
Chapter 10
Developing Full-Scale J2EE
Applications

The previous two chapters provided some strategies for extending Web applications with
J2EE enterprise-tier technology. This chapter continues the path of those chapters and handles
topics such as entity beans, consuming resources, assembling applications from multiple code
modules, and verifying the J2EE compliance of applications.

Entity Beans
Beginning with the Enterprise JavaBeans 1.1 specification, entity beans
have been a required part of the J2EE platform. Entity beans provide a
Java idiom (method invocation) for accessing relational functionality in
addition to the container benefits provided in the J2EE specification, such
as transaction support and security. An entity bean allows persistence to
be handled by the container (container-managed persistence, or “CMP”)
or by the developer (bean-managed persistence, or “BMP”). The
difference between the two is that with CMP beans you need to define
how the Java representation is mapped to the relational model (the
container handles the code generation required to make this happen),
whereas in BMP beans you must provide both the data representation
and the implementation that reflects changes to the Java object model in
the database. One common approach to bean-managed persistence is to
use JDBC in the enterprise bean life-cycle methods.
A developer starting with an existing relational database must map the
relational model currently in the database (if the database is in use by
other applications, schema changes typically are not possible) to an
object model. There are many possible complex mappings between an
object model and the relational database. Relational database views are
analogous; some of the same issues may be encountered during the
mapping process (for example, a view can be created that cannot be
updated, normally because of constraint violations).
Container-managed persistence provides some development advantages
over bean-managed persistence. CMP beans allow you to work on an
abstract schema, which is the combination of fields and relationships,
independent of the underlying mapping to the relational database. The
underlying mapping is provided by the application server, through the
native object to relational mapping functionality. This capability extends to
queries, which are written based on the abstract schema in the Enterprise
JavaBeans Query Language (EJBQL). The query language is similar to
the query capability provided in SQL.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 1

This separation allows you to provide an object model and
implementation that is separate from the mapping, thereby reducing the
coupling. Thus, container-managed beans can be developed faster.
Some proponents also claim that their runtime performance is better than
that of BMP beans because the optimizations can be done in the server.
Bean-managed persistence requires that you implement the life-cycle
methods to interact with the persistent storage mechanism. Typically, you
would provide and execute SQL queries in the implementation of the life-
cycle methods (ejbStore would perform an update, ejbCreate would
perform an insert, and ejbLoad would perform a select). The
disadvantage of doing JDBC directly in the entity bean is that you do not
achieve productivity gains and may not achieve increased performance
because of the impedance mismatch between the programming language
and a relational database. (Programming languages operate on an object
at a time, whereas a relational database can operate on sets of data.)
The performance increase may not be realized, because one common
mapping is between a row and an object instance. In the entity model, set
operations are performed by iterating over a collection of Java objects
that cause SQL statements operating on a single row to be invoked. You
may be able to incorporate existing tuned queries directly into this model
or by using a different data representation to enable set-based
operations.

The NetBeans IDE provides both a top-down and a bottom-up approach
for creating a related set of CMP entity beans. The top-down approach
first creates the entity beans that describe the abstract schema (fields and
relationships representing the data model). The Sun Java System
Application Server provides a facility for automatically generating the
required database tables. Or you can have the database schema created
and use the application server mapping facility. The bottom-up approach
generates the beans based on an existing database schema (the
generation will produce CMP entity beans).

Creating Entity Beans with the Top-Down Approach
Creating an entity bean from the top down is comprised of the following general steps:

1. Add a bean to your EJB module, using the Entity Bean template in the New File
wizard.

2. Select a primary key class for the bean, using the ejb-jar.xml file’s visual
editor.

3. (For BMP beans) Implement the life-cycle methods.
4. (For CMP beans) Add container-managed fields. You can generate such fields by

right-clicking the entity bean’s “logical” node (under the Enterprise Beans node)
in the Projects window and choosing Add | CMP Field or by right-clicking in the
bean class in the Source Editor and choosing EJB Methods | AddCMP Field.

5. (For CMP beans) Add container-managed relationships. You can do so in the
ejb-jar.xml file’s visual editor.

6. Add finder methods. You can generate such methods by right-clicking a bean
class in the Projects window and choosing Add | Finder Method or by right-

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 2

clicking the bean class in the Source Editor and choosing EJB Methods | Add
Finder Method.

7. Add business methods. You can generate such methods by right-clicking a bean
class in the Projects window and choosing Add | Business Method or by right-
clicking the bean class in the Source Editor and choosing EJB Methods | Add
Business Method.

8. Set up the data source on the application server.
9. (CMP only) If the application server’s CMP capability is being used, map the

abstract schema specified in the entity bean to a persistence model.

Creating an Entity Bean
NetBeans IDE provides a wizard for creating entity beans in an EJB project (see Figure 10-

1).

Figure 10-1

New File wizard with the Entity Bean template selected
The wizard collects the minimum information necessary for creation of either a CMP or BMP

entity bean. The wizard generates the necessary deployment descriptor entries along with a local
home, local component interface (this provides the ability to perform compile-time checking on
the bean class for the component interface methods), business interface , and a bean class.

The classes are named following the BluePrints recommendations. The component interface
will initially be empty, and the home interface will contain the required findByPrimaryKey
method. The primary key will default to String, which can be changed later using the visual
editor (which is accessible by double-clicking the ejb-jar.xml file, under the Configuration
Files node in the Projects window). The visual editor for the deployment descriptor is shown in
Figure 10-2.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 3

Figure 10-2

Visual editor for a CMP bean deployment descriptor

 The deployment descriptor entry includes a display name (using BluePrints recommended
naming conventions based on the EJB name). The assembly descriptor also is updated to require
transactions for all methods.

Selecting a Primary Key Class
Select a primary key class for the bean. You can select a primary key class for the bean in the

deployment descriptor (ejb-jar.xml file). A Java class representing the unique identifier (key)
for each entity type must be selected. A Java class must represent the entire key. Compound keys
and fields defined as primitive types require creation of wrapper classes. The wrapper class
generally overrides equals and hashCode. For CMP beans, this class must also provide public
fields with names matching the CMP fields composing the key.

Implementing Life-Cycle Methods
For BMP beans, you need to implement the life-cycle methods. The required work will also

be highlighted using TODO comments in the code generated by the bean template.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 4

Typically, a relational database is used for persistence, so this may require configuration (see
Consuming J2EE Resources later in this chapter for more information). The ejbStore method
must persist the data model from memory to the persistent storage (SQL update command). The
ejbLoad method must retrieve data from the persistent model into the Java data model (SQL
select statement). The ejbRemove method must remove data from the persistent model (SQL
delete statement). Although not required, an ejbCreate statement must add to persistent
storage (SQL create statement). The ejbFindByPrimaryKey method is also required, which
should determine whether the key is in persistent storage.

Adding Container-Managed Fields
For CMP beans, you need to add container-managed fields. Container-managed fields are the

data attributed to this entity. Fields can be added via the EJB Methods menu in the Source Editor,
the Add submenu of the contextual menu of the bean's node in the Projects window, or the visual
editor for the ejb-jar.xml file. The wizards also provide checkboxes to expose the methods in
the local interface.

Adding Container-Managed Relationships
(CMP only) To add container-managed relationships, select the CMP Relationships view in

the ejb-jar.xml file’s editor and then click the Add button to open the Add CMP Relationship
dialog box (shown in Figure 10-3). A container-managed relationship represents an association
between entity beans. The relationship is managed by the container, which means that adding or
removing from one side of the relationship is reflected in the other side.

Figure 10-3

Add CMP Relationship dialog box

The Add CMP Relationship dialog box collects the information necessary to generate the
necessary deployment descriptor entries and the abstract get and set methods (if navigable).

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 5

In the Add CMP Relationship dialog box, the Entity Bean combo box represents the bean on
each side of the relationship. The Cascade Delete checkbox enforces referential integrity by
removing the dependent bean if the referenced bean is removed. A container-managed
relationship (CMR) field (represented as an abstract getter and setter in the bean class) provides
the ability to navigate to the other side of the relationship. These fields can be exposed using the
Add to Local Interface checkbox.

Adding Finder Methods
Finder methods represent the ability to obtain a set of entity beans based on a set of search

criteria. The Add Finder method dialog box can be accessed by right-clicking a bean class in the
Projects window (and choosing Add | Finder Method) or the Source Editor (and choosing EJB
Methods | Add Finder Method).

The EJB specification requires that a findByPrimaryKey method be present. CMP beans
specify an EJB Query Language (EJBQL) query to define additional finder methods. The EJBQL
query must return instances of the abstract schema for this EJB. The default abstract schema
name is the enterprise bean name, so a typical bean query would be SELECT OBJECT(o) FROM
MyAbstractSchemaName AS o WHERE o.color = ?1. BMP beans need to return the
primary key (or keys) that meet the search criteria.

Adding Business Methods
Business methods provide the ability to expose services. Entity beans may add business

methods to provide additional logic or to expose data. Adding business methods may be done
using the EJB Methods menu from the Source Editor contextual menu or from the Add submenu
of the contextual menu for the enterprise bean's node Projects window.

Setting up a Data Source on the Application Server
A data source must be set up on the application server. This applies to both BMP and CMP

beans. BMP beans may be able to take advantage of the Use Database enterprise resource
capability, whereas CMP beans generally must specify a reference to the application server’s
CMP resource. (The form varies among application servers but typically is similar to what is done
to set up a standard JDBC data source.)

Mapping a Bean’s Schema to a Persistence Model
If the application server’s CMP capability is being used, the mapping from the abstract

schema specified in the CMP entity bean to a persistence model (most commonly a relational
database) must be performed. The Sun Java System Application Server provides the ability to
create the tables during deployment (so no mapping is necessary in this case). This can be done
by specifying the Create Table At Deploy (and, optionally, Drop Table at Undeploy) properties in
the IDE’s visual editor for the project’s sun-ejb-jar.xml file, as shown in Figure 10-4.

Figure 10-4

Visual editor for the sun-ejb-jar.xml file (Sun Configuration panel)

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 6

Mapping is done by describing how each CMP field and relationship represents a column in
the database. As of the EJB 2.1 specification, this mapping is server specific and, thus, must be
performed using the application server editor. When performing the mapping using Sun Java
System Application Server 8.1, the first step is to create a database schema file from an existing
database. The database schema must be created as a peer to the sun-ejb-jar.xml file (which is
located in the src/conf folder and can be accessed from the Configuration Files node in the
Projects window). A database schema object provides an XML snapshot of the database
metadata. The application server uses this during design-time mapping as a way to access
database metadata (without requiring a live database connection). This file is also passed to the
application server during deployment for use during code generation.

***Proofreading: In following graf & caption, “Cmp Mapping” is the correct capitalization,
per screen shots.***

Once the database schema object has been created, each CMP bean must specify the database
schema which contains the table to which it is mapping (refer to Figure 10-4). This dialog box is
launched by double-clicking the node for the sun-ejb-jar.xml file to open its visual editor,
selecting the node for the entity bean in the left pane, selecting the Cmp Mapping tab, and
clicking the Advanced Settings button. The visual editor with the Cmp Mapping tab selected is
shown in Figure 10-5. The Advanced Settings dialog box is shown in Figure 10-6.

Figure 10-5

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 7

Visual Editor for the sun-ejb-jar.xml file (EJB panel with Cmp Mapping tab selected)

Figure 10-6

CMP Mapping Advanced Settings dialog box

The final step of mapping CMP and relationship fields from a table can be performed from
the Cmp Mapping tab (see Figure 10-7).

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 8

Figure 10-7

CMP mapping in the sun-ejb-jar.xml visual editor

 The Automap All button automates the mapping between tables and fields. Using this feature
provides full automation for most mappings, which can be further customized later (or even
removed using the Unmap All feature).

Creating Entity Beans with the Bottom-Up Approach
Starting with an existing relational database and generating entity beans that represent a

natural mapping is fully automated in NetBeans IDE 4.1. From a single wizard, you can create
CMP entity beans, generate CMP fields with types appropriate for the relational mapping,
generate relationship fields (along with the relationship cardinality) based on the foreign key and
index constraints, and provide the mapping information to the application server (see the top-
down approach for details when performed manually). The wizard will detect joined tables, so
there may not be a one-to-one mapping between tables and entity beans from the selected
database. The wizard will also generate primary key classes if necessary.

To create a set of entity beans based on an existing database:

1. In the Projects window, right-click the node of the EJB module that you want to
add the beans to and choose New | CMP Entity Beans From Database.

2. Complete the wizard to create the mappings.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 9

The wizard contains two steps (see Figures 10-8 and 10-9). The first step specifies how to
obtain database metadata. The package for the generated Java classes is also required. The wizard
also allows default generation of finder methods and exposing the fields in the component
interface. (Make sure the underlying database process is started.) If you are using the Pointbase
database that is included with Sun Java System Application Server 8.1, you can start it from the
IDE via the Tools | Pointbase Database menu item.

Figure 10-8

Database Source and Beans Location page of the New File wizard for the CMP Entity Beans
from Database template

Figure 10-9

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 10

Select Database Tables page of the New File wizard for the CMP Entity Beans from Database
template

If Generate Finder Methods for CMP Fields checkbox is selected, a single argument finder
method, along with the corresponding EJBQL query for selecting the collection of entity beans
matching the input parameter, is generated for each CMP field.

Selecting the Add CMR and CMP Fields to the Local Interface checkbox will generate a
method in the local interface for each CMP and relationship field. This typically is used in
conjunction with the transfer object and transfer-object assembler pattern from a session facade to
create domain objects based on entity beans. The transfer objects are standard serializable Java
classes that represent the data and can be used outside of J2EE components. The transfer object
assembler typically is a Java class that can create transfer objects (from an entity bean, in this
case). A session facade typically is used to provide a coarse-grained set of services. A session
facade can encapsulate entity bean access and reduce coupling (and increase performance) for
clients.

The second step of the wizard selects the set of tables to include in the generation. The wizard
will perform transitive closure (based on foreign key constraints) to ensure that relationships are
generated. The most common scenario is to select a group of logically related beans to generate
CMP beans for a single module.

After you select all the tables you need, the IDE will create a set of CMP beans, one per table
selected (and maybe others that are part of the transitive closure of the foreign keys/primary keys
of the selected table). The Sun Java System Application Server mapping will be correctly
configured. You can still tweak it the way you need from the sun-ejb-jar.xml visual editor ,
as shown in Figure 10-10.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 11

Figure 10-10
Visual editor for the sun-ejb-jar.xml file with a CMP bean selected

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 12

Assembling J2EE Applications
A J2EE application is a collection of web applications and EJB modules that interact with one

another and that can be assembled, deployed, and executed as a unit. The NetBeans IDE takes
advantage of the capability to declare dependencies between projects in defining a J2EE
application project. Previous chapters cover creation of individual web application and EJB
Module projects. A NetBeans J2EE Application project aggregates these individual projects.

You can create a J2EE application by opening the New Project wizard and selecting the
Enterprise Application template as shown in Figure 10-11. You can then add individual modules
(one IDE project per module) to the J2EE application.

Figure 10-11

New Project wizard with the Enterprise Application template selected

When creating a NetBeans J2EE Application project, the Name and Location page of the
wizard (shown in Figure 10-12) gives you the option of creating one empty EJB Module project
and one simple Web Application project.

Figure 10-12

New Project wizard Name and Location page for the Enterprise Application project
template

You can later add web applicationmodules and EJB modules to a J2EE application project (or
remove them from the project) through the Project Properties dialog box of the J2EE application
project. To do that, right-click the J2EE application’s project and choose Properties. Then, in the
Project Properties dialog box, select the Packaging node (see Figure 10-13) and click the Add
Project button to add the web application or EJB Module projects.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 13

Figure 10-13

Project Properties dialog box for an Enterprise Application project with the Packaging panel
displayed

You will see three or more NetBeans IDE projects in the Projects window when you are
working with a J2EE Application (see Figure 10-14): the J2EE application project itself that

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 14

exposes the application deployment descriptors (application.xml and possibly sun-
application.xml) and then one NetBeans IDE project per module that is part of the
application. The J2EE application project will delegate the build steps for all the submodules and
will package the resulting EJB JAR files or Web Archive (WAR) files into a deployable
application archive called an EAR (Enterprise Archive) file.

Figure 10-14

Projects window showing an Enterprise Application project that contains an EJB module and a
web module (each of which is also an IDE project)

The deployment descriptor for a J2EE application is called application.xml (under the
Configuration Files node in the Projects window). NetBeans IDE 4.1 does not provide a visual
editor for this file, mainly because you are unlikely to need to edit it. The IDE automatically
updates this file whenever a module is added to or removed from the application.

A J2EE application project can be cleaned, built, executed, and deployed like any other
projects in the IDE. You can also verify the application's J2EE compliance by running the Verify
Project command on the project. Right-click the project's node to see the menu of commands.

Importing Existing J2EE Applications
If you have already started developing J2EE application outside of the NetBeans IDE, it is

not too late to switch your development environment to the NetBeans IDE. This process will be
very easy for you if your source structure already complies with the J2EE BluePrints
conventions. It might be a good time to study these conventions and modify your project to
follow these guidelines. Your application will be easier to maintain, new developers joining your
project will know immediately where things are, and the integration with the NetBeans IDE and
its powerful build system (entirely based on Ant) will be straightforward.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 15

Importing BluePrints Conventions-Compatible J2EE Application Projects
If you have started your development without the NetBeans IDE, and you are following the

Java BluePrints conventions for your project structure, you can use the Enterprise Application
with Existing Sources template in the New Project wizard (shown in Figure 10-15).

Figure 10-15

New Project wizard with Enterprise Application with Existing Sources template selected
To import an existing enterprise application:

1. Choose File | New Project.
2. In the New Project wizard, select the Enterprise folder, select the Enterprise

Application with Existing Sources template, and click Next.
3. In the Name and Location page of the wizard, fill in the Location field with a

valid top-level directory containing a BluePrints-compliant J2EE application.
This directory should contain subdirectories for each module (web application or
EJB Module) that comprises the J2EE application, as well as a src/conf
subdirectory containing a valid J2EE application deployment descriptor file
called application.xml (and, optionally, one called sun-
application.xml). If the Finish button does not get enabled, it means that
these conditions are not matched.

Figure 10-16

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 16

New Project wizard Name and Location page for the Enterprise Application with Existing
Sources template
4. Fill in the Project Name and Project Folder fields to designate a display name and

folder to contain the IDE’s settings for the project, including the Ant script. The
project folder specified should not already contain a build.xml file, because the
IDE will generate one automatically and will not replace an existing one.

5. After you click Finish, the J2EE application project is created, as are individual
projects for each module in the J2EE application.

Importing EJB Modules
You can also import into the IDE stand-alone EJB modules (similar to how you import web

application projects) by using the EJB Module with Existing Sources template in the New Project
wizard.

To import an EJB module:

1. Choose File | New Project.
2. In the New Project wizard, select the Enterprise folder, select the EJB Module

with Existing Sources template, and click Next.
3. In the Name and Location page of the wizard, fill in the Location field with a

valid top-level directory containing the EJB module.
Your existing EJB module source does not have to adhere to any particular
directory structure. You specify the locations of the configuration files, libraries,
and source roots. The main requirement is that the module contain a valid ejb-
jar.xml deployment descriptor.
The location directory should not contain folders named dist, nbproject, or
build or have an existing build.xml file. Warning messages should appear at
the bottom of the wizard in such cases.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 17

Figure 10-17

New Project wizard Name and Location page for the EJB Module with Existing Sources template
4. On the Existing Sources and Libraries page of the wizard (shown in Figure 10-

18), specify the following properties:
[lb] Configuration Files Folder. Specifies the location of your deployment

descriptors and other configuration files. You must have at least a valid
ejb-jar.xml deployment descriptor to complete the wizard.

[lb] Libraries Folder. Specifies the location of the class libraries that the
EJB module depends on. All JAR files in this folder are added to the EJB
Module project’s classpath and packaged with the module for
deployment.

Figure 10-18

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 18

New Project wizard Existing Sources and Libraries page for the EJB Module with Existing
Sources template

The IDE scans the folder you designate in the Libraries Folder field only once
when you create the project. After the project is created, adding JAR files to this
folder outside the IDE does not add them to the module’s classpath. You have to
add them manually through the Libraries tab of the module’s Project Properties
dialog box.

5. In the Source Package Folders field, add any source root folders. In the Test
Package Folders field, add any test package folders (containing JUnit tests).

6. Click Finish. A new NetBeans IDE project is created in the Projects window, and
you can start using this EJB Module project like any other IDE project.
NetBeans IDE Tip
The IDE does not convert deployment descriptors from other application
servers to Sun Java System Application Server deployment descriptors.
An external tool you can use for this purpose, the Sun Java System
migration tool, is available free at
http://java.sun.com/j2ee/1.4/download.html#migration.

Consuming J2EE Resources
One of the goals of deployment descriptors in the J2EE platform is to provide a standard way

of describing external facilities that need to be available for successful execution of the J2EE
application. The declaration in the deployment descriptor references the expected interface
available and the name used to locate this instance. This binding and declaration mechanism
allows the late binding of resources. (In J2EE role terms, the deployer can change the actual
resource used without changing the source code or the J2EE-mandated deployment descriptors.)

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 19

A resource is an external entity required by a J2EE application that is referenced using the
standard deployment descriptor. A large number of resources can be used, but some of the most
common are JDBC (via the javax.sql.DataSource interface), JMS (via the javax.jms.*
interfaces), and enterprise beans (using the interfaces exposed by the bean developer).

Several steps are required to incorporate a resource into an application:

[lb] Declaration of the resource in the standard deployment descriptor
[lb] Resource setup in the server-specific deployment descriptor, which may also

include setup on the server instance itself
[lb] Acquisition of the resource using JNDI
[lb] Using the resource in the programming environment

The NetBeans IDE provides commands to automate the use of resources. Typically you
realize that a resource should be used while you are writing Java code. The IDE makes it easy to
add a resource as you are coding by providing an Enterprise Resources submenu on the
contextual menu in the Source Editor for Java classes contained in enterprise projects (web
applications and EJB Modules). See Figure 10-19.

Figure 10-19
Source Editor with the contextual menu open and the Enterprise Resources submenu selected

The Enterprise Resource menu provides a set of commands that automate the use of JMS,
JDBC, and enterprise beans. Subsequent sections describe what happens when the wizards are
invoked and how to use the wizards.

All the actions are able to incorporate the J2EE BluePrints Service Locator pattern, which
encapsulates and caches the JNDI initial context lookup. This pattern aggregates all boilerplate
lookup code and provides the potential for performance enhancements.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 20

The NetBeans IDE provides two different service locator strategies: caching and non-
caching. The caching strategy uses the singleton pattern and caches both the initial context and
the results from the JNDI lookup. The noncaching locator does not cache the lookup results but
instead reuses the initial context. The Service Locator templates are available under the Enterprise
node in the New File wizard, as shown in Figure 10-20.

Figure 10-20

New File wizard with the Caching Service Locator template selected

The Service Locator template generates a Java source file that can be further customized. The
service locator last used for the project is stored with the project settings, allowing the last locator
to be reused easily. The service locator naming conventions provided in the templates are
incorporated into the enterprise resource commands; therefore, changing the name of the public
lookup methods after generation may require manual intervention following the use of the
enterprise resource commands.

The caching service locator strategy is most useful from a web module where resource
definitions are shared across the entire module. The singleton pattern can be used effectively in
this scenario to reuse lookup instances. In an EJB module, resource declarations are scoped to a
single enterprise bean; thus, the singleton pattern is not applicable. An EJB module will
commonly use a noncaching service locator.

Using Enterprise Beans

If you want to use an enterprise bean, you must go through the following steps:

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 21

1. Declare an ejb-ref entry or an ejb-local-ref entry (depending on whether
the enterprise bean exposes local or remote interfaces) in the deployment
descriptor. The deployment descriptor entry will specify the home and
component interface, a name used in the JNDI lookup to specify the instance, the
type of enterprise bean (either session or entity), and a reference to the actual
enterprise bean.

2. Perform a JNDI lookup to obtain an instance of the home interface.
3. Use a create or finder method on the home interface to obtain an instance of the

component interface.

The Call Enterprise Bean command (which you can access by right-clicking the Source
Editor and choosing Enterprise Resources | Call Enterprise Bean) automates this process. The
dialog box shown in Figure 10-21 provides a way to select the enterprise bean to invoke. This
dialog further enables you to specify the enterprise bean, the desired lookup strategy, and whether
checked exceptions should be converted to runtime exceptions.

Figure 10-21

Dialog box for the Call Enterprise Bean command

Using the Call Enterprise Bean command in an EJB Module project or a Web project will
result in the following:

[lb] Generation of an ejb-ref or ejb-local-ref in the deployment descriptor. If
this is done from an EJB module, this feature can be invoked directly only from
the bean class. This feature requires that the referenced enterprise bean is in the
same deployment unit (either the same module or the same J2EE application) as
required by the semantics of the ejb-link (the reference is based on
ModuleName#EjbName syntax and requires the reference to be collocated).

[lb] Generation of the lookup code. If a service locator is being used, the generated
code delegates the lookup to the locator; otherwise, lookup code is generated.
The generated code uses the JDK logging framework to log the exception. The

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 22

lookup code returns the home interface unless a stateless session bean is
referenced, in which case an instance of the component interface is returned.

[lb] A project dependency is established between the current project and the
referenced project as the interfaces from the enterprise beans need to be used
during compilation. The interfaces will not be included in the archive of the
referencing project but will instead assume that the server supports delegation to
the application class loader (for references outside a module). If this is not true,
the Java Extension mechanism can be used to add a classpath reference to the
EJB module.

Using a Database
The Use Database command automates the process of incorporating a relational database into

an application. If you intend to use a database, you must go through the following steps:

1. Declare a resource-ref in the deployment descriptor. The deployment
descriptor entry must specify the resource-type javax.sql.DataSource, the
ability to share the resource, and the authorization mechanism (typically, the
authorization is done by the container).

2. Add code to perform a JNDI lookup to obtain an instance of DataSource.
3. Use server specific mechanisms to configure the application server to use the

JDBC resource. This typically involves adding the JDBC driver to the server
classpath, as well as setting up a connection pool for the JDBC connection
describing how to connect (including authentication) to the database.

The Enterprise Resources | Use Database command (available by right-clicking a file in the
Source Editor) automates this process. When you choose this command, the Choose Database
dialog box (shown in Figure 10-22) appears and prompts you to select the database to use in
either a web module or an EJB module. In the dialog box, specify a JNDI name (used as the
resource reference name), the connection to use, and whether a service locator should be used or
inline code should be generated (lookup code is generated in the current class). The list of
connections is the same as what is provided in the Runtime window. The Runtime window
provides the ability to edit and query the target database.

Figure 10-22

Choose Database dialog box

After you fill in the Choose Database dialog box, the following occurs:

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 23

1. A resource reference is added to the deployment descriptor using the form
jdbc/JNDIName. Existing resource references are reused if possible (matching
is done using the description, which initially is populated via the connection
string).

2. Code is generated to automate the JNDI lookup, using the specified lookup
strategy to obtain the data source.

3. If the Add Driver and Add Connection buttons are used, a connection node (and
also possibly a driver node) is added to the Runtime window.

4. Assuming that you are using the Sun Java System Application Server, the
necessary steps to enable successful deployment and execution are performed.
(Technically, it’s the IDE’s Sun Java System Application Server integration
plug-in module that provides this support. By the time you read this, there might
be IDE plug-in modules to provide equivalent features for different servers.)
This might involve creating a connection pool and adding the JDBC driver to the
classpath of the application server. The connection pool setup can be configured
later in the Server Resources node or via the administrative capability of the
server. The Server Resources node enables you to provide version control for and
deploy server resources that are required to successfully execute an application.
The resources provide all the necessary information to configure the setup. This
may include usernames and passwords, so editing these files may be necessary
when sharing the application with other team members.

Sending a JMS Message
The Send JMS Message command automates the process of sending a message to a queue or

topic. The J2EE 1.4 specification defines the concept of a message destination, which provides a
way to specify logical destinations for messages. A message destination allows the decoupling of
the message consumer and message producer. The most common scenario is to have a message-
driven bean (MDB) linked to the message destination. However, the message destination
mechanism allows only the logical message destination to be used by the module sending the
message. Although this concept defines a generic linking mechanism, additional information,
such as the type of destination (J2EE 1.4 allows other messaging systems to be used), and the
message format must be exchanged.

If you want to use JMS, you need to do the following:

1. Add a resource reference to declare a ConnectionFactory. The connection
factory is used to create JMS queue or topic connections.

2. Add a message destination reference that declares the message destination type
(which must match the type declared for the message destination), the use (the
sender will produce messages), and the destination (in the form of a link). The
link will be in the format moduleName#destinationName and must be
included in the same application.

3. Add code to send the message. The code to send a message must do a JNDI
lookup to obtain the connection factory, use the connection factory to create a
session, use the session to create a message producer, use the session to create a
message, send the message, and close the session and connection.

The Send JMS Message command automates this process. To use this command, right-click
in the Source Editor and choose Enterprise Resources | Send JMS Message. The Select Message
Destination dialog box (shown in Figure 10-23) appears and provides a way to select a message
destination and to specify whether a service locator should be used or inline code should be

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 24

generated (lookup code is generated in the current class). Only projects that can supply a
destination are shown in the list of projects (web and EJB Modules).

Figure 10-23
Select Message Destination dialog box

After you complete the Select Message Destination dialog box, the following occurs:

1. A resource reference is added to the deployment descriptor, specifying the
intention to use a ConnectionFactory. The IDE’s Sun Java System
Application Server integration plug-in module shares the connection factory with
the message consumer. This can be changed by creating a new
ConnectionFactory, if desired.

2. A message destination reference is created and linked to the selected destination.
The message type is discovered by determining the message type of the
consumer linked to the destination.

3. A private method providing the code necessary to send a single JMS message
(named sendJMSDestinationName) is created. This method handles
connection, session, and producer creation and destruction. This method accepts
a context parameter that allows data to be passed via parameters instead of
instance variables, although instance variables can be used as well.

4. A second private method (createJMSMessageForDestinationName) is
added to create the message (this is the template pattern) from the supplied
session and potentially the context parameter.

J2EE and Security Management
The J2EE platform offers a rich environment for securing web applications, web services, and

enterprise beans in a declarative manner by working with application resources and user roles.
The two concepts are defined as follows:

[lb] Resources are visible or callable features of the applications. For EJB modules,
resources are public EJB methods declared on home or remote interfaces. For
web modules, resources are URL patterns that are mapped to JavaServer Pages
(JSP) files, servlet methods, and other components.

[lb] Roles define access privileges and can be associated with one or more users.

J2EE applications are secured by mapping resource to roles. When a resource is called, the caller
must supply a role name that is authorized to access the resource. If the caller cannot supply an

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 25

authorized role, the call is rejected. In J2EE applications, the application server verifies the
caller’s role before allowing the caller to execute the resource.

The authorized combinations of roles and resources are declared in deployment descriptors.
The application server reads them from the deployment descriptors and applies them. This
process is known as declarative security.

The necessary tasks that you must perform to secure a J2EE application are:

[lb] Declare the different roles.
[lb] Specify which roles are permitted to access the resources.

This section describes the different steps to follow to secure a simple web application with
the NetBeans IDE. For a complete tutorial on J2EE and security, you can refer to the J2EE
tutorialathttp://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security2.html.

Simple Declarative Security
If you want to secure the access for the web pages exposed within a J2EE application, you

need to declare <security-constraint> , <security-role>, and <login-config>
elements in the web.xml deployment descriptor (which you can find in the Project window by
expanding the web project's Configuration Files node). The visual web.xml editor does not
expose those elements in NetBeans IDE 4.1, so you need to switch to the XML view and add the
following elements:

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>basic security test</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>staffmember</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>basic-file</realm-name>
 </login-config>

 <security-role>
 <role-name>staffmember</role-name>
 </security-role>

These settings protect the access of all the web pages (see the <url-pattern> element),
using the BASIC login configuration. The authorized logical user is called staffmember.

Registering Users for an Application Server Instance
To add authorized users to the Sun Java System Application Server, follow these steps:

1. Make sure the server instance is up and running by opening the Runtime
window, right-clicking the server instance's node, choosing Start/Stop Server (as
shown in Figure 10-24), and then starting the server if it is stopped.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 26

Figure 10-24

Starting the application server from the IDE’s Runtime window
2. Right-click the server instance's node and choose View Admin Console. The

login page for the Admin Console appears in a web browser.
3. Log into the application server’s Admin Console -, and enter the username and

password of a user in the admin-realm who belongs to the asadmin group.
The name and password you entered when installing the server will work. The
NetBeans IDE/Sun Java System Application Server bundle uses these default
values: admin for the username and adminadmin for the password.

Figure 10-25

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 27

Sun Java System Application Server Admin Console after having created a user account

4. In the Admin Console tree, expand the Configuration | Security | Realms node
and select the file realm to add users you want to enable to access applications
running in this realm.

5. Click the Manage Users button.
6. Click New to add a new user to the realm. In this case, use the username ludo

and the password ludo as well. You can also enter a group to which the user
belongs, but leave that field blank for this example.

7. Click OK to add this user to the list of users in the realm. Figure 10-25 shows the
state of the console after entering the user ludo to the realm.8. Click Logout
when you have completed this task.

Now that you have registered a username for this application server instance, you can map
the J2EE logical security role called staffmember to this physical user called ludo. To do that,
use the IDE’s visual editor for the sun-web.xml file:

1. Open the sun-web.xml file from the Projects window by expanding the
project's Configuration Files node and double-clicking the sun-web.xml node.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 28

2. In the visual editor, expand the Sun Web Application node. If you have declared
the <security-constraint> , <security-role>, and <login-config>
elements as described above in the Simple Declarative Security section, the
staffmember node should appear.

3. Select the staffmember node, click the Master Roles tab in the right pane of the
visual editor, click Add Principal, and type ludo in the New Principal Name
dialog box. (Figure 10-26 shows what the visual editor should look like after you
have completed this step.)

4. Click the Role Assignments tab, select ludo in the Principal Master List and
click the Add button to assign that user to the staffmember role. (Figure 10-26
shows what the visual editor should look like after you have completed this step.)

Figure 10-26

Visual editor for the sun-web.xml file, Master Roles tab, after having added the principal ludo

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 29

Figure 10-27

Visual editor for the sun-web.xml file, Role Assignments tab, after having mapped the
staffmember role to the user ludo

Now when you run this web application, you are prompted for a username and password
when you first try to access the application's welcome (as shown in Figure 10-28). Enter ludo as
the username and ludo as the password, and you should be able to access the requested web
page.

Figure 10-28

Prompt for username and password to access a web application that has security constraints set
up

This section is only an introduction to J2EE security settings. Make sure you read the J2EE
tutorial document, which covers more advanced security concepts for J2EE applications, such as
web-services message protection for service endpoints (WSS in the SOAP layer is the use of
XML Encryption and XML Digital Signatures to secure SOAP messages). You can find a
complete tutorial at the following URL: http://docs.sun.com/source/819-
0079/dgsecure.html#wp14462.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 30

Remember, once you are ready to use more advanced security settings, you can take
advantage of the IDE’s visual configuration editors (for sun-ejb-jar.xml and sun-web.xml)
to edit these security settings.

Understanding the J2EE Application Server Runtime
Environment

The Sun Java System Application Server integrates nicely with the NetBeans IDE, via both
well-published interfaces (JSR 88) for configuration and deployment and NetBeans IDE
extensions called the J2EE Server Integration APIs (see http://j2eeserver.netbeans.org). Although
the most complete runtime management tool for the application server is the Admin Console (a
management tool in the form of a web page shown in Figure 10-25), some developer-oriented
management features have been exposed from the IDE’s Runtime window under the Servers
node. From there, for each registered server instance, you can view the server log file (for local
servers), launch the Admin Console tool, explore the list of deployed J2EE applications or J2EE
resources (and undeploy them), and more.

NetBeans IDE Tip
If you want to explore the entire content of an application server domain
or to see the configuration files, the log files, or the repository of the
deployed applications, you can add this domain directory in the IDE’s
Favorites window.
By default, the Favorites window is not visible within the IDE, but you can
display it in the explorer area of the IDE by choosing Windows |
Favorites. Then you can right-click the Favorites root node, choose Add
to Favorites, and navigate to the application server’s domain directory.
Once you have added this directory in the Favorites window, you can
view those files in the IDE’s Source Editor and take advantage of other
IDE features, such as the Validate XML command, which is useful for
validating things such as the config/domain.xml file.

Server Log
The Sun Java System Application Server instance container process uses a log file to track

system and user messages ranging from severe errors to informational messages describing the
current state of the server. The server log file is an important source of information that a J2EE
developer needs to use actively during development or deployment and execution of J2EE
applications. There is one server log file per instance, usually located under the domain directory
in the logs/server.log file. The NetBeans IDE can display the content of the most recent
lines of the server log via the server instance node popup menu called View Server Log. This
menu is active only for local server instances, because the IDE needs access to the file.

Server Management
For a registered application server instance, whether the server is local (on the same machine

that the IDE is running on) or remote, the IDE offers extensive administration capabilities via the
Runtime window tree view (shown in Figure 10-29).

Figure 10-29

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 31

Runtime window with the node for a Sun Java System Application Server instance selected
Once the server is running, you can get read/write access to most of the developer-oriented

administration parameters, such as:

[lb] The list of J2EE deployed applications, from where you can introspect their
properties and undeploy them

[lb] The list of registered resources and their properties (JDBC resources, connection
pools, Persistence Manager resources, JMS resources, JavaMail resources, JDNI
names, and Connector and JVM settings)

Each of these management artifacts is represented as a node. The corresponding commands
(Delete, Undeploy, Refresh, and so on) are available as popup menu items(when you right-click
the node), and corresponding properties are available via the Properties popup menu item. For
other management artifacts, you can always access them by opening the application server’s
Admin Console (right-click the server’s node in the Runtime window and choose View Admin
Console). This command opens a web browser that then displays the URL for the administration
console.

JVM Options
The JVM parameters of a server instance are among the most important server administration

parameters from a developer standpoint. You can access these parameters by right-clicking the
server’s JVMs node in the Runtime window and choosing Properties. The Properties dialog box
for the JVMs node is shown in Figure 10-30.

Figure 10-30

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 32

Property sheet for the JVMs node for an application server in the Runtime window

Use the server-classpath entry (shown as ServerProperty in the property sheet)
when you want to add shared libraries or JAR files that would be used by all the J2EE
applications deployed to this server instance, as well as the necessary JDBC driver JAR files to
access databases. Use the jvm-options parameter (shown as JVMOptions in the property
sheet) to define Java options like HTTP proxies or options that would be relevant to the deployed
J2EE applications. You can modify the java-home entry (shown as JavaHome in the property
sheet) to change the location of the JDK used by the server instance.

Most of these settings require a server instance restart to take effect. The NetBeans IDE can
figure out when a local instance has to restart, and at the next J2EE project deployment,
execution, or debugging session, the server is restarted automatically. For remote servers, you
have to log into the remote machine to perform a server restart, as there is no command (CLI or
Admin Console based) to restart a remote server in Sun Java System Application Server 8.1.

JDBC Drivers
Using the Sun Resources template category in the New File wizard (shown in Figure 10-31),

you can define J2EE resources such as:

[lb] JDBC connection pools
[lb] JDBC resources
[lb] JMS resources
[lb] JavaMail resources
[lb] Persistence resources

Figure 10-31

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 33

New File wizard with the JDBC Connection Pool template selected

The wizard for the JDBC Connection Pool template (shown in Figure 10-32) is of particular
help in improving your productivity. It enables you to create resources, either from live database
connections registered within the NetBeans IDE or from a predefined list of well-known JDBC
drivers— including all the Sun DataDirect drivers for DB2, Oracle, Microsoft SQL Server, and
Sybase, as well as drivers for the Pointbase and Apache Derby databases. Note that in the Sun
Java System Application Server 8.1 Platform Edition, only the Pointbase driver is provided. The
Sun Datadirect drivers are included with the Standard Edition and Enterprise Edition of Sun Java
System Application Server 8.1.

Figure 10-32

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 34

Choose Database Connection page for the JDBC Connection Pool template in the New File
wizard

These server-specific resources are created under the setup directory, shown in the Projects
window under the Server Resources node of the project. These server resources are then either
automatically deployed to the server whenever the project is executed or manually registered,
using the Register menu item, as shown in Figure 10-33.

Figure 10-33

Registering a database connection in a project
Double-clicking a server resource node opens the property sheet for this resource,, where you

can modify all the necessary properties before doing a registration.

Figure 10-34

Property sheet for a JDBC connection pool

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 35

Server Properties
The server’s Properties dialog box (shown in Figure 10-35), accessible via the Properties

menu item of a server node, allows the editing of the admin username or password, as well as the
setting for enabling the IDE’s HTTP Monitor. This HTTP Monitor can work only for local
application servers.

Figure 10-35

Properties dialog box for the Sun Java System Application Server

Using JavaServer Faces Technology in a Web Application
Sun Java System Application Server 8.1 bundles all the latest JavaServer Faces (JSF) APIs

and the JSF implementation out of the box, and these libraries are recognized by the NetBeans
IDE. The JSF config DTDs are also registered in the IDE, meaning that XML code completion
and validation are available in the IDE for the JSFconfig 1.0 and 1.1 XML files.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 36

The JSF libraries are automatically in the web application project classpath when the project
targets the Sun Application Server, so that all the classes are available to import and to use from
your web application.

Furthermore, the Java BluePrints Solution Catalog is accessible directly through the IDE’s
Help | BluePrints Solutions Catalog menu item and contains some web tier solutions that
incorporate JSF technology, which are installable as IDE projects with one click. Install a
solution, run the project, study it, debug it, modify it, and use it as a starting point for your JSF
project. See Chapter 7 for more details.

Working with Ant
The NetBeans IDE’s Ant-based project system (introduced in Version 4.0 and extended in

Version 4.1) is perhaps the biggest thing that sets NetBeans apart from other IDEs. All projects
created within the NetBeans IDE rely on the Ant tool for building. This is also true for the J2EE
project types like web applications, EJB modules, and J2EE applications. Therefore, these
projects can be built either from the IDE or from outside the IDE using Ant 1.6.2.

The IDE-generated build script also includes targets for executing, debugging, and deploying
the application. In NetBeans IDE 4.1, it is not possible to use these targets outside the IDE,
because they would require an operational runtime environment. This limitation should go away
in NetBeans IDE 4.2.

Another NetBeans IDE advantage is that all of the Sun Application Server 8.1 Ant optional
tasks are registered in the IDE. These tasks include

[lb] sun-appserv-deploy
[lb] sun-appserv-undeploy
[lb] sun-appserv-instance
[lb] sun-appserv-component
[lb] sun-appserv-admin
[lb] sun-appserv-input
[lb] sun-appserv-update
So if you have existing Ant scripts that are using these Ant task extensions, you can run these
build.xml files directly from the IDE itself as though you were invoking the Sun Application
Server tool asant (which itself is a wrapper around Ant to declare these extensions).

For example, if you download all the J2EE samples for the Sun Application Server, all the
samples can be built from the IDE using the sample build.xml files provided with the sample.
You could make the samples visible in the IDE by choosing Window | Favorites, right-clicking
the Favorites node, choosing Add to Favorites, and navigating to the directory to display. Once
the samples are visible in the Favorites window, you can navigate to a sample’s build.xml file,
right-click it, and choose an Ant target to run.

For more information regarding these tasks, refer to the application server documentation at
http://docs.sun.com.

Ensuring J2EE Compliance
The J2EE platform extends the many benefits of the Java language to the enterprise, such as

portability, by providing a set of specifications for application servers and an extensive set of
compatibility tests. The J2EE platform allows the ability to run enterprise applications on a
variety of J2EE application servers.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 37

The IDE provides a rich environment for developing J2EE applications. But one of your most
crucial objectives as a J2EE developer is ensuring that your application is J2EE compliant. By
being J2EE-compliant, the application will deploy and run in any J2EE vendor’s application
server as long as that vendor’s application server is compliant with the J2EE specification. To
help you ensure that your J2EE application is J2EE compliant, the IDE provides a built-in J2EE
verifier. The NetBeans IDE J2EE Verifier is a tool intended to help you test your web application
or enterprise application for the correct use of J2EE APIs. In addition, it confirms portability
across J2EE-compatible application servers, which helps you avoid inadvertently writing
nonportable code.

When the Verifier is invoked in NetBeans IDE, it runs a series of tests against a selected
NetBeans IDE project to ensure that the application is J2EE compliant. The output from running
the Verifier is displayed in the NetBeans IDE Output window in table form and contains the
following information:

[lb] Test Status—pass, fail, or warning
[lb] Test Description—a description of the compatibility test that was run
[lb] Test Result Description—a detailed description of the test result

You can also filter the Verifier output. You can view all compatibility test results,
compatibility failures only, or compatibility failures and warnings only.

After you finish developing a web application or enterprise application and before you deploy
it, you should run the J2EE Verifier against your project to ensure that you are not using any
vendor-specific proprietary extensions to the J2EE platform. Using a proprietary extension will
make it difficult to port to other J2EE application servers.

To launch the Verifier against your web application or enterprise application project, you
must have your project open in the NetBeans IDE. From the Projects window, right-click the
main node of the project you want to verify and choose Verify Project. Figure 10-36 shows the
context-sensitive menu that is displayed when you right-click a web application or enterprise
application project.

Figure 10-36

From the Projects window, running the Verify Project command for a J2EE application
Once the Verify Project command is chosen, the Verifier window (shown in Figure 10-37)

appears at the bottom of the IDE and starts displaying results of the verification.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 38

Figure 10-37

Output from the Verify Project command

The results consist of all of the compatibility tests performed against your application. The
Verifier lists test status, test description, and a detailed test result. The default for the Verifier
results is to display all compatibility tests that fail first, followed by those that have a warning
result and then those that have passed. When a row or test is selected in the table, a detailed
description of the test result is displayed. Also, the Verifier test results display can be filtered by
selecting one of the following radio buttons:

[lb] All Results—displays all of the compatibility test results
[lb] Failures Only—displays only the compatibility test failures
[lb] Failures and Warnings Only—displays both compatibility test failures and

warnings

You should fix all compatibility test failures before deploying the application. As you make
corrections to your web or enterprise application, you can rerun the Verifier by again right-
clicking the project’s node in the Projects window and choosing Verify.

Refactoring Enterprise Beans
Software applications evolve over time and require updates, bug fixes, feature enhancements,

and so on. To support this type of development activity, the NetBeans IDE refactoring features
extend to J2EE applications.

Enterprise beans are among the types of code most likely to need refactoring during an
enterprise software application’s lifetime. However, refactoring enterprise beans can be very time
consuming as a result of the complexity of changes that may be involved with the refactoring, due
to the number of classes and deployment descriptors that may be affected by a refactoring.

For example, a business method rename may require changes not only in the EJB class you
are editing, but also in a local interface, remote interface, calling classes (such as a Servlet class
or a remote client class), and deployment descriptors. The NetBeans IDE simplifies this task not
only by applying the refactoring changes to the Java source code, but also by making those more

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 39

difficult changes in deployment descriptors. The NetBeans IDE’s refactoring features greatly
simplify this task.

Following are some of the things you can do when refactoring your J2EE source code.

[lb] Rename an enterprise bean
[lb] Rename a field or method of an enterprise bean

[lb] Change method parameters (including parameter names, parameter types, and
method visibility), add method parameters, and remove method parameters

[lb] Encapsulate fields by changing their visibility, adding getter and setter accessors,
and determining whether to use accessors even when the field is accessible

The NetBeans IDE allows you to review your refactoring changes before committing them.
Likewise, the IDE allows you to undo your J2EE refactoring changes after having committed
them and even to revert refactoring changes to deployment descriptors.

NetBeans IDE Tip
If you want to undo a refactoring operation, you must call the Undo
command from a Java source file. Though Undo affects deployment
descriptors, the command cannot be called from a deployment
descriptor.

For step-by-step descriptions of refactoring features, see Chapter 4. For notes on servlet
refactoring, see Chapter 6. Following are some notes regarding the J2EE implications of some of
the refactoring operations:

[lb] For CMP beans, the method rename of a selector or finder automatically updates
the EJBQL (Enterprise JavaBeans Query Language) statements and query
element in the deployment descriptor.. However, the IDE does not allow you to
change the method name of a mandatory EJB method such as ejbCreate().
Even in the case where a renamed method was previously overloaded, a new
deployment descriptor entry is made for the refactored method name. For
instance, updates to deployment descriptors tagged as primary key fields and
composite primary key fields as a result of method rename refactoring are
supported. Also, a rename of web service endpoint interfaces are handled by the
NetBeans IDE by updating the appropriate WSDL.

[lb] Even in the case of a CMP bean, a field rename refactoring of a primary key
results in field accessors deployment descriptors being updated. In addition, if a
relationship field is renamed, the cmr-field in the deployment descriptor is
updated.

[lb] Encapsulating fields refactoring in an enterprise bean class works the same way
as in standard classes, with the exception of primary keys in CMP enterprise
beans, which cannot be refactored in NetBeans IDE 4.1.

NetBeans IDE Field Guide, Developing Full Scale J2EE Applications, 40

