outer isosurface)

Now we create two planes, use one to form a plane slice through the mesh, then the second
the first in half.

pxy = plane3 (array ([0, 0, 1], Float), zeros (3, Float))
pyz = plane3 (array ([1, 0, 0], Float), zeros (3, Float))
[np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
 # (pseudo-colored plane slice)
[np, xyzp, vp] = slice2 (pxy, np, xyzp, vp)
 # (cut slice in half)

Finally, we slice each isosurface in half, keeping both halves (slice2x calls), then slice the
‘‘top’’ half of each in half again, discarding the front of each (slice2 calls).

[nv, xyzv, d1, nvb, xyzvb, d2] = \
 slice2x (pxy, nv, xyzv, None)
[nv, xyzv, d1] = slice2 (- pyz, nv, xyzv, None)
 # (...halve one of those halves)
[nw, xyzw, d1, nwb, xyzwb, d2] = \
 slice2x (pxy , nw, xyzw, None)
 # (split outer in halves)
[nw, xyzw, d1] = slice2 (- pyz, nw, xyzw, None)
75

CHAPTER 7: Three-Dimensional Plotting Functions
Now, a sequence of calls to pl3tree sets up the graph, and a call to demo5_light actually
plots it. For completeness, we give the function demo5_light first.

making_movie = 0
def demo5_light (i) :
 global making_movie
 if i >= 30 : return 0
 theta = pi / 4 + (i - 1) * 2 * pi/29
 light3 (sdir = array ([cos(theta), .25, sin(theta)],
 Float))
 draw3 (not making_movie)
 return 1
fma ()
split_palette ("earth.gp")
gnomon (1)
clear3 ()
Make sure we don't draw till ready
set_draw3_ (0)
pl3tree (np, xyzp, vp, pyz)
pl3tree (nvb, xyzvb)
pl3tree (nwb, xyzwb)
pl3tree (nv, xyzv)
pl3tree (nw, xyzw)
orient3 ()
light3 (diffuse = .2, specular = 1)
limits (square=1)
demo5_light (1)
76

Contour Plotting on Surfaces: plzcont and pl4cont

s of the
 and
e sur-

s

rgu-
:

" on
7.6 Contour Plotting on Surfaces: plzcont and pl4cont

Contour lines can be plotted on a surface, or filled contours can be drawn, or both, by mean
two functions plzcont (plot z contours, i. e., contours according to height in the z direction)
pl4cont (plot 4D contours, i. e., contours determined by some other function defined on th
face.

Calling Sequences

plzcont (nverts, xyzverts, contours = 8, scale = "lin",
 clear = 1, edges = 0, color = None, cmin = None,
 cmax = None, zaxis_min = None, zaxis_max = 0, split = 0)
pl4cont (nverts, xyzverts, values, contours = 8, scale =
 "lin", clear = 1, edges = 0, color = None, cmin = None,
 cmax = None, caxis_min = None, caxis_max = 0, split = 0)

Description

plzcont plots z contours, and pl4cont plots contours derived from the function values .
nverts and xyzverts specify the polygons which define the surface. nverts is an array of inte-

gers, the ith entry of which gives the number of vertices of the ith polygonal cell; xyzverts are the
vertices of the coordinatesof the cells, with each consecutive nv [i] entries representing the vertice

of the ith cell; and values (for pl4cont) being a set of values, one for each vertex. These a
ments are the same format as returned by slice3 and slice3mesh (see Section 7.4.2 "slice3
Plane and Isosurface Slices of a 3-D mesh" on page 65). plzcont and pl4cont actually do
repeated calls to slice2x (see Section 7.4.3 "slice2 and slice2x: Slicing Surfaces with planes
page 66) in order to obtain the contour curves.

Keyword Arguments

contours

can be one of the following: N, an integer: Plot N contours (therefore, N+1 col-
ored components of the surface) CVALS, a vector of floats: draw the contours
at the specified levels.

scale

can be "lin" , "log" , or "normal" specifying the contour scale. (Only ap-
plicable if contours = N, of course).

clear

If CLEAR == 1, clear the display list first. Otherwise the current contour plot
will be added to the display list.

edges

If EDGES == 1, plot the edges.
77

CHAPTER 7: Three-Dimensional Plotting Functions

it with
ard
 its few
color

If color == None, then bytscl the palette into N + 1 colors and send each
of the slices to pl3tree with the appropriate color. If color == "bg" , will
plot only the edges. See also split (below).

cmin, cmax

If CMIN is given, use it instead of the minimum c actually being plotted in the
computation of contour levels. If CMAX is given, use it instead of the maximum
c actually being plotted in the computation of contour levels. This is done so
that a component of a larger graph will have the same colors at the same levels
as every other component, rather than its levels being based on its own maxi-
mum and minimum, which may lie inside or outside those of the rest of the
graph.

zaxis_min, zaxis_max

ZAXIS_MIN and ZAXIS_MAX represent axis limits on z as expressed by the
user. If present, ZAXIS_MIN will inhibit plotting of all lesser z values, and
ZAXIS_MAX will inhibit the plotting of all greater z values.

caxis_min, caxis_max

CAXIS_MIN and CAXIS_MAX represent axis limits on c as expressed by the
user. If present, CAXIS_MIN will inhibit plotting of all lesser c values, and
CAXIS_MAX will inhibit the plotting of all greater c values.

split

If split == 1, then it is intended to plot this portion of the graph as if the pal-
ette has been split, so only colors 0-99 will be used to color the contours. If
split == 0, then all colors from 0 to 199 will be used.

Example

In the following example, we compute the sombrero function and then use plzcont to draw
contours in "normal" scale. In "normal" scale, the top and bottom contours are two stand
deviations away from the mean. Thus the peak of the sombrero is all the same color because
points contribute very little to the standard deviation.

compute sombrero function
x = arange (-20, 21, typecode = Float)
y = arange (-20, 21, typecode = Float)
z = zeros ((41, 41), Float)
r = sqrt (add.outer (x ** 2, y **2)) + 1e-6
z = sin (r) / r
fma ()
clear3 ()
gnomon (0)
Make sure we don't draw till ready
78

Contour Plotting on Surfaces: plzcont and pl4cont
set_draw3_ (0)
palette ("rainbow.gp")
[nv, xyzv, dum] = slice3mesh (x, y, z)
plzcont (nv, xyzv, contours = 20, scale = "normal")
[xmin, xmax, ymin, ymax] = draw3 (1)
limits (xmin, xmax, ymin, ymax)

To draw the same function in "lin" scale, with edges visible, enter the following code:

plzcont (nv, xyzv, contours = 20, scale = "lin", edges=1)
[xmin, xmax, ymin, ymax] = draw3 (1)
limits (xmin, xmax, ymin, ymax)

The resulting graph is shown on the next page.
79

CHAPTER 7: Three-Dimensional Plotting Functions

a
the
 sub-
7.7 Animation: movie and spin3

7.7.1 The movie module and function

Calling Sequence

movie (draw_frame [, time_limit = 120.]
 [, min_interframe = 0.0]
 [, bracket_time = array ([2., 2.], Float)]
 [, lims = None]
 [, timing = 0])

Description

Note: All but the first argument are keyword arguments, with defaults as shown.

This function runs a movie based on the given draw_frame function. The movie stops after
total elapsed time of time_limit seconds, which defaults to 60 (one minute), or when
draw_frame function returns zero. (N. B. Currently the timing option described here and in a
sequent paragraph is not completely implemented.)

draw_frame is a function described as follows:

def draw_frame (i) :
80

Animation: movie and spin3

ovie.

y also be
ll be
es
 plat-

rrently
that the
Input argument i is the frame number.
draw_frame should return non-zero if there are more
frames in this movie. A zero return will stop the
movie.
draw_frame must NOT include any fma command if the
making_movie variable is set (movie sets this variable
before calling draw_frame)

If min_interframe is specified, a pause will be added as necessary to slow down the m
min_interframe is a time in seconds (default 0). The keyword bracket_time (again a time in
seconds) can be used to adjust the duration of the pauses after the first and last frames. It ma
a two element array [beg, end] . If the pause at the end is greater than five seconds, you wi
prompted to explain that hitting <RETURN> will abort the final pause. (Well, the Python version do
not currently have this capability due to the difficulty of implementing it consistently over various
forms.)

timing = 1 enables a timing printout for your movie.

If every frame of your movie has the same limits, use the lims keyword argument to fix the limits
during the movie.

Example

In the following example, the movie demonstrates the effect of a moving light source on the cu
drawn surface. (The plot functions creating the surface have not been shown; it is assumed
data for the surface is on the current display list.)

The draw_frame function is as follows:

def demo5_light (i) :
 global making_movie
 if i >= 30 : return 0
 theta = pi / 4 + (i - 1) * 2 * pi/29
 light3 (sdir =
 array ([cos(theta), .25, sin(theta)], Float))
 # without an explicit call to draw3, the light3
 # function would cause no changes until Python
 # paused for input from the keyboard, since
 # unlike the primitive plotting functions (plg, plf,
 # plfp, ...) the fma call made by the movie function
 # will not trigger the 3-D display list. any movie
 # frame display function which uses the 3-D drawing
 # functions in pl3d.py will need to do this. the
 # !making_movie flag supresses the fma in draw3 if
 # this function is called by movie (which issues
 # its own fma), but allows it otherwise

 draw3 (not making_movie)
81

CHAPTER 7: Three-Dimensional Plotting Functions

e with a
oving
 return 1

Here is the Python code necessary to run a movie. This particular animation shows the surfac
peak and valley which we saw earlier in this chapter(See “Examples” on page 68), with a m
light source. A few frames of the movie are shown on the next page.

set_draw3_ (0)
x = span (-1, 1, 64, 64)
y = transpose (x)
z = (x + y) * exp (-6.*(x*x+y*y))
orient3 ()
light3 (diffuse=.2,specular=1)
limits_(square = 1)
plwf (z,y,x,shade=1,edges=0)
[xmin, xmax, ymin, ymax] = draw3 (1)
limits (xmin, xmax, ymin, ymax)
making_movie = 1
movie(demo5_light, lims = [xmin, xmax, ymin, ymax])
making_movie = 0

TABLE 1. Selected Frames Showing Moving Light Source
82

Animation: movie and spin3

 calls

ot cur-

h step

rotate it
e figure
7.7.2 The spin3 function

spin3 is a function which takes an existing 3-D plot and spins it about an axis. It actually
movie for you, with a draw_frame function which is internal to the pl3d module and not avail-
able outside this module, because its name begins with an underscore.

Calling Sequence

spin3 (nframes = 30,
 axis = array ([-1, 1, 0], Float),
 tlimit = 60.,
 dtmin = 0.0,
 bracket_time = array ([2., 2.], Float),
 lims = None,
 timing = 0,
 angle = 2. * pi)

Description

Spin the current 3-D display list about axis (default [-1, 1, 0]) over nframes (default 30).
Note that all arguments are keywords. Also note that the timing keywords are allowed but are n
rently implemented. Their meanings are:

tlimit : the total time allowed for the movie in seconds (default 60).

dtmin : the minimum allowed interframe time in seconds (default 0.0).

bracket_time : (as for movie function in movie.py).

lims : the axis limits, if you wish to specify them.

timing = 1 if you want timing measured and printed out, 0 if not.

angle : the total angle about the axis through which the object will be rotated. During eac
of the rotation, the object will rotate angle / (nframes - 1) .

Example

In this example, we take the surface discussed previously (see “Example” on page 75) and
about an axis. Assume that the sequence of code given there has been executed, giving th
shown there. Then we do the following to run the movie:

spin3 () # (lims = [l0, l1, l2, l3])
Four frames from the resulting movie are shown on the next page.
83

CHAPTER 7: Three-Dimensional Plotting Functions
TABLE 2. Frames from Movie of Rotating Isosurfaces
84

Syntactic Sugar: Some Helpful Functions

(if
origi-
tte: Set

,
 call

ght-
e

7.8 Syntactic Sugar: Some Helpful Functions

7.8.1 Specifying the palette to be split: split_palette

Calling Sequence

split_palette ([palette_name])

Description

Split the current palette (if palette_name is not present) or the specified palette
palette_name is present) into two parts; colors 0 to 99 will be a compressed version of the
nal, while colors 100 to 199 will be a gray scale. For details on the available palettes, see “pale
or Retrieve Palette” on page 21.

If you use split_palette to split the palette yourself, then be sure to call pl3tree with key-
word split = 0, because otherwise pl3tree will split it again, with bizarre results. Alternatively
you can use the palette function referenced above to set the palette to your choice, then
pl3tree with split = 1.

7.8.2 Saving and restoring the view and lighting: save3 , restore3

Calling Sequences and Example

view = save3 ()
movie (_spin3, ... <other arguments>)
restore3 (view)

Description

In the above, the save3 function returns a copy of the current 3-D viewing transformation and li
ing, so that the user can put it aside in the variable view . The _spin3 function does actually chang
the viewing transformation and lighting; the call to restore3 with argument view sets it back to
its previous configuration.
85

CHAPTER 7: Three-Dimensional Plotting Functions
86

UCRL-MA-128569, Manual 4

 inter-

the

 edges
is made
CHAPTER 8: Useful Functions for
Developers

In this chapter we describe more of the available functions in detail, for those who are really
ested in plumbing the depths of the low-level 3D graphics.

8.1 Find 3D Lighting: get3_light

Calling Sequence

get3_light(xyz [, nxyz])

Description

Return 3D lighting for polygons with vertices XYZ. If NXYZ is specified, XYZ should be
sum(nxyz) -by-3, with NXYZ being the list of numbers of vertices for each polygon (as for
plfp function; see page 39). If NXYZ is not specified, XYZ should be a quadrilateral mesh, ni -by-
nj -by-3 (as for the plf function; see page 35). In the first case, the return value is len (NXYZ)
long; in the second case, the return value is (ni-1) -by-(nj-1) .

The parameters of the lighting calculation are set by the light3 function (see “Lighting Param-
eters” on page 57).

8.2 Get Normals to Polygon Set: get3_normal

Calling Sequence

get3_normal(xyz [, nxyz])

Description

Return 3D normals for polygons with vertices XYZ. If NXYZ is specified, XYZ should be
sum(nxyz) -by-3, with NXYZ being the list of numbers of vertices for each polygon (as for the plfp
function; see page 39). If NXYZ is not specified, XYZ should be a quadrilateral mesh, ni -by-nj -by-3
(as for the plf function; see page 35). In the first case, the return value is len(NXYZ) -by-3; in the
second case, the return value is (ni-1) -by-(nj-1) -by-3.

The normals are constructed from the cross product of the lines joining the midpoints of two
which as nearly quarter the polygon as possible (the medians for a quadrilateral). No check
November 23, 1998

CHAPTER 8: Useful Functions for Developers

rtices

cond

 If the
),
that these not be parallel; the returned ‘‘normal’’ is [0,0,0] in that case. Also, if the polygon ve
are not coplanar, the ‘‘normal’’ has no precisely definable meaning.

8.3 Get Centroids of Polygon Set: get3_centroid

Calling Sequence

get3_centroid(xyz [, nxyz])

Description

Return 3D centroids for polygons with vertices XYZ. If NXYZ is specified, XYZ should be
sum(nxyz) -by-3, with NXYZ being the list of numbers of vertices for each polygon (as for the plfp
function; see page 39). If NXYZ is not specified, XYZ should be a quadrilateral mesh, ni -by-nj -by-3
(as for the plf function; see page 35). In the first case, the return value is len(NXYZ) in length; in
the second case, the return value is (ni-1) -by-(nj-1) -by-3.

The centroids are constructed as the mean value of all vertices of each polygon.

8.4 Get Viewer’s Coordinates: get3_xy

Calling Sequence

get3_xy(xyz [, 1])

Description

Given 3-by-anything coordinates XYZ, return X and Y in viewer's coordinate system (set by rot3 ,
mov3, orient3 , etc.; see “Functions For Setting Viewing Parameters” on page 56). If the se
argument is present and non-zero, also return Z (for use in sort3d or get3_light , for example;
see “Sort z Coordinates: sort3d” on page 89 and “Find 3D Lighting: get3_light” on page 87.).
camera position has been set to a finite distance with setz3 (see “Physical orientation” on page 57
the returned coordinates will be tangents of angles for a perspective drawing (and Z will be scaled by
1/zc). x , y , and z can be either 1D or 2D, so this routine is written in two cases.

8.5 Add object to drawing list: set3_object

Calling Sequence

set3_object(drawing_function, [arg1,arg2,...])

Description

Set up to trigger a call to draw3 , adding a call to the3D display list of the form:

DRAWING_FUNCTION ([ARG1, ARG2, ...]))
88

Sort z Coordinates: sort3d

ay

a set of
 neigh-

orrect
 surface
 nearly
When draw3 calls DRAWING_FUNCTION, the external variable draw3_ will be non-zero, so
DRAWING_FUNCTION can be written like this:

 def drawing_function(arg) : if (draw3_) :
 arg1= arg [0]
 arg1= arg [1]
 ...
 ...<calls to get3_xy, sort3d, get3_light, etc.>...
 ...<calls to graphics functions plfp, plf, etc.>...
 return

 ...<verify args>...
 ...<do orientation and lighting independent calcs>...
 set3_object (drawing_function, [arg1,arg2,...])

8.6 Sort z Coordinates: sort3d

Calling Sequence

sort3d(z, npolys)

Description

Given Z and NPOLYS, with len(Z)==sum(npolys) , return a 2-element list [LIST , VLIST]
such that take(Z, VLIST) and take (NPOLYS, LIST) are sorted from smallest average Z to
largest average Z, where the averages are taken over the clusters of length NPOLYS. Within each clus-
ter (polygon), the cyclic order of take (Z, VLIST) remains unchanged, but the absolute order m
change.

This sorting order produces correct or nearly correct order for a plfp call to make a plot involving
hidden or partially hidden surfaces in three dimensions. It works best when the polygons form
disjoint closed, convex surfaces, and when the surface normal changes only very little between
boring polygons. (If the latter condition holds, then even if sort3d mis-orders two neighboring poly-
gons, their colors will be very nearly the same, and the mistake won't be noticeable.) A truly c
3D sorting routine is impossible, since there may be no rendering order which produces correct
hiding (some polygons may need to be split into pieces in order to do that). There are more
correct algorithms than this, but they are much slower.

8.7 Set the cmax parameter: lightwf

Calling Sequence

lightwf (cmax)

Description
89

CHAPTER 8: Useful Functions for Developers

ult of
urface

reate an

 us-
Sets the cmax parameter interactively, assuming the current 3D display list contains the res
a previous plwf call. This changes the color of the brightest surface in the picture. The darkest s
color can be controlled using the ambient keyword to light3 (see “Lighting:” on page 56).

8.8 Return a Wire Frame Specification: xyz_wf

Calling Sequence

 xyz_wf (z, [y, x] [,scale = 1.0])

Description

Returns a 3-by-ni -by-nj array whose 0th entry is x , 1th entry is y , and 2th entry is z . z is ni -by-
nj . x and y , if present, must be the same shape. If not present, integer ranges will be used to c
equally spaced coordinate grid in x and y . The function which scales the ‘‘topography’’ of z(x,y)
is potentially useful apart from plwf .

For example, the xyz array used by plwf can be converted from a quadrilateral mesh plotted
ing plf to a polygon list plotted using plfp like this:

xyz= xyz_wf(z,y,x,scale=scale)
ni= z.shape[1]
nj= z.shape[2]
list = ravel (add.outer (
 ravel(add.outer (adders,zeros(nj-1, Int))) +
 arange((ni-1)*(nj-1), typecode = Int),
 array ([[0, 1], [nj + 1, nj]])))
xyz=array([take(ravel(xyz[0]),list),
 take(ravel(xyz[1]),list),
 take(ravel(xyz[2]),list)])
nxyz= ones((ni-1)*(nj-1)) * 4;

The resulting array xyz is 3-by-(4*(nj-1)*(ni-1)) . xyz[0:3,4*i:4*(i+1)] are the
clockwise coordinates of the vertices of cell number i .

8.9 Calculate Chunks of Mesh: iterator3

Calling Sequences

iterator3 (m3)
iterator3 (m3, chunk, clist)
iterator3_rect (m3)
iterator3_rect (m3, chunk, clist)
iterator3_irreg (m3)
iterator3_irreg (m3, chunk, clist)
90

Get Vertex Values of Function: getv3

ore

 the

 must
3”
 this

ular
xahedra,

re
5), in
re

, with a

ered val-

 correct
Description

The iterator3 functions combine three distinct operations:

1. If only the M3 argument is given, return the initial chunk of the mesh. The chunk will be no m
than chunk3_limit cells of the mesh.

2. If only M3 and CHUNK are given, return the next CHUNK, or None if there are no more chunks.

3. If M3, CHUNK, and CLIST are all specified, return the absolute cell index list corresponding to
index list CLIST of the cells in the CHUNK. Do not increment the chunk in this case.

 The form of the CHUNK argument and return value for cases (1) and (2) is not specified, but it
be recognized by the xyz3 and getv3 functions (see “Return Vertex Coordinates for a Chunk: xyz
on page 93 and “Get Vertex Values of Function: getv3” on page 91) which go along with
iterator3 . (For case (3), CLIST and the return value are both ordinary index lists.) In the irreg
case, it is guaranteed that the returned chunk consists of only one type of cell (tetrahedra, he
pyramids, or prisms).

8.10 Get Vertex Values of Function: getv3

Calling Sequence

getv3(i, m3, chunk)
getv3_rect(i, m3, chunk)
getv3_irreg (i, m3, chunk)

Description

getv3 returns vertex values of the I th function attached to 3D mesh M3 for cells in the specified
CHUNK. The CHUNK may be a list of cell indices, in which case getv3 returns a
2x2x2x(CHUNK.shape) list of vertex coordinates. CHUNK may also be a mesh-specific data structu
used in the slice3 routine (see “slice3: Plane and Isosurface Slices of a 3-D mesh” on page 6
which case getv3 may return a (ni) x(nj) x(nk) array of vertex values. For meshes which a
logically rectangular or consist of several rectangular patches, this is up to 8 times less data
concomitant performance advantage. Use getv3 when writing slicing functions for slice3 .

getv3_rect does the job for a regular rectangular mesh.

getv3_irreg , for an irregular mesh, returns a 3-list whose elements are:

1. the function values for the I th function on the vertices of the given CHUNK. (The function values
must have the same dimension as the coordinates; there is no attempt to convert zone-cent
ues to vertex-centered values.)

2. an array of relative cell numbers within the list of cells of this type.

3. a number that can be added to these relative numbers to give the absolute cell numbers for
access to their coordinates and function values
91

CHAPTER 8: Useful Functions for Developers

uch a

volving
e
 vertex-

but

y be
ed that
8.11 Get Cell Values of Function: getc3

Calling Sequence

getc3(i, m3, chunk)
getc3(i, m3, clist , l, u, fsl, fsu, cells)

Description

Returns cell values of the I th function attached to 3D mesh M3 for cells in the specified CHUNK.
The CHUNK may be a list of cell indices, in which case getc3 returns a (CHUNK.shape) array of
vertex coordinates. CHUNK may also be a mesh-specific data structure used in the slice3 routine
(see “slice3: Plane and Isosurface Slices of a 3-D mesh” on page 65), in which case getc3 may return
a (ni) x(nj) x(nk) array of vertex values. There is no savings in the amount of data for s
CHUNK, but the gather operation is cheaper than a general list of cell indices. Use getc3 when writing
coloring functions for slice3 .

If CHUNK is a CLIST , the additional arguments L, U, FSL, and FSU are vertex index lists which

override the CLIST if the I th attached function is defined on mesh vertices. L and U are index arrays
into the (CLIST.shape)x2x2x2 vertex value array, say vva , and FSL and FSU are corresponding
interpolation coefficients; the zone centered value is computed as a weighted average of in
these coefficients. The CELLS argument is required by histogram to do the averaging. See th
source code for details. By default, this conversion (if necessary) is done by averaging the eight
centered values.

getc3_rect does the job for a regular rectangular mesh.

getc3_irreg : Same thing as getc3_rect , i. e., returns the same type of data structure,

from an irregular mesh. m3 [1] is a 2-list; m3[1] [0] is an array whose i th element is an array of

coordinate indices for the i th cell, or a list of up to four such arrays. m3 [1] [1] is the 3 by nverts
array of coordinates. m3 [2] is a list of arrays of vertex-centered or cell-centered data. chunk may
be a list, in which case chunk [0] is a 2-sequence representing a range of cell indices; or it ma
a one-dimensional array, in which case it is a nonconsecutive set of cell indices. It is guarante
all cells indexed by the chunk are the same type.

8.12 Controlling Points Close to the Slicing Plane:
_slice2_precision

Calling Sequences

precision = get_slice2_precision ()
set_slice2_precision (precision)

Description
92

Scale variables to a palette: bytscl, split_bytscl

ro
 were
to
be-

caling

99,
rmally

es

hes, this
Internal variable _slice2_precision controls how slice2 (or slice2x) handles points
very close to the slicing plane or surface. PRECISION should be a positive number or zero. Ze
PRECISION means to clip exactly to the plane, with points exactly on the plane acting as if they
slightly on the side the normal points toward. Positive PRECISION means that edges are clipped
parallel planes a distance PRECISION on either side of the given plane. (Polygons lying entirely
tween these planes are completely discarded.)

Default value is 0.0.

8.13 Scale variables to a palette: bytscl , split_bytscl

Calling Sequence

bytscl(z, top=max_byte, cmin=lower_cutoff,
 cmax=upper_cutoff)
split_bytscl (x, upper, cmin = None, cmax = None)

Description

bytscl returns an unsigned char array (Python typecode "b")of the same shape as Z, with values
linearly scaled to the range 0 to one less than the current palette size. If MAX_BYTE is specified, then
the scaled values will run from 0 to MAX_BYTE instead. If LOWER_CUTOFF and/or UPPER_CUTOFF
are specified, Z values outside this range are mapped to the cutoff value; otherwise the linear s
maps the extreme values of Z to 0 and MAX_BYTE.

split_bytscl is as the bytscl function, but scales to the lower half of a split palette (0-
normally the color scale) if the second parameter is zero or nil, or the upper half (100-199, no
the gray scale) if the second parameter is non-zero.

8.14 Return Vertex Coordinates for a Chunk: xyz3

Calling Sequence

xyz3 (m3, chunk)

Description

Return vertex coordinates for CHUNK of 3D mesh M3. The CHUNK may be a list of cell indices, in
which case xyz3 returns a (CHUNK.shape))x3x2x2x2 list of vertex coordinates. CHUNK may also
be a mesh-specific data structure used in the slice3 routine (see “slice3: Plane and Isosurface Slic
of a 3-D mesh” on page 65), in which case xyz3 may return a 3x(ni) x(nj) x(nk) array of vertex
coordinates. For meshes which are logically rectangular or consist of several rectangular patc
is up to 8 times less data, with a concomitant performance advantage. Use xyz3 when writing slicing
functions or coloring functions for slice3 .
93

CHAPTER 8: Useful Functions for Developers

 Note
ick it
 array

nd of

-

8.15 Find Corner Indices of List of Cells: to_corners3

Calling Sequence

to_corners3(list, nj, nk)

Description

Convert an array of cell indices in an (ni-1) -by-(NJ-1) -by-(NK-1) logically rectangular grid
of cells into the array of len(LIST) -by-2-by-2-by-2 cell corner indices in the corresponding ni -by-
NJ-by-NK array of vertices. The algorithm used is described in section 9.4 “More slice3 details”.
that this computation in Yorick gives an absolute offset for each cell quantity in the grid. In Yor
is legal to index a multidimensional array with an absolute offset. In Python it is not. However, an
can be flattened if necessary.

Other changes from Yorick were necessitated by row-major order and 0-origin indices, a
course the lack of Yorick array facilities.

8.16 Timing: timer , timer_print

Calling Sequences

timer (elapsed)
timer (elapsed, split)
timer_print (label1, split1 [,label2, split2, ...])

Description

timer returns a triple consisting of the times [cpu , system , wall] . If argument split is
present, a sequence is returned whose first element is [cpu , system , wall] and whose second el
ement is the sum of split and the difference between the new and old values of ‘elapsed .'
timer_print prints out a timing summary for splits accumulated by timer .
94

UCRL-MA-128569, Manual 4

t func-
andle

ew other

ment of
ecre-

ce count
tion fault
st of all
 as fol-
CHAPTER 9: Maintenance: Things
You Really Didn’t
Want to Know

In this chapter we discuss in even more gory detail how the PyGist graphics are put together.

9.1 The Workhorse: gistCmodule

The reader should be familiar with many of the functions in gistCmodule from CHAPTER 5:
“Two-Dimensional Plotting Functions”, page 27. Most of the gistCmodule functions discussed
there, and many of the helper functions, are pretty close to literal translations of the equivalen
tions in Gist, the main difference geing the superstructure built on top of them in order to h
PyObject s.. In addition to the plotting functions, a number of functions in gistCmodule are
essential for maintenance of that module, and are discussed here. We also discuss briefly a f
functions which are not literal translations of Gist functions.

9.1.1 Memory Maintenance: PyObject s

One of the primary challenges facing the developer of Python extensions is correct manage
the reference counting for Python objects. Memory leaks will result if the programmer fails to d
ment the reference count in temporary objects. On the other hand, decrementing the referen
too early can cause an object to go away that is referred to later, which can cause a segmenta
when it is referenced. We have semi-automated the process in gistCmodule by maintaining a li
PyObjects created in the process of running one of the module’s functions. This list is declared
lows:

#define ARRAY_LIST_SIZE 30

static PyObject * PyArrayList [ARRAY_LIST_SIZE];
static int array_list_length = 0;

There is a suite of functions for manipulating PyArrayList .

Function Prototypes

static int addToArrayList (PyObject * obj)
static void clearArrayList ()
November 23, 1998

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

s

.

 to this

is to be

ing this
nt, use
static void removeFromArrayList (PyObject * obj)
static void takeOffArrayList (PyObject * obj)

Description

addToArrayList places obj on PyArrayList and returns 1 if successful. If obj is NULL
or the list is full, returns 0. clearArrayList DECREF’s everything on the list, and set
array_list_length to 0. This needs to be done prior to any error return. removeFromArray-
List DECREF’s obj (if it is on the list), removes it from the list, and compresses the list. takeOf-
fArrayList removes obj from the list and compresses the list, but does not DECREF obj . This is
done, for example, when obj is to be returned to the caller.

addToArrayList occurs throughout gistCmodule primarily in macros which create arrays
All of these macros use the TRY macro, which is defined as follows:

#define TRY(e, m) do{if(!(e)){clearArrayList(); \
 clearFreeList(0);clearMemList();return m;}} while(0)

The idea behind TRY is that generally Python functions return 0 or NULL if an error occurred. In this
case it is necessary to get rid of all temporary objects and memory which was allocated up
point. clearArrayList was discussed above, clearFreeList and clearMemList are dis-
cussed later in the chapter.

The array creation macros are as follows:

#define GET_ARR(ap,op,type,dim,cast) \
 TRY(addToArrayList((PyObject *)(ap=(PyArrayObject *)\
 PyArray_ContiguousFromObject(op,type,dim,dim))), \
 (cast)PyErr_NoMemory ())

This macro is the usual protocol for creating a contiguous array from a PyObject which has been
sent as an argument to a function.

#define NEW_ARR(ap,n,dims,type,cast) \
 TRY(addToArrayList((PyObject *)(ap=\
 (PyArrayObject *)PyArray_FromDims(n,dims,type))), \
 (cast)PyErr_NoMemory ())

This macro is used usually when creating an array whose dimensions are known and which
filled with computed data.

#define RET_ARR(op,ndim,dim,type,data,cast)\
 TRY(addToArrayList(op=\
 PyArray_FromDimsAndData(ndim,dim,type,data)), \
 (cast)PyErr_NoMemory ())

This final macro is used when we have a block of data and we wish to create an array contain
data, usually as a return value from a function. In order to keep this object from being permane
the following macro:

#define SET_OWN(op) \
96

The Workhorse: gistCmodule

cu-

or-
 ((PyArrayObject *) op)->flags |= OWN_DATA

This macro sets a flag in the PyObject which tells Python that it can be DECREF’ed.

9.1.2 Memory Management: ArrayObjects

ArrayObjects are defined as follows:

typedef struct arrayobject {
 void * data ;
 int size ;
 char typecode ;
 } ArrayObject;

These objects are used primarily in the slice2 routines to store temporary results during the cal
lation. The final results are passed back in PyArrayObject s created by RET_ARR. Two lists of
ArrayObject s are maintained by the slice2 suite: list 0 by slice2 itself, and list 1, which is
used by _slice2_part , which is called by slice2 . These lists are declared as follows:

#define MAX_NO_LISTS 2
#define MAX_LIST_SIZE 30

static ArrayObject * freeList [MAX_NO_LISTS] [MAX_LIST_SIZE];
static int freeListLen [MAX_NO_LISTS] = {0, 0};

Function Prototypes

static ArrayObject * allocateArray (int size, char tc,
 int nlist)
static ArrayObject * copyArray (ArrayObject * a)
static ArrayObject * arrayFromPointer (int size, char tc,
 void * data, int nlist)
static void freeArray (ArrayObject * a, int n)
static void clearFreeList (int n)
static int addToFreeList (ArrayObject * x, int n)
static void removeArrayOnly (ArrayObject * x, int n)
static void removeFromFreeList (ArrayObject * x, int n)

Description

allocateArray allocates an appropriate amount of space for size items of type tc . It then cre-
ates an ArrayObject containing this data and puts it on freeList [nlist] . copyArray
makes and returns a copy of a. It does not add a to any freeList . arrayFromPointer creates
an arrayObject whose data pointer points to data ; it is assumed that the caller has supplied c
rect size and tc arguments. The resulting object is placed on freeList [nlist] . freeArray
frees a’s data and then a itself, and removes it from freeList [n] if it is there. clearFreeList
frees everything on freeList [n] and sets the list length to 0. addToFreeList adds x to
freeList [n] , if it can. removeArrayOnly removes the array from freeList [n] , then
97

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

ained

sets its

l to
sh”

ints at
l point

ons
 of plfp
n the
e poly-
olygons
frees x without freeing its data. This would most likely be done when RET_ARR creates a
PyArrayObject which points to x ’s data. removeFromFreeList frees x ’s data, then x itself,
and removes x from freeList [n] .

9.1.3 Memory Management: naked memory

Occasionally in gistCmodule it is necessary to malloc a block of memory which is not cont
inside some type of object. MemList is used to keep track of such memory:

#define MEM_LIST_SIZE 15

static void * PyMemList [MEM_LIST_SIZE];
static int mem_list_length = 0;

MemList is maintained by its own suite of functions.

Function Prototypes

static int addToMemList (void * addr)
static void clearMemList ()

Description

The first function adds an address to MemList; the second frees everything on MemList and
length back to 0.

9.1.4 Computing contour curves: contour

Calling Sequence

Set mesh first
plmesh (y, x, ireg, triangle = triangle)
[nc, yc, xc] = contour (level, z)

Description

The calling sequence given above emphasizes that mesh parameters should be set by a calplm-
esh prior to calling contour. plmesh arguments are explained in section “plmesh: Set Default Me
on page 29. If level is a scalar floating point number, then the the returned values are the po
that contour level. All such points lie on edges of the mesh. If a contour curve closes, the fina
is the same as the initial point (i.e., that point is included twice in the returned list). If level is a se-
quence of two reals, then contour returns the points of a set of polygons which outline the regi
between the two contour levels. The returned values are in the form required for arguments
(see Section 5.1.8 "plfp: Plot a List of Filled Polygons" on page 39).These will include points o
mesh boundary which lie between the levels, in addition to the edge points for both levels. Th
gons are closed, simply connected, and will not contain more than about 4000 points (larger p
are split into pieces with a few points repeated where the pieces join).
98

The Workhorse: gistCmodule

7)

 be
formed

s are
d into

 cur-
d
ewrote
m
s sec-
m the

e the

the
d
 plane.

g: one
The 2D filled contour plot routine plfc (see Section 5.1.7 "plfc: Plot filled contours" on page 3
operates by calling contour with pairs of adjacent contour levels, and then calling plfp with the
output and a single color, inside a loop. contour needed to be programmed in C because it can
called many times to do a single filled contour plot, and the calculations take too long to be per
in interpreted code. contour calls lower level Gist routines that do most of the work.

9.1.5 Computing slices: slice2 , slice2x , _slice2_part

The 3D graphics in Gist itself is still experimental, and virtually all the computational function
written in Yorick, an interpreted language. Many of the PyGist 3D computations were translate
Python from Yorick, originally including the slice2 and slice2x functions, and their auxiliary,
_slice2_part . When we impleoemnted contours and filled contours on surfaces (which is
rently not implemented in Gist itself), we used slice2 and slice2x to compute the contours an
the polygon lists enclosed within them. These computations were much too slow, so we r
slice2 in C (slice2x remains in Python; it just calls slice2 with a parameter set) and put the
into the gistCmodule . The user interface to these functions has been discussed in a previou
tion (7.4.3 “slice2 and slice2x: Slicing Surfaces with planes”), but we discuss them here fro
viewpoint of implementation. We also discuss the ‘‘hidden’’ function _slice2_part here for the
first time.

Calling Sequences

[nverts, xyzverts, values] = slice2 (plane, nv,
xyzv, vals = None, _slice2x = 0)

[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =
slice2x (plane, nv, xyzv, vals)

static int _slice2_part (ArrayObject * xyzc,
 ArrayObject * keep, ArrayObject * next, ArrayObject * dp,
 ArrayObject * prev, ArrayObject * last,
 ArrayObject * valc, ArrayObject ** xyzc_new,
 ArrayObject ** nvertc, ArrayObject ** valc_new,
 int freexyzc, int freevalc)

Description

The argument plane can be either a scalar or a plane3 (see “Creating a Plane” on page 61); nv is an

array of integers, the ith entry of which gives the number of vertices of the ith polygonal cell; xyzv
are the vertices of the coordinatesof the cells, with each consecutive nv [i] entries representing the

vertices of the ith cell; and vals being a set of values, one for each cell. These arguments ar
same format as returned by slice3 and slice3mesh .

If plane is a plane3 , then vals (if not None) is a cell-centered set of values expressing
color of each cell, and the outputs nverts , xyzverts , and values represent the polygons an
their colors (if any) describing the portion of the sliced surface that is on the positive side of the
That’s all you get with slice2 . With slice2x , you get in addition nvertb , xyzvertb , and
valueb , which describe the part of the surface on the negative side of the slicing plane. Warnin
99

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

e.

e, the
ing
alue

ith
r-

g

ing
e
 to
y-
d and
ted

on-

 by the
ther two
 in two
ision
ace must
 come
ce itself
eve is
of these specifications could be None, None, None if the entire surface lies on one side of the plan

If plane is a scalar value, then vals must be present and must be node-centered. In this cas
outputs nverts , xyzverts , and values represent the polygons and their colors (if any) describ
the portion of the sliced surface where vals on the vertices are greater than or equal to the scalar v
plane . (This actually allows you to form an arbitrary two-dimensional slice of a surface.) W
slice2x , you get in addition nvertb , xyzvertb , and valueb , which describe the part of the su
face where vals on the vertices are less than the scalar value plane .

The optional parameter _slice2x , if 1, tells slice2 to return slices on both sides of the slicin
surface or plane; if not present, or 0, then the slice on ‘‘top’’ is returned. slice2 works by deciding
which polygons lie entirely ‘‘above’’ the slicing surface, which ones lie entirely ‘‘below’’ the slic
surface, and which ones are cut by the surface. If _slice2x is 0, then the ones ‘‘below’’ the surfac
are discarded. slice2 then calls _slice2_part with the polygons to be cut by the plane; once
get the cut polygons ‘‘above’’ the surface, then, if _slice2x is 1, a second time to get the cut pol
gons ‘‘below’’ the surface. The list of uncut and cut polygons ‘‘above’’ the surface is concatenate
returned (_slice2x == 0); the list of uncut and cut polygons ‘‘below’’ the surface is concatena
and returned also if _slice2x is 1.

In the case of a plane slice, suppose that the equation of the slicing plane is

ax + by + cz = d

Then a point (x1, y1, z1) is considered to be on the positive side of the plane if

ax 1 + by 1 + cz 1 - d >= _slice2_precision

and on the negative side if

ax 1 + by 1 + cz 1 - d < _slice2_precision

For a discussion of _slice2_precision , and how to get and set its value, see Section 8.12 "C
trolling Points Close to the Slicing Plane: _slice2_precision" on page 92.

In the case of a slicing surface, vertex i is considered to be above the surface if

vals [i] - plane >= _slice2_precision

and below it if

vals [i] - plane < _slice2_precision

For all intents and purposes, the user may assume that _slice2_precision is 0.0, as this is the
default. However, we allow you to change this if you think you have good reason.

 There is a conceptual difficulty for the case of a quad face all four of whose edges are cut
slicing plane or surface. This can only happen when two opposite corners are above and the o
below the slicing plane. There are three possible ways to connect the four intersection points
pairs: (1) // (2) \\ and (3) X. There is a severe problem with (1) and (2) in that a consistent dec
must be made when connecting the points on the two cells which share the face - that is, each f
carry information on which way it is triangulated. For a regular 3D mesh, it is relatively easy to
up with a consistent scheme for triangulating faces, but for a general unstructured mesh, each fa
must carry this information. This presents a huge challenge for data flow, which we don’t beli
100

Some Yorick-like Functions: yorick.py

 con-
 case

g to be
t cells
we

be-
g tri-

ray
w to do

m our
h of the
worthwhile, because the X choice is unique, and we don’t see why we shouldn’t use it here. For
touring routines, we reject the X choice on aesthetic grounds, and perhaps that will prove to be the
here as well - but we believe we should try the simple way out first. In this case, we are goin
filling these polygons with a color representing a function value in the cell. Since the adjacen
should have nearly the same values, the X-traced polygons will have nearly the same color, and
doubt there will be an aesthetic problem. Anyway, our implementation of slice3 , slice2 , and
_slice2_part produces the unique X (bowtied) polygons, rather than attempting to choose
tween // or \\ (non-bowtied) alternatives. Besides, in the case of contours, the trivial alternatin
angulation scheme is just as bad aesthetically as every zone triangulated the same way!

9.2 Some Yorick-like Functions: yorick.py

The module yorick.py contains a few functions similar to ones in Yorick, which perform ar
manipulations necessary in doing 3D graphics. Those array manipulations which were too slo
in interpreted code have been put into a Python extension module arrayfnsmodule (see
Section 9.3 "Additional Array Operations: arrayfnsmodule" on page 102). We shall depart fro
usual format here, and just give the calling sequences followed by a short explanation for eac
functions.

zcen_ (x, i = 0)

Returns an array whose i th dimension is one smaller than the i th dimension

of x, with the elements along the i th being the averages of two adjacent ele-
ments in the original x . i cannot be larger than 5.

dif_ (x, i = 0)

Returns an array whose i th dimension is one smaller than the i th dimension

of x, with the elements along the i th being the differences of two adjacent ele-
ments in the original x . i cannot be larger than 5.
101

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

and in
d writ-

he sec-
uments
maxelt_ (*x)

maxelt_ accepts a sequence of one or more possible multi-dimensional nu-
merical objects and computes their maximum. In principle these can be of arbi-
trary complexity, since the routine recurses.

minelt_ (*x)

minelt_ accepts a sequence of one or more possible multi-dimensional nu-
merical objects and computes their minimum. In principle these can be of arbi-
trary complexity, since the routine recurses.

rem_0_ (z)

rem_0_ (z) returns a copy of array z after having replaced any zero elements
with 1.e-35 . Assumes z has one or two dimensions.

avg_ (z)

avg_ (z) returns the average of all elements of its array argument.

sign_ (x)

Returns 1 if x >= 0, -1 otherwise.

timer_ (elapsed, *split)

timer_print (label, split, *other_args)

see Section 8.16 "Timing: timer, timer_print" on page 94.

9.3 Additional Array Operations: arrayfnsmodule

A number of functions which emulate Yorick functions are used frequently by the 3D graphics,
interpreted code simply run too slowly. These functions have been moved to arrayfnsmocule an
ten in C. Their diescriptions form this section of the manual.

9.3.1 Counting Occurrences of a Value: histogram

Calling Sequence

histogram (list [, weight])

Description

histogram accepts one or two arguments. The first is an array of non-negative integers and t
ond, if present, is an array of weights, which must be promotable to double. Call these arg
list and weight . Both must be one-dimensional with len (weight) >= max (list) + 1. If
weight is not present:

histogram (list) [i] is the number of occurrences of i in list .
102

Additional Array Operations: arrayfnsmodule

tegers,
lid sub-
lled for
result is
 are ele-

 second
 only of

ray
nged in
If weight is present:

histogram (list , weight) [i] is the sum of all weight [j] where list [j] == i .

9.3.2 Assigning to an Arbitrary Subset of an Array: array_set

Calling Sequence

array_set (vals1, indices, vals2)

Description

array_set accepts three arguments. The first is an array of numerics (Python characters, in
or floats), and the third is of the same type. The second is an array of integers which are va
scripts into the first. The third array must be at least long enough to supply all the elements ca
by the subscript array. (It can also be a scalar, in which case its value will be broadcast.) The
that elements of the third array are assigned in order to elements of the first whose subscripts
ments of the second.

arr_array_set (vals1, indices, vals2)

is equivalent to the Yorick assignment

vals1 (indices) = vals2

We have generalized this so that the source and target arrays may be two dimensional; the
dimensions must match. Then the array of subscripts is assumed to apply to the first subscript
the target. The target had better be contiguous.

9.3.3 Sorting an array: index_sort

Calling Sequence

index_sort (x)

Description

index_sort accepts a one-dimensional array x of some numerical type and returns an integer ar
of the same length whose entries are the subscripts of the elements of the original array arra
increasing order. We chose to use heap sort because its worst behavior is n*log(n) , unlike quick-
sort, whose worst behavior is n**2 .

9.3.4 Interpolating Values: interp

Calling Sequence

interp (x, y, z)
103

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

se

otoni-

t

Description

interp (y, x, z) treats (x, y) as a piecewise linear function whose value is y [0] for x < x
[0] and y [len (y) - 1] for x > x [len (y) - 1] . An array of floats the same length as z is
returned, whose values are ordinates for the corresponding z abscissae interpolated into the piecewi
linear function.

9.3.5 Digitizing an array: digitize

Calling Sequence

digitize (x, bins)

Description

bins is a one-dimensional array of integers which is either monotonically increasing or mon
cally decreasing. digitize (x , bins) returns an array of python integers the same length as x (if
x is a one-dimensional array), or just an integer (if x is a scalar). The values i returned are such tha
bins [i - 1] <= x < bins [i] if bins is monotonically increasing, or bins [i - 1] > x >=
bins [i] if bins is monotonically decreasing. Beyond the bounds of bins , returns either i = 0 or
i = len (bins) as appropriate.

9.3.6 Reversing a Two-Dimensional array: reverse

Calling Sequence

reverse (x, n)

Description

reverse (x, n) returns a PyFloat matrix the same size and shape as x , but with the elements

along the nth dimension reversed. x must be two-dimensional.

9.3.7 Obtaining an Equally-Spaced Array of Floats: span

Calling Sequence

span (lo, hi, num, d2 = 0)

Description

span (lo , hi , num, d2 = 0) returns an array of num equally spaced PyFloat s starting with lo
and ending with hi . if d2 is not zero, it will return a two-dimensional array, each of the d2 rows of
which is the array of equally spaced numbers.
104

Additional Array Operations: arrayfnsmodule

s
ngth of

ly if an
s
to be
4

 for a
the ver-

a cell
ells” on

f inter-
he-
9.3.8 Effective Length of an Array: nz

Calling Sequence

nz (x)

Description

nz (x) : x is an array of unsigned bytes (Python typecode "b"). If x ends with a bunch of zeros, thi
returns with the index of the first zero element after the last nonzero element. It returns the le
the array if its last element is nonzero. This is essentially the ‘‘effective length’’ of the array.

9.3.9 Finding Edges Cut by Isosurfaces: find_mask

Calling Sequence

find_mask (fs, node_edges)

Description

This function is used to calculate a mask of integers whose corresponding entry is 1 precise
edge of a cell is cut by an isosurface or plane, i. e., if the function fs is one on one of the two vertice
of an edge and zero on the other (fs = 1 represents where some function on the mesh was found
negative by the calling routine). fs is ntotal by nv, where nv is the number of vertices of a cell (
for a tetrahedron, 5 for a pyramid, 6 for a prism, 8 for a hexahedron). node_edges is a nv by ne
array, where ne is the number of edges on a cell (6 for a tet, 8 for a pyramid, 9 for a prism, 12
hexahedron). The entries in each row are 1 precisely if the corresponding edge is incident on
tex. The exclusive or of the rows which correspond to nonzero entries in fs contains 1 in entries cor-
responding to edges where fs has opposite values on the vertices. (The vertices and edges of
have a standard ordering which is discussed in “Standard ordering for the four types of mesh c
page 107.)

The mask returned by this function will be a one dimensional array ntotal * ne long. An entry
[i * ne + j] in this mask will be 1 precisely if edge j of cell i is cut by the isosurface or plane.

9.3.10 Order Cut Edges of a cell: construct3

Calling Sequence

construct3 (mask, itype)

Description

Computes how the cut edges of a particular type of cell must be ordered so that the polygon o
section can be drawn correctly. itype = 0 for tetrahedra; 1 for pyramids; 2 for prisms; 3 for hexa
dra. Suppose nv is the number of vertices of the cell type, and ne is the number of edges. mask has
105

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

s corre-

turns
been ravel led so that it is flat; originally it had 2**nv-2 rows, each with ne entries. Each row is
ne long, and has an entry of 1 corresponding to each edge that is cut when the set of vertice
sponding to the row index has negative values. (The binary number for the row index + 1 has a one in
position i if vertex i has a negative value.) The return array permute is ne by 2**nv-2 , and the
columns of permute tell how the edges should be ordered to draw the polygon properly.

9.3.11 Expand cell-centered values to node-centered values: to_corners

Calling Sequence

to_corners (values, nv, sumnv)

Description

values is a one-dimensional array of floating point values defined on a set of polygons. nv is an
integer array of the same size telling how many vertices each of the polygons has. sumnv is the sum
of all the values in nv. This routine takes an array of floats describing cell-centered values and re
an array of node-centered values. It is very unsophisticated, merely creating an array of floats sumnv
long, whose first nv [0] entries are all values [0] , next nv [1] entries are all values [1] , etc.
106

More slice3 details

ces of
psulated

red
ces
9.4 More slice3 details

The way slice3 works depends strongly on a standard ordering of the nodes, edges, and fa
mesh cells. In this section we shall delineate the standard ordering used. This ordering is enca
in various tables contained in slice3.py and arrayfnsmodule.c . The maintainer of this code
must have an understanding of this order.

9.4.1 Standard ordering for the four types of mesh cells

Tetrahedra

On the illustration at the left, the vertices are numbe
v0 through v4, and the edges, e0 through e5. The fa
are numbered as shown in the following table:

Pyramids

TABLE 3. tet face numbering

face
number edges on face

f0 e0, e1, e3

f1 e0, e2, e5

f2 e1, e2, e4

f3 e3, e4, e5

TABLE 4. pyr face numbering

face
number edges on face

f0 e0, e1, e4

f1 e1, e2, e5

f2 e2, e3, e6

f3 e0, e7, e3

f4 e4, e5, e6, e7

v0

v1

v2

v3

e0 e2

e1

e3 e4

e5

v0

v1

v4
v3

v2

e0
e1

e2e3

e4 e5

e6
e7
107

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know
prisms

hexahedra

9.4.2 Standard numbering of cells in a regular rectangular mesh

Suppose we have a regular rectangular mesh whose cell dimensions are ni - 1 by nj - 1 by nk - 1
(and thus the vertex array is ni by nj by nk). The total number of cells is

ncells = (ni - 1) * (nj - 1) * (nk - 1)

TABLE 5. pri face numbering

face
number edges

f0 e2, e7, e3, e6

f1 e0, e6, e1, e8

f2 e4, e8, e5, e7

f3 e0, e4, e2

f4 e1, e3, e5

TABLE 6. hex face numbering

face
number edges

f0 e0, e6, e2, e4

f1 e1, e5, e3, e7

f2 e0, e8, e1, e10

f3 e2, e11, e3, e9

f4 e4, e9, e5, e8

f5 e6, e10, e7, e11

v0

v1

v2

v3

v4

v5

e0

e1

e2

e3

e4

e5

e6

e7

e8

v0

v1

v2

v3

 v4

v5

v6

v7

e0

e1

e2

e3

e4

e5

e6

e7

e8
e9

e10
e11
108

More slice3 details

at

h

consec-

rtices

ys of
-
ordinate
cell

.15
lls:

e
nal goal
oints are
ibed pre-

s of a 3-

l of
c-
), or
e com-
es a
and the cells are numbered from 0 to ncells - 1 according to the following scheme. Suppose th
(i , j , k) are the maximum subscripts of the eight vertices of a cell numbered N in our scheme. Then
the number of the cell with maximum vertex subscripts (i , j , k + 1) will be N + 1; the number of
the cell with maximum vertex subscripts(i , j + 1, k) will be N + nk; and the number of the cell wit
maximum vertex subscripts(i + 1, j , k) will be N + nj * nk . Thus each triple of subscripts (i , j ,
k) , where none of the three is zero, uniquely determines a cell number, and cell numbers run
utively as we increment the subscripts through their ranges (starting with 1) in row major order. Sim-
ilarly, we can number the vertices from 0 through ni * nj * nk - 1 by numbering them
consecutively as we increment the subscripts through their ranges (starting with 0) in row major
order.

This leads for the following scheme for computing the vertex numbers for all eight of the ve
of a cell, given the cell number. First, construct the scalar

N1 = N + N / (nk - 1) + nk * (N / ((nk - 1) * (nj - 1)))

Then, add this scalar to each element of the 2 x 2 x 2 array

array ([[[0, 1], [nk, nk + 1]],
 [[njnk, njnk + 1], [nk + njnk, nk + njnk + 1]]])

The result is a 2 x 2 x 2 array of the vertex numbers of the vertices of the cell. Given that the arra
vertex coordinates are stored in row major order, then if we ravel them (i. e., flatten them out), flat
ten the above array of vertex numbers, extract precisely those eight coordinates from each co
array, and then reshape them to 2 x 2 x 2, then we have the coordinates of the vertices of the
under consideration.

The function to_corners3 does this calculation for an arbitrary list of cell numbers (see 8
“Find Corner Indices of List of Cells: to_corners3”8.15 “Find Corner Indices of List of Ce
to_corners3”). The function slice3 calls to_corners3 with a list of cells which are cut by a plan
or isosurface in a rectangular mesh in order to determine the coordinates of their vertices, the fi
being to find the points at which the edges are cut by the plane or isosurface. These edge p
then connected in a systematic way using (among other things) the numbering schemes descr
viously, in order to yield the polygonal sections through cells made by the plane or isosurface.

9.4.3 How slice3 works

Recall the calling sequence of slice3 (see see Section 7.4.2 "slice3: Plane and Isosurface Slice
D mesh" on page 65):

[nverts, xyzverts, color] = \
 slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]]

 [, value = <val>] [, node = flg 2])

The important arguments are m3, a mesh specification which was returned by an earlier cal
mesh3 (see 7.3.2 “Creating a mesh3 argument”); fslice (which specifies either the name of a sli
ing function, a slicing plane in plane3 format (see Section 7.3.1 "Creating a Plane" on page 61
the number of the function defined on the mesh with respect to which an isosurface is to b
puted); fcolor , which (if None) specifies that the section is to be shaded, or (if a function) giv
109

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

tor are
t in the

one

, did
emory

o

 form

e kind
tches of
set of values on the the cells specified to it when slice3 calls it; value , which in the case of an
isosurface specifies the value of the function doing the slicing; and node , which if nonzero and color
is calculated, says to return node-centered rather than cell-centered values.

One of the first things that slice3 does is to call iterator3 with m3 as argument, which in
turn calls the appropriate iterator for the particular type of mesh. (Recall that m3 contains names of
appropriate functions to call for this mesh.) The purpose of iterator3 is to ‘‘chunk’’ up the mesh
into manageable pieces; the main loop in slice3 calls iterator3 repeatedly until it finally returns
None, signalling that the entire mesh has been processed. The details of both types of itera
straightforward and can be had by inspecting the source code. One thing to bear in mind is tha
case of an unstructured mesh, iterator3 is guaranteed to return a chunk which consists of only
type of cell.

Why ‘‘chunk’’ up the mesh? The creators of the Yorick version of slice3, Langer and Munro
so in order to avoid the possibility of creating very large temporaries and thus, perhaps, having m
problems. It seemed to us judicious to do the same thing.

The first thing done inside the slice3 main loop is to call the appropriate slicing function. Tw
functions are supplied in slice3.py . Their calling sequences and descriptions are as follows:

_isosurface_slicer (m3, chunk, iso_index, _value)

an isosurface slicer brings back a list [vals , None] where vals is simply an

array of the values of the iso_index th mesh function on the vertices of the
specified chunk, or (in the unstructured case) a triple, consisting of the array of
values, an array of relative cell numbers in the chunk, and an offset to add to the
preceding to get absolute cell numbers.

_plane_slicer (m3, chunk, normal, projection)

In the case of a plane slice, this returns a list [vals , _xyz3] (or [[vals ,
clist , cell_offset] , _xyz3] in the irregular case) where _xyz3 is the
array of vertices of the chunk. _xyz3 is ncells by 3 by something (in the ir-
regular case), ncells by 3 by 2 by 2 by 2 in the regular case,and 3 by ni by
nj by nk otherwise. vals will be the values of the projections of the corre-
sponding vertex on the normal to the plane, positive if in front, and negative if
in back.

In addition, the user may supply a slicing function; if so, its calling sequence must be of the

fslice (m3, chunk)

and it must return something resembling the returned values above. If the m3 mesh is totally unstruc-
tured, the chunk should be arranged so that fslice returns an ncells -by-2-by-2-by-2 [hex case]
(or ncells -by-3-by-2 [prism] or ncells -by-5 [pyramid] or ncells -by-4 [tet]) array of vertex
values of the slicing function. Note that a chunk of an irregular mesh always consists of just on
of cell. On the other hand, if the mesh vertices are arranged in a rectangular grid (or a few pa
rectangular grids), the chunk should be the far less redundant rectangular patch.
110

More slice3 details

re are
n.
 vertices
 for that

g

se cells

t these
se the
ers, in

pending

ed
sults if

ns
ing dis-
points of
te along
sections
e poly-

which
pattern

r
w

con-

 the
rmutation
 re-
d edges
Determination of the Critical Cells

The critical cells are those cells (if any) which are cut by the slicing plane or isosurface. The
precisely those cells on the vertices of which the vals returned by the slicing function changes sig
For cells of one of the four types present in an unstructured mesh, one adds up the number of
on which vals is negative. If this is a positive number and also less than the number of vertices
cell type, then the cell is critical. In the structured case, vals is ni by nj by nk . To the array which
is 1 where vals is negative and 0 elsewhere, we apply the zcen_ (see page 101) function alon
each of its three dimensions. The result is an array ni - 1 by nj - 1 by nk - 1 of values defined on
each cell which can be one of the nine values 0., .125, .25, .375, .5, .625, .75, .875, 1.0. Tho
where the value is strictly between the two end values are critical. Thus we form clist , which is an
array of absolute cell numbers of the critical cells.

If clist is not empty, then we extract the coordinates of the critical cells, the data values a
points, and (if appropriate) the colors of the cells. In the case of a structured mesh, we u
to_corners3 function discussed earlier (see page 109) to convert cell numbers to node numb
order to get the node coordinates and data. We append a list of this to our list of results (ap
[None , None, None, None] if clist is empty) and then continue iterating.

Determination of the Cut Edges and the Intersection Points

Once this loop completes, there is another for loop which loops through each type of cell (structur
meshes are lumped under hex cells) present in the mesh, putting together the ‘‘chunks’’ of re
necessary. It then calls find_mask (page 105), which returns a mask array ncells * ne long
(ncells is the total number of cells of this type, ne the number of edges on a cell) which contai
1’s corresponding to edges which are cut by the plane or isosurface (in the standard order
cussed earlier in this chapter; see page 107). It is now easy to get the coordinates of the end
the cut edges using the standard numbering embodied in the tables; we then linearly interpola
the cut edges, based on the values on their endpoints, to obtain a list of coordinates of the inter
of the plane or isosurface with the cells. This list of points now needs to be ordered so that th
gons of intersection can be drawn properly.

Ordering of the Intersection Points

We associate with each critical cell a pattern number between 0 and 255 (non-inclusive)
denotes in one number the pattern of its vertices where the function value is negative. The

number is arrived at by assigning the number 2k to the kth vertex in the cell, then adding together fo
each cell the numbers assigned to its vertices that have negative values. We now create a nepat-
tern array which is ncells * ne long and in which the entry corresponding to each cut edge
tains the same pattern number as its adjacent cell; i. e., if cell j has cut edge i and pattern number n,
then pattern [i * ne + j] will contain n.

The _poly_permutations array. To each pattern, there corresponds a permutation of
edges so that they occur in the order in which the edges are to be connected. Let each such pe
be stored as a list of integers from 0 to ne - 1 such that sorting the integers into increasing order
arranges the edges at the corresponding indices into the correct order. (The position of unslice
111

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

et these

,

ntry
 is cut or

 rep-

 the

sed) and
 cut edge
wards
the op-
 edge, it
sed edge
e lowest
than one

s
 slice3,
wing:

the cut-
mber of

poly-

r each
there
in the list is arbitrary as long as the sliced edges are in the proper order relative to each other.) L
permutations be stored in a ne-by-254 array _poly_permutations .

_poly_permutations is computed (one time only) as follows. When slice3.py is import-
ed, _construct3 is called four times, once for each type of cell. _construct3 first creates a

mask array below dimensioned (2 nv - 2) by nv . The row below [k] has an entry for each vertex
marked 0 or 1 corresponding to the pattern number k + 1. _construct3 now calls find_mask
(see 9.3.9 “Finding Edges Cut by Isosurfaces: find_mask”) with parameters below and the
_node_edges array for that particular type of cell. find_mask returns an array (called mask)

(2 nv - 1) by ne in size; each set of ne consecutive entries is filled with an edge mask, i. e., the e
corresponding to an edge in the standard order is 1 or 0 according as the corresponding edge
not. _construct3 now calls construct3 , a function in arrayfnsmodule (see 9.3.10 “Order
Cut Edges of a cell: construct3”), with mask and the cell type as parameters.

The purpose of construct3 is to determine an order for the cut edges so that the polygons
resenting the plane or isosurface cut of the cell will be drawn properly. construct3 does this by
calling an auxiliary function walk3 inside a loop, each call of walk3 being with the next ne entries
of mask. walk3 not only decides the correct order of the points of intersection in order to draw
polygons, but also decides whether there are disjoint polygonal intersections with this cell. The walk3
algorithm begins with the lowest numbered cut edge (and marks that edge as having been u
examines the lowest numbered face incident upon this edge. There must be at least one other
on this face. If the face is triangular, it looks first at the next edge counterclockwise (in the out
normal direction), then (if necessary) the next one clockwise. On a square face it looks first at
posite edge, then at the next one clockwise, then counterclockwise. When it has selected an
goes to the other face incident upon that edge and repeats the process. If at some point no unu
can be found, then that means a closed polygon has been found. The next unused edge with th
number is chosen (if there is one) and the process repeats. In the latter case, there is more
disjoint polygonal intersection with the cell, and the number ne * (no. of disjoint polygons so far) is
added to the edge permutations.

Thus, for each cut cell in the mesh, _poly_permutations tells the order that the cutting point
must be connected, and how many polygonal intersections there are with the cell. In the function
the following instructions compute subscripts into the array of points in the correct order for dra

pattern = take (ravel (transpose (_poly_permutations [i])),
 _no_edges [i] * (pattern - 1) + edges) \
 + 4 * _no_edges [i] * cells
order = argsort (pattern)

The order array is now used as a set of subscripts so that we can extract the coordinates of
ting points in the proper order. Once this has been done, the array whose entries give the nu
vertices in each polygon is calculated.

There remains only the question of splitting the points in a single cell into multiple disjoint
gons. To do this, recall that when computing _poly_permutations , we had added ne (the num-
ber of edges on this type of cell) to any second disjoint polygon’s edge list, 2 * ne to any third one,
etc. The following will now give an array whose entries corresponding to the edge orderings fo
cell will be 0 for the first disjoint polygon, 1 for the second, 2 for the third, and 3 for the fourth (if
112

More slice3 details

 a new
hen the

 pattern
are that many).

pattern = pattern / _no_edges [i]

Now pattern jumps by 4 between cells, smaller jumps within cells get the list of places where
value begins, and form a new pattern with values that increment by 1 between each plateau. T
following relatively straightforward computation computes the nverts array. In order to fully appre-
ciate how the algorithm works, we have indicated the results supposing that we began with the
[0, 0, 0, 1, 1, 1, 1, 2,2,2,4,4,4,4,4,5,5,5,8,8,8].

pattern = dif_ (pattern, 0)
#[0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0]
nz = nonzero (pattern)
#[2,6,9,14,17]
list = zeros (len (nz) + 1, Int)
#[0,0,0,0,0,0]
list [1:] = nz + 1
#[0,3,7,10,15,18]
newpat = zeros (len (pattern) + 1, Int)
#[0,0]
newpat [0] = 1
newpat [1:] = cumsum (not_equal (pattern, 0)) + 1
#[1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5,5,5,6,6,6]
pattern = newpat
nverts = histogram (pattern) [1:]
#[3,4,3,5,3,3]
113

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know
114

Index

Symbols
_draw3 60
_draw3_list 55
_isosurface_slicer 110
_plane_slicer 110
_poly_permutations 111
_slice2_precision 92

A
aim3 57
ambient 56, 68
angle 83
animate 21
animation mode 21
array_set 103
arrayfnsmodule 102
arrowl 27
arrows 46
arroww 27
aspect 34
avg_ 102
axes.gs 19
axis 83

B
Basis 1
boundary 31
boxed.gs 19
boxed2.gs 19
bracket_time 81, 83
bytscl 93

C
call_idler 60
called_as_idler 59
camera_dist

3-D plot 56
caxis_max 78
caxis_min 78
cell array 40
cell numbering schemes 107
cells

specifying,in unstructured mesh 62
CGM 1, 18
chr 59
clear 77
clear_idler 60
clear3 58

example 76
closed 47
closed curves 47
cmax 68, 74, 78
cmin 74

keywords
cmin 78
1

color 45, 78
slice3mesh argument 64

config save 3
construct3 105
contour levels 32
contours 77
cull 68
current_window 17
curves

closed vs open 47

D
default idler

code 60
default mesh 29
default values

initial 51
setting 50

demo5_light
code for 81

dif_ 101
diffuse 56
digitize 104
disjoint lines 42
DISPLAY 18
display 17
display list 55, 56

building 58
plotting 59

dpi 18
draw_frame

example 81
movie argument 80

draw3 59
example 72, 73, 76

dtmin 83
dump 18, 58
dx 50
dy 50

E
ecolor 36, 68
edges 36, 68

keywords
edges 77

environment variables 2
DISPLAY 18
PATH 2
PORT_SERVEUR 2, 3
PS2EPSI_FORMAT 20
PYGRAPH 2
PYTHONPATH 2

eps 20
ewidth 36, 68
example

slice3mesh 73
examples

clear3 76
curves 5, 8, 10
draw3 72, 73, 76
fma 76
gnomon 76
light3 76, 82
2

limits 72, 73, 76
markers 5, 8, 10
mesh3 72
orient3 72, 76
palette 72, 73
pl3surf 72, 73
pl3tree 76
pldefault 72
plzcont 78
restore3 85
save3 85
set_draw3_ 72, 76
slice3 72
sombrero function 71, 78
split_palette 76

EZN 1
EZPLOT 1
ezplot 3

F
fcolor

slice3 argument 66
FILE menu 3
File save 3
fill 68
filled polygons 39
find_mask 105, 111
flled mesh 35
fma 17

example 76
font 43
frame advance 17
fslice

slice3 argument 65
funcs 62

G
get_draw3 60
get_slice2_precision 92
get3_centroid 88
get3_light 87
get3_normal 87
get3_xy 88
getc3 92
getc3_irreg 92
getc3_rect 92
getv3 91
getv3_irreg 91
getv3_rect 91
Gist 1, 3, 5
gist.py 2, 5
gistCmodule 5
gnomon 58, 59

example 76
graphics device

current 17

H
hardcopy 18
hcp 20, 58
hcp_file 20
hcp_finish 20
hcp_out 20
3

hcpoff 20
hcpon 20
height 43
hexahedra

numbering scheme 108
hexahedral cells 62
hide 45
histogram 102
hollow 34

I
Ihm compute 3
index_sort 103
inhibit 31
interp 103
irregular mesh

cell numbering schemes 107
isosurface

slice of surface 66
iterator3 90
iterator3_irreg 90
iterator3_rect 90

J
justify 43

K
keywords

ambient 68
angle 83
axis 83
bracket_time 81, 83
called_as_idler 59
caxis_max 78
caxis_min 78
chr 59
clear 77
cmax 68, 74, 78
cmin 74
color 78
contours 77
cull 68
display 17
dpi 18
dtmin 83
dump 18, 58
ecolor 68
edges 68
ewidth 68
fill 68
funcs 62
general 45
hcp 58
legends 18
lims 81, 83
min_interframe 81
nframes 83
orient 43
plane 74
private 18
scale 68, 77
shade 68
split 74, 78
4

style 18
timing 81, 83
tlimit 83
wait 19
zaxis_max 78
zaxis_min 78

L
l_nobox.gs 19
legend 45
legends 18
levs 32
light3 57

example 76, 82
lighting parameters 56
lightwf 89
limits 23, 59

example 72, 73, 76
lims 81, 83
line type 45

M
marker 46
marks 46
maxelt_ 102
mcolor 46
mesh

filled 35
plot 30
rectangular 61
regular 61
set default 29
structured 61
unstructured

cell numbering schemes 107
mesh3 61

example 72
mesh3 object

description 63
min_interframe 81
minelt_ 102
mov3 57
movie 80

draw_frame argument 80
mphase 46
msize 46
mspace 46

N
Narcisse 2, 3

FILE menu 3
File save 3
Ihm compute 3
process 2
socket compute 3
STATE submenu 3

nframes 83
nobox.gs 19
nz 105

O
Object-Oriented Graphics 1, 3
OOG 1
opaque 43
5

open curves 47
orient 43
orient3 56

example 72, 76
origin

3-D plot 56
output primitives 27

P
palette 21

example 72, 73
split 74, 85

palettes
standard 21

PATH 2
path 43
phi 56, 57
pl3surf 58, 71

example 72, 73
pl3tree 58, 74

example 76
pl4cont 77
plane 74

creating 61
slices of surface 66

plane3 61
pldefault

example 72
pldj 42
plf 35
plfp 39
plg 27
pli 40
plm 30
plmesh 29
plot

multiple surfaces 74
surface 71
wire frame 67

plot limits 23
Plotter object 1
Plotter Objects 3
plotting list 55
plsys 22
plt 43
plv 33
plwf 58, 67
plzcont 77

example 78
polygons 39
PORT_SERVEUR 2, 3
PostScript 1, 18
prism cells 62
prisms

numbering scheme 108
private 18
ps2epsi 20
PS2EPSI_FORMAT 20
PyGist 2, 3
PYGRAPH 2
PyGraph 1, 2, 3

Documentation 3
platforms 3
6

PyNarcisse 2
pyramidal cells 62
Pyramids

numbering scheme 107
Python 2

home page 2
Python Narcisse 3
PYTHONPATH 2

R
range (in Yorick) 24
rays 46
rectangular mesh 61
redraw 22
region 47
regular mesh 61
rem_0_ 102
restore3 85
reverse 104
rot3 56, 57
rotation

3-D plot 56
rphase 27
rspace 27

S
save3 85
scale 34, 68, 77
scalem 50
sdir 56
set_default_gnomon 58
set_default_idler 60
set_draw3 60
set_draw3_

example 72, 76
set_idler 60
set_slice2_precision 92
set3_object 88
setz3 57
shade 68
sign_ 102
slice

isosurface 66
plane 66

slice2 66
slice2x 66
slice3 65, 109

example 72
fcolor argument 66
fslice argument 65

slice3mesh 64
example 73

slicing function
specification 110

slicing functions 64
smooth 47
socket compute 3
sombrero function 71, 78
sort3d 89
span 104
specular 56
spin3 83
split 74, 78
7

palette 85
split palette 74
split_bytscl 93
split_palette 85

example 76
spower 56
STATE submenu 3
structured mesh 61
style 18
stylesheets

descriptions 19
support 4
surface

isosurface slice 66
plane slice 66
plot 71

multiple 74

T
Tetrahedra

numbering scheme 107
tetrahedral cells 62
text plotting 43
text properties 43
theta 56, 57
timer 94
timer_ 102
timer_print 94, 102
timing 81, 83
tlimit 83
to_corners 106
to_corners3 94, 111

description of algorithm 109
tosys 43
triangle 29, 32
triangulation array 29, 32
two-dimensional plotting 27
type 45

U
untuructured mesh

cell numbering schemes 107
unzoom 25

V
vector field 33
vg.gs 19
vgbox.gs 19
viewing parameters 56

W
wait 19
width 45
window 17
window3 58
winkill 17
wire frame

plotting 67
work.gs 19
work2.gs 19

X
X window 18
x,y graph
8

graph plotting 27
Xwindows 1
xyz_wf 90
xyz3 93

Y
y-axis limits 24
ylimits 24
yorick.py 101

Z
zaxis_max 78
zaxis_min 78
zcen_ 101
zone edges 35
zoom_factor 25
zooming 25
9

	The Python Graphics Interface, Part IV
	Python Gist Graphics Manual
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to Python Gist Graphics�5
	PyGist 2-D Graphics 5
	PyGist 3-D Graphics 7
	General overview of module pl3d 7
	Overview of module plwf 8
	Overview of module slice3 9

	movie.py: PyGist 3-D Animation 9
	Function Summary 12

	CHAPTER 3: Control Functions�17
	Device Control 17
	Window Control 17
	Hard Copy and File Control 19

	Other Controls 21
	animate: Control Animation Mode 21
	palette: Set or Retrieve Palette 21
	plsys: Set Coordinate System 22
	redraw: Redraw X window 22

	CHAPTER 4: Plot Limits and Scaling�23
	Setting Plot Limits 23
	limits: Save or Restore Plot Limits 23
	ylimits: Set y-axis Limits 24

	Scaling and Grid Lines 24
	logxy: Set Linear/Log Axis Scaling 24
	gridxy: Specify Grid Lines 25

	Zooming Operations 25

	CHAPTER 5: Two-Dimensional Plotting Functions�27
	Output Primitives 27
	plg: Plot a Graph 27
	plmesh: Set Default Mesh 29
	plm: Plot a Mesh 30
	plc: Plot Contours 32
	plv: Plot a Vector Field 33
	plf: Plot a Filled Mesh 35
	plfc: Plot filled contours 37
	plfp: Plot a List of Filled Polygons 39
	pli: Plot a Cell Array 40
	pldj: Plot Disjoint Lines 42
	plt: Plot Text 43
	pltitle: Plot a Title 44

	Plot Function Keywords 45

	CHAPTER 6: Inquiry and Miscellaneous Functions�49
	Inquiry and Editing Functions 49
	plq: Query Plot Element Status 49
	pledit: Change Plotting Properties 49
	pldefault: Set Default Values 50

	Miscellaneous Functions 52
	bytscl: Convert to Color Array 52
	histeq_scale: Histogram Equalized Scaling 52
	mesh_loc: Get Mesh Location 52
	mouse: Handle Mouse Click 53
	moush: Mouse in a Mesh 54
	pause: Pause 54

	CHAPTER 7: Three-Dimensional Plotting Functions�55
	Setting Up For 3-D Graphics 55
	The Plotting List 55
	Functions For Setting Viewing Parameters 56
	Lighting Parameters 57
	Display List 58

	3-D Graphics Control Functions 58
	Getting a Window 58
	Displaying the Gnomon 58
	Plotting the Display List 59
	The variable _draw3 and the idler 60

	Data Setup Functions for Plotting 61
	Creating a Plane 61
	Creating a mesh3 argument 61

	The Slicing Functions 64
	slice3mesh: Pseudo-slice for a surface 64
	slice3: Plane and Isosurface Slices of a 3-D mesh 65
	slice2 and slice2x: Slicing Surfaces with planes 66

	At Last - the 3-D Plotting Functions 67
	plwf: plot a wire frame 67
	pl3surf: plot a 3-D surface 71
	pl3tree: add a surface to a plotting tree 74

	Contour Plotting on Surfaces: plzcont and pl4cont 77
	Animation: movie and spin3 80
	The movie module and function 80
	The spin3 function 83

	Syntactic Sugar: Some Helpful Functions 85
	Specifying the palette to be split: split_palette 85
	Saving and restoring the view and lighting: save3, restore3 85

	CHAPTER 8: Useful Functions for Developers�87
	Find 3D Lighting: get3_light 87
	Get Normals to Polygon Set: get3_normal 87
	Get Centroids of Polygon Set: get3_centroid 88
	Get Viewer’s Coordinates: get3_xy 88
	Add object to drawing list: set3_object 88
	Sort z Coordinates: sort3d 89
	Set the cmax parameter: lightwf 89
	Return a Wire Frame Specification: xyz_wf 90
	Calculate Chunks of Mesh: iterator3 90
	Get Vertex Values of Function: getv3 91
	Get Cell Values of Function: getc3 92
	Controlling Points Close to the Slicing Plane: _slice2_precision 92
	Scale variables to a palette: bytscl, split_bytscl 93
	Return Vertex Coordinates for a Chunk: xyz3 93
	Find Corner Indices of List of Cells: to_corners3 94
	Timing: timer, timer_print 94

	CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know�95
	The Workhorse: gistCmodule 95
	Memory Maintenance: PyObjects 95
	Memory Management: ArrayObjects 97
	Memory Management: naked memory 98
	Computing contour curves: contour 98
	Computing slices: slice2, slice2x, _slice2_part 99

	Some Yorick-like Functions: yorick.py 101
	Additional Array Operations: arrayfnsmodule 102
	Counting Occurrences of a Value: histogram 102
	Assigning to an Arbitrary Subset of an Array: array_set 103
	Sorting an array: index_sort 103
	Interpolating Values: interp 103
	Digitizing an array: digitize 104
	Reversing a Two-Dimensional array: reverse 104
	Obtaining an Equally-Spaced Array of Floats: span 104
	Effective Length of an Array: nz 105
	Finding Edges Cut by Isosurfaces: find_mask 105
	Order Cut Edges of a cell: construct3 105
	Expand cell-centered values to node-centered values: to_corners 106

	More slice3 details 107
	Standard ordering for the four types of mesh cells 107
	Standard numbering of cells in a regular rectangular mesh 108
	How slice3 works 109

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to Python Gist Graphics
	2.1 PyGist 2-D Graphics
	2.2 PyGist 3-D Graphics
	2.2.1 General overview of module pl3d
	2.2.2 Overview of module plwf
	2.2.3 Overview of module slice3

	2.3 movie.py: PyGist 3-D Animation
	2.4 Function Summary

	CHAPTER 3: Control Functions
	3.1 Device Control
	3.1.1 Window Control
	3.1.2 Hard Copy and File Control

	3.2 Other Controls
	3.2.1 animate: Control Animation Mode
	3.2.2 palette: Set or Retrieve Palette
	3.2.3 plsys: Set Coordinate System
	3.2.4 redraw: Redraw X window

	CHAPTER 4: Plot Limits and Scaling
	4.1 Setting Plot Limits
	4.1.1 limits: Save or Restore Plot Limits
	4.1.2 ylimits: Set y-axis Limits

	4.2 Scaling and Grid Lines
	4.2.1 logxy: Set Linear/Log Axis Scaling
	4.2.2 gridxy: Specify Grid Lines

	4.3 Zooming Operations

	CHAPTER 5: Two-Dimensional Plotting Functions
	5.1 Output Primitives
	5.1.1 plg: Plot a Graph
	5.1.2 plmesh: Set Default Mesh
	5.1.3 plm: Plot a Mesh
	5.1.4 plc: Plot Contours
	5.1.5 plv: Plot a Vector Field
	5.1.6 plf: Plot a Filled Mesh
	5.1.7 plfc: Plot filled contours
	5.1.8 plfp: Plot a List of Filled Polygons
	5.1.9 pli: Plot a Cell Array
	5.1.10 pldj: Plot Disjoint Lines
	5.1.11 plt: Plot Text
	5.1.12 pltitle: Plot a Title

	5.2 Plot Function Keywords

	CHAPTER 6: Inquiry and Miscellaneous Functions
	6.1 Inquiry and Editing Functions
	6.1.1 plq: Query Plot Element Status
	6.1.2 pledit: Change Plotting Properties
	6.1.3 pldefault: Set Default Values

	6.2 Miscellaneous Functions
	6.2.1 bytscl: Convert to Color Array
	6.2.2 histeq_scale: Histogram Equalized Scaling
	6.2.3 mesh_loc: Get Mesh Location
	6.2.4 mouse: Handle Mouse Click
	6.2.5 moush: Mouse in a Mesh
	6.2.6 pause: Pause

	CHAPTER 7: Three-Dimensional Plotting Functions
	7.1 Setting Up For 3-D Graphics
	7.1.1 The Plotting List
	7.1.2 Functions For Setting Viewing Parameters
	7.1.3 Lighting Parameters
	7.1.4 Display List

	7.2 3-D Graphics Control Functions
	7.2.1 Getting a Window
	7.2.2 Displaying the Gnomon
	7.2.3 Plotting the Display List
	7.2.4 The variable _draw3 and the idler

	7.3 Data Setup Functions for Plotting
	7.3.1 Creating a Plane
	7.3.2 Creating a mesh3 argument

	7.4 The Slicing Functions
	7.4.1 slice3mesh: Pseudo-slice for a surface
	7.4.2 slice3: Plane and Isosurface Slices of a 3-D mesh
	7.4.3 slice2 and slice2x: Slicing Surfaces with planes

	7.5 At Last - the 3-D Plotting Functions
	7.5.1 plwf: plot a wire frame
	7.5.2 pl3surf: plot a 3-D surface
	7.5.3 pl3tree: add a surface to a plotting tree

	7.6 Contour Plotting on Surfaces: plzcont and pl4cont
	7.7 Animation: movie and spin3
	7.7.1 The movie module and function
	7.7.2 The spin3 function

	7.8 Syntactic Sugar: Some Helpful Functions
	7.8.1 Specifying the palette to be split: split_palette
	7.8.2 Saving and restoring the view and lighting: save3, restore3

	CHAPTER 8: Useful Functions for Developers
	8.1 Find 3D Lighting: get3_light
	8.2 Get Normals to Polygon Set: get3_normal
	8.3 Get Centroids of Polygon Set: get3_centroid
	8.4 Get Viewer’s Coordinates: get3_xy
	8.5 Add object to drawing list: set3_object
	8.6 Sort z Coordinates: sort3d
	8.7 Set the cmax parameter: lightwf
	8.8 Return a Wire Frame Specification: xyz_wf
	8.9 Calculate Chunks of Mesh: iterator3
	8.10 Get Vertex Values of Function: getv3
	8.11 Get Cell Values of Function: getc3
	8.12 Controlling Points Close to the Slicing Plane: _slice2_precision
	8.13 Scale variables to a palette: bytscl, split_bytscl
	8.14 Return Vertex Coordinates for a Chunk: xyz3
	8.15 Find Corner Indices of List of Cells: to_corners3
	8.16 Timing: timer, timer_print

	CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know
	9.1 The Workhorse: gistCmodule
	9.1.1 Memory Maintenance: PyObjects
	9.1.2 Memory Management: ArrayObjects
	9.1.3 Memory Management: naked memory
	9.1.4 Computing contour curves: contour
	9.1.5 Computing slices: slice2, slice2x, _slice2_part

	9.2 Some Yorick-like Functions: yorick.py
	9.3 Additional Array Operations: arrayfnsmodule
	9.3.1 Counting Occurrences of a Value: histogram
	9.3.2 Assigning to an Arbitrary Subset of an Array: array_set
	9.3.3 Sorting an array: index_sort
	9.3.4 Interpolating Values: interp
	9.3.5 Digitizing an array: digitize
	9.3.6 Reversing a Two-Dimensional array: reverse
	9.3.7 Obtaining an Equally-Spaced Array of Floats: span
	9.3.8 Effective Length of an Array: nz
	9.3.9 Finding Edges Cut by Isosurfaces: find_mask
	9.3.10 Order Cut Edges of a cell: construct3
	9.3.11 Expand cell-centered values to node-centered values: to_corners

	9.4 More slice3 details
	9.4.1 Standard ordering for the four types of mesh cells
	9.4.2 Standard numbering of cells in a regular rectangular mesh
	9.4.3 How slice3 works

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

