
Android framework
overview

Activity lifecycle and states

http://www.android.com/

http://www.android.com/

Major framework terms 1
• All Android apps contains at least one of the 4 components
• Activity (1)

– Building block of the UI. Every screen in your application will be an
extension of the Activity super class

– You can think of an Activity as being analogous to a window or
dialog in a desktop environment

• Service (2)
– Headless (non-UI) application that runs in the background
– They are designed to keep running independent of any Activity

• ContentProvider (3)
– A Content Provider do not store data, but provide the interface for

other applications to access the data (in some cases store data)
– Enable multiple applications to share data with each other
– Access to the components (Content Provider) data is handled via a

Content Resolver as:
Uri allCalls = android.provider.CallLog.Calls.CONTENT_URI;

Major framework terms 2

• Intent
– An asynchrony message passing framework. Using an intent

you can broadcast a message implicit system-wide or explicit
to a target Activity, Service or BroadcastReceiver

• BroadcastReceiver (4)
– By registering a broadcast receiver in the AndroidManifest or in

the source code the application can listen and respond to
broadcast Intents that match a specific filter criteria

• Alert Dialogs, Notifications and Toasts
– The user notification framework lets you signal users in the

status bar without interrupting their current activity
– For instance an incoming call can alert you with flashing lights,

making sounds, or showing a dialog/toast

• Views, widgets
– Views and widgets are all the graphical components we use in

our layout

Android components

• Activity (Presentation layer: what
user sees)

• Service (runs on background and
has no view)

• Intents (asynchronous messages
that may be followed by actions)

• Broadcast Receivers (receive
broadcast announcements and
react accordingly)

• Content Providers (support
sharing and accessing of data
among applications)

Activity

Service

Content
Provider

Broadcast
Receiver

Intent
Result

Remote
method

Query/Cursor

BroadcastIntent

Activity and Intent

• Each activity is a single screen
• It allows user interaction
• The main activity is launched when an app is

launched
• Activities launch other activities by sending

intents to the application framework

View

Activity Java

XML

View1

Activity1

View2

Activity2
Application
framework

Intent Launch

Activity lifecycle

https://thenewcircle.com/s/post/1178/architecting_android_apps

Example of Intent (1)

//Activity A
@Override
protected void onCreate(Bundle
savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_layout);
Button b = (Button) findViewById(R.id.button1);
b.setOnClickListener(new OnClickListener() {
 public void onClick(View v) {
 Intent intent = new
Intent(ActivityA.this, ActivityB.class);
 startActivity(intent);
 }
});
}

//Activity B

@Override

protected void onCreate(Bundle
savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_layout);

final TextView t =
(TextView)findViewById(R.id.textView1);

t.setText("This is activity B");

}

Note: both activities should be declared in AndroidManifest.xml

ActivityA ActivityBLaunch

Example of Intent (2)
// Activity A

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_layout);

Button b = (Button) findViewById(R.id.button1);

t = (TextView)findViewById(R.id.textView1);

t.setText("This is Activity A");

b.setOnClickListener(new OnClickListener() {

 public void onClick(View v) {

 Intent intent = new Intent(ActivityA.this,
ActivityB.class);

 Bundle b = new Bundle();

 b.putString("greeting", "Hello");

 intent.putExtra("p_greetingBundle", b);

 startActivity(intent);

 }

});

}

// Activity B

@Override

protected void onCreate(Bundle
savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_layout);

Intent intent = getIntent();

Bundle bundle =
intent.getBundleExtra("p_greetingBundle");

TextView t = (TextView)
findViewById(R.id.textView1);

t.setText("This is activity B: " +
bundle.getString("greeting"));

}

ActivityA ActivityBLaunch and send data

Android application model
• A task is what the user see as an application

– The borders between executable, process and app icon are blurry
– Default 1 thread/process (GUI), additional threads are created only if the

app itself create them
– http://developer.android.com/guide/topics/fundamentals.html
– http://developer.android.com/guide/components/processes-and-threads.html

http://developer.android.com/guide/topics/fundamentals.html

More about the Android
project folders/files

• An Android application is described in the file
AndroidManifest.xml
– This file contains all Intents, Activities, Services or

ContentProviders it can handle. Application name, icons and
version number plus the Android versions (API) it can run on

– Required permissions for the application as using the network,
access the camera etc. Also other special feature permissions and
meta data values as API_KEYs etc.

– A LOT of other possible configuration settings!
• The project.properties file

– Project build target API (must be installed in SDK)
– Enable ProGuard if a release build is done (File > Export...)
– Usually manage via Project Properties

• libs folder for private libraries/referenced libraries
(non SDK libraries)
– It is possible to use ordinary Java libraries but for robustness it is

recommended to use libraries made for Android
• res/xml

– For miscellaneous XML files that configure application
components. For example, an XML file that defines a
PreferenceScreen (settings)

More about the AS
project folders/files

• Assets
– Contains ”as is” file resources as images, html docs etc.

– Using resources here is like open a file on external storage
• res/values-***

– Contains xml declarations for a multitude of things
– Arrays, colors, dimens, strings, styles, themes, etc.
– Values for different screen sizes, APIs, languages etc.

• res/layout and layout-land
– Different layouts for activities and fragments

• res/menu
– Contains xml definitions of different menus
– Overflow menu, app drawer menu etc.

• res/drawable-xxx
– Contains app icons for different screen densities and APIs

• res/drawable
– Icons which is not screen density managed

• res/mipmap-xxx
– Contains launcher icons for different screen densities

https://developer.android.com/studio/intro/index.html

Simple AndroidManifest.xml
http://developer.android.com/guide/topics/manifest/manifest-intro.html

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.android.httpdownload"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".HttpDownload"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="8" />

<uses-permission android:name="android.permission.INTERNET" />
</manifest>

• The Application node properties include icon and application label in the
home screen

• The Activity node name is abbreviated to .HttpDownload, it tells Android
which Java class to load. The activity label is the title for that Activity in the
titlebar. To be seen every Activity needs to be specified!

• Intent-filter tags specify which Intents that launch the Activity. In order for an
application to be available from the launcher (app drawer) it must include an
intent-filter listening for the MAIN action and the LAUNCHER category

Intent and intent-filter
• Allows the application to request and/or provide services

i.e. start Activities, Services or Broadcast Receivers
• Intents are system messages that notify applications of

various events/actions, transfer various data etc.
– Activity events (launch app, start activity, pressing widgets, etc.)
– Hardware state changes (battery status, screen off, etc.)
– Incoming data (call received, SMS received, etc.)

• Applications are registered via an intent-filter allowing to
create loosely coupled applications

• You can create your own to launch applications
– In the AndroidManifest.xml below the SmsReceiver class which

extends BroadCastReceiver can intercept incoming SMS action
<receiver android:name=".SmsReceiver">

<intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
</intent-filter>

</receiver>

BroadcastReceiver

private void batteryLevel()
{
 BroadcastReceiver batteryLevelReceiver = new BroadcastReceiver()
 {

 @Override
 public void onReceive(Context context, Intent intent)
 {

 // unregistration of the reciever
 context.unregisterReceiver(this);
 int rawlevel = intent.getIntExtra(BatteryManager.EXTRA_LEVEL, -1);
 int scale = intent.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
 int level = -1;
 if (rawlevel >= 0 && scale > 0) {
 level = (rawlevel * 100) / scale;
 }

Toast.makeText(getApplicationContext(), "Battery Level Remaining: " + level + "%",
Toast.LENGTH_SHORT).show();

 }
 };

 // Intent and a dynamic registration of a receiver via registerReciver
 IntentFilter batteryLevelFilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);
 registerReceiver(batteryLevelReceiver, batteryLevelFilter);
}

• By registering a broadcast receiver firm in the AndroidManifest or dynamic in the
source code, the application can listen and respond to broadcast Intents that
match a specific filter criteria

• By calling batteryLevel() a Toast will show the battery level when onReceive() is
called by the system

• When onRecive() is done the lifecycle has ended for a broadcast receiver

GUI for an Android app

• The graphical user interface for an Android app is built
using a hierarchy of View and ViewGroup objects
– View objects are usually UI widgets such as buttons or text fields

and ViewGroup objects are invisible view containers that define
how the child views are laid out, such as in a grid or a vertical list

– Android provides an XML vocabulary that corresponds to the
subclasses of View and ViewGroup so you can define your UI in
XML using a hierarchy of UI elements

Major framework terms 3
• A fragment is an independent component which can be used

(embedded) by an activity
– A fragment encapsulate functionality so that it is easier to reuse within

activities and layouts
– It can be added dynamically (code) or statically (xml) to an activity

• You can think of a fragment as a modular section of an activity, which has its
own lifecycle, receives its own input events, and which you can add or remove
while the activity is running (sort of like a "sub activity" that you can reuse in
different activities).

An example of how
two UI modules
defined by fragments
can be combined into
one activity for a
tablet design, but
separated in 2
activities for a
handset design.

Major framework terms 4

• Loaders
– Make it easy to asynchronously load data in an activity or fragment
– They monitor the source of their data and deliver new results when the

content changes

• App Widgets
– App widgets are home screen mini apps that recive periodic updates as

current weather or song played
– The user may interact with the app widget

as scroll thru the events in a calendar

• Adapter
– An Adapter object acts as a bridge between an AdapterView and the

underlying data for that view providing access to the items
– The Adapter is also responsible for making a View for each item in the

data set. ArrayAdapter and SimpleCursorAdapter are common adapters

• Action Bar and Menus (Menu button deprecated from API 11)
– Enables a consistent way for implementing actions and navigation

Using an Alert Dialog box

private void showAlertDialog()
{

AlertDialog dialog = new AlertDialog.Builder(this).create();

dialog.setMessage("Your final score: " + mScore + "/" + PERFECT_SCORE);
dialog.setButton(DialogInterface.BUTTON_POSITIVE, "Try this level again",

new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int which) {

mScore = 0;
start_level();

}
});

dialog.setButton(DialogInterface.BUTTON_NEGATIVE, "Advance to next level",
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {
mLevel++;
start_level();

}
});

dialog.setButton(DialogInterface.BUTTON_NEUTRAL, "Back to the main menu",
new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialog, int which) {
mLevel = 0;
finish(); // or dismiss(); to just remove dialog

}
});

dialog.show();
}

Up to three buttons with possible actions

The showDialog /
dismissDialog
methods in Activity
are being
deprecated in
favor of
DialogFragments

Fragments sample code: http://android-developers.blogspot.in/2012/05/using-dialogfragments.html

Activity Lifecycle
 Activities in the system are managed

as an activity stack (”back stack”)

 In onCreate() we init data for the
whole lifecycle

 The onStart() and onResume()
methods are run when we are placed
at top of the stack

 If an activity is in the foreground of
the screen (at the top of the stack),
it is active or running

 If an activity has lost focus but is still
”visible” it is paused

 If an activity is completely obscured
by another activity, it is stopped

 If an activity is paused or stopped,
the system can drop the activity from
memory by either asking it to finish,
or simply killing its process

In onPause() and
onResume() we
place code that
save battery

LifecyleTest with implicit Intent
and LogCat debug 1

package se.du.LifeCycleTest;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.util.Log;

public class LifeCycleTest extends Activity {

 private static final String DEBUG_TAG = "LifeLog";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(DEBUG_TAG, "onCreate executes ...");
 setContentView(R.layout.main);
 }

 public void openBrowser(View view) {
 Uri uri = Uri.parse("http://maps.google.se/........");
 /* Uri.parse("content://contacts/people/");
 Uri.parse("tel:023778000"); */

 Intent it = new Intent(Intent.ACTION_VIEW, uri);
 startActivity(it);
 }

 @Override
 protected void onRestart() {
 super.onRestart();
 Log.d(DEBUG_TAG, "onRestart executes ...");
 }

@Override
 protected void onStart() {
 super.onStart();
 Log.d(DEBUG_TAG, "onStart executes ...");
 }

@Override
 protected void onResume() {
 super.onResume();
 Log.d(DEBUG_TAG, "onResume executes ...");
 }

@Override
 protected void onPause() {
 super.onPause();
 Log.d(DEBUG_TAG, "onPause executes ...");
 }

@Override
 protected void onStop() {
 super.onStop();
 Log.d(DEBUG_TAG, "onStop executes ...");
 }

@Override
 protected void onDestroy() {
 super.onDestroy();
 Log.d(DEBUG_TAG, "onDestroy executes ...");
 }
} // end class LifeCycleTest

Note! The button handler for openBrowser() is declared in the XML layout file

• Log after start, rotate screen and stop of the LifeLog Activity
• Logfilter with with tag ”LifeLog”
• Pressing the button ”Open Browser”

two apps receives the Intent
• Screen capture by DDMS

LifecyleTest with implicit Intent
and LogCat debug 2

Activities and Lifecyle
• The operating system controls the life cycle of your application

– Remember rotating the phone (going from Portrait mode to Landscape
mode) will destroy the activity and recreate it from scratch

– At any time the Android system may pause, stop or destroy your
application, e.g. because of an incoming call etc.
• This will call the proper lifcycle methods

– In order for the Android system to restore the state of the views in your
activity, each view must have a unique ID, supplied by the android:id
attribute in your layouts

• A Bundle is a structure that can store the applications state - a Bundle
(via an intenet) is also used to send data between different Activities
– The Bundle stores this information in Name – Value pair format (HashMap)

• New Activities can be started with startActivity methods as
– startActivity(Intent) or startActivityForResult(Intent, int_code)

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(DEBUG_TAG, "onCreate executes ...");
 setContentView(R.layout.main);
}

private static final int RESULT_SETTINGS = 1;

Intent otherActivityIntent = new Intent(this, OtherActivity.class);
startActivity(otherActivityIntent);

//otherActivityIntent.putExtra(String name, String value);
//startActivityForResult(otherActivityIntent, RESULT_SETTINGS);

Save and restore your Activity state 1

• To save additional data about the activity state, you must override the
onSaveInstanceState() callback method. The system calls this
method when the user is leaving your activity (before the onPause()
method) and passes it the Bundle object that will be saved in the event
that your activity is destroyed unexpectedly

• If the system must recreate the activity instance later, it passes the
same Bundle object to both the onRestoreInstanceState() and
onCreate() methods

Save and restore your Activity state 2

static final String STATE_NAME = "playerName";
...
@Override
public void onSaveInstanceState(Bundle outState) {
 // Save the user's current game state
 outState.putString(STATE_NAME, mCurrentName);
 // Always call the superclass so it can save the view hierarchy state
 super.onSaveInstanceState(outState);
}

@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 // Always call the superclass so it can restore the view hierarchy
 super.onRestoreInstanceState(savedInstanceState);
 // Restore state members from saved instance
 mCurrentName = savedInstanceState.getString(STATE_NAME);
}

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState); // Always call the superclass first
 // Check whether we're recreating a previously destroyed instance
 if (savedInstanceState != null) {
 // Restore value of members from saved state
 mCurrentName = savedInstanceState.getString(STATE_NAME);
 } else {
 // Probably initialize members with default values for a new instance. Or get the intent with

parameters who was sent to this activity from a parent activity (remember check for null!)
 mCurrentName = getIntent().getData().toString(); // most simple way to get the intent data

 } // there are many get*** methods available
 ...
}

Instead of restoring the
state during onCreate()
you may choose to
implement
onRestoreInstanceState(),
which the system calls
after the onStart()
method.

The system calls
onRestoreInstanceState()
only if there is a saved
state to restore, so you
do not need to check
whether the Bundle is
null.

Save and restore your Activity state 3

int red=255; int green= 255; int blue= 255; int alpha = 255;
@Override
protected void onSaveInstanceState(Bundle outState) {

// saving currently selected color in a bundle
outState.putInt("redValue", red); outState.putInt("greenValue", green); outState.putInt("blueValue", blue);
outState.putInt("alphaValue", alpha);
super.onSaveInstanceState(outState);

}
@Override
protected void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);
// coming back to life. setting background to values set before restoring
red = savedInstanceState.getInt("redValue"); green = savedInstanceState.getInt("greenValue");
blue = savedInstanceState.getInt("blueValue"); alpha = savedInstanceState.getInt("alphaValue");
int myBackColor = android.graphics.Color.argb(alpha, red, green, blue); tvLight.setBackgroundColor(myBackColor);

}

• See the Flashlight1 test project

Tasks and the back stack

Check the
ActivityLifecycle

Demo
SingleTask

for howto avoiding
multiple instances

of an Activity

In the AndroidManifest Activity tag put android:launchMode="singleTask"

Lab review - Android Lab1

 List with topics you need to understand before next
laboration

 You must be able to
– Use and understand Android Studio and the Android SDK
– Produce simple (following instructions) Android programs

on a basic level
– Handle the Android emulator
– Do simple changes to existing Android programs
– Understand how Android programs works on a basic level
– View LogCat output from your program with ADM (Android

Device Monitor), know how to debug
– Understand Gradle, AndroidManifest.xml and the other

resource xml files on a basic level

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

