
Java programming with JNI
Skill Level: Introductory

Scott Stricker (sstricke@us.ibm.com)
Developer
IBM

26 Mar 2002

This tutorial describes and demonstrates the basic and most commonly used
techniques of the Java Native Interface -- calling C or C++ code from Java programs,
and calling Java code from C or C++ programs -- to help you develop your own JNI
solutions quickly and efficiently.

Section 1. About this tutorial

What is this tutorial about?

The Java Native Interface (JNI) is a native programming interface that is part of the
Java Software Development Kit (SDK). JNI lets Java code use code and code
libraries written in other languages, such as C and C++. The Invocation API, which is
part of JNI, can be used to embed a Java virtual machine (JVM) into native
applications, thereby allowing programmers to call Java code from within native
code.

This tutorial deals with the two most common applications of JNI: calling C/C++ code
from Java programs, and calling Java code from C/C++ programs. We'll cover both
the essentials of the Java Native Interface and some of the more advanced
programming challenges that can arise.

Should I take this tutorial?

This tutorial will walk you through the steps of using the Java Native Interface. You'll
learn how to call native C/C++ code from within a Java application and how to call
Java code from within a native C/C++ application.

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 28

mailto:sstricke@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

All the examples use Java, C, and C++ code, and are written to be portable to both
Windows and UNIX-based platforms. To follow the examples, you must have some
experience programming in the Java language. In addition, you will also need some
experience programming in C or C++. Strictly speaking, a JNI solution could be
broken down between Java programming tasks and C/C++ programming tasks, with
separate programmers doing each task. However, to fully understand how JNI works
in both programming environments, you'll need to be able to understand both the
Java and C/C++ code.

We'll also cover a number of advanced topics, including exception handling and
multithreading with native methods. To get the most out of this part of the tutorial,
you should be familiar with the Java platform's security model and have some
experience in multithreaded application development.

The section on Advanced topics is separate from the more basic step-by-step
introduction to JNI. Beginning Java programmers may benefit from taking the first
two parts of the tutorial now and returning to the advanced topics at a later time.

See Resources for a listing of tutorials, articles, and other references that expand
upon the material presented here.

Tools and components

To run the examples in this tutorial, you will need the following tools and
components:

• A Java compiler: javac.exe ships with the SDK.

• A Java virtual machine (JVM): java.exe ships with the SDK.

• A native method C file generator: javah.exe ships with the SDK.

• Library files and native header files that define JNI. The jni.h C header
file, jvm.lib, and jvm.dll or jvm.so files all ship with the SDK.

• A C and C++ compiler that can create a shared library. The two most
common C compilers are Visual C++ for Windows and cc for UNIX-based
systems.

Although you may use any development environment you like, the examples we'll
work with in this tutorial were written using the standard tools and components that
ship with the SDK. See Resources to download the SDK, complete source files, and
other tools essential for the completion of this tutorial. This tutorial specifically
addresses Sun's implementation of JNI, which should be regarded as the standard
for JNI solutions. The details of other JNI implementations are not addressed in this
tutorial.

Additional considerations

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 2 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

In the Java 2 SDK, the JVM and run-time support are located in the shared library
file named jvm.dll (Windows) or libjvm.so (UNIX). In the Java 1.1 JDK, the JVM and
run-time support were located in the shared library file named javai.dll (Windows) or
libjava.so (UNIX). The version 1.1 shared libraries contained the runtime and some
native methods for the class libraries, but in version 1.2, the runtime is removed and
the native methods are in java.dll and libjava.so. This change is important in Java
code that:

• Is written using non-JNI native methods (as with the old native method
interface from the JDK 1.0 JDK)

• Uses an embedded JVM through the JNI Invocation Interface

In both cases, you'll need to relink your native libraries before they can be used with
version 1.2. Note that this change should not affect JNI programmers implementing
native methods -- only JNI code that invokes a JVM through the Invocation API.

If you use the jni.h file that comes with the SDK/JDK, that header file will use the
default JVM in the JDK/SDK installation directory (jvm.dll or libjvm.so). Any
implementation of a Java platform that supports JNI should do the same thing, or
allow you to specify a JVM shared library; however the details of how this is done
may be specific to that Java Platform/JVM implementation. Indeed, many
implementations of JVMs do not support JNI at all.

Section 2. Calling C/C++ code from Java programs

Overview

JNI allows you to use native code when an application cannot be written entirely in
the Java language. The following are typical situations where you might decide to
use native code:

• You want to implement time-critical code in a lower-level, faster
programming language.

• You have legacy code or code libraries that you want to access from Java
programs.

• You need platform-dependent features not supported in the standard
Java class library.

Six steps to call C/C++ from Java code

The process of calling C or C ++ from Java programs consists of six steps. We'll go

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 28

http://www.ibm.com/legal/copytrade.shtml

over each step in depth in the sections that follow, but let's start with a quick look at
each one.

1. Write the Java code. We'll start by writing Java classes to perform three
tasks: declare the native method we'll be calling; load the shared library
containing the native code; and call the native method.

2. Compile the Java code. We must successfully compile the Java class or
classes to bytecode before we can use them.

3. Create the C/C++ header file. The C/C++ header file will declare the
native function signature that we want to call. This header will then be
used with the C/C++ function implementation (see Step 4) to create the
shared library (see Step 5).

4. Write the C/C++ code. This step consists of implementing the function in
a C or C++ source code file. The C/C++ source file must include the
header file we created in Step 3.

5. Create the shared library file. We'll create a shared library file from the
C source code file we created in Step 4.

6. Run the Java program. We'll run the code and see if it works. We'll also
go over some tips for dealing with the more commonly occurring errors.

Step 1: Write the Java code

We'll start by writing the Java source code file, which will declare the native method
(or methods), load the shared library containing the native code, and actually call the
native method.

Here's our example Java source code file, called Sample1.java:

1. public class Sample1
2. {
3. public native int intMethod(int n);
4. public native boolean booleanMethod(boolean bool);
5. public native String stringMethod(String text);
6. public native int intArrayMethod(int[] intArray);
7.
8. public static void main(String[] args)
9. {
10. System.loadLibrary("Sample1");
11. Sample1 sample = new Sample1();
12. int square = sample.intMethod(5);
13. boolean bool = sample.booleanMethod(true);
14. String text = sample.stringMethod("JAVA");
15. int sum = sample.intArrayMethod(
16. new int[]{1,1,2,3,5,8,13});
17.
18. System.out.println("intMethod: " + square);
19. System.out.println("booleanMethod: " + bool);
20. System.out.println("stringMethod: " + text);

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 4 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

21. System.out.println("intArrayMethod: " + sum);
22. }
23. }

What's happening in this code?

First of all, note the use of the native keyword, which can be used only with
methods. The native keyword tells the Java compiler that a method is
implemented in native code outside of the Java class in which it is being declared.
Native methods can only be declared in Java classes, not implemented, so a native
method cannot have a body.

Now, let's look at the code line by line:

• In lines 3 through 6 we declare four native methods.

• On line 10 we load the shared library file containing the implementation
for these native methods. (We'll create the shared library file when we
come to Step 5.)

• Finally, in lines 12 through 15 we call the native methods. Note that this
operation is no different from the operation of calling non-native Java
methods.

Note: Shared library files on UNIX-based platforms are usually prefixed with "lib". In
this case, line 10 would be System.loadLibrary("libSample1"); . Be sure to
take notice of the shared library file name that you generate in Step 5: Create the
shared library file.

Step 2: Compile the Java code

Next, we need to compile the Java code down to bytecode. One way to do this is to
use the Java compiler, javac, which comes with the SDK. The command we use to
compile our Java code to bytecode is:

javac Sample1.java

Step 3: Create the C/C++ header file

The third step is to create a C/C++ header file that defines native function
signatures. One way to do this is to use the native method C stub generator tool,
javah.exe, which comes with the SDK. This tool is designed to create a header file
that defines C-style functions for each native method it finds in a Java source code
file. The command to use here is:

javah Sample1

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 28

http://www.ibm.com/legal/copytrade.shtml

Results of running javah.exe on Sample1.java

Sample1.h, below, is the C/C++ header file generated by running the javah tool on
our Java code:

1. /* DO NOT EDIT THIS FILE - it is machine generated */
2. #include <jni.h>
3. /* Header for class Sample1 */
4.
5. #ifndef _Included_Sample1
6. #define _Included_Sample1
7. #ifdef __cplusplus
8. extern "C" {
9. #endif
10.
11. JNIEXPORT jint JNICALL Java_Sample1_intMethod
12. (JNIEnv *, jobject, jint);
13.
14. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
15. (JNIEnv *, jobject, jboolean);
16.
17. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
18. (JNIEnv *, jobject, jstring);
19.
20. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
21. (JNIEnv *, jobject, jintArray);
22.
23. #ifdef __cplusplus
24. }
25. #endif
26. #endif

About the C/C++ header file

As you've probably noticed, the C/C++ function signatures in Sample1.h are quite
different from the Java native method declarations in Sample1.java. JNIEXPORT
and JNICALL are compiler-dependent specifiers for export functions. The return
types are C/C++ types that map to Java types. These types are fully explained in
Appendix A: JNI types

The parameter lists of all these functions have a pointer to a JNIEnv and a
jobject, in addition to normal parameters in the Java declaration. The pointer to
JNIEnv is in fact a pointer to a table of function pointers. As we'll see in Step 4,
these functions provide the various faculties to manipulate Java data in C and C++.

The jobject parameter refers to the current object. Thus, if the C or C++ code
needs to refer back to the Java side, this jobject acts as a reference, or pointer,
back to the calling Java object. The function name itself is made by the "Java_"
prefix, followed by the fully qualified class name, followed by an underscore and the
method name.

Step 4: Write the C/C++ code

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 6 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

When it comes to writing the C/C++ function implementation, the important thing to
keep in mind is that our signatures must be exactly like the function declarations
from Sample1.h. We'll look at the complete code for both a C implementation and a
C++ implementation, then discuss the differences between the two.

The C function implementation

Here is Sample1.c, an implementation written in C:

1. #include "Sample1.h"
2. #include <string.h>
3.
4. JNIEXPORT jint JNICALL Java_Sample1_intMethod
5. (JNIEnv *env, jobject obj, jint num) {
6. return num * num;
7. }
8.
9. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
10. (JNIEnv *env, jobject obj, jboolean boolean) {
11. return !boolean;
12. }
13.
14. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
15. (JNIEnv *env, jobject obj, jstring string) {
16. const char *str = (*env)->GetStringUTFChars(env, string, 0);
17. char cap[128];
18. strcpy(cap, str);
19. (*env)->ReleaseStringUTFChars(env, string, str);
20. return (*env)->NewStringUTF(env, strupr(cap));
21. }
22.
23. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
24. (JNIEnv *env, jobject obj, jintArray array) {
25. int i, sum = 0;
26. jsize len = (*env)->GetArrayLength(env, array);
27. jint *body = (*env)->GetIntArrayElements(env, array, 0);
28. for (i=0; i<len; i++)
29. { sum += body[i];
30. }
31. (*env)->ReleaseIntArrayElements(env, array, body, 0);
32. return sum;
33. }
34.
35. void main(){}

The C++ function implementation

And here's Sample1.cpp, the C++ implementation:

1. #include "Sample1.h"
2. #include <string.h>
3.
4.JNIEXPORT jint JNICALL Java_Sample1_intMethod
5. (JNIEnv *env, jobject obj, jint num) {
6. return num * num;
7. }
8.
9. JNIEXPORT jboolean JNICALL Java_Sample1_booleanMethod
10. (JNIEnv *env, jobject obj, jboolean boolean) {
11. return !boolean;
12. }

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 28

http://www.ibm.com/legal/copytrade.shtml

13.
14. JNIEXPORT jstring JNICALL Java_Sample1_stringMethod
15. (JNIEnv *env, jobject obj, jstring string) {
16. const char *str = env->GetStringUTFChars(string, 0);
17. char cap[128];
18. strcpy(cap, str);
19. env->ReleaseStringUTFChars(string, str);
20. return env->NewStringUTF(strupr(cap));
21. }
22.
23. JNIEXPORT jint JNICALL Java_Sample1_intArrayMethod
24. (JNIEnv *env, jobject obj, jintArray array) {
25. int i, sum = 0;
26. jsize len = env->GetArrayLength(array);
27. jint *body = env->GetIntArrayElements(array, 0);
28. for (i=0; i<len; i++)
29. { sum += body[i];
30. }
31. env->ReleaseIntArrayElements(array, body, 0);
32. return sum;
33. }
34.
35. void main(){}

C and C++ function implementations compared

The C and C++ code is nearly identical; the only difference is the method used to
access JNI functions. In C, JNI function calls are prefixed with "(*env)->" in order
to de-reference the function pointer. In C++, the JNIEnv class has inline member
functions that handle the function pointer lookup. This slight difference is illustrated
below, where the two lines of code access the same function but the syntax is
specialized for each language.

C syntax: jsize len =
(*env)->GetArrayLength(env,array);

C++ syntax: jsize len
=env->GetArrayLength(array);

Step 5: Create the shared library file

Next, we create a shared library file that contains the native code. Most C and C++
compilers can create shared library files in addition to machine code executables.
The command you use to create the shared library file depends on the compiler
you're using. Below are the commands that will work on Windows and Solaris
systems.

Windows: cl -Ic:\jdk\include
-Ic:\jdk\include\win32 -LD Sample1.c
-FeSample1.dll

Solaris: cc -G -I/usr/local/jdk/include
-I/user/local/jdk/include/solaris
Sample1.c -o Sample1.so

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 8 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Step 6: Run the Java program

The last step is to run the Java program and make sure that the code works
correctly. Because all Java code must be executed in a Java virtual machine, we
need to use a Java runtime environment. One way to do this is to use the Java
interpreter, java, which comes with the SDK. The command to use is:

java Sample1

When we run the Sample1.class program, we should get the following result:

PROMPT>java Sample1
intMethod: 25
booleanMethod: false
stringMethod: JAVA
intArrayMethod: 33

PROMPT>

Troubleshooting

You can run into many problems when using JNI to access native code from Java
programs. The three most common errors you'll encounter are:

• A dynamic link cannot be found. This results in the error message:
java.lang.UnsatisfiedLinkError. This usually means that either
the shared library cannot be found, or a specific native method inside the
shared library cannot be found.

• The shared library file cannot be found. When you load the library file
using the file name with the System.loadLibrary(String
libname) method, make sure that the file name is spelled correctly and
that you do not specify the extension. Also, make sure that the library file
is accessible to the JVM by ensuring that the library file's location is in the
classpath.

• A method with the specified signature cannot be found. Make sure
that your C/C++ function implementation has a signature that is identical
to the function signature in the header file.

Conclusion

Calling C or C++ native code from Java, while not trivial, is a well-integrated function
in the Java platform. Although JNI supports both C and C++, the C++ interface is
somewhat cleaner and is generally preferred over the C interface.

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 28

http://www.ibm.com/legal/copytrade.shtml

As you have seen, calling C or C++ native code requires that you give your functions
special names and create a shared library file. When taking advantage of existing
code libraries, it is generally not advisable to change the code. To avoid this, it is
common to create proxy code, or a proxy class in the case of C++, that has the
specially named functions required by JNI. These functions, then, can call the
underlying library functions, whose signatures and implementations remain
unchanged.

Section 3. Calling Java code from C/C++ programs

Overview

JNI allows you to invoke Java class methods from within native code. Often, to do
this, you must create and initialize a JVM within the native code using the Invocation
API. The following are typical situations where you might decide to call Java code
from C/C++ code:

• You want to implement platform-independent portions of code for
functionality that will be used across multiple platforms.

• You have code or code libraries written in the Java language that you
need to access in native applications.

• You want to take advantage of the standard Java class library from native
code.

Four steps to call Java code from a C/C++ program

The four steps in the process of calling Java methods from C/C++ are as follows:

1. Write the Java code. This step consists of writing the Java class or
classes that implement (or call other methods that implement) the
functionality you want to access.

2. Compile the Java code. The Java class or classes must be successfully
compiled to bytecode before they can be used.

3. Write the C/C++ code. This code will create and instantiate a JVM and
call the correct Java methods.

4. Run the native C/C++ application. We'll run the application to see if it
works. We'll also go over some tips for dealing with common errors.

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 10 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Step 1: Write the Java code

We start by writing the Java source code file or files, which will implement the
functionality we want to make available to the native C/C++ code.

Our Java code example, Sample2.java, is shown below:

1. public class Sample2
2. {
3. public static int intMethod(int n) {
4. return n*n;
5. }
6.
7. public static boolean booleanMethod(boolean bool) {
8. return !bool;
9. }
10. }

Note that Sample2.java implements two static Java methods, intMethod(int
n) and booleanMethod(boolean bool) (lines 3 and 7 respectively). static
methods are class methods that are not associated with object instances. It is easier
to call static methods because we do not have to instantiate an object to invoke
them.

Step 2: Compile the Java code

Next, we compile the Java code down to bytecode. One way to do this is to use the
Java compiler, javac, which comes with the SDK. The command to use is:

javac Sample1.java

Step 3: Write the C/C++ code

All Java bytecode must be executed in a JVM, even when running in a native
application. So our C/C++ application must include calls to create a JVM and to
initialize it. To assist us, the SDK includes a JVM as a shared library file (jvm.dll or
jvm.so), which can be embedded into native applications.

We'll start with a look at the complete code for both the C and C++ applications, then
compare the two.

A C application with embedded JVM

Sample2.c is a simple C application with an embedded JVM:

1. #include <jni.h>

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 28

http://www.ibm.com/legal/copytrade.shtml

2.
3. #ifdef _WIN32
4. #define PATH_SEPARATOR ';'
5. #else
6. #define PATH_SEPARATOR ':'
7. #endif
8.
9. int main()
10. {
11. JavaVMOption options[1];
12. JNIEnv *env;
13. JavaVM *jvm;
14. JavaVMInitArgs vm_args;
15. long status;
16. jclass cls;
17. jmethodID mid;
18. jint square;
19. jboolean not;
20.
21. options[0].optionString = "-Djava.class.path=.";
22. memset(&vm_args, 0, sizeof(vm_args));
23. vm_args.version = JNI_VERSION_1_2;
24. vm_args.nOptions = 1;
25. vm_args.options = options;
26. status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
27.
28. if (status != JNI_ERR)
29. {
30. cls = (*env)->FindClass(env, "Sample2");
31. if(cls !=0)
32. { mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");
33. if(mid !=0)
34. { square = (*env)->CallStaticIntMethod(env, cls, mid, 5);
35. printf("Result of intMethod: %d\n", square);
36. }
37.
38. mid = (*env)->GetStaticMethodID(env, cls, "booleanMethod", "(Z)Z");
39. if(mid !=0)
40. { not = (*env)->CallStaticBooleanMethod(env, cls, mid, 1);
41. printf("Result of booleanMethod: %d\n", not);
42. }
43. }
44.
45. (*jvm)->DestroyJavaVM(jvm);
46. return 0;
47/ }
48. else
49. return -1;
50. }

A C++ application with embedded JVM

Sample2.cpp is a C++ application with an embedded JVM:

1. #include <jni.h>
2.
3. #ifdef _WIN32
4. #define PATH_SEPARATOR ';'
5. #else
6. #define PATH_SEPARATOR ':'
7. #endif
8.
9. int main()
10. {
11. JavaVMOption options[1];
12. JNIEnv *env;
13. JavaVM *jvm;
14. JavaVMInitArgs vm_args;

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 12 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

15. long status;
16. jclass cls;
17. jmethodID mid;
18. jint square;
19. jboolean not;
20.
21. options[0].optionString = "-Djava.class.path=.";
22. memset(&vm_args, 0, sizeof(vm_args));
23. vm_args.version = JNI_VERSION_1_2;
24. vm_args.nOptions = 1;
25. vm_args.options = options;
26. status = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
27.
28. if (status != JNI_ERR)
29. {
30. cls = (*env)->FindClass(env, "Sample2");
31. if(cls !=0)
32. { mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");
33. if(mid !=0)
34. { square = (*env)->CallStaticIntMethod(env, cls, mid, 5);
35. printf("Result of intMethod: %d\n", square);
36. }
37.
38. mid = (*env)->GetStaticMethodID(env, cls, "booleanMethod", "(Z)Z");
39. if(mid !=0)
40. { not = (*env)->CallStaticBooleanMethod(env, cls, mid, 1);
41. printf("Result of booleanMethod: %d\n", not);
42. }
43. }
44.
45. (*jvm)->DestroyJavaVM(jvm);
46. return 0;
47. }
48. else
49. return -1;
50. }

C and C++ implementations compared

The C and C++ code are nearly identical; the only difference is the method used to
access JNI functions. In C, JNI function calls are prefixed with (*env)-> in order to
de-reference the function pointer. In C++, the JNIEnv class has inline member
functions that handle the function pointer lookup. Thus, these two lines of code
access the same function, but the syntax is specialized for each language, as shown
below.

C syntax: cls = (*env)->FindClass(env,
"Sample2");

C++ syntax: cls = env->FindClass("Sample2");

A closer look at the C application

We've just produced a lot of code, but what does it all do? Before we move on to
Step 4, let's take a closer look at the code for our C application. We'll walk through
the essential steps of preparing a native application to process Java code,
embedding a JVM in a native application, then finding and calling a Java method
from within that application.

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 28

http://www.ibm.com/legal/copytrade.shtml

Include the jni.h file

We start by including the jni.h C header file in the C application, as shown in the
code sample below.

#include <jni.h>

The jni.h file contains all the type and function definitions we need for JNI on the C
side.

Declare the variables

Next, we declare all the variables we want to use in the program. The
JavaVMOption options[] holds various optional settings for the JVM. When
declaring variables, be sure that you declare the JavaVMOption options[] array
large enough to hold all the options you want to use. In this case, the only option
we're using is the classpath option. We set the classpath to the current directory
because in this example all of our files are in the same directory. You can set the
classpath to point to any directory structure you would like to use.

Here's the code to declare the variables for Sample2.c:

JavaVMOption options[1];
JNIEnv *env;
JavaVM *jvm;
JavaVMInitArgs vm_args;

Notes:

• JNIEnv *env represents JNI execution environment.

• JavaVM jvm is a pointer to the JVM. We use this primarily to create,
initialize, and destroy the JVM.

• JavaVMInitArgs vm_args represents various JVM arguments that we
can use to initialize our JVM.

Set the initialization arguments

The JavaVMInitArgs structure represents initialization arguments for the JVM.
You can use these arguments to customize the runtime environment before you
execute your Java code. As you can see, the options are one argument and the
Java version is another. We set these arguments as follows:

vm_args.version = JNI_VERSION_1_2;
vm_args.nOptions = 1;

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 14 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

vm_args.options = options;

Set the classpath

Next, we set the classpath for the JVM, to enable it to find the required Java classes.
In this particular case, we set the classpath to the current directory, because the
Sample2.class and Sample2.exe are located in the same directory. The code we
use to set the classpath for Sample2.c is shown below:

options[0].optionString = "-Djava.class.path=.";
// same text as command-line options for the java.exe JVM

Set aside memory for vm_args

Before we can use vm_args we need to set aside some memory for it. Once we've
set the memory, we can set the version and option arguments, as shown below:

memset(&vm_args, 0, sizeof(vm_args)); // set aside enough memory for vm_args
vm_args.version = JNI_VERSION_1_2; // version of Java platform
vm_args.nOptions = 1; // same as size of options[1]
vm_args.options = options;

Create the JVM

With all the setup taken care of, we're ready to create a JVM. We start with a call to
the method:

JNI_CreateJavaVM(JavaVM **jvm, void** env, JavaVMInitArgs **vm_args)

This method returns zero if successful or JNI_ERR if the JVM could not be created.

Find and load the Java classes

Once we've created our JVM, we're ready to begin running Java code in the native
application. First, we need to find and load our Java class, using the FindClass()
function, shown here:

cls = (*env)->FindClass(env, "Sample2");

The cls variable stores the result of the FindClass() function. If the class is
found, the cls variable represents a handle to the Java class. If the class cannot be
found, cls will be zero.

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 28

http://www.ibm.com/legal/copytrade.shtml

Find a Java method

Next, we want to find a method inside of the class using the
GetStaticMethodID() function. We want to find the method intMethod, which
takes an int parameter and returns an int. Here's the code to find intMethod:

mid = (*env)->GetStaticMethodID(env, cls, "intMethod", "(I)I");

The mid variable stores the result of the GetStaticMethodID() function. If the
method is found, the mid variable represents a handle to the method. If the method
cannot be found, mid will be zero.

Remember that in this example, we are calling static Java methods. That is why
we're using the GetStaticMethodID() function. The GetMethodID() function
does the same thing, but it is used to find instance methods.

If we were calling a constructor, the name of the method would have been "<init>".
To learn more about calling a constructor, see Error handling. To learn more about
the code used to specify parameter types and about how JNI types map to the Java
primitive types, see Appendices .

Call a Java method

Finally, we call the Java method, as shown below:

square = (*env)->CallStaticIntMethod(env, cls, mid, 5);

The CallStaticIntMethod() method takes cls (representing our class), mid
(representing our method), and the parameter or parameters for the method. In this
case the parameter is int 5.

You will also run across methods of the types CallStaticXXXMethod() and
CallXXXMethod(). These call static methods and member methods, respectively,
replacing the variable (XXX) with the return type for the method (for example,
Object, Boolean, Byte, Char, Int, Long, and so on).

Step 4: Run the application

Now we're ready to run the C application and make sure that the code works
correctly. When you run Sample2.exe you should get a result like the following:

PROMPT>Sample2
Result of intMethod: 25
Result of booleanMethod: 0

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 16 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

PROMPT>

Troubleshooting

JNI's Invocation API is somewhat cumbersome because it is defined in C, a
language with minimal object-oriented programming support. As a result, it is easy to
run into problems. Below is a checklist that may help you avoid some of the more
common errors.

• Always ensure that references are properly set. For example, when
creating a JVM with the JNI_CreateJavaVM() method, make sure it
returns a zero. Also make sure that references set with the
FindClass() and GetMethodID() methods are not zero before you
use them.

• Check to see that your method names are spelled correctly and that you
properly mangled the method signature. Also be sure that you use
CallStaticXXXMethod() for static methods and CallXXXMethod()
for member methods.

• Make sure you initialize the JVM with any special arguments or options
your Java class may need. For example, if your Java class requires a
great deal of memory, you may need to increase the maximum heap size
option.

• Always be sure to set the classpath properly. A native application using
an embedded JVM must be able to find the jvm.dll or jvm.so shared
library.

Conclusion

Calling Java methods from C is relatively straightforward for experienced C
programmers, although it does require fairly advanced quasi-object-oriented
programming techniques. Although JNI supports both C and C++, the C++ interface
is slightly cleaner and is generally preferred over the C interface.

One important point to remember is that a single JVM can be used to load and
execute multiple classes and methods. Creating and destroying a JVM every time
you interact with Java from native code can waste resources and decrease
performance.

Section 4. Advanced topics

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 28

http://www.ibm.com/legal/copytrade.shtml

Overview

Calling native code from within a Java program compromises the Java program's
portability and security. Although the compiled Java bytecode remains highly
portable, the native code must be recompiled for each platform on which you intend
to run the application. The native code also executes outside of the JVM, so it is not
necessarily constrained by the same security protocols as Java code.

Calling Java code from within a native program is also complicated. Because the
Java language is object-oriented, calling Java code from a native application
typically involves object-oriented techniques. In native languages that have no
support or limited support for object-oriented programming, such as C, calling Java
methods can be problematic. In this section, we'll explore some of the complexities
that arise when working with JNI, and look at ways to work around them.

Java strings versus C strings

Java strings are stored as sequences of 16-bit Unicode characters, while C strings
are stored as sequences of 8-bit null-terminated characters. JNI provides several
useful functions for converting between and manipulating Java strings and C strings.
The code snippet below demonstrates how to convert C strings to Java strings:

1. /* Convert a C string to a Java String. */
2. char[] str = "To be or not to be.\n";
3. jstring jstr = (*env)->NewStringUTF(env, str);

Next, we'll look at the code to convert Java strings to C strings. Note the call to the
ReleaseStringUTFChars() function on line 5. You should use this function to
release Java strings when you're no longer using them. Be sure you always release
your strings when the native code no longer needs to reference them. Failure to do
so could cause a memory leak.

1. /* Convert a Java String into a C string. */
2. char buf[128;
3. const char *newString = (*env)->GetStringUTFChars(env, jstr, 0);
4. ...
5. (*env)->ReleaseStringUTFChars(env, jstr, newString);

Java arrays versus C arrays

Like strings, Java arrays and C arrays are represented differently in memory.
Fortunately, a set of JNI functions provides you with pointers to the elements in
arrays. The image below shows how Java arrays are mapped to the JNI C types.

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 18 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The C type jarray represents a generic array. In C, all of the array types are really
just type synonyms of jobject. In C++, however, all of the array types inherit from
jarray, which in turn inherits from jobject . See Appendix A: JNI types for an
inheritance diagram of all the C type objects.

s

Working with arrays

Generally, the first thing you want to do when dealing with an array is to determine
its size. For this, you should use the GetArrayLength() function, which returns a
jsize representing the array's size.

Next, you'll want to obtain a pointer to the array's elements. You can access
elements in an array using the GetXXXArrayElement() and
SetXXXArrayElement() functions (replace the XXX in the method name
according to the type of the array: Object, Boolean, Byte, Char, Int, Long, and
so on).

When the native code is finished using a Java array, it must release it with a call to
the function ReleaseXXXArrayElements(). Otherwise, a memory leak may
result. The code snippet below shows how to loop through an array of integers and
up all the elements:

1. /* Looping through the elements in an array. */
2. int* elem = (*env)->GetIntArrayElements(env, intArray, 0);
3. for (i=0; I < (*env)->GetIntArrayLength(env, intArray); i++)
4. sum += elem[i]
5. (*env)->ReleaseIntArrayElements(env, intArray, elem, 0);

Local versus global references

When programming with JNI you will be required to use references to Java objects.

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 28

http://www.ibm.com/legal/copytrade.shtml

By default, JNI creates local references to ensure that they are liable for garbage
collection. Because of this, you may unintentionally write illegal code by trying to
store away a local reference so that you can reuse it later, as shown in the code
sample below:

1. /* This code is invalid! */
2. static jmethodID mid;
3.
4. JNIEXPORT jstring JNICALL
5. Java_Sample1_accessMethod(JNIEnv *env, jobject obj)
6. {
7. ...
8. cls = (*env)->GetObjectClass(env, obj);
9. if (cls != 0)
10. mid = (*env)->GetStaticMethodID(env, cls, "addInt", "(I)I");
11. ...
12. }

This code is not valid because of line 10. mid is a methodID and
GetStaticMethodID() returns a methodID. The methodID returned is a local
reference, however, and you should not assign a local reference to a global
reference. And mid is a global reference.

After the Java_Sample1_accessMethod() returns, the mid reference is no
longer valid because it was assigned a local reference that is now out of scope.
Trying to use mid will result in either the wrong results or a crash of the JVM.

Creating a global reference

To correct this problem, you need to create and use a global reference. A global
reference will remain valid until you explicitly free it, which you must remember to do.
Failure to free the reference could cause a memory leak.

Create a global reference with NewGlobalRef() and delete it with
DeleteGlobalRef(), as shown in the code sample below:

1. /* This code is valid! */
2. static jmethodID mid;
3.
4. JNIEXPORT jstring JNICALL
5. Java_Sample1_accessMethod(JNIEnv *env, jobject obj)
6. {
7. ...
8. cls = (*env)->GetObjectClass(env, obj);
9. if (cls != 0)
10. {
11. mid1 = (*env)->GetStaticMethodID(env, cls, "addInt", "(I)I");
12. mid = (*env)->NewGlobalRef(env, mid1);
13. ...
14. }

Error handling

Using native methods in Java programs breaks the Java security model in some

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 20 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

fundamental ways. Because Java programs run in a controlled runtime system (the
JVM), the designers of the Java platform decided to help the programmer by
checking common runtime errors like array indices, out-of-bounds errors, and null
pointer errors. C and C++, on the other hand, use no such runtime error checking,
so native method programmers must handle all error conditions that would otherwise
be caught in the JVM at runtime.

For example, it is common and correct practice in Java programs to report errors to
the JVM by throwing an exception. C has no exceptions, so instead you must use
the exception handling functions of JNI.

JNI's exception handling functions

There are two ways to throw an exception in the native code: you can call the
Throw() function or the ThrowNew() function. Before calling Throw(), you first
need to create an object of type Throwable. By calling ThrowNew() you can skip
this step because this function creates the object for you. In the example code
snippet below, we throw an IOException using both functions:

1. /* Create the Throwable object. */
2. jclass cls = (*env)->FindClass(env, "java/io/IOException");
3. jmethodID mid = (*env)->GetMethodID(env, cls, "<init>", "()V");
4. jthrowable e = (*env)->NewObject(env, cls, mid);
5.
6. /* Now throw the exception */
7. (*env)->Throw(env, e);
8. ...
9.
10. /* Here we do it all in one step and provide a message*/
11. (*env)->ThrowNew(env,
12. (*env)->FindClass("java/io/IOException"),
13. "An IOException occurred!");

The Throw() and ThrowNew() functions do not interrupt the flow of control in the
native method. The exception will not actually be thrown in the JVM until the native
method returns. In C you cannot use the Throw() and ThrowNew() functions to
immediately exit a method on error conditions, as you can in Java programs by
using the throw statement. Instead, you need to use a return statement right after
the Throw() and ThrowNew() functions to exit the native method at a point of
error.

JNI's exception catching functions

You may also need to catch exceptions when calling Java from C or C++. Many JNI
functions throw exceptions that you may want to catch. The ExceptionCheck()
function returns a jboolean indicating whether or not an exception was thrown,
while the ExceptionOccured() method returns a jthrowable reference to the
current exception (or NULL if no exception was thrown).

If you're catching exceptions, you may be handling exceptions, in which case you
need to clear out the exception in the JVM. You can do this using the

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 28

http://www.ibm.com/legal/copytrade.shtml

ExceptionClear() function. The ExceptionDescribed() function is used to
display a debugging message for an exception.

Multithreading in native methods

One of the more advanced issues you'll face when working with JNI is multithreading
with native methods. The Java platform is implemented as a multithreaded system,
even when running on platforms that don't necessarily support multithreading; so the
onus is on you to ensure that your native functions are thread safe.

In Java programs, you can implement thread-safe code by using synchronized
statements. The syntax of the synchronized statements allows you to obtain a
lock on an object. As long as you're in the synchronized block, you can perform
whatever data manipulation you like without fear that another thread may sneak in
and access the object for which you have the lock.

JNI provides a similar structure using the MonitorEnter() and MonitorExit()
functions. You obtain a monitor (lock) on the object you pass into the
MonitorEnter() function and you keep this lock until you release it with the
MonitorExit() function. All of the code between the MonitorEnter() and
MonitorExit() functions is guaranteed to be thread safe for the object you
locked.

Synchronization in native methods

The table below shows how to synchronize a block of code in Java, C, and C++. As
you can see, the C and C++ functions are similar to the synchronized statement
in the Java code.

Using synchronized with native methods

Another way to ensure that your native method is synchronized is to use the
synchronized keyword when you declare your native method in a Java class.

Using the synchronized keyword will ensure that whenever the native method is
called from a Java program, it will be synchronized. Although it is a good idea to
mark thread-safe native methods with the synchronized keyword, it is generally
best to always implement synchronization in the native method implementation. The
primary reasons for this are as follows:

• The C or C++ code is distinct from the Java native method declaration, so

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 22 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

if the method declaration changes (that is, if the synchronized keyword
is ever removed) the method may suddenly no longer be thread safe.

• If anyone ever codes other native methods (or other C or C++ functions)
that use the function, they may not be aware that native implementation
isn't thread safe.

• If the function is used outside of a Java program as a normal C function it
will not be thread safe.

Other synchronization techniques

The Object.wait(), Object.notify(), and Object.notifyAll() methods
also support thread synchronization. Since all Java objects have the Object class
as a parent class, all Java objects have these methods. You can call these methods
from the native code as you would any other method, and use them in the same way
you would use them in Java code to implement thread synchronization.

Section 5. Wrap-up

Summary

The Java Native Interface is a well-designed and well-integrated API in the Java
platform. It is designed to allow you to incorporate native code into Java programs
as well as providing you a way to use Java code in programs written in other
programming languages.

Using JNI almost always breaks the portability of your Java code. When calling
native methods from Java programs, you will need to distribute native shared library
files for every platform on which you intend to run your program. On the other hand,
calling Java code from native programs can actually improve the portability of your
application.

Section 6. Appendices

Appendix A: JNI types

JNI uses several natively defined C types that map to Java types. These types can
be divided into two categories: primitive types and pseudo-classes. The

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 28

http://www.ibm.com/legal/copytrade.shtml

pseudo-classes are implemented as structures in C, but they are real classes in
C++.

The Java primitive types map directly to C platform-dependent types, as shown
here:

The C type jarray represents a generic array. In C, all of the array types are really
just type synonyms of jobject. In C++, however, all of the array types inherit from
jarray, which in turn inherits from jobject. The following table shows how the
Java array types map to JNI C array types.

Here is an object tree that shows how the JNI pseudo-classes are related.

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 24 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Appendix B: JNI method signature encoding

Native Java method parameter types are rendered, or mangled, into native code
using the encoding specified in the table below.

Notes:

• The semicolon at the end of the class type L expression is the terminator
of the type expression, not a separator between expressions.

• You must use a forward slash (/) instead of a dot (.) to separate the
package and class name. To specify an array type use an open bracket
([). For example, the Java method:

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 28

http://www.ibm.com/legal/copytrade.shtml

boolean print(String[] parms, int n)

has the following mangled signature:

([Ljava/lang/Sting;I)Z

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 26 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• To learn more about the differences between programming in C/C++ and
programming in the Java language -- from a C/C++ programmer's perspective --
see the tutorial, "Introduction to Java for C/C++ programmers"
(developerWorks, April 1999).

• The recent article "Weighing in on Java native compilation" (developerWorks,
January 2002) uses comparative benchmarks to look at the pros and cons of
the Java Native Interface.

• To further your education in Java programming, see the complete listing of
developerWorks tutorials on Java programming.

• You'll find hundreds of articles about every aspect of Java programming in the
IBM developerWorks Java technology zone.

• To learn more about programming in C++, start with Bjarne Stroustrup's The
C++ Programming Language, Third Edition (Addison-Wesley, 1996).

• Another good reference is Kris Jamsa and Lars Klander's Jamsa's C/C++
Programmer's Bible (Jamsa Press, 1998).

• For a more object-oriented approach, see Cay S. Horstmann's Mastering
Object-Oriented Design in C++ (John Wiley & Sons Inc., 1995).

• Andrew C. Staugaard, Jr., wrote Structured and Object-Oriented Techniques:
An Introduction using C++ (Prentice Hall, 1997).

• Learn more about the Java Native Interface with Sheng Liang's Java Native
Interface: Programmer's Guide and Specification (Sun Microsystems Press,
1999).

• David Flanagan's Java in a Nutshell, Third Edition is essential reading for any
Java programmer (O'Reilly, 1999).

• Also see volumes I and II of the Core Java 2 series by Cay S. Horstmann and
Gary Cornell (Sun Microsystems Press, 2000).

• The Java 2 Developer's Handbook by Philip Heller and Simon Roberts is an
excellent resource (Sybex, 1999).

• To learn more about the Java platform's security model, see Scott Oaks's Java
Security, Second Edition (O'Reilly, 2001).

• For an in-depth look at Java data structures and algorithms, see Robert Lafore's
Data Structures & Algorithms in Java (Waite Group Press, 1998).

Get products and technologies

• Download the complete source files, jni-source.zip, for this tutorial.

• Download the Java 2 platform, Standard Edition, version 1.4.

ibm.com/developerWorks developerWorks®

Java programming with JNI
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 28

http://www.ibm.com/developerworks/edu/j-dw-ijcc++p-i.html?S_TACT=104AHW02&S_CMP=EDU
http://www.ibm.com/developerworks/library/j-native.html
http://www-128.ibm.com/developerworks/views/java/libraryview.jsp?type_by=Tutorials
http://www.ibm.com/developerworks/java/
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201889544/qid=1016664930/sr=2-1/ref=sr_2_1/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/1884133258/programmersheave/102-1885448-9572169
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.wiley.com/cda/product/0,,0471594849,00.html
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0134887360/qid=1016664843/sr=1-3/ref=sr_1_3/104-5537164-2267918
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.amazon.com/exec/obidos/ASIN/0201325772/102-1885448-9572169
http://www.oreilly.com/catalog/javanut3/
http://www.horstmann.com/corejava.html
http://www.amazon.com/exec/obidos/tg/detail/-/0782121799/qid=1087447060/sr=8-1/ref=sr_8_xs_ap_i1_xgl14/104-5942886-5410337?v=glance&s=books&n=507846
http://www.oreilly.com/catalog/javasec2/
http://www.oreilly.com/catalog/javasec2/
http://www.amazon.com/exec/obidos/ASIN/1571690956/qid=1016051869/sr=8-1/ref=sr_8_71_1/102-1885448-9572169
jni-source.zip
http://java.sun.com/j2se/1.4/index.html
http://www.ibm.com/legal/copytrade.shtml

• If you're a Windows user, you'll likely use Visual C++ to compile your C/C++
code.

• If you're a UNIX user, you'll likely use cc to compile your C/C++ code. Of
course, GCC is an equally viable, open-source option.

• IBM's VisualAge for Java is a complete Java development package, including a
C/C++ compiler.

• Further explore your options with developerWorks' listing of IBM developer kits
for Java technology.

About the author

Scott Stricker
Scott Stricker is an enterprise application developer working in Business Innovation
Services, part of IBM Global Services. He specializes in object-oriented technologies,
particularly in Java and C++ programming. Scott has a Bachelor of Science degree in
Computer Science from the University of Cincinnati. He is a Sun Certified Java 2
Programmer and Developer.

developerWorks® ibm.com/developerWorks

Java programming with JNI
Page 28 of 28 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://msdn.microsoft.com/visualc/howtobuy/default.asp#2
http://gcc.gnu.org/
http://www.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www-3.ibm.com/software/ad/vajava/&origin=j
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	About this tutorial
	What is this tutorial about?
	Should I take this tutorial?
	Tools and components
	Additional considerations

	Calling C/C++ code from Java programs
	Overview
	Six steps to call C/C++ from Java code
	Step 1: Write the Java code
	What's happening in this code?
	Step 2: Compile the Java code
	Step 3: Create the C/C++ header file
	Results of running javah.exe on Sample1.java

	About the C/C++ header file
	Step 4: Write the C/C++ code
	The C function implementation
	The C++ function implementation
	C and C++ function implementations compared
	Step 5: Create the shared library file
	Step 6: Run the Java program
	Troubleshooting
	Conclusion

	Calling Java code from C/C++ programs
	Overview
	Four steps to call Java code from a C/C++ program
	Step 1: Write the Java code
	Step 2: Compile the Java code
	Step 3: Write the C/C++ code
	A C application with embedded JVM
	A C++ application with embedded JVM
	C and C++ implementations compared
	A closer look at the C application
	Include the jni.h file
	Declare the variables
	Set the initialization arguments
	Set the classpath
	Set aside memory for vm_args
	Create the JVM
	Find and load the Java classes
	Find a Java method
	Call a Java method
	Step 4: Run the application
	Troubleshooting
	Conclusion

	Advanced topics
	Overview
	Java strings versus C strings
	Java arrays versus C arrays
	Working with arrays
	Local versus global references
	Creating a global reference
	Error handling
	JNI's exception handling functions
	JNI's exception catching functions
	Multithreading in native methods
	Synchronization in native methods
	Using synchronized with native methods
	Other synchronization techniques

	Wrap-up
	Summary

	Appendices
	Appendix A: JNI types
	Appendix B: JNI method signature encoding

	Resources
	About the author

