NetBeans IDE Field
Guide

Copyright © 2005 Sun Microsystems, Inc. All rights reserved.

Table of Contents

(07 4=T:] oo J= I od (o] 11 AP RT TP OPPR 1
L o[o T4 g To (o 1Y SRR 3
Configuring the ClassPath...........ooieiiii et et e e e et e e e snreeeeeane 3
Creating @ SUD-PIOJECT.........uiiiie it e e et e e b e e 5
Creating and Editing FIlES.........uiiiiiieiee ettt e e sttt e e e st e e e s sbae e e e s anraeeaean 6
ADOUL the SOUICE EQItOr........eeiiieiiiie e e e 7
Setting Up and Modifying Java PacKages...........ooi it 9
(0]l o] 1 TaTe J=TaTo I =011 o |1 o o TR PR PPPRPPNE 9
Viewing Project Metadata and Build RESUILS.............eiiiiiiiiiiii e 10
Navigating to the Source of Compilation Errors............oocueiiiiiiiiiiiii e 11
[T 0] 011 oo T PP P PSP 11
Creating and RUNNING TESS........iiiiiiiiiie ettt e e et e e s enneeas 11
Debugging the APPIICAtION........coii e 12
Integrating Version Control COMMEANGS.........coiuiiiiiiiiiiei et e e e s eeeee s 13
Managing IDE WINGOWS.......oiuiiiieiiiiiie ettt e ettt e e st e e s nnnbe e e e e ennneeens 14

NetBeans IDE Fundamentals

This chapter provides a general overview of both the workflow in the IDE and the key parts
of the IDE. Once you finish this chapter, you should have a solid understanding of the IDE's
principles and be able to take advantage of the IDE's central features.

If you are already familiar with NetBeans IDE (4.0 or higher), you can probably skim this
chapter or skip it altogether. Subsequent chapters will revisit most of this material in greater
depth to answer more involved questions and provide additional details that you can use to
squeeze more productivity out of the IDE.

Creating a Project

Before you can do any serious work in the IDE, you need to set up a project. The project
essentially sets up a context for you to write, compile, test, and debug your application. This
context includes the classpath, folders your sources and tests, and a build script with targets for

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 1

compiling the application, running tests, building JAR files (or other types of distributable
archive files).

You can choose from a variety of project template categories, which are grouped according
to the technology you are basing your application on (e.g. standard Java, J2EE Web tier, J2EE
Enterprise tier, J2ME).

Within the template categories, you have templates for new applications and for setting up an
IDE project for existing applications you are working on. The New Project wizard provides a
description for each template.

The “With Existing Sources” templates in each category enable you to set up standard IDE
projects around applications you have been developing in a different environment.

The “With Existing Ant Script” templates in each category take that a step further and enable
you to set up a project based entirely on any existing Ant script. This approach requires some
manual configuration to get some IDE features (such as debugging) to work with the Ant script,
but the pay-off is that you can get the IDE to work with any project structure, even if it does not
adhere to the conventions of a standard IDE project.

To set up a project:

1. Choose File | New Project.
2. In the wizard select a template for your project and complete the wizard.

The fields that you are asked to fill in depend on the template. Typically you
need to specify a location for the project (or, in the case of projects that use
existing sources, where the sources are located). Web, Enterprise, and
Mobility projects also include fields relevant for those specific types of

applications.
Figure 2-1
% WSl cation) 53

Steps Name and Location

1. Choose Project Project Mame: webApplication|

2. Name and Location
Project Location: | C:\Documents and SettingsiPatrick Keegan Browse, ..
Project Folder: Ci\Documents and Settings\Patrick Keegan|webdpplication

Set as Main Prﬁct

Source Structure: | Java BluePrints
Context Path: Iwebdpplication
SErver: Bundled Tomcat (5.5.4)

JZEE Specification Version: | JZEE 1.4

Description:

¢ [Finish] I Cancel] l Help
New Project Wizard, Web Application template, Choose Project page

When you create a project, typically the IDE does the following things for you:

« Creates a source tree with a skeleton class inside.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 2

» Creates a folder for unit tests.

+ Creates an Ant build script (build.xml), which contains the instructions that
the IDE uses when you perform commands on your project, such as
compiling source files, running the application, running tests, debugging,
compiling Javadoc documentation, and building JAR files.

You can find more information on setting up projects in Chapter 3.

Projects Window

The Projects window is essentially the command center for your work. It
is organized as a tree view of nodes that represent parts of your project.
It provides an entry point for your files as well as configuration options for
the application you are developing.

In addition to displaying nodes for the files in the application that you are
developing, it also displays nodes for libraries relevant to your application.
The Libraries node shows the version of the JDK you are developing
against as well as any other libraries you are basing your project on.

The Projects window presents your project in “logical” form. That is, it
represents the units of your application conceptually (rather than literally).
For example, Java sources are grouped into packages without nodes for
each level of file hierarchy. Files that you do not normally need to view,
such as compiled Java classes and project metadata files, are hidden.
This makes it easier to access the files you are most regularly work with.
In addition, the Projects window provides a Libraries node, which gives
you a view of your classpath.

If you want to browse the physical structure of the project, including the
project metadata, compiled classes, JAR files, and other files created in
builds, open the Files window.

Configuring the Classpath

When you create a project, the IDE sets up a default classpath for you based on the project
template you are using. If you have other things to add to the classpath you can do so through the
Libraries node of the project.

In fact, the IDE distinguishes between several types of classpaths depending on project type,
such as compilation classpath, test compilation classpath, running classpath, and test running
classpath. The compilation classpath typically serves as a base for the other classpaths (i.e. other
classpaths inherit what is in the compilation classpath).

To add an item to the compilation classpath (and thus the other classpaths as well), right-
click the project's Libraries node and choose Add JAR/Folder.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 3

Figure 2-2 _
|'Proje... 40 % |Files : Runtime
= @ Latinge 455 sl e
+ L@ Source Packages
+_|j Test Packages

-] b.ef;-' add Project, ..
2}

':i.?....l‘_“:
B TestLibr AddLibrary...
= JUniEfj[%,l-_'s'-"i

Properties

Projects window. Adding a JAR file to the classpath.

NetBeans IDE Tip

When you right-click the Libraries node, you also can choose Add Project

or Add Library. When you add a project, you add the project's output

(such as a JAR file) to the classpath.

If you choose Add Library, you can add one of the “libraries” recognized

by the IDE's Library Manager. In this context, libraries are essentially just

a convenient grouping of one or more JAR files, sources, and/or Javadoc

documentation. You can manage existing libraries and designate new

ones in the Library Manager, which you can open by choosing Tools |

Library Manager.

You can edit other classpaths in the Properties dialog box for a project. To open the Project

Properties dialog box, right-click the project's node in the Projects window and choose
Properties. In the dialog box, click the Libraries node and use the customizer in the right panel to

specify the different classpaths.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 4

Cekepores
2 SOURES Java Platform: | Dafauk Alatfom 2| | manage Matforms., |
Uhﬂr.ﬂl =
2 Buld Compile . RUT | Campil: Tasts | Run Tests
peei Compiing i
s ke RJ.II.'l-tIITIElL ks
* Documenting \D Classpath for Compiing Soumes [addprogect. ..
] | I3 Compied Souroes ————————
2 Run | AddLiracy ., |
. S el i AL
Wi [A JARFader |
Buid Frojects on Classpath
= [cancel . Heb
Figure 2-3

Project Properties dialog box, Libraries page.

Creating a Sub-project

Though there is no explicit distinction in the IDE between a project and a “sub-project”, you
can create a hierarchy of projects by specifying dependencies between projects. For example,
you might create an umbrella Web Application project that relies on one or more Java Class
Library projects. For larger applications, you might have several layers of project dependencies.

To set dependencies between projects:

1. Right-click the project's Libraries node and choose Add Project.
2. In the file chooser that appears, navigate to the folder for the project you want
to depend on. Project folders are designated with the '“B icon.

Once you have established this dependency, the distributed outputs (such as JAR files) of the
“added” project become part of the other project's classpath.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 5

CPr.. 1 % Files ‘Runtime | Vers
:-;' ----- @- E:-:pe.ns.é.REpurt. . .
- L@ Source Packages
+_|ﬂ Test Packages

b= B rics I
AP i Project...
- pef: AddLibraey..
=% Testlibn Add JAR/Folder..,

+E Urii Properties

NetBeans IDE Tip

There is no visual project/sub-project distinction in the IDE, but there is a
concept of “main” project. The main project in the IDE is simply the one
that the IDE treats as the entry point for the primary commands such as
Build Main Project and Run Main Project. The current main project is
indicated with bold font in the Projects window.

Figure 2-4
Projects window. Making one project depend on another.
There can be only one main project set at a time, though it is possible to

have multiple projects open at the same time (including umbrella projects
that serve as entry points for other applications you are developing).

You can make a project the main project by right-clicking its node in the
Projects window and choosing Set Main Project.

Creating and Editing Files

Once you have a project set up, you can add files to your project and start editing. You can
add files to a project by creating them from the New File wizard.

To open the New File wizard, do one of the following:
« In the Projects window, right-click the Source Packages node (or one of the
package nodes underneath it) and choose one of the templates from the New
submenu. If none of the templates there suit you, choose File/Folder (as

shown in Figure 2-5) to open up a wizard with a complete selection of
available templates.

« Choose File | New File to open the New File wizard.

Figure 2-5
Projects window. Creating a new file

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 6

;EPr... a x|

{Files :Runtime_|: Versio..
= @ EHpEnSEREpDI"t
=3 ‘,_@ SoUrce F‘ackages
= i e e L
&
L Refresh
L EEI com,| Find... Chel+F
-}- 0@ TestPack Compile Package F9
—----E Libraries | -y Chrl+3
@ LEdg Copy Zhrl4iC
: +.|:!__']. Diefa
i Test Libr:
E 7 Delete Celete
: - nik
: Refactor
| =& Ledger
=, Taools

Welcome X | @ Ledc

Sl || s ExpenseCalcBean

Elf‘

Ay

t%i_-l Java Package. ..
[Java Class...
Java Intetface. .,
,_, JPanel Form. ..

j JFrame Farm...

{ * @aunthor Pat
*
public class E

In the New File wizard, you can name the file and sp_ecify a folder. For Java classes, you can
designate a period-delimited package name (as opposed to a slash-delimited folder name).

Once you complete the wizard, the file opens up in a tab in the area of the IDE to the right of
the Projects window. For most templates, a Source Editor tab opens.

About the Source Editor

The Source Editor is the central area of the IDE where you write and
generate code. The Source Editor is actually a collection of different
types of editors with different purposes. There are text editors for
different types of files, such as Java, JSP (as shown in Figure 2-6), XML,

HTML, and plain text files.

Figure 2-6
Source Editor window with JSP file open.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 7

Wielcome X | [@ Hellowiorld java % |) indexjsp | [sib-jarxml x (4 ¢][>l
e Ul B S S B s @ O

E <html=
= <head>

“meta http-equiw="Content-Type" content="text /htnl; charset=UTF-
“title>J8F Page</title>=
= = /heads

= “body:>
“hl=J5F Page</hl= I
3 $EraE
= Ly
<o:if test="S{pavam. zayHellol} ">
“1-- Let's wwelcome the uzer S{param. namel) -->
[~

(s

&

Hello S{param._ nams}!
<Foiifx
- — =

- =/ hody=
-4 html=

(€|
e
There are also visual editors for AWT and Swing forms, deployment
descriptors, and other types of files, though it is also possible to edit the
source of these types of files directly.

For example, GUI templates such as JPanel Form and JFrame Form
open in a visual design area (as shown in Figure 2-7) along with Palette,
Inspector, and Properties windows. You can click the Source button in
design area's toolbar to access the file's source.

Figure 2-7
Form Editor Design View in the Source Editor window.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 8

dzp | [eib-jaraml % | B Ansgrams x| 4 ~!| | palette =
Source Design | | H f_lﬁ = = =] Swing
[= wet JLabiel

[=] JBukton

File
=] IToggleButkon
5 bled ‘fard:
i =— ICheckBox
“our Guess: #— JRadinButkon

| 2~ ButkonGroup %
= JCamboBox
El st

:Ho Properties v =

- . |
Setting Up and Modifying Java Packages

You can set up a Java package in the New Project and New File wizards. You can also create
packages independently of these wizards.

To create a new package, right-click the Source Packages node within your project and
choose New | Java Package. In the wizard, fill in a period-delimited package name (e.g.
com.mybiz.myapp).

You can then move classes into this package by cutting and pasting or by dragging their
nodes.

NetBeans IDE Tip

When you move classes, the Refactor Code for Moved Class dialog box
opens and offers to update the rest of the code in the project to reflect
the changed location of the class. Click Next to see a preview of the
changes in the Refactoring window. Then click Do Refactoring to make

the changes.

Compiling and Building
When you set up a project, the IDE provides a default classpath and compilation settings, so
the project should be ready to compile as soon as you have added some classes to the project.

You can compile an individual files or packages by right-clicking its node and choosing
Compile. But more typically you will “build” the entire project. Building, depending on project
type, typically consists of compiling projects and sub-projects and creating outputs such as JAR
files for each of those projects.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 9

To build your project, right-click the project's node in the Projects window and choose Build
Project. If that project is currently designated as the main project (the project name is bold in the
Projects window), you can choose Build | Build Main Project or press F11. If you want to delete
the products of previous builds before building again, choose Build | Clean and Build Main
Project or press Shift-F11.

When you initiate a build, the IDE tracks the progress of the build in the Output window in
the form of Ant output.

NetBeans IDE Tip

You can specify compiler options in the Project Properties dialog box.
Right-click the project's node in the Projects window and choose
Properties. Then click the Compiling node to enter the options.

Viewing Project Metadata and Build Results

In the Files window, you can view the physical structure of your project, including compiled
class files, output JAR files, your build script, and other project metadata.

Project-related commands (such as Build Project) are not available from nodes in the Files
window, but other “Explorer” type commands like Open, Cut, and Paste are.

The Files window is useful if you want to customize the build script for your project or you
want to browse your project's outputs. You can also examine the contents of JAR files created by
your project.

Figure 2-8 shows the structure of the HelloWorld application created in Chapter 1.

: Projects ‘Files 11 % | Runtime
|2 HelloWorld -
=) build
S classes
—_| com
=107 mydomain
: i) myproject
g Helloworld.class
(=) dist
€@ Helloworld.jar
i) nbproject
= i o
=) com
=140 meydomain
=I5 mvproject
B B Helloworld.java

-1 kest

[manifest.mf

Figure 2-8
Files window “physical” view of the HelloWorld project

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 10

Navigating to the Source of Compilation Errors

If any compilation errors are reported when you compile or build, you can navigate straight
to the source of the error by double-clicking the hyper-linked error in the Output window (as
shown in Figure 2-9) or by pressing F12.

If you have multiple errors, you can use F12 (Next Error) and Shift-F12 (Previous Error) to
navigate between the locations of the errors.

.
Figure 2-9
Dol - AnegrEsGamE fe w =
dapa-Iar
inik
B IAT
casgile:
far:
Campiling 1 sosres file ta Coilfweusanos snd SyecangeiPeccich EsapeniinsgrasCsus i ldiclanme
b Faasnn i Aranr e ase | §rs s o)t P ADRSr SRyl i kraor ey tavas I0: sarere furd wysied

Output Window with compiler error showing.

Running

You can run the application you are developing from within the IDE by right-clicking the
project's node and choosing Run Project or by pressing F6.

You can run an individual file by right-clicking the file in the Source Editor or the file's node
in the Projects window and choosing Run File or pressing Shift-F6.

You can stop a running application by opening the Runtime window, expanding the
Processes node, right-clicking the node for the running process, and choosing Terminate Process.

If you need to specify a main class for the project or you want to run the project with some
arguments, you can specify these in the Project Properties dialog.

To for the project to run in the IDE. You can do so by right-clicking the project's node in the
Projects window, choosing Properties, selecting the Run node, and entering

Creating and Running Tests

IDE project templates are set up with unit testing in mind. Most project types set up a folder
next to the folder containing your sources for unit tests. You can have the IDE generate skeleton
code for a class's unit test for a class and place it within the test folder with a package structure
corresponding to that of the class the test is for.

To generate unit test code for a class:
1. In the Projects window, right-click the class you want to create a test for and
choose Tools | JUnit Tests | Create Tests.

2. In the Create Tests dialog box, set a class name and location and specify the
code generation options for the test.

By default, the class name is filled in for you and corresponds to the name of
the class being tested with Test appended to the name. The test classes is
placed in a test folder that has the same package structure as your sources.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 11

To run the selected project's tests, press Alt-F6 or choose Run | Test “ProjectName”.

To run a test for a specific file, select the file in the Source Editor or Projects window and
press Ctrl-F6 or choose Run | Run File | Test “Filename”.

Debugging the Application

The IDE's debugger enables you to pause execution of your program at strategic points
(“breakpoints”) and check the values of variables, the status of threads, etc. Once you have
paused execution at a breakpoint, you can step through code line by line.

To start debugging a program:
1. Make sure that the program you want to debug is currently set as the IDE's
main project.
The name of the main project is shown in bold font in the Projects window.

You can make a project the main project by right-clicking its node and
choosing Set Main Project.

2. Determine the point in your code where you want to start debugging and set a
breakpoint at that line by clicking in the left margin of that line.
The B icon appears in the left margin to mark the breakpoint. In addition, the
whole line is highlighted in pink.

3. Start the debugger by choosing Debug Main Project or pressing F5.

The IDE builds (or rebuilds) the application and then opens up the Debugger
Console in the bottom left of the IDE and the, Watches, Call Stack, and Local
Variables windows in the lower right.

4. Click the Local Variables window (as shown in Figure 2-10) to view the
values of any of the variables of the program that are currently in scope.

Figure 2-10

|‘Watches] - Call Stack :Local Variables F X
| Name Type Valus
-4 this nagka [J#37s L8 |
|#-4p screenize e (#1280 L)

Debugger wihdows, with the Local Variables window in focus.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 12

Integrating Version Control Commands

If you already use a version control system for your sources, you can easily integrate that
system's commands into the IDE workflow. The IDE provides support for working with various
version control systems.

The IDE acts as a graphical interface for version control client application you are already
using. When you call version control commands from the IDE, the IDE passes those commands
to the version control client, which then carries at the commands. The IDE also displays any
output generated by the version control client.

In NetBeans IDE 4.1, setting up the IDE to work with versioned sources is separate from
project setup. If you already have sources checked out from a version control system and want to
make version control commands available within the IDE for a project, you need to register the
versioned working directory with the IDE.

NetBeans IDE Tip

If you are using a post-4.1 version of the IDE, this process might be
streamlined, so that the registration of the version control system in the
IDE is coupled with the creation of the project.

To set up the IDE to work with your version control system:

1. Choose Versioning | Versioning Manager.
2. In the Versioning Manager dialog box, click Add.

3. Select the version control system you are using from the Profile combo box
and point to the location of the working directory.

If you have several projects within the same working directory, you can select
the root directory to register version control for all of those projects at the
same time.

4. Verify the server settings that the IDE fills in and add any missing settings.

If you are using CVS as your version control system, you have the option of
using using a client built-in the IDE instead of a separate CVS executable.

5. Click Finish to exit the wizard and then click Close to exit the Versioning
Manager.

6. If you have not already done so, create an IDE project (or IDE projects) for
your sources through the New Project wizard so that you can further develop
these sources in the IDE.

NetBeans IDE Tip

If no profile is available in the wizard for the version control system you
are using, you might be able to find a profile online at
http://vcsgeneric.netbeans.org/profiles/index.html.

You can also create your own profile by choosing the Empty profile in the
Versioning Manager and then customizing it to work with your version
control system. See
http://vcsgeneric.netbeans.org/doc/profiles/index.html for information on
creating a profile for your version control system.

See Chapter 3: Setting Up a Project to Work with Version Control for
more information on using version control with the IDE, including
information on versioning your project metadata.

Once you have set up a version control working directory in this manner, the Versioning
window appears in the area occupied by the Projects window. You can run version control

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 13

commands on the files from this window. However, you can not run project-related commands or
do “Explorer” type things with files, such as open, copy, or paste.

If you already have set up an IDE project for those sources, a submenu with version control
commands appears in the right-click menu of all of that project's nodes in the Projects window.

Managing IDE Windows

The IDE's window system is designed to provide a coherent and unobtrusive layout of the
various window you need while enabling you to effortless adjust the layout as you work. These
are some of the things you can do as you work:

+ Resize windows by clicking on a window border and dragging it to the width
or height you prefer.

+ Maximize a window within the IDE by double-clicking on its tab. (You can
revert to the previous window layout by again double-clicking on the tab.)
Y ou might find this feature particularly useful in the Source Editor.

« Move a window to a different part of the IDE by clicking on its tab and
dragging it to a different part of the IDE.

« Use drag and drop to split a window.

« Make a window “sliding” by clicking its ! button. When you click this
button, the window is minimized with a button representing that window
placed on one of the edges of the IDE. You can mouse over the button to

temporarily display the window, or you can click the button to open the
window.

NetBeans IDE Field Guide, NetBeans IDE Fundamentals, 14

