

Java	For	Testers

Learn	Java	fundamentals	fast
This	version	was	published	on	2015-02-27

The	right	of	Alan	Richardson	to	be	identified	as	the	author	of	this	work	has	been	asserted
by	him	in	accordance	with	the	Copyright,	Design	and	Patents	Act	1988.

The	views	expressed	in	this	book	are	those	of	the	author.

First	published	in	Great	Britain	in	2015	by:

Compendium	Developments
http://www.compendiumdev.co.uk

contact	details:

alan@compendiumdev.co.uk

Related	WebSites:

Java	For	Testers:	javaForTesters.com
Author’s	Software	Testing	Blog:	eviltester.com
Compendium	Developments:	compendiumdev.co.uk
Author’s	Selenium	Blog:	seleniumSimplified.com

Every	effort	has	been	made	to	ensure	that	the	information	contained	in	this	book	is
accurate	at	the	time	of	going	to	press,	and	the	publishers	and	author	cannot	accept	any
responsibility	for	any	errors	or	omissions,	however	caused.	No	responsibility	for	loss	or
damage	occasioned	by	any	person	acting,	or	refraining	from	action,	as	a	result	of	the
material	in	this	publication	can	be	accepted	by	the	editor,	the	publisher	or	the	author.

Apart	from	any	fair	dealing	for	the	purposes	of	research	or	private	study,	or	criticism	or
review,	as	permitted	under	the	Copyright,	Design	and	Patents	Act	1988;	this	publication
may	only	be	reproduced,	stored	or	transmitted,	in	any	form	or	by	any	means,	with	the
prior	permission	of	the	publishers,	or	in	the	case	of	reprographic	reproduction	in
accordance	with	the	terms	and	licenses	issued	by	the	Copyright	Licensing	Agency,	90
Tottenham	Court	Road,	London,	W1T	4LP.	Enquiries	concerning	reproduction	outside
these	terms	should	be	sent	to	the	publishers.

e-book	ISBN	:	978-0-9567332-4-5

©	2013	-	2015	Alan	Richardson,	Compendium	Developments	Ltd

http://www.compendiumdev.co.uk
http://javafortesters.com
http://www.eviltester.com
http://www.compendiumdev.co.uk
http://seleniumsimplified.com

As	ever.	This	book	is	dedicated	to	Billie	and	Keeran.

Table	of	Contents

Introduction
Testers	use	Java	differently
Exclusions
Supporting	Source	Code
About	the	Author
Acknowledgments

Chapter	One	-	Basics	of	Java	Revealed
Java	Example	Code

Chapter	Two	-	Install	the	Necessary	Software
Introduction
Do	you	already	have	JDK	or	Maven	installed?
Install	The	Java	JDK
Install	Maven
Install	The	IDE
Create	a	Project	using	the	IDE
About	your	new	project
Add	JUnit	to	the	pom.xml	file
Summary

Chapter	Three	-	Writing	Your	First	Java	Code
My	First	JUnit	Test
Prerequisites
Create	A	JUnit	Test	Class
Create	a	Method
Make	the	method	a	JUnit	test
Calculate	the	sum
Assert	the	value
Run	the	@Test	method
Summary
References	and	Recommended	Reading

Chapter	Four	-	Work	with	Other	Classes
Use	@Test	methods	to	understand	Java
Warnings	about	Integer
Summary
References	and	Recommended	Reading

Chapter	Five	-	Working	with	Our	Own	Classes
Context
First	create	an	@Test	method

Write	code	that	doesn’t	exist
New	Requirements
Now	Refactor
Summary

Chapter	Six	-	Java	Classes	Revisited:	Constructors,	Fields,	Getter	&	Setter
Methods
Context
Constructor
Getters	and	Setters
Summary
References	and	Recommended	Reading

Chapter	Seven	-	Basics	of	Java	Revisited
Comments
Statement
Packages
Java	Classes
Importing	Classes
Static	Imports
Data	Types
Operators
Strings
Summary
References	and	Recommended	Reading

Chapter	Eight	-	Selections	and	Decisions
Ternary	Operators
if	statement
else	statement
Nested	if	else
switch	statement
Summary
References	and	Recommended	Reading

Chapter	Nine	-	Arrays	and	For	Loop	Iteration
Arrays
Exercises
Summary
References	and	Recommended	Reading

Chapter	Ten	-	Introducing	Collections
A	Simple	Introduction
Iterating	with	while	and	do…while
Interfaces
Summary

References	and	Recommended	Reading

Chapter	Eleven	-	Introducing	Exceptions
What	is	an	exception?
Catching	Exceptions
An	Exception	is	an	object
Catch	more	than	one	exception
JUnit	and	Exceptions
Throwing	an	Exception
finally

Summary
References	and	Recommended	Reading

Chapter	Twelve	-	Introducing	Inheritance
Inheritance
Inherit	from	Interfaces	and	Abstract	Classes
Summary
References	and	Recommended	Reading

Chapter	Thirteen	-	More	About	Exceptions
Unchecked	and	Checked	Exceptions
Difference	between	Exception,	Error	and	Throwable
Create	your	own	Exception	class
Summary
References	and	Recommended	Reading

Chapter	Fourteen	-	JUnit	Explored
@Test

Before	&	After
@Ignore

JUnit	Assertions
Asserting	with	Hamcrest	Matchers	and	assertThat
fail

static	importing
Summary
References	and	Recommended	Reading

Chapter	Fifteen	-	Strings	Revisited
String	Summary
System.out.println

Special	character	encoding
String	Concatenation
Converting	to/from	a	String
Constructors
Comparing	Strings
Manipulating	Strings

Basic	String	parsing	with	split
Manipulating	strings	With	StringBuilder
Concatenation,	.format,	or	StringBuilder
Summary
References	and	Recommended	Reading

Chapter	Sixteen	-	Random	Data
Math.random

java.util.random

Seeding	random	numbers
Using	Random	Numbers	to	generate	Random	Strings
Discussion	random	data	in	automation
Summary
References	and	Recommended	Reading

Chapter	Seventeen	-	Dates	and	Times
currentTimeMillis	and	nanoTime
Date

SimpleDateFormat

Calendar

Summary
References	and	Recommended	Reading

Chapter	Eighteen	-	Properties	and	Property	Files
Properties	Basics
Java’s	System	Properties
Working	with	Property	files
Summary
References	and	Recommended	Reading

Chapter	Nineteen	-	Files
Example	of	reading	and	writing	a	file
File
Writing	And	Reading	Files
Additional	File	Methods
Files
Summary
References	and	Recommended	Reading

Chapter	Twenty	-	Math	and	BigDecimal
BigDecimal
Math
Summary
References	and	Recommended	Reading

Chapter	Twenty	One	-	Collections	Revisited
Set

Map
Implementations
Summary
References	and	Recommended	Reading

Chapter	Twenty	Two	-	Advancing	Concepts
Interfaces
Abstract	Classes
Generics
Logging
Enum
Regular	Expressions
Reflection
Annotations
Design	Patterns
Concurrency
Additional	File	considerations
Summary

Chapter	Twenty	Three	-	Next	Steps
Recommended	Reading
Recommended	Videos
Recommended	Web	Sites
Next	Steps
References

Appendix	-	IntelliJ	Hints	and	Tips
Shortcut	Keys
Code	Completion
Navigating	Source	Code
Running	a	JUnit	Test
Loading	Project	Source
Help	Menu
Summary

Appendix	-	Exercise	Answers
Chapter	Three	-	My	First	JUnit	Test
Chapter	Four	-	Work	With	Other	Classes
Chapter	Five	-	Work	With	Our	Own	Classes
Chapter	Six	-	Java	Classes	Revisited:	Constructors,	Fields,	Getter	&	Setter	Methods
Chapter	Eight	-	Selections	and	Decisions
Chapter	Nine	-	Arrays	and	For	Loop	Iteration
Chapter	Ten	-	Introducing	Collections
Chapter	Eleven	-	Introducing	Exceptions
Chapter	Twelve	-	Introducing	Inheritance
Chapter	Thirteen	-	More	Exceptions

Chapter	Fourteen	-	JUnit	Explored
Chapter	Fifteen	-	Strings	Revisited
Chapter	Sixteen	-	Random	Data
Chapter	Seventeen	-	Dates	&	Times
Chapter	Eighteen	-	Properties	and	Property	Files
Chapter	Nineteen	-	Files
Chapter	Twenty	-	Math	and	BigDecimal
Chapter	Twenty	One	-	Collections	Revisited

Introduction

This	is	an	introductory	text.	At	times	it	takes	a	tutorial	approach	and	adopts	step	by	step
instructions	to	coding.	Some	people	more	familiar	with	programming	might	find	this	slow.
This	book	is	not	aimed	at	those	people.

This	book	is	aimed	at	people	who	are	approaching	Java	for	the	first	time,	specifically	with
a	view	to	adding	automation	to	their	test	approach.	I	do	not	cover	automation	tools	in	this
book.

I	do	cover	the	basic	Java	knowledge	needed	to	write	and	structure	code	when	automating.

I	primarily	wrote	this	book	for	software	testers,	and	the	approach	to	learning	is	oriented
around	writing	automation	code	to	support	testing,	rather	than	writing	applications.	As
such	it	might	be	useful	for	anyone	learning	Java,	who	wants	to	learn	from	a	“test	first”
perspective.

Automation	to	support	testing	is	not	limited	to	testers	anymore,	so	this	book	is	suitable	for
anyone	wanting	to	improve	their	use	of	Java	in	automation:	managers,	business	analysts,
users,	and	of	course,	testers.

Testers	use	Java	differently
I	remember	when	I	started	learning	Java	from	traditional	books,	and	I	remember	that	I	was
unnecessarily	confused	by	some	of	the	concepts	that	I	rarely	had	to	use	e.g.	creating
manifest	files,	and	compiling	from	the	command	line.

Testers	use	Java	differently.

Most	Java	books	start	with	a	‘main’	class	and	show	how	to	compile	code	and	write	simple
applications	from	the	command	line,	then	build	up	into	more	Java	constructs	and	GUI
applications.	When	I	write	Java,	I	rarely	compile	it	to	a	standalone	application,	I	spend	a
lot	of	time	in	the	IDE,	writing	and	running	small	checks	and	refactoring	to	abstraction
layers.

By	learning	the	basics	of	Java	presented	in	this	book,	you	will	learn	how	to	read	and
understand	existing	code	bases,	and	write	simple	checks	using	JUnit	quickly.	You	will	not
learn	how	to	build	and	structure	an	application.	That	is	useful	knowledge,	but	it	can	be
learned	after	you	know	how	to	contribute	to	the	Java	code	base	with	JUnit	tests.

My	aim	is	to	help	you	start	writing	automation	code	using	Java,	and	have	the	basic
knowledge	you	need	to	do	that.	This	book	focuses	on	core	Java	functionality	rather	than	a
lot	of	additional	libraries,	since	once	you	have	the	basics,	picking	up	a	library	and	learning
how	to	use	it	becomes	a	matter	of	reading	the	documentation	and	sample	code.

Exclusions

This	is	not	a	‘comprehensive’	introduction.	This	is	a	‘getting	started’	guide.	Even	though	I
concentrate	on	core	Java,	there	are	still	aspects	of	Java	that	I	haven’t	covered	in	detail,	I
have	covered	them	‘just	enough’	to	understand.	e.g.	inheritance,	interfaces,	enums,	inner
classes,	etc.

Some	people	may	look	disparagingly	on	the	text	based	on	the	exclusions.	So	consider	this
an	opinionated	introduction	to	Java	because	I	know	that	I	did	not	need	to	use	many	of
those	exclusions	for	the	first	few	years	of	my	automation	programming.

I	maintain	that	there	is	a	core	set	of	Java	that	you	need	in	order	to	start	writing	automation
code	and	start	adding	value	to	automation	projects.	I	aim	to	cover	that	core	in	this	book.

Essentially,	I	looked	at	the	Java	I	needed	when	I	started	writing	automation	to	support	my
testing,	and	used	that	as	scope	for	this	book.	While	knowledge	of	Interfaces,	Inheritance,
and	enums,	all	help	make	my	automation	abstractions	more	readable	and	maintainable;	I
did	not	use	those	constructs	with	my	early	automation.

I	also	want	to	keep	the	book	small,	and	approachable,	so	that	people	actually	read	it	and
work	through	it,	rather	than	buying	and	leaving	on	their	shelf	because	they	were	too
intimidated	to	pick	it	up.	And	that	means	leaving	out	the	parts	of	Java,	which	you	can	pick
up	yourself,	once	you	have	mastered	the	concepts	in	this	book.

This	book	does	not	cover	any	Java	1.8	functionality.	The	highest	version	of	Java	required
to	work	with	this	book	is	Java	1.7.	The	code	in	this	book	will	work	with	Java	1.8,	I	simply
don’t	cover	any	of	the	new	functionality	added	in	Java	1.8	because	I	want	you	to	learn	the
basics,	and	start	being	productive	quickly.	After	you	complete	this	book,	you	should	be
able	to	pick	up	the	new	features	in	Java	1.8	when	you	need	them.

Supporting	Source	Code
You	can	download	the	source	code	for	this	book	from	github.com.	The	source	contains	the
examples	and	answers	to	exercises.

I	suggest	you	work	through	the	book	and	give	it	your	best	shot	before	consulting	the
source	code.

github.com/eviltester/javaForTestersCode

The	source	code	has	been	organized	into	two	high	level	source	folders:	main	and	test.
The	full	significance	of	these	will	be	explained	in	later	chapters.	But	for	now,	the	test
folder	contains	all	the	JUnit	tests	that	you	see	in	this	book.	Each	chapter	has	a	package	and
beneath	that	an	exercises	and	an	examples	folder:

e.g.

The	main	folder	for	Chapter	3	is:
src\test\java\com\javafortesters\chap003myfirsttest

it	contains	an	examples	folder	with	all	the	code	used	in	the	main	body	of	the	text
it	contains	an	exercises	folder	with	all	the	code	for	the	answers	I	created	for	the
exercises	in	Chapter	3

https://github.com
https://github.com/eviltester/javaForTestersCode

This	should	make	it	easier	for	you	to	navigate	the	code	base.	And	if	you	experience
difficulties	typing	in	any	of	the	code	then	you	can	compare	it	with	the	actual	code	to
support	the	book.

To	allow	you	to	read	the	book	without	needing	to	have	the	source	code	open,	I	have	added
a	lot	of	code	in	the	body	of	the	book	and	you	can	find	much	of	the	code	for	the	exercises
in	the	appendix.

The	Appendix	“IntelliJ	Hints	and	Tips”	has	information	on	loading	the	source	and	offers	a
reference	section	for	helping	you	navigate	and	work	with	the	source	code	in	IntelliJ.

About	the	Author
Alan	Richardson	has	worked	as	a	Software	professional	since	1995	(although	it	feels
longer).	Primarily	working	with	Software	Testing,	although	he	has	written	commercial
software	in	C++,	and	a	variety	of	other	languages.

Alan	has	a	variety	of	on-line	training	courses,	both	free	and	commercial:

“Selenium	2	WebDriver	With	Java”
“Start	Using	Selenium	WebDriver”
“Technical	Web	Testing”

You	can	find	details	of	his	other	books,	training	courses,	conference	papers	and	slides,	and
videos,	on	his	main	company	web	site:

CompendiumDev.co.uk

Alan	maintains	a	number	of	web	sites:

SeleniumSimplified.com	:	Web	Automation	using	Selenium	WebDriver
EvilTester.com	:	Technical	testing
JavaForTesters.com	:	Java,	aimed	at	software	testers.

JavaForTesters.com	also	acts	as	the	support	site	for	this	book.

Alan	tweets	using	the	handle	@eviltester

Acknowledgments
This	book	was	created	as	a	“work	in	progress”	on	leanpub.com.	My	thanks	go	to	everyone
who	bought	the	book	in	its	early	stages,	this	provided	the	continued	motivation	to	create
something	that	added	value,	and	then	spend	the	extra	time	needed	to	add	polish	and
readability.

Special	thanks	go	to	the	following	people	who	provided	early	and	helpful	feedback	during
the	writing	process:	Jay	Gehlot,	Faezeh	Seyedarabi,	Szymon	Kazmierczak,	Srinivas
Kadiyala,	Tony	Bruce,	James	‘Drew’	Cobb,	Adrian	Rapan.

I	am	also	grateful	to	every	Java	developer	that	I	have	worked	with	who	took	the	time	to
explain	their	code.	You	helped	me	observe	what	a	good	developer	does	and	how	they

http://compendiumdev.co.uk
http://seleniumsimplified.com
http://eviltester.com
http://javafortesters.com
https://twitter.com/eviltester
https://leanpub.com/javaForTesters

work.	The	fact	that	you	were	good,	forced	me	to	‘up	my	game’	and	improve	both	my
coding	and	testing	skills.

All	mistakes	in	this	book	are	my	fault.	If	you	find	any,	please	let	me	know	via
compendiumDev.co.uk/contact	or	via	any	of	the	sites	mentioned	above.

http://www.compendiumdev.co.uk/contact

Chapter	One	-	Basics	of	Java	Revealed

Chapter	Summary
An	overview	of	Java	code	to	set	the	scene:

class	is	the	basic	building	block
a	class	has	methods
method	names	start	with	lowercase	letters
class	names	start	with	uppercase	letters
a	JUnit	test	is	a	method	annotated	with	@Test
JUnit	test	methods	can	be	run	without	creating	an	application

In	this	first	chapter	I	will	show	you	Java	code,	and	the	language	I	use	to	describe	it,	with
little	explanation.

I	do	this	to	provide	you	with	some	context.	I	want	to	wrap	you	in	the	language	typically
used	to	describe	Java	code.	And	I	want	to	show	you	small	sections	of	code	in	context.	I
don’t	expect	you	to	understand	it	yet.	Just	read	the	pages	which	follow,	look	at	the	code,
soak	it	in,	accept	that	it	works,	and	is	consistent.

Then	in	later	pages,	I	will	explain	the	code	constructs	in	more	detail,	you	will	write	some
code,	and	I’ll	reinforce	the	explanations.

Java	Example	Code

Remember	-	just	read	the	following	section
Just	read	the	following	section,	and	don’t	worry	if	you	don’t	understand	it	all	immediately.	I	explain	it	in
later	pages.	I	have	emphasized	text	which	I	will	explain	later.	So	if	you	don’t	understand	what	an
emphasized	word	means,	then	don’t	worry,	you	will	in	a	few	pages	time.

An	empty	class
A	class	is	the	basic	building	block	that	we	use	to	build	our	Java	code	base.

All	the	code	that	we	write	to	do	stuff,	we	write	inside	a	class.	I	have	named	this	class
AnEmptyClass.
1	package	com.javafortesters.chap001basicsofjava.examples.classes;

2	

3	public	class	AnEmptyClass	{

4	}

Just	like	your	name,	Class	names	start	with	an	uppercase	letter	in	Java.	I’m	using
something	called	Camel	Case	to	construct	the	names,	instead	of	spaces	to	separate	words,
we	write	the	first	letter	of	each	word	in	uppercase.

The	first	line	is	the	package	that	I	added	the	class	to.	A	package	is	like	a	directory	on	the
file	system,	this	allows	us	to	find,	and	use,	the	Class	in	the	rest	of	our	code.

A	class	with	a	method
A	class,	on	its	own,	doesn’t	do	anything.	We	have	to	add	methods	to	the	class	before	we
can	do	anything.	Methods	are	the	commands	we	can	call,	to	make	something	happen.

In	the	following	example	I	have	created	a	new	class	called	AClassWithAMethod,	and	this
class	has	a	method	called	aMethodOnAClass	which,	when	called,	prints	out	"Hello	World"
to	the	console.
1	package	com.javafortesters.chap001basicsofjava.examples.classes;

2	

3	public	class	AClassWithAMethod	{

4	

5					public	void	aMethodOnAClass(){

6									System.out.println("Hello	World");

7					}

8	}

Method	names	start	with	lowercase	letters.

When	we	start	learning	Java	we	will	call	the	methods	of	our	classes	from	within	JUnit
tests.

A	JUnit	Test
For	the	code	in	this	book	we	will	use	JUnit.	JUnit	is	a	commonly	used	library	which
makes	it	easy	for	us	to	write	and	run	Java	code	with	assertions.

A	JUnit	test	is	simply	a	method	in	a	class	which	is	annotated	with	@Test	(i.e.	we	write
@Test	before	the	method	declaration).
	1	package	com.javafortesters.chap014junit.examples;

	2	

	3	import	com.javafortesters.chap001basicsofjava.examples.classes.AClassWithAMethod;

	4	import	org.junit.Test;

	5	

	6	public	class	ASysOutJunitTest	{

	7	

	8					@Test

	9					public	void	canOutputHelloWorldToConsole(){

10									AClassWithAMethod	myClass	=	new	AClassWithAMethod();

11									myClass.aMethodOnAClass();

12					}

13	}

In	the	above	code,	I	instantiate	a	variable	of	type	AClassWithAMethod	(which	is	the	name
I	gave	to	the	class	earlier).	I	had	to	import	the	class	and	package	before	I	could	use	it,	and
I	did	that	as	one	of	the	first	lines	in	the	file.

I	can	run	this	method	from	the	IDE	without	creating	a	Java	application	because	I	have
used	JUnit	and	annotated	the	method	with	@Test.

When	I	run	this	method	then	I	will	see	the	following	text	printed	out	to	the	Java	console	in
my	IDE:

Hello	World

Summary
I	have	thrown	you	into	the	deep	end	here;	presenting	you	with	a	page	of	possible
gobbledygook.	And	I	did	that	to	introduce	you	to	a	the	Java	Programming	Language
quickly.

Java	Programming	Language	Concepts:

Class
Method
JUnit
Annotation
Package
Variables
Instantiate	variables
Type
Import

Programming	Convention	Concepts:

Camel	Case
JUnit	Tests	are	Java	methods	annotated	with	@Test

Integrated	Development	Environment	Concepts:

Console

Over	the	next	few	chapters,	I’ll	start	to	explain	these	concepts	in	more	detail.

Chapter	Two	-	Install	the	Necessary	Software

Chapter	Summary
In	this	chapter	you	will	learn	the	tools	you	need	to	program	in	Java,	and	how	to	install	them.	You	will	also
find	links	to	additional	FAQs	and	Video	tutorials,	should	you	get	stuck.

The	tools	you	will	install	are:

Java	Development	Kit
Maven
An	Integrated	Development	Environment	(IDE)

You	will	also	learn	how	to	create	your	first	project.

When	you	finish	this	chapter	you	will	be	ready	to	start	coding.

I	suggest	you	first,	read	this	whole	chapter,	and	then	work	through	the	chapter	from	the
beginning	and	follow	the	steps	listed.

Introduction
Programming	requires	you	to	setup	a	bunch	of	tools	to	allow	you	to	work.

For	Java,	this	means	you	need	to	install:

JDK	-	Java	Development	Kit
IDE	-	Integrated	Development	Environment

For	this	book	we	are	also	going	to	install:

Maven	-	a	dependency	management	and	build	tool

Installing	Maven	adds	an	additional	degree	of	complexity	to	the	setup	process,	but	trust
me.	It	will	make	the	whole	process	of	building	projects	and	taking	your	Java	to	the	next
level	a	lot	easier.

I	have	created	a	support	page	for	installation,	with	videos	and	links	to	troubleshooting
guides.

JavaForTesters.com/install

If	you	experience	any	problems	that	are	not	covered	in	this	chapter,	or	on	the	support
pages,	then	please	let	me	know	so	I	can	try	to	help,	or	amend	this	chapter,	and	possibly
add	new	resources	to	the	support	page.

Do	you	already	have	JDK	or	Maven	installed?

http://javafortesters.com/install

Some	of	you	may	already	have	these	tools	installed	with	your	machine.	The	first	thing	we
should	do	is	learn	how	to	check	if	they	are	installed	or	not.

Java	JDK
Many	of	you	will	already	have	a	JRE	installed	(Java	Runtime	Environment),	but	when
developing	with	Java	we	need	to	use	a	JDK.

If	you	type	javac	-version	at	your	command	line	and	get	an	error	saying	that	javac	can
not	be	found	(or	something	similar).	Then	you	need	to	install	and	configure	a	JDK.

If	you	see	something	similar	to:
javac	1.7.0_10

Then	you	have	a	JDK	installed.	It	is	worth	following	the	instructions	below	to	check	if
your	installed	JDK	is	up	to	date,	but	if	you	have	a	1.7.x	JDK	(or	higher)	installed	then	you
have	a	good	enough	version	to	work	through	this	book	without	amendment.	If	your	JDK	is
version	1.6	then	some	of	the	code	examples	will	not	work.

Java	Has	Multiple	Versions
The	Java	language	improves	over	time.	With	each	new	version	adding	new	features.	If	you	are	unfortunate
enough	to	not	be	allowed	to	install	Java	1.7	at	work	(then	I	suggest	you	work	through	this	book	at	home,
or	on	a	VM),	then	parts	of	the	source	code	will	not	work	and	the	code	you	download	for	this	book	will
throw	errors.

Specifically,	we	cover	the	following	features	introduced	in	Java	1.7:

The	Diamond	operator	<>	in	the	Collections	chapters
Binary	literals	e.g.	0b1001
Underscores	in	literals	e.g.	9_000_000_000L
switch	statements	using	Strings

The	above	statements	may	not	make	sense	yet,	but	if	you	are	using	a	version	of	Java	lower	than	1.7	then
you	can	expect	to	see	these	concepts	throw	errors	with	JDK	1.6	or	below.

Install	Maven
Maven	requires	a	version	of	Java	installed,	so	if	you	checked	for	Java	and	it	wasn’t	there,
you	will	need	to	install	Maven.

If	you	type	mvn	-version	at	your	command	line,	and	receive	an	error	that	mvn	can	not
be	found	(or	something	similar).	Then	you	need	to	install	and	configure	Maven	before
you	follow	the	text	in	this	book.

If	you	see	something	similar	to:
Apache	Maven	3.0.4	(r1232337;	2012-01-17	08:44:56+0000)

Maven	home:	C:\mvn\apache-maven-3.0.4

Java	version:	1.7.0_10,	vendor:	Oracle	Corporation

Java	home:	C:\Program	Files\Java\jdk1.7.0_10\jre

Default	locale:	en_GB,	platform	encoding:	Cp1252

OS	name:	"windows	8",	version:	"6.2",	arch:	"amd64",	family:	"windows"

Then	you	have	Maven	installed.	This	book	doesn’t	require	a	specific	version	of	Maven,
but	having	a	version	of	3.x.x	or	above	should	be	fine.

Install	The	Java	JDK
The	Java	JDK	can	be	downloaded	from	oracle.com.	If	you	mistakenly	download	from
java.com	then	you	will	be	downloading	the	JRE,	and	for	development	work	we	need	the
JDK.

oracle.com/technetwork/java/javase/downloads

From	the	above	site	you	should	follow	the	installation	instructions	for	your	specific
platform.

You	can	check	the	JDK	is	installed	by	opening	a	new	command	line	and	running	the
command:
javac	-version

This	should	show	you	the	version	number	which	you	downloaded	and	installed	from
oracle.com

Install	Maven
Maven	is	a	dependency	management	and	build	tool.	We	will	use	it	to	add	JUnit	to	our
project	and	write	our	code	based	on	Maven	folder	conventions	to	make	it	easier	for	others
to	review	and	work	with	our	code	base.

The	official	Maven	web	site	is	maven.apache.org.	You	can	download	Maven	and	find
installation	instructions	on	the	official	web	site.

Download	Maven	by	visiting	the	download	page:

maven.apache.org/download.cgi

The	installation	instructions	can	also	be	found	on	the	download	page:

maven.apache.org/download.cgi#Installation_Instructions

I	summarize	the	instructions	below:

Unzip	the	distribution	archive	where	you	want	to	install	Maven
Create	an	M2_HOME	user/environment	variable	that	points	to	the	above	directory
Create	an	M2	user/environment	variable	that	points	to	M2_HOME\bin

on	Windows	%M2_HOME%\bin
sometimes	on	Windows,	I	find	I	have	to	avoid	re-using	the	M2_HOME
variable	and	instead	copy	the	path	in	again

on	Unix	$M2_HOME/bin
Add	the	M2	user/environment	variable	to	your	path
Make	sure	you	have	a	JAVA_HOME	user/environment	variable	that	points	to	your	JDK
root	directory

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org
http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi#Installation_Instructions

Add	JAVA_HOME	to	your	path

You	can	check	it	is	installed	by	opening	up	a	new	command	line	and	running	the
command:
mvn	-version

This	should	show	you	the	version	number	that	you	just	installed	and	the	path	for	your
JDK.

I	recommend	you	take	the	time	to	read	the	“Maven	in	5	Minutes”	guide	on	the	official
Maven	web	site:

maven.apache.org/guides/getting-started/maven-in-five-minutes.html

Install	The	IDE
While	the	code	in	this	book	will	work	with	any	IDE,	I	recommend	you	install	IntelliJ.	I
find	that	IntelliJ	works	well	for	beginners	since	it	tends	to	pick	up	paths	and	default
locations	better	than	Eclipse.

For	this	book,	I	will	use	IntelliJ	and	any	supporting	videos	I	create	for	this	book,	or	any
short	cut	keys	I	mention	relating	to	the	IDE	will	assume	you	are	using	IntelliJ.

The	official	IntelliJ	web	site	is	jetbrains.com/idea

IntelliJ	comes	in	two	versions	a	‘Community’	edition	which	is	free,	and	an	‘Ultimate’
edition	which	you	have	to	pay	for.

For	the	purposes	of	this	book,	and	most	of	your	automation	development	work,	the
‘Community’	edition	will	meet	your	needs.

Download	the	Community	Edition	IDE	from:

jetbrains.com/idea/download

The	installation	should	use	the	standard	installation	approach	for	your	platform.

When	you	are	comfortable	with	the	concepts	in	this	book,	you	can	experiment	with	other
IDEs	e.g.	Eclipse	or	Netbeans.

I	suggest	you	stick	with	IntelliJ	until	you	are	more	familiar	with	Java	because	then	you
minimize	the	risk	of	issues	with	the	IDE	confusing	you	into	believing	that	you	have	a
problem	with	your	Java.

Create	a	Project	using	the	IDE
To	create	your	first	project,	use	IntelliJ	to	do	the	hard	work.

Start	your	installed	IntelliJ
Choose	File	\	New	Project
On	the	New	Project	wizard:

choose	Maven	Module

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://www.jetbrains.com/idea
http://www.jetbrains.com/idea/download
http://www.eclipse.org
https://netbeans.org

type	a	project	name	e.g.	javafortesters
choose	a	location	for	the	project	source	files
IntelliJ	should	have	found	your	installed	JDK
Select	Next

You	should	be	able	to	use	all	the	default	settings	for	the	wizard.

About	your	new	project
The	New	Project	wizard	should	create	a	new	folder	with	a	structure	something	like	the
following:
+	javaForTesters

		+	.idea

		+	src

				+	main

						+	java

						+	resources

				+	test

						+	java

		javaForTesters.iml

		pom.xml

In	the	above	hierarchy,

the	.idea	folder	is	where	most	of	the	IntelliJ	configuration	files	will	be	stored,
the	.iml	file	has	other	IntelliJ	configuration	details,
the	pom.xml	file	is	your	Maven	project	configuration	file.

If	the	wizard	created	any	.java	files	in	any	of	the	directories	then	you	can	delete	them	as
they	are	not	important.	You	will	be	starting	this	project	from	scratch.

The	above	directory	structure	is	a	standard	Maven	structure.	Maven	expects	certain	files	to
be	in	certain	directories	to	use	the	default	Maven	configuration.	Since	you	are	just	starting
you	can	leave	the	directory	structure	as	it	is.

Certain	conventions	that	you	will	follow	to	make	your	life	as	a	beginning	developer
easier:

Add	your	JUnit	Test	Classes	into	the	src\test\java	folder	hierarchy
When	you	create	a	JUnit	Test	Class,	make	sure	you	append	Test	to	the	Class	name

The	src\main\java	folder	hierarchy	is	for	Java	code	that	is	not	used	for	asserting
behaviour.	Typically	this	is	application	code.	We	will	use	this	for	our	abstraction	layer
code.	We	could	add	all	the	code	we	create	in	this	book	in	the	src\test\java	hierarchy	but
where	possible	I	split	the	abstraction	code	into	a	separate	folder.

The	above	convention	description	may	not	make	sense	at	the	moment,	but	hopefully	it	will
become	clear	as	you	work	through	the	book.	Don’t	worry	about	it	now.

The	pom.xml	file	will	probably	look	like	the	following:
<?xml	version="1.0"	encoding="UTF-8"?>

<project	xmlns="http://maven.apache.org/POM/4.0.0"

									xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

									xsi:schemaLocation="http://maven.apache.org/POM/4.0.0	

																												http://maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>javaForTesters</groupId>

				<artifactId>javaForTesters</artifactId>

				<version>1.0-SNAPSHOT</version>

</project>

This	is	the	basics	for	a	blank	project	file	and	defines	the	name	of	the	project.

You	can	find	information	about	the	pom.xml	file	on	the	official	Maven	site.

maven.apache.org/pom.html

Add	JUnit	to	the	pom.xml	file
We	will	use	a	library	called	JUnit	to	help	us	run	our	code.

junit.org

You	can	find	installation	instructions	for	using	JUnit	with	Maven	on	the	JUnit	web	site.

github.com/junit-team/junit/wiki/Download-and-Install

We	basically	edit	the	pom.xml	file	to	include	a	dependency	on	JUnit.	We	do	this	by
creating	a	dependencies	XML	element	and	a	dependency	XML	element	which	defines	the
version	of	JUnit	we	want	to	use.	At	the	time	of	writing	it	is	version	4.11

The	pom.xml	file	that	we	will	use	for	this	book,	only	requires	a	dependency	on	JUnit,	so	it
looks	like	this:
<?xml	version="1.0"	encoding="UTF-8"?>

	<project	xmlns="http://maven.apache.org/POM/4.0.0"

	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

																				http://maven.apache.org/xsd/maven-4.0.0.xsd">

				<modelVersion>4.0.0</modelVersion>

				<groupId>javaForTesters</groupId>

				<artifactId>javaForTesters</artifactId>

				<version>1.0-SNAPSHOT</version>

				<packaging>jar</packaging>

				<properties>

								<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

				</properties>

				<dependencies>

								<dependency>

												<groupId>junit</groupId>

												<artifactId>junit</artifactId>

												<version>4.11</version>

http://maven.apache.org/pom.html
http://junit.org
https://github.com/junit-team/junit/wiki/Download-and-Install

								</dependency>

				</dependencies>

				<build>

								<plugins>

												<plugin>

																<groupId>org.apache.maven.plugins</groupId>

																<artifactId>maven-compiler-plugin</artifactId>

																<version>3.1</version>

																<configuration>

																				<source>1.7</source>

																				<target>1.7</target>

																</configuration>

												</plugin>

								</plugins>

				</build>

</project>

You	can	see	I	also	added	a	build	section	with	a	maven-compiler-plugin.	This	was
mainly	to	cut	down	on	warnings	in	the	Maven	output.	If	you	really	want	to	make	the
pom.xml	file	small	you	could	get	away	with	adding	the	<dependencies>	XML	element
and	all	its	containing	information	about	JUnit.

Amend	your	pom.xml	file	to	contain	the	dependencies	and	build	elements	above.	IntelliJ
should	download	the	JUnit	dependency	ready	for	you	to	write	your	first	JUnit	Test,	in	the
next	chapter.

You	can	find	more	information	about	this	plugin	on	the	Maven	site:

maven.apache.org/plugins/maven-compiler-plugin

Summary
If	you	followed	the	instructions	in	this	chapter	then	you	should	now	have:

Maven	installed	-	mvn	-version
JDK	installed	-	javac	-version
IntelliJ	IDE	installed
Created	your	first	project
A	pom.xml	file	with	JUnit	as	a	dependency

I	can’t	anticipate	all	the	problems	you	might	have	installing	the	three	tools	listed	in	this
chapter	(JDK,	Maven,	IDE).

The	installation	should	be	simple,	but	things	can	go	wrong.

I	have	created	a	few	videos	on	the	JavaForTesters.com/install	site	which	show	how	to
install	the	various	tools.

JavaForTesters.com/install

I	added	some	Maven	Troubleshooting	Hints	and	Tips	to	the	“Java	For	Testers”	blog:

http://maven.apache.org/plugins/maven-compiler-plugin
http://javafortesters.com
http://javafortesters.com/install

javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html

If	you	do	get	stuck	then	try	and	use	your	favourite	search	engine	and	copy	and	paste	the
exact	error	message	you	receive	into	the	search	engine	and	you’ll	probably	find	someone
else	has	already	managed	to	resolve	your	exact	issue.

http://javafortesters.blogspot.co.uk/2013/08/maven-troubleshooting-faqs-and-tips.html

Chapter	Three	-	Writing	Your	First	Java	Code

Chapter	Summary
In	this	tutorial	chapter	you	will	follow	along	with	the	text	and	create	your	first	JUnit	test.	You	will	learn:

How	to	organize	your	code	and	import	other	classes
Creating	classes	and	naming	classes	as	JUnit	tests
Making	Java	methods	run	as	JUnit	tests
Adding	asserts	to	report	errors	during	the	execution
How	to	run	JUnit	tests	from	the	IDE	and	the	command	line
How	to	write	basic	arithmetic	statements	in	Java
About	Java	comments

Follow	along	with	the	text,	and	use	the	example	code	as	a	guide.	If	you	have	issues	then	compare	the	code
you	have	written	carefully	against	the	code	in	the	book.

In	this	chapter	we	will	take	a	slightly	different	approach.	We	will	advance	step-by-step
through	the	chapter	and	we	will	write	a	simple	method	which	we	will	run	as	a	JUnit	test.

My	First	JUnit	Test
The	code	will	calculate	the	answer	to	“2+2”,	and	then	assert	that	the	answer	is	“4”.

The	code	we	write	will	be	very	simple,	and	will	look	like	the	following:
	1	package	com.javafortesters.chap003myfirsttest.examples;

	2	import	org.junit.Test;

	3	import	static	org.junit.Assert.assertEquals;

	4	

	5	public	class	MyFirstTest	{

	6	

	7					@Test

	8					public	void	canAddTwoPlusTwo(){

	9									int	answer	=	2+2;

10									assertEquals("2+2=4",	4,	answer);

11					}

12	}

I’m	showing	you	this	now,	so	you	have	an	understanding	of	what	we	are	working	towards.
If	you	get	stuck,	you	can	refer	back	to	this	final	state	and	compare	it	with	your	current
state	to	help	resolve	any	problems.

Prerequisites
I’m	assuming	that	you	have	followed	the	setup	chapter	and	have	the	following	in	place:

JDK	Installed
IDE	Installed
Maven	Installed
Created	a	project

Added	JUnit	to	the	project	pom.xml

We	are	going	to	add	all	the	code	we	create	in	this	book	to	the	project	you	have	created.

Create	A	JUnit	Test	Class
The	first	thing	we	have	to	do	is	create	a	class,	to	which	we	will	add	our	JUnit	test	method.

A	class	is	the	basic	building	block	for	our	Java	code.	So	we	want	to	create	a	class	called
MyFirstTest.

The	name	MyFirstTest	has	some	very	important	features.

It	starts	with	an	uppercase	letter
It	has	the	word	Test	at	the	end
It	uses	camel	case

It	starts	with	an	uppercase	letter	because,	by	convention,	Java	classes	start	with	an
uppercase	letter.	By	convention	means	that	it	doesn’t	have	to.	You	won’t	see	Java	throw
any	errors	if	you	name	the	class	myFirstTest	with	a	lowercase	letter.	When	you	run	the
code,	Java	won’t	complain.

But	everyone	that	you	work	with	will.

We	expect	Java	classes	to	start	with	an	uppercase	letter	because	they	are	proper	names.

Trust	me.

Get	in	the	habit	of	naming	your	classes	with	the	first	letter	in	uppercase.	Then	when	you
read	code	you	can	tell	the	difference	between	a	class	and	a	variable,	and	you’ll	expect	the
same	from	code	that	other	people	have	written.

It	has	the	word	Test	at	the	end.	We	can	take	advantage	of	the	‘out	of	the	box’	Maven
functionality	to	run	our	JUnit	tests	from	the	command	line,	instead	of	the	IDE,	by	typing
mvn	test.	This	might	not	seem	important	now,	but	at	some	point	we	are	going	to	want	to
run	our	code	automatically	as	part	of	a	build	process.	And	we	can	make	that	easier	if	we
add	Test	in	the	Class	name,	either	as	the	start	of	the	class	name,	or	at	the	end.	By	naming
our	classes	in	this	way,	Maven	will	automatically	run	our	JUnit	test	classes	at	the
appropriate	part	of	the	build	process.

Incorrectly	Named	Classes	Will	Run	From	the	IDE

Very	often	we	run	our	JUnit	test	code	from	the	IDE.	And	the	IDE	will	run	the	methods	in	JUnit	test
classes	even	if	the	classes	are	not	named	as	Maven	requires.	If	we	do	not	name	a	class	correctly	then	it
will	not	run	from	the	command	line	when	we	type	mvn	test	but	because	we	saw	it	run	in	the	IDE,	we
believe	it	is	running.

This	leaves	us	thinking	we	have	more	coverage	than	we	actually	do.

It	uses	camel	case	where	each	‘word’	in	a	string	of	concatenated	words	starts	with	an
uppercase	letter.	This	again	is	a	Java	convention,	it	is	not	enforced	by	the	compiler.	But
people	reading	your	code	will	expect	to	see	it	written	like	this.

Maven	Projects	need	to	be	imported
As	you	code,	if	you	see	a	little	pop	up	in	IntelliJ	which	says	“Maven	Projects	need	to	be	imported”.	Click
the	“Enable	Auto-Import”.	This	will	make	your	life	easier	as	it	will	automatically	add	import	statements	in
your	code	and	update	when	you	change	your	pom.xml	file.

To	create	the	class
In	the	IDE,	open	up	the	Project	hierarchy	so	that	you	can	see	the	src\test\java	branch
and	the	src\main\java	branch.

My	project	hierarchy	looks	like	this:
+	javaForTesters

		+	.idea

		+	src

				+	main

						+	java

						+	resources

				+	test

						+	java

.idea	is	the	IntelliJ	folder,	so	I	can	ignore	that.

I	right	click	on	the	java	folder	under	test	and	select	the	New	\	Java	Class	menu	item.

Or,	I	could	click	on	the	java	folder	under	test	and	use	the	keyboard	shortcut	alt	+
insert,	and	select	Java	Class	(on	a	Mac	use	ctrl	+	n)

Type	in	the	name	of	the	Java	class	that	you	want	to	create	i.e.	MyFirstTest	and	select
[OK]

Don’t	worry	about	the	package	structure	for	now.	We	can	easily	manually	move	our	code
around	later.	Or	have	IntelliJ	move	it	around	for	us	using	refactoring.

Template	code
You	might	find	that	you	have	a	code	block	of	comments	which	IntelliJ	added
automatically
/**

	*	Created	with	IntelliJ	IDEA.

	*	User:	Alan

	*	Date:	24/04/13

	*	Time:	11:48

	*	To	change	this	template	use	File	|	Settings	|	File	Templates.

	*/

You	can	ignore	this	code	as	it	is	a	comment.	You	can	delete	all	those	lines	if	you	want	to.

http://refactoring.com/

Introduction	to	Comments	In	Java
Comments	are	explanatory	text	that	is	not	executed.

You	can	use	//	to	comment	out	to	the	end	of	a	line.

You	can	comment	out	blocks	of	text	by	using	/*	and	*/

Where	/*	delimits	the	start	of	the	comment	and	*/	delimits	the	end	of	the	comment.

So	/*	everything	inside	is	a	comment	*/

/*	Comments	created	with	
forward	slash	asterisk	
can	span	multiple	lines	*/

Add	the	class	to	a	package
IntelliJ	will	have	created	an	empty	class	for	us.	e.g.
public	class	MyFirstTest	{

}

And	since	we	didn’t	specify	a	package,	it	will	be	at	the	root	level	of	our	test\java
hierarchy.

We	have	two	ways	of	creating	a	package	and	then	moving	the	class	into	it:

Manually	create	the	package	and	drag	and	drop	the	class	into	it
Add	the	package	statement	into	our	code	and	have	IntelliJ	move	the	class

Manually	create	the	package	and	drag	and	drop	the	class	into	it	by	right	clicking	on
the	java	folder	under	test	and	selecting	New	\	Package,	then	enter	the	package	name	you
want	to	create.

For	this	book,	I’m	going	to	suggest	that	you	use	the	top	level	package	structure:

com.javafortesters

And	then	name	any	sub	structures	as	required.	So	for	this	class	we	could	create	a	package
called	com.javafortesters.chap003myfirsttest.examples.	You	don’t	have	to	use	the
chap003	prefix,	but	it	might	help	you	trace	your	code	back	to	the	chapter	in	the	book.	I	use
this	convention	to	help	you	find	the	example	and	exercise	source	code	in	the	source
download.

Package	Naming
In	Java,	package	names	tend	to	be	all	lowercase,	and	not	use	camelCase.

If	we	want	to,	we	can	add	the	package	statement	into	our	code	and	have	IntelliJ	move
the	class:

Add	the	following	line	as	the	first	line	in	the	class:

package	com.javafortesters.chap003myfirsttest.examples;

The	semi-colon	at	the	end	of	the	line	is	important	because	Java	statements	end	with	a
semi-colon.

IntelliJ	will	highlight	this	line	with	a	red	underscore	because	our	class	is	not	in	a	folder
structure	that	represents	that	package.

IntelliJ	can	do	more	than	just	tell	us	what	our	problems	are,	it	can	also	fix	this	problem	for
us	if	we	click	the	mouse	in	the	underscored	text,	and	then	press	the	keys	alt	+	return.

IntelliJ	will	show	a	pop	up	menu	which	will	offer	us	the	option	to:
Move	to	package	com.javafortesters.chap003myfirsttest.examples

Select	this	option	and	IntelliJ	will	automatically	move	the	class	to	the	correct	location.

You	could	create	the	package	first
Of	course,	I	could	have	created	the	package	first,	but	sometimes	I	like	to	create	the	classes,	and
concentrate	on	the	code,	before	I	concentrate	on	the	ordering	and	categorization	of	the	code.

You	will	develop	your	own	style	of	coding	as	you	become	more	experienced.	I	like	to	have	the	IDE	do	as
much	work	for	me	as	I	can,	while	I	remain	in	the	‘flow’	of	coding.

The	Empty	Class	Explained
package	com.javafortesters.chap003myfirsttest.examples;

public	class	MyFirstTest	{

}

If	you’ve	followed	along	then	you	will	have	an	empty	class,	in	the	correct	package	and	the
Project	window	will	show	a	directory	structure	that	matches	the	package	hierarchy	you
have	created.

Package	Statement

The	package	statement	is	a	line	of	code	which	defines	the	package	that	this	class	belongs
in.
package	com.javafortesters.chap003myfirsttest.examples;

When	we	want	to	use	this	class	in	our	later	code	then	we	would	import	the	class	from	this
package.

The	package	maps	on	to	the	physical	folder	structure	beneath	your	src\test	folder.	So	if
you	look	in	explorer	under	your	project	folder	you	will	see	that	the	package	is	actually	a
nested	set	of	folders.
+	src

		+	test

				+	java

And	underneath	the	java	folder	you	will	have	a	folder	structure	that	represents	the
package	structure.
+	com

		+	javafortesters

				+	chap003myfirsttest

						+	examples

Java	classes	only	have	to	be	uniquely	named	within	a	package.	So	I	could	create	another
class	called	MyFirstTest	and	place	it	into	a	different	package	in	my	source	tree	and	Java
would	not	complain.	I	would	simply	have	to	import	the	correct	package	structure	to	get
the	correct	version	of	the	class.

Class	Declaration

The	following	lines,	are	our	class	declaration.
public	class	MyFirstTest	{

}

We	have	to	declare	a	class	before	we	use	it.	And	when	we	do	so,	we	are	also	defining	the
rules	about	how	other	classes	can	use	it	too.

Here	the	class	has	public	scope.	This	means	that	any	class,	in	any	package,	can	use	this
class	if	they	import	it.

Java	has	more	scope	declarations
Java	has	other	scope	declarations,	like	private	and	protected	but	we	don’t	have	to	concern	ourselves
with	those	yet.

When	we	create	classes	that	will	be	used	for	JUnit	tests,	we	need	to	make	them	public	so
that	JUnit	can	use	them.

The	{	and	}	are	block	markers.	The	opening	brace	{	delimits	the	start	of	a	block,	and	the
closing	brace	}	delimits	the	end	of	a	block.

All	the	code	that	we	write	for	a	class	has	to	go	between	the	opening	and	closing	block	that
represents	the	class	body.

In	this	case	the	class	body	is	empty,	because	we	haven’t	written	any	code	yet,	but	we	still
need	to	have	the	block	markers,	otherwise	it	will	be	invalid	Java	syntax	and	your	IDE	will
flag	the	code	as	being	in	error.

Create	a	Method
We	are	going	to	create	a	method	to	add	two	numbers.	Specifically	2+2.

I	create	a	new	method	by	typing	out	the	method	declaration:
				public	void	canAddTwoPlusTwo(){

				}

Remember,	the	method	declaration	is	enclosed	inside	the	class	body	block:
public	class	MyFirstTest	{

				public	void	canAddTwoPlusTwo(){

				}

}

public

This	method	is	declared	as	public	meaning	that	any	class	that	can	use	MyFirstTest	can
call	the	method.

When	we	use	JUnit,	any	method	that	we	want	to	use	as	a	JUnit	test	should	be	declared	as
public.

void

The	void	means	that	the	method	does	not	return	a	value	when	it	is	called.	We	will	cover
this	in	detail	later,	but	as	a	general	rule,	if	you	are	going	to	make	a	method	a	JUnit	test,
you	probably	want	to	declare	it	as	void.

()

Every	method	declaration	has	to	define	what	parameters	the	method	can	be	called	with.	At
the	moment	we	haven’t	explained	what	this	means	because	our	method	doesn’t	take	any
parameters,	and	so	after	the	method	name	we	have	“()”,	the	open	and	close	parentheses.	If
we	did	have	any	parameters	they	would	be	declared	inside	these	parentheses.

{}

In	order	to	write	code	in	a	method	we	add	it	in	the	code	block	of	the	method	body	i.e.
inside	the	opening	and	closing	braces.

We	haven’t	written	any	code	in	the	method	yet,	so	the	code	block	is	empty.

Naming	JUnit	Test`	Methods
A	lot	of	people	don’t	give	enough	thought	to	JUnit	test	method	names.	And	use	names	like	addTest	or
addNumbers.	I	try	to	write	names	that:

explain	the	purpose	of	the	method	without	writing	additional	comments
describe	the	capability	or	function	we	want	to	check
show	the	scope	of	what	is	being	checked

Make	the	method	a	JUnit	test
We	can	make	the	method	a	JUnit	test.	By	annotating	it	with	@Test.

In	this	book	we	will	learn	how	to	use	annotations.	We	rarely	have	to	create	custom
annotations	when	automating,	so	we	won’t	cover	how	to	create	your	own	annotations	in
this	book.

JUnit	implements	a	few	annotations	that	we	will	learn.	The	first,	and	most	fundamental,	is
the	@Test	annotation.	JUnit	only	runs	the	methods	which	are	annotated	with	@Test	as
JUnit	tests.	We	can	have	additional	methods	in	our	classes	without	the	annotation,	and
JUnit	will	not	try	and	run	those.

Because	the	@Test	annotation	comes	with	JUnit	we	have	to	import	it	into	our	code.

When	you	type	@Test	on	the	line	before	the	method	declaration.	The	IDE	will	highlight	it
as	an	error.
				@Test

				public	void	canAddTwoPlusTwo(){

				}

When	we	click	on	the	line	with	the	error	and	press	the	key	combination	alt	+	return
then	we	will	receive	an	option	to:
Import	Class

Choosing	that	option	will	result	in	IntelliJ	adding	the	import	statement	into	our	class.
import	org.junit.Test;

We	have	to	make	sure	that	we	look	at	the	list	of	import	options	carefully.	Sometimes	we
will	be	offered	multiple	options,	because	there	may	be	many	classes	with	the	same	name,
where	the	difference	is	the	package	they	have	been	placed	into.

If	you	select	the	wrong	import
If	you	accidentally	select	the	wrong	import	then	simply	delete	the	existing	import	statement	from	the	code,
and	then	use	IntelliJ	to	alt	+	return	and	import	the	correct	class	and	package.

Calculate	the	sum
To	actually	calculate	the	sum	2+2	I	will	need	to	create	a	variable,	then	I	can	store	the	result
of	the	calculation	in	the	variable.
								int	answer	=	2+2;

Variables	are	a	symbol	which	represent	some	other	value.	In	programming,	we	use	them	to
store	values:	strings,	integers	etc.	so	that	we	can	use	them	and	amend	them	during	the
program	code.

I	will	create	a	variable	called	answer.

I	will	make	the	variable	an	‘int’.	int	declares	the	type	of	variable.	int	is	short	for	integer
and	is	a	primitive	type,	so	doesn’t	have	a	lot	of	functionality	other	than	storing	an	integer
value	for	us.	An	int	is	not	a	class	so	doesn’t	have	any	methods.

The	symbol	2	in	the	code	is	called	a	numeric	literal,	or	an	integer	literal.

An	int	has	limits
An	int	can	store	values	from	-2,147,483,648	to	2,147,483,647.	e.g.

								int	minimumInt	=	-2147483648;

								int	maximumInt	=	2147483647;

When	I	create	the	variable	I	will	set	it	to	2+2.

Java	will	do	the	calculation	for	us	because	I	have	used	the	+	operator.	The	+	operator	will
act	on	two	int	operands	and	return	a	result.	i.e.	it	will	add	2	and	2	and	return	the	value	4
which	will	be	stored	in	the	int	variable	answer.

Java	Operators
Java	has	a	few	obvious	basic	operators	we	can	use:

+	to	add
-	to	subtract
*	to	multiply
/	to	divide

There	are	more,	but	we	will	cover	those	later.

Assert	the	value
The	next	thing	we	have	to	do	is	assert	the	value.
								assertEquals("2+2=4",	4,	answer);

When	we	write	@Test	methods	we	have	to	make	sure	that	we	assert	something	because	we
want	to	make	sure	that	our	code	reports	failures	to	us	automatically.

An	assert	is	a	special	type	of	check:

If	the	check	fails	then	the	assert	throws	an	assertion	error	and	our	method	will	fail.
If	the	check	passes	then	the	assert	doesn’t	have	any	side-effects

The	asserts	we	will	initially	use	in	our	code	come	from	the	JUnit	Assert	package.

So	when	I	type	the	assert,	IntelliJ	will	show	the	statement	as	being	in	error,	because	I
haven’t	imported	the	assertEquals	method	or	Assert	class	from	JUnit.

To	fix	the	error	I	will	alt	+	return	on	the	assertEquals	statement	and	choose	to:
static	import	method…

from

Assert.assertEquals	in	the	org.junit	package

IntelliJ	will	then	add	the	correct	import	statement	into	my	code.
import	static	org.junit.Assert.assertEquals;

The	assertEquals	method	is	polymorphic.	Which	simply	means	that	it	can	be	used	with
different	types	of	parameters.

I	have	chosen	to	use	a	form	of:
								assertEquals("2+2=4",	4,	answer);

Where:

assertEquals	is	an	assert	that	checks	if	two	values	are	equal

"2+2=4"	is	a	message	that	is	displayed	if	the	assert	fails.
4	is	an	int	literal	that	represents	the	expected	value,	i.e.	I	expect	2+2	to	equal	4
answer	is	the	int	variable	which	has	the	actual	value	I	want	to	check	against	the
expected	value

I	could	have	written	the	assert	as:
								assertEquals(4,	answer);

In	this	form,	I	have	not	added	a	message,	so	if	the	assert	fails	there	are	fewer	clues	telling
me	what	should	happen,	and	in	some	cases	I	might	even	have	to	add	a	comment	in	the
code	to	explain	what	the	assert	does.

I	try	to	remember	to	add	a	message	when	I	use	the	JUnit	assert	methods	because	it	makes
the	code	easier	to	read	and	helps	me	when	asserts	do	fail.

Note	that	in	both	forms,	the	expected	result	is	the	parameter,	before	the	actual	result.

If	you	get	these	the	wrong	way	round	then	JUnit	won’t	throw	an	error,	since	it	doesn’t
know	what	you	intended,	but	the	output	from	a	failed	assert	would	mislead	you.	e.g.	if	I
accidentally	wrote	2+3	when	initializing	the	int	answer,	and	I	put	the	expected	and
actual	result	the	wrong	way	round,	then	the	output	would	say	something	like:
java.lang.AssertionError:	2+2=4	expected:<5>	but	was:<4>

And	that	would	confuse	me,	because	I	would	expect	2+2	to	equal	4.

Assertion	Tips
Try	to	remember	to	add	a	message	in	the	assertion	to	make	the	output	readable.

Make	sure	that	you	put	the	expected	and	actual	parameters	in	the	correct	order.

Run	the	@Test	method
Now	that	we	have	written	the	method,	it	is	time	to	run	it	and	make	sure	it	passes.

To	do	that	either:

Run	all	the	@Test	annotated	methods	in	the	class

right	click	on	the	class	name	in	the	Project	Hierarchy	and	select:
Run	'MyFirstTest'

click	on	the	class	in	the	Project	Hierarchy	and	press	the	key	combination:
ctrl	+	shift	+	F10

right	click	on	the	class	name	in	the	code	editor	and	select:
Run	'MyFirstTest'

Run	a	single	@Test	annotated	method	in	the	class

right	click	on	the	method	name	in	the	code	editor	and	select:
Run	'canAddTwoPlusTwo()'

click	on	the	method	name	in	the	code	editor	and	press	the	key	combination:
ctrl	+	shift	+	F10

Since	we	only	have	one	@Test	annotated	method	at	the	moment	they	will	both	achieve	the
same	result,	but	when	you	have	more	than	one	@Test	annotated	method	in	the	class	then
the	ability	to	run	individual	methods,	rather	than	all	the	methods	in	the	class	can	come	in
very	handy.

Run	all	the	@Test	annotated	methods	from	the	command	line

If	you	know	how	to	use	the	command	line	on	your	computer,	and	change	directory	then
you	can	also	run	the	@Test	annotated	methods	from	the	command	line	using	the
command:

mvn	test

To	do	this:

open	a	command	prompt,
ensure	that	you	are	in	the	same	folder	as	the	root	of	your	project.	i.e	the	same	folder
as	your	pom.xml	file
run	the	command	mvn	test

You	should	see	the	annotated	methods	run	and	the	Maven	output	to	the	command	line.

Summary
That	was	a	fairly	involved	explanation	of	a	very	simple	JUnit	test	class:
	1	package	com.javafortesters.chap003myfirsttest.examples;

	2	import	org.junit.Test;

	3	import	static	org.junit.Assert.assertEquals;

	4	

	5	public	class	MyFirstTest	{

	6	

	7					@Test

	8					public	void	canAddTwoPlusTwo(){

	9									int	answer	=	2+2;

10									assertEquals("2+2=4",	4,	answer);

11					}

12	}

Hopefully	when	you	read	the	code	now,	it	all	makes	sense,	and	you	can	feel	confident	that
you	can	start	creating	your	own	simple	self	contained	tests.

This	book	differs	from	normal	presentations	of	Java,	because	they	would	start	with
creating	simple	applications	which	you	run	from	the	command	line.

When	we	write	automation	code,	we	spend	a	lot	of	time	working	in	the	IDE	and	running
the	@Test	annotated	methods	from	the	IDE,	so	we	code	and	run	Java	slightly	differently
than	if	you	were	writing	an	application.

This	also	means	that	you	will	learn	Java	concepts	in	a	slightly	different	order	than	other
books,	but	everything	you	learn	will	be	instantly	usable,	rather	than	learning	things	in

order	to	progress	that	you	are	not	likely	to	use	very	often	in	the	real	world.

Although	there	is	not	a	lot	of	code,	we	have	covered	the	basics	of	a	lot	of	important	Java
concepts.

Ordering	classes	into	packages
Importing	classes	from	packages	to	use	them
Creating	and	naming	classes
Creating	methods
Creating	a	JUnit	Test
Adding	an	assertion	to	a	JUnit	test
Running	@Test	annotated	methods	from	the	IDE
primitive	types
basic	arithmetic	operators
an	introduction	to	Java	variables
Java	comments
Java	statements
Java	blocks

You	also	encountered	the	following	IntelliJ	shortcut	keys:

Function Windows Mac
Create	New alt	+	insert ctrl	+	n

Intention	Actions alt	+	enter alt	+	enter

Intention	Actions alt	+	return alt	+	return

Run	JUnit	Test ctrl	+	shift	+	F10 ctrl	+	shift	+	F10

And	now	that	you	know	the	basics,	we	can	proceed	faster	through	the	next	sections.

Exercise:	Check	for	5	instead	of	4
Amend	the	code	so	that	the	assertion	makes	a	check	for	5	as	the	expected	value	instead	of	4:

Run	the	method	and	see	what	happens.
This	will	get	you	used	to	seeing	the	result	of	a	failing	method.

Exercise:	Create	additional	@Test	annotated	methods	to	check:
2-2	=	0
4/2	=	2
2*2	=	4

Exercise:	Check	the	naming	of	the	JUnit	test	classes:
When	you	run	JUnit	test	classes	from	the	IDE	they	do	not	require	‘Test’	at	the	start	or	end	of	the	name.
But	they	do	need	that	convention	to	run	from	Maven.	Verify	this.

Create	a	class	with	a	method	containing	a	failing	assert	e.g.	assertTrue(false);

Rename	the	class	to	the	different	rules	below,	and	run	it	from	mvn	test	and	from	the	IDE	so	you	see	the
naming	makes	a	difference.

Test	at	the	start	e.g.	TestNameClass	runs	in	the	IDE	and	from	mvn	test
Test	at	the	end	e.g.	NameClassTest	runs	in	the	IDE	and	from	mvn	test
Test	in	the	middle	e.g.	NameTestClass	runs	in	the	IDE	but	not	from	mvn	test
without	Test	e.g.	NameClass	runs	in	the	IDE	but	not	from	mvn	test

References	and	Recommended	Reading

CamelCase	explanation	on	WikiPedia
en.wikipedia.org/wiki/CamelCase

Official	Oracle	Java	Documentation
What	is	an	Object?

docs.oracle.com/javase/tutorial/java/concepts/object.html
What	is	a	Class?

docs.oracle.com/javase/tutorial/java/concepts/class.html
Java	Tutorial	on	Package	Naming	conventions

docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
Java	code	blocks

docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
Java	Operators

docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
JUnit

Home	Page
junit.org

Documentation
github.com/junit-team/junit/wiki

API	Documentation
junit.org/javadoc/latest

@Test
junit.org/javadoc/latest/org/junit/Test.html

IntelliJ
IntelliJ	Editor	Auto	Import	Settings

jetbrains.com/idea/webhelp/maven-importing.html
IntelliJ	Maven	Importing	Settings

jetbrains.com/idea/webhelp/maven-importing.html

http://en.wikipedia.org/wiki/CamelCase
http://docs.oracle.com/javase/tutorial/java/concepts/object.html
http://docs.oracle.com/javase/tutorial/java/concepts/class.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://junit.org
https://github.com/junit-team/junit/wiki
http://junit.org/javadoc/latest
http://junit.org/javadoc/latest/org/junit/Test.html
http://www.jetbrains.com/idea/webhelp/maven-importing.html
http://www.jetbrains.com/idea/webhelp/maven-importing.html

Chapter	Four	-	Work	with	Other	Classes

Chapter	Summary
In	this	chapter	you	will	learn:

How	to	use	static	methods	of	another	class
How	to	instantiate	a	class	to	an	object	variable
How	to	access	static	fields	and	constants	on	a	class
The	difference	between	Integer	value	and	instantiation

In	this	chapter	you	are	going	to	learn	how	to	use	other	classes	in	your	@Test	method	code.
Eventually	these	will	be	classes	that	you	write,	but	for	the	moment	we	will	use	other
classes	that	are	built	in	to	Java.

You	have	already	done	this	in	the	previous	chapter.	Because	you	used	the	JUnit	Assert
class	to	check	conditions,	but	we	imported	it	statically,	so	you	might	not	have	noticed.	(I’ll
explain	what	static	import	means	in	the	next	chapter).

But	first,	some	guidance	on	how	to	learn	Java.

Use	@Test	methods	to	understand	Java
When	I	work	with	people	learning	Java,	I	encourage	them	to	write	methods	and	assertions
which	help	them	understand	the	Java	libraries	they	are	using.

For	example,	you	have	already	seen	a	primitive	type	called	an	int.

Java	also	provides	a	class	called	Integer.

Because	Integer	is	a	class,	it	has	methods	that	we	can	call,	and	we	can	instantiate	an
object	variable	as	an	Integer.

When	I	create	an	int	variable,	all	I	can	do	with	it,	is	store	a	number	in	the	variable,	and
retrieve	the	number.

If	I	create	an	Integer	variable,	I	gain	access	to	a	lot	of	methods	on	the	integer	e.g.

compareTo	-	compare	it	to	another	integer
intValue	-	return	an	int	primitive
longValue	-	return	a	long	primitive
shortValue	-	return	a	short	primitive

Explore	the	Integer	class	with	@Test	methods
In	fact	you	can	see	for	yourself	the	methods	available	to	an	integer.

Create	a	new	package:
com.javafortesters.chap004testswithotherclasses.examples

Create	a	new	class	IntegerExamplesTest
Create	a	method	integerExploration
Annotate	the	method	with	@Test	so	you	can	run	it	with	JUnit

You	should	end	up	with	something	like	the	following:
package	com.javafortesters.chap004testswithotherclasses.examples;

import	org.junit.Test;

public	class	IntegerExamplesTest	{

				@Test

				public	void	integerExploration(){

				}

}

We	can	use	the	integerExploration	method	to	experiment	with	the	Integer	class.

Instantiate	an	Integer	Class

The	first	thing	we	need	to	do	is	create	a	variable	of	type	Integer.
								Integer	four	=	new	Integer(4);

Because	Integer	is	a	class,	this	is	called	instantiating	a	class	and	the	variable	is	an	object
variable.

int	was	a	primitive	type.
Integer	is	a	class.
To	use	a	class	we	instantiate	it	with	the	new	keyword
The	new	keyword	creates	a	new	instance	of	a	class
The	new	instance	is	referred	to	as	an	object	or	an	instance	of	a	class

You	can	also	see	that	I	passed	in	the	literal	4	as	a	parameter.	I	did	this	because	the	Integer
class	has	a	constructor	method	which	takes	an	int	as	a	parameter	so	the	object	has	a	value
of	4.

What	is	a	Constructor?
A	constructor	is	a	method	on	a	class	which	is	called	when	a	new	instance	of	the	class	is	created.

A	constructor	can	take	parameters,	but	never	returns	a	value	and	is	declared	without	a	return	type.	e.g.
public	Integer(int	value){...}

A	constructor	has	the	same	name	as	the	class	including	starting	with	an	uppercase	letter.

The	Integer	class	actually	has	more	than	one	constructor.	You	can	see	this	for	yourself.

Type	in	the	statement	to	instantiate	a	new	Integer	object	with	the	value	4
Click	inside	the	parentheses	where	the	4	is,	as	if	you	were	about	to	type	a	new
parameter,
press	the	keys	ctrl	+	p	(cmd	+	p	on	a	Mac)

You	should	see	a	pop-up	showing	you	all	the	forms	the	constructor	can	take.	In	the	case	of
an	Integer	it	can	accept	an	int	or	a	String.

Check	that	intValue	returns	the	correct	int

We	know	that	the	Integer	class	has	a	method	intValue	which	returns	an	int,	so	we	can
create	an	assertion	to	check	the	returned	value.

After	the	statement	which	instantiates	the	Integer.

Add	a	new	statement	which	asserts	that	intValue	returns	an	int	with	the	value	4.
								assertEquals("intValue	returns	int	4",

																					4,	four.intValue());

When	you	run	this	method	it	should	pass.

Instantiate	an	Integer	with	a	String

We	saw	that	one	of	the	constructors	for	Integer	can	take	a	String,	so	lets	write	some
code	to	experiment	with	that.

Instantiate	a	new	Integer	variable,	calling	the	Integer	constructor	with	the	String
"5",
Assert	that	intValue	returns	the	Integer	5

								Integer	five	=	new	Integer("5");

								assertEquals("intValue	returns	int	5",

																					5,	five.intValue());

Quick	Summary

It	might	not	seem	like	it	but	we	just	covered	some	important	things	there.

Did	you	notice	that	you	didn’t	have	to	import	the	Integer	class?
Because	the	Integer	class	is	built	in	to	the	language,	we	can	just	use	it.	There
are	a	few	classes	like	that,	String	is	another	one.	The	classes	do	exist	in	a
package	structure,	they	are	in	java.lang,	but	you	don’t	have	to	import	them	to
use	them.

We	just	learned	that	to	use	an	object	of	a	class,	that	someone	else	has	provided,	or
that	we	write,	we	have	to	instantiate	the	object	variables	using	the	new	keyword.
Use	ctrl	+	p	to	have	the	IDE	show	you	what	parameters	a	method	can	take	(cmd	+
p	on	a	Mac).
When	we	instantiate	a	class	with	the	new	keyword,	a	constructor	method	on	the	class
is	called	automatically.

AutoBoxing

In	the	versions	of	Java	that	we	will	be	using,	we	don’t	actually	need	to	instantiate	the
Integer	class	with	the	new	keyword.

We	can	take	advantage	of	a	Java	feature	called	‘autoboxing’	which	was	introduced	in	Java
version	1.5.	Autoboxing	will	automatically	convert	from	a	primitive	type	to	the
associated	class	automatically.

So	we	can	instead	simply	assign	an	int	to	an	Integer	and	autoboxing	will	take	care	of	the
conversion	for	us	e.g.
								Integer	six	=	6;

								assertEquals("autoboxing	assignment	for	6",

																						6,	six.intValue());

Static	methods	on	the	Integer	class

Another	feature	that	classes	provide	are	static	methods.

You	already	used	static	methods	on	the	Assert	class	from	JUnit.	i.e.	assertEquals

A	static	method	operates	at	the	class	level,	rather	than	the	instance	or	object	level.
Which	means	that	we	don’t	have	to	instantiate	the	class	into	a	variable	in	order	to	call	a
static	method.

e.g.	Integer	provides	static	methods	like:

Integer.valueOf(String	s)	-	returns	an	Integer	initialized	with	the	value	of	the
String

Integer.parseInt(String	s)	-	returns	an	int	initialized	with	the	value	of	the
String

You	can	see	all	the	static	methods	by	looking	at	the	documentation	for	Integer,	or	in
your	code	write	Integer.	then	immediately	after	typing	the	.	the	IDE	should	show	you
the	code	completion	for	all	the	static	methods.

For	each	of	these	methods,	if	you	press	ctrl	+	q	(ctrl	+	j	on	a	Mac)	you	should	see	the
help	file	information	for	that	method.

Exercise:	Convert	an	int	to	Hex:
Integer	has	a	static	method	called	toHexString	which	takes	an	int	as	parameter,	this	returns	the	int	as	a
String	formatted	in	hex.

Write	an	@Test	annotated	method	which	uses	toHexString	and	asserts:

that	11	becomes	b
that	10	becomes	a
that	3	becomes	3
that	21	becomes	15

Public	Constants	on	the	Integer	class

It	is	possible	to	create	variables	at	a	class	level	(these	are	called	fields)	which	are	also
static.	These	field	variables	are	available	without	instantiating	the	class.	The	Integer
class	exposes	a	few	of	these	but	the	most	important	ones	are	MIN_VALUE	and	MAX_VALUE.

In	addition	to	being	static	fields,	these	are	also	constants,	in	that	you	can’t	change	them.
(We’ll	cover	how	to	do	this	in	a	later	chapter).	The	naming	convention	for	constants	is	to
use	only	uppercase,	with	_	as	the	word	delimiter.

MIN_VALUE	and	MAX_VALUE	contain	the	minimum	and	maximum	values	that	an	int	can
support.	It	is	worth	using	these	values	instead	of	-2147483648	and	2147483647	to	ensure
future	compatibility	and	cross	platform	compatibility.

To	access	a	constant,	you	don’t	need	to	add	parenthesis	because	you	are	accessing	a
variable,	and	not	calling	a	method.

i.e.	you	write	“Integer.MAX_VALUE”	and	not	“Integer.MAX_VALUE()”.

Exercise:	Confirm	MAX	and	MIN	Integer	sizes:
In	the	previous	chapter	we	said	that	an	int	ranged	from	-2147483648,	to	2147483647.	Integer	has	static
constants	MIN_VALUE	and	MAX_VALUE.

Write	an	@Test	annotated	method	to	assert	that:

Integer.MIN_VALUE	equals	-2147483648
Integer.MAX_VALUE	equals	2147483647

Do	this	regularly
I	encourage	you	to	do	the	following	regularly.

When	you	encounter:

any	Java	library	that	you	don’t	know	how	to	use
parts	of	Java	that	you	are	unsure	of
code	on	your	team	that	you	didn’t	write	and	don’t	understand

Then	you	can:

read	the	documentation	-	ctrl	+	q	(ctrl	+	j	on	Mac)	or	on-line	web	docs
read	the	source	-	ctrl	and	click	on	the	method,	to	see	the	source
write	some	@Test	annotated	methods,	with	assertions,	to	help	you	explore	the
functionality	of	the	library

When	writing	the	@Test	methods	you	need	to	keep	the	following	in	mind:

write	just	enough	code	to	trigger	the	functionality
ensure	you	write	assertion	statements	that	cover	the	functionality	well	and	are
readable
experiment	with	‘odd’	circumstances

This	will	help	you	when	you	come	to	write	assertions	against	your	own	code	as	well.

Warnings	about	Integer
I	used	Integer	in	this	chapter	because	we	used	the	int	primitive	in	an	earlier	chapter	and
Integer	is	the	related	follow	on	class.

But…	experienced	developers	will	now	be	worried	that	you	will	start	using	Integer	in
your	code,	and	worse,	instantiating	new	integers	in	your	code	e.g.	new	Integer(0)

They	worry	because	while	an	int	equals	an	int,	an	Integer	does	not	always	equal	an
Integer.

I’m	less	worried	because:

I	trust	you,
Automation	code	has	slightly	different	usages	than	production	code	and	you’ll	more
than	likely	use	the	Integer	static	methods
I’m	using	this	as	an	example	of	instantiating	a	class	and	using	static	methods,
This	is	only	“Chapter	4”	and	we	still	have	a	way	to	go

I’ll	illustrate	with	a	code	example,	why	the	experienced	developers	are	concerned.	You
might	not	understand	the	next	few	paragraphs	yet,	but	I	just	want	to	give	you	a	little	detail
as	to	why	one	Integer,	or	one	Object,	does	not	always	equal	another	Object.

e.g.	if	the	following	assertions	were	in	an	@Test	method	then	they	would	pass:
								assertEquals(4,4);

								assertTrue(4==4);

Note	that	“==”	is	the	Java	operator	for	checking	if	one	thing	equals	another.

If	the	following	code	was	in	an	@Test	method,	then	the	second	assertion	would	fail:
								Integer	firstFour	=	new	Integer(4);

								Integer	secondFour	=	new	Integer(4);

								assertEquals(firstFour,	secondFour);

								assertTrue(firstFour==secondFour);

Specifically,	the	following	assertion	would	fail:
								assertTrue(firstFour==secondFour);

Why	is	this?

Well,	primitives	are	simple	and	there	is	no	difference	between	value	and	identity	for
primitives.	Every	4	in	the	code	refers	to	the	same	4.

Objects	are	different,	we	instantiate	them,	so	the	two	Integer	variables	(firstFour	and
secondFour)	both	refer	to	different	objects.	Even	though	they	have	the	same	‘value’,	they
are	different	objects.

When	I	do	an	assertEquals,	JUnit	uses	the	equals	method	on	the	object	to	compare	the
‘value’	or	the	object	(i.e.	4	in	this	case).	But	when	I	use	the	"=="	operator,	Java	is	checking
if	the	two	object	variables	refer	to	the	same	instantiation,	and	they	don’t,	they	refer	to	two
independently	instantiated	objects.

So	the	assertEquals	is	actually	equivalent	to:
								assertTrue(firstFour.equals(secondFour));

Don’t	worry	if	you	don’t	understand	this	yet.	It	will	make	sense	later.

For	now,	just	recognize	that:

you	can	create	object	instances	of	a	class	with	the	new	keyword,	and	use	the	non-
static	methods	on	the	class	e.g.	anInteger.intValue()
you	can	access	the	static	methods	on	the	class	without	instantiating	the	class	as	an
object	e.g.	Integer.equals(..).

Summary
You	learned	that	in	IntelliJ	you	can	press	ctrl	and	then	the	left	mouse	button	to	click	on	a
method	name	and	IntelliJ	will	jump	to	the	source	of	that	method.

You	learned	the	following	shortcut	keys:

Function Windows Mac
Show	Parameters ctrl	+	p cmd	+	p

Show	JavaDoc ctrl	+	q ctrl	+	j

You	also	learned	about	static	methods	and	the	difference	between	object	value	and	object
identity.

Whatever	you	learn	in	this	book,	make	sure	you	continue	to	experiment	with	writing
assertions	around	code	that	you	use	or	want	to	understand.

You	also	learned	how	to	instantiate	a	new	object	and	what	a	constructor	does.

References	and	Recommended	Reading

Creating	Objects
docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html

Autoboxing
docs.oracle.com/javase/tutorial/java/data/autoboxing.html

Integer
docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

http://docs.oracle.com/javase/tutorial/java/javaOO/objectcreation.html
http://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html

Chapter	Five	-	Working	with	Our	Own	Classes

Chapter	Summary
In	this	chapter	you	will	learn	how	to:

Write	your	own	class
Write	@Test	annotated	methods	to	help	check	your	class	method	functionality
Call	the	methods	on	the	class
Create	static	methods	and	static	constants
See	the	difference	between	static	and	non-static
Use	the	IDE	to	write	much	of	your	code	for	you

And	you	will	learn	how	to	do	all	of	this	using	Test	Driven	Development.

When	we	write	code	using	TDD	(Test	Driven	Development)	we	write	@Test	methods	and
assertions	first,	and	then	write	the	code	to	make	the	assertions	pass.

I	like	to	do	this	when	I’m	writing	code	because	I	can	use	the	IDE’s	features	to	help	me
type	less	and	write	code	with	fewer	syntax	errors.

Context
Throughout	this	book	I	want	to	use	examples	and	code	which	prepare	you	for	using	Java
in	the	real	world	when	writing	automation	code	to	support	testing.	As	such	we	are	going	to
be	building	different	types	of	examples	than	we	would	in	a	normal	Java	book.

We	are	going	to	start	small,	and	I	want	to	introduce	you	to	the	concept	of	a	‘domain’
object.	A	‘domain’	object	is	an	object	instantiated	from	a	Class	which	represents
something	in	the	‘domain’	you	are	working	in	e.g.	if	you	work	on	a	banking	application
then	you	might	have	‘domain’	objects	such	as:	account,	balance,	transaction,	etc.

When	we	build	automation	code	we	need	to	build	a	library	of	supporting	objects	to	help
us.	We	do	this	so	that:

our	code	is	maintainable,
our	code	become	more	readable,
our	code	is	faster	to	write,	because	we	have	higher	level	abstractions	to	help,
we	avoid	repeating	code.

All	of	the	above	are	normal	coding	process	goodness.	Because	when	we	write	automation
code	for	a	production	application,	we	are	writing	production	code,	and	it	must	stand	up	to
the	same	scrutiny	that	we	apply	to	the	live	production	code.

We	have	a	number	of	possible	object	groupings	when	writing	automation	code,	the
following	is	one	I	use	a	lot:

Physical

http://en.wikipedia.org/wiki/Test-driven_development

Application
e.g.	login	page,	navigation	menu

Environmental
e.g.	installed	URI,	port

Logical
Domain	Entities

e.g.	user,	account

Essentially	you	can	build	as	many	categorizations	and	modeling	levels	as	you	need,	in
order	to	effectively	model	your	system.	I	recommend	the	book	‘Domain	Driven	Design’
by	Eric	Evans,	if	you	want	to	learn	more	about	domain	modeling.

For	the	examples	in	this	chapter	we	are	going	to	look	at	an	environmental	domain	object
called	TestAppEnv	which	represents	the	test	environment	we	run	our	automation	and
assertions	against.

Imagine	that	you	have	an	application	under	test,	that	you	have	installed	it	on	a	number	of
test	environments,	and	you	want	to	run	your	automation	code	on	any	of	those
environments	(and	possibly	on	live).

You	don’t	want	to	have	to	change	your	automation	code	every	time	you	use	a	different
environment,	so	you	want	to	abstract	away	the	actual	environment	configuration	behind	an
object	that	will	handle	that	for	you.

So	instead	of	writing	an	@Test	method	like	the	following:
				@Test

				public	void	checkTitleCorrectOnApp(){

								FirefoxDriver	driver	=	new	FirefoxDriver();

								driver.get("http://192.123.0.3:67");

								assertEquals("Title	should	match",

																"Test	App",	driver.getTitle());

				}

Note:	the	above	sample	code	above	uses	the	WebDriver	API,	so	it	won’t	work	if	you	type	it
in.	What	it	says	is:	start	Firefox	browser,	open	the	URL	"http://192.123.0.3:67"	and
check	the	page	title	is	"Test	App".

You	could	instead	abstract	away	the	application	connection	details	into	an	environment
domain	object,	e.g.	TestAppEnv:
				@Test

				public	void	checkTitleCorrectOnAppWithDomainObject(){

								FirefoxDriver	driver	=	new	FirefoxDriver();

								driver.get(TestAppEnv.getUrl());

								assertEquals("Title	should	match",

																"Test	App",	driver.getTitle());

				}

By	doing	this,	instead	of	having	a	hard	coded	String	literal	"http://192.123.0.3:67"	in
all	your	@Test	methods,	you	make	a	call	to	an	object	TestAppEnv.getUrl().

http://domainlanguage.com/ddd/
http://seleniumhq.org

By	following	along	with	the	text	in	this	chapter,	you	are	going	to	build	the	TestAppEnv
class,	with	its	associated	@Test	methods	and	assertions.

First	create	an	@Test	method
The	first	thing	we	want	to	do,	is	create	an	@Test	method.

To	do	that,	we	need	a	Class	to	put	the	method	in.

@Test	methods	reside	in	the	test	folder	hierarchy	of	your	project.
I’m	going	to	create	a	package	called

com.javafortesters.chap005testwithourownclasses.domainobject.examples

And	in	that	package,	create	a	class	called	TestAppEnvironmentTest.

Reminder	on	package	and	JUnit	test	class	creation
Use	the	Project	Tree	to	create	packages.	Click	on	the	parent	package,	in	the	appropriate	src	folder	branch
e.g.	src\test\java	then	right	click	and	select	New	\	Package.	Then	enter	the	package	name.

If	you	mess	it	up	you	can	delete	it	and	start	again,	or	just	drag	it	into	the	correct	place	using	the	Project
Tree.

Use	the	Project	Tree	to	create	classes.	Repeat	the	above	but	choose	New	\	Java	Class	in	the	package	you
want	to	create	the	class.

package	com.javafortesters.chap005testwithourownclasses.domainobject.examples;

public	class	TestAppEnvironmentTest	{

}

Then	add	an	@Test	method.	I’m	going	to	create	one	called	canGetUrlStatically	because
I	have	decided	that	I	want	to	be	able	to	retrieve	the	URL	from	the	TestAppEnv	class
statically,	rather	than	instantiate	a	new	instance	of	TestAppEnv	every	time	I	want	to	use	it.
				@Test

				public	void	canGetUrlStatically(){

				}

Reminder	on	@Test	method	creation
Create	the	method	code	inside	the	body	of	the	class,	between	the	start	{	and	end	}	code	block	braces.

Remember	to	add	import	org.junit.Test;	to	import	the	@Test	annotation	if	the	IDE	does	not	add	it
automatically.

Write	code	that	doesn’t	exist
Since	I	haven’t	created	the	TestAppEnv	class	yet,	any	code	that	I	write	using	it,	isn’t	going
to	work.

The	natural	tendency	then,	would	be	to	go	off	an	create	the	TestAppEnv	class,	write	the
code,	and	then	come	back	to	our	JUnit	test	class	and	write	methods	and	assertions	to

check	it.

We	are	not	going	to	do	that.	We	are	going	to	drive	our	code	creation	by	writing	automation
code.

So	in	the	canGetUrlStatically	@Test	method	we	are	going	to	write	the	code	that	we
want	to	see	exist.

In	effect	we	are	designing	the	code	by	seeing	it	in	a	usage	context.

So	in	my	method	canGetUrlStatically	I	write	the	line:
								assertEquals("Returns	Hard	Coded	URL",

																"http://192.123.0.3:67",

																TestAppEnv.getUrl());

We	can	automatically	add	the	import	for	assertEquals	from	the	JUnit	Assert	package.
But	the	IDE	will	complain	that	it	cannot	resolve	symbol	TestAppEnv.	No	surprise
there,	since	we	haven’t	written	it	yet.

But	we	are	going	to	let	the	IDE	do	the	hard	lifting	here,	and	have	it	create	the	class	for	us.

Create	a	Class
Click	on	TestAppEnv	and	press	the	keys	alt	+	enter	(IntelliJ’s	Intention	Actions	shortcut
key)	and	you	should	see	a	small	pop	up	menu	of	quick	fix	options.	Something	like:

Create	local	variable	'TestAppEnv'

Create	class	'TestAppEnv'

Create	field	'TestAppEnv'

Create	inner	class	'TestAppEnv'

Create	parameter	'TestAppEnv'

etc.

The	important	one	for	us	is	Create	class	'TestAppEnv'

Select	Create	class	'TestAppEnv'	then	we	need	to	tell	the	IDE	where	we	want	to	create
it.

We	are	going	to	use	a	different	package.

We	use	packages	to	organize	our	code,	and	just	because	our	@Test	method	code	has	been
organized	into	a	package	for	this	chapter,	it	doesn’t	mean	that	our	domain	object	needs	to
be	in	the	same	package.

I’m	going	to	use	a	package:
package	com.javafortesters.domainobject;

Since	this	is	class	is	part	of	my	abstraction	layer,	I	don’t	want	it	it	in	the	src\test\java
folder	structure,	I	want	it	in	my	main	code	src\main\java.	Make	sure	you	change	the
Target	destination	folder	and	create	it	in	the	main	code	base.

http://www.jetbrains.com/idea/webhelp/intention-actions.html

Don’t	worry	if	you	mess	it	up
It	is	important	that	we	try	to	choose	good	package	names,	but	it	is	also	important	that	we	don’t	get	too
hung	up	on	it,	because	re-organizing	the	code	into	different	packages	is	pretty	easy	once	the	code	is
working,	and	the	IDE	has	a	lot	of	automated	refactoring	tools	to	make	that	simple.

Same	with	the	target	destination.	If	you	mess	it	up,	just	delete	it	and	try	again,	or	drag	drop	the	files	in	the
Project	tree	to	get	it	the	way	you	want.

With	the	domain	object	class	created,	jump	back	to	your	JUnit	test	class,	and	see	what
new	error	exists	in	the	code.

Create	a	method
Now	the	IDE	should	have	highlighted	getUrl()	as	having	a	problem	because	it	Cannot
resolve	method	'getUrl()'

Again,	we	haven’t	created	that	method.	And	we	can	use	the	IDE	quick	fix	functionality	to
help	us.

Click	on	the	getUrl	code	and	press	the	keys	alt	+	enter	and	select	Create	method
'getUrl'

The	IDE	will	create	the	method	and	may	even	add	a	return	null;	in	there	for	us	too,	to
make	the	code	valid.
1	package	com.javafortesters.domainobject;

2	

3	public	class	TestAppEnv	{

4	

5					public	static	String	getUrl()	{

6									return	null;

7					}

8	}

Add	the	code	to	make	the	@Test	method	pass
Since	our	@Test	method	is	being	written	to	match	our	fictional	environment.	We	need	the
getUrl	method	to	return	"http://192.123.0.3:67".

All	we	do	then,	is	replace	null	in	the	method	body	code	block,	with	the	String	we	want
to	return.
public	class	TestAppEnv	{

				public	static	String	getUrl()	{

								return	"http://192.123.0.3:67";

				}

}

If	we	jump	back	to	our	@Test	method	now.

We	should	have	no	syntax	errors	and	we	can	run	the	@Test	method.

A	quick	explanation	of	the	code
There	are	no	new	concepts	in	the	@Test	method	you	have	written,	we	are	using	the	same

concepts	that	we	used	in	the	previous	chapter.

The	TestAppEnv	class,	allows	us	to	revisit	a	few	concepts	in	more	detail.

The	method	getURL	was	declared	as	public	static	String

public	this	method	is	accessible	to	any	class	that	imports	TestAppEnv
static	this	method	can	be	used	and	called,	without	instantiating	a	TestAppEnv	object
String	this	method	returns	a	string,	to	the	calling	code

Because	the	method	needs	to	return	a	String	we	add	a	return	statement.
								return	"http://192.123.0.3:67";

This	particular	return	statement	passes	back	a	String	literal.	Which	is	then	used	in	the
assertEquals	statement	in	the	method.

Exercise:	Experiment	with	the	code
Replace	the	String	with	an	int.	What	happens?
Replace	the	String	literal	"http://192.123.0.3:67"	with	null	and	run	the	@Test	method.	What
happens?

What	we	just	learned
Again,	we	have	condensed	a	whole	bunch	of	concepts	into	a	fairly	small	piece	of	working
code.

You	learned:

How	to	use	IntelliJ	Quick	Fix	functionality	“Intention	Actions”	(alt	+	enter)	to
write	code
The	basics	of	TDD:

write	a	failing	@Test	method,
run	it,
watch	it	fail,
write	just	enough	code	to	make	it	pass,
run	it,
watch	it	pass,
repeat.

How	to	create	a	static	method
How	to	declare	a	method	that	returns	a	value
How	to	return	a	value	from	a	method
How	to	call	a	static	method	on	a	Class
How	to	use	a	method’s	returned	value	in	an	assert	statement

New	Requirements

Now	that	we	have	a	working	@Test	method,	we	can	start	to	refactor	the	object	and	make	it
more	suitable	for	our	needs.

Immediately	though,	if	we	had	used	the	String	"http://192.123.0.3:67"	anywhere	in
our	code,	we	could	replace	it	with	TestAppEnv.getUrl()	and	gain	the	benefits	of
abstraction	and	maintenance.

I’m	going	to	add	a	few	more	requirements	so	that	we	can	learn	a	little	more	Java	and
amend	our	class.

Sometimes	in	our	automation	code	we	don’t	always	want	to	get	the	full	URL,	sometimes
we	want,	just	the	Domain	or	just	the	Port.

My	initial	idea	is	that	we	want	to	be	able	to	do	the	following:
				@Test

				public	void	canGetDomainAndPortStatically(){

								assertEquals("Just	the	Domain",

																"192.123.0.3",

																TestAppEnv.DOMAIN);

								assertEquals("Just	the	port",

																"67",

																TestAppEnv.PORT);

				}

Notice,	that	again,	I’m	thinking	through	the	usage	and	the	code	with	an	@Test	method.	By
writing	the	code	I	want	to	see,	I	can	experiment	with	different	concepts	before	actually
writing	any	implementation	code	to	make	the	@Test	method	pass.

All	we	have	to	do	now	is	implement	the	two	new	Constant	Fields	DOMAIN	and	PORT.

Type	in	the	new	@Test	method	code,	and	use	the	IntelliJ	Quick	fix	function	to	create	these
Constant	Fields.

Fields
A	field	is	a	Java	variable	that	is	at	the	class	level	rather	than	local	to	a	method.

Constant	means	that	it	won’t	change	once	a	value	has	been	assigned.

Fields	are	located	within	the	class	code	block.	And,	by	convention,	before	any	methods.

You	should	end	up	with	code	like	the	following	in	your	TestAppEnv	object.
				public	static	final	String	DOMAIN	=	"192.123.0.3";

				public	static	final	String	PORT	=	"67";

public	-	the	field	can	be	accessed	by	any	code	that	imports	the	TestAppEnv	class
static	-	TestAppEnv	does	not	need	to	be	instantiated	with	new	before	usage
final	-	the	variable	can	not	change	once	a	value	has	been	assigned
String	-	declares	the	variable	as	a	String	object
DOMAIN,	PORT	-	by	convention	constants	are	written	in	uppercase,	with	multiple	words
delimited	by	_	underscore

I	set	the	constants	to	the	the	string	values	that	we	passed	back	originally	in	the	getUrl
method.

If	we	run	our	@Test	methods,	they	should	pass.

Now	Refactor
An	important	element	of	TDD,	and	all	programming,	is	to	refactor.

This	means	going	back.	Looking	at	our	code.	Identifying	waste	and	improvements.	And
changing	the	code,	such	that	the	@Test	annotated	methods	continue	to	pass,	and	no
external	interface	to	the	code	is	amended.

In	our	case,	this	means	that	we	can	change	any	of	the	code	in	our	TestAppEnv	so	long	as
we	still	have	two	fields	named	DOMAIN	and	PORT	and	a	method	getUrl	which	returns	the
same	String	objects	as	that	checked	by	the	assertions.

The	obvious	thing	to	change	is	that	we	have	repeated	String	literals	in	our	domain	object
since	our	DOMAIN	string	and	PORT	string	are	repeated	as	part	of	the	hard	coded	String	in
getUrl.	i.e.	the	following	line
								return	"http://192.123.0.3:67";

A	little	string	concatenation
Since	the	values	of	the	DOMAIN	constant	and	the	PORT	constant	are	part	of	the	hard	coded
String	in	getUrl	we	really	want	to	build	the	String	passed	back	from	getUrl	using	the
DOMAIN	and	PORT	constants,	that	way	if	the	environment	details	change	then	we	only	have
to	amend	the	fields,	and	not	the	String	in	the	methods.

String	concatenation	is	something	we	do	a	lot	when	building	automation	code	e.g.:

creating	messages	to	send	to	systems
generating	input	data
creating	log	messages
etc.

I’m	going	to	quickly	show	the	simplest	way	of	concatenating	Strings.	And	in	fact	you’ve
already	seen	the	code	we	need	to	use.
+

Yes,	the	‘plus’	sign	can	join	the	values	of	String	objects	together.

I	can	amend	the	getUrl	method	so	that	it	uses	DOMAIN	and	PORT
								return	"http://"	+	DOMAIN	+	":"	+	PORT;

By	doing	this,	I	have	reduced	the	duplicated	code	and	only	have	to	change	a	single	line	of
code	in	the	abstraction	layer	if	I	want	to	change	the	environment	details	used	by	the	@Test
methods.

Run	the	JUnit	test	class	and	make	sure	that	the	@Test	methods	still	pass.

There	is	more	that	I	could	do	to	this	class,	but	for	now	it	is	good	enough,	and	we	will
revisit	it	later.

The	TestAppEnv	code
I’ve	included	the	source	code	we	built	in	this	chapter	so	you	can	check	your	results.	Later
chapters	will	not	include	the	full	source	code	since	I	recommend	that	you	download	and
view	the	full	source	used	for	the	book	(see	the	Introduction	chapter	for	details).

After	all	the	changes,	your	TestAppEnv	class	should	look	like	the	following:
	1	package	com.javafortesters.domainobject;

	2	

	3	public	class	TestAppEnv	{

	4	

	5					public	static	final	String	DOMAIN	=	"192.123.0.3";

	6					public	static	final	String	PORT	=	"67";

	7	

	8					public	static	String	getUrl()	{

	9									return	"http://"	+	DOMAIN	+	":"	+	PORT;

10					}

11	}

Since	it	is	a	very	simple	class,	we	have	not	had	to	add	any	additional	imports.

And	the	code	for	the	TestAppEnvironmentTest	class	which	we	used	to	create	TestAppEnv
is	shown	below:
	1	package	com.javafortesters.chap005testwithourownclasses.domainobject.examples;

	2	

	3	import	com.javafortesters.domainobject.TestAppEnv;

	4	import	org.junit.Test;

	5	import	static	org.junit.Assert.assertEquals;

	6	

	7	public	class	TestAppEnvironmentTest	{

	8	

	9					@Test

10					public	void	canGetUrlStatically(){

11									assertEquals("Returns	Hard	Coded	URL",

12																	"http://192.123.0.3:67",

13																	TestAppEnv.getUrl());

14					}

15	

16					@Test

17					public	void	canGetDomainAndPortStatically(){

18	

19									assertEquals("Just	the	Domain",

20																	"192.123.0.3",

21																	TestAppEnv.DOMAIN);

22	

23									assertEquals("Just	the	port",

24																	"67",

25																	TestAppEnv.PORT);

26					}

27	}

Static	Usage	versus	Static	Import

One	thing	to	point	out,	now	that	we	have	examples,	is	the	difference	between	‘Static
Usage’	and	‘Static	Import’.

You	can	see	examples	of	both	in	the	TestAppEnvironmentTest	code.

Static	Usage

We	use	the	static	constants	from	TestAppEnv.	So	we	import	the	TestAppEnv	class:
import	com.javafortesters.domainobject.TestAppEnv;

And	every	time	we	want	to	use	the	static	constants	DOMAIN	or	PORT,	we	prefix	them	with
the	class	that	they	are	from,	i.e.	TestAppEnv,	as	shown	in	the	code	below:
																TestAppEnv.DOMAIN);

Static	Import

We	statically	import	the	assertEquals	from	JUnit.
import	static	org.junit.Assert.assertEquals;

This	means	that	we	can	type	assertEquals	in	our	code	without	having	to	prefix	it	with
Assert	in	the	same	way	that	we	do	for	the	DOMAIN	and	PORT	constants	from	TestAppEnv
e.g.
								assertEquals("Returns	Hard	Coded	URL",

																"http://192.123.0.3:67",

																TestAppEnv.getUrl());

The	only	difference	is	the	import

Both	the	assertEquals	method,	and	the	constants	DOMAIN	and	PORT,	are	declared	as
static	and	public,	in	their	respective	classes.

The	only	difference	in	our	JUnit	test	code,	is	how	we	imported	them.

Had	I	imported	the	JUnit	assert	in	a	non-static	manner	i.e.	the	same	way	I	imported
TestAppEnv:
import	org.junit.Assert;

Then	I	would	not	have	been	able	to	write	assertEquals	in	my	code,	I	would	have	to
prefix	it	with	Assert	e.g.
								Assert.assertEquals("Returns	Hard	Coded	URL",

																"http://192.123.0.3:67",

																TestAppEnv.getUrl());

Similarly,	I	could	have	imported	the	TestAppEnv	constants	DOMAIN	and	PORT	statically,	and
then	avoided	the	prefix	TestAppEnv	on	each	usage.

I	could	either	import	static	the	DOMAIN	and	PORT	as	separate	imports,	or	just	import
everything	from	TestAppEnv,	and	then	I	wouldn’t	have	to	prefix	calls	to	getUrl	e.g.
import	static	com.javafortesters.domainobject.TestAppEnv.*;

Exercise:	Convert	from	Static	Usage	to	Static	Import
Experiment	with	the	static	import	in	your	TestAppEnvironmentTest.

Convert	the	assertEquals	import	static	to	an	import	of	just	the	Assert	and	amend	the	@Test
methods	accordingly	so	you	prefix	each	usage	of	assertEquals	with	Assert.
Convert	the	import	of	TestAppEnv	to	an	import	static	of	the	DOMAIN	and	the	PORT,	and	convert	the
@Test	methods	so	you	use	them	without	the	prefix.
Convert	the	import	of	TestAppEnv	to	an	import	static	of	everything	in	TestAppEnv	and	convert	the
@Test	methods	so	the	constants	have	no	prefix.

As	you	make	the	changes,	reflect	on:	how	does	the	automation	code	look?	is	it	maintainable?	etc.

How	to	decide	what	to	static	import

Deciding	what	to	import	statically	might	be	made	for	you	through	organizational	coding
standards.	i.e.	some	teams	always	write	Assert.assertEquals

I	usually	make	the	decision	based	on	my	standards	of	readability,	so	I	generally	import
static	the	assert	methods	I	use.	But	I	probably	would	not	import	static	the	TestAppEnv
constants	since	I	don’t	think	that	seeing	DOMAIN	or	PORT	in	the	@Test	methods	really	gives
me	enough	information	and	I’d	wonder	“which	domain?”	and	“which	port?”,	but	I	rarely
wonder	“which	assertEquals?”.

Overuse	of	import	static	can	make	your	code	less	readable	because	people	might
confuse	your	statically	imported	method,	or	constant,	as	one	which	is	locally	defined.

The	important	point	at	the	moment	is	to	know	that	you:

have	a	choice	over	how	you	statically	import.
decide	which	approach	to	use	on	a	case	by	case	basis	(or	follow	your	organizational
standards).
can	make	code	less	readable	and	maintainable	if	you	import	static	too	many
methods	and	constants,	so	use	this	power	sparingly.

Summary
Again,	I’ve	tried	to	condense	a	bunch	of	learning	into	a	single	chapter.	I	hope	you
managed	to	follow	along.	If	not,	go	back	through	this	chapter	and	try	again,	or	compare
your	code	to	the	main	Github	source	(or	included	above).

We	covered	a	lot	of	fundamental	concepts,	and	having	actually	done	the	work,	by	typing	it
into	your	IDE,	you	will	have	learned	more	than	you	may	realize:

We	managed	to	make	it	easier	to	amend	the	environment	location.
We	abstracted	the	change	away	from	the	@Test	methods	so	that	our	abstraction	code
can	change	without	requiring	any	other	code	changes	in	the	test	branch.
We	now	know	how	to	create	static	methods.
We	now	know	how	to	create	static	constant	fields.
We	now	know	a	little	refactoring.
We	know	a	little	String	concatenation.

We	know	to	keep	our	abstractions	in	src\main\java	and	our	@Test	methods	in
src\test\java.
We	know	that	we	can	use	classes	from	other	packages.
We	know	that	we	can	organize	our	@Test	method	code	differently	from	our
abstraction	code.

Our	next	few	chapters	are	going	to	concentrate	on	learning	some	of	the	Java	Concepts	and
libraries	that	we	need	to	understand	to	help	us	write	automation	code.

Chapter	Six	-	Java	Classes	Revisited:	Constructors,
Fields,	Getter	&	Setter	Methods

Chapter	Summary
In	this	chapter	you	will	learn	how	to:

Understand	what	a	Constructor	is
Create	a	default	constructor
Create	a	constructor	with	parameters
Call	one	constructor	from	another
Create	getter	and	setter	methods

The	first	few	chapters	have	been	‘throw	in	the	deep	end’	and	‘tutorials’.

Now	we	are	going	to	step	through	Java	concepts	in	more	detail.

We	can	do	that	because	you	already	know	how	to:

create	classes,
create	methods,
annotated	methods	with	@Test	to	run	them	as	JUnit	tests

Context
When	modeling	applications	one	of	the	Domain	Entities	I	often	end	up	creating	is	User.
Typically	someone	with	an	account	on	the	system	who	can	login	with	a	‘username’	and
‘password’.	It	may	have	a	few	other	details	as	well.

For	the	examples	in	this	chapter	we	should	imagine	that	we	want	to	build	a	User	object	for
use	in	our	JUnit	tests.

We	need	to	follow	the	normal	process	to	get	us	started:

create	a	package	'com.javafortesters.domainentities'
create	it	under	src.main.java	since	it	is	an	abstraction,	not	a	JUnit	test	class
in	the	package	create	a	class	User

1	package	com.javafortesters.domainentities;

2	

3	public	class	User	{

4	}

Next	create	a	JUnit	test	class	to	allow	us	to	construct	the	class	using	TDD.

create	a	package	'com.javafortesters.chap006domainentities.examples'
remember	to	create	it	under	src.test.java
in	the	package	create	a	class	UserTest

1	package	com.javafortesters.chap006domainentities.examples;

2	

3	public	class	UserTest	{

4	}

Constructor

What	is	a	Constructor?
A	constructor	is	a	special	method	that	is	called	when	a	class	is	instantiated	with	the	new	keyword.

Write	an	@Test	method	which	instantiates	a	new	user:
				@Test

				public	void	canConstructANewUser(){

								User	user	=	new	User();

				}

Hopefully	no	syntax	errors	-	remember	to	import	org.junit.Test.

You	would	also	have	to	import	the	User	class.

Sharing	the	same	package
If	the	User	class	and	the	UserTest	class	were	in	the	same	package	then	you	would	be	able	to	use	the	User
class	without	importing	it.

The	classes	would	be	in	different	folder	structures,	but	if	they	were	in	the	same	package	then	you	could
use	any	public	classes	in	the	same	package	without	importing	them.

Experiment	with	the	package	structure
Move	the	UserTest	to	a	different	package,	either	above	or	in	a	sibling	to	.domainentities.	Can	you	use
the	User	class	without	importing	it?

Watch	out	-	depending	on	how	you	moved	it,	your	IDE	might	have	added	the	import	for	you
automatically.

Package	Scoping
If	you	declare	a	field	or	method	with	no	modifier	i.e.	miss	out	the	public,	then	only	classes	in	the	same
package	can	use	it,	not	every	class	that	imports	it.

Default	Constructor
If	you	run	the	@Test	method	-	what	does	it	do?

Well,	nothing	really.

It	creates	a	new	instance	of	the	class	User	and	stores	it	in	the	variable	user.	But	we	did	not
create	a	constructor	on	the	User	class,	therefore	no	code	in	the	User	class	is	executed
when	the	object	is	instantiated.

Now	we	shall	add	some	code	that	executes	when	the	class	is	instantiated,	by	writing	a
constructor,	in	the	User	class,	that	doesn’t	take	any	arguments,	known	as	a	no-argument
constructor.

Default	Constructor
If	you	don’t	write	a	constructor,	then	Java	automatically	creates	one	which	sets	all	your	fields	to	their
default	values	and	calls	the	default	constructor	for	any	superclass.	(we	haven’t	covered	superclass	yet,	so
this	will	make	sense	later)

No-argument	Constructor
If	we	have	particular	defaults	in	mind	for	fields	on	the	class	then	a	good	place	to	initialize
them	is	in	a	no-argument	constructor.

I	want	to	have	a	username	field	and	a	password	field	and	have	them	default	to	"username"
and	"password".

I	could	just	go	in	to	the	User	class	and	create	code	to	set	this	up,	but	I	want	to	get	in	the
habit	of	creating	@Test	methods	first.

To	help	me	maintain	that	habit,	I’m	going	to	create	an	@Test	method	which	creates	a	User
object	and	then	gets	the	username	and	password	and	asserts	they	have	been	set	to	my
desired	default	values.

I	do	this	by	creating	an	@Test	method	which	looks	like	this:
				@Test

				public	void	userHasDefaultUsernameAndPassword(){

								User	user	=	new	User();

								assertEquals("default	username	expected",

																"username",

																user.getUsername());

								assertEquals("default	password	expected",

																"password",

																user.getPassword());

				}

The	getUsername	and	getPassword	methods	don’t	exist	so	I	have	to	create	them.

My	IDE	can	create	the	basic	methods	for	me,	but	I	don’t	have	any	username	or	password
to	return.	Which	means	it	is	now	time	to	add	username	and	password	as	fields	in	my	User
class.

I	create	a	constructor	in	User	that	takes	no	arguments.	And	assign	default	values	to	the
fields	username	and	password.	Demonstrated	by	the	following	code:

				private	String	username;

				private	String	password;

				public	User(){

								username	=	"username";

								password	=	"password";

				}

In	the	code	snippet,	you	can	see	that	I	created	a	String	variable	username	and	a	String
variable	password.	Because	these	variables	are	declared	in	the	body	of	the	class,	rather
than	in	a	method,	they	are	known	as	fields	or	field	variables.

I	have	declared	them	private	so	that	they	are	only	accessible	to	methods	in	the	User	class
itself,	and	not	from	any	classes	that	import	the	User	class.

The	constructor	I	have	written	takes	no	arguments.	You	know	it	is	a	constructor	because	it
does	not	have	a	return	type	in	the	declaration	and	the	name	is	exactly	the	same	as	that	of
the	class,	complete	with	uppercase	letter.

I	assign	default	values	to	the	username	and	password	in	the	body	of	the	constructor.	Any
method	in	a	class	can	amend,	and	access,	the	field	variables	declared	in	that	class.

I	can	then	write	the	methods	that	return	the	username	and	password,	so	that	the	@Test
method	can	pass.
				public	String	getUsername()	{

								return	username;

				}

				public	String	getPassword()	{

								return	password;

				}

The	code	should	pass	now.	Write	the	code,	and	run	the	@Test	method	to	see	this	for
yourself.

A	few	notes	on	the	User	class

The	getUsername	and	getPassword	methods	are	known	as	accessor	or	getter	methods
because	they	allow	us	to	‘access’,	or	‘get’	the	value	of	a	field.	They	take	no	parameters,
and	return	the	values	of	the	field	variables.

The	combination	of	the	field	username,	and	the	getter	method	getUsername,	is	sometimes
known	as	a	‘property’.

Because	we	declared	the	field	variables	as	private,	we	need	to	create	methods	which
allow	other	classes	to	access	the	values	of	those	variables.

I	could	have	made	the	field	variables	public,	and	then	I	would	not	have	needed	to	create
an	accessor	method,	but	then	I	reduce	the	amount	of	control	that	we	have	over	the	values
because	other	classes	could	amend	the	values	of	those	fields	at	any	point.

Experiment	with	private	and	public	fields
Try	it	for	yourself.	Make	the	fields	public	and	in	an	@Test	method,	set	username	and	password	to	a	new
value,	and	get	the	value	just	by	accessing	the	field.

e.g.	
User	auser	=	new	User();	
auser.username	=	"bob";	
assertEquals("not	default	username",	"bob",	auser.username);

A	Constructor	with	arguments
At	the	moment	we	have	no	way	of	changing	the	username	and	password	on	a	User.	So	we
will	write	a	constructor	which	allows	us	to	create	a	User	object	and	set	the	username	and
password	at	the	same	time.

As	demonstrated	in	the	following	code,	you	can	see	that	I	create	a	User	with	a	username
of	"admin"	and	a	password	of	"pA55w0rD":
				@Test

				public	void	canConstructWithUsernameAndPassword(){

								User	user	=	new	User("admin",	"pA55w0rD");

								assertEquals("given	username	expected",

																"admin",

																user.getUsername());

								assertEquals("given	password	expected",

																"pA55w0rD",

																user.getPassword());

				}

To	make	this	@Test	method	pass,	we	have	to	create	a	new	constructor	in	User,	this	time	a
constructor	which	takes	two	parameters,	the	username	and	password	we	want	to	assign	to
the	User.	This	constructor	is	shown	below:
				public	User(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

				}

Note	that	the	constructor	now	has	two	parameters:	String	username	and	String
password.

Because	these	parameters	have	the	same	name	as	the	fields,	I	have	to	use	the	this
keyword	in	the	method,	when	I	want	to	access	the	username	and	password	field	on	the
current	object.	If	I	did	not	add	this.	then	Java	would	not	be	able	to	distinguish	between
the	field	and	the	parameter.

I	could	have	renamed	the	parameters	aUsername	and	aPassword	to	avoid	a	naming	clash.
But	I	want	to	minimize	the	documentation	I	have	to	produce,	and	keeping	the	parameter
names	self-documenting	helps	long	term	maintenance.	Also	this	gives	us	the	opportunity
to	introduce	you	to	the	this	keyword.

Experiment	with	the	field	and	parameter	names
Write	the	constructor	code,	as	shown	in	the	text	which	uses	the	this	keyword.

Remove	the	this.	from	the	constructor,	and	what	happens?

Change	the	constructor	parameter	names	so	that	the	@Test	method	passes	and	you	do	not	use	the	this
keyword.	When	would	you	do	this?

this

The	this	keyword	refers	to	the	current	object.

You	can	use	any	method	or	field	in	the	object	with	the	this	keyword.

The	this	keyword	helps	you	distinguish	between	local	variables	with	the	same	name	as	fields.

You	can	also	use	the	this	keyword	to	call	methods	or	constructors.

Explicit	Constructor	Invocation
If	you	followed	the	previous	sections	then	you	will	notice	that	you	have	duplicated	code	in
the	User	class,	since	the	no-argument	constructor	has	code	to	assign	values	to	the	fields,
as	does	the	constructor	which	does	take	arguments.
public	class	User	{

				private	String	username;

				private	String	password;

				public	User(){

								username	=	"username";

								password	=	"password";

				}

				public	User(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

				}

We	can	call	one	constructor	from	another

Using	the	this	keyword	we	can	call	the	argument	constructor	from	the	no-argument
constructor,	e.g:
				public	User(){

								this("username",	"password");

				}

By	refactoring	to	this	code,	we:

only	have	one	place	where	the	username	and	password	fields	are	assigned	values,
still	retain	the	ability	to	call	the	default	constructor	and	assign	defaults	to	the	fields.

i.e.

				public	User(){

								this("username",	"password");

				}

				public	User(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

				}

Getters	and	Setters

Getters
You	have	already	seen	two	getter	(or	accessor)	methods	in	the	User	class	i.e.getUsername
and	getPassword.
				public	String	getUsername()	{

								return	username;

				}

				public	String	getPassword()	{

								return	password;

				}

Setters
We	also	want	the	ability	to	amend	or	set	field	values	in	a	class.	We	do	this	through	setter
methods.

For	our	code	we	want	to	have	the	ability	to	amend	the	password	but	not	the	username.

Once	our	username	has	been	set	via	a	constructor	invocation,	we	never	want	to	allow	any
calling	classes	to	amend	the	username,	but	we	do	want	to	allow	amending	the	password.

To	amend	the	password	we	will	write	a	setter	method	(setPassword),	which	we	use	as
specified	in	this	code:
				@Test

				public	void	canSetPasswordAfterConstructed(){

								User	user	=	new	User();

								user.setPassword("PaZZwor6");

								assertEquals("setter	password	expected",

																"PaZZwor6",

																user.getPassword());

				}

And	the	actual	setter	method	in	the	User	class	looks	like	this:
				public	void	setPassword(String	password)	{

								this.password	=	password;

				}

Again	you	can	see	the	use	of	the	this	keyword	to	distinguish	between	the	field	and	the
local	variable	defined	by	the	String	password	parameter.

Write	the	code,	and	run	the	@Test	methods	to	make	sure	all	our	assertions	still	pass.

Why	Setters	and	Getters?
By	creating	a	setter	method	we	gain	the	ability	to	control	the	values	that	are	assigned	to
the	fields	e.g.

we	could	add	code	for	validation	and	make	sure	we	can’t	assign	incorrect	passwords
if	a	password	had	to	be	minimum	length	we	could	write	code	to	pad	it	to	the	correct
length	if	we	needed	to

We	can	use	getter	methods	to	hide	the	implementation,	e.g.	we	might	‘calculate’	the	return
value,	rather	than	always	return	something	which	has	been	set.

There	are	occasionally	times	where	we	want	to	loosen	up	control	over	the	object	fields	and
make	them	public,	so	people	can	amend	them	and	access	them	whenever,	and	however
they	want.	But	we	are	much	more	likely	to	use	setter	and	getter	methods	to	control	access
and	allow	us	the	flexibility	in	the	future	to	change	implementation	details.

Summary
You	should	now	know	how	to:

create	a	no-argument	constructor	by	creating	a	public	scope	method	with	no	return
type	which	has	the	same	name	as	the	class
create	a	constructor	that	takes	parameters
have	parameters	named	the	same	as	fields,	and	use	them	in	the	same	method	body
call	a	constructor	from	an	other	constructor
create	getter	methods	which	return	values
create	setter	methods	to	amend	field	variables
use	the	this	keyword	to	distinguish	between	object	fields	and	method	parameters

And	you	should	also	understand:

the	basics	of	field	and	method	scoping	public,	private	and	with	no	explicit	scope
(package).

User	class	code
For	your	reference	and	comparison,	we	created	the	following	User	class,	in	this	chapter:
package	com.javafortesters.domainentities;

public	class	User	{

				private	String	username;

				private	String	password;

				public	User(){

								this("username",	"password");

				}

				public	User(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

				}

				public	String	getUsername()	{

								return	username;

				}

				public	String	getPassword()	{

								return	password;

				}

				public	void	setPassword(String	password)	{

								this.password	=	password;

				}

}

References	and	Recommended	Reading

Access	Control
docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Default	Constructor
docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.8.9

Constructors
docs.oracle.com/javase/tutorial/java/javaOO/constructors.html

Java	‘this’	keyword
docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.8.9
http://docs.oracle.com/javase/tutorial/java/javaOO/constructors.html
http://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

Chapter	Seven	-	Basics	of	Java	Revisited

Chapter	Summary
In	this	chapter	you	will	receive	an	overview	of:

Java	Comments
Java	naming	conventions
Working	with	packages
Scope	of	fields,	methods	and	classes
the	final	keyword
Data	Types:	boolean,	integer,	floating	point,	character	and	their	wrapper	classes
BigDecimal

Operators:	Arithmetic,	Assignment,	Boolean,	Conditional,	Ternary	and	Bitwise
Operator	Precedence
String	concatenation	and	static	methods

This	chapter	will	quickly	reinforce	the	topics	covered	in	the	previous	tutorial	chapters.
You	will	also	see	reference	to	concepts	you	have	not	yet	covered	e.g.	BigDecimal,	we
mention	these	because	it	makes	sense	in	context,	but	we	will	cover	the	details	later.

There	are	no	specific	exercises	in	this	chapter,	although	you	should	read	through	the
example	code	to	make	sure	you	understand	it.	I	also	recommend	that	you	write	@Test
methods	to	experiment	with	your	own	examples	and	verify	the	statements	made	in	this
chapter.

You	can	use	this	as	a	reference	chapter	for	later	study.	Rest	assured	that	we	continue	to
build	on	this	information	in	later	chapters,	so	don’t	worry	if	you	don’t	absorb	it	all	on	first
reading.

Comments
Comments	are	non-executable	statements	in	the	code.

There	are	3	types	of	comments:

comments	that	run	to	the	end	of	the	line	//
comments	that	mark	out	blocks	starting	/*	and	ending	*/
JavaDoc	comments	starting	with	/**	and	ending	*/

When	we	want	small	comments	we	can	add	them	after	statements	and	anything	after	//
will	be	treated	as	a	comment.	These	comments	are	useful	for	quick	explanations.
								assertTrue(truthy);	//	comment	till	end	of	line

To	comment	out	a	block	of	code,	or	have	a	larger	descriptive	text	we	use	a	block	comment
which	starts	with	/*	and	ends	with	*/.	These	comments	can	span	lines	and	start	and	end	in
the	middle	of	lines.

								/*

										This	code	checks	that	the	true

										value	that	truthy	was	set	to

										is	true.	Pretty	obvious	really.

									*/

								boolean	truthy	=	true;

								assertTrue(truthy);

Block	Comments	do	not	nest
You	cannot	nest	block	comments,	i.e.	if	you	try	and	comment	out	a	block	of	text	which	already	contains	a
block	comment	then	you	will	get	a	syntax	error.

You	can	comment	out	a	block	comment	by	putting	//	at	the	start	of	each	line.

JavaDoc	comments	help	with	communication	because	you	can	use	the	IDE	to	show	you
the	JavaDoc	on	methods	and	classes	i.e.	if	I	press	ctrl	+	q	(ctrl	+	j	on	Mac)	on	the
addTwoNumbers	method	call	in	aJavaDocComment	I	will	see	the	JavaDoc	documentation
from	the	comment.

This	is	a	very	useful	commenting	style	to	use	on	abstraction	layer	classes	and	methods.
e.g.
				@Test

				public	void	aJavaDocComment(){

								assertTrue(addTwoNumbers(4,3)==7);

				}

				/**

					*	Add	two	integers	and	return	an	int.

					*

					*	There	is	a	risk	of	overflow	since	two	big

					*	integers	would	max	out	the	return	int.

					*

					*	@param	a	is	the	first	number	to	add

					*	@param	b	is	the	second	number	to	add

					*	@return	a+b	as	an	int

					*/

				public	int	addTwoNumbers(int	a,	int	b){

								return	a+b;

				}

We	won’t	cover	JavaDoc	in	detail	in	this	book,	but	you	can	read	the	references	to	find	out
more.

Statement
A	Java	statement	is	the	smallest	chunk	of	executable	Java	code.	We	end	a	Java	statement
with	;	e.g.
								assertEquals(4,	2+2);

Java	statements	can	span	lines.	This	is	useful	to	make	your	code	more	readable	and	line	up
arguments	on	method	calls.	e.g.

								assertEquals("2+2	always	=	4",

																				4,

																				2+2);

Packages
Java	allows	us	to	group	our	Classes	into	packages.	Each	class	has	to	be	uniquely	named
within	a	package.	We	can	have	multiple	classes	with	the	same	name,	provided	they	are	all
in	different	packages.
package	com.javafortesters.chap007basicsofjavarevisited.examples;

To	add	a	class	to	a	package	you	write	a	package	declaration	statement	like	the	above,	very
often	the	first	line	in	the	class,	and	certainly	before	the	code	that	declares	the	class.

Java	Classes
All	of	our	Java	code	will	involve	classes	in	some	form.	Either	using	classes	that	others
have	written,	writing	abstraction	layers	as	classes,	or	creating	JUnit	tests	(which	are
actually	methods	in	a	class	annotated	with	@Test).
public	class	AnEmptyClass	{

}

This	example	class	shows	many	features	of	a	class:
package	com.javafortesters.chap007basicsofjavarevisited.examples;

	public	class	ClassExample	{

				public	static	final	String	CONSTANT	=	"a	constant	string";

				public	static	String	aClassField	=	"a	class	field";

				protected	static	String	proField	=	"a	class	field";

				public	String	pubField	=	"a	public	field";

				private	String	privField	=	"a	private	field";

				private	String	name;

				public	ClassExample(String	name){

								this.name	=	name;

				}

				public	String	getName(){

								return	this.name;

				}

				public	void	setName(String	name){

								this.name	=	name;

				}

}

The	first	line	of	the	class	has	the	package	declaration.	This	doesn’t	need	to	be	the	first
line,	it	just	needs	to	come	before	the	class	declaration.
package	com.javafortesters.chap007basicsofjavarevisited.examples;

Here,	the	class	is	declared	with	the	name	ClassExample	and	declared	as	public.
	public	class	ClassExample	{

Because	the	class	is	public,	it	can	be	used	by	another	class,	so	long	as	they	import	it,	or
if	they	are	in	the	same	package.	If	I	didn’t	add	the	public	then	the	class	would	have
package	scope	and	only	be	available	to	other	classes	in	the	same	package.

Static	methods	and	fields
A	class	can	expose	static	methods	and	fields,	which	allow	you	to	use	them	without
instantiating	a	new	instance	object	of	the	class.

You	have	seen	this	when	using	any	of	the	asserts	in	JUnit,	these	are	all	static	methods	on
the	Assert	class.

Instantiating	Classes
Most	classes	need	to	be	instantiated	before	they	can	be	used.
								ClassExample	instance	=	new	ClassExample("bob");

When	we	instantiate	a	class,	we	use	the	new	keyword,	and	call	one	of	the	class’s
constructors.

Field	and	Method	Scope
The	scope	of	a	field	or	method	is	defined	by	public,	protected,	private	or	package-
private	(no	modifier).

public	accessible	to	any	class	that	imports	the	parent	class
protected	accessible	to	any	class	in	the	same	package,	or	any	subclass
private	accessible	to	methods	in	the	class
package-private	-	when	no	modifier	is	used	then	the	field	or	method	is	accessible	to
the	class	and	any	class	in	the	same	package	(this	is	the	default)

Additional	field	and	method	modifiers:

static	-	the	field	or	method	exists	at	the	class	level,	not	the	instance	level,	so	is
shared	by	all	instances	and	can	be	accessed	without	needing	to	have	an	instantiated
class	variable.

Fields	&	Variables
Fields	are	variables	that	are	accessible	by	any	method	in	the	class	and,	depending	on	the
scope,	possibly	to	other	classes.

Field	typically	refers	to	variables	declared	at	the	class	level	and	local	variable	refers	to
variables	created	in	a	method.

Additional	field	modifiers	are:

final	-	once	the	field	has	a	value	it	cannot	be	changed

Examples	of	combinations	and	nuances	of	scope	and	modifiers	are	explained	below.

Naming

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

A	field	or	variable	name	must	begin	with	a	letter,	which	is	any	Unicode	character	that
represents	a	letter:	to	play	it	safe,	and	keep	code	readable,	we	normally	stick	to	‘A’	to	‘Z’,
‘a’	to	‘z’,	although	some	people	also	use	the	symbols	‘_’	and	‘$’	(and	even	£).

After	this	first	letter,	the	variable	name	can	contain	any	of	the	letters,	or	digits.

Case	is	significant	so	aMount	is	not	the	same	as	Amount.

Names	tend	to	use	camel	case	and	start	with	a	lowercase	letter.	Constants	tend	to	be	all
uppercase,	with	‘_’	to	delimit	words.

A	variable	name	can	be	very	long,	and	you	can	use	a	wide	range	of	characters	in	the	name,
but	do	try	and	keep	the	names	readable,	and	capable	of	being	read	aloud.
				@Test

				public	void	variableNaming(){

								String	$aString="bob";

								float	£owed=10F;

								int	aMount=4;

								long	Amount=5;

								String	A0123456789bCd$f="ugh";

								assertEquals(4,aMount);

								assertEquals(5,	Amount);

								assertEquals(10.0F,	£owed,	0);

								assertEquals("bob",	$aString);

								assertEquals("ugh",	A0123456789bCd$f);

				}

Public	Static	Final

public	static	final	fields	are	often	known	as	constants,	because	once	assigned	a	value,
the	value	can	not	be	changed.	This	makes	them	useful	for	exposing	constant	values	to
other	classes.
				public	static	final	String	CONSTANT	=	"a	constant	string";

Typically	you	will	see	the	value	assignment	in	the	declaration	as	a	constant,	as	shown	in
the	example	above,	but	it	could	also	be	set	from	a	method	call,	which	allows	you	to	read
constants	from	files	or	property	values.

Final
Note	that	final	does	not	have	to	have	public	static	scope.	Any	of	the	scoping	keywords	can	be	used
with	final	e.g.	private	final

final	simply	means	that	once	assigned	a	value,	it	can’t	be	changed.	But	it	is	so	often	used	as	public
static	final	that	I	included	it	in	this	section.

Public	Static
				public	static	String	aClassField	=	"a	class	field";

A	public	static	field	is	available	to	any	class	which	imports	the	ClassExample	class.
And	because	it	is	static,the	field	is	available	without	having	to	instantiate	the	class	into	an
instance	variable.	static	fields	are	often	known	as	class	fields	e.g.

								assertEquals(ClassExample.aClassField,

																					"a	class	field");

You	can	access	class	fields	from	instance	objects,	but	the	IDE	may	warn	you,	or	the	field
may	not	show	up	in	code	completion.
								instance.aClassField	=	"changed";

Unlike	constants	these	fields	can	have	their	values	changed	by	other	classes.	This	can
make	your	code	error	prone	-	so	be	careful	if	you	do	this.

Public
				public	String	pubField	=	"a	public	field";

A	public	field	is	accessible	to	all	classes	which	instantiate	a	new	instance	variable	of	the
class.
								assertEquals(instance.pubField,	"a	public	field");

								instance.pubField	=	"amended	public	field";

								assertEquals(instance.pubField,	"amended	public	field");

Because	these	fields	can	be	changed	by	other	classes,	you	should	consider	if	you	need	to
make	them	public,	or	if	it	should	be	a	private	field,	and	the	class	should	offer	setter	and
getter	methods	instead.

Protected

protected	means	that	the	field	can	be	used	by	any	class	in	the	same	package,	or	any	class
which	extends	this	class.	(You	will	learn	about	extends	later	in	this	book)

Package-Private	(default)

When	no	modifier	is	added	to	the	field	definition	then	it	is	only	accessible	by	methods	in
the	class	or	any	classes	in	the	same	package.

Importing	Classes
A	class	can	use	any	classes	in	the	same	package.	And	any	class	declared	as	public	in
other	packages,	when	we	import	that	class.

We	can	import	specific	classes	by	specifying	the	class	name	in	the	the	import	statement.
import	com.javafortesters.domainentities.User;

We	can	also	use	wildcard	to	import	all	the	classes	from	a	package	e.g.
import	com.javafortesters.chap001basicsofjava.examples.classes.*;

Note	that	you	don’t	have	to	import.	You	can	use	classes	without	importing	them,	by
prefixing	the	class	name	with	the	package	path.	But	your	code	quickly	becomes	verbose
and	harder	to	maintain.	e.g.
				@org.junit.Test

				public	void	nonImportTest(){

								org.junit.Assert.assertEquals(3,	2	+	1);

				}

This	can	be	helpful	if	you	are	trying	to	use	two	classes	with	the	same	name	in	your	code.
If	they	are	in	different	packages	then	prefix	the	class’s	name	with	the	full	package	when

you	declare	and	initialise	it.

Static	Imports
You	can	import	specific	methods	and	fields,	as	well	as	classes.	You	have	already	seen	this
with	the	JUnit	imports.	e.g.
import	org.junit.Assert;

import	static	org.junit.Assert.assertEquals;

Above	you	can	see	two	imports.	A	static	import	for	the	assertEquals	method	and	an
import	for	the	Assert	class.

When	I	use	the	static	import	of	assertEquals,	I	can	use	the	assertEquals	method
directly	in	my	code	e.g.
								assertEquals(6,3+3);

When	I	do	not	use	the	static	import,	I	have	to	access	the	static	method	from	the	class
itself	e.g.
								Assert.assertEquals(5,3+2);

Data	Types
Every	variable	in	Java	must	have	a	type	declared,	either	as	a	primitive,	or	an	object	class.

Boolean	Type
A	boolean	has	two	constants	true	and	false.

There	is	also	an	associated	Boolean	object.
				@Test

				public	void	BooleanType(){

								boolean	truthy	=	true;

								boolean	falsey	=	false;

								assertTrue(truthy);

								assertFalse(falsey);

								truthy	=	Boolean.TRUE;

								falsey	=	Boolean.FALSE;

								assertTrue(truthy);

								assertFalse(falsey);

				}

Integer	Types

byte	range:	-128	to	127
short	range:	-32768	to	32767
int	range:	-2147483648	to	2147483647
long	range:	-9223372036854775808	to	9223372036854775807

Each	primitive	has	an	associated	Class	e.g.	Byte,	Short,	Integer,	Long.	These	can	be	used
for	conversions	and	have	other	support	methods.	They	also	have	the	MIN_VALUE	and
MAX_VALUE	constants	for	each	primitive.

Various	Java	syntax	exists	for	representing	literals	as	specific	primitives:

represent	an	integer	literal	as	a	long	by	adding	the	suffix	L
represent	a	hex	value	with	the	prefix	0x	(zero	x)
represent	an	octal	value	with	the	prefix	0	(zero)
represent	a	binary	value	with	the	prefix	0b	(zero	b)	(Java	1.7)
make	numbers	readable	by	adding	_	e.g.	9_000_000	(underscore)	(Java	1.7)

Examples	of	the	above,	can	be	seen	below:
				@Test

				public	void	IntegerTypes(){

								byte	aByteHas1Byte;

								short	aShortHas2Bytes;

								int	anIntHas4Bytes;

								long	aLongHas8Bytes;

								System.out.println(

																"*	`byte`	range:	"	+

																Byte.MIN_VALUE	+	"	to	"	+

																Byte.MAX_VALUE);

								System.out.println("*	`short`	range:	"	+

																Short.MIN_VALUE	+	"	to	"	+

																Short.MAX_VALUE);

								System.out.println("*	`int`	range:	"	+

																Integer.MIN_VALUE	+	"	to	"	+

																Integer.MAX_VALUE);

								System.out.println("*	`long`	range:	"	+

																Long.MIN_VALUE	+	"	to	"	+

																Long.MAX_VALUE);

								aLongHas8Bytes	=	0L;	//add	suffix	L	for	long

								assertEquals(0,	aLongHas8Bytes);

								aByteHas1Byte	=	0xA;	//add	prefix	0x	for	Hex

								assertEquals(10,aByteHas1Byte);

								anIntHas4Bytes	=	010;	//add	'zero'	prefix	for	Octal

								assertEquals(8,	anIntHas4Bytes);

								aByteHas1Byte	=	0b0010;	//	Java	1.7	added	0b	'zero	b'	for	binary

								assertEquals(aByteHas1Byte,	2);

								//	Java	1.7	allows	underscores	for	readability

								aLongHas8Bytes	=	9_000_000_000L;	//	9	000	million

								assertEquals(9000000000L,	aLongHas8Bytes);

				}

Floating-point	Types

Floating	point	types	have	two	different	precisions,	which	controls	the	size	of	value	they
can	store:

float	:	single	precision	32	bit	number
double	:	double	precision	64	bit	number

Ranges:

float	range:	1.4E-45	to	3.4028235E38
double	range:	4.9E-324	to	1.7976931348623157E308

Suffixes:

represent	a	float	with	the	suffix	F
represent	a	double	with	the	suffix	D,	or	if	you	use	a	decimal	point	e.g.	20.0	then	then
number	with	default	to	a	double

The	official	documents	recommend	the	use	the	java.math.BigDecimal	class	if	you	want
precise	values	e.g.	currency.	BigDecimal	helps	avoid	rounding	errors.

These	primitive	types	also	have	an	associated	Class	e.g.	Float	and	Double
					@Test

					public	void	FloatingPointType(){

									float	singlePrecision32bit;

									double	doublePrecision64bit;

									System.out.println("*	`float`	range:	"	+

																									Float.MIN_VALUE	+	"	to	"	+

																									Float.MAX_VALUE);

									System.out.println("*	`double`	range:	"	+

																									Double.MIN_VALUE	+	"	to	"	+

																								Double.MAX_VALUE);

									singlePrecision32bit	=	10.0F;	//	suffix	F	to	get	a	float

									assertEquals(10F,	singlePrecision32bit,	0);

									doublePrecision64bit	=	20.0;		//	default	to	double

									assertEquals(20D,	doublePrecision64bit,	0);

					}

Character	Type
The	char	data	type	is	used	to	represent	an	individual	character	e.g.	'a',	it	is	a	16	bit
Unicode	character.

A	char	is	not	a	String.

You	can	represent	a	unicode	character	as	\u0026	i.e.	\u	followed	by	the	4	character	hex
value	of	the	Unicode	character.	\u0026	is	&

Java	also	has	some	special	characters	represented	by	escape	sequences	e.g.

\t	-	a	tab	character

\b	-	backspace
\n	-	a	new	line
\r	-	a	carriage	return
\'	-	a	single	quote
\"	-	a	double	quote
\\	-	a	backslash

All	of	these	special	characters	are	also	available	for	use	in	String.

Java	also	has	an	associated	Character	class	with	static	methods	to	help	when	working
with	char	variables.
					@Test

					public	void	CharacterType(){

									char	aChar	=	'\u0026';

									assertEquals(aChar,	'&');

					}

Operators

Traditional
Java	has	the	traditional	arithmetic	operators	that	you	would	expect:

+	for	addition
-	for	subtraction
*	for	multiplication
/	for	division

All	of	the	above	can	be	used	for	Integer	and	Floating	point	numbers.	Although	you	may
not	get	the	result	you	expect	with	Floating	point	numbers	(due	to	rounding)	-	which	is
why	BigDecimal	is	often	recommended.

+	can	also	be	used	for	String	concatenation
%	for	integer	remainder	calculations	(i.e.	modulus)	e.g.	9%2	returns	1

				@Test

				public	void	traditionalOperatorsExplored(){

								assertEquals(4,	2+2);

								assertEquals(5L,	10L	-	5L);

								assertEquals(25.0F,	12.5F	*	2F,	0);

								assertEquals(30.2D,	120.8D	/	4D,	0);

								assertEquals("abcd",	"ab"	+	"cd");

								assertEquals(1,	9%2);

				}

Assignment
Operators	are	also	used	for	assignment,	as	you	have	seen	when	you	instantiate	a	variable.

=	to	assign	the	value	to	the	variable

The	traditional	operators	can	also	be	used	during	assignment:

+=	to	increment	the	variable	by	value	e.g.	+=	2	would	add	two
-=	to	decrement	the	variable	by	value	e.g.	-=	2	would	subtract	two
*=	to	multiply	the	variable	by	value	e.g.	*=	2	would	multiply	by	two
/=	to	divide	the	variable	by	value	e.g.	/=	2	would	divide	by	two
%=	to	calculate	and	assign	the	modulus	by	value	e.g.	%=	3	would	assign	the	variable
modulus	the	value

				@Test

				public	void	assignmentOperatorsExplored(){

								String	ab	=	"ab";

								assertEquals("ab",	ab);

								int	num	=	10;

								assertEquals(10,	num);

								num	+=	2;

								assertEquals("+=	increments	by",	12,	num);

								num	-=	4;

								assertEquals("-=	decrements	by",	8,	num);

								num	*=	2;

								assertEquals("*=	multiplies	by",	16,	num);

								num	/=	4;

								assertEquals("*=	multiplies	by",	4,	num);

								num	%=3;

								assertEquals("%=	modulus	of",	1,	num);

				}

Increment	and	Decrement
You	can	increment	and	decrement	a	variable	using	++	and	--	e.g.	++num	would	return	num
incremented	by	1

You	can	put	++	and	--	before	or	after	the	variable.

Putting	++	or	--	before	the	variable	means	that	you	want	to	amend	it	after	using	it.
(prefix)
Putting	++	or	--	after	the	variable	means	that	you	want	to	use	it	and	then	increment	it.
(postfix)

e.g.
				@Test

				public	void	incrementDecrementOperatorsExplored(){

								int	num	=	10;

								assertEquals(11,	++num);

								assertEquals(10,	--num);

								assertEquals(10,	num++);

								assertEquals(11,	num);

								assertEquals(11,	num--);

								assertEquals(10,	num);

				}

Boolean	Operators
Java	has	a	range	of	operators	which,	compare	two	operands	to,	return	true	or	false.

==	test	for	equality
!=	test	for	inequality
>	greater	than
<	less	than
<=	less	than	or	equal	to
>=	greater	than	or	equal	to

You	can	also	negate	a	boolean	with	!	(known	as	logical	complement);
				@Test

				public	void	booleanOperatorsExplored(){

								assertTrue(4	==	4);

								assertTrue(4	!=	5);

								assertTrue(3	<	4);

								assertTrue(5	>	4);

								assertTrue(6	>=	6);

								assertTrue(7	>=	6);

								assertTrue(8	<=	8);

								assertTrue(8	<=	9);

								assertTrue(!false);

								boolean	truthy	=	true;

								assertFalse(!truthy);

				}

Conditional	Operators
You	can	create	complex	boolean	statements	by	using	&&	and	||

&&	a	logical	and
||	a	logical	or

e.g.
				@Test

				public	void	conditionalOperatorsExplored(){

								assertTrue(true	&&	true);

								assertTrue(true	||	false);

								assertTrue(false	||	true);

								assertFalse(false	||	false);

								assertFalse(false	&&	true);

				}

Note	that	these	logical	conditional	operators	short	cut,	so	they	only	evaluate	the	second
operand	if	required.	e.g.	true	||	false	would	only	need	to	check	the	first	true	value,	but
false	||	true	would	have	to	evaluate	both.

Ternary	Operator
Java	supports	a	ternary	operator	which	performs	a	check	on	a	condition	and:

if	true,	returns	the	value	of	the	first	operand,	and
if	false,	returns	the	value	of	the	second	operand.

condition	?	operand1	:	operand2;

Note	that	you	only	need	the	;	on	the	end,	if	the	ternary	operator	is	on	the	right	of	a
statement,	if	it	is	evaluated	within	a	statement	then	you	don’t	add	the	;

e.g.
				@Test

				public	void	ternaryOperatorsExplored(){

								int	x;

								x	=	4>3	?	2	:	1;

								assertEquals(2,	x);

								assertTrue(5>=4	?	true	:	false);

				}

Bitwise	Operators
You	can	perform	binary	based	bitwise	operations	on	Integer	data	types.

&	and
|	or
^	xor
~	bitwise	two’s	complement	(invert	the	bits)

				@Test

				public	void	bitwiseOperatorsExplored(){

								assertEquals(0b0001,

																					0b1001	&	0b0101);

								assertEquals(0b1101,

																					0b1001	|	0b0101);

								assertEquals(0b1100,

																					0b1001	^	0b0101);

								int	x	=	0b0001;

								assertEquals("11111111111111111111111111111110",

																					Integer.toBinaryString(~x));

				}

The	bitwise	operators	can	also	be	used	during	an	assignment.
				@Test

				public	void	bitwiseAssignmentOperatorsExplored(){

								byte	x	=	0b0001;

								x	&=	0b1011;

								assertEquals(0b0001,	x);

								x	|=	0b1001;

								assertEquals(0b1001,	x);

								x	^=	0b1110;

								assertEquals(0b0111,	x);

				}

Bit	Shift	Operators
You	can	perform	binary	arithmetic	and	shift	operations	on	Integer	data	types.

<<	shift	to	the	left	e.g.	<<3	shift	3	to	the	left
>>	signed	shift	to	the	right
>>>	unsigned	right	shift	(shift	a	zero	into	leftmost	position)

The	shift	operators	can	also	be	used	on	assignment.
				@Test

				public	void	bitwiseShiftOperatorsExplored(){

								int	x	=	56;

								assertEquals(x*2,	x<<1);

								assertEquals(x*4,	x<<2);

								assertEquals(x*8,	x<<3);

								x	<<=3;

								assertEquals(56*8,	x);

								x	=	Integer.MAX_VALUE;

								assertEquals(Integer.MAX_VALUE/2,	x>>1);

								assertEquals(Integer.MAX_VALUE/4,	x>>2);

								assertEquals(Integer.MAX_VALUE/8,	x>>3);

								x	=	Integer.MIN_VALUE;	//	-ve

								assertEquals((Integer.MAX_VALUE/2)+1,	x>>>1);

				}

Operator	precedence
The	operator	precedence	is	listed	on	the	Java	documentation	page:

docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

While	it	is	worth	understanding	the	precedence	order,	it	is	generally	easier	to	read	the
intent	behind	a	complex	statement	if	the	order	of	precedence	is	made	clear	by	using
parenthesis,	()	since	nested	operations	are	executed	first.

e.g.	compare	the	asserts:
				@Test

				public	void	operatorPrecedence(){

								assertEquals(8,	4+2*6/3);

								assertEquals(12,	(((4+2)*6)/3));

				}

Therefore	try	and	use	parenthesis,	(),	to	control	the	order	of	precedence,	as	it	will	make
the	code	easier	to	read	and	maintain.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

The	basic	rules	for	precedence	are:

The	operators	with	highest	precedence	are	evaluated	first.
Operators	with	equal	precedence	are	evaluated	in	left	to	right	order
Assignment	operators	are	evaluated	right	to	left

In	the	table	below,	operators	are	listed	in	precedence	order,	and	where	more	than	one
operator	is	on	the	same	row,	they	are	of	equal	precedence.

Operator
x++	x--
++x	--x	+x	-x	~	!
*	/	%
+	-
<<	>>	>>>
<	>	<=	>=
==	!=
&

^

|

&&

||

?:

=	+=	-=	*=	/=	%=	&=	^=	|=	<<=	>>=	>>>=

Strings
A	String	is	a	class	in	java.lang	so	you	don’t	need	to	import	it	to	use	it.

Strings	are	immutable	so	they	can’t	change.	All	commands	that	look	like	they	change	the
values	of	strings,	actually	return	a	new	String	with	all	the	amendments.

String	Concatenation
Strings	can	be	concatenated	using	the	+	operator.
				@Test

				public	void	stringsConcatenated(){

								assertEquals("123456",	"12"	+	"34"	+	"56");

				}

String	methods
The	String	class	provides	static	methods	that	can	be	used	without	instantiating	a
String	object	variable:

length	the	number	of	characters	in	the	string
charAt	returns	the	character	at	a	specific	index
contains	returns	true	if	a	substring	is	contained
etc.

				@Test

				public	void	someStringMethods(){

								String	aString	=	"abcdef";

								assertEquals(6,	aString.length());

								assertTrue(aString.compareToIgnoreCase("ABCDEF")==0);

								assertTrue(aString.contains("bcde"));

								assertTrue(aString.startsWith("abc"));

								//	string	indexing	starts	at	0

								assertEquals('c',	aString.charAt(2));

								assertEquals("ef",	aString.substring(4));

				}

For	methods	which	use	indexes	e.g.	substring	or	charAt	the	index	starts	at	0	so	the	first
character	is	at	index	0

Strings	will	be	explored	in	more	detail	later	in	the	book.

Summary
This	was	intended	to	be	a	fairly	heavy	chapter,	but	I	interspersed	it	with	a	lot	of	code
examples.

Make	sure	you	work	through	the	examples	and	understand	them.

Recreate	them	in	your	own	code	and	experiment	with	them,	if	you	want	to	deepen	your
knowledge.

Don’t	worry	if	you	didn’t	understand	it	all.	We	will	cover	some	of	the	topics	in	this
chapter	in	more	detail	later,	since	this	is	the	first	time	you	have	seen	some	of	the	topics
here.

References	and	Recommended	Reading

JavaDoc	Comments	Documentation
oracle.com/technetwork/java/javase/documentation/index-137868.html

Wikipedia	JavaDoc
en.wikipedia.org/wiki/Javadoc

Method	Scope:	public,	private,	protected,	package
docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Java	Primitive	Data	Types
docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Unicode	characters
en.wikipedia.org/wiki/List_of_Unicode_characters

Java	characters
docs.oracle.com/javase/tutorial/java/data/characters.html

Two’s	Complement
en.wikipedia.org/wiki/Two%27s_complement

Operators	and	Precedence
docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://en.wikipedia.org/wiki/Javadoc
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://en.wikipedia.org/wiki/List_of_Unicode_characters
http://docs.oracle.com/javase/tutorial/java/data/characters.html
http://en.wikipedia.org/wiki/Two%27s_complement
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Chapter	Eight	-	Selections	and	Decisions

Chapter	Summary
In	this	chapter	you	will	learn,	how	to	use	selections	and	conditions	in	your	code:

How	to	use	the	ternary	operator
if/else	statements
The	switch	statement

When	I	was	learning	to	program,	a	long	time	ago.	I	was	taught	that	programming	was
made	up	of:

Sequence
Selection
Iteration

Sequence,	is	what	we’ve	been	doing:	one	statement,	following	another	statement.

Selection,	is	making	decisions,	and	choosing	to	do	one	thing,	or	another,	depending	on	a
particular	condition.

Iteration,	where	we	repeat	actions	until	we	have	done	what	we	needed.

This	chapter	is	going	to	look	at	Selection.	Or	Conditional	Statements

Ternary	Operators
You	have	already	seen	the	Ternary	operator.
								x	=	4>3	?	2	:	1;

x	is	set	to	2,	if	4	is	greater	than	3,	otherwise	x	is	set	to	1

In	the	ternary	operator,	the	condition	is	evaluated	and:

if	the	condition	is	true,	the	value	of	the	first	operand	is	returned,
if	the	condition	is	false	the	value	of	the	second	operand	is	returned.

e.g.
				@Test

				public	void	moreTernary(){

								String	url	=	"www.eviltester.com";

								url	=	url.startsWith("http")	?	url	:	addHttp(url);

								assertTrue(url.startsWith("http://"));

								assertEquals("http://www.eviltester.com",	url);

				}

				private	String	addHttp(String	url)	{

								return	"http://"	+	url;

				}

People	often	use	this	for	simple,	in-line,	decision	making	or	quick	checks.	I	personally
find	it	harder	to	read,	so	when	I	code	I	generally	write	if	statements.

Exercise:	Cat	or	Cats?	Ternary	Operator
Write	an	@Test	method	that	uses	a	ternary	operator	to	return	"cat"	if	a	numberOfCats	equals	1.	And	return
"cats"	if	the	numberOfCats	is	not	1

Rewrite	your	code	so	that	the	ternary	operator	is	used	in	a	method	which	returns	"cat"	or	"cats"
depending	on	the	numberOfCats	parameter	it	is	called	with.	e.g.

								assertEquals("2	==	cats",	"cats",	catOrCats(2));

if	statement
The	if	statement	takes	the	forms:

if	(condition)	statement	;

or

if	(condition){	
statement1;	
statement2;	
}

When	only	one	statement	is	used	in	the	if	then	you	don’t	need	to	add	the	{}	block
delimiters.
When	multiple	statements	are	used	then	you	need	to	add	the	statements	in	the	code
block	delimited	with	{}.

The	statements	are	only	executed	when	the	condition	evaluates	to	true

Coding	Style

I	tend	to	add	{}	regardless	of	the	number	of	statements.

I	think	it	makes	the	code	easier	to	read.	And	I’m	less	likely	to	forget	to	add	the	block	delimiters	in	later,
when	I	add	more	statements	to	the	if	clause.

But	these	are	personal	style	issues	and	are	likely	to	be	dictated	by	your	personal	style,	or	the	style	of
coding	enforced	in	your	work	place.

Example:
				@Test

				public	void	ifAddHttp(){

								String	url	=	"www.seleniumsimplified.com";

								if(!url.startsWith("http")){

												url	=	addHttp(url);

								}

								assertTrue(url.startsWith("http://"));

								assertEquals("http://www.seleniumsimplified.com",	url);

				}

Exercise:	AssertTrue	if	true
Given	a	variable:
boolean	truthy=true;

Write	an	@Test	method	that	uses	an	if	statement	without	a	set	of	braces	{}	to	assertTrue	on	truthy,	if
truthy	is	true.

Write	an	@Test	method	that	uses	an	if	statement	that	when	truthy	is	true,	assertsTrue	on	truthy,	and
assertsFalse	on	!truthy

else	statement
Since	the	statement	block	after	the	if	only	executes	when	the	condition	evaluates	to	true,
we	also	need	the	ability	to	execute	code	if	the	condition	evaluates	to	false.

And	this	is	where	the	else	keyword	comes	in.

if	(condition)
statement;
else

statement;

or

if	(condition){
statement1;
statement2;
}else{

statement3;
statement4;
}

Again	you	can	see	that	when	there	is	no	delimited	block	then	the	else	executes	a	single
statement,	but	when	the	else	has	a	delimited	block	then	all	the	statements	in	that	block
will	execute.

Example:
				@Test

				public	void	ifElseAddHttp(){

								String	url	=	"www.seleniumsimplified.com";

								if(url.startsWith("http")){

												//	do	nothing	the	url	is	fine

								}else{

												url	=	addHttp(url);

								}

								assertTrue(url.startsWith("http://"));

								assertEquals("http://www.seleniumsimplified.com",	url);

				}

Compound	Statement

A	set	of	statements	in	a	block	is	often	called	a	‘compound	statement’.

And	a	single	statement	referred	to	as	a	‘simple’	statement.

Exercise:	AssertTrue	else	AssertFalse
Given	a	variable:	boolean	truthy=true;

Write	an	@Test	method	that	uses	an	if	statement	without	a	set	of	braces	{}	to	assertTrue	on	truthy,	if
truthy	is	true,	otherwise	it	uses	assertFalse	on	truthy.

Write	an	@Test	method	that	uses	an	if	statement	that	if	truthy	is	true,	assertsTrue	on	truthy,	and
assertsFalse	on	!truthy,	otherwise	it	uses	assertFalse	on	truthy

Make	sure	you	run	the	methods	with	truthy=false,	so	you	see	the	effect	with	both	values.

Nested	if	else
Because	if	and	else	are	statements	they	can	be	nested	in	the	if	and	else	statement	block
like	any	other	statement.

e.g.
				@Test

				public	void	ifElseNestedAddHttp(){

								String	url	=	"seleniumsimplified.com";

								if(url.startsWith("http")){

												//	do	nothing	the	url	is	fine

								}else{

												if(!url.startsWith("www")){

																url	=	"www."	+	url;

												}

												url	=	addHttp(url);

								}

								assertTrue(url.startsWith("http://"));

								assertEquals("http://www.seleniumsimplified.com",	url);

				}

Code	formatting	becomes	very	important	when	using	nested	if	and	else:

indent	your	code
line	up	statements
line	up	braces	{}

Also	note	that	the	coding	style	I	adopt	has	the	opening	brace	{	at	the	end	of	the	if	or	else
statement	on	the	same	line,	other	people	prefer	to	put	the	opening	brace	under	the	if	or
else	but	in	line	with	it.

e.g.
								if(url.startsWith("http"))

								{

												//	do	nothing	the	url	is	fine

								}else

								{

												if(!url.startsWith("www"))

												{

																url	=	"www."	+	url;

												}

												url	=	addHttp(url);

								}

I	personally	think	that	the	above	style	takes	up	too	much	space,	and	that	the	opening	brace
{	adds	no	information,	but	the	closing	brace	}	does	add	information	about	scope	when	I
read	the	code.

Experiment	and	decide	on	a	style	that	suits	you.	Look	at	the	code	in	use	in	your
organization	and	adopt	the	in	house	style.

Exercise:	Nested	If	Else	Horror
Write	the	following	pseudo	code	as	Java	in	an	@Test	method:

Given	a	variable	truthy	which	is	set	to	true	and	a	variable	falsey	which	is	set	to	false:

If	truthy	then
If	!falsey	then

If	truthy	and	!falsey	then
If	falsey	or	truthy	then
….assert	truthy	is	true,	and
….assert	falsey	is	false

Else
assert	truthy	is	true
assert	falsey	is	true

Else
If	!truthy	then

if	falsey	then
assert	falsey	is	true
assert	truthy	is	false

else
assert	falsey	is	false
assert	truthy	is	false

Try	it	with	different	combinations	of	values	on	truthy	and	falsey	to	make	sure	you	have	covered	all
paths.

switch	statement
When	your	code	has	a	lot	of	if	else	statements	then	it	might	be	appropriate	to	use	a
switch	statement	instead.

The	switch	statement	allows	you	to	have	a	number	of	cases	for	a	single	condition	check.
				@Test

				public	void	switchExample(){

								assertEquals("M",	likelyGenderIs("sir"));

								assertEquals("M",	likelyGenderIs("mr"));

								assertEquals("M",	likelyGenderIs("master"));

								assertEquals("F",	likelyGenderIs("miss"));

								assertEquals("F",	likelyGenderIs("mrs"));

								assertEquals("F",	likelyGenderIs("ms"));

								assertEquals("F",	likelyGenderIs("lady"));

								assertEquals("F",	likelyGenderIs("madam"));

				}

				public	String	likelyGenderIs(String	title){

								String	likelyGender;

								switch(title.toLowerCase()){

												case	"sir":

																likelyGender	=	"M";

																break;

												case	"mr":

																likelyGender	=	"M";

																break;

												case	"master":

																likelyGender	=	"M";

																break;

												default:

																likelyGender	=	"F";

																break;

								}

								return	likelyGender;

				}

The	switch	statement	takes	an	expression	to	check.
The	switch	block	has	a	series	of	case	statements.
The	break	statement	is	important	to	end	each	case.
The	last	case	should	be	a	default	which	is	executed	if	no	other	case	matches.
default	does	not	require	a	break,	but	I	usually	add	one

Note:	you	need	to	use	Java	1.7	or	above	if	you	want	to	have	string	literals	in	your	case
statements.

Be	Careful.	If	you	forget	the	break	then	the	case	will	fall	through	to	the	next	one.	e.g.

I	could	have	written	the	switch	like	this:
								switch(title.toLowerCase()){

												case	"sir":

												case	"mr":

												case	"master":

																likelyGender	=	"M";

																break;

												default:

																likelyGender	=	"F";

																break;

								}

When	written	deliberately,	the	fall	through	can	make	code	easy	to	read.	Beware	however
that	it	is	a	simple	mistake	to	make	and	forget	the	break	statement	and	it	can	easily
introduce	bugs	into	your	code.

Exercise:	Switch	on	Short	Code
Create	a	method	which	uses	a	switch	statement	to	return	a	String	depending	on	the	shortCode	passed	in
as	a	parameter	to	the	method:

given	“UK”	return	“United	Kingdom”
given	“US”	return	“United	States”
given	“USA”	return	“United	States”
given	“FR”	return	“France”
given	“SE”	return	“Sweden”
given	any	other	value,	return	“Rest	Of	World”

For	bonus	points,	make	the	short	code	case	insensitive	i.e.	“uK”,	“UK”,	“Uk”,	“uk”	should	all	return
“United	Kingdom”

Exercise:	Switch	on	int
Create	a	method	which	uses	a	switch	statement	to	return	a	String	representing	the	int	passed	in	as	a
parameter	to	the	method:

given	1	return	"One"
given	2	return	"Two"
given	3	return	"Three"
given	4	return	"Four"
given	an	integer	>	4,	return	"Too	big"
given	an	integer	<	1,	return	"Too	small"

As	an	experiment,	also	write	the	method	such	that	every	case	in	the	switch	is	implemented	as	a	return	so
no	variables	or	break	statements	are	used.

Summary
You	have	seen	that	you	can	write	code	without	all	the	{}	and	break	statements.	But	I	find
that	adding	them	all	the	time,	makes	my	code	more	readable	and	maintainable.

I	tend	not	to	use	ternary	operators	very	much,	but	some	people	use	them	all	the	time.	So	it
is	important	to	be	able	to	read	them.

Even	though	this	was	a	short	chapter.	You	do	need	to	master	conditional	flows	in	your
code	and	make	decisions	about	which	conditional	operator	you	use.

References	and	Recommended	Reading

if-then-else	Java	tutorial
docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

switch	Java	tutorial
docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

Chapter	Nine	-	Arrays	and	For	Loop	Iteration

Chapter	Summary
In	this	chapter	you	will	learn,	a	simple	way	of	collecting	things,	accessing	them,	and	looping	over	them
using:

Arrays	-	a	fixed	size	collection	of	‘things’
Array	indexing	-	access	individual	items	in	an	array
For	Each	Loop	-	iterate	over	each	individual	item	in	the	array
For	Loop	-	iterate	through	a	loop	using	indexes
Arrays	of	Arrays	-	Arrays	can	contain	other	arrays
Ragged	Arrays	-	An	array	of	arrays	with	different	sizes
java.utils.Arrays	-	A	utility	class	for	working	with	Arrays	e.g.	fill,	sort,	copy

In	previous	chapters	you	have	seen	how	to	create	individual	variables	to	store	objects	and
strings.

If	you	wanted	to	create	a	collection	of	Domain	Objects	at	the	moment,	then	you	would
have	to	create	an	individual	variable	for	each	one:	e.g.	user1,	user2,	user3,	etc.

Ideally,	we	want	some	sort	of	object	that	collects	all	these	together	for	us	and	allows	us	to
access	each	item	individually.	We	also	want	to	loop	through	them	to	process	each	in
different	ways.

Arrays,	provide	us	with	a	simple	way	of	doing	exactly	this.

Arrays
Arrays	are	the	first	collection	data	type	we	are	going	to	learn.

An	array	represents	a	collection	of	items,	all	of	the	same	type.

Arrays	are	fixed	size.	In	future	chapters	we	will	learn	about	collections	that	can	adjust
their	size	dynamically	as	we	add	more	items.	But,	because	arrays	are	a	fixed	size,	it	makes
them	simple	to	understand.

As	a	quick	example:
				@Test

				public	void	simpleArrayExample(){

								String[]	numbers0123	=	{"zero",	"one",	"two",	"three"};

								for(String	numberText	:	numbers0123){

												System.out.println(numberText);

								}

								assertEquals("zero",	numbers0123[0]);

								assertEquals("three",	numbers0123[3]);

				}

The	above	code:

creates	an	array	called	numbers0123	which	will	hold	String	objects
creates	the	array	with	four	strings	"zero",	"one",	"two",	and	"three"
iterates	over	the	array	printing	out	each	string	in	the	array	so	the	console	would
display

zero

one

two

three

asserts	that	the	first	value	in	the	array	equals	"zero"
asserts	that	the	last	value	in	the	array	equals	"three"

The	rest	of	this	chapter	will	explain	arrays	in	more	detail	and	you	will	write	your	own
code	using	arrays.

Create	an	Array
There	are	a	number	of	ways	to	create	a	new	array:

Declare	and	create	an	array	of	fixed	size
Declare	and	create	array	with	actual	values
Declare	an	empty	array
Declare	an	array	for	later	initialization

Declare	and	Create	an	Array	of	Fixed	Size
You	can	declare	an	array	of	a	fixed	size:
								int[]	integers	=	new	int[10];

								int	[]moreInts	=	new	int[10];

								int	evenMore[]	=	new	int[10];

You	can	see	the	type	declaration	(int),	which	means	that	this	array	can	only	store	int
values.	You	can	also	see	that	the	[]	can	be	before	or	after	the	variable	name.

I	prefer	to	put	the	[]	after	the	type	declaration,	as	in	the	first	int	example	above.	I	think	it
is	faster	to	read	the	declaration	and	see	that	it	is	an	array.

I	create	the	array	with	the	code:

new	int[10]

This	creates	an	int	array	of	size	10,	so	it	can	store	10	int	values.

I	can	create	and	declare	an	array	of	different	types,	so	the	following	code	shows	the
creation	of	a	String	array	of	size	10,	to	hold	10	String	values.
								String	strings[]	=	new	String[10];

Declare	and	Create	an	Array	with	Actual	Values

You	can	also	declare	an	array	with	the	values	in	the	declaration:
								int[]	ints1to10	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10};

Declare	an	Empty	Array

You	can	declare	an	array	of	zero	length,	using	the	syntax	presented	below:
								int[]	zeroLength	=	{};

								int[]	moreZeroLength	=	new	int[0];

Declare	an	Array	for	Later	Initialization

If	you	want	to,	you	can	declare	an	array	and	initialize	it	later.	For	example,	this	code
declares	an	array	but	does	not	initialize	it.
								int[]	uninitializedArray;

I	prefer	to	initialize	it	at	declaration,	or	initialize	it	as	an	empty	array.

If	you	want	to	allocate	a	new	array	to	an	existing	array	variable	then	you	can	use	the
syntax	you	saw	in	the	declaration	i.e.
								uninitializedArray	=	new	int[10];

Or	you	can	also	use	the	following	syntax,	which	creates	an	anonymous	array	and	allocates
it	to	an	existing	variable:
								uninitializedArray	=	new	int[]	{100,	200,	300};

Access	items	in	an	array
You	can	access	the	items	in	an	array	by	using	the	[i]	notation,	where	i	is	the	index	you
want	to	access.

Arrays	are	indexed	starting	at	0	so	the	first	item	in	an	array	is	at	[0].
				String[]	workdays	=	{"Monday",	"Tuesday",	"Wednesday",

																								"Thursday",	"Friday"};

								assertEquals("Monday",	workdays[0]);

								assertEquals("Friday",	workdays[4]);

Exercise:	Create	an	Array	of	Users
Using	the	User	domain	object	that	you	created	previously.

Create	an	array	containing	3	User	objects.

Iterate	through	an	array
We	can	iterate	through	an	array	with	a	for	each	loop	and	a	for	loop.

The	iteration	examples	below,	all	use	the	following	workdays	array:
				String[]	workdays	=	{"Monday",	"Tuesday",	"Wednesday",

																								"Thursday",	"Friday"};

For	Each	loop

A	for	each	loop,	iterates	through	each	item	in	the	array.
for	(variable	:	collection){			

			//	do	something			

}			

The	variable	is	automatically	assigned	the	next	item	from	the	collection,	and	iterates	over
each	item	in	the	array	automatically.

e.g.
								String	days="";

								for(String	workday	:	workdays){

												days	=	days	+	"|"	+	workday;

								}

								assertEquals("|Monday|Tuesday|Wednesday|Thursday|Friday",days);

for	-	create	a	for	loop	with	a	variable	declaration	:	array
in	this	case	the	variable	is	a	String	called	workday
the	collection	is	the	array	workdays

the	code	iterates	through	the	array,	and	each	item	in	the	array	is	assigned	to	the
variable	workday
so	the	first	time	through	the	loop	the	variable	workday	is	assigned	the	[0]	indexed
value	from	the	array	workdays	which	is	"Monday"
the	second	time	through	the	loop	the	variable	workday	is	assigned	the	[1]	indexed
value	from	the	array	workdays	which	is	"Tuesday",	etc.
the	loop	iterates	over	every	item	in	the	array
the	loop	stops	when	there	are	no	more	items	in	the	array	to	iterate	over

This	looping	construct	means	that	we	can	iterate	over	every	item	in	the	array	and	not	miss
any.	Thereby	avoiding	the	off	by	one	errors	that	traditional	boundary	value	analysis	is	so
fond	of	trying	to	detect.

Exercise:	Iterate	over	the	Array	of	Users
Using	your	array	of	three	User	objects	created	in	the	previous	exercise.

Iterate	over	the	array	and	System.out.println	the	name	of	each	User.

For	loop

The	for	loop	gives	us	more	control	over	the	looping.	We	setup	the	initial	variable	we	want
to	use	for	looping,	then	have	a	condition	which	decides	if	we	end	the	for	loop,	then	we
have	a	statement	which	sets	up	the	next	iteration	of	the	loop.
for	(variable	;	loop_condition	;	iterator){					

			//	do	something			

}

e.g.	the	traditional	use	of	a	for	loop
								String	days="";

								for(int	i=0;	i<5;	i++){

												days	=	days	+	"|"	+	workdays[i];

								}

								assertEquals("|Monday|Tuesday|Wednesday|Thursday|Friday",days);

for	creates	a	for	loop
int	i=0	declares	an	index	variable	with	an	initial	value	of	0
i<5	the	loop	will	continue	while	the	loop	condition	is	met,	in	this	case	while	we	are
still	accessing	an	item	in	the	array	-	there	are	5	items	in	the	array.	Remember	array
indexes	start	at	0	so	the	last	item	is	4.	Index	5	would	be	out	of	bounds,	so	we	use	<5.
i++	increment	the	value	of	the	index

The	more	generic	explanation	of	a	for	loop	is	actually:

for	(initialize	statement	executed	once;	loop	condition;	executed	after	each	loop){
//	do	something	
}

So	I	could	have	written	the	loop:
								int	i=0;

								for(;	i<5;	i++){

												days	=	days	+	"|"	+	workdays[i];

								}

Where	the	variable	is	initialized	outside	the	loop	and	my	initialize	statement	is	empty.

Also:
								int	i=0;

								for(;	i<5;){

												days	=	days	+	"|"	+	workdays[i];

												i++;

								}

And	even:
								int	i=0;

								for(;	;){

												days	=	days	+	"|"	+	workdays[i];

												i++;

												if(i>=5)	break;

								}

In	the	above	code	I’m	using	the	break	statement	which	we	saw	in	the	switch	section,	to
break	out	of	the	loop.

break
break	is	a	generic	keyword	to	end	control	statement	execution.	break	can	exit	an	if,	switch,	for	and	later
iteration	constructs	while,	do…while

Generally,	keeping	to	the	traditional	example	shown	at	the	start	of	this	section	makes	your
code	more	readable	and	maintainable.	e.g.
								for(int	i=0;	i<5;	i++){

												days	=	days	+	"|"	+	workdays[i];

								}

You	can	see	from	each	of	the	variants	that	even	when	one	of	the	statements	in	the
for(...)	are	missing,	you	still	need	to	have	the	;	in	place.

Using	for	to	iterate	through	an	array,	can	leave	you	open	to	off	by	one	errors,	so	be
careful.	But	it	does	mean	that	you	have	an	index	count	easily	available	to	use	in	the	loop.

e.g.	in	the	following	example	I	add	the	loop	index	to	the	output	String
				@Test

				public	void	forLoopUsingIndexFixedCondition(){

								String	days="";

								for(int	i=0;	i<5;	i++){

												days	=	days	+	"|"	+	i	+	"-"	+	workdays[i];

								}

								assertEquals(

												"|0-Monday|1-Tuesday|2-Wednesday|3-Thursday|4-Friday",

												days);

				}

Index	in	a	for	each	loop

If	you	want	an	index	inside	a	for	each	loop	then	you	can	do	it	easily	enough	by	creating	a
variable	outside	the	loop,	and	incrementing	the	variable	value	within	the	loop.	e.g.	in	the
following	example	I	use	dayindex	as	the	index	variable:
								int	dayindex	=0;

								for(String	workday	:	workdays){

												days	=	days	+	"|"	+	workday;

												System.out.println("found	"	+	workday	+

																															"	at	position	"	+	dayindex);

												dayindex++;

								}

Which	would	output:
1	found	Monday	at	position	0			

2	found	Tuesday	at	position	1			

3	found	Wednesday	at	position	2			

4	found	Thursday	at	position	3			

5	found	Friday	at	position	4				

Exercise:	Create	an	array	of	100	users
Create	an	array	which	can	hold	100	User	objects.	Use	a	for	loop	to	fill	the	array	with	User	objects	having
the	following	username,	password	combinations:

user1,	password1
user2,	password2
etc.

Find	a	way	to	check	the	array	was	created.

For	bonus	points,	write	some	code	to	assert	that	the	array	was	filled	properly.

Calculate	Size	of	an	Array	with	the	length	method

length	-	returns	the	length	of	the	array

Once	declared,	you	can	find	the	size	of	an	array	using	the	length	method:
								assertEquals(5,	workdays.length);

The	typical	use	for	the	length	method	is	in	a	for	loop	condition	e.g.
								for(int	i=0;	i<workdays.length;	i++){

												days	=	days	+	"|"	+	workdays[i];

								}

Since	the	length	of	an	array	is	always	the	index	of	the	next	item	to	add	in	the	array,	we
make	sure	that	we	use	<	array.length	in	the	loop	condition.

Useful	methods	in	the	Arrays	class
Java	provides	an	Arrays	class	in	java.utils.

In	order	to	use	Arrays,	you	need	to	import	it.
import	java.util.Arrays;

The	Arrays	class	provides	a	number	of	useful	static	methods.

We	will	cover	a	subset	of	the	methods	here.	You	can	see	the	full	range	of	methods	in	the
official	documentation.

copyOf	-	create	a	copy	of	an	array,	and	resize	if	desired
copyOfRange	-	create	a	copy	of	part	of	the	array
fill	-	fill	the	array,	or	part	of	the	array	with	a	single	value
sort	-	sort	the	array

The	sections	below	refer	to	the	workdays	array:
				String[]	workdays	=	{"Monday",	"Tuesday",	"Wednesday",

																								"Thursday",	"Friday"};

Use	copyOf	to	copy	and	resize	an	Array
								String[]	weekDays;

								weekDays	=	Arrays.copyOf(workdays,	7);

Using	the	static	method	copyOf	on	Array	we	can	create	a	copy	of	an	array,	and	optionally
resize	it.

The	copyOf	method	takes	two	arguments:

Arrays.copyOf(arrayToCopy	,	length);

This	is	typically	used	to	create	a	copy	and	increase	the	size.	When	we	increase	the	size,
the	values	in	the	array,	which	were	not	in	the	original	array,	are	set	to	the	default	value	for
that	data	type	e.g.	0	for	integer	and	null	for	String.

In	our	example	if	we	create	a	copy	of	workdays	and	resize	it	from	5	to	7	then	the	last	two
indexes	will	contain	null.
								assertEquals(null,	weekDays[5]);

								assertEquals(null,	weekDays[6]);

Therefore	we	should	set	the	values	on	the	new	array	if	we	want	to	control	the	contents.

								weekDays[5]	=	"Saturday";

								weekDays[6]	=	"Sunday";

We	can	also	use	copyOf	to	truncate	the	array	and	make	it	shorter:
								String[]	weekDays;

								weekDays	=	Arrays.copyOf(workdays,	3);

								assertEquals(3,	weekDays.length);

								assertEquals("Monday",	weekDays[0]);

								assertEquals("Tuesday",	weekDays[1]);

								assertEquals("Wednesday",	weekDays[2]);

Use	copyOfRange	to	copy	a	subset	of	an	Array

The	copyOfRange	copies	a	subset	of	an	array	into	a	new	array	of	the	size	of	the	subset.

Assert.copyOfRange(arrayToCopy	,	startIndex	,	endItemCount);

The	startIndex	is	the	first	item	in	the	array	that	you	want	to	copy.

The	endItemCount	is	the	index	+	1	that	you	want	to	copy.

e.g.	if	I	want	to	copy	items	3	to	5	inclusive	(“Wednesday”,	“Thursday”,	“Friday”),	then	I
would	start	the	copy	from	2	(the	index	of	the	third	item),	and	end	the	copy	on	5	(even
though	the	index	of	the	fifth	item	is	4).

Example	code	might	help:
								String[]	weekDays	=	Arrays.copyOfRange(workdays,	2,	5);

								assertEquals(3,	weekDays.length);

								assertEquals("Wednesday",	weekDays[0]);

								assertEquals("Thursday",	weekDays[1]);

								assertEquals("Friday",	weekDays[2]);

								assertEquals(weekDays[0],	workdays[2]);

								assertEquals(weekDays[1],	workdays[3]);

								assertEquals(weekDays[2],	workdays[4]);

We	can	also	use	copyOfRange	to	increase	the	size	of	the	array,	much	like	we	did	with
copyOf.	To	do	this	we	just	use	an	endItemCount	greater	than	the	array	size.	e.g.
								String[]	weekDays	=	Arrays.copyOfRange(workdays,	2,	7);

								assertEquals(5,	weekDays.length);

								assertEquals("Wednesday",	weekDays[0]);

								assertEquals("Thursday",	weekDays[1]);

								assertEquals("Friday",	weekDays[2]);

								assertEquals(null,	weekDays[3]);

								assertEquals(null,	weekDays[4]);

Use	fill	to	populate	an	Array	with	data

Arrays	provides	a	static	method	called	fill	which	we	can	use	to	fill	an	array	with	a
specific	value,	or	fill	a	range	of	indexes	in	the	array.

To	fill	every	item	in	the	array	with	the	same	value	we	make	a	simple	call	to	fill

Arrays.fill(array	,	value);

e.g.	to	fill	an	array	of	integers	with	the	value	minus	one	(-1),	I	can	do	the	following:

								int[]	minusOne	=	new	int[30];

								Arrays.fill(minusOne,-1);

I	might	choose	to	fill	part	of	an	array	-	possibly	if	I	have	just	done	a	copy,	or	copyOf	and
resized	the	array	larger.

Arrays.fill(array	,	startIndex	,	endItemCount	,	value);

Again,	the	start	of	the	range	is	the	index	number	of	the	item	we	want	to	start	at,	and	the
end	of	the	range	is	the	index	+	1	e.g.	if	we	wanted	to	stop	on	the	10th	item	in	an	array,
which	is	at	index	‘9’	we	would	use	the	value	‘10’:
								int[]	tenItems	=	{0,0,0,0,0,1,1,1,1,1};

								//	fill	cells	5	-	9	with	'2'

								Arrays.fill(tenItems,5,10,2);

								//	0	-	4	are	untouched

								assertEquals(0,	tenItems[0]);

								assertEquals(0,	tenItems[4]);

								//	5	-	9	now	equal	2

								assertEquals(2,	tenItems[5]);

								assertEquals(2,	tenItems[6]);

								assertEquals(2,	tenItems[7]);

								assertEquals(2,	tenItems[8]);

								assertEquals(2,	tenItems[9]);

Use	sort	to	QuickSort	an	Array

Java	provides	an	implementation	of	QuickSort.	To	quickly	sort	an	array.

Arrays.sort(array);

e.g.	If	I	have	an	array	of	integers	in	the	wrong	order,	then	I	can	quickly	sort	them.
								int[]	outOfOrder	=	{2,4,3,1,5,0};

								Arrays.sort(outOfOrder);

								assertEquals(0,	outOfOrder[0]);

								assertEquals(1,	outOfOrder[1]);

								assertEquals(2,	outOfOrder[2]);

								assertEquals(3,	outOfOrder[3]);

								assertEquals(4,	outOfOrder[4]);

								assertEquals(5,	outOfOrder[5]);

You	can	also	sort	String,	or	other	objects.	Although	with	strings	remember	that	uppercase
letters	have	lower	Unicode	values	than	lowercase	letters,	so	you	might	want	to	make	the
strings	consistent	with	case	usage	before	you	sort	them.

http://en.wikipedia.org/wiki/Quicksort

Exercise:	Sort	Workdays	Array	and	Assert	Result
Create	an	@Test	method	which	instantiates	a	workdays	array,	as	shown	in	the	examples	previously.
String[]	workdays	=	{"Monday",	"Tuesday",	"Wednesday",	"Thursday",	"Friday"};

Then	sort	it	using	Arrays.sort

Assert	that	the	order	of	values	in	the	array	are	as	you	expect.

Create	another	@Test	method	so	that	the	workdays	have	mixed	case,	and	assert	the	result	i.e.
{"monday",	"Tuesday",	"Wednesday",	"thursday",	"Friday"}

Arrays	of	Arrays
Regular	Multidimensional	Arrays

A	multidimensional	array	is	an	array	of	arrays.

A	regular	multidimensional	array	has	all	the	nested	arrays	of	equal	length.

So	I	could	define	a	2	dimensional	int	multidimensional	array	as:
								int[][]	multi	=	new	int[4][4];

This	creates	a	multidimensional	array	called	multi.	Which	is	4	by	4,	and	since	I	haven’t
initialized	it,	all	the	values	are	default	of	0.
0,0,0,0,			

0,0,0,0,			

0,0,0,0,			

0,0,0,0,				

Where	each	item	in	multi	is	an	array	of	length	4.	e.g.	multi[0]
								assertEquals(4,	multi[0].length);

And	I	can	access	the	values	in	that	array	by	adding	another	index	e.g.	access	the	first	value
in	multi[0]	with	multi[0][0]
								assertEquals(0,	multi[0][1]);

As	with	the	one	dimensional	arrays,	I	can	declare	and	initialize	an	array	in	a	single
statement:
								int[][]	multi	=	{{1,2,3,4},

																									{5,6,7,8},

																									{9,10,11,12},

																									{13,14,15,16}};

The	above	array	would	be	populated	as	follows:
1,2,3,4,

5,6,7,8,

9,10,11,12,

13,14,15,16,

And	we	would	access	the	values	with	the	[0][0]	multi	index	notation:
								assertEquals(1,	multi[0][0]);

								assertEquals(7,	multi[1][2]);

								assertEquals(12,	multi[2][3]);

								assertEquals(14,	multi[3][1]);

I	could	create	additional	dimensions	if	I	wanted	e.g.	a	3	dimensional	array	of	3	by	4	by	5
								int[][][]	multi3d	=	new	int[3][4][5];

Where	multi3d	is	an	array	of	length	3,
and	each	item	is	an	array	of	length	4,

where	each	item	is	an	array	of	length	5
where	each	item	is	an	int

								assertEquals(3,	multi3d.length);

								assertEquals(4,	multi3d[0].length);

								assertEquals(4,	multi3d[1].length);

								assertEquals(4,	multi3d[2].length);

								assertEquals(5,	multi3d[0][1].length);

								assertEquals(5,	multi3d[0][2].length);

								assertEquals(5,	multi3d[1][3].length);

And	we	can	access	individual	int	items	using	the	full	[0][0][0]	multi	index	notation:
								assertEquals(0,	multi3d[0][0][0]);

Ragged	Arrays

Since	we	know	that	a	multidimensional	array	is	actually	an	array,	of	arrays,	of	…

We	can	see	how	easy	it	is	to	create	ragged	arrays,	where	each	array	has	different	lengths:
								int[][]	ragged2d	=	{{1,2,3,4},

																												{5,6},

																												{7,8,9}

																												};

Which	would	create	the	following	array:
1,2,3,4,

5,6,

7,8,9,

Each	of	the	arrays	has	a	different	length:
								assertEquals(4,	ragged2d[0].length);

								assertEquals(2,	ragged2d[1].length);

								assertEquals(3,	ragged2d[2].length);

And	we	would	access	the	array	values	using	the	normal	notation:
								assertEquals(4,	ragged2d[0][3]);

								assertEquals(6,	ragged2d[1][1]);

								assertEquals(7,	ragged2d[2][0]);

We	can	define	ragged	arrays	dynamically,	by	leaving	the	ragged	dimensions	blank	when
we	create	it:
								int[][]	ragged2d=	new	int[10][];

The	above	code	creates	a	2	dimensional	array	of	10	x	undefined,	where	we	haven’t	defined
the	length	of	each	of	the	10	arrays,	we	would	do	that	when	we	initialize	them	e.g.

								ragged2d[0]	=	new	int[10];

								ragged2d[1]	=	new	int[3];

The	above	code	initializes	the	first	2	items	in	ragged2d	as	an	array	with	10	items,	and	an
array	with	3	items,	all	the	remaining	items	in	ragged2d	will	remain	on	their	default	of
null.	e.g.
0,0,0,0,0,0,0,0,0,0,

0,0,0,

null

null

null

null

null

null

null

null

Exercises

Understand	how	print2DIntArray	method	works
I	used	The	following	code	when	writing	the	book	to	printout	the	2D	arrays	you’ve	seen	in	this	chapter.

Have	a	look	through	the	code	and	make	sure	you	understand	it.

				public	void	print2DIntArray(int	[][]multi){

								for(int[]	outer	:	multi){

												if(outer==null){

																System.out.print("null");

												}else{

																for(int	inner	:	outer){

																				System.out.print(inner	+	",");

																}

												}

												System.out.println("");

								}

				}

Create	a	Triangle
Create	a	ragged	array,	such	that	when	you	pass	the	array	to	print2DIntArray	as	an	argument	you	output	a
triangle	to	the	console	that	looks	like	the	following:

0,

0,1,

0,1,2,

0,1,2,3,

0,1,2,3,4,

0,1,2,3,4,5,

0,1,2,3,4,5,6,

0,1,2,3,4,5,6,7,

0,1,2,3,4,5,6,7,8,

0,1,2,3,4,5,6,7,8,9,

0,1,2,3,4,5,6,7,8,9,10,

0,1,2,3,4,5,6,7,8,9,10,11,

0,1,2,3,4,5,6,7,8,9,10,11,12,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

Summary
Arrays	are	a	fast	and	easy	way	of	collecting	objects.

They	require	a	little	work	to	define	the	size	of	the	array	in	advance,	but	you’ve	seen	that
you	can	use	the	copy	utility	methods	in	java.util.Array	to	help	resize	an	array.

Remember	to	be	careful	when	iterating	through	arrays	so	that	you	don’t	introduce	off	by
one	errors.	If	you	are	in	any	doubt	then	using	the	for	each	form	of	a	for	loop	can	help
avoid	introducing	this	error.

References	and	Recommended	Reading

Java	For	Loop
docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html

Branch	statement
docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

Java	Arrays
docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Java	1.7	Arrays	documentation
docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/for.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
http://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Chapter	Ten	-	Introducing	Collections

We	have	already	seen	the	basic	collection	concept	in	action	with	Arrays.	I	presented
Arrays	first	so	that	you	would	understand	the	concept	and	the	basics	of	iterating	over	a
collection.

Collections	are	a	good	place	to	consider	other	looping	constructs	like	while,	do	while.
And	we	will	also	introduce	the	concept	of	Interfaces.

Chapter	Summary
In	this	chapter	you	will	learn	the	main	collection	classes.	These	offer	more	flexibility	and	power	to	you	in
your	development	work.

For	Each	Loop	-	iterate	over	each	individual	element	in	a	collection
Conversion	-	converting	collections	to	arrays	and	arrays	to	collections
while	and	do…while	-	additional	looping	constructs	you	can	use
Interfaces	-	Collections	are	organized	by	interfaces	and	each	interface	has	multiple	implementations
Generics	-	you	will	learn	the	basics	of	Generics	to	help	you	declare	collections
Core	Collections	-	Core	collection	interfaces:	List,	Set,	Map
Core	Implementations	-	Core	collection	implementations:	ArrayList,	HashSet,	HashMap

This	is	one	of	the	longest	chapters	in	this	book.	And	I	know	it	can	seem	overwhelming.	So
I	will	start	the	chapter	with	a	simple	introduction,	comparing	arrays	to	a	specific	type	of
collection	called	a	List,	then	cover	looping	over	collections,	and	then	the	different
interfaces	and	implementations	for	collections.

A	Simple	Introduction
To	introduce	collections,	I	will	show	you	a	simple	example	comparing	use	of	a
Collection	to	use	of	an	Array.
				@Test

				public	void	simpleArrayExample(){

								String[]	numbers0123	=	{"zero",	"one",	"two",	"three"};

								for(String	numberText	:	numbers0123){

												System.out.println(numberText);

								}

								assertEquals("zero",	numbers0123[0]);

								assertEquals("three",	numbers0123[3]);

				}

The	above	is	array	code	you	have	seen	before.

The	following	is	the	above	code,	rewritten	to	use	a	Collection.
				@Test

				public	void	simpleCollectionExample(){

								String[]	numbers0123Array	=	{"zero",	"one",	"two",	"three"};

								List<String>	numbers0123	=	Arrays.asList(numbers0123Array);

								for(String	numberText	:	numbers0123){

												System.out.println(numberText);

								}

								assertEquals("zero",	numbers0123.get(0));

								assertEquals("three",	numbers0123.get(3));

				}

In	the	above	code	you	can	see	that	I	converted	the	array	to	a	List	using	the	asList
method	on	the	java.util.Arrays	class.

I	iterate	over	the	List	in	the	same	way	that	I	iterate	over	the	array.

I	access	specific	elements	in	the	List	using	the	same	index	numbering	scheme	as	an	array,
i.e.	0	is	the	first	element	in	the	List,	3	is	the	fourth	element	in	the	List.

I	declare	the	List	using	a	different	syntax.	i.e.	List<String>.	This	uses	‘Generics’
notation,	which	I	will	explain	in	this	chapter,	but	essentially	I’m	saying	“a	List	of
Strings”.

Collections	are	dynamic
One	advantage	collections	have,	over	arrays,	is	that	they	are	dynamic,	so	we	don’t	have	to
declare	their	size	in	advance.

I	can	rewrite	the	example	you	have	seen	such	that	I	build	the	List	dynamically.
				@Test

				public	void	simpleDynamicCollectionExample(){

								List<String>	numbers0123	=	new	ArrayList<String>();

								numbers0123.add("zero");

								numbers0123.add("one");

								numbers0123.add("two");

								numbers0123.add("three");

								for(String	numberText	:	numbers0123){

												System.out.println(numberText);

								}

								assertEquals("zero",	numbers0123.get(0));

								assertEquals("three",	numbers0123.get(3));

				}

In	the	above	example,	you	can	see	that	I	have	a	new	declaration	syntax.	And	I	add	the
String	values	into	the	List	without	worrying	about	the	size	of	the	List	because	I	know
that	the	List	will	resize.
								List<String>	numbers0123	=	new	ArrayList<String>();

In	the	above	declaration	List	is	an	interface	which	declares	the	type	of	Collection	I	am
using.

ArrayList	is	the	specific	implementation	of	List	that	I	am	using.

I	will	explain	interface	in	more	detail	in	this	chapter.	But	for	the	moment,	an	interface	is	a
type	of	class	which	specifies	the	methods	that	an	object	will	implement.	So	when	I	declare

my	numbers0123	to	be	a	List	I	know	that	I	have	access	to	the	get	method,	and	that	the
elements	in	the	List	will	be	added	in	order.

So	a	List	is	equivalent	to	the	behaviour	of	an	array,	but	is	dynamic.	Indeed	an	ArrayList
is	a	type	of	List	which	is	implemented	using	an	Array.

Iterating	with	while	and	do…while
In	addition	to	the	for	loop,	Java	also	provides	the	while	loop.	This	allows	us	to	loop
‘while’	a	particular	condition	is	met.

I	tend	to	use	the	for	loop	for	iterating	around	a	collection.	But	sometimes	we	don’t	want
to	process	every	element	or	want	to	iterate	until	a	particular	condition	is	met.

There	are	two	forms:

while(condition){...}

do{...}while(condition)

With	a	while	loop,	the	body	of	the	loop	might	never	be	executed,	because	the	condition
may	not	be	satisfied.

With	a	do…while	loop,	the	body	of	the	loop	is	always	executed	at	least	once.

As	an	example	comparison	I	will	create	a	simple	list	of	days.
								String[]	someDays	=	{"Tuesday","Thursday",

																												"Wednesday","Monday",

																												"Saturday","Sunday",

																												"Friday"};

								List<String>	days	=	Arrays.asList(someDays);

I	will	write	some	simple	code	using	each	of	the	loop	constructs:

for	each

for

do	while

while

And	we	will	see	the	different	approaches	I	take	for	finding	the	position	of	"Monday"	in	the
List.

With	the	for	each	loop,	I	can	iterate	over	every	element	in	the	List	and	when	I	find
"Monday"	I	will	have	to	break	out	of	the	loop.
								int	forCount=0;

								for(String	day	:	days){

												if(day.equals("Monday")){

																break;

												}

												forCount++;

								}

								assertEquals("Monday	is	at	position	3",	3,	forCount);

With	the	for	loop,	I	will	iterate	over	the	size	of	the	List	and	break	when	I	find	"Monday":

								int	loopCount;

								for(loopCount=0;	loopCount	<=	days.size();	loopCount++){

												if(days.get(loopCount).equals("Monday")){

																break;

												}

								}

								assertEquals("Monday	is	at	position	3",	3,	loopCount);

With	the	while	loop,	I	can	make	the	check	for	"Monday"	the	loop	exit	condition,	so	I	only
‘do’	the	body	of	the	loop,	‘while’	I	have	not	found	"Monday":
								int	count=0;

								while(!days.get(count).equals("Monday")){

											count++;

								}

								assertEquals("Monday	is	at	position	3",	3,	count);

With	the	do…while	loop,	I	need	to	set	the	index	outside	the	valid	boundary	of	the	list
because	I	increment	it	in	the	body	of	the	loop,	and	again	I	only	‘do’	the	body	of	the	loop
‘while’	I	have	not	found	"Monday":
								int	docount=-1;

								do{

												docount++;

								}while(!days.get(docount).equals("Monday"));

								assertEquals("Monday	is	at	position	3",	3,	docount);

The	for	each	loop	is	an	excellent	choice	when	you	want	to	loop	around	every	element	in
a	collection.	You	don’t	have	to	worry	about	off	by	one	index	errors	or	out	of	bounds
exceptions.	But	you	have	to	break	to	finish	the	loop	early.

The	for	loop,	is	a	very	powerful	construct,	but	can	become	hard	to	read	if	the	condition	is
long,	or	the	setup	or	end	of	loop	actions	are	complicated.

The	while	and	do…while	loop	are	an	excellent	choice	if	the	loop	needs	to	terminate	based
on	an	arbitrary	or	complex	condition.	Choosing	between	while	and	do…while	is	done	on
the	basis	of:

use	do…while	if	you	want	the	loop	to	run	1	or	more	times
use	while	if	you	want	the	loop	to	run	0	or	more	times

Exercise:	Use	a	for	loop	instead	of	a	while	loop
Use	the	code	above	to	create	the	days	of	the	week	Array,	convert	it	to	a	list,	and	iterate	over	it	with	a
while	loop.	Then	convert	the	while	loop	into	a	for	loop.	Hint:	Use	the	condition	in	the	while	loop	as	a
for	loop	condition	statement	and	demonstrate	that	the	for	loop	can	be	used	as	a	while	loop.

e.g.	for(…;	add	while	condition	here	;	…)

Interfaces
Arrays	are	a	simple	collection	mechanism	but	they	don’t	offer	the	same	interface	as
collections.

Java	has	a	concept	of	an	interface.	By	interface,	I	mean	the	methods	they	expose	and	the
API	that	we	use	to	work	with	the	classes,	i.e.	an	interface	defines	what	you	can	do.

A	class	can	implement	a	number	of	interfaces,	in	which	case	it	must	implement	the
methods	that	are	defined	in	all	of	those	interfaces.

Java	provides	a	number	of	interfaces	for	collections:

Collection	-	a	generic	collection	that	you	can	add	objects	to
Set	-	a	collection	that	does	not	allow	duplicates
List	-	a	collection	you	can	access	and	add	elements	at	specific	index	positions
Map	-	a	“key,	value”	pair	where	you	store	an	object	in	the	collection,	but	can	access	it
with	a	unique	key

The	Collection	interfaces	are	all	in	java.util

Important	Interfaces
I	have	only	listed	above,	what	I	consider	the	most	important	interfaces	above,	i.e.	the	ones	that	I	use	most
often.

This	demonstrates	my	biases,	and	the	needs	of	the	code	I	write.

Over	time	you	will	identify	the	interfaces,	and	implementation	that	you	use	a	lot.	Learn	those	in	detail	so
that	you	understand	them	well.	But	make	sure	that	you	learn	the	capabilities	of	the	other	interfaces	and
implementations	so	that	you	know	when	to	use	them,	and	don’t	try	and	use	a	single	collection	type,	when
another	would	fit	your	needs	better.

Declare	as	Interfaces,	Instantiate	Implementations
An	Interface	on	its	own	cannot	be	used	to	do	anything.	Other	classes	implement	interfaces
and	so	we	declare	variables	as	the	interface	but	have	to	instantiate	them	with
implementations.	e.g.
								Collection	workdays;

								workdays	=	new	ArrayList();

Here	I	have	declared	a	variable	called	workdays	as	a	Collection	because	I	only	need	to
use	the	methods	that	the	Collection	interface	provides.	But	I	have	to	instantiate	it	as	an
ArrayList	which	is	a	class	that	implements	the	Collection	interface.

The	ArrayList	class	exposes	many	more	methods	than	the	Collection	interface.	Had	I
declared	the	variable	workdays	as	an	ArrayList	I	would	gain	access	to	methods	like
indexOf,	trimToSize,	and	get.

When	I	only	need	access	to	the	methods	on	Collection	then	I	should	declare	my
variables	at	the	minimum	level	of	functionality	needed.

By	coding	to	interfaces	like	this,	we	have	the	ability	to	swap	in	and	out	the
implementation	class;	if	we	discover	that	one	implementation	is	faster	than	another,	or
takes	less	memory.	But	we	don’t	have	to	change	the	body	of	the	method	code	when	we
swap	a	different	one	in.

e.g.	I	could	use	ArrayList	or	LinkedList	or	HashSet	as	my	implementation	for
Collection	because	each	implement	the	Collection	interface.	But	I	need	to	understand	the
implementation	in	case	one	of	them	imposes	constraints	on	my	code	that	I	don’t	want,	for
example	a	HashSet	does	not	allow	duplicate	elements,	but	an	ArrayList	does.

This	may	not	make	sense	yet,	but	it	is	an	important	concept	and	I	will	try	to	illustrate	it
through	all	the	examples	in	this	chapter.

Core	Collection	Interfaces
The	official	documentation	lists	the	following	as	the	Core	Collection	interfaces:

Collection

List

Set

SortedSet

Queue

Deque

Map

SortedMap

In	this	chapter	we	will	cover	List,	Set	and	Map	and	leave	the	other	collections	until	later
in	the	book.

Inheritance	Hierarchy
This	is	an	inheritance	hierarchy;	so	a	Set	is	a	Collection,	a	List	is	a	Collection,	but	both	Set	and	List	have
nuances	that	make	them	unique.

There	are	two	main	collection	concepts:	Collection	and	Map

Collection	provides	a	way	of	grouping	objects.	Map	provides	a	way	of	associating	objects	with	a	‘key’	for
later	retrieval	and	accessing.

The	following	table	provides	a	summary	of	the	main	methods	on	the	Interfaces:

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashSet.html

Collection List Set Map

add(e) get(i)
All	in
Collection

put(k,v)

remove(e) remove(i) 	 remove(k)

removeAll(c) add(i,e) 	 entrySet

retainAll(c) addAll(i,c) 	 get(k)

clear indexOf(e) 	 clear

contains(e) lastIndexOf(e) 	 containsKey(k)

containsAll(c) set(i,e) 	 containsValue(v)

size subList(i1,i2) 	 size

isEmpty 	 	 isEmpty

toArray All	in	Collection 	 values

toArray(a) 	 	 keySet

addAll(c) 	 	 putAll(m)

where:	e	==	element,	c	==	collection,	a	==	array,	i	==	index,	k	==	key,	v	==	value,	m
==	map

Collection	Interface
A	Collection	is	a	group	of	objects.	Where	each	object	is	referred	to	as	an	element.	The
Collection	interface	provides	the	basic	superset	of	methods.

add	-	to	add	an	element	to	a	collection
remove	-	to	remove	an	element	from	a	collection
size	-	to	return	the	number	of	elements	in	the	collection
isEmpty	-	check	if	a	collection	is	empty
addAll	-	to	add	every	element	of	another	collection	into	the	collection
removeAll	-	remove	every	element	of	another	collection	from	the	collection
retainAll	-	remove	every	element	in	the	collection	which	is	not	in	another	collection
clear	-	to	remove	all	the	elements	from	the	collection
contains	-	to	check	if	an	object	is	in	the	collection
containsAll	-	to	check	that	one	collection	contains	all	the	elements	of	another
toArray	-	to	convert	a	collection	to	an	array

Instantiating	a	collection

We	cannot	instantiate	a	Collection	because	a	Collection	is	an	interface.	There	are
classes	which	implement	the	interface,	e.g.	ArrayList.	So	we	declare	our	variables	as
Collection	and	instantiate	them	as	class	which	implements	the	interface.
								Collection	workdays;

								workdays	=	new	ArrayList();

In	the	above	code	we	have	a	usable	variable	called	workdays.	But	a	collection	can	contain
any	object,	and	since	we	didn’t	specify	what	the	collection	will	contain	it	defaults	to
object.	This	will	become	an	annoyance	later	when	we	try	and	iterate	through	the
collection	and	have	to	cast	the	elements	from	object	to	String.

As	a	recommendation,	when	you	work	with	a	collection,	and	the	objects	to	be	stored	in	the
collection	are	all	of	the	same	type	then	declare	the	collection	as	a	collection	of	type	e.g.
								Collection<String>	weekendDays	=	new	<String>ArrayList();

								Collection<String>	daysOfWeek	=	new	<String>ArrayList();

In	the	above	code	I	declare	the	Collection	as	a	collection	of	<String>.	Which	I
instantiate	with	an	ArrayList	that	will	only	contain	<String>.

This	provides	a	number	of	benefits:

It	makes	the	code	clear	as	to	the	contents	of	the	collection
It	makes	the	collections	strongly	typed	which	helps	with	code	completion	later

Try	to	get	in	the	habit	of	declaring	the	type	of	the	contents	of	the	collection	when	you
know	that	the	collection	will	only	contain	one	type	of	element.

Generics
The	<String>	notation,	is	a	usage	of	Java	Generics	which	is	a	way	of	declaring	classes	to	use	a	particular
type	of	object,	but	only	defining	the	type	at	compile	time.

A	full	discussion	of	generics	is	beyond	the	scope	of	this	book,	but	it	is	important	to
recognize	the	usage	of	it,	and	know	how	to	take	advantage	of	it	with	the	classes	you	use.
At	the	moment	you	have	only	seen	Generics	in	the	context	of	collections.

Read	the	references	on	generics	if	you	want	to	self-study	generics	in	more	detail.

For	now,	understand	that	<String>	declares	the	type	of	elements	in	the	Collection	and
implementation	Class.

Generic	Syntax
In	most	of	the	examples	in	this	book	I	will	use	the	syntax	like	the	following:
Collection<String>	weekendDays	=	new	<String>ArrayList();

It	is	also	possible	to	leave	out	the	<String>	on	the	ArrayList	and	use	<>	and	the	Java	compiler	will	use	the
Generic	value	from	the	interface	declaration	e.g.
Collection<String>	weekendDays	=	new	ArrayList<>();

The	newer	syntax	is	shorter	and	sometimes	your	IDE	will	code	complete	in	the	above	format	for	you.

The	reason	I	don’t	use	it,	is	simply	because	I’m	not	used	to	using	it,	I	think	it	only	arrived	in	Java	1.7

The	following	syntax	for	using	Generics	are	equivalent:
								Collection<String>	cola	=	new	ArrayList<String>();

								Collection<String>	colb	=	new	<String>ArrayList();

								Collection<String>	colc	=	new	ArrayList<>();

adding	elements	to	a	collection:	add,	addAll,	size,	containsAll

We	can	add	elements	to	a	collection	with	the	add	method.

								workdays.add("Monday");

								workdays.add("Tuesday");

								workdays.add("Wednesday");

								workdays.add("Thursday");

								workdays.add("Friday");

								assertEquals(5,	workdays.size());

We	can	use	the	size	method	to	count	the	number	of	elements	in	the	Collection.

And	we	can	use	the	addAll	method	to	add	all	the	elements	from	one	Collection	into
another:
								daysOfWeek.addAll(workdays);

								assertEquals(workdays.size(),	daysOfWeek.size());

								assertTrue(daysOfWeek.containsAll(workdays));

In	the	above	code	we	add	all	the	elements	in	workdays	to	an	empty	collection	daysOfWeek.

The	containsAll	method	can	help	us	check	if	a	Collection	contains	all	the	elements	of
another	collection.	The	Collection	that	we	call	the	containsAll	method	on	(i.e.
daysOfWeek)	can	contain	more	elements	than	the	argument	Collection	(i.e.	workdays),
but	in	order	for	containsAll	to	return	true,	all	of	the	elements	of	the	argument	collection,
must	be	present.

removing	individual	elements:	remove,	contains

If	I	add	some	elements	to	weekendDays.
								weekendDays.add("Saturday");

								weekendDays.add("Funday");

Then	you	can	see	that	I	made	a	mistake	by	spelling	Sunday	incorrectly	as	Funday.

I	can	fix	that	error	by	removing	Funday	with	the	remove	method:
								weekendDays.remove("Funday");

I	can	use	the	contains	method	to	check	if	a	Collection	contains	a	specific	element.	If	I
check	for	Funday	contains	should	return	false:
								assertFalse(weekendDays.contains("Funday"));

Of	course	I	can	add	the	correct	value	into	the	Collection,	and	check	its	presence.
								weekendDays.add("Sunday");

								assertEquals(2,	weekendDays.size());

								assertTrue("Bug	Fixed,	Sunday	is	in	the	collection	now",

																weekendDays.contains("Sunday"));

Iterate	over	a	collection

A	Collection	actually	implements	the	Iterable	interface.	Which	forms	the	backbone	of
the	for	each	functionality	that	we	saw	earlier.

So,	assuming	that	I	have	added	all	the	workdays	and	weekendDays	into	daysOfWeek,	I	can
iterate	over	it	with	the	for	each	construct.
								for(String	dayOfWeek	:	daysOfWeek){

												System.out.println(dayOfWeek);

								}

To	generate	the	following	output	to	the	console:
Monday			

Tuesday			

Wednesday			

Thursday			

Friday			

Saturday			

Sunday			

Iterating	over	the	Collection	provides	a	good	illustration	of	why	we	want	to	declare	the
type	of	element	that	the	collection	holds.	For	the	declaration	of	workdays	that	we
presented	earlier:
								Collection	workdays;

								workdays	=	new	ArrayList();

When	I	iterate	over	this,	I	get	an	Object	rather	than	a	specific	type:
								for(Object	workday	:	workdays){

												String	outputDay	=	(String)workday;

												System.out.println(outputDay);

								}

In	the	above	code	I	had	to	declare	workday	as	an	Object	and	when	I	used	it	within	the
loop,	I	had	to	cast	it	to	String	using	the	(String)	notation.

When	we	want	to	refine	the	type	of	an	object	then	we	can	cast	it	to	a	specific	type.	We	can
do	that	when	the	object	supports	the	interface	for	that	type,	or	is	of	that	type.

We	used	to	have	to	cast	objects	a	lot	in	Java,	but	now	that	the	collections	support	Generics
we	can	specify	the	type	in	the	declaration	and	avoid	casting	later.

Empty	a	Collection:	clear,	isEmpty

The	clear	method	allows	us	to	empty	a	collection.
								Collection<String>	daysOfWeek	=	new	<String>ArrayList();

								daysOfWeek.addAll(workdays);

								daysOfWeek.addAll(weekendDays);

								assertEquals(7,	daysOfWeek.size());

								daysOfWeek.clear();

								assertEquals(0,	daysOfWeek.size());

								assertTrue(daysOfWeek.isEmpty());

We	can	use	size	and	isEmpty	to	verify	that	it	has	no	elements.

Removing	All	of	one	collection	from	another:	removeAll

Assuming	that	my	daysOfWeek	Collection	contains	all	the	weekendDays	and	workdays.

I	can	remove	the	contents	of	the	weekendDays	Collection	from	daysOfWeek	with	the
removeAll	method:
								Collection<String>	daysOfWeek	=	new	<String>ArrayList();

								daysOfWeek.addAll(workdays);

								daysOfWeek.addAll(weekendDays);

								assertEquals(7,	daysOfWeek.size());

								daysOfWeek.removeAll(weekendDays);

								assertTrue(daysOfWeek.containsAll(workdays));

								assertEquals(5,	daysOfWeek.size());

								assertFalse(daysOfWeek.containsAll(weekendDays));

I	can	use	the	containsAll	method	to	check	that	the	removal	took	place.

Remove	all	but	one	collection	from	another:	retainAll

So	to	retain	only	the	weekendDays	in	daysOfWeek	I	would	do	the	following:
								daysOfWeek.retainAll(weekendDays);

Use	the	retainAll	method	to	remove	all	but	one	collection	from	another.	Or	in	other
words,	retain	only	the	elements	from	the	argument	collection,	in	the	collection	I	call	the
method	on.
								Collection<String>	daysOfWeek	=	new	<String>ArrayList();

								daysOfWeek.addAll(workdays);

								daysOfWeek.addAll(weekendDays);

								assertTrue(daysOfWeek.containsAll(workdays));

								assertTrue(daysOfWeek.containsAll(weekendDays));

								daysOfWeek.retainAll(weekendDays);

								assertEquals("only	weekend	days	now",	2,	daysOfWeek.size());

								assertTrue(daysOfWeek.containsAll(weekendDays));

								assertFalse(daysOfWeek.containsAll(workdays));

Convert	a	collection	to	an	array

Use	the	toArray	method	to	convert	a	Collection	to	an	array.

This	method	can	be	used	in	two	forms.

toArray()

toArray(anArray)

When	we	call	toArray	without	an	argument,	it	will	return	an	array	of	Object
								Object[]	daysOfWeekArray	=	daysOfWeek.toArray();

								assertEquals(7,	daysOfWeekArray.length);

If	we	subsequently	wanted	to	use	elements	from	the	array	we	would	have	to	cast	them	as
String.	i.e.	(String):
								assertEquals("Monday".length(),

																				((String)daysOfWeekArray[0]).length());

The	toArray(anArray)	call,	where	we	pass	as	argument	an	initialized	array,	avoids	these
problems:

								String[]	anotherArray	=	new	String[daysOfWeek.size()];

								daysOfWeek.toArray(anotherArray);

								assertEquals("Monday".length(),

																				anotherArray[0].length());

In	the	above	code	I	declare	a	String	array,	and	initialize	the	array	at	the	correct	size	to
hold	the	collection	contents.	Then	call	the	toArray	method	with	that	array	as	the
argument.

Collection	Documentation

You	can	find	the	details	of	Collection	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

Implementations:

docs.oracle.com/javase/tutorial/collections/implementations

I	typically	use	a	List	implementation	when	I	want	just	a	generic	Collection,	but	we	will
cover	other	implementations	later	in	this	chapter.

Exercise:	Create	and	manipulate	a	Collection	of	Users
Create	a	Collection	of	Users
Assert	that	the	size()==0	and	isEmpty()==true
Create	two	User	objects
Add	the	User	objects	to	the	collection
Assert	that	the	size()==2	and	isEmpty()==false
Create	a	second	collection	with	two	different	users
addAll	the	second	collection	to	the	first	collection
check	that	the	first	collection	now	contains	objects	from	the	second	collection
removeAll	the	User	objects	from	the	second	collection
clear	the	first	collection

Ensure	you	assert	after	each	step

List
A	List	builds	on	the	Collection,	so	all	Collection	methods	are	available.

A	List:

allows	storing	of	duplicate	elements,
retains	elements	in	the	order	added.
allows	adding	elements	in	specific	places	in	the	list

I	tend	to	use	a	List	in	preference	to	an	Array.	Arrays	are	clearly	at	a	lower	level	and	faster.
But	I	only	use	an	Array	when	I’m	working	with	a	fixed	set	of	objects	that	I	know	are
never	going	to	change.

http://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html
http://docs.oracle.com/javase/tutorial/collections/implementations

If	my	code	needs	to	be	particularly	fast	then	I	might	optimize	down	to	an	Array.	But	if	I’m
working	on	any	code	dynamically,	then	a	List	will	often	be	my	first	choice	as	it	is	a	very
simple	collection.

A	List	offers	all	the	methods	from	Collection	and	adds:

get(i)	to	retrieve	an	element	from	a	specific	index
remove(i)	to	remove	the	element	at	an	index
add(i,e)	to	add	at	a	specific	index,	an	element
addAll(i,c)	to	add,	at	a	specific	index,	all	elements	in	a	collection
indexOf(e)	to	return	the	index	of	an	element
lastIndexOf(e)	to	return	the	last	index	of	an	element
set(i,e)	to	set	the	element	at	a	particular	index
subList(i1,i2)	to	return	a	sublist	from	index1	to	index2

In	all	of	the	examples	I	will	declare	a	List	that	will	contain	String,	and	will	instantiate	as
an	ArrayList,	which	you	also	saw	in	the	Collection	@Test	methods.	I	tend	to	default	to
ArrayList	for	both	Collection	and	List.	e.g.
								List<String>	days	=	new	ArrayList<String>();

get	an	element	at	index

A	List	exposes	an	array	style	interface	where	each	element	in	the	list	has	a	positional
index,	which	like	an	array	starts	at	0.
				@Test

				public	void	getAnElementAtAnIndex(){

								List<String>	days	=	new	ArrayList<String>();

								days.add("Monday");

								days.add("Tuesday");

								days.add("Wednesday");

								assertEquals("Monday",	days.get(0));

								assertEquals("Tuesday",	days.get(1));

								assertEquals("Wednesday",	days.get(2));

				}

In	the	above	code,	the	List	guarantees	that	the	elements	I	add	will	be	accessible	in	the
order	that	I	add	them	so	that	the	first	element	added	can	be	accessed	with	index	0,	the
second	element	added	can	be	accessed	with	index	1	etc.

remove	an	element	at	index

In	addition	to	having	the	ability	to	remove	an	element,	we	can	also	remove	elements	based
on	their	index.
				@Test

				public	void	removeAnElementAtAnIndex(){

								List<String>	days	=	new	ArrayList<String>();

								days.add("Monday");

								days.add("Tuesday");

								days.add("Wednesday");

								days.remove(1);

								assertEquals(2,	days.size());

								assertEquals("Monday",	days.get(0));

								assertEquals("Wednesday",	days.get(1));

				}

When	I	remove	an	element	based	on	its	index,	the	list	resizes	and	elements	after	the	one
removed	have	their	indexes	adjusted.	So	if	I	remove	the	element	at	index	1,	the	element
that	was	at	index	2	can	now	be	found	at	index	1.

add	an	element	at	a	specific	index

With	a	Collection	we	can	add	elements,	but	they	are	just	in	the	collection,	they	could	be
anywhere,	we	don’t	care.

With	an	array,	we	have	to	resize	the	array	if	we	want	to	add	new	elements.

With	a	List	we	can	add	elements	at	specific	points	in	the	List.

In	this	example,	I	start	with	a	partial	list	of	days.
								List<String>	days	=	new	ArrayList<String>();

								days.add("Tuesday");

								days.add("Thursday");

								days.add("Saturday");

I	need	to	add	a	few	days	to	this	list:
								days.add(0,	"Monday");

								days.add(2,	"Wednesday");

								days.add(4,	"Friday");

								days.add(6,	"Sunday");

I	add	“Monday”	to	the	start	of	the	list,	then	“Wednesday”	and	“Friday”	into	the	middle	of
the	list,	and	“Sunday”	at	the	end	of	the	list.

You	can	see	that	when	I	add	an	element	in	the	middle	or	the	start,	that	it	doesn’t	overwrite
the	element	that	is	already	there,	it	inserts	the	element	and	moves	everything	else	in	the
list	to	a	new	index.

Adding	to	the	end
When	adding	to	the	end	of	the	List	you	can	only	add	to	the	end,	you	can’t	add	way	beyond	the	size	of	the
List	and	expect	it	to	resize.

i.e.	if	I	have	3	elements	in	my	List	then	I	can	add	another	one	at	index	3.	Index	3	doesn’t	exist	until	I	add
it	(I	can’t	get(3)),	but	I	can	increase	the	size	of	the	list	by	adding	to	the	end.	I	cannot	add	an	element	to
index	20,	Java	would	throw	an	IndexOutOfBoundsException.

I	could	also	use	the	add(e)	method,	because	adding	an	element	to	a	List	adds	it	to	the	end	of	the	List.

addAll	elements	in	a	collection	at	a	specific	index

With	a	Collection	the	addAll	adds	the	elements	somewhere	in	the	collection.	With	a
List	we	can	control	exactly	where	we	insert	the	elements	in	the	collection.

For	example,	if	I	created	a	List	for	days:

								days.add("Monday");

								days.add("Friday");

I	could	create	another	collection	with	the	missingDays	and	insert	them,	into	the	middle	of
the	days	collection.
								days.addAll(1,	missingDays);

This	would	insert	the	collection	at	index	1,	and	move	“Friday”	to	position	4.	It	would	not
overwrite	the	element	existing	at	index	1,	the	addAll	at	an	index	performs	an	insert
								List<String>	days	=	new	ArrayList<String>();

								List<String>	missingDays	=	new	ArrayList<String>();

								days.add("Monday");

								days.add("Friday");

								missingDays.add("Tuesday");

								missingDays.add("Wednesday");

								missingDays.add("Thursday");

								days.addAll(1,	missingDays);

								assertEquals(5,	days.size());

								assertEquals("Monday",	days.get(0));

								assertEquals("Tuesday",	days.get(1));

								assertEquals("Wednesday",	days.get(2));

								assertEquals("Thursday",	days.get(3));

								assertEquals("Friday",	days.get(4));

Can	Insert	at	Start	and	End
As	with	add	the	addAll(i,c)	method	can	insert	the	collection	at	the	start	of	the	List	by	using	index	0,	or
at	the	end	of	the	List	by	using	the	‘next	index’	or	the	‘size’.

Adding	to	the	end	of	the	List	with	an	index	is	equivalent	to	using	the	add	or	addAll	method	without	an
index.	Since	the	add	methods	on	a	List	add	to	the	end	of	the	List.

indexOf	find	the	index	of	an	element

When	we	have	a	List	and	we	don’t	know	the	index	of	the	element	in	the	list	then	we	can
use	the	indexOf	method	to	tell	us	where	in	the	List	the	element	can	be	found.
								List<String>	days	=	new	ArrayList<String>();

								days.add("Tuesday");

								days.add("Thursday");

								days.add("Saturday");

								assertEquals(1,	days.indexOf("Thursday"));

If	indexOf	is	used	on	a	List	with	duplicates	then	it	will	return	the	first	index	of	the
element.

lastIndexOf	the	the	last	index	of	an	element

A	List	allows	duplicate	elements,	so	we	may	want	to	find	the	position	of	the	last	of	the
duplicates.	In	which	case	we	would	use	the	lastIndexOf	method	to	do	this.

								List<String>	days	=	new	ArrayList<String>();

								days.add("Tuesday");

								days.add("Thursday");

								days.add("Saturday");

								days.add("Thursday");

								days.add("Thursday");

								days.add("Sunday");

								assertEquals(4,	days.lastIndexOf("Thursday"));

If	lastIndexOf	is	used	on	a	List	with	no	duplicates	then	it	returns	the	same	as	indexOf.

set	the	element	at	an	index

When	using	an	array,	the	array[1]="New	Element"	would	overwrite	the	existing	contents
at	index	1.	We	can	do	the	same	thing	with	set	which	allows	us	to	set	the	value	of	a
particular	index.

For	example:
								List<String>	days	=	new	ArrayList<String>();

								days.add("Monday");

								days.add("Thursday");

								days.add("Wednesday");

								days.set(1,	"Tuesday");

								assertEquals("Tuesday",	days.get(1));

In	the	above	code,	I	originally	add	"Thursday"	into	index	1,	but	then	overwrite	it	to
"Tuesday"	with	the	set	method.
								days.set(1,	"Tuesday");

And	because	set	performs	an	overwrite,	the	size	of	the	List	does	not	change	and	no	re-
ordering	takes	place.
								assertEquals(3,	days.size());

								assertEquals("Monday",	days.get(0));

								assertEquals("Tuesday",	days.get(1));

								assertEquals("Wednesday",	days.get(2));

subList	to	create	a	portion	of	the	list

To	create	a	new	List	with	a	selection	of	elements	from	a	parent	List	we	use	the	subList
method.

subList	takes	two	arguments,	the	fromIndex,	and	the	toIndex.	The	toIndex	is	1	more
than	the	index	you	want.

For	example,	if	I	create	a	list	of	days	and	want	a	subList	of	just	the	work	days	"Monday"
through	"Friday".	"Monday"	will	be	at	index	0,	and	"Friday"	is	at	index	4,	but	if	I	want	to
include	"Friday"	in	the	new	sub-list	then	I	have	to	use	5	as	my	toIndex:
								List<String>	days	=	new	ArrayList<String>();

								days.add("Monday");

								days.add("Tuesday");

								days.add("Wednesday");

								days.add("Thursday");

								days.add("Friday");

								days.add("Saturday");

								days.add("Sunday");

								List<String>	workdays	=	days.subList(0,5);

								assertEquals(5,	workdays.size());

								assertEquals("Monday",	workdays.get(0));

								assertEquals("Tuesday",	workdays.get(1));

								assertEquals("Wednesday",	workdays.get(2));

								assertEquals("Thursday",	workdays.get(3));

								assertEquals("Friday",	workdays.get(4));

List	Documentation

You	can	find	the	details	of	List	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/list.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/list.html

Exercise:	Create	and	manipulate	a	List	of	Users
Write	an	@Test	annotated	method,	and	create	a	List	of	User	objects.

Create	the	List
Create	two	User	objects
Add	a	User	to	the	list
Add	a	User	to	the	front	of	the	list
Assert	on	the	indexOf	positions	of	the	User	objects
remove	the	first	User	object

Remember	to	assert	after	each	action	on	the	List

Set
A	Set	builds	on	the	Collection,	so	all	Collection	methods	are	available.

A	Set:

does	not	allow	storing	duplicates,	so	adding	a	duplicate	is	ignored.
ordering	is	not	guaranteed,	so	if	you	iterate	through	a	set	it	may	not	bring	back	the
elements	in	the	order	you	expect

				@Test

				public	void	setDoesNotAllowDuplicateElements(){

								Set	workdays	=	new	HashSet();

								workdays.add("Monday");

http://docs.oracle.com/javase/tutorial/collections/interfaces/list.html
http://docs.oracle.com/javase/tutorial/collections/implementations/list.html

								workdays.add("Monday");

								workdays.add("Monday");

								workdays.add("Monday");

								workdays.add("Monday");

								assertEquals(1,	workdays.size());

				}

I	tend	to	use	a	HashSet	from	java.util	as	my	default	Set	implementation.

Sets	of	Custom	Objects
Be	careful	if	you	want	to	create	a	Set	of	your	own	objects	and	have	Java	identify	the	duplicated	elements.
The	duplication	check	is	based	on	a	hash	and	you	need	to	implement	your	own	hashCode	method	which
generates	a	unique	hash	for	each	unique	object.

You	should	also	implement	your	own	equals	method.

I	have	decided	to	make	this	out	of	scope	for	this	book	because	I	think	most	of	you	are	unlikely	to
experience	this.	I’m	assuming	that	you	are	mainly	likely	to	create	a	Set	containing	built	in	classes.

I	very	often	avoid	this	problem	by	creating	sets	of	‘keys’	for	objects	stored	in	a	Map	and	the	keys	tend	to	be
String.

However	if	you	do	need	to	create	a	Set	of	custom	objects	then	the	references	in	the	“Next	Steps”	chapter,
or	at	the	end	of	this	chapter,	should	help.

Set	Documentation

You	can	find	the	details	of	Set	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/set.html

Exercise:	Create	and	manipulate	a	Set	of	Users
Write	an	@Test	annotated	method,	and	create	a	Set	of	User	objects.

Create	a	User
Add	the	User	to	the	Set
Add	the	User	to	the	Set	again
Check	that	the	User	has	only	been	added	to	the	Set	once

Map
A	Map	is	a	collection	where	each	element	is	a	value,	and	it	is	stored	with	an	associated	key.

The	Map	is	a	collection	of	key	value	pairs.

Each	key	must	be	unique.	And	each	key	maps	to	only	one	value

http://docs.oracle.com/javase/tutorial/collections/interfaces/set.html
http://docs.oracle.com/javase/tutorial/collections/implementations/set.html

Map	has	some	methods	in	common	with	Collection:

size
clear
isEmpty

Which	means	you	already	know	what	those	methods	do.

And	some	methods	that	have	a	very	similar	counterpart:	containsKey	and	containsValue
are	similar	to	the	Collection	method	contains.

put(k,v)	to	add	“key,	value”	pairs	to	the	map
remove(k)	to	remove	the	element	with	that	key
entrySet	to	return	a	Set	of	all	elements	as	Map.Entry	objects
get(k)	to	return	the	element	based	on	the	key
containsKey(k)	returns	true	if	the	key	is	in	the	Map
containsValue(v)	returns	true	if	the	value	is	in	the	Map
values	returns	a	Collection	of	all	the	values
keySet	returns	a	Set	of	all	the	keys
putAll(m)	adds	a	Map	(m)	to	the	Map	object

I	tend	to	use	HashMap	as	my	default	implementation.	And	below	you	can	see	examples	of
the	declaration	and	initialization	code:
								Map<String,User>	mapa	=	new	HashMap<>();

								Map<String,User>	mapb	=	new	HashMap<String,User>();

								Map<String,User>	mapc	=	new	<String,User>HashMap();

In	the	above	code	you	can	see	that	a	Map	is	declared	with	two	values	Map<Key,Value>	so
in	the	above	code	I	declare	the	Map	variables	as	having	a	String	key,	and	a	User	value.	So
I	would	use	the	Map	to	store	User	objects.
put(k,v)

Add	“key,	value”	pairs	to	a	Map	with	the	put	method.
								Map<String,String>	map	=	new	HashMap<>();

								map.put("key1",	"value1");

								map.put("key2",	"value2");

								map.put("key3",	"value3");

								assertEquals(3,	map.size());

The	key	can	be	an	object,	as	can	the	value.	The	declaration	of	the	Map	determines	what
objects	we	can	put	into	the	Map.

If	I	put	a	“key,	value”	pair,	where	the	key	already	exists	in	the	Map	then	the	old	value	will
be	overwritten	with	the	new	value:
								map.put("key1",	"newvalue1");

								assertEquals("newvalue1",	map.get("key1"));

get(k)	to	retrieve	a	value	from	the	Map

I	can	get	values	from	the	Map	using	the	key	that	I	put	the	value	into	the	Map	with.

								assertEquals("value1",	map.get("key1"));

								assertEquals("value2",	map.get("key2"));

								assertEquals("value3",	map.get("key3"));

If	I	attempt	to	get	a	value	with	a	key	that	does	not	exist	then	null	will	be	returned.
								assertEquals(null,	map.get("key4"));

remove(k)	to	remove	a	“key,	value”	pair

I	can	remove	a	value	from	a	Map	by	calling	the	remove	method	with	an	existing	key.
								map.remove("key1");

								assertEquals(2,	map.size());

If	the	key	does	not	exist	then	no	exception	is	thrown	and	nothing	happens	to	the	Map,	the
method	call	has	no	impact.

Empty	a	Map	with	clear,	check	with	size,	isEmpty

Just	as	we	could	with	the	Collection,	we	can	empty	the	Map	by	calling	the	clear	method.
								map.clear();

								assertEquals(0,	map.size());

								assertTrue(map.isEmpty());

I	can	check	that	the	Map	is	empty	using	the	size	and	the	isEmpty	methods.

Check	contents	of	Map	with	containsKey(k)	and	containsValue(v)

The	containsKey	method	returns	true	or	false.	true	when	something	with	the	key	has
been	put	in	the	Map	and	false	when	nothing	using	that	key	has	been	put	in	the	Map
								Map<String,String>	map	=	new	HashMap<>();

								map.put("key1",	"value1");

								map.put("key2",	"value2");

								map.put("key3",	"value3");

								assertTrue(map.containsKey("key1"));

								assertFalse(map.containsKey("key23"));

								assertTrue(map.containsValue("value2"));

								assertFalse(map.containsValue("value23"));

putAll(m)	to	add	a	Map	to	the	Map

I	can	put	one	Map	inside	another	Map	with	the	putAll	method:
								map.putAll(mapToAdd);

If	I	try	and	add	a	Map	that	contains	a	key	duplicating	an	existing	key,	then	the	value	from
the	new	Map	will	be	used:	e.g.	in	the	following	code	the	key	“key1”	is	duplicated	across
both	Map	objects:
								map.put("key1",	"value1");

								map.put("key2",	"value2");

								map.put("key3",	"value3");

								mapToAdd.put("key1",	"keyvalue1");

								mapToAdd.put("key4",	"value4");

When	I	put	mapToAdd	into	map:
								map.putAll(mapToAdd);

The	existing	value	for	“key1”	is	overwritten	with	the	value	from	mapToAdd:
								assertEquals(4,	map.size());

								assertEquals("keyvalue1",	map.get("key1"));

values

values	returns	a	Collection	containing	all	the	values	in	the	Map:
								Collection<String>	values	=	map.values();

Each	value	will	be	of	the	type	declared	for	the	Map
keySet

keySet	returns	a	Set	where	each	element	is	a	key	from	the	Map:
								Set<String>	keys	=	map.keySet();

entrySet	to	work	with	“key,	value”	pairs

entrySet	returns	the	Set	of	Entry	objects	from	java.util.Map.

An	Entry	is	the	“key,	value”	pair.

Entry	exposes	the	methods:

getValue	to	return	the	value
getKey	to	return	the	key
setValue	to	set	the	value

The	following	code	iterates	through	the	entries	in	the	Map	and	sets	all	the	values	to	"bob":
								Set<Map.Entry<String,String>>	entries	=	map.entrySet();

								for(Map.Entry<String,String>	entry	:	entries){

												entry.setValue("bob");

								}

Map	Documentation
You	can	find	the	details	of	Map	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/map.html

http://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
http://docs.oracle.com/javase/tutorial/collections/implementations/map.html

Exercise:	Create	and	manipulate	a	Map	of	User	objects
Write	an	@Test	annotated	method,	and	create	a	Map	of	User	objects.

Create	a	Map	of	User	objects
Create	two	User	objects
Add	both	User	objects	to	the	map	using	the	same	key
Check	that	only	one	User	object	has	been	added

Summary
In	this	chapter	you	learned	the	basics	of	Collections.

A	Collection	is	the	most	generic	collection	interface	which	supports	adding,	removing
and	iterating	over	a	collection	of	objects.

Collections	use	the	Generics	syntax	to	define	the	type	of	object	in	the	collection	e.g.
List<String>	to	create	a	List	of	String	objects.

The	basic	Collection	interfaces	are:

Collection	-	a	basic	container
List	-	to	allow	accessing	by	index
Set	-	to	avoid	duplicates
Map	-	to	store	“key,	value”	pairs

Each	interface	can	have	multiple	implementations,	the	implementations	we	used	in	this
chapter	were:

Collection	&	List:
ArrayList

Set:
HashSet

Map:
HashMap

Collections	offer	us	the	ability	to	create	dynamic	and	re-sizable	containers,	rather	than
fixed	size	array	containers.

References	and	Recommended	Reading

Program	to	an	interface,	not	an	implementation
artima.com/lejava/articles/designprinciplesP.html

Java	Interface	Tutorial
docs.oracle.com/javase/tutorial/java/concepts/interface.html

Java	Collections	Tutorials
docs.oracle.com/javase/tutorial/collections

Java	Collection	Interfaces

http://www.artima.com/lejava/articles/designprinciplesP.html
http://docs.oracle.com/javase/tutorial/java/concepts/interface.html
http://docs.oracle.com/javase/tutorial/collections/

docs.oracle.com/javase/tutorial/collections/interfaces/index.html
Java	Generics

docs.oracle.com/javase/tutorial/java/generics
Java	Collection	Implementations

docs.oracle.com/javase/tutorial/collections/implementations
HashCode

docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
List

Interface
docs.oracle.com/javase/tutorial/collections/interfaces/list.html

Implementations
docs.oracle.com/javase/tutorial/collections/implementations/list.html

Set
Interface

docs.oracle.com/javase/tutorial/collections/interfaces/set.html
Implementations

docs.oracle.com/javase/tutorial/collections/implementations/set.html
Map

Interface
docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Implementations
docs.oracle.com/javase/tutorial/collections/implementations/map.html

http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/collections/implementations/
http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#hashCode%28%29
http://docs.oracle.com/javase/tutorial/collections/interfaces/list.html
http://docs.oracle.com/javase/tutorial/collections/implementations/list.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/set.html
http://docs.oracle.com/javase/tutorial/collections/implementations/set.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
http://docs.oracle.com/javase/tutorial/collections/implementations/map.html

Chapter	Eleven	-	Introducing	Exceptions

Chapter	Summary
In	this	chapter	you	will	learn	about	exceptions:

an	exception	is	an	unexpected	event	which	can	interrupt	our	code	execution
understand	the	stack	trace	on	an	exception
how	to	handle	an	exception	using	try	and	catch	and	finally
trigger	a	NullPointerException	and	how	to	catch	them
throwing	exceptions	from	your	own	code
using	methods	on	the	exception	e.g.	getMessage,	getStackTrace
catching	multiple	exceptions
JUnit’s	expected	parameter	on	@Test

An	exception	is	something	that	happens	to	you	when	you	least	expect	it.	Often	because
you	have	written	code	which	compiles,	but	has	an	error	at	runtime	e.g.	you	try	to	access	a
file	that	does	not	exist,	or	access	a	variable	that	has	not	been	set.	And	sometimes	because
something	untoward	happened	on	the	machine	your	code	was	executing	e.g.	the	system
runs	out	of	memory.

A	very	important	part	of	learning	to	write	automation	involves	handling	and	processing
exceptions.

What	is	An	exception?
An	exception	is	an	object	raised	which	interrupts	the	flow	of	execution	in	an	application.

Because	we	are	using	automation	to	support	our	testing,	we	should	expect	our	automation
code	to	trigger	anomalous	and	exceptional	behaviour.	Our	automation	code	will	encounter
bugs	and	unexpected	situations	and	we	have	to	be	able	to	handle	them.

We	also	use	exceptions	in	our	abstractions	to	let	the	calling	automation	code	know	that
something	unexpected	has	happened.

Automation	code	is	very	different	from	application	code	in	that	we	often	want	exceptions
to	show	themselves	and	cause	our	@Test	methods	to	fail.

In	application	code	we	rarely	want	exceptions	to	manifest	because	they	slow	the	whole
system	down	and	create	a	poor	user	experience.

What	is	an	exception?
Normally	Java	code	proceeds	from	one	statement	to	the	next	e.g.
								String	ageAsString	=	age.toString();

								String	yourAge	=

																"You	are	"	+	ageAsString	+	"	years	old";

In	the	above	code	Java	would:

call	the	method	toString	on	the	age	variable
assign	the	return	value	from	toString	to	the	ageAsString	variable
build	a	String	from	the	constant	"You	are	",	the	variable	ageAsString,	and	the
constant	"years	old"
assign	that	String	to	the	yourAge	variable

All	of	the	above	code	would	execution	in	sequence.

An	exception	is	a	way	of	interrupting	the	normal	flow	of	execution	when	something	goes
wrong.

When	an	exception	occurs	the	current	statement	is	terminated	and	the	execution	flow
stops.	If	there	is	no	program	code	to	catch	and	handle	the	exception	anywhere	in	the
sequence	of	calling	code	then	the	exception	will	terminate	the	program.

What	does	an	exception	look	like?
The	simplest	way	of	understanding	an	exception	is	to	see	one	in	action.

I	have	created	a	package	in	src\test\java	called:
package	com.javafortesters.chap011exceptions.examples;

And	added	a	JUnit	test	class	called	ExceptionsExampleTest.

I	will	add	all	my	@Test	annotated	methods	into	this	class.

The	following	code,	when	annotated	with	@Test,	will	cause	a	NullPointerException	to
be	thrown.

Run	it	and	see:
				public	void	throwANullPointerException(){

								Integer	age=null;

								String	ageAsString	=	age.toString();

								String	yourAge	=

																"You	are	"	+	ageAsString	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

In	the	above	code,	you	can	see	that	I	forgot	to	assign	a	value	to	the	Integer	age,	and	it	is
set	to	null.	So	when	I	try	to	call	the	toString()	method	on	age,	Java	throws	a
NullPointerException.

In	this	case	the	thrown	exception	is	good	for	us,	because	we	see	that	we	made	a	mistake	in
our	coding,	and	we	can	fix	it	by	assigning	a	value,	i.e.	18,	to	the	age	variable.

The	exception	report	is	written	to	the	console:

	1	java.lang.NullPointerException				

	2					at	com.javafortesters.exceptions.ExceptionsExampleTest.				

	3					throwANullPointerException(ExceptionsExampleTest.java:15)				

	4					at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)				

	5					...				

	6					at	org.junit.runners.ParentRunner.run(ParentRunner.java:309)				

	7					at	org.junit.runner.JUnitCore.run(JUnitCore.java:160)			

	8					at	com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs

	9								(JUnit4IdeaTestRunner.java:77)			

10					at	com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart

11								(JUnitStarter.java:195)				

12					at	com.intellij.rt.execution.junit.JUnitStarter.main

13								(JUnitStarter.java:63)

14					at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)				

15					at	sun.reflect.NativeMethodAccessorImpl.invoke

16								(NativeMethodAccessorImpl.java:57)				

17					at	com.intellij.rt.execution.application.AppMain.main(AppMain.java:120)

In	the	above	exception	message	you	can	see	the	call	stack	trace.	I	removed	a	few	lines	to
avoid	cluttering	the	page	(represented	by	...	in	the	listing).

Each	of	the	at	lines	represents	a	call	and	is	a	nested	step	in	the	execution	of	the	code.	The
most	recent	call	is	at	the	top	(lines	2	and	3	in	the	listing).	These	lines	tell	us	that	a
NullPointerException	was	thrown	on	line	15	of	ExceptionsExampleTest.java.
throwANullPointerException(ExceptionsExampleTest.java:15)

Then	each	of	the	lower	at	lines	is	another	level	where	the	code	was	executed.	Because	we
are	using	JUnit	and	I	ran	the	code	from	the	IDE,	there	are	a	lot	of	steps	involved.

Working	from	the	bottom	up	you	can	see	that:

line	17:	an	application	main	method	was	called	from	IntelliJ
AppMain.java:120

lines	14-16:	various	reflection	methods	were	called	to	start	the	code
NativeMethodAccessorImpl.java:57

lines	10-13:	JUnit	was	called
JUnitStarter.java:63

lines	8	&	9:	JUnit	started	a	JUnit	runner	to	run	the	@Test	method
JUnit4IdeaTestRunner.java:77

lines	5-9:	then	there	were	a	bunch	of	lines	all	related	to	starting	and	executing	the
method
lines	1-3:	before	our	code	failed	on	line	15

ExceptionsExampleTest.java:15

To	be	honest,	I	don’t	fully	understand	all	the	lines	in	that	stack	trace.	But	I	can	look	at
them	and	make	a	rough	guess	what	is	happening	and	I	can	see	the	most	important	parts.

The	stack	trace	is	useful	because	it	shows	the	line	numbers	that	were	involved	in	calling
the	code,	and	for	us	the	most	important	is	line	3	in	the	listing.	Where	the	line	(15)	in
ExceptionsExampleTest.java	is	described	as	the	source	of	the	exception.	This	helps	us
debug	the	code	when	an	exception	is	thrown.

Exercise:	Fix	the	NullPointerException	in	the	code
Amend	the	code	to	assign	18	to	the	age	and	check	the	code	runs	successfully	without	throwing	an
exception.

Catching	Exceptions
There	are	situations	where	we	know	in	advance	that	an	exception	might	happen,	and	we
want	to	catch	the	exception	and	take	action	to	handle	the	exception.	e.g.	we	try	to	open	a
file,	but	it	doesn’t	exist,	so	we	catch	the	exception	and	then	create	the	file.

This	is	where	the	try	and	catch	keywords	in	Java	help	us.
								Integer	age=null;

								String	ageAsString;

								try{

											ageAsString	=	age.toString();

								}catch(NullPointerException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}

I	made	a	few	changes	to	the	code	to	use	the	try	catch:

declare	String	ageAsString;	before	the	try
declare	the	type	of	exception	to	catch,	in	this	case	a	NullPointerException.
take	action	to	handle	the	exception	in	the	catch	block.	i.e.	I	assigned	a	value	to	the
Integer	age.

I	have	to	declare	String	ageAsString;	before	the	try.	You	can	see	that	try	has	a	code
block	delimited	with	{	and	}.	If	I	declared	ageAsString	within	that	code	block	it	would
only	be	accessible	for	code	within	the	try	code	block’s	{	and	},	and	not	available	to	code
in	the	catch	block	or	after	the	try	and	catch	blocks.

In	the	catch	I	have	to	declare	what	type	of	exception	I	will	catch.	In	this	case	I	only	want
to	catch	NullPointerExceptions	so	declare	a	variable	e	as	a	NullPointerException.

In	the	catch	block,	I	assume	that	I	have	reached	this	code	because	age	was	null,	so	I
assign	it	a	value	and	repeat	the	Integer	to	String	conversion.	So	I	use	the	catch	block	to
fix	the	cause	of	the	exception	and	take	action	to	allow	the	rest	of	the	code	to	run	to
completion.

try	catch	Notes
Code	in	the	try	block	will	always	run.
The	catch	block	will	execute	only	if	the	declared	exception	is	thrown.
Exceptions	that	are	thrown	in	the	catch	block	will	propagate	up	the	stack	i.e.	to	calling	methods.

The	code	in	the	try	block	will	always	be	run.

If	an	exception	is	thrown,	and	it	is	of	the	type	declared	by	the	catch	block	then	the	code	in
the	catch	block	will	be	run.

If	an	exception	is	thrown	within	the	catch	block.	Then	it	won’t	be	re-caught	because	there
is	no	try	catch	statement	surrounding	it.

If	a	different	exception	is	thrown	then	it	will	not	be	caught	because	I	have	specified	that
only	NullPointerException	will	be	caught.

My	full	code	looks	like	this:
				@Test

				public	void	catchANullPointerException(){

								Integer	age=null;

								String	ageAsString;

								try{

											ageAsString	=	age.toString();

								}catch(NullPointerException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}

								String	yourAge	=

																"You	are	"	+	age.toString()	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

Exercise:	Use	a	different	exception	instead	of	NullPointerException
Replace	NullPointerException	with	ArithmeticException.

What	happens?

Exercise:	Don’t	fix	the	cause	of	the	exception
Remove	the	age	=	18;	statement	from	within	the	catch	block.

Run	the	@Test	method	and	see	what	happens.

Exercise:	Catch	a	Checked	Exception
Use	NoSuchMethodException	instead	of	NullPointerException.

What	happens?

An	Exception	is	an	object
								}catch(NullPointerException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}

You	can	see	in	my	catch	block	that	I	declared	a	parameter	e	as	a	NullPointerException.

This	means	that	within	the	catch	block	I	have	access	to	a	local	variable	e.	You	could	call
this	variable	whatever	you	want,	a	lot	of	people	stick	with	e	as	a	convention.

e	is	an	object	of	type	NoSuchMethodException	so	I	have	access	to	a	variety	of	methods	on
this	exception.	A	few	useful	methods	are:

getMessage	-	shows	me	the	error	message	associated	with	the	exception	so	I	can	log
it
getStackTrace	-	an	Array	of	StackTraceElement	object	with	method	calls	that
reveal	the	lines	of	code	which	led	up	to	the	throwing	of	the	exception,	which	can	help
with	debugging
printStackTrace	-	which	prints	the	stack	trace	to	the	error	output	stream	-	typically
your	console	or	command	line

Exercise:	Use	Exception	as	an	object
Add	the	following	code	in	your	catch	block,	run	the	@Test	method,	and	see	what	information	you	get
from	the	exception	itself.

The	getStackTrace	method	returns	an	array	of	StackTraceElement	objects,	investigate	what	the	methods
on	this	object	reveal.

												System.out.println("getMessage	-	"	+

																				e.getMessage());

												System.out.println("getStacktrace	-	"	+

																				e.getStackTrace());

												System.out.println("printStackTrace");

												e.printStackTrace();

Catch	more	than	one	exception
In	the	try	catch	code	above,	I	only	checked	for	a	single	type	of	exception.

The	catch	block	can	be	repeated	to	write	code	that	catches	multiple	exceptions.
								Integer	age=null;

								String	ageAsString;

								try{

												ageAsString	=	age.toString();

								}catch(NullPointerException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}catch(IllegalArgumentException	e){

												System.out.println("Illegal	Argument:	"	+

																																e.getMessage());

								}

In	the	above	code	snippet,	the	catch	blocks	will	handle	either	a	NullPointerException	or
an	IllegalArgumentException.

JUnit	and	Exceptions
JUnit	has	a	handy	feature	to	allow	us	to	check	for	thrown	exceptions.
				@Test(expected	=	NullPointerException.class)

We	can	tell	the	@Test	annotation	to	expect	an	exception	of	a	particular	class	to	be	thrown.

The	above	code	tells	JUnit	to	expect	to	have	an	exception	of	type	NullPointerException
thrown	during	the	execution.

If	no	NullPointerException	is	thrown	then	the	method	will	fail.

If	a	NullPointerException	is	thrown	then	the	method	will	pass.

For	example,	the	following	method	passes	because	a	NullPointerException	is	thrown:
				@Test(expected	=	NullPointerException.class)

				public	void	nullPointerExceptionExpected(){

								Integer	age=null;

								age.toString();

				}

Be	careful	with	this	parameter	as	the	exception	could	be	thrown	anywhere	in	the	method
code	and	your	method	would	still	pass,	so	when	you	use	this	parameter	make	sure	that
your	code	is	as	small	as	possible	to	trigger	the	exception	and	you	have	other	@Test
methods	which	ensure	that	the	setup	code	works.	After	all,	if	your	setup	code	threw	a
NullPointerException	then	the	method	would	pass,	but	would	not	have	checked	what
you	wanted.

Throwing	an	Exception
We	are	not	limited	to	catching	the	exceptions	from	code	that	other	people	have	written.
We	can	also	throw	exceptions	when	we	need	to.

As	an	example	of	this	I	will	revisit	the	abstraction	layer	we	have	for	users,	where	we	were
able	to	construct	a	user	by	passing	in	the	username	and	password.

I	will	amend	this	so	that	the	password	is	checked	and	the	constructor	will	throw	an
exception	if	the	password	is	less	than	7	characters	in	length.

I’ll	re-use	the	setPassword	method	in	the	constructor	with	parameters	so	that	I	only	have
to	add	the	validation	rule	checking	in	the	setPassword	method.
				public	User(String	username,	String	password)	{

								this.username	=	username;

								setPassword(password);

				}

Then	finally	I	write	code	to	implement	the	password	validation	length	checking.
				public	void	setPassword(String	password)	{

						if(password.length()<7){

									throw	new	IllegalArgumentException("Password	must	be	>	6	chars");

						}

						this.password	=	password;

				}

To	explain	this	in	more	detail	we	will	look	at	the	password	length	check.
						if(password.length()<7){

									throw	new	IllegalArgumentException("Password	must	be	>	6	chars");

						}

To	validate	the	length	of	the	password	I	check	the	length	of	the	String.	If	the	length	is	<
7	(less	than	seven).
									throw	new	IllegalArgumentException("Password	must	be	>	6	chars");

Since	an	exception	is	an	object,	I	have	to	create	a	new	instance	of	an
IllegalArgumentException.	And	the	throw	keyword	is	important	because	this	is	what
causes	the	exception	to	interrupt	the	flow	of	execution.

Also	note	that	when	I	create	the	new	exception	I	add	an	explanatory	message.	This	adds
additional	information	to	the	stack	trace	to	help	anyone	debug	the	code.	The	error	output
for	this	exception,	if	it	was	not	caught	and	handled	looks	as	follows:
java.lang.IllegalArgumentException:	Password	must	be	>	6	chars

		at	com.javafortesters.domainentities.interim.exceptions.User.setPassword

				(User.java:29)

		at	com.javafortesters.domainentities.interim.exceptions.User.<init>

				(User.java:19)

		at	com.javafortesters.exceptions.UserPasswordExceptionsTest.

				passwordMustBeGreaterThan6Chars(UserPasswordExceptionsTest.java:22)

		...

You	can	see	from	the	above	error	message	output	that	the	first	thing	in	the	stack	trace	is
the	explanatory	text	that	I	added	when	I	threw	the	exception.

Throwing	exceptions	in	your	abstraction	layers	is	a	useful	way	to	keep	the	code	simple
and	clean,	and	help	avoid	making	simple	errors	in	your	@Test	methods.

finally

Sometimes	we	want	to	try	and	do	something,	catch	and	handle	any	exceptions,	and	then
finally,	always	execute	some	code.
								try{

												//	try	and	do	something

								}catch(NullPointerException	e){

												//	handle	the	exception	here

								}finally{

												//	perform	the	code	here

												//	regardless	of	whether	an

												//	exception	was	thrown	or	not

								}

In	the	following	code,	the	finally	block	is	used	to	assign	a	value	to	the	yourAge	variable:
				@Test

				public	void	tryCatchFinallyANullPointerException(){

								Integer	age=null;

								String	ageAsString;

								String	yourAge="";

								try{

												ageAsString	=	age.toString();

								}catch(NullPointerException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}finally{

												yourAge	=	"You	are	"	+	age.toString()	+	"	years	old";

								}

								assertEquals("You	are	18	years	old",	yourAge);

				}

The	finally	block	is	mainly	used	when	we	want	to	re-throw	an	exception,	but	before	we
lose	control	over	the	code	execution	we	want	to	tidy	up	resources.

In	the	following	code,	instead	of	fixing	the	age,	I	re-throw	the	NullPointerException	as
an	IllegalArgumentException.

If	I	did	not	add	the	finally	block,	as	soon	as	I	throw	the	IllegalArgumentException,	no
more	code	in	this	method	would	be	executed.	Because	I	added	the	finally	block,	the
IllegalArgumentException	is	thrown,	but	before	control	is	passed	down	the	call	stack,
the	code	in	the	finally	block	is	executed:
				@Test(expected	=	IllegalArgumentException.class)

				public	void	exampleTryCatchFinally(){

								Integer	age=null;

								try{

												System.out.println("1.	generate	a	null	pointer	exception");

												System.out.println(age.toString());

								}catch(NullPointerException	e){

												System.out.println("2.	handle	null	pointer	exception");

												throw	new	IllegalArgumentException

																						("Null	pointer	became	Illegal",	e);

								}finally{

												System.out.println("3.	run	code	in	finally	section");

								}

				}

Which	generates	the	following	output:
1	1.	generate	a	null	pointer	exception				

2	2.	handle	null	pointer	exception				

3	3.	run	code	in	finally	section						

4	

5	java.lang.IllegalArgumentException:	Null	pointer	became	Illegal

6			at	com.javafortesters.exceptions.ExceptionsExampleTest.

7					exampleTryCatchFinally(ExceptionsExampleTest.java:144)

8			at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)

9			...	26	more				

You	can	see	from	the	above	that:

the	try	block	executes
we	catch	the	NullPointerException
we	throw	an	IllegalArgumentException
since	we	are	about	to	lose	control	of	the	execution	due	to	the
IllegalArgumentException,	the	finally	block	executes
the	IllegalArgumentException	is	triggered	and	the	flow	of	execution	is	interrupted.

Summary
You	will	have	to	handle	exceptions	when	you	write	automation	code	because	many	of	the
libraries	you	use	will	throw	exceptions	to	alert	you	of	unexpected	events.

We	will	revisit	exceptions	in	a	future	chapter	so	you	learn	how	to	create	your	own
exceptions.

When	writing	abstraction	layers	for	automation	I	try	not	to	put	asserts	in	my	abstraction
layers,	rather	I	throw	exceptions	so	that	the	@Test	annotated	method	can	either	propagate
them,	or	catch	and	handle	them.

References	and	Recommended	Reading

Exceptions
docs.oracle.com/javase/tutorial/essential/exceptions

Official	Definition	of	an	Exception
docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

StackTraceElement
docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html

http://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
http://docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html

Chapter	Twelve	-	Introducing	Inheritance

Chapter	Summary
In	this	chapter	you	will	learn	a	brief	overview	of	Inheritance:

An	Object	can	inherit	from	another	Objects	to	reuse	code
An	Object	can	re-implement	inherited	methods
You	can	re-use	code	through	composition,	as	well	as	inheritance
use	the	keyword	extends	in	Java	to	inherit	from	a	Class

Before	we	provide	more	information	about	Exceptions	we	have	to	provide	an	overview	of
Inheritance	and	how	you	use	Java	to	extend	other	classes.

Inheritance
Inheritance	is	an	Object-oriented	Design	concept.	Java	provides	an	implementation	of
some	inheritance	features.	In	this	chapter	you	will	receive	a	very	brief	overview	of
inheritance,	mainly	so	that	you	understand	some	of	the	mechanisms	that	Java	provides,
and	to	help	you	understand	some	of	the	more	advanced	sections	as	we	work	through	the
book.

I	have	covered	inheritance	late	in	the	book	because	you	don’t	really	need	it	for	the	early
parts	of	this	book.	The	book	started	by	having	you	‘use’	Java.	You	didn’t	really	need	to
extend	any	classes.

When	we	start	creating	our	own	Exception	classes,	then	we	will	need	to	extend	other
classes,	so	we	need	to	understand	the	Java	concept	of	Inheritance.

You	have	seen	that	Java	Classes	have	methods	and	fields.	And	that	those	methods	and
fields	could	be	made	public	or	private.

Inheritance	provides	one	way	of	allowing	us	to	re-use	those	methods	in	other	classes.

We	make	one	object	inherit	from	another	by	use	of	the	extends	keyword.
import	com.javafortesters.domainentities.User;

public	class	EmptyUser	extends	User	{

}

In	the	above	example,	the	EmptyUser	object	inherits	from	the	User	object.

Any	public	methods	on	the	User	object,	are	‘inherited’	by	the	EmptyUser	object,	so	you,	as
a	programmer,	do	not	have	to	write	those	methods.

If	you	want	the	EmptyUser	to	have	a	different	implementation	of	any	of	those	methods
then	you	can	implement	the	method	in	EmptyUser	and	override	the	method	inherited	from
User.

http://en.wikipedia.org/wiki/Object-oriented_design

You	can	see	from	the	previous	code	that	EmptyUser	has	no	code	in	the	body	of	the	class,
but	I	can	use	it	in	an	@Test	method,	because	it	‘inherits’	the	methods	from	the	User	object.
				@Test

				public	void	emptyUserExampleTest(){

								EmptyUser	enu	=	new	EmptyUser();

								assertEquals("username",	enu.getUsername());

								assertEquals("password",	enu.getPassword());

				}

At	this	point	the	EmptyUser	offers	the	same	functionality	as	the	User.

Inheritance	or	Composition
Inheritance	is	an	Object-oriented	Design	technique,	and	represents	an	‘is	a’	relationship.
So	when	we	extend	an	object	we	are	really	saying	that	the	new	object	‘is	a’	type	of	object
that	we	are	extending.

Composition	is	an	Object-oriented	Design	technique,	and	represents	a	‘has	a’	relationship,
so	one	object	‘has’	some	other	object(s)	e.g.	a	bottle	has	a	top.

Object-oriented	Design	is	beyond	the	scope	of	this	book	(see	the	references	section	for
more	detail).	But	it	is	important	to	understand	that	some	of	Java	functionality,	implements
Object-oriented	concepts.

Inheritance

Inheritance	is	an	Object-oriented	Design	technique,	and	represents	an	‘is	a’	relationship.
When	we	extend	an	object	we	are	really	saying	that	the	new	object	‘is	a’	type	of	object
that	we	are	extending.

e.g.	SuperWidget	‘is	a’	Widget,	EmptyUser	‘is	a’	User

If	we	use	inheritance	only	because	we	want	to	re-use	code	then	we	run	the	risk	that	we
make	our	code	harder	to	re-use,	maintain	and	understand,	because	Java	supports	single
inheritance	i.e.	you	can	only	extend	one	object.	If	you	later	want	to	‘change’	the
superclass	(the	class	we	extend)	then	this	can	be	hard	to	do	without	extensive	changes	in
your	code.

Note,	the	following	example	is	a	terrible	example,	never	ever	do	something	like	the
following	in	your	code.	While	it	is	functionally	possible	to	extend	pretty	much	any	other
Class,	that	does	not	mean	we	should	do	so.	See	the	later	sections	in	this	chapter	for
guidance.	But	just	to	reiterate	-	never	do	the	following:

For	example:	I	may	decide	that	I	want	the	User	to	be	able	to	return	the	URL	that	they	are
using,	currently	I	have	this	in	the	TestAppEnv	object.	I	could	re-use	the	code	in
TestAppEnv	by	having	the	User	object	extend	the	TestAppEnv.	Then	the	User	object
inherits	a	getUrl	method.

Unfortunately	a	User	is	not	a	Test	Application	Environment,	so	while	this	might	seem
like	a	useful	shortcut	to	re-use	some	code,	I	do	not	consider	it	a	good	idea	in	practice.

Because	a	User	is	not	a	TestAppEnv,	extending	TestAppEnv	to	re-use	code	will	lead	to
code	which	relies	on	unrelated	Objects,	and	if	you	do	this	throughout	your	code	base,	it

will	eventually	become	unmaintainable,	and	unreadable,	and	changes	in	one	area	of	the
code	will	have	unexpected	consequences	in	other	areas	of	the	code.

Composition

Very	often	I	don’t	use	Inheritance	in	my	code.	I	code	using	‘composition’	and	‘interfaces’.
This	basically	means,	implementing	interfaces,	and	embedding	other	objects	within	my
code	and	gaining	re-use	by	using	their	methods.

For	example,	:	If	I	did	want	a	getUrl	method	in	my	User	then	I	might	find	a	way	to	re-use
a	TestAppEnv	object	in	my	User	object.	If	the	TestAppEnv	object	required	instantiation
then	I	would	instantiate	it	in	the	User	constructor.	Then	I	would	add	a	getUrl	method	to
my	User,	but	the	method	actually	calls	the	getUrl	on	the	TestAppEnv.

Exercise:	Create	a	User	that	is	composed	of	TestAppEnv
Try	and	implement	the	above	User	object,	so	that	the	User	‘is	a’	User	object,	which	also	has	a	getUrl
method,	where	the	implementation	of	that	method	is	achieved	by	delegating	to	a	TestAppEnv	object.

Using	Inheritance
A	better	example	for	the	use	of	inheritance,	given	our	current	small	number	of	domain
abstraction	objects,	might	be	to	create	an	Admin	User.

Assuming	that	the	system	under	test	has	different	types	of	users,	and	that	Admin	users
have	different	permissions	from	a	normal	User.	I	could	add	a	getPermission	level	to	the
User.

The	following	code	would	check	for	this:
				@Test

				public	void	aUserHasNormalPermissions(){

								User	aUser	=	new	User();

								assertEquals("Normal",	aUser.getPermission());

				}

Then	I	could	implement	the	getPermission	method	on	User.
				public	String	getPermission()	{

								return	"Normal";

				}

To	create	the	AdminUser	I	would	declare	the	AdminUser	class	as	a	class	which	extends
User.
public	class	AdminUser	extends	User	{

And	re-implement	the	getPermission	method	in	AdminUser,	to	return	a	different	value.
				public	String	getPermission(){

								return	"Elevated";

				}

I	also	have	to	create	the	constructors	for	my	AdminUser:
				public	AdminUser(){

								this("adminuser",	"password");

				}

				public	AdminUser(String	username,	String	password){

								super(username,	password);

				}

Note	that	I	call	the	super	constructor,	which	calls	the	constructor	on	User	(the	superclass)

I	could	check	the	AdminUser	as	follows:
				@Test

				public	void	anAdminUserDefaultConstructor(){

								AdminUser	adminUser	=	new	AdminUser();

								assertEquals("adminuser",	adminUser.getUsername());

								assertEquals("password",	adminUser.getPassword());

								assertEquals("Elevated",	adminUser.getPermission());

				}

				@Test

				public	void	anAdminUserHasElevatedPermissions(){

								AdminUser	adminUser	=	new	AdminUser("admin","Passw0rd");

								assertEquals("admin",	adminUser.getUsername());

								assertEquals("Passw0rd",	adminUser.getPassword());

								assertEquals("Elevated",	adminUser.getPermission());

				}

In	all	of	the	above	note	that,	I	didn’t	have	to	rewrite	the	getUsername	or	getPassword
methods,	since	we	inherited	those	from	User	when	we	extended	it.

One	last	thing	to	note.	I	should	really	add	the	@Override	annotation	to	the	getPermission
method.	This	tells	the	compiler	to	check	that	the	getPermission	method	is	really	on	the
User	object	and	is	still	the	same	declaration.	This	helps	find	any	simple	errors	at	compile
time,	rather	than	runtime.

So	my	final	AdminUser	class	looks	as	follows:
public	class	AdminUser	extends	User	{

				public	AdminUser(){

								this("adminuser",	"password");

				}

				public	AdminUser(String	username,	String	password){

								super(username,	password);

				}

				@Override

				public	String	getPermission(){

								return	"Elevated";

				}

}

Exercise:	Create	a	ReadOnlyUser
Create	a	ReadOnlyUser	which	has	the	permission	ReadOnly,	with	the	same	default	“username”	and
“password”	from	User.

Inherit	from	Interfaces	and	Abstract	Classes
In	production	Java	code,	a	common	recommendation	is	to	code	to	Interfaces.	Rather	than
Inheritance.

We	haven’t	really	covered	Interfaces	in	detail	in	this	book,	because	I’m	trying	to	get	you
up	and	running	fast.

But	you	saw	this	concept	when	using	Collections.

Collections	are	based	around	interfaces.

The	Collections	themselves	implement	interfaces,	and	extend	Abstract	Classes.

Since	you	don’t	really	need	to	worry	about	this	until	you	have	a	larger	code	base,	and	have
more	familiarity	with	Java,	I	have	delegated	discussion	of	this	into	the	“Advancing
Concepts”	chapter	towards	the	end	of	the	book.

Summary
Inheritance	can	be	used	as	a	‘code	re-use’	tool,	but	it	is	better	used	to	construct	objects
which	have	an	‘is	a’	relationship.

When	we	re-implement	a	method	from	the	‘super’	class	that	we	extend	then	we	annotate
the	method	with	@Override	to	make	it	clear	to	other	people	what	we	have	done,	and	we
gain	some	compile	time	checking	of	our	actions.

We	can	add	new	methods	into	the	class	which	is	inheriting	and	these	will	not	be	added	to
the	super	class.

Any	new	methods	in	the	super	class	will	automatically	be	made	available	to	the
extending	class.

Private	methods	and	fields	are	not	accessible	through	inheritance,	only	the	super	class’s
protected	and	public	fields	and	methods	are	accessible	through	inheritance.

References	and	Recommended	Reading

Object	Oriented	Design	Concepts
docs.oracle.com/javase/tutorial/java/concepts

Inheritance	or	Composition	Discussion
en.wikipedia.org/wiki/Composition_over_inheritance

Object	Oriented	Programming	Concepts
en.wikipedia.org/wiki/Object-oriented_programming

http://docs.oracle.com/javase/tutorial/java/concepts
http://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Object-oriented_programming

Chapter	Thirteen	-	More	About	Exceptions

Chapter	Summary
In	this	chapter	you	will	learn	more	about	exceptions:

Unchecked	Exception
Checked	Exception
The	Exception	Inheritance	hierarchy
How	to	create	your	own	Exception

After	this	chapter	you	will	be	able	to	use	code	that	other	people	have	written	which	throw
exceptions	and	create	your	own	exceptions	to	add	into	your	own	abstraction	layers.

Unchecked	and	Checked	Exceptions
All	the	examples	you	have	seen	so	far	in	the	book	have	been	unchecked	exceptions.

An	Unchecked	exception	is	one	that	can	be	thrown,	by	a	method,	without	having	to
declare	that	the	exception	will	be	thrown.
A	checked	exception,	has	to	be	declared,	and	generally	represents	a	particular	use
case	that,	while	‘exceptional’	still	has	to	be	explicitly	handled,	or	deliberately	ignored
by	the	calling	code.

Unchecked	Exceptions
Unchecked	exceptions	can	bite	without	you	knowing	they	will	occur.	You	saw	an	example
of	this	in	the	earlier	chapters	with	the	NullPointerException.

An	Unchecked	Exception	is	also	known	as	a	Runtime	Exception,	as	you	are	only	made
aware	of	them	at	run	time.

If	you	want	to	create	an	Unchecked	exception	you	extend	RuntimeException	or	any	of
the	classes	which	already	extend	it.

e.g.

IllegalArgumentException

ArithmeticException

NoSuchElementException

etc.

I	don’t	think	I	have	ever	created	a	custom	exception	that	extended	an	Unchecked
exception.	Generally	when	I	create	custom	exceptions	I	want	people	to	be	aware	of	them
and	handle	them	in	their	code.

If	I	do	want	to	throw	an	unchecked	exception	I	will	first	of	all	try	and	use	one	of	the
standard	java.lang	unchecked	exceptions.

For	example	you	saw	the	use	of	a	java.lang	unchecked	exception	when	we	added	the
exception	to	the	password	validation	in	User	I	used	the	IllegalArgumentException
because	I	was	validating	a	parameter	to	a	method.

It	might	be	appropriate	to	create	my	own	unchecked	exceptions	if	I	want	to	allow	code	to
distinguish	between	exceptions	that	the	abstraction	layer	has	thrown	at	runtime,	and	those
exceptions	thrown	by	the	Java	runtime.

Checked	Exceptions
You	will	be	informed	about	the	need	to	handle	checked	exceptions	at	compile	time
because	a	checked	exception	will	be	declared	as	being	thrown	by	the	method	declaration.

For	example,	I	could	declare	the	setPassword	method	on	User	as	throwing	an
InvalidPassword	exception	(assuming	that	InvalidPassword	exception	existed,	which	it
doesn’t,	but	it	will	when	we	come	to	the	‘Create	your	own	Exception	class’	section	later	in
this	chapter):
				public	void	setPassword(String	password)	throws	InvalidPassword	{

Then,	anywhere	in	the	code	that	I	use	the	setPassword	method	I	either	have	to:

handle	the	exception,	as	we	saw	before	in	a	try	catch	block,	or
ignore	the	exception	and	allow	it	to	propagate	upwards

Ignoring	Checked	Exceptions

The	way	that	we	allow	an	exception	to	propagate	upwards	is	to	declare	the	method	that	we
are	‘ignoring’	the	method	in,	as	throwing	that	particular	exception.

For	example,	since	the	User	constructor	calls	setPassword,	I	either	have	to	handle	the
exception	or,	as	shown	below,	allow	it	to	propagate	upwards:
				public	User(String	username,	String	password)	throws	InvalidPassword{

								this.username	=	username;

								setPassword(password);

				}

Handling	checked	exceptions	in	default	constructor

If	I	call	a	constructor	from	another	constructor	e.g.
								this("username",	"password");

Then	the	first	statement	in	the	constructor	has	to	be	the	this	call.	Which	means	that	I
cannot	wrap	that	call	with	a	try	catch.

I	have	to	find	a	different	way	of	delegating	the	construction	call.	In	this	code	I	chose	to
change	the	default	constructor	so	that	it	calls	a	private	constructor.
				public	User(){

												this("username",	"password",	false);

				}

				private	User(String	username,	String	password,	boolean	b)	{

								//	only	call	this	because	we	don't	want	to	throw	the	exception

								this.username	=	username;

								try{

												setPassword(password);

								}catch(InvalidPassword	e){

												throw	new	IllegalArgumentException(

																												"Default	password	incorrect	",	e);

								}

				}

This	way	I	ensure	that	anyone	using	the	no-argument	constructor	doesn’t	have	to	handle
an	InvalidPassword	exception	for	a	hard	coded	password.
				@Test

				public	void	canCreateDefaultUserWithoutHandlingException(){

								User	aUser	=	new	User();

								assertEquals("username",	aUser.getUsername());

								assertEquals("password",	aUser.getPassword());

				}

But	they	still	have	to	handle	the	exception	if	they	use	the	constructor	where	the	username
and	password	are	passed	in	by	the	programmer.
				@Test

				public	void	haveToCatchIllegalPasswordForParamConstructor(){

								try	{

												User	aUser	=	new	User("me","wrong");

												fail("An	exception	should	have	been	thrown");

								}	catch	(InvalidPassword	invalidPassword)	{

												assertTrue("The	exception	was	thrown",	true);

								}

				}

Note	that	in	the	above	code	I	used	fail	from	JUnit	to	cause	the	@Test	method	to	fail	if	we
did	not	throw	an	assertion	after	creating	the	user.	Without	the	fail	call,	the	method	would
have	passed	if	an	exception	had	not	been	thrown,	even	though	the	method	had	actually
failed.	Be	very	careful	when	working	with	exceptions	as	you	need	to	make	sure	that	you
don’t	have	‘false	positives’	i.e.	an	@Test	method	passing,	when	it	should	have	failed.

Difference	between	Exception,	Error	and	Throwable
Java	has	an	Exception	hierarchy:

Throwable

Error

Exception

RuntimeException

The	root	object	is	Throwable,	and	both	Error	and	Exception	extend	this.

Error	is	reserved	for	serious	Java	platform	errors.	The	general	guidance	provided	to	Java
programmers	is	“never	catch	a	Java	Error”,	which	also	means	we	should	never	catch	a
Throwable.

If	we	want	to	catch	a	generic	runtime	exception	then	we	should	catch	RuntimeException
because	any	runtime	exceptions	we	raise	will	derive	from	RuntimeException.

Most	of	our	Exceptions	will	derive	from	either	Exception	or	a	class	that	already	extends
Exception.	We	will	rarely	derive	from	Throwable	and	never	derive	from	Error

Create	your	own	Exception	class
Throughout	this	chapter	you	have	seen	reference	to	a	custom	exception	called
InvalidPassword.

There	is	no	magic	around	this	class	and	it	is	a	very	small	piece	of	code	which	implements
a	class	that	extends	Exception.
public	class	InvalidPassword	extends	Exception	{

				public	InvalidPassword(String	message)	{

								super(message);

				}

}

Creating	your	own	exception	allows	you	to	aggregate	multiple	Java	exceptions	into	a
single	context	specific	exception.

For	example,	I	could	catch	IllegalArgumentException,	NullPointerException,	etc.	and
throw	an	IllegalPassword	exception	so	that	code	using	my	abstraction	layer	only	has	to
handle	a	small	set	of	exceptions.

Exercise:	Create	an	InvalidPassword	exception
To	help	people	use	the	User	domain	object:

create	the	InvalidPassword	exception
make	the	InvalidPassword	exception	describe	the	validation	rules	around	password	i.e.	“Password
must	be	>	6	chars”
write	@Test	methods	that	check:

the	InvalidPassword	exception	is	thrown	on	setPassword
the	InvalidPassword	exception	is	thrown	in	the	constructor
the	InvalidPassword	exception	is	not	thrown	in	the	default	constructor
the	error	message	thrown	by	the	exception	contains	the	text	“Password	must	be	>	6	chars”

Summary
In	this	chapter	you	saw	how	to	create	and	throw	a	custom	exception.	Custom	exceptions
are	useful	when	creating	abstraction	layers	because	we	do	not	need	to	create	a	lot	of	return
codes,	we	can	throw	the	exceptions	instead.

Custom	exceptions	‘help’	people	using	our	classes,	to	alert	them	to	validation	and
exceptions	that	they	might	encounter	using	the	class.	We	can	do	this	through
documentation,	and	we	can	do	this	through	custom	Checked	exceptions.

By	creating	a	custom	checked	exception	we	alert	people	as	they	write	the	code,	to	the
validation	and	usage	rules	of	our	class.	If	we	create	a	custom	RuntimeException	then	we
need	to	rely	on	documentation	to	alert	the	user.

The	fail	method	is	very	useful	when	writing	checks	for	custom	exceptions	because	we
need	to	make	sure	that	checks	do	not	pass	because	the	exception	was	not	thrown	in	our

@Test	method.

References	and	Recommended	Reading

Java	Exceptions
docs.oracle.com/javase/tutorial/essential/exceptions

A	list	of	Unchecked	Exceptions	in	Java
list4everything.com/list-of-unchecked-exceptions-in-java.html

http://docs.oracle.com/javase/tutorial/essential/exceptions
http://www.list4everything.com/list-of-unchecked-exceptions-in-java.html

Chapter	Fourteen	-	JUnit	Explored

Chapter	Summary
In	this	chapter	you	will	learn	more	about	JUnit	features:

@Test	-	annotate	a	method	as	a	JUnit	Test
assertEquals	-	assert	that	two	values	are	equal
@Test(expected=...)	-	expect	a	specific	exception	class	thrown
fail	-	force	a	method	to	fail
@Rule	for	ExpectedException	to	check	for	exceptions
@BeforeClass	-	run	once,	before	any	@Test	methods	are	run
@AfterClass	-	run	once,	after	all	@Test	methods	have	run
@Before	-	run	before	each	@Test	method
@After	-	run	after	each	@Test	method
@Ignore	-	prevent	an	@Test	method	from	running
More	JUnit	assertions:

assertEquals	-	check	expected	and	actual	are	equal
assertFalse	-	check	actual	is	false
assertTrue	-	check	actual	is	true
assertArrayEquals	-	check	expected	and	actual	arrays	are	equal
assertNotNull	-	check	actual	is	not	null
assertNotSame	-	check	expected	and	actual	are	different
assertNull	-	check	actual	is	null
assertSame	-	check	expected	and	actual	are	the	same

Hamcrest	matchers	for	literate	assertions:
assertThat	-	literate	assertion	using	Hamcrest	Matcher
is	-	true	when	assertThat(x,	is(y))
equalTo	-	true	when	assertThat(x,	equalTo(y))
not	-	true	when	assertThat(x,	is(not(y))
containsString	-	true	when	assertThat(x,	containsString(y))
endsWith	-	true	when	assertThat(x,	endsWith(y))
startsWith	-	true	when	assertThat(x,	startsWith(y))
nullValue	-	true	when	assertThat(x,	is(nullValue()))

With	the	new	JUnit	features	you	will	learn	in	this	chapter	you	will	gain	the	ability	to
refactor	and	remove	code	duplication,	and	use	a	greater	range	of	assertion	methods.

@Test

We	have	already	seen	that	in	order	for	a	method	to	be	recognized	as	a	JUnit	test,	it	has	to
be	annotated	with	@Test.
				@Test

				public	void	thisTestWillNeverFail(){

				}

A	method	will	fail	if	an	assertion	fails,	or	an	exception	is	thrown	in	the	body	of	the	method
code.

You	do	not	need	to	add	‘test’	into	the	name	of	the	method.	Usually	I	don’t,	since	‘Test’	is
somewhere	in	the	class	name,	and	this	gives	me	the	ability	to	make	my	method	names	as

expressive	as	possible.

Checking	for	Exceptions
Because	a	method	will	fail	if	an	exception	is	thrown.	JUnit	gives	us	the	ability	to	check	for
exceptions,	and	make	an	@Test	method	pass,	only	when	the	exception	is	thrown.
@Test(expected=...)

If	I	want	to	check	that	a	particular	exception	is	thrown	then	I	can	declare	it	in	the
expected	parameter.
				@Test(expected=InvalidPassword.class)

				public	void	expectInvalidPasswordException()	throws	InvalidPassword	{

								User	user	=	new	User("username",	"<6");

				}

Note	that	your	@Test	method	will	pass	if	an	exception	matching	the	expected	class	is
thrown	anywhere	during	the	execution.

We	can	use	the	ExpectedException	rule	to	be	more	specific	about	the	exceptions	we
count	as	a	pass.

ExpectedException	rule

JUnit	has	the	concept	of	‘rules’	to	extend	and	enhance	JUnit.	We	won’t	cover	many	of	the
rules	available	in	this	book.

The	ExpectedException	rule	allows	you	to	be	more	specific	about	the	exception	and	only
count	a	particular	exception	as	a	pass	when:

a	particular	class	of	exception	is	thrown
an	exception	has	a	particular	message
an	exception	has	a	particular	cause
any	combination	of	the	above

The	following	code	would	have	the	same	effect	as	above	annotating	with	the	parameter
expected:
				@Rule

				public	ExpectedException	expected	=	ExpectedException.none();

				@Test

				public	void	invalidPasswordThrown()

																				throws	InvalidPassword	{

								expected.expect(InvalidPassword.class);

								User	user	=	new	User("username",	"<6");

				}

You	can	see	that	I	add	an	@Rule	as	a	field	in	the	class,	instantiated	with	the	static	none
method	on	ExpectedException.
				@Rule

				public	ExpectedException	expected	=	ExpectedException.none();

In	the	@Test	method	itself	I	configure	the	rule	to	expect	an	InvalidPassword.class,	by
calling	the	expect	method	on	the	ExpectedException	object.
								expected.expect(InvalidPassword.class);

I	can	make	the	check	more	specific	by	specifying	a	substring	of	the	expected	message.	By
doing	this,	my	method	won’t	pass	if	an	InvalidPassword	exception	is	thrown	,	but	with	a
different	message.
								expected.expect(InvalidPassword.class);

								expected.expectMessage(">	6	chars");

								User	user	=	new	User("username",	"<6");

The	substring,	can	also	be	a	Hamcrest	matcher:
								expected.expectMessage(containsString(">	6	chars"));

Before	&	After
JUnit	provides	annotations	for	executing	code	before	and	after	any	tests	are	run,	and
before	and	after	each	test.	This	allows	for	setup	and	cleanup	of	data	or	environment
conditions.

@BeforeClass	-	run	once,	before	any	@Test	methods
@AfterClass	-	run	once,	after	all	@Test	methods
@Before	-	run	before	each	@Test	method
@After	-	run	after	each	@Test	method

Any	method	annotated	with	@BeforeClass	or	@AfterClass	has	to	be	declared	as	a	static
method:
				@BeforeClass

				public	static	void	runOncePerClassBeforeAnyTests(){

								System.out.println("@BeforeClass	method");

				}

Methods	annotated	with	@Before	and	@After	do	not	need	to	be	static:
				@Before

				public	void	runBeforeEveryTestMethod(){

								System.out.println("@Before	each	method");

				}

All	methods	need	to	be	public.

@After	and	@AfterClass	are	run,	regardless	of	whether	the	preceding	method	passed	or
failed.

@Ignore

We	can	annotate	methods	with	@Ignore	and	the	@Test	annotated	method	will	not	be	run.
				@Ignore

				@Test

				public	void	thisTestIsIgnored(){

No	@Before	or	@After	method	will	be	called	for	@Ignore	annotated	methods.

We	can	also	add	a	text	parameter	to	the	@Ignore	to	provide	a	reason	for	its	ignored	state.
				@Ignore("Because	it	is	not	finished	yet")

When	you	@Ignore	a	method,	I	recommend	you	add	a	text	parameter	to	describe	why,
otherwise	people	will	forget,	and	the	method	is	likely	to	be	deleted.

JUnit	Assertions
JUnit	has	its	own	assertions	built	in:
import	static	org.junit.Assert.*;

JUnit	assertions	mostly	take	the	form	of	a	method	name,	with	a	parameter	for	the	expected
result	and	then	a	parameter	for	the	actual	result,	some	only	take	an	actual	value	as	the
expected	is	in	the	name	of	the	assert	e.g.	assertNull:
								assertEquals(6,	3	+	3);

With	JUnit	asserts	you	can	also	add	an	optional	message	to	describe	the	assertion:
								assertEquals("3	+	3	=	6",	6,	3	+	3);

If	the	assertion	fails	then	the	message	is	written	as	part	of	the	message	to	make	it	easier	to
identify	the	problem	e.g.
java.lang.AssertionError:	3	+	3	=	6	expected:<7>	but	was:<6>

JUnit	provides	the	following	assertions:

assertEquals	-	check	expected	and	actual	are	equal
assertFalse	-	check	actual	is	false
assertTrue	-	check	actual	is	true
assertArrayEquals	-	check	expected	and	actual	arrays	are	equal
assertNotNull	-	check	actual	is	not	null
assertNotSame	-	check	expected	and	actual	are	different
assertNull	-	check	actual	is	null
assertSame	-	check	expected	and	actual	are	the	same

If	I	use	JUnit	asserts	in	my	automation	code,	I	mainly	use	assertEquals,	assertFalse
and	assertTrue.

Exercise:	Create	an	@Test	method	which	uses	all	of	the	asserts
Experiment	with	the	JUnit	asserts	by	creating	an	@Test	annotated	method	which	passes,	with	all	of	the
above	asserts	in	it.

JUnit	also	provides	an	assertThat	assertion	for	use	with	matchers.

Asserting	with	Hamcrest	Matchers	and	assertThat
You	can	use	the	assertThat	method	in	conjunction	with	matchers,	e.g.	from	Hamcrest,	to
make	your	code	more	readable.

assertThat

								assertThat(3	+	3,	is(6));

When	an	assertThat	without	a	reason	fails,	then	the	output	looks	like	the	following:
java.lang.AssertionError:	

Expected:	is	<7>

					but:	was	<6>

assertThat	can	also	be	given	a	‘reason’	message.
								assertThat("3	+	3	=	6",	3	+	3,	is(6));

If	an	assertThat	with	a	reason	fails,	then	the	output	looks	like	the	following:
java.lang.AssertionError:	3	+	3	=	6

Expected:	is	<7>

					but:	was	<6>

Since	assertThat	is	so	readable	in	the	code,	I	tend	not	to	add	a	reason,	and	just	use	the
stacktrace	to	find	the	line	with	the	error	in	it.	You	can	choose	your	own	style.

Hamcrest	Core	Matchers

JUnit	has	a	dependency	on	Hamcrest	core,	so	when	you	add	JUnit	as	a	dependency	into
your	project	you	also	get	access	to	Hamcrest	core.

Hamcrest	core	provides	a	set	of	‘matchers’	which	help	us	write	literate	asserts,	so	that	our
code	becomes	more	readable.

Hamcrest	core	provides	matchers	such	as:

is	-	true	when	assertThat(x,	is(y))
equalTo	-	true	when	assertThat(x,	equalTo(y))
not	-	true	when	assertThat(x,	is(not(y)))
containsString	-	true	when	assertThat(x,	containsString(y))
endsWith	-	true	when	assertThat(x,	endsWith(y))
startsWith	-	true	when	assertThat(x,	startsWith(y))
nullValue	-	true	when	assertThat(x,	is(nullValue()))

The	matchers	can	be	chained	to	make	literate	statements	e.g.
								assertThat("",	is(not(nullValue())));

Exercise:	Replicate	all	the	JUnit	Asserts	using	assertThat
Copy	the	@Test	method	you	wrote	for	all	the	asserts.	Then	rewrite	all	the	asserts	to	be	assertThat	with
Hamcrest	Matchers.	e.g.	assertEquals(x,y)	becomes	assertThat(y,	is(x))

Do	the	above	for	all	of	the	asserts	below:

assertEquals	-	check	expected	and	actual	are	equal
assertFalse	-	check	actual	is	false
assertTrue	-	check	actual	is	true
assertArrayEquals	-	check	expected	and	actual	arrays	are	equal
assertNotNull	-	check	actual	is	not	null
assertNotSame	-	check	expected	and	actual	are	different
assertNull	-	check	actual	is	null
assertSame	-	check	expected	and	actual	are	the	same

Exercise:	Use	all	of	the	Hamcrest	matchers	listed
Create	an	@Test	method	which	uses	all	of	the	Hamcrest	matchers	listed,	try	and	use	them	in	combination
where	you	can	to	make	the	assertions	literate.

is	-	true	when	assertThat(x,	is(y))
equalTo	-	true	when	assertThat(x,	equalTo(y))
not	-	true	when	assertThat(x,	is(not(y)))
containsString	-	true	when	assertThat(x,	containsString(y))
endsWith	-	true	when	assertThat(x,	endsWith(y))
startsWith	-	true	when	assertThat(x,	startsWith(y))
nullValue	-	true	when	assertThat(x,	is(nullValue()))

Hamcrest	provides	more	matchers	which	you	can	access	if	you	include	the	full	Hamcrest
as	a	dependency	in	your	pom.xml	file.	e.g.
<dependency>

				<groupId>org.hamcrest</groupId>

				<artifactId>hamcrest-all</artifactId>

				<version>1.3</version>

</dependency>

For	information	on	the	full	set	of	Hamcrest	matchers	see	the	Hamcrest	Tutorial	link	in	the
references	for	this	chapter.

fail

JUnit	provides	a	fail	method	which	can	be	used	to	deliberately	cause	a	method	to	fail.

This	can	be	called	without	a	description:
								fail();

Or	with	a	description	parameter:
								fail("fail	always	fails");

When	a	fail	is	issued,	then	an	AssertionError	is	thrown.

static	importing
The	main	way	you	have	seen	JUnit	assertions	used	so	far	is	by	statically	importing	the
method	from	JUnit:
import	static	org.junit.Assert.assertEquals;

So	that	in	the	main	@Test	method	code	we	can	write	the	assertion	directly:
				@Test

				public	void	canAddTwoPlusTwo(){

								int	answer	=	2+2;

								assertEquals("2+2=4",	4,	answer);

				}

Another	style	of	writing	JUnit	assertions	that	you	might	see,	or	choose	to	adopt,
								Assert.assertEquals("2+2=4",	4,	answer);

In	the	above	usage	I	have	imported	the	Assert	class	rather	than	a	single	method.
import	org.junit.Assert;

In	the	context	of	the	@Test	method	it	would	look	as	follows:
				@Test

				public	void	canAddTwoPlusTwo(){

								int	answer	=	2+2;

								Assert.assertEquals("2+2=4",	4,	answer);

				}

Your	preference	may	vary.

I	think	the	first	approach	without	the	Assert.	prefix	is	often	more	readable.	But	using	the
Assert.	prefix	often	aids	me	when	coding	because	I	can	see	the	full	range	of	assertions
available	to	me	when	I	use	IDE	code	completion.

Summary
JUnit	offers	multiple	assertion	methods.	Try	to	use	the	range	available	to	make	your
assertions	expressive,	although	it	is	often	possible	to	write	all	your	assertions	as
assertTrue	and	assertFalse.	But	this	means	people	reading	your	code	have	to	parse	the
entire	assertion	condition,	rather	than	use	the	assert	method	itself	to	help	them	understand
your	intent.

We	can	stick	with	those	assertions	offered	by	default	JUnit,	or	we	can	choose	to	use	those
provided	by	the	Hamcrest	imports	via	the	assertThat	assertion.

Hamcrest	offers	more	matchers	than	those	listed	in	this	chapter,	so	once	you	are	familiar
with	the	use	of	assertThat	in	your	code,	read	through	the	Hamcrest	web	site	and
experiment	with	the	additional	features	in	Hamcrest.

Ideally	we	would	write	code	which	does	more	than	simply	assert.	It	should	also	make	the
intent	behind	those	assertions	easy	to	read	and	understand	from	the	code.	And	we	can	do
this	by	using	a	combination	of	assertion	and	matcher	methods.

You	will	gain	a	lot	of	value	from	experimenting	with	the	Before	and	After	annotations	to
help	you	structure	your	code	and	move	setup	and	tear	down	code	to	the	correct	level:

class	level	(@BeforeClass	and	@AfterClass),	or
method	level	(@Before	and	@After).

References	and	Recommended	Reading

JUnit	home	page
junit.org

JUnit	Exception	Checking
github.com/junit-team/junit/wiki/Exception-testing

JUnit	Assertions
github.com/junit-team/junit/wiki/Assertions

Java	Hamcrest	home	page
ithub.com/hamcrest/JavaHamcrest

Hamcrest	Tutorial
code.google.com/p/hamcrest/wiki/Tutorial

http://junit.org
https://github.com/junit-team/junit/wiki/Exception-testing
https://github.com/junit-team/junit/wiki/Assertions
https://github.com/hamcrest/JavaHamcrest
http://code.google.com/p/hamcrest/wiki/Tutorial

Chapter	Fifteen	-	Strings	Revisited

Chapter	Summary
In	this	chapter	you	will	revisit	what	you	already	know,	and	learn	more	about	strings:

String	is	an	object	with	many	useful	method,	not	just	a	container	for	characters
System.out.println	-	print	a	String	to	console
Special	characters	encoded	in	string	using	\	e.g.	\t,	\b,	\n,	\',	\",	\\
String	concatenation	using	+	and	the	concat	method
Convert	to	a	String	with	the	toString	method	of	most	objects
Convert	from	a	String	to	other	objects	using	the	valueOf	method
Construct	String	from	char[],	byte[],	StringBuffer,	StringBuilder	and	String
String	object	has	many	comparison	methods:

.compareTo	-	returns	0	if	Strings	are	equal

.compareToIgnoreCase	-	same	as	compareTo,	but	ignoring	case

.contains	-	returns	true	if	parameter	is	in	String

.contentEquals	-	returns	true	if	String	content	equals	to	parameter

.equals	-	returns	true	if	content	is	equal	and	the	parameter	is	a	String

.equalsIgnoreCase	-	same	as	equals	but	ignoring	case

.endsWith	-	returns	true	if	end	of	String	equals	parameter

.startsWith	-	returns	true	if	start	of	String	equals	parameter

.isEmpty	-	returns	true	if	length	of	String	is	0

.indexOf	-	returns	the	index	position	of	a	substring

.lastIndexOf	-	returns	the	last	index	position	of	a	substring

.regionMatches	-	compare	a	region	of	the	substring	to	a	region	of	the	String
.matches	-	easy	to	use	regular	expression	String	matching
Replace	sections	of	a	String	with	.replace,	.replaceAll,	.replaceFirst
Case	conversion	using	.toUppercase	and	.toLowercase
.trim	-	to	remove	white	space	from	String
.substring	-	to	return	a	portion	of	a	String
.format	-	to	use	simple	string	templates
.split	-	to	parse	a	string
StringBuilder	-	build	strings:	append,	delete,	insert,	replace,	reverse

You	have	already	seen	the	use	of	String	objects	throughout	the	book.

This	chapter	will	pull	all	that	information	together	into	a	single	chapter	because	the
String	is	an	essential	object	to	use	when	building	our	@Test	methods	and	abstraction
layers.

A	lot	of	fields	on	our	objects	will	start	as	strings	e.g.	username,	password.	At	some	point
we	might	choose	to	make	them	objects	in	their	own	right	because	then	we	can	make	them
responsible	for	their	own	validation.

String	Summary
Just	a	quick	summary	of	what	we	have	already	learned.

A	String	is	an	object,	in	java.lang	so	we	don’t	have	to	worry	about	importing	it.
								String	aString	=	"abcdef";

A	String	literal	is	also	an	object,	so	we	can	call	methods	on	a	String	literal.
								assertThat("hello".length(),	is(5));

We	can	concatenate	strings	with	the	+	operator.
								assertEquals("123456",	"12"	+	"34"	+	"56");

A	String	is	immutable.	Once	a	String	is	created,	we	can’t	amend	it,	it	might	look	like	we
are	amending	it,	but	really	we	are	creating	a	new	String	object.

This	means	that	Java	can	re-use	the	same	String	value	throughout	our	code,	so	even	if	we
type	a	String	in	multiple	places,	it	doesn’t	take	up	any	more	memory.	Of	course,	we
should	not	use	this	as	an	excuse	to	duplicate	String	literals	throughout	our	code	as	that
can	make	our	code	harder	to	maintain.

System.out.println

You	have	seen	System.out.println	used	in	earlier	code,	this	statement	allows	us	to	write
String	objects	to	the	console.

It	is	very	useful	when	trying	to	gain	insight	into	a	section	of	code	and	to	generate	adhoc
files	or	strings	to	paste	into	applications.

It	can	be	used	as	a	simple	logging	tool	e.g.	for	printing	out	progress	of	execution	to	the
console,	or	printing	the	variables	used	as	input	data.

The	following	example	shows	this	in	action:
								int	i=4;

								System.out.println("Print	an	int	to	the	console	"	+	i);

Note	that	in	the	example	above,	the	int	is	automatically	converted	into	a	String	and
concatenated	to	the	string	literal	when	output	as:
Print	an	int	to	the	console	4

Special	character	encoding
We	encountered	the	escape	sequences	in	an	earlier	chapter.

\t	-	a	tab	character
\b	-	backspace
\n	-	a	new	line
\r	-	a	carriage	return
\'	-	a	single	quote
\"	-	a	double	quote
\\	-	a	backslash

When	building	strings	we	have	to	make	sure	we	escape	the	characters	like	",	and	\
otherwise	our	strings	will	fail	to	build.
								System.out.println("Bob	said	\"hello\"	to	his	cat's	friend");

								System.out.println("This	is	a	single	backslash	\\");

Will	output:

Bob	said	"hello"	to	his	cat's	friend

This	is	a	single	backslash	\

Exercise:	Try	using	the	other	escape	characters
Experiment	with	some	@Test	methods	which	use	the	other	escape	characters	in	a	string	e.g.	"\t",	"\b",
"\n",	"\r"	and	see	the	effect	when	you	use	System.out.println	to	print	to	the	console	output.

String	Concatenation
We	have	already	seen	+	as	a	method	of	concatenating	strings.	The	+	is	also	useful	as	a	way
of	adding	primitives	and	other	objects	on	to	the	String.
								String	ps1	=	"This	is	"	+	"String2";

								assertThat(ps1,	is("This	is	String2"));

								String	ps2	=	"This	is	"	+	4;

								assertThat(ps2,	is("This	is	4"));

The	String	class	has	a	concat	method	which	allows	us	to	concatenate	other	strings.	This
does	not	allow	us	to	concatenate	other	objects	on	to	the	String.
								String	thisIs	=	"This	is	";

								String	s1	=	thisIs.concat("String1");

								assertThat(s1,	is("This	is	String1"));

Converting	to/from	a	String

Converting	to	a	String	with	toString
Most	classes	override	the	toString	method	to	provide	a	way	of	creating	a	String
representation	of	the	object.

This	provides	a	useful	way	of	converting	to	a	String,	and	this	is	the	method	called	when
you	concatenate	a	String	with	a	different	type	using	+.

For	primitive	types,	the	associated	object	version	is	used	e.g.	for	int	the
Integer.toString	is	used.
								String	intConcatConvert	=	""	+	1;

								assertThat(intConcatConvert,	is("1"));

								String	integerIntConvert	=	Integer.toString(2);

								assertThat(integerIntConvert,	is("2"));

The	String	class	itself	has	the	valueOf	method	which	takes	objects	and	primitives	and
converts	them	to	a	String.	For	objects,	the	object’s	toString	method	is	used	for	the
conversion.
								String	integerStringConvert	=	String.valueOf(3);

								assertThat(integerStringConvert,	is("3"));

In	addition	you	can	convert	from	byte[]	and	char[]	(and	other	objects)	to	a	String	using
the	String	constructor.

Converting	from	a	String

Many	objects	have	a	valueOf	method	which	can	convert	the	value	of	the	String	to	the
associated	object.	e.g.	Integer,	Float,	etc.
								assertThat(Integer.valueOf("2"),	is(2));

The	String	object	also	has	a	toCharArray	to	convert	to	a	Character	array.
								char[]	cArray	=	{'2','3'};

								assertThat("23".toCharArray(),	is(cArray));

We	can	convert	a	String	to	a	byte	array	using	the	getBytes	method.
								byte[]	bArray	=	"hello	there".getBytes();

Converting	to	bytes	from	strings	can	be	problematic	if	we	want	to	move	our	code	between
different	machines	as	they	may	have	a	different	default	character	set	or	character
encoding.

When	we	convert	between	byte	and	String	we	may	need	to	control	the	encoding.	If	we
use	an	incorrect	encoding	then	an	UnsupportedEncodingException	will	be	thrown:
				@Test

				public	void	canConvertBytesUTF8()	throws	UnsupportedEncodingException	{

								byte[]	b8Array	=	"hello	there".getBytes("UTF8");

				}

Constructors
We	can	construct	a	new	String	with	no	arguments	to	create	a	0	length	String.
								String	empty	=	new	String();

								assertThat(empty.length(),	is(0));

Or	with	arguments	to	construct	from:

String

char[]	-	an	array	of	char
byte[]	-	an	array	of	byte
StringBuffer	-	a	mutable	String
StringBuilder	-	a	mutable	String

e.g.
								char[]	cArray	=	{'2','3'};

								assertThat(new	String(cArray),	is("23"));

Exercise:	Construct	a	String
Construct	a	String	from	a	String,	char[],	and	byte[].

Experiment	with	the	different	combinations	of	parameters.

Comparing	Strings
String	provides	many	methods	for	comparison	and	searching:

.compareTo	-	returns	0	if	Strings	are	equal

.compareToIgnoreCase	-	same	as	compareTo,	but	ignoring	case

.contains	-	returns	true	if	parameter	is	in	String

.contentEquals	-	returns	true	if	String	content	is	equal	to	parameter

.equals	-	returns	true	if	content	is	equal	and	the	parameter	is	a	String

.equalsIgnoreCase	-	same	as	equals	but	ignoring	case

.endsWith	-	returns	true	if	end	of	String	equals	parameter

.startsWith	-	returns	true	if	start	of	String	equals	parameter

.isEmpty	-	returns	true	if	length	of	String	is	0

.indexOf	-	returns	the	index	position	of	a	substring	in	a	String

.lastIndexOf	-	returns	the	index	position	of	a	substring	searching	from	the	end	of
the	String	forwards
.regionMatches	-	compare	a	region	of	the	substring	to	a	region	of	the	String

compareTo	&	compareToIgnoreCase
compareTo	compares	the	String	you	call	the	method	on,	with	a	String	parameter:

If	the	two	Strings	are	equal	then	compareTo	returns	0
								String	hello	=	"Hello";

								assertThat(hello.compareTo("Hello"),	is(0));

If	the	argument	String	is	smaller	than	the	String	then	compareTo	returns	a	negative
number
								assertThat(hello.compareTo("hello")	<	0,	is(true));

								assertThat(hello.compareTo("Helloo")	<	0,	is(true));

								assertThat(hello.compareTo("Hemlo")	<	0,	is(true));

If	the	argument	String	is	larger	than	the	String	then	compareTo	returns	a	positive	number
								assertThat(hello.compareTo("H")	>	0,	is(true));

								assertThat(hello.compareTo("Helln")	>	0,	is(true));

								assertThat(hello.compareTo("HeLlo")	>	0,	is(true));

Note	that	larger	means	both	longer	length	or,	a	character	difference.	Similarly	smaller
means	smaller	length,	or	a	character	difference.

compareToIgnoreCase	uses	the	same	logic	as	compareTo	but	the	case	of	the	letters	is
ignored	e.g
								assertThat(hello.compareToIgnoreCase("hello"),	is(0));

								assertThat(hello.compareToIgnoreCase("Hello"),	is(0));

								assertThat(hello.compareToIgnoreCase("HeLlo"),	is(0));

contains

The	method	contains	returns	true	if	the	parameter	String	is	contained	within	the
String.	The	value	true	will	also	be	returned	if	the	parameter	String	equals	the	String.
								String	hello	=	"Hello";

								assertThat(hello.contains("He"),	is(true));

								assertThat(hello.contains("Hello"),	is(true));

Case	is	important	when	using	contains:
								assertThat(hello.contains("he"),	is(false));

The	value	false	is	returned	if	the	parameter	is	not	contained	within	the	String
								assertThat(hello.contains("z"),	is(false));

contentEquals	&	equals	&	equalsIgnoreCase
The	method	contentEquals	returns	true	if	the	String	has	the	same	content	as	the
parameter	and	false	if	it	does	not.
								String	hello	=	"Hello";

								assertThat(hello.contentEquals("Hello"),	is(true));

								assertThat(hello.contentEquals("hello"),	is(false));

The	contentEquals	method	will	work	with	any	object	that	implements	the	CharSequence
interface,	or	against	a	StringBuffer	(e.g.	a	StringBuilder).

The	equals	method	enforces	the	additional	rule	that	the	parameter	must	be	a	String,	as
well	as	having	equal	content.

The	equalsIgnoreCase	method	works	the	same	as	equals	but	ignores	the	case	in	the
comparison.
								assertThat(hello.equalsIgnoreCase("hello"),	is(true));

endsWith	&	startsWith
The	endsWith	method	compares	the	end	of	the	String	to	the	parameter.
								String	hello	=	"Hello";

								assertThat(hello.endsWith("Hello"),	is(true));

								assertThat(hello.endsWith(""),	is(true));

								assertThat(hello.endsWith("lo"),	is(true));

The	startsWith	method	compares	the	start	of	String	to	the	parameter.
								assertThat(hello.startsWith("Hello"),	is(true));

								assertThat(hello.endsWith(""),	is(true));

								assertThat(hello.startsWith("He"),	is(true));

Both	endsWith	and	startsWith	methods	implement	case	sensitive	searches.
								assertThat(hello.startsWith("he"),	is(false));

								assertThat(hello.startsWith("Lo"),	is(false));

isEmpty

The	isEmpty	method	returns	true	if	the	length	of	the	String	is	0,	and	false	if	the	length
is	>	0.
								String	empty	=	"";

								assertThat(empty.isEmpty(),	is(true));

								assertThat(empty.length(),	is(0));

regionMatches

The	regionMatches	method	allows	you	to	use	indexes	to	specify	a	region	in	the	String,
within	which	to	look	for	a	region	in	the	comparison	other	String.
regionMatches(boolean	ignoreCase,	int	toffset,

														String	other,	int	ooffset,	int	len)

Or:
regionMatches(int	toffset,

														String	other,	int	ooffset,	int	len)

Given	a	particular	String:
									"Hello	fella"

										01234567890

I	can	search	for	a	substring	in	the	above	String	e.g.
								String	hello	=	"Hello	fella";

								assertThat(

																hello.regionMatches(true,	6,	"fez",	0,	2),

																is(true));

In	the	above	example	I	am	specifying:

the	region	of	the	hello	String	to	search	as	starting	at	position	6,	until	the	end	of	the
string
the	substring	is	"fez",	and

I	want	the	region	of	this	"fez"	String	to	start	at	position	0,	and
only	be	2	characters	long

In	effect	I	am	looking	for	"fe"	in	the	hello	String	starting	at	position	6.

This	is	a	particularly	complicated	method	to	use,	and	I	have	rarely	used	it.	I	tend	to	use
contains	or	indexOf	instead.

Exercise:	Use	regionMatches
Write	an	@Test	method	which	uses	regionMatches	to	search	in	the	String	"Hello	fella".	And	match	a
region	of	the	substring	"young	lady".	e.g.	search	for	the	"la"	portion	of	"young	lady"	in	"Hello	fella"

indexOf	&	lastIndexOf
For	the	following	examples	I	am	using	the	String:
									"Hello	fella"

										01234567890

Declared,	in	the	code,	as	follows:
								String	hello	=	"Hello	fella";

Both	the	indexOf	and	lastIndexOf	methods	return	the	position	in	the	String	where	the
Character	parameter	or	String	parameter	can	be	found.

The	indexOf	method	returns	the	first	place	in	the	String	where	the	parameter	can	be
found.
								assertThat(hello.indexOf("l"),	is(2));

The	lastIndexOf	method	returns	the	last	place	in	the	String	where	the	parameter	can	be
found.	The	search	for	the	index	begins	from	the	end	of	the	String,	working	towards	the
start	of	the	String.

								assertThat(hello.lastIndexOf("l"),	is(9));

Both	indexOf	and	lastIndexOf	can	be	called	with	an	additional	parameter	to	specify	the
start	position	in	the	String	to	search	from.

In	the	case	of	indexOf	it	searches	from	the	given	position,	to	the	end	of	the	String.
								assertThat(hello.indexOf('l',3),	is(3));

								assertThat(hello.indexOf("l",4),	is(8));

The	lastIndexOf	method	searches	from	the	given	position	towards	the	start	of	the
String.
								assertThat(hello.lastIndexOf('l',8),	is(8));

								assertThat(hello.lastIndexOf("l",7),	is(3));

If	indexOf	or	lastIndexOf	cannot	find	an	occurrence	of	the	Character	or	substring	in
String	then	the	method	returns	-1	(negative	one).
								assertThat(hello.indexOf('z'),	is(-1));

								assertThat(hello.lastIndexOf("z"),	is(-1));

Exercise:	Find	positions	of	all	occurrences	in	a	String
Write	a	method,	which	takes	a	String	and	a	substring	as	parameters	and	returns	a	List<Integer>
where	each	Integer	is	the	location	of	the	substring	in	the	String.

e.g.	findAllOccurrences("Hello	fella",	"l")	would	return	a	List<Integer>	with	the
values	2,3,8,9

For	bonus	points,	write	a	findAllOccurrences	method	which	returns	the	list	in	the	reverse	order
i.e.	9,8,3,2

Comparing	With	Regular	Expressions
Regular	Expressions	are	an	incredibly	powerful	tool	for	working	with	strings.

Java	has	a	whole	package	dedicated	to	regular	expressions,	‘java.util.regex’,	but	a
detailed	look	at	Regular	Expression	handling	is	beyond	the	scope	of	this	book.	I	have
listed	the	main	on-line	references	I	use	in	the	References	section	of	this	chapter.

In	this	book	I	want	to	introduce	you	to	regular	expressions	with	the	.matches	method.

A	regular	expression	is	a	String	where	some	of	the	Characters	have	special	meaning,
e.g.	wild	cards,	or	grouping	constructs.	The	phrase	“Regular	Expression”	is	often
abbreviated	to	“Regex”.

The	matches	method	helps	us	to	do	the	simplest	regular	expression	task,	which	is	answer
the	question	“does	this	Regular	Expression	match	this	String?”

An	example	scenario	for	the	use	of	Regular	Expressions	might	be	that	we	want	to	expand
the	password	validation	on	our	User	class:

password	must	contain	a	digit
password	must	contain	an	uppercase	letter

We	could	implement	the	above	conditions	using	the	indexOf	operator	and	loop	over	digits
or	upper	case	letters	and	try	and	find	them	in	the	String.	But	that	would	be	the	hard	way,
it	would	require	a	complicated	loop	and	could	lead	to	buggy	code.

Or,	we	could	build	a	regular	expression	that	only	matches	if	each	of	those	conditions	is
correct.

For	example,	I	can	write	a	regular	expression	of	matching	a	String	and	check	that	it
includes	a	digit	".*[0123456789]+.*".

At	a	high	level	the	above	regular	expression	means:

.*	-	match	0	or	more	characters
[0123456789]+	-	until	we	find	1	or	more	of	the	following	characters	“0123456789”
.*	-	which	can	be	followed	by	0	or	more	characters

To	detail	it	further:

.	-	matches	any	single	character
*	-	means	match	0	or	more	of	the	preceding	element
[]	-	matches	any	single	character	contained	in	the	brackets
+	-	means	match	1	or	more	of	the	preceding	element

I	can	use	it	in	my	Java	code	as	follows:
								String	mustIncludeADigit	=	".*[0123456789]+.*";

I	assigned	the	regular	expression	into	a	String	variable	for	re-use.

I	call	the	matches	method	on	a	String	and	pass	in	the	regular	expression	as	a	parameter,
and	if	the	regular	expression	matches	the	String	then	matches	returns	true.
								assertThat("12345678".matches(mustIncludeADigit),	is(true));

								assertThat("1nvalid".matches(mustIncludeADigit),	is(true));

If	the	match	fails	then	false	is	returned.
								assertThat("invalid".matches(mustIncludeADigit),	is(false));

								assertThat("Invalid".matches(mustIncludeADigit),	is(false));

I	can	write	a	similar	regular	expression	to	match	uppercase	letters:
								String	mustIncludeUppercase	=	".*[A-Z]+.*";

I	used	one	additional	construct	in	the	above	regular	expression:

A-Z	in	[A-Z]	-	means	any	character	between	A-Z,	so	I	could	do	a-z	or	0-9

								assertThat("Valid".matches(mustIncludeUppercase),	is(true));

								assertThat("val1D".matches(mustIncludeUppercase),	is(true));

Exercise:	Regular	Expressions	for	User	setPassword
Add	the	regular	expression	checks	to	the	setPassword	method	on	User	so	that	an	IllegalPassword
exception	is	thrown	if	the	password	does	not	contain	a	digit,	or	does	not	contain	an	upper	case	letter.

Working	with	Regex

When	you	are	new	to	Regular	Expressions	they	can	seem	daunting.

Every	time	I	return	to	them,	they	seem	daunting,	because	I’ve	forgotten	a	lot	of	the
nuances	and	how	to	write	them.

So	I	want	to	let	you	in	on	my	secrets	on	how	I	get	back	up	to	speed.

1.	 I	use	regular-expressions.info	to	help	me	remember	the	syntax
2.	 I	use	on-line	tools	like	regexpal.com	to	construct	and	check	the	regular	expression

against	sample	text
3.	 I	use	desktop	tools	like	RegexBuddy	(regexbuddy.com)	to	help	me	construct	and

check	the	regular	expression.	RegexBuddy	also	builds	code	snippets	to	use.
4.	 I	write	JUnit	tests	to	check	my	regular	expression	works
5.	 I	write	JUnit	tests	around	the	code	using	the	regular	expression	e.g.	to	test	the

setPassword	method

Regular	expressions	are	a	tremendous	tool	when	you	get	used	to	them.	As	you	grow	more
experienced	with	Java	and	start	using	the	java.util.regex	package	you	can	use	regular
expressions	to	parse	strings	and	pull	out	substrings	using	regular	expressions.

But	for	the	moment,	start	with	the	.matches	method	and	get	used	to	writing	regular
expressions	for	validation.

Manipulating	Strings

Replacing	Strings
Java	provides	three	methods	on	String	to	help	us	generate	a	new	String	but	with
elements	of	the	String	replaced	with	other	characters.

.replace	-	replace	all	matching	substrings	with	a	new	substring

.replaceAll	-	replace	all	substrings	that	match	a	regular	expression	with	a	new
substring
.replaceFirst	-	replace	the	first	substring	matching	the	regular	expression	with	a
new	substring

								String	hello	=	"Hello	fella	fella	fella";

								assertThat(hello.replace("fella",	"World"),

																				is("Hello	World	World	World"));

You	might	wonder	why	there	is	no	replaceFirst	for	normal	Strings,	rather	than	just
using	regular	expressions.	And	the	reason	is	that	a	‘normal’	string,	is	a	regular	expression,
but	one	which	only	matches	that	String.

This	allows	me	to	use	replaceFirst	to	replace	the	first	occurrence	of	fella	with	World:
								assertThat(hello.replaceFirst("fella",	"World"),

																				is("Hello	World	fella	fella"));

http://www.regular-expressions.info
http://www.regexpal.com
http://regexbuddy.com

And,	when	the	regular	expression	is	a	string	literal	with	no	regular	expression	special
characters,	I	can	use	replaceAll	instead	of	replace
								assertThat(hello.replaceAll("fella",	"World"),

																				is("Hello	World	World	World"));

replaceFirst	and	replaceAll	offer	us	a	very	simple	way	of	accessing	additional	power
of	regular	expressions.

e.g.	to	replace	numbers,	with	the	String	"digit":
								assertThat("1,2,3".replaceFirst("[0-9]","digit"),

																				is("digit,2,3"));

								assertThat("1,2,3".replaceAll("[0-9]",	"digit"),

																				is("digit,digit,digit"));

Uppercase	and	Lowercase
Java	provides	very	self	explanatory	methods	for	converting	an	entire	String	to	uppercase
or	lowercase

.toUppercase	-	convert	the	String	to	uppercase

.toLowercase	-	convert	the	String	to	lowercase

								String	text	=	"In	the	lower	3rd";

								assertThat(text.toUpperCase(),

																				is("IN	THE	LOWER	3RD"));

								assertThat(text.toLowerCase(),

																				is("in	the	lower	3rd"));

Removing	Whitespace
The	String	trim	method,	removes	leading	and	trailing	white	space	from	a	String.
								String	padded	=	"				trim	me				";

								assertThat(padded.length(),	is(15));

								String	trimmed	=	padded.trim();

								assertThat(trimmed.length(),	is(7));

								assertThat(trimmed,	is("trim	me"));

This	is	a	very	handy	method	to	use	when	tidying	up	input	data,	or	data	read	from	files.

Substrings
String	has	two	forms	of	substring:

substring(int	beginIndex)	-	from	an	index	to	the	end	of	the	String
substring(int	beginIndex,	int	endIndex)	between	a	start	index	and	an	end
index

Given	a	String	of	digits:

								String	digits	=	"0123456789";

We	can	get	from	(and	including)	the	5th	digit,	to	the	end	of	the	String:
								assertThat(digits.substring(5),	is("56789"));

The	endIndex	is	not	included	in	the	substring,	so	(5,6)	means	“from	5th	to	(but	not
including),	the	6th”:
								assertThat(digits.substring(5,	6),	is("5"));

String.format

Instead	of	concatenating	strings	all	the	time	we	can	use	the	static	format	method	on
String	to	construct	strings.

The	format	method	allows	us	to	create	simple	string	templates,	which	we	pass	arguments
into.

e.g.	instead	of	having	to	concatenate	String	and	other	variables	together:
								int	value	=	4;

								String	output	=	"The	value	"	+	value	+	"	was	used";

								assertThat(output,	is("The	value	4	was	used"));

We	could	use	String.format	and	a	format	string:
								String	template	=	"The	value	%d	was	used";

								String	formatted	=	String.format(template,	value);

								assertThat(formatted,	is("The	value	4	was	used"));

A	‘format’	string	is	a	String	with	embedded	conversion	placeholders	for	the	arguments
supplied	to	String.format	.	e.g.

%d	-	means	convert	the	argument	to	a	decimal	integer

Common	placeholders	are	:

%d	-	a	decimal
%s	-	a	String

e.g.
								String	use	=	"%s	%s	towards	%d	large	%s";

								assertThat(

												String.format(use,	"Bob",	"ran",	6,	"onions"),

												is("Bob	ran	towards	6	large	onions"));

The	arguments	are	used	in	order	to	fill	the	placeholders	in	the	format	string.

The	format	string	can	specify	exactly	which	argument	it	wants	to	use	in	each	place	holder
by	using	%<index>$	e.g.	%2$	would	mean	the	2nd	argument:
								String	txt	=	"%2$s	%4$s	towards	%3$d	large	%1$s";

								assertThat(

																String.format(txt,	"Bob",	"ran",	6,	"onions"),

																is("ran	onions	towards	6	large	Bob"));

This	allows	us	to	re-use	arguments	to	fill	the	template	in	multiple	places:

								String	txt2	=	"%1$s	%1$s	towards	%3$d	large	%1$s";

								assertThat(

																String.format(txt2,	"Bob",	"ran",	6,	"onions"),

																is("Bob	Bob	towards	6	large	Bob"));

The	format	string	offers	a	lot	of	flexibility,	and	when	you	look	at	the	official
documentation	for	the	String	Formatting	Syntax	you	will	see	this.

docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax

I	tend	to	keep	the	format	strings	very	simple,	and	mainly	use	them	as	place	holders	for	%s
and	%d,	but	it	is	worth	being	aware	of	the	possibilities	open	to	you	with	the	format	place
holders.

Basic	String	parsing	with	split
split	allows	us	to	convert	a	String	into	an	array,	where	each	array	element	is	a	portion	of
the	String	delimited	by	the	split	argument.

For	example,	I	could	‘parse’	a	comma	separated	value	string	with
								String	csv="1,2,3,4,5,6,7,8,9,10";

								String[]	results	=	csv.split(",");

The	results	array	would	have	10	elements,	where	each	element	was	one	of	the	numbers
separated	by	“,”	in	the	original	String:
								assertThat(results.length,	is(10));

								assertThat(results[0],	is("1"));

								assertThat(results[9],	is("10"));

The	split,	argument	is	a	regular	expression,	so	can	be	used	create	sophisticated	split
functions	with	minimal	code.

I	frequently	use	split	to	parse	simple	CSV,	or	tab	delimited	files.	I’ve	also	used	it	to	parse
HTML	and	XML,	without	bringing	in	other	libraries.

Manipulating	strings	With	StringBuilder
We	have	learned	that	String	is	immutable,	but	Java	provides	a	Class	for	manipulating	and
creating	strings	called	StringBuilder:
								StringBuilder	builder	=	new	StringBuilder();

A	StringBuilder	allows	us	to:

append	values	to	the	end	of	the	string
delete	characters,	or	sub	strings,	from	the	string
insert	values	into	the	string
replace	substrings	with	other	strings
reverse	the	string

It	does	this	by	holding	an	internal	representation	of	the	string	which	is	only	converted	into
a	String	when	the	toString	method	is	called.	e.g.

http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax

								builder.append("Hello	There").

																replace(7,11,"World").

																delete(5,7);

								assertThat(builder.toString(),	is("HelloWorld"));

A	StringBuilder	extends	StringBuffer,	and	is	slightly	faster,	but	only	for	use	with
single	threaded	applications.	If	you	advance	your	Java	to	the	stage	where	you	are	using
multiple	threads,	then	you	may	need	to	use	StringBuffer	instead.

Construct	a	StringBuilder
We	can	construct	an	empty	StringBuilder:
								StringBuilder	builder	=	new	StringBuilder();

We	can	construct	a	StringBuilder	with	a	starting	String	value	from	anything	that
implements	the	CharSequence	interface	e.g.	String
								StringBuilder	sb	=	new	StringBuilder("hello");

Capacity	Management

Since	StringBuilder	maintains	an	internal	representation	of	the	String	it	allocates	a
particular	capacity	in	memory	for	that	internal	representation.	When	items	are	appended
to	the	StringBuilder	the	capacity	is	automatically	increased.

By	default,	if	you	use	the	no-argument	constructor,	the	capacity	is	16.
								StringBuilder	builder	=	new	StringBuilder();

								assertThat(builder.capacity(),	is(16));

You	can	find	out	the	current	capacity	size	using	the	capacity	method.

You	can	construct	a	StringBuilder	with	a	specific	capacity	if	you	want.
								StringBuilder	sblen	=	new	StringBuilder(512);

								assertThat(sblen.capacity(),	is(512));

								assertThat(sblen.toString().length(),	is(0));

For	automation	code	we	typically	don’t	worry	about	the	capacity,	but	if	you	are	writing
code	that	needs	to	be	fast	then	you	might	size	the	StringBuilder	to	avoid	too	much
capacity	re-allocation.

You	can	size	the	StringBuilder	after	construction	using	the	ensureCapacity	method:
								builder.ensureCapacity(600);

If	you	have	amended	the	capacity,	or	deleted	a	lot	of	the	string	then	you	can	set	the
capacity	to	the	minimum	necessary	to	hold	the	string	characters	by	issuing:
								builder.trimToSize();

Appending	to	the	StringBuilder
The	append	method	works	much	like	the	+	concatenation	approach	for	String.	We	can
append	Objects,	primitives,	Strings,	or	char[]	to	the	end	of	a	StringBuilder.
								StringBuilder	builder	=	new	StringBuilder();

								builder.append(">	");

								builder.append(1);

								builder.append("	+	");

								builder.append(2);

								char[]	ca	=	{'	',	'=',	'	',	'3'};

								builder.append(ca);

								assertThat(builder.toString(),	is(">	1	+	2	=	3"));

If	during	the	appending,	we	add	more	characters	than	the	current	capacity,	then
StringBuilder	will	automatically	resize.

Exercise:	Check	StringBuilder	resizes
Write	an	@Test	annotated	method	which	validates	that	a	StringBuilder	resizes	when	you	append	more
characters	than	the	current	capacity.

Insert	into	the	StringBuilder
The	insert	method	supports	the	same	objects	and	primitives	as	the	append	method.

When	we	insert	into	the	StringBuilder	we	have	to	specify	the	position	to	insert	into:
								StringBuilder	builder	=	new	StringBuilder("123890");

								builder.insert(3,"4567");

								assertThat(builder.toString(),	is("1234567890"));

In	Java,	indexes	start	at	0,	so	the	first	space	we	can	insert	into	in	an	Empty	string	is	0.

If	we	use	an	index	which	is	longer	than	the	current	internal	representation	of	the	String
then	a	StringIndexOutOfBoundsException	will	be	thrown.

When	a	StringBuilder	has	some	values	in	the	string	we	can	insert	at:

index	0	to	add	it	to	the	front,
index	length	to	append	it
anything	in	between	to	add	it	into	the	body

Exercise:	Insert	into	a	StringBuilder
Insert	a	String	into	an	empty	StringBuilder.	Insert	a	String	on	the	end.	Insert	a	String	in	the	middle.

When	we	insert	a	char[]	we	have	additional	options.	In	addition	to	the	index,	we	can
specify	the	offset	in	the	char	array,	and	the	number	of	characters	to	copy	from	the	char
array.

Given	the	following	StringBuilder	which	starts	with	the	String	"abgh":
								char[]	ca	=	{'.',	'a',	'b',	'c',	'd',	'e',	'f'};

								StringBuilder	builder	=	new	StringBuilder("abgh");

The	code	below	will	insert	at	position	2	in	the	string	(i.e.	after	the	‘b’).	The	characters
from	position	3	in	the	char	array	('c')	to	the	next	4	characters	e.g.	(cdef);
								//	at	position	2	in	the	string

								//	insert	from	the	char[]	ca

								//	starting	at	index	3	'c'

								//	inclusive	the	next	4	indexes

								builder.insert(2,	ca,	3,	4);

								assertThat(builder.toString(),	is("abcdefgh"));

Deleting	from	StringBuilder
We	can	delete	substrings,	based	on	indexes	from	the	StringBuilder:
								StringBuilder	builder	=	new	StringBuilder("abcdefg");

								builder.delete(2,4);

								assertThat(builder.toString(),	is("abefg"));

Given	the	string	"abcdefg"	we:

specify	the	start	index	to	delete	from,	e.g.	2,	which	is	“c”,	and
specify	the	last	index	to	delete	up	to,	e.g.	4,	which	would	span	“cd”

abcdefg

0123456

Or	we	can	delete	a	specific	character	at	a	specified	index	using	deleteCharAt:
								builder.deleteCharAt(2);

								assertThat(builder.toString(),	is("abdefg"));

Replace	Sub	Strings	and	Characters
We	can	replace	sub	strings	with	the	replace	method,	which	takes	a	start	index,	end	index,
and	a	String	as	parameters.

The	characters	from	start	index,	to	end	index	are	replaced	by	the	String:
								StringBuilder	builder	=	new	StringBuilder("abcdefgh");

								builder.replace(0,4,"12345678");

								assertThat(builder.toString(),	is("12345678efgh"));

In	the	example	above,	the	string	to	replace	was	only	4	characters,	but	the	‘gap’	was
lengthened	to	allow	the	replacement	String	to	be	inserted.

We	can	replace	individual	characters	by	using	the	setCharAt	method:
								StringBuilder	builder	=	new	StringBuilder("012345678");

								builder.setCharAt(5,'f');

								assertThat(builder.toString(),	is("01234f678"));

Reverse
The	ability	to	reverse	strings	comes	in	surprisingly	useful.

Having	this	method	built	into	StringBuilder	means	that	I	often	simply	construct	a
StringBuilder	with	a	String	and	call	.reverse().toString().
								StringBuilder	builder	=	new	StringBuilder("0123456789");

								assertThat(builder.reverse().toString(),	is("9876543210"));

Sub	Strings
The	substring	method	returns	a	String	from	a	start	index	to	an	end	index:

								StringBuilder	builder	=	new	StringBuilder("0123456789");

								assertThat(builder.substring(3,7),	is("3456"));

Or	from	a	start	index	to	the	end	of	the	string:
								assertThat(builder.substring(3),	is("3456789"));

StringBuilder	Summary
StringBuilder	is	a	very	powerful	class	that	prevents	needing	to	use	a	lot	of	Strings	and
constantly	concatenating	them	together.	The	use	of	StringBuilder	is	also	very	efficient
since	it	uses	an	internal	representation	rather	than	constructing	new	String	objects	on
each	method	call.

For	efficiency	we	could	maintain	the	capacity	ourself,	and	size	the	StringBuilder
appropriately	for	the	task	at	hand,	rather	than	have	the	StringBuilder	resize	on	the	fly
with	each	method.

StringBuilder	has	other	methods	that	we	haven’t	covered	here,	this	has	been	an
overview	of	the	main	StringBuilder	functionality	that	you	will	use	most	often.

I	find	that	I	use	StringBuilder	most	for	String	construction,	so	mainly	the	append	and
insert	methods.	I	rarely	use	the	replace,	and	sub	string	methods,	preferring	to	replace
and	work	with	substrings	directly	with	the	String	class.

You	will	develop	your	own	style,	and	work	with	the	classes	that	make	most	logical	sense
to	you.

For	full	documentation,	of	all	the	methods,	see	the	link	in	the	References	or	use	code
completion	in	your	IDE.	Remember	in	IntelliJ	pressing	ctrl	+	q	(on	Windows)	or	ctrl	+
j	(on	Mac)	in	the	code	completion	pop-up	shows	the	JavaDoc	documentation	for	the
method.

Concatenation,	.format,	or	StringBuilder
How	do	you	choose	the	right	way	to	build	Strings?

We	have	seen	many	different	ways	to	construct	strings:

simple	concatenation	either	with	+	or	concat
simple	templates	using	String.format
StringBuilder	flexibility	with	inserts,	appends	and	deletes

So	which	is	best?

Well,	I	use	them	all.

For	simple	string	building	I	use	concatenation.

I	use	formats	when	I	have	too	many	concatenations	and	the	code	becomes	hard	to	read	and
maintain,	or	when	I	want	to	reuse	the	format	string	in	multiple	places.	I	try	to	remember	to
use	String.format	more,	even	when	I	have	a	small	set	of	concatenations,	but	sometimes	I
get	lazy	and	concatenate	Strings	together.

I	tend	to	use	StringBuilder	if	I’m	building	a	String	over	a	long	period	of	time,	or	need
to	build	the	String	over	a	number	of	method	calls.

I	don’t	think	there	is	a	right	answer.	But	do	be	aware	that	you	have	options.

Try	to	make	your	code	as	readable	and	maintainable	as	possible.	So	choose	the	method
that	helps	you	build	code	that	lasts.

Summary
When	automating	I	work	with	strings	all	the	time:	representing	data,	parsing	files,
processing	JSON,	creating	HTTP	requests,	etc.

So	I	use	a	lot	of	basic	String	processing	methods	and	StringBuilder	generation
methods.

This	chapter	has	covered	a	lot	of	the	basics,	even	though	we	haven’t	gone	into	depth	in
many	of	the	areas.	Refer	back	to	this	chapter	when	working	with	automation	and	data	and
you’ll	find	many	of	the	basic	functions	that	you	are	using,	or	could	use,	listed	here.

I’ve	tried	to	cover	the	methods	and	classes	behind	the	bulk	of	my	string	processing	needs,
hopefully	that	will	match	your	initial	future	needs.

References	and	Recommended	Reading

Java	Escape	Sequences
docs.oracle.com/javase/tutorial/java/data/characters.html

Java	Strings	tutorial
docs.oracle.com/javase/tutorial/java/data/strings.html

Java	Byte	Encoding	and	Strings
docs.oracle.com/javase/tutorial/i18n/text/string.html

String	Formatting	syntax
docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax

StringBuilder	Tutorial
docs.oracle.com/javase/tutorial/java/data/buffers.html

StringBuilder	Documentation
docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html

Java	Regular	Expressions
docs.oracle.com/javase/tutorial/essential/regex

Regular	Expressions	Information	and	Tutorials
regular-expressions.info/

Wikipedia	Regular	Expressions
en.wikipedia.org/wiki/Regular_expression

On-line	Regular	expression	tester
regexpal.com

RegexBuddy	Desktop	Tool
regexbuddy.com

http://docs.oracle.com/javase/tutorial/java/data/characters.html
http://docs.oracle.com/javase/tutorial/java/data/strings.html
http://docs.oracle.com/javase/tutorial/i18n/text/string.html
http://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html#syntax
http://docs.oracle.com/javase/tutorial/java/data/buffers.html
http://docs.oracle.com/javase/7/docs/api/java/lang/StringBuilder.html
http://docs.oracle.com/javase/tutorial/essential/regex
http://www.regular-expressions.info
http://en.wikipedia.org/wiki/Regular_expression
http://regexpal.com
http://www.regexbuddy.com

Chapter	Sixteen	-	Random	Data

Chapter	Summary
In	this	chapter	you	will	learn	how	to	use	Java’s	Random	functionality	to	create	Random	Data:

Math.random	-	easy	to	use	static	wrapper	to	generate	a	random	double	between	0.0	and	1.0
java.util.random	-	the	main	Java	random	package:

nextBoolean	-	return	either	true	or	false
nextLong	-	return	a	random	long	value
nextInt	-	random	int	over	the	range	of	all	Integer	values
nextInt(int	below)	-	random	int	greater	than	or	equal	to	0	and	less	than	below
nextDouble	-	flat	distribution	where	each	value	between	0.0	and	1.0	has	equal	chance	of	being
returned
nextGaussian	-	a	Gaussian	distribution	with	a	mean	of	0.0	and	a	standard	deviation	of	1.0,
meaning	about	70%	values	hovering	around	the	0.0	mark	(+	or	-	1.0)
nextFloat	-	random	float	greater	than	or	equal	to	0.0	and	less	than	1.0
nextBytes	-	fill	a	given	byte[]	with	random	bytes

seeding	random	number	generation	with	new	Random(seed)
Generating	random	strings

Random	data	in	automation	is	a	contentious	subject.	Some	people	argue	that	automation
should	be	completely	deterministic	and	always	run	the	same	way	-	implying	that	we
always	use	the	same	data.	I	prefer	to	vary	data	that	is	not	important	to	the	conditions
checked,	i.e.	data	that	should	be	part	of	an	equivalence	class.	By	doing	this	we	increase
the	data	coverage	of	the	automation,	and	increase	the	possibility	that	the	automated	check
will	reveal	a	bug.

Java	has	a	very	simple	set	of	random	methods	and	classes.

java.util.random

Math.random()

Java,	as	part	of	the	Security	packages	has	a	SecureRandom	class,	which	exposes	the	same
methods	as	we	discuss	in	this	chapter.	I	do	not	cover	SecureRandom	in	this	book	because:

I	have	never	used	it	in	production	automation	code,
It	is	slightly	slower	to	instantiate,
It	is	slightly	harder	to	use	well.

Most	of	the	randomness	you	need	in	your	automation	code	you	can	achieve	with:

java.util.random

Math.random

The	static	random	method	on	Math	provides	a	‘pseudo	random’	number.

It	is	actually	a	wrapper	for	the	java.util.random	nextDouble	method.	But	makes	it
simple	to	use.

When	Math.random()	is	first	called,	a	new	random	number	generator	is	created	which	is
used	for	each	call	to	Math.random()

Math.random()	returns	a	double,	greater	than	or	equal	to	0.0	and	less	than	1.0
								double	rnd	=	Math.random();

								System.out.println(

												String.format(

																				"generated	%f	as	random	number",	rnd));

								assertThat(rnd	<	1.0d,	is(true));

								assertThat(rnd	>=	0.0d,	is(true));

java.util.random

The	java.util.random	package	provides	methods	to	generate	random	values	as	follows:

boolean

nextBoolean	-	return	either	true	or	false
long

nextLong	-	return	a	random	long	value
int

nextInt	-	random	int	over	the	range	of	all	Integer	values
nextInt(int	below)	-	random	int	greater	than	or	equal	to	0	and	less	than	below

double

nextDouble	-	flat	distribution	where	each	value	between	0.0	and	1.0	has	equal
chance	of	being	returned
nextGaussian	-	a	Gaussian	distribution	with	a	mean	of	0.0	and	a	standard
deviation	of	1.0,	meaning	about	70%	values	hovering	around	the	0.0	mark	(+	or
-	1.0)

float

nextFloat	-	random	float	greater	than	or	equal	to	0.0	and	less	than	1.0
byte[]

nextBytes	-	fill	a	given	byte[]	with	random	bytes.

To	use	the	methods	we	first	have	to	instantiate	a	Random	Object:
								Random	generate	=	new	Random();

Then	call	the	appropriate	method	to	generate	the	random	value	that	we	require:
								boolean	randomBoolean	=	generate.nextBoolean();

								int	randomInt	=	generate.nextInt();

								int	randomIntRange	=	generate.nextInt(12);

								long	randomLong	=	generate.nextLong();

								double	randomDouble	=	generate.nextDouble();

								double	randomGaussian	=	generate.nextGaussian();

								byte[]	bytes	=	new	byte[generate.nextInt(100)];

								generate.nextBytes(bytes);		//	fill	bytes	with	random	data

Most	of	the	above	methods	are	pretty	self	explanatory	and	I	encourage	you	to	experiment
with	them	by	doing	the	exercises	listed	in	this	chapter.

I	will	go	into	two	of	the	methods	in	more	detail,	after	the	exercise:

nextInt(int	below)

nextGaussian

Exercise:	Create	@Test	Methods	Which	Confirm	Random	Limits
Create	@Test	methods	for	each	of	the	random	methods.	i.e.	nextInt,	nextLong,	etc.
For	each	random	method,	generate	1000	random	values	and	assert	that	the	returned	values	meet	the
description:

nextInt	generates	from	Integer.MIN_VALUE	and	Integer.MAX_VALUE
nextBoolean	generates	either	true	or	false
nextLong	generates	a	long	between	Long.MIN_VALUE	and	Long.MAX_VALUE
nextFloat	generates	a	float	between	0.0f	and	1.0f
nextDouble	generates	a	double	between	0.0d	and	1.0d
nextBytes	fills	a	byte[]	with	random	data
nextInt(x)	generates	and	int	from	0	to	x-1

nextInt(int	below)

When	generating	a	random	int	we	can	specify	the	upper	range	for	the	generation.

nextInt(int	below)

For	a	given	value	below,	the	nextInt	method	will	generate	a	value	between	0	(inclusive)
and	the	value	of	the	below	parameter	(exclusive)	e.g:

nextInt(5)	generate	a	random	between	0	and	4	inclusive
a	number	greater	than	or	equal	to	0	(inclusive)	but	less	than	5	(exclusive)

nextInt(200)	generate	a	random	number	between	0	and	199	inclusive
a	number	greater	than	or	equal	to	0	(inclusive)	but	less	than	200	(exclusive)

If	we	want	to	use	nextInt	to	generate	an	integer	from	a	specific	number,	e.g.	1	instead	of
0	then	we	have	to	use	an	algorithm:

calculate	the	range	of	numbers
add	1	to	this,	since	the	nextInt	maximum	is	one	less	than	desired
and	add	the	start	number.

e.g.
												int	minValue	=	1;

												int	maxValue	=	5;

												int	randomIntRange	=	generate.nextInt(

																				maxValue	-	minValue	+	1)	+	minValue;

Exercise:	Create	an	@Test	method	which	generates	1000	numbers
inclusively	between	15	and	20
Use	the	algorithm	above	to	generate	1000	numbers	between	15	and	20	and	assert	that	all	numbers
15,16,17,18,19,20	were	generated.

nextGaussian

A	double	drawn	from	a	Gaussian	distribution	with	a	mean	of	0.0	and	a	standard	deviation
of	1.0,	meaning:

about	70%	values	hovering	around	the	0.0	mark	(+	or	-	1.0),
about	95%	values	between	-2.0	and	2.0
about	99%	values	between	-3.0	and	3.0
about	99.9%	values	between	-4.0	and	4.0

Theoretically	there	is	no	limit	to	the	value	of	the	double	that	could	be	returned	by
nextGaussian	because	it	is	not	a	limited	range,	it	is	a	probability	distribution	around	a
given	mean.

You	can	find	references	to	‘Standard	Deviation’	at	the	end	of	the	chapter.

Exercise:	Write	an	@Test	method	that	shows	the	distributions
Write	an	@Test	method	that	generates	1000	‘double’	values	using	‘nextGaussian’.
Count	those	that	are	within	1	standard	deviation,	within	2	standard	deviations	etc.
Calculate	the	percentages	of	numbers	within	each	standard	deviation	range	and	see	if	they	align
roughly	with	the	values	above.

e.g.	the	output	after	running	the	method	could	be:

about	70%	one	standard	deviation	=	67.299995

about	95%	two	standard	deviation	=	95.3

about	99%	three	standard	deviation	=	99.8

about	99.9%	four	standard	deviation	=	100.0

Use	nextGaussian	to	generate	a	range	of	integers

The	nextGaussian	method	is	typically	used	in	combination	with	other	methods	to
distribute	the	range	of	random	values	over	a	probability	curve.

e.g.	if	‘most’	of	our	users	are	aged	30	-	40,	then	we	have	a	mean	of	35	with	a	standard
distribution	of	5,	then	we	could	use	Gaussian	distribution	to	generate	the	age
												int	age	=	(int)(generate.nextGaussian()	*	5)	+	35;

about	70%	values	hovering	around	the	35	+/-	5	mark	(30	-	40),
about	95%	values	between	35	+/-	10	mark	(25	-	45)
about	99%	values	between	35	+/-	15	mark	(20	-	50)
about	99.9%	values	between	35	+/-	20	mark	(15	-	55)

When	dealing	with	ages	you	might	need	to	add	additional	code	to	ensure	a	minimum	and
maximum	value,	even	though	the	probability	of	getting	an	extreme	value	is	low,	it	might
happen.

Exercise:	Write	an	@Test	method	which	generates	1000	ages	using
nextGaussian

Write	an	@Test	method	which	generates	1000	ages	using	nextGaussian	with	a	mean	of	35	and	a	standard
deviation	of	5.	Count	each	age	generated	and	output	the	sorted	list	of	ages	and	counts	to	the	console.

e.g.

...

34	:	70

35	:	167

36	:	83

37	:	80

38	:	66

39	:	51

...

Seeding	random	numbers
The	random	numbers	are	‘pseudo	random’	because	they	are	based	on	a	‘seed’,	and	each
call	to	‘random’	is	deterministic	if	the	‘seed’	is	controlled.

For	example:
										Random	generate	=	new	Random(1234567L);

Would	generate	a	random	number	generator	where	the	nextInt	returns	1042961893

Exercise:	Create	an	@Test	method	for	Random	with	Seed
Create	an	@Test	method	for	the	seed	1234567L	and	assert	that:

nextInt	==	1042961893	then
nextLong	==	-6749250865724111202L
continue	the	assertions	and	add:

nextDouble,
nextGaussian,
nextFloat,
nextBoolean

Make	sure	you	can	re-run	the	method	and	you	get	the	same	‘random’	numbers.

This	is	useful	when	you	want	to	make	method	execution	repeatable.	e.g.	if	at	the	start	of	a
run	you	seed	the	Random	with	the	current	date	time,	then	if	you	log	the	date	and	time,	you
could	repeat	the	run	exactly,	even	if	random	data	was	used.

For	Example:
								long	currentSeed	=	System.currentTimeMillis();

								System.out.println("seed	used:	"	+	currentSeed);

								Random	generate	=	new	Random(currentSeed);

If	the	System.out.println	was	a	logging	call,	then	I	could	recreate	the	run	by	seeding
random	with	the	seed	value	logged	in	the	output.

Using	Random	Numbers	to	generate	Random	Strings
A	crude	way	to	generate	random	strings	is	to	build	a	String	by	randomly	adding	a	valid
character	to	the	String.

For	Example	if	I	want	to	build	a	String	from	the	uppercase	letters	and	space:
								String	validValues	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ	";

Then	I	can	randomly	select	a	character	from	that	String:
								int	rndIndex	=	random.nextInt(validValues.length());

								char	rChar	=	validValues.charAt(rndIndex);

If	I	loop	around	this	generation	process	and	concatenate	the	results	then	I	can	generate	a
random	String.

Exercise:	Generate	a	Random	String	100	chars	long
Generate	a	random	string,	100	characters	long,	containing	the	characters	'	'	(space)	and	'A'	to	'Z'.

Discussion	random	data	in	automation
Many	people	do	not	like	to	add	random	data	to	their	automation.

I	do.

I	view	automated	checks	as	exercising	a	particular	path	through	the	system,	with	variable
data.

Some	data,	is	needed	in	order	to	control	the	path,	and	if	I	vary	that	data	then	I	run	a
different	path.

For	Example:	If	I	am	only	asked	for	my	passport	number	when	I	am	65,	then	if	I	create	a
user	who	is	not	65,	I	can’t	cover	that	path.	So	I	would	not	vary	the	age.	But	if	I	am	asked
for	a	passport	number	when	I	am	65	or	over,	then	I	have	an	equivalence	class.	And	if	I
randomly	generate	an	age	which	is	65	or	older	then	I	can	cover	that	path.	It	should	make
no	difference	to	the	@Test	methods,	so	I	can	vary	the	data.	If	I	vary	the	data	and	the	@Test
method	does	not	run	as	expected	then	I	may	have	found	a	bug	with	our	understanding	of
the	equivalence	class,	but	I	might	also	have	found	a	bug	related	to	the	way	the	application
processes	a	particular	age.

I	use	randomness	to	generate	data	for	equivalence	classes,	and	control	the	data	which
needs	to	be	static	for	the	execution	path	preconditions	to	be	met.

Importance	of	Logging	when	using	Random	data
When	I	use	random	data,	I	need	to	log	it.

The	simplest	logging	mechanism	to	start	with	is	System.out.println	so	if	my	@Test
methods	write	to	the	console	an	output	of	what	data	they	have	used,	then	I	can	recreate	the
run	later	by	using	the	output	logs.	Because	the	methods	may	have	failed	due	to	the	specific
combination	of	random	values,	and	I	need	to	recreate	any	failing	assertion	with	that
particular	data.

I	may	need	to	create	a	mechanism	to	rerun	methods	with	particular	data	values,	in	which
case	seeding	the	random	mechanism,	and	logging	the	seed	value,	might	be	an	appropriate
solution.

I	have	managed	to	get	by	in	most	of	my	production	use	of	randomization	by	logging	the
output	of	the	random	data	generation	to	System.out.println.	The	log	appears	in
System.out	when	the	code	ran	as	part	of	continuous	integration	and	if	an	assertion	fails
due	to	data	then	we	can	look	at	the	log	and	use	the	seed,	or	data,	to	recreate	the	execution,
or	re-running	the	failing	@Test	method	manually	with	the	generated	data.

Start	simple	with	your	automation.

Don’t	think	that	because	you’ve	started	using	random	data	you	need	the	ability	to	recreate
all	the	runs	exactly	and	seed	your	data	in	the	continuous	integration	environment.	You
probably	don’t.	You	probably	need	to	start	with	the	ability	to	see	what	data	you	have	used
so	that	you	can	re-run	any	failing	methods	manually	and	determine	if	the	random	data
combination	you	used,	triggered	a	bug.

Summary
You	have	seen	with	the	later	examples	using	nextGaussian	and	the	random	String
generation	that	even	with	a	small	set	of	random	number	generation	functions	we	can	fairly
easily	use	them	to	generate	complicated	data	sets.

I	frequently	use	random	data	to	help	me	build	Domain	objects	e.g.	random	Users.	And
then	I	set	the	specific	values	I	need	for	my	@Test	method.	i.e.	instead	of	a	default
username	and	password	in	the	constructor,	I	might	assign	a	randomly	generated	username
and	password.

References	and	Recommended	Reading

Standard	Deviation
en.wikipedia.org/wiki/Standard_deviation

Math.random

docs.oracle.com/javase/7/docs/api/java/lang/Math.html#random()
java.util.random

docs.oracle.com/javase/7/docs/api/java/util/Random.html
Hints	on	generating	values	in	a	range

http://stackoverflow.com/questions/363681

http://en.wikipedia.org/wiki/Standard_deviation
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#random()
http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
http://stackoverflow.com/questions/363681/generating-random-number-in-a-range-with-java

Chapter	Seventeen	-	Dates	and	Times

Chapter	Summary
In	this	chapter	you	will	learn	how	to	use	Java’s	native	Date	functionality

System.currentTimeMillis	-	current	system	time	in	milliseconds	since	midnight	January	1st,	1970
System.nanoTime	-	current	JVM	time	source	in	nanoseconds
The	native	classes	associated	with	dates:

Date	-	simple	to	use	class	for	comparison	and	working	from	milliseconds
SimpleDateFormat	-	create	a	String	from	a	Date	using	a	format	pattern
Calendar	-	a	wrapper	for	Date	to	allow	working	with	days,	months,	etc.

Dates	in	Java	are	handled	a	little	rough	and	ready,	as	a	result,	many	Java	developers	use
external	libraries	like	‘Joda-Time’.	External	libraries	are	beyond	the	scope	of	this	book,
and	while	the	internal	Java	classes	may	not	offer	the	flexibility	as	‘Joda	Time’,	they	are
still	very	powerful.

In	addition	to	working	with	dates,	I	also	use	the	Date/Time	functionality	to:

seed	random	numbers
generate	unique	data	e.g.	filenames,	and	user	ids

currentTimeMillis	and	nanoTime

System.currentTimeMillis	-	returns	current	system	time	in	milliseconds	since
midnight	January	1st,	1970
System.nanoTime	-	returns	current	JVM	time	source	in	nanoseconds

System.currentTimeMillis	returns	a	long	which	represents	the	current	time	on	your
local	machine.	The	time	is	represented	as	the	number	of	milliseconds	since	midnight	of
the	January	1st,	1970.
								long	startTime	=	System.currentTimeMillis();

System.nanoTime	returns	a	long	which	represents	the	current	nanoseconds	as	calculated
by	the	current	JVM.	This	doesn’t	necessarily	map	on	to	the	current	system	time,	but	the
difference	between	two	calls	to	nanoTime	represents	the	passage	of	time	(in	nanoseconds)
between	the	two	calls.
								long	startTime	=	System.nanoTime();

A	nanosecond	is	one	thousand-millionth	of	a	second.

I	typically	use	these	methods	to:

calculate	the	time	that	a	task	has	taken
create	unique	ids	and	filenames

Calculate	the	time	that	a	task	takes
To	calculate	the	time	that	a	task	takes,	I	would	:

instantiate	a	startTime
perform	the	task
instantiate	an	endTime
calculate	the	totalTime	as	endTime	-	startTime

For	example	to	calculate	how	long	it	takes	to	output	the	currentTimeMillis	to	the	console
ten	times,	I	can	write	code	like	the	following:
				@Test

				public	void	currentTimeMillis(){

								long	startTime	=	System.currentTimeMillis();

								for(int	x=0;	x	<	10;	x++){

												System.out.println("Current	Time	"	+

																																System.currentTimeMillis());

								}

								long	endTime	=	System.currentTimeMillis();

								System.out.println("Total	Time	"	+	(endTime	-	startTime));

				}

When	I	run	this	I	normally	get	a	totalTime	value	of	around	1,	but	sometimes	I	will	get	a
total	value	of	0	because	the	entire	task	takes	place	within	the	same	‘millisecond’	as
calculated	by	currentTimeMillis.

The	resolution	of	values	represented	by	currentTimeMillis	can	vary	between	operating
systems,	it	is	not	guaranteed	to	be	a	‘millisecond’,	it	might	be	more	e.g.	tens	of
milliseconds.	As	such	this	isn’t	a	great	method	for	exact	time,	but	it	very	often	good
enough	for	automation	timings,	particularly	if	you	are	rounding	up	to	the	nearest	second
anyway.

What	it	is	very	good	for,	are	unique	numbers	or	values,	assuming	that	you	don’t	reset	your
computer	clock	into	the	past.

Exercise:	Re-write	the	timing	@Test	method	using	nanoTime
Re-write	the	millisecond	@Test	method	shown	above	using	nanoTime	and	see	the	difference	in	output.

When	using	nanoTime,	again	the	resolution	is	determined	by	the	underlying	operating
system,	but	is	reported	in	nanoseconds.

nanoTime	is	much	better	for	calculating	the	time	duration	of	an	activity	which	runs
quickly,	and	for	which	you	want	a	more	accurate	measurement.
nanoTime	is	not	useful	for	creating	unique	numbers	because	you	don’t	really	know
the	basis	for	the	JVM	time.

Create	unique	values	with	currentTimeMillis

To	create	unique	identifiers	or	names	I	often	prefix	a	String	to	the	currrentTimeMillis
value:
								String	userID	=	"user"	+	System.currentTimeMillis();

This	is	crude	and	simple,	but	fast	and	obvious.

e.g.
user1424101386462

Exercise:	Use	currentTimeMillis	to	create	a	unique	name	with	no
numbers
We	need	to	create	a	unique	name,	that	has	all	alphabetic	characters	i.e.	no	numbers	in	it.

Create	a	test	which	generates	a	unique	string	from	currentTimeMillis	but	has	no	numbers	in	the
final	string.

Date

The	Date	class	exposes	a	small	set	of	methods.
								Date	date	=	new	Date();

Methods	that	Date	provides:

after	-	return	true	if	the	parameter	date	is	after	the	Date	object
before	-	return	true	if	the	parameter	date	is	before	the	Date	object
compareTo	-	returns	0	if	the	Date	objects	are	equal,	negative	if	the	Date	object	is	less
than	parameter	and	positive	if	the	Date	object	is	greater	than	the	parameter
equals	-	return	true	if	the	parameter	and	Date	object	represent	the	same	time	and
date
setTime-	set	the	time	represented	by	the	Date	object	to	a	specific	millisecond	value
getTime	-	return	the	number	of	milliseconds	after	midnight,	January	1	1970	that	this
Date	represents
toString	-	return	a	String	representation	of	the	date

Instantiating	Date	without	a	parameter	will	default	the	time	represented	by	the	Date	to	the
same	value	as	System.currentTimeMillis.

The	following	two	statements	are	essentially	equivalent:
								Date	equivDate1	=	new	Date();

								Date	equivDate2	=	new	Date(System.currentTimeMillis());

The	toString	method	provides	a	simple	method	of	outputting	a	String	representation	of
the	date.
								System.out.println(date.toString());

On	my	machine	toString	outputs	the	following	string	format:

Thu	Jun	20	12:18:04	BST	2013

We	will	learn	how	to	control	the	output	of	a	Date	in	the	next	section.

We	can	also	instantiate	a	Date	with	a	long,	in	order	to	set	the	Date	to	a	specific	time.

For	example,	I	could	create	a	Date	7	days	in	the	future	from	one	Date	by	manipulating	the
long	that	I	instantiate	the	Date	with:
								long	oneWeekFromNowTime	=	date.getTime();

								oneWeekFromNowTime	=	oneWeekFromNowTime	+

																													(1000	*	60	*	60	*	24	*	7);

								Date	oneWeekFromNow	=	new	Date(oneWeekFromNowTime);

								System.out.println(oneWeekFromNow.toString());

In	the	above	code	I	take	the	time	from	one	Date	then	I	add	7	days	worth	of	milliseconds	to
the	long	value,	and	instantiate	a	new	Date	from	that	milliseconds	value.	Resulting	in	the
following	output:

Thu	Jun	27	12:18:04	BST	2013

We	can	use	the	setTime	to	set	the	milliseconds	time	value	of	a	date	after	constructing	it,
so	I	can	create	a	Date	with	a	duplicate	time	using	the	constructor	or	the	setTime	method:
								Date	sameDate	=	new	Date();

								sameDate.setTime(date.getTime());

								assertThat(date.equals(sameDate),	is(true));

								assertThat(date.compareTo(sameDate),	is(0));

SimpleDateFormat

SimpleDateFormat	allows	us	to	output	the	value	of	a	Date	object	as	a	String,	in	a	format
that	we	choose.
								SimpleDateFormat	sdf	=	new	SimpleDateFormat();

So	if	I	instantiate	a	Date	to	the	1st	of	January	1970:
								SimpleDateFormat	sdf	=	new	SimpleDateFormat();

Then	the	following	table	shows	example	patterns	and	the	associated	generated	output,
when	I	apply	the	pattern:

Pattern Output
"MM/dd/yyyy" "01/01/1970"

"MMM/dd/yyy" "Jan/01/1970"

"MMMM/d/yy" "January/1/70"

I	can	use	the	applyPattern	method	to	set	the	pattern	for	a	SimpleDateFormat	and	use	the
pattern	on	a	date	with	the	format	method.
								sdf.applyPattern("MM/dd/yyyy");

								assertThat(sdf.format(date),	is("01/01/1970"));

applyPattern	-	set	the	pattern	that	the	next	format	will	use
format	-	format	the	given	Date	with	the	defined	pattern

I	can	also	instantiate	SimpleDateFormat	with	the	pattern	that	I	want	to	use	e.g.	“year
month	day	24hour:minutes:seconds.milliseconds”	shown	below

								SimpleDateFormat	sdf	=	new	SimpleDateFormat("y	M	d	HH:mm:ss.SSS");

You	can	use	SimpleDateFormat	to	generate	a	Date	for	a	given	date	string	e.g.	the	date	of
“15th	December	2013”	and	a	time	of	“11:39	pm”	and	“54	seconds	and	123	milliseconds”:
								Date	date	=	sdf.parse("2013	12	15	23:39:54.123");

Important	elements	for	use	in	the	pattern	format	are	listed	below,	using

Element Description Output
"y" year "2013"

"yy" year "13"

"yyy" year "2013"

"yyyy" year "2013"

"yyyyy" year "02013"

"M" Month "12"

"MM" Month "12"

"MMM" Month "Dec"

"MMMM" Month "December"

"d" Day	in	Month "15"

"dd" Day	in	Month "15"

"ddd" Day	in	Month "015"

"h" Hour	in	AM/PM	Time "11"

"hh" Hour	in	AM/PM	Time "11"

"hhh" Hour	in	AM/PM	Time "011"

"H" Hour	in	24	Hr	Time "23"

"HHH" Hour	in	24	Hr	Time "023"

"m" Minute	in	Time "39"

"mm" Minute	in	Time "39"

"mmm" Minute	in	Time "039"

"s" Second	in	Minute "54"

"ss" Second	in	Minute "54"

"sss" Second	in	Minute "054"

"S" Milllisecond "123"

"E" Week	Day	Name "Sun"

"EEEE" Week	Day	Name "Sunday"

"a" AM/PM "PM"

More	unusual	date	format	patterns	are	listed	below.	These,	I	haven’t	tended	to	use	much:

Element Description Output
"w" Week	in	the	year "50"

"www" Week	in	the	year "050"

"W" Week	in	the	month "2"

"WW" Week	in	the	month "02"

"WWW" Week	in	the	month "002"

"D" Day	in	the	year "349"

"F" Day	of	week	in	the	month "3"

"FF" Day	of	week	in	the	month "03"

"FFF" Day	of	week	in	the	month "003"

"u" Day	number	in	the	week "7"

"uu" Day	number	in	the	week "07"

"k" Hour	in	the	day	(1-24) "23"

"kkk" Hour	in	the	day	(1-24) "023"

"H" Hour	in	the	am/pm	(0-11) "23"

"HHH" Hour	in	the	am/pm	(0-11) "023"

"z" General	Time	Zone "GMT"

"Z" RTC	822	Time	Zone "+0000"

"X" ISO	8601	Time	Zone "Z"

The	reason	for	showing	so	many	different	combinations	e.g.	"y",	"yy",	"yyyyy"	was	to
demonstrate	that	some	patterns	will	truncate,	or	pad,	or	expand	depending	on	the	value	in
the	Date.

SimpleDateFormat	has	other	methods	available,	I	suggest	you	read	the	on-line
documentation	for	SimpleDateFormat	if	you	want	to	learn	more.	Typically	I	create	a
SimpleDateFormat	with	the	pattern	I	want	to	use,	and	then	format	a	Date	with	that
pattern.	You’ll	get	a	lot	of	mileage	out	of	that	simple	approach.

Calendar

Calendar	provides	a	wrapper	for	the	Date	class	which	allows	us	to	edit	it	in	terms	of	its
individual	components,	e.g.	change	the	date,	or	the	month,	or	the	year,	rather	than	working
directly	with	the	millisecond	time.

Instantiate	a	new	Calendar	using	the	static	getInstance	method	on	the	Calendar	class.
								Calendar	cal	=	Calendar.getInstance();

Initially	I	will	compare	Calendar	with	Date	so	you	gain	basic	familiarity	with	it,	then	we
will	explore	the	methods	and	capabilities	in	more	detail.

We	have	many	of	the	methods	that	you	already	encountered	with	Date,	but	the	methods
work	with	Calendar	parameters:

after	-	returns	true	if	the	parameter	is	after	the	Calendar
before	-	returns	true	if	the	parameter	is	before	the	Calendar

equals	-	returns	true	if	the	parameter	represents	the	same	date	and	time	as	the
Calendar

compareTo	-	returns	0,	-ve	or	+ve;	if	the	parameter	is	equal,	after,	or	before	the
Calendar

We	have	a	method	getTime	on	Calendar	just	as	we	did	with	Date	but	the	getTime	method
on	Calendar	returns	a	Date	so	the	following	lines	are	equivalent	when	working	with
Calendar:
								System.out.println(cal.getTime().getTime());

								System.out.println(System.currentTimeMillis());

The	Calendar	method	toString	does	not	print	a	nicely	formatted	version	of	the	date	and
time,	instead	it	shows	all	the	attributes	of	the	Calendar	Object.

Exercise:	Write	the	toString	to	console
Write	an	@Test	method	which	instantiates	a	Calendar	object	and	writes	the	output	of	toString	to	the
console.

I	can	control	the	Date	details	of	a	Calendar	with	the	setTime	method:
								Calendar	sameDate	=	Calendar.getInstance();

								sameDate.setTime(cal.getTime());

								assertThat(cal.equals(sameDate),	is(true));

								assertThat(cal.compareTo(sameDate),	is(0));

Since	I’m	using	the	Date	from	another	Calendar	I	can	compare	the	two	Calendars	with
equals	and	compareTo	and	expect	them	to	have	the	same	date	and	time	details.

To	advance	the	date	and	time	details	for	a	Calendar	I	can	use	the	add	method.	e.g.	to	add
on	7	days,	as	I	did	previously	with	the	Date:
								Calendar	oneWeekFromNow	=	Calendar.getInstance();

								oneWeekFromNow.setTime(cal.getTime());

								oneWeekFromNow.add(Calendar.DATE,7);

I	can	then	compare	the	Calendar	objects	as	we	saw	before	with	after,	before,
compareTo.
								assertThat(oneWeekFromNow.after(cal),	is(true));

								assertThat(cal.before(oneWeekFromNow),	is(true));

								assertThat(cal.compareTo(oneWeekFromNow),	is(-1));

								assertThat(oneWeekFromNow.compareTo(cal),	is(1));

Setting	Calendar	Values
Calendar	Constants

Calendar	provides	some	constants	for	working	with	fields	in	a	literal	way:

DATE

YEAR

MONTH

DAY_OF_MONTH

HOUR

MINUTE

SECOND

etc.

You	can	find	a	full	list	of	these	constants	in	the	on-line	reference	or	through	code
completion	on	the	Calendar	object.

We	use	these	constants	when	we	add,	set	or	get	the	fields	on	the	Calendar.

set	individual	Calendar	fields
We	can	set	individual	Calendar	fields	using	the	Calendar	constants:
								cal.set(Calendar.YEAR,	2013);

								cal.set(Calendar.MONTH,	11);		//	starts	at	0

								cal.set(Calendar.DAY_OF_MONTH,	15);

								cal.set(Calendar.HOUR_OF_DAY,	23);

								cal.set(Calendar.MINUTE,	39);

								cal.set(Calendar.SECOND,	54);

								cal.set(Calendar.MILLISECOND,	123);

Since	it	can	be	confusing	to	see	Months	as	zero	based	in	the	code	there	are	also	constants
for	the	Month	names	themselves.
								cal.set(Calendar.MONTH,	Calendar.DECEMBER);

set	the	Calendar
You	can	also	call	the	set	method	with	multiple	fields.	These	are	then	in	a	fixed	order:

Year
Month
Day	of	Month
Hour	of	day
Minute
Second

								cal.set(2013,	11,	15);

								cal.set(2013,	Calendar.DECEMBER,	15);

								cal.set(2013,	11,	15,	23,	39);

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

Note	that	the	combinations	do	not	let	you	set	the	hour	without	also	setting	the	minute.

We	can	use	Date	to	set	the	time	on	a	Calendar	with	the	setTime	method:
								cal.setTime(new	Date(0L));

We	can	also	set	the	Calendar	from	a	millisecond	value	in	the	same	way	we	did	for	Date:
								cal.setTimeInMillis(0L);

We	can	also	set	the	Calendar	from	a	relative	perspective	of	weeks	e.g.	Thursday	in	the	3rd
Week	of	January	2013:
								cal.setWeekDate(2013,	3,	Calendar.THURSDAY);

http://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html

The	above	sets	the	date	to	17th	January	2013.	Feel	free	to	double	check	this	on	an	actual
calendar.

get	details	from	the	Calendar
Just	as	we	use	the	Calendar	constants	to	set	values	in	a	Calendar	we	can	use	the	same
constants	to	get	information	from	the	Calendar.

Given	a	Calendar	set	to	15th	December	2013,	at	23:49	and	54	seconds:
								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

We	can	use	the	constants	to	assert	that	the	Calendar	has	been	created	as	we	expected:
								assertThat(cal.get(Calendar.MONTH),	is(Calendar.DECEMBER));

Exercise:	Use	the	other	Calendar	constants
Write	an	@Test	method	which	instantiates	a	Calendar,	and	assert	on	the	values	you	expect	for	the
following	constants:

Use	a	Calendar	set	to	15th	December	2013,	at	23:49	and	54	seconds.

Assert	on	the	values	you	expect	for:

MONTH

YEAR

DAY_OF_MONTH

HOUR_OF_DAY

MINUTE

HOUR	-	AM/PM	hour
AM_PM	-	Calendar.AM	or	Calendar.PM

Exercise:	Experiment	with	other	constants
Experiment	with	the	other	constants	so	that	you	are	sure	you	understand	them.	e.g.	confirm	the	following
for	the	15th	December	2013:

it	is	a	Sunday
it	is	in	the	3rd	week	in	the	month	(0	index	based,	so	0	is	the	first	week)
it	is	the	1st	day	in	the	week
it	is	in	the	50th	Week	of	the	year
it	is	the	349th	day	in	the	year

get	more	information	from	Calendar

getTime	-	returns	the	Calendar	as	a	Date	object
getTimeInMillis	-	returns	the	Calendar	as	a	long

There	are	other	methods	on	Calendar	to	retrieve	more	information	about	the	calendar,	but
I	suggest	you	read	the	on-line	documentation	or	code	completion	to	help	you	understand
the	scope	of	all	the	information	you	can	retrieve	from	this	Object.

In	practice.	I	tend	to	setup	dates	as	I	need	them,	retrieve	dates,	and	then	move	dates
forward	or	backwards	in	time.	Which	we	will	cover	next.

add	and	subtract	to	roll	dates	through	time
There	are	two	main	mechanisms	with	the	Calendar	Object	for	moving	the	time	in	a
relative	fashion:

add	-	add	or	subtract	an	amount	from	a	field
roll	-	change	a	single	field	without	affecting	others

We	can	use	add	to	increment	or	decrement	field	values.	For	example	I	could	take	a
Calendar	date	of	23:39	and	decrement	the	hour	of	the	time:
								cal.add(Calendar.HOUR_OF_DAY,	-1);

								assertThat(cal.get(Calendar.HOUR_OF_DAY),	is(22));

Similarly	I	could	increment	the	minutes	on	the	time:
								cal.add(Calendar.MINUTE,	10);

								assertThat(cal.get(Calendar.MINUTE),	is(49));

Exercise:	Increment	and	Decrement	other	Fields
Experiment	with	the	add	method	and	change	the	fields	in	different	ways	to	move	the	date	from	23rd
December	2013	to	3rd	June	2011.

With	the	roll	method	I	can	change	a	single	field,	without	affecting	any	of	the	larger	units
e.g.	given	the	date	15th	December	2013,	I	can	roll	forward	17	Days	of	the	month	to	roll
over	to	the	1st,	and	it	will	still	be	December	2013.	If	I	were	to	do	this	with	an	add	the	date
would	become	1st	January	2014	because	the	other	fields	would	advance	as	well	to	keep
the	date	valid.
								cal.roll(Calendar.DAY_OF_MONTH,17);

								assertThat(cal.get(Calendar.YEAR),	is(2013));

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.DECEMBER));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(1));

Exercise:	Confirm	add	Moves	the	Year
Write	an	@Test	method	that	demonstrates	that	adding	17,	to	23rd	of	December	2013,	instead	of	rolling	17
moves	the	date	to	1st	January	2014.

Summary
In	the	production	environment,	in	the	main	application,	we	very	often	use	the	Joda-Time
library.	But	I’m	trying	to	keep	coverage	of	‘libraries’	out	of	scope	for	this	book,	to	make	it
easier	for	you	to	get	started,	and	to	help	you	build	knowledge	and	experience	with	the	in-
built	features.

Relying	too	much	on	external	libraries	often	means	adding	another	library	into	the	code-
base	when	all	that	is	really	required	is	a	quick	wrapper	around	existing	core	Java.

The	chapter	covered	basic	examples	of:

timing	how	long	a	set	of	code	takes	to	execute
creating	unique	ids	and	names	for	files
formatting	dates
date	arithmetic	and	manipulation

I	frequently	have	to	format	dates	in	different	ways,	when	I’m	generating	input	data	for
application	automation.

I	time	the	how	long	code	runs,	when	I’m	writing	simple	performance	automation.	I	often
use	nanoTime	to	do	this.

I	very	often	create	unique	file-names	using	the	value	returned	by	currentTimeMillis.
You	saw	examples	of	simple	ways	to	convert	the	numeric	file	names	into	alphabetic
characters.	I	sometimes	generate	unique	usernames	for	input	data	in	this	way,	with
currentTimeMillis.

We	also	covered	basic	date	time	arithmetic	in	the	chapter.	A	very	useful	thing	to	be	able	to
do,	when	generating	random	data.

I	think	I’ve	covered	the	basics	of	Date	and	Time	for	the	core	Java	classes	well	enough	for
you	to	start	using	them	in	your	@Test	methods.

I	have	only	ever	had	to	drop	down	to	Joda-Time	once	or	twice	in	my	career.	I	encourage
you	to	experiment	with	the	in-built	Date	Time	functionality,	before	bringing	in	an	external
library.	You	might	be	surprised	how	much	you	can	do.

References	and	Recommended	Reading

Joda-Time
joda-time.sourceforge.net

currentTimeMillis

docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis%28%29
nanoTime

docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime%28%29
nanosecond

en.wikipedia.org/wiki/Nanosecond
Date

docs.oracle.com/javase/7/docs/api/java/util/Date.html
SimpleDateFormat

docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
Calendar

docs.oracle.com/javase/7/docs/api/java/util/Calendar.html

http://joda-time.sourceforge.net
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#currentTimeMillis%28%29
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#nanoTime%28%29
http://en.wikipedia.org/wiki/Nanosecond
http://docs.oracle.com/javase/7/docs/api/java/util/Date.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/util/Calendar.html

Chapter	Eighteen	-	Properties	and	Property	Files

Chapter	Summary
In	this	chapter	you	will	learn	how	to	use	the	Properties	class

A	property	file	has	“key,	value”	pairs	on	each	line
Properties	class	makes	it	easy	to	load	and	save	“key,	value”	pair	data
setProperty	method	to	add	a	property	key	and	value
getProperty	method	to	get	the	value	for	a	property	key
size	method	to	return	the	number	of	property	keys
Iterate	through	properties	by	key	using	stringPropertyNames
list	to	display	properties	to	output
containsKey	check	if	a	property	key	exists
An	introduction	to	Java	System	properties

user.dir	-	current	working	directory	for	the	code
user.home	-	home	directory	of	current	user
line.separator	-	end	of	new	line	string
file.separator	-	character	separator	for	directory	paths
java.io.tmpdir	-	location	of	the	current	temporary	directory

Loading	and	Saving	Property	files
store	to	save	property	files
load	property	files	in	combination	with	a	FileReader

One	of	the	early	problems	I	had	when	working	with	Java,	was	working	with	files	for	my
data.	Files	aren’t	really	that	hard,	and	we’ll	cover	them	in	a	later	chapter,	but	my	initial
workaround	was	to	use	property	files,	via	the	Properties	class.

Property	files	are	those	very	simple	files	you	see	many	tools	use	for	configuration,	with	a
key=value	pair	e.g.
#	Define	the	browsers	to	use

browser=chrome

port=8080

A	property	file	treats	lines	starting	with	#	as	comments.
Blank	lines	are	ignored.
Lines	with	content	are	treated	as	“key,	value”	pairs	separated	by	an	=	sign.
If	a	property	file	has	multiple	entries	with	the	same	key,	then	only	the	last	one	will	be
used
trailing	and	leading	spaces	before	and	after	either	the	key	or	the	value	are	ignored,
e.g.	the	following	entries	are	all	equivalent

browser				=					chrome

browser=chrome

browser				=					chrome				

In	the	early	days	I	would	very	often	use	Property	files	as	input	files	which	I	didn’t	have	to
struggle	to	parse	e.g.

step1	=	OPEN_APP

step2	=	TYPE	12345

step3	=	CLICK_ENTER

step4	=	CLOSE_APP

You	can	probably	guess	that	the	above	example	is	a	simple	keyword	driven	script.	I	don’t
recommend	this	approach,	I’m	just	pointing	out	that	when	I	was	learning	Java,	I	used	the
basic	knowledge	that	I	had	to	get	things	done,	without	worrying	too	much	about	the	‘best’
way	of	doing	it.	And	Properties,	with	associated	property	files,	made	certain	things	easy.

Properties	Basics
The	Java	Properties	object	in	java.util.Properties	is	the	main	class	we	will	use	for
working	with	Properties.

It	works	much	like	a	hash	map,	with	a	“key,	value”	pair,	where	both	key	and	value	are
String	objects.

Properties	also	has	additional	methods	for	loading	and	saving	the	properties	to	files.

Warning:	Don’t	go	crazy
When	I	first	learned	about	Properties	I	think	I	went	a	bit	crazy	and	used	it	everywhere.	I	used	it	instead
of	using	a	Map.	Instead	of	defining	all	parameters	in	methods,	I	just	stuck	everything	in	a	Properties
object	and	passed	that	in	to	the	method.	I	don’t	do	this	anymore.	And	neither	should	you	since	you	already
know	how	to	use	the	collection	classes.

Creating	new	Properties
We	create	new	Properties	objects	using	the	Properties	class	from
java.util.Properties

								Properties	properties	=	new	Properties();

The	above	will	give	us	a	Properties	object	with	no	properties.	i.e.	size	of	0
								assertThat(properties.size(),	is(0));

Setting	and	Getting	Property	values
Use	the	setProperty	and	getProperty	methods	to	set	and	get	property	values:
								properties.setProperty("browser",	"firefox");

								properties.setProperty("port",	"80");

setProperty	will	create	the	property	if	it	does	not	exist,	or	overwrite	the	value	of	the
property	if	it	already	exists.

getProperty	returns	the	value	for	the	property:
								assertThat(properties.getProperty("browser"),

																				is("firefox"));

								assertThat(properties.getProperty("port"),

																				is("80"));

If	the	property	key	we	provide	to	getProperty	does	not	exist	then	null	will	be	returned.

								assertThat(properties.getProperty("missing"),

																				is(nullValue()));

When	we	call	getProperty	we	can	specify	a	default	value,	so	that	we	don’t	receive	‘null’,
instead	we	receive	the	default	value	if	the	property	key	has	not	been	set.
								assertThat(properties.getProperty("missing",	"default"),

																				is("default"));

Working	with	Properties
Generally,	if	we	have	setup	the	properties	then	we	will	work	with	the	getProperty
method.

But,	sometimes	you	want	to	work	with	the	Properties	using	the	set	of	keys.	We	use	the
stringPropertyNames	method	for	this:

If	I	want	to	iterate	over	the	property	keys	and	output	all	the	values,	then	I	can	iterate	over
the	Set	of	String	property	keys:
								for(String	key	:	properties.stringPropertyNames()){

												System.out.println("Key:	"	+	key	+	"	"	+

																															"Value:	"	+	properties.getProperty(key));

								}

The	above	would	output:
Key:	port	Value:	80

Key:	browser	Value:	firefox

The	Properties	class	has	a	method	called	list	which	outputs	the	property	name	and
value	pair	to	the	given	print	stream:
								properties.list(System.out);

Calling	the	list	method	would	output:
--	listing	properties	--

port=80

browser=firefox

I	also	check	for	property	existence	with	the	containsKey	method:
								assertThat(properties.containsKey("browser"),	is(true));

Exercise:	Create	and	List	a	Properties	object
Write	an	@Test	annotated	method	which:

Creates	a	Properties	object
Add	the	following	“key,	value”	pairs:	name=bob,	gender=male,	password=paSSw0rd
Assert	that	the	size	of	the	Properties	object	is	3
Output	the	“key,	value”	pairs	to	the	console	by	iterating	over	the	keys
Use	the	list	method	to	output	the	properties
Assert	that	the	Properties	object	contains	the	key	gender
Assert	that	the	value	of	the	property	name	is	bob
Use	getProperty	with	a	default	value	and	assert	that	the	value	of	key	"permission"	is	"Admin"

Java’s	System	Properties

Reading	System	Properties
Java’s	System	object	has	a	set	of	properties	that	come	in	very	hand	when	writing
automation	code.

e.g.	"user.dir"	returns	the	working	directory	for	the	running	application
								String	workingDirectory	=	System.getProperty("user.dir");

I	can	use	this	for	accessing	data	files	that	I	want	to	use	in	my	automation	e.g.	if	I	create	a
directory	in	my	project	called	property_files	under	/src/test/resources/	then	I	could
build	the	full	path	to	a	file	by	prefixing	the	current	working	directory:
								String	resourceFilePath	=	workingDirectory	+

																																		"/src/test/resources/"	+

																																		"property_files/"	+

																																		"static_example.properties";

You	can	work	directly	with	the	Properties	object	on	System,	by	using	the
getProperties	method.

For	example	if	I	wanted	to	list	the	System	properties	then	I	can	use	the	following	code:
								Properties	sys	=	System.getProperties();

								sys.list(System.out);

A	partial	output	of	the	above	command	is	shown	below:
--	listing	properties	--

java.runtime.name=Java(TM)	SE	Runtime	Environment

sun.boot.library.path=C:\Program	Files\Java\jdk1.7.0_10\jre...

java.vm.version=23.6-b04

java.vm.vendor=Oracle	Corporation

java.vendor.url=http://java.oracle.com/

path.separator=;

java.vm.name=Java	HotSpot(TM)	64-Bit	Server	VM

Exercise:	Output	the	System	Properties	object
Write	an	@Test	annotated	method	which	will	list	the	contents	of	the	System	Properties

Read	the	System	Properties	documentation	so	you	understand	the	range	of	properties	available	for	you	to
use	by	default.

docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

System	properties	I	use	most	often	are:

user.dir	-	current	working	directory	for	the	code
user.home	-	home	directory	of	current	user
line.separator	-	end	of	new	line	string
file.separator	-	character	separator	for	directory	paths	e.g.	\	on	windows,	/	on
linux
java.io.tmpdir	-	location	of	the	current	temporary	directory

http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

Setting	System	Properties
You	can	set	System	properties,	the	same	as	you	can	with	a	normal	Properties	object
using	the	setProperty	command.

I	frequently	do	this	if	I	want	to	control	some	environmental	configuration	from	within	my
running	code.

As	an	example,	when	using	WebDriver	and	working	with	Chrome,	I	have	to	set	a	System
property,	so	that	the	Chrome	driver	knows	where	to	find	the	ChromeDriver.exe	that	it
uses	to	control	the	Chrome	browser.

webdriver.chrome.driver

I	generally	don’t	add	the	ChromeDriver.exe	into	version	control	and	have	a	convention
that	it	is	located	in	a	directory	relative	to	my	working	directory.	So	I	set	the	property
relative	to	my	working	directory.

Since	this	is	a	property	that	might	have	been	set	already,	I	tend	to	check	if	it	has	been	set
outside	the	running	application	before	I	overwrite	it.	Leading	to	code	like	the	following:
								if(!System.getProperties().containsKey("webdriver.chrome.driver")){

												String	currentDir	=	System.getProperty("user.dir");

												String	chromeDriverLocation

																								=	currentDir	+

																								"/../tools/chromedriver/chromedriver.exe";

												System.setProperty("webdriver.chrome.driver",	chromeDriverLocation);

								}

In	the	above	code	I	first	check	if	the	property	is	set,	if	it	is	then	I	don’t	overwrite	it.	If	the
property	is	not	set	then	I	use	the	current	"user.dir"	and	set	the	path	relative	to	that
working	directory.

Working	with	Property	files
In	this	section	we	are	going	to	look	at	the	methods	on	the	Properties	Object	associated
loading	and	saving	files.

Save
Properties	does	have	a	save	method,	but	this	is	deprecated	because	it	does	not	throw	an
IOException.

Deprecated
Deprecated	means	that	the	method	should	not	be	used,	and	that	the	method	may	be	removed	in	future
versions	of	Java.	The	method	will	work,	but	your	code	may	fail	in	the	future	when	you	update	the	Java
library	or	SDK	you	are	using.

Instead	we	use	the	store	method,	which	writes	the	file	to	a	Writer	or	an	OutputStream.

Because	I	will	create	a	file	that	I’m	only	using	as	part	of	the	@Test	method	execution,	I’m
going	to	create	it	as	a	temporary	file.

Java	7	provides	a	way	of	creating	temporary	files,	which	we	will	cover	in	the	Files
Chapter.

Since	this	is	the	Properties	chapter,	we	will	use	the	System	property	"java.io.tmpdir"
which	returns	the	path	of	the	system	temp	directory.
								String	tempDirectory	=	System.getProperty("java.io.tmpdir");

								String	tempResourceFilePath	=

																				tempDirectory	+

																				"tempFileForPropertiesStoreTest.properties";

We	then	need	to	create	the	properties	that	we	will	store	to	the	file:
								Properties	saved	=	new	Properties();

								saved.setProperty("prop1",	"Hello");

								saved.setProperty("prop2",	"World");

We	need	to	create	a	FileOutputStream	to	store	the	properties	into,	and	write	them	with
the	store	method.	The	store	method	leaves	the	OutputStream	open	so	we	have	to	close
it	when	we	are	finished	with	it.
								FileOutputStream	outputFile	=

																												new	FileOutputStream(tempResourceFilePath);

								saved.store(outputFile,	"Hello	There	World");

								outputFile.close();

Note	that	the	store	method	takes	two	parameters:

the	OutputStream	that	we	write	the	details	to
a	comment	String

The	String	comment	is	written	to	the	OutputStream	prior	to	the	properties,	and	in	addition
a	TimeStamp	for	when	the	properties	are	written	is	added	to	the	file.

So	the	final	file	output	from	the	above	method	execution	looks	as	follows:
1	#Hello	There	World

2	#Mon	Aug	05	15:12:24	BST	2013

3	prop2=World

4	prop1=Hello

Note	that	the	property	ordering	is	not	retained	when	writing	to	the	file.

Load
Since	I	have	already	created	a	file	in	my	project	(using	the	store	method),	all	I	have	to	do
is	load	it	from	the	directory	I	saved	it	to.

I	can	use	either	an	InputStream	or	a	FileReader	for	this.	We	will	cover	these	in	more
detail	in	the	Files	Chapter.	But	for	now,	we	will	use	a	FileReader.
								FileReader	propertyFileReader	=

																												new	FileReader(tempResourceFilePath);

								Properties	loaded	=	new	Properties();

								try{

												loaded.load(propertyFileReader);

								}finally{

												propertyFileReader.close();

								}

I	have	wrapped	the	load	method	in	a	try/finally	block,	because	the	load	method	leaves
the	InputStream	or	FileReader	open	when	it	finishes,	so	we	have	to	close	it.	And	I	want
it	to	close	even	if	the	load	method	throws	an	IOException.

Once	the	property	file	has	loaded	into	the	Properties	object,	I	can	access	the	property
with	the	getProperty	method	as	we	did	before:
								assertThat(loaded.getProperty("prop1"),	is("Hello"));

								assertThat(loaded.getProperty("prop2"),	is("World"));

Delete	Files
We	will	cover	files	in	more	detail	in	a	later	chapter.	But	for	now,	since	we	have	created	a
file.	We	should	learn	how	to	delete	it:
								new	File(tempResourceFilePath).delete();

Exercise:	Store	and	Load	a	Saved	Properties	File
Using	the	code	presented	above:

Create	a	Properties	object
Add	some	“key,	value”	pairs	to	the	Properties
Store	the	Properties	file	in	the	"java.io.tmpdir"
Read	the	Properties	file	and	assert	on	the	values
Delete	the	Properties	file	when	you	are	finished

Summary
I	still	find	property	files	very	useful	and	before	writing	complicated	file	parsing	and
storing	routines.	I	first	see	if	I	can	prototype	any	file	storage	functionality	with	property
files.

Property	files	have	the	advantage	that	they	are	easy	to	edit	by	humans,	since	they	are	a
simple	format	of	text	file.

They	are	also	easy	to	parse	for	the	application	code.

References	and	Recommended	Reading

Properties	official	documentation	-
docs.oracle.com/javase/7/docs/api/java/util/Properties.html

Properties	Java	Tutorial
docs.oracle.com/javase/tutorial/essential/environment/properties.html

System	Properties	official	documentation
docs.oracle.com/javase/tutorial/essential/environment/sysprop.html

Create	a	Temporary	directory	in	Java
stackoverflow.com/questions/617414/create-a-temporary-directory-in-java

http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/tutorial/essential/environment/properties.html
http://docs.oracle.com/javase/tutorial/essential/environment/sysprop.html
http://stackoverflow.com/questions/617414/create-a-temporary-directory-in-java

Chapter	Nineteen	-	Files

Chapter	Summary
In	this	chapter	you	will	learn	how	to	use	the	basic	Java	file	handling	classes

File	the	general	wrapper	for	a	file
createTempFile	-	create	a	temporary	file
createNewFile	-	create	the	file
delete	-	delete	the	file	now
deleteOnExit	-	delete	the	file	when	the	application	closes
getName	-	return	the	filename	or	directory	name
getParent	-	return	the	path	of	the	parent	directory
getAbsolutePath	-	return	the	full	filename	and	path
getCanonicalPath	-	return	the	unique	full	representation	of	the	File
mkdir	-	creates	a	single	directory
mkdirs	-	creates	a	directory	and	all	necessary	directories	in	the	path
isDirectory,	isFile	-	determing	type	of	physical	File
separator,	pathSeparator	-	for	files	e.g.	‘\’	and	Path	e.g.	‘;’
listRoots	an	array	of	the	root	paths	in	the	file	system
length	-	the	length	of	the	File	in	bytes
getFreeSpace,	getTotalSpace,	getUsableSpace	-	disk	space
renameTo	-	rename	a	file
Directory	methods

list	-	a	list	of	the	filenames	as	String
listFiles	-	a	list	of	File	objects	for	each	file	and	directory

Attribute	methods
canRead,	canWrite,	canExecute,	lastModified
setExecutable,	setReadable,	setWritable,
setReadOnly,	setLastModified

Files	class	with	static	methods	to	copy	and	move	a	file	or	directory
PrintWriter	-	has	methods	to	make	writing	easier	e.g.	print,	println
FileWriter	-	write	to	character	based	files
BufferedWriter,	BufferedReader	-	buffer	output	and	input	for	efficiency
FileReader	-	read	from	an	input	stream

I	tend	to	keep	my	file	code	as	simple	as	possible,	because	my	use	cases	are	usually	fairly
simple:

reading	files	that	other	people	have	written	-	sometimes	to	check	validity	of	the	data
reading	simple	CSV	or	tab	delimited	files	-	often	as	input	to	data	driven	checks
copying	files	-	to	keep	a	folder	of	data	used	during	automation,	or	for	setup	data
creating	directories	-	to	make	my	work-flow	simpler
moving	files	-	screen	shot	images,	log	files
deleting	files
writing	report	-	simple	log	files	or	HTML	report	output

In	this	chapter	I’ll	cover	the	basic	classes	and	approaches	for	implementing	the	above	use
cases.

Example	of	reading	and	writing	a	file
I	will	quickly	show	you	some	code	that	writes	a	file,	and	reads	the	same	file.

If	you	want	to	immediately	experiment	then	feel	free.	The	rest	of	the	chapter	will	work
through	the	various	methods	and	classes	used,	explaining	them	in	more	detail.

Write	a	Temp	File
				private	File	writeTheTestDataFile()	throws	IOException	{

								File	outputFile	=	File.createTempFile("forReading",	null);

								PrintWriter	print	=	new	PrintWriter(

																																new	BufferedWriter(

																																				new	FileWriter(outputFile)));

								for(int	lineNumber	=	1;	lineNumber	<	6;	lineNumber++){

												print.println("line	"	+	lineNumber);

								}

								print.close();

								return	outputFile;

				}

The	above	code,	creates	a	temporary	file,	in	the	system	‘Temp’	directory.

e.g.	forReading2536453396676632859.tmp	in	%TEMP%	(on	Windows)

It	uses	3	classes	to	wrap	around	the	file:	FileWriter,	BufferedWriter	and	PrintWriter.
Then	prints	5	lines	of	text	to	the	file,	closes	the	file,	and	returns	the	File	to	the	calling
method.

Read	the	temp	file
				@Test

				public	void	outputFileToSystemOutWithBufferedReader()	throws	IOException	{

								File	inputFile	=	writeTheTestDataFile();

								BufferedReader	reader	=	new	BufferedReader(new	FileReader(inputFile));

								try{

												String	line;

												while((line	=	reader.readLine())!=null){

																System.out.println(line);

												}

								}finally{

												reader.close();

								}

				}

The	code	above,	calls	the	writeTheTestDataFile	method	to	create	a	temporary	file.	Then
it	uses	the	returned	File,	and	wraps	it	with	a	FileReader	and	a	BufferedReader,	then
reads	each	line	and	prints	it	out.

It	wraps	the	reading	code	in	a	try/finally	block	when	reading	to	make	sure	that	the	file
actually	closes	if	an	exception	is	thrown.

Basic	Notes

It	seems	like	a	lot	of	classes	are	involved	there.	But	as	you	will	see	later,	they	build	on
each	other	to	make	the	reading	and	writing	of	files	easy	for	you.

If	you	start	by	copying	the	code	above,	and	amending	it	slightly,	you	can	probably	meet	at
least	3	of	the	use	cases	I	mentioned	at	the	top	of	this	chapter	as	my	common	use	cases.

And	you	could	probably	figure	out	the	other	use	cases	by	reading	the	context	sensitive
code	completion	on	the	classes.

The	remainder	of	this	chapter	will	cover	each	of	the	classes	involved	in	more	detail.

File
The	File	class	provides	the	main	class	to	represent	a	‘file’	or	‘directory’	and	methods	for
creating	directories	and	other	local	file	actions.

The	File	class	also	provides	a	set	of	static	methods	that	can	help	us.

File	is	in	the	java.io	package.

Static	Methods

createTempFile

create	a	temporary	file	in	the	system’s	temporary	directory	(on	Windows	this	is
‘%TEMP%’)

separator

the	separator	for	file	values	e.g.	‘\’
pathSeparator

the	system	separator	in	the	Path	e.g.	‘;’
listRoots

an	array	of	the	root	paths	in	the	file	system

I	only	really	use	the	createTempFile	and	separator	but	will	cover	all	the	above	methods.
createTempFile

								File	outputFile	=	File.createTempFile("forReading",	null);

This	method	creates	an	empty	physical	file	in	the	system	temporary	directory	(%TEMP%).

In	the	above	example	I	assign	the	File	into	a	variable	called	outputFile	so	that	I	can	use
it.

The	mandatory	parameters	to	this	method	are:

prefix

e.g.	forReading.
The	prefix	needs	to	be	3	chars	or	longer	otherwise	and	exception	is	thrown:

java.lang.IllegalArgumentException

suffix

The	value	to	add	at	the	end	of	the	temp	file	name.
If	you	leave	this	as	null	then	the	file	will	be	given	the	suffix	.tmp	but	you	can
add	your	own	suffix	if	you	want	to.

In	the	above	example	I	pass	in	a	prefix	of	forReading,	and	null	for	the	suffix,	so	the	end
result	is	an	empty	file	with	a	name	like:

forReading16535777254649642741.tmp

The	number	is	added	by	the	Java	method	to	try	and	make	the	filename	unique	in	the	temp
folder.

The	optional	final	parameter	to	this	method	is:

directory

A	File	object	for	the	directory	to	create	the	temp	file	in.

												aTempFile	=	File.createTempFile("pre",	null,

																																new	File(System.getProperty("user.dir")));

In	the	above	code,	I	left	the	suffix	as	null	so	it	will	use	‘.tmp’	as	the	suffix,	and	will
create	the	file	in	the	User	Directory	where	I	am	running	the	code.	On	my	system	this
created	a	file	named	and	located	as	follows:
D:\Users\Alan\Documents\javaForTesters\pre4051399336820173102.tmp

Exercise:	Create	a	Temp	File	and	Vary	the	Parameters
Write	an	@Test	method	which	creates	a	temp	file.

Find	the	file	in	your	System’s	temporary	directory	and	make	sure	it	was	written.

Vary	the	prefix,	and	the	suffix	to	see	the	impact	of	the	output	file.

separator	and	pathSeparator

The	separator	method	is	the	main	one	I	use,	since	it	provides	the	separator	between
values	in	file	paths,	i.e.	the	directory	separator	‘\’	on	Windows	and	‘/’	on	Linux.

I	use	this	when	building	up	String	values	to	act	as	paths	for	files.
								Assert.assertTrue("Unrecognised	OS	file	separator",

																File.separator.equals("\\")	||

																File.separator.equals("/"));

								Assert.assertTrue("Unrecognised	OS	path	separator",

																File.pathSeparator.equals(";")	||

																File.pathSeparator.equals(":"));

The	pathSeparator	is	the	value	you	use	in	the	PATH	variables.

The	separator	and	pathSeparator	return	system	dependent	values	so	help	you	make
your	code	platform	agnostic	i.e.	run	on	Linux	or	Windows.
listRoots

listRoots	returns	an	array	of	File	objects	which	represent	the	‘root’	file	paths	in	the
system.
								File[]	roots	=	File.listRoots();

On	my	windows	system	this	returns	a	list	of	the	‘drives’	on	my	system,	e.g.:
C:\

D:\

E:\

F:\

G:\

Have	I	ever	used	this	method?	No.	But	it	might	come	in	handy	for	someone.

Exercise:	Write	out	the	roots
Write	an	@Test	method	which	prints	to	System.out	the	result	of	calling	the	getAbsolutePath	method	on
each	of	the	File	objects	returned	by	listRoots.

Constructor	And	Basic	Operations
								File	aTempFile	=	new	File("d:/tempJavaForTesters.txt");

The	above	code	shows	the	simplest	constructor	for	the	File	object.	Simply	create	a	new
File	with	the	path	you	want	to	use.

File	will	convert	‘/’	to	‘\’
Note	that,	I	have	used	the	Linux	format	for	the	file	path,	even	though	I	primarily	wrote	the	book	on	a
Windows	machine.

The	File	can	convert	from	/	to	\	if	you	are	working	on	a	different	platform.

If	you	wrote	an	@Test	method	with	the	above	code,	then	upon	running	it,	you	will	note
that	instantiating	a	File	object,	does	not	create	a	physical	file	on	the	disk.
				@Test

				public	void	aNewFileDoesNotCreateAFile()	throws	IOException	{

								File	aTempFile	=	new	File("d:/tempJavaForTesters.txt");

								assertThat(aTempFile.exists(),	is(false));

				}

I	used	the	exists	method	on	the	File	object	to	check	existence.

The	File	object	creates	a	representation	of	the	‘file’	or	‘directory’,	and	allows	us	to
interact	with	the	file.

We	use	‘streams’,	‘readers’	or	‘writers’	to	interact	with	the	actual	file	content.

The	File	object	has	methods	for	file	creation	and	deletion:

createNewFile	will	create	the	file
delete	will	delete	the	file

e.g.
				@Test

				public	void	createAFileAndDeleteIt()	throws	IOException	{

								File	aTempFile	=	new	File("d:/tempJavaForTesters.txt");

								assertThat(aTempFile.exists(),	is(false));

								aTempFile.createNewFile();

								assertThat(aTempFile.exists(),	is(true));

								aTempFile.delete();

								assertThat(aTempFile.exists(),	is(false));

				}

Another	form	of	the	constructor	allows	us	to	pass	in	the	file	path	and	the	file	as	separate
arguments.
								File	aTempFile	=	new	File("d:",	"tempJavaForTesters.txt");

Note	that	I	don’t	have	to	worry	about	trailing	directory	separators	when	I	use	both
parameters	in	the	File	constructor.

File	operations	can	throw	a	variety	of	exceptions	but	the	java.io.IOException	is	a	catch
all	for	the	exceptions	that	are	likely	to	be	thrown.

In	this	short	section	we	covered:

Two	File	Constructors
exists	method	to	check	if	a	file	or	directory	exists
delete	to	delete	a	file	or	directory
createNewFile	to	create	an	empty	file

Exercise:	Create	a	Temporary	File	With	Custom	Code
Simulate	the	createTempFile	method	using	the	normal	File	object	and	the	createNewFile	method.

Hints:	The	system	temporary	directory	is	accessible	from	the	“java.io.tmpdir”	System	property.

Use	System.currentTimeMillis	to	create	a	‘unique’	number	as	part	of	the	file	name.

Other	Basic	Methods
The	basic	methods	on	File	we	need	to	learn	initially	are:

deleteOnExit	-	delete	the	file	when	the	application	closes
getName	-	the	filename	or	directory	name
getParent	-	the	path	of	the	parent	directory
getAbsolutePath	-	the	full	filename	including	root,	folder	hierarchy	and	filename
used	to	create	the	File
getCanonicalPath	-	the	unique	full	representation	of	the	File
mkdir	-	creates	a	single	directory
mkdirs	-	creates	a	directory	and	all	necessary	directories	in	the	path

deleteOnExit

As	soon	as	you	have	a	File	you	can	add	it	to	the	‘delete	on	exit’	queue.
												File	aTempFile	=	File.createTempFile("prefix",	"suffix");

												aTempFile.deleteOnExit();

When	the	application	finishes.	When	all	the	@Test	methods	have	run.	All	files	in	the
‘delete	on	exit’	queue	will	be	deleted.

This	is	a	useful	method	to	combine	with	the	createTempFile	method	because	it	means
your	temporary	files	are	deleted	after	the	run	of	the	@Test	method.	Rather	than	relying	on
your	operating	system	temporary	directory	clean	up	routines.

getName,	getParent,	getAbsolutePath,	getCanonicalPath

If	I	create	a	temp	file:
												File	aTempFile	=	File.createTempFile("prefix",	"suffix");

I	don’t	know	exactly	what	the	name	of	that	file	is.

When	working	with	the	File	object	aTempFile.	I	don’t	need	to	know	the	actual	name
because	I	operate	with	the	File	object	directly.

If	I	do	want	to	work	with	the	name	or	path,	then	I	can	use	the	methods:

getName,
getParent,
getAbsolutePath	and
getCanonicalPath.

getName	returns	the	filename,	without	the	path.	So	for	the	example	above	I	would	have	a
filename	like	prefix12345678901234567890suffix	created.
												assertThat(aTempFile.getName().startsWith("prefix"),	is(true));

												assertThat(aTempFile.getName().endsWith("suffix"),	is(true));

getParent	returns	the	path	structure	for	the	parent	directory.
												assertThat(aTempFile.getParent()	+	File.separator,

																								is(System.getProperty("java.io.tmpdir")));

getAbsolutePath	and	getCanonicalPath	both	return	the	full	path,	including	the	filename
of	the	File:
												assertThat(aTempFile.getAbsolutePath().endsWith("suffix"),

																							is(true));

												assertThat(aTempFile.getAbsolutePath().startsWith(

																										System.getProperty("java.io.tmpdir")),	is(true));

												assertThat(aTempFile.getCanonicalPath().endsWith("suffix"),

																							is(true));

												assertThat(aTempFile.getCanonicalPath().startsWith(

																								System.getProperty("java.io.tmpdir")),	is(true));

An	‘absolute’	path	would	display	any	relative	file	operators	in	the	name,	e.g.	‘../..’	but
‘canonical’	would	not.

Canonical	is	the	unique	path,	so	any	relative	elements	are	made	absolute.

e.g.	the	following	absolute	paths:

C:/1/2/3/4/../../..

C:/1/2/../../1

would	be	represented	as	the	following	canonical	path

C:/1

Exercise:	Write	an	@Test	method	To	Check	Canonical	Conversion
Write	an	@Test	method	which	checks	the	assertion	that	the	absolute	paths	below	are	represented	by	the
canonical	path	C:/1:

C:/1/2/3/4/../../..

C:/1/2/../../1

Do	this	by	creating	a	File	for	each	path.	Then	comparing	the	values	from	getAbsolutePath	with
getCanonicalPath.

mkdir	and	mkdirs

Both	mkdir	and	mkdirs	are	used	for	creating	directories.

Both	mkdir	and	mkdirs	return	either	true	or	false	to	let	you	know	if	they	managed	to
create	the	directory.

The	difference	between	them	is	that	mkdir	will	create	a	single	directory,	but	only	if	the
parent	path	already	exists.

mkdirs	will	create	the	necessary	parent	directories	to	allow	the	operation	to	succeed.

An	example

If	I	want	to	create	a	directory	structure	in	the	temp	directory	like	the	following:

%TEMP%
1234567890

0987654321

The	existing	%TEMP%	directory,	with	a	subdirectory	‘1234567890’,	and	another
subdirectory	‘0987654321’.	Where	each	of	these	numbers	is	supposed	to	represent	a	call	to
System.currentTimeMillis()

								String	tempDirectory	=	System.getProperty("java.io.tmpdir");

								String	newDirectoryStructure	=		tempDirectory	+

																																								System.currentTimeMillis()	+

																																								File.separator	+

																																								System.currentTimeMillis();

								File	aDirectory	=	new	File(newDirectoryStructure);

A	call	to	mkdir	will	fail,	because	the	middle	directory	‘1234567890’	does	not	exist,	and
mkdir	will	only	create	the	final	directory,	in	our	example	‘0987654321’.	mkdir	needs	the
rest	of	the	directory	structure	to	exist.
								assertThat(aDirectory.mkdir(),	is(false));

A	call	to	mkdirs	will	pass,	because	it	will	create	any	necessary	directories	in	the	directory
structure.
								assertThat(aDirectory.mkdirs(),	is(true));

Useful	Checks

For	a	particular	File	object,	you	can	check	if	it	is	a	file	or	directory	using	the	following
methods:

isDirectory	returns	true	if	the	File	object	is	a	directory
isFile	returns	true	if	the	File	object	is	a	file

Exercise:	Check	that	the	Temp	Directory	is	a	Directory
Create	a	File	object	that	represents	the	temporary	directory.
System.getProperty("java.io.tmpdir")

Assert	that	isDirectory	returns	true	and	isFile	returns	false.

Writing	And	Reading	Files

Writing	Text	Files
Java	provides	some	wrapper	classes	which	hide	lower	level	input	and	output	classes	to
make	reading	and	writing	files	easier.

You	saw	the	use	of	those	in	the	initial	examples	in	the	chapter.

FileWriter	is	a	wrapper	around	FileOutputStream	for	character	based	files.	e.g.
text	files.
BufferedWriter	makes	writing	more	efficient	by	waiting	until	the	buffer	is	full	and
then	flushing	the	buffer	to	the	writer.	For	file	writing	this	queues	up	the	writing	of
bytes	to	the	file.
PrintWriter	provides	convenience	methods	for	writing	lines	to	files	for	human
readable	output.	e.g.	println,	print

For	example:
								File	outputFile	=	File.createTempFile("printWriter",	null);

								FileWriter	writer	=	new	FileWriter(outputFile);

								BufferedWriter	buffer	=	new	BufferedWriter(writer);

								PrintWriter	print	=	new	PrintWriter(buffer);

You	can	append	to	existing	files	by	creating	the	FileWriter	with	an	append	parameter	set
to	true.
								writer	=	new	FileWriter(outputFile,	true);

Writing	with	a	PrintWriter

Using	a	PrintWriter	is	the	same	as	using	the	System.out.println	that	you	have	seen
throughout	the	book.

We	can	write	a	line	to	the	file	by	using	println
								print.println("Simple	Print	to	Buffered	Writer");

								print.println("===============================");

By	using	the	PrintWriter	and	println	to	write	text	files,	we	don’t	have	to	worry	about
end	of	line	characters	as	it	will	use	the	appropriate	end	of	line	for	the	system.

You	can	also	add	to	the	file	without	a	new	line	using	print.

Just	remember	to	close	the	file	when	you	have	finished	writing	to	it.

Exercise:	Write	to	a	PrintWriter	then	Append
Create	a	temp	file.	Then	use	PrintWriter	to	println	text	to	the	file.	Remember	to	close	the	file.

After	you	have	closed	it,	re-open	the	file,	by	creating	a	new	FileWriter.	This	time	setting	the	append
parameter	to	true.	Then:

println	some	new	lines	to	the	file.
close	the	file.
manually	open	the	file	in	a	text	editor	to	check	that	your	line	was	appended	to	the	file.

Writing	with	a	FileWriter

You	can	write	files	directly	with	a	FileWriter.
								File	outputFile	=	File.createTempFile("fileWriter",	null);

								FileWriter	fileWriter	=	new	FileWriter(outputFile);

								fileWriter.write("Simple	Report	With	OutputWriter");

								fileWriter.write("===============================");

								fileWriter.close();

Since	this	is	a	raw	text	writer,	there	are	no	line	endings	after	each	line,	as	there	were	with
the	PrintWriter’s	println	so	the	output	file	would	look	as	follows:
Simple	Report	With	OutputWriter===============================

Reading	Text	Files

FileReader	is	a	wrapper	around	InputStreamReader	and	FileInputStream	which
uses	the	default	character	encoding	stream.
BufferedReader	makes	the	reading	more	efficient.

Use	the	readLine	method	to	read	the	next	line	from	the	file	into	a	string.

If	we	have	reached	the	end	of	the	file	then	readLine	will	return	null.

Additional	File	Methods
The	File	object	has	a	lot	of	very	useful	methods	for	accessing	the	various	properties	of
the	file.

Space
The	following	methods	on	files	can	be	used	to	find	information	about	the	size	of	the	file,
or	the	disk	the	file	is	located	on.

Remember	the	length	contains	the	end	of	line	characters	as	well.

length	-	the	length	of	the	File	in	bytes
getFreeSpace	-	number	of	bytes	of	free	space
getTotalSpace	-	number	of	bytes	of	total	space
getUsableSpace	-	number	of	bytes	of	usable	space

Exercise:	Create	a	File	and	Calculate	the	length
Create	a	file	and	calculate	the	expected	file	length.

Hint:	Use	System.lineSeparator()	to	get	the	line	end	character(s).

Directory	Methods
For	a	particular	File	that	represents	a	directory.	You	can	get	a	list	of	the	files	contained	in
the	directory.

list	will	return	a	list	of	the	filenames	as	String
listFiles	will	return	a	list	of	File	objects	representing	every	contained	file	and
directory

e.g.	to	get	a	list	of	the	filenames	for	the	items	in	the	temp	directory	I	could	use	the	list
method:
				@Test

				public	void	listTempDirectory(){

								File	tempDir	=	new	File(System.getProperty("java.io.tmpdir"));

								String[]	fileList	=	tempDir.list();

								for(String	fileInList	:	fileList){

												System.out.println(fileInList);

								}

				}

Exercise:	Use	listFiles	to	show	the	Temp	Directory	contents
Use	the	listFiles	method	on	File	to	output	the	name	of	each	file	in	the	temp	directory.

For	each	file,	also	write	beside	it	“DIR:”	if	it	is	a	directory	and	“FIL:”	if	it	is	a	file.

Attributes
You	can	check	and	amend	the	file	Attributes	with	the	following	methods.

canRead	-	true	if	the	file	is	readable
canWrite	-	true	if	the	file	is	writable
canExecute	true	if	the	file	is	executable
lastModified	-	the	last	modified	date	as	a	long

You	can	set	the	above	attributes	using	the	methods	below:

setExecutable

setReadable

setWritable

setReadOnly

setLastModified

Exercise:	Output	Attributes	of	Files	In	Temp	Directory
Extend	the	@Test	method	you	wrote	for	listFiles	to	also	output	the	read,	write,	execute	attributes,	and
the	last	modified	date.

Files
Files	is	part	of	the	java.nio	package.	nio	being	the	“New	IO”	classes,	introduced	in
Java	1.4;	so	not	really	that	new	any	more,	but	they	add	some	useful	functionality	that	we
often	look	for	other	libraries	to	manage.

The	nio	package	offers	a	lot	of	methods,	but	we	will	primarily	look	at	the	Files	move	and
copy	methods.

copy	-	will	create	a	copy	of	a	file	or	directory
move	-	will	move	a	file	or	directory,	creating	a	new	one	and	deleting	the	old

Rename	vs	Move
File	has	a	‘renameTo’	method,	but	I	tend	to	use	the	move	method	on	Files,	even	when	I	want	to	rename	a
file.

move	and	copy	can	be	used	to	move	and	copy	entire	directory	trees.

Both	move	and	copy	operate	on	Path	objects	rather	than	File	objects.	Fortunately	the	File
object	has	a	toPath	method	we	can	use	to	return	a	Path	object.
								Files.copy(copyThis.toPath(),	toThis.toPath());

Both	move	and	copy	can	take	an	optional	parameter	list	which	specifies	the	‘copy	options’.

The	copy	options	are	contained	in	java.nio.file.StandardCopyOption.	so	you	have	to
add	an	additional	import	to	your	class.
import	static	java.nio.file.StandardCopyOption.*;

When	you	import	the	copy	options	you	can	use:

REPLACE_EXISTING	-	will	allow	the	operation	to	complete	even	if	destination	exists
COPY_ATTRIBUTES	-	preserve	the	file	attributes	during	the	copy
ATOMIC_MOVE	-	any	operating	system	follow	on	file	actions	wait	till	the	move	is
complete

The	move	below	uses	copy	options:

								Files.move(moveThis.toPath(),	toThis.toPath(),

																				REPLACE_EXISTING,	ATOMIC_MOVE);

Exercise:	copy	And	move	a	File
Write	a	file	to	the	temporary	directory	and	copy	it	to	a	new	file	with	a	“.copy”	suffix.
Write	a	file	to	the	temporary	directory	and	move	it	to	a	new	file	with	a	“.moved”	suffix.

Summary
We	haven’t	covered	all	the	methods	available	for	working	with	files.

I	recommend	you	use	code	completion	and	the	official	help	documentation	to	explore	the
classes	available	to	you	on	the	Java	input	output	packages.	Do	read	the	‘Java	IO	Official
Documentation’	linked	to	in	the	References	section.

The	methods	and	classes	we	covered	in	this	chapter	should	give	you	enough	information
for	tackling	the	initial	problems	you	will	need	for	automation	to	support	your	testing.

Certainly	you	should	be	armed	with	enough	information	to	read	and	write	text	files:	either
for	input	data	or	for	writing	ad-hoc	reports.

Read	the	pages	linked	to	below.	There	is	a	rich	set	of	libraries	in	Java	core	for	working
with	files.

Also	in	this	chapter	we	concentrated	on	working	with	text	files	since	I	suspect	that	most	of
the	files	you	will	have	to	parse	and	write	while	automating	will	be	text	files.

References	and	Recommended	Reading

Java	IO	Official	Documentation
docs.oracle.com/javase/tutorial/essential/io/index.html

Java	File	Official	Documentation
docs.oracle.com/javase/7/docs/api/java/io/File.html

Java	Files	Official	Documentation
docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

Java	Nio	vs	Java	IO
blogs.oracle.com/slc/entry/javanio_vs_javaio

Buffered	Writer
docs.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html

PrintWriter
docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html

Reading	and	writing	file	practices
www.javapractices.com/topic/TopicAction.do?Id=42

Different	ways	of	reading	files
stackoverflow.com/questions/4716503/best-way-to-read-a-text-file

Copy
docs.oracle.com/javase/tutorial/essential/io/copy.html

http://docs.oracle.com/javase/tutorial/essential/io/index.html
http://docs.oracle.com/javase/7/docs/api/java/io/File.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html
https://blogs.oracle.com/slc/entry/javanio_vs_javaio
http://docs.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html
http://docs.oracle.com/javase/7/docs/api/java/io/PrintWriter.html
http://www.javapractices.com/topic/TopicAction.do?Id=42
http://stackoverflow.com/questions/4716503/best-way-to-read-a-text-file
http://docs.oracle.com/javase/tutorial/essential/io/copy.html

Move
docs.oracle.com/javase/tutorial/essential/io/move.html

http://docs.oracle.com/javase/tutorial/essential/io/move.html

Chapter	Twenty	-	Math	and	BigDecimal

Chapter	Summary
In	this	chapter	you	will	learn	how	to	use	additional	‘number’	classes:

BigDecimal	-	a	class	that	offers	accurate	math	operations	without	rounding,	important	for	financial
applications

subtract	-	a	method	to	subtract	a	value	from	the	BigDecimal
add	-	a	method	to	add	a	value	to	the	BigDecimal
multiply	-	a	method	to	multiply	the	BigDecimal	by	the	value
divide	-	a	method	to	divide	the	BigDecimal	by	the	value
valueOf	-	a	static	method	to	return	a	BigDecimal	representing	the	supplied	double	or	long
BigDecimal	does	not	support	==,	!=,	<,	>	etc.	instead	use	the	methods	equals	and	compareTo

Math	-	a	class	that	has	additional	methods	for	working	with	float	and	double
max	-	compare	two	values	and	return	the	larger
min	-	compare	two	values	and	return	the	smaller
abs	-	return	the	absolute	value
random	-	return	a	random	number	>=	0.0	and	<	1.0
trigonometric	functions:	sin,	cos,	tan,	asin,	acos,	atan,	toDegrees,	toRadians

The	Math	class	can	help	you	with	a	set	of	methods	to	help	you	work	with	double	and
float,	so	we	will	look	at	that	class	in	this	chapter.

For	most	of	your	automation	you’ll	probably	get	away	with	float	and	double.	But	you
have	to	be	careful	as	these	types	use	rounding	and	approximation	in	their	calculations.
They	do	not	represent	0.1	in	a	form	that	you	can	use	for	exact	calculations,	for	exact
operations	and	values	you	use	BigDecimal.

e.g.
0.10	+	0.73	=	0.83

but…
								float	total	=	0.1f	+	0.73f;

								assertThat(total,	is(0.83f));

The	above	code	fails	when	part	of	an	@Test	method	because:
java.lang.AssertionError:	

Expected:	is	<0.83F>

					but:	was	<0.83000004F>

With	double	and	float	you	have	to	be	careful	and	handle	rounding	yourself	throughout
the	calculation	process.

Or	you	can	use	the	BigDecimal	class.

You	could	also	use	int	or	long
If	you	use	an	int	then	you	don’t	worry	about	rounding,	particularly	when	doing	a	calculation	like	the
example	which	actually	represents	10	pence,	plus	73	pence.	i.e	0.1	pounds	+	0.73	pounds.

I	could	have	done	the	calculation	in	pennies	and	been	fine.

BigDecimal
BigDecimal	is	imported	using	the	java.math	package.
import	java.math.BigDecimal;

BigDecimal	is	not	a	primitive,	so	is	a	little	clumsier	to	work	with,	and	will	perform	more
slowly	than	the	primitives.
								BigDecimal	bdtotal	=	new	BigDecimal("0.1").add(new	BigDecimal("0.73"));

								assertThat(bdtotal,	is(new	BigDecimal("0.83")));

BigDecimal	maintains	the	decimal	point	precision.	Particularly	useful	for	financial
calculations

So	if,	as	a	tester	working	in	finance,	you	need	to	read	values	from	a	file	and	compare	the
calculations	produced	from	some	other	system.	You	are	likely	to	use	BigDecimal	to	ensure
that	your	calculations	are	as	accurate	as	you	can	make	them.

You	could	use	int	or	long	and	manage	the	rounding	yourself.	Or	take	the	easy	route	and
use	BigDecimal	when	you	want	to	maintain	the	precision.

Joshua	Bloch,	the	author	of	“Effective	Java”,	summarizes	the	situation	as	“If	the	quantities
don’t	exceed	nine	decimal	digits,	you	can	use	int;	if	they	don’t	exceed	eighteen	digits,
you	can	use	long.	If	the	quantities	might	exceed	eighteen	digits,	you	must	use
BigDecimal”.

Be	aware	of	the	choices	now,	so	you	don’t	raise	defects	against	systems	when	the	bugs	are
actually	in	your	math	calculation	code.

Exercise:	Convince	Yourself	of	BigDecimal	or	int
Create	an	@Test	method	which	calculates	the	result	of	the	following	situation.

(There	are	100	pence	to	the	pound,	or	100	cents	to	the	dollar)	In	this	example	I	use	pounds	and	pence.	Feel
free	to	mentally	translate	this	into	any	currency	you	want,	just	be	aware	that	there	are	100	pence	to	the
pound	when	you	translate.

I	start	with	5	pounds.
I	spend	43	pence,
then	I	spend	73	pence,
then	I	spend	1	pound	and	73	pence.

i.e.	5	-	0.3	-	0.47	-	1.73

In	my	hand	I	have	2	pounds	50	pence	(or	2.5	pounds).

How	much	does	your	double	have?
Recreate	the	code	with	int.
Recreate	the	code	with	BigDecimal	using	the	subtract	method.

BigDecimal	Methods
Constructor

You	can	construct	a	BigDecimal	from	a:

int

long

String

double

BigInteger	-	an	unbounded	integer	e.g.	larger	than	a	64	bit	long.

								BigDecimal	fromInt	=	new	BigDecimal(5);

								BigDecimal	fromLong	=	new	BigDecimal(5L);

								BigDecimal	fromString	=	new	BigDecimal("5");

								BigDecimal	fromDouble	=	new	BigDecimal(5.0);

								BigDecimal	fromBigInteger	=	new	BigDecimal(BigInteger.valueOf(5L));

Static	Methods

BigDecimal	provides	some	factory	methods	for	creating	a	BigDecimal	object.

ONE

TEN

ZERO

valueOf	-	convert	a	double	or	a	long	to	a	BigDecimal

							BigDecimal	bd0	=	BigDecimal.ZERO;

							BigDecimal	bd1	=	BigDecimal.ONE;

							BigDecimal	bd10	=	BigDecimal.TEN;

							BigDecimal	bdVal	=	BigDecimal.valueOf(5.0);

Basic	Arithmetic	Methods

The	basic	arithmetic	operator	methods	on	BigDecimal	are:

add

subtract

multiply

divide

Each	of	these	takes	a	BigDecimal	as	argument	and	returns	a	new	BigDecimal	representing
the	result	of	the	associated	operator	+,-,*,	or	/

Exercise:	Basic	Arithmetic	with	BigDecimal
Create	an	@Test	annotated	method	which	implements	the	following	calculation	using	BigDecimal
methods:

aBigDecimal	=	0

(((aBigDecimal	+	10)	*	2)	-	10)	/	2)	=	5

Comparison	Operators

You	can’t	use	the	normal	comparison	operators	on	BigDecimal	i.e.	>,	<,	==,	!=,	>=,
or	<=

You	can	use	equals	to	compare	BigDecimal	objects.
							assertThat(BigDecimal.ONE.equals(

																							new	BigDecimal(1.0)),	is(true));

							assertThat(BigDecimal.ONE.equals(

																							new	BigDecimal("1")),	is(true));

You	can	also	use	the	compareTo	method:

compareTo(value)	returns:
-1	if	the	BigDecimal	is	less	than	value,
0	if	the	BigDecimal	is	equal	to	value,
1	if	the	BigDecimal	is	greater	than	value

The	official	documentation	suggests	the	following	usage
																BigDecimal.TEN.compareTo(BigDecimal.ONE)	>	0

Which	would	be	equivalent	to:
BigDecimal.TEN	>	BigDecimal.ONE

Exercise:	Compare	TEN	and	ONE
Write	an	@Test	annotated	method	to	compare	TEN	and	ONE.

Simulating	each	of	the	comparison	operators:

>,	<,	==,	!=,	>=,	or	<=

Follow	the	suggested	usage	pattern	above	e.g.	>	0

Using	BigDecimal

If	you	start	working	with	BigDecimal	then	read	the	official	documentation	or	using	code
completion	in	your	IDE	to	see	the	additional	range	of	methods	offered.	In	this	chapter	we
covered	a	small	subset	of	BigDecimal	methods	to	help	you	get	started,	and	to	help	you
understand	the	difference	between	BigDecimal	and	the	earlier	primitives	double	and
float.

BigDecimal	supports	different	rounding	methods	which	you	can	use	in	conjunction	with
the	arithmetic	operations.	You	can	also	provide	a	‘scale’	to	work	at	different	powers	of	ten.

Java	also	offers	a	BigInteger	object	in	the	java.math	package	which	works	with	greater
than	64	bit	integers.	The	normal	operators	and	functions	associated	with	an	int	or	long,
are	accessible	via	methods	on	BigInteger.

You	can	also	convert	from	BigDecimal	using	floatValue,	doubleValue,	intValue,
longValue	etc.	This	is	useful	when	you	want	to	use	some	of	the	methods	in	the	Math	class
after	a	series	of	calculations.

Math
The	java.lang.Math	class	provides	a	range	of	mathematical	methods	for	working	with
float	or	double,	and	sometimes	with	an	int	or	long.

The	official	documentation	lists	the	set	of	methods	available	so	you	can	find	the	range
easily	enough	on-line	or	in	your	IDE.

The	methods	on	the	class	are	all	static,	so	are	used	without	instantiating	a	Math	object,	and
you	will	not	need	to	import	the	java.lang.Math	package.

e.g.	to	find	the	maximum	of	two	values:
								assertThat(Math.max(23.0,	42.0),	is(42.0));

I’ve	described	a	small	set	of	methods	I	have	found	useful	in	the	past	below.

The	following	methods	operate	on	int,	long,	double	or	float:

max	-	compare	two	values	and	return	the	larger
min	-	compare	two	values	and	return	the	smaller
abs	-	return	the	absolute	value
random	-	return	a	random	number	>=	0.0	and	<	1.0

You	also	have	trigonometric	functions:	sin,	cos,	tan,	asin,	acos,	atan,	toDegrees,
toRadians.

I	do	not	intend	to	cover	all	the	methods	in	this	book.	I	simply	want	to	make	you	aware	of
the	built	in	Math	class.	And	now,	when	you	start	working	with	mathematical	functionality
in	your	tests,	going	beyond	the	typical	arithmetic	operations,	you	can	examine	the	Math
class	in	more	detail	to	see	if	it	has	existing	methods	that	meet	your	needs.

Summary
This	was	a	chapter	introducing	two	important	classes	at	a	very	high	level:

BigDecimal

Math

Use	BigDecimal	when	working	with	currency	values	or	when	you	need	accuracy	in	the
calculations,	and	avoiding	rounding.

Use	Math	when	you	need	to	go	beyond	the	simple	mathematical	operators	+-*/.

Remember	also	the	BigInteger	class	when	you	need	to	work	with	larger	than	64	bit
integer	values.

References	and	Recommended	Reading

Java	BigDecimal
docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html

BigInteger	official	documentation
docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html

Java	Math	class	official	documentation
docs.oracle.com/javase/7/docs/api/java/lang/Math.html

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
http://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html

Chapter	Twenty	One	-	Collections	Revisited

Chapter	Summary
In	this	chapter	you	will	revisit	the	collection	classes.

Core	Collections	-	Core	collection	interfaces:
SortedSet	-	like	a	Set	but	maintains	an	order

first	-	return	the	first	item
last	-	return	the	last	item
headSet(e)	-	return	the	elements,	before	element	e
tailSet(e)	-	return	the	elements	after	and	including	element	e
subSet(e1,e2)	-	the	elements	from	(and	including)	element	e1,	to	(but	excluding)	e2
comparator	-	return	the	Comparator	object	used	for	comparison	for	sort	order

SortedMap	-	like	a	Map	but	maintains	an	order
firstKey	-	the	first	key	based	on	the	sort	order
lastKey	-	the	last	key	based	on	the	sort	order
headMap(k)	-	every	“key,	value”	pair	before	key	k
tailMap(k)	-	every	“key,	value”	pair	after	and	including	the	key	k
subMap(k1,k2)	-	every	“key,	value”	pair	between	k1	and	k2	(including	k1,	excluding
k2)
comparator	-	the	comparator	used	to	determine	the	sort	order	of	the	keys

Queue	-	a	first	in	first	out	collection
Deque	-	add	elements	either	at	front	or	end	but	not	middle

Core	Implementations	-	Core	collection	implementations:
TreeSet	-	implements	a	SortedSet
TreeMap	-	implements	a	SortedMap

Core	Collection	Interfaces	Revisited
The	official	documentation	lists	the	following	as	the	Core	Collection	interfaces:

Collection

List

Set

SortedSet

Queue

Deque

Map

SortedMap

The	following	table	provides	a	summary	of	the	key	methods	on	the	Interfaces,	and	I	have
removed	List	and	added	the	SortedSet	and	SortedMap	so	you	can	see	the	additional
nuances.:

Collection Set SortedSet Map SortedMap

add(e)
All	in
Collection

first put(k,v) firstKey

remove(e) 	 last remove(k) lastKey

removeAll(c) 	 headSet(e) entrySet headMap(k)

retainAll(c) 	 tailSet(e) get(k) tailMap(k)

clear 	 subSet(i1,i2) clear subMap(k,k)

contains(e) 	 	 containsKey(k) 	
containsAll(c) 	 	 containsValue(v) 	
size 	 comparator size comparator

isEmpty 	 All	in
Collection

isEmpty All	in	Map

toArray 	 	 values 	
toArray(a) 	 	 keySet 	
addAll(c) 	 	 putAll(m) 	

where:	e	==	element,	c	==	collection,	a	==	array,	i	==	index,	k	==	key,	v	==	value,	m
==	map

Set
We	described	Set	in	the	earlier	collection	chapter.

In	this	chapter	we	will	build	on	Set	and	consider	the	SortedSet.

SortedSet

The	SortedSet,	like	the	Set	strips	out	duplicates	if	you	try	to	add	them.

The	SortedSet	also:

guarantees	the	order	of	the	elements	based	on	a	Comparator	or	the	compareTo	method
of	the	elements

The	sorting	relies	on	the	elements	in	the	set	to	implement	a	Comparable	interface	which
mandates	the	implementation	of	a	compareTo	method.	Or	you	can	provide	a	Comparator
to	the	SortedSet	implementation	at	instantiation,	and	the	Comparator	knows	how	to
compare	the	objects.

For	the	examples	I	will	mainly	use	String	but	will	also	provide	a	short	overview	of	the
Comparator.

first	-	return	the	first	item
last	-	return	the	last	item
headSet(e)	-	return	the	SortedSet	of	elements,	before	element	e
tailSet(e)	-	return	the	SortedSet	of	elements	after	and	including	element	e
subSet(e1,e2)	-	the	SortedSet	from	(and	including)	element	e1,	to	(but	excluding)
e2

comparator	-	return	the	Comparator	object	used	for	comparison	for	sort	order

With	a	SortedSet	you	also	have	access	to	all	methods	in	the	Collection	interface.

With	a	SortedSet	I	use	the	TreeSet	from	java.util	as	my	default	implementation.

The	following	example	shows:

the	SortedSet	maintaining	the	order	of	the	elements,	even	though	I	added	them	out
of	order
the	SortedSet	does	not	add	the	duplicated	"a"	element

				@Test

				public	void	sortedSetCanMaintainSortOrder(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								alphaset.add("d");

								alphaset.add("a");

								alphaset.add("b");

								alphaset.add("a");

								assertEquals(4,	alphaset.size());

								String[]	alphas	=	new	String[alphaset.size()];

								alphaset.toArray(alphas);

								assertEquals("a",	alphas[0]);

								assertEquals("b",	alphas[1]);

								assertEquals("c",	alphas[2]);

								assertEquals("d",	alphas[3]);

				}

In	the	above	listing,	I	add	the	String	values	to	the	alphaset	in	a	random	order,	but	when	I
convert	the	alphaset	to	an	array,	the	array	has	the	String	values	in	order.

Also,	although	I	added	the	String	"a"	twice,	it	is	only	added	to	the	alphaset	once:	as
evidenced	by	the	size()	method	returning	4,	and	the	conversion	to	array	only	containing
the	String	"a"	once.

first	retrieves	first	element	in	sort

When	new	elements	are	added	to	the	SortedSet,	the	sort	order	of	elements	is	maintained
so	that	first	always	returns	the	first	element	in	the	set	based	on	the	sort	order.
				@Test

				public	void	canRetrieveFirstFromSortedSet(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								assertEquals("c",	alphaset.first());

								alphaset.add("d");

								assertEquals("c",	alphaset.first());

								alphaset.add("b");

								assertEquals("b",	alphaset.first());

								alphaset.add("a");

								assertEquals("a",	alphaset.first());

				}

last	retrieves	last	element	in	sort

When	new	elements	are	added	to	the	SortedSet,	the	sort	order	of	elements	is	maintained
so	that	last	always	returns	the	last	element	in	the	set	based	on	the	sort	order.
				@Test

				public	void	canRetrieveLastFromSortedSet(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								assertEquals("c",	alphaset.last());

								alphaset.add("b");

								assertEquals("c",	alphaset.last());

								alphaset.add("d");

								assertEquals("d",	alphaset.last());

								alphaset.add("a");

								assertEquals("d",	alphaset.last());

				}

headSet	subset	before	an	element

You	can	create	a	sorted	sub	set	of	all	elements	in	the	set	before	a	specific	element.
								SortedSet<String>	subset	=	alphaset.headSet("c");

The	above	statement	would	return	every	element	before	“c”	i.e	“a”	and	“b”,	as	the	full
example	below	illustrates.
				@Test

				public	void	sortedSetcanReturnHeadSet(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								alphaset.add("d");

								alphaset.add("b");

								alphaset.add("a");

								SortedSet<String>	subset	=	alphaset.headSet("c");

								assertEquals(2,	subset.size());

								String[]	alphas	=	new	String[subset.size()];

								subset.toArray(alphas);

								assertEquals("a",	alphas[0]);

								assertEquals("b",	alphas[1]);

				}

tailSet	subset	after,	and	including,	an	element
								SortedSet<String>	subset	=	alphaset.tailSet("c");

The	tailSet	creates	a	subset,	but	this	time	the	set	of	all	elements	in	the	set	which	are
greater	than	or	equal	to	the	element,	so	the	subset	also	includes	the	element	itself.

This	is	illustrated	by	the	example	below:
				@Test

				public	void	sortedSetcanReturnTailSet(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								alphaset.add("d");

								alphaset.add("b");

								alphaset.add("a");

								SortedSet<String>	subset	=	alphaset.tailSet("c");

								assertEquals(2,	subset.size());

								String[]	alphas	=	new	String[subset.size()];

								subset.toArray(alphas);

								assertEquals("c",	alphas[0]);

								assertEquals("d",	alphas[1]);

				}

subSet	between	two	elements
								SortedSet<String>	subset	=	alphaset.subSet("b",	"d");

The	subSet	contains	a	subset	from,	and	including,	the	first	element	argument,	to,	but
excluding	the	second	element	argument.	e.g.	given	"a",	"b",	"c",	"d"	then	a
subSet("b",	"d")	would	be	from	and	including	“b”,	to	(but	excluding)	"d",	giving	"b",
"c".

This	is	illustrated	by	the	example	below:
				@Test

				public	void	sortedSetcanReturnSubSet(){

								SortedSet<String>	alphaset	=	new	<String>TreeSet();

								alphaset.add("c");

								alphaset.add("d");

								alphaset.add("b");

								alphaset.add("a");

								SortedSet<String>	subset	=	alphaset.subSet("b",	"d");

								assertEquals(2,	subset.size());

								String[]	alphas	=	new	String[subset.size()];

								subset.toArray(alphas);

								assertEquals("b",	alphas[0]);

								assertEquals("c",	alphas[1]);

				}

comparator	used	for	sorting

comparator	returns	the	Comparator	object	which	the	SortedSet	is	using	for	comparisons.

Therefore	we	should	learn	how	to	create	a	Comparator.

I	have	chosen	to	expand	on	Comparator	but	not	hashSet	and	equals	because	I	think	the
Comparator	offers	more	re-use	potential	and	likelihood	of	you	implementing	it.

To	illustrate	this	functionality	we	are	going	to	create	a	SortedSet	of	the	User	domain
object	that	we	created	earlier.

We	didn’t	add	a	compareTo	method	to	that	object,	nor	did	we	create	equals	or	hashCode.

In	the	example	below,	our	first	attempt	at	creating	a	SortedSet	of	User	objects	would	fail
with	a	ClassCastException.	The	ClassCastException	would	be	thrown	as	soon	as	we
try	to	add	the	User	named	"Bob"	to	the	SortedSet.	Because	our	User	object	does	not
implement	the	Comparable	interface.
								User	bob	=	new	User("Bob",	"pA55Word");			//	11

								User	tiny	=	new	User("TinyTim",	"hello");	//12

								User	rich	=	new	User("Richie",	"RichieRichieRich");	//	22

								User	sun	=	new	User("sun",	"tzu");	//	6

								User	mrBeer	=	new	User("Stafford",	"sys");	//	11

								SortedSet<User>	userSortedList	=	new	TreeSet<User>();

								userSortedList.add(bob);

Our	immediate	thought	might	be	to	implement	the	Comparable	interface	on	the	User	class.
But	sometimes	we	don’t	have	control	over	all	the	classes	we	use,	and	sometimes	we	don’t
want	to	implement	that	interface	for	all	our	domain	objects.	We	might	only	want	to	sort
them	once	or	twice.

Creating	a	custom	Comparator	can	be	very	useful.	Also	we	might	want	to	sort	them	in
different	ways,	at	different	times,	and	embedding	the	comparison	code	in	the	object	itself
might	not	give	us	that	flexibility.

In	this	book	I	will	take	the	approach	of	creating	a	UserComparator.	The	UserComparator
is	a	class	which	will	compare	User	objects.

In	the	@Test	method	where	I	want	to	create	the	SortedSet	I	instantiate	the	TreeSet	as
follows:
								SortedSet<User>	userSortedList	=	new	TreeSet<User>(new	UserComparator());

Here	I	create	a	new	UserComparator	and	pass	it	as	an	argument	to	the	TreeSet
constructor.	This	provides	flexibility	because	if	I	want	to	sort	or	compare	the	objects	in
different	ways	then	I	could	construct	the	TreeSet	with	a	different	Comparator	object.

So	that	you	understand	the	comparison	that	I	want	to	use,	I	will	show	you	the	full	method
code:
				@Test

				public	void	sortedSetWithComparatorForUser(){

								User	bob	=	new	User("Bob",	"pA55Word");			//	11

								User	tiny	=	new	User("TinyTim",	"hello");	//12

								User	rich	=	new	User("Richie",	"RichieRichieRich");	//	22

								User	sun	=	new	User("sun",	"tzu");	//	6

								User	mrBeer	=	new	User("Stafford",	"sys");	//	11

								SortedSet<User>	userSortedList	=

																												new	TreeSet<User>(new	UserComparator());

								userSortedList.add(bob);

								userSortedList.add(tiny);

								userSortedList.add(rich);

								userSortedList.add(sun);

								userSortedList.add(mrBeer);

								User[]	users	=	new	User[userSortedList.size()];

								userSortedList.toArray(users);

								assertEquals(sun.getUsername(),	users[0].getUsername());

								assertEquals(bob.getUsername(),	users[1].getUsername());

								assertEquals(mrBeer.getUsername(),	users[2].getUsername());

								assertEquals(tiny.getUsername(),	users[3].getUsername());

								assertEquals(rich.getUsername(),	users[4].getUsername());

				}

I	want	the	sort	order	to	be	based	on	the	length	of	the	username	+	the	length	of	the
password.	This	is	the	algorithm	that	the	UserComparator	will	implement.

You	can	see	that	I	have	added	the	lengths	as	comments	after	each	of	the	User
instantiations	so	that	I	know	what	to	assert	on.

The	rest	of	the	code	is	pretty	simple:

create	the	User	objects
instantiate	a	SortedSet	with	the	UserComparator
convert	the	set	to	an	array	so	that	we	can	assert	on	the	expected	order

The	next	step	is	to	create	the	Comparator.

I	will	create	it	in	the	src\main\java	branch	as	I’ll	probably	reuse	it	in	more	places.	And
I’ll	add	it	to	the	com.javafortesters.domainentities	package.

This	is	the	first	class	you	are	seeing	us	create	which	implements	an	interface.	In	this
example	we	will	implement	the	Comparator	interface:
public	class	UserComparator	implements	Comparator	{

In	order	to	satisfy	this	interface,	I	have	to	implement	a	compare	method	which	takes	two
Object	as	arguments,	and	returns	an	int:
				public	int	compare(Object	oUser1,	Object	oUser2)	{

The	int	has	to	correspond	to:

0	if	the	two	objects	are	equal	in	the	terms	of	the	sorting	algorithm
negative	-ve	if	object1	is	less	than	object2
positive	+ve	if	object1	is	greater	than	object2

Since	the	arguments	have	to	be	of	type	Object	we	need	to	cast	them	in	the	code	to	the
correct	type,	which	for	us	is	User:

								User	user1	=	(User)oUser1;

								User	user2	=	(User)oUser2;

Implement	the	algorithm	decided	upon	to	help	me	compare	the	two	values:
								int	user1Comparator	=	user1.getPassword().length()	+

																														user1.getUsername().length();

								int	user2Comparator	=	user2.getPassword().length()	+

																														user2.getUsername().length();

Then	calculate	the	return	int
								int	val	=		user1Comparator	-	user2Comparator;

Great.	And	all	of	that	implements	the	sorting	algorithm.	The	problem	is	that	SortedSet
also	uses	the	Comparator	to	decide	if	the	values	in	the	SortedSet	are	unique.	And	the
implementation	above	would	not	let	me	add	any	User	into	the	SortedSet	where	the
username	+	password	length	is	the	same.

In	the	code	above	I	would	fail	to	add	mrBeer	because	he	has	the	same	length	as	bob.	And	I
want	mrBeer	in	the	SortedSet.

Beer
I	don’t	actually	like	to	drink	beer.	In	fact	I	can’t	stand	the	stuff.	I	much	prefer	to	drink	wine.	But	I	do	love
the	books	of	Mr	Stafford	Beer.	A	particularly	splendid	Systems	Thinker	and	Cybernetician.	If	you	get	the
chance,	read	his	work.

I	have	to	add	one	little	adjustment	to	the	Comparator	to	allow	for	duplicate	lengths,	but	I
will	exclude	duplicate	lengths	with	a	duplicate	username	from	the	SortedSet.	This	would
still	allow	in	Users	with	duplicate	names	(provided	they	have	different	length	passwords)
but	that	is	fine	for	this	comparison	algorithm.
								if(val==0){

												val	=	user1.getUsername().compareTo(user2.getUsername());

								}

And	with	that	we	can	return	val;

The	full	code	for	the	UserComparator	which	allows	the	@Test	method	to	complete	is
below:
public	class	UserComparator	implements	Comparator	{

				public	int	compare(Object	oUser1,	Object	oUser2)	{

								User	user1	=	(User)oUser1;

								User	user2	=	(User)oUser2;

								int	user1Comparator	=	user1.getPassword().length()	+

																														user1.getUsername().length();

								int	user2Comparator	=	user2.getPassword().length()	+

																														user2.getUsername().length();

								int	val	=		user1Comparator	-	user2Comparator;

								if(val==0){

												val	=	user1.getUsername().compareTo(user2.getUsername());

								}

								return	val;

				}

}

Exercise:	Remove	if(val==0)
Remove	the	if(val==0)	block	of	code	and	run	the	@Test	method.	Ensure	that	you	understand	why	we
added	that	line	of	code.

Exercise:	Disallow	Duplicate	UserNames
Create	a	DupeUserComparator	which	implements	the	length	check	as	above,	but	also	does	not	allow	User
with	a	duplicate	username	to	be	added	to	the	SortedSet.

Use	it	in	an	@Test	annotated	method	to	demonstrate	it	works.

Exercise:	User	class	implements	Comparable
Add	code	to	the	User	class	such	that	it	implements	Comparable	with	the	algorithm	for	disallowing	a	User
with	duplicate	username	as	well	as	the	length	check	in	the	compareTo	method.

Use	it	in	an	@Test	annotated	method	to	demonstrate	it	works.

Exercise:	See	the	sort	in	action
Add	the	line	of	code	below,	to	your	Comparator.	Just	before	the	return	val	line	and	see	the	Comparator
in	action	in	your	console.

												System.out.println("Compare	"	+	user1.getUsername()	+

																					"	with	"	+	user2.getUsername()	+	"	=	"	+	val);

Set	&	SortedSet	Documentation

You	can	find	the	details	of	Set	and	SortedSet	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/set.html
docs.oracle.com/javase/tutorial/collections/interfaces/sorted-set.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/set.html

http://docs.oracle.com/javase/tutorial/collections/interfaces/set.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/sorted-set.html
http://docs.oracle.com/javase/tutorial/collections/implementations/set.html

Map
We	described	Map	in	the	earlier	collection	chapter.

In	this	chapter	we	will	build	on	Map	and	consider	the	SortedMap.

SortedMap
SortedMap	is	to	Map,	as	SortedSet	is	to	Set.	And	the	interface	and	function	of	the
methods	of	SortedMap	are	almost	the	same	as	SortedSet.	So	it	won’t	take	long	for	you	to
figure	out	how	SortedMap	works.

A	SortedMap	is	ordered	on	its	keys,	not	its	values.
The	comparator	is	used	to	determine	the	ordering,	or	the	compareTo	method	on	the
key

The	methods	should	be	familiar	as	they	are	almost	the	same	as	SortedSet

firstKey	-	the	first	key	based	on	the	sort	order
lastKey	-	the	last	key	based	on	the	sort	order
headMap(k)	-	the	SortedMap	containing	every	“key,	value”	pair	before	key	k
tailMap(k)	-	the	SortedMap	containing	every	“key,	value”	pair	after	and	including
the	key	k
subMap(k1,k2)	-	the	SortedMap	containing	every	“key,	value”	pair	between	k1	and
k2	(including	k1,	excluding	k2)
comparator	-	the	comparator	used	to	determine	the	sort	order	of	the	keys

For	the	sake	of	brevity,	since	we	covered	the	SortedSet	in	detail,	and	SortedMap	is	much
the	same,	I	will	use	examples	to	explain	SortedMap	rather	than	a	lot	of	descriptive	text.	All
the	examples	for	the	SortedMap	methods	use	the	following	Map	declaration	and
instantiation:
								SortedMap<String,	String>	map	=	new	TreeMap<>();

								map.put("key1",	"value1");

								map.put("key3",	"value3");

								map.put("key2",	"value2");

								map.put("key5",	"value5");

								map.put("key4",	"value4");

firstKey	&	lastKey	to	retrieve	key	limits

firstKey	and	lastKey	respectively	return	the	first	and	last	keys	in	the	map:
								assertEquals("key1",	map.firstKey());

								assertEquals("key5",	map.lastKey());

Create	sorted	extracts	with	headMap,	tailMap	and	subMap

headMap(k)	returns	a	SortedMap	containing	every	key,	value	pair	before	the	key	passed	as
argument.	e.g.
								SortedMap<String,	String>	headMap;

								headMap	=	map.headMap("key3");

								assertEquals(2,	headMap.size());

								assertTrue(headMap.containsKey("key1"));

								assertTrue(headMap.containsKey("key2"));

tailMap(k)	returns	a	SortedMap	containing	every	key,	value	pair	after	and	including	the
key	passed	as	argument.	e.g.
								SortedMap<String,	String>	tailMap;

								tailMap	=	map.tailMap("key3");

								assertEquals(3,	tailMap.size());

								assertTrue(tailMap.containsKey("key3"));

								assertTrue(tailMap.containsKey("key4"));

								assertTrue(tailMap.containsKey("key5"));

subMap(k,k)	returns	a	SortedMap	containing	every	key,	value	pair	after	and	including	the
key	passed	as	first	argument	and	before,	but	excluding,	the	key	passed	as	second
argument.	e.g.
								SortedMap<String,	String>	subMap;

								subMap	=	map.subMap("key2",	"key4");

								assertEquals(2,	subMap.size());

								assertTrue(subMap.containsKey("key2"));

								assertTrue(subMap.containsKey("key3"));

comparator	for	sorting

The	comparator	usage	for	SortedMap,	differs	from	SortedSet	only	because	the	key	is
sorted	and	not	the	value	(or	element).

Whenever	I	have	used	a	SortedMap,	my	keys	typically	are	Strings	and	so	natural	sort
order	is	normally	adequate.

A	Map	can	use	any	object	as	the	key,	so	I	have	used	the	same	example	from	SortedSet	to
illustrate	the	comparator	on	SortedMap.	Even	though	this	represents	a	fairly	obtuse	use	of
the	Map.

In	this	example	you	should	imagine	that	the	User	is	the	key	and	the	value	is	a	description
of	the	User

I	instantiate	the	SortedMap	with	the	UserComparator	as	I	did	with	SortedSet:
								SortedMap<User,String>	userSortedMap	=

																new	TreeMap<User,String>(new	UserComparator());

Then	the	rest	of	the	code	is	the	same	as	SortedSet

create	a	bunch	of	User	objects
instantiate	the	SortedMap
put	all	the	User	objects	into	the	Map	as	the	key,	and	add	a	description	as	the	value
extract	the	keys	to	an	array	-	they	will	be	in	the	sort	order	specified	by	the
comparator

assert	on	the	sort	order

				@Test

				public	void	sortedMapWithComparatorForUser(){

								User	bob	=	new	User("Bob",	"pA55Word");			//	11

								User	tiny	=	new	User("TinyTim",	"hello");	//12

								User	rich	=	new	User("Richie",	"RichieRichieRich");	//	22

								User	sun	=	new	User("sun",	"tzu");	//	6

								User	mrBeer	=	new	User("Stafford",	"sys");	//	11

								SortedMap<User,String>	userSortedMap	=

																new	TreeMap<User,String>(new	UserComparator());

								userSortedMap.put(bob,	"Bob	rules");

								userSortedMap.put(tiny,	"Tiny	Time");

								userSortedMap.put(rich,	"Rich	Richie");

								userSortedMap.put(sun,	"Warfare	Art");

								userSortedMap.put(mrBeer,	"Cybernetician");

								User[]	users	=	new	User[userSortedMap.size()];

								userSortedMap.keySet().toArray(users);

								assertEquals(sun.getUsername(),	users[0].getUsername());

								assertEquals(bob.getUsername(),	users[1].getUsername());

								assertEquals(mrBeer.getUsername(),	users[2].getUsername());

								assertEquals(tiny.getUsername(),	users[3].getUsername());

								assertEquals(rich.getUsername(),	users[4].getUsername());

				}

Map	KeySet	Explored
keySet	returns	a	Set	where	each	element	is	a	key	from	the	Map:
								Set<String>	keys	=	map.keySet();

I	could	use	this	to	create	a	SortedSet	of	keys:
								SortedSet<String>	keys	=	new	TreeSet<String>(map.keySet());

Exercise:	Access	Values	in	a	Map	in	Key	order
Create	a	Map
Use	a	SortedSet	for	the	keys	to	iterate	through	the	Map	in	key	order.

Map	&	SortedMap	Documentation
You	can	find	the	details	of	Map	and	SortedMap	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/map.html
docs.oracle.com/javase/tutorial/collections/interfaces/sorted-map.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/map.html

Queue	&	Deque

http://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/sorted-map.html
http://docs.oracle.com/javase/tutorial/collections/implementations/map.html

I’m	not	going	to	go	into	detail	on	the	Queue	and	Deque	(deck).	Simply	because	I’ve	never
had	to	use	them	in	the	real	world.

A	Queue	provides	a	first	in,	first	out	collection.	Where	you	add	elements	at	the	back	of	the
queue	and	remove	them	from	the	front.

A	Deque	allows	you	to	add	elements	at	the	front	or	back	of	the	queue,	but	not	the	middle.

It	is	worth	knowing	that	these	collection	types	exist,	but	if	you	need	to	use	them,	I’m	sure
you’ll	now	be	able	to	understand	the	documentation	on	the	official	site.

Queue	&	Deque	Documentation

You	can	find	the	details	of	Queue	and	Deque	on	the	official	documentation	site.

Interface:

docs.oracle.com/javase/tutorial/collections/interfaces/queue.html
docs.oracle.com/javase/tutorial/collections/interfaces/deque.html

Implementation:

docs.oracle.com/javase/tutorial/collections/implementations/queue.html
docs.oracle.com/javase/tutorial/collections/implementations/deque.html

Implementations
You	have	seen	in	the	listings	above	the	Implementations	I	used.

For	completeness	I’ve	listed	below	the	implementations	for	the	various	Collection
interfaces	that	we	covered	in	both	chapters.

Collection	&	List:
ArrayList

Set:
HashSet

TreeSet	-	for	sorted
Map:

HashMap

TreeMap	-	for	sorted	on	keys

Periodically	I	have	had	to	call	upon	the	ConcurrentHashMap	in	java.util.concurrent
when	I	was	writing	code	to	share	objects	in	memory	across	@Test	methods	running	in
parallel.	I	didn’t	know	about	the	ConcurrentHashMap	before	I	started.	But	I	knew	about
collections,	and	I	knew	I	needed	something	to	work	concurrently	so	I	did	a	few	Internet
searches	and	found	the	collection.

What	I’m	really	suggesting	in	the	above	paragraph	is	that	you	learn	a	few	classes	to	start
with.	Then,	if	you	have	time,	look	around	at	others,	or	wait	until	you	need	one.	You’ll
know	you	need	a	new	implementation	because	you	are	having	to	code	workarounds	with

http://docs.oracle.com/javase/tutorial/collections/interfaces/queue.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/deque.html
http://docs.oracle.com/javase/tutorial/collections/implementations/queue.html
http://docs.oracle.com/javase/tutorial/collections/implementations/deque.html

your	existing	implementation,	and	chances	are	someone	else	has	already	experienced	your
problem,	and	written	a	class	so	solve	it.	You	just	need	to	hunt	it	out.

Summary
The	SortedMap	and	SortedSet	require	a	little	extra	work	-	specifically	the	implementation
of	a	Comparator	or	an	Object	to	implement	Comparable.

In	practice,	I	default	to	implementing	Comparator	Objects	as	this	gives	me	more
flexibility	and	I	don’t	have	to	clutter	my	domain	objects	with	the	Comparable	interface.

References	and	Recommended	Reading

Sorted	Set	Interface
docs.oracle.com/javase/tutorial/collections/interfaces/set.html
docs.oracle.com/javase/tutorial/collections/interfaces/sorted-set.html

Sorted	Set	Implementation
docs.oracle.com/javase/tutorial/collections/implementations/set.html

Sorted	Map	Interface
docs.oracle.com/javase/tutorial/collections/interfaces/map.html
docs.oracle.com/javase/tutorial/collections/interfaces/sorted-map.html

Sorted	Map	Implementation
docs.oracle.com/javase/tutorial/collections/implementations/map.html

Queue	and	Deque	Interface
docs.oracle.com/javase/tutorial/collections/interfaces/queue.html
docs.oracle.com/javase/tutorial/collections/interfaces/deque.html

Queue	and	Deque	Implementation
docs.oracle.com/javase/tutorial/collections/implementations/queue.html
docs.oracle.com/javase/tutorial/collections/implementations/deque.html

http://docs.oracle.com/javase/tutorial/collections/interfaces/set.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/sorted-set.html
http://docs.oracle.com/javase/tutorial/collections/implementations/set.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/map.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/sorted-map.html
http://docs.oracle.com/javase/tutorial/collections/implementations/map.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/queue.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/deque.html
http://docs.oracle.com/javase/tutorial/collections/implementations/queue.html
http://docs.oracle.com/javase/tutorial/collections/implementations/deque.html

Chapter	Twenty	Two	-	Advancing	Concepts

Chapter	Summary
This	chapter	provides	a	brief	overview	of	each	of	the	following	areas,	with	links	for	you	to	start	conducting
your	own	research	on	the	topic.

Interfaces
Abstract	Classes
Generics
Logging
Enum
Regular	Expressions
Reflection
Annotations
Design	Patterns
Concurrency
Additional	File	considerations

And	we	are	almost	finished	now.

The	original	intent	behind	this	book	was	to	cover	the	basics	of	Java	that	you	need	to
understand,	in	an	order	that	allowed	you	to	use	the	concepts	quickly,	without	being
distracted	by	too	much	additional	overhead.

This	chapter	provides	an	overview	of	‘advancing’	concepts	which	are	not	necessarily
required	to	be	functional	in	Java,	but	it	is	important	to	know	they	exist,	and	give	you
something	to	research	in	your	next	steps.

You	probably	won’t	need	these	concepts	for	writing	simple	JUnit	tests.

You	may	need	these	when	you	start	building	a	lot	of	code	that	has	to	hang	together	well,
and	when	the	Java	code	itself	needs	to	embody	good	design	principles.

For	the	first	3	or	4	years	of	my	writing	automation	code,	I	probably	didn’t	use	any	of	these
concepts	very	much	at	all.

I	used	composition	to	re-use	code,	without	using	Interfaces.
I	rarely	used	Inheritance.
I	never	used	Abstract	Classes.
I	didn’t	really	know	what	an	enum	was
etc.

My	code	was	simple,	but	didn’t	have	design	principles	holding	it	together.	Which	is	why	I
think	of	these	as	“Advancing	Concepts”.

They	are	not	‘advanced’	since	they	are	fundamental	to	the	way	that	Java	and	good
programming	works.	But	in	terms	of	your	usage	of	them,	they	only	need	to	become

relevant	when	you	are	“Advancing”	your	understanding	of	Java	and	the	robustness	of	your
abstraction	layers.

Interfaces
In	earlier	sections	of	the	book	we	used	Interfaces	without	actually	explaining	much	about
them.

An	Interface	declares	a	set	of	methods	that	a	Class	must	implement.	Anywhere	in	our	code
that	we	only	want	to	use	the	set	of	interface	methods,	we	can	cast	objects	to	the	interface,
or	declare	objects	as,	that	interface,	rather	than	working	with	concrete	classes.

e.g	use	a	List	rather	than	an	ArrayList

Each	object	that	implements	an	interface	then	has	freedom	to	decide	how	to	implement	the
methods	on	that	interface,	such	that	they	are	appropriate	to	that	particular	object.

I	tend	to	introduce	interfaces	into	my	code	when	I	start	to	see	similar	usage	patterns	of	the
objects.

As	an	example.	When	automating	a	web	site	I	might	create	objects	to	represent	each	Page
on	the	site.	Pages	on	the	site	tend	to	have	similar	components	e.g.	header	or	footer.	Early
in	my	code	I	might	have	a	getHeader	method	on	some	pages,	but	not	others	and	I	might
have	repeated	code	as	a	result.

When	I	spot	this,	I	can	create	an	interface	called	HasHeader	and	this	might	force	the	page
to	implement	the	getHeader	method.	And	I	can	write	methods	that	operate	on	a	Header	of
a	page	which	take	a	HasHeader	interface	as	a	parameter	instead	of	individual	page	objects,
or	an	generic	Object.

Research	Interfaces	so	you	understand	their	capabilities.	And	use	them	to	help	you
organize	your	abstraction	layers.

Research	Links:

Interface	Definition
docs.oracle.com/javase/tutorial/java/concepts/interface.html

How	to	create	an	Interface
docs.oracle.com/javase/tutorial/java/IandI/createinterface.html

Abstract	Classes
Abstract	classes	are	classes	which	you	can	extend,	but	can’t	instantiate	directly	since	not
all	the	methods	in	the	Abstract	class	will	have	been	implemented	in	the	Abstract	Class.

I	rarely	use	Abstract	Classes.	I	tend	to	use	interfaces	and	delegate	out	to	other	concrete
classes.	I	do	this	because	I	know	that	my	automation	abstractions	are	likely	to	change
frequently	and	I	need	a	lot	of	flexibility	in	my	code.

Research	Links:

Abstract	Classes	Offical	Documentation
docs.oracle.com/javase/tutorial/java/IandI/abstract.html

http://docs.oracle.com/javase/tutorial/java/concepts/interface.html
http://docs.oracle.com/javase/tutorial/java/IandI/createinterface.html
http://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

Abstract	Classes	vs.	Interfaces
javaworld.com/javaqa/2001-04/03-qa-0420-abstract.html

Generics
In	the	main	body	of	this	book	you	saw	Generics	used	when	instantiating	Collections	and
we	declared	the	type	of	objects	that	the	collection	would	hold.

You	can	use	Generics	when	creating	your	own	objects	and	methods,	such	that	you	don’t
know	exactly	what	object	they	will	use.

This	is	a	very	powerful	coding	style,	to	make	your	automation	abstractions	flexible,	but
one	that	I	tend	not	to	have	to	use	very	often.

Research	Links:

Official	Java	Tutorial	on	Generics
docs.oracle.com/javase/tutorial/java/generics

Logging
We	didn’t	cover	logging	in	this	book.	The	closest	we	came	was	writing	information	out	to
a	File,	and	using	System.out.println	to	output	to	the	console.

For	most	of	my	automation	code	I	can	get	away	with	writing	log	messages	to	System.out
since	they	will	be	displayed	in	continuous	integration	systems,	and	we	rarely	have	to
configure	the	level	of	logging	when	running	automation.

Java	logging	allows	you	to	write	code	that	outputs	log	messages	e.g.	warnings,	errors,	etc.
The	level	of	logging	output	when	running	the	code	can	be	configured	externally	to	the
application	by	the	user	running	the	application.

When	you	need	this	level	of	flexibility,	it	is	time	to	learn	about	logging	frameworks.

Java	has	a	built	in	logging	framework.	And	a	lot	of	external	frameworks	which	increase
the	ease	of	use,	or	flexibility	of	configuration.

Research	Links:

Official	Java	Logging	Overview
docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html

Tutorial	by	Lars	Vogel
vogella.com/articles/Logging/article.html

Enum
An	enum	can	be	thought	of	as	a	set	of	predefined	constants.	Useful	when	organizing
constants	in	your	abstraction	layers.

An	enum	can	be	used	as	the	argument	in	a	switch	statement.	This	can	lead	to	readable	and
simple	code.

http://www.javaworld.com/javaqa/2001-04/03-qa-0420-abstract.html
http://docs.oracle.com/javase/tutorial/java/generics
http://docs.oracle.com/javase/7/docs/technotes/guides/logging/overview.html
http://www.vogella.com/articles/Logging/article.html

These	constants	can	also	have	methods	making	them	very	flexible,	and	might	even
remove	the	need	to	put	them	in	a	switch	statement,	and	instead	use	the	enum’s	method
itself.

Research	Links:

Official	Enum	documentation
docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Regular	Expressions
We	briefly	touched	upon	regular	expressions	in	the	main	text.

Regular	Expressions	provide	a	massive	amount	of	power	and	flexibility	for	parsing	and
processing	input.

When	your	code	starts	to	look	complicated,	and	you	have	a	series	of	nested	if	statements,
or	complicated	transformations.	Then	it	might	be	time	to	graduate	to	the	use	of	Regular
Expressions.

Research	Links:

docs.oracle.com/javase/tutorial/essential/regex/

Reflection
Most	of	our	programming	work	uses	specific	objects,	and	we	know	the	methods	and
interfaces	available	at	the	time	of	coding.

Reflection	means	querying	the	class	at	runtime	to	find	out	information	about	the	object,
e.g.	finding	out	which	methods	are	on	the	object,	what	are	their	parameters,	what
annotations	exist	etc.

You	can	also	amend	the	method	signatures	to	allow	you	to	call	private	methods,	or	access
private	variables	etc.

Most	programmers	I	know	spurn	reflection.	And	indeed	most	of	the	time	in	an	application
it	isn’t	used,	it	can	be	slow,	and	it	can	be	dangerous	to	perform	these	actions	at	Runtime.

Some	of	the	problems	I’ve	faced	in	the	past	however,	could	only	be	solved	using
reflection:

Trying	to	use	libraries	without	documentation
Using	pieces	of	functionality	out	of	sequence
Working	around	limitations	in	abstraction	layers

Some	of	the	tools	we	use	e.g.	JUnit,	can	only	work	because	of	reflection,	and	all	the
annotations	you	added	to	your	code	are	accessed	via	reflection.

Learn	about	reflection	so	that	you	know	what	it	is	capable	of.	Then	you	can	try	and	use	it
when	you	encounter	a	problem	that	you	see	no	other	way	to	solve.

Research	Links:

http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/essential/regex

docs.oracle.com/javase/tutorial/reflect

Annotations
You	used	annotations	when	you	put	@Test	atop	your	method	code.

Annotations	are	meta-data.	Meaning	they	are	used	by	the	compiler	and	when	your	code	is
accessed	at	runtime	using	Reflection.

I	have	in	the	past	used	annotations	when	trying	to	find	ways	of	reporting	on	execution
coverage	and	creating	custom	JUnit	runners.

Important	to	know	about,	but	I	imagine	you	will	not	use	them	very	often.

Research	Links:

docs.oracle.com/javase/tutorial/java/annotations

Design	Patterns
Design	Patterns	are	those	statements	that	you	hear	on	the	project	that	everyone	assumes
that	everyone	else	understands	and	never	explains,	e.g.

Singleton
Observer
Visitor
Factory
Proxy
etc.

These	are	common	approaches	to	solving	common	problems.	The	famous	book	“Design
Patterns”	by	Gamma,	Helm,	Johnson	and	Vlissides	lists	23	common	patterns	and	some
solutions.

Some	familiarity	with	them	is	important	because	they	offer	approaches	to	problems	that
other	people	have	solved.	They	will	also	help	you	understand	what	developers	are	talking
about	when	they	explain	their	code	to	you.

Research	Links:

c2.com/cgi/wiki?DesignPatternsBook
oodesign.com/

Concurrency
Concurrency	is	important	in	Java.	It	allows	you	to	run	code	in	multiple	threads	and
potentially	achieve	some	results	faster,	or	run	more	than	one	@Test	method	at	the	same
time.

You	will	often	read	that	certain	classes	are	not	“Thread	Safe”	which	means	they	should	not
be	used	when	you	try	and	use	concurrency.

http://docs.oracle.com/javase/tutorial/reflect
http://docs.oracle.com/javase/tutorial/java/annotations
http://c2.com/cgi/wiki?DesignPatternsBook
http://www.oodesign.com

There	are	different	approaches	to	concurrency,	ranging	from	simple	use	of	synchronized
which	means	that	a	method	can	only	be	called	by	a	single	thread	at	a	time.	To	full	non-
blocking	concurrency.

This	topic	is	far	to	advanced	for	this	book.	Unfortunately	many	testers	try	and	tackle	this
subject	early	because	they	want	to	run	their	@Test	methods	in	parallel.	Often	before	there
is	even	a	compelling	need	to	run	the	automation	checks	in	parallel.

Concurrency	is	a	very	interesting	part	of	Java	to	study,	and	I	have	had	to	create	automation
abstractions	that	were	usable	in	a	multi-threaded	manner.	But	not	early	when	I	was
learning	Java.	I	recommend	you	read	about	it,	but	don’t	try	and	do	any	concurrent
programming	until	you	are	very	comfortable	understanding	how	your	application	works.
Otherwise	you	may	create	code	that	fails	intermittently	that	is	hard	to	debug	and	fix.

I	primarily	added	Concurrency	in	this	section	to	warn	you	off	trying	to	use	it	too	quickly.

Research	Links:

docs.oracle.com/javase/tutorial/essential/concurrency

Additional	File	considerations
In	the	file	chapter	I	skipped	over	a	lot	of	information,	to	try	and	create	example	code	and
basic	information	that	will	cover	many	of	your	initial	file	processing	needs.

I	also	covered	most	of	the	things	that	I	use	files	for.	I	rarely	have	to	work	with	the	basic
file	building	blocks:	streams	and	channels.

I	rarely	worry	about	File	encoding,	because	most	of	my	files	are	created	and	read	from
within	the	same	JUnit	test	class,	and	because	they	are	temporary,	they	get	deleted	after
the	@Test	methods	finish.

I	include	the	links	below	as	research	items	in	case	you	need	them	in	your	environment.

Research	Links:

Streams
docs.oracle.com/javase/tutorial/i18n/text/stream.html

File	IO
docs.oracle.com/javase/tutorial/essential/io/file.html

Summary
I	know	this	chapter	has	very	few	examples.	The	main	purpose	was	to	make	you	aware	of
additional	areas	of	functionality	available	in	Java.

I	did	not	explain	any	in	detail	because	each	are	areas	that	could	have	entire	books
dedicated	to	them,	and	in	some	cases	books	do	exist	dedicated	to	them,	and	I	mention
some	of	those	books	in	the	next	chapter.

I’ve	tried	to	make	you	aware	of	the	circumstances	that	will	lead	you	to	using	the	concepts.
But	I	hope	you	follow	and	read	the	provided	research	links	so	you	have	a	basic	memory	of
the	capability,	even	if	you	haven’t	used	it,	or	don’t	yet	understand	it.

http://docs.oracle.com/javase/tutorial/essential/concurrency
http://docs.oracle.com/javase/tutorial/i18n/text/stream.html
http://docs.oracle.com/javase/tutorial/essential/io/file.html

Chapter	Twenty	Three	-	Next	Steps

Chapter	Summary
This	chapter	will	provide	you	with	a	recommended	set	of	next	steps:

Recommended	Reading	List
Recommended	Videos
Recommended	Web	Sites
Recommended	Next	Steps

I	hope	that	if	you	made	it	this	far	into	the	book,	that	you	attempted	the	exercises.	If	you
did,	and	you	followed	the	suggestions	peppered	throughout	the	book,	then	you	now	have	a
grasp	of	the	fundamentals	of	writing	Java	code.	This	chapter	suggests	books	and	websites
to	visit	to	help	you	continue	to	learn.

Certainly	you’ve	seen	a	lot	of	code	snippets.	Most	of	the	code	you	have	seen	has	been
written	in	the	form	of	@Test	annotated	methods	with	assertions.	Pretty	much	what	you	will
be	expected	to	write	in	the	real	world.

Recommended	Reading
I	don’t	recommend	a	lot	of	Java	books	because	they	are	a	very	personal	thing.	There	are
books	that	people	rave	about	that	I	couldn’t	get	my	head	around.	And	there	are	those	that	I
love	that	other	people	hate.

But	since	I	haven’t	provided	massive	coverage	of	the	Java	language.	I’ve	pretty	much
given	you	“just	enough”	to	get	going	and	understand	the	code	you	read.	I’m	going	to	list
the	Java	books	that	I	gained	most	from,	and	still	refer	to:

“Effective	Java”
by	Joshua	Bloch

“Implementation	Patterns”
by	Kent	Beck

“Growing	Object-Oriented	Software,	Guided	by	Tests”
by	Steve	Freeman	and	Nat	Pryce

“Core	Java:	Volume	1	-	Fundamentals”
by	Cay	S.	Horstmann	and	Garry	Cornell

“Covert	Java	:	Techniques	for	Decompiling,	Patching	and	Reverse	Engineering”
by	Alex	Kalinovsky

“Java	Concurrency	in	Practice”
by	Brian	Goetz

“Mastering	Regular	Expressions”
by	Jeffrey	Friedl

Now,	to	justify	my	selections…

Effective	Java
“Effective	Java”	by	Joshua	Bloch,	at	the	time	of	writing	in	its	2nd	Edition.	This	book
works	for	beginners	and	advanced	programmers.

Java	developers	build	up	a	lot	of	knowledge	about	their	language	from	other	developers.
“Effective	Java”	helps	short	cut	that	process.

It	has	78	chapters.	Each,	fairly	short,	but	dense	in	their	coverage	and	presentation.

When	I	first	read	it,	I	found	it	heavy	going,	because	I	didn’t	have	enough	experience	or
knowledge	to	understand	it	all.	But	I	re-read	it,	and	have	continued	to	re-read	it	over	the
time	I	have	developed	my	Java	experience.	And	each	time	I	read	it,	I	find	a	new	nuance,
or	a	deeper	understanding	of	the	concepts.

Because	each	chapter	is	short,	I	return	to	this	book	to	refresh	my	memory	of	certain	topics.

This	was	also	the	book	that	helped	me	understand	enum	well	enough	to	use	them	and
helped	me	understand	concurrency	well	enough	to	then	read,	and	understand,	“Java
Concurrency	in	Practice”.

I	recommend	that	you	buy	and	read	this	book	early	in	your	learning.	Even	if	you	don’t
understand	it	all,	read	it	all.	Then	come	back	to	it	again	and	again.	It	concentrates	on	very
practical	aspects	of	the	Java	language	and	can	boost	your	real-world	effectiveness
tremendously.

You	can	find	a	very	good	overview	of	the	book,	in	the	form	of	a	recording	of	a	Joshua
Bloch	talk	at	“Google	I/O	2008	-	Effective	Java	Reloaded”	on	YouTube:

youtu.be/pi_I7oD_uGI

Implementation	Patterns
Another	book	that	benefits	from	repeated	reading.	You	will	take	different	information
from	it	with	each	reading,	depending	on	your	experience	level	at	the	time.

“Implementation	Patterns”	by	Kent	Beck	explains	some	of	the	thought	processes	involved
in	writing	professional	code.

This	book	was	one	of	the	books	that	helped	me:

concentrate	on	keeping	my	code	simple,
decide	to	learn	the	basics	of	Java	(and	know	how	to	find	information	when	I	needed
it),
try	to	use	in	built	features	of	the	language,	before	bringing	in	a	new	library	to	my
code.

The	book	is	thin	and,	again	dense.	Most	complaints	I	see	on-line	seem	to	stem	from	the
length	of	the	book	and	the	terseness	of	the	coverage.	I	found	that	beneficial,	it	meant	very
little	padding	and	waste.	I	have	learned,	or	re-learned,	something	from	this	book	every
time	I	read	it.

http://youtu.be/pi_I7oD_uGI

Other	books	that	cover	similar	topics	include	“Clean	Code”	by	Robert	C.	Martin,	and
“The	Pragmatic	Programmer”	by	Andrew	Hunt	and	David	Thomas.	But	I	found
“Implementation	Patterns”	far	more	useful	and	applicable	to	my	work.

For	more	information	on	Kent	Beck’s	writing	and	work,	visit	his	web	site:

threeriversinstitute.org

Growing	Object-Oriented	Software
Another	book	I	benefited	from	reading	when	I	wasn’t	ready	for	it.	I	was	able	to	re-read	it
and	learn	more.	I	still	gain	value	from	re-reading	it.

“Growing	Object-Oriented	Software,	Guided	by	Tests”,	by	Steve	Freeman	and	Nat
Pryce

Heavily	focused	on	using	@Test	method	code	to	write	and	understand	your	code.	It	also
covers	mock	objects	very	well.

This	book	helped	change	my	coding	style,	and	how	I	approach	the	building	of	abstraction
layers.

The	official	homepage	for	the	book	is	growing-object-oriented-software.com

Covert	Java
“Covert	Java	:	Techniques	for	Decompiling,	Patching	and	Reverse	Engineering”,	by	Alex
Kalinovsky	starts	to	show	its	age	now	as	it	was	written	in	2004.	But	highlights	some	of	the
ways	of	working	with	Java	libraries	that	you	really	wouldn’t	use	if	you	were	a
programmer.

But	sometimes	as	a	tester	we	have	to	work	with	pre-compiled	libraries,	without	source
code,	and	use	parts	of	the	code	base	out	of	context.

I	found	this	a	very	useful	book	for	learning	about	reflection	and	other	practices	related	to
taking	apart	Java	applications.

You	can	usually	pick	this	up	quite	cheaply	second	hand.	There	are	other	books	the	cover
decompiling,	reverse	engineering	and	reflection.	But	this	one	got	me	started,	and	I	still
find	it	clear	and	simple.

Java	Concurrency	in	Practice
Concurrency	is	not	something	I	recommend	trying	to	work	with	when	you	are	starting	out
with	Java.

But	at	some	point	you	will	probably	want	to	run	your	code	in	parallel,	or	create	some
threads	to	make	your	code	perform	faster.	And	you	will	probably	fail,	and	not	really
understand	why.

I	used	“Effective	Java”	to	help	me	get	started.	But	“Java	Concurrency	in	Practice”	by
Brian	Goetz,	was	the	book	I	read	when	I	really	had	to	make	my	automation	abstraction
layer	work	with	concurrent	code.

http://www.threeriversinstitute.org
http://www.growing-object-oriented-software.com

Core	Java:	Volume	1
The	Core	Java	books	are	massive,	over	1000	pages.	And	if	you	really	want	to	understand
Java	in	depth	then	these	are	the	books	to	read.

I	find	them	to	be	hard	work	and	don’t	read	them	often.	I	tend	to	use	the	JavaDoc	for	the
Java	libraries	and	methods	themselves.

But,	periodically,	I	want	to	have	an	overview	of	the	language	and	understand	the	scope	of
the	built	in	libraries,	because	there	are	lots	of	in-built	features	that	I	don’t	use,	that	I	would
otherwise	turn	to	an	external	library	for.

Every	time	I’ve	flicked	through	“Core	Java”,	I	have	discovered	a	nuance	and	a	new	set	of
features,	but	I	don’t	do	it	often.

Mastering	Regular	Expressions
We	didn’t	cover	the	full	power	of	Regular	Expressions	in	this	book.

I	tend	to	try	and	keep	my	code	simple	and	readable	so	I’ll	use	simple	string	manipulation
to	start	with.

But	over	time,	I	often	find	that	I	can	replace	a	series	of	if	blocks	and	string
transformations	with	a	regular	expression.

Since	I	don’t	use	regular	expressions	often	I	find	that	each	time,	I	have	to	re-learn	them
and	I	still	turn	to	“Mastering	Regular	Expressions”	by	Jeffrey	E.F.	Friedl.

As	an	alternative	to	consider:	“Regular	Expressions	Cookbook”	by	Jan	Goyvaerts,	which
is	also	very	good.

I	sometimes	use	the	tool	RegexMagic	regexmagic.com,	written	by	Jan	Goyvaerts	when
writing	regular	expressions,	it	lets	me	test	out	the	regular	expression	across	a	range	of
example	data,	and	generate	sample	code	for	a	lot	of	different	languages.

Jan	also	maintains	the	web	site	regular-expressions.info	with	a	lot	of	tutorial	information
on	it.

Recommended	Videos
The	videos	produced	by	John	Purcell	at	caveofprogramming.com	have	been	recommended
to	me	by	many	testers.

I’ve	looked	through	some	of	them,	and	John	provides	example	coding	for	many	of	the
items	covered	in	this	book,	and	in	the	“Advancing	Concepts”	section.

John’s	approach	is	geared	around	writing	programs,	and	I	think	that	if	you	have	now
finished	this	book,	you	will	benefit	from	the	traditional	programmer	based	coverage	that
John	provides.

Recommended	Web	Sites
For	general	Java	news,	and	up	to	date	conference	videos,	I	recommend	the	following	web
sites.

http://www.regexmagic.com
http://www.regular-expressions.info
http://www.caveofprogramming.com

theserverside.com
infoq.com/java

Make	sure	you	subscribe	to	the	RSS	feeds	for	the	above	sites.

I	will	remind	you	that	I	have	a	web	site	javaForTesters.com	and	I	plan	to	add	more
information	there,	and	links	to	other	resources	over	time.	I	will	also	add	additional
exercises	and	examples	to	that	site	rather	than	continue	to	expand	this	book.

Remember,	all	the	code	used	in	this	book,	and	the	answers	to	the	exercises	is	available	to
download	from	github.com/eviltester.

Next	Steps
This	has	been	a	beginner’s	book.

You	can	see	from	the	“Advancing	Concepts”	chapter	that	there	are	a	lot	of	features	in	Java
that	I	didn’t	cover.	Many	of	them	I	don’t	use	a	lot	and	I	didn’t	want	to	pad	out	the	book
with	extensive	coverage	that	you	can	find	in	other	books	or	videos.

I	wanted	this	book	to	walk	you	through	the	Java	language	in	an	order	that	I	think	makes
sense	to	people	who	are	writing	code,	but	not	necessarily	writing	systems.

Your	next	step?	Keep	learning.

I	recommend	you	start	with	the	books	and	videos	recommended	here,	but	also	ask	your
team	mates.

You	will	be	working	on	projects,	and	the	type	of	libraries	you	are	using,	and	the	technical
domain	that	you	are	working	on,	may	require	different	approaches	than	those	mentioned	in
this	book.

I	hope	you	have	learned	that	you	can	get	a	lot	done	quite	easily,	and	you	should	now
understand	the	fundamental	classes	and	language	constructs	that	you	need	to	get	started.

Now:

start	writing	@Test	methods	which	exercise	your	production	code
investigate	how	much	of	your	repeated	manual	effort	can	be	automated

Thank	you	for	your	time	spent	with	this	book.

I	wish	you	well	for	the	future.	This	is	just	the	start	of	your	work	with	Java.	I	hope	you’ll
continue	to	learn	more	and	put	it	to	use	on	your	projects.

My	ability	to	use	automation	to	support	my	testing	and	add	value	on	projects	continues	to
increase,	the	more	I	learn	how	to	improve	my	coding	skills.	I	hope	yours	does	too.

References

Java	For	Testers
github.com/eviltester/javaForTestersCode
JavaForTesters.com

http://www.theserverside.com
http://www.infoq.com/java
http://javafortesters.com
https://github.com/eviltester/javaForTestersCode
https://github.com/eviltester/javaForTestersCode
http://www.javafortesters.com

Joshua	Bloch
en.wikipedia.org/wiki/Joshua_Bloch
youtu.be/pi_I7oD_uGI

Kent	Beck
twitter.com/kentbeck
“Three	Rivers	Institute”	threeriversinstitute.org

Growing	Object	Oriented	Software,	Guided	by	Tests
growing-object-oriented-software.com
Steve	Freeman’s	Blog	higherorderlogic.com
natpryce.com

Core	Java	Book
horstmann.com/corejava.html

Java	Concurrency	In	Practice
jcip.net.s3-website-us-east-1.amazonaws.com/

Regular	Expressions
Mastering	Regular	Expressions	home	page	regex.info
regular-expressions.info/
regexmagic.com
regexpal.com
www.regexr.com

http://en.wikipedia.org/wiki/Joshua_Bloch
http://youtu.be/pi_I7oD_uGI
https://twitter.com/kentbeck
http://www.threeriversinstitute.org
http://www.growing-object-oriented-software.com
http://www.higherorderlogic.com
http://www.natpryce.com
http://www.horstmann.com/corejava.html
http://jcip.net.s3-website-us-east-1.amazonaws.com
http://regex.info
http://www.regular-expressions.info
http://www.regexmagic.com
http://regexpal.com
http://www.regexr.com

Appendix	-	IntelliJ	Hints	and	Tips

Throughout	the	book	I	mentioned	hints	and	tips,	and	shortcuts	for	using	IntelliJ.

I	collate	all	of	those	in	this	appendix	for	easy	reference,	and	add	some	additional
information	on	using	IntelliJ	with	this	book.

Shortcut	Keys
This	table	contains	the	shortcut	keys	that	I	use	most	often.

Function Windows Mac
Create	New alt	+	insert ctrl	+	n

Intention
Actions

alt	+	enter alt	+	enter

Intention
Actions

alt	+	return alt	+	return

Run	JUnit	Test ctrl	+	shift	+	F10 ctrl	+	shift	+	F10

Show
Parameters

ctrl	+	p cmd	+	p

Show	JavaDoc ctrl	+	q ctrl	+	j

Code
Completion

ctrl	+	space ctrl	+	space

Find	by	class ctrl	+	n ctrl	+	n

Find	by	filename ctrl	+	shift	+	n ctrl	+	shift	+	n

Find	by	symbol ctrl	+	shift	+	alt	+

n

ctrl	+	shift	+	alt	+

n

JetBrains	IntelliJ	have	supporting	documentation	on	their	website:

Reference	pdf	for	Windows	and	Linux
jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf

Reference	pdf	for	Mac	OS	X
jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf

And	the	help	files	have	“Keyboard	shortcuts	you	cannot	miss”

jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html

Code	Completion
Code	completion	is	your	friend.	You	can	use	it	to	explore	APIs	and	Libraries.

All	you	do	is	start	typing	and	after	the	.	you	will	see	context	specific	items	you	can	use.

https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard.pdf
https://www.jetbrains.com/idea/docs/IntelliJIDEA_ReferenceCard_Mac.pdf
https://www.jetbrains.com/idea/help/keyboard-shortcuts-you-cannot-miss.html

You	can	force	a	start	of	code	completion	if	you	close	the	pop-up	menu	by	pressing:

ctrl	+	space

Navigating	Source	Code

ctrl	+	click

For	any	method	in	your	code,	either	a	built	in	method,	or	a	library	method,	or	even	one
that	you	have	written.	You	can	hold	down	ctrl	and	left	mouse	click	on	the	method	name
to	jump	to	the	source	of	that	method.

You	might	be	prompted	to	allow	IntelliJ	to	download	the	source	for	external	libraries.

This	can	help	when	working	with	the	example	source	code	for	this	book	as	you	can
navigate	to	the	domain	objects	from	within	the	@Test	method	code.

Finding	Classes	and	Symbols
If	in	this	book	you	see	a	method	name	or	a	class	name,	but	don’t	know	where	to	find	it	in
the	source	code	then	you	can	use	the	find	functionality	in	IntelliJ	to	help.

To	find	a	class	by	name,	use	the	keyboard	shortcut:

ctrl	+	n

This	can	perform	partial	matching,	so	you	don’t	have	to	type	in	the	full	name	of	the	class.

If	you	want	to	find	a	‘file’	in	the	project	then	use	keyboard	shortcut:

ctrl	+	shift	+	n

If	you	want	to	find	a	method	name,	or	variable	name	(symbol)	then	use	the	keyboard
shortcut:

ctrl	+	shift	+	alt	+	n

Running	a	JUnit	Test
Annotating	methods	with	@Test	makes	it	easy	for	us	to	‘run’	the	methods	we	write.	You
can	right	click	on	the	method	name	or	class	and	choose	to	Run	as	JUnit	test.	Or	use
shortcut	key:

ctrl	+	shift	+	F10

Loading	Project	Source
The	easiest	way	to	load	a	project	into	IntelliJ,	and	this	applies	to	the	book	example	source
code,	is	to	use:

File	\	Open	and	select	the	pom.xml	file.

Help	Menu
The	help	menu	does	more	than	offer	a	link	to	a	help	file.

Find	Action
The	menu	option	Help	\	Find	Action	allows	you	to	type	an	action	and	IntelliJ	will
provide	menu	options	and	short	cut	keys	to	help.

e.g.

Select	Help	\	Find	Action
type	“junit”	and	you	will	see	a	list	of	‘settings’	you	can	use	to	help	configure	JUnit	in
IntelliJ
type	“run”	and	you	will	see	a	list	of	options	for	running	code,	or	tests

The	list	isn’t	just	for	information,	you	can	click	on	the	items	in	the	list	and	you	will	be
taken	to	the	functionality	in	IntelliJ	or	run	the	command.

Productivity	Guide
The	Help	\	Productivity	Guide	menu	option	shows	a	dialog	with	common	productivity
improvements.

You	can	click	on	the	items	in	the	list	to	see	what	it	does,	and	you	can	also	see	which	ones
you	have	used,	and	which	you	haven’t.

This	can	help	you	learn	the	basics	of	IntelliJ	very	quickly.

Summary
IntelliJ	offers	a	lot	of	flexibility	in	how	we	work	with	code.	Over	time	you	will	learn	to
make	your	work	with	Java	faster	as	you	learn	more	about	the	IDE.

Over	time	I	will	add	videos	and	information	to	JavaForTesters.com	to	demonstrate	more
functionality	with	IntelliJ	that	I	do	not	have	space	to	add	to	this	book.

http://javafortesters.com

Appendix	-	Exercise	Answers

This	appendix	contains	answers	to,	and	commentary	on,	the	exercises	in	the	book.

All	the	code	found	here,	can	also	be	found	in	the	supporting	source	code	github
repository:

https://github.com/eviltester/javaForTestersCode

Chapter	Three	-	My	First	JUnit	Test

Check	for	5	instead	of	4
When	I	ran	the	JUnit	test	I	saw	console	output	informing	me	of	an	Assertion	Error.
1	java.lang.AssertionError:	2+2=4	expected:<5>	but	was:<4>

2		 at	org.junit.Assert.fail(Assert.java:88)

3		 at	org.junit.Assert.failNotEquals(Assert.java:743)

4		 at	org.junit.Assert.assertEquals(Assert.java:118)

5		 at	org.junit.Assert.assertEquals(Assert.java:555)

6		 at	com.javafortesters.chap003myfirsttest.examples.MyFirstTest.

7		 											canAddTwoPlusTwo(MyFirstTest.java:19)

The	actual	message	was	longer	than	this,	but	we	will	explain	error	messages	in	a	later
chapter.

It	is	important	to	note	that	in	IntelliJ	I	could	click	on	the	hypertext	in	the	error	message
MyFirstTest.java:19	and	I	will	be	taken	to	the	line	of	code	in	the	editor	that	threw	the
exception.	Did	you	try	clicking	on	the	link?	It	makes	debugging	a	lot	easier.

Create	additional	@Test	methods	to	check
				@Test

				public	void	canSubtractTwoFromTwo(){

								int	answer	=	2-2;

								assertEquals("2-2=0",	0,	answer);

				}

				@Test

				public	void	canDivideFourByTwo(){

								int	answer	=	4/2;

								assertEquals("4/2=2",	2,	answer);

				}

				@Test

				public	void	canMultiplyTwoByTwo(){

								int	answer	=	2*2;

								assertEquals("2*2=4",	4,	answer);

				}

Check	the	naming	of	the	Test	classes

In	the	example	code	you	will	see	that	I	have	written	the	JUnit	tests	that	do	not	run	from
Maven,	as	failing	methods	i.e.	the	assertions	fail.	Just	to	make	the	point	that	naming	is
very	important.
public	class	NameClass	{

				@Test

				public	void	whenClassNameHasNoTestInItThenItIsNotRun(){

								//	this	test	will	not	run	from	maven	so	i	can	make

								//	a	failing	test…	it	fails	in	the	IDE

								assertTrue("whenClassNameHasNoTestInItThenItIsNotRun",

																			false);

				}

}

public	class	NameClassTest	{

				@Test

				public	void	whenClassHasTestAtEndThenTestIsRun(){

								//	this	test	will	run	from	maven	so	it	needs	to	pass

								assertTrue("whenClassHasTestAtEndThenTestIsRun",

																				true);

				}

}

public	class	NameTestClass	{

				@Test

				public	void	whenClassHasTestInMiddleThenTestIsNotRun(){

								//	this	test	will	not	run	from	maven	so	i	can	make

								//	a	failing	test…	it	fails	in	the	IDE

								assertTrue("whenClassHasTestInMiddleThenTestIsNotRun",

																				false);

				}

}

public	class	TestNameClass	{

				@Test

				public	void	whenClassHasTestAtFrontThenTestIsRun(){

								//	this	test	will	run	from	maven	so	it	needs	to	pass

								assertTrue("whenClassHasTestAtFrontThenTestIsRun",

																			true);

				}

}

Chapter	Four	-	Work	With	Other	Classes

Convert	an	int	to	Hex
				@Test

				public	void	canConvertIntToHex(){

								assertEquals("hex	11	is	b",	"b",

																Integer.toHexString(11));

								assertEquals("hex	10	is	b",	"a",

																Integer.toHexString(10));

								assertEquals("hex	3	is	b",	"3",

																Integer.toHexString(3));

								assertEquals("hex	21	is	b",	"15",

																Integer.toHexString(21));

				}

Confirm	MAX	and	MIN	Integer	sizes

				@Test

				public	void	canConfirmIntMinAndMaxLimits(){

								int	minimumInt	=	-2147483648;

								int	maximumInt	=	2147483647;

								assertEquals("integer	min",	minimumInt,	Integer.MIN_VALUE);

								assertEquals("integer	max",	maximumInt,	Integer.MAX_VALUE);

				}

Chapter	Five	-	Work	With	Our	Own	Classes

Experiment	with	the	code
When	you	replace	the	String	with	an	int,	you	should	see	a	syntax	error	because	an	int
does	not	satisfy	the	method	declaration	which	needs	a	String

When	you	replace	the	String	literal	"http://192.123.0.3:67"	with	null,	you	won’t	get
a	syntax	error	because	null	is	a	valid	object	reference,	but	if	you	run	the	@Test	method	it
should	fail.

Convert	from	Static	Usage	to	Static	Import
The	example	source	shows	the	individual	imports	of	DOMAIN	and	PORT,	if	I	comment	those
two	imports	out	and	add	in	the	import	for	TestAppEnv.*	then	I	have	imported	everything
statically	and	then	have	the	option	to	remove	the	TestAppEnv	prefix	from	getUrl,	but	I
don’t	have	to.

I	normally	would	not	import	TestAppEnv	statically	as	I	don’t	think	it	is	as	readable	as	a
simple	import	of	the	class.
	1	import	com.javafortesters.domainobject.TestAppEnv;

	2	import	org.junit.Assert;

	3	import	org.junit.Test;

	4	

	5	//	I	could	import	everything	on	TestAppEnv	statically,	and	then

	6	//	I	don't	need	to	prefix	getUrl	with	TestAppEnv

	7	/*

	8	import	static	com.javafortesters.domainobject.TestAppEnv.*;

	9	*/

10	//	If	I	just	import	the	DOMAIN	and	PORT	then	I	still	need	to

11	//	prefix	getUrl	with	TestAppEnv

12	import	static	com.javafortesters.domainobject.TestAppEnv.DOMAIN;

13	import	static	com.javafortesters.domainobject.TestAppEnv.PORT;

14	

15	

16	public	class	TestAppEnvironmentNoStaticImportTest	{

17	

18					@Test

19					public	void	canGetUrlStatically(){

20									Assert.assertEquals("Returns	Hard	Coded	URL",

21																	"http://192.123.0.3:67",

22																	TestAppEnv.getUrl());

23					}

24	

25					@Test

26					public	void	canGetDomainAndPortStatically(){

27	

28									Assert.assertEquals("Just	the	Domain",

29																	"192.123.0.3",

30																	DOMAIN);

31	

32									Assert.assertEquals("Just	the	port",

33																	"67",

34																	PORT);

35					}

36	}

Chapter	Six	-	Java	Classes	Revisited:	Constructors,	Fields,	Getter
&	Setter	Methods

Experiment	with	the	package	structure
When	I	have	the	Junit	Test	class	in	the	same	package	as	the	User	class	then	I	do	not	need
to	import	it.	Even	though	we	are	in	different	source	hierarchies	i.e.	one	in	src\test	and
one	in	src\main.
1	package	com.javafortesters.domainentities;

2	

3	import	org.junit.Test;

4	

5	import	static	org.junit.Assert.assertEquals;

6	

7	public	class	UserTest	{

If	I	change	the	package	then	I	have	to	add	the	import	for	the	User	class.
1	package	com.javafortesters.chap006domainentities.exercises.differentpackage;

2	

3	import	com.javafortesters.domainentities.User;

4	import	org.junit.Test;

5	import	static	org.junit.Assert.assertEquals;

6	

7	public	class	UserTest	{

I	would	also	have	to	add	the	import	if	there	were	multiple	User	classes	in	my	code	base,	in
order	to	tell	Java	which	one	I	want	to	use.

Experiment	with	private	and	public	fields
When	a	class	has	fields	which	are	public:
1	public	class	User	{

2					public	String	username;

3					public	String	password;

4	

5					public	User(){

6									username	=	"admin";

7									password	=	"pA55w0rD";

8					}

9	}

Then	it	doesn’t	really	need	getter	or	setter	methods.

But	the	User	class	has	no	control	over	its	data.	Later	we	add	checks	on	the	setter	and
getter	methods	so	that	we	can’t	add	invalid	data	to	the	object.	If	you	make	the	fields
public	then	you	don’t	have	those	safeguards.
	1					@Test

	2					public	void	canConstructWithUsernameAndPassword(){

	3									User	auser	=	new	User();

	4									auser.username	=	"bob";

	5									assertEquals("not	default	username",

	6																	"bob",

	7																	auser.username);

	8					}

	9	

10					@Test

11					public	void	canSetNameToInvalidValue(){

12									User	auser	=	new	User();

13									auser.username	=	"12345£$%$";

14									assertEquals("invalid	username",

15																	"12345£$%$",

16																	auser.username);

17					}

Experiment	with	the	field	and	parameter	names
When	you	remove	this.	from	the	constructor:
1					public	User(String	username,	String	password)	{

2									username	=	username;

3									password	=	password;

4					}

When	Java	sees	the	line:
1									username	=	username;

It	executes	it,	but	assigns	the	value	passed	in	as	the	parameter	to	the	parameter,	and	not	to
the	field,	so	our	field	called	username	is	never	assigned	a	value	and	so	is	null,	as	reported
by	the	assertion	message:
java.lang.AssertionError:	given	username	expected	expected:<admin>	but	was:

<null>

When	we	rename	the	parameters:
1					public	User(String	aUsername,	String	aPassword)	{

2									username	=	aUsername;

3									password	=	aPassword;

4					}

Then	we	do	not	need	the	this	keyword.	The	parameters	and	fields	have	different	names,
so	they	will	not	clash.

It	is	up	to	you	which	style	you	choose	to	adopt	for	your	coding.

I	use	both	and	switch	between	them	at	different	times.	By	naming	the	parameter	the	same
as	the	field,	and	using	the	this	keyword	to	distinguish	them,	when	I	use	code	completion
in	the	constructor,	the	code	completion	shows	me	username	and	password	making	it	easy
for	me	to	see	what	the	parameters	refer	to.	This	code	completion	use	case	is	the	main

decision	maker	for	me,	when	I	choose	whether	or	not	to	use	this	or	rename	the
parameters.

Chapter	Eight	-	Selections	and	Decisions

Cat	or	Cats?	Ternary	Operator
Write	an	@Test	method	that	uses	a	ternary	operator	to	return	“cats”	if	a	numberOfCats
equals	1.	And	return	"cat"	if	the	numberOfCats	is	not	1
	1					@Test

	2					public	void	catOrCats(){

	3	

	4									int	numberOfCats	=	1;

	5	

	6									assertEquals("1	==	cat",

	7																	"cat",

	8																	(numberOfCats	==	1)	?	"cat"	:	"cats");

	9	

10									numberOfCats	=	0;

11									assertEquals("0	==	cats",

12																	"cats",

13																	(numberOfCats	==	1)	?	"cat"	:	"cats");

14	

15									numberOfCats	=	2;

16									assertEquals("2	==	cats",

17																	"cats",

18																	(numberOfCats	==	1)	?	"cat"	:	"cats");

19					}

When	I	rewrite	the	code	so	that	it	uses	a	method,	then	the	code	is	cleaner	and	avoids	the
repetition.
	1					@Test

	2					public	void	catOrCatsAsMethod(){

	3	

	4									assertEquals("1	==	cat",	"cat",	catOrCats(1));

	5	

	6									assertEquals("0	==	cats",	"cats",	catOrCats(0));

	7	

	8									assertEquals("2	==	cats",	"cats",	catOrCats(2));

	9					}

10	

11					private	String	catOrCats(int	numberOfCats){

12									return	(numberOfCats	==	1)	?	"cat"	:	"cats";

13					}

AssertTrue	if	true
	1					@Test

	2					public	void	truthyIf(){

	3									boolean	truthy=true;

	4	

	5									if(truthy)

	6													assertTrue(truthy);

	7	

	8									if(truthy){

	9													assertTrue(truthy);

10													assertFalse(!truthy);

11									}

12					}

AssertTrue	else	AssertFalse
For	a	single	statement	I	do	not	need	to	add	the	braces:
1					@Test

2					public	void	truthyIfElse(){

3									boolean	truthy=true;

4	

5									if(truthy)

6													assertTrue(truthy);

7									else

8													assertFalse(truthy);

9					}

When	there	is	more	than	one	statement	in	the	if	or	the	else	then	I	need	to	add	the	{}
braces:
	1					@Test

	2					public	void	truthyIfElseBraces(){

	3									boolean	truthy=true;

	4	

	5									if(truthy){

	6													assertTrue(truthy);

	7													assertFalse(!truthy);

	8									}else{

	9													assertFalse(truthy);

10									}

11					}

I	can	choose	to	leave	off	the	braces	for	the	else	because	there	is	only	one	condition,	but	in
practice	I	would	not	do	this	because	I	might	want	to	expand	the	number	of	statements	on
the	else	condition	in	the	future,	and	I	make	the	code	harder	to	review:
	1					@Test

	2					public	void	truthyIfElseOnlyOneSetOfBraces(){

	3									boolean	truthy=true;

	4	

	5									if(truthy){

	6													assertTrue(truthy);

	7													assertFalse(!truthy);

	8									}else

	9													assertFalse(truthy);

10					}

Nested	If	Else	Horror
If	you	ever	find	yourself	writing	code	like	the	following	then	I	guarantee	that	you	have
done	something	wrong,	and	have	not	thought	through	the	problem	properly.

I	decided	to	pull	the	main	logic	out	into	a	separate	method	so	that	I	could	call	it	more
easily	with	the	different	combinations	of	true	and	false	for	truthy	and	falsey.

I	also	added	a	set	of	System.out.println	so	that	I	could	see	the	truth	table	combinations.
It	was	fortunate	I	did	this	because	I	actually	made	a	mistake	in	the	nested	if/else
statements	when	I	first	wrote	my	answer	-	how	did	you	check	your	answer?

	1					@Test

	2					public	void	nestedIfElseHorror(){

	3									horrorOfNestedIfElse(true,	true);

	4									horrorOfNestedIfElse(true,	false);

	5									horrorOfNestedIfElse(false,	true);

	6									horrorOfNestedIfElse(false,	false);

	7					}

	8	

	9					public	void	horrorOfNestedIfElse(boolean	truthy,	boolean	falsey){

10	

11									if(truthy){

12													if(!falsey){

13																	if(truthy	&&	!falsey){

14																					if(falsey	||	truthy){

15																									System.out.println("T	|	F");

16																									assertTrue(truthy);

17																									assertFalse(falsey);

18																					}

19																	}

20													}else{

21																	System.out.println("T	|	T");

22																	assertTrue(truthy);

23																	assertTrue(falsey);

24													}

25									}else{

26													if(!truthy){

27																	if(falsey){

28																					System.out.println("F	|	T");

29																					assertTrue(falsey);

30																					assertFalse(truthy);

31																	}else{

32																					System.out.println("F	|	F");

33																					assertFalse(falsey);

34																					assertFalse(truthy);

35																	}

36													}

37									}

38					}

Switch	on	Short	Code
I	added	a	break,	after	the	default.	Remove	the	break	to	verify	for	yourself	if	it	is
required	or	not,	and	decide	if	there	is	any	difference	in	the	readability	of	the	code.

Also,	remove	some	of	the	break	statements	and	verify	that	the	results	are	not	as	expected.
	1					@Test

	2					public	void	countrySwitch(){

	3	

	4									assertEquals("United	Kingdom",	countryOf("UK"));

	5									assertEquals("United	States",	countryOf("US"));

	6									assertEquals("United	States",	countryOf("USA"));

	7									assertEquals("United	States",	countryOf("UsA"));

	8									assertEquals("France",	countryOf("FR"));

	9									assertEquals("Sweden",	countryOf("sE"));

10									assertEquals("Rest	Of	World",	countryOf("ES"));

11									assertEquals("Rest	Of	World",	countryOf("CH"));

12					}

13	

14					private	String	countryOf(String	shortCode)	{

15	

16									String	country;

17	

18									switch(shortCode.toUpperCase()){

19													case	"UK":

20																	country=	"United	Kingdom";

21																	break;

22													case	"US":

23													case	"USA":

24																	country	=	"United	States";

25																	break;

26													case	"FR":

27																	country	=	"France";

28																	break;

29													case	"SE":

30																	country	=	"Sweden";

31																	break;

32													default:

33																	country	=	"Rest	Of	World";

34																	break;

35									}

36	

37									return	country;

38					}

Switch	on	int
This	exercise	was	designed	to	allow	you	to	switch	on	variables	other	than	String,	and
also	to	see	what	creative	approach	you	adopted	for	the	>	4	and	<	1	conditions.

In	my	answer	below,	you	can	see	that	I	added	a	set	of	if	statements	in	the	default	block.
	1					@Test

	2					public	void	integerSwitch(){

	3	

	4									assertEquals("One",	integerString(1));

	5									assertEquals("Two",	integerString(2));

	6									assertEquals("Three",	integerString(3));

	7									assertEquals("Four",	integerString(4));

	8									assertEquals("Too	big",	integerString(5));

	9									assertEquals("Too	big",	integerString(Integer.MAX_VALUE));

10									assertEquals("Too	small",	integerString(0));

11									assertEquals("Too	small",	integerString(Integer.MIN_VALUE));

12					}

13	

14					private	String	integerString(int	anInt)	{

15	

16									String	valReturn="";

17	

18									switch(anInt){

19													case	1:

20																	valReturn	=	"One";

21																	break;

22													case	2:

23																	valReturn	=	"Two";

24																	break;

25													case	3:

26																	valReturn	=	"Three";

27																	break;

28													case	4:

29																	valReturn	=	"Four";

30																	break;

31													default:

32																	if(anInt	<	1){

33																					valReturn	=	"Too	small";

34																	}

35																	if(anInt	>	4){

36																					valReturn	=	"Too	big";

37																	}

38																	break;

39									}

40	

41									return	valReturn;

42					}

And	for	the	extra	points,	you	explored	writing	a	switch	statement	without	using	break;.

In	this	example,	because	the	method	is	so	simple,	the	code	actually	reads	quite	well,	and
succinctly.	I	did	have	to	add	an	extra	return	"";	line,	which	will	never	be	executed,	in
order	to	satisfy	the	method’s	declaration	of	returning	a	String.
	1					private	String	integerStringUsingReturnOnly(int	anInt)	{

	2									switch(anInt){

	3													case	1:

	4																	return	"One";

	5													case	2:

	6																	return	"Two";

	7													case	3:

	8																	return	"Three";

	9													case	4:

10																	return	"Four";

11													default:

12																	if(anInt	<	1){

13																					return	"Too	small";

14																	}

15																	if(anInt	>	4){

16																					return	"Too	big";

17																	}

18									}

19	

20									return	"";

21					}

Chapter	Nine	-	Arrays	and	For	Loop	Iteration

Create	an	Array	of	Users
In	order	to	work	with	the	User	objects,	I	first	had	to	import	the	User	class.
import	com.javafortesters.domainentities.User;

Then	I	created	the	array	and	added	the	users.
				@Test

				public	void	createAnArrayOfUsers(){

								User[]	users	=	new	User[3];

								users[0]	=	new	User("bob","bA55Word");

								users[1]	=	new	User("eris","eA55Word");

								users[2]	=	new	User("ken","kA55Word");

								assertEquals("bob",	users[0].getUsername());

								assertEquals("eris",	users[1].getUsername());

								assertEquals("ken",	users[2].getUsername());

				}

Note	that	I	added	asserts	on	the	username	to	check	that	I	had	added	the	users	correctly.
Did	you	add	asserts	to	your	@Test	method?	If	not,	how	did	you	know	it	worked?

Iterate	over	the	Array	of	Users
I	added	the	following	code	to	my	@Test	method	above,	to	iterate	over	the	array	and	print
out	the	values	in	the	array:
								for(User	aUser:users){

												System.out.println(aUser.getUsername());

								}

Create	an	array	of	100	users
In	my	sample	answer,	I	chose	to	System.out.println	the	array	to	check.

I	could	have	put	a	breakpoint	after	the	loop	and	used	the	debugger	to	check	by	running	the
code	in	debug	mode.

I	added	assertion	code,	which	uses	the	for	each	so	I	iterate	over	every	item,	and	count	each
item,	using	the	count	userId	to	check	the	username	and	password.	Since	I	know	that	there
are	supposed	to	be	100,	when	I	exit	the	for	each	loop,	I	expect	my	userId	to	equal	101.

You	may	have	chosen	another	method.	That’s	fine.	There	are	many	ways	to	do	this.
				@Test

				public	void	exerciseCreateAnArrayOf100Users(){

								User[]	users	=	new	User[100];

								for(int	userIndex	=0;	userIndex<100;	userIndex++){

												int	userId	=	userIndex	+	1;

												users[userIndex]	=	new	User("user"	+	userId,

																																								"password"	+	userId);

								}

								//	check	creation

								for(User	aUser:users){

												System.out.println(aUser.getUsername()	+

																															",	"	+

																																aUser.getPassword());

								}

								//	bonus	points	assert	creation

								int	userId	=	1;

								for(User	aUser	:	users){

												assertEquals("user"	+	userId,	aUser.getUsername());

												assertEquals("password"	+	userId,	aUser.getPassword());

												userId++;

								}

								//	check	the	last	one	output	was	100,	i.e.	next	would	be	101

								assertEquals(userId,	101);

				}

Sort	Workdays	Array	and	Assert	Result
The	text	is	sorted	in	alphabetical	order,	and	since	all	the	strings	start	with	uppercase,	the
words	are	in	the	order	we	would	expect.
				@Test

				public	void	sortWorkdaysArrayAndAssertResult(){

								String[]	workdays	=	{"Monday",	"Tuesday",	"Wednesday",

																"Thursday",	"Friday"};

								Arrays.sort(workdays);

								assertEquals(workdays[0],	"Friday");

								assertEquals(workdays[1],	"Monday");

								assertEquals(workdays[2],	"Thursday");

								assertEquals(workdays[3],	"Tuesday");

								assertEquals(workdays[4],	"Wednesday");

				}

After	amending	the	day	names,	I	expect	the	words	starting	with	lower	case	letters	to	come
after	the	words	with	uppercase	letters.
				@Test

				public	void	sortWorkdaysMixedCaseArrayAndAssertResult(){

								String[]	workdays	=	{"monday",	"Tuesday",	"Wednesday",

																"thursday",	"Friday"};

								Arrays.sort(workdays);

								assertEquals(workdays[0],	"Friday");

								assertEquals(workdays[1],	"Tuesday");

								assertEquals(workdays[2],	"Wednesday");

								assertEquals(workdays[3],	"monday");

								assertEquals(workdays[4],	"thursday");

				}

Understand	how	print2DIntArray	method	works
	1					public	void	print2DIntArray(int	[][]multi){

	2									for(int[]	outer	:	multi){

	3													if(outer==null){

	4																	System.out.print("null");

	5													}else{

	6																	for(int	inner	:	outer){

	7																					System.out.print(inner	+	",");

	8																	}

	9													}

10													System.out.println("");

11									}

12					}

line	01	:	declare	the	method	as	accepting	a	2	dimensional	int	array	as	parameter
line	02	:	iterate	over	the	outer	array
line	03	:	if	the	outer	array	is	null,	then	…

line	04	:	output	"null",	we	do	not	try	and	process	the	contents	of	this	array

http://en.wikipedia.org/wiki/Alphabetical_order

line	05	:	the	outer	array	is	not	null,	therefore…
line	06	:	iterate	over	the	contents	of	this	array

line	07	:	output	the	contents	of	the	array	cell
line	10	:	output	a	blank	line

Create	a	Triangle
To	create	a	triangle,	I	create	the	array	to	allow	a	ragged	array.

Then	loop	over	the	array,	and	assign	an	array	to	each	cell	in	the	array.

For	each	of	the	new	arrays,	I	loop	over	the	cell	contents	and	insert	the	index	value.
				@Test

				public	void	createTriangle2dArray(){

								int[][]triangle	=	new	int	[16][];

								for(int	row=0;	row<triangle.length;	row++){

												triangle[row]	=	new	int[row+1];

												for(int	i=0;	i<	(row+1);	i++){

																triangle[row][i]	=	i;

												}

								}

								print2DIntArray(triangle);

				}

				public	void	print2DIntArray(int	[][]multi){

								for(int[]	outer	:	multi){

												if(outer==null){

																System.out.print("null");

												}else{

																for(int	inner	:	outer){

																				System.out.print(inner	+	",");

																}

												}

												System.out.println("");

								}

				}

Chapter	Ten	-	Introducing	Collections

Use	a	for	loop	instead	of	a	while	loop
				@Test

				public	void	useAForLoopInsteadOfAWhile(){

								String[]	someDays	=	{"Tuesday","Thursday",

																"Wednesday","Monday",

																"Saturday","Sunday",

																"Friday"};

								List<String>	days	=	Arrays.asList(someDays);

								int	forwhile;

								for(forwhile=0;	!days.get(forwhile).equals("Monday");	forwhile++){

								}

								assertEquals("Monday	is	at	position	3",	3,	forwhile);

				}

Create	and	manipulate	a	Collection	of	Users
				@Test

				public	void	createAndManipulateACollectionOfUsers(){

								Collection<User>	someUsers	=	new	ArrayList<User>();

								User	bob	=	new	User("bob",	"Passw0rd");

								User	eris	=	new	User("eris",	"Cha0sTime");

								assertEquals(0,	someUsers.size());

								assertTrue(someUsers.isEmpty());

								someUsers.add(bob);

								someUsers.add(eris);

								assertEquals(2,	someUsers.size());

								assertFalse(someUsers.isEmpty());

								Collection<User>	secondUsers	=	new	ArrayList<User>();

								User	robert	=	new	User("robert",	"9assword");

								User	aleister	=	new	User("aleister",	"Pass5word");

								secondUsers.add(robert);

								secondUsers.add(aleister);

								assertEquals(2,	secondUsers.size());

								someUsers.addAll(secondUsers);

								assertEquals(4,	someUsers.size());

								assertTrue(someUsers.containsAll(someUsers));

								assertTrue(someUsers.contains(aleister));

								secondUsers.removeAll(someUsers);

								assertEquals(0,	secondUsers.size());

								someUsers.clear();

								assertEquals(0,	someUsers.size());

				}

Create	and	manipulate	a	List	of	Users
				@Test

				public	void	createAndManipulateAListOfUsers(){

								List<User>	someUsers	=	new	ArrayList<User>();

								assertEquals(0,	someUsers.size());

								User	bob	=	new	User("bob",	"Passw0rd");

								User	eris	=	new	User("eris",	"Cha0sTime");

								someUsers.add(bob);

								assertEquals(1,	someUsers.size());

								someUsers.add(0,	eris);

								assertEquals(2,	someUsers.size());

								assertEquals(1,	someUsers.indexOf(bob));

								assertEquals(0,	someUsers.indexOf(eris));

								someUsers.remove(0);

								assertEquals(0,	someUsers.indexOf(bob));

								assertEquals(1,	someUsers.size());

				}

Create	and	manipulate	a	Set	of	Users
				@Test

				public	void	createAndManipulateASetOfUsers(){

								Set<User>	someUsers	=	new	HashSet<User>();

								assertEquals(0,	someUsers.size());

								User	bob	=	new	User("bob",	"Passw0rd");

								someUsers.add(bob);

								assertEquals(1,	someUsers.size());

								someUsers.add(bob);

								assertEquals(1,	someUsers.size());

				}

Create	and	manipulate	a	Map	of	Users
				@Test

				public	void	createAndManipulateAMapOfUsers(){

								Map<String,	User>	someUsers	=	new	HashMap<String,	User>();

								assertEquals(0,	someUsers.size());

								User	bob	=	new	User("bob",	"Passw0rd");

								User	eris	=	new	User("eris",	"Cha0sTime");

								someUsers.put(bob.getUsername(),	bob);

								assertEquals(1,	someUsers.size());

								someUsers.put(bob.getUsername(),	eris);

								assertEquals(1,	someUsers.size());

				}

Chapter	Eleven	-	Introducing	Exceptions

Fix	the	NullPointerException	in	the	code
All	I	had	to	do	was	take	the	code	listed	earlier	in	the	chapter,	and	assign	18	to	the	age
variable	before	trying	to	access	it.
				@Test

				public	void	noLongerThrowANullPointerException(){

								Integer	age=18;

								String	ageAsString	=	age.toString();

								String	yourAge	=

																"You	are	"	+	ageAsString	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

Uninitialised	variables,	and	parameters	are	a	common	source	of	exceptions.

Use	a	different	exception	instead	of	NullPointerException
When	I	replaced	NullPointerException	with	ArithmeticException.

The	NullPointerException	is	thrown	because	there	was	no	code	to	catch	it.
				@Test(expected	=	NullPointerException.class)

				public	void	catchADifferentException(){

								Integer	age=null;

								String	ageAsString;

								try{

												ageAsString	=	age.toString();

								}catch(ArithmeticException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}

								String	yourAge	=

																"You	are	"	+	age.toString()	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

You	can	see	I	used	the	expected	parameter	to	allow	me	to	check	for	this	Exception	thrown
by	the	@Test	method.

Don’t	fix	the	cause	of	the	exception
When	I	remove	the	age	=	18;	statement	from	within	the	catch	block	and	run	the	code.
The	code	threw	a	NullPointerException	because	we	added	no	try	catch	block	inside
the	catch	block.
				@Test(expected	=	NullPointerException.class)

				public	void	testNotFixedStillThrowsNullPointer(){

								Integer	age=null;

								String	ageAsString;

								try{

												ageAsString	=	age.toString();

								}catch(ArithmeticException	e){

												//age	=	18;

												ageAsString	=	age.toString();

								}

								String	yourAge	=

																"You	are	"	+	age.toString()	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

Catch	a	Checked	Exception
When	I	used	NoSuchMethodException	instead	of	NullPointerException.	I	received	a
syntax	error.
				@Test

				public	void	thisTriggersASyntaxErrorBecauseExceptionIsNotDeclared(){

								Integer	age=null;

								String	ageAsString;

								try{

												ageAsString	=	age.toString();

								}catch(NoSuchMethodException	e){

												age	=	18;

												ageAsString	=	age.toString();

								}

								String	yourAge	=

																"You	are	"	+	age.toString()	+	"	years	old";

								assertEquals("You	are	18	years	old",	yourAge);

				}

I	received	a	syntax	error	on	the	NoSuchMethodException	line:
								}catch(NoSuchMethodException	e){

NoSuchMethodException	is	a	checked	exception	and	needs	to	be	declared	as	thrown	by
methods.	The	toString	method	does	not	declare	that	it	will	throw	a
NoSuchMethodException	so	I	receive	a	syntax	error.

NullPointerException	and	ArithmeticException	are	unchecked	exceptions	and	don’t
need	to	be	declared	as	thrown	by	methods.

Use	Exception	as	an	object
When	I	add	the	code	to	use	the	methods	on	the	exception:
				@Test

				public	void	useExceptionAsAnObject(){

								Integer	age=null;

								String	ageAsString;

								try{

												ageAsString	=	age.toString();

								}catch(NullPointerException	e){

												System.out.println("getMessage	-	"	+

																				e.getMessage());

												System.out.println("getStacktrace	-	"	+

																				e.getStackTrace());

												System.out.println("printStackTrace");

												e.printStackTrace();

								}

				}

I	receive	the	following	output,	I	have	cut	down	the	output	to	save	space	so	...	represents
some	missing	output:
getMessage	-	null

getStacktrace	-	[Ljava.lang.StackTraceElement;@4ea3c69a

printStackTrace

java.lang.NullPointerException

	 at	com.javafortesters.exceptions.exercises.IntroducingExceptionsExercisesTest.

	 useExceptionAsAnObject(IntroducingExceptionsExercisesTest.java:99)

				...

	 at	java.lang.reflect.Method.invoke(Method.java:601)

	 at	com.intellij.rt.execution.application.AppMain.main(AppMain.java:120)

From	this	I	can	see	that	getMessage	on	a	NullPointerException	does	not	return	a
message,	so	we	need	to	use	the	stack	trace	to	figure	out	what	went	wrong.	Other
exceptions	do	return	messages,	and	when	you	start	creating	your	own	exceptions,	I
recommend	that	you	add	a	message	to	make	it	easier	for	other	people	to	understand	the
problem	in	the	code.

The	getStacktrace	is	an	array	of	StackTraceElement	Objects,	so	I	could	access	element
[0],	which	is	the	most	recent	item	on	the	Array,	and	use	it	to	find	information	about	that
part	of	the	stack	trace	e.g.

getClassName

getFileName

getLineNumber

getMethodName

												System.out.println("Stack	Trace	Length	-	"	+

																																e.getStackTrace().length);

												System.out.println("Stack	Trace	[0]	classname	-	"	+

																																e.getStackTrace()[0].getClassName());

												System.out.println("Stack	Trace	[0]	filename	-	"	+

																																e.getStackTrace()[0].getFileName());

												System.out.println("Stack	Trace	[0]	linenumber	-	"	+

																																e.getStackTrace()[0].getLineNumber());

												System.out.println("Stack	Trace	[0]	methodname	-	"	+

																																e.getStackTrace()[0].getMethodName());

which	would	display:
Stack	Trace	Length	-	27	

Stack	Trace	[0]	classname	-	com.javafortesters.exceptions.exercises

IntroducingExceptionsExercisesTest

Stack	Trace	[0]	filename	-	IntroducingExceptionsExercisesTest.java	

Stack	Trace	[0]	linenumber	-	100

Stack	Trace	[0]	methodname	-	useExceptionAsAnObject

For	more	information	on	the	StackTraceElement	you	can	read	the	official	documentation:

docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html

Chapter	Twelve	-	Introducing	Inheritance

Create	a	User	that	is	composed	of	TestAppEnv

http://docs.oracle.com/javase/7/docs/api/java/lang/StackTraceElement.html

I	have	multiple	approaches	for	implementing	this.

I	can:

create	a	TestAppEnv	object	within	my	User	object,	or
re-use	TestAppEnv	statically	from	within	my	User	object
create	a	new	EnvironmentUser	object	which	extends	object	and	uses	TestAppEnv

Create	a	TestAppEnv	object	within	my	User	object

To	create	a	TestAppEnv	object	within	my	User	object	I	could:

add	a	new	TestAppEnv	field,
instantiate	the	object	in	the	constructor,	and
implement	a	getUrl	method	on	the	object.

public	class	User	{

				private	String	username;

				private	String	password;

				private	TestAppEnv	testAppEnv;

				public	User(){

								this("username",	"password");

				}

				public	User(String	username,	String	password)	{

								this.username	=	username;

								this.password	=	password;

								this.testAppEnv	=	new	TestAppEnv();

				}

				public	String	getUsername()	{

								return	username;

				}

				public	String	getPassword()	{

								return	password;

				}

				public	void	setPassword(String	password)	{

								this.password	=	password;

				}

				public	String	getUrl(){

								return	this.testAppEnv.getUrl();

				}

}

Re-use	TestAppEnv	statically	from	within	my	User	object

Since	TestAppEnv	was	originally	designed	to	be	accessed	statically,	I	don’t	need	to	declare
a	field	or	instantiate	an	object,	I	could	just:

add	a	getUrl	method	to	User
delegate	to	the	static	method	on	TestAppEnv

				public	String	getUrl(){

								return	TestAppEnv.getUrl();

				}

Create	a	new	EnvironmentUser

Since	the	EnvironmentUser	is	a	special	case	of	user,	I	don’t	need	to	amend	the	User	object
at	all.	I	could	create	a	new	object	called	EnvironmentUser	which	extends	User,	and	then
add	a	new	method	to	the	EnvironmentUser	which	statically	uses	the	TestAppEnv	object.
package	com.javafortesters.chap012inheritance.exercises;

import	com.javafortesters.domainentities.User;

import	com.javafortesters.domainobject.TestAppEnv;

public	class	EnvironmentUser	extends	User	{

				public	String	getUrl(){

								return	TestAppEnv.getUrl();

				}

}

And	I	would	use	the	object	in	an	@Test	method	as	follows:
				@Test

				public	void	createAnEnvironmentUser(){

								EnvironmentUser	enuser	=	new	EnvironmentUser();

								assertEquals("username",	enuser.getUsername());

								assertEquals("http://192.123.0.3:67",	enuser.getUrl());

				}

Create	a	ReadOnlyUser
To	create	a	ReadOnlyUser	which	has	the	permission	ReadOnly,	with	the	same	default
“username”	and	“password”	from	User.	I	first	wrote	an	@Test	method	which	checked	for
the	correct	implementation.
				@Test

				public	void	readOnlyUserPrivsAndDefaults(){

								ReadOnlyUser	rod	=	new	ReadOnlyUser();

								assertEquals("ReadOnly",	rod.getPermission());

								assertEquals("username",	rod.getUsername());

								assertEquals("password",	rod.getPassword());

				}

Then	I	implemented	the	ReadOnlyUser.	This	was	a	very	simple	class	which	extends	the
User,	and	implements	an	@Override	of	getPermission
package	com.javafortesters.chap012inheritance.exercises;

import	com.javafortesters.domainentities.User;

public	class	ReadOnlyUser	extends	User	{

				@Override

				public	String	getPermission()	{

								return	"ReadOnly";

				}

}

Chapter	Thirteen	-	More	Exceptions

Create	an	InvalidPassword	exception
Part	of	‘helping’	people	use	the	User	domain	object	is	to	alert	them	to	validation	and
exceptions	that	they	might	encounter	using	the	class.	We	can	do	this	through
documentation,	and	we	can	do	this	through	custom	exceptions.

By	creating	an	InvalidPassword	exception	we	alert	people	to	the	validation	rules	around
setting	the	password	on	a	user.

As	you	saw	in	the	chapter,	I	create	a	class	with	the	code	for	an	InvalidPassword:
public	class	InvalidPassword	extends	Exception	{

				public	InvalidPassword(String	message)	{

								super(message);

				}

}

In	my	User	class,	I	make	the	setPassword	method	throw	the	InvalidPassword	when	it
fails	the	password	length	check:
				public	void	setPassword(String	password)	throws	InvalidPassword	{

						if(password.length()<7){

									throw	new	InvalidPassword("Password	must	be	>	6	chars");

						}

						this.password	=	password;

				}

You	can	see	in	the	code	that	I	pass	in	a	message	to	the	InvalidPassword	exception	to
describe	the	circumstances	under	which	the	exception	was	thrown.

In	order	to	check	all	of	this,	I	create	a	class	with	@Test	methods	which	will	check:

the	InvalidPassword	exception	is	thrown	in	the	constructor
the	InvalidPassword	exception	is	not	thrown	in	the	default	constructor
the	error	message	thrown	by	the	exception	contains	the	text	“Password	must	be	>	6
chars”
the	InvalidPassword	exception	is	thrown	on	setPassword

To	check	that	the	InvalidPassword	exception	is	thrown	in	the	constructor,	I	use	the
expected	parameter	to	check	for	the	thrown	exception.	Since	the	exception	is	a	checked
exception	I	have	to	add	the	throws	keyword	in	the	method	declaration:
				@Test(expected	=	InvalidPassword.class)

				public	void	constructUserWithException()	throws	InvalidPassword	{

								User	aUser	=	new	User("username",	"p");

				}

To	check	that	the	default	constructor	does	not	throw	an	exception,	all	I	do	is	create	the
User	and	assert	that	the	default	password	was	created.
				@Test

				public	void	createDefaultUserWithNoThrowsInvalidPasswordException()	{

								User	aUser	=	new	User();

								assertEquals("password",aUser.getPassword());

				}

My	thinking	around	this	was:

Since	the	exception	is	Checked,	I	can’t	write	the	code	if	the	exception	is	thrown	since
I	would	have	to	either	add	a	try	catch	block	or	add	the	throws	statement	to	the
method.
I	assert	that	the	User	was	created	correctly	because	if	the	creation	failed	then	the
assertion	would	fail.
If	an	exception	is	thrown	then	the	@Test	method	will	fail

To	check	for	the	error	message,	I	try	and	catch	the	exception,	then	check	the	error
message:
				@Test

				public	void	createUserWithInvalidPasswordExceptionMessages(){

								User	aUser;

								try	{

												aUser	=	new	User("username",	"p");

												fail("An	Invalid	Password	Exception	should	have	been	thrown");

								}	catch	(InvalidPassword	e)	{

												assertTrue(e.getMessage().startsWith("Password	must	be	>	6	chars"));

								}

				}

Note	in	the	above	that	I	add	a	fail	statement	in	the	try	block:

I	do	this	because	the	exception	is	supposed	to	have	been	thrown	and	this	fail
statement	should	never	be	reached.
If	the	fail	statement	is	reached	then	the	exception	was	not	thrown	and	I	need	to
force	an	@Test	failure.
If	I	did	not	add	the	fail	statement	and	an	exception	was	not	thrown	then	the	@Test
method	would	pass,	but	for	the	wrong	reasons.

I	also	make	sure	that	the	setPassword	method	throws	the	exception.
				@Test

				public	void	setPasswordWithInvalidPasswordExceptionMessages(){

								User	aUser	=	new	User();

								try	{

												aUser.setPassword("tiny");

												fail("An	Invalid	Password	Exception	should	have	been	thrown");

								}	catch	(InvalidPassword	e)	{

												assertTrue(e.getMessage().startsWith("Password	must	be	>	6	chars"));

								}

				}

To	do	this,	I	create	the	User	with	the	default	constructor	since	I	know	that	will	not	throw
the	exception.	Then	wrap	the	setPassword	with	a	try	catch.	And	I	repeat	the	text
assertion	in	the	catch	block.	Note	that	I	also	add	the	fail	statement.

This	exercise	is	a	good	example	of	why	the	fail	statement	is	important.	Without	the	fail
statement	my	@Test	methods	could	pass	because	they	did	not	throw	the	exception.

Chapter	Fourteen	-	JUnit	Explored

Create	an	@Test	method	which	uses	all	of	the	asserts
				@Test

				public	void	junitHasAssertions(){

								assertEquals(6,	3	+	3);

								assertEquals("3	+	3	=	6",	6,	3	+	3);

								assertFalse("false	is	false",	false);

								assertFalse(false);

								assertTrue("true	is	true",	true);

								assertTrue(true);

								int	[]	oneTo10	=	{1,2,3,4,5,6,7,8,9,10};

								int	[]	tenToOne	=	{10,9,8,7,6,5,4,3,2,1};

								Arrays.sort(tenToOne);

								assertArrayEquals(oneTo10,	tenToOne);

								assertNotNull("An	empty	string	is	not	null",	"");

								assertNotNull("");

								assertNotSame("An	empty	string	is	not	null",	null,	"");

								assertNotSame(null,	"");

								assertNull("Only	null	is	null",	null);

								assertNull(null);

								assertSame("Only	null	is	null",	null,	null);

								assertSame(null,	null);

				}

Replicate	all	the	JUnit	Asserts	using	assertThat
				@Test

				public	void	assertThatWithHamcrestMatchers(){

								assertThat(3	+	3,	is(6));

								assertThat("3	+	3	=	6",	3	+	3,	is(6));

								assertThat("false	is	false",	false,	equalTo(false));

								assertThat(false,	is(false));

								assertThat("true	is	true",	true,	equalTo(true));

								assertThat(true,	is(true));

								int	[]	oneTo10	=	{1,2,3,4,5,6,7,8,9,10};

								int	[]	tenToOne	=	{10,9,8,7,6,5,4,3,2,1};

								Arrays.sort(tenToOne);

								assertThat(oneTo10,	equalTo(tenToOne));

								assertThat("An	empty	string	is	not	null",	"",

																is(not(nullValue())));

								assertThat("",	is(not(nullValue())));

								assertThat("",is(notNullValue()));

								assertThat("Only	null	is	null",	null,	is(nullValue()));

								assertThat(null,	nullValue());

				}

Use	all	of	the	Hamcrest	matchers	listed
				@Test

				public	void	useTheListedHamcrestMatchers(){

								assertThat(3,	is(equalTo(3)));

								assertThat(3,	is(not(4)));

								assertThat("This	is	a	string",	containsString("is"));

								assertThat("This	is	a	string",	endsWith("string"));

								assertThat("This	is	a	string",	startsWith("This	is"));

				}

Chapter	Fifteen	-	Strings	Revisited

Try	using	the	other	escape	characters
				@Test

				public	void	tryUsingTheOtherEscapeCharactersOutputToConsole(){

								System.out.println("New	lines,	and	Tabs");

												String	firstLine	=	"|first	line\n";

												String	secondLine	=	"|\tsecond	line\n";

												String	thirdLine	=	"|\t\tthird	line\n";

												String	fullLine	=	firstLine	+	secondLine	+	thirdLine;

								System.out.println(fullLine);

								System.out.println("Carriage	return	after	each	word");

								System.out.println("one\rtwo\rthree\rfour\rfive\r");

								System.out.println("Backspace	after	each	word");

								System.out.println("one\btwo\bthree\bfour\bfive\b");

								System.out.println("Quotes	and	slashes");

								System.out.println("Bob\'s	toy	said	\"DOS	uses	\'\\\'\"");

				}

You	probably	won’t	notice	much	effect	of	some	the	characters	when	output	to	the	console.
i.e.	\r	and	\b

And	sometimes	when	you	output	text	to	the	console	you	don’t	see	exactly	what	you	expect
due	to	buffering	and	flushing	the	output	to	the	console,	so	don’t	naturally	assume	that	your
System.out.println	is	showing	you	a	bug,	investigate	any	potential	bug	in	the	debugger
or	write	an	assert	to	check.

Construct	a	String
				@Test

				public	void	canConstructStrings(){

								String	empty	=	new	String();

								assertThat(empty.length(),	is(0));

								char[]	cArray	=	{'2','3'};

								assertThat(new	String(cArray),	is("23"));

								assertThat(new	String(cArray,	1,	1),	is("3"));

								byte[]	bArray	=	"hello	there".getBytes();

								assertThat(new	String(bArray,	3,	3),	is("lo	"));

								byte[]	b8Array	=	new	byte[0];

								try	{

												b8Array	=	"hello	there".getBytes("UTF8");

												assertThat(new	String(b8Array,	3,	3,	"UTF8"),	is("lo	"));

								}	catch	(UnsupportedEncodingException	e)	{

												e.printStackTrace();

								}

								String	hello	=	new	String("hello"	+	"	"	+	"there");

								assertThat(hello,	is("hello	there"));

				}

You	can	see	that	I	used	the	Hamcrest	matches	and	assertThat	to	make	the	code	more
readable.

Use	regionMatches
				@Test

				public	void	exerciseUseRegionMatches(){

								String	hello	=	"Hello	fella";

								assertTrue(hello.regionMatches(true,	9,"young	lady",6,2));

				}

I	find	regionMatches	painful	to	use.	I	made	several	mistakes	trying	to	get	the	matching
syntax	lined	up	when	writing	the	book	and	exercises.

Remember,	the	first	integer	is	the	start	index	in	the	String	we	are	matching,	this	must
match	the	first	character	of	the	String	we	want	to	find.

The	second	two	integers	are	the	index	in	the	matching	string	we	want	the	matching
substring	region	to	start	at,	and	the	final	integer	the	length	of	the	substring	region.

Make	sure	you	wrap	your	regionMatches	in	an	assert	to	check	you	created	it	correctly.

Find	positions	of	all	occurrences	in	a	String
using	indexOf
				private	List<Integer>	findAllOccurrences(String	string,

																																													String	substring)	{

								List<Integer>	results	=	new	ArrayList<Integer>();

								if(string==null	||	substring==null){

												throw	new	IllegalArgumentException("Cannot	search	using	null");

								}

								if(substring.isEmpty()){

												throw	new	IllegalArgumentException(

																																						"Cannot	search	for	Empty	substring");

								}

								//	set	search	to	the	start	of	the	string

								int	lastfoundPosition	=	0;

								do{

												//	try	and	find	the	substring

												lastfoundPosition	=	string.indexOf(substring,

																																																lastfoundPosition);

												//	if	we	found	it

												if(lastfoundPosition!=-1){

																//	add	it	to	the	results

																results.add(lastfoundPosition);

																//	next	start	after	this	index

																lastfoundPosition++;

												}

									//	keep	looking	until	we	can't	find	it

								}while(lastfoundPosition!=-1);

								return	results;

				}

I	may	have	added	more	parameter	checks	than	you	did,	but	since	I’m	releasing	the	code	in
a	book,	I’m	the	one	on	the	receiving	end	of	emails	that	say	“You	can’t	code.	When	I	pass
an	empty	substring	in	then	there	is	an	infinite	loop”	etc.	etc.

It	is	worth	getting	in	the	habit	of	trying	to	make	your	code	as	robust	as	you	can.

It	might	also	help	to	see	the	code	that	I	wrote	first,	to	help	me	construct	this	method.
				@Test

				public	void	canFindAllOccurrencesInStringUsingIndexOf(){

								List<Integer>	results;

								results	=	findAllOccurrences("Hello	fella",	"l");

								assertThat(results.size(),	is(4));

								assertThat(results.contains(2),	is(true));

								assertThat(results.contains(3),	is(true));

								assertThat(results.contains(8),	is(true));

								assertThat(results.contains(9),	is(true));

								assertThat(results.get(0),	is(2));

								assertThat(results.get(1),	is(3));

								assertThat(results.get(2),	is(8));

								assertThat(results.get(3),	is(9));

				}

In	the	above	code	you	can	see	that	I	have	two	checks	for	the	values,	using	the	.contains
								assertThat(results.contains(2),	is(true));

And	using	the	.get
								assertThat(results.get(0),	is(2));

My	feeling	was	that	I	first	wanted	to	make	sure	that	the	correct	values	were	in	the	list,	and
then	I	wanted	to	check	if	they	were	in	the	right	order.

This	way,	if	I	somehow	did	them	in	the	wrong	order,	only	the	.get	would	fail.	But	if	I
failed	to	find	the	occurrence	then	the	contains	would	fail.

It	might	seem	redundant	to	have	both	contains	and	get,	but	I	think	that	by	doing	this	the
@Test	method	will	most	likely	help	me	in	the	future	if	I	refactor	and	somehow	get	the
order	of	the	return	values	wrong.

Having	written	the	above	code,	I	started	to	think	about	what	other	parameters	the	method
might	be	expected	to	handle,	and	wrote	the	@Test	methods	which	‘stress’	the	method.

These	helped	me	add	the	parameter	checking	code.
				@Test

				public	void	worksWhenNothingToFind(){

								List<Integer>	results;

								results	=	findAllOccurrences("Hello	fella",	"z");

								assertThat(results.size(),	is(0));

								results	=	findAllOccurrences("",	"z");

								assertThat(results.size(),	is(0));

				}

				@Test(expected	=	IllegalArgumentException.class)

				public	void	cannotSearchForEmpty(){

								List<Integer>	results	=	findAllOccurrences("",	"");

				}

				@Test(expected	=	IllegalArgumentException.class)

				public	void	cannotSearchForNullString(){

								List<Integer>	results	=	findAllOccurrences(null,	"hello");

				}

				@Test(expected	=	IllegalArgumentException.class)

				public	void	cannotSearchForNullSubString(){

								List<Integer>	results	=	findAllOccurrences("hello",	null);

				}

				@Test(expected	=	IllegalArgumentException.class)

				public	void	cannotSearchForNulls(){

								List<Integer>	results	=	findAllOccurrences(null,	null);

				}

using	lastIndexOf

To	reverse	the	list	I	relied	on	the	lastIndexOf	method.

The	main	@Test	method	I	used	was:
				@Test

				public	void	canFindAllOccurrencesInStringUsingLastIndexOf(){

								List<Integer>	results;

								results	=	findAllOccurrences("Hello	fella",	"l");

								assertThat(results.size(),	is(4));

								assertThat(results.contains(2),	is(true));

								assertThat(results.contains(3),	is(true));

								assertThat(results.contains(8),	is(true));

								assertThat(results.contains(9),	is(true));

								assertThat(results.get(0),	is(9));

								assertThat(results.get(1),	is(8));

								assertThat(results.get(2),	is(3));

								assertThat(results.get(3),	is(2));

				}

I	have	not	included	the	additional	methods	that	I	used	to	check	this	method,	but	they	are
much	the	same	as	those	used	for	the	indexOf	approach.
				private	List<Integer>	findAllOccurrences(String	string,

																																													String	substring)	{

								List<Integer>	results	=	new	ArrayList<Integer>();

								if(string==null	||	substring==null){

												throw	new	IllegalArgumentException("Cannot	search	using	null");

								}

								if(substring.isEmpty()){

												throw	new	IllegalArgumentException(

																																						"Cannot	search	for	Empty	substring");

								}

								//	set	search	to	the	start	of	the	string

								int	lastfoundPosition	=	string.length();

								do{

												//	try	and	find	the	substring

												lastfoundPosition	=	string.lastIndexOf(substring,

																																																			lastfoundPosition);

												//	if	we	found	it

												if(lastfoundPosition!=-1){

																//	add	it	to	the	results

																results.add(lastfoundPosition);

																//	next	start	before	this	index

																lastfoundPosition--;

												}

									//	keep	looking	until	we	can't	find	it

								}while(lastfoundPosition!=-1);

								return	results;

				}

Regular	Expressions	for	User	setPassword
				public	void	setPassword(String	password)	throws	InvalidPassword	{

						if(password.length()<7){

									throw	new	InvalidPassword("Password	must	be	>	6	chars");

						}

						if(!password.matches(".*[0123456789]+.*")){

									throw	new	InvalidPassword(

																												"Password	must	have	a	digit");

						}

						if(!password.matches(".*[A-Z]+.*")){

									throw	new	InvalidPassword(

																												"Password	must	have	an	Uppercase	Letter");

						}

						this.password	=	password;

				}

And	of	course	I	have	to	change	the	default	constructor	on	User	as	well,	otherwise	it	will
fail	the	validation:
				public	User(){

												this("username",	"Passw0rd",	false);

				}

Since	the	default	password	has	to	change,	I	had	to	amend	the	checking	code	surrounding
this	class	as	well.

Check	StringBuilder	resizes
				@Test

				public	void	capacitySizeIncreasesAutomaticallyWithAppend(){

								StringBuilder	builder	=	new	StringBuilder(5);

								assertThat(builder.capacity(),	is(5));

								builder.append("Hello	World");

								assertThat(builder.capacity()	>	5,	is(true));

				}

Insert	into	a	StringBuilder
				@Test

				public	void	writeATestToInsert(){

								StringBuilder	builder	=	new	StringBuilder();

								//	insert	at	start

								builder.insert(0,"a");

								assertThat(builder.toString(),	is("a"));

								//	insert	to	end

								builder.insert(builder.toString().length(),"b");

								assertThat(builder.toString(),	is("ab"));

								//	insert	to	middle

								builder.insert(1,".");

								assertThat(builder.toString(),	is("a.b"));

				}

Chapter	Sixteen	-	Random	Data

Create	@Test	methods	Which	Confirm	Random	Limits
The	basic	@Test	method	I	created	looks	like	the	following:
				@Test

				public	void	canGenerateRandomInt(){

								Random	generate	=	new	Random();

								for(int	x=0;	x<1000;	x++){

												int	randomInt	=	generate.nextInt();

												System.out.println(randomInt);

												assertThat(randomInt<Integer.MAX_VALUE,	is(true));

												assertThat(randomInt	>=Integer.MIN_VALUE,	is(true));

								}

				}

I	use	System.out.println	to	display	the	values	to	the	console,	just	so	I	can	see	the
random	range.	And	I	assert	on	the	conditions	mentioned	in	the	documentation.

All	other	methods	take	the	same	form,	with	a	different	random	generation	approach.

For	the	boolean	checks,	I	count	the	true	and	false	values	to	make	sure	that	both	values	are
generated,	and	assert	on	the	total:
				@Test

				public	void	canGenerateRandomBoolean(){

								Random	generate	=	new	Random();

								int	countTrue	=	0;

								int	countFalse	=	0;

								for(int	x=0;	x<1000;	x++){

												boolean	randomBoolean	=	generate.nextBoolean();

												if(randomBoolean)

																countTrue++;

												if(randomBoolean==false)

																countFalse++;

												System.out.println(randomBoolean);

								}

								System.out.println(

																String.format("Generated	%d	as	true",	countTrue));

								System.out.println(

																String.format("Generated	%d	as	false",	countFalse));

								assertThat(countTrue>0,	is(true));

								assertThat(countFalse>0,	is(true));

								assertThat(countTrue	+	countFalse,	is(1000));

				}

Since	all	other	@Test	methods	take	the	same	form,	I	have	not	included	the	full	code	below,
just	the	subset	that	has	the	random	generation	and	the	assertions.

Checking	for	Long
												long	randomLong	=	generate.nextLong();

												System.out.println(randomLong);

												assertThat(randomLong<Long.MAX_VALUE,	is(true));

												assertThat(randomLong	>=Long.MIN_VALUE,	is(true));

Note	that	the	documentation	for	nextLong	reports	that	the	algorithm	will	not	return	all
long	values.

Checking	for	Float
												float	randomFloat	=	generate.nextFloat();

												System.out.println(randomFloat);

												assertThat(randomFloat<1.0f,	is(true));

												assertThat(randomFloat	>=0.0f,	is(true));

Note	that	the	upper	limit	check	is	exclusive	(<)	and	the	lower	limit	check	is	inclusive	(>=).

Checking	for	Double
												double	randomDouble	=	generate.nextDouble();

												System.out.println(randomDouble);

												assertThat(randomDouble<1.0d,	is(true));

												assertThat(randomDouble	>=0.0d,	is(true));

Note	that	the	upper	limit	check	is	exclusive	(<)	and	the	lower	limit	check	is	inclusive	(>=).

Checking	for	Byte
												//	randomly	generate	a	byte	array	between	0	and	99	length

												int	arrayLength	=	generate.nextInt(100);

												byte[]	bytes	=	new	byte[arrayLength];

												generate.nextBytes(bytes);		//	fill	bytes	with	random	data

												Assert.assertEquals(arrayLength,	bytes.length);

												String	viewbytes	=	new	String(bytes);

												System.out.println(bytes.length	+	"	-	"	+	viewbytes);

Note	that	I	randomly	generate	the	size	of	the	byte	array.

Checking	for	Int	Range
												int	randomIntRange	=	generate.nextInt(12);

												System.out.println(randomIntRange);

												assertThat(randomIntRange<=11,	is(true));

												assertThat(randomIntRange	>=0,	is(true));

Note	that	I	generate	below	12	so	my	assertion	is	from	0	to	11	inclusive

Create	an	@Test	method	which	generates	1000	numbers	inclusively	between
15	and	20
				@Test

				public	void	generateRandomIntGivenRangeNot0(){

								Random	generate	=	new	Random();

												int	minValue	=	1;

												int	maxValue	=	5;

												int	randomIntRange	=	generate.nextInt(

																				maxValue	-	minValue	+	1)	+	minValue;

												assertThat(randomIntRange<=maxValue,	is(true));

												assertThat(randomIntRange	>=minValue,	is(true));

				}

In	the	above	code,	I	loop	around	1000	times	in	order	to	make	sure	that	I	don’t	just	hit	one
lucky	number	that	passes	my	assertions.

I	store	the	generated	numbers	in	a	set:

this	prevents	duplicates	so	each	number	generated	will	only	appear	once
this	means	that	the	size	of	the	set	is	the	number	of	different	integers	generated

I	assert	on	the	size	of	the	set,	because	I	know	that	6	numbers	are	supposed	to	be	generated.

I	assert	that	each	of	the	numbers	{15,	16,	17,	18,	19,	20}	has	been	generated.

Write	an	@Test	method	that	shows	the	distributions
				@Test

				public	void	canGenerateRandomGaussianDistributionDouble(){

								Random	generate	=	new	Random();

								int	standardDeviationCount1	=	0;

								int	standardDeviationCount2	=	0;

								int	standardDeviationCount3	=	0;

								int	standardDeviationCount4	=	0;

								for(int	x=0;	x<1000;	x++){

												double	randomGaussian	=	generate.nextGaussian();

												//System.out.println(randomValue);

												if(randomGaussian	>	-1.0d	&&	randomGaussian	<	1.0d)

																standardDeviationCount1++;

												if(randomGaussian	>	-2.0d	&&	randomGaussian	<	2.0d)

																standardDeviationCount2++;

												if(randomGaussian	>	-3.0d	&&	randomGaussian	<	3.0d)

																standardDeviationCount3++;

												if(randomGaussian	>	-4.0d	&&	randomGaussian	<	4.0d)

																standardDeviationCount4++;

								}

								float	sd1percentage	=	(standardDeviationCount1/1000f)	*	100f;

								System.out.println("about	70%	one	standard	deviation	=	"	+

																sd1percentage);

								float	sd2percentage	=	(standardDeviationCount2/1000f)	*	100f;

								System.out.println("about	95%	two	standard	deviation	=	"	+

																sd2percentage);

								float	sd3percentage	=	(standardDeviationCount3/1000f)	*	100f;

								System.out.println("about	99%	three	standard	deviation	=	"	+

																sd3percentage);

								float	sd4percentage	=	(standardDeviationCount4/1000f)	*	100f;

								System.out.println("about	99.9%	four	standard	deviation	=	"	+

																sd4percentage);

								Assert.assertTrue(sd1percentage	<	sd2percentage);

								Assert.assertTrue(sd2percentage	<	sd3percentage);

								//	I	do	not	assert	that	sd3	and	sd4	are	different

								//	because	of	the	small	%	difference,	they	do	overlap

				}

Write	an	@Test	method	which	generates	1000	ages	using	nextGaussian
				@Test

				public	void	canGenerate1000AgesUsingDeviation(){

								Random	generate	=	new	Random();

								Map<Integer,	Integer>	ages	=

																new	HashMap<Integer,	Integer>();

								for(int	x=0;	x<1000;	x++){

												int	age	=	(int)(generate.nextGaussian()	*	5)	+	35;

												int	ageCount	=	0;

												if(ages.containsKey(age)){

																ageCount	=	ages.get(age);

												}

												ageCount++;

												ages.put(age,ageCount);

								}

								SortedSet<Integer>	agesSorted	=	new	TreeSet(ages.keySet());

								for(int	age	:	agesSorted){

												System.out.println(age	+	"	:	"	+	ages.get(age));

								}

				}

Create	an	@Test	method	for	Random	with	Seed
				@Test

				public	void	canGenerateRandomNumbersWithSeed(){

								for(int	x=0;	x<10;	x++){

												Random	generate	=	new	Random(1234567L);

												assertThat(generate.nextInt()	,	is(1042961893));

												assertThat(generate.nextLong()	,	is(-6749250865724111202L));

												assertThat(generate.nextDouble()	,	is(0.44762832574617084D));

												assertThat(generate.nextGaussian()	,	is(-0.11571220872310763D));

												assertThat(generate.nextFloat()	,	is(0.33144182F));

												assertThat(generate.nextBoolean()	,	is(false));

								}

				}

In	order	to	identify	the	values	I	needed	to	assert	on,	I	first	created	a	System.out.println
for	each	of	the	lines,	then	used	the	value	output	to	the	console	as	the	value	to	assert	on.

Generate	a	Random	String	100	chars	long
				@Test

				public	void	generateARandomString(){

								String	validValues	=	"ABCDEFGHIJKLMNOPQRSTUVWXYZ	";

								StringBuilder	rString;

								Random	random	=	new	Random();

								rString	=	new	StringBuilder();

								for(int	x=0;	x<100;	x++){

												int	rndIndex	=	random.nextInt(validValues.length());

												char	rChar	=	validValues.charAt(rndIndex);

												rString.append(rChar);

								}

								System.out.println(rString.toString());

								Assert.assertTrue(rString.length()==100);

								Assert.assertTrue(rString.toString().matches("[A-Z]+"));

				}

You	can	see	that	I	assert	on	the	length	of	the	String,	and	use	a	regular	expression	to	check
that	the	characters	in	the	string	are	from	A-Z	or	space	i.e.	“[A-Z]+”

I	also	use	a	StringBuilder	to	help	me	construct	the	string	by	appending	each	of	the
randomly	generated	characters.

Chapter	Seventeen	-	Dates	&	Times

Re-write	the	timing	@Test	method	using	nanoTime
				@Test

				public	void	nanoTime(){

								long	startTime	=	System.nanoTime();

								for(int	x=0;	x	<	10;	x++){

												System.out.println("Current	Time	"	+	System.nanoTime());

								}

								long	endTime	=	System.nanoTime();

								System.out.println("Total	Time	"	+	(endTime	-	startTime));

				}

Use	currentTimeMillis	to	create	a	unique	name	with	no	numbers
There	are	lots	of	ways	of	implementing	this	exercise.
	1					@Test

	2					public	void	createAUniqueUserIDAllChars(){

	3	

	4									String	initialUserID	=	"user"	+	System.currentTimeMillis();

	5									System.out.println(initialUserID);

	6	

	7									String	userID	=	initialUserID;

	8	

	9									for(int	x	=	0;	x<	10;	x++){

10													String	charReplacement	=	""	+	((char)('A'+x));

11													String	intToReplace	=	String.valueOf(x);

12													userID	=	userID.replace(intToReplace,	charReplacement);

13									}

14	

15									assertThat(userID.contains("0"),	is(false));

16									assertThat(userID.contains("1"),	is(false));

17									assertThat(userID.contains("2"),	is(false));

18									assertThat(userID.contains("3"),	is(false));

19									assertThat(userID.contains("4"),	is(false));

20									assertThat(userID.contains("5"),	is(false));

21									assertThat(userID.contains("6"),	is(false));

22									assertThat(userID.contains("7"),	is(false));

23									assertThat(userID.contains("8"),	is(false));

24									assertThat(userID.contains("9"),	is(false));

25	

26									assertThat(initialUserID.length(),	is(userID.length()));

27	

28									System.out.println(userID);

29					}

line	10	-	I	made	it	simple	and	easy	by	using	the	fact	that	‘A’	(a	char)	can	be	added	to
an	integer	to	get	a	new	ascii	character,	then	cast	the	int	to	a	char	and	then
concatenate	it	with	an	empty	String	to	create	a	character	string	that	represents	a
number.
line	11	-	I	convert	the	int	to	a	String
line	12	-	I	then	replace	all	the	integer	representations	in	the	String	with	this
calculated	character	e.g.

'A'	+	0	would	equal	'A',	and	I	would	replace	all	0	in	the	String	with	'A'
'A'	+	1	would	equal	'B',	and	I	would	replace	all	1	in	the	String	with	'B'
etc.

The	rest	of	the	code	contains	assertions	to	check	that	no	digits	are	in	the	name.

Write	the	toString	to	console
				@Test

				public	void	writeCalendarToStringToConsole(){

								Calendar	cal	=	Calendar.getInstance();

								System.out.println(cal.toString());

				}

Use	the	other	Calendar	constants
				@Test

				public	void	useOtherCalendarConstants(){

								Calendar	cal	=	Calendar.getInstance();

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.DECEMBER));

								assertThat(cal.get(Calendar.YEAR),	is(2013));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(15));

								assertThat(cal.get(Calendar.HOUR_OF_DAY),	is(23));

								assertThat(cal.get(Calendar.MINUTE),	is(39));

								assertThat(cal.get(Calendar.HOUR),	is(11));

								assertThat(cal.get(Calendar.AM_PM),	is(Calendar.PM));

				}

Experiment	with	other	constants
				@Test

				public	void	experimentWithCalendarConstants(){

								Calendar	cal	=	Calendar.getInstance();

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								assertThat(cal.get(Calendar.DAY_OF_WEEK),	is(1));

								assertThat(cal.get(Calendar.DAY_OF_WEEK),	is(Calendar.SUNDAY));

								assertThat(cal.get(Calendar.WEEK_OF_MONTH),	is(2));

								assertThat(cal.get(Calendar.WEEK_OF_YEAR),	is(50));

								assertThat(cal.get(Calendar.DAY_OF_YEAR),	is(349));

				}

Increment	and	Decrement	other	Fields
				@Test

				public	void	incrementAndDecrementOtherFields(){

								Calendar	cal	=	Calendar.getInstance();

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								cal.add(Calendar.YEAR,-2);

								cal.add(Calendar.MONTH,	-6);

								cal.add(Calendar.DAY_OF_MONTH,	-12);

								assertThat(cal.get(Calendar.YEAR),	is(2011));

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.JUNE));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(3));

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								//	bump	it	forward	to	3rd	June	2014,

								//	then	pull	it	back

								cal.add(Calendar.DAY_OF_MONTH,	19);

								cal.add(Calendar.MONTH,	5);

								cal.add(Calendar.YEAR,-3);

								assertThat(cal.get(Calendar.YEAR),	is(2011));

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.JUNE));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(3));

				}

Confirm	add	Moves	the	Year
				@Test

				public	void	rollCalendar(){

								Calendar	cal	=	Calendar.getInstance();

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								cal.roll(Calendar.DAY_OF_MONTH,17);

								assertThat(cal.get(Calendar.YEAR),	is(2013));

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.DECEMBER));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(1));

								cal.set(2013,	Calendar.DECEMBER,	15,	23,39,	54);

								cal.add(Calendar.DAY_OF_MONTH,17);

								assertThat(cal.get(Calendar.YEAR),	is(2014));

								assertThat(cal.get(Calendar.MONTH),	is(Calendar.JANUARY));

								assertThat(cal.get(Calendar.DAY_OF_MONTH),	is(1));

				}

Chapter	Eighteen	-	Properties	and	Property	Files

Create	and	List	a	Properties	object
				@Test

				public	void	canCreateAndListTheProperties(){

								Properties	properties	=	new	Properties();

								properties.setProperty("name",	"bob");

								properties.setProperty("gender",	"male");

								properties.setProperty("password",	"paSSw0rd");

								assertThat(properties.stringPropertyNames().size(),	is	(3));

								for(String	key	:	properties.stringPropertyNames()){

												System.out.println("Key:	"	+	key	+	"	"	+

																				"Value:	"	+	properties.getProperty(key));

								}

								properties.list(System.out);

								Assert.assertTrue(properties.containsKey("gender"));

								Assert.assertEquals("bob",	properties.getProperty("name"));

								Assert.assertEquals("Admin",

																				properties.getProperty("permission",	"Admin"));

				}

Store	and	Load	a	Saved	Properties	File
				@Test

				public	void	canSaveAndLoadAPropertiesFile()	throws	IOException	{

								String	tempDirectory	=	System.getProperty("java.io.tmpdir");

								String	tempResourceFilePath	=	tempDirectory	+

																System.currentTimeMillis()	+

																System.nanoTime()	+

																".properties";

								Properties	saved	=	new	Properties();

								long	nanoTime	=	System.nanoTime();

								long	millis	=	System.currentTimeMillis();

								saved.setProperty("nanoTime",	String.valueOf(nanoTime));

								saved.setProperty("millis",	String.valueOf(millis));

								FileOutputStream	outputFile	=

																new	FileOutputStream(tempResourceFilePath);

								saved.store(outputFile,	"Time	Data	When	File	Written");

								outputFile.close();

								FileReader	propertyFileReader	=

																new	FileReader(tempResourceFilePath);

								Properties	loaded	=	new	Properties();

								try{

												loaded.load(propertyFileReader);

								}finally{

												propertyFileReader.close();

								}

								assertThat(loaded.getProperty("nanoTime"),

																is(String.valueOf(nanoTime)));

								assertThat(loaded.getProperty("millis"),

																is(String.valueOf(millis)));

								new	File(tempResourceFilePath).delete();

				}

Chapter	Nineteen	-	Files

Create	a	Temp	File	and	Vary	the	Parameters
				@Test

				public	void	createTempFileVaryTheParameters()	throws	IOException	{

								//	on	windows	these	files	are	in	%TEMP%

								File	temp1	=	File.createTempFile("temp1",	null);

								File	temp2	=	File.createTempFile("temp2OutFile",	".out");

								assertThat(temp1.exists(),	is(true));

								assertThat(temp2.exists(),	is(true));

								temp1.deleteOnExit();

								temp2.deleteOnExit();

				}

You	can	see	that	I	cheated	and	used	the	exists	method	to	check	for	existence,	and	I	used
the	deleteOnExit	to	remove	the	created	temp	files	when	the	code	execution	completes.

But	note	that,	had	something	gone	wrong	during	the	execution	and	an	exception	thrown,
the	files	probably	would	not	have	been	deleted.	I	should	really	use	a	try/finally	block
when	working	with	files.

Write	out	the	roots
				@Test

				public	void	writeOutTheFileListRoots(){

								File[]	roots	=	File.listRoots();

								Assert.assertTrue(roots.length	>	0);

								for(File	aFile	:	roots){

												System.out.println(aFile.getAbsolutePath());

								}

				}

Create	a	Temporary	File	With	Custom	Code
				@Test

				public	void	createATempFileWithCustomCode()	throws	IOException	{

								String	directory	=	System.getProperty("java.io.tmpdir");

								String	fileName	=	"prefix"	+	System.currentTimeMillis()	+	".tmp";

								File	aTempFile	=	new	File(directory,	fileName);

								assertThat(aTempFile.exists(),	is(false));

								aTempFile.createNewFile();

								assertThat(aTempFile.exists(),	is(true));

								aTempFile.delete();

								assertThat(aTempFile.exists(),	is(false));

				}

Write	an	@Test	method	To	Check	Canonical	Conversion

				@Test

				public	void	writeATestToCheckCanonicalConversion()	throws	IOException	{

								File	absolute1	=	new	File("C:/1/2/3/4/../../..");

								File	absolute2	=	new	File("C:/1/2/../../1");

								File	canonical	=	new	File("C:/1");

								assertThat(canonical.getAbsolutePath(),

																is(canonical.getCanonicalPath()));

								assertThat(canonical.getAbsolutePath(),

																is(absolute1.getCanonicalPath()));

								assertThat(canonical.getAbsolutePath(),

																is(absolute2.getCanonicalPath()));

								assertThat(absolute1.getAbsolutePath().contains(".."),	is(true));

								assertThat(absolute2.getAbsolutePath().contains(".."),	is(true));

				}

Check	that	the	Temp	Directory	is	a	Directory
				@Test

				public	void	checkThatTheTempDirectoryIsADirectory(){

								File	tempDir	=	new	File(System.getProperty("java.io.tmpdir"));

								assertThat(tempDir.isDirectory(),	is(true));

								assertThat(tempDir.isFile(),	is(false));

				}

Write	to	a	PrintWriter	then	Append
				@Test

				public	void	exerciseWriteToAPrintWriterThenAppend()	throws	IOException	{

								File	outputFile	=	File.createTempFile("printWriterPrint",	null);

								System.out.println("Check	file	"	+	outputFile.getAbsolutePath());

								FileWriter	writer	=	new	FileWriter(outputFile);

								BufferedWriter	buffer	=	new	BufferedWriter(writer);

								PrintWriter	print	=	new	PrintWriter(buffer);

								print.println("Append	Print	to	Buffered	Writer");

								print.close();

								//	append	to	the	file

								writer	=	new	FileWriter(outputFile,	true);

								buffer	=	new	BufferedWriter(writer);

								print	=	new	PrintWriter(buffer);

								print.println("===============================");

								print.close();

								String	lineEnd	=	System.lineSeparator();

								long	fileLen	=	62L	+	lineEnd.length()	+	lineEnd.length();

								assertThat(outputFile.length(),	is(fileLen));

				}

Create	a	File	and	Calculate	the	length

				@Test

				public	void	spaceMethods()	throws	IOException	{

								File	temp	=	new	File(System.getProperty("java.io.tmpdir"));

								long	freeSpace	=	temp.getFreeSpace();

								long	totalSpace	=	temp.getTotalSpace();

								long	usableSpace	=	temp.getUsableSpace();

								File	outputFile	=	writeTheTestDataFile(5);

								assertThat(outputFile.length(),	is(expectedFileSize(5)));

								System.out.println("Length	"	+	outputFile.length());

								System.out.println("Free	"	+	freeSpace);

								System.out.println("Total	"	+	totalSpace);

								System.out.println("Usable	"	+	usableSpace);

				}

				private	long	expectedFileSize(int	lines){

								String	lineEnd	=	System.lineSeparator();

								return	(("line	x".length()	+	lineEnd.length())*lines);

				}

				private	File	writeTheTestDataFile(int	lines)	throws	IOException	{

								File	outputFile	=	File.createTempFile(

																																				"forReading"	+	lines	+	"_",	null);

								PrintWriter	print	=	new	PrintWriter(

																																new	BufferedWriter(

																																								new	FileWriter(outputFile)));

								for(int	line=0;	line<lines;	line++){

												print.println("line	"	+	lines);

								}

								print.close();

								return	outputFile;

				}

Use	listFiles	to	show	the	Temp	Directory	contents
				@Test

				public	void	listTempDirectory(){

								File	tempDir	=	new	File(System.getProperty("java.io.tmpdir"));

								File[]	fileList	=	tempDir.listFiles();

								for(File	fileInList	:	fileList){

												String	outputString	=	"";

												if(fileInList.isDirectory()){

																outputString	=	outputString	+	"DIR:	";

												}else{

																outputString	=	outputString	+	"FIL:	";

												}

												outputString	=	outputString	+	fileInList.getName();

												System.out.println(outputString);

								}

				}

Output	Attributes	of	Files	In	Temp	Directory

				@Test

				public	void	listTempDirectoryAttribs(){

								File	tempDir	=	new	File(System.getProperty("java.io.tmpdir"));

								File[]	fileList	=	tempDir.listFiles();

								for(File	fileInList	:	fileList){

												String	outputString	=	"";

												if(fileInList.isDirectory()){

																outputString	=	outputString	+	"DIR:	";

												}else{

																outputString	=	outputString	+	"FIL:	";

												}

												if(fileInList.canRead()){

																outputString	=	outputString	+	"r";

												}else{

																outputString	=	outputString	+	"-";

												}

												if(fileInList.canWrite()){

																outputString	=	outputString	+	"w";

												}else{

																outputString	=	outputString	+	"-";

												}

												if(fileInList.canExecute()){

																outputString	=	outputString	+	"x";

												}else{

																outputString	=	outputString	+	"-";

												}

												outputString	=	outputString	+	"	-	"	+	fileInList.getName();

												SimpleDateFormat	sdf	=	new	SimpleDateFormat("y	M	d	HH:mm:ss.SSS");

												String	lastModified	=

																												sdf.format(new	Date(fileInList.lastModified()));

												outputString	=	outputString	+	"	=>	"	+	lastModified;

												System.out.println(outputString);

								}

				}

copy	And	move	a	File
				@Test

				public	void	copyFile()	throws	IOException	{

								File	copyThis	=	writeTheTestDataFile();

								File	toThis	=	new	File(copyThis.getCanonicalPath()	+	".copy");

								assertThat(toThis.exists(),	is(false));

								Files.copy(copyThis.toPath(),	toThis.toPath());

								assertThat(toThis.exists(),	is(true));

								assertThat(copyThis.length(),	is(toThis.length()));

				}

				@Test

				public	void	moveFile()	throws	IOException	{

								File	moveThis	=	writeTheTestDataFile();

								File	toThis	=	new	File(moveThis.getCanonicalPath()	+	".moved");

								assertThat(moveThis.exists(),	is(true));

								assertThat(toThis.exists(),	is(false));

								Files.move(moveThis.toPath(),	toThis.toPath(),

																				REPLACE_EXISTING,	ATOMIC_MOVE);

								assertThat(toThis.exists(),	is(true));

								assertThat(moveThis.exists(),	is(false));

				}

				private	File	writeTheTestDataFile()	throws	IOException	{

								File	outputFile	=	File.createTempFile("forReading",	null);

								PrintWriter	print	=	new	PrintWriter(

																																new	BufferedWriter(

																																										new	FileWriter(outputFile)));

								for(int	lineNumber	=	1;	lineNumber	<	6;	lineNumber++){

												print.println("line	"	+	lineNumber);

								}

								print.close();

								return	outputFile;

				}

Chapter	Twenty	-	Math	and	BigDecimal

Convince	Yourself	of	BigDecimal	or	int
				@Test

				public	void	convinceYourselfOfBigDecimalUsage(){

								try{

												double	total	=	5	-	0.3	-	0.47	-	1.73;

												System.out.println("2.5	!=	"	+	total);

												assertThat(total,	is(2.5));

												fail("Expected	the	assert	to	fail");

								}catch(java.lang.AssertionError	e){}

								int	inPennies	=	500	-	30	-	47	-	173;

								assertThat(inPennies,	is(250));

								BigDecimal	bdTotal	=	new	BigDecimal("5").

																																				subtract(new	BigDecimal("0.30")).

																																				subtract(new	BigDecimal(("0.47"))).

																																				subtract(new	BigDecimal("1.73"));

								assertThat(bdTotal,	is(new	BigDecimal("2.50")));

				}

Basic	Arithmetic	with	BigDecimal
				@Test

				public	void	basicArithmeticWithBigDecimal(){

								BigDecimal	bd	=	BigDecimal.ZERO;

								bd	=	bd.add(BigDecimal.TEN);

								bd	=	bd.multiply(BigDecimal.valueOf(2L));

								bd	=	bd.subtract((BigDecimal.TEN));

								bd	=	bd.divide(BigDecimal.valueOf(2L));

								assertThat(bd,	is(BigDecimal.valueOf(5L)));

				}

On	my	system,	the	result	of	the	double	calculation	came	to	"2.5000000000000004"	which
would	not	equal	2.5.	So	always	remember	to	use	BigDecimal	when	comparing	with	the
results	of	external	systems	or	for	financial	and	currency	transactions.

Compare	TEN	and	ONE
				@Test

				public	void	bigDecimalCompareTenAndOne(){

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.ONE)	>	0);

								assertTrue(BigDecimal.ONE.compareTo(BigDecimal.TEN)	<	0);

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.TEN)	==	0);

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.ONE)	!=	0);

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.ONE)	>=	0);

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.TEN)	>=	0);

								assertTrue(BigDecimal.TEN.compareTo(BigDecimal.TEN)	<=	0);

								assertTrue(BigDecimal.ONE.compareTo(BigDecimal.TEN)	<=	0);

				}

Chapter	Twenty	One	-	Collections	Revisited

Remove	if(val==0)
								userSortedList.add(bob);

								userSortedList.add(dupebob);

								userSortedList.add(rich);

								userSortedList.add(dupebob2);

								assertEquals(2,	userSortedList.size());

								userSortedList.add(mrBeer);

								assertEquals("Mr	Beer	could	not	be	added",	2,	userSortedList.size());

Without	the	val==0	lines	in	the	Comparator	I	cannot	add	the	mrBeer	object	to	the
SortedSet

												//	if(val==0){

												//					val	=	user1.getUsername().compareTo(user2.getUsername());

												//	}

Disallow	Duplicate	UserNames
The	code	I	created:
				@Test

				public	void	sortedSetWithComparatorForUser(){

								User	bob	=	new	User("Bob",	"pA55Word");			//	11

								User	dupebob	=	new	User("Bob",	"hello");

								User	rich	=	new	User("Richie",	"RichieRichieRich");	//	22

								User	dupebob2	=	new	User("Bob",	"BobsMightyBigBobPassword");

								User	mrBeer	=	new	User("Stafford",	"sys");	//	11

								SortedSet<User>	userSortedList	=

																	new	TreeSet<User>(new	UserComparatorDisallowDupes());

								userSortedList.add(bob);

								userSortedList.add(dupebob);

								userSortedList.add(rich);

								userSortedList.add(dupebob2);

								userSortedList.add(mrBeer);

								assertEquals(3,	userSortedList.size());

								User[]	users	=	new	User[userSortedList.size()];

								userSortedList.toArray(users);

								assertEquals(bob.getUsername(),	users[0].getUsername());

								assertEquals(mrBeer.getUsername(),	users[1].getUsername());

								assertEquals(rich.getUsername(),	users[2].getUsername());

				}

And	the	associated	UserComparatorDisallowDupes	class:
public	class	UserComparatorDisallowDupes	implements	Comparator	{

				public	int	compare(Object	oUser1,	Object	oUser2)	{

								User	user1	=	(User)oUser1;

								User	user2	=	(User)oUser2;

								if(user1.getUsername().compareTo(user2.getUsername())==0){

												return	0;

								}

								int	user1Comparator	=	user1.getPassword().length()	+

																														user1.getUsername().length();

								int	user2Comparator	=	user2.getPassword().length()	+

																														user2.getUsername().length();

								int	val	=		user1Comparator	-	user2Comparator;

								if(val==0){

												val	=	user1.getUsername().compareTo(user2.getUsername());

								}

								return	val;

				}

}

User	class	implements	Comparable
The	basic	changes	I	made	to	the	User	class	were	to	the	class	definition:
public	class	User	implements	Comparable	{

Then	I	also	added	the	compareTo	method:
				@Override

				public	int	compareTo(Object	oUser2)	{

								User	user2	=	(User)oUser2;

								if(this.getUsername().compareTo(user2.getUsername())==0){

												return	0;

								}

								int	user1Comparator	=	this.getPassword().length()	+

																														this.getUsername().length();

								int	user2Comparator	=	user2.getPassword().length()	+

																														user2.getUsername().length();

								int	val	=		user1Comparator	-	user2Comparator;

								if(val==0){

												val	=	this.getUsername().compareTo(user2.getUsername());

								}

								return	val;

				}

Then	I	created	a	@Test	to	use	demonstrate	it:
				@Test

				public	void	sortedSetWithComparableUser(){

								User	bob	=	new	User("Bob",	"pA55Word");			//	11

								User	dupebob	=	new	User("Bob",	"hello");

								User	rich	=	new	User("Richie",	"RichieRichieRich");	//	22

								User	dupebob2	=	new	User("Bob",	"BobsMightyBigBobPassword");

								User	mrBeer	=	new	User("Stafford",	"sys");	//	11

								SortedSet<User>	userSortedList	=	new	TreeSet<User>();

								userSortedList.add(bob);

								userSortedList.add(dupebob);

								userSortedList.add(rich);

								userSortedList.add(dupebob2);

								userSortedList.add(mrBeer);

								assertEquals(3,	userSortedList.size());

								User[]	users	=	new	User[userSortedList.size()];

								userSortedList.toArray(users);

								assertEquals(bob.getUsername(),	users[0].getUsername());

								assertEquals(mrBeer.getUsername(),	users[1].getUsername());

								assertEquals(rich.getUsername(),	users[2].getUsername());

				}

See	the	sort	in	action
When	I	added	the	line:
												System.out.println("Compare	"	+	user1.getUsername()	+

																					"	with	"	+	user2.getUsername()	+	"	=	"	+	val);

The	output	from	the	execution	showed:
1	Compare	Richie	with	Bob	=	11

2	Compare	Stafford	with	Bob	=	17

3	Compare	Stafford	with	Richie	=	-11

This	means	that	I	only	reached	the	‘dupe’	check	for	three	add	calls.	All	the	other	calls	the
result	of	the	comparison	was	based	on	the	duplicate	username	check.

Access	Values	in	Map	in	Key	order

				@Test

				public	void	exerciseCanGetAllKeysAsSortedSet(){

								Map<String,String>	map	=	new	HashMap<>();

								map.put("key4",	"value4");

								map.put("key2",	"value2");

								map.put("key1",	"value1");

								map.put("key3",	"value3");

								SortedSet<String>	keys	=	new	TreeSet<String>(map.keySet());

								int	valSuffix	=	1;

								for(String	key	:	keys){

												assertEquals("value"	+	valSuffix,

																									map.get(key));

												valSuffix	+=	1;

								}

				}

In	the	above	code	I	add	the	values	out	of	order	into	a	Map.	Not	a	SortedMap,	so	I	know	I
can’t	rely	on	the	order.

I	construct	a	TreeSet	from	the	Set	returned	by	map.keySet(),	so	I	now	have	a	SortedSet
of	keys.

To	demonstrate	that	the	sort	has	worked,	I	predict	the	value	I	expect	by	incrementing
valSuffix	from	1	to	4,	then	iterate	over	the	keys	to	check	that	the	value	from	the	map	is
the	value	I	predicted.

	Table of Contents
	Introduction
	Chapter One - Basics of Java Revealed
	Chapter Two - Install the Necessary Software
	Chapter Three - Writing Your First Java Code
	Chapter Four - Work with Other Classes
	Chapter Five - Working with Our Own Classes
	Chapter Six - Java Classes Revisited: Constructors, Fields, Getter & Setter Methods
	Chapter Seven - Basics of Java Revisited
	Chapter Eight - Selections and Decisions
	Chapter Nine - Arrays and For Loop Iteration
	Chapter Ten - Introducing Collections
	Chapter Eleven - Introducing Exceptions
	Chapter Twelve - Introducing Inheritance
	Chapter Thirteen - More About Exceptions
	Chapter Fourteen - JUnit Explored
	Chapter Fifteen - Strings Revisited
	Chapter Sixteen - Random Data
	Chapter Seventeen - Dates and Times
	Chapter Eighteen - Properties and Property Files
	Chapter Nineteen - Files
	Chapter Twenty - Math and BigDecimal
	Chapter Twenty One - Collections Revisited
	Chapter Twenty Two - Advancing Concepts
	Chapter Twenty Three - Next Steps
	Appendix - IntelliJ Hints and Tips
	Appendix - Exercise Answers

