

Optimizing Java

Author Name

Optimizing Java
by Benjamin J Evans and James Gough

Copyright © 2016 Benjamin Evans, James Gough. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebasto-
pol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotion-
al use. Online editions are also available for most titles (http://safaribookson-
line.com). For more information, contact our corporate/institutional sales de-
partment: 800-998-9938 or corporate@oreilly.com .

• Editor: Brian Foster
• Production Editor: FILL IN PRODUCTION EDITOR
• Copyeditor: FILL IN COPYEDITOR
• Proofreader: FILL IN PROOFREADER
• Indexer: FILL IN INDEXER
• Interior Designer: David Futato
• Cover Designer: Karen Montgomery
• Illustrator: Rebecca Demarest

• January -4712: First Edition

Revision History for the First Edition

• 2016-02-23: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491933251 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Optimizing
Java, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.
While the publisher and the author(s) have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author(s) disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in
this work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual prop-
erty rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
978-1-491-93325-1
[FILL IN]

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491933251

Table of Contents

Preface v

CHAPTER 1: Optimization and Performance Defined 7

Java Performance - The Wrong Way 7

Performance as an Experimental Science 8

A Taxonomy for Performance 9

Throughput 10

Latency 10

Capacity 10

Utilisation 10

Efficiency 11

Scalability 11

Degradation 11

Connections between the observables 12

Reading performance graphs 13

CHAPTER 2: Overview of the JVM 19

Overview 19

Code Compilation and Bytecode 19

Interpreting and Classloading 24

Introducing HotSpot 25

JVM Memory Management 27

Threading and the Java Memory Model 28

iii

The JVM and the operating system 29

CHAPTER 3: Hardware & Operating Systems 31

Introduction to Modern Hardware 32

Memory 32

Memory Caches 34

Modern Processor Features 38

Translation Lookaside Buffer 38

Branch Prediction and Speculative Execution 38

Hardware Memory Models 39

Operating systems 40

The Scheduler 41

A Question of Time 42

Context Switches 43

A simple system model 45

Basic Detection Strategies 46

Context switching 47

Garbage Collection 48

I/O 49

Kernel Bypass I/O 49

Virtualisation 51

Table of Contents

iv

Preface

Java

v

Optimization and Performance
Defined

Optimizing the performance of Java (or any other sort of code) is often seen as
a Dark Art. There’s a mystique about performance analysis - it’s often seen as a
craft practiced by the “lone hacker, who is tortured and deep thinking” (one of
Hollywood’s favourite tropes about computers and the people who operate
them). The image is one of a single individual who can see deeply into a system
and come up with a magic solution that makes the system work faster.

This image is often coupled with the unfortunate (but all-too common) situa-
tion where performance is a second-class concern of the software teams. This
sets up a scenario where analysis is only done once the system is already in
trouble, and so needs a performance “hero” to save it. The reality, however, is a
little different…

Java Performance - The Wrong Way

For many years, one of the top 3 hits on Google for “Java Performance Tuning”
was an article from 1997-8, which had been ingested into the index very early in
Googles history. The page had presumably stayed close to the top because its
initial ranking served to actively drive traffic to it, creating a feedback loop.

The page housed advice that was completely out of date, no longer true, and
in many cases detrimental to applications. However, the favoured position in
the search engine results caused many, many developers to be exposed to terri-
ble advice. There’s no way of knowing how much damage was done to the per-
formance of applications that were subjected to the bad advice, but it neatly
demonstrates the dangers of not using a quantitative and verifiable approach
to performance. It also provides another excellent example of not believing ev-
erything you read on the Internet.

7

1

The execution speed of Java code is highly dynamic and fundamentally
depends on the underlying Java Virtual Machine (JVM). The same piece of
Java code may well execute faster on a more recent JVM, even without re-
compiling the Java source code.

As you might imagine, for this reason (and others we’ll discuss later) this
book does not consist of a cookbook of performance tips to apply to your code.
Instead, we focus on a range of aspects that come together to produce good
performance engineering:

• Methodology and performance testing within the overall software lifecy-
cle

• Theory of testing as applied to performance

• Measurement, statistics and tooling

• Analysis skills (both systems and data)

• Underlying technology and mechanisms

Later in the book, we will introduce some heuristics and code-level techni-
ques for optimization, but these all come with caveats and tradeoffs that the
developer should be aware of before using them.

Please do not skip ahead to those sections and start applying the techni-
ques detailed without properly understanding the context in which the
advice is given. All of these techniques are more than capable of doing
more harm than good without a proper understanding of how they
should be applied.

In general, there are no:

• Magic “go-faster” switches for the JVM

• “Tips and tricks”

• Secret algorithms that have been hidden from the uninitiated

As we explore our subject, we will discuss these misconceptions in more de-
tail, along with some other common mistakes that developers often make when
approaching Java performance analysis and related issues. Still here? Good.
Then let’s talk about performance.

Performance as an Experimental Science

Performance tuning is a synthesis between technology, methodology, measura-
ble quantities and tools. Its aim is to affect measurable outputs in a manner de-

CHAPTER 1: Optimization and Performance Defined

8

sired by the owners or users of a system. In other words, performance is an ex-
perimental science - it achieves a desired result by:

• Defining the desired outcome

• Measuring the existing system

• Determining what is to be done to achieve the requirement

• Undertaking an improvement exercise to implement

• Retesting

• Determining whether the goal has been achieved

The process of defining and determining desired performance outcomes
builds a set of quantative objectives. It is important to establish what should be
measured and record the objectives, which then forms part of the project arte-
facts and deliverables. From this, we can see that performance analysis is based
upon defining, and then achieving non-functional requirements.

This process is, as has been previewed, not one of reading chicken entrails or
other divination method. Instead, this relies upon the so-called dismal methods
of statistics. In Chapter 5 we will introduce a primer on the basic statistical
techniques that are required for accurate handling of data generated from a
JVM performance analysis project.

For many real-world projects, a more sophisticated understanding of data
and statistics will undoubtedly be required. The advanced user is encouraged
to view the statistical techniques found in this book as a starting point, rather
than a final statement.

A Taxonomy for Performance

In this section, we introduce some basic performance metrics. These provide a
vocabulary for performance analysis and allow us to frame the objectives of a
tuning project in quantitative terms. These objectives are the non-functional re-
quirements that define our performance goals. One common basic set of per-
formance metrics is:

• Throughput

• Latency

• Capacity

• Degradation

• Utilization

• Efficiency

• Scalability

A Taxonomy for Performance

9

We will briefly discuss each in turn. Note that for most performance projects,
not every metric will be optimised simultaneously. The case of only 2-4 metrics
being improved in a single performance iteration is far more common, and may
be as many as can be tuned at once.

Throughput

Throughput is a metric that represents the rate of work a system or subsystem
can perform. This is usually expressed as number of units of work in some time
period. For example, we might be interested in how many transactions per sec-
ond a system can execute.

For the throughput number to be meaningful in a real performance exercise,
it should include a description of the reference platform it was obtained on. For
example, the hardware spec, OS and software stack are all relevant to through-
put, as is whether the system under test is a single server or a cluster.

Latency

Performance metrics are sometimes explained via metaphors that evokes
plumbing. If a water pipe can produce 100l per second, then the volume pro-
duced in 1 second (100 litres) is the throughput. In this metaphor, the latency is
effectively the length of the pipe. That is, it’s the time taken to process a single
transaction.

It is normally quoted as an end-to-end time. It is dependent on workload, so
a common approach is to produce a graph showing latency as a function of in-
creasing workload. We will see an example of this type of graph in Section 1.4

Capacity

The capacity is the amount of work parallelism a system possesses. That is, the
number units of work (e.g. transactions) that can be simultaneously ongoing in
the system.

Capacity is obviously related to throughput, and we should expect that as
the concurrent load on a system increases, that throughput (and latency) will
be affected. For this reason, capacity is usually quoted as the processing avail-
able at a given value of latency or throughput.

Utilisation

One of the most common performance analysis tasks is to achieve efficient use
of a systems resources. Ideally, CPUs should be used for handling units of work,

CHAPTER 1: Optimization and Performance Defined

10

rather than being idle (or spending time handling OS or other housekeeping
tasks).

Depending on the workload, there can be a huge difference between the uti-
lisation levels of different resources. For example, a computation-intensive
workload (such as graphics processing or encryption) may be running at close
to 100% CPU but only be using a small percentage of available memory.

Efficiency

Dividing the throughput of a system by the utilised resources gives a measure of
the overall efficiency of the system. Intuitively, this makes sense, as requiring
more resources to produce the same throughput, is one useful definition of be-
ing less efficient.

It is also possible, when dealing with larger systems, to use a form of cost
accounting to measure efficiency. If Solution A has a total dollar cost of owner-
ship (TCO) as solution B for the same throughput then it is, clearly, half as effi-
cient.

Scalability

The throughout or capacity of a system depends upon the resources available
for processing. The change in throughput as resources are added is one meas-
ure of the scalability of a system or application. The holy grail of system scala-
bility is to have throughput change exactly in step with resources.

Consider a system based on a cluster of servers. If the cluster is expanded,
for example, by doubling in size, then what throughput can be achieved? If the
new cluster can handle twice the volume of transactions, then the system is ex-
hibiting “perfect linear scaling”. This is very difficult to achieve in practice, espe-
cially over a wide range of posible loads.

System scalability is dependent upon a number of factors, and is not nor-
mally a simple constant factor. It is very common for a system to scale close to
linearly for some range of resources, but then at higher loads, to encounter
some limitation in the system that prevents perfect scaling.

Degradation

If we increase the load on a system, either by increasing the number of requests
(or clients) or by increasing the speed requests arrive at, then we may see a
change in the observed latency and/or throughput.

Note that this change is dependent on utilisation. If the system is under-
utilised, then there should be some slack before observables change, but if re-

A Taxonomy for Performance

11

sources are fully utilised then we would expect to see throughput stop increas-
ing, or latency increase. These changes are usually called the degradation of
the system under additional load.

Connections between the observables

The behaviour of the various performance observables is usually connected in
some manner. The details of this connection will depend upon whether the sys-
tem is running at peak utility. For example, in general, the utilisation will
change as the load on a system increases. However, if the system is under-
utilised, then increasing load may not apprciably increase utilisation. Converse-
ly, if the system is already stressed, then the effect of increasing load may be
felt in another observable.

As another example, scalability and degradation both represent the change
in behaviour of a system as more load is added. For scalability, as the load is
increased, so are available resources, and the central question is whether the
system can make use of them. On the other hand, if load is added but addition-
al resources are not provided, degradation of some performance observable
(e.g. latency) is the expected outcome.

In rare cases, additional load can cause counter-intuitive results. For ex-
ample, if the change in load causes some part of the system to switch to a
more resource intensive, but higher performance mode, then the overall
effect can be to reduce latency, even though more requests are being re-
ceived.

To take one example, in Chapter 9 we will discuss HotSpot’s JIT compiler in
detail. To be considered eligible for JIT compilation, a method has to be execut-
ed in interpreted mode “sufficiently frequently”. So it is possible, at low load to
have key methods stuck in interpreted mode, but to become eligible for compi-
lation at higher loads, due to increased calling frequency on the methods. This
causes later calls to the same method to run much, much faster than earlier ex-
ecutions.

Different workloads can have very different characteristics. For example, a
trade on the financial markets, viewed end to end, may have an execution time
(i.e. latency) of hours or even days. However, millions of them may be in pro-
gress at a major bank at any given time. Thus the capacity of the system is very
large, but the latency is also large.

However, let’s consider only a single subsystem within the bank. The match-
ing of a buyer and a seller (which is essentially the parties agreeing on a price)
is known as “order matching”. This individual subsystem may have only hun-
dreds of pending order at any given time, but the latency from order accept-

CHAPTER 1: Optimization and Performance Defined

12

FIGURE 1-1

A performance
“elbow”

ance to completed match may be as little as 1 millisecond (or even less in the
case of “low latency” trading).

In this section we have met the most frequently encountered performance
observables. Occasionally slightly different defintions, or even different metrics
are used, but in most cases these will be the basic system numbers that will
normally be used to guide performance tuning, and act as a taxonomy for dis-
cussing the performance of systems of interest.

Reading performance graphs

To conclude this chapter, let’s look at some common patterns of success and
failure that occur in performance tests. We will explore these by looking at
graphs of real observables, and we will encounter many other examples of
graphs of our data as we proceed.

Reading performance graphs

13

FIGURE 1-2

Near linear scaling

The graph in Figure 1-1 shows sudden, unexpected degradation of perfor-
mance (in this case, latency) under increasing load - commonly called a perfor-
mance elbow.

By contrast, Figure 1-2 shows the much happier case of throughput scaling
almost linearly as machines are added to a cluster. This is close to ideal behav-
iour, and is only likely to be achieved in extremely favourable circumstances -
e.g. scaling a stateless protocol with no need for session affinity with a single
server.

CHAPTER 1: Optimization and Performance Defined

14

FIGURE 1-3

Amdahl’s Law

In Chapter 12 we will meet Amdahl’s Law, named for the famous computer
scientist (and “father of the mainframe”) Gene Amdahl of IBM. Figure 1-3
shows a graphical representation of this fundamental constraint on scalability.
It shows that whenever the workload has any piece at all that must be per-
formed in serial, linear scalability is impossible, and there are strict limits on
how much scalability can be achieved. This justifies the commentary around
Figure 1-2 - even in the best cases linear scalability is all but impossible to ach-
ieve.

The limits imposed by Amdahl’s Law are surprisingly restrictive - note in par-
ticular that the x-axis of the graph is logarithmic, and so even with an algorithm
that is only 5% serial, 32 processors are needed for a factor-of-12 speedup, and
that no matter how many cores are used, the maximum speedup is only a
factor-of-20.

Reading performance graphs

15

FIGURE 1-4

Healthy memory
usage

As we will see in Chapter 7, the underlying technology in the JVMs garbage
collection subsystem naturally gives rise to a “sawtooth” pattern of memory
used for healthy applications that aren’t under stress. We can see an example in
Figure 1-4.

CHAPTER 1: Optimization and Performance Defined

16

FIGURE 1-5

Stable allocation
rate

In Figure 1-5, we show another memory graph that is very typical for a
healthy application. The allocation rate can be of great importance when per-
formance tuning an application. This example shows a clear signal of allocation
varying gently over the course of a business day, but within well-defined limits
(between roughly 300 and 750 MB/s) that lie well within the capability of
modern server class hardware.

Reading performance graphs

17

FIGURE 1-6

Degrading latency
under higher load

In the case where a system has a resource leak, it is far more common for it
to manifest in a manner like that shown in Figure 1-6, where an observable (in
this case latency) to slowly degrade as the load is ramped up.

In this chapter we have started to discuss what Java performance is and is
not. We have introduced the fundamental topics of empirical science and
measurement, and introduced the basic vocabulary and observables that a
good performance exercise will use. Finally, we have introduced some common
cases that are often seen within the results obtained from performance tests.
Let’s move on and begin our discussion of some of the major aspects of the JVM
and set the scene for understanding what makes JVM-based performance opti-
mization a particularly complex problem.

CHAPTER 1: Optimization and Performance Defined

18

Overview of the JVM

Overview

There is no doubt that Java is one of the largest technology platforms on the
planet, boasting roughly 9-10 million Java developers. By design, many devel-
opers do not need to know about the low level intricacies of the platform they
work with. This leads to a situation where developers only meet these aspects
when a client complains about performance for the first time.

As a developer interested in performance, however, it is important to under-
stand the basics of the JVM technology stack. Understanding JVM technology
enables developers to write better software and provides the theoretical back-
ground required for investigating performance related issues.

This chapter introduces how the JVM executes Java in order to form the ba-
sis for deeper exploration of these topics later in the book.

Code Compilation and Bytecode

It is important to appreciate that Java code goes through a significant number
of transformations before execution. The first is the compilation step using the
Java Compiler javac, often invoked as part of a larger build process. The job of
javac is to convert Java code into .class files that contain bytecode. It ach-
ieves this by doing a fairly straightforward translation of the Java source code,
as shown in Figure 2-1. Very few optimizations are done during compilation by
javac and the resulting bytecode is still quite readable and recognisable as
Java code when viewed in a disassembly tool, such as the standard javap.

19

2

FIGURE 2-1

Java class file
compilation

Bytecode is an intermediate representation that is not tied to a specific ma-
chine architecture. Decoupling from the machine architecture provides porta-
bility, meaning developed software can run on any platform supported by the
JVM and provides an abstraction from the Java language. This provides our first
important insight into the way the JVM executes code.

The Java language and the Java Virtual Machine are now to a degree inde-
pendent, and so the J in JVM is potentially a little misleading, as the JVM
can execute any JVM language that can produce a valid class file. In fact,
Figure 2-1 could just as easily show the Scala compiler scalac generating
bytecode for execution on the JVM.

Regardless of the source code compiler used, the resulting class file has a
very well defined structure specified by the VM specification. Any class that is
loaded by the JVM will be verified to conform to the expected format before be-
ing allowed to run.

TABLE 2-1. Anatomy of a Class File

Component Description

Magic Number 0xCAFEBABE

Version of Class File For-
mat The minor and major versions of the class file

Constant Pool Pool of constants for the class

Access Flags For example whether the class is abstract, static, etc.

CHAPTER 2: Overview of the JVM

20

Component Description

This Class The name of the current class

Super Class The name of the super class

Interfaces Any interfaces in the class

Fields Any fields in the class

Methods Any methods in the class

Attributes Any attributes of the class (e.g. name of the sourcefile,
etc.)

Every class file starts with the magic number 0xCAFEBABE, the first 4 bytes
in hexidecimal serving to denote conformance to the class file format. The fol-
lowing 4 bytes represent the minor and major versions used to compile the
class file, these are checked to ensure that the target JVM is not higher than the
version used to compile the class file. The major minor version is checked by
the classloader to ensure compatibility, if these are not compatible an Unsup-
portedClassVersionError will be thrown at runtime indicating the runtime
is a lower version than the compiled class file.

Magic numbers provide a way for Unix environments to identify the type
of a file (whereas Windows will typically use the file extension). For this
reason, they are difficult to change once decided upon. Unfortunately,
this means that Java is stuck using the rather embarassing and sexist
0xCAFEBABE for the forseeable future.

The constant pool holds constant values in code for example names of
classes, interfaces and field names. When the JVM executes code the constant
pool table is used to refer to values rather than having to rely on the layout of
the class file at runtime.

Access flags are used to determine the modifiers applied to the class. The
first part of the flag identifies whether a class is public followed by if it is final
and cannot be subclassed. The flag also determines whether the class file rep-
resents an interface or an abstract class. The final part of the flag represents
whether the class file represents a synthetic class that is not present in source
code, an annotation type or an enum.

The this class, super class and interface entries are indexes into the con-
stant pool to identify the type hierarchy belonging to the class. Fields and
methods define a signature like structure including the modifiers that apply to
the field or method. A set of attributes are then used to represent structured
items for more complicated and non fixed size structures. For example, meth-

Code Compilation and Bytecode

21

FIGURE 2-2

mnemonic for class
file structure

ods make use of the code attribute to represent the bytecode associated with
that particular method.

Figure 2-2 provides a mnemonic for remembering the structure.

Taking a very simple code example it is possible to observe the effect of run-
ning javac:

public class HelloWorld {
 public static void main(String[] args) {
 for (int i = 0; i < 10; i++) {
 System.out.println("Hello World");
 }
 }
}

Java ships with a class file disassembler called javap, allowing inspection
of .class files. Taking the HelloWorld .class file and running javap -c Hello-
World gives the following output:

public class HelloWorld {
 public HelloWorld();
 Code:
 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: iconst_0

CHAPTER 2: Overview of the JVM

22

 1: istore_1
 2: iload_1
 3: bipush 10
 5: if_icmpge 22
 8: getstatic #2 // Field java/lang/System.out ...
 11: ldc #3 // String Hello World
 13: invokevirtual #4 // Method java/io/PrintStream.println ...
 16: iinc 1, 1
 19: goto 2
 22: return
}

The overall layout describes the bytecode for HelloWorld class file, javap
also has a -v option that provides the full classfile header information and con-
stant pool details. The class file contains two methods, although only the single
main method was supplied in the source file - this is the result of javac automat-
ically adding a default constructor to the class.

The first instruction executed in the constructor is aload_0, which places
the this reference onto the first position in the stack. The invokespecial
command is then called, which invokes an instance method that has specific
handling for calling super constructors and the creation of objects. In the de-
fault constructor the invoke matches to the default constructor for Object as
an override was not supplied.

Opcodes in the JVM are concise and represent the type, the operation and
the interaction between local variables, the constant pool and the stack.

iconst_0 pushes the int constant 0 onto the evaluation stack. istore_1
stores this constant value into the local variable at offset 1 (we represented as i
in the loop). Local variable offsets start at 0, but for instance methods, the 0th
entry is always this. The variable at offset 1 is then loaded back onto the stack
and the constant 10 is pushed for comparison using if_icmpge (“if integer
compare greater or equal”). The test only succeeds if the current integer is >=
10.

For the first few iterations, this comparison test fails and so we continue to
instruction 8. Here the static method from System.out is resolved, followed by
the loading of the Hello World String from the constant pool. The next invoke,
invokevirtual is encountered, which invokes an instance method based on
the class. The integer is then incremented and goto is called to loop back to in-
struction 2. This process continues until the if_icmpge comparison eventually
succeeds (when the loop variable is >= 10), and on that iteration of the loop
control passes to instruction 22 and the method returns.

Code Compilation and Bytecode

23

Interpreting and Classloading

The JVM is a stack based interpreted machine. This means that rather than hav-
ing registers (like a physical hardware CPU), it uses an execution stack of partial
results, and performs calculations by operating on the top value (or values) of
that stack.

The action of the JVM interpreter can be simply thought of a switch inside a
while loop - processing each opcode independently of the last using the stack
positions to hold intermediate values.

As we will see when we delve into the internals of the Oracle / OpenJDK
VM (HotSpot), the situation for real production-grade Java interpreters is
a little more complex, but switch-inside-while is an acceptable mental
model for the moment.

When our application is launched using the java HelloWorld command,
the entry point into the application will be the main() method of Hello-
World.class. In order to hand over control to this class, it must be loaded by
the virtual machine before execution can begin.

To achieve this, the operating system starts the virtual machine process and
almost immediately, the first in a chain of class loaders is initialised. This initial
loader is known as the Bootstrap classloader, and contains classes in the core
Java runtime. In current versions these are loaded from rt.jar, although this
is changing in Java 9, as we will see in Chapter 13.

The Extension classloader is created next, it defines its parent to be the
Bootstrap classloader, and will delegate to parent if needed. Extensions are not
widely used, but can supply overrides and native code for specific operating
systems and platforms. Notably, the Nashorn Javascript runtime in Java 8 is
loaded by the Extension loader.

Finally the Application classloader is created, which is responsible for load-
ing in user classes from the defined classpath. Some texts unfortunately refer to
this as the “System” classloader. This term should be avoided, for the simple
reason tht it doesn’t load the system (the Bootstrap classloader does). The Ap-
plication classloader is encountered extremely frequently, and it has the Exten-
sion loader as its parent.

Java loads in dependencies on new classes when they are first encountered
during the execution of the program. If a class loader fails to find a class the
behaviour is usually to delegate the lookup to the parent. If the chain of look-
ups reaches the bootstrap class loader and isn’t found a ClassNotFoundEx-
ception will be thrown. It is important that developers use a build process that

CHAPTER 2: Overview of the JVM

24

FIGURE 2-3

The HotSpot JVM

effectively compiles with the exact same classpath that will be used in Produc-
tion, as this helps to mitigate this potential issue.

Under normal circumstances Java only loads a class once and a Class ob-
ject is created to represent the class in the runtime environment. However, it is
important to realise that the same class can potentially be loaded twice by dif-
ferent classloaders. As a result class in the system is identified by the classload-
er used to load it as well as the fully qualified classname (which includes the
package name).

Introducing HotSpot

In April 1999 Sun introduced one of the biggest changes to Java in terms of
performance. The HotSpot virtual machine is a key feature of Java that has
evolved to enable performance that is comparative to (or better than) languag-
es such as C and C++. To explain how this is possible, let’s delve a little deeper
into the design of languages intended for application development.

Language and platform design frequently involves making decisions and
tradeoffs between desired capabilities. In this case, the division is between lan-
guages that stay “close to the metal” and rely on ideas such as “zero cost ab-
stractions”, and languages that favour developer productivity and “getting
things done” over strict low-level control.

C++ implementations obey the zero-overhead principle: What you don’t use, you don’t pay

for. And further, what you do use, you couldn’t hand code any better.

Bjarne Stroustrup

Introducing HotSpot

25

The zero-overhead principle sounds great in theory, but it requires all users
of the language to deal with the low-level reality of how operating systems and
computers actually work. This is a significant extra cognitive burden that is
placed upon developers that may not care about raw performance as a primary
goal.

Not only that, but it also requires the source code to be compiled to
platform-specific machine code at build time - usually called Ahead of Time
(AOT) compilation. This is because alternative execution models such as inter-
preters, virtual machines and portablity layers all are most definitely not zero
overhead.

The principle also hides a can of worms in the phrase “what you do use, you
couldn’t hand code any better”. This presupposes a number of things, not least
that the developer is able to produce better code than an automated system.
This is not a safe assumption at all. Very few people want to code in assembly
language any more, so the use of automated systems (such as compilers) to
produce code is clearly of some benefit to most programmers.

Java is a blue collar language. It’s not PhD thesis material but a language for a job.

James Gosling

Java has never subscribed to the zero-overhead abstraction philosophy. In-
stead, it focused on practicality and developer productivity, even at the ex-
pense of raw performance. It was therefore not until relatively recently, with the
increasing maturity and sophistication of JVMs such as HotSpot that the Java
environment became suitable for high-performance computing applications.

HotSpot works by monitoring the application whilst it is running in interpret-
ed mode and observing parts of code that are most frequently executed. During
this analysis process programatic trace information is captured that allows for
more sophisticated optimisation. Once execution of a particular method passes
a threshold the profiler will look to compile and optimize that section of code.

The method of taking interpreted code and compiling once it passes a
threshold is known as just-in-time compilation or JIT. One of the key benefits of
JIT is having trace information that is collected during the interpreted phase,
enabling HotSpot to make more informed optimisations. HotSpot has had hun-
dreds of years (or more) of development attributed to it and new optimisations
and benefits are added with almost every new release.

CHAPTER 2: Overview of the JVM

26

After translation from Java source to bytecode and now another step of
(JIT) compilation the code actually being executed has changed very sig-
nificantly from the source code as written. This is a key insight and it will
drive our approach to dealing with performance related investigations.
JIT-compiled code executing on the JVM may well look nothing like the
original Java source code.

The general picture is that languages like C++ (and the up-and-coming Rust)
tend to have more predictable performance, but at the cost of forcing a lot of
low-level complexity onto the user.

Note that “more predictable” does not necessarily mean “better”. AOT com-
pilers produce code that may have to run across a broad class of processors,
and may not be able to assume that specific processor features are available.

Environments that use profile-guided optimization, such as Java, have the
potential to use runtime information in ways that are simply impossible to
most AOT platforms. This can offer improvements to performance, such as dy-
namic inlining and eliding virtual calls. HotSpot can also detect the precise CPU
type it is running on at VM startup, and can use specific processor features if
available, for even higher performance. These are known as JVM “intrinsics”
and are discussed in detail in Chapter 9.

The sophisticated approach that HotSpot takes is a great benefit to the ma-
jority of ordinary developers, but this tradeoff (to abandon zero overhead ab-
stractions) means that in the specific case of high performance Java applica-
tions, the developer must be very careful to avoid “common sense” reasoning
and overly simplistic mental models of how Java applications actually execute.

Analysing the performance of small sections of Java code (“microbe-
nchmarks”) is usually actually harder than analysing entire applications,
and is a very specialist task that the majority of developers should not
undertake. We will return to this subject in Chapter 5.

HotSpot’s compilation subsystem is one of the two most important subsys-
tems that the virtual machine provides. The other is automatic memory man-
agement, which was originally one of the major selling points of Java in the ear-
ly years.

JVM Memory Management

In languages such as C, C\++ and Objective-C the programmer is responsible for
managing the allocation and releasing of memory. The benefits of managing
your own memory and lifetime of objects are more deterministic performance
and the ability to tie resource lifetime to the creation and deletion of objects.

JVM Memory Management

27

This benefit comes at a cost - for correctness developers must be able to accu-
rately account for memory.

Unfortunately, decades of practical experience showed that many develop-
ers have a poor understanding of idioms and patterns for management of
memory. Later versions of C\++ and Objective-C have improved this using smart
pointer idioms in the core language. However at the time Java was created
poor memory management was a major cause of application errors. This led to
concern among developers and managers about the amount of time spent
dealing with language features rather than delivering value for the business.

Java looked to help resolve the problem by introducing automatically man-
aged heap memory using a process known as Garbage Collection (GC). Simply
put, Garbage Collection is a non-deterministic process that triggers to recover
and resue no-longer needed memory when the JVM requires more memory for
allocation.

However the story behind GC is not quite so simple or glib, and various algo-
rithms for garbage collection have been developed and applied over the course
of Java’s history. GC comes at a cost, when GC runs it often stops the world,
which means whilst GC is in progress the application pauses. Usually these
pause times are designed to be incredibly small, however as an application is
put under pressure these pause times can increase.

Garbage collection is a major topic within Java performance optimization,
and we will devote Chapter 7 and 8 to the details of Java GC.

Threading and the Java Memory Model

One of the major advances that Java brought in with its first version is direct
support for multithreaded programming. The Java platform allows the devel-
oper to create new threads of execution. For example, in Java 8 syntax:

Thread t = new Thread(() -> {System.out.println("Hello World!");});
t.start();

This means that all Java programs are inherently multithreaded (as is the
JVM). This produces additional, irreducible complexity in the behaviour of Java
programs, and makes the work of the performance analyst even harder.

Java’s approach to multithreading dates from the late 1990s and has these
fundamental design principles:

• All threads in a Java process share a single, common garbage-collected
heap

• Any object created by one thread can be accessed by any other thread
that has a reference to the object

CHAPTER 2: Overview of the JVM

28

• Objects are mutable by default - the values held in object fields can be
changed unless the programmer explicitly uses the final keyword to
mark them as immutable.

The Java Memory Model (JMM) is a formal model of memory that explains
how different threads of execution see the changing values held in objects. That
is, if threads A and B both have references to object obj, and thread A alters it,
what happens to the value observed in thread B.

This seemingly simple question is actually more complicated than it seems,
because the operating system scheduler (which we will meet in Chapter 3) can
forcibly evict threads from CPU cores. This can lead to another thread starting
to execute and accessing an object before the original thread had finished pro-
cessing it, potentially seeing the object in a damaged or invalid state.

The only defence the core of Java provides against this potential object
damage during concurrent code execution is the mutual exclusion lock, and
this can be very complex to use in real applications. Chapter 12 contains a de-
tailed look at how the JMM works, and the practicalities of working with
threads and locks.

The JVM and the operating system

Java and the JVM provide a portable execution environent that is independent
of the operating system. This is implemented by providing a common interface
to Java code. However, for some fundamental services, such as thread schedul-
ing (or even something as mundane as getting the time from the system clock),
the underlying operating system must be accessed.

This capability is provided by native methods, which are denoted by the key-
word native. They are written in C, but are accessible as ordinary Java meth-
ods. This interface is referred to as the Java Native Interface (JNI). For example,
java.lang.Object declares these non-private native methods:

public final native Class<?> getClass();
public native int hashCode();
protected native Object clone() throws CloneNotSupportedException;
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;

As all these methods deal with relatively low-level platform concerns, let’s
look at a more straightforward and familiar example - getting the system time.

Consider the os::javaTimeMillis() function. This is the (system-specific)
code responsible for implementing the Java System.currentTimeMillis()

The JVM and the operating system

29

FIGURE 2-4

The Hotspot Calling
stack

static method. The code that does the actual work is implemented in C\++, but
is accessed from Java via a “bridge” of C code. let’s look at how this code is ac-
tually called in HotSpot:

As you can see in Figure 2-4, the native System.currentTimeMillis()
method is mapped to the JVM entry point method JVM_CurrentTimeMillis.
This mapping is achieved via the JNI Java_java_lang_System_registerNa-
tives mechanism contained in java/lang/System.c.

JVM_CurrentTimeMillis is essentially a call to the C+\+ method os::jav-
aTimeMillis() wrapped in a couple of OpenJDK macros. This method is de-
fined in the os namespace, and is unsurprisingly operating system-dependent.
Definitions for this method are provided by the OS-specific subdirectories of
source code within OpenJDK.

This demonstrates how the platform-independent parts of Java can call into
services that are provided by the underlying operating system and hardware. In
Chapter 3 we will discuss some details of how operating systems and hardware
work. This is to provide necessary background for the Java peformance analyst
to understand observed results. We will also look at the timing subsystem in
more detail, as a complete example of how the VM and native subsystems inter-
act.

CHAPTER 2: Overview of the JVM

30

Hardware & Operating Systems

Why should Java developers care about Hardware?
For many years the computer industry has been driven by Moore’s Law, a hy-

pothesis made by Intel founder, Gordon Moore, about long-term trends in pro-
cessor capability. The law (really an observation or extrapolation) can be
framed in a variety of ways, but one of the most usual is:

The number of transistors on a mass-produced chip roughly doubles every 18 months

Gordon Moore

This phenomenon represents an exponential increase in computer power
over time. It was originally cited in 1965, so represents an incredible long-term
trend, almost unparalleled in the history of human development. The effects of
Moore’s Law have been transformative in many (if not most) areas of the
modern world.

The death of Moore’s Law has been repeatedly proclaimed for decades
now. However, there are very good reasons to suppose that, for all prac-
tical purposes, this incredible progress in chip technology has (finally)
come to an end.

However, hardware has become increasingly complex in order to make good
use of the “transistor budget” available in modern computers. The software
platforms that run on that hardware has also increased in complexity to exploit
the new capabilities, so whilst software has far more power at its disposal it has
come to rely on complex underpinnings to access that performance increase.

The net result of this huge increase in the performance available to the ordi-
nary application developer has been the blossoming of complex software. Soft-
ware applications now pervade every aspect of global society. Or, to put it an-
other way:

31

3

Software is eating the world.

Marc Andreessen

As we will see, Java has been a beneficiary of the increasing amount of com-
puter power. The design of the language and runtime has been well-suited (or
lucky) to make use of this trend in processor capability. However, the truly
performance-conscious Java programmer needs to understand the principles
and technology that underpins the platform in order to make best use of the
available resources.

In later chapters, we will explore the software architecture of modern JVMs
and techniques for optimizing Java applications at the platform and code lev-
els. Before turning to those subjects, let’s take a quick look at modern hardware
and operating systems, as an understanding of those subjects will help with ev-
erything that follows.

Introduction to Modern Hardware

Many universty courses on hardware architectures still teach a simple-to-
understand, “classical” view of hardware. This “motherhood and apple pie”
view of hardware focuses on a simple view of a register-based machine, with
arithmetic and logic operations, load and store operations.

Since then, however, the world of the application developer has, to a large
extent, revolved around the Intel x86 / x64 architecture. This is an area of tech-
nology that has undergone radical change and many advanced features now
form important parts of the landscape. The simple mental model of a process-
or’s operation is now completely incorrect, and intuitive reasoning based on it
is extremely liable to lead to utterly wrong conclusions.

To help address this, in this chapter, we will discuss several of these advan-
ces in CPU technology. We will start with the behavior of memory, as this is by
far the most important to a modern Java developer.

Memory

As Moore’s Law advanced, the exponentially increasing number of transistors
was initially used for faster and faster clock speed. The reasons for this are obvi-
ous - faster clock speed means more instructions completed per second. Ac-
cordingly, the speed of processors has advanced hugely, and the 2+ GHz pro-
cessors that we have today are hundreds of times faster than the original 4.77
MHz chips found in the first IBM PC.

CHAPTER 3: Hardware & Operating Systems

32

1 From Computer Architecture: A Quantitative Approach by Hennessy, et al.

2 Access times shown in terms of number of clock cycles per operation, provided by Google

FIGURE 3-1

Speed of memory
and transistor
counts

However, the increasing clock speeds uncovered another problem. Faster
chips require a faster stream of data to act upon. As Figure 3-1 1 shows, over
time main memory could not keep up with the demands of the processor core
for fresh data.

This results in a problem - if the CPU is waiting for data, then faster cycles
don’t help, as the CPU will just have to idle until the required data arrives.

To solve this problem, CPU caches were introduced. These are memory
areas on the CPU that are slower than CPU registers, but faster than main mem-
ory. The idea is for the CPU to fill the cache with copies of often-accessed mem-
ory locations rather than constantly having to re-address main memory.

Modern CPUs have several layers of cache, with the most-often-accessed ca-
ches being located close to the processing core. The cache closest to the CPU is
usually called L1, with the next being referred to as L2, and so on. Different pro-
cessor architectures have a varying number, and configuration, of caches, but a
common choice is for each execution core to have a dedicated, private L1 and
L2 cache, and an L3 chache that is shared across some or all of the cores. The
effect of these caches in speeding up access times is shown in Figure 3-2 2.

Memory

33

FIGURE 3-2

Access times for
various types of
memory

This approach to cache architecture improves access times and helps keep
the core fully stocked with data to operate on. However, it introduces a new set
of problems when applied in a parallel processing environment, as we will see
later in this chapter.

Memory Caches

Modern hardware does introduce some new problems in terms of determining
how memory is fetched into and written back from cache. This is known as a
“cache consistency protocol”.

At the lowest level, a protocol called MESI (and its variants) is commonly
found on a wide range of processors. It defines four states for any line in a
cache. Each line (usually 64 bytes) is either:

• Modified (but not yet flushed to main memory)

• Exclusive (only present here, but does match main memory)

• Shared (may also be present in other caches, matches main memory)

• Invalid (may not be used, will be dropped as soon as practical)

TABLE 3-1. The
MESI protocol

M E S I

M - - - Y

E - - - Y

S - - Y Y

CHAPTER 3: Hardware & Operating Systems

34

FIGURE 3-3

MESI state
transition diagram

M E S I

I Y Y Y Y

The idea of the protocol is that multiple processors can simultenously be in
the Shared state. However, if a processor transitions to any of the other valid
states (Exclusive or Modified), then this will force all the other processors into
the Invalid state. This is shown in Table 3-1

The protocol works by broadcasting the intentions of a processor that is in-
tending to change state. An electrical signal is sent across the shared memory
bus, and the other processors are made aware. The full logic for the state transi-
tions is show in Figure 3-3

Originally, processors wrote every cache operation directly into main memo-
ry. This was called “write-through” behavior, but it was and is very inefficient,

Memory

35

and required a large amount of bandwidth to memory. More recent processors
also implement “write-back” behavior, where traffic back to main memory is
significantly reduced.

The overall effect of caching technology is to greatly increase the speed at
which data can be written to, or read from, memory. This is expressed in terms
of the bandwidth to memory. The “burst rate”, or theoretical maximum is based
on several factors:

• Clock frequency of memory

• The width of the memory bus (usually 64 bits)

• Number of interfaces (usually 2 in modern machines)

This is multiplied by 2 in the case of DDR RAM (DDR stands for “double data
rate”). Applying the formula to 2015 commodity hardware gives a theoretical
maximum write speed of 8-12GB/s. In practice, of course, this could be limited
by many other factors in the system. As it stands, this gives a modestly useful
value to allow us to see how close the hardware and software can get.

Let’s write some simple code to exercise the cache hardware:

public class Caching {
 private final int ARR_SIZE = 10 * 1024 * 1024;
 private final int[] testData = new int[ARR_SIZE];

 private void run() {
 for (int i = 0; i < 10_000; i++) {
 touchEveryLine();
 touchEveryItem();
 }
 System.out.println("Item Line");
 for (int i = 0; i < 100; i++) {
 long t0 = System.nanoTime();
 touchEveryLine();
 long t1 = System.nanoTime();
 touchEveryItem();
 long t2 = System.nanoTime();
 long elEvery = t1 - t0;
 long elLine = t2 - t1;
 System.out.println(elEvery +" "+ elLine);
 }
 }

 private void touchEveryItem() {
 for (int i = 0; i < testData.length; i++)
 testData[i]++;
 }

 private void touchEveryLine() {

CHAPTER 3: Hardware & Operating Systems

36

FIGURE 3-4

Time elapsed for
Caching example

 for (int i = 0; i < testData.length; i += 16)
 testData[i]++;
 }

 public static void main(String[] args) {
 Caching c = new Caching();
 c.run();
 }
}

Intuitively, touchEveryItem() “does 16 times as much work” as touchE-
veryLine(), as 16 times as many data items must be updated. However, the
point of this simple example is to show how badly intuition can lead us astray
when dealing with JVM performance. Let’s look at some sample output from
the Caching class, as shown in Figure 3-4:

The graph shows 100 runs of each function, and is intended to show several
different effects. Firstly, notice that the results for both functions are remarka-
ble similar to each other in terms of time taken, so the intuitive expectation of
“16 times as much work” is clearly false.

Instead, the dominant effect of this code is to exercise the memory bus, by
transferring the contents of the array from main memory, into the cache to be
operated on by touchEveryItem() and touchEveryLine().

In terms of the statistics of the numbers, although the results are reasonably
consistent, there are individual outliers that are 30-35% different from the me-
dian value.

Memory

37

Overall, we can see that each iteration of the simple memory function takes
around 3 milliseconds (2.86ms on average) to traverse a 100M chunk of memo-
ry, giving an effective memory bandwidth of just under 3.5GB per second. This
is less than the theoretical maximum, but is still a reasonable number.

Modern CPUs have a hardware prefetcher, that can detect predictable
patterns in data access (usually just a regular “stride” through the data).
In this example, we’re taking advantage of that fact in order to get closer
to a realistic maximum for memory access bandwidth.

One of the key themes in Java performance is the sensitivity of applications
to object allocation rates. We will return to this point several times, but this
simple example gives us a basic yardstick for how high allocation rates could
rise.

Modern Processor Features

Hardware engineers sometimes refer to the new features that have become
possible as a result of Moore’s Law as “spending the transistor budget”. Memory
caches are the most obvious use of the growing number of transistors, but oth-
er techniques have also appeared over the years.

Translation Lookaside Buffer

One very important use is in a different sort of cache - the Translation Looka-
side Buffer (TLB). This acts as a cache for the page tables that map virtual mem-
ory addresses to physical addresses. This greatly speeds up a very frequent op-
eration - access to the physical address underlying a virtual address.

There’s a memory-related software feature of the JVM that also has the
acronym TLB (as we’ll see later). Always check which features is being
discussed when you see TLB mentioned.

Without the TLB cache, all virtual address lookups would take 16 cycles,
even if the page table was held in the L1 cache. Performance would be unac-
ceptable, so the TLB is basically essential for all modern chips.

Branch Prediction and Speculative Execution

One of the advanced processor tricks that appears on modern processors is
branch prediction. This is used to prevent the processor having to wait to evalu-

CHAPTER 3: Hardware & Operating Systems

38

ate a value needed for a conditional branch. Modern processors have multi-
stage instruction pipelines. This means that the execution of a single CPU cycle
is broken down into a number of separate stages. There can be several instruc-
tions in-flight (at different stages of execution) at once.

In this model, a conditional branch is problematic, because until the condi-
tion is evaluated, it isn’t known what the next instruction after the branch will
be. This can cause the processor to stall for up to 20 cycles, as it effectively
empties the multi-stage pipeline behind the branch.

To avoid this, the processor can dedicate transistors to building up a heuris-
tic to decide which branch is more likely to be taken. Using this guess, the CPU
fills the pipeline based on a gamble - if it works, then the CPU carries on as
though nothing had happened. If it’s wrong, then the partially executed instruc-
tions are dumped, and the CPU has to pay the penalty of emptying the pipeline.

Hardware Memory Models

The core question about memory that must be answered in a multicore system
is “How can multiple different CPUs access the same memory location safely?”.

The answer to this question is highly hardware dependent, but in general,
javac, the JIT compiler and the CPU are all allowed to make changes to the
order in which code executes, provided that it doesn’t affect the outcome as
observed by the current thread.

For example, let’s suppose we have a piece of code like this:

myInt = otherInt;
intChanged = true;

There is no code between the two assignments, so the executing thread
doesn’t need to care about what order they happen in, and so the environment
is at liberty to change the order of instructions.

However, this could mean that in another thread that has visibility of these
data items, the order could change, and the value of myInt read by the other
thread could be the old value, despite intChanged being seen to be true.

This type of reordering (store moved after store) is not possible on x86 chips,
but as Table 3-2 shows, there are other architectures where it can, and does,
happen.

TABLE 3-2. Hardware memory support

ARMv7 POWER SPARC x86 AMD64 zSeries

Loads moved after loads Y Y - - - -

Modern Processor Features

39

ARMv7 POWER SPARC x86 AMD64 zSeries

Loads moved after stores Y Y - - - -

Stores moved after stores Y Y - - - -

Stores moved after loads Y Y Y Y Y Y

Atomic moved with loads Y Y - - - -

Atomic moved with stores Y Y - - - -

Incoherent instructions Y Y Y Y - Y

In the Java environment, the Java memory model (JMM) is explicitly de-
signed to be a weak model to take into account the differences in consistency of
memory access between processor types. Correct use of locks and volatile ac-
cess is a major part of ensuring that multithreaded code works properly. This is
a very important topic that we will return to later in the book, in Chapter 12.

There has been a trend in recent years for software developers to seek great-
er understanding of the workings of hardware in order to derive better perfor-
mance. The term “Mechanical Sympathy” has been coined by Martin Thompson
and others to describe this approach, especially as applied to the low-latency
and high-performance spaces. It can be seen in recent research into lock-free
algorithms and data structures, which we will meet towards the end of the
book.

Operating systems

The point of an operating system is to control access to resources that must be
shared between multiple executing processes. All resources are finite, and all
processes are greedy, so the need for a central system to arbitrate and meter
access is essential. Among these scarce resources, the two most important are
usually memory and CPU time.

Virtual addressing via the memory management unit and its page tables are
the key feature that enables access control of memory, and prevents one pro-
cess from damaging the memory areas owned by another.

The TLBs that we met earlier in the chapter are a hardware feature that im-
prove lookup times to physical memory. The use of the buffers improves perfor-
mance for software’s access time to memory. However, the MMU is usually too
low-level for developers to directly influence or be aware of. Instead, let’s take a
closer look at the OS process scheduler, as this controls access to the CPU and
is a far more user-visible piece of the operating system kernel.

CHAPTER 3: Hardware & Operating Systems

40

FIGURE 3-5

Thread Lifecycle

The Scheduler

Access to the CPU is controlled by the process scheduler. This uses a queue,
known as the “run queue” as a waiting area for threads or processes that are
eligible to run but which must wait their turn for the CPU. On a modern system
there are effectively always more threads / processes that want to run than can,
and so this CPU contention requires a mechanism to resolve it.

The job of the scheduler is to respond to interrupts, and to manage access to
the CPU cores. The lifecycle of a thread is shown in Figure 3-5.

In this relatively simple view, the OS scheduler moves threads on and off the
single core in the system. At the end of the time quantum (often 10ms or 100ms
in older operating systems), the scheduler moves the thread to the back of the
run queue to wait until it reaches the front of the queue and is eligible to run
again.

If a thread wants to voluntarily give up its time quantum it can do so either
for a fixed amount of time (via sleep()), or until a condition is met (using
wait()). Finally, a thread can also block on I/O or a software lock.

When meeting this model for the first time, it may help to think about a ma-
chine that has only a single execution core. Real hardware is, of course, more
complex and virtually any modern machine will have multiple cores, and this
allows for true simultaneous execution of multiple execution paths. This means
that reasoning about execution in a true multiprocessing environment is very
complex and counter-intuitive.

Operating systems

41

An often-overlooked feature of operating systems is that by their nature,
they introduce periods of time when code is not running on the CPU. A process
that has completed its time quantum will not get back on the CPU until it
comes to the front of the run queue again. This combines with the fact that CPU
is a scarce resource to give us the fact that “code is waiting more often than it is
running”.

This means that the statistics we want to generate from processes that we
actually want to observe are affected by the behavior of other processes on the
systems. This “jitter” and the overhead of scheduling is a primary cause of
noise in observed results. We will discuss the statistical properties and handling
of real results in Chapter 5.

One of the easiest ways to see the action and behavior of a scheduler is to
try to observe the overhead imposed by the OS to achieve scheduling. The fol-
lowing code executes 1000 separate 1 ms sleeps. Each of these sleeps will in-
volve the thread being sent to the back of the run queue, and having to wait for
a new time quantum. So, the total elapsed time of the code gives us some idea
of the overhead of scheduling for a typical process.

 long start = System.currentTimeMillis();
 for (int i = 0; i < 1_000; i++) {
 Thread.sleep(1);
 }
 long end = System.currentTimeMillis();
 System.out.println("Millis elapsed: " + (end - start));

Running this code will cause wildly divergent results, depending on operat-
ing system. Most Unixes will report 10-20% overhead. Earlier versions of Win-
dows had notoriously bad schedulers - with some versions of Windows XP re-
porting up to 180% overhead for scheduling (so that a 1000 sleeps of 1 ms
would take 2.8s). There are even reports that some proprietary OS vendors
have inserted code into their releases in order to detect benchmarking runs and
cheat the metrics.

Timing is of critical importance to performance measurements, to process
scheduling and to many other parts of the application stack, so let’s take a
quick look at how timing is handled by the Java platform (and a deeper dive
into how it is supported by the JVM and the underlying OS).

A Question of Time

Despite the existence of industry standards such as POSIX, different operating
systems can have very different behaviors. For example, consider the os::jav-
aTimeMillis() function. In OpenJDK this contains the OS-specific calls that

CHAPTER 3: Hardware & Operating Systems

42

actually do the work and ultimately supply the value to be eventually returned
by Java’s System.currentTimeMillis() method.

As we discussed in Section 2.6, as this relies on functionality that has to be
provided by the host operating system, this has to be implemented as a native
method. Here is the function as implemented on BSD Unix (e.g. for Apple’s OS X
operating system):

jlong os::javaTimeMillis() {
 timeval time;
 int status = gettimeofday(&time, NULL);
 assert(status != -1, "bsd error");
 return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
}

The versions for Solaris, Linux and even AIX are all incredibly similar to the
BSD case, but the code for Microsoft Windows is completely different:

jlong os::javaTimeMillis() {
 if (UseFakeTimers) {
 return fake_time++;
 } else {
 FILETIME wt;
 GetSystemTimeAsFileTime(&wt);
 return windows_to_java_time(wt);
 }
}

Windows uses a 64-bit FILETIME type to store the time in units of 100ns
elapsed since the start of 1601, rather than the Unix timeval structure. Win-
dows also has a notion of the “real accuracy” of the system clock, depending on
which physical timing hardware is available. So the behavior of timing calls
from Java can be highly variable on different Windows machines.

The differences between the operating systems do not end with just timing,
as we shall see in the next section.

Context Switches

Context switches can be a very costly operation, whether between user threads
or from user mode into kernel mode. The latter case is particularly important,
because a user thread may need to swap into kernel mode in order to perform
some function partway through its time slice. However, this switch will force in-
struction and other caches to be emptied, as the memory areas accessed by the
user space code will not normally have anything in common with the kernel.

Operating systems

43

3 Image reproduced from “FlexSC: Flexible System Call Scheduling with Exception-Less Sys-
tem Calls” by Soares & Stumm

FIGURE 3-6

Impact of a system
call

A context switch into kernel mode will invalidate the TLBs and potentially
other caches. When the call returns, these cashes will have to be refilled and so
the effect of a kernel mode switch persists even after control has returned to
user space. This causes the true cost of a system call to be masked, as can be
seen in Figure 3-6 3.

To mitigate this when possible, Linux provides a mechanism known as vDSO
(Virtual Dynamically Shared Objects). This is a memory area in user space that
is used to speed up syscalls that do not really require kernel privileges. It ach-
ieves this speed increase by not actually performing a context switch into ker-
nel mode. Let’s look at an example to see how this works with a real syscall.

A very common Unix system call is gettimeofday(). This returns the “wall-
clock time” as understood by the operating system. Behind the scenes, it is ac-
tually just reading a kernel data structure to obtain the system clock time. As
this is side-effect free, it does not actually need privileged access.

If we can use vDSO to arrange for this data structure to be mapped into the
address space of the user process, then there’s no need to perform the switch to
kernel mode, and the refill penalty shown in Figure 3-6 does not have to be
paid.

Given how often most Java applications need to access timing data, this is a
welcome performance boost. The vDSO mechanism generalises this example
slightly and can be a useful technique, even if it is only available on Linux.

CHAPTER 3: Hardware & Operating Systems

44

FIGURE 3-7

Simple system
model

A simple system model

In this section we describe a simple model for describing basic sources of possi-
ble performance problems. The model is expressed in terms of operating sys-
tem observables of fundamnetal subsystems and can be directly related back
to the outputs of standard Unix command line tools.

The model is based around a simple conception of a Java application run-
ning on a Unix or Unix-like operating system. Figure 3-7 shows the basic com-
ponents of the model, which consist of:

• The hardware and operating system the application runs on

• The JVM (or container) the application runs in

• The application code itself

• Any external systems the application calls

• The incoming request traffic that is hitting the application

Any of these aspects of a system can be responsible for a performance prob-
lem. There are some simple diagnostic techniques that can be used to narrow
down or isolate particular parts of the system as potential culprits for perfor-
mance problems, as we will see in the next section.

A simple system model

45

Basic Detection Strategies

One definition for a well-performing application is that efficient use is being
made of system resources. This includes CPU usage, memory and network or
I/O bandwidth. If an application is causing one or more resource limits to be hit,
then the result will be a performance problem.

It is also worth noting that the operating system itself should not normally
be a major contributing factor to system utilisation. The role of an operating
system is to manage resources on behalf of user processes, not to consume
them itself. The only real exception to this rule is when resources are so scarce
that the OS is having difficulty allocating anywhere near enough to satisfy user
requirements. For most modern server-class hardware, the only time this
should occur is when I/O (or occassionally memory) requirements greatly ex-
ceed capability.

A key metric for application performance is CPU utilisation. CPU cycles are
quite often the most critical resource needed by an application, and so efficient
use of them is essential for good performance. Applications should be aiming
for as close to 100% usage as possible during periods of high load.

When analysing application performance, the system must be under
enough load to exercise it. The behavior of an idle application is usually
meaningless for performance work.

Two basic tools that every performance engineer should be aware of are
vmstat and iostat. On Linux and other Unixes, these command-line tools pro-
vide immediate and often very useful insight into the current state of the virtual
memory and I/O subsystems, respectively. The tools only provide numbers at
the level of the entire host, but this is frequently enough to point the way to
more detailed diagnostic approaches. Let’s take a look at how to use vmstat as
an example:

ben@janus:~$ vmstat 1
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 2 0 0 759860 248412 2572248 0 0 0 80 63 127 8 0 92 0 0
 2 0 0 759002 248412 2572248 0 0 0 0 55 103 12 0 88 0 0
 1 0 0 758854 248412 2572248 0 0 0 80 57 116 5 1 94 0 0
 3 0 0 758604 248412 2572248 0 0 0 14 65 142 10 0 90 0 0
 2 0 0 758932 248412 2572248 0 0 0 96 52 100 8 0 92 0 0
 2 0 0 759860 248412 2572248 0 0 0 0 60 112 3 0 97 0 0

The parameter 1 following vmstat indicates that we want vmstat to provide
ongoing output (until interrupted via Ctrl-C) rather than a single snapshot. New
output lines are printed, every second, which enables a performance engineer

CHAPTER 3: Hardware & Operating Systems

46

to leave this output running (or capturing it into a log) whilst an initial perfor-
mance test is performed.

The output of vmstat is relatively easy to understand, and contains a large
amount of useful information, divided into sections.

1. The first two columns show the number of runnable and blocked process-
es.

2. In the memory section, the amount of swapped and free memory is
shown, followed by the memory used as buffer and as cache.

3. The swap section shows the memory swapped from and to disk. Modern
server class machines should not normally experience very much swap
activity.

4. The block in and block out counts (bi and bo) show the number of 512-
byte blocks that have been received from, and sent to a block (I/O) de-
vice.

5. In the system section, the number of interrupts and the number of con-
text switches per second are displayed.

6. The CPU section contains a number of directly relevant metrics, ex-
pressed as percentages of CPU time. In order, they are user time (us), ker-
nel time (sy, for “system time”), idle time (id), waiting time (wa) and the
“stolen time” (st, for virtual machines).

Over the course of the remainder of this book, we will meet many other,
more sophisticated tools. However, it is important not to neglect the basic tools
at our disposal. Complex tools often have behaviors that can mislead us,
whereas the simple tools that operate close to processes and the operating sys-
tem can convey simple and uncluttered views of how our systems are actually
behaving.

In the rest of this section, let’s consider some common scenarios and how
even very simple tools such as vmstat can help us spot issues.

Context switching

In Section 3.4.3, we discussed the impact of a context switch, and saw the po-
tential impact of a full context switch to kernel space in Figure 3-6. However,
whether between user threads or into kernel space, context switches introduce
unavoidable wastage of CPU resources.

A well-tuned program should be making maximum possible use of its re-
sources, especially CPU. For workloads which are primarily dependent on com-
putation (“CPU-bound” problems), the aim is to achieve close to 100% utilisa-
tion of CPU for userland work.

Context switching

47

To put it another way, if we observe that the CPU utilisation is not approach-
ing 100% user time, then the next obvious question is to ask why not? What is
causing the program to fail to achieve that? Are involuntary context switches
caused by locks the problem? Is it due to blocking caused by I/O contention?

The vmstat tool can, on most operating systems (especially Linux), show
the number of context switches occurring, so on a vmstat 1 run, the analyst
will be able to see the real-time effect of context switching. A process that is fail-
ing to achieve 100% userland CPU usage and is also displaying high context-
switch rate is likely to be either blocked on I/O or thread lock contention.

However, vmstat is not enough to fully disambiguate these cases on its
own. I/O problems can be seen from vmstat, as it provides a crude view of I/O
operations as well. However, to detect thread lock contention in real time, tools
like VisualVM that can show the states of threads in a running process should be
used. One additional common tool is the statistical thread profiler that samples
stacks to provide a view of blocking code.

Garbage Collection

As we will see in Chapter 7, in the HotSpot JVM (by far the most commonly
used JVM), memory is allocated at startup and managed from within user
space. That means, that system calls such as sbrk() are not needed to allocate
memory. In turn, this means that kernel switching activity for garbage collec-
tion is quite minimal.

Thus, if a system is exhibiting high levels of system CPU usage, then it is defi-
nitely not spending a significant amount of its time in GC, as GC activity burns
user space CPU cycles and does not impact kernel space utilization.

On the other hand, if a JVM process is using 100% (or close to) of CPU in user
space, then garbage collection is often the culprit. When analysing a perfor-
mance problem, if simple tools (such as vmstat) show consistent 100% CPU us-
age, but with almost all cycles being consumed by userspace, then a key ques-
tion that should be asked next is: “Is it the JVM or user code that is responsible
for this utilization?”. In almost all cases, high userspace utilization by the JVM is
caused by the GC subsystem, so a useful rule of thumb is to check the GC log &
see how often new entries are being added to it.

Garbage collection logging in the JVM is incredibly cheap, to the point that
even the most accurate measurements of the overall cost cannot reliably distin-
guish it from random background noise. GC logging is also incredibly useful as a
source of data for analytics. It is therefore imperative that GC logs be enabled
for all JVM processes, especially in production.

We will have a great deal to say about GC and the resulting logs, later in the
book. However, at this point, we would encourage the reader to consult with

CHAPTER 3: Hardware & Operating Systems

48

their operations staff and confirm whether GC logging is on in production. If
not, then one of the key points of Chapter 8 is to build a strategy to enable this.

I/O

File I/O has traditionally been one of the murkier aspects of overall system per-
formance. Partly this comes from its closer relationship with messy physical
hardware, with engineers making quips about “spinning rust” and similar, but it
is also because I/O lacks as clean abstractions as we see elsewhere in operating
systems.

In the case of memory, the elegance of virtual memory as a separation
mechanism works well. However, I/O has no comparable abstraction that pro-
vides suitable isolation for the application developer.

Fortunately, whilst most Java programs involve some simple I/O, the class of
applications that make heavy use of the I/O subsystems is relatively small, and
in particular, most applications do not simultenously try to saturate I/O at the
same time as either CPU or memory.

Not only that, but established operational practice has led to a culture in
which production engineers are already aware of the limitations of I/O, and ac-
tively monitor processes for heavy I/O usage.

For the performance analyst / engineer, it suffices to have an awareness of
the I/O behavior of our applications. Tools such as iostat (and even vmstat)
have the basic counters (e.g. blocks in or out) that are often all we need for ba-
sic diagnosis, especially uf we make the assumption that only one I/O-intensive
application is present per host.

Finally, it’s worth mentioning one aspect of I/O that is becoming more wide-
ly used across a class of Java applications that have a dependency on I/O but
also stringent performance applications.

Kernel Bypass I/O

For some high-performance applications, the cost of using the kernel to copy
data from, for example, a buffer on a network card, and place it into a user
space region is prohibitively high. Instead, specialised hardware and software is
used to map data directly from a network card into a user-accessible area. This
approach avoids a “double-copy” as well as crossing the boundary between
user space and kernel, as we can see in Figure 3-8.

I/O

49

FIGURE 3-8

Kernel Bypass I/O

In some ways, this is reminiscent of Java’s New I/O (NIO) API that was
introduced to allow Java I/O to bypass the Java heap and work directly
with native memory and underlying I/O.

However, Java does not provide specific support for this model, and instead
applications that wish to make use of it rely upon custom (native) libraries to
implement the required semantics. It can be a very useful pattern and is in-
creasingly commonly implemented in systems that require very high-
performance I/O.

In this chapter so far we have discussed operating systems running on top of
“bare metal”. However, increasingly, systems run in virtualised environments,
so to conclude this chapter, let’s take a brief look at how virtualisation can fun-
damentally change our view of Java application performance.

CHAPTER 3: Hardware & Operating Systems

50

FIGURE 3-9

Virtualisation of
operating systems

Virtualisation

Virtualisation comes in many forms, but one of the most common is to run a
copy of an operating system as a single process on top of an already-running
OS. This leads to a situation represented in Figure 3-9 where the virtual envi-
ronment runs as a process inside the unvirtualized (or “real”) operating system
that is executing on bare metal.

A full discussion of virtualisation, the relevant theory and its implications for
application performance tuning would take us too far afield. However, some
mention of the differences that virtualisation causes seems approriate, espe-
cially given the increasing amount of applications running in virtual, or cloud
environments.

Although virtualisation was originally developed in IBM mainframe environ-
ments as early as the 1970s, it was not until recently that x86 architectures were
capable of supporting “true” virtualisation. This is usually characterized by
these three conditions:

• Programs running on a virtualized OS should behave essentially the same
as when running on “bare metal” (i.e. unvirtualized)

Virtualisation

51

• The hypervisor must mediate all accesses to hardware resources

• The overhead of the virtualization must be as small as possible, and not a
significant fraction of execution time.

In a normal, unvirtualized system, the OS kernel runs in a special, privileged
mode (hence the need to switch into kernel mode). This gives the OS direct ac-
cess to hardware. However, in a virtualized system, direct access to hardware
by a guest OS is disallowed.

One common approach is to rewrite the privileged instructions in terms of
unprivileged instructions. In addition, some of the OS kernel’s data structures
need to be “shadowed” to prevent excessive cache flushing (e.g. of TLBs) during
context switches.

Some modern Intel-compatible CPUs have hardware features designed to
improve the performance of virtualized OSs. However, it is apparent that even
with hardware assists, running inside a virtual environment presents an addi-
tional level of complexity for performance analysis and tuning.

In the next chapter we will introduce the core methodology of performance
tests. We will discuss the primary types of performance tests, the tasks that
need to be undertaken and the overall lifecycle of performance work. We will
also catalogue some common best practices (and antipatterns) in the perfor-
mance space.

CHAPTER 3: Hardware & Operating Systems

52

	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1. Optimization and Performance Defined
	Java Performance - The Wrong Way
	Performance as an Experimental Science
	A Taxonomy for Performance
	Throughput
	Latency
	Capacity
	Utilisation
	Efficiency
	Scalability
	Degradation
	Connections between the observables

	Reading performance graphs

	Chapter 2. Overview of the JVM
	Overview
	Code Compilation and Bytecode
	Interpreting and Classloading
	Introducing HotSpot
	JVM Memory Management
	Threading and the Java Memory Model
	The JVM and the operating system

	Chapter 3. Hardware & Operating Systems
	Introduction to Modern Hardware
	Memory
	Memory Caches

	Modern Processor Features
	Translation Lookaside Buffer
	Branch Prediction and Speculative Execution
	Hardware Memory Models

	Operating systems
	The Scheduler
	A Question of Time
	Context Switches

	A simple system model
	Basic Detection Strategies
	Context switching
	Garbage Collection
	I/O
	Kernel Bypass I/O

	Virtualisation

